WorldWideScience

Sample records for monitor juvenile chinook

  1. Predation by northern squawfish on live and dead juvenile chinook salmon

    International Nuclear Information System (INIS)

    Gadomski, D.M.; Hall-Griswold, J.A.

    1992-01-01

    Northern squawfish Ptychocheilus oregonensis is a major predator of juvenile salmonids Oncorhynchus spp. migrating downstream through the Columbia River. High predation rates occur just below dams. If northern squawfish selectively consume salmonids killed or injured during dam passage, previous estimates of predation mortality may be too high. We conducted laboratory experiments that indicate northern squawfish prefer dead juvenile chinook salmon O. tshawytscha over live individuals. When equal numbers of dead and live chinook salmon were offered to northern squawfish maintained on a natural photoperiod (15 h light: 9 h darkness), significantly more (P < 0.05) dead than live fish were consumed, both in 1,400-L circular tanks and in an 11,300-L raceway (62% and 79% of prey consumed were dead, respectively). When dead and live juvenile chinook salmon were provided in proportions more similar to those below dams (20% dead, 80% live), northern squawfish still selected for dead prey (36% of fish consumed were dead). In additional experiments, northern squawfish were offered a proportion of 20% dead juvenile chinook salmon during 4-h periods of either light or darkness. The predators were much more selective for dead chinook salmon during bright light (88% of fish consumed were dead) than during darkness (31% were dead)

  2. Grande Ronde Endemic Spring Chinook Salmon Supplementation Program: Facility Operation and Maintenance and Monitoring and Evaluation, 2000 Annual Report.

    Energy Technology Data Exchange (ETDEWEB)

    Boe, Stephen J.; Lofy, Peter T. (Confederated Tribes of the Umatilla Indian Reservation, Pendleton, OR)

    2003-03-01

    This is the third annual report of a multi-year project to operate adult collection and juvenile acclimation facilities on Catherine Creek and the upper Grande Ronde River for Snake River spring chinook salmon. These two streams have historically supported populations that provided significant tribal and non-tribal fisheries. Supplementation using conventional and captive broodstock techniques is being used to restore fisheries in these streams. Statement of Work Objectives for 2000: (1) Participate in implementation of the comprehensive multiyear operations plan for the Grande Ronde Endemic Spring Chinook Supplementation Program (GRESCP). (2) Plan for recovery of endemic summer steelhead populations in Catherine Creek and the upper Grande Ronde River. (3) Ensure proper construction and trial operation of semi-permanent adult and juvenile facilities for use in 2000. (4) Collect summer steelhead. (5) Collect adult endemic spring chinook salmon broodstock. (6) Acclimate juvenile spring chinook salmon prior to release into the upper Grande Ronde River and Catherine Creek. (7) Document accomplishments and needs to permitters, comanagers, and funding agency. (8) Communicate project results to the scientific community. (9) Plan detailed GRESCP Monitoring and Evaluation for future years. (10) Monitor adult population abundance and characteristics of Grande Ronde River spring chinook salmon populations and incidentally-caught summer steelhead and bull trout. (11) Monitor condition, movement, and mortality of spring chinook salmon acclimated at remote facilities. (12) Monitor water quality at facilities. (13) Participate in Monitoring & Evaluation of the captive brood component of the Program to document contribution to the Program.

  3. Water Temperature, Invertebrate Drift, and the Scope for Growth for Juvenile Spring Chinook Salmon.

    Science.gov (United States)

    Lovtang, J. C.; Li, H. W.

    2005-05-01

    We present a bioenergetic assessment of habitat quality based on the concept of the scope for growth for juvenile Chinook salmon. Growth of juvenile salmonids during the freshwater phase of their life history depends on a balance between two main factors: energy intake and metabolic costs. The metabolic demands of temperature and the availability of food play integral roles in determining the scope for growth of juvenile salmonids in stream systems. We investigated differences in size of juvenile spring Chinook salmon in relation to water temperature and invertebrate drift density in six unique study reaches in the Metolius River Basin, a tributary of the Deschutes River in Central Oregon. This project was initiated to determine the relative quality and potential productivity of habitat in the Metolius Basin prior to the reintroduction of spring Chinook salmon, which were extirpated from the middle Deschutes basin in the early 1970's due to the construction of a hydroelectric dam. Variations in the growth of juvenile Chinook salmon can be described using a multiple regression model of water temperature and invertebrate drift density. We also discuss the relationships between our bioenergetic model, variations of the ideal free distribution model, and physiological growth models.

  4. Evaluation of Juvenile Fall Chinook Stranding on the Hanford Reach, 1997-1999 Interim Report.

    Energy Technology Data Exchange (ETDEWEB)

    Wagner, Paul; Nugent, John; Price, William (Washington Department of Fish and Wildlife, Olympia, WA)

    1999-02-15

    Pilot work conducted in 1997 to aid the development of the study for the 1998 Evaluation of Juvenile Fall Chinook Stranding on The Hanford Reach. The objectives of the 1997 work were to: (1) identify juvenile chinook production and rearing areas..., (2) identify sampling sites and develop the statistical parameters necessary to complete the study, (3) develop a study plan..., (4) conduct field sampling activities...

  5. Spring Chinook Salmon Interactions Indices and Residual/Precocious Male Monitoring in the Upper Yakima Basin; Yakima/Klickitat Fisheries Project Monitoring and Evaluation, 2004-2005 Annual Report.

    Energy Technology Data Exchange (ETDEWEB)

    Pearsons, Todd N.; Johnson, Christopher L. (Washington Department of Fish and Wildlife, Olympia, WA); James, Brenda B. (Cascade Aquatics, Ellensburg, WA)

    2005-05-01

    This report examines some of the factors that can influence the success of supplementation, which is currently being tested in the Yakima Basin using upper Yakima stock of spring chinook salmon. Supplementation success in the Yakima Basin is defined relative to four topic areas: natural production, genetics, ecological interactions, and harvest (Busack et al. 1997). The success of spring chinook salmon supplementation in the Yakima Basin is dependent, in part, upon fish culture practices and favorable physical and biological conditions in the natural environment (Busack et al. 1997; James et al. 1999; Pearsons et al., 2003; Pearsons et al. 2004). Shortfalls in either of these two topics (i.e., failure in culturing many fish that have high long-term fitness or environmental conditions that constrain spring chinook salmon production) will cause supplementation success to be limited. For example, inadvertent selection or propagation of spring chinook that residualize or precocially mature may hinder supplementation success. Spring chinook salmon that residualize (do not migrate during the normal migration period) may have lower survival rates than migrants and, additionally, may interact with wild fish and cause unacceptable impacts to non-target taxa. Large numbers of precocials (nonanadromous spawners) may increase competition for females and significantly skew ratios of offspring sired by nonanadromous males, which could result in more nonanadromous spring chinook in future generations. Conditions in the natural environment may also limit the success of spring chinook supplementation. For example, intra or interspecific competition may constrain spring chinook salmon production. Spring chinook salmon juveniles may compete with each other for food or space or compete with other species that have similar ecological requirements. Monitoring of spring chinook salmon residuals, precocials, prey abundance, carrying capacity, and competition will help researchers

  6. Juvenile Chinook Salmon mortality in a Snake River Reservoir: Smallmouth Bass predation revisited

    Science.gov (United States)

    Erhardt, John M.; Tiffan, Kenneth F.; Connor, William P.

    2018-01-01

    Predation by nonnative fishes has been identified as a contributing factor in the decline of juvenile salmonids in the Columbia River basin. We examined the diet composition of Smallmouth Bass Micropterus dolomieu and estimated the consumption and predation loss of juvenile Chinook Salmon Oncorhynchus tshawytscha in Lower Granite Reservoir on the Snake River. We examined 4,852 Smallmouth Bass stomachs collected from shoreline habitats during April–September 2013–2015. Chinook Salmon were the second most commonly consumed fish by all size‐classes of Smallmouth Bass (≥150 mm TL) throughout the study. Over the 3 years studied, we estimated that a total of 300,373 Chinook Salmon were consumed by Smallmouth Bass in our 22‐km study area, of which 97% (291,884) were subyearlings (age 0) based on length frequency data. A majority of the loss (61%) occurred during June, which coincided with the timing of hatchery releases of subyearling fall Chinook Salmon. Compared to an earlier study, mean annual predation loss increased more than 15‐fold from 2,670 Chinook Salmon during 1996–1997 to 41,145 Chinook Salmon during 2013–2015 (in reaches that could be compared), despite lower contemporary Smallmouth Bass abundances. This increase can be explained in part by increases in Smallmouth Bass consumption rates, which paralleled increases in subyearling Chinook Salmon densities—an expected functional response by an opportunistic consumer. Smallmouth Bass are currently significant predators of subyearling Chinook Salmon in Lower Granite Reservoir and could potentially be a large source of unexplained mortality.

  7. Spring Chinook Salmon Interactions Indices and Residual/Precocial Monitoring in the Upper Yakima Basin; Yakima/Klickitat Fisheries Project Monitoring and Evaluation, 2001-2002 Annual Report.

    Energy Technology Data Exchange (ETDEWEB)

    Pearsons, Todd N.; James, Brenda B.; Johnson, Christopher L. (Washington Department of Fish and Wildlife, Olympia, WA)

    2003-05-01

    This report examines some of the factors that can influence the success of supplementation, which is currently being tested in the Yakima Basin using upper Yakima stock of spring chinook salmon. Supplementation success in the Yakima Basin is defined relative to four topic areas: natural production, genetics, ecological interactions, and harvest (Busack et al. 1997). The success of spring chinook salmon supplementation in the Yakima Basin is dependent, in part, upon fish culture practices and favorable physical and biological conditions in the natural environment (Busack et al. 1997). Shortfalls in either of these two topics (i.e., failure in culturing many fish that have high long-term fitness or environmental conditions that constrain spring chinook salmon production) will cause supplementation success to be limited. For example, inadvertent selection or propagation of spring chinook that residualize or precocially mature may hinder supplementation success. Spring chinook salmon that residualize (do not migrate during the normal migration period) may have lower survival rates than migrants and, additionally, may interact with wild fish and cause unacceptable impacts to non-target taxa. Large numbers of precocials (nonanadromous spawners) may increase competition for females and significantly skew ratios of offspring sired by nonanadromous males, which could result in more nonanadromous spring chinook in future generations. Conditions in the natural environment may also limit the success of spring chinook supplementation. For example, intra or interspecific competition may constrain spring chinook salmon production. Spring chinook salmon juveniles may compete with each other for food or space or compete with other species that have similar ecological requirements. Monitoring of spring chinook salmon residuals, precocials, prey abundance, carrying capacity, and competition will help researchers interpret why supplementation is working or not working (Busack et al

  8. Status and Monitoring of Natural and Supplemented Chinook Salmon in Johnson Creek, Idaho, 2006-2007 Annual Report.

    Energy Technology Data Exchange (ETDEWEB)

    Rabe, Craig D.; Nelson, Douglas D. [Nez Perce Tribe

    2008-11-17

    The Nez Perce Tribe Johnson Creek Artificial Propagation Enhancement Project (JCAPE) has conducted juvenile and adult monitoring and evaluation studies for its 10th consecutive year. Completion of adult and juvenile Chinook salmon studies were conducted for the purpose of evaluating a small-scale production initiative designed to increase the survival of a weak but recoverable spawning aggregate of summer Chinook salmon Oncorhynchus tshawytscha. The JCAPE program evaluates the life cycle of natural origin (NOR) and hatchery origin (HOR) supplementation fish to quantify the key performance measures: abundance, survival-productivity, distribution, genetics, life history, habitat, and in-hatchery metrics. Operation of a picket style weir and intensive multiple spawning ground surveys were completed to monitor adult Chinook salmon and a rotary screw trap was used to monitor migrating juvenile Chinook salmon in Johnson Creek. In 2007, spawning ground surveys were conducted on all available spawning habitat in Johnson Creek and one of its tributaries. A total of 63 redds were observed in the index reach and 11 redds for all other reaches for a combined count of 74 redds. Utilization of carcass recovery surveys and adult captures at an adult picket weir yielded a total estimated adult escapement to Johnson Creek of 438 Chinook salmon. Upon deducting fish removed for broodstock (n=52), weir mortality/ known strays (n=12), and prespawning mortality (n=15), an estimated 359 summer Chinook salmon were available to spawn. Estimated total migration of brood year 2005 NOR juvenile Chinook salmon at the rotary screw trap was calculated for three seasons (summer, fall, and spring). The total estimated migration was 34,194 fish; 26,671 of the NOR migrants left in the summer (July 1 to August 31, 2005) as fry/parr, 5,852 left in the fall (September 1 to November 21, 2005) as presmolt, and only 1,671 NOR fish left in the spring (March 1 to June 30, 2006) as smolt. In addition, there

  9. Migratory Characteristics of Juvenile Spring Chinook Salmon in the Willamette River : Completion Report 1994.

    Energy Technology Data Exchange (ETDEWEB)

    Schreck, Carl B.; Snelling, J.C.; Ewing, R.E.; Bradford, C.S.; Davis, L.E.; Slater, C.H.

    1994-01-01

    The objective of this research was to examine in detail the migration of juvenile spring chinook salmon (Oncorhynchus tshawytscha) in the Willamette River, Oregon. The authors wanted to determine characteristics of seaward migration of spring chinook smolts in relation to the oxygen supplementation practices at the Oregon Department of Fish and Wildlife (ODFW) Willamette Hatchery and use this information to strengthen the design of the oxygen supplementation project. There is little information available on the effects of oxygen supplementation at hatcheries on the migratory characteristics of juvenile salmon. Such information is required to assess the use of oxygen supplementation as a means of improving hatchery production, its effect on imprinting of juveniles, and finally the return of adults. In the event that oxygen supplementation provides for improved production and survival of juvenile chinook salmon at Willamette Hatchery, background information on the migration characteristics of these fish will be required to effectively utilize the increased production within the goals of the Willamette Fish Management Plan. Furthermore this technology may be instrumental in the goal of doubling the runs of spring Chinook salmon in the Columbia River. While evaluation of success is dependent on evaluation of the return of adults with coded wire tags, examination of the migratory characteristics of hatchery smolts may prove to be equally informative. Through this research it is possible to determine the rate at which individuals from various oxygenation treatment groups leave the Willamette River system, a factor which may be strongly related to adult return rate.

  10. Migratory characteristics of juvenile spring chinook salmon in the Willamette River. Completion report 1994

    International Nuclear Information System (INIS)

    Schreck, C.B.; Snelling, J.C.; Ewing, R.E.; Bradford, C.S.; Davis, L.E.; Slater, C.H.

    1994-01-01

    The objective of this research was to examine in detail the migration of juvenile spring chinook salmon (Oncorhynchus tshawytscha) in the Willamette River, Oregon. The authors wanted to determine characteristics of seaward migration of spring chinook smolts in relation to the oxygen supplementation practices at the Oregon Department of Fish and Wildlife (ODFW) Willamette Hatchery and use this information to strengthen the design of the oxygen supplementation project. There is little information available on the effects of oxygen supplementation at hatcheries on the migratory characteristics of juvenile salmon. Such information is required to assess the use of oxygen supplementation as a means of improving hatchery production, its effect on imprinting of juveniles, and finally the return of adults. In the event that oxygen supplementation provides for improved production and survival of juvenile chinook salmon at Willamette Hatchery, background information on the migration characteristics of these fish will be required to effectively utilize the increased production within the goals of the Willamette Fish Management Plan. Furthermore this technology may be instrumental in the goal of doubling the runs of spring Chinook salmon in the Columbia River. While evaluation of success is dependent on evaluation of the return of adults with coded wire tags, examination of the migratory characteristics of hatchery smolts may prove to be equally informative. Through this research it is possible to determine the rate at which individuals from various oxygenation treatment groups leave the Willamette River system, a factor which may be strongly related to adult return rate

  11. Compliance Monitoring of Yearling and Subyearling Chinook Salmon and Juvenile Steelhead Survival and Passage at John Day Dam, 2012

    Energy Technology Data Exchange (ETDEWEB)

    Skalski, J. R.; Townsend, Richard L.; Seaburg, Adam; Weiland, Mark A.; Woodley, Christa M.; Hughes, James S.; Ploskey, Gene R.; Deng, Zhiqun; Carlson, Thomas J.

    2013-05-01

    The purpose of this compliance study was to estimate dam passage survival of yearling and subyearling Chinook salmon and steelhead smolts at John Day Dam during the spring and summer outmigrations in 2012. Under the 2008 Federal Columbia River Power System (FCRPS) Biological Opinion (BiOp), dam passage survival should be greater than or equal to 0.96 for spring migrants and greater than or equal to 0.93 for summer migrants, estimated with a standard error (SE) less than or equal to 0.015. The study also estimated smolt passage survival from the forebay 2 km upstream of the dam to the tailrace 3 km downstream of the dam, as well as the forebay residence time, tailrace egress time, spill passage efficiency (SPE), and fish passage efficiency (FPE), as required in the Columbia Basin Fish Accords (Fish Accords). A virtual/paired-release design was used to estimate dam passage survival at John Day Dam. The approach included releases of smolts, tagged with acoustic micro-transmitters, above John Day Dam that contributed to the formation of a virtual release at the face of John Day Dam. A survival estimate from this release was adjusted by a paired release below John Day Dam. A total of 3376 yearling Chinook salmon, 5726 subyearling Chinook salmon, and 3239 steelhead smolts were used in the virtual releases. Sample sizes for the below-dam paired releases (R2 and R3, respectively) were 997 and 995 for yearling Chinook salmon smolts, 986 and 983 for subyearling Chinook salmon smolts, and 1000 and 1000 for steelhead smolts. The Juvenile Salmon Acoustic Telemetry System (JSATS) tags were manufactured by Advanced Telemetry Systems. Model SS300 tags, weighing 0.304 g in air, were surgically implanted in yearling and subyearling Chinook salmon, and Model SS130 tag, weighing 0.438 g in air, were surgically implanted in juvenile steelhead for this investigation. The intent of the spring study was to estimate dam passage survival during both 30% and 40% spill conditions. The two

  12. Using a laboratory-based growth model to estimate mass- and temperature-dependent growth parameters across populations of juvenile Chinook Salmon

    Science.gov (United States)

    Perry, Russell W.; Plumb, John M.; Huntington, Charles

    2015-01-01

    To estimate the parameters that govern mass- and temperature-dependent growth, we conducted a meta-analysis of existing growth data from juvenile Chinook Salmon Oncorhynchus tshawytscha that were fed an ad libitum ration of a pelleted diet. Although the growth of juvenile Chinook Salmon has been well studied, research has focused on a single population, a narrow range of fish sizes, or a narrow range of temperatures. Therefore, we incorporated the Ratkowsky model for temperature-dependent growth into an allometric growth model; this model was then fitted to growth data from 11 data sources representing nine populations of juvenile Chinook Salmon. The model fit the growth data well, explaining 98% of the variation in final mass. The estimated allometric mass exponent (b) was 0.338 (SE = 0.025), similar to estimates reported for other salmonids. This estimate of b will be particularly useful for estimating mass-standardized growth rates of juvenile Chinook Salmon. In addition, the lower thermal limit, optimal temperature, and upper thermal limit for growth were estimated to be 1.8°C (SE = 0.63°C), 19.0°C (SE = 0.27°C), and 24.9°C (SE = 0.02°C), respectively. By taking a meta-analytical approach, we were able to provide a growth model that is applicable across populations of juvenile Chinook Salmon receiving an ad libitum ration of a pelleted diet.

  13. Grande Ronde Endemic Spring Chinook Salmon Supplementation Program: Monitoring and Evaluation, 2002 Annual Report.

    Energy Technology Data Exchange (ETDEWEB)

    Boe, Stephen J.; Weldert, Rey F.; Crump, Carrie A. (Confederated Tribes of the Umatilla Indian Reservation, Department of Natural Resources, Pendleton, OR)

    2003-03-01

    This is the fifth annual report of a multi-year project to operate adult collection and juvenile acclimation facilities on Catherine Creek and the upper Grande Ronde River for Snake River spring chinook salmon. These two streams have historically supported populations that provided significant tribal and non-tribal fisheries. Conventional and captive broodstock supplementation techniques are being used to restore spring chinook salmon fisheries in these streams. Statement of Work Objectives for 2002: (1) Plan for, administer, coordinate and assist comanagers in GRESCP M&E activities. (2) Evaluate performance of supplemented juvenile spring chinook salmon. (3) Evaluate life history differences between wild and hatchery-origin (F{sub 1}) adult spring chinook salmon. (4) Describe life history characteristics and genetics of adult summer steelhead collected at weirs.

  14. Passage survival of juvenile steelhead, coho salmon, and Chinook salmon in Lake Scanewa and at Cowlitz Falls Dam, Cowlitz River, Washington, 2010–16

    Science.gov (United States)

    Liedtke, Theresa L.; Kock, Tobias J.; Hurst, William

    2018-04-03

    A multi-year evaluation was conducted during 2010–16 to evaluate passage survival of juvenile steelhead (Oncorhynchus mykiss), Chinook salmon (O. tshawytscha), and coho salmon (O. kisutch) in Lake Scanewa, and at Cowlitz Falls Dam in the upper Cowlitz River Basin, Washington. Reservoir passage survival was evaluated in 2010, 2011, and 2016, and included the tagging and release of 1,127 juvenile salmonids. Tagged fish were released directly into the Cowlitz and Cispus Rivers, 22.3 and 8.9 km, respectively, upstream of the reservoir, and were monitored as they moved downstream into, and through the reservoir. A single release-recapture survival model was used to analyze detection records and estimate reservoir passage survival, which was defined as successful passage from reservoir entry to arrival at Cowlitz Falls Dam. Tagged fish generally moved quickly downstream of the release sites and, on average, arrived in the dam forebay within 2 d of release. Median travel time from release to first detection at the dam ranged from 0.23 to 0.96 d for juvenile steelhead, from 0.15 to 1.11 d for juvenile coho salmon, and from 0.18 to 1.89 d for juvenile Chinook salmon. Minimum reservoir passage survival probabilities were 0.960 for steelhead, 0.855 for coho salmon and 0.900 for Chinook salmon.Dam passage survival was evaluated at the pilot-study level during 2013–16 and included the tagging and release of 2,512 juvenile salmonids. Juvenile Chinook salmon were evaluated during 2013–14, and juvenile steelhead and coho salmon were evaluated during 2015–16. A paired-release study design was used that included release sites located upstream and downstream of Cowlitz Falls Dam. The downstream release site was positioned at the downstream margin of the dam’s tailrace, which allowed dam passage survival to be measured in a manner that included mortality that occurred in the passage route and in the dam tailrace. More than one-half of the tagged Chinook salmon (52 percent

  15. Spring Chinook Salmon Interactions Indices and Residual/Precocial Monitoring in the Upper Yakima Basin; Yakima/Klickitat Fisheries Project Monitoring and Evaluation Report 5 of 7, 2003-2004 Annual Report.

    Energy Technology Data Exchange (ETDEWEB)

    Pearsons, Todd N.; Johnson, Christopher L.; James, Brenda B. (Washington Department of Fish and Wildlife, Olympia, WA)

    2004-05-01

    This report examines some of the factors that can influence the success of supplementation, which is currently being tested in the Yakima Basin using upper Yakima stock of spring chinook salmon. Supplementation success in the Yakima Basin is defined relative to four topic areas: natural production, genetics, ecological interactions, and harvest (Busack et al. 1997). The success of spring chinook salmon supplementation in the Yakima Basin is dependent, in part, upon fish culture practices and favorable physical and biological conditions in the natural environment (Busack et al. 1997; James et al. 1999; Pearsons et al., 2003). Shortfalls in either of these two topics (i.e., failure in culturing many fish that have high long-term fitness or environmental conditions that constrain spring chinook salmon production) will cause supplementation success to be limited. For example, inadvertent selection or propagation of spring chinook that residualize or precocially mature may hinder supplementation success. Spring chinook salmon that residualize (do not migrate during the normal migration period) may have lower survival rates than migrants and, additionally, may interact with wild fish and cause unacceptable impacts to non-target taxa. Large numbers of precocials (nonanadromous spawners) may increase competition for females and significantly skew ratios of offspring sired by nonanadromous males, which could result in more nonanadromous spring chinook in future generations. Conditions in the natural environment may also limit the success of spring chinook supplementation. For example, intra or interspecific competition may constrain spring chinook salmon production. Spring chinook salmon juveniles may compete with each other for food or space or compete with other species that have similar ecological requirements. Monitoring of spring chinook salmon residuals, precocials, prey abundance, carrying capacity, and competition will help researchers interpret why supplementation

  16. Estuarine chinook capacity - Estimating changes in juvenile Chinook rearing area and carrying capacity in estuarine and freshwater habitats of the Puget Sound region

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This project has two objectives: 1. Estimate the amount of rearing habitat available to juvenile Chinook salmon currently and historically (i.e., ~1850s) throughout...

  17. Survival of Juvenile Chinook Salmon Passing the Bonneville Dam Spillway in 2007

    Energy Technology Data Exchange (ETDEWEB)

    Ploskey, Gene R.; Weiland, Mark A.; Hughes, James S.; Zimmerman, Shon A.; Durham, Robin E.; Fischer, Eric S.; Kim, Jina; Townsend, R. L.; Skalski, J. R.; Buchanan, Rebecca A.; McComas, Roy L.

    2008-12-01

    The U.S. Army Corps of Engineers Portland District (CENWP) funds numerous evaluations of fish passage and survival on the Columbia River. In 2007, the CENWP asked Pacific Northwest National Laboratory to conduct an acoustic telemetry study to estimate the survival of juvenile Chinook salmon passing the spillway at Bonneville Dam. This report documents the study results which are intended to be used to improve the conditions juvenile anadromous fish experience when passing through the dams that the Corps operates on the river.

  18. Evaluation of Juvenile Fall Chinook Salmon Stranding on the Hanford Reach of the Columbia River, 2000 Annual Report.

    Energy Technology Data Exchange (ETDEWEB)

    Nugent, John; Nugent, Michael; Brock, Wendy (Washington Department of Fish and Wildlife, Olympia, WA)

    2002-05-29

    The Washington Department of Fish and Wildlife (WDFW) has been contracted through the Bonneville Power Administration (BPA) and the Grant County Public Utility District (GCPUD) to perform an evaluation of juvenile fall chinook salmon (Oncorhynchus tshawytscha) stranding on the Hanford Reach. The evaluation, in the fourth year of a multi-year study, has been developed to assess the impacts of water fluctuations from Priest Rapids Dam on rearing juvenile fall chinook salmon, other fishes, and benthic macroinvertebrates of the Hanford Reach. This document provides the results of the 2000 field season.

  19. Evaluation of Juvenile Fall Chinook Salmon Stranding on the Hanford Reach of the Columbia River, 1999 Annual Report.

    Energy Technology Data Exchange (ETDEWEB)

    Nugent, John

    2002-01-24

    The Washington Department of Fish and Wildlife (WDFW) has been contracted through the Bonneville Power Administration (BPA) and the Grant County Public Utility District (GCPUD) to perform an evaluation of juvenile fall chinook salmon (Oncorhynchus tshawytscha) stranding on the Hanford Reach. The evaluation, in the third year of a multi-year study, has been developed to assess the impacts of water fluctuations from Priest Rapids Dam on rearing juvenile fall chinook salmon, other fishes, and benthic macroinvertebrates of the Hanford Reach. This document provides the results of the 1999 field season.

  20. Evaluation of Juvenile Fall Chinook Salmon Stranding on the Hanford Reach in the Columbia River, 1998 Interim Report.

    Energy Technology Data Exchange (ETDEWEB)

    Nugent, John; Newsome, Todd; Nugent, Michael (Washington Department of Fish and Wildlife, Olympia, WA)

    2001-07-27

    The Washington Department of Fish and Wildlife (WDFW) has been contracted through the Bonneville Power Administration (BPA) and the Grant County Public Utility District (GCPUD) to perform an evaluation of juvenile fall chinook salmon (Oncorhynchus tshawytscha) stranding on the Hanford Reach. The evaluation, in the second year of a multi-year study, has been developed to assess the impacts of water fluctuations from Priest Rapids Dam on rearing juvenile fall chinook salmon, other fish species, and benthic macroinvertebrates of the Hanford Reach. This document provides the results of the 1998 field season.

  1. Maximum Neutral Buoyancy Depth of Juvenile Chinook Salmon: Implications for Survival during Hydroturbine Passage

    Energy Technology Data Exchange (ETDEWEB)

    Pflugrath, Brett D.; Brown, Richard S.; Carlson, Thomas J.

    2012-03-01

    This study investigated the maximum depth at which juvenile Chinook salmon Oncorhynchus tshawytscha can acclimate by attaining neutral buoyancy. Depth of neutral buoyancy is dependent upon the volume of gas within the swim bladder, which greatly influences the occurrence of injuries to fish passing through hydroturbines. We used two methods to obtain maximum swim bladder volumes that were transformed into depth estimations - the increased excess mass test (IEMT) and the swim bladder rupture test (SBRT). In the IEMT, weights were surgically added to the fishes exterior, requiring the fish to increase swim bladder volume in order to remain neutrally buoyant. SBRT entailed removing and artificially increasing swim bladder volume through decompression. From these tests, we estimate the maximum acclimation depth for juvenile Chinook salmon is a median of 6.7m (range = 4.6-11.6 m). These findings have important implications to survival estimates, studies using tags, hydropower operations, and survival of juvenile salmon that pass through large Kaplan turbines typical of those found within the Columbia and Snake River hydropower system.

  2. Monitoring of Juvenile Yearling Chinook Salmon and Steelhead Survival and Passage at Bonneville Dam, Spring 2010

    Energy Technology Data Exchange (ETDEWEB)

    Ploskey, Gene R.; Faber, Derrek M.; Weiland, Mark A.; Carlson, Thomas J.

    2012-09-01

    The purpose of this study was to estimate the survival for yearling Chinook salmon and steelhead smolts during spring 2010 in a portion of the Columbia River that includes Bonneville Dam. The study estimated smolt survival from a virtual release at Bonneville Dam to a survival array 81 km downstream of Bonneville Dam. We also estimated median forebay residence time, median tailrace egress time, and spill passage efficiency (SPE), as required in the Columbia Basin Fish Accords. A single release design was used to estimate survival from Bonneville Dam to a primary array located 81 km downstream of Bonneville. The approach did not include a reference tailrace release. Releases of acoustic-tagged smolts above John Day Dam to Hood River contributed to the formation of virtual releases at a Bonneville Dam forebay entrance array and at the face of the dam. A total of 3,880 yearling Chinook salmon and 3,885 steelhead smolts were tagged and released in the investigation. The Juvenile Salmon Acoustic Telemetry System (JSATS) tag model number ATS-156dB, weighing 0.438 g in air, was used in this investigation.

  3. Spring Chinook Salmon Interactions Indices and Residual/Precocial Monitoring in the Upper Yakima Basin, Annual Report 1998

    International Nuclear Information System (INIS)

    James, Brenda B.; Pearsons, Todd N.; McMichael, Geoffrey A.

    1999-01-01

    Select ecological interactions and spring chinook salmon residual/precocial abundance were monitored in 1998 as part of the Yakima/Klickitat Fisheries Project's supplementation monitoring program. Monitoring these variables is part of an effort to help evaluate the factors that contribute to, or limit supplementation success. The ecological interactions that were monitored were prey consumption, competition for food, and competition for space. The abundance of spring chinook salmon life-history forms that have the potential to be influenced by supplementation and that have important ecological and genetic roles were monitored (residuals and precocials). Residual spring chinook salmon do not migrate to the ocean during the normal emigration period and continue to rear in freshwater. Precocials are those salmon that precocially mature in freshwater. The purpose of sampling during 1998 was to collect baseline data one year prior to the release of hatchery spring chinook salmon which occurred during the spring of 1999. All sampling that the authors report on here was conducted in upper Yakima River during summer and fall 1998. The stomach fullness of juvenile spring chinook salmon during the summer and fall averaged 12%. The food competition index suggested that mountain whitefish (0.59), rainbow trout (0.55), and redside shiner (0.55) were competing for food with spring chinook salmon. The space competition index suggested that rainbow trout (0.31) and redside shiner (0.39) were competing for space with spring chinook salmon but mountain whitefish (0.05) were not. Age-0 spring chinook salmon selected a fairly narrow range of microhabitat parameters in the summer and fall relative to what was available. Mean focal depths and velocities for age 0 spring chinook salmon during the summer were 0.5 m ± 0.2 m and 0.26 m/s ± 0.19 m/s, and during the fall 0.5 m ± 0.2 m and 0.24 m/s ± 0.18 m/s. Among potential competitors, age 1+ rainbow trout exhibited the greatest degree

  4. Wild Steelhead and introduced spring Chinook Salmon in the Wind River, Washington: Overlapping populations and interactions

    Science.gov (United States)

    Jezorek, I.G.; Connolly, P.J.

    2010-01-01

    We investigated interactions of introduced juvenile spring Chinook salmon Oncorhynchus tshawytscha with wild juvenile steelhead O. mykiss in the upper Wind River watershed (rkm 24.6 to rkm 43.8), Washington. Our objective was to determine if the presence of introduced spring Chinook salmon influenced populations of wild juvenile steelhead and if other biotic or abiotic factors influenced distribution and populations of these species. We snorkeled to assess distribution and abundance in one to six stream reaches per year during 2001 through 2007. Juvenile steelhead were found in each sampled reach each year, but juvenile Chinook salmon were not. The upstream extent of distribution of juvenile Chinook salmon varied from rkm 29.7 to 42.5. Our analyses suggest that juvenile Chinook salmon distribution was much influenced by flow during the spawning season. Low flow appeared to limit access of escaped adult Chinook salmon to upper stream reaches. Abundance of juvenile Chinook salmon was also influenced by base flow during the previous year, with base flow occurring post spawn in late August or early September. There were no relationships between juvenile Chinook salmon abundance and number of Chinook salmon spawners, magnitude of winter flow that might scour redds, or abundance of juvenile steelhead. Abundance of age-0 steelhead was influenced primarily by the number of steelhead spawners the previous year, and abundance of age-1 steelhead was influenced primarily by abundance of age-0 steelhead the previous year. Juvenile steelhead abundance did not show a relationship with base or peak flows, nor with number of escaped Chinook salmon adults during the previous year. We did not detect a negative influence of the relatively low abundance of progeny of escaped Chinook salmon on juvenile steelhead abundance. This low abundance of juvenile Chinook salmon was persistent throughout our study and is likely a result of hatchery management and habitat conditions. Should one or

  5. Survival and Passage of Yearling and Subyearling Chinook Salmon and Juvenile Steelhead at McNary Dam, 2012

    Energy Technology Data Exchange (ETDEWEB)

    Hughes, James S. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Weiland, Mark A. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Woodley, Christa M. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Ploskey, Gene R. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Carpenter, Scott M. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Hennen, Matthew J. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Fischer, Eric S. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Batton, George [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Carlson, Thomas J. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Cushing, Aaron W. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Deng, Zhiqun [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Etherington, D. J. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Fu, Tao [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Greiner, Michael J. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Ingraham, John M. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Kim, Jin A. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Li, Xi [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Martinez, Jayson J. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Mitchell, T. D. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Rayamajhi, Bishes [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Seaburg, Adam [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Skalski, J. R. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Townsend, Richard L. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Wagner, Katie A. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Zimmerman, Shon A. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States)

    2013-12-23

    The study was designed to evaluate the passage and survival of yearling and subyearling Chinook salmon and juvenile steelhead at McNary Dam as stipulated by the 2008 Biological Opinion and Fish Accords and to assess performance measures including route-specific fish passage proportions, travel times, and survival based upon a virtual/paired-release model. This study supports the USACE’s continual effort to improve conditions for juvenile anadromous fish passing through Columbia River dams.

  6. Gauging resource exploitation by juvenile Chinook salmon (Oncorhynchus tshawytscha) in restoring estuarine habitat

    Science.gov (United States)

    Davis, Melanie; Ellings, Christopher S.; Woo, Isa; Hodgson, Sayre; Larsen, Kimberly A.; Nakai, Glynnis

    2018-01-01

    In the context of delta restoration and its impact on salmonid rearing, success is best evaluated based on whether out-migrating juvenile salmon can access and benefit from suitable estuarine habitat. Here, we integrated 3 years of post-restoration monitoring data including habitat availability, invertebrate prey biomass, and juvenile Chinook salmon (Oncorhynchus tshawytscha) physiological condition to determine whether individuals profited from the addition of 364 ha of delta habitat in South Puget Sound, Washington, United States. Productivity in the restored mudflat was comparable to reference sites 3 years after dike removal, surpassing a mean total of 6 million kJ energy from invertebrate prey. This resulted from the development of a complex network of tidal channels and a resurgence in dipteran biomass that was unique to the restoration area. Consequently, a notable shift in invertebrate consumption occurred between 2010 and 2011, whereby individuals switched from eating primarily amphipods to dipteran flies; however, dietary similarity to the surrounding habitat did not change from year to year, suggesting that this shift was a result of a change in the surrounding prey communities. Growth rates did not differ between restored and reference sites, but catch weight was positively correlated with prey biomass, where greater prey productivity appeared to offset potential density-dependent effects. These results demonstrate how the realized function of restoring estuarine habitat is functionally dependent. High prey productivity in areas with greater connectivity may support healthy juvenile salmon that are more likely to reach the critical size class for offshore survival.

  7. Evaluation of Fall Chinook and Chum Salmon Spawning below Bonneville Dam; 2003-2004 Annual Report.

    Energy Technology Data Exchange (ETDEWEB)

    van der Naald, Wayne; Duff, Cameron; Brooks, Robert (Oregon Department of Fish and Wildlife, Columbia River Section, John Day, OR)

    2005-01-01

    In 2003 a total of 253 adult fall chinook and 113 chum were sampled for biological data in the Ives and Pierce islands area below Bonneville Dam. Vital statistics were developed from 221 fall chinook and 109 chum samples. The peak redd count for fall chinook was 190. The peak redd count for chum was 262. Peak spawning time for fall chinook was set at approximately 24 November. Peak spawning time for chum occurred approximately 24 November. There were estimated to be a total of 1,533 fall chinook spawning below Bonneville Dam in 2003. The study area's 2003 chum population was estimated to be 688 spawning fish. Temperature unit data suggests that below Bonneville Dam 2003 brood bright stock, fall chinook emergence began on January 6, 2004 and ended 28 April 2004, with peak emergence occurring 13 April. 2003 brood juvenile chum emergence below Bonneville Dam began 22 February and continued through 15 April 2004. Peak chum emergence took place 25 March. A total of 25,433 juvenile chinook and 4,864 juvenile chum were sampled between the dates of 20 January and 28 June 2004 below Bonneville Dam. Juvenile chum migrated from the study area in the 40-55 mm fork length range. Migration of chum occurred during the months of March, April and May. Sampling results suggest fall chinook migration from rearing areas took place during the month of June 2004 when juvenile fall chinook were in the 65 to 80 mm fork length size range. Adult and juvenile sampling below Bonneville Dam provided information to assist in determining the stock of fall chinook and chum spawning and rearing below Bonneville Dam. Based on observed spawning times, adult age and sex composition, juvenile emergence timing, juvenile migration timing and juvenile size at the time of migration, it appears that in 2003 all of the fall chinook using the area below Bonneville Dam were of a late-spawning, bright stock. Observed spawning times, adult age and sex composition, GSI and DNA analysis, juvenile emergence

  8. Evaluation of Fall Chinook and Chum Salmon Spawning below Bonneville Dam; 2004-2005 Annual Report.

    Energy Technology Data Exchange (ETDEWEB)

    van der Naald, Wayne; Duff, Cameron; Friesen, Thomas A. (Oregon Department of Fish and Wildlife, Clackamas, OR)

    2006-02-01

    Pacific salmon Oncorhynchus spp. populations have declined over the last century due to a variety of human impacts. Chum salmon O. keta populations in the Columbia River have remained severely depressed for the past several decades, while upriver bright (URB) fall Chinook salmon O. tschawytscha populations have maintained relatively healthy levels. For the past seven years we have collected data on adult spawning and juvenile emergence and outmigration of URB fall Chinook and chum salmon populations in the Ives and Pierce islands complex below Bonneville Dam. In 2004, we estimated 1,733 fall Chinook salmon and 336 chum salmon spawned in our study area. Fall Chinook salmon spawning peaked 19 November with 337 redds and chum salmon spawning peaked 3 December with 148 redds. Biological characteristics continue to suggest chum salmon in our study area are similar to nearby stocks in Hardy and Hamilton creeks, and Chinook salmon we observe are similar to upriver bright stocks. Temperature data indicated that 2004 brood URB fall Chinook salmon emergence began on 6 January and ended 27 May 2005, with peak emergence occurring 12 March. Chum salmon emergence began 4 February and continued through 2 May 2005, with peak emergence occurring on 21 March. Between 13 January and 28 June, we sampled 28,984 juvenile Chinook salmon and 1,909 juvenile chum salmon. We also released 32,642 fin-marked and coded-wire tagged juvenile fall Chinook salmon to assess survival. The peak catch of juvenile fall Chinook salmon occurred on 18 April. Our results suggested that the majority of fall Chinook salmon outmigrate during late May and early June, at 70-80 mm fork length (FL). The peak catch of juvenile chum salmon occurred 25 March. Juvenile chum salmon appeared to outmigrate at 40-55 mm FL. Outmigration of chum salmon peaked in March but extended into April and May.

  9. Monitoring the Migrations of Wild Snake River Spring/Summer Chinook Salmon Smolts, 2002-2003 Annual Report.

    Energy Technology Data Exchange (ETDEWEB)

    Achord, Stephen; McNatt, Regan A.; Hockersmith, Eric E. (National Marine Fisheries Service, Northwest Fisheries Science Center, Fish Ecology Division, Seattle, WA)

    2004-04-01

    Prior to 1992, decisions on dam operations and use of stored water relied on recoveries of branded hatchery fish, index counts at traps and dams, and flow patterns at the dams. The advent of PIT-tag technology provided the opportunity to precisely track the smolt migrations of many wild stocks as they pass through the hydroelectric complex and other monitoring sites on their way to the ocean. With the availability of the PIT tag, a more complete approach to these decisions was undertaken starting in 1992 with the addition of PIT-tag detections of several wild spring and summer chinook salmon stocks at Lower Granite Dam. Using data from these detections, we initiated development of a database on wild fish, addressing several goals of the Columbia River Basin Fish and Wildlife Program of the Pacific Northwest Electric Power Planning Council and Conservation Act (NPPC 1980). Section 304(d) of the program states, ''The monitoring program will provide information on the migrational characteristics of the various stocks of salmon and steelhead within the Columbia Basin.'' Further, Section 201(b) urges conservation of genetic diversity, which will be possible only if wild stocks are preserved. Section 5.9A.1 of the 1994 Fish and Wildlife Program states that field monitoring of smolt movement will be used to determine the best timing for water storage releases and Section 5.8A.8 states that continued research is needed on survival of juvenile wild fish before they reach the first dam with special attention to water quantity, quality, and several other factors. The goals of this ongoing study are as follows (1) Characterize the migration timing and estimate parr-to-smolt survival of different stocks of wild Snake River spring/summer chinook salmon smolts at Lower Granite Dam. (2) Determine whether consistent migration patterns are apparent. (3) Determine what environmental factors influence these patterns. (4) Characterize the migrational behavior and

  10. Performance Assessment of Suture Type in Juvenile Chinook Salmon Surgically Implanted with Acoustic Transmitters

    Energy Technology Data Exchange (ETDEWEB)

    Deters, Katherine A.; Brown, Richard S.; Carter, Kathleen M.; Boyd, James W.

    2009-02-27

    The objective of this study was to determine the best overall suture material to close incisions from the surgical implantation of Juvenile Salmon Acoustic Telemetry System (JSATS) acoustic microtransmitters in subyearling Chinook salmon Oncorhynchus tshawytscha. The effects of seven suture materials, four surgeons, and two water temperatures on suture retention, incision openness, tag retention, tissue inflammation, and tissue ulceration were quantified. The laboratory study, conducted by researchers at the Pacific Northwest National Laboratory, supports a larger effort under way for the U.S. Army Corps of Engineers, Portland District, aimed at determining the suitability of acoustic telemetry for estimating short- and longer-term (30-60 days) juvenile-salmonid survival at Columbia and Snake River dams and through the lower Columbia River.

  11. Stress of formalin treatment in juvenile spring chinook salmon (Oncorhynchus tshawytscha) and steelhead trout (Salmo gairdneri)

    Science.gov (United States)

    Wedemeyer, Gary; Yasutake, W.T.

    1973-01-01

    The physiological stress of 200 ppm formalin treatments at 10 C is more severe in the juvenile steelhead trout (Salmo gairdneri) than in the spring chinook salmon (Oncorhynchus tshawytscha). In the steelhead, a marked hypochloremia follows a 1-hr treatment and recovery requires about 24 hr. During longer treatments, hypercholesterolemia together with reduced regulatory precision, hypercortisolemia, alkaline reserve depletion, and hypocapnia unaccompanied by a fall in blood pH occur — suggestive of compensated respiratory alkalosis. In the spring chinook, hypochloremia and reduced plasma cholesterol regulatory precision are the significant treatment side effects but recovery requires only a few hours.Formalin treatments also cause epithelial separation, hypertrophy, and necrosis in the gills of both fishes but again, consistent with the physiological dysfunctions, these are more severe in the steelhead.

  12. Using otolith chemical and structural analysis to investigate reservoir habitat use by juvenile Chinook salmon Oncorhynchus tshawytscha.

    Science.gov (United States)

    Bourret, S L; Kennedy, B P; Caudill, C C; Chittaro, P M

    2014-11-01

    Isotopic composition of (87) Sr:(86) Sr and natural elemental tracers (Sr, Ba, Mg, Mn and Ca) were quantified from otoliths in juvenile and adult Chinook salmon Oncorhynchus tshawytscha to assess the ability of otolith microchemistry and microstructure to reconstruct juvenile O. tshawytscha rearing habitat and growth. Daily increments were measured to assess relative growth between natal rearing habitats. Otolith microchemistry was able to resolve juvenile habitat use between reservoir and natal tributary rearing habitats (within headwater basins), but not among catchments. Results suggest that 90% (n = 18) of sampled non-hatchery adults returning to the Middle Fork Willamette River were reared in a reservoir and 10% (n = 2) in natal tributary habitat upstream from the reservoir. Juveniles collected in reservoirs had higher growth rates than juveniles reared in natal streams. The results demonstrate the utility of otolith microchemistry and microstructure to distinguish among rearing habitats, including habitats in highly altered systems. © 2014 The Fisheries Society of the British Isles.

  13. Migratory characteristics of spring chinook salmon in the Willamette River

    International Nuclear Information System (INIS)

    Snelling, J.C.; Schreck, C.B.; Bradford, C.S.; Davis, L.E.; Slater, C.H.; Beck, M.T.; Ewing, S.K.

    1993-05-01

    This report documents our research to examine in detail the migration of juvenile and adult spring chinook salmon in the Willamette River. We seek to determine characteristics of seaward migration of spring chinook smolts in relation to oxygen supplementation practices at Willamette Hatchery, and to identify potential sources of adult spring chinook mortality in the Willamette River above Willamette Falls and use this information towards analysis of the study on efficiency of oxygen supplementation. The majority of juvenile spring chinook salmon released from Willamette hatchery in 1991 begin downstream movement immediately upon liberation. They travel at a rate of 1.25 to 3.5 miles per hour during the first 48 hours post-release. Considerably slower than the water velocities available to them. Juveniles feed actively during migration, primarily on aquatic insects. Na + /K + gill ATPase and cortisol are significantly reduced in juveniles reared in the third pass of the Michigan series with triple density and oxygen supplementation, suggesting that these fish were not as well developed as those reared under other treatments. Returning adult spring chinook salmon migrate upstream at an average rate of about 10 to 20 miles per day, but there is considerable between fish variation. Returning adults exhibit a high incidence of wandering in and out of the Willamette River system above and below Willamette Falls

  14. Performance Assessment of Bi-Directional Knotless Tissue-Closure Device in Juvenile Chinook Salmon Surgically Implanted with Acoustic Transmitters, 2010 - Final Report

    Energy Technology Data Exchange (ETDEWEB)

    Woodley, Christa M.; Bryson, Amanda J.; Carpenter, Scott M.; Knox, Kasey M.; Gay, Marybeth E.; Wagner, Katie A.

    2012-09-10

    In 2010, researchers at Pacific Northwest National Laboratory (PNNL) and the University of Washington (UW) conducted a compliance monitoring study—the Lower Columbia River Acoustic Transmitter Investigations of Dam Passage Survival and Associated Metrics 2010 (Carlson et al. in preparation)—for the U.S. Army Corps of Engineers (USACE), Portland District. The purpose of the compliance study was to evaluate juvenile Chinook salmon (Oncorhynchus tshawytscha) and steelhead (O. mykiss) passage routes and survival through the lower three Columbia River hydroelectric facilities as stipulated by the 2008 Federal Columbia River Power System (FCRPS) Biological Opinion (BiOp; NOAA Fisheries 2008) and the Columbia Basin Fish Accords (Fish Accords; 3 Treaty Tribes and Action Agencies 2008).

  15. Hydraulic Characteristics of the Lower Snake River During Periods of Juvenile Fall Chinook Migration

    Energy Technology Data Exchange (ETDEWEB)

    Cook, Chris B.; Dibrani, Berhon; Richmond, Marshall C.; Bleich, Matthew D.; Titzler, P. Scott; Fu, Tao

    2006-01-30

    This report documents a four-year study to assess hydraulic conditions in the lower Snake River. The work was conducted for the Bonneville Power Administration, U.S. Department of Energy, by the Pacific Northwest National Laboratory. Cold water released from the Dworshak Reservoir hypolimnion during mid- to late-summer months cools the Clearwater River far below equilibrium temperature. The volume of released cold water augments the Clearwater River, and the combined total discharge is on the order of the Snake River discharge when the two rivers meet at their confluence near the upstream edge of Lower Granite Reservoir. With typical temperature differences between the Clearwater and Snake rivers of 10°C or more during July and August, the density difference between the two rivers during summer flow augmentation periods is sufficient to stratify Lower Granite Reservoir as well as the other three reservoirs downstream. Because cooling of the river is desirable for migrating juvenile fall Chinook salmon (Oncorhynchus tshawytscha) during this same time period, the amount of mixing and cold water entrained into Lower Granite Reservoir’s epilimnion at the Clearwater/Snake River confluence is of key biological importance to juvenile fall Chinook salmon. Data collected during this project indicates the three reservoirs downstream of Lower Granite also stratify as direct result of flow augmentation from Dworshak Reservoir. These four lower Snake reservoirs are also heavily influenced by wind forcing at the water’s surface, and during periods of low river discharge, often behave like a two-layer lake. During these periods of stratification, lower river discharge, and wind forcing, the water in the upper layer of the reservoir is held in place or moves slightly upstream. This upper layer is also exposed to surface heating and may warm up to temperatures close to equilibrium temperature. The depth of this upper warm layer and its direction of travel may also be of key

  16. The Influence of Tag Presence on the Mortality of Juvenile Chinook Salmon Exposed to Simulated Hydroturbine Passage: Implications for Survival Estimates and Management of Hydroelectric Facilities

    Energy Technology Data Exchange (ETDEWEB)

    Carlson, Thomas J.; Brown, Richard S.; Stephenson, John R.; Pflugrath, Brett D.; Colotelo, Alison HA; Gingerich, Andrew J.; Benjamin, Piper L.; Langeslay, Mike; Ahmann, Martin L.; Johnson, Robert L.; Skalski, John R.; Seaburg, Adam; Townsend, Richard L.

    2012-05-01

    Each year, millions of fish have telemetry tags (acoustic, radio, inductive) surgically implanted to assess their passage and survival through hydropower facilities. One route of passage of particular concern is through hydro turbines, in which fish may be exposed to a range of potential injuries, including barotraumas from rapid decompression. The change in pressure from acclimation to exposure (nadir) has been found to be an important factor in predicting the likelihood of mortality and injury for juvenile Chinook salmon undergoing rapid decompression associated with simulated turbine passage. The presence of telemetry tags has also been shown to influence the likelihood of injury and mortality for juvenile Chinook salmon. This research investigated the likelihood of mortality and injury for juvenile Chinook salmon carrying telemetry tags and exposed to a range of simulated turbine passage. Several factors were examined as predictors of mortal injury for fish undergoing rapid decompression, and the ratio of pressure change and tag burden were determined to be the most predictive factors. As the ratio of pressure change and tag burden increase, the likelihood of mortal injury also increases. The results of this study suggest that previous survival estimates of juvenile Chinook salmon passing through hydro turbines may have been biased due to the presence of telemetry tags, and this has direct implications to the management of hydroelectric facilities. Realistic examples indicate how the bias in turbine passage survival estimates could be 20% or higher, depending on the mass of the implanted tags and the ratio of acclimation to exposure pressures. Bias would increase as the tag burden and pressure ratio increase, and have direct implications on survival estimates. It is recommended that future survival studies use the smallest telemetry tags possible to minimize the potential bias that may be associated with carrying the tag.

  17. Relative survival of juvenile chinook salmon (Oncorhynchus tshawyischa) through a Bonneville dam on the Columbia River

    International Nuclear Information System (INIS)

    Ferguson, J.

    1993-01-01

    The Bonneville Dam second powerhouse bypass system for juvenile salmon has one 6.1-m submersible travelling screen in each intake of all eight turbines, for a total of 24 screens. These screens set up a hydraulic cushion that deflects juvenile salmon away from the turbine intakes and into vertical bulkhead slots, from which they exit by their own volition into a collection gallery that travels the length of the powerhouse to a dewatering station and the outlet. A multiple-year evaluation was conducted on the comparative survival of subyearling chinook salmon through various passage modes at the dam. Using this information, operational scenarios could then be formulated to provide additional juvenile protection while meeting power system demands. In the summer, the juvenile salmon that passed through the bypass system had significantly lower survival rates than upper and lower turbine, spillway, and downstream control groups. Predation by northern squawfish (Ptychocheilus oregonensis) was suspected to have been the cause of high mortalities among bypassed fish. No significant differences existed between survival rates of upper and lower turbine groups. 7 refs., 2 figs., 1 tab

  18. Assessing the suitability of a partial water reuse system for rearing juvenile Chinook salmon Oncorhynchus tshawytscha for stocking in Washington State

    Science.gov (United States)

    Health and welfare of juvenile Chinook salmon Oncorhynchus tshawytsha reared in a pilot circular tank-based partial water reuse system in Washington State were evaluated in comparison to fish from the same spawn reared in a flow-through raceway, in order to assess the suitability of using water reus...

  19. Water Quality - Monitoring the migrations of wild Snake River spring/summer Chinook salmon juveniles

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This is an ongoing Bonneville Power Administration funded project to annually collect, PIT tag, and release wild Chinook salmon parr in up to 17 streams of the...

  20. Migratory Characteristics of Spring Chinook Salmon in the Willamette River : Annual Report 1991.

    Energy Technology Data Exchange (ETDEWEB)

    Snelling, John C.

    1993-05-01

    This report documents our research to examine in detail the migration of juvenile and adult spring chinook salmon in the Willamette River. We seek to determine characteristics of seaward migration of spring chinook smolts in relation to oxygen supplementation practices at Willamette Hatchery, and to identify potential sources of adult spring chinook mortality in the Willamette River above Willamette Falls and use this information towards analysis of the study on efficiency of oxygen supplementation. The majority of juvenile spring chinook salmon released from Willamette hatchery in 1991 begin downstream movement immediately upon liberation. They travel at a rate of 1.25 to 3.5 miles per hour during the first 48 hours post-release. Considerably slower than the water velocities available to them. Juveniles feed actively during migration, primarily on aquatic insects. Na{sup +}/K{sup +} gill ATPase and cortisol are significantly reduced in juveniles reared in the third pass of the Michigan series with triple density and oxygen supplementation, suggesting that these fish were not as well developed as those reared under other treatments. Returning adult spring chinook salmon migrate upstream at an average rate of about 10 to 20 miles per day, but there is considerable between fish variation. Returning adults exhibit a high incidence of wandering in and out of the Willamette River system above and below Willamette Falls.

  1. Infectious Hematopoietic Necrosis Virus Transmission and Disease among Juvenile Chinook Salmon Exposed in Culture Compared to Environmentally Relevant Conditions

    Directory of Open Access Journals (Sweden)

    J. Scott Foott

    2006-02-01

    Full Text Available The dynamics of IHNV infection and disease were followed in a juvenile Chinook salmon population both during hatchery rearing and for two weeks post-release. Cumulative weekly mortality increased from 0.03%–3.5% as the prevalence of viral infection increased from 2%–22% over the same four-week period. The majority of the infected salmon was asymptomatic. Salmon demonstrating clinical signs of infection shed 1000 pfu mL-1 of virus into the water during a 1 min observation period and had a mean concentration of 106 pfu mL-1 in their mucus. The high virus concentration detected in mucus suggests that it could act as an avenue of transmission in high density situations where dominance behavior results in nipping. Infected smolts that had migrated 295 km down river were collected at least two weeks after their release. The majority of the virus positive smolts was asymptomatic. A series of transmission experiments was conducted using oral application of the virus to simulate nipping, brief low dose waterborne challenges, and cohabitation with different ratios of infected to naïve fish. These studies showed that asymptomatic infections will occur when a salmon is exposed for as little as 1 min to >102 pfu mL-1, yet progression to clinical disease is infrequent unless the challenge dose is >104 pfu mL-1. Asymptomatic infections were detected up to 39 d post-challenge. No virus was detected by tissue culture in natural Chinook juveniles cohabitated with experimentally IHNV-infected hatchery Chinook at ratios of 1:1, 1:10, and 1:20 for either 5 min or 24 h. Horizontal transmission of the Sacramento River strain of IHNV from infected juvenile hatchery fish to wild cohorts would appear to be a low ecological risk. The study results demonstrate key differences between IHNV infections as present in a hatchery and the natural environment. These differences should be considered during risk assessments of the impact of IHNV infections on wild salmon and

  2. Survival of juvenile chinook salmon and coho salmon in the Roza Dam fish bypass and in downstream reaches of the Yakima River, Washington, 2016

    Science.gov (United States)

    Kock, Tobias J.; Perry, Russell W.; Hansen, Amy C.

    2016-12-22

    Estimates of juvenile salmon survival are important data for fishery managers in the Yakima River Basin. Radiotelemetry studies during 2012–14 showed that tagged juvenile Chinook salmon (Oncorhynchus tshawytscha) that passed through the fish bypass at Roza Dam had lower survival than fish that passed through other routes at the dam. That study also identified flow-survival relationships in the reaches between the Roza Dam tailrace and Sunnyside Dam. During 2012–14, survival also was estimated through reaches downstream of Sunnyside Dam, but generally, sample sizes were low and the estimates were imprecise. In 2016, we conducted an evaluation using acoustic cameras and acoustic telemetry to build on information collected during the previous study. The goal of the 2016 research was to identify areas where mortality occurs in the fish bypass at Roza Dam, and to estimate reach-specific survival in reaches downstream of the dam. The 2016 study included juvenile Chinook salmon and coho salmon (O. kisutch).Three acoustic cameras were used to observe fish behavior (1) near the entrances to the fish bypass, (2) at a midway point in the fish bypass (convergence vault), and (3) at the bypass outfall. In total, 504 hours of acoustic camera footage was collected at these locations. We determined that smolt-sized fish (95–170 millimeters [mm]) were present in the highest proportions at each location, but predator-sized fish (greater than 250 mm) also were present at each site. Fish presence generally peaked during nighttime hours and crepuscular periods, and was low during daytime hours. In the convergence vault, smolt-sized fish exhibited holding behavior patterns, which may explain why some fish delayed while passing through the bypass.Some of the acoustic-tagged fish were delayed in the fish bypass following release, but there was no evidence to suggest that they experienced higher mortality than fish that were released at the bypass outfall or downstream of the dam

  3. Escapement and Productivity of Spring Chinook Salmon and Summer Steelhead in the John Day River Basin, 2005-2006 Annual Technical Report.

    Energy Technology Data Exchange (ETDEWEB)

    Schultz, Terra Lang; Wilson, Wayne H.; Ruzycki, James R. [Oregon Department of Fish and Wildlife

    2009-04-10

    include an estimate of smolt abundance and SAR rates, and an updated measure of the freshwater distribution of critical life stages. Because Columbia Basin managers have identified the John Day subbasin spring Chinook population as an index population for assessing the effects of alternative future management actions on salmon stocks in the Columbia Basin (Schaller et al. 1999) we continue our ongoing studies. This project is high priority based on the high level of emphasis the NWPPC Fish and Wildlife Program, Subbasin Summaries, NMFS, and the Oregon Plan for Salmon and Watersheds have placed on monitoring and evaluation to provide the real-time data to guide restoration and adaptive management in the region. By implementing the proposed program we have been able to address many of the goals for population status monitoring, such as defining areas currently used by spring Chinook for holding and spawning habitats and determining range expansion or contraction of summer rearing and spawning populations. The BiOp describes these goals as defining population growth rates (adult monitoring), detecting changes in those growth rates or relative abundance in a reasonable time (adult/juvenile monitoring), estimating juvenile abundance and survival rates (juvenile/smolt monitoring), and identifying stage-specific survival (adult-to-smolt, smolt-to-adult).

  4. A rapid assessment method to estimate the distribution of juvenile Chinook Salmon in tributary habitats using eDNA and occupancy estimation

    Science.gov (United States)

    Matter, A.; Falke, Jeffrey A.; López, J. Andres; Savereide, James W.

    2018-01-01

    Identification and protection of water bodies used by anadromous species are critical in light of increasing threats to fish populations, yet often challenging given budgetary and logistical limitations. Noninvasive, rapid‐assessment, sampling techniques may reduce costs and effort while increasing species detection efficiencies. We used an intrinsic potential (IP) habitat model to identify high‐quality rearing habitats for Chinook Salmon Oncorhynchus tshawytscha and select sites to sample throughout the Chena River basin, Alaska, for juvenile occupancy using an environmental DNA (eDNA) approach. Water samples were collected from 75 tributary sites in 2014 and 2015. The presence of Chinook Salmon DNA in water samples was assessed using a species‐specific quantitative PCR (qPCR) assay. The IP model predicted over 900 stream kilometers in the basin to support high‐quality (IP ≥ 0.75) rearing habitat. Occupancy estimation based on eDNA samples indicated that 80% and 56% of previously unsampled sites classified as high or low IP (IP Salmon DNA from three replicate water samples was high (p = 0.76) but varied with drainage area (km2). A power analysis indicated high power to detect proportional changes in occupancy based on parameter values estimated from eDNA occupancy models, although power curves were not symmetrical around zero, indicating greater power to detect positive than negative proportional changes in occupancy. Overall, the combination of IP habitat modeling and occupancy estimation provided a useful, rapid‐assessment method to predict and subsequently quantify the distribution of juvenile salmon in previously unsampled tributary habitats. Additionally, these methods are flexible and can be modified for application to other species and in other locations, which may contribute towards improved population monitoring and management.

  5. PIT Tag data - Monitoring the migrations of wild Snake River spring/summer Chinook salmon juveniles

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This is an ongoing Bonneville Power Administration funded project to annually collect, PIT tag, and release wild Chinook salmon parr in up to 17 streams of the...

  6. Avoidance of thermal effluent by juvenile chinook salmon (Oncorhynchus tshowytscha) and its implications in waste heat management

    International Nuclear Information System (INIS)

    Gray, R.H.

    1977-03-01

    Knowledge of behavioral responses of aquatic organisms to thermal discharges at power plants is essential to evaluate thermal exposure and subsequent effects on survival and ecological success. Instantaneous responses of juvenile salmon that encountered a simulated river-thermal plume interface were assessed in a model raceway with a thermal discharge. Fish movement and response to the discharge were recorded on videotape. Juvenile chinook salmon (Oncorhynchus tshawytscha) tested under three discharge conditions (no plume, ambient plume and heated plume) avoided plume temperatures greater than 9 to 11 0 C above ambient. Fish occasionally oriented to the discharge current, but were not attracted to the thermal component of the plume when plume ΔT's were below the avoidance level of 11 0 C. Fish did not pass to the lower end of the raceway when plume ΔT exceeded 9 to 11 0 C. The responses noted in our experiments suggest organismic behavior may prevent juvenile salmon in nature from experiencing lethal conditions from thermal discharges and have application in waste heat management and utilization

  7. Quantifying Temperature Effects on Fall Chinook Salmon

    Energy Technology Data Exchange (ETDEWEB)

    Jager, Yetta [ORNL

    2011-11-01

    The motivation for this study was to recommend relationships for use in a model of San Joaquin fall Chinook salmon. This report reviews literature pertaining to relationships between water temperature and fall Chinook salmon. The report is organized into three sections that deal with temperature effects on development and timing of freshwater life stages, temperature effects on incubation survival for eggs and alevin, and temperature effects on juvenile survival. Recommendations are made for modeling temperature influences for all three life stages.

  8. Seasonal use of shallow water habitat in the Lower Snake River reservoirs by juvenile fall Chinook salmon

    Science.gov (United States)

    Tiffan, Kenneth F.; Connor, William P.

    2012-01-01

    The U.S. Army Corps of Engineers (COE) is preparing a long term management plan for sediments that affect the authorized project purposes of the Lower Granite, Little Goose, Lower Monumental, and Ice Harbor reservoirs (hereafter, the lower Snake River reservoirs), and the area from the mouth of the Snake River to Ice Harbor Dam. We conducted a study from spring 2010 through winter 2011 to describe the habitat use by juvenile Chinook salmon within a selected group of shallow water habitat complexes (spoils to create shallow water habitat, (2) provide evidence for shallow water habitat use by natural subyearlings, (3) provide evidence against large-scale use of shallow water habitat by reservoir-type juveniles, (4) suggest that the depth criterion for defining shallow water habitat (i.e., food web, and intra-specific competition would help to better inform the long-term management plan.

  9. 1998-1999 evaluation of fall chinook and chum salmon spawning below Bonneville, The Dalles, John Day and McNary dams

    International Nuclear Information System (INIS)

    Naald, W.D. van der

    2001-01-01

    This report describes work conducted by the Oregon Department of Fish and Wildlife (ODFW) and the Washington Department of Fish and Wildlife (WDFW) from 1 October 1998 to 30 September 1999. The work is part of studies to evaluate spawning of fall chinook salmon (Oncorhynchus tshawytscha) and chum salmon (O. keta) below the four lowermost Columbia River dams under the Bonneville Power Administration's Project 99-003. The purpose of this project is twofold: (1) Document the existence of fall chinook and chum populations spawning below Bonneville Dam (river mile (RM) 145), The Dalles Dam (RM 192), John Day Dam (RM 216), and McNary Dam (RM 292) (Figure 1) and estimate the size of these populations; and (2) Profile stocks for important population characteristics; including spawning time, genetic make-up, emergence timing, migration size and timing, and juvenile to adult survival rates. Specific tasks conducted by ODFW and WDFW during this period were: (1) Documentation of fall chinook and chum spawning below Bonneville, The Dalles, John Day and McNary dams using on-water observations; (2) Collection of biological data to profile stocks in areas described in Task 1; (3) Determination of spawning population estimates and age composition, average size at return, and sex ratios in order to profile stocks in areas described in Task 1; (4) Collection of data to determine stock origin of adult salmon found in areas described in Task 1; (5) Determination of possible stock origins of adult salmon found in areas described in Task 1 using tag rates based on coded-wire tag recoveries and genetic baseline analysis; (6) Determination of emergence timing and hatching rate of juvenile fall chinook and chum below Bonneville Dam; (7) Determination of migration time and size for juvenile fall chinook and chum rearing in the area described in Task 6; (8) Investigation of feasibility of determining stock composition of juvenile fall chinook and chum rearing in the area described in Task 6

  10. Influence of infection with Renibacterium salmoninarum on susceptibility of juvenile spring chinook salmon to gas bubble trauma

    Science.gov (United States)

    Weiland, L.K.; Mesa, M.G.; Maule, A.G.

    1999-01-01

    During experiments in our laboratory to assess the progression and severity of gas bubble trauma (GBT) in juvenile spring chinook salmon Oncorhynchus tshawytscha, we had the opportunity to assess the influence of Renibacterium salmoninarum (Rs), the causative agent of bacterial kidney disease, on the susceptibility of salmon to GBT. We exposed fish with an established infection of Rs to 120% total dissolved gas (TDG) for 96 h and monitored severity of GBT signs in the fins and gills, Rs infection level in kidneys by using an enzyme-linked immunosorbent assay (ELISA), and mortality. Mortality occurred rapidly after exposure to 120% TDG, with a LT20 (time necessary to kill 20% of the population) of about 37 h, which is at a minimum about 16% earlier than other bioassays we have conducted using fish that had no apparent signs of disease. Fish that died early (from 31 to 36 h and from 49 to 52 h) had significantly higher infection levels (mean ?? SE ELISA absorbance = 1.532 ?? 0.108) than fish that survived for 96h (mean ?? SE ELISA absorbance = 0.828 ?? 0.137). Fish that died early also had a significantly greater number of gill filaments occluded with bubbles than those that survived 96 h. Conversely, fish that survived for 96 h had a significantly higher median fin severity ranking than those that died early. Our results indicate that fish with moderate to high levels of Rs infection are more vulnerable to the effects of dissolved gas supersaturation (DGS) and die sooner than fish with lower levels of Rs infection. However, there is a substantial amount of individual variation in susceptibility to the apparent cumulative effects of DGS and Rs infection. Collectively, our findings have important implications to programs designed to monitor the prevalence and severity of GBT in juvenile salmonids in areas like the Columbia River basin and perhaps elsewhere.

  11. Surgically Implanted JSATS Micro-Acoustic Transmitters Effects on Juvenile Chinook Salmon and Steelhead Tag Expulsion and Survival, 2010

    Energy Technology Data Exchange (ETDEWEB)

    Woodley, Christa M.; Carpenter, Scott M.; Carter, Kathleen M.; Wagner, Katie A.; Royer, Ida M.; Knox, Kasey M.; Kim, Jin A.; Gay, Marybeth E.; Weiland, Mark A.; Brown, Richard S.

    2011-09-16

    The purpose of this study was to evaluate survival model assumptions associated with a concurrent study - Acoustic Telemetry Evaluation of Dam Passage Survival and Associated Metrics at John Day, The Dalles, and Bonneville Dams, 2010 by Thomas Carlson and others in 2010 - in which the Juvenile Salmonid Acoustic Telemetry System (JSATS) was used to estimate the survival of yearling and subyearling Chinook salmon (Oncorhynchus tshawytscha) and steelhead (O. mykiss) migrating through the Federal Columbia River Power System (FCRPS). The micro-acoustic transmitter used in these studies is the smallest acoustic transmitter model to date (12 mm long x 5 mm wide x 4 mm high, and weighing 0.43 g in air). This study and the 2010 study by Carlson and others were conducted by researchers from the Pacific Northwest National Laboratory and the University of Washington for the U.S. Army Corps of Engineers, Portland District, to meet requirements set forth by the 2008 FCRPS Biological Opinion. In 2010, we compared survival, tag burden, and tag expulsion in five spring groups of yearling Chinook salmon (YCH) and steelhead (STH) and five summer groups of subyearling Chinook salmon (SYC) to evaluate survival model assumptions described in the concurrent study. Each tagging group consisted of approximately 120 fish/species, which were collected and implanted on a weekly basis, yielding approximately 600 fish total/species. YCH and STH were collected and implanted from late April to late May (5 weeks) and SYC were collected and implanted from mid-June to mid-July (5 weeks) at the John Day Dam Smolt Monitoring Facility. The fish were collected once a week, separated by species, and assigned to one of three treatment groups: (1) Control (no surgical treatment), (2) Sham (surgical implantation of only a passive integrated transponder [PIT] tag), and (3) Tagged (surgical implantation of JSATS micro-acoustic transmitter [AT] and PIT tags). The test fish were held for 30 days in indoor

  12. Toxicity of agricultural subsurface drainwater from the San Joaquin Valley, California to juvenile chinook salmon and striped bass

    Science.gov (United States)

    Saiki, Michael K.; Jennings, Mark R.; Wiedmeyer, Raymond H.

    1992-01-01

    Juvenile chinook salmon Oncorhynchus tshawytscha (40-50 mm total length, TL) and striped bass Morone saxatilis (30-40 mm TL) were exposed to serial dilutions (100, 50, 25, and 12.5%) of agricultural subsurface drainwater (WWD), reconstituted drainwater (RWWD), and reconstituted seawater (IO). Agricultural subsurface drainwater contained naturally elevated concentrations of major ions (such as sodium and sulfate) and trace elements (especially boron and selenium), RWWD contained concentrations of major ions that mimicked those in WWD but trace elements were not elevated, and IO contained concentrations of total dissolved salt that were similar to those in WWD and RWWD but chloride replaced sulfate as the dominant anion. After 28 d of static exposure, over 75% of the chinook salmon in 100% WWD had died, whereas none had died in other dilutions and water types. Growth of chinook salmon in WWD and RWWD, but not in IO, exhibited dilution responses. All striped bass died in 100% WWD within 23 d, whereas 19 of 20 striped bass had died in 100% RWWD after 28 d. In contrast, none died in 100% IO. Growth of striped bass was impaired only in WWD. Fish in WWD accumulated as much as 200 μg/g (dry-weight basis) of boron, whereas fish in control water accumulated less than 3.1 μg/g. Although potentially toxic concentrations of selenium occurred in WWD (geometric means, 158-218 μg/L), chinook salmon and striped bass exposed to this water type accumulated 5.7 μg Se/g or less. These findings indicate that WWD was toxic to chinook salmon and striped bass. Judging from available data, the toxicity of WWD was due primarily to high concentrations of major ions present in atypical ratios, to high concentrations of sulfate, or to both. High concentrations of boron and selenium also may have contributed to the toxicity of WWD, but their effects were not clearly delineated.

  13. Physiological Assessment and Behavioral Interaction of Wild and Hatchery Juvenile Salmonids : The Relationship of Fish Size and Growth to Smoltification in Spring Chinook Salmon.

    Energy Technology Data Exchange (ETDEWEB)

    Beckman, Brian R.; Larsen, Donald A.; Lee-Pawlak, Beeda; Dickhoff, Walton W.

    1996-10-01

    Experiments were performed to determine the relative influence of size and growth rate on downstream migratory disposition and physiology in yearling spring chinook salmon (Oncorhynchus tshawtscha) smolts. A group of juvenile chinook salmon was size graded into small and large categories with half the fish in each group reared at an elevated temperature, resulting in four distinct treatment groups: Large Warm (LW), Large Cool (LC), Small Warm (SW), and Small Cool (SC). Fish from warm-water treatment groups displayed significantly higher growth rates than cool-water groups. Fish were tagged and released into a natural creek where downstream movement was monitored. For each of the two releases, fish that migrated past a weir within the first 5 days postrelease had significantly higher spring growth rates than fish that did not migrate within that period. Significant differences in length for the same fish were only found in the second release. Also for the second release, fish from the warm water treatment groups were recovered in higher proportions than fish from cool water groups. The results indicate that increased growth rate in the spring has a positive relation to downstream migratory disposition. Furthermore, there is a relation between smolt size and migration; however, this relation is weaker than that found between growth rate and migration.

  14. Behavioral thermoregulation by juvenile spring and fall chinook salmon, Oncorhynchus tshawytscha, during smoltification

    Science.gov (United States)

    Sauter, S.T.; Crawshaw, L.I.; Maule, A.G.

    2001-01-01

    Fall chinook salmon evolved to emigrate during the summer months. The shift in the temperature preference we observed in smolting fall chinook but not spring chinook salmon may reflect a phylogenetic adaptation to summer emigration by (1) providing directional orientation as fall chinook salmon move into the marine environment, (2) maintaining optimal gill function during emigration and seawater entry, and/or (3) resetting thermoregulatory set-points to support physiological homeostasis once smolted fish enter the marine environment. Phylogenetically determined temperature adaptations and responses to thermal stress may not protect fall chinook salmon from the recent higher summer water temperatures, altered annual thermal regimes, and degraded cold water refugia that result from hydropower regulation of the Columbia and Snake rivers. The long-term survival of fall chinook salmon will likely require restoration of normal annual thermographs and rigorous changes in land use practices to protect critical thermal refugia and control maximum summer water temperatures in reservoirs.

  15. Science advancements key to increasing management value of life stage monitoring networks for endangered Sacramento River winter-run Chinook salmon in California

    Science.gov (United States)

    Johnson, Rachel C.; Windell, Sean; Brandes, Patricia L.; Conrad, J. Louise; Ferguson, John; Goertler, Pascale A. L.; Harvey, Brett N.; Heublein, Joseph; Isreal, Joshua A.; Kratville, Daniel W.; Kirsch, Joseph E.; Perry, Russell W.; Pisciotto, Joseph; Poytress, William R.; Reece, Kevin; Swart, Brycen G.

    2017-01-01

    A robust monitoring network that provides quantitative information about the status of imperiled species at key life stages and geographic locations over time is fundamental for sustainable management of fisheries resources. For anadromous species, management actions in one geographic domain can substantially affect abundance of subsequent life stages that span broad geographic regions. Quantitative metrics (e.g., abundance, movement, survival, life history diversity, and condition) at multiple life stages are needed to inform how management actions (e.g., hatcheries, harvest, hydrology, and habitat restoration) influence salmon population dynamics. The existing monitoring network for endangered Sacramento River winterrun Chinook Salmon (SRWRC, Oncorhynchus tshawytscha) in California’s Central Valley was compared to conceptual models developed for each life stage and geographic region of the life cycle to identify relevant SRWRC metrics. We concluded that the current monitoring network was insufficient to diagnose when (life stage) and where (geographic domain) chronic or episodic reductions in SRWRC cohorts occur, precluding within- and among-year comparisons. The strongest quantitative data exist in the Upper Sacramento River, where abundance estimates are generated for adult spawners and emigrating juveniles. However, once SRWRC leave the upper river, our knowledge of their identity, abundance, and condition diminishes, despite the juvenile monitoring enterprise. We identified six system-wide recommended actions to strengthen the value of data generated from the existing monitoring network to assess resource management actions: (1) incorporate genetic run identification; (2) develop juvenile abundance estimates; (3) collect data for life history diversity metrics at multiple life stages; (4) expand and enhance real-time fish survival and movement monitoring; (5) collect fish condition data; and (6) provide timely public access to monitoring data in open data

  16. Survival Estimates for the Passage of Juvenile Chinook Salmon through Snake River Dams and Reservoirs, 1993 Annual Report.

    Energy Technology Data Exchange (ETDEWEB)

    Iwamoto, Robert N.; Sandford, Benjamin P.; McIntyre, Kenneth W.

    1994-04-01

    A pilot study was conducted to estimate survival of hatchery-reared yearling chinook salmon through dams and reservoirs on the Snake River. The goals of the study were to: (1) field test and evaluate the Single-Release, Modified-Single-Release, and Paired-Release Models for the estimation of survival probabilities through sections of a river and hydroelectric projects; (2) identify operational and logistical constraints to the execution of these models; and (3) determine the usefulness of the models in providing estimates of survival probabilities. Field testing indicated that the numbers of hatchery-reared yearling chinook salmon needed for accurate survival estimates could be collected at different areas with available gear and methods. For the primary evaluation, seven replicates of 830 to 1,442 hatchery-reared yearling chinook salmon were purse-seined from Lower Granite Reservoir, PIT tagged, and released near Nisqually John boat landing (River Kilometer 726). Secondary releases of PIT-tagged smolts were made at Lower Granite Dam to estimate survival of fish passing through turbines and after detection in the bypass system. Similar secondary releases were made at Little Goose Dam, but with additional releases through the spillway. Based on the success of the 1993 pilot study, the authors believe that the Single-Release and Paired-Release Models will provide accurate estimates of juvenile salmonid passage survival for individual river sections, reservoirs, and hydroelectric projects in the Columbia and Snake Rivers.

  17. Survival estimates for the passage of juvenile chinook salmon through Snake River dams and reservoirs. Annual report 1993

    International Nuclear Information System (INIS)

    Iwamoto, R.N.; Muir, W.D.; Sandford, B.P.; McIntyre, K.W.; Frost, D.A.; Williams, J.G.; Smith, S.G.; Skalski, J.R.

    1994-04-01

    A pilot study was conducted to estimate survival of hatchery-reared yearling chinook salmon through dams and reservoirs on the Snake River. The goals of the study were to: (1) field test and evaluate the Single-Release, Modified-Single-Release, and Paired-Release Models for the estimation of survival probabilities through sections of a river and hydroelectric projects; (2) identify operational and logistical constraints to the execution of these models; and (3) determine the usefulness of the models in providing estimates of survival probabilities. Field testing indicated that the numbers of hatchery-reared yearling chinook salmon needed for accurate survival estimates could be collected at different areas with available gear and methods. For the primary evaluation, seven replicates of 830 to 1,442 hatchery-reared yearling chinook salmon were purse-seined from Lower Granite Reservoir, PIT tagged, and released near Nisqually John boat landing (River Kilometer 726). Secondary releases of PIT-tagged smolts were made at Lower Granite Dam to estimate survival of fish passing through turbines and after detection in the bypass system. Similar secondary releases were made at Little Goose Dam, but with additional releases through the spillway. Based on the success of the 1993 pilot study, the authors believe that the Single-Release and Paired-Release Models will provide accurate estimates of juvenile salmonid passage survival for individual river sections, reservoirs, and hydroelectric projects in the Columbia and Snake Rivers

  18. Skagit IMW - Skagit River Estuary Intensively Monitored Watershed Project

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This study evaluates system-level effects of several estuary restoration projects on juvenile Chinook salmon production in the Skagit River estuary. The monitoring...

  19. Costs of living for juvenile Chinook salmon (Oncorhynchus tshawytscha) in an increasingly warming and invaded world

    Science.gov (United States)

    Kuehne, Lauren M.; Olden, Julian D.; Duda, Jeffrey J.

    2012-01-01

    Rapid environmental change in freshwater ecosystems has created a need to understand the interactive effects of multiple stressors, with temperature and invasive predators identified as key threats to imperiled fish species. We tested the separate and interactive effects of water temperature and predation by non-native smallmouth bass (Micropterus dolomieu) on the lethal (mortality) and sublethal (behavior, physiology, and growth) effects for juvenile Chinook salmon (Oncorhynchus tshawytscha) in seminatural stream channel experiments. Over 48 h trials, there was no difference in direct predation with warmer temperatures, but significant interactive effects on sublethal responses of juvenile salmon. Warmer temperatures resulted in significantly stronger and more variable antipredator responses (surface shoaling and swimming activity), while physiological indicators (plasma glucose, plasma cortisol) suggested suppression of physiological mechanisms in response to the combined stressors. These patterns corresponded with additive negative growth in predation, temperature, and combined treatments. Our results suggest that chronic increases in temperature may not increase direct predation over short periods, but can result in significant sublethal costs with negative implications for long-term development, disease resistance, and subsequent size-selective mortality of Pacific salmon.

  20. A comparison of single-suture and double-suture incision closures in seaward-migrating juvenile Chinook salmon implanted with acoustic transmitters: implications for research in river basins containing hydropower structures

    Energy Technology Data Exchange (ETDEWEB)

    Brown, Richard S.; Deters, Katherine A.; Cook, Katrina V.; Eppard, M. B.

    2013-07-15

    Reductions in the size of acoustic transmitters implanted in migrating juvenile salmonids have resulted in the ability to make shorter incisions that may warrant using only a single suture for closure. However, it is not known if one suture will sufficiently hold the incision closed, particularly when outward pressure is placed on the surgical site such as when migrating fish experience pressure changes associated with passage at hydroelectric dams. The objective of this research was to evaluate the effectiveness of single-suture incision closures on juvenile Chinook salmon (Oncorhynchus tshawytscha). Juvenile Chinook salmon were surgically implanted with a 2012 Juvenile Salmon Acoustic Telemetry System (JSATS) transmitter (0.30 g) and a passive integrated transponder tag (0.10 g) and incisions were closed with either one suture or two sutures. Mortality and tag retention were monitored and fish were examined after 7 and 14 days to evaluate tissue responses. In a separate experiment, surgically implanted fish were exposed to simulated turbine passage and then examined for expulsion of transmitters, expulsion of viscera through the incision, and mortal injury. With incisions closed using a single suture, there was no mortality or tag loss and similar or reduced tissue reaction compared to incisions closed with two sutures. Further, surgery time was significantly reduced when one suture was used, which leads to less handling and reduced stress. No tags were expelled during pressure scenarios and expulsion of viscera only occurred in two non-mortally injured fish (5%) with single sutures that were also exposed to very high pressure changes. No viscera expulsion was present in fish exposed to pressure scenarios likely representative of hydroturbine passage at many Columbia River dams (e.g. <2.7 ratio of pressure change; an acclimation pressure of 146.2 absolute kpa and a lowest exposure pressure of ~ 53.3 absolute kpa). Based on these results, we recommend the use of a

  1. Significance of selective predation and development of prey protection measures for juvenile salmonids in the Columbia and Snake River reservoirs. Annual progress report, February 1993--February 1994

    International Nuclear Information System (INIS)

    Poe, T.P.

    1994-01-01

    This report addresses the problem of predator-prey interactions of juvenile salmonids in the Columbia and Snake River. Six papers are included on selective predation and prey protection. Attention is focused on monitoring the movements, the distribution, and the behavior of juvenile chinook salmon and northern squawfish

  2. Yakima fisheries project spring chinook supplementation monitoring plan

    International Nuclear Information System (INIS)

    Busack, C.; Pearsons, T.; Knudsen, C.; Phelps, S.; Watson, B.; Johnston, M.

    1997-08-01

    The Yakima Fisheries Project (YFP), a key element in the Northwest Power Planning Council's Fish and Wildlife Program, has been in planning for more than ten years. It was initially conceived as, and is still intended to be, a multipurpose project. Besides increasing fish production in the Yakima basin, it is also intended to yield information about supplementation that will be of value to the entire Columbia basin, and hopefully the entire region. Because of this expectation of increased knowledge resulting from the project, a large and comprehensive monitoring program has always been seen as an integral part of the project. Throughout 1996 the Monitoring Implementation and Planning Team (MIPT), an interdisciplinary group of biologists who have worked on the project for several years, worked to develop a comprehensive spring chinook monitoring plan for the project. The result is the present document

  3. Research, monitoring, and evaluation of emerging issues and measures to recover the Snake River fall Chinook salmon ESU, 1/1/2014 - 12/31/2014

    Science.gov (United States)

    Connor, William P.; Mullins, Frank L.; Tiffan, Kenneth F.; Perry, Russell W.; Erhardt, John M.; St John, Scott J.; Bickford, Brad; Rhodes, Tobyn N.

    2015-01-01

    The portion of the Snake River fall Chinook Salmon Oncorhynchus tshawytscha ESU that spawns upstream of Lower Granite Dam transitioned from low to high abundance during 1992–2014 in association with U.S. Endangered Species Act recovery efforts and other Federally mandated actions. This annual report focuses on (1) numeric and habitat use responses by natural- and hatchery-origin spawners, (2) phenotypic and numeric responses by natural-origin juveniles, and (3) predator responses in the Snake River upper and lower reaches as abundance of adult and juvenile fall Chinook Salmon increased. Spawners have located and used most of the available spawning habitat and that habitat is gradually approaching redd capacity. Timing of spawning and fry emergence has been relatively stable; whereas the timing of parr dispersal from riverine rearing habitat into Lower Granite Reservoir has become earlier as apparent abundance of juveniles has increased. Growth rate (g/d) and dispersal size of parr also declined as apparent abundance of juveniles increased. Passage timing of smolts from the two Snake River reaches has become earlier and downstream movement rate faster as estimated abundance of fall Chinook Salmon smolts in Lower Granite Reservoir has increased. In 2014, consumption of subyearlings by Smallmouth Bass was highest in the upper reach which had the highest abundance of Bass. With a few exceptions, predation tended to decrease seasonally from April through early July. A release of hatchery fish in mid-May significantly increased subyearling consumption by the following day. We estimated that over 600,000 subyearling fall Chinook Salmon were lost to Smallmouth Bass predation along the free-flowing Snake River in 2014. More information on predation is presented in Appendix A.3 (page 51). These findings coupled with stock-recruitment analyses presented in this report provide evidence for density-dependence in the Snake River reaches and in Lower Granite Reservoir that was

  4. Wildfire may increase habitat quality for spring Chinook salmon in the Wenatchee River subbasin, WA, USA

    Science.gov (United States)

    Flitcroft, Rebecca L; Falke, Jeffrey A.; Reeves, Gordon H.; Hessburg, Paul F.; McNyset, Kris M.; Benda, Lee E.

    2016-01-01

    Pacific Northwest salmonids are adapted to natural disturbance regimes that create dynamic habitat patterns over space and through time. However, human land use, particularly long-term fire suppression, has altered the intensity and frequency of wildfire in forested upland and riparian areas. To examine the potential impacts of wildfire on aquatic systems, we developed stream-reach-scale models of freshwater habitat for three life stages (adult, egg/fry, and juvenile) of spring Chinook salmon (Oncorhynchus tshawytscha) in the Wenatchee River subbasin, Washington. We used variables representing pre- and post-fire habitat conditions and employed novel techniques to capture changes in in-stream fine sediment, wood, and water temperature. Watershed-scale comparisons of high-quality habitat for each life stage of spring Chinook salmon habitat suggested that there are smaller quantities of high-quality juvenile overwinter habitat as compared to habitat for other life stages. We found that wildfire has the potential to increase quality of adult and overwintering juvenile habitat through increased delivery of wood, while decreasing the quality of egg and fry habitat due to the introduction of fine sediments. Model results showed the largest effect of fire on habitat quality associated with the juvenile life stage, resulting in increases in high-quality habitat in all watersheds. Due to the limited availability of pre-fire high-quality juvenile habitat, and increased habitat quality for this life stage post-fire, occurrence of characteristic wildfires would likely create a positive effect on spring Chinook salmon habitat in the Wenatchee River subbasin. We also compared pre- and post-fire model results of freshwater habitat for each life stage, and for the geometric mean of habitat quality across all life stages, using current compared to the historic distribution of spring Chinook salmon. We found that spring Chinook salmon are currently distributed in stream channels in

  5. Spring Chinook Salmon Oncorhynchus tshawytscha Supplementation in the Clearwater Subbasin ; Nez Perce Tribal Hatchery Monitoring and Evaluation Project, 2007 Annual Report.

    Energy Technology Data Exchange (ETDEWEB)

    Backman, Thomas; Sprague, Sherman; Bretz, Justin [Nez Perce Tribe

    2009-06-10

    .9 grams per fish, and Meadow Creek received 53,425 BY 2006 direct stream release parr at an average of 4.7 grams per fish. Natural and hatchery origin spring Chinook salmon pre-smolt emigrants were monitored from September - November 2006 and smolts from March-June 2007. Data on adult returns were collected from May-September. A suite of performance measures were calculated including total adult and spawner escapement, juvenile production, and survival probabilities. These measures were used to evaluate the effectiveness of supplementation and provide information on the capacity of the natural environment to assimilate and support supplemented salmon populations.

  6. Estimating juvenile Chinook salmon (Oncorhynchus tshawytscha) abundance from beach seine data collected in the Sacramento–San Joaquin Delta and San Francisco Bay, California

    Science.gov (United States)

    Perry, Russell W.; Kirsch, Joseph E.; Hendrix, A. Noble

    2016-06-17

    Resource managers rely on abundance or density metrics derived from beach seine surveys to make vital decisions that affect fish population dynamics and assemblage structure. However, abundance and density metrics may be biased by imperfect capture and lack of geographic closure during sampling. Currently, there is considerable uncertainty about the capture efficiency of juvenile Chinook salmon (Oncorhynchus tshawytscha) by beach seines. Heterogeneity in capture can occur through unrealistic assumptions of closure and from variation in the probability of capture caused by environmental conditions. We evaluated the assumptions of closure and the influence of environmental conditions on capture efficiency and abundance estimates of Chinook salmon from beach seining within the Sacramento–San Joaquin Delta and the San Francisco Bay. Beach seine capture efficiency was measured using a stratified random sampling design combined with open and closed replicate depletion sampling. A total of 56 samples were collected during the spring of 2014. To assess variability in capture probability and the absolute abundance of juvenile Chinook salmon, beach seine capture efficiency data were fitted to the paired depletion design using modified N-mixture models. These models allowed us to explicitly test the closure assumption and estimate environmental effects on the probability of capture. We determined that our updated method allowing for lack of closure between depletion samples drastically outperformed traditional data analysis that assumes closure among replicate samples. The best-fit model (lowest-valued Akaike Information Criterion model) included the probability of fish being available for capture (relaxed closure assumption), capture probability modeled as a function of water velocity and percent coverage of fine sediment, and abundance modeled as a function of sample area, temperature, and water velocity. Given that beach seining is a ubiquitous sampling technique for

  7. Validation of a freshwater Otolith microstructure pattern for Nisqually Chinook Salmon (Oncorhynchus tshawytscha)

    Science.gov (United States)

    Lind-Null, Angie; Larsen, Kim

    2011-01-01

    The Nisqually Fall Chinook salmon (Oncorhynchus tshawytscha) population is one of 27 stocks in the Puget Sound (Washington) evolutionarily significant unit listed as threatened under the federal Endangered Species Act (ESA). Extensive restoration of the Nisqually River delta ecosystem has taken place to assist in recovery of the stock since estuary habitat is a critical transition zone for juvenile fall Chinook salmon. A pre-restoration baseline that includes the characterization of life history strategies, estuary residence times, growth rates and habitat use is needed to evaluate the potential response of hatchery and natural origin Chinook salmon to restoration efforts and to determine restoration success. Otolith microstructure analysis was selected as a tool to examine Chinook salmon life history, growth and residence in the Nisqually River estuary. The purpose of the current study is to incorporate microstructural analysis from the otoliths of juvenile Nisqually Chinook salmon collected at the downstream migrant trap within true freshwater (FW) habitat of the Nisqually River. The results from this analysis confirmed the previously documented Nisqually-specific FW microstructure pattern and revealed a Nisqually-specific microstructure pattern early in development (“developmental pattern”). No inter-annual variation in the microstructure pattern was visually observed when compared to samples from previous years. Furthermore, the Nisqually-specific “developmental pattern” and the FW microstructure pattern used in combination during analysis will allow us to recognize and separate with further confidence future unmarked Chinook salmon otolith collections into Nisqually-origin (natural or unmarked hatchery) and non-Nisqually origin categories. Freshwater mean increment width, growth rate and residence time were also calculated.

  8. Idaho Habitat/Natural Production Monitoring Part I, 1995 Annual Report.

    Energy Technology Data Exchange (ETDEWEB)

    Hall-Griswold, J.A.; Petrosky, C.E. (Idaho Department of Fish and Game, Boise, ID)

    1996-12-01

    The Idaho Department of Fish and Game (IDFG) has been monitoring trends in juvenile spring and summer chinook salmon, Oncorhynchus tshawytscha, and steelhead trout, O. mykiss, populations in the Salmon, Clearwater, and lower Snake River drainages for the past 12 years. This work is the result of a program to protect, mitigate, and enhance fish and wildlife affected by the development and operation of hydroelectric power plants on the Columbia River. Project 91-73, Idaho Natural Production Monitoring, consists of two subprojects: General Monitoring and Intensive Monitoring. This report updates and summarizes data through 1995 for the General Parr Monitoring (GPM) database to document status and trends of classes of wild and natural chinook salmon and steelhead trout populations. A total of 281 stream sections were sampled in 1995 to monitor trends in spring and summer chinook salmon Oncorhynchus tshawytscha and steelhead trout O. mykiss parr populations in Idaho. Percent carrying capacity and density estimates were summarized for 1985--1995 by different classes of fish: wild A-run steelhead trout, wild B-run steelhead trout, natural A-run steelhead trout, natural B-run steelhead trout, wild spring and summer chinook salmon, and natural spring and summer chinook salmon. The 1995 data were also summarized by subbasins as defined in Idaho Department of Fish and Game`s 1992--1996 Anadromous Fish Management Plan.

  9. Idaho habitat/natural production monitoring: Part 1. Annual report 1995

    International Nuclear Information System (INIS)

    Hall-Griswold, J.A.; Petrosky, C.E.

    1996-11-01

    The Idaho Department of Fish and Game (IDFG) has been monitoring trends in juvenile spring and summer chinook salmon, Oncorhynchus tshawytscha, and steelhead trout, O. mykiss, populations in the Salmon, Clearwater, and lower Snake River drainages for the past 12 years. This work is the result of a program to protect, mitigate, and enhance fish and wildlife affected by the development and operation of hydroelectric power plants on the Columbia River. Project 91-73, Idaho Natural Production Monitoring, consists of two subprojects: General Monitoring and Intensive Monitoring. This report updates and summarizes data through 1995 for the General Parr Monitoring (GPM) database to document status and trends of classes of wild and natural chinook salmon and steelhead trout populations. A total of 281 stream sections were sampled in 1995 to monitor trends in spring and summer chinook salmon Oncorhynchus tshawytscha and steelhead trout O. mykiss parr populations in Idaho. Percent carrying capacity and density estimates were summarized for 1985--1995 by different classes of fish: wild A-run steelhead trout, wild B-run steelhead trout, natural A-run steelhead trout, natural B-run steelhead trout, wild spring and summer chinook salmon, and natural spring and summer chinook salmon. The 1995 data were also summarized by subbasins as defined in Idaho Department of Fish and Game's 1992--1996 Anadromous Fish Management Plan

  10. Food and feeding of juvenile chinook salmon in the central Columbia River in relation to thermal discharges and other environmental features

    Energy Technology Data Exchange (ETDEWEB)

    Becker, C.D. [Pacific Northwest Labs., Richland, WA (United States). Ecosystems Dept.

    1970-08-01

    The relationship of thermal discharges from operating Hanford reactors to food and feeding of juvenile chinook salmon (Oncorhynchus tshawytscha) in the central Columbia River, Washington was studied in 1968 and 1969. The primary objectives were to (1) evaluate the food composition and feeding activities of the fish and (2) determine if heated effluents influenced their welfare. Environmental conditions (seasonal changes in river temperatures and flow volumes) in relation to thermal requirements of young chinook are detailed. Data on food organisms utilized by the fish in 1968 and 1969 are presented, whereas analyses for possible thermal effects are based on the more extensive 1969 data. No consistent differences attributable to thermal increments were evident. The lack of detectable effects apparently results from the fact that the main discharge plumes occur in midriver and the effluents are well mixed before reaching inshore feeding areas. The transient nature of fish at each sampling site and the availability of food organisms in the river drift are ecological factors affecting critical thermal evaluation.

  11. Integrated Status and Effectiveness Monitoring Program Population Estimates for Juvenile Salmonids in Nason Creek, WA ; 2008 Annual Report.

    Energy Technology Data Exchange (ETDEWEB)

    Collins, Matthew; Murdoch, Keely [Yakama Nation Fisheries Resource Management

    2009-07-20

    This report summarizes juvenile coho, spring Chinook, and steelhead salmon migration data collected at a 1.5m diameter cone rotary fish trap on Nason Creek during 2008; providing abundance and freshwater productivity estimates. We used species enumeration at the trap and efficiency trials to describe emigration timing and to estimate the number of emigrants. Trapping began on March 2, 2008 and was suspended on December 11, 2008 when snow and ice accumulation prevented operation. During 2008, 0 brood year (BY) 2006 coho, 1 BY2007 coho, 906 BY2006 spring Chinook, 323 BY2007 fry Chinook, 2,077 BY2007 subyearling Chinook, 169 steelhead smolts, 414 steelhead fry and 2,390 steelhead parr were trapped. Mark-recapture trap efficiency trials were performed over a range of stream discharge stages. A total of 2,639 spring Chinook, 2,154 steelhead and 12 bull trout were implanted with Passive Integrated Transponder (PIT) tags. Most PIT tagged fish were used for trap efficiency trials. We were unable to identify a statistically significant relationship between stream discharge and trap efficiency, thus, pooled efficiency estimates specific to species and trap size/position were used to estimate the number of fish emigrating past the trap. We estimate that 5,259 ({+-} 359; 95% CI) BY2006 Chinook, 16,816 ({+-} 731; 95% CI) BY2007 Chinook, and 47,868 ({+-} 3,780; 95% CI) steelhead parr and smolts emigrated from Nason Creek in 2008.

  12. Migratory Behavior and Survival of Juvenile Salmonids in the Lower Columbia River and Estuary in 2009

    Energy Technology Data Exchange (ETDEWEB)

    McMichael, Geoffrey A.; Harnish, Ryan A.; Bellgraph, Brian J.; Carter, Jessica A.; Ham, Kenneth D.; Titzler, P. Scott; Hughes, Michael S.

    2010-08-01

    The study reported herein was funded as part of the Anadromous Fish Evaluation Program, which is managed by the U.S. Army Corps of Engineers (USACE). The Anadromous Fish Evaluation Program study code is EST P 02 01: A Study of Salmonid Survival and Behavior through the Columbia River Estuary Using Acoustic Tags. The study was conducted by the Pacific Northwest National Laboratory (PNNL) and National Oceanic and Atmospheric Administration (NOAA) Fisheries for the USACE Portland District. Estimated survival of acoustic-tagged juvenile Chinook salmon and steelhead through the lower Columbia River and estuary in 2009 was lowest in the final 50 km of the estuary. Probability of survival was relatively high (>0.90) for yearling and subyearling Chinook salmon from the Bonneville Dam forebay (rkm 236) to Three-tree Point (rkm 49.6). Survival of juvenile Chinook salmon declined sharply through the lower 50 km of the estuary. Acoustic-tagged steelhead smolts did not survive as well as juvenile Chinook salmon between Bonneville Dam and the mouth of the Columbia River. Steelhead survival began to decline farther upstream (at rkm 86) relative to that of the Chinook salmon stocks. Subyearling Chinook salmon survival decreased markedly as the season progressed. It remains to be determined whether later migrating subyearling Chinook salmon are suffering increasing mortality as the season progresses or whether some portion of the apparent loss is due to fish extending their freshwater residence. This study provided the first glimpse into what promises to be a very informative way to learn more about how juvenile salmonid passage experiences through the FCRPS may influence their subsequent survival after passing Bonneville Dam. New information regarding the influence of migration pathway through the lower 50 km of the Columbia River estuary on probability of survival of juvenile salmonids, combined with increased understanding regarding the foraging distances and time periods of

  13. Monitoring the migrations of wild Snake River spring/summer chinook salmon smolts, 1995. Annual report

    International Nuclear Information System (INIS)

    Achord, S.; Eppard, M.B.; Sandford, B.P.; Matthews, G.M.

    1996-09-01

    We PIT tagged wild spring/summer chinook-salmon parr in the Snake River Basin in 1994 and subsequently monitored these fish during their smolt migration through Lower Granite, Little Goose, Lower Monumental, McNary, John Day, and Bonneville Darns during spring, summer, and fall 1995. This report details our findings. The goals of this study are to (1) characterize the migration timing of different wild stocks of Snake River spring/summer chinook salmon smolts at dams on the Snake and Columbia Rivers, (2) determine if consistent patterns are apparent, and (3) determine what environmental factors influence migration timing

  14. Compliance Monitoring of Juvenile Yearling Chinook Salmon and Steelhead Survival and Passage at The Dalles Dam, Spring 2011

    Energy Technology Data Exchange (ETDEWEB)

    Skalski, John R.; Townsend, Richard L.; Seaburg, Adam; Johnson, Gary E.; Ploskey, Gene R.; Carlson, Thomas J.

    2012-06-12

    The study estimated dam passage survival at The Dalles Dam as stipulated by the 2008 Federal Columbia River Power System (FCRPS) Biological Opinion (BiOp) and provided additional performance measures as stipulated in the Columbia Basin Fish Accords. This summary report focuses on spring run stocks, yearling Chinook salmon and steelhead.

  15. Compliance Monitoring of Juvenile Yearling Chinook Salmon and Steelhead Survival and Passage at The Dales Dam, Spring 2011

    Energy Technology Data Exchange (ETDEWEB)

    Skalski, John R.; Townsend, Richard L.; Seaburg, Adam; Johnson, Gary E.; Ploskey, Gene R.; Carlson, Thomas J.

    2012-02-01

    The study estimated dam passage survival at The Dalles Dam as stipulated by the 2008 Federal Columbia River Power System (FCRPS) Biological Opinion (BiOp) and provided additional performance measures as stipulated in the Columbia Basin Fish Accords. This summary report focuses on spring run stocks, yearling Chinook salmon and steelhead.

  16. Investigations into the Early Life-history of Naturally Produced Spring Chinook Salmon and Summer Steelhead in the Grande Ronde River Basin, Annual Report 2001.

    Energy Technology Data Exchange (ETDEWEB)

    Reischauer, Alyssa; Monzyk, Frederick; Van Dyke, Erick

    2003-06-01

    We determined migration timing and abundance of juvenile spring chinook salmon Oncorhynchus tshawytscha and juvenile steelhead/rainbow trout Oncorhynchus mykiss using rotary screw traps on four streams in the Grande Ronde River basin during the 2001 migratory year (MY 2001) from 1 July 2000 through 30 June 2001. Based on migration timing and abundance, two distinct life-history strategies of juvenile spring chinook and O. mykiss could be distinguished. An 'early' migrant group left upper rearing areas from 1 July 2000 through 29 January 2001 with a peak in the fall. A 'late' migrant group descended from upper rearing areas from 30 January 2001 through 30 June 2001 with a peak in the spring. The migrant population of juvenile spring chinook salmon in the upper Grande Ronde River in MY 2001 was very low in comparison to previous migratory years. We estimated 51 juvenile spring chinook migrated out of upper rearing areas with approximately 12% of the migrant population leaving as early migrants to overwinter downstream. In the same migratory year, we estimated 16,067 O. mykiss migrants left upper rearing areas with approximately 4% of these fish descending the upper Grande Ronde River as early migrants. At the Catherine Creek trap, we estimated 21,937 juvenile spring chinook migrants in MY 2001. Of these migrants, 87% left upper rearing areas early to overwinter downstream. We also estimated 20,586 O. mykiss migrants in Catherine Creek with 44% leaving upper rearing areas early to overwinter downstream. At the Lostine River trap, we estimated 13,610 juvenile spring chinook migrated out of upper rearing areas with approximately 77% migrating early. We estimated 16,690 O. mykiss migrated out of the Lostine River with approximately 46% descending the river as early migrants. At the Minam River trap, we estimated 28,209 juvenile spring chinook migrated out of the river with 36% migrating early. During the same period, we estimated 28,113 O. mykiss with

  17. Effects of sex steroids, sex, and sexual maturity on cortisol production: an in vitro comparison of chinook salmon and rainbow trout interrenals.

    Science.gov (United States)

    McQuillan, H James; Lokman, P Mark; Young, Graham

    2003-08-01

    Sex steroids appear to be responsible for hyperactivation of the hypothalamus-pituitary-interrenal (HPI) axis that occurs in mature semelparous Pacific salmon as a prelude to post-spawning (programmed) death. This study was undertaken to examine the direct effects of sex steroids on interrenal activity of semelparous (chinook salmon) and iteroparous (rainbow trout) salmonids using an in vitro incubation system. In addition, phenotypic sex differences in cortisol production by interrenals of sexually mature (spawning) rainbow trout and chinook salmon were investigated. Interrenal tissue from juvenile and sexually mature chinook salmon and rainbow trout was incubated for 48 h in culture medium containing either no steroid (controls), 1 microM estradiol (E2) or 1 microM 11-ketotestosterone (11-KT). This tissue was then challenged for 3h with either pregnenolone, dibutyryladenosine 3('):5(')-cyclic monophosphate (dbcAMP) or forskolin, or synthetic human adrenocorticotropic hormone (ACTH(1-24)). Sex differences in in vitro interrenal cortisol production were assessed using separate tissue pools challenged with the same agents. Cortisol in media was measured by radioimmunoassay. E2 suppressed the ability of juvenile chinook salmon interrenals to utilize pregnenolone as substrate for cortisol synthesis. In mature female chinook salmon the suppressive effect of E2 was less pronounced, but was observed as a reduced response of interrenals to both pregnenolone and dbcAMP. E2 did not affect ACTH(1-24) stimulated cortisol production. Immature and mature rainbow trout interrenals were both relatively insensitive to E2. 11-KT did not affect cortisol production by juvenile chinook salmon and juvenile or mature rainbow trout, and had only minor effects in male and female spawning chinook salmon. In mature chinook salmon and rainbow trout, the interrenals of females were more responsive to ACTH stimulation and showed a greater utilization of pregnenolone as a substrate than

  18. Grande Ronde Endemic Spring Chinook Salmon Supplementation Project; Lostine River Operations and Maintenance 2004 Smolt Acclimation and Adult Return Report.

    Energy Technology Data Exchange (ETDEWEB)

    Zollman, Richard L.; Eschler, Russell; Sealey, Shawn [Nez Perce Tribe

    2009-03-31

    The Nez Perce Tribe (NPT), through funding provided by the Bonneville Power Administration (BPA), has implemented a Chinook salmon supplementation program (250,000 smolts) on the Lostine River, a tributary to the Grande Ronde River of Oregon. The Grande Ronde Endemic Spring Chinook Salmon Supplementation project, which involves supplementation of the Upper Grande Ronde River and Catherine Creek in addition to the Lostine River, was established to prevent extirpation and increase the number of threatened Snake River spring/summer Chinook salmon (Oncorhynchus tshawytscha) returning to the Grande Ronde River. This report covers the eighth season (1997-2004) of adult Chinook salmon broodstock collection in the Lostine River and the sixth season (1999-2004) of acclimation of resulting Lostine River progeny. Production of Lostine River spring Chinook salmon smolts currently occurs at Lookingglass Fish Hatchery (LGH). The Lostine River supplementation program utilizes two strategies to obtain egg source for production of smolts for supplementation: captive broodstock and conventional broodstock. The captive broodstock strategy involves (1) capture of natural juvenile spring Chinook salmon smolts from the Lostine River, (2) rearing those to adult and spawning them, and (3) rearing the resultant progeny for eventual acclimation and release back into the Lostine River. The conventional broodstock strategy involves (1) capture of natural and hatchery origin adults returning to the Lostine River, (2) holding those adults and spawning them, and (3) rearing the resultant progency for acclimation and release back into the Lostine River. This report focuses on (1) the trapping and collection of adult spring Chinook salmon that return to the Lostine River, which provides the broodstock source for the conventional strategy and (2) the acclimation and release of juvenile spring Chinook salmon produced from the captive broodstock and conventional broodstock strategies. In 2004

  19. Grande Ronde Endemic Spring Chinook Salmon Supplementation Project; Lostine River Operations and Maintenance 2003 Smolt Acclimation and Adult Return Report.

    Energy Technology Data Exchange (ETDEWEB)

    Zollman, Richard L.; Eschler, Russell; Sealey, Shawn [Nez Perce Tribe

    2009-03-31

    Lostine River spring Chinook salmon smolts occurred from March 3, 2003 through to April 14, 2003 and a total of 242,776 smolts were acclimated and released. These smolts were produced from the brood year (BY) 2001 egg source and included captive broodstock (141,860) and conventional broodstock (100,916) origin smolts that were all progeny of Lostine River spring Chinook salmon. Operation of the Lostine River adult monitoring and collection facility in 2003 began April 30th, the first Chinook was captured on May 16, 2003 and the last Chinook was captured on September 21, 2003. The weir and trap were removed on October 1, 2003. A total of 464 adult Chinook, including jacks, were captured during the season. The composition of the run included 239 natural origin fish and 225 hatchery supplementation fish. There were no identified 'stray' hatchery fish from other programs trapped. Of the fish captured, 45 natural and 4 hatchery supplementation adults were retained for broodstock and transported to LGH for holding and spawning, 366 adult Chinook were passed or transported above the weir to spawn naturally, and 49 hatchery origin adult jack Chinook were transported and outplanted in the Wallowa River and Bear Creek to spawn in underseeded habitat. Of the 49 adults retained for broodstock at Lookingglass Hatchery, 21 natural females and no hatchery origin females were represented in spawning. These females produced a total of 106,609 eggs at fertilization. Eye-up was 95.50% which yielded a total of 101,811 conventional program eyed eggs. The fecundity averaged 5,077 eggs per female. These eggs were incubated and at Lookingglass Hatchery until eyed stage. At eye they were transferred to Oxbow Hatchery where they were reared to the fingerling state at which time they were transported back to LGH until they were smolts in the spring of 2005. Captive brood program eggs/fish will be added to the conventional program eggs to make up the entire juvenile release for the Lostine

  20. Fish research project -- Oregon: Investigations into the early life history of naturally produced spring chinook salmon in the Grande Ronde River Basin. Annual progress report, 1 September 1995--31 August 1996

    International Nuclear Information System (INIS)

    Jonasson, B.C.; Carmichael, R.W.; Keefe, M.

    1997-09-01

    Historically, the Grande Ronde River produced an abundance of salmonids including stocks of spring, summer and fall chinook salmon, sockeye salmon, coho salmon, and summer steelhead. During the past century, numerous factors have caused the reduction of salmon stocks such that only sustainable stocks of spring chinook salmon and summer steelhead remain. The sizes of spring chinook salmon populations in the Grande Ronde River basin also have been declining steadily and are substantially depressed from estimates of historic levels. In addition to a decline in population abundance, a reduction of spring chinook salmon spawning distribution is evident in the Grande Ronde River basin. Numerous factors are thought to contribute to the decline of spring chinook salmon in the Snake River and its tributaries. These factors include passage problems and increased mortality of juvenile and adult migrants at mainstem Columbia and Snake river dams, overharvest, and habitat degradation associated with timber, agricultural, and land development practices. This study was designed to describe aspects of the life history strategies exhibited by spring chinook salmon in the Grande Ronde River basin. During the past year the focus was on rearing and migration patterns of juveniles in the upper Grande Ronde River and Catherine Creek. The study design included three objectives: (1) document the annual in-basin migration patterns for spring chinook salmon juveniles in the upper Grande Ronde River and Catherine Creek, including the abundance of migrants, migration timing and duration; (2) estimate and compare smolt survival indices to mainstem Columbia and Snake river dams for fall and spring migrating spring chinook salmon; and (3) determine summer and winter habitat utilization and preference of juvenile spring chinook salmon in the upper Grande Ronde River and Catherine Creek

  1. Estimating Common Growth Patterns in Juvenile Chinook Salmon (Oncorhynchus tshawytscha from Diverse Genetic Stocks and a Large Spatial Extent.

    Directory of Open Access Journals (Sweden)

    Pascale A L Goertler

    Full Text Available Life history variation in Pacific salmon (Oncorhynchus spp. supports species resilience to natural disturbances and fishery exploitation. Within salmon species, life-history variation often manifests during freshwater and estuarine rearing, as variation in growth. To date, however, characterizing variability in growth patterns within and among individuals has been difficult via conventional sampling methods because of the inability to obtain repeated size measurements. In this study we related otolith microstructures to growth rates of individual juvenile Chinook salmon (O. tshawytscha from the Columbia River estuary over a two-year period (2010-2012. We used dynamic factor analysis to determine whether there were common patterns in growth rates within juveniles based on their natal region, capture location habitat type, and whether they were wild or of hatchery origin. We identified up to five large-scale trends in juvenile growth rates depending on month and year of capture. We also found that hatchery fish had a narrower range of trend loadings for some capture groups, suggesting that hatchery fish do not express the same breadth of growth variability as wild fish. However, we were unable to resolve a relationship between specific growth patterns and habitat transitions. Our study exemplifies how a relatively new statistical analysis can be applied to dating or aging techniques to summarize individual variation, and characterize aspects of life history diversity.

  2. Assessment of Barotrauma Resulting from Rapid Decompression of Depth Acclimated Juvenile Chinook Salmon Bearing Radio Telemetry Transmitters

    Energy Technology Data Exchange (ETDEWEB)

    Brown, Richard S.; Carlson, Thomas J.; Welch, Abigail E.; Stephenson, John R.; Abernethy, Cary S.; McKinstry, Craig A.; Theriault, Marie-Helene

    2007-09-06

    A multifactor study was conducted by Battelle for the US Army Corps of Engineers to assess the significance of the presence of a radio telemetry transmitter on the effects of rapid decompression from simulated hydro turbine passage on depth acclimated juvenile run-of-the-river Chinook salmon. Study factors were: (1) juvenile chinook salmon age;, subyearling or yearling, (2) radio transmitter present or absent, (3) three transmitter implantation factors: gastric, surgical, and no transmitter, and (4) four acclimation depth factors: 1, 10, 20, and 40 foot submergence equivalent absolute pressure, for a total of 48 unique treatments. Exposed fish were examined for changes in behavior, presence or absence of barotrauma injuries, and immediate or delayed mortality. Logistic models were used to test hypotheses that addressed study objectives. The presence of a radio transmitter was found to significantly increase the risk of barotrauma injury and mortality at exposure to rapid decompression. Gastric implantation was found to present a higher risk than surgical implantation. Fish were exposed within 48 hours of transmitter implantation so surgical incisions were not completely healed. The difference in results obtained for gastric and surgical implantation methods may be the result of study design and the results may have been different if tested fish had completely healed surgical wounds. However, the test did simulate the typical surgical-release time frame for in-river telemetry studies of fish survival so the results are probably representative for fish passing through a turbine shortly following release into the river. The finding of a significant difference in response to rapid decompression between fish bearing radio transmitters and those not implies a bias may exist in estimates of turbine passage survival obtained using radio telemetry. However, the rapid decompression (simulated turbine passage) conditions used for the study represented near worst case exposure

  3. Otolith analysis of pre-restoration habitat use by Chinook salmon in the delta-flats and nearshore regions of the Nisqually River Estuary

    Science.gov (United States)

    Lind-Null, Angie; Larsen, Kim

    2010-01-01

    The Nisqually Fall Chinook population is one of 27 salmon stocks in the Puget Sound (Washington) evolutionarily significant unit listed as threatened under the federal Endangered Species Act (ESA). Extensive restoration of the Nisqually River delta ecosystem is currently taking place to assist in recovery of the stock as juvenile Fall Chinook salmon are dependent on the estuary. A pre-restoration baseline that includes the characterization of life history strategies, estuary residence times, growth rates, and habitat use is needed to evaluate the potential response of hatchery and natural origin Chinook salmon to restoration efforts and to determine restoration success. Otolith analysis was selected as a tool to examine Chinook salmon life history, growth, and residence in the Nisqually River estuary. Previously funded work on samples collected in 2004 (marked and unmarked) and 2005 (unmarked only) partially established a juvenile baseline on growth rates and length of residence associated with various habitats (freshwater, forested riverine tidal, emergent forested transition, estuarine emergent marsh, delta-flats and nearshore). However, residence times and growth rates for the delta-flats (DF) and nearshore (NS) habitats have been minimally documented due to small sample sizes. The purpose of the current study is to incorporate otolith microstructural analysis using otoliths from fish collected within the DF and NS habitats during sampling years 2004-08 to increase sample size and further evaluate between-year variation in otolith microstructure. Our results from this analysis indicated the delta-flats check (DFCK) on unmarked and marked Chinook samples in 2005-08 varied slightly in appearance from that seen on samples previously analyzed only from 2004. A fry migrant life history was observed on otoliths of unmarked Chinook collected in 2005, 2007, and 2008. Generally, freshwater mean increment width of unmarked fish, on average, was smaller compared to marked

  4. Natural Production Monitoring and Evaluation; Idaho Department of Fish and Game, 2003-2004 Annual Report.

    Energy Technology Data Exchange (ETDEWEB)

    Copeland, Timothy; Johnson, June; Bunn, Paul (Idaho Department of Fish and Game, Boise, ID)

    2004-12-01

    This report covers the following 3 parts of the Project: Part 1--Monitoring age composition of wild adult spring and summer Chinook salmon returning to the Snake River basin in 2003 to predict smolt-to-adult return rates Part 2--Development of a stock-recruitment relationship for Snake River spring/summer Chinook salmon to forecast natural smolt production Part 3--Improve the precision of smolt-to-adult survival rate estimates for wild steelhead trout by PIT tagging additional juveniles.

  5. Monitoring of Juvenile Subyearling Chinook Salmon Survival and Passage at John Day Dam, Summer 2010

    Energy Technology Data Exchange (ETDEWEB)

    Weiland, Mark A.; Ploskey, Gene R.; Hughes, James S.; Woodley, Christa M.; Deng, Zhiqun; Carlson, Thomas J.; Skalski, J. R.; Townsend, Richard L.

    2012-11-15

    The purpose of this study was to evaluate dam passage survival of subyearling Chinook salmon (Oncorhynchus tshawytscha; CH0) at John Day Dam (JDA) during summer 2010. This study was conducted by researchers from the Pacific Northwest National Laboratory (PNNL) in collaboration with the Pacific States Marine Fisheries Commission (PSMFC) and the University of Washington (UW). The study was designed to estimate the effects of 30% and 40% spill treatment levels on single release survival rates of CH0 passing through two reaches: (1) the dam, and 40 km of tailwater, (2) the forebay, dam, and 40 km of tailwater. The study also estimated additional passage performance measures which are stipulated in the Columbia Basin Fish Accords.

  6. Adult Chinook Salmon Abundance Monitoring in Lake Creek, Idaho, Annual Report 2001.

    Energy Technology Data Exchange (ETDEWEB)

    Faurot, Dave

    2002-12-01

    Underwater time-lapse video technology has been used to monitor adult spring and summer chinook salmon (Oncorhynchus tshawytscha) escapement into the Secesh River and Lake Creek, Idaho, since 1998. Underwater time- lapse videography is a passive methodology that does not trap or handle this Endangered Species Act listed species. Secesh River chinook salmon represent a wild spawning aggregate that has not been directly supplemented with hatchery fish. The Secesh River is also a control stream under the Idaho Salmon Supplementation study. This project has successfully demonstrated the application of underwater video monitoring to accurately quantify chinook salmon abundance in Lake Creek in 1998, 1999 and 2001. The adult salmon spawner escapement estimate into Lake Creek in 2001 was 697 fish, the largest escapement since the project began. Jack salmon comprised 10% of the spring migration. Snow pack in the drainage was 38% of the average during the winter of 2000/2001. The first fish passage on Lake Creek was recorded on June 9, 19 days after installation of the fish counting station and two weeks earlier than previously reported. Peak net upstream movement of 52 adults occurred on June 22. Peak of total movement activity was July 3. The last fish passed through the Lake Creek fish counting station on September 6. Redd count expansion methods were compared to underwater video determined salmon spawner abundance in Lake Creek in 2001. Expanded index area redd count point estimates and intensive area redd counts in 2001, estimated from 1.3 percent fewer to 56 percent greater number of spawners than underwater video determined spawner abundance. Redd count expansion values had unknown variation associated with the point estimates. Fish per redd numbers in Lake Creek have varied widely. In 2001 there were 2.07 fish per redd. In 1999, there were 3.58 fish per redd, and in 1998, with no jacks returning to spawn, there were 1.02 fish per redd. Migrating salmon in Lake Creek

  7. Research, monitoring, and evaluation of emerging issues and measures to recover the Snake River fall Chinook salmon ESU, 1/1/2012 – 12/31/2013: Annual report, 1991-029-00

    Science.gov (United States)

    Connor, William P.; Mullins, Frank; Tiffan, Kenneth F.; Perry, Russell W.; Erhardt, John M.; St. John, Scott J.; Bickford, Brad; Rhodes, Tobyn N.

    2014-01-01

    The portion of the Snake River fall Chinook Salmon Oncorhynchus tshawytscha ESU that spawns upstream of Lower Granite Dam transitioned from low to high abundance during 1992–2014 in association with U.S. Endangered Species Act recovery efforts and other Federally mandated actions. This annual report focuses on (1) numeric and habitat use responses by natural- and hatchery-origin spawners, (2) phenotypic and numeric responses by natural-origin juveniles, and (3) predator responses in the Snake River upper and lower reaches as abundance of adult and juvenile fall Chinook Salmon increased. Spawners have located and used most of the available spawning habitat and that habitat is gradually approaching redd capacity. Timing of spawning and fry emergence has been relatively stable; whereas the timing of parr dispersal from riverine rearing habitat into Lower Granite Reservoir has become earlier as apparent abundance of juveniles has increased. Growth rate (g/d) and dispersal size of parr also declined as apparent abundance of juveniles increased. Passage timing of smolts from the two Snake River reaches has become earlier and downstream movement rate faster as estimated abundance of fall Chinook Salmon smolts in Lower Granite Reservoir has increased. In 2014, consumption of subyearlings by Smallmouth Bass was highest in the upper reach which had the highest abundance of Bass. With a few exceptions, predation tended to decrease seasonally from April through early July. A release of hatchery fish in mid-May significantly increased subyearling consumption by the following day. We estimated that over 600,000 subyearling fall Chinook Salmon were lost to Smallmouth Bass predation along the free-flowing Snake River in 2014. More information on predation is presented in Appendix A.3 (page 51). These findings coupled with stock-recruitment analyses presented in this report provide evidence for density-dependence in the Snake River reaches and in Lower Granite Reservoir that was

  8. Chromium Toxicity Test for Fall Chinook Salmon (Oncorhynchus tshawytscha) Using Hanford Site Groundwater: Onsite Early Life-Stage Toxicity Evaluation

    International Nuclear Information System (INIS)

    Patton, Gregory W; Dauble, Dennis D; Chamness, Mickie A; Abernethy, Cary S; McKinstry, Craig A

    2001-01-01

    The objective of this study was to evaluate site-specific effects for early life-stage (eyed eggs to free swimming juveniles) fall chinook salmon that might be exposed to hexavalent chromium from Hanford groundwater sources. Our exposure conditions included hexavalent chromium obtained from Hanford groundwater wells near the Columbia River, Columbia River water as the diluent, and locally adapted populations of fall chinook salmon. This report describes both a 96-hr pretest using rainbow trout eggs and an early life-stage test beginning with chinook salmon eggs

  9. Acoustic Telemetry Studies of Juvenile Chinook Salmon Survival at the Lower Columbia Projects in 2006

    Energy Technology Data Exchange (ETDEWEB)

    Ploskey, Gene R.; Weiland, Mark A.; Hughes, James S.; Zimmerman, Shon A.; Durham, Robin E.; Fischer, Eric S.; Kim, Jina; Townsend, Richard L.; Skalski, John R.; McComas, Roy L.

    2008-02-01

    The Portland District of the U.S. Army Corps of Engineers contracted with the Pacific Northwest National Laboratory (PNNL) to conduct three studies using acoustic telemetry to estimate detection probabilities and survival of juvenile Chinook salmon at three hydropower projects on the lower Columbia River. The primary goals were to estimate detection and survival probabilities based on sampling with JSATS equipment, assess the feasibility of using JSATS for survival studies, and estimate sample sizes needed to obtain a desired level of precision in future studies. The 2006 JSATS arrays usually performed as well or better than radio telemetry arrays in the JDA and TDA tailwaters, and underperformed radio arrays in the BON tailwater, particularly in spring. Most of the probabilities of detection on at least one of all arrays in a tailwater exceeded 80% for each method, which was sufficient to provide confidence in survival estimates. The probability of detection on one of three arrays includes survival and detection probabilities because fish may die or pass all three arrays undetected but alive.

  10. Reconstructing the Migratory Behavior and Long-Term Survivorship of Juvenile Chinook Salmon under Contrasting Hydrologic Regimes.

    Directory of Open Access Journals (Sweden)

    Anna M Sturrock

    Full Text Available The loss of genetic and life history diversity has been documented across many taxonomic groups, and is considered a leading cause of increased extinction risk. Juvenile salmon leave their natal rivers at different sizes, ages and times of the year, and it is thought that this life history variation contributes to their population sustainability, and is thus central to many recovery efforts. However, in order to preserve and restore diversity in life history traits, it is necessary to first understand how environmental factors affect their expression and success. We used otolith (87Sr/(86Sr in adult Chinook salmon (Oncorhynchus tshawytcha returning to the Stanislaus River in the California Central Valley (USA to reconstruct the sizes at which they outmigrated as juveniles in a wetter (2000 and drier (2003 year. We compared rotary screw trap-derived estimates of outmigrant timing, abundance and size with those reconstructed in the adults from the same cohort. This allowed us to estimate the relative survival and contribution of migratory phenotypes (fry, parr, smolts to the adult spawning population under different flow regimes. Juvenile abundance and outmigration behavior varied with hydroclimatic regime, while downstream survival appeared to be driven by size- and time-selective mortality. Although fry survival is generally assumed to be negligible in this system, >20% of the adult spawners from outmigration year 2000 had outmigrated as fry. In both years, all three phenotypes contributed to the spawning population, however their relative proportions differed, reflecting greater fry contributions in the wetter year (23% vs. 10% and greater smolt contributions in the drier year (13% vs. 44%. These data demonstrate that the expression and success of migratory phenotypes vary with hydrologic regime, emphasizing the importance of maintaining diversity in a changing climate.

  11. Survival and Passage of Juvenile Chinook Salmon and Steelhead Passing through Bonneville Dam, 2011

    Energy Technology Data Exchange (ETDEWEB)

    Ploskey, Gene R. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Batten, G. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Cushing, Aaron W. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Kim, Jin A. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Johnson, Gary E. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Skalski, J. R. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Townsend, Richard L. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Seaburg, Adam [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Weiland, Mark A. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Woodley, Christa M. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Hughes, James S. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Carlson, Thomas J. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Carpenter, Scott M. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Deng, Zhiqun [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Etherington, D. J. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Fischer, Eric S. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Fu, Tao [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Greiner, Michael J. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Hennen, Matthew J. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Martinez, Jayson J. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Mitchell, T. D. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Rayamajhi, Bishes [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Zimmerman, Shon A. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States)

    2013-02-15

    Pacific Northwest National Laboratory (PNNL) and subcontractors conducted an acoustic-telemetry study of juvenile salmonid fish passage and survival at Bonneville Dam in 2011. The study was conducted to assess the readiness of the monitoring system for official compliance studies under the 2008 Biological Opinion and Fish Accords and to assess performance measures including route-specific fish passage proportions, travel times, and survival based upon a virtual/paired-release model. The study relied on releases of live Juvenile Salmon Acoustic Telemetry System tagged smolts in the Columbia River and used acoustic telemetry to evaluate the approach, passage, and survival of passing juvenile salmon using a virtual release, paired reference release survival model. This study supports the U.S. Army Corps of Engineers’ continual effort to improve conditions for juvenile anadromous fish passing through Columbia River dams.

  12. Trapping and transportation of adult and juvenile salmon in the lower Umatilla River in northeast Oregon, 1995--1996 -- Umatilla River Basin Trap and Haul Program. Annual progress report, October 1995--September 1996

    International Nuclear Information System (INIS)

    Zimmerman, B.C.; Duke, B.B.

    1996-09-01

    Threemile Falls Dam (Threemile Dam), located near the town of Umatilla, is the major collection and counting point for adult salmonids returning to the Umatilla River. Returning salmon and steelhead were collected at Threemile Dam from September 5, 1995 to July 1, 1996. A total of 2,081 summer steelhead (Oncorhynchus mykiss); 603 adult, 288 jack, and 338 subjack fall chinook (O. tshawytscha); 946 adult and 53 jack coho (O. kisutch); and 2,152 adult and 121 jack spring chinook (O. tshawytscha) were collected. All fish were trapped at the east bank facility. The Westland Canal juvenile facility (Westland), located near the town of Echo at rivermile (RM) 27, is the major collection point for outmigrating juvenile salmonids and steelhead kelts. The Threemile Dam west bank juvenile bypass was operated from September 8 to October 13, 1995 and from March 18 to June 30, 1996. The juvenile trap was operated from July 1 to July 11. Daily operations at the facility were conducted by the ODFW Fish Passage Research project to monitor juvenile outmigration

  13. Minthorn Springs Creek Summer Juvenile Release and Adult Collection Facility; 1994 Annual Report.

    Energy Technology Data Exchange (ETDEWEB)

    Rowan, Gerald D.

    1995-05-01

    The Confederated Tribes of the Umatilla Indian Reservation (CTUIR) and Oregon Department of Fish and Wildlife (ODFW) are cooperating in a joint effort to enhance steelhead and re-establish salmon runs in the Umatilla River Basin. Bonifer Pond, Minthorn Springs and Imeques C-mem-ini-kem acclimation facilities are operated for acclimation and release of juvenile summer steelhead (Oncorhynchus mykiss), fall and spring chinook salmon (O. tshawytscha) and coho salmon (O, kisutch). Minthorn is also used for holding and spawning summer steelhead, fall chinook and coho salmon. In the spring of 1994, juvenile summer steelhead were acclimated at Bonifer and Minthorn. At Imeques C-mem-ini-kem, juvenile spring chinook were acclimated in the spring and fall. A total of 92 unmarked and 42 marked summer steelhead were collected for broodstock at Three Mile Dam from October 1, 1993 through May 2, 1994 and held at Minthorn. An estimated 234,432 green eggs were taken from 48 females. The eggs were transferred to Irrigon Hatchery for incubation and early rearing. Fingerlings were transferred to Umatilla Hatchery for final rearing and release into the Umatilla River in 1995. Fall chinook and coho salmon broodstock were not collected in 1994. Coded-wire tag recovery information was accessed to determine the contribution of Umatilla River releases to ocean, Columbia River and Umatilla River fisheries. Total estimated juvenile adult survival rates are detailed in this document.

  14. Investigations into the early life history of naturally produced spring chinook salmon in the Grande Ronde River Basin: annual progress report project period 1 September 1998 to 31 August 1999; ANNUAL

    International Nuclear Information System (INIS)

    Jonasson, Brian C.

    2000-01-01

    We determined migration timing and abundance of juvenile spring chinook salmon from three populations in the Grande Ronde River basin. We estimated 13,180 juvenile chinook salmon left upper rearing areas of the Grande Ronde River from July 1998 to June 1999; approximately 0.2% of the migrants left in summer, 18% in fall and 82% in spring. We estimated 15,949 juvenile chinook salmon left upper rearing areas of Catherine Creek from July 1998 to June 1999; approximately 0.2% of the migrants left in summer, 57% in fall, 2% in winter, and 41% in spring. We estimated 14,537 juvenile chinook salmon left the Grande Ronde Valley, located below the upper rearing areas in Catherine Creek and the Grande Ronde River, from October 1998 to June 1999; approximately 99% of the migrants left in spring. We estimated 31,113 juvenile chinook salmon left upper rearing areas of the Lostine River from July 1998 to June 1999; approximately 4% of the migrants left in summer, 57% in fall, 3% in winter, and 36% in spring. We estimated 42,705 juvenile spring chinook salmon left the Wallowa Valley, located below the mouth of the Lostine River, from August 1998 to June 1999; approximately 46% of the migrants left in fall, 6% in winter, and 47% in spring. Juvenile chinook salmon PIT-tagged on the upper Grande Ronde River were detected at Lower Granite Dam from 31 March to 20 June 1999, with a median passage date of 5 May. PIT-tagged salmon from Catherine Creek were detected at Lower Granite Dam from 19 April to 9 July 1999, with a median passage date of 24 May. PIT-tagged salmon from the Lostine River were detected at Lower Granite Dam from 31 March through 8 July 1999, with a median passage date of 4 May. Juveniles tagged as they left the upper rearing areas of the Grande Ronde River in fall and that overwintered in areas downstream were detected in the hydrosystem at a higher rate than fish tagged during winter in the upper rearing areas, indicating a higher overwinter survival in the

  15. Juvenile salmonid monitoring in the White Salmon River, Washington, post-Condit Dam removal, 2016

    Science.gov (United States)

    Jezorek, Ian G.; Hardiman, Jill M.

    2017-06-23

    Condit Dam, at river kilometer 5.3 on the White Salmon River, Washington, was breached in 2011 and removed completely in 2012, allowing anadromous salmonids access to habitat that had been blocked for nearly 100 years. A multi-agency workgroup concluded that the preferred salmonid restoration alternative was natural recolonization with monitoring to assess efficacy, followed by a management evaluation 5 years after dam removal. Limited monitoring of salmon and steelhead spawning has occurred since 2011, but no monitoring of juveniles occurred until 2016. During 2016, we operated a rotary screw trap at river kilometer 2.3 (3 kilometers downstream of the former dam site) from late March through May and used backpack electrofishing during summer to assess juvenile salmonid distribution and abundance. The screw trap captured primarily steelhead (Oncorhynchus mykiss; smolts, parr, and fry) and coho salmon (O. kisutch; smolts and fry). We estimated the number of steelhead smolts at 3,851 (standard error = 1,454) and coho smolts at 1,093 (standard error = 412). In this document, we refer to O. mykiss caught at the screw trap as steelhead because they were actively migrating, but because we did not know migratory status of O. mykiss caught in electrofishing surveys, we simply refer to them as O. mykiss or steelhead/rainbow trout. Steelhead and coho smolts tagged with passive integrated transponder tags were subsequently detected downstream at Bonneville Dam on the Columbia River. Few Chinook salmon (O. tshawytscha) fry were captured, possibly as a result of trap location or effects of a December 2015 flood. Sampling in Mill, Buck, and Rattlesnake Creeks (all upstream of the former dam site) showed that juvenile coho were present in Mill and Buck Creeks, suggesting spawning had occurred there. We compared O. mykiss abundance data in sites on Buck and Rattlesnake Creeks to pre-dam removal data. During 2016, age-0 O. mykiss were more abundant in Buck Creek than in 2009 or

  16. Acoustic Telemetry Evaluation of Juvenile Salmonid Passage and Survival at John Day Dam, 2011

    Energy Technology Data Exchange (ETDEWEB)

    Weiland, Mark A.; Woodley, Christa M.; Ploskey, Gene R.; Hughes, James S.; Hennen, Matthew J.; Kim, Jin A.; Deng, Zhiqun; Fu, Tao; Skalski, J. R.; Townsend, Richard L.; Wagner, Katie A.; Fischer, Eric S.; Duncan, Joanne P.; Batten, G.; Carlson, Thomas J.; Carpenter, Scott M.; Cushing, Aaron W.; Elder, T.; Etherington, D. J.; Johnson, Gary E.; Khan, Fenton; Miracle, Ann L.; Mitchell, T. D.; Prather, K.; Rayamajhi, Bishes; Royer, Ida; Seaburg, Adam; Zimmerman, Shon A.

    2013-06-21

    This report presents survival, behavioral, and fish passage results for tagged yearling Chinook salmon and juvenile steelhead as part of a survival study conducted at John Day Dam during spring 2011. This study was designed to evaluate the passage and survival of yearling Chinook salmon and juvenile steelhead to assist managers in identifying dam operations for compliance testing as stipulated by the 2008 Federal Columbia River Power System Biological Opinion and the 2008 Columbia Basin Fish Accords. Survival estimates were based on a paired-release survival model.

  17. Survival and Passage of Juvenile Chinook Salmon and Steelhead Passing through Bonneville Dam, 2010

    Energy Technology Data Exchange (ETDEWEB)

    Ploskey, Gene R.; Weiland, Mark A.; Hughes, James S.; Woodley, Christa M.; Deng, Zhiqun; Carlson, Thomas J.; Kim, Jin A.; Royer, Ida M.; Batten, George W.; Cushing, Aaron W.; Carpenter, Scott M.; Etherington, D. J.; Faber, Derrek M.; Fischer, Eric S.; Fu, Tao; Hennen, Matthew J.; Mitchell, Tyler; Monter, Tyrell J.; Skalski, John R.; Townsend, Richard L.; Zimmerman, Shon A.

    2011-12-01

    Pacific Northwest National Laboratory (PNNL) and subcontractors conducted an acoustic-telemetry study of juvenile salmonid fish passage and survival at Bonneville Dam in 2010. The study was conducted to assess the readiness of the monitoring system for official compliance studies under the 2008 Biological Opinion and Fish Accords and to assess performance measures including route-specific fish passage proportions, travel times, and survival based upon a single-release model. This also was the last year of evaluation of effects of a behavioral guidance device installed in the Powerhouse 2 forebay. The study relied on releases of live Juvenile Salmon Acoustic Telemetry System tagged smolts in the Columbia River and used acoustic telemetry to evaluate the approach, passage, and survival of passing juvenile salmon. This study supports the U.S. Army Corps of Engineers continual effort to improve conditions for juvenile anadromous fish passing through Columbia River dams.

  18. Survival and Passage of Juvenile Chinook Salmon and Steelhead Passing Through Bonneville Dam, 2010

    Energy Technology Data Exchange (ETDEWEB)

    Ploskey, Gene R.; Weiland, Mark A.; Hughes, James S.; Woodley, Christa M.; Deng, Zhiqun; Carlson, Thomas J.; Kim, Jin A.; Royer, Ida M.; Batten, George W.; Cushing, Aaron W.; Carpenter, Scott M.; Etherington, D. J.; Faber, Derrek M.; Fischer, Eric S.; Fu, Tao; Hennen, Matthew J.; Mitchell, T. D.; Monter, Tyrell J.; Skalski, J. R.; Townsend, Richard L.; Zimmerman, Shon A.

    2012-09-01

    Pacific Northwest National Laboratory (PNNL) and subcontractors conducted an acoustic-telemetry study of juvenile salmonid fish passage and survival at Bonneville Dam in 2010. The study was conducted to assess the readiness of the monitoring system for official compliance studies under the 2008 Biological Opinion and Fish Accords and to assess performance measures including route-specific fish passage proportions, travel times, and survival based upon a single-release model. This also was the last year of evaluation of effects of a behavioral guidance device installed in the Powerhouse 2 forebay. The study relied on releases of live Juvenile Salmon Acoustic Telemetry System tagged smolts in the Columbia River and used acoustic telemetry to evaluate the approach, passage, and survival of passing juvenile salmon. This study supports the U.S. Army Corps of Engineers continual effort to improve conditions for juvenile anadromous fish passing through Columbia River dams.

  19. Snake River Fall Chinook Salmon Life History Investigations, Annual Report 2008.

    Energy Technology Data Exchange (ETDEWEB)

    Tiffan, Kenneth F. [U.S. Geological Survey; Connor, William P. [U.S. Fish and Wildlife Service; Bellgraph, Brian J. [Pacific Northwest National Laboratory

    2009-09-15

    This study was initiated to provide empirical data and analyses on the dam passage timing, travel rate, survival, and life history variation of fall Chinook salmon that are produced in the Clearwater River. The area of interest for this study focuses on the lower four miles of the Clearwater River and its confluence with the Snake River because this is an area where many fish delay their seaward migration. The goal of the project is to increase our understanding of the environmental and biological factors that affect juvenile life history of fall Chinook salmon in the Clearwater River. The following summaries are provided for each of the individual chapters in this report.

  20. Influence of Incision Location on Transmitter Loss, Healing, Incision Lengths, Suture Retention, and Growth of Juvenile Chinook Salmon

    Energy Technology Data Exchange (ETDEWEB)

    Panther, Jennifer L.; Brown, Richard S.; Gaulke, Greggory L.; Woodley, Christa M.; Deters, Katherine A.

    2010-05-11

    In this study, conducted by Pacific Northwest National Laboratory for the U.S. Army Corps of Engineers, Portland District, we measured differences in survival and growth, incision openness, transmitter loss, wound healing, and erythema among abdominal incisions on the linea alba, lateral and parallel to the linea alba (muscle-cutting), and following the underlying muscle fibers (muscle-sparing). A total of 936 juvenile Chinook salmon were implanted with both Juvenile Salmon Acoustic Tracking System transmitters (0.43 g dry) and passive integrated transponder tags. Fish were held at 12°C (n = 468) or 20°C (n = 468) and examined once weekly over 98 days. We found survival and growth did not differ among incision groups or between temperature treatment groups. Incisions on the linea alba had less openness than muscle-cutting and muscle-sparing incisions during the first 14 days when fish were held at 12°C or 20°C. Transmitter loss was not different among incision locations by day 28 when fish were held at 12°C or 20°C. However, incisions on the linea alba had greater transmitter loss than muscle-cutting and muscle-sparing incisions by day 98 at 12°C. Results for wound closure and erythema differed among temperature groups. Results from our study will be used to improve fish-tagging procedures for future studies using acoustic or radio transmitters.

  1. Investigations into the Early Life History of Naturally Produced Spring Chinook Salmon in the Grande Ronde River Basin : Fish Research Project Oregon : Annual Progress Report Project Period 1 September 1998 to 31 August 1999.

    Energy Technology Data Exchange (ETDEWEB)

    Jonasson, Brian C.

    2000-01-01

    We determined migration timing and abundance of juvenile spring chinook salmon from three populations in the Grande Ronde River basin. We estimated 13,180 juvenile chinook salmon left upper rearing areas of the Grande Ronde River from July 1998 to June 1999; approximately 0.2% of the migrants left in summer, 18% in fall and 82% in spring. We estimated 15,949 juvenile chinook salmon left upper rearing areas of Catherine Creek from July 1998 to June 1999; approximately 0.2% of the migrants left in summer, 57% in fall, 2% in winter, and 41% in spring. We estimated 14,537 juvenile chinook salmon left the Grande Ronde Valley, located below the upper rearing areas in Catherine Creek and the Grande Ronde River, from October 1998 to June 1999; approximately 99% of the migrants left in spring. We estimated 31,113 juvenile chinook salmon left upper rearing areas of the Lostine River from July 1998 to June 1999; approximately 4% of the migrants left in summer, 57% in fall, 3% in winter, and 36% in spring. We estimated 42,705 juvenile spring chinook salmon left the Wallowa Valley, located below the mouth of the Lostine River, from August 1998 to June 1999; approximately 46% of the migrants left in fall, 6% in winter, and 47% in spring. Juvenile chinook salmon PIT-tagged on the upper Grande Ronde River were detected at Lower Granite Dam from 31 March to 20 June 1999, with a median passage date of 5 May. PIT-tagged salmon from Catherine Creek were detected at Lower Granite Dam from 19 April to 9 July 1999, with a median passage date of 24 May. PIT-tagged salmon from the Lostine River were detected at Lower Granite Dam from 31 March through 8 July 1999, with a median passage date of 4 May. Juveniles tagged as they left the upper rearing areas of the Grande Ronde River in fall and that overwintered in areas downstream were detected in the hydrosystem at a higher rate than fish tagged during winter in the upper rearing areas, indicating a higher overwinter survival in the

  2. Monitoring and evaluation plan for the Nez Perce Tribal Hatchery

    Energy Technology Data Exchange (ETDEWEB)

    Steward, C.R.

    1996-08-01

    The Nez Perce Tribe has proposed to build and operate the Nez Perce Tribal Hatchery (NPTH) in the Clearwater River subbasin of Idaho for the purpose of restoring self-sustaining populations of spring, summer, and fall chinook salmon to their native habitats. The project comprises a combination of incubation and rearing facilities, satellite rearing facilities, juvenile and adult collection sites, and associated production and harvest management activities. As currently conceived, the NPTH program will produce approximately 768,000 spring chinook parr, 800,000 summer chinook fry, and 2,000,000 fall chinook fry on an annual basis. Hatchery fish would be spawned, reared, and released under conditions that promote wild-type characteristics, minimize genetic changes in both hatchery and wild chinook populations, and minimize undesirable ecological interactions. The primary objective is to enable hatchery-produced fish to return to reproduce naturally in the streams in which they are released. These and other characteristics of the project are described in further detail in the Nez Perce Tribal Hatchery Master Plan, the 1995 Supplement to the Master Plan, and the Nez Perce Tribal Hatchery Program Environmental Impact Statement. The report in hand is referred to in project literature as the NPTH Monitoring and Evaluation (M&E) Plan. This report describes monitoring and evaluation activities that will help NPTH managers determine whether they were successful in restoring chinook salmon populations and avoiding adverse ecological impacts.

  3. Investigations into the Early Life History of Naturally Spring Chinook Salmon in the Grande Ronde River Basin : Fish Research Project Oregon : Annual Progress Report Project Period 1 September 1997 to 31 August 1998.

    Energy Technology Data Exchange (ETDEWEB)

    Keefe, MaryLouise; Tranquilli, J. Vincent

    1998-01-01

    We determined migration timing and abundance of juvenile spring chinook salmon from three populations in the Grande Ronde River basin. We estimated 6,716 juvenile chinook salmon left upper rearing areas of the Grande Ronde River from July 1997 to June 1998; approximately 6% of the migrants left in summer, 29% in fall, 2% in winter, and 63% in spring. We estimated 8,763 juvenile chinook salmon left upper rearing areas of Catherine Creek from July 1997 to June 1998; approximately 12% of the migrants left in summer, 37% in fall, 21% in winter, and 29% in spring. We estimated 8,859 juvenile chinook salmon left the Grande Ronde Valley, located below the upper rearing areas in Catherine Creek and the Grande Ronde River, from October 1997 to June 1998; approximately 99% of the migrants left in spring. We estimated 15,738 juvenile chinook salmon left upper rearing areas of the Lostine River from July 1997 to April 1998; approximately 3% of the migrants left in summer, 61% in fall, 2% in winter, and 34% in spring. We estimated 22,754 juvenile spring chinook salmon left the Wallowa Valley, located below the mouth of the Lostine River, from September 1997 to April 1998; approximately 55% of the migrants left in fall, 5% in winter, and 40% in spring. Juvenile chinook salmon PIT-tagged on the upper Grande Ronde River were detected at Lower Granite Dam from 4 April to 26 June 1998, with a median passage date of 1 May. PIT-tagged salmon from Catherine Creek were detected at Lower Granite Dam from 3 April to 26 June 1998, with a median passage date of 8 May. PIT-tagged salmon from the Lostine River were detected at Lower Granite Dam from 31 March through 26 May 1998, with a median passage date of 28 April. Juveniles tagged as they left the upper rearing areas of the Grande Ronde and Lostine rivers in fall and that overwintered in areas downstream were detected in the hydrosystem at a higher rate than fish tagged during winter in the upper rearing areas, indicating a higher

  4. Investigations into the Early Life History of Naturally Produced Spring Chinook Salmon and Summer Steelhead in the Grande Ronde River Basin : Annual Report 2000 : Project Period 1 October 1999 to 30 November 2000.

    Energy Technology Data Exchange (ETDEWEB)

    Monzyk, Fred R.

    2002-06-01

    The authors determined migration timing and abundance of juvenile spring chinook salmon Oncorhynchus tshawytscha and juvenile steelhead/rainbow trout O. mykiss from three populations in the Grande Ronde River basin. Based on migration timing and abundance, two distinct life-history strategies of juvenile spring chinook and O.mykiss could be distinguished. An early migrant group left upper rearing areas from July through January with a peak in the fall. A late migrant group descended from upper rearing areas from February through June with a peak in the spring.

  5. Grande Ronde Basin Chinook Salmon Captive Brood and Conventional Supplementation Program, 2000 Annual Report.

    Energy Technology Data Exchange (ETDEWEB)

    Carmichael, Richard W. (Oregon Department of Fish and Wildlife, La Grande, OR)

    2003-03-01

    Endangered Species Permit Number 1011 (formerly Permit No. 973) authorizes ODFW to take listed spring chinook salmon juveniles from Catherine Creek (CC), Lostine River (LR) and Grande Ronde River (GR) for research and enhancement purposes. Modification 2 of this permit authorizes ODFW to take adults for spawning and the production and release of smolts for the Captive and Conventional broodstock programs. This report satisfies the requirement that an annual report be submitted. Herein we report on activities conducted and provide cursory data analyses for the Grande Ronde spring chinook salmon Captive and Conventional broodstock projects from 1 January-31 December 2000.

  6. Grande Ronde Basin Chinook Salmon Captive Brood and Conventional Supplementation Programs, 2001 Annual Report.

    Energy Technology Data Exchange (ETDEWEB)

    Carmichael, Richard W. (Oregon Department of Fish and Wildlife, La Grande, OR)

    2003-03-01

    Endangered Species Permit Number 1011 (formerly Permit No. 973) authorizes ODFW to take listed spring chinook salmon juveniles from Catherine Creek (CC), Lostine River (LR) and Grande Ronde River (GR) for research and enhancement purposes. Modification 2 of this permit authorizes ODFW to take adults for spawning and the production and release of smolts for the Captive and Conventional broodstock programs. This report satisfies the requirement that an annual report be submitted. Herein we report on activities conducted and provide cursory data analyses for the Grande Ronde spring chinook salmon Captive and Conventional broodstock projects from 1 January-31 December 2001.

  7. Captive Rearing Initiative for Salmon River Chinook Salmon, 1999 Progress Report.

    Energy Technology Data Exchange (ETDEWEB)

    Hassemer, Peter F.

    2001-04-01

    During 1999, the Idaho Department of Fish and Game (IDFG) continued developing techniques for the captive rearing of chinook salmon Oncorhynchus tshawytscha. Techniques under development included protocols for rearing juveniles in freshwater and saltwater hatchery environments, and fieldwork to collect brood year 1998 and 1999 juveniles and eggs and to investigate the ability of these fish to spawn naturally. Fish collected as juveniles were held for a short time at the Sawtooth Fish Hatchery and later transferred to the Eagle Fish Hatchery for rearing. Eyed-eggs were transferred immediately to the Eagle Fish Hatchery where they were disinfected and reared by family groups. When fish from either collection method reached approximately 60 mm, they were PIT tagged and reared separately by brood year and source stream. Sixteen different groups were in culture at IDFG facilities in 1999. Hatchery spawning activities of captive-reared chinook salmon produced eyed-eggs for outplanting in streamside incubation chambers in the West Fork Yankee Fork Salmon River (N=2,297) and the East Fork Salmon River (N=1,038). Additionally, a number of these eggs were maintained at the Eagle Fish Hatchery to ensure adequate brood year 1999 representation from these systems, and produced 279 and 87 juveniles from the West Fork Yankee Fork and East Fork Salmon River, respectively. Eyed-eggs were not collected from the West Fork Yankee Fork due to low adult escapement. Brood year 1998 juveniles were collected from the Lemhi River (N=191), West Fork Yankee Fork Salmon River (N=229), and East Fork Salmon River (N=185). Additionally, brood year 1999 eyed-eggs were collected from the Lemhi River (N=264) and East Fork Salmon River (N=143). Sixty-two and seven maturing adults were released into Bear Valley Creek (Lemhi River system) and the East Fork Salmon River, respectively, for spawning evaluation in 1999. Nine female carcasses from Bear Valley Creek were examined for egg retention, and of

  8. Investigations into the early life history of naturally produced spring chinook salmon and summer steelhead in the Grande Ronde River Basin : annual report 2000 : project period 1 October 1999 to 30 November 2000.; ANNUAL

    International Nuclear Information System (INIS)

    Monzyk, Fred R.; United States. Bonneville Power Administration. Environment, Fish and Wildlife.

    2002-01-01

    The authors determined migration timing and abundance of juvenile spring chinook salmon Oncorhynchus tshawytscha and juvenile steelhead/rainbow trout O. mykiss from three populations in the Grande Ronde River basin. Based on migration timing and abundance, two distinct life-history strategies of juvenile spring chinook and O.mykiss could be distinguished. An early migrant group left upper rearing areas from July through January with a peak in the fall. A late migrant group descended from upper rearing areas from February through June with a peak in the spring

  9. Acoustic Telemetry Evaluation of Juvenile Salmonid Passage and Survival at John Day Dam, 2010

    Energy Technology Data Exchange (ETDEWEB)

    Weiland, Mark A.; Woodley, Christa M.; Ploskey, Gene R.; Hughes, James S.; Kim, Jin A.; Deng, Zhiqun; Fu, Tao; Fischer, Eric S.; Skalski, J. R.; Townsend, Richard L.; Duncan, Joanne P.; Hennen, Matthew J.; Wagner, Katie A.; Arntzen, Evan V.; Miller, Benjamin L.; Miracle, Ann L.; Zimmerman, Shon A.; Royer, Ida M.; Khan, Fenton; Cushing, Aaron W.; Etherington, D. J.; Mitchell, T. D.; Elder, T.; Batton, George; Johnson, Gary E.; Carlson, Thomas J.

    2013-05-01

    This report presents survival, behavioral, and fish passage results for yearling and subyearling Chinook salmon smolts and juvenile steelhead tagged with JSATS acoustic micro-transmitters as part of a survival study conducted at John Day Dam during 2010. This study was designed to evaluate the passage and survival of yearling and subyearling Chinook salmon and juvenile steelhead to assist managers in identifying dam operations for compliance testing as stipulated by the 2008 Federal Columbia River Power System Biological Opinion and the 2008 Columbia Basin Fish Accords. Survival estimates were based on a single-release survival estimate model.

  10. Characterization of estuary use by Nisqually Hatchery Chinook based on Otolith analysis

    Science.gov (United States)

    Lind-Null, Angie M.; Larsen, Kim A.; Reisenbichler, Reg

    2008-01-01

    INTRODUCTION The Nisqually Fall Chinook population is one of 27 stocks in the Puget Sound evolutionarily significant unit listed as threatened under the federal Endangered Species Act (ESA). Preservation and extensive restoration of the Nisqually delta ecosystem are planned to assist in recovery of the stock. A pre-restoration baseline including life history types, estuary residence time, growth rates, and habitat use are needed to evaluate the potential response of hatchery and wild Chinook salmon to restoration. Otolith analysis has been selected as a means to examine Chinook salmon life history, growth, and residence in the Nisqually estuary. Over time, the information from the otolith analyses will be used to: 1) determine if estuary restoration actions cause changes to the population structure (i.e. frequency of the different life history trajectories) for Nisqually River Chinook, 2) compare pre- and post- restoration residence times and growth rates, 3) suggest whether estuary restoration yields substantial benefits for Chinook salmon through (1) and (2), and 4) compare differences in habitat use between hatchery and wild Chinook to further protect ESA listed stock. Otoliths are calcium carbonate structures in the inner ear that grow in proportion to the overall growth of the fish. Daily growth increments can be measured so date and fish size at various habitat transitions can be back-calculated. Careful analysis of otolith microstructure can be used to determine the number of days that a fish resided in the estuary as a juvenile (increment counts), size at entrance to the estuary, size at egress, and the amount that the fish grew while in the estuary. Juvenile hatchery Chinook salmon are generally released as smolts that move quickly through the delta with much shorter residence times than for many wild fish and are not dependent on the delta as nursery habitat (Myers and Horton 1982; Mace 1983; Levings et al. 1986). The purpose of this study is to use and

  11. Grande Ronde Basin Chinook Salmon Captive Brood and Conventional Supplementation Programs, 1998 Annual Report.

    Energy Technology Data Exchange (ETDEWEB)

    Carmichael, Richard W. (Oregon Department of Fish and Wildlife, La Grande, OR)

    2003-03-01

    Permit Number 1011 (formerly Permit No. 973) authorized ODFW to take listed spring chinook salmon juveniles from Catherine Creek and the Lostine and Grande Ronde rivers for scientific research and enhancement purposes. Special condition 2a specified the need for an annual report prior to initiation of next years work.

  12. Trapping and transportation of adult and juvenile salmon in the lower Umatilla River in northeast Oregon, 1996-1997. Umatilla River Basin Trap and Haul Program. Annual progress report, October 1996 - September 1997

    International Nuclear Information System (INIS)

    Zimmerman, B.; Duke, B.B.

    1997-09-01

    Threemile Falls Dam (Threemile Dam), located near the town of Umatilla, is the major collection and counting point for adult salmonids returning to the Umatilla River. Returning salmon and steelhead were collected at Threemile Dam from August 30, 1996 to August 26, 1997. A total of 2,477 summer steelhead (Oncorhynchus mykiss); 646 adult, 80 jack, and 606 subjack fall chinook (O. tshawytscha); 618 adult and 24 jack coho (O. kisutch); and 2,194 adult and four jack spring chinook (O. tshawytscha) were collected. All fish were trapped at the east bank facility. Of the fish collected, 22 summer steelhead; 18 adult and two jack fall chinook; five adult coho; and 407 adult and three jack spring chinook were hauled upstream from Threemile Dam. There were 2,245 summer steelhead; 70 adult, 51 jack and 520 subjack fall chinook; 593 adult and 24 jack coho; and 1,130 adult spring chinook released at Threemile Dam I In addition, 110 summer steelhead; 551 adult and 25 jack fall chinook; and 600 adult spring chinook were collected for broodstock. The Westland Canal juvenile facility (Westland), located near the town of Echo at rivermile (RM) 27, is the major collection point for outmigrating juvenile salmonids and steelhead kelts, The canal was open for a total of 210 days between December 16, 1996 and July 30, 1997. During that period, fish were bypassed back to the river 175 days and were trapped on 35 days, An estimated 1,675 pounds of juvenile fish were transported from Westland to the Umatilla River boat ramp (RM 0.5), Approximately 80% of the juveniles transported were salmonids, No steelhead kelts were hauled from Westland this year. The Threemile Dam west bank juvenile bypass was operated from October 4 to November 1, 1996 and from March 26 to July 7, 1997. The juvenile trap was not operated this year. 6 refs., 6 figs., 6 tabs

  13. Umatilla Hatchery Monitoring and Evaluation, 1999-2002 Annual Report.

    Energy Technology Data Exchange (ETDEWEB)

    Chess, Dale W.; Cameron, William A.; Stonecypher, Jr., R. Wes (Oregon Department of Fish and Wildlife, Salem, OR)

    2003-12-01

    REPORT A: UMATILLA HATCHERY MONITORING AND EVALUATION--This report summarizes monitoring and evaluation studies of salmonids reared at Umatilla Fish Hatchery (UFH) for 1 November, 1999 to 31 October, 2002. Studies at UFH are designed to evaluate rearing of chinook salmon and steelhead in ''Michigan raceways''. Characteristics of Michigan raceways include high fish densities, rapid water turnover, oxygen supplementation, reuse of water, and baffles designed to reduce cleaning. Fish health at UFH and other facilities associated with the Umatilla program are intensively monitored and evaluated along with the overall research project. Further, under the Integrated Hatchery Operations Team guidelines, specific requirements for fish health monitoring at UFH are mandatory. An experiment designed to evaluate rearing subyearling fall chinook salmon in Michigan and Oregon raceways has been completed. An evaluation of survival of subyearling fall chinook salmon reared at three densities will be completed with final returns in 2005. Two new evaluations were started during this reporting period. The first is an evaluation of spring chinook survival of groups transferred to Imeques acclimation facility in the fall, overwinter-acclimated and released with the standard acclimated production groups in March. The second is an evaluation of subyearling fall chinook survival and straying of a direct-stream released group in the lower Umatilla River and the standard group acclimated at Thornhollow acclimation facility in the upper Umatilla River. An important aspect of the project is evaluation of the spring chinook and summer steelhead fisheries in the upper and lower Umatilla River. REPORT B: Fish Health Monitoring and Evaluation, 2000 Fiscal Year--The results presented in this report are from the ninth year of Fish Health Monitoring and Evaluation in the Umatilla Hatchery program. Broodstock monitoring for hatchery production was conducted on adult returns to the

  14. A multi-year analysis of spillway survival for juvenile salmonids as a function of spill bay operations at McNary Dam, Washington and Oregon, 2004-09

    Science.gov (United States)

    Adams, Noah S.; Hansel, Hal C.; Perry, Russell W.; Evans, Scott D.

    2012-01-01

    We analyzed 6 years (2004-09) of passage and survival data collected at McNary Dam to examine how spill bay operations affect survival of juvenile salmonids passing through the spillway at McNary Dam. We also examined the relations between spill bay operations and survival through the juvenile fish bypass in an attempt to determine if survival through the bypass is influenced by spill bay operations. We used a Cormack-Jolly-Seber release-recapture model (CJS model) to determine how the survival of juvenile salmonids passing through McNary Dam relates to spill bay operations. Results of these analyses, while not designed to yield predictive models, can be used to help develop dam-operation strategies that optimize juvenile salmonid survival. For example, increasing total discharge typically had a positive effect on both spillway and bypass survival for all species except sockeye salmon (Oncorhynchus nerka). Likewise, an increase in spill bay discharge improved spillway survival for yearling Chinook salmon (Oncorhynchus tshawytscha), and an increase in spillway discharge positively affected spillway survival for juvenile steelhead (Oncorhynchus mykiss). The strong linear relation between increased spill and increased survival indicates that increasing the amount of water through the spillway is one strategy that could be used to improve spillway survival for yearling Chinook salmon and juvenile steelhead. However, increased spill did not improve spillway survival for subyearling Chinook salmon and sockeye salmon. Our results indicate that a uniform spill pattern would provide the highest spillway survival and bypass survival for subyearling Chinook salmon. Conversely, a predominantly south spill pattern provided the highest spillway survival for yearling Chinook salmon and juvenile steelhead. Although spill pattern was not a factor for spillway survival of sockeye salmon, spill bay operations that optimize passage through the north and south spill bays maximized

  15. Captive Rearing Initiative for Salmon River Chinook Salmon, 1998-1999 Progress Report.

    Energy Technology Data Exchange (ETDEWEB)

    Hassemer, Peter F.

    2001-04-01

    During 1999, the Idaho Department of Fish and Game (IDFG) continued developing techniques for the captive rearing of chinook salmon Oncorhynchus tshawytscha. Techniques under development included protocols for rearing juveniles in freshwater and saltwater hatchery environments, and fieldwork to collect brood year 1998 and 1999 juveniles and eggs and to investigate the ability of these fish to spawn naturally. Fish collected as juveniles were held for a short time at the Sawtooth Fish Hatchery and later transferred to the Eagle Fish Hatchery for rearing. Eyed-eggs were transferred immediately to the Eagle Fish Hatchery where they were disinfected and reared by family groups. When fish from either collection method reached approximately 60 mm, they were PIT tagged and reared separately by brood year and source stream. Sixteen different groups were in culture at IDFG facilities in 1999. Hatchery spawning activities of captive-reared chinook salmon produced eyed-eggs for outplanting in streamside incubation chambers in the West Fork Yankee Fork Salmon River (N=2,297) and the East Fork Salmon River (N=1,038). Additionally, a number of these eggs were maintained at the Eagle Fish Hatchery to ensure adequate brood year 1999 representation from these systems, and produced 279 and 87 juveniles from the West Fork Yankee Fork and East Fork Salmon River, respectively. Eyed-eggs were not collected from the West Fork Yankee Fork due to low adult escapement. Brood year 1998 juveniles were collected from the Lemhi River (N=191), West Fork Yankee Fork Salmon River (N=229), and East Fork Salmon River (N=185). Additionally, brood year 1999 eyed-eggs were collected from the Lemhi River (N=264) and East Fork Salmon River (N=143). Sixty-two and seven maturing adults were released into Bear Valley Creek (Lemhi River system) and the East Fork Salmon River, respectively, for spawning evaluation in 1999. Nine female carcasses from Bear Valley Creek were examined for egg retention, and of

  16. Re-estimating temperature-dependent consumption parameters in bioenergetics models for juvenile Chinook salmon

    Science.gov (United States)

    Plumb, John M.; Moffitt, Christine M.

    2015-01-01

    Researchers have cautioned against the borrowing of consumption and growth parameters from other species and life stages in bioenergetics growth models. In particular, the function that dictates temperature dependence in maximum consumption (Cmax) within the Wisconsin bioenergetics model for Chinook Salmon Oncorhynchus tshawytscha produces estimates that are lower than those measured in published laboratory feeding trials. We used published and unpublished data from laboratory feeding trials with subyearling Chinook Salmon from three stocks (Snake, Nechako, and Big Qualicum rivers) to estimate and adjust the model parameters for temperature dependence in Cmax. The data included growth measures in fish ranging from 1.5 to 7.2 g that were held at temperatures from 14°C to 26°C. Parameters for temperature dependence in Cmax were estimated based on relative differences in food consumption, and bootstrapping techniques were then used to estimate the error about the parameters. We found that at temperatures between 17°C and 25°C, the current parameter values did not match the observed data, indicating that Cmax should be shifted by about 4°C relative to the current implementation under the bioenergetics model. We conclude that the adjusted parameters for Cmax should produce more accurate predictions from the bioenergetics model for subyearling Chinook Salmon.

  17. Grande Ronde Basin Chinook Salmon Captive Brood and Conventional Supplementation Programs, 1999 Annual Report.

    Energy Technology Data Exchange (ETDEWEB)

    Carmichael, Richard W. (Oregon Department of Fish And Wildlife, La Grande, OR)

    2003-03-01

    Permit Number 1011 (formerly Permit No. 973) authorized ODFW to take listed spring chinook salmon juveniles from Catherine Creek and the Lostine and Grande Ronde rivers for scientific research and enhancement purposes. Special condition 2a specified the need for an annual report prior to initiation of next year's work.

  18. Minthorn Springs Creek summer juvenile release and adult collection facility: Annual report 1992; ANNUAL

    International Nuclear Information System (INIS)

    Rowan, Gerald D.

    1993-01-01

    The Confederated Tribes of the Umatilla Indian Reservation (CT'UIR) and Oregon Department of Fish and Wildlife (ODFW) are cooperating in a joint effort to supplement steelhead and re-establish salmon runs in the Umatilla River Basin. As an integral part of this program, Bonifer and Minthorn Acclimation Facilities are operated for holding and spawning adult steelhead and fall chinook salmon and acclimation and release of juvenile salmon and steelhead. Acclimation of 109,101 spring chinook salmon and 19,977 summer steelhead was completed at Bonifer in the spring of 1992. At Minthorn, 47,458 summer steelhead were acclimated and released. Control groups of spring chinook salmon were released instream concurrent with the acclimated releases to evaluate the effects of acclimation on adult returns to the Umatilla River. Acclimation studies with summer steelhead were not conducted in 1992. A total of 237 unmarked adult steelhead were collected for broodstock at Three Mile Dam from October 18, 1991 through April 24, 1992 and held at Minthorn. Utilizing a 3 x 3 spawning matrix, a total of 476,871 green eggs were taken from 86 females. The eggs were transferred to Umatilla Hatchery for incubation, rearing, and later release into the Umatilla River. A total of 211 fall chinook salmon were also collected for broodstock at Three Mile Dam and held at Minthorn. Using a 1:1 spawning ratio, a total of 195,637 green eggs were taken from 58 females. They were also transferred to Umatilla Hatchery for incubation, rearing, and later release into the Umatilla River. Personnel from the ODFW Eastern Oregon Fish Pathology Laboratory in La Grande took samples of tissues and reproductive fluids from Umatilla River summer steelhead and fall chinook salmon broodstock for monitoring and evaluation purposes. Cell culture assays for replicating agents, including IHNV virus, on all spawned fish were negative. One of 60 summer steelhead tested positive for EIBS virus, while all fall chinook tested

  19. Monitoring and Evaluation Plan for the Nez Perce Tribal Hatchery, 1996 Technical Report.

    Energy Technology Data Exchange (ETDEWEB)

    Steward, Cleveland R.

    1996-08-01

    The Nez Perce Tribe has proposed to build and operate the Nez Perce Tribal Hatchery (NPTH) in the Clearwater River subbasin of Idaho for the purpose of restoring self-sustaining populations of spring, summer, and fall chinook salmon to their native habitats. The project comprises a combination of incubation and rearing facilities, satellite rearing facilities, juvenile and adult collection sites, and associated production and harvest management activities. As currently conceived, the NPTH program will produce approximately 768,000 spring chinook parr, 800,000 summer chinook fry, and 2,000,000 fall chinook fry on an annual basis. Hatchery fish would be spawned, reared, and released under conditions that promote wild-type characteristics, minimize genetic changes in both hatchery and wild chinook populations, and minimize undesirable ecological interactions. The primary objective is to enable hatchery-produced fish to return to reproduce naturally in the streams in which they are released. These and other characteristics of the project are described in further detail in the Nez Perce Tribal Hatchery Master Plan (Larson and Mobrand 1992), the 1995 Supplement to the Master Plan (Johnson et al. 1995), and the Nez Perce Tribal Hatchery Program Environmental Impact Statement (Bonneville Power Administration et al. 1996). The report in hand is referred to in project literature as the NPTH Monitoring and Evaluation (M&E) Plan. This report describes monitoring and evaluation activities that will help NPTH managers determine. whether they were successful in restoring chinook salmon populations and avoiding adverse ecological impacts. Program success will be gauged primarily by changes in the abundance and distribution of supplemented chinook populations. The evaluation of project-related impacts will focus on the biological effects of constructing and operating NPTH hatchery facilities, introducing hatchery fish into the natural environment, and removing or displacing wild

  20. Chinook Salmon Adult Abundance Monitoring in Lake Creek, Idaho, 2002 Annual Report.

    Energy Technology Data Exchange (ETDEWEB)

    Faurot, Dave; Kucera, Paul

    2003-11-01

    Underwater time- lapse video technology has been used to monitor adult spring and summer chinook salmon (Oncorhynchus tshawytscha) escapement into the Secesh River and Lake Creek, Idaho, since 1998. Underwater time-lapse videography is a passive methodology that does not trap or handle this Endangered Species Act listed species. Secesh River chinook salmon represent a wild spawning aggregate that has not been directly supplemented with hatchery fish. The Secesh River is also a control stream under the Idaho Salmon Supplementation study. This project has successfully demonstrated the application of underwater video monitoring to accurately quantify chinook salmon abundance in Lake Creek in 1998, 1999, 2001 and 2002. The adult salmon spawner escapement into Lake Creek in 2002 was 410 fish. Jack salmon comprised 7.1 percent of the run. Estimated hatchery composition was 6.1 percent of the spawning run. The first fish passage on Lake Creek was recorded on June 26, 15 days after installation of the fish counting station. Peak net upstream movement of 41 adults occurred on July 8. Peak of total movement activity was August 18. The last fish passed through the Lake Creek fish counting station on September 2. Snow pack in the drainage was 91% of the average during the winter of 2001/2002. Video determined salmon spawner abundance was compared to redd count expansion method point estimates in Lake Creek in 2002. Expanded index area redd count and extensive area redd count point estimates in 2002, estimated from one percent fewer to 56 percent greater number of spawners than underwater video determined spawner abundance. Redd count expansion methods varied from two percent fewer to 55 percent greater in 2001, 11 to 46 percent fewer in 1999 and 104 to 214 percent greater in 1998. Redd count expansion values had unknown variation associated with the point estimates. Fish per redd numbers determined by video abundance and multiple pass redd counts of the larger extensive survey

  1. Spring Chinook Supplementation Monitoring; Yakima Fisheries Project Management Plan, 1996 Technical Report.

    Energy Technology Data Exchange (ETDEWEB)

    Busack, Craig A. (Washington Department of Fish and Wildlife, Olympia, WA); Watson, Bruce; Johnston, Mark (Confederated Tribes and Bands of the Yakama Nation, Fisheries Resource Management, Toppenish, WA)

    1997-08-01

    The Yakima Fisheries Project (YFP), a key element in the Northwest Power Planning Council's Fish and Wildlife Program, has been in planning for more than ten years. It was initially conceived as, and is still intended to be, a multipurpose project. Besides increasing fish production in the Yakima basin, it is also intended to yield information about supplementation that will be of value to the entire Columbia basin, and hopefully the entire region. Because of this expectation of increased knowledge resulting from the project, a large and comprehensive monitoring program has always been seen as an integral part of the project. Despite the importance of monitoring to the project, monitoring planning has been slow to develop. The only general written statement of monitoring planning for the project is Chapter 9 of the current Project Status Report (PSR), written in 1993. That document is a reasonably good overview, and presents some important basic principles of monitoring, but is decidedly lacking in specifics. Throughout 1996 the Monitoring Implementation and Planning Team (MIPT), an interdisciplinary group of biologists who have worked on the project for several years, worked to develop a comprehensive spring chinook monitoring plan for the project. The result is the present document.

  2. Hydraulic Characteristics of the Lower Snake River during Periods of Juvenile Fall Chinook Salmon Migration, 2002-2006 Final Report.

    Energy Technology Data Exchange (ETDEWEB)

    Cook, C.; Dibrani, B.; Richmond, M.; Bleich, M.; Titzler, P..; Fu, T. [Pacific Northwest National Laboratory

    2006-01-01

    This report documents a four-year study to assess hydraulic conditions in the lower Snake River. The work was conducted for the Bonneville Power Administration, U.S. Department of Energy, by the Pacific Northwest National Laboratory. Cold water released from the Dworshak Reservoir hypolimnion during mid- to late-summer months cools the Clearwater River far below equilibrium temperature. The volume of released cold water augments the Clearwater River, and the combined total discharge is on the order of the Snake River discharge when the two rivers meet at their confluence near the upstream edge of Lower Granite Reservoir. With typical temperature differences between the Clearwater and Snake rivers of 10 C or more during July and August, the density difference between the two rivers during summer flow augmentation periods is sufficient to stratify Lower Granite Reservoir as well as the other three reservoirs downstream. Because cooling of the river is desirable for migrating juvenile fall Chinook salmon (Oncorhynchus tshawytscha) during this same time period, the amount of mixing and cold water entrained into Lower Granite Reservoir's epilimnion at the Clearwater/Snake River confluence is of key biological importance. Data collected during this project indicates the three reservoirs downstream of Lower Granite also stratify as direct result of flow augmentation from Dworshak Reservoir. These four reservoirs are also heavily influenced by wind forcing at the water's surface and during periods of low river discharge often behave like a two-layer lake. During these periods of stratification, lower river discharge, and wind forcing, the water in the upper layer of the reservoir is held in place or moves slightly upstream. This upper layer is also exposed to surface heating and may warm up to temperatures close to equilibrium temperature. The thickness (depth) of this upper warm layer and its direction of travel may be of key biological importance to juvenile

  3. The effect of rapid and sustained decompression on barotrauma in juvenile brook lamprey and Pacific lamprey: implications for passage at hydroelectric facilities

    Energy Technology Data Exchange (ETDEWEB)

    Colotelo, Alison HA; Pflugrath, Brett D.; Brown, Richard S.; Brauner, Colin J.; Mueller, Robert P.; Carlson, Thomas J.; Deng, Zhiqun; Ahmann, Martin L.; Trumbo, Bradly A.

    2012-10-01

    Fish passing downstream through hydroelectric facilities may pass through hydroturbines where they experience a rapid decrease in barometric pressure as they pass by turbine blades, which can lead to barotraumas including swim bladder rupture, exopthalmia, emboli, and hemorrhaging. In juvenile Chinook salmon, the main mechanism for injury is thought to be expansion of existing gases (particularly those present in the swim bladder) and the rupture of the swim bladder ultimately leading to exopthalmia, emboli and hemorrhaging. In fish that lack a swim bladder, such as lamprey, the rate and severity of barotraumas due to rapid decompression may be reduced however; this has yet to be extensively studied. Another mechanism for barotrauma can be gases coming out of solution and the rate of this occurrence may vary among species. In this study, juvenile brook and Pacific lamprey acclimated to 146.2 kPa (equivalent to a depth of 4.6 m) were subjected to rapid (<1 sec; brook lamprey only) or sustained decompression (17 minutes) to a very low pressure (13.8 kPa) using a protocol previously applied to juvenile Chinook salmon. No mortality or evidence of barotraumas, as indicated by the presence of hemorrhages, emboli or exopthalmia, were observed during rapid or sustained decompression, nor following recovery for up to 120 h following sustained decompression. In contrast, mortality or injury would be expected for 97.5% of juvenile Chinook salmon exposed to a similar rapid decompression to these very low pressures. Additionally, juvenile Chinook salmon experiencing sustained decompression died within 7 minutes, accompanied by emboli in the fins and gills and hemorrhaging in the tissues. Thus, juvenile lamprey may not be susceptible to barotraumas associated with hydroturbine passage to the same degree as juvenile salmonids, and management of these species should be tailored to their specific morphological and physiological characteristics.

  4. Pre-Restoration Habitat Use by Chinook Salmon in the Nisqually Estuary Using Otolith Analysis

    Science.gov (United States)

    Lind-Null, Angela; Larsen, Kimberly; Reisenbichler, Reginald

    2007-01-01

    INTRODUCTION The Nisqually Fall Chinook population is one of 27 stocks in the Puget Sound evolutionarily significant unit listed as threatened under the federal Endangered Species Act. The preservation of the Nisqually delta ecosystem coupled with extensive restoration of approximately 1,000 acres of diked estuarine habitat is identified as the highest priority action for the recovery of naturally spawning Nisqually River Fall Chinook salmon (Oncorhynchus tshawytscha) in the Nisqually Chinook Recovery Plan. In order to evaluate the response of Chinook salmon to restoration, a pre-restoration baseline of life history diversity and estuary utilization must be established. Otolith analysis has been proposed as a means to measure Chinook salmon life history diversity, growth, and residence in the Nisqually estuary. Over time, the information from the otolith analyses will be used to: (1) determine if estuary restoration actions cause changes to the population structure (i.e. frequency of the different life history trajectories) for Nisqually River Chinook, (2) compare pre and post restoration residence times and growth rates, and (3) suggest whether estuary restoration yields substantial benefits for Chinook salmon. Otoliths are calcium carbonate structures in the inner ear that grow in proportion to the overall growth of the fish. Daily growth increments can be measured so date and fish size at various habitat transitions can be back-calculated. Careful analysis of otolith microstructure can be used to determine the number of days that a fish resided in the estuary as a juvenile (increment counts), size at entrance to the estuary, size at egress, and the amount that the fish grew while in the estuary. Juvenile Chinook salmon can exhibit a variety of life history trajectories ? some enter the sea (or Puget Sound) as fry, some rear in the estuary before entering the sea, and some rear in the river and then move rapidly through the estuary into the sea as smolts. The

  5. Effects of hyporheic exchange flows on egg pocket water temperature in Snake River fall Chinook salmon spawning areas

    Energy Technology Data Exchange (ETDEWEB)

    Hanrahan, T. P. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Geist, D. R. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Arntzen, E. V. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Abernethy, C. S. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States)

    2004-09-01

    The development of the Snake River hydroelectric system has affected fall Chinook salmon smolts by shifting their migration timing to a period (mid- to late-summer) when downstream reservoir conditions are unfavorable for survival. Subsequent to the Snake River Chinook salmon fall-run Evolutionary Significant Unit being listed as Threatened under the Endangered Species Act, recovery planning has included changes in hydrosystem operations (e.g., summer flow augmentation) to improve water temperature and flow conditions during the juvenile Chinook salmon summer migration period. In light of the limited water supplies from the Dworshak reservoir for summer flow augmentation, and the associated uncertainties regarding benefits to migrating fall Chinook salmon smolts, additional approaches for improved smolt survival need to be evaluated. This report describes research conducted by the Pacific Northwest National Laboratory (PNNL) that evaluated relationships among river discharge, hyporheic zone characteristics, and egg pocket water temperature in Snake River fall Chinook salmon spawning areas. This was a pilot-scale study to evaluate these relationships under existing operations of Hells Canyon Dam (i.e., without any prescribed manipulations of river discharge) during the 2002–2003 water year.

  6. Brood Year 2004: Johnson Creek Chinook Salmon Supplementation Report, June 2004 through March 2006.

    Energy Technology Data Exchange (ETDEWEB)

    Gebhards, John S.; Hill, Robert; Daniel, Mitch [Nez Perce Tribe

    2009-02-19

    The Nez Perce Tribe, through funding provided by the Bonneville Power Administration, has implemented a small scale chinook salmon supplementation program on Johnson Creek, a tributary in the South Fork of the Salmon River, Idaho. The Johnson Creek Artificial Propagation Enhancement project was established to enhance the number of threatened Snake River spring/summer chinook salmon (Oncorhynchus tshawytscha) returning to Johnson Creek to spawn through artificial propagation. This was the sixth season of adult chinook broodstock collection in Johnson Creek following collections in 1998, 2000, 2001, 2002, and 2003. Weir installation was completed on June 21, 2004 with the first chinook captured on June 22, 2004 and the last fish captured on September 6, 2004. The weir was removed on September 18, 2004. A total of 338 adult chinook, including jacks, were captured during the season. Of these, 211 were of natural origin, 111 were hatchery origin Johnson Creek supplementation fish, and 16 were adipose fin clipped fish from other hatchery operations and therefore strays into Johnson Creek. Over the course of the run, 57 natural origin Johnson Creek adult chinook were retained for broodstock, transported to the South Fork Salmon River adult holding and spawning facility and held until spawned. The remaining natural origin Johnson Creek fish along with all the Johnson Creek supplementation fish were released upstream of the weir to spawn naturally. Twenty-seven Johnson Creek females were artificially spawned with 25 Johnson Creek males. Four females were diagnosed with high bacterial kidney disease levels resulting in their eggs being culled. The 27 females produced 116,598 green eggs, 16,531 green eggs were culled, with an average eye-up rate of 90.6% resulting in 90,647 eyed eggs. Juvenile fish were reared indoors at the McCall Fish Hatchery until November 2005 and then transferred to the outdoor rearing facilities during the Visual Implant Elastomer tagging operation

  7. Three-dimensional migration behavior of juvenile salmonids in reservoirs and near dams

    OpenAIRE

    Li, Xinya; Deng, Zhiqun D.; Fu, Tao; Brown, Richard S.; Martinez, Jayson J.; McMichael, Geoffrey A.; Trumbo, Bradly A.; Ahmann, Martin L.; Renholds, Jon F.; Skalski, John R.; Townsend, Richard L.

    2018-01-01

    To acquire 3-D tracking data on juvenile salmonids, Juvenile Salmon Acoustic Telemetry System (JSATS) cabled hydrophone arrays were deployed in the forebays of two dams on the Snake River and at a mid-reach reservoir between the dams. The depth distributions of fish were estimated by statistical analyses performed on large 3-D tracking data sets from ~33,500 individual acoustic tagged yearling and subyearling Chinook salmon and juvenile steelhead at the two dams in 2012 and subyearling Chinoo...

  8. Escapement monitoring of adult chinook salmon in the Secesh River and Lake Creek, Idaho, 1999; ANNUAL

    International Nuclear Information System (INIS)

    Faurot, Dave; Kucera, Paul A.

    2001-01-01

    Underwater time-lapse video technology was used to monitor adult spring and summer chinook salmon abundance in spawning areas in Lake Creek and the Secesh River, Idaho, in 1999. This technique is a passive methodology that does not trap or handle this Endangered Species Act listed species. This was the third year of testing the remote application of this methodology in the Secesh River drainage. Secesh River chinook salmon represent a wild salmon spawning aggregate that has not been directly supplemented with hatchery fish. Adult chinook salmon spawner abundance was estimated in Lake Creek with the remote time-lapse video application. Adult spawner escapement into Lake Creek in 1999 was 67 salmon. Significant upstream and downstream spawner movement affected the ability to determine the number of fish that contributed to the spawning population. The first passage on Lake Creek was recorded on July 11, two days after installation of the fish counting station. Peak net upstream adult movement occurred at the Lake Creek site on July 20, peak of total movement activity was August 19 with the last fish observed on August 26. A minimum of 133 adult chinook salmon migrated upstream past the Secesh River fish counting station to spawning areas in the Secesh River drainage. The first upstream migrating adult chinook salmon passed the Secesh River site prior to the July 15 installation of the fish counting station. Peak net upstream adult movement at the Secesh River site occurred July 19, peak of total movement was August 15, 17 and 18 and the last fish passed on September 10. Migrating salmon in the Secesh River and Lake Creek exhibited two behaviorally distinct segments of fish movement. Mainly upstream only, movement characterized the first segment. The second segment consisted of upstream and downstream movement with very little net upstream movement. Estimated abundance was compared to single and multiple-pass redd count surveys within the drainage. There were

  9. Streamflow effects on spawning, rearing, and outmigration of fall-run chinook salmon (Oncorhynchus tshawytscha) predicted by a spatial and individual-based model

    International Nuclear Information System (INIS)

    Jager, H.I.; Sale, M.J.; Cardwell, H.E.; Deangelis, D.L.; Bevelhimer, M.J.; Coutant, C.C.

    1994-01-01

    The thread posed to Pacific salmon by competing water demands is a great concern to regulators of the hydropower industry. Finding the balance between fish resource and economic objectives depends on our ability to quantify flow effects on salmon production. Because field experiments are impractical, simulation models are needed to predict the effects of minimum flows on chinook salmon during their freshwater residence. We have developed a model to simulate the survival and development of eggs and alevins in redds and the growth, survival, and movement of juvenile chinook in response to local stream conditions (flow, temperature, chinook and predator density). Model results suggest that smolt production during dry years can be increased by raising spring minimum flows

  10. Chinook Bycatch - Contemporary Salmon Genetic Stock Composition Estimates

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The purpose of this project is to measure and monitor impacts on ESA-listed populations and to estimate overall Chinook salmon stock composition in bycatch...

  11. Identification of the Spawning, Rearing, and Migratory Requirements of Fall Chinook Salmon in the Columbia River Basin, Annual Report 1993.

    Energy Technology Data Exchange (ETDEWEB)

    Rondorf, Dennis W.; Tiffan, Kenneth F.

    1994-12-01

    Recovery efforts for the endangered fall chinook salmon necessitates knowledge of the factors limiting the various life history stages. This study attempts to identify those physical and biological factors which affect spawning of the fish in the free-flowing Snake River and their rearing seward migration through Columbia River basin reservoirs. The spawning was generally a November event in 1993, with some activity in late Oct. and early Dec. Spawning habitat availability was assessed by applying hydraulic and habitat models to known fall chinook salmon spawning sites. Juveniles were seined and PIT tagged in the free-flowing Snake River, and in the Columbia River in he Hanford Reach and in McNary Reservoir. Subyearling fish were marked at McNary Dam to relate river flow and migration patterns of juveniles to adult returns. Hydroacoustic surveys were conducted on McNary and John Day reservoirs and in net pens.

  12. Monitoring of Juvenile Yearling Chinook Salmon and Steelhead Survival and Passage at John Day Dam, Spring 2010

    Energy Technology Data Exchange (ETDEWEB)

    Weiland, Mark A.; Ploskey, Gene R.; Hughes, James S.; Woodley, Christa M.; Deng, Zhiqun; Carlson, Thomas J.; Skalski, J. R.; Townsend, Richard L.

    2012-11-15

    The purpose of this study was to compare dam passage survival, at two spill treatment levels, of yearling Chinook salmon and steelhead smolts at John Day Dam during spring 2010. The two treatments were 30% and 40% spill out of total project discharge. Under the 2008 Federal Columbia River Power System (FCRPS) Biological Opinion (BiOp), dam passage survival should be greater than or equal to 0.96 and estimated with a standard error (SE) less than or equal 0.015. The study also estimated forebay residence time, tailrace egress time, and spill passage efficiency (SPE), as required in the Columbia Basin Fish Accords. However, by agreement among the stakeholders, this study was not an official BiOp compliance test because the long-term passage measures at John Day Dam have yet to be finalized and another year of spill-treatment testing was desired.

  13. Effect of commercially available egg cures on the survival of juvenile salmonids.

    Directory of Open Access Journals (Sweden)

    Shaun Clements

    Full Text Available There is some concern that incidental consumption of eggs cured with commercially available cures for the purpose of sport fishing causes mortality in juvenile salmon. We evaluated this by feeding juvenile spring Chinook (Oncorhynchus tshawytscha and steelhead (O. mykiss with eggs cured with one of five commercially available cures. We observed significant levels of mortality in both pre-smolts and smolts. Depending on the experiment, 2, 3, or 4 of the cures were associated with mortality. Mortality tended to be higher in the smolts than in the parr, but there was no clear species effect. The majority of mortality occurred within the first 10 d of feeding. Removal of sodium sulfite from the cure significantly reduced the level of mortality. Soaking the eggs prior to feeding did not reduce mortality. We observed a clear relationship between the amount of cured egg consumed each day and the survival time. We conclude that consumption of eggs cured with sodium sulfite has the potential to cause mortality in juvenile steelhead and Chinook salmon in the wild.

  14. Effect of commercially available egg cures on the survival of juvenile salmonids

    Science.gov (United States)

    Clements, S.; Chitwood, R.; Schreck, C.B.

    2011-01-01

    There is some concern that incidental consumption of eggs cured with commercially available cures for the purpose of sport fishing causes mortality in juvenile salmon. We evaluated this by feeding juvenile spring Chinook (Oncorhynchus tshawytscha) and steelhead (O. mykiss) with eggs cured with one of five commercially available cures. We observed significant levels of mortality in both pre-smolts and smolts. Depending on the experiment, 2, 3, or 4 of the cures were associated with mortality. Mortality tended to be higher in the smolts than in the parr, but there was no clear species effect. The majority of mortality occurred within the first 10 d of feeding. Removal of sodium sulfite from the cure significantly reduced the level of mortality. Soaking the eggs prior to feeding did not reduce mortality. We observed a clear relationship between the amount of cured egg consumed each day and the survival time. We conclude that consumption of eggs cured with sodium sulfite has the potential to cause mortality in juvenile steelhead and Chinook salmon in the wild.

  15. Physiological Stress Responses to Prolonged Exposure to MS-222 and Surgical Implantation in Juvenile Chinook Salmon

    Energy Technology Data Exchange (ETDEWEB)

    Wagner, Katie A. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Woodley, Christa M. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Seaburg, Adam [Univ. of Washington, Seattle, WA (United States); Skalski, John R. [Univ. of Washington, Seattle, WA (United States); Eppard, Matthew B. [U.S. Army Corps of Engineers, Portland, OR (United States)

    2014-07-17

    While many studies have investigated the effects of transmitters on fish condition, behavior, and survival, to our knowledge, no studies have taken into account anesthetic exposure time in addition to tag and surgery effects. We investigated stress responses to prolonged MS-222 exposure after stage 4 induction in surgically implanted juvenile Chinook salmon (Oncorhynchus tshawytscha). Survival, tag loss, plasma cortisol concentration, and blood Na+, K+, Ca2+, and pH were measured immediately following anesthetic exposure and surgical implantation and 1, 7, and 14 days post-treatment. Despite the prolonged anesthetic exposure, 3-15 minutes post Stage 4 induction, there were no mortalities or tag loss in any treatment. MS-222 was effective at delaying immediate cortisol release during surgical implantation; however, osmotic disturbances resulted, which were more pronounced in longer anesthetic time exposures. From day 1 to day 14, Na+, Ca2+, and pH significantly decreased, while cortisol significantly increased. The cortisol increase was exacerbated by surgical implantation. There was a significant interaction between MS-222 time exposure and observation day for Na+, Ca2+, K+, and pH; variations were seen in the longer time exposures, although not consistently. In conclusion, stress response patterns suggest stress associated with surgical implantation is amplified with increased exposure to MS-222.

  16. Nearshore circulation and water-column properties in the Skagit River Delta, northern Puget Sound, Washington: juvenile Chinook Salmon habitat availability in the Swinomish Channel

    Science.gov (United States)

    Grossman, Eric E.; Stevens, Andrew W.; Gelfenbaum, Guy; Curran, Christopher

    2007-01-01

    Time-series and spatial measurements of nearshore hydrodynamic processes and water properties were made in the Swinomish Channel to quantify the net direction and rates of surface water transport that influence habitat for juvenile Chinook salmon along their primary migratory corridor between the Skagit River and Padilla Bay in northern Puget Sound, Washington. During the spring outmigration of Skagit River Chinook between March and June 2007, currents measured with fixed acoustic doppler current profilers (ADCP) at the south and north end of the Swinomish Channel and with roving ADCP revealed that the currents are highly asymmetric with a dominant flow to the north (toward Padilla Bay). Maximum surface current velocities reached 1.5 m/s and were generally uniform across the channel near McGlinn Island Causeway. Transport times for surface water to travel the 11 km from the southern end of Swinomish Channel at McGlinn Island to Padilla Bay ranged from 2.1 hours to 5.5 days. The mean travel time was ~1 day, while 17 percent of the time, transport of water and passive particles occurred within 3.75 hours. Surface water in the Swinomish Channel during this time was generally very saline 20-27 psu, except south of the Rainbow Bridge in the town of La Conner where it ranged 0-15 psu depending on tide and Skagit River discharge. This salinity regime restricts suitable low salinity (

  17. Escapement Monitoring of Adult Chinook Salmon in the Secesh River and Lake Creek, Idaho, 1999 Annual Report.

    Energy Technology Data Exchange (ETDEWEB)

    Faurot, Dave; Kucera, Paul A. (Nez Perce Tribe, Lapwai, ID)

    2001-04-01

    Underwater time-lapse video technology was used to monitor adult spring and summer chinook salmon abundance in spawning areas in Lake Creek and the Secesh River, Idaho, in 1999. This technique is a passive methodology that does not trap or handle this Endangered Species Act listed species. This was the third year of testing the remote application of this methodology in the Secesh River drainage. Secesh River chinook salmon represent a wild salmon spawning aggregate that has not been directly supplemented with hatchery fish. Adult chinook salmon spawner abundance was estimated in Lake Creek with the remote time-lapse video application. Adult spawner escapement into Lake Creek in 1999 was 67 salmon. Significant upstream and downstream spawner movement affected the ability to determine the number of fish that contributed to the spawning population. The first passage on Lake Creek was recorded on July 11, two days after installation of the fish counting station. Peak net upstream adult movement occurred at the Lake Creek site on July 20, peak of total movement activity was August 19 with the last fish observed on August 26. A minimum of 133 adult chinook salmon migrated upstream past the Secesh River fish counting station to spawning areas in the Secesh River drainage. The first upstream migrating adult chinook salmon passed the Secesh River site prior to the July 15 installation of the fish counting station. Peak net upstream adult movement at the Secesh River site occurred July 19, peak of total movement was August 15, 17 and 18 and the last fish passed on September 10. Migrating salmon in the Secesh River and Lake Creek exhibited two behaviorally distinct segments of fish movement. Mainly upstream only, movement characterized the first segment. The second segment consisted of upstream and downstream movement with very little net upstream movement. Estimated abundance was compared to single and multiple-pass redd count surveys within the drainage. There were

  18. Using remotely sensed imagery and GIS to monitor and research salmon spawning: A case study of the Hanford Reach fall chinook (Oncorhynchus Tshawytscha)

    International Nuclear Information System (INIS)

    RH Visser

    2000-01-01

    The alteration of ecological systems has greatly reduced salmon populations in the Pacific Northwest. The Hanford Reach of the Columbia River, for example, is a component of the last ecosystem in eastern Washington State that supports a relatively healthy population of fall chinook salmon ([Oncorhynchus tshawytscha], Huntington et al. 1996). This population of fall chinook may function as a metapopulation for the Mid-Columbia region (ISG 1996). Metapopulations can seed or re-colonize unused habitat through the mechanism of straying (spawning in non-natal areas) and may be critical to the salmon recovery process if lost or degraded habitat is restored (i.e., the Snake, Upper Columbia, and Yakima rivers). For these reasons, the Hanford Reach fall chinook salmon population is extremely important for preservation of the species in the Columbia River Basin. Because this population is important to the region, non-intrusive techniques of analysis are essential for researching and monitoring population trends and spawning activities

  19. Snake River Fall Chinook Salmon life history investigations

    Science.gov (United States)

    Erhardt, John M.; Bickford, Brad; Hemingway, Rulon J.; Rhodes, Tobyn N.; Tiffan, Kenneth F.

    2017-01-01

    Predation by nonnative fishes is one factor that has been implicated in the decline of juvenile salmonids in the Pacific Northwest. Impoundment of much of the Snake and Columbia rivers has altered food webs and created habitat favorable for species such as Smallmouth Bass Micropterus dolomieu. Smallmouth Bass are common throughout the Columbia River basin and have become the most abundant predator in lower Snake River reservoirs (Zimmerman and Parker 1995). This is a concern for Snake River Fall Chinook Salmon Oncorhynchus tshawytscha (hereafter, subyearlings) that may be particularly vulnerable due to their relatively small size and because their main-stem rearing habitats often overlap or are in close proximity to habitats used by Smallmouth Bass (Curet 1993; Tabor et al. 1993). Concern over juvenile salmon predation spawned a number of large-scale studies to quantify its effect in the late 1980s, 1990s, and early 2000s (Poe et al. 1991; Rieman et al. 1991; Vigg et al. 1991; Fritts and Pearsons 2004; Naughton et al. 2004). Smallmouth Bass predation represented 9% of total salmon consumption by predatory fishes in John Day Reservoir, Columbia River, from 1983 through 1986 (Rieman et al. 1991). In transitional habitat between the Hanford Reach of the Columbia River and McNary Reservoir, juvenile salmon (presumably subyearlings) were found in 65% of Smallmouth Bass (>200 mm) stomachs and comprised 59% of the diet by weight (Tabor et al. 1993). Within Lower Granite Reservoir on the Snake River, Naughton et al. (2004) showed that monthly consumption (based on weight) ranged from 5% in the upper reaches of the reservoir to 11% in the forebay. However, studies in the Snake River were conducted soon after Endangered Species Act (ESA) listing of Snake River Fall Chinook Salmon (NMFS 1992). During this time, Fall Chinook Salmon abundance was at an historic low, which may explain why consumption rates were relatively low compared to those from studies conducted in the

  20. Fish Research Project, Oregon, Investigations into the Early Life History of Naturally Produced Spring Chinook Salmon in the Grande Ronde River Basin, Annual Progress Report, Project Period: September 1, 1996 - August 31, 1997; ANNUAL

    International Nuclear Information System (INIS)

    Brian C. Jonasson; J. Vincent Tranquilli; MaryLouise Keefe; Richard W. Carmichael

    1998-01-01

    We have documented two general life history strategies utilized by juvenile spring chinook salmon in the Grande Ronde River basin: (1) juveniles migrate downstream out of summer rearing areas in the fall, overwinter in river valley habitats, and begin their seaward migration in the spring, and (2) juveniles remain in summer rearing areas through the winter and begin seaward migration in the spring. In migration year 96-97, the patterns evident from migrant trap data were similar for the three Grande Ronde River populations studied, with 42% of the Lostine River migrants and 76% of the Catherine Creek migrants leaving upper rearing areas in the fall. Contrary to past years, the majority (98%) of upper Grande Ronde River migrants moved out in the fall. Total trap catch for the upper Grande Ronde River was exceedingly low (29 salmon), indicating that patterns seen this year may be equivocal. As in previous years, approximately 99% of chinook salmon juveniles moved past our trap at the lower end of the Grande Ronde River valley in the spring, reiterating that juvenile chinook salmon overwinter within the Grande Ronde valley section of the river. PIT-tagged fish were recaptured at Grande Ronde River traps and mainstem dams. Recapture data showed that fish that overwintered in valley habitats left as smolts and arrived at Lower Granite Dam earlier than fish that overwintered in upstream rearing areas. Fish from Catherine Creek that overwintered in valley habitats were recaptured at the dams at a higher rate than fish that overwintered upstream. In this first year of data for the Lostine River, fish tagged during the fall migration were detected at a similar rate to fish that overwintered upstream. Abundance estimates for migration year 96-97 were 70 for the upper Grande Ronde River, 4,316 for the Catherine Creek, and 4,323 for the Lostine River populations. Although present in most habitats, juvenile spring chinook salmon were found in the greatest abundance in pool

  1. Management of bacterial kidney disease in Chinook Salmon hatcheries based on broodstock testing by enzyme-linked immunosorbent assay: A multiyear study

    Science.gov (United States)

    Munson, A. Douglas; Elliott, Diane G.; Johnson, Keith

    2010-01-01

    From the mid-1980s through the early 1990s, outbreaks of bacterial kidney disease (BKD) caused by Renibacterium salmoninarum continued in Chinook salmon Oncorhynchus tshawytscha in Idaho Department of Fish and Game (IDFG) hatcheries despite the use of three control methods: (1) injection of returning adult fish with erythromycin to reduce prespawning BKD mortality and limit vertical transmission of R. salmoninarum, (2) topical disinfection of green eggs with iodophor, and (3) prophylactic treatments of juvenile fish with erythromycin-medicated feed. In addition, programs to manage BKD through measurement of R. salmoninarum antigen levels in kidney tissues from spawning female Chinook salmon by an enzyme-linked immunosorbent assay (ELISA) were tested over 13–15 brood years at three IDFG hatcheries. The ELISA results were used for either (1) segregated rearing of progeny from females with high ELISA optical density (OD) values (usually ≥0.25), which are indicative of high R. salmoninarum antigen levels, or (2) culling of eggs from females with high ELISA OD values. The ELISA-based culling program had the most profound positive effects on the study populations. Mortality of juvenile fish during rearing was significantly lower at each hatchery for brood years derived from culling compared with brood years for which culling was not practiced. The prevalence of R. salmoninarum in juvenile fish, as evidenced by detection of the bacterium in kidney smears by the direct fluorescent antibody test, also decreased significantly at each hatchery. In addition, the proportions of returning adult females with kidney ELISA OD values of 0.25 or more decreased 56–85% for fish reared in brood years during which culling was practiced, whereas the proportions of ELISA-negative adults increased 55–58%. This management strategy may allow IDFG Chinook salmon hatcheries to reduce or eliminate prophylactic erythromycin-medicated feed treatments. We recommend using ELISA

  2. Effects of rearing density and raceway conformation on growth, food conversion, and survival of juvenile spring chinook salmon

    Science.gov (United States)

    Ewing, R.D.; Sheahan, J.E.; Lewis, M.A.; Palmisano, Aldo N.

    2000-01-01

    Four brood years of juvenile spring chinook salmon Oncorhynchus tshawytscha were reared in conventional and baffled raceways at various rearing densities and loads at Willamette Hatchery, Oregon. A period of rapid linear growth occurred from August to November, but there was little or no growth from November to March when the fish were released. Both fall and winter growth rates were inversely related to rearing density. Final weight and length were also inversely related to rearing density. No significant relationship between load and any growth variable was observed. Fish reared at lower densities in conventional raceways tended to develop bimodal length distributions in winter and early spring. Fish reared in conventional raceways showed significantly larger growth rates and final lengths and weights than those reared in baffled raceways. Food conversions and average delivery times for feed were significantly greater in baffled than in conventional raceways. No significant relationships were observed between either rearing density or load and condition factor, food conversion, or mortality. Mortality was not significantly different between the two raceway types. When fish were transported to seawater for further rearing, there were no significant relationships between mortality in seawater and rearing density or load, but fish reared in baffled raceways had significantly higher mortality than those reared in conventional raceways.

  3. Grande Ronde Basin Chinook Salmon Captive Brood and Conventional Supplementation Programs, 2002 Annual Report.

    Energy Technology Data Exchange (ETDEWEB)

    Carmichael, Richard W. (Oregon Department of Fish and Wildlife, La Grande, OR)

    2003-07-01

    Endangered Species Permit Number 1011 (formerly Permit No. 973) authorizes ODFW to take listed spring chinook salmon juveniles from Catherine Creek (CC), Lostine River (LR) and Grande Ronde River (GR) for research and enhancement purposes. Modification 2 of this permit authorizes ODFW to take adults for spawning and the production and release of smolts for the Captive and Conventional broodstock programs. This report satisfies the requirement that an annual report be submitted. Herein we report on activities conducted and provide cursory data analyses for the Grande Ronde spring chinook salmon Captive and Conventional broodstock projects from 1 January-31 December 2002. The Grande Ronde Basin Spring Chinook Salmon Captive Broodstock Project is designed to rapidly increase numbers of salmon in stocks that are in imminent danger of extirpation. Parr are captured in Catherine Creek, upper Grande Ronde River and Lostine River and reared to adulthood in captivity. Upon maturation, they are spawned (within stocks) and their progeny reared to smoltification before being released into the natal stream of their parents. This program is co-managed by ODFW, National Marine Fisheries Service, the Nez Perce Tribe and Confederated Tribes of the Umatilla Indian Reservation.

  4. Fall transport - A study to compare smolt-to-adult return rates (SARs) of Snake River fall Chinook salmon under alternative transport and dam operational strategies

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This U.S. Army Corps of Engineers (USACE)-funded study that began in 2005 compares the SARs of PIT tagged juvenile hatchery Snake River fall Chinook that are split...

  5. Comparative evaluation of molecular diagnostic tests for Nucleospora salmonis and prevalence in migrating juvenile salmonids from the Snake River, USA

    Science.gov (United States)

    Badil, Samantha; Elliott, Diane G.; Kurobe, Tomofumi; Hedrick, Ronald P.; Clemens, Kathy; Blair, Marilyn; Purcell, Maureen K.

    2011-01-01

    Nucleospora salmonis is an intranuclear microsporidian that primarily infects lymphoblast cells and contributes to chronic lymphoblastosis and a leukemia-like condition in a range of salmonid species. The primary goal of this study was to evaluate the prevalence of N. salmonis in out-migrating juvenile hatchery and wild Chinook salmon Oncorhynchus tshawytscha and steelhead O. mykiss from the Snake River in the U.S. Pacific Northwest. To achieve this goal, we first addressed the following concerns about current molecular diagnostic tests for N. salmonis: (1) nonspecific amplification patterns by the published nested polymerase chain reaction (nPCR) test, (2) incomplete validation of the published quantitative PCR (qPCR) test, and (3) whether N. salmonis can be detected reliably from nonlethal samples. Here, we present an optimized nPCR protocol that eliminates nonspecific amplification. During validation of the published qPCR test, our laboratory developed a second qPCR test that targeted a different gene sequence and used different probe chemistry for comparison purposes. We simultaneously evaluated the two different qPCR tests for N. salmonis and found that both assays were highly specific, sensitive, and repeatable. The nPCR and qPCR tests had good overall concordance when DNA samples derived from both apparently healthy and clinically diseased hatchery rainbow trout were tested. Finally, we demonstrated that gill snips were a suitable tissue for nonlethal detection of N. salmonis DNA in juvenile salmonids. Monitoring of juvenile salmonid fish in the Snake River over a 3-year period revealed low prevalence of N. salmonis in hatchery and wild Chinook salmon and wild steelhead but significantly higher prevalence in hatchery-derived steelhead. Routine monitoring of N. salmonis is not performed for all hatchery steelhead populations. At present, the possible contribution of this pathogen to delayed mortality of steelhead has not been determined.

  6. Reproductive Ecology of Yakima River Hatchery and Wild Spring Chinook and Juvenile-to-Adult PIT-tag Retention; Yakima/Klickitat Fisheries Project Monitoring and Evaluation, 2001 Annual Report.

    Energy Technology Data Exchange (ETDEWEB)

    Knudsen, Curtis M. (Washington Department of Fish and Wildlife, Olympia, WA)

    2002-11-01

    This report is intended to satisfy two concurrent needs: (1) provide a contract deliverable from Oncorh Consulting to the Washington Department of Fish and Wildlife (WDFW), with emphasis on identification of salient results of value to ongoing Yakima/Klickitat Fisheries Project (YKFP) planning, and (2) summarize results of research that have broader scientific relevance. This is the first in an anticipated series of reports that address reproductive ecological research and monitoring of spring chinook in the Yakima River basin. In addition to within-year comparisons, between-year comparisons will be made to determine if traits of the wild Naches basin control population, the naturally spawning population in the upper Yakima River and the hatchery control population are diverging over time. This annual report summarizes data collected between April 1, 2001 and March 31, 2002. In the future, these data will be compared to previous years to identify general trends and make preliminary comparisons.

  7. Seasonal Juvenile Salmonid Presence and Migratory Behavior in the Lower Columbia River

    Energy Technology Data Exchange (ETDEWEB)

    Carter, Jessica A.; McMichael, Geoffrey A.; Welch, Ian D.; Harnish, Ryan A.; Bellgraph, Brian J.

    2009-04-30

    To facilitate preparing Biological Assessments of proposed channel maintenance projects, the Portland District of the U.S. Army Corps of Engineers contracted the Pacific Northwest National Laboratory to consolidate and synthesize available information about the use of the lower Columbia River and estuary by juvenile anadromous salmonids. The information to be synthesized included existing published documents as well as data from five years (2004-2008) of acoustic telemetry studies conducted in the Columbia River estuary using the Juvenile Salmon Acoustic Telemetry System. For this synthesis, the Columbia River estuary includes the section of the Columbia River from Bonneville Dam at river kilometer (Rkm) 235 downstream to the mouth where it enters the Pacific Ocean. In this report, we summarize the seasonal salmonid presence and migration patterns in the Columbia River estuary based on information from published studies as well as relevant data from acoustic telemetry studies conducted by NOAA Fisheries and the Pacific Northwest National Laboratory (PNNL) between 2004 and 2008. Recent acoustic telemetry studies, conducted using the Juvenile Salmon Acoustic Telemetry System (JSATS; developed by the Portland District of the U.S. Army Corps of Engineers), provided information on the migratory behavior of juvenile steelhead (O. mykiss) and Chinook salmon in the Columbia River from Bonneville Dam to the Pacific Ocean. In this report, Section 2 provides a summary of information from published literature on the seasonal presence and migratory behavior of juvenile salmonids in the Columbia River estuary and plume. Section 3 presents a detailed synthesis of juvenile Chinook salmon and steelhead migratory behavior based on use of the JSATS between 2004 and 2008. Section 4 provides a discussion of the information summarized in the report as well as information drawn from literature reviews on potential effects of channel maintenance activities to juvenile salmonids rearing in

  8. Emigration of Natural and Hatchery Chinook Salmon and Steelhead Smolts from the Imnaha River, Oregon, Progress Report 2000-2002.

    Energy Technology Data Exchange (ETDEWEB)

    Cleary, Peter; Kucera, Paul; Blenden, Michael

    2003-12-01

    This report summarizes the emigration studies of the Nez Perce Tribe in the Imnaha River subbasin during the 2001 and 2002 migration years. A migration year for the Imnaha River is defined here as beginning July 31 of the previous year and ending July 30 the following year. The conclusion of the studies at the end of migration year 2002 marked the 11th year of the Nez Perce Tribe's Lower Snake River Emigration Studies. The Nez Perce Tribe has participated in the Fish Passage Center's Smolt Monitoring Program for nine of the 11 years. These studies collect and tag juvenile chinook salmon and steelhead at two locations in the fall, rkm 74 and rkm 7, and at rkm 7 during the spring. Data from captured and tagged fish provide an evaluation of hatchery production and releases strategies, post release survival of hatchery chinook salmon, abundance of natural chinook salmon, and downstream survival and arrival timing of natural and hatchery chinook salmon and steelhead. The hydrologic conditions that migrating fish encountered in 2001 were characterized as a drought and conditions in 2002 were characterized as below average. Hatchery chinook salmon had a mean fork length that was 34 mm greater in 2001 and 35 mm greater in 2002 than the mean fork length of natural chinook smolts. Hatchery steelhead smolt mean fork lengths were 39 mm greater than natural steelhead smolts in 2001 and 44 mm greater than natural steelhead smolt fork lengths in 2002. A significant difference (p < 0.05) between hatchery and natural chinook salmon and steelhead fork lengths has been documented by these emigration studies from 1997 to 2002. Hatchery chinook salmon were volitionally released in 2001 and 2002 and the 90% arrivals for 2001 and 2002 at the lower rkm 7 trap were within the range of past observations of 22 to 38 days observed in 1999 and 2000. We estimated that 93.9% of the 123,014 hatchery chinook salmon released in 2001 survived to the lower trap and 90.2% of the 303

  9. Copper, cadmium, and zinc concentrations in juvenile Chinook salmon and selected fish-forage organisms (aquatic insects) in the upper Sacramento River, California

    Science.gov (United States)

    Saiki, Michael K.; Martin, Barbara A.; Thompson, Larry D.; Walsh, Daniel

    2001-01-01

    This study assessed the downstream extent andseverity of copper (Cu), cadmium (Cd), and zinc (Zn)contamination from acid mine drainage on juvenile chinook salmon(Oncorhynchus tshawytscha) and aquatic insects over aroughly 270-km reach of the Sacramento River below KeswickReservoir. During April–May 1998, salmon were collected fromfour sites in the river and from a fish hatchery that receiveswater from Battle Creek. Salmon from river sites were examinedfor gut contents to document their consumption of variousinvertebrate taxa, whereas salmon from river sites and thehatchery were used for metal determinations. Midge(Chironomidae) and caddisfly (Trichoptera) larvae and mayfly(Ephemeroptera) nymphs were collected for metal determinationsduring April–June from river sites and from Battle and Buttecreeks. The fish hatchery and Battle and Butte creeks served asreference sites because they had no history of receiving minedrainage. Salmon consumed mostly midge larvae and pupae (44.0%,damp-dry biomass), caddisfly larvae (18.9%), Cladocera (5.8%),and mayfly nymphs (5.7%). These results demonstrated thatinsects selected for metal determinations were important as fishforage. Dry-weight concentrations of Cu, Cd, and Zn weregenerally far higher in salmon and insects from the river thanfrom reference sites. Within the river, high metalconcentrations persisted as far downstream as South Meridian (thelowermost sampling site). Maximum concentrations of Cd (30.7 μg g-1) and Zn (1230 μg g-1),but not Cu (87.4 μg g-1), in insects exceeded amounts that other investigators reported as toxic when fed for prolonged periods to juvenile salmonids.

  10. Development of an Effective Transport Media for Juvenile Spring Chinook Salmon to Mitigate Stress and Improve Smolt Survival During Columbia River Fish Hauling Operations, 1985 Final Report.

    Energy Technology Data Exchange (ETDEWEB)

    Wedemeyer, Gary A.

    1985-02-01

    Selected transport media consisting of mineral salt additions (Na/sup +/, Cl/sup -/, Ca/sup + +/, PO/sub 4//sup -3/, HCO/sub 3//sup -/, and Mg/sup + +/), mineral salts plus tranquilizing concentrations of tricaine methane sulfonate (MS-222), or MS-222 alone were tested for their ability to mitigate stress and increase smolt survival during single and mixed species hauling of Columbia River spring chinook salmon (Oncorhynchus tshawytscha) and steelhead trout (Salmo gairdneri). Successful stress mitigation was afforded by several formulations as indicated by protection against life-threatening osmoregulatory and other physiological dysfunctions, and against immediate and delayed hauling mortality. Effects on the seawater survival and growth of smolts hauled in transport media were used as the overall criterion of success. Of the fourteen chemical formulations tested, 10 ppM MS-222 emerged as top-rated in terms of ability to mitigate physiological stress during single and mixed species transport of juvenile spring chinook salmon at hauling densities of 0.5 or 1.0 lb/gallon. Immediate and delayed mortalities from hauling stress were also reduced, but benefits to early marine growth and survival were limited to about the first month in seawater. The two physical factors tested (reduced light intensity and water temperature) were generally less effective than mineral salt additions in mitigating hauling stress, but the degree of protection afforded by reduced light intensity was nevertheless judged to be physiologically beneficial. 36 refs., 1 fig., 19 tabs.

  11. Gas bubble disease monitoring and research of juvenile salmonids

    International Nuclear Information System (INIS)

    Maule, A.G.; Beeman, J.; Hans, K.M.; Mesa, M.G.; Haner, P.; Warren, J.J.

    1997-10-01

    This document describes the project activities 1996--1997 contract year. This report is composed of three chapters which contain data and analyses of the three main elements of the project: field research to determine the vertical distribution of migrating juvenile salmonids, monitoring of juvenile migrants at dams on the Snake and Columbia rivers, and laboratory experiments to describe the progression of gas bubble disease signs leading to mortality. The major findings described in this report are: A miniature pressure-sensitive radio transmitter was found to be accurate and precise and, after compensation for water temperature, can be used to determine the depth of tagged-fish to within 0.32 m of the true depth (Chapter 1). Preliminary data from very few fish suggest that depth protects migrating juvenile steelhead from total dissolved gas supersaturation (Chapter 1). As in 1995, few fish had any signs of gas bubble disease, but it appeared that prevalence and severity increased as fish migrated downstream and in response to changing gas supersaturation (Chapter 2). It appeared to gas bubble disease was not a threat to migrating juvenile salmonids when total dissolved gas supersaturation was < 120% (Chapter 2). Laboratory studies suggest that external examinations are appropriate for determining the severity of gas bubble disease in juvenile salmonids (Chapter 3). The authors developed a new method for examining gill arches for intravascular bubbles by clamping the ventral aorta to reduce bleeding when arches were removed (Chapter 3). Despite an outbreak of bacterial kidney disease in the experimental fish, the data indicate that gas bubble disease is a progressive trauma that can be monitored (Chapter 3)

  12. Pathogen Screening of Naturally Produced Yakima River Spring Chinook Smolts; Yakima/Klickitat Fisheries Project Monitoring and Evaluation Report 6 of 7, 2003-2004 Annual Report.

    Energy Technology Data Exchange (ETDEWEB)

    Thomas, Joan B. (Washington Department of Fish and Wildlife, Olympia, WA)

    2004-05-01

    In 1999 the Cle Elum Hatchery began releasing spring chinook salmon smolts into the upper Yakima River to increase natural production. Part of the evaluation of this program is to monitor whether introduction of hatchery produced smolts would impact the prevalence of specific pathogens in the naturally produced spring chinook smolts. Increases in prevalence of any of these pathogens could negatively impact the survival of these fish. In 1998 and 2000 through 2003 naturally produced smolts were collected for monitoring at the Chandler smolt collection facility on the lower Yakima River. Smolts were collected from mid to late outmigration, with a target of 200 fish each year. The pathogens monitored were infectious hematopoeitic necrosis virus, infectious pancreatic necrosis virus, viral hemorrhagic septicemia virus, Flavobacterium psychrophilum, Flavobacterium columnare, Aeromonas salmonicida, Yersinia ruckeri, Edwardsiella ictaluri, Renibacterium salmoninarum and Myxobolus cerebralis. To date, only the bacterial pathogens have been detected and prevalences have been low. Prevalences have varied each year and these changes are attributed to normal fluctuation of prevalence. All of the pathogens detected are widely distributed in Washington State.

  13. Pathogen Screening of Naturally Produced Yakima River Spring Chinook Smolts; Yakima/Klickitat Fisheries Project Monitoring and Evaluation, 2004-2005 Annual Report.

    Energy Technology Data Exchange (ETDEWEB)

    Thomas, Joan B. (Washington Department of Fish and Wildlife, Olympia, WA)

    2005-05-01

    In the spring of 2004 naturally produced smolts outmigrating from the Yakima River Basin were collected for the sixth year of pathogen screening. This component of the evaluation is to monitor whether introduction of hatchery produced smolts would impact the prevalence of specific pathogens in the naturally produced spring chinook smolts. Increases in prevalence of any of these pathogens could negatively impact the survival of these fish. Since 1999 the Cle Elum Hatchery has been releasing spring chinook salmon smolts into the upper Yakima River to increase natural production. In 1998 and 2000 through 2004 naturally produced smolts were collected for monitoring at the Chandler smolt collection facility on the lower Yakima River. Smolts were collected from mid to late outmigration, with a target of 200 fish each year. The pathogens monitored were infectious hematopoeitic necrosis virus, infectious pancreatic necrosis virus, viral hemorrhagic septicemia virus, Flavobacterium psychrophilum, Flavobacterium columnare, Aeromonas salmonicida, Yersinia ruckeri, Edwardsiella ictaluri, Renibacterium salmoninarum and Myxobolus cerebralis. Of these pathogens, only R. salmoninarum was detected in very low levels in the naturally produced smolts outmigrating in 2004. To date, only bacterial pathogens have been detected and prevalences have been low. There have been small variations each year and these changes are attributed to normal fluctuations in prevalence. All of the pathogens detected are widely distributed in Washington State.

  14. In situ biomonitoring of juvenile Chinook salmon (Onchorhynchus tshawytscha) using biomarkers of chemical exposures and effects in a partially remediated urbanized waterway of the Puget Sound, WA

    Energy Technology Data Exchange (ETDEWEB)

    Browne, Eva [Department of Environmental and Occupational Health Sciences, University of Washington, 4225 Roosevelt Way Northeast, Suite 100, Seattle, WA 98105-6099 (United States); Kelley, Matthew; Zhou, Guo-Dong; He, Ling Yu; McDonald, Thomas; Wang, Shirley [Department of Environmental and Occupational Health, Texas A and M Health Science Center, College Station, TX 77843-1266 (United States); Duncan, Bruce [US Environmental Protection Agency, Region 10, 1200 Sixth Avenue, Seattle, WA 98101 (United States); Meador, James [Ecotoxicology Division, National Marine Fisheries Service, Seattle, WA 98105 (United States); Donnelly, Kirby [Department of Environmental and Occupational Health, Texas A and M Health Science Center, College Station, TX 77843-1266 (United States); Gallagher, Evan, E-mail: evang3@u.washington.edu [Department of Environmental and Occupational Health Sciences, University of Washington, 4225 Roosevelt Way Northeast, Suite 100, Seattle, WA 98105-6099 (United States)

    2010-10-15

    In situ biomonitoring has been used to assess the effects of pollution on aquatic species in heavily polluted waterways. In the current study, we used in situ biomonitoring in conjunction with molecular biomarker analysis to determine the effects of pollutant exposure in salmon caged in the Duwamish waterway, a Pacific Northwest Superfund site that has been subject to remediation. The Duwamish waterway is an important migratory route for Pacific salmon and has received historic inputs of polycyclic aromatic hydrocarbons (PAHs) and polychlorinated biphenyls (PCBs). Juvenile pre-smolt Chinook salmon (Oncorhynchus tshawytscha) caged for 8 days in the three contaminated sites in close proximity within the Duwamish were analyzed for steady state hepatic mRNA expression of 7 exposure biomarker genes encompassing several gene families and known to be responsive to pollutants, including cytochrome P4501A (CYP1A) and CYP2K1, glutathione S-transferase {pi} class (GST-{pi}), microsomal GST (mGST), glutamylcysteine ligase catalytic subunit (GCLC), UDP-glucuronyltransferase family 1 (UDPGT), and type 2 deiodinase (type 2 DI, or D2). Quantitation of gene expression was accomplished by quantitative reverse transcriptase polymerase chain reaction (qRT-PCR) in assays developed specifically for Chinook salmon genes. Gill PAH-DNA adducts were assessed as a chemical effects biomarker using {sup 32}P-postlabeling. The biomarkers in the field-caged fish were analyzed with respect to caged animals maintained at the hatchery receiving flow-through water. Chemical analysis of sediment samples from three field sampling sites revealed relatively high concentrations of total PAHs in one site (site B2, 6711 ng/g dry weight) and somewhat lower concentrations of PAHs in two adjacent sites (sites B3 and B4, 1482 and 1987 ng/g, respectively). In contrast, waterborne PAHs at all of the sampling sites were relatively low (<1 ng/L). Sediment PCBs at the sites ranged from a low of 421 ng/g at site B3

  15. Yakima River Spring Chinook Enhancement Study, 1984 Annual Report.

    Energy Technology Data Exchange (ETDEWEB)

    Wasserman, Larry

    1985-01-01

    This study develops data to present management alternatives for Yakima River spring chinook. The first objective is to determine the distribution, abundance and survival of wild Yakima River spring chinook. Naturally produced populations will be studied to determine if these runs can be sustained in the face of present harvest and environmental conditions. This information will be gathered through spawning ground surveys, counting of adults at Prosser and Roza fish ladders, and through monitoring the tribal dipnet fishery. Concurrent studies will examine potential habitat limitations within the basin. Presently, survival to emergence studies, in conjunction with substrate quality analysis is being undertaken. Water temperature is monitored throughout the basin, and seining takes place monthly to evaluate distribution and abundance. The outcome of this phase of the investigation is to determine an effective manner for introducing hatchery stocks that minimize the impacts on the wild population. The second objective of this study is to determine relative effectiveness of different methods of hatchery supplementation.

  16. Juvenile salmon usage of the Skeena River estuary.

    Science.gov (United States)

    Carr-Harris, Charmaine; Gottesfeld, Allen S; Moore, Jonathan W

    2015-01-01

    Migratory salmon transit estuary habitats on their way out to the ocean but this phase of their life cycle is more poorly understood than other phases. The estuaries of large river systems in particular may support many populations and several species of salmon that originate from throughout the upstream river. The Skeena River of British Columbia, Canada, is a large river system with high salmon population- and species-level diversity. The estuary of the Skeena River is under pressure from industrial development, with two gas liquefaction terminals and a potash loading facility in various stages of environmental review processes, providing motivation for understanding the usage of the estuary by juvenile salmon. We conducted a juvenile salmonid sampling program throughout the Skeena River estuary in 2007 and 2013 to investigate the spatial and temporal distribution of different species and populations of salmon. We captured six species of juvenile anadromous salmonids throughout the estuary in both years, and found that areas proposed for development support some of the highest abundances of some species of salmon. Specifically, the highest abundances of sockeye (both years), Chinook in 2007, and coho salmon in 2013 were captured in areas proposed for development. For example, juvenile sockeye salmon were 2-8 times more abundant in the proposed development areas. Genetic stock assignment demonstrated that the Chinook salmon and most of the sockeye salmon that were captured originated from throughout the Skeena watershed, while some sockeye salmon came from the Nass, Stikine, Southeast Alaska, and coastal systems on the northern and central coasts of British Columbia. These fish support extensive commercial, recreational, and First Nations fisheries throughout the Skeena River and beyond. Our results demonstrate that estuary habitats integrate species and population diversity of salmon, and that if proposed development negatively affects the salmon populations that

  17. Reproductive Ecology of Yakima River Hatchery and Wild Spring Chinook; Yakima/Klickitat Fisheries Project Monitoring and Evaluation, 2001-2002 Annual Report.

    Energy Technology Data Exchange (ETDEWEB)

    Knudsen, Curtis M. (Oncorh Consulting, Olympia, WA)

    2003-05-01

    This report is intended to satisfy two concurrent needs: (1) provide a contract deliverable from Oncorh Consulting to the Washington Department of Fish and Wildlife (WDFW), with emphasis on identification of salient results of value to ongoing Yakima/Klickitat Fisheries Project (YKFP) planning, and (2) summarize results of research that have broader scientific relevance. This is the second in a series of reports that address reproductive ecological research and monitoring of spring chinook in the Yakima River basin. In addition to within-year comparisons, between-year comparisons will be made to determine if traits of the wild Naches basin control population, the naturally spawning population in the upper Yakima River and the hatchery control population are diverging over time. This annual report summarizes data collected between April 1, 2002 and March 31, 2003. In the future, these data will be compared to previous years to identify general trends and make preliminary comparisons. Supplementation success in the Yakima Klickitat Fishery Project's (YKFP) spring chinook (Oncorhynchus tshawytscha) program is defined as increasing natural production and harvest opportunities, while keeping adverse ecological interactions and genetic impacts within acceptable bounds (Busack et al. 1997). Within this context demographics, phenotypic traits, and reproductive ecology have significance because they directly affect natural productivity. In addition, significant changes in locally adapted traits due to hatchery influence, i.e. domestication, would likely be maladaptive resulting in reduced population productivity and fitness (Taylor 1991; Hard 1995). Thus, there is a need to study demographic and phenotypic traits in the YKFP in order to understand hatchery and wild population productivity, reproductive ecology, and the effects of domestication (Busack et al. 1997). Tracking trends in these traits over time is also a critical aspect of domestication monitoring (Busack

  18. Evaluation of juvenile salmonid bypass facilities and passage at water diversions on the lower Umatilla River. Final report

    International Nuclear Information System (INIS)

    Cameron, W.A.; Knapp, S.M.; Carmichael, R.W.

    1997-07-01

    Outdated juvenile and adult fish passage facilities were recently reconstructed at the five major irrigation dams on the lower Umatilla River, Oregon to meet National marine Fisheries Service (NMFS) design standards. Changes in design at juvenile fish bypass facilities included reduced mesh size on the rotating drum screens, larger screening area, a more oblique orientation of the drum screens to canal flow, improved screen seals, replacement of bypass portals with vertical slot bypass channels, and increased bypass pipe diameters. Weir-and-pool adult fish ladders and jump pools were replaced with vertical-slot ladders. From 1991--1995, they investigated injury and travel rate of juvenile fish moving through the facilities, and efficiency of screens in preventing fish entry into the canals. Water velocities in front of canal screens, at bypass channel entrances, and at ladder diffusers were measured to assess adherence to NMFS criteria and identify hydraulic patterns. Biological evaluations were conducted by releasing and recapturing marked yearling summer steelhead (Oncorhynchus mykiss), yearling spring chinook salmon (O. tshawytscha), and subyearling fall chinook salmon (O. tshawytscha) in varying locations within the fish passage facilities

  19. Migratory Behavior and Survival of Juvenile Salmonids in the Lower Columbia River, Estuary, and Plume in 2010

    Energy Technology Data Exchange (ETDEWEB)

    McMichael, Geoffrey A. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Harnish, Ryan A. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Skalski, John R. [Univ. of Washington, Seattle, WA (United States); Deters, Katherine A. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Ham, Kenneth D. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Townsend, Richard L. [Univ. of Washington, Seattle, WA (United States); Titzler, P. Scott [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Hughes, Michael S. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Kim, Jin A. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Trott, Donna M. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States)

    2011-09-01

    Uncertainty regarding the migratory behavior and survival of juvenile salmonids passing through the lower Columbia River and estuary after negotiating dams on the Federal Columbia River Power System (FCRPS) prompted the development and application of the Juvenile Salmon Acoustic Telemetry System (JSATS). The JSATS has been used to investigate the survival of juvenile salmonid smolts between Bonneville Dam (river kilometer (rkm) 236) and the mouth of the Columbia River annually since 2004. In 2010, a total of 12,214 juvenile salmonids were implanted with both a passive integrated transponder (PIT) and a JSATS acoustic transmitter. Using detection information from JSATS receiver arrays deployed on dams and in the river, estuary, and plume, the survival probability of yearling Chinook salmon and steelhead smolts tagged at John Day Dam was estimated form multiple reaches between rkm 153 and 8.3 during the spring. During summer, the survival probability of subyearling Chinook salmon was estimated for the same reaches. In addition, the influence of routes of passage (e.g., surface spill, deep spill, turbine, juvenile bypass system) through the lower three dams on the Columbia River (John Day, The Dalles, and Bonneville) on juvenile salmonid smolt survival probability from the dams to rkm 153 and then between rkm 153 and 8.3 was examined to increase understanding of the immediate and latent effects of dam passage on juvenile salmon survival. Similar to previous findings, survival probability was relatively high (>0.95) for most groups of juvenile salmonids from the Bonneville Dam tailrace to about rkm 50. Downstream of rkm 50 the survival probability of all species and run types we examined decreased markedly. Steelhead smolts suffered the highest mortality in this lower portion of the Columbia River estuary, with only an estimated 60% of the tagged fish surviving to the mouth of the river. In contrast, yearling and subyearling Chinook salmon smolts survived to the mouth

  20. Fall Chinook Salmon Survival and Supplementation Studies in the Snake River and Lower Snake River Reservoirs, 1995 Annual Report.

    Energy Technology Data Exchange (ETDEWEB)

    Williams, John G.; Bjomn (Bjornn), Theodore C.

    1997-03-01

    In 1994, the National Marine Fisheries Service and the US Fish and Wildlife Service began a cooperative study to investigate migrational characteristics of subyearling fall chinook salmon in the Snake River. The primary study objectives were to (1) determine the feasibility of estimating detection and passage survival probabilities of natural and hatchery subyearling fall chinook salmon released in the Snake River (Chapter 1), (2) investigate relationships between detection and passage survival probabilities and travel time of subyearling fall chinook salmon and environmental influences such as flow volume and water temperature (Chapter 1), (3) monitor and evaluate dispersal of hatchery subyearling chinook salmon into nearshore rearing areas used by natural fish (Chapter 2), and (4) monitor and evaluate travel time to Lower Granite Dam, growth from release in the Snake River to recapture at Lower Granite Dam, ATPase levels of fish recaptured at Lower Granite Dam, and survival from release in the free-flowing Snake River to the tailrace of Lower Granite Dam (Chapter 2).

  1. Fall chinook salmon survival and supplementation studies in the Snake River and Lower Snake River reservoirs: Annual report 1995

    International Nuclear Information System (INIS)

    Williams, John G.; Bjornn, Theodore C.

    1997-01-01

    In 1994, the National Marine Fisheries Service and the US Fish and Wildlife Service began a cooperative study to investigate migrational characteristics of subyearling fall chinook salmon in the Snake River. The primary study objectives were to (1) determine the feasibility of estimating detection and passage survival probabilities of natural and hatchery subyearling fall chinook salmon released in the Snake River (Chapter 1), (2) investigate relationships between detection and passage survival probabilities and travel time of subyearling fall chinook salmon and environmental influences such as flow volume and water temperature (Chapter 1), (3) monitor and evaluate dispersal of hatchery subyearling chinook salmon into nearshore rearing areas used by natural fish (Chapter 2), and (4) monitor and evaluate travel time to Lower Granite Dam, growth from release in the Snake River to recapture at Lower Granite Dam, ATPase levels of fish recaptured at Lower Granite Dam, and survival from release in the free-flowing Snake River to the tailrace of Lower Granite Dam (Chapter 2)

  2. Assessing summer and fall chinook salmon restoration in the Upper Clearwater River and principal tributaries. Annual report 1994

    International Nuclear Information System (INIS)

    Arnsberg, B.D.; Statler, D.P.

    1995-08-01

    This is the first annual report of a five year study to assess summer and fall chinook salmon restoration potential in the upper Clearwater River and principal tributaries, Salmon, Grande Ronde, and Imnaha Rivers. During 1994, the authors focused primarily on assessing water temperatures and spawning habitat in the upper Clearwater River and principal tributaries. Water temperature analysis indicated a colder temperature regime in the upper Clearwater River above the North Fork Clearwater River confluence during the winter as compared to the lower Clearwater. This was due to warm water releases from Dworshak Reservoir on the North Fork moderating temperatures in the lower Clearwater River. Thermal temperature unit analysis and available literature suggest a 75% survival threshold level may be anticipated for chinook salmon egg incubation if spawning would occur by November 1 in the upper Clearwater River. Warm water upwelling in historic summer and fall chinook spawning areas may result in increased incubation survivals and will be tested in the future. The authors observed a total of 37 fall chinook salmon redds in the Clearwater River subbasin. They observed 30 redds in the mainstem Clearwater below the North Fork Clearwater River confluence and seven redds in the North Fork Clearwater River. No redds were observed in the South Fork Clearwater, Middle Fork Clearwater, or Selway Rivers. They observed one fall chinook salmon redd in the Salmon River. They recovered 10 fall chinook salmon carcasses in the Clearwater River to obtain biological measurements and to document hatchery contribution to spawning. Unseasonably high and cold Dworshak Dam releases coinciding with early juvenile fall chinook salmon rearing in the lower Clearwater River may be influencing selective life history traits including growth, smolt development, outmigration timing, behavior, and could be directly affecting survival. During July 1994, discharges from Dworshak Dam increased from a

  3. Environmental conditions and prey-switching by a seabird predator impact juvenile salmon survival

    Science.gov (United States)

    Wells, Brian K.; Santora, Jarrod A.; Henderson, Mark J.; Warzybok, Pete; Jahncke, Jaime; Bradley, Russell W.; Huff, David D.; Schroeder, Isaac D.; Nelson, Peter; Field, John C.; Ainley, David G.

    2017-01-01

    Due to spatio-temporal variability of lower trophic-level productivity along the California Current Ecosystem (CCE), predators must be capable of switching prey or foraging areas in response to changes in environmental conditions and available forage. The Gulf of the Farallones in central California represents a biodiversity hotspot and contains the largest common murre (Uria aalge) colonies along the CCE. During spring, one of the West Coast's most important Chinook salmon (Oncorhynchus tshawytscha) populations out-migrates into the Gulf of the Farallones. We quantify the effect of predation on juvenile Chinook salmon associated with ecosystem-level variability by integrating long-term time series of environmental conditions (upwelling, river discharge), forage species abundance within central CCE, and population size, at-sea distribution, and diet of the common murre. Our results demonstrate common murres typically forage in the vicinity of their offshore breeding sites, but in years in which their primary prey, pelagic young-of-year rockfish (Sebastesspp.), are less available they forage for adult northern anchovies (Engraulis mordax) nearshore. Incidentally, while foraging inshore, common murre consumption of out-migrating juvenile Chinook salmon, which are collocated with northern anchovy, increases and population survival of the salmon is significantly reduced. Results support earlier findings that show timing and strength of upwelling, and the resultant forage fish assemblage, is related to Chinook salmon recruitment variability in the CCE, but we extend those results by demonstrating the significance of top-down impacts associated with these bottom-up dynamics. Our results demonstrate the complexity of ecosystem interactions and impacts between higher trophic-level predators and their prey, complexities necessary to quantify in order to parameterize ecosystem models and evaluate likely outcomes of ecosystem management options.

  4. Environmental conditions and prey-switching by a seabird predator impact juvenile salmon survival

    Science.gov (United States)

    Wells, Brian K.; Santora, Jarrod A.; Henderson, Mark J.; Warzybok, Pete; Jahncke, Jaime; Bradley, Russell W.; Huff, David D.; Schroeder, Isaac D.; Nelson, Peter; Field, John C.; Ainley, David G.

    2017-10-01

    Due to spatio-temporal variability of lower trophic-level productivity along the California Current Ecosystem (CCE), predators must be capable of switching prey or foraging areas in response to changes in environmental conditions and available forage. The Gulf of the Farallones in central California represents a biodiversity hotspot and contains the largest common murre (Uria aalge) colonies along the CCE. During spring, one of the West Coast's most important Chinook salmon (Oncorhynchus tshawytscha) populations out-migrates into the Gulf of the Farallones. We quantify the effect of predation on juvenile Chinook salmon associated with ecosystem-level variability by integrating long-term time series of environmental conditions (upwelling, river discharge), forage species abundance within central CCE, and population size, at-sea distribution, and diet of the common murre. Our results demonstrate common murres typically forage in the vicinity of their offshore breeding sites, but in years in which their primary prey, pelagic young-of-year rockfish (Sebastes spp.), are less available they forage for adult northern anchovies (Engraulis mordax) nearshore. Incidentally, while foraging inshore, common murre consumption of out-migrating juvenile Chinook salmon, which are collocated with northern anchovy, increases and population survival of the salmon is significantly reduced. Results support earlier findings that show timing and strength of upwelling, and the resultant forage fish assemblage, is related to Chinook salmon recruitment variability in the CCE, but we extend those results by demonstrating the significance of top-down impacts associated with these bottom-up dynamics. Our results demonstrate the complexity of ecosystem interactions and impacts between higher trophic-level predators and their prey, complexities necessary to quantify in order to parameterize ecosystem models and evaluate likely outcomes of ecosystem management options.

  5. Effects of Hyporheic Exchange Flows on Egg Pocket Water Temperature in Snake River Fall Chinook Salmon Spawning Areas, 2002-2003 Final Report.

    Energy Technology Data Exchange (ETDEWEB)

    Hanrahan, T.; Geist, D.; Arntzen, C. (Pacific Northwest National Laboratory)

    2004-09-01

    The development of the Snake River hydroelectric system has affected fall Chinook salmon smolts by shifting their migration timing to a period (mid- to late-summer) when downstream reservoir conditions are unfavorable for survival. Subsequent to the Snake River Chinook salmon fall-run Evolutionary Significant Unit being listed as Threatened under the Endangered Species Act, recovery planning has included changes in hydrosystem operations (e.g., summer flow augmentation) to improve water temperature and flow conditions during the juvenile Chinook salmon summer migration period. In light of the limited water supplies from the Dworshak reservoir for summer flow augmentation, and the associated uncertainties regarding benefits to migrating fall Chinook salmon smolts, additional approaches for improved smolt survival need to be evaluated. This report describes research conducted by the Pacific Northwest National Laboratory (PNNL) that evaluated relationships among river discharge, hyporheic zone characteristics, and egg pocket water temperature in Snake River fall Chinook salmon spawning areas. This was a pilot-scale study to evaluate these relationships under existing operations of Hells Canyon Dam (i.e., without any prescribed manipulations of river discharge) during the 2002-2003 water year. The project was initiated in the context of examining the potential for improving juvenile Snake River fall Chinook salmon survival by modifying the discharge operations of Hells Canyon Dam. The potential for improved survival would be gained by increasing the rate at which early life history events proceed (i.e., incubation and emergence), thereby allowing smolts to migrate through downstream reservoirs during early- to mid-summer when river conditions are more favorable for survival. PNNL implemented this research project at index sites throughout 160 km of the Hells Canyon Reach (HCR) of the Snake River. The HCR extends from Hells Canyon Dam (river kilometer [rkm] 399

  6. Monitoring the Migrations of Wild Snake River Spring/Summer Chinook Salmon Smolts, 2000-2001 Annual Report.

    Energy Technology Data Exchange (ETDEWEB)

    Achord, Stephen; Axel, Gordon A.; Hockersmith, Eric E.

    2002-07-01

    This report details the 2001 results from an ongoing project to monitor the migration behavior of wild spring/summer chinook salmon smolts in the Snake River Basin. The report also discusses trends in the cumulative data collected for this project from Oregon and Idaho streams since 1989. The project was initiated after detection data from passive-integrated-transponder tags (PIT tags) had shown distinct differences in migration patterns between wild and hatchery fish for three consecutive years. National Marine Fisheries Service (NMFS) investigators first observed these data in 1989. The data originated from tagging and interrogation operations begun in 1988 to evaluate smolt transportation for the U.S. Army Corps of Engineers.

  7. Vertical self-sorting behavior in juvenile Chinook salmon (Oncorhynchus tshawytscha): evidence for family differences and variation in growth and morphology

    Science.gov (United States)

    Unrein, Julia R.; Billman, E.J.; Cogliati, Karen M.; Chitwood, Rob S.; Noakes, David L. G.; Schreck, Carl B.

    2018-01-01

    Life history variation is fundamental to the evolution of Pacific salmon and their persistence under variable conditions. We discovered that Chinook salmon sort themselves into surface- and bottom-oriented groups in tanks within days after exogenous feeding. We hypothesised that this behaviour is correlated with subsequent differences in body morphology and growth (as measured by final length and mass) observed later in life. We found consistent morphological differences between surface and bottom phenotypes. Furthermore, we found that surface and bottom orientation within each group is maintained for at least one year after the phenotypes were separated. These surface and bottom phenotypes are expressed across genetic stocks, brood years, and laboratories and we show that the proportion of surface- and bottom-oriented offspring also differed among families. Importantly, feed delivery location did not affect morphology or growth, and the surface fish were longer than bottom fish at the end of the rearing experiment. The body shape of the former correlates with wild individuals that rear in mainstem habitats and migrate in the fall as subyearlings and the latter resemble those that remain in the upper tributaries and migrate as yearling spring migrants. Our findings suggest that early self-sorting behaviour may have a genetic basis and be correlated with other phenotypic traits that are important indicators for juvenile migration timing.

  8. Spring outmigration of wild and hatchery chinook salmon and steelhead trout smolts from the Imnaha River: March 1, 1994--June 15, 1994; TOPICAL

    International Nuclear Information System (INIS)

    Ashe, B.L.; Miller, A.C.; Kucera, P.A.; Blenden, M.L.

    1995-01-01

    In 1994, the Nez Perce Tribe began a smolt monitoring study on the Imnaha River in cooperation with the Fish Passage Center (FPC). A rotary screw trap was used to collect emigrating wild and hatchery chinook salmon (Oncorhynchus tshawytscha) and steelhead trout (Oncorhynchus mykiss) smolts from March 1 to June 15, 1994. We PIT tagged and released 956 wild chinook salmon, 661 hatchery chinook salmon, 1,432 wild steelhead trout and 2,029 hatchery steelhead trout. Cumulative interrogation rates at mainstem Snake and Columbia River dams were 62.2% for wild chinook salmon, 45.2% for hatchery chinook salmon, 51.3% for wild steelhead trout, and 34.3% for hatchery steelhead trout

  9. Early migration and estuary stopover of introduced chinook salmon population in the Lapataia River Basin, southern Tierra del Fuego Island

    Science.gov (United States)

    Chalde, T.; Fernández, D. A.

    2017-12-01

    Established populations of chinook salmon (Oncorhynchus tshawytscha) have recently been reported in South America, at both Atlantic and Pacific basins. Several studies have evaluated different aspects of their life histories; however, little is known about the use of the estuaries by the juveniles of these populations. We examined spawning time, seaward migration timing, growth rate, scale patterns, diet, and geometric morphometric, contrasting the early life history during freshwater and estuary residence of a chinook population established in Lapataia Basin. Fall run spawning took place in March-April and the parr emerged in September. Two distinct seaward migration patterns were identified from sein net fishing records: one population segment migrating earlier to the estuary in October and a second group migrating later in February. The growth rate of fish captured at the estuary was significantly higher than the fish captured in freshwater. In addition, higher scale intercirculi distances were observed in estuary fish showing differences in growth rate. The feeding habitat in fish captured in both environments changed through time from bottom feeding to surface feeding and from significant diet overlap to no overlap. The morphology of the fish captured at the estuary was associated with the elongation of the caudal peduncle and a decrease in the condition factor index, both changes related to smolt transformation. The earlier migration and the higher growth rate of juveniles in the estuary together with fish of 1 + yo captured in this environment reveal that the estuary of Lapataia Basin is not only a stopover for the chinook salmon, but also a key habitat to reside and feed previous to the final seaward migration.

  10. Evaluation of Juvenile Salmonid Outmigration and Survival in the Lower Umatilla River Basin, Annual Report 2003-2006.

    Energy Technology Data Exchange (ETDEWEB)

    White, Tara

    2007-02-01

    This report summarizes activities conducted by the Oregon Department of Fish and Wildlife's Juvenile Outmigration and Survival M&E project in the Umatilla River subbasin between 2004-2006. Information is used to make informed decisions on hatchery effectiveness, natural production success, passage improvement and flow enhancement strategies. Data collected includes annual estimates of smolt abundance, migration timing, and survival, life history characteristics and productivity status and trends for spring and fall Chinook salmon, coho salmon and summer steelhead. Productivity data provided is the key subbasin scale measure of the effectiveness of salmon and steelhead restoration actions in the Umatilla River. Information is also used for regional planning and recovery efforts of Mid-Columbia River (MCR) ESA-listed summer steelhead. Monitoring is conducted via smolt trapping and PIT-tag interrogation at Three Mile Falls Dam. The Umatilla Juvenile Outmigration and Survival Project was established in 1994 to evaluate the success of management actions and fisheries restoration efforts in the Umatilla River Basin. Project objectives for the 2004-2006 period were to: (1) operate the PIT tag detection system at Three Mile Falls Dam (TMFD), (2) enhance provisional PIT-tag interrogation equipment at the east bank adult fish ladder, (3) monitor the migration timing, abundance and survival of naturally-produced juvenile salmonids and trends in natural production, (4) determine migration parameters and survival of hatchery-produced fish representing various rearing, acclimation and release strategies, (5) evaluate the relative survival between transported and non-transported fish, (6) monitor juvenile life history characteristics and evaluate trends over time, (7) investigate the effects of river, canal, fishway operations and environmental conditions on smolt migration and survival, (8) document the temporal distribution and diversity of resident fish species, and (9

  11. Development of a new method for the determination of residues of the neonictinoid insecticide imidacloprid in juvenile Chinook (Oncorhynchus tyshawytscha) using ELISA detection

    Science.gov (United States)

    Frew, John A.; Grue, Christian E.

    2012-01-01

    The neonicotinoid insecticide imidacloprid (IMI) has been proposed as an alternative to carbaryl for controlling indigenous burrowing shrimp on commercial oyster beds in Willapa Bay and Grays Harbor, Washington. A focus of concern over the use of this insecticide in an aquatic environment is the potential for adverse effects from exposure to non-target species residing in the Bay, such as juvenile Chinook (Oncorhynchus tshawytscha) and cutthroat trout (O. clarki). Federal registration and State permiting approval for the use of IMI will require confirmation that the compound does not adversely impact these salmonids following field applications. This will necessitate an environmental monitoring program for evaluating exposure in salmonids following the treatment of beds. Quantification of IMI residues in tissue can be used for determining salmonid exposure to the insecticide. Refinement of an existing protocol using liquid-chromatography mass spectrometry (LC-MS) detection would provide the low limits of quantification, given the relatively small tissue sample sizes, necessary for determining exposure in individual fish. Such an approach would not be viable for the environmental monitoring effort in Willapa Bay and Grays Harbor due to the high costs associated with running multiple analyses, however. A new sample preparation protocol was developed for use with a commercially available enzyme-linked immunosorbent assay (ELISA) for the quantification of IMI, thereby providing a low-cost alternative to LC-MS for environmental monitoring in Willapa Bay and Grays Harbor. Extraction of the analyte from the salmonid brain tissue was achieved by Dounce homogenization in 4.0 mL of 20.0 mM Triton X-100, followed by a 6 h incubation at 50–55 °C. Centrifugal ultrafiltration and reversed phase solid phase extraction were used for sample cleanup. The limit of quantification for an average 77.0 mg whole brain sample was calculated at 18.2 μg kg-1 (ppb) with an average

  12. Distribution and Joint Fish-Tag Survival of Juvenile Chinook Salmon Migrating through the Sacramento-San Joaquin River Delta, California, 2008

    Science.gov (United States)

    Holbrook, Christopher M.; Perry, Russell W.; Adams, Noah S.

    2009-01-01

    Acoustic telemetry was used to obtain the movement histories of 915 juvenile fall-run Chinook salmon (Oncorhynchus tshawytscha) through the lower San Joaquin River and Sacramento-San Joaquin Delta, California, in 2008. Data were analyzed within a release-recapture framework to estimate survival, route distribution, and detection probabilities among three migration pathways through the Delta. The pathways included the primary route through the San Joaquin River and two less direct routes (Old River and Turner Cut). Strong inferences about survival were limited by premature tag failure, but estimates of fish distribution among migration routes should be unaffected by tag failure. Based on tag failure tests (N = 66 tags), we estimated that only 55-78 percent of the tags used in this study were still functioning when the last fish was detected exiting the study area 15 days after release. Due to premature tag failure, our 'survival' estimates represent the joint probability that both the tag and fish survived, not just survival of fish. Low estimates of fish-tag survival could have been caused by fish mortality or fish travel times that exceeded the life of the tag, but we were unable to differentiate between the two. Fish-tag survival through the Delta (from Durham Ferry to Chipps Island by all routes) ranged from 0.05 +or- 0.01 (SE) to 0.06 +or- 0.01 between the two weekly release groups. Among the three migration routes, fish that remained in the San Joaquin River exhibited the highest joint fish-tag survival (0.09 +or- 0.02) in both weeks, but only 22-33 percent of tagged fish used this route, depending on the week of release. Only 4-10 percent (depending on week) of tagged fish traveled through Turner Cut, but no tagged fish that used this route were detected exiting the Delta. Most fish (63-68 percent, depending on week of release) migrated through Old River, but fish-tag survival through this route (0.05 +or- 0.01) was only about one-half that of fish that

  13. Crims Island-Restoration and monitoring of juvenile salmon rearing habitat in the Columbia River Estuary, Oregon, 2004-10

    Science.gov (United States)

    Haskell, Craig A.; Tiffan, Kenneth F.

    2011-01-01

    Under the 2004 Biological Opinion for operation of the Federal Columbia River Power System released by the National Marine Fisheries Service, the U.S. Army Corps of Engineers (USACE), the Bonneville Power Administration (BPA), and the Bureau of Reclamation (Reclamation) were directed to restore more than 4,047 hectares (10,000 acres) of tidal marsh in the Columbia River estuary by 2010. Restoration of Crims Island near Longview, Washington, restored 38.1 hectares of marsh and swamp in the tidal freshwater portion of the lower Columbia River. The goal of the restoration was to improve habitat for juveniles of Endangered Species Act (ESA)-listed salmon stocks and ESA-listed Columbian white-tailed deer. The U.S. Geological Survey (USGS) monitored and evaluated the fisheries and aquatic resources at Crims Island in 2004 prior to restoration (pre-restoration), which began in August 2004, and then post-restoration from 2006 to 2009. This report summarizes pre- and post-restoration monitoring data used by the USGS to evaluate project success. We evaluated project success by examining the interaction between juvenile salmon and a suite of broader ecological measures including sediments, plants, and invertebrates and their response to large-scale habitat alteration. The restoration action at Crims Island from August 2004 to September 2005 was to excavate a 0.6-meter layer of soil and dig channels in the interior of the island to remove reed canary grass and increase habitat area and tidal exchange. The excavation created 34.4 hectares of tidal emergent marsh where none previously existed and 3.7 hectares of intertidal and subtidal channels. Cattle that had grazed the island for more than 50 years were relocated. Soil excavated from the site was deposited in upland areas next to the tidal marsh to establish an upland forest. Excavation deepened and widened an existing T-shaped channel to increase tidal flow to the interior of the island. The western arm of the existing 'T

  14. Food habits of Juvenile American Shad and dynamics of zooplankton in the lower Columbia River

    Science.gov (United States)

    Haskell, C.A.; Tiffan, K.F.; Rondorf, D.W.

    2006-01-01

    As many as 2.4 million adult American shad annually pass John Day Dam, Columbia River to spawn upriver, yet food web interactions of juvenile shad rearing in John Day Reservoir are unexplored. We collected zooplankton and conducted mid-water trawls in McNary (June-July) and John Day reservoirs (August-November) from 1994 through 1996 during the outmigration of subyearling American shad and Chinook salmon. Juvenile American shad were abundant and represented over 98% of the trawl catch in late summer. The five major taxa collected in zooplankton tows were Bosmina longirostris, Daphnia, cyclopoid cope-pods, rotifers, and calanoid copepods. We evaluated total crustacean zooplankton abundance and Daphnia biomass in relation to water temperature, flow, depth, diel period, and cross-sectional location using multiple regression. Differences in zooplankton abundance were largely due to differences in water temperature and flow. Spatial variation in total zooplankton abundance was observed in McNary Reservoir, but not in John Day Reservoir. Juvenile American shad generally fed on numerically abundant prey, despite being less preferred than larger bodied zooplankton. A decrease in cladoceran abundance and size in August coupled with large percentages of Daphnia in juvenile American shad stomachs indicated heavy planktivory. Smaller juvenile American shad primarily fed on Daphnia in August, but switched to more evasive copepods as the mean size of fish increased and Daphnia abundance declined. Because Daphnia are particularly important prey items for subyearling Chinook salmon in mainstem reservoirs in mid to late summer, alterations in the cladoceran food base is of concern for the management of outmigrating salmonids and other Columbia River fishes. ?? 2006 by the Northwest Scientific Association. All rights reserved.

  15. Migratory behavior of Chinook salmon microjacks reared in artificial and natural environments

    Science.gov (United States)

    Hayes, Michael C.; Rubin, Steve P.; Reisenbichler, Reginald R.; Wetzel, Lisa A.

    2015-01-01

    Emigration was evaluated for hatchery Chinook salmon (Oncorhynchus tshawytscha) microjacks (age-1 mature males) and immature parr (age-1 juveniles, both sexes) released from both a hatchery and a natural stream (fish released as fry). In the hatchery, volitional releases (∼14 to 15 months post-fertilization) to an adjacent river occurred during October–November. The hatchery release was monitored by using an experimental volitional release that diverted fish to a neighboring raceway. Fish captured during the experimental release (range 361–4,321 volitional migrants) were made up of microjacks and immature parr. Microjacks were found only in the migrant samples, averaged 18% (range 0–52%) of all migrants, and were rarely found in non-migrant samples. In comparison, immature parr were common in both the migrant and non-migrant samples. Microjacks were significantly longer (9%), heavier (36%), and had a greater condition factor (16%) than migrant immature parr (P<0.01). In addition, they differed significantly (P<0.01) from non-migrant immature parr; 10% longer, 44% heavier and 14% greater condition factor. In natural streams, microjacks were captured significantly earlier (P<0.01) than immature parr during the late-summer/fall migration and comprised 9–89% of all fish captured. Microjacks have the potential to contribute to natural spawning populations but can also represent a loss of productivity to hatchery programs or create negative effects by introducing non-native genes to wild populations and should be monitored by fishery managers.

  16. Spring outmigration of wild and hatchery chinook salmon and steelhead trout smolts from the Imnaha River, Oregon, February 23--June 24, 1996. Annual report 1996

    International Nuclear Information System (INIS)

    Blendon, M.L.; Rocklage, S.J.; Kucera, P.A.

    1997-04-01

    For the third consecutive year, the Nez Perce Tribe, in conjunction with the Fish Passage Center, participated in the smolt monitoring program in the Imnaha River. A rotary screw trap was used to collect emigrating wild and hatchery chinook salmon (Oncorhynchus tshawytscha) and steelhead trout (Oncorhynchus mykiss) smolts from February 23 to June 24, 1996. A total of 1,797 wild chinook salmon, 11,896 hatchery chinook salmon, 3,786 wild steelhead trout, and 31,094 hatchery steelhead trout smolts were captured during outmigration studies on the Imnaha River in 1996. Mortality associated with trapping, handling and tagging was low, being 1.4% for wild chinook, 0.18% for hatchery chinook, 0.21% for wild steelhead and 0.28% for hatchery steelhead trout smolts

  17. Comparative Performance of Acoustic-tagged and PIT-tagged Juvenile Salmonids

    Energy Technology Data Exchange (ETDEWEB)

    Hockersmith, Eric E.; Brown, Richard S.; Liedtke, Theresa L.

    2008-02-01

    Numerous research tools and technologies are currently being used to evaluate fish passage and survival to determine the impacts of the Federal Columbia River Power System (FCRPS) on endangered and threatened juvenile salmonids, including PIT tags, balloon tags, hydroacoustic evaluations, radio telemetry, and acoustic telemetry. Each has advantages and disadvantages, but options are restricted in some situations because of limited capabilities of a specific technology, lack of detection capability downstream, or availability of adequate numbers of fish. However, there remains concern about the comparative effects of the tag or the tagging procedure on fish performance. The recently developed Juvenile Salmonid Acoustic Telemetry System (JSATS) acoustic transmitter is the smallest active acoustic tag currently available. The goal of this study was to determine whether fish tagged with the JSATS acoustic-telemetry tag can provide unbiased estimates of passage behavior and survival within the performance life of the tag. We conducted both field and laboratory studies to assess tag effects. For the field evaluation we released a total of 996 acoustic-tagged fish in conjunction with 21,026 PIT-tagged fish into the tailrace of Lower Granite Dam on 6 and 13 May. Travel times between release and downstream dams were not significantly different for the majority of the reaches between acoustic-tagged and PIT-tagged fish. In addition to the field evaluation, a series of laboratory experiments were conducted to determine if growth and survival of juvenile Chinook salmon surgically implanted with acoustic transmitters is different than untagged or PIT tagged juvenile Chinook salmon. Only yearling fish with integrated and non-integrated transmitters experienced mortalities, and these were low (<4.5%). Mortality among sub-yearling control and PIT-tag treatments ranged up to 7.7% while integrated and non-integrated treatments had slightly higher rates (up to 8.3% and 7

  18. Tucannon River Spring Chinook Salmon Captive Broodstock Program, Annual Report 2001.

    Energy Technology Data Exchange (ETDEWEB)

    Gallinat, Michael P.; Bumgarner, Joseph D.

    2002-05-01

    This report summarizes the objectives, tasks, and accomplishments of the Tucannon River spring chinook captive brood during 2001. The WDFW initiated a captive broodstock program in 1997. The overall goal of the Tucannon River captive broodstock program is for the short-term, and eventually long-term, rebuilding of the Tucannon River spring chinook salmon run, with the hope that natural production will sustain itself. The project goal is to rear captive salmon selected from the supplementation program to adults, spawn them, rear their progeny, and release approximately 150,000 smolts annually into the Tucannon River between 2003-2007. These smolt releases, in combination with the current hatchery supplementation program (132,000 smolts) and wild production, are expected to produce 600-700 returning adult spring chinook to the Tucannon River each year from 2005-2010. The captive broodstock program will collect fish from five (1997-2001) brood years (BY). The captive broodstock program was initiated with 1997 BY juveniles, and the 2001 BY fish have been selected. As of Jan 1, 2002, WDFW has 17 BY 1997, 159 BY 1998, 316 BY 1999, 448 BY 2000, and approximately 1,200 BY 2001 fish on hand at LFH. The 2001 eggtake from the 1997 brood year (Age 4) was 233,894 eggs from 125 ripe females. Egg survival was 69%. Mean fecundity based on the 105 fully spawned females was 1,990 eggs/female. The 2001 eggtake from the 1998 brood year (Age 3) was 47,409 eggs from 41 ripe females. Egg survival was 81%. Mean fecundity based on the 39 fully spawned females was 1,160 eggs/female. The total 2001 eggtake from the captive brood program was 281,303 eggs. As of May 1, 2002 we have 171,495 BY 2001 captive brood progeny on hand. A total of 20,592 excess fish were marked as parr (AD/CWT) and will be released during early May, 2002 into the Tucannon River (rkm 40-45). This will allow us to stay within our maximum allowed number (150,000) of smolts released. During April 2002, WDFW volitionally

  19. Floodplain farm fields provide novel rearing habitat for Chinook salmon.

    Directory of Open Access Journals (Sweden)

    Jacob V E Katz

    Full Text Available When inundated by floodwaters, river floodplains provide critical habitat for many species of fish and wildlife, but many river valleys have been extensively leveed and floodplain wetlands drained for flood control and agriculture. In the Central Valley of California, USA, where less than 5% of floodplain wetland habitats remain, a critical conservation question is how can farmland occupying the historical floodplains be better managed to improve benefits for native fish and wildlife. In this study fields on the Sacramento River floodplain were intentionally flooded after the autumn rice harvest to determine if they could provide shallow-water rearing habitat for Sacramento River fall-run Chinook salmon (Oncorhynchus tshawytscha. Approximately 10,000 juvenile fish (ca. 48 mm, 1.1 g were reared on two hectares for six weeks (Feb-March between the fall harvest and spring planting. A subsample of the fish were uniquely tagged to allow tracking of individual growth rates (average 0.76 mm/day which were among the highest recorded in fresh water in California. Zooplankton sampled from the water column of the fields were compared to fish stomach contents. The primary prey was zooplankton in the order Cladocera, commonly called water fleas. The compatibility, on the same farm fields, of summer crop production and native fish habitat during winter demonstrates that land management combining agriculture with conservation ecology may benefit recovery of native fish species, such as endangered Chinook salmon.

  20. Spring outmigration of wild and hatchery chinook salmon and steelhead trout smolts from the Imnaha River, Oregon, February 23--June 24, 1996. Annual report 1996; ANNUAL

    International Nuclear Information System (INIS)

    Blendon, M.L.; Rocklage, S.J.; Kucera, P.A.

    1997-01-01

    For the third consecutive year, the Nez Perce Tribe, in conjunction with the Fish Passage Center, participated in the smolt monitoring program in the Imnaha River. A rotary screw trap was used to collect emigrating wild and hatchery chinook salmon (Oncorhynchus tshawytscha) and steelhead trout (Oncorhynchus mykiss) smolts from February 23 to June 24, 1996. A total of 1,797 wild chinook salmon, 11,896 hatchery chinook salmon, 3,786 wild steelhead trout, and 31,094 hatchery steelhead trout smolts were captured during outmigration studies on the Imnaha River in 1996. Mortality associated with trapping, handling and tagging was low, being 1.4% for wild chinook, 0.18% for hatchery chinook, 0.21% for wild steelhead and 0.28% for hatchery steelhead trout smolts

  1. Tucannon River Spring Chinook Salmon Captive Brood Program, FY 2000 Annual Report.

    Energy Technology Data Exchange (ETDEWEB)

    Bumgarner, Joseph D.; Gallinat, Michael P.

    2001-06-01

    This report summarizes the objectives, tasks, and accomplishments of the Tucannon River spring chinook captive brood program from program inception (1997) through April 2001. The WDFW initiated a captive broodstock program in 1997. The overall goal of the Tucannon River captive broodstock program is for the short-term, and eventually long-term, rebuilding of the Tucannon River spring chinook salmon run, with the hope that natural production will eventually sustain itself. The project goal is to rear captive salmon to adults, spawn them, rear their progeny, and release approximately 150,000 smolts annually into the Tucannon River between 2003-2007. These smolt releases, in combination with the current hatchery supplementation program (132,000 smolts), and wild production, is expected to produce 600-700 returning adult spring chinook to the Tucannon River each year from 2005-2010. The Master Plan, Environmental Assessment, and most facility modifications at LFH were completed for the Tucannon River spring chinook captive broodstock program during FY2000 and FY2001. DNA samples collected since 1997 have been sent to the WDFW genetics lab in Olympia for baseline DNA analysis. Results from the genetic analysis are not available at this time. The captive broodstock program is planned to collect fish from five (1997-2001) brood years (BY). The captive broodstock program was initiated with 1997 BY juveniles, and the 2000 BY fish have been selected. As of April 30, 2001, WDFW has 172 BY 1997, 262 BY 1998, 407 BY 1999, and approximately 1,190 BY 2000 fish on hand at LFH. Twelve of 13 mature 97 BY females were spawned in 2000. Total eggtake was 14,813. Mean fecundity was 1,298 eggs/female based on 11 fully spawned females. Egg survival to eye-up was 47.3%. This low survival was expected for three year old captive broodstock females. As of April 30, 2001, WDFW has 4,211 captive broodstock progeny on hand. These fish will be tagged with blank wire tag without fin clips and

  2. Reproductive Ecology of Yakima River Hatchery and Wild Spring Chinook; Yakima/Klickitat Fisheries Project Monitoring and Evaluation, 2004-2005 Annual Report.

    Energy Technology Data Exchange (ETDEWEB)

    Knudsen, Curtis M. (Oncorh Consulting, Olympia, WA); Schroder, Steven L. (Washington Department of Fish and Wildlife, Olympia, WA); Johnston, Mark V. (yakama Nation, Toppenish, WA)

    2005-05-01

    This report is intended to satisfy two concurrent needs: (1) provide a contract deliverable from Oncorh Consulting to the Washington Department of Fish and Wildlife (WDFW), with emphasis on identification of salient results of value to ongoing Yakima/Klickitat Fisheries Project (YKFP) planning and (2) summarize results of research that have broader scientific relevance. This is the fourth in a series of reports that address reproductive ecological research and monitoring of spring chinook populations in the Yakima River basin. This annual report summarizes data collected between April 1, 2004 and March 31, 2005 and includes analyses of historical baseline data, as well. Supplementation success in the Yakima Klickitat Fishery Project's (YKFP) spring chinook (Oncorhynchus tshawytscha) program is defined as increasing natural production and harvest opportunities, while keeping adverse ecological interactions and genetic impacts within acceptable bounds (Busack et al. 1997). Within this context demographics, phenotypic traits, and reproductive ecology have significance because they directly affect natural productivity. In addition, significant changes in locally adapted traits due to hatchery influence, i.e. domestication, would likely be maladaptive resulting in reduced population productivity and fitness (Taylor 1991; Hard 1995). Thus, there is a need to study demographic and phenotypic traits in the YKFP in order to understand hatchery and wild population productivity, reproductive ecology, and the effects of domestication (Busack et al. 1997). Tracking trends in these traits over time is also a critical aspect of domestication monitoring (Busack et al. 2004) to determine whether trait changes have a genetic component and, if so, are they within acceptable limits. The first chapter of this report compares first generation hatchery and wild upper Yakima River spring chinook returns over a suite of life-history, phenotypic and demographic traits. The second

  3. Ecology of Juvenile Salmon in Shallow Tidal Freshwater Habitats in the Vicinity of the Sandy River Delta, Lower Columbia River, 2008 Annual Report.

    Energy Technology Data Exchange (ETDEWEB)

    Sather, NK; Johnson, GE; Storch, AJ [Pacific Northwest National Laboratory

    2009-07-06

    River delta. (2) Characterize the fish community and juvenile salmon migration, including species composition, length-frequency distribution, density (number/m{sup 2}), and temporal and spatial distributions in the vicinity of the Sandy River delta in the lower Columbia River and estuary (LCRE). (3) Determine the stock of origin for juvenile Chinook salmon (Oncorhynchus tshawytscha) captured at sampling sites through genetic identification. (4) Characterize the diets of juvenile Chinook and coho (O. kisutch) salmon captured within the study area. (5) Estimate run timing, residence times, and migration pathways for acoustic-tagged fish in the study area. (6) Conduct a baseline evaluation of the potential restoration to reconnect the old Sandy River channel with the delta. (7) Apply fish density data to initiate a design for a juvenile salmon monitoring program for beach habitats within the tidal freshwater segment of the LCRE (river kilometer 56-234).

  4. John Day Basin Spring Chinook Salmon Escapement and Productivity Monitoring; Fish Research Project Oregon, 2000-2001 Annual Report.

    Energy Technology Data Exchange (ETDEWEB)

    Carmichael, Richard W.; Claire, Glenda M.; Seals, Jason

    2002-01-01

    The four objectives of this report are: (1) Estimate annual spawner escapement and number of spring chinook salmon redds in the John Day River basin; (2) Determine sex ratio, age composition, length-at-age of spawners, and proportion of natural spawners that are hatchery origin strays; (3) Determine adequacy of historic index surveys for indexing spawner abundance and for detecting changes in spawner distribution through time; and (4) Estimate smolt-to-adult survival for spring chinook salmon emigrating from the John Day River basin.

  5. Effects of Hyporheic Exchange Flows on Egg Pocket Water Temperature in Snake River Fall Chinook Salmon Spawning Areas

    Energy Technology Data Exchange (ETDEWEB)

    Hanrahan, Timothy P.; Geist, David R.; Arntzen, Evan V.; Abernethy, Cary S.

    2004-09-24

    The development of the Snake River hydroelectric system has affected fall chinook salmon smolts by shifting their migration timing to a period when downstream reservoir conditions are unfavorable for survival. Subsequent to the Snake River chinook salmon fall-run Evolutionary Significant Unit being listed as Threatened under the Endangered Species Act, recovery planning has included changes in hydrosystem operations to improve water temperature and flow conditions during the juvenile chinook salmon summer migration period. In light of the limited water supplies from the Dworshak reservoir for summer flow augmentation, and the associated uncertainties regarding benefits to migrating fall chinook salmon smolts, additional approaches for improved smolt survival need to be evaluated. This report describes research conducted by PNNL that evaluated relationships among river discharge, hyporheic zone characteristics, and egg pocket water temperature in Snake River fall chinook salmon spawning areas. The potential for improved survival would be gained by increasing the rate at which early life history events proceed (i.e., incubation and emergence), thereby allowing smolts to migrate through downstream reservoirs during early- to mid-summer when river conditions are more favorable for survival. PNNL implemented this research project throughout 160 km of the Hells Canyon Reach (HCR) of the Snake River. The hydrologic regime during the 2002?2003 sampling period exhibited one of the lowest, most stable daily discharge patterns of any of the previous 12 water years. The vertical hydraulic gradients (VHG) between the river and the riverbed suggested the potential for predominantly small magnitude vertical exchange. The VHG also showed little relationship to changes in river discharge at most sites. Despite the relatively small vertical hydraulic gradients at most sites, the results from the numerical modeling of riverbed pore water velocity and hyporheic zone temperatures

  6. Pre-Restoration Habitat Use by Chinook Salmon in the Nisqually Estuary Using Otolith Analysis: An Additional Year

    Science.gov (United States)

    Lind-Null, Angie; Larsen, Kim

    2009-01-01

    The Nisqually Fall Chinook population is one of 27 stocks in the Puget Sound evolutionarily significant unit listed as threatened under the Federal Endangered Species Act (ESA). Preservation and extensive restoration of the Nisqually delta ecosystem is currently taking place to assist in recovery of the stock as juvenile Fall Chinook salmon are dependent upon the estuary. A pre-restoration baseline that includes characterization of life history types, estuary residence times, growth rates, and habitat use is needed to evaluate the potential response of hatchery and natural origin Chinook salmon to restoration efforts and determine restoration success. Otolith analysis was selected to examine Chinook salmon life history, growth, and residence in the Nisqually Estuary. Previously funded work on wild samples collected in 2004 established the growth rate and length of residence associated with various habitats. The purpose of the current study is to build on the previous work by incorporating otolith microstructure analysis from 2005 (second sampling year), to verify findings from 2004, and to evaluate between-year variation in otolith microstructure. Our results from this second year of analysis indicated no inter-annual variation in the appearance of the tidal delta check (TDCK) and delta-flats check (DFCK). However, a new life history type (fry migrant) was observed on samples collected in 2005. Fish caught in the tidal delta regardless of capture date spent an average of 17 days in the tidal delta. There was a corresponding increase in growth rate as the fish migrated from freshwater (FW) to tidal delta to nearshore (NS) habitats. Fish grew 33 percent faster in the tidal delta than in FW habitat and slightly faster (14 percent) in the delta flats (DF) habitat compared to the tidal delta.

  7. Yakima River Spring Chinook Enhancement Study, 1991 Final Report.

    Energy Technology Data Exchange (ETDEWEB)

    Fast, David E.

    1991-05-01

    The population of Yakima River spring chinook salmon (Oncorhynchus tschawytscha) has been drastically reduced from historic levels reported to be as high as 250,000 adults (Smoker 1956). This reduction is the result of a series of problems including mainstem Columbia dams, dams within the Yakima itself, severely reduced flows due to irrigation diversions, outmigrant loss in irrigation canals, increased thermal and sediment loading, and overfishing. Despite these problems, the return of spring chinook to the Yakima River has continued at levels ranging from 854 to 9,442 adults since 1958. In October 1982, the Bonneville Power Administration contracted the Yakima Indian Nation to develop methods to increase production of spring chinook in the Yakima system. The Yakima Nation's current enhancement policy attempts to maintain the genetic integrity of the spring chinook stock native to the Yakima Basin. Relatively small numbers of hatchery fish have been released into the basin in past years. The goal of this study was to develop data that will be used to present management alternatives for Yakima River spring chinook. A major objective of this study is to determine the distribution, abundance and survival of wild Yakima River spring chinook. The second major objective of this study is to determine the relative effectiveness of different methods of hatchery supplementation. The last three major objectives of the study are to locate and define areas in the watershed that may be used for the rearing of spring chinook; to define strategies for enhancing natural production of spring chinook in the Yakima River; and to determine the physical and biological limitations on production within the system. 47 refs., 89 figs., 67 tabs.

  8. Synthesis of juvenile lamprey migration and passage research and monitoring at Columbia and Snake River Dams

    Science.gov (United States)

    Mesa, Matthew G.; Weiland, Lisa K.; Christiansen, Helena E.

    2016-01-01

    We compiled and summarized previous sources of data and research results related to the presence, numbers, and migration timing characteristics of juvenile (eyed macropthalmia) and larval (ammocoetes) Pacific lamprey Entosphenus tridentatus, in the Columbia River basin (CRB). Included were data from various screw trap collections, data from historic fyke net studies, catch records of lampreys at JBS facilities, turbine cooling water strainer collections, and information on the occurrence of lampreys in the diets of avian and piscine predators. We identified key data gaps and uncertainties that should be addressed in a juvenile lamprey passage research program. The goal of this work was to summarize information from disparate sources so that managers can use it to prioritize and guide future research and monitoring efforts related to the downstream migration of juvenile Pacific lamprey within the CRB. A common finding in all datasets was the high level of variation observed for CRB lamprey in numbers present, timing and spatial distribution. This will make developing monitoring programs to accurately characterize lamprey migrations and passage more challenging. Primary data gaps centered around our uncertainty on the numbers of juvenile and larval present in the system which affects the ability to assign risk to passage conditions and prioritize management actions. Recommendations include developing standardized monitoring methods, such as at juvenile bypass systems (JBS’s), to better document numbers and timing of lamprey migrations at dams, and use biotelemetry tracking techniques to estimate survival potentials for different migration histories.

  9. Egg to Fry - Chinook Egg-to-Fry Survival

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Few estimates of Chinook egg-to-fry survival exist despite the fact that this is thought to be one of the life stages limiting production of many listed Chinook...

  10. Performance Assessment of Bi-Directional Knotless Tissue-Closure Devices in Juvenile Chinook Salmon Surgically Implanted with Acoustic Transmitters, 2009 - Final Report

    Energy Technology Data Exchange (ETDEWEB)

    Woodley, Christa M.; Wagner, Katie A.; Bryson, Amanda J.

    2012-11-09

    The purpose of this report is to assess the performance of bi-directional knotless tissue-closure devices for use in tagging juvenile salmon. This study is part of an ongoing effort at Pacific Northwest National Laboratory (PNNL) to reduce unwanted effects of tags and tagging procedures on the survival and behavior of juvenile salmonids, by assessing and refining suturing techniques, suture materials, and tag burdens. The objective of this study was to compare the performance of the knotless (barbed) suture, using three different suture patterns (treatments: 6-point, Wide “N”, Wide “N” Knot), to the current method of suturing (MonocrylTM monofilament, discontinuous sutures with a 2×2×2×2 knot) used in monitoring and research programs with a novel antiseptic barrier on the wound (“Second Skin”).

  11. Tucannon River spring chinook salmon captive brood program, FY 2000 annual report; ANNUAL

    International Nuclear Information System (INIS)

    Bumgarner, Joseph D.; Gallinat, Michael P.

    2001-01-01

    This report summarizes the objectives, tasks, and accomplishments of the Tucannon River spring chinook captive brood program from program inception (1997) through April 2001. The WDFW initiated a captive broodstock program in 1997. The overall goal of the Tucannon River captive broodstock program is for the short-term, and eventually long-term, rebuilding of the Tucannon River spring chinook salmon run, with the hope that natural production will eventually sustain itself. The project goal is to rear captive salmon to adults, spawn them, rear their progeny, and release approximately 150,000 smolts annually into the Tucannon River between 2003-2007. These smolt releases, in combination with the current hatchery supplementation program (132,000 smolts), and wild production, is expected to produce 600-700 returning adult spring chinook to the Tucannon River each year from 2005-2010. The Master Plan, Environmental Assessment, and most facility modifications at LFH were completed for the Tucannon River spring chinook captive broodstock program during FY2000 and FY2001. DNA samples collected since 1997 have been sent to the WDFW genetics lab in Olympia for baseline DNA analysis. Results from the genetic analysis are not available at this time. The captive broodstock program is planned to collect fish from five (1997-2001) brood years (BY). The captive broodstock program was initiated with 1997 BY juveniles, and the 2000 BY fish have been selected. As of April 30, 2001, WDFW has 172 BY 1997, 262 BY 1998, 407 BY 1999, and approximately 1,190 BY 2000 fish on hand at LFH. Twelve of 13 mature 97 BY females were spawned in 2000. Total eggtake was 14,813. Mean fecundity was 1,298 eggs/female based on 11 fully spawned females. Egg survival to eye-up was 47.3%. This low survival was expected for three year old captive broodstock females. As of April 30, 2001, WDFW has 4,211 captive broodstock progeny on hand. These fish will be tagged with blank wire tag without fin clips and

  12. Ecology of Juvenile Salmonids in Shallow Tidal Freshwater Habitats in the Vicinity of the Sandy River Delta, Lower Columbia River, 2007 Annual Report.

    Energy Technology Data Exchange (ETDEWEB)

    Sobocinski, Kathryn; Johnson, Gary; Sather, Nichole [Pacific Northwest National Laboratory

    2008-03-17

    This document is the first annual report for the study titled 'Ecology of Juvenile Salmonids in Shallow Tidal Freshwater Habitats in the Vicinity of the Sandy River Delta in the Lower Columbia River'. Hereafter, we refer to this research as the Tidal Freshwater Monitoring (TFM) Study. The study is part of the research, monitoring, and evaluation effort developed by the Action Agencies (Bonneville Power Administration, U.S. Army Corps of Engineers, U.S. Bureau of Reclamation) in response to obligations arising from the Endangered Species Act as a result of operation of the Federal Columbia River Power System (FCRPS). The project is performed under the auspices of the Northwest Power and Conservation Council's Columbia Basin Fish and Wildlife Program. The goal of the 2007-2009 Tidal Freshwater Monitoring Study is to answer the following questions: In what types of habitats within the tidal freshwater area of the lower Columbia River and estuary (LCRE; Figure 1) are yearling and subyearling salmonids found, when are they present, and under what environmental conditions?1 And, what is the ecological importance2 of shallow (0-5 m) tidal freshwater habitats to the recovery of Upper Columbia River spring Chinook salmon and steelhead and Snake River fall Chinook salmon? Research in 2007 focused mainly on the first question, with fish stock identification data providing some indication of Chinook salmon presence at the variety of habitat types sampled. The objectives and sub-objectives for the 2007 study were as follows: (1) Habitat and Fish Community Characteristics-Provide basic data on habitat and fish community characteristics for yearling and subyearling salmonids at selected sites in the tidal freshwater reach in the vicinity of the Sandy River delta. (1a) Characterize vegetation assemblage percent cover, conventional water quality, substrate composition, and beach slope at each of six sampling sites in various tidal freshwater habitat types. (1b

  13. Spring outmigration of wild and hatchery chinook salmon and steelhead trout smolts from the Imnaha River, Oregon, February 6, 1995--June 20, 1995

    International Nuclear Information System (INIS)

    Blenden, M.L.; Osborne, R.S.; Kucera, P.A.

    1996-01-01

    For the second consecutive year, the Nez Perce Tribe, in conjunction with the Fish Passage Center, participated in the smolt monitoring program in the Imnaha River. A rotary screw trap was used to collect emigrating wild and hatchery chinook salmon (Oncorhynchus tshawytscha) and steelhead trout (Oncorhynchus mykiss) smolts from February 6 to June 20, 1995. We PIT tagged and released 421 wild chinook salmon smolts, 747 hatchery chinook salmon smolts (445 HxW and 302 HxH), 227 wild steelhead trout smolts and 1,296 hatchery steelhead trout smolts. Cumulative interrogation rates at mainstem Snake and Columbia River dams were 78.4% for wild chinook salmon, 58.9% for hatchery chinook salmon (HxW), 56.6% for hatchery chinook salmon (HxH), 76.2% for wild steelhead trout, and 69.2% for hatchery steelhead trout. Peak outmigration of NPT tagged wild Imnaha River chinook salmon smolts occurred from early to mid-May at Lower Granite, Little Goose, and Lower Monumental Dams. Median and 90% passage dates for wild chinook salmon smolts at Lower Granite Dam were May 1 and May 11, respectively. Continuous spill at Lower Granite Dam was initiated on May 3 and lasted for 51 days. The 90% passage date of wild chinook salmon smolts at Lower Granite Dam (May 11) preceded peak Snake River and Lower Granite (June 6) flows by 26 days. Although hatchery chinook salmon exhibited a shorter outmigration period through the Snake River than their wild counterparts, peak arrival for both groups occurred at approximately the same time. Median and 90% passage dates at Lower Granite Dam for other PIT tagged groups were: hatchery chinook salmon (NPT-HxW) - May 2 and May 13; hatchery chinook salmon (FPC-HxH) - May 8 and May 15; wild steelhead trout - May 2 and May 9; and hatchery steelhead trout (NPT and FPC) - May 31 and June 16. Hatchery steelhead trout displayed small peaks in arrival timing at Lower Granite and Little Goose Dams in mid-May to mid-June

  14. Physiological development and vulnerability to Ceratomyxa shasta of fall-run Chinook Salmon in the Upper Klamath River Watershed

    Science.gov (United States)

    Maule, Alec G.; Vanderkooi, Scott P.; Hamilton, John B; Stocking , Richard; Bartholomew, Jerri

    2009-01-01

    We evaluated a stock for restoring runs of fall Chinook salmon Oncorhynchus tshawytscha in the Upper Klamath River basin by monitoring its development in Iron Gate Hatchery and in net-pens in the Williamson River and Upper Klamath Lake in Oregon. We transferred age-1 hatchery fall Chinook salmon to net-pens in October 2005 and age-0 fall Chinook salmon in May 2006. Indices of smolt development were assessed in the hatchery and after 3 and 14 d in net-pens. Based on gill Na+, K+-ATPase activity and plasma thyroxine (T4) concentration, age-1 Chinook salmon were not developing smolt characteristics in the hatchery during October. Fish transferred to the river or lake had increased plasma cortisol in response to stress and increased T4 accompanying the change in water, but they did not have altered development. Variables in the age-0 Chinook salmon indicated that the fish in the hatchery were smolting. The fish in the river net-pens lost mass and had gill ATPase activity similar to that of the fish in the hatchery, whereas the fish transferred to the lake gained mass and length, had reduced condition factor, and had higher gill ATPase than the fish in the river. These results, along with environmental variables, suggest that the conditions in the lake were more conducive to smoltification than those in the river and thus accelerated the development of Chinook salmon. No Chinook salmon in the hatchery or either net-pen became infected with the myxosporean parasite Ceratomyxa shasta (the presence of which in the river and lake was confirmed) during either trial or when held for 90 d after a 10-d exposure in net-pens (2006 group). We concluded that that there is little evidence of physiological impairment or significant upriver vulnerability to C. shasta among this stock of fall Chinook salmon that would preclude them from being reintroduced into the Upper Klamath River basin.

  15. Lower Granite Dam Smolt Monitoring Program, 2004-2005 Annual Report.

    Energy Technology Data Exchange (ETDEWEB)

    Mensik, Fred; Rapp, Shawn; Ross Doug (Washington Department of Fish and Wildlife, Olympia, WA)

    2005-11-01

    The 2004 fish collection season at Lower Granite Dam (LGR) was characterized by above average water temperatures, below average flows and spill, low levels of debris. The number of smolts collected for all species groups (with the exception of clipped and unclipped sockeye/kokanee) exceeded all previous collection numbers. With the continued release of unclipped supplementation chinook, steelhead and sockeye above LGR, we can not accurately distinguish wild chinook, wild steelhead and wild sockeye/kokanee from hatchery reared unclipped chinook and sockeye/kokanee in the sample. Wild steelhead can be identified from hatchery steelhead by the eroded dorsal and pectoral fins exhibited on unclipped hatchery steelhead. The numbers in the wild columns beginning in 1998 include wild and unclipped hatchery origin smolts. This season a total of 11,787,539 juvenile salmonids was collected at LGR. Of these, 11,253,837 were transported to release sites below Bonneville Dam, 11,164,132 by barge and 89,705 by truck. An additional 501,395 fish were bypassed to the river due to over-capacity of the raceways and for research purposes. According to the PTAGIS database, 177,009 PIT-tagged fish were detected at LGR in 2004. Of these, 105,894 (59.8%) were bypassed through the PIT-tag diversion system, 69,130 (39.1%) were diverted to the raceways to be transported, 1,640 (0.9%) were diverted to the sample tank, sampled and then transported, 345 (0.2%) were undetected at any of the bypass, raceway or sample exit monitors.

  16. Gas bubble trauma monitoring and research of juvenile salmonids. 1995 Annual report

    International Nuclear Information System (INIS)

    Maule, A.G.; Mesa, M.G.; Hans, K.M.

    1997-07-01

    This report describes laboratory and field monitoring studies of gas bubble trauma (GBT) in migrating juvenile salmonids in the Snake and Columbia rivers. The first chapter describes laboratory studies of the progression of GBT signs leading to mortality and the use of the signs for GBT assessment. The progression and severity of GBT signs in juvenile salmonids exposed to different levels of total dissolved gas (TDG) and temperatures was assessed and quantified. Next, the prevalence, severity, and individual variation of GBT signs was evaluated to attempt to relate them to mortality. Finally, methods for gill examination in fish exposed to high TDG were developed and evaluated. Primary findings were: (1) no single sign of GBT was clearly correlated with mortality, but many GBT signs progressively worsened; (2) both prevalence and severity of GBT signs in several tissues is necessary; (3) bubbles in the lateral line were the earliest sign of GBT, showed progressive worsening, and had low individual variation but may develop poorly during chronic exposures; (4) fin bubbles had high prevalence, progressively worsened, and may be a persistent sign of GBT; and (5) gill bubbles appear to be the proximate cause of death but may only be relevant at high TDG levels and are difficult to examine. Chapter Two describes monitoring results of juvenile salmonids for signs of GBT. Emigrating fish were collected and examined for bubbles in fins and lateral lines. Preliminary findings were: (1) few fish had signs of GBT, but prevalence and severity appeared to increase as fish migrated downstream; (2) there was no apparent correlation between GBT signs in the fins, lateral line, or gills; (3) prevalence and severity of GBT was suggestive of long-term, non-lethal exposure to relatively low level gas supersaturated water; and (4) it appeared that GBT was not a threat to migrating juvenile salmonids. 24 refs., 26 figs., 3 tabs

  17. Comparing the Reproductive Success of Yakima River Hatchery-and Wild-Origin Spring Chinook; Yakima/Klickitat Fisheries Project Monitoring and Evaluation, 2000-2001 Annual Report.

    Energy Technology Data Exchange (ETDEWEB)

    Schroder, S.L. (Washington Department of Fish and Wildlife, Olympia, WA); Knudsen, C.M. (Oncorh Consulting, Olympia, WA); Rau, J.A. (Cle Elum Supplementation Research, Cle Elum, WA)

    2003-01-01

    In the Yakima Spring Chinook supplementation program, wild fish are brought into the Cle Elum Hatchery, artificially crossed, reared, transferred to acclimation sites, and released into the upper Yakima River as smolts. When these fish mature and return to the Yakima River most of them will be allowed to spawn naturally; a few, however, will be brought back to the hatchery and used for research purposes. In order for this supplementation approach to be successful, hatchery-origin fish must be able to spawn and produce offspring under natural conditions. Recent investigations on salmonid fishes have indicated that exposure to hatchery environments during juvenile life may cause significant behavioral, physiological, and morphological changes in adult fish. These changes appear to reduce the reproductive competence of hatchery fish. In general, males are more affected than females; species with prolonged freshwater rearing periods are more strongly impacted than those with shorter rearing periods; and stocks that have been exposed to artificial culture for multiple generations are more impaired than those with a relatively short exposure history to hatchery conditions.

  18. Isolation and characterization of the fall Chinook aquareovirus

    Science.gov (United States)

    Makhsous, Negar; Jensen, Nicole L.; Haman, Katherine H.; Batts, William N.; Jerome, Keith R.; Winton, James; Greninger, Alexander L.

    2017-01-01

    BackgroundSalmon are paramount to the economy, ecology, and history of the Pacific Northwest. Viruses constitute one of the major threats to salmon health and well-being, with more than twenty known virus species that infect salmon. Here, we describe the isolation and characterization of the fall Chinook aquareovirus, a divergent member of the species Aquareovirus B within the family Reoviridae.MethodsThe virus was first found in 2014 as part of a routine adult broodstock screening program in which kidney and spleen tissue samples from healthy-appearing, adult fall Chinook salmon (Oncorhynchus tshawytscha) returning to a hatchery in Washington State produced cytopathic effects when inoculated onto a Chinook salmon embryo cell line (CHSE-214). The virus was not able to be confirmed by an RT-PCR assay using existing aquareovirus pan-species primers, and instead was identified by metagenomic next-generation sequencing. Metagenomic next-generation sequencing was used to recover the full genome and completed using 3′ RACE.ResultsThe genome of the fall Chinook aquareovirus contains 11 segments of double-stranded RNA totaling 23.3 kb, with each segment flanked by the canonical sequence termini found in the aquareoviruses. Sequence comparisons and a phylogenetic analysis revealed a nucleotide identity of 63.2% in the VP7 gene with the Green River Chinook virus, placing the new isolate in the species Aquareovirus B. A qRT-PCR assay was developed targeting the VP2, which showed rapid growth of the isolate during the initial 5 days in culture using CHSE-214 cells.ConclusionsThis sequence represents the first complete genome of an Aquareovirus B species. Future studies will be required to understand the potential pathogenicity and epidemiology of the fall Chinook aquareovirus.

  19. Approach, passage, and survival of juvenile salmonids at Little Goose Dam, Washington: Post-construction evaluation of a temporary spillway weir, 2009

    Science.gov (United States)

    Beeman, J.W.; Braatz, A.C.; Hansel, H.C.; Fielding, S.D.; Haner, P.V.; Hansen, G.S.; Shurtleff, D.J.; Sprando, J.M.; Rondorf, D.W.

    2010-01-01

    This report describes a study of dam passage and survival of radio-tagged juvenile salmonids after installation of a temporary spillway weir (TSW) at Little Goose Dam, Washington, in 2009. The purpose of the study was to document fish passage and survival when the dam was operated with the TSW in place. Spillway weirs are one of several methods used to improve downstream passage of juvenile salmonids. Each spillway weir design is based on the concept of providing an overflow weir with a depth more similar to the natural migration depth of juvenile salmonids than conventional spill bays. Little Goose Dam was the last of the four lower Snake River dams to have a spillway weir installed. This was the first year that some form of surface passage device was operating at all Snake River and Columbia River dams between Lewiston, Idaho, and the Columbia River estuary. The study design stipulated that a total of 30 percent of the river discharge would continuously be passed over the TSW and the conventional spill bays, and this percentage was achieved. The TSW also was to be operated at the 'low crest' elevation during the spring and the 'high crest' elevation during the summer, but the TSW was only operated at the low crest elevation during this study. Behavior, passage, and survival of spring and summer juvenile salmonid migrants passing through Little Goose Dam were examined using radio telemetry. Survival was estimated using the Route Specific Survival Model (RSSM) by releasing tagged fish near Central Ferry State Park 21 kilometers upstream of the dam and in the tailrace approximately 0.5 kilometer downstream of the dam. From April 18 to May 21, 2009, 1,520 yearling Chinook salmon (Oncorhynchus tshawytscha) and 1,517 juvenile steelhead (O. mykiss) were radio tagged and released. From June 6 to July 5, 2009, 4,251 subyearling Chinook salmon (O. tshawytscha) were radio tagged and released. Release dates of subyearling Chinook salmon were selected to avoid 'reservoir

  20. Chinook salmon Genetic Stock Identification data - Genetic Stock Identification of Washington Chinook salmon

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This project evaluates data from coded wire tagging with that from parental based tagging to identify stock of origin for Chinook salmon landed in Washington state...

  1. Productivity of Spring Chinook Salmon and Summer Steelhead in the John Day River Basin, 2008 Annual Technical Report.

    Energy Technology Data Exchange (ETDEWEB)

    Wilson, Wayne H.; Schricker, Jaym' e; Ruzychi, James R. (Oregon Department of Fish and Wildlife)

    2009-02-13

    The John Day River subbasin supports one of the last remaining intact wild populations of spring Chinook salmon and summer steelhead in the Columbia River Basin. These populations remain depressed relative to historic levels and limited information is available for steelhead life history. Numerous habitat protection and rehabilitation projects have been implemented in the basin to improve salmonid freshwater production and survival. However, these projects often lack effectiveness monitoring. While our monitoring efforts outlined here will not specifically measure the effectiveness of any particular project, they will provide much needed programmatic or watershed (status and trend) information to help evaluate project-specific effectiveness monitoring efforts as well as meet some data needs as index stocks. Our continued monitoring efforts to estimate salmonid smolt abundance, age structure, SAR, smolts/redd, freshwater habitat use, and distribution of critical life states will enable managers to assess the long-term effectiveness of habitat projects and to differentiate freshwater and ocean survival. Because Columbia Basin managers have identified the John Day subbasin spring Chinook population as an index population for assessing the effects of alternative future management actions on salmon stocks in the Columbia Basin (Schaller et al. 1999) we continue our ongoing studies. This project is high priority based on the level of emphasis by the NWPPC Fish and Wildlife Program, Independent Scientific Advisory Board (ISAB), Independent Scientific Review Panel (ISRP), NOAA National Marine Fisheries Service (NMFS), and the Oregon Plan for Salmon and Watersheds (OWEB). Each of these groups have placed priority on monitoring and evaluation to provide the real-time data to guide restoration and adaptive management in the region. The objective is to estimate smolt-to-adult survival rates (SAR) and out-migrant abundance for spring Chinook Oncorhynchus tshawytscha and summer

  2. BPA genetic monitoring - BPA Genetic Monitoring Project

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Initiated in 1989, this study monitors genetic changes associated with hatchery propagation in multiple Snake River sub-basins for Chinook salmon and steelhead. We...

  3. Stock Identification of Columbia River Chinook Salmon and Steelhead Trout, 1986 Final Report.

    Energy Technology Data Exchange (ETDEWEB)

    Schreck, Carl B.; Li, Hiran W.; Hjort, Randy C.

    1986-08-01

    For the first time genetic similarities among chinook salmon and among steelhead trout stocks of the Columbia River were determined using a holistic approach including analysis of life history, biochemical, body shape and meristic characters. We examined between year differences for each of the stock characteristics and we also correlated the habitat characteristics with the wild stock characteristics. The most important principle for managing stocks of Columbia River chinook salmon and steelhead trout is that geographically proximal stocks tend to be like each other. Run timing and similarity of the stream systems should be taken into account when managing stocks. There are similarities in the classifications derived for chinook salmon and steelhead trout. Steelhead trout or chinook salmon tend to be genetically similar to other steelhead or chinook stocks, respectively, that originate from natal streams that are geographically close, regardless of time of freshwater entry. The primary exception Lo this trend is between stocks of spring and fall chinook in the upper Columbia River where fish with the different run timings are dissimilar, though geographically proximate stocks within a run form are generally very similar. Spring chinook stocks have stronger affinities to other spring chinook stocks that originate in the same side of the Cascade Range than to these Spring chinook stock: spawned on the other side of the Cascade Range. Spring chinook from west of the Cascades are more closely related to fall chinook than they are to spring chinook from east of the Cascades. Summer chinook can be divided into two main groups: (1) populations in the upper Columbia River that smolt as subyearlings and fall chinook stocks; and (2) summer chinook stocks from the Salmon River, Idaho, which smolt as yearlings and are similar to spring chinook stocks from Idaho. Fall chinook appear to comprise one large diverse group that is not easily subdivided into smaller subgroups. In

  4. Johnson Creek Artificial Propagation and Enhancement Project Operations and Maintenance Program; Brood Year 1998: Johnson Creek Chinook Salmon Supplementation, Biennial Report 1998-2000.

    Energy Technology Data Exchange (ETDEWEB)

    Daniel, Mitch; Gebhards, John

    2003-05-01

    The Nez Perce Tribe, through funding provided by the Bonneville Power Administration, has implemented a small scale chinook salmon supplementation program on Johnson Creek, a tributary in the South Fork of the Salmon River, Idaho. The Johnson Creek Artificial Propagation Enhancement project was established to enhance the number of threatened Snake River summer chinook salmon (Oncorhynchus tshawytscha) returning to Johnson Creek through artificial propagation. Adult chinook salmon collection and spawning began in 1998. A total of 114 fish were collected from Johnson Creek and 54 fish (20 males and 34 females) were retained for Broodstock. All broodstock were transported to Lower Snake River Compensation Plan's South Fork Salmon River adult holding and spawning facility, operated by the Idaho Department of Fish and Game. The remaining 60 fish were released to spawn naturally. An estimated 155,870 eggs from Johnson Creek chinook spawned at the South Fork Salmon River facility were transported to the McCall Fish Hatchery for rearing. Average fecundity for Johnson Creek females was 4,871. Approximately 20,500 eggs from females with high levels of Bacterial Kidney Disease were culled. This, combined with green-egg to eyed-egg survival of 62%, resulted in about 84,000 eyed eggs produced in 1998. Resulting juveniles were reared indoors at the McCall Fish Hatchery in 1999. All of these fish were marked with Coded Wire Tags and Visual Implant Elastomer tags and 8,043 were also PIT tagged. A total of 78,950 smolts were transported from the McCall Fish Hatchery and released directly into Johnson Creek on March 27, 28, 29, and 30, 2000.

  5. AFSC/ABL: Chinook allozyme baseline

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Allozyme variation was used to examine population genetic structure of adult chinook salmon, Oncorhynchus tshawytscha, collected between 1988 and 1993 from 22...

  6. Creel survey sampling designs for estimating effort in short-duration Chinook salmon fisheries

    Science.gov (United States)

    McCormick, Joshua L.; Quist, Michael C.; Schill, Daniel J.

    2013-01-01

    Chinook Salmon Oncorhynchus tshawytscha sport fisheries in the Columbia River basin are commonly monitored using roving creel survey designs and require precise, unbiased catch estimates. The objective of this study was to examine the relative bias and precision of total catch estimates using various sampling designs to estimate angling effort under the assumption that mean catch rate was known. We obtained information on angling populations based on direct visual observations of portions of Chinook Salmon fisheries in three Idaho river systems over a 23-d period. Based on the angling population, Monte Carlo simulations were used to evaluate the properties of effort and catch estimates for each sampling design. All sampling designs evaluated were relatively unbiased. Systematic random sampling (SYS) resulted in the most precise estimates. The SYS and simple random sampling designs had mean square error (MSE) estimates that were generally half of those observed with cluster sampling designs. The SYS design was more efficient (i.e., higher accuracy per unit cost) than a two-cluster design. Increasing the number of clusters available for sampling within a day decreased the MSE of estimates of daily angling effort, but the MSE of total catch estimates was variable depending on the fishery. The results of our simulations provide guidelines on the relative influence of sample sizes and sampling designs on parameters of interest in short-duration Chinook Salmon fisheries.

  7. Escapement and Productivity of Spring Chinook and Summer Steelhead in the John Day River Basin, Technical Report 2004-2005.

    Energy Technology Data Exchange (ETDEWEB)

    Wilson, Wayne

    2007-04-01

    The objectives are: (1) Estimate number and distribution of spring Chinook salmon Oncorhynchus tshawytscha redds and spawners in the John Day River subbasin; and (2) Estimate smolt-to-adult survival rates (SAR) and out-migrant abundance for spring Chinook and summer steelhead O. mykiss and life history characteristics of summer steelhead. Spawning ground surveys for spring (stream-type) Chinook salmon were conducted in four main spawning areas (Mainstem, Middle Fork, North Fork, and Granite Creek System) and seven minor spawning areas (South Fork, Camas Creek, Desolation Creek, Trail Creek, Deardorff Creek, Clear Creek, and Big Creek) in the John Day River basin during August and September of 2005. Census surveys included 298.2 river kilometers (88.2 rkm within index, 192.4 rkm additional within census, and 17.6 rkm within random survey areas) of spawning habitat. We observed 902 redds and 701 carcasses including 227 redds in the Mainstem, 178 redds in the Middle Fork, 420 redds in the North Fork, 62 redds in the Granite Creek System, and 15 redds in Desolation Creek. Age composition of carcasses sampled for the entire basin was 1.6% age 3, 91.2% age 4, and 7.1% age 5. The sex ratio was 57.4% female and 42.6% male. Significantly more females than males were observed in the Granite Creek System. During 2005, 82.3% of female carcasses sampled had released all of their eggs. Significantly more pre-spawn mortalities were observed in Granite Creek. Nine (1.3%) of 701 carcasses were of hatchery origin. Of 298 carcasses examined, 4.0% were positive for the presence of lesions. A significantly higher incidence of gill lesions was found in the Granite Creek System when compared to the rest of the basin. Of 114 kidney samples tested, two (1.8%) had clinical BKD levels. Both infected fish were age-4 females in the Middle Fork. All samples tested for IHNV were negative. To estimate spring Chinook and summer steelhead smolt-to-adult survival (SAR) we PIT tagged 5,138 juvenile

  8. Columbia River System Operation Review : Final Environmental Impact Statement, Appendix C: Anadromous Fish and Juvenile Fish Transportation.

    Energy Technology Data Exchange (ETDEWEB)

    Columbia River System Operation Review (U.S.)

    1995-11-01

    This Appendix C of the Final Environmental Impact Statement for the Columbia River System discusses impacts on andromous fish and juvenile fish transportation. The principal andromous fish in the Columbia basin include salmonid species (Chinook, coho, and sockeye salmon, and steelhead) and nonsalmoinid andromous species (sturgeon, lamprey, and shad). Major sections in this document include the following: background, scope and process; affected environment for salmon and steelhead, shaded, lamprey, sturgeon; study methods; description of alternatives: qualitative and quantitative findings.

  9. Comparing life history characteristics of Lake Michigan’s naturalized and stocked Chinook Salmon

    Science.gov (United States)

    Kerns, Janice A; Rogers, Mark W.; Bunnell, David B.; Claramunt, Randall M.; Collingsworth, Paris D.

    2016-01-01

    Lake Michigan supports popular fisheries for Chinook Salmon Oncorhynchus tshawytscha that have been sustained by stocking since the late 1960s. Natural recruitment of Chinook Salmon in Lake Michigan has increased in the past few decades and currently contributes more than 50% of Chinook Salmon recruits. We hypothesized that selective forces differ for naturalized populations born in the wild and hatchery populations, resulting in divergent life history characteristics with implications for Chinook Salmon population production and the Lake Michigan fishery. First, we conducted a historical analysis to determine if life history characteristics changed through time as the Chinook Salmon population became increasingly naturalized. Next, we conducted a 2-year field study of naturalized and hatchery stocked Chinook Salmon spawning populations to quantify differences in fecundity, egg size, timing of spawning, and size at maturity. In general, our results did not indicate significant life history divergence between naturalized and hatchery-stocked Chinook Salmon populations in Lake Michigan. Although historical changes in adult sex ratio were correlated with the proportion of naturalized individuals, changes in weight at maturity were better explained by density-dependent factors. The field study revealed no divergence in fecundity, timing of spawning, or size at maturity, and only small differences in egg size (hatchery > naturalized). For the near future, our results suggest that the limited life history differences observed between Chinook Salmon of naturalized and hatchery origin will not lead to large differences in characteristics important to the dynamics of the population or fishery.

  10. Post-release attributes and survival of hatchery and natural fall chinook salmon in the Snake River : annual report 2000-2001

    International Nuclear Information System (INIS)

    Tiffan, Kenneth F.; Rondorf, Dennis W.; Connor, William P.

    2003-01-01

    This report summarizes results of research activities conducted in 2000, 2001, and years previous to aid in the management and recovery of fall chinook salmon in the Columbia River basin. The report is divided into sections and self-standing chapters. For detailed summaries, we refer the reader to the abstracts given on the second page of each chapter. The Annual Reporting section includes information provided to fishery managers in-season and post-season, and it contains a detailed summary of life history and survival statistics on wild Snake River fall chinook salmon juveniles for the years 1992-2001. The Journal Manuscripts section includes complete copies of papers submitted or published during 2000 and 2001 that were not included in previous annual reports. Publication is a high priority for this project because it provides our results to a wide audience, it ensures that our work meets high scientific standards, and we believe that it is a necessary obligation of a research project. The Bibliography of Published Journal Articles section provides citations for peer-reviewed papers co-authored by personnel of project 199102900 that were published from 1998 to 2001

  11. Post-Release Attributes and Survival of Hatchery and Natural Fall Chinook Salmon in the Snake River; 2000-2001 Annual Report.

    Energy Technology Data Exchange (ETDEWEB)

    Connor, William P. (US Fish and Wildlife Service, Idaho Fishery Resource Office, Ahsahka, ID)

    2003-02-01

    This report summarizes results of research activities conducted in 2000, 2001, and years previous to aid in the management and recovery of fall chinook salmon in the Columbia River basin. The report is divided into sections and self-standing chapters. For detailed summaries, we refer the reader to the abstracts given on the second page of each chapter. The Annual Reporting section includes information provided to fishery managers in-season and post-season, and it contains a detailed summary of life history and survival statistics on wild Snake River fall chinook salmon juveniles for the years 1992-2001. The Journal Manuscripts section includes complete copies of papers submitted or published during 2000 and 2001 that were not included in previous annual reports. Publication is a high priority for this project because it provides our results to a wide audience, it ensures that our work meets high scientific standards, and we believe that it is a necessary obligation of a research project. The Bibliography of Published Journal Articles section provides citations for peer-reviewed papers co-authored by personnel of project 199102900 that were published from 1998 to 2001.

  12. Color photographic index of fall Chinook salmon embryonic development and accumulated thermal units.

    Directory of Open Access Journals (Sweden)

    James W Boyd

    Full Text Available BACKGROUND: Knowledge of the relationship between accumulated thermal units and developmental stages of Chinook salmon embryos can be used to determine the approximate date of egg fertilization in natural redds, thus providing insight into oviposition timing of wild salmonids. However, few studies have documented time to different developmental stages of embryonic Chinook salmon and no reference color photographs are available. The objectives of this study were to construct an index relating developmental stages of hatchery-reared fall Chinook salmon embryos to time and temperature (e.g., degree days and provide high-quality color photographs of each identified developmental stage. METHODOLOGY/PRINCIPAL FINDINGS: Fall Chinook salmon eggs were fertilized in a hatchery environment and sampled approximately every 72 h post-fertilization until 50% hatch. Known embryonic developmental features described for sockeye salmon were used to describe development of Chinook salmon embryos. A thermal sums model was used to describe the relationship between embryonic development rate and water temperature. Mean water temperature was 8.0 degrees C (range; 3.9-11.7 degrees C during the study period. Nineteen stages of embryonic development were identified for fall Chinook salmon; two stages in the cleavage phase, one stage in the gastrulation phase, and sixteen stages in the organogenesis phase. The thermal sums model used in this study provided similar estimates of fall Chinook salmon embryonic development rate in water temperatures varying from 3.9-11.7 degrees C (mean=8 degrees C to those from several other studies rearing embryos in constant 8 degrees C water temperature. CONCLUSIONS/SIGNIFICANCE: The developmental index provides a reasonable description of timing to known developmental stages of Chinook salmon embryos and was useful in determining developmental stages of wild fall Chinook salmon embryos excavated from redds in the Columbia River. This index

  13. Survival Rates of Juvenile Salmonids Passing Through the Bonneville Dam and Spillway in 2008

    Energy Technology Data Exchange (ETDEWEB)

    Ploskey, Gene R.; Weiland, Mark A.; Faber, Derrek M.; Deng, Zhiqun; Johnson, Gary E.; Hughes, James S.; Zimmerman, Shon A.; Monter, Tyrell J.; Cushing, Aaron W.; Wilberding, Matthew C.; Durham, Robin E.; Townsend, R. L.; Skalski, J. R.; Buchanan, Rebecca A.; Kim, Jina; Fischer, Eric S.; Meyer, Matthew M.; McComas, Roy L.; Everett, Jason

    2009-12-28

    This report describes a 2008 acoustic telemetry survival study conducted by the Pacific Northwest National Laboratory for the Portland District of the U.S. Army Corps of Engineers. The study estimated the survival of juvenile Chinook salmon and steelhead passing Bonneville Dam (BON) and its spillway. Of particular interest was the relative survival of smolts detected passing through end spill bays 1-3 and 16-18, which had deep flow deflectors immediately downstream of spill gates, versus survival of smolts passing middle spill bays 4-15, which had shallow flow deflectors.

  14. Survival estimates for the passage of juvenile salmonids through Snake River dams and reservoirs, 1996. Annual report

    International Nuclear Information System (INIS)

    Smith, S.G.; Muir, W.D.; Hockersmith, E.E.; Achord, S.; Eppard, M.B.; Ruehle, T.E.; Williams, J.G.

    1998-02-01

    In 1996, the National Marine Fisheries Service and the University of Washington completed the fourth year of a multi-year study to estimate survival of juvenile salmonids (Oncorhynchus spp.) passing through dams and reservoirs on the Snake River. Actively migrating smolts were collected near the head of Lower Granite Reservoir and at Lower Granite Dam, tagged with passive integrated transponder (PIT) tags, and released to continue their downstream migration. Individual smolts were subsequently detected at PIT-tag detection facilities at Lower Granite, Little Goose, Lower Monumental, McNary, John Day and Bonneville Dams. Survival estimates were calculated using the Single-Release (SR) and Paired-Release (PR) Models. Timing of releases of tagged hatchery steelhead (O. mykiss) from the head of Lower Granite Reservoir and yearling chinook salmon (O. tshawytscha) from Lower Granite Dam in 1996 spanned the major portion of their juvenile migrations. Specific research objectives in 1996 were to (1) estimate reach and project survival in the Snake River using the Single-Release and Paired-Release Models throughout the yearling chinook salmon and steelhead migrations, (2) evaluate the performance of the survival-estimation models under prevailing operational and environmental conditions in the Snake River, and (3) synthesize results from the 4 years of the study to investigate relationships between survival probabilities, travel times, and environmental factors such as flow levels and water temperature

  15. Survival Estimates for the Passage of Juvenile Salmonids through Snake River Dams and Reservoirs, 1996 Annual Report

    Energy Technology Data Exchange (ETDEWEB)

    Smith, Steven G.

    1998-02-01

    In 1996, the National Marine Fisheries Service and the University of Washington completed the fourth year of a multi-year study to estimate survival of juvenile salmonids (Oncorhynchus spp.) passing through dams and reservoirs on the Snake River. Actively migrating smolts were collected near the head of Lower Granite Reservoir and at Lower Granite Dam, tagged with passive integrated transponder (PIT) tags, and released to continue their downstream migration. Individual smolts were subsequently detected at PIT-tag detection facilities at Lower Granite, Little Goose, Lower Monumental, McNary, John Day and Bonneville Dams. Survival estimates were calculated using the Single-Release (SR) and Paired-Release (PR) Models. Timing of releases of tagged hatchery steelhead (O. mykiss) from the head of Lower Granite Reservoir and yearling chinook salmon (O. tshawytscha) from Lower Granite Dam in 1996 spanned the major portion of their juvenile migrations. Specific research objectives in 1996 were to (1) estimate reach and project survival in the Snake River using the Single-Release and Paired-Release Models throughout the yearling chinook salmon and steelhead migrations, (2) evaluate the performance of the survival-estimation models under prevailing operational and environmental conditions in the Snake River, and (3) synthesize results from the 4 years of the study to investigate relationships between survival probabilities, travel times, and environmental factors such as flow levels and water temperature.

  16. Establishment of Chinook salmon (Oncorhynchus tshawytscha in Pacific basins of southern South America and its potential ecosystem implications Establecimiento del salmón Chinook (Oncorhynchus tshawytscha en cuencas del Pacífico sur de Sudamérica y sus potenciales implicancias ecosistémicas

    Directory of Open Access Journals (Sweden)

    DORIS SOTO

    2007-03-01

    Full Text Available Salmon and trout species are not native to the southern hemisphere, however rainbow and brown trout have been established a century in southern South America. Yet most attempts to introduce anadromous salmon failed until the onset of aquaculture by 1980. Escapes of Oncorhynchus tshawytscha (Chinook salmon from aquaculture after 1990 have apparently produced increasingly important reproductive returns "naturalized", to upper basins in Chile and Argentina south of 39º S. In this paper we show data on the historic and spatial occurrence of chinook salmon in four Pacific basins during the past decade. Our objective is to establish the progress of the settlement forecasting some ecosystem disruptions in order to project and manage potential impacts. In Chile, sampling took place from 1995 to 2005 including rivers Petrohué, Poicas, and Río Negro-Hornopiren, and Lake Puyehue, in the X Region. In Argentina sampled rivers were Futaleufú, Carrenleufú and Pico. In Chile and Argentina reproductive Chinooks ranged in size between 73 and 130 cm total length, being the smallest sizes those of Lake Puyehue where the population is apparently landlocked. In Río Petrohué, the size of the runs varied from year to year reaching in the peak season of 1996 and 2004 up to 500 kg of fish along 100 m of riverbank. Temporal distribution of juvenile Chinooks suggested mainly a typical ocean type as they are gone to sea within the first year of age. As seen in Petrohue, reproductive populations could import significant quantities of marine derived nutrients as they do in their original habitats thus disturbing natural cycles and balances. Chinook establishment in these pristine watersheds in southern South America poses new challenges for decision makers and fishermen since they may develop a fishery in the Pacific Ocean with consequences to other fishery resources. Additionally they also become a resource for sport fishing. Therefore there is the need of developing

  17. Effect of dietary α-tocopherol + ascorbic acid, selenium, and iron on oxidative stress in sub-yearling Chinook salmon (Oncorhynchus tshawytscha Walbaum)

    Science.gov (United States)

    Welker, T.L.; Congleton, J.L.

    2009-01-01

    A three-variable central composite design coupled with surface-response analysis was used to examine the effects of dietary ??-tocopherol + ascorbic acid (TOCAA), selenium (Se), and iron (Fe) on indices of oxidative stress in juvenile spring Chinook salmon. Each dietary factor was tested at five levels for a total of fifteen dietary combinations (diets). Oxidative damage in liver and kidney (lipid peroxidation, protein carbonyls) and erythrocytes (erythrocyte resistance to peroxidative lysis, ERPL) was determined after feeding experimental diets for 16 (early December) and 28 (early March) weeks. Only TOCAA influenced oxidative stress in this study, with most measures of oxidative damage decreasing (liver lipid peroxidation in December and March; ERPL in December; liver protein carbonyl in March) with increasing levels of TOCAA. We also observed a TOCAA-stimulated increase in susceptibility of erythrocytes to peroxidative lysis in March at the highest levels of TOCAA. The data suggest that under most circumstances a progressive decrease in oxidative stress occurs as dietary TOCAA increases, but higher TOCAA concentrations can stimulate oxidative damage in some situations. Higher levels of TOCAA in the diet were required in March than in December to achieve comparable levels of protection against oxidative damage, which may have been due to physiological changes associated with the parr-smolt transformation. Erythrocytes appeared to be more sensitive to variation in dietary levels of TOCAA than liver and kidney tissues. Using the March ERPL assay results as a baseline, a TOCAA level of approximately 350-600 mg/kg diet would provide adequate protection against lipid peroxidation under most circumstances in juvenile Chinook salmon. ?? 2008 The Authors.

  18. Passage and survival probabilities of juvenile Chinook salmon at Cougar Dam, Oregon, 2012

    Science.gov (United States)

    Beeman, John W.; Evans, Scott D.; Haner, Philip V.; Hansel, Hal C.; Hansen, Amy C.; Smith, Collin D.; Sprando, Jamie M.

    2014-01-01

    This report describes studies of juvenile-salmon dam passage and apparent survival at Cougar Dam, Oregon, during two operating conditions in 2012. Cougar Dam is a 158-meter tall rock-fill dam used primarily for flood control, and passes water through a temperature control tower to either a powerhouse penstock or to a regulating outlet (RO). The temperature control tower has moveable weir gates to enable water of different elevations and temperatures to be drawn through the dam to control water temperatures downstream. A series of studies of downstream dam passage of juvenile salmonids were begun after the National Oceanic and Atmospheric Administration determined that Cougar Dam was impacting the viability of anadromous fish stocks. The primary objectives of the studies described in this report were to estimate the route-specific fish passage probabilities at the dam and to estimate the survival probabilities of fish passing through the RO. The first set of dam operating conditions, studied in November, consisted of (1) a mean reservoir elevation of 1,589 feet, (2) water entering the temperature control tower through the weir gates, (3) most water routed through the turbines during the day and through the RO during the night, and (4) mean RO gate openings of 1.2 feet during the day and 3.2 feet during the night. The second set of dam operating conditions, studied in December, consisted of (1) a mean reservoir elevation of 1,507 ft, (2) water entering the temperature control tower through the RO bypass, (3) all water passing through the RO, and (4) mean RO gate openings of 7.3 feet during the day and 7.5 feet during the night. The studies were based on juvenile Chinook salmon (Oncorhynchus tshawytscha) surgically implanted with radio transmitters and passive integrated transponder (PIT) tags. Inferences about general dam passage percentage and timing of volitional migrants were based on surface-acclimated fish released in the reservoir. Dam passage and apparent

  19. Umatilla Hatchery Monitoring and Evaluation, 1997-1998 Annual Report.

    Energy Technology Data Exchange (ETDEWEB)

    Hayes, Michael C.; Brown, Kassandra A.; Waln, Karen (Oregon Department of Fish and Wildlife, Portland, OR)

    1999-11-01

    This report summarizes monitoring and evaluation studies of salmonids reared at Umatilla Fish Hatchery (UFH) for the period November 1, 1997 to October 31, 1998. Studies at Umatilla Hatchery are designed to evaluate rearing of chinook salmon and steelhead in ''Michigan raceways''. Characteristics of Michigan raceways include high fish densities, rapid water turnover, oxygen supplementation, reuse of water, and baffles designed to reduce cleaning. Fish health at UFH and other facilities associated with the Umatilla program are intensively monitored and evaluated as part of the overall research project. Further, under the Integrated Hatchery Operations Team guidelines, specific requirements for fish health monitoring are mandatory and have become the responsibility of the fish health staff conducting studies at UFH. Additional studies include evaluations of sport fisheries in the Umatilla River and mass marking and straying of fall chinook salmon. Except for adult recovery data, an experiment designed to evaluate rearing subyearling fall chinook salmon in Michigan and Oregon raceways has been completed. We are currently in the second year of rearing subyearling fall chinook salmon at three densities. Experimental rearing of subyearling, fall release, and yearling spring chinook salmon, and steelhead has also been conducted. Although preliminary adult return data has been recovered, data on smolt-to-adult survival for all groups is incomplete. Conclusions in this report should be viewed as preliminary and used in conjunction with additional data as it becomes available.

  20. Integrated Status and Effectiveness Monitoring Program - Entiat River Snorkel Surveys and Rotary Screw Trap, 2007.

    Energy Technology Data Exchange (ETDEWEB)

    Nelle, R.D.

    2008-01-01

    The USFWS Mid-Columbia River Fishery Resource Office conducted snorkel surveys at 24 sites during the summer and fall periods of 2006 survey periods as part of the Integrated Status and Effectiveness Monitoring Program in the Entiat River. A total of 37,938 fish from 15 species/genera and an unknown category were enumerated. Chinook salmon were the overall most common fish observed and comprised 15% of fish enumerated followed by rainbow trout (10%) and mountain whitefish (7%). Day surveys were conducted during the summer period 2007 (August), while night surveys were conducted during the fall 2007 (October) surveys. The USFWS Mid-Columbia River Fishery Resource Office (MCFRO) operated two rotary screw traps on the Entiat River as part of the Integrated Status and Effectiveness Monitoring Program (ISEMP) program from August through November of 2007. Along with the smolt traps, juvenile emigrants were also captured at remote locations throughout the Entiat watershed and its major tributary, the Mad River. A total of 999 wild Oncorhynchus mykiss and 5,107 wild run O. tshawytscha were PIT tagged during the study period. Rotary screw trap efficiencies averaged 22.3% for juvenile O. tshawytscha and 9.0% for juvenile O. mykiss. Rotary screw traps operated 7 days a week and remote capture operations were conducted when flow and temperature regimes permitted. This is third annual progress report to Bonneville Power Administration for the snorkel surveys conducted in the Entiat River as related to long-term effectiveness monitoring of restoration programs in this watershed. The objective of this study is to monitor the fish habitat utilization of planned in-stream restoration efforts in the Entiat River by conducting pre- and post-construction snorkel surveys at selected treatment and control sites.

  1. Umatilla River Fish Passage Operations Program, 2002-2003 Annual Report.

    Energy Technology Data Exchange (ETDEWEB)

    Bronson, James P. (Confederated Tribes of the Umatilla Indian Reservation, Department of Natural Resources, Pendleton, OR); Duke, Bill B. (Oregon Department of Fish and Wildlife, Pendleton, OR)

    2004-03-01

    Threemile Falls Dam (Threemile Dam), located near the town of Umatilla, is the major collection and counting point for adult salmonids returning to the Umatilla River. Returning salmon and steelhead were enumerated at Threemile Dam from August 17, 2002 to September 29, 2003. A total of 3,080 summer steelhead (Oncorhynchus mykiss); 1716 adult, 617 jack, and 1,709 subjack fall chinook (O. tshawytscha); 3,820 adult and 971 jack coho (O. kisutch); and 3,607 adult and 135 jack spring chinook (O. tshawytscha) were counted. All fish were enumerated at the east bank facility. Of the fish counted, 6 summer steelhead and 330 adult and 49 jack spring chinook were hauled upstream from Threemile Dam. There were 2,882 summer steelhead; 1161 adult, 509 jack and 1,546 subjack fall chinook; 3,704 adult and 915 jack coho; and 2,406 adult and 31 jack spring chinook either released at, or allowed to volitionally migrate past, Threemile Dam. Also, 109 summer steelhead; 532 adult and 32 jack fall chinook; and 560 adult and 28 jack spring chinook were collected for brood. In addition, 282 spring chinook were collected for the outplanting efforts in the Walla Walla Basin. The Westland Canal juvenile facility (Westland), located near the town of Echo at rivermile (RM) 27, is the major collection point for outmigrating juvenile salmonids and steelhead kelts. The canal was open for 159 days between January 27 and July 4, 2003. During that period, fish were bypassed back to the river 145 days and were trapped 11 days. An estimated 205 pounds of juvenile fish were transported from Westland to the Umatilla River boat ramp (RM 0.5). Approximately 82% of the juveniles transported were salmonids. No steelhead kelts were hauled from Westland this year. The Threemile Dam west bank juvenile bypass was opened on September 16, 2002. and continued until November 1, 2002. The bypass was reopened March 3, 2003 and ran until July 3, 2003. The juvenile trap was operated by the Umatilla Passage Evaluation

  2. Differential survival among sSOD-1* genotypes in Chinook Salmon

    Science.gov (United States)

    Hayes, Michael C.; Reisenbichler, Reginald R.; Rubin, Stephen P.; Wetzel, Lisa A.; Marshall , Anne R.

    2011-01-01

    Differential survival and growth were tested in Chinook salmon Oncorhynchus tshawytscha expressing two common alleles, *–100 and *–260, at the superoxide dismutase locus (sSOD-1*). These tests were necessary to support separate studies in which the two alleles were used as genetic marks under the assumption of mark neutrality. Heterozygous adults were used to produce progeny with –100/–100, –100/–260, and –260/–260 genotypes that were reared in two natural streams and two hatcheries in the states of Washington and Oregon. The latter also were evaluated as returning adults. In general, the genotype ratios of juveniles reared at hatcheries were consistent with high survival and little or no differential survival in the hatchery. Adult returns at one hatchery were significantly different from the expected proportions, and the survival of the –260/–260 genotype was 0.56–0.89 times that of the –100/–100 genotype over four year-classes. Adult returns at a second hatchery (one year-class) were similar but not statistically significant: survival of the –260/–260genotype relative to the –100/–100 genotype was 0.76. The performance of the heterozygote group was intermediate at both hatcheries. Significant differences in growth were rarely observed among hatchery fish (one year-class of juveniles and one age-class of adult males) but were consistent with greater performance for the –100/–100 genotype. Results from two groups of juveniles reared in streams (one year-class from each stream) suggested few differences in growth, but the observed genotype ratios were significantly different from the expected ratios in one stream. Those differences were consistent with the adult data; survival for the –260/–260 genotype was 76% of that of the –100/–100 genotype. These results, which indicate nonneutrality among sSOD-1* genotypes, caused us to modify our related studies and suggest caution in the interpretation of results and analyses in

  3. Environmental monitoring of Chinook Salmon

    International Nuclear Information System (INIS)

    Morris, D.; Boreham, D.

    2008-01-01

    The importance of monitoring plants and animals in the environment as become increasingly important with recent developments over the past few years. New ICRP recommendations, coming into effect summer 2007, require the monitoring of non-human biota. There is increasing public concern for safety and general well-being of plants and animals near nuclear reactors and other nuclear facilities. However, most current monitoring techniques do not adequately address this concern. I will discuss several current biological techniques to address the radiation sensitivity animals in the environment, including their advantages and drawbacks. Our research has examined several aquatic animals to determine their sensitivity to radiation. (author)

  4. Compliance Monitoring of Subyearling Chinook Salmon Smolt Survival and Passage at Bonneville Dam, Summer 2012

    Energy Technology Data Exchange (ETDEWEB)

    Skalski, J. R.; Townsend, Richard L.; Seaburg, Adam; Ploskey, Gene R.; Weiland, Mark A.; Hughes, James S.; Woodley, Christa M.; Deng, Zhiqun; Carlson, Thomas J.

    2013-05-01

    The purpose of this compliance study was to estimate dam passage survival of subyearling Chinook salmon at Bonneville Dam during summer 2012, as required by the 2008 Federal Columbia River Power System Biological Opinion. The study also estimated smolt passage survival from the forebay 2 km upstream of the dam to the tailrace 1 km below the dam, as well as forebay residence time, tailrace egress, and spill passage efficiency, as required in the 2008 Columbia Basin Fish Accords.

  5. 75 FR 52309 - Pacific Fishery Management Council; Tule Chinook Workgroup Meeting

    Science.gov (United States)

    2010-08-25

    ... management approach for Columbia River natural tule chinook . This meeting of the TCW is open to the public... approach as a formal conservation objective in the Salmon FMP. Although nonemergency issues not contained... Fishery Management Council; Tule Chinook Workgroup Meeting AGENCY: National Marine Fisheries Service (NMFS...

  6. Idaho Natural Production Monitoring and Evaluation : Annual Progress Report February 1, 2007 - January 31, 2008.

    Energy Technology Data Exchange (ETDEWEB)

    Copeland, Timothy; Johnson, June; Putnam, Scott

    2008-12-01

    River stocks of steelhead and spring/summer Chinook salmon still have significant natural reproduction and thus are the focal species for this project's investigations. The overall goal is to monitor the abundance, productivity, distribution, and stock-specific life history characteristics of naturally produced steelhead trout and Chinook salmon in Idaho (IDFG 2007). We have grouped project tasks into three objectives, as defined in our latest project proposal and most recent statement of work. The purpose of each objective involves enumerating or describing individuals within the various life stages of Snake River anadromous salmonids. By understanding the transitions between life stages and associated controlling factors, we hope to achieve a mechanistic understanding of stock-specific population dynamics. This understanding will improve mitigation and recovery efforts. Objective 1. Measure 2007 adult escapement and describe the age structure of the spawning run of naturally produced spring/summer Chinook salmon passing Lower Granite Dam. Objective 2. Monitor the juvenile production of Chinook salmon and steelhead trout for the major population groups (MPGs) within the Clearwater and Salmon subbasins. Objective 3. Evaluate life cycle survival and the freshwater productivity/production of Snake River spring/summer Chinook salmon. There are two components: update/refine a stock-recruit model and estimate aggregate smolt-to-adult survival. In this annual progress report, we present technical results for work done during 2007. Part 2 contains detailed results of INPMEP aging research and estimation of smolt-to-adult return rates for wild and naturally produced Chinook salmon (Objectives 1 and 3). Part 3 is a report on the ongoing development of a stock-recruit model for the freshwater phase of spring/summer Chinook salmon in the Snake River basin (Objective 3). Part 4 is a summary of the parr density data (Objective 2) collected in 2007 using the new site selection

  7. Rapid River Hatchery - Spring Chinook, Final Report

    International Nuclear Information System (INIS)

    Watson, M.

    1996-05-01

    This report presents the findings of the independent audit of the Rapid River Hatchery (Spring Chinook). The hatchery is located in the lower Snake River basin near Riggins Idaho. The hatchery is used for adult collection, egg incubation, and rearing of spring chinook. The audit was conducted in April 1996 as part of a two-year effort that will include 67 hatcheries and satellite facilities located on the Columbia and Snake River system in Idaho, Oregon, and Washington. The hatchery operating agencies include the US Fish and Wildlife Service, Idaho Department of Fish and Game, Oregon Department of Fish and Wildlife, and Washington Department of Fish and Wildlife

  8. Impact of multiple stressors on juvenile fish in estuaries of the northeast Pacific.

    Science.gov (United States)

    Toft, Jason D; Munsch, Stuart H; Cordell, Jeffery R; Siitari, Kiira; Hare, Van C; Holycross, Brett M; DeBruyckere, Lisa A; Greene, Correigh M; Hughes, Brent B

    2018-05-01

    A key step in identifying global change impacts on species and ecosystems is to quantify effects of multiple stressors. To date, the science of global change has been dominated by regional field studies, experimental manipulation, meta-analyses, conceptual models, reviews, and studies focusing on a single stressor or species over broad spatial and temporal scales. Here, we provide one of the first studies for coastal systems examining multiple stressor effects across broad scales, focused on the nursery function of 20 estuaries spanning 1,600 km of coastline, 25 years of monitoring, and seven fish and invertebrate species along the northeast Pacific coast. We hypothesized those species most estuarine dependent and negatively impacted by human activities would have lower presence and abundances in estuaries with greater anthropogenic land cover, pollution, and water flow stress. We found significant negative relationships between juveniles of two of seven species (Chinook salmon and English sole) and estuarine stressors. Chinook salmon were less likely to occur and were less abundant in estuaries with greater pollution stress. They were also less abundant in estuaries with greater flow stress, although this relationship was marginally insignificant. English sole were less abundant in estuaries with greater land cover stress. Together, we provide new empirical evidence that effects of stressors on two fish species culminate in detectable trends along the northeast Pacific coast, elevating the need for protection from pollution, land cover, and flow stressors to their habitats. Lack of response among the other five species could be related to differing resistance to specific stressors, type and precision of the stressor metrics, and limitations in catch data across estuaries and habitats. Acquiring improved measurements of impacts to species will guide future management actions, and help predict how estuarine nursery functions can be optimized given anthropogenic

  9. Chinook Abundance - Linear Features [ds181

    Data.gov (United States)

    California Natural Resource Agency — The dataset 'ds181_Chinook_ln' is a product of the CalFish Adult Salmonid Abundance Database. Data in this shapefile are collected from stream sections or reaches...

  10. Fall and winter microhabitat use and suitability for spring chinook salmon parr in a U.S. Pacific Northwest River

    Science.gov (United States)

    Favrot, Scott D.; Jonasson, Brian C.; Peterson, James T.

    2018-01-01

    Habitat degradation has been implicated as a primary threat to Pacific salmon Oncorhynchus spp. Habitat restoration and conservation are key toward stemming population declines; however, winter microhabitat use and suitability knowledge are lacking for small juvenile salmonids. Our objective was to characterize microhabitat use and suitability for spring Chinook Salmon Oncorhynchus tshawytscha parr during fall and winter. Using radiotelemetry techniques during October–February (2009–2011), we identified fall and winter microhabitat use by spring Chinook Salmon parr in Catherine Creek, northeastern Oregon. Tagged fish occupied two distinct gradient reaches (moderate and low). Using a mixed‐effects logistic regression resource selection function (RSF) model, we found evidence that microhabitat use was similar between free‐flowing and surface ice conditions. However, habitat use shifted between seasons; most notably, there was greater use of silt substrate and areas farther from the bank during winter. Between gradients, microhabitat use differed with greater use of large wood (LW) and submerged aquatic vegetation in the low‐gradient reach. Using a Bayesian RSF approach, we developed gradient‐specific habitat suitability criteria. Throughout the study area, deep depths and slow currents were most suitable, with the exception of the low‐gradient reach where moderate depths were optimal. Near‐cover coarse and fine substrates were most suitable in the moderate‐ and low‐gradient reaches, respectively. Near‐bank LW was most suitable throughout the study area. Multivariate principal component analyses (PCA) indicated co‐occurring deep depths supporting slow currents near cover were intensively occupied in the moderate‐gradient reach. In the low‐gradient reach, PCA indicated co‐occurring moderate depths, slow currents, and near‐bank cover were most frequently occupied. Our study identified suitable and interrelated microhabitat

  11. Vertebral column regionalisation in Chinook salmon, Oncorhynchus tshawytscha.

    Science.gov (United States)

    De Clercq, A; Perrott, M R; Davie, P S; Preece, M A; Wybourne, B; Ruff, N; Huysseune, A; Witten, P E

    2017-10-01

    Teleost vertebral centra are often similar in size and shape, but vertebral-associated elements, i.e. neural arches, haemal arches and ribs, show regional differences. Here we examine how the presence, absence and specific anatomical and histological characters of vertebral centra-associated elements can be used to define vertebral column regions in juvenile Chinook salmon (Oncorhynchus tshawytscha). To investigate if the presence of regions within the vertebral column is independent of temperature, animals raised at 8 and 12 °C were studied at 1400 and 1530 degreedays, in the freshwater phase of the life cycle. Anatomy and composition of the skeletal tissues of the vertebral column were analysed using Alizarin red S whole-mount staining and histological sections. Six regions, termed I-VI, are recognised in the vertebral column of specimens of both temperature groups. Postcranial vertebrae (region I) carry neural arches and parapophyses but lack ribs. Abdominal vertebrae (region II) carry neural arches and ribs that articulate with parapophyses. Elastic- and fibrohyaline cartilage and Sharpey's fibres connect the bone of the parapophyses to the bone of the ribs. In the transitional region (III) vertebrae carry neural arches and parapophyses change stepwise into haemal arches. Ribs decrease in size, anterior to posterior. Vestigial ribs remain attached to the haemal arches with Sharpey's fibres. Caudal vertebrae (region IV) carry neural and haemal arches and spines. Basidorsals and basiventrals are small and surrounded by cancellous bone. Preural vertebrae (region V) carry neural and haemal arches with modified neural and haemal spines to support the caudal fin. Ural vertebrae (region VI) carry hypurals and epurals that represent modified haemal and neural arches and spines, respectively. The postcranial and transitional vertebrae and their respective characters are usually recognised, but should be considered as regions within the vertebral column of teleosts

  12. Population Structure of Columbia River Basin Chinook Salmon and Steelhead Trout, Technical Report 2001.

    Energy Technology Data Exchange (ETDEWEB)

    Brannon, E.L.; National Science Foundation (U.S.)

    2002-08-01

    The population structure of chinook salmon and steelhead trout is presented as an assimilation of the life history forms that have evolved in synchrony with diverse and complex environments over their Pacific range. As poikilotherms, temperature is described as the overwhelming environmental influence that determines what life history options occur and where they are distributed. The different populations represent ecological types referred to as spring-, summer-, fall, and winter-run segments, as well as stream- and ocean-type, or stream- and ocean-maturing life history forms. However, they are more correctly described as a continuum of forms that fall along a temporal cline related to incubation and rearing temperatures that determine spawn timing and juvenile residence patterns. Once new habitats are colonized, members of the founding populations spread through adaptive evolution to assume complementary life history strategies. The related population units are collectively referred to as a metapopulation, and members most closely associated within common temporal and geographic boundaries are designated as first-order metapopulations. Population structure of chinook salmon and steelhead in the Columbia Basin, therefore, is the reflection of the genetic composition of the founding source or sources within the respective region, shaped by the environment, principally temperature, that defines life history evolutionary strategy to maximize fitness under the conditions delineated. The complexity of structure rests with the diversity of opportunities over the elevations that exist within the Basin. Consistent with natural selection, rather than simply attempting to preserve populations, the challenge is to provide opportunities to expand their range to new or restored habitat that can accommodate genetic adaptation as directional environmental changes are elaborated. Artificial propagation can have a critical role in this process, and the emphasis must be placed on

  13. Lower Granite dam smolt monitoring program: annual report, 2000; ANNUAL

    International Nuclear Information System (INIS)

    Morrill, Charles

    2000-01-01

    The 2000 fish collection season at Lower Granite was characterized by lower than average spring flows and spill, low levels of debris, cool water temperatures, increased unclipped yearling and subyearling chinook smolts, and 8,300,546 smolts collected and transported compared to 5,882,872 in 1999. With the continued release of unclipped supplementation chinook and steelhead above Lower Granite Dam, we can no longer accurately distinguish wild chinook, steelhead, and sockeye/kokanee in the sample. Although some table titles in this report still show ''wild'' column headings, the numbers in these columns for 1999 and 2000 include wild and unclipped hatchery origin smolts. The increases over previous years reflect the increased supplementation. A total of 8,300,546 juvenile salmonids were collected at Lower Granite Dam. Of these, 187,862 fish were bypassed back to the river and 7,950,648 were transported to release sites below Bonneville Dam, 7,778,853 by barge and 171,795 by truck. A total of 151,344 salmonids were examined in daily samples. Nine research projects conducted by four agencies impacted a total of 1,361,006 smolts (16.4% of the total collection)

  14. Monitoring of Subyearling Chinook Salmon Survival and Passage at Bonneville Dam, Summer 2010

    Energy Technology Data Exchange (ETDEWEB)

    Ploskey, Gene R.; Weiland, Mark A.; Carlson, Thomas J.

    2012-09-01

    The purpose of this study was to estimate dam passage and route specific survival rates for subyearling Chinook salmon smolts to a primary survival-detection array located 81 km downstream of the dam, evaluate a BGS located in the B2 forebay, and evaluate effects of two spill treatments. The 2010 study also provided estimates of forebay residence time, tailrace egress time, spill passage efficiency (SPE), and spill + B2 Corner Collector (B2CC) efficiency, as required in the Columbia Basin Fish Accords. In addition, the study estimated forebay passage survival and survival of fish traveling from the forebay entrance array, through the dam and downstream through 81 km of tailwater.

  15. Wenatchee Chinook Parentage - Evaluate the reproductive success of hatchery and wild Chinook salmon in the Wenatchee River

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — We are using genetic parentage analysis to measure the relative fitness of hatchery and wild spring run Chinook salmon that spawn in the Wenatchee River. In addition...

  16. Migration depth and residence time of juvenile salmonids in the forebays of hydropower dams prior to passage through turbines or juvenile bypass systems: implications for turbine-passage survival.

    Science.gov (United States)

    Li, Xinya; Deng, Zhiqun D; Brown, Richard S; Fu, Tao; Martinez, Jayson J; McMichael, Geoffrey A; Skalski, John R; Townsend, Richard L; Trumbo, Bradly A; Ahmann, Martin L; Renholds, Jon F

    2015-01-01

    Little is known about the three-dimensional depth distributions in rivers of individually marked fish that are in close proximity to hydropower facilities. Knowledge of the depth distributions of fish approaching dams can be used to understand how vulnerable fish are to injuries such as barotrauma as they pass through dams. To predict the possibility of barotrauma injury caused by pressure changes during turbine passage, it is necessary to understand fish behaviour relative to acclimation depth in dam forebays as they approach turbines. A guiding study was conducted using high-resolution three-dimensional tracking results of salmonids implanted with Juvenile Salmon Acoustic Telemetry System transmitters to investigate the depth distributions of subyearling and yearling Chinook salmon (Oncorhynchus tshawytscha) and juvenile steelhead (Oncorhynchus mykiss) passing two dams on the Snake River in Washington State. Multiple approaches were evaluated to describe the depth at which fish were acclimated, and statistical analyses were performed on large data sets extracted from ∼28 000 individually tagged fish during 2012 and 2013. Our study identified patterns of depth distributions of juvenile salmonids in forebays prior to passage through turbines or juvenile bypass systems. This research indicates that the median depth at which juvenile salmonids approached turbines ranged from 2.8 to 12.2 m, with the depths varying by species/life history, year, location (which dam) and diel period (between day and night). One of the most enlightening findings was the difference in dam passage associated with the diel period. The amount of time that turbine-passed fish spent in the immediate forebay prior to entering the powerhouse was much lower during the night than during the day. This research will allow scientists to understand turbine-passage survival better and enable them to assess more accurately the effects of dam passage on juvenile salmon survival.

  17. EOP Acoustic tagging and monitorings of cultured and wild juvenile crimson jobfish (Pristipomoides filamentosus) in a nursery habitat

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Raw data from Vemco receivers that monitored the Kaneohe, Oahu nursery grounds while tagged juvenile snapper were released in 2006 (cultured) and 2007 (wild). Also...

  18. 50 CFR 226.205 - Critical habitat for Snake River sockeye salmon, Snake River fall chinook salmon, and Snake River...

    Science.gov (United States)

    2010-10-01

    ... salmon, Snake River fall chinook salmon, and Snake River spring/summer chinook salmon. 226.205 Section... Snake River sockeye salmon, Snake River fall chinook salmon, and Snake River spring/summer chinook salmon. The following areas consisting of the water, waterway bottom, and adjacent riparian zone of...

  19. Chinook Critical Habitat, Coast - NOAA [ds124

    Data.gov (United States)

    California Department of Resources — This layer depicts areas designated for Chinook Critical Habitat as well as habitat type and quality in the California Coastal Evolutionary Significant Unit (ESU -...

  20. Increased mitochondrial DNA diversity in ancient Columbia River basin Chinook salmon Oncorhynchus tshawytscha.

    Directory of Open Access Journals (Sweden)

    Bobbi M Johnson

    Full Text Available The Columbia River and its tributaries provide essential spawning and rearing habitat for many salmonid species, including Chinook salmon (Oncorhynchus tshawytscha. Chinook salmon were historically abundant throughout the basin and Native Americans in the region relied heavily on these fish for thousands of years. Following the arrival of Europeans in the 1800s, salmon in the basin experienced broad declines linked to overfishing, water diversion projects, habitat destruction, connectivity reduction, introgression with hatchery-origin fish, and hydropower development. Despite historical abundance, many native salmonids are now at risk of extinction. Research and management related to Chinook salmon is usually explored under what are termed "the four H's": habitat, harvest, hatcheries, and hydropower; here we explore a fifth H, history. Patterns of prehistoric and contemporary mitochondrial DNA variation from Chinook salmon were analyzed to characterize and compare population genetic diversity prior to recent alterations and, thus, elucidate a deeper history for this species. A total of 346 ancient and 366 contemporary samples were processed during this study. Species was determined for 130 of the ancient samples and control region haplotypes of 84 of these were sequenced. Diversity estimates from these 84 ancient Chinook salmon were compared to 379 contemporary samples. Our analysis provides the first direct measure of reduced genetic diversity for Chinook salmon from the ancient to the contemporary period, as measured both in direct loss of mitochondrial haplotypes and reductions in haplotype and nucleotide diversity. However, these losses do not appear equal across the basin, with higher losses of diversity in the mid-Columbia than in the Snake subbasin. The results are unexpected, as the two groups were predicted to share a common history as parts of the larger Columbia River Basin, and instead indicate that Chinook salmon in these subbasins

  1. 50 CFR 226.204 - Critical habitat for Sacramento winter-run chinook salmon.

    Science.gov (United States)

    2010-10-01

    ... 50 Wildlife and Fisheries 7 2010-10-01 2010-10-01 false Critical habitat for Sacramento winter-run chinook salmon. 226.204 Section 226.204 Wildlife and Fisheries NATIONAL MARINE FISHERIES SERVICE, NATIONAL... § 226.204 Critical habitat for Sacramento winter-run chinook salmon. The following waterways, bottom and...

  2. Behavior and dam passage of juvenile Chinook salmon at Cougar Reservoir and Dam, Oregon, March 2011 - February 2012

    Science.gov (United States)

    Beeman, John W.; Hansel, Hal C.; Hansen, Amy C.; Haner, Philip V.; Sprando, Jamie M.; Smith, Collin D.; Evans, Scott D.; Hatton, Tyson W.

    2013-01-01

    The movements and dam passage of juvenile Chinook salmon implanted with acoustic transmitters and passive integrated transponder tags were studied at Cougar Reservoir and Dam, near Springfield, Oregon. The purpose of the study was to provide information to aid with decisions about potential alternatives for improving downstream passage conditions for juvenile salmonids in this flood-control reservoir. In 2011, a total of 411 hatchery fish and 26 wild fish were tagged and released during a 3-month period in the spring, and another 356 hatchery fish and 117 wild fish were released during a 3-month period in the fall. A series of 16 autonomous hydrophones throughout the reservoir and 12 hydrophones in a collective system near the dam outlet were used to determine general movements and dam passage of the fish over the life of the acoustic transmitter, which was expected to be about 3 months. Movements within the reservoir were directional, and it was common for fish to migrate repeatedly from the head of the reservoir downstream to the dam outlet and back to the head of the reservoir. Most fish were detected near the temperature control tower at least once. The median time from release near the head of the reservoir to detection within about 100 meters of the dam outlet at the temperature control tower was between 5.7 and 10.8 days, depending on season and fish origin. Dam passage events occurred over a wider range of dates in the spring and summer than in the fall and winter, but dam passage numbers were greatest during the fall and winter. A total of 10.5 percent (43 of 411) of the hatchery fish and 15.4 percent (4 of 26) of the wild fish released in the spring are assumed to have passed the dam, whereas a total of 25.3 percent (90 of 356) of the hatchery fish and 16.9 percent (30 of 117) of the wild fish released in the fall are assumed to have passed the dam. A small number of fish passed the dam after their transmitters had stopped working and were detected at

  3. Grande Ronde Endemic Spring Chinook Project - ODFW, 2008 Annual Report.

    Energy Technology Data Exchange (ETDEWEB)

    Patterson, Scott

    2009-04-10

    Creek, an extirpated area, will be stocked (smolts and adults) with Catherine Creek origin salmon to initiate natural production in unseeded habitat, and to initiate future harvest opportunities. The current production levels have been incorporated into the U.S. v. Oregon Interim Management Agreement. The purpose of this contract is to integrate Bonneville Power Administration (BPA) efforts with the Lower Snake River Compensation Plan (LSRCP) program utilizing Lookingglass Hatchery as the primary rearing facility. BPA constructed an adult holding and spawning structure on the hatchery grounds; however, maintenance of this infrastructure was discontinued due to funding limitation and transferred to the LSRCP program in 2007. These integrated efforts focus on holding and spawning adults, rearing juveniles, fish health, and monitoring natural production (Redd counts) for Catherine Creek, Lostine River, and Upper Grande Ronde stocks.

  4. Spawning distribution of fall chinook salmon in the Snake River: Annual report 1999

    International Nuclear Information System (INIS)

    Garcia, Aaron P.

    2000-01-01

    This report is separated into 2 chapters. The chapters are (1) Progress toward determining the spawning distribution of supplemented fall chinook salmon in the Snake River in 1999; and (2) Fall chinook salmon spawning ground surveys in the Snake River, 1999

  5. Strait of Georgia chinook and coho fishery

    National Research Council Canada - National Science Library

    Argue, A. W

    1983-01-01

    The chinook (Oncorhynchus tshawytscha) and coho (O. kisutch) salmon fishery in the Strait of Georgia, between Vancouver Island and the mainland of British Columbia, is a valuble sport and commercial resource...

  6. Salmon Life Histories, Habitat, and Food Webs in the Columbia River Estuary: An Overview of Research Results, 2002-2006.

    Energy Technology Data Exchange (ETDEWEB)

    Bottom, Daniel L.; Anderson, Greer; Baptisa, Antonio

    2008-08-01

    From 2002 through 2006 we investigated historical and contemporary variations in juvenile Chinook salmon Oncorhynchus tshawytscha life histories, habitat associations, and food webs in the lower Columbia River estuary (mouth to rkm 101). At near-shore beach-seining sites in the estuary, Chinook salmon occurred during all months of the year, increasing in abundance from January through late spring or early summer and declining rapidly after July. Recently emerged fry dispersed throughout the estuary in early spring, and fry migrants were abundant in the estuary until April or May each year. Each spring, mean salmon size increased from the tidal freshwater zone to the estuary mouth; this trend may reflect estuarine growth and continued entry of smaller individuals from upriver. Most juvenile Chinook salmon in the mainstem estuary fed actively on adult insects and epibenthic amphipods Americorophium spp. Estimated growth rates of juvenile Chinook salmon derived from otolith analysis averaged 0.5 mm d-1, comparable to rates reported for juvenile salmon Oncorhynchus spp. in other Northwest estuaries. Estuarine salmon collections were composed of representatives from a diversity of evolutionarily significant units (ESUs) from the lower and upper Columbia Basin. Genetic stock groups in the estuary exhibited distinct seasonal and temporal abundance patterns, including a consistent peak in the Spring Creek Fall Chinook group in May, followed by a peak in the Western Cascades Fall Chinook group in July. The structure of acanthocephalan parasite assemblages in juvenile Chinook salmon from the tidal freshwater zone exhibited a consistent transition in June. This may have reflected changes in stock composition and associated habitat use and feeding histories. From March through July, subyearling Chinook salmon were among the most abundant species in all wetland habitat types (emergent, forested, and scrub/shrub) surveyed in the lower 100 km of the estuary. Salmon densities

  7. Yakima River Species Interactions Study; Yakima/Klickitat Fisheries Project Monitoring and Evaluation Report 7 of 7, 2003-2004 Annual Report.

    Energy Technology Data Exchange (ETDEWEB)

    Pearsons, Todd N.; Fritts, Anthony L.; Temple, Gabriel M. (Washington Department of Fish and Wildlife, Olympia, WA)

    2004-05-01

    ecological interactions such as predation or competition (Busack et al. 1997). Our work has adapted to new information needs as the YKFP has evolved. Initially, our work focused on interactions between anadromous steelhead and resident rainbow trout (for explanation see Pearsons et al. 1993), then interactions between spring chinook salmon and rainbow trout, and recently interactions between spring chinook salmon and highly valued non-target taxa (NTT; e.g., bull trout); and interactions between strong interactor taxa (e.g., those that may strongly influence the abundance of spring chinook salmon; e.g., smallmouth bass) and spring chinook salmon. The change in emphasis to spring chinook salmon has largely been influenced by the shift in the target species planned for supplementation (Bonneville Power Administration et al. 1996; Fast and Craig 1997). Originally, steelhead and spring chinook salmon were proposed to be supplemented simultaneously (Clune and Dauble 1991). However, due in part to the uncertainties associated with interactions between steelhead and rainbow trout, spring chinook and coho salmon were supplemented before steelhead. This redirection in the species to be supplemented has prompted us to prioritize interactions between spring chinook and rainbow trout, while beginning to investigate other ecological interactions of concern. Prefacility monitoring of variables such as rainbow trout density, distribution, and size structure was continued and monitoring of other NTT was initiated in 1997. This report is organized into three chapters that represent major topics associated with monitoring stewardship, utilization, and strong interactor taxa. Chapter 1 reports the results of non-target taxa monitoring after the fifth release of hatchery salmon smolts in the upper Yakima River basin. Chapter 2 describes our tributary sampling methodology for monitoring the status of tributary NTT. Chapter 3 describes predation on juvenile salmonids by smallmouth bass and

  8. Cedar River Chinook genotypes - Estimate relative reproductive success of hatchery and wild fall Chinook salmon in the Cedar River

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — We are using genetic pedigree information to estimate the reproductive success of hatchery and wild fall-run Chinook salmon spawning in the Cedar River, Washington....

  9. Wigwam River juvenile bull trout and fish habitat monitoring program : 2001 data report

    International Nuclear Information System (INIS)

    Cope, R.S.; Morris, K.J.; Bisset, J.E.

    2002-01-01

    The Wigwam River juvenile bull trout and fish habitat monitoring program is a co-operative initiative of the British Columbia Ministry of Water, Land, and Air Protection and Bonneville Power Administration. The Wigwam River has been characterized as the single most important bull trout spawning stream in the Kootenay Region. This report provides a summary of results obtained during the second year (2001) of the juvenile bull trout enumeration and fish habitat assessment program. This project was commissioned in planning for fish habitat protection and forest development within the upper Wigwam River valley. The broad intent is to develop a better understanding of juvenile bull trout and Westslope cutthroat trout recruitment and the ongoing hydrologic and morphologic processes in the upper Wigwam River, especially as they relate to spawning and rearing habitat quality. Five permanent sampling sites were established August 2000 in the Wigwam river drainage (one site on Bighorn Creek and four sites on the mainstem Wigwam River). At each site, juvenile (0(sup+), 1(sup+) and 2(sup+) age classes) fish densities and stream habitat conditions were measured over two stream meander wavelengths. Bull trout represented 95.1% of the catch and the mean density of juvenile bull trout was estimated to be 20.7 fish/100m(sup 2) (range 0.9 to 24.0 fish/100m(sup 2)). This compares to 17.2 fish/100m(sup 2) (+20%) for the previous year. Fry (0(sup+)) dominated the catch and this was a direct result of juvenile bull trout ecology and habitat partitioning among life history stages. Site selection was biased towards sample sites which favored high bull trout fry capture success. Comparison of fry density estimates replicated across both the preliminary survey (1997) and the current study (Cope and Morris 2001) illustrate the stable nature of these high densities. Bull trout populations have been shown to be extremely susceptible to habitat degradation and over-harvest and are ecologically

  10. Stock Identification of Columbia River Chinook Salmon and Steelhead Trout, 1984-1985 Annual Report.

    Energy Technology Data Exchange (ETDEWEB)

    Schreck, Carl B.; Sharpe, Cameron; Li, Hiram W. (Oregon State University, Oregon Cooperative Fishery Research Unit, Corvallis, OR)

    1985-09-21

    Fish were collected from 60 stocks of chinook salmon and 62 stocks of steelhead trout. Electrophoretic analyses were completed on 43 stocks of chinook salmon and 41 stocks of steelhead trout and meristic counts were completed on 43 stocks of chinook and 41 stocks of steelhead. Statistical comparisons between year classes of our electrophoretic data indicate that most enzyme systems are stable over time but some may be dynamic and should be used with caution in our analyses. We also compared neighboring stocks of both spring chinook and steelhead trout. These comparisons were between stocks of the same race from adjacent stream systems and/or hatcheries. Differences in isozyme gene frequencies can be used to estimate genetic segregation between pairs of stocks. Analysis of the chinook data suggests that, as expected, the number of statistically significant differences in isozyme gene frequencies increases as the geographic distance between stocks increases. The results from comparisons between adjacent steelhead stocks were inconclusive and must await final analysis with more data. Cluster analyses using either isozyme gene frequencies or meristic characters both tended to group the chinook and steelhead stocks by geographic areas and by race and both methods resulted in generally similar grouping patterns. However, cluster analyses using isozyme gene frequencies produced more clusters than the analyses using meristic characters probably because of the greater number of electrophoretic characters compared to the number of meristic characters. Heterozygosity values for each stock were computed using the isozyme gene frequencies. The highest heterozygosity values for chinook were observed in summer chinook and the hatchery stocks while the lowest values were observed in the spring chinook and wild stocks. The results of comparisons of heterozygosity values among areas were inconclusive. The steelhead heterozygosity values were higher in the winter stocks than in the

  11. Evaluate the Restoration Potential of Snake River Fall Chinook Salmon Spawning Habitat, Status Report 2006.

    Energy Technology Data Exchange (ETDEWEB)

    Hanrahan, T.P. [Pacific Northwest National Laboratory

    2009-01-08

    The Bonneville Power Administration (BPA) Project 2003-038-00, Evaluate the restoration potential of Snake River fall Chinook salmon spawning habitat, began in FY04 (15 December 2003) and continues into FY06. This status report is intended to summarize accomplishments during FY04 and FY05. Accomplishments are summarized by Work Elements, as detailed in the Statement of Work (see BPA's project management database PISCES). This project evaluates the restoration potential of mainstem habitats for fall Chinook salmon. The studies address two research questions: 'Are there sections not currently used by spawning fall Chinook salmon within the impounded lower Snake River that possess the physical characteristics for potentially suitable fall Chinook spawning habitat?' and 'Can hydrosystem operations affecting these sections be adjusted such that the sections closely resemble the physical characteristics of current fall Chinook salmon spawning areas in similar physical settings?' Efforts are focused at two study sites: (1) the Ice Harbor Dam tailrace downstream to the Columbia River confluence, and (2) the Lower Granite Dam tailrace. Our previous studies indicated that these two areas have the highest potential for restoring Snake River fall Chinook salmon spawning habitat. The study sites will be evaluated under existing structural configurations at the dams (i.e., without partial removal of a dam structure), and alternative operational scenarios (e.g., varying forebay/tailwater elevations). The areas studied represent tailwater habitat (i.e., riverine segments extending from a dam downstream to the backwater influence from the next dam downstream). We are using a reference site, indicative of current fall Chinook salmon spawning areas in tailwater habitat, against which to compare the physical characteristics of each study site. The reference site for tailwater habitats is the section extending downstream from the Wanapum Dam tailrace on the

  12. 50 CFR Figure 8 to Part 679 - Aleutian Islands Chinook Salmon Savings Area

    Science.gov (United States)

    2010-10-01

    ... 50 Wildlife and Fisheries 9 2010-10-01 2010-10-01 false Aleutian Islands Chinook Salmon Savings Area 8 Figure 8 to Part 679 Wildlife and Fisheries FISHERY CONSERVATION AND MANAGEMENT, NATIONAL... ECONOMIC ZONE OFF ALASKA Pt. 679, Fig. 8 Figure 8 to Part 679—Aleutian Islands Chinook Salmon Savings Area...

  13. Strait of Georgia chinook and coho fishery

    National Research Council Canada - National Science Library

    Argue, A. W

    1983-01-01

    ....), a computer simulation model was developed. The model calculates the abundance and size of the natural and enhanced stocks of chinook and coho for each age-class and evaluates regulatory options by simulating the life history of these fish...

  14. The effect of chronic chromium exposure on the health of Chinook salmon (Oncorhynchus tshawytscha)

    Energy Technology Data Exchange (ETDEWEB)

    Farag, Aida M. [United States Geological Survey, Columbia Environmental Research Center, Jackson Field Research Station, P.O. Box 1089, Jackson, WY 83001 (United States)]. E-mail: aida_farag@usgs.gov; May, Thomas [United States Geological Survey, Columbia Environmental Research Center, Columbia, MO 65201 (United States); Marty, Gary D. [Department of Anatomy, Physiology, and Cell Biology, School of Veterinary Medicine, University of California, 1 Shields Ave., Davis, CA 95616-8732 (United States); Easton, Michael [International EcoGen Inc., 2015 McLallen Court, North Vancouver, BC, Canada V7P 3H6 (Canada); Harper, David D. [United States Geological Survey, Columbia Environmental Research Center, Jackson Field Research Station, P.O. Box 1089, Jackson, WY 83001 (United States); Little, Edward E. [United States Geological Survey, Columbia Environmental Research Center, Columbia, MO 65201 (United States); Cleveland, Laverne [United States Geological Survey, Columbia Environmental Research Center, Columbia, MO 65201 (United States)

    2006-03-10

    This study was designed to determine fish health impairment of Chinook salmon (Oncorhynchus tshawytscha) exposed to chromium. Juvenile Chinook salmon were exposed to aqueous chromium concentrations (0-266 {mu}g l{sup -1}) that have been documented in porewater from bottom sediments and in well waters near salmon spawning areas in the Columbia River in the northwestern United States. After Chinook salmon parr were exposed to 24 and 54 {mu}g Cr l{sup -1} for 105 days, neither growth nor survival of parr was affected. On day 105, concentrations were increased from 24 to 120 {mu}g Cr l{sup -1} and from 54 to 266 {mu}g Cr l{sup -1} until the end of the experiment on day 134. Weight of parr was decreased in the 24/120 {mu}g Cr l{sup -1} treatment, and survival was decreased in the 54/266 {mu}g Cr l{sup -1} treatment. Fish health was significantly impaired in both the 24/120 and 54/266 {mu}g Cr l{sup -1} treatments. The kidney is the target organ during chromium exposures through the water column. The kidneys of fish exposed to the greatest concentrations of chromium had gross and microscopic lesions (e.g. necrosis of cells lining kidney tububules) and products of lipid peroxidation were elevated. These changes were associated with elevated concentrations of chromium in the kidney, and reduced growth and survival. Also, variations in DNA in the blood were associated with pathological changes in the kidney and spleen. These changes suggest that chromium accumulates and enters the lipid peroxidation pathway where fatty acid damage and DNA damage (expressed as chromosome changes) occur to cause cell death and tissue damage. While most of the physiological malfunctions occurred following parr exposures to concentrations {>=}120 {mu}g Cr l{sup -1}, nuclear DNA damage followed exposures to 24 {mu}g Cr l{sup -1}, which was the smallest concentration tested. The abnormalities measured during this study are particularly important because they are associated with impaired growth

  15. Chinook Critical Habitat, Central Valley - NOAA [ds125

    Data.gov (United States)

    California Department of Resources — This layer depicts areas designated for Chinook Critical Habitat as well as habitat type and quality in the Central Valley Spring-run Evolutionary Significant Unit...

  16. Chinook Critical Habitat, Central Valley - NOAA [ds125

    Data.gov (United States)

    California Natural Resource Agency — This layer depicts areas designated for Chinook Critical Habitat as well as habitat type and quality in the Central Valley Spring-run Evolutionary Significant Unit...

  17. Compliance Monitoring of Subyearling Chinook Salmon Survival and Passage at The Dalles Dam, Summer 2012

    Energy Technology Data Exchange (ETDEWEB)

    Skalski, J. R.; Townsend, Richard L.; Seaburg, Adam; Ploskey, Gene R.; Weiland, Mark A.; Hughes, James S.; Woodley, Christa M.; Deng, Zhiqun; Carlson, Thomas J.; Johnson, Gary E.

    2013-05-01

    The purpose of this compliance study was to estimate dam passage survival of subyearling Chinook salmon at The Dalles Dam during summer 2012. Under the 2008 Federal Columbia River Power System Biological Opinion, dam passage survival is required to be greater than or equal to 0.93 and estimated with a standard error (SE) less than or equal to 0.015. The study also estimated survival from the forebay 2 km upstream of the dam and through the tailrace to 2 km downstream of the dam, forebay residence time, tailrace egress time, spill passage efficiency (SPE), and fish passage efficiency (FPE), as required by the 2008 Columbia Basin Fish Accords.

  18. Accelerometry-based monitoring of daily physical activity in children with juvenile idiopathic arthritis

    DEFF Research Database (Denmark)

    Nørgaard, M; Twilt, M; Andersen, L B

    2015-01-01

    with regard to disease activity and physical variables and to compare the data with those from healthy age- and gender-matched controls.Method: Patients underwent an evaluation of disease activity, functional ability, physical capacity, and pain. Accelerometer monitoring was assessed using the GT1M Acti...... range of motion (ROM). No correlation was found between PA and pain scores, functional ability, and hypermobility. Patients with involvement of ankles or hips demonstrated significantly lower levels of PA.Conclusions: Children with JIA are less physically active and have lower physical capacity......Objectives: Juvenile idiopathic arthritis (JIA) may cause functional impairment, reduced participation in physical activity (PA) and, over time, physical deconditioning. The aim of this study was to objectively monitor daily free-living PA in 10-16-year-old children with JIA using accelerometry...

  19. Reproductive Ecology of Yakima River Hatchery and Wild Spring Chinook; Yakima/Klickitat Fisheries Project Monitoring and Evaluation Report 3 of 7, 2003-2004 Annual Report.

    Energy Technology Data Exchange (ETDEWEB)

    Knudsen, Curtis (Oncorh Consulting, Olympia, WA)

    2004-05-01

    This is the third in a series of annual reports that address reproductive ecological research and comparisons of hatchery and wild origin spring chinook in the Yakima River basin. Data have been collected prior to supplementation to characterize the baseline reproductive ecology, demographics and phenotypic traits of the unsupplemented upper Yakima population, however this report focuses on data collected on hatchery and wild spring chinook returning in 2003; the third year of hatchery adult returns. This report is organized into three chapters, with a general introduction preceding the first chapter and summarizes data collected between April 1, 2003 and March 31, 2004 in the Yakima basin. Summaries of each of the chapters in this report are included below. A major component of determining supplementation success in the Yakima Klickitat Fishery Project's spring chinook (Oncorhynchus tshawytscha) program is an increase in natural production. Within this context, comparing upper Yakima River hatchery and wild origin fish across traits such as sex ratio, age composition, size-at-age, fecundity, run timing and gamete quality is important because these traits directly affect population productivity and individual fish fitness which determine a population's productivity.

  20. Estimated loss of juvenile salmonids to predation by northern squawfish, walleyes, and smallmouth bass in John Day Reservoir, Columbia River

    International Nuclear Information System (INIS)

    Rieman, B.E.; Beamesderfer, R.C.; Vigg, S.; Poe, T.P.

    1991-01-01

    The authors estimated the loss of juvenile salmonids Oncorhynchus spp. to predation by northern squawfish Ptychocheilus oregonensis, walleyes Stizostedion vitreum, and smallmouth bass Micropterus dolomieu in John Day Reservoir during 1983-1986. Their estimates were based on measures of daily prey consumption, predator numbers, and numbers of juvenile salmonids entering the reservoir during the April-August period of migration. They estimated the mean annual loss was 2.7 million juvenile salmonids. Northern squawfish were responsible for 78% of the total loss; walleyes accounted for 13% and smallmouth bass for 9%. Twenty-one percent of the loss occurred in a small area immediately below McNary Dam at the head of John Day Reservoir. The authors estimated that the three predator species consumed 14% of all juvenile salmonids that entered the reservoir. Mortality changed by month and increased late in the migration season. Monthly mortality estimates ranged from 7% in June and 61% in August. Mortality from predation was highest for chinook salmon O. tshawytscha, which migrated in July and August. Despite uncertainties in the estimates, it is clear that predation by resident fish predators can easily account for previously explained mortality of out-migrating juvenile salmonids. Alteration of the Columbia River by dams and a decline in the number of salmonids could have increased the fraction of mortality caused by predation over what is was in the past

  1. AFSC/ABL: Movements of Yukon River Chinook salmon

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Upriver movements were determined for Chinook salmon Oncorhynchus tshawytscha returning to the Yukon River, a large, relatively pristine river basin. A total of...

  2. HEAD INJURY ASSESSMENT IN JUVENILE CHINOOK USING THE ALPHA II-SPECTRIN BIOMARKER: EFFECTS OF PRESSURE CHANGES AND PASSAGE THROUGH A REMOVABLE SPILLWAY WEIR

    Energy Technology Data Exchange (ETDEWEB)

    Jonason, C.; Miracle, A.

    2009-01-01

    The cytoskeletal protein alpha II-spectrin has specifi c neurodegenerative mechanisms that allow the necrotic (injury-induced) and apoptotic (non-injury-induced) pathways of proteolysis to be differentiated in an immunoblot. Consequently, αII-spectrin breakdown products (SBDPs) are potential biomarkers for diagnosing traumatic brain injury (TBI). The purpose of the following investigation, consisting of two studies, was to evaluate the utility of the spectrin biomarker in diagnosing TBI in fi sh that travel through hydroelectric dams in the Columbia and Snake Rivers. The fi rst study used hyperbaric pressure chambers to simulate the pressure changes that affect fi sh during passage through a Federal Columbia River Power System (FCRPS) Kaplan turbine. The second study tested the effect of a removable spillway weir (RSW) on the passage of juvenile chinook (Oncorhynchus tshawytscha). This study was conducted in tandem with a balloon-tag study by the U.S. Army Corps of Engineers. Brain samples from fi sh were collected and analyzed using an immunoblot for SBDPs, and imaging software was used to quantify the protein band density and determine the ratio of cleaved protein to total protein. The biomarker analyses found higher SBDP expression levels in fi sh that were exposed to lower pressure nadirs and fi sh that passed through the RSW at a deep orientation. In general, the incidence of injuries observed after treatment positively correlated with expression levels, suggesting that the biomarker method of analysis is comparable to traditional methods of injury assessment. It was also found that, for some treatments, the 110 kDa spectrin fragment (SBDP 110) correlated more strongly with necrotic head injury incidence and mortality rates than did the total cleaved protein or the 120 kDa fragment. These studies will be informative in future decisions regarding the design of turbines and fi sh passage structures in hydroelectric dams and will hopefully contribute to the

  3. Enhanced invertebrate prey production following estuarine restoration supports foraging for multiple species of juvenile salmonids (Oncorhynchus spp.)

    Science.gov (United States)

    Woo, Isa; Davis, Melanie; Ellings, Christopher S.; Nakai, Glynnis; Takekawa, John Y.; De La Cruz, Susan

    2018-01-01

    Estuaries provide crucial foraging resources and nursery habitat for threatened populations of anadromous salmon. As such, there has been a global undertaking to restore habitat and tidal processes in modified estuaries. The foraging capacity of these ecosystems to support various species of out-migrating juvenile salmon can be quantified by monitoring benthic, terrestrial, and pelagic invertebrate prey communities. Here, we present notable trends in the availability of invertebrate prey at several sites within a restoring large river delta in Puget Sound, Washington, U.S.A. Three years after the system was returned to tidal influence, we observed substantial additions to amphipod, copepod, and cumacean abundances in newly accessible marsh channels (from 0 to roughly 5,000–75,000 individuals/m2). In the restoration area, terrestrial invertebrate colonization was dependent upon vegetative cover, with dipteran and hymenopteran biomass increasing 3-fold between 1 and 3 years post-restoration. While the overall biodiversity within the restoration area was lower than in the reference marsh, estimated biomass was comparable to or greater than that found within the other study sites. This additional prey biomass likely provided foraging benefits for juvenile Chinook, chum, and coho salmon. Primary physical drivers differed for benthic, terrestrial, and pelagic invertebrates, and these invertebrate communities are expected to respond differentially depending on organic matter exchange and vegetative colonization. Restoring estuaries may take decades to meet certain success criteria, but our study demonstrates rapid enhancements in foraging resources understood to be used for estuary-dependent wildlife.

  4. 50 CFR Table 47c to Part 679 - Percent of the AFA Inshore Sector's Pollock Allocation, Numbers of Chinook Salmon Used To...

    Science.gov (United States)

    2010-10-01

    ... Pollock Allocation, Numbers of Chinook Salmon Used To Calculate the Opt-Out Allocation and Annual... Sector's Pollock Allocation, Numbers of Chinook Salmon Used To Calculate the Opt-Out Allocation and... Chinook salmon for the opt-out allocation (15,858) Column F Number of Chinook salmon for the opt-out...

  5. 50 CFR Table 47b to Part 679 - Percent of the AFA Mothership Sector's Pollock Allocation, Numbers of Chinook Salmon Used To...

    Science.gov (United States)

    2010-10-01

    ... Pollock Allocation, Numbers of Chinook Salmon Used To Calculate the Opt-Out Allocation and Annual... Sector's Pollock Allocation, Numbers of Chinook Salmon Used To Calculate the Opt-Out Allocation and... of Chinook salmon for the opt-out allocation (2,220) Column F Number of Chinook salmon for the opt...

  6. 50 CFR Table 47a to Part 679 - Percent of the AFA Catcher/Processor Sector's Pollock Allocation, Numbers of Chinook Salmon Used...

    Science.gov (United States)

    2010-10-01

    ... Sector's Pollock Allocation, Numbers of Chinook Salmon Used To Calculate the Opt-out Allocation and... Catcher/Processor Sector's Pollock Allocation, Numbers of Chinook Salmon Used To Calculate the Opt-out... pollock Column E Number of Chinook salmon for the opt-out allocation (8,093) Column F Number of Chinook...

  7. Idaho supplementation studies : five year report : 1992-1996

    International Nuclear Information System (INIS)

    Walters, Jody P.; Idaho. Dept. of Fish and Game; United States. Bonneville Power Administration. Division of Fish and Wildlife.

    1999-01-01

    In 1991, the Idaho Supplementation Studies (ISS) project was implemented to address critical uncertainties associated with hatchery supplementation of chinook salmon Oncorhynchus tshawytscha populations in Idaho. The project was designed to address questions identified in the Supplementation Technical Work Group (STWG) Five-Year-Workplan (STWG 1988). Two goals of the project were identified: (1) assess the use of hatchery chinook salmon to increase natural populations in the Salmon and Clearwater river drainages, and (2) evaluate the genetic and ecological impacts of hatchery chinook salmon on naturally reproducing chinook salmon populations. Four objectives to achieve these goals were developed: (1) monitor and evaluate the effects of supplementation on presmolt and smolt numbers and spawning escapements of naturally produced fish; (2) monitor and evaluate changes in natural productivity and genetic composition of target and adjacent populations following supplementation; (3) determine which supplementation strategies (broodstock and release stage) provide the quickest and highest response in natural production without adverse effects on productivity; and (4) develop supplementation recommendations. This document reports on the first five years of the long-term portion of the ISS project. Small-scale studies addressing specific hypotheses of the mechanisms of supplementation effects (e.g., competition, dispersal, and behavior) have been completed. Baseline genetic data have also been collected. Because supplementation broodstock development was to occur during the first five years, little evaluation of supplementation is currently possible. Most supplementation adults did not start to return to study streams until 1997. The objectives of this report are to: (1) present baseline data on production and productivity indicators such as adult escapement, redd counts, parr densities, juvenile emigrant estimates, and juvenile survival to Lower Granite Dam (lower Snake

  8. AFSC/ABL: 2007-2013 Chinook Salmon Bycatch Sample

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — A genetic analyses of samples from the Chinook salmon (Oncorhynchus tshawytscha) bycatch from the 2007-2013 Bering Sea-Aleutian Island and Gulf of Alaska trawl...

  9. Fall Chinook Distribution, Pacific Northwest (updated March, 2006)

    Data.gov (United States)

    Pacific States Marine Fisheries Commission — This dataset is a record of fish distribution and activity for FALL CHINOOK contained in the StreamNet database. This feature class was created based on linear event...

  10. Wind River Watershed Restoration 2004-2005 Annual Report.

    Energy Technology Data Exchange (ETDEWEB)

    Connolly, Patrick J.; Jezorek, Ian G. [U.S. Geological Survey

    2008-11-10

    During 2004, researchers from U.S. Geological Survey's Columbia River Research Laboratory (USGS-CRRL) collected temperature, flow, and habitat data to characterize physical habitat condition and variation within and among tributaries and mainstem sections in the Wind River subbasin. Juvenile salmonid population surveys were conducted within select study areas throughout the subbasin. We expanded our survey coverage of the mainstem Wind River to a reach in the vicinity of Carson National Fish Hatchery to assess effects of non-indigenous Chinook on native steelhead. These efforts add to a database of habitat and fish data collected in the Wind River since 1996. This research contributes to the Wind River Restoration Project, which includes active stream habitat restoration and monitoring of adult and juvenile steelhead populations. We maintained a network of 32 thermographs in the Wind River subbasin during 2004. Additionally, Underwood Conservation District provided us with data from seven thermographs that they maintained during 2004. Thermograph data are identifying areas with chronic high water temperatures and stream sections where high rates of warming are occurring. During 2004, water temperatures at 26 thermograph sites exceeded the 16 C limit for surface waters set by the Washington Department of Ecology. Water temperatures exceeded 20 C at five sites in the Trout Creek watershed. Our thermograph dataset includes information from as early as 1996 at some sites and has become a valuable long-term dataset, which will be crucial in determining bioenergetic relationships with habitat and life-histories. We have monitored salmonid populations throughout the Wind River subbasin by electrofishing and snorkeling. We electrofished four stream sections for population estimates during 2004. In these sections, and others where we simply collected fish without a population estimate, we tagged juvenile steelhead and Chinook salmon with Passive Integrated Transponder

  11. Post-mortem sporulation of Ceratomyxa shasta (Myxozoa) after death in adult Chinook salmon

    Science.gov (United States)

    Kent, Michael L.; Soderlund, K.; Thomann, E.; Schreck, Carl B.; Sharpton, T.J.

    2014-01-01

    Ceratomyxa shasta (Myxozoa) is a common gastrointestinal pathogen of salmonid fishes in the Pacific Northwest of the United States. We have been investigating this parasite in adult Chinook salmon (Oncorhynchus tshawytscha) in the Willamette River, Oregon. In prior work, we observed differences in the pattern of development of C. shasta in adult salmon compared to juvenile salmon. Adult salmon consistently had large numbers of prespore stages in many of the fish that survived to spawn in the fall. However, myxospores were rarely observed, even though they were exposed and presumably infected for months before spawning. We evaluated the ability of C. shasta to sporulate following fish death because it is reported that myxosores are common in carcasses of Chinook salmon. We collected the intestine from 30 adult salmon immediately after artificial spawning and death (T0). A total of 23 fish were infected with C. shasta based on histology, but only a few myxospores were observed in 1 fish by histology. Intestines of these fish were examined at T0 and T7 (latter held at 17 C for 7 days) using quantified wet mount preparations. An increase in myxospore concentrations was seen in 39% of these fish, ranging between a 1.5- to a 14.5-fold increase. The most heavily infected fish exhibited a 4.6-fold increase from 27,841 to 129,352 myxospores/cm. This indicates, supported by various statistical analyses, that under certain conditions presporogonic forms are viable and continue to sporulate after death in adult salmon. Considering the life cycle of C. shasta and anadromous salmon, the parasite may have evolved 2, non-mutually exclusive developmental strategies. In young fish (parr and smolts), the parasite sporulates shortly after infection and is released into freshwater from either live or dead fish before their migration to seawater, where the alternate host is absent. The second strategy occurs in adult salmon, particularly spring Chinook salmon, which become infected upon

  12. Monitoring the Reproductive Success of Naturally Spawning Hatchery and Natural Spring Chinook Salmon in the Wenatchee River, 2008-2009 Progress Report.

    Energy Technology Data Exchange (ETDEWEB)

    Ford, Michael J.; Williamson, Kevin S. [Northwest Fisheries Science Center

    2009-05-28

    We investigated differences in the statistical power to assign parentage between an artificially propagated and wild salmon population. The propagated fish were derived from the wild population, and are used to supplement its abundance. Levels of genetic variation were similar between the propagated and wild groups at 11 microsatellite loci, and exclusion probabilities were >0.999999 for both groups. The ability to unambiguously identify a pair of parents for each sampled progeny was much lower than expected, however. Simulations demonstrated that the proportion of cases the most likely pair of parents were the true parents was lower for propagated parents than for wild parents. There was a clear relationship between parentage assignment ability and the degree of linkage disequilibrium, the estimated effective number of breeders that produced the parents, and the size of the largest family within the potential parents. If a stringent threshold for parentage assignment was used, estimates of relative fitness were biased downward for the propagated fish. The bias appeared to be largely eliminated by either fractionally assigning progeny among parents in proportion to their likelihood of parentage, or by assigning progeny to the most likely set of parents without using a statistical threshold. We used a DNA-based parentage analysis to measure the relative reproductive success of hatchery- and natural-origin spring Chinook salmon in the natural environment. Both male and female hatchery-origin fish produced far fewer juvenile progeny per parent when spawning naturally than did natural origin fish. Differences in age structure, spawning location, weight and run timing were responsible for some of the difference in fitness. Male size and age had a large influence on fitness, with larger and older males producing more offspring than smaller or younger individuals. Female size had a significant effect on fitness, but the effect was much smaller than the effect of size on

  13. Salinity effects on plasma ion levels, cortisol, and osmolality in Chinook salmon following lethal sampling.

    Science.gov (United States)

    Stewart, Heather A; Noakes, David L G; Cogliati, Karen M; Peterson, James T; Iversen, Martin H; Schreck, Carl B

    2016-02-01

    Studies on hydromineral balance in fishes frequently employ measurements of electrolytes following euthanasia. We tested the effects of fresh- or salt-water euthanasia baths of tricaine mesylate (MS-222) on plasma magnesium (Mg(2+)) and sodium (Na(+)) ions, cortisol and osmolality in fish exposed to saltwater challenges, and the ion and steroid hormone fluctuations over time following euthanasia in juvenile spring Chinook salmon (Oncorhynchus tshawytscha). Salinity of the euthanasia bath affected plasma Mg(2+) and Na(+) concentrations as well as osmolality, with higher concentrations in fish euthanized in saltwater. Time spent in the bath positively affected plasma Mg(2+) and osmolality, negatively affected cortisol, and had no effect on Na(+) concentrations. The difference of temporal trends in plasma Mg(2+) and Na(+) suggests that Mg(2+) may be more sensitive to physiological changes and responds more rapidly than Na(+). When electrolytes and cortisol are measured as endpoints after euthanasia, care needs to be taken relative to time after death and the salinity of the euthanasia bath. Copyright © 2015 Elsevier Inc. All rights reserved.

  14. Quantification of the probable effects of alternative in-river harvest regulations on recovery of Snake River fall chinook salmon. Final report

    International Nuclear Information System (INIS)

    Cramer, S.P.; Vigg, S.

    1996-03-01

    The goal of this study was to quantify the probable effects that alternative strategies for managing in-river harvest would have on recovery of Snake River fall chinook salmon. This report presents the analysis of existing data to quantify the way in which various in-river harvest strategies catch Snake River bright (SRB) fall chinook. Because there has been disagreement among experts regarding the magnitude of in-river harvest impacts on Snake River fall chinook, the authors compared the results from using the following three different methods to estimate in-river harvest rates: (1) use of run reconstruction through stock accounting of escapement and landings data to estimate harvest rate of SRB chinook in Zone 6 alone; (2) use of Coded Wire Tag (CWT) recoveries of fall chinook from Lyons Ferry Hatchery in a cohort analysis to estimate age and sex specific harvest rates for Zone 6 and for below Bonneville Dam; (3) comparison of harvest rates estimated for SRB chinook by the above methods to those estimated by the same methods for Upriver Bright (URB) fall chinook

  15. Development of an Index to Bird Predation of Juvenile Salmonids within the Yakima River, 1999 Annual Report.

    Energy Technology Data Exchange (ETDEWEB)

    Gassley, James M.; Grue, Christian E. (University of Washington, School of Aquatic and Fishery Sciences, Seattle, WA)

    2001-10-01

    Avian predation of fish is suspected to contribute to the loss of juvenile spring chinook salmon in the Yakima Basin, potentially constraining natural production. In 1997 and 1998, the Yakama/Klickitat Fisheries Project (YKFP) and the Washington Department of Fish and Wildlife (WDFW)--whose goal is to increase natural production historically present within the Yakima River--initiated investigations to assess the feasibility of developing an index to avian predation of juvenile salmon within the river. This research--conducted by Dr. Steve Mathews and David Phinney of the University of Washington--confirmed that Ring-billed Gulls and Common Mergansers were the primary avian predators of juvenile salmon, and that under certain conditions could significantly impact migrating smolt populations. Beginning in 1999, the Washington Cooperative Fish and Wildlife Research Unit was asked by the YKFP and the WDFW to continue development of avian consumption indices. Monitoring methods developed by Mathews and Phinney were adopted (with modifications) and monitoring of impacts to juvenile salmon along river reaches and at areas of high predator/prey concentrations (colloquially referred to as ''hotspots'') continued. New efforts initiated in 1999 included piscivorous bird surveys at smolt acclimation sites operated by the Yakama Nation, monitoring of the North Fork Teanaway River for changes in avian piscivore abundance associated with the installation of the Jack Creek acclimation facility, and aerial surveys seeking to identify avian piscivores along the length of the Yakima River. In 1999, piscivorous birds were counted from river banks at hotspots and from a raft or drift boat along river reaches. Consumption by gulls was based on direct observations of foraging success and modeled abundance; consumption by Common Mergansers (which forage underwater) was estimated using published dietary requirements and modeled abundance. A second-order polynomial

  16. Optimal Conventional and Semi-Natural Treatments for the Upper Yakima Spring Chinook Salmon Supplementation Project, Treatment Definitions and Descriptions, and Biological Specifications for Facility Design, Final Report 1999

    International Nuclear Information System (INIS)

    Hager, Robert C.; Costello, Ronald J.

    1999-01-01

    This report describes the Yakima Fisheries Project facilities (Cle Elum Hatchery and acclimation satellites) which provide the mechanism to conduct state-of-the-art research for addressing questions about spring chinook supplementation strategies. The definition, descriptions, and specifications for the Yakima spring chinook supplementation program permit evaluation of alternative fish culture techniques that should yield improved methods and procedures to produce wild-like fish with higher survival that can be used to rebuild depleted spring chinook stocks of the Columbia River Basin. The definition and description of three experimental treatments, Optimal Conventional (OCT), Semi-Natural (SNT), Limited Semi-Natural (LSNT), and the biological specifications for facilities have been completed for the upper Yakima spring chinook salmon stock of the Yakima Fisheries Project. The task was performed by the Biological Specifications Work Group (BSWG) represented by Yakama Indian Nation, Washington Department of Fish and Wildlife, National Marine Fisheries Service, and Bonneville Power Administration. The control and experimental variables of the experimental treatments (OCT, SNT, and LSNT) are described in sufficient detail to assure that the fish culture facilities will be designed and operated as a production scale laboratory to produce and test supplemented upper Yakima spring chinook salmon. Product specifications of the treatment groups are proposed to serve as the generic templates for developing greater specificity for measurements of product attributes. These product specifications will be used to monitor and evaluate treatment effects, with respect to the biological response variables (post release survival, long-term fitness, reproductive success and ecological interactions)

  17. Juvenile sucker cohort tracking data summary and assessment of monitoring program, 2015

    Science.gov (United States)

    Burdick, Summer M.; Ostberg, Carl O.; Hereford, Mark E.; Hoy, Marshal S.

    2016-09-22

    Populations of federally endangered Lost River (Deltistes luxatus) and shortnose suckers (Chasmistes brevirostris) in Upper Klamath Lake, Oregon, are experiencing long-term declines in abundance. Upper Klamath Lake populations are decreasing because adult mortality, which is relatively low, is not being balanced by recruitment of young adult suckers into known adult spawning aggregations. Previous sampling for juvenile suckers indicated that most juvenile sucker mortality in Upper Klamath Lake likely occurs within the first year of life. The importance of juvenile sucker mortality to the dynamics of Clear Lake Reservoir populations is less clear, and factors other than juvenile mortality (such as access to spawning habitat) play a substantial role. For example, production of age-0 juvenile suckers, as determined by fin ray annuli and fin development, has not been detected since 2013 in Clear Lake Reservoir, whereas it is detected annually in Upper Klamath Lake.

  18. Growth characteristics and Otolith analysis on Age-0 American Shad

    Science.gov (United States)

    Sauter, Sally T.; Wetzel, Lisa A.

    2011-01-01

    Otolith microstructure analysis provides useful information on the growth history of fish (Campana and Jones 1992, Bang and Gronkjaer 2005). Microstructure analysis can be used to construct the size-at-age growth trajectory of fish, determine daily growth rates, and estimate hatch date and other ecologically important life history events (Campana and Jones 1992, Tonkin et al. 2008). This kind of information can be incorporated into bioenergetics modeling, providing necessary data for estimating prey consumption, and guiding the development of empirically-based modeling scenarios for hypothesis testing. For example, age-0 American shad co-occur with emigrating juvenile fall Chinook salmon originating from Hanford Reach and the Snake River in the lower Columbia River reservoirs during the summer and early fall. The diet of age-0 American shad appears to overlap with that of juvenile fall Chinook salmon (Chapter 1, this report), but juvenile fall Chinook salmon are also known to feed on age-0 American shad in the reservoirs (USGS unpublished data). Abundant, energy-dense age-0 American shad may provide juvenile fall Chinook salmon opportunities for rapid growth during the time period when large numbers of age-0 American shad are available. Otolith analysis of hatch dates and the growth curve of age-0 American shad could be used to identify when eggs, larvae, and juveniles of specific size classes are temporally available as food for fall Chinook salmon in the lower Columbia River reservoirs. This kind of temporally and spatially explicit life history information is important to include in bioenergetics modeling scenarios. Quantitative estimates of prey consumption could be used with spatially-explicit estimates of prey abundance to construct a quantitative assessment of the age-0 American shad impact on a reservoir food web.

  19. Monitor and Protect Wigwam River Bull Trout for Koocanusa Reservoir; Skookumchuck Creek Juvenile Bull Trout and Fish Habitat Monitoring Program, Annual Report 2002.

    Energy Technology Data Exchange (ETDEWEB)

    Cope, R.

    2003-06-01

    The Skookumchuck Creek juvenile bull trout (Salvelinus confluentus) and fish habitat-monitoring program is a co-operative initiative of the British Columbia Ministry of Water, Land, and Air Protection and Bonneville Power Administration. This project was commissioned in planning for fish habitat protection and forest development within the Skookumchuck Creek watershed and was intended to expand upon similar studies initiated within the Wigwam River from 2000 to 2002. The broad intent is to develop a better understanding of juvenile bull trout and Westslope cutthroat trout recruitment and the ongoing hydrologic and morphologic processes, especially as they relate to spawning and rearing habitat quality. The 2002 project year represents the first year of a long-term bull trout-monitoring program with current studies focused on collecting baseline information. This report provides a summary of results obtained to date. Bull trout represented 72.4% of the catch. Fry dominated the catch because site selection was biased towards electrofishing sample sites which favored high bull trout fry capture success. The mean density of all juvenile bull trout was estimated to be 6.6 fish/100m{sup 2}. This represents one-half the densities reported for the 2002 Wigwam River enumeration program, even though enumeration of bull trout redds was an order of magnitude higher for the Wigwam River. Typically, areas with combined fry and juvenile densities greater than 1.5 fish per 100 m{sup 2} are cited as critical rearing areas. Trends in abundance appeared to be related to proximity to spawning areas, bed material size, and water depth. Cover components utilized by juvenile and adult bull trout and cutthroat trout were interstices, boulder, depth, overhead vegetation and LWD. The range of morphological stream types encompass the stable and resilient spectrum (C3(1), C3 and B3c). The Skookumchuck can be generalized as a slightly entrenched, meandering, riffle-pool, cobble dominated

  20. Optimal Conventional and Semi-Natural Treatments for the Upper Yakima Spring Chinook Salmon Supplementation Project; Treatment Definitions and Descriptions and Biological Specifications for Facility Design, 1995-1999 Final Report.

    Energy Technology Data Exchange (ETDEWEB)

    Hager, Robert C. (Hatchery Operations Consulting); Costello, Ronald J. (Mobrand Biometrics, Inc., Vashon Island, WA)

    1999-10-01

    This report describes the Yakima Fisheries Project facilities (Cle Elum Hatchery and acclimation satellites) which provide the mechanism to conduct state-of-the-art research for addressing questions about spring chinook supplementation strategies. The definition, descriptions, and specifications for the Yakima spring chinook supplementation program permit evaluation of alternative fish culture techniques that should yield improved methods and procedures to produce wild-like fish with higher survival that can be used to rebuild depleted spring chinook stocks of the Columbia River Basin. The definition and description of three experimental treatments, Optimal Conventional (OCT), Semi-Natural (SNT), Limited Semi-Natural (LSNT), and the biological specifications for facilities have been completed for the upper Yakima spring chinook salmon stock of the Yakima Fisheries Project. The task was performed by the Biological Specifications Work Group (BSWG) represented by Yakama Indian Nation, Washington Department of Fish and Wildlife, National Marine Fisheries Service, and Bonneville Power Administration. The control and experimental variables of the experimental treatments (OCT, SNT, and LSNT) are described in sufficient detail to assure that the fish culture facilities will be designed and operated as a production scale laboratory to produce and test supplemented upper Yakima spring chinook salmon. Product specifications of the treatment groups are proposed to serve as the generic templates for developing greater specificity for measurements of product attributes. These product specifications will be used to monitor and evaluate treatment effects, with respect to the biological response variables (post release survival, long-term fitness, reproductive success and ecological interactions).

  1. Post-Release Attributes and Survival of Hatchery and Natural Fall Chinook Salmon in the Snake River : Annual Report 1999.

    Energy Technology Data Exchange (ETDEWEB)

    Tiffan, Kenneth F.; Rondorf, Dennis W.

    2001-01-01

    This report summarizes results of research activities conducted in 1999 and years previous. In an effort to provide this information to a wider audience, the individual chapters in this report have been submitted as manuscripts to peer-reviewed journals. These chapters communicate significant findings that will aid in the management and recovery of fall chinook salmon in the Columbia River Basin. Abundance and timing of seaward migration of Snake River fall chinook salmon was indexed using passage data collected at Lower Granite Dam for five years. We used genetic analyses to determine the lineage of fish recaptured at Lower Granite Dam that had been previously PIT tagged. We then used discriminant analysis to determine run membership of PIT-tagged smolts that were not recaptured to enable us to calculate annual run composition and to compared early life history attributes of wild subyearling fall and spring chinook salmon. Because spring chinook salmon made up from 15.1 to 44.4% of the tagged subyearling smolts that were detected passing Lower Granite Dam, subyearling passage data at Lower Granite Dam can only be used to index fall chinook salmon smolt abundance and passage timing if genetic samples are taken to identify run membership of smolts. Otherwise, fall chinook salmon smolt abundance would be overestimated and timing of fall chinook salmon smolt passage would appear to be earlier and more protracted than is the case.

  2. Identification of the Spawning, Rearing, and Migratory Requirements of Fall Chinook Salmon in the Columbia River Basin, 1991 Annual Progress Report.

    Energy Technology Data Exchange (ETDEWEB)

    Rondorf, Dennis W.; Miller, William H.

    1993-07-01

    This document is the 1991 annual progress report for selected studies of fall chinook salmon Oncorhynchus tshawytscha conducted by the US Fish and Wildlife Service. The decline in abundance of fall chinook salmon in the Snake River basin has become a growing concern. In April 1992, Snake River fall chinook salmon were listed as ``threatened`` under the Endangered Species Act. Effective recovery efforts for fall chinook salmon can not be developed until we increase our knowledge of the factors that are limiting the various life history stages. This study attempts to identify those physical and biological factors which influence spawning of fall chinook salmon in the free-flowing Snake River and their rearing and seaward migration through Columbia River basin reservoirs.

  3. Idaho Habitat/Natural Production Monitoring Part I, 1994 Annual Report.

    Energy Technology Data Exchange (ETDEWEB)

    Hall-Griswold, Judy A.; Leitzinger, Eric J.; Petrosky, C.E. (Idaho Department of Fish and Game, Boise, ID

    1995-11-01

    A total of 333 stream sections were sampled in 1994 to monitor in chinook salmon and steelhead trout parr populations in Idaho. Percent carry capacity and density estimates were summarized by different classes of fish: wild A-run steelhead trout, wild B-run steelhead trout, natural A-run steelhead trout, natural B-run steelhead trout, wild spring and summer chinook salmon. These data were also summarized by cells and subbasins as defined in Idaho Department of Fish and Game`s 1992-1996 Anadromous Fish Management Plan.

  4. Fish Passage Center 2001 annual report.; ANNUAL

    International Nuclear Information System (INIS)

    Fish Passage Center

    2002-01-01

    measures resulted in very poor in-river migration conditions in 2001. Up to 99% of Snake River yearling chinook and steelhead were transported from the Snake River collection projects. Approximately 96% of Snake River juvenile sub-yearling fall chinook were transported. Of Mid-Columbia origin yearling chinook, 35% were transported, of steelhead 30% were transported and of sub yearling chinook, 59% were transported. Based upon data collected on the run-at-large, the juvenile survival to Lower Granite Dam of wild and hatchery yearling chinook and wild and hatchery steelhead were the lowest observed in the last four years. In 2001, as the result of the lowest observed flows in recent years, travel times through the hydro system for spring chinook yearlings and steelhead was approximately twice as long as has been observed historically. Juvenile survival estimates through each index reach of the hydro system for steelhead and chinook juveniles was the lowest observed since the use of PIT tag technology began for estimating survival

  5. Fall Chinook Salmon Survival and Supplementation Studies in the Snake River Reservoirs, 1996 Annual Report.

    Energy Technology Data Exchange (ETDEWEB)

    Williams, John G.; Bjornn (Bjomn), Theodore C.

    1998-05-01

    In 1996, the National Marine Fisheries Service, the Nez Perce Tribe, and the U.S. Fish and Wildlife Service completed the second year of cooperative research to investigate migrational characteristics of subyearling fall chinook salmon in the Snake River Basin. In spring and early summer, we captured natural subyearling fall chinook salmon by beach seine, PIT tagged them, and released them in two reaches of the Snake River. Also, subyearling fall chinook salmon reared at Lyons Ferry Hatchery were PIT tagged at the hatchery, transported, and released weekly at Pittsburg Landing on the Snake River and Big Canyon Creek on the Clearwater River to collect data on survival detection probabilities, and travel time.

  6. Restoration of Hydrodynamic and Hydrologic Processes in the Chinook River Estuary, Washington ? Feasibility Assessment

    International Nuclear Information System (INIS)

    Khangaonkar, Tarang P.; Breithaupt, Stephen A.; Kristanovich, Felix C.

    2006-01-01

    A hydrodynamic and hydrologic modeling analysis was conducted to evaluate the feasibility of restoring natural estuarine functions and tidal marine wetlands habitat in the Chinook River estuary, located near the mouth of the Columbia River in Washington. The reduction in salmonid populations is attributable primarily to the construction of a Highway 101 overpass across the mouth of the Chinook River in the early 1920s with a tide gate under the overpass. This construction, which was designed to eliminate tidal action in the estuary, has impeded the upstream passage of salmonids. The goal of the Chinook River Restoration Project is to restore tidal functions through the estuary, by removing the tide gate at the mouth of the river, filling drainage ditches, restoring tidal swales, and reforesting riparian areas. The hydrologic model (HEC-HMS) was used to compute Chinook River and tributary inflows for use as input to the hydrodynamic model at the project area boundary. The hydrodynamic model (RMA-10) was used to generate information on water levels, velocities, salinity, and inundation during both normal tides and 100-year storm conditions under existing conditions and under the restoration alternatives. The RMA-10 model was extended well upstream of the normal tidal flats into the watershed domain to correctly simulate flooding and drainage with tidal effects included, using the wetting and drying schemes. The major conclusion of the hydrologic and hydrodynamic modeling study was that restoration of the tidal functions in the Chinook River estuary would be feasible through opening or removal of the tide gate. Implementation of the preferred alternative (removal of the tide gate, restoration of the channel under Hwy 101 to a 200-foot width, and construction of an internal levee inside the project area) would provide the required restorations benefits (inundation, habitat, velocities, and salinity penetration, etc.) and meet flood protection requirements. The

  7. Comparative Survival Study (CSS) of Hatchery PIT-tagged Spring/Summer Chinook; Migration Years 1997-2002 Mark/Recapture Activities and Bootstrap Analysis, 2003-2004 Biennial Report.

    Energy Technology Data Exchange (ETDEWEB)

    Berggren, Thomas J.; Franzoni, Henry; Basham, Larry R. (Columbia Basin Fish and Wildlife Authority, Fish Passage Center, Portland, OR)

    2003-11-01

    Granite Dam. When D = 1, there is no difference in survival rate after hydrosystem passage. When D < 1, then transported smolts die at a greater rate after release below Bonneville Dam than smolts that have migrated in-river to below Bonneville Dam Major objectives of the CSS include: (1) development of a long-term index of transport SAR to in-river SAR for Snake River hatchery and wild spring and summer Chinook smolts measured at Lower Granite Dam; (2) develop a long-term index of survival rates from release of smolts at Snake River hatcheries to return of adults to the hatcheries; (3) compute and compare the overall SARs for selected upriver and downriver spring and summer Chinook hatchery and wild stocks; and (4) begin a time series of SARs for use in hypothesis testing and in the regional long-term monitoring and evaluation program. Primary CSS focus in this report is for wild and hatchery spring/summer Chinook that outmigrated in 1997 to 2002 and their respective adult returns through 2004.

  8. Identification of the Spawning, Rearing and Migratory Requirements of Fall Chinook Salmon in the Columbia River Basin, Annual Report 1992.

    Energy Technology Data Exchange (ETDEWEB)

    Rondorf, Dennis W.; Miller, William H.

    1994-03-01

    This document is the 1992 annual progress report for selected studies of fall chinook Salmon Oncorhynchus tshawytscha conducted by the National Biological Survey (NBS) and the US Fish and Wildlife Service. The decline in abundance of fall chinook salmon in the Snake River basin has become a growing concern. Effective recovery efforts for fall chinook salmon cannot be developed until we increase our knowledge of the factors that are limiting the various life history stages. This study attempts to identify those physical and biological factors which influence spawning of fall chinook salmon in the free-flowing Snake River and their rearing and seaward migration through Columbia River basin reservoirs.

  9. Umatilla Hatchery Monitoring and Evaluation, 1998-1999 Annual Report.

    Energy Technology Data Exchange (ETDEWEB)

    Stonecypher, R. Wess; Groberg, Jr., Warren J.; Farman, Brett M. (Oregon Department of Fish and Wildlife, Portland, OR)

    2001-07-01

    The Northwest Power Planning Council's Columbia River Basin Fish and Wildlife Program authorized construction of Umatilla Fish Hatchery (UFH) in 1986. Measure 703 of the program amended the original authorization for the hatchery and specified evaluation of the Michigan (MI) raceways using oxygen supplementation to reach production goals of 290,000 lb of chinook salmon (Oncorhynchus tshawytscha) and steelhead (O. mykiss). The hatchery was completed in fall 1991. Partial justification for the hatchery was to evaluate new production and supplementation techniques. MI raceways at UFH increase smolt production with a limited water supply. Test results for MI raceways will have systematic application in the Columbia River basin. The UFH is the foundation for rehabilitating chinook salmon and enhancing steelhead in the Umatilla River (CTUIR and ODFW 1990) and is expected to contribute significantly to the Northwest Power Planning Council's goal of doubling salmon production in the Columbia Basin. Hatchery production goals and a comprehensive monitoring and evaluation plan were presented in the Umatilla Hatchery Master Plan (CTUIR and ODFW 1990). The Comprehensive Plan for Monitoring and Evaluation of Umatilla Hatchery (Carmichael 1990) was approved by the Northwest Power Planning Council as a critical adaptive management guide for fisheries rehabilitation in the Umatilla River. Monitoring and evaluation will be used to increase knowledge about uncertainties inherent in the fisheries rehabilitation and will complement the developing systematic monitoring and evaluation program. The monitoring and evaluation goals are: (1) Provide information and recommendations for the culture and release of hatchery fish, harvest regulations, and natural escapement to accomplish long-term natural and hatchery production goals in the Umatilla River basin that are consistent with provisions of the Council's Columbia River Basin Fish and Wildlife Program. (2) Assess the

  10. Umatilla Hatchery monitoring and evaluation : annual report, 1999; ANNUAL

    International Nuclear Information System (INIS)

    2001-01-01

    The Northwest Power Planning Council's Columbia River Basin Fish and Wildlife Program authorized construction of Umatilla Fish Hatchery (UFH) in 1986. Measure 703 of the program amended the original authorization for the hatchery and specified evaluation of the Michigan (MI) raceways using oxygen supplementation to reach production goals of 290,000 lb of chinook salmon (Oncorhynchus tshawytscha) and steelhead (O. mykiss). The hatchery was completed in fall 1991. Partial justification for the hatchery was to evaluate new production and supplementation techniques. MI raceways at UFH increase smolt production with a limited water supply. Test results for MI raceways will have systematic application in the Columbia River basin. The UFH is the foundation for rehabilitating chinook salmon and enhancing steelhead in the Umatilla River (CTUIR and ODFW 1990) and is expected to contribute significantly to the Northwest Power Planning Council's goal of doubling salmon production in the Columbia Basin. Hatchery production goals and a comprehensive monitoring and evaluation plan were presented in the Umatilla Hatchery Master Plan (CTUIR and ODFW 1990). The Comprehensive Plan for Monitoring and Evaluation of Umatilla Hatchery (Carmichael 1990) was approved by the Northwest Power Planning Council as a critical adaptive management guide for fisheries rehabilitation in the Umatilla River. Monitoring and evaluation will be used to increase knowledge about uncertainties inherent in the fisheries rehabilitation and will complement the developing systematic monitoring and evaluation program. The monitoring and evaluation goals are: (1) Provide information and recommendations for the culture and release of hatchery fish, harvest regulations, and natural escapement to accomplish long-term natural and hatchery production goals in the Umatilla River basin that are consistent with provisions of the Council's Columbia River Basin Fish and Wildlife Program. (2) Assess the success of achieving

  11. 77 FR 5389 - Fisheries of the Exclusive Economic Zone Off Alaska; Chinook Salmon Bycatch Management in the...

    Science.gov (United States)

    2012-02-03

    ...; Chinook Salmon Bycatch Management in the Bering Sea Pollock Fishery; Economic Data Collection AGENCY... Management Area (BSAI) in the Exclusive Economic Zone under the Fishery Management Plan for Groundfish of the... Management Program Economic Data Report (Chinook salmon EDR program). (a) Requirements. NMFS developed the...

  12. Estuarine and marine diets of out-migrating Chinook Salmon smolts in relation to local zooplankton populations, including harmful blooms

    Science.gov (United States)

    Chittenden, C. M.; Sweeting, R.; Neville, C. M.; Young, K.; Galbraith, M.; Carmack, E.; Vagle, S.; Dempsey, M.; Eert, J.; Beamish, R. J.

    2018-01-01

    Changes in food availability during the early marine phase of wild Chinook Salmon (O. tshawytscha) are being investigated as a cause of their recent declines in the Salish Sea. The marine survival of hatchery smolts, in particular, has been poor. This part of the Salish Sea Marine Survival Project examined the diet of young out-migrating Chinook Salmon for four consecutive years in the Cowichan River estuary and in Cowichan Bay, British Columbia, Canada. Local zooplankton communities were monitored during the final year of the study in the Cowichan River estuary, Cowichan Bay, and eastward to the Salish Sea to better understand the bottom-up processes that may be affecting Chinook Salmon survival. Rearing environment affected body size, diet, and distribution in the study area. Clipped smolts (hatchery-reared) were larger than the unclipped smolts (primarily naturally-reared), ate larger prey, spent very little time in the estuary, and disappeared from the bay earlier, likely due to emigration or mortality. Their larger body size may be a disadvantage for hatchery smolts if it necessitates their leaving the estuary prematurely to meet energy needs; the onset of piscivory began at a forklength of approximately 74 mm, which was less than the average forklength of the clipped fish in this study. The primary zooplankton bloom occurred during the last week of April/first week of May 2013, whereas the main release of hatchery-reared Chinook Salmon smolts occurs each year in mid-May-this timing mismatch may reduce their survival. Gut fullness was correlated with zooplankton biomass; however, both the clipped and unclipped smolts were not observed in the bay until the bloom of harmful Noctiluca was finished-20 days after the maximum recorded zooplankton abundance. Jellyfish medusa flourished in nearshore areas, becoming less prevalent towards the deeper waters of the Salish Sea. The sizable presence of Noctiluca and jellyfish in the zooplankton blooms may be repelling

  13. Spawning Habitat Studies of Hanford Reach Fall Chinook Salmon (Oncorhynchus tshawytscha), Final Report.

    Energy Technology Data Exchange (ETDEWEB)

    Geist, David R.; Arntzen, Evan V.; Chien, Yi-Ju (Pacific Northwest National Laboratory)

    2009-03-02

    The Pacific Northwest National Laboratory conducted this study for the Bonneville Power Administration (BPA) with funding provided through the Northwest Power and Conservation Council(a) and the BPA Fish and Wildlife Program. The study was conducted in the Hanford Reach of the Columbia River. The goal of study was to determine the physical habitat factors necessary to define the redd capacity of fall Chinook salmon that spawn in large mainstem rivers like the Hanford Reach and Snake River. The study was originally commissioned in FY 1994 and then recommissioned in FY 2000 through the Fish and Wildlife Program rolling review of the Columbia River Basin projects. The work described in this report covers the period from 1994 through 2004; however, the majority of the information comes from the last four years of the study (2000 through 2004). Results from the work conducted from 1994 to 2000 were covered in an earlier report. More than any other stock of Pacific salmon, fall Chinook salmon (Oncorhynchus tshawytscha) have suffered severe impacts from the hydroelectric development in the Columbia River Basin. Fall Chinook salmon rely heavily on mainstem habitats for all phases of their life cycle, and mainstem hydroelectric dams have inundated or blocked areas that were historically used for spawning and rearing. The natural flow pattern that existed in the historic period has been altered by the dams, which in turn have affected the physical and biological template upon which fall Chinook salmon depend upon for successful reproduction. Operation of the dams to produce power to meet short-term needs in electricity (termed power peaking) produces unnatural fluctuations in flow over a 24-hour cycle. These flow fluctuations alter the physical habitat and disrupt the cues that salmon use to select spawning sites, as well as strand fish in near-shore habitat that becomes dewatered. The quality of spawning gravels has been affected by dam construction, flood protection, and

  14. 75 FR 58337 - Fisheries of the Exclusive Economic Zone Off Alaska; Chinook Salmon Bycatch Management in the...

    Science.gov (United States)

    2010-09-24

    ... Economic Zone Off Alaska; Chinook Salmon Bycatch Management in the Bering Sea Pollock Fishery published on.... 090511911-0307-02] RIN 0648-AX89 Fisheries of the Exclusive Economic Zone Off Alaska; Chinook Salmon Bycatch Management in the Bering Sea Pollock Fishery; Correction AGENCY: National Marine Fisheries Service (NMFS...

  15. Spatial consistency of chinook salmon redd distribution within and among years in the Cowlitz River, Washington

    Science.gov (United States)

    Klett, Katherine J.C.; Torgersen, Christian E.; Henning, Julie A.; Murray, Christopher J.

    2013-01-01

    We investigated the spawning patterns of Chinook Salmon Oncorhynchus tshawytscha on the lower Cowlitz River, Washington, using a unique set of fine- and coarse-scale temporal and spatial data collected during biweekly aerial surveys conducted in 1991–2009 (500 m to 28 km resolution) and 2008–2009 (100–500 m resolution). Redd locations were mapped from a helicopter during 2008 and 2009 with a hand-held GPS synchronized with in-flight audio recordings. We examined spatial patterns of Chinook Salmon redd reoccupation among and within years in relation to segment-scale geomorphic features. Chinook Salmon spawned in the same sections each year with little variation among years. On a coarse scale, 5 years (1993, 1998, 2000, 2002, and 2009) were compared for reoccupation. Redd locations were highly correlated among years. Comparisons on a fine scale (500 m) between 2008 and 2009 also revealed a high degree of consistency among redd locations. On a finer temporal scale, we observed that Chinook Salmon spawned in the same sections during the first and last week. Redds were clustered in both 2008 and 2009. Regression analysis with a generalized linear model at the 500-m scale indicated that river kilometer and channel bifurcation were positively associated with redd density, whereas sinuosity was negatively associated with redd density. Collecting data on specific redd locations with a GPS during aerial surveys was logistically feasible and cost effective and greatly enhanced the spatial precision of Chinook Salmon spawning surveys.

  16. Survival Estimates for the Passage of Spring-Migrating Juvenile Salmonids through Snake and Columbia River Dams and Reservoirs, 2001-2002 Annual Report.

    Energy Technology Data Exchange (ETDEWEB)

    Zabel, Richard; Williams, John G.; Smith, Steven G. (Northwest and Alaska Fisheries Science Center, Fish Ecology Division, Seattle, WA)

    2002-06-01

    In 2001, the National Marine Fisheries Service and the University of Washington completed the ninth year of a study to estimate survival and travel time of juvenile salmonids (Oncorhynchus spp.) passing through dams and reservoirs on the Snake and Columbia Rivers. All estimates were derived from passive integrated transponder (PIT)-tagged fish. We PIT tagged and released at Lower Granite Dam a total of 17,028 hatchery and 3,550 wild steelhead. In addition, we utilized fish PIT tagged by other agencies at traps and hatcheries upstream of the hydropower system and sites within the hydropower system. PIT-tagged smolts were detected at interrogation facilities at Lower Granite, Little Goose, Lower Monumental, McNary, John Day, and Bonneville Dams and in the PIT-tag detector trawl operated in the Columbia River estuary. Survival estimates were calculated using the Single-Release Model. Primary research objectives in 2001 were to: (1) estimate reach and project survival and travel time in the Snake and Columbia Rivers throughout the yearling chinook salmon and steelhead migrations; (2) evaluate relationships between survival estimates and migration conditions; and (3) evaluate the survival-estimation models under prevailing conditions. This report provides reach survival and travel time estimates for 2001 for PIT-tagged yearling chinook salmon and steelhead (hatchery and wild) in the Snake and Columbia Rivers. Results are reported primarily in the form of tables and figures with a minimum of text. More details on methodology and statistical models used are provided in previous reports cited in the text. Results for summer-migrating chinook salmon will be reported separately.

  17. HIV testing among non-incarcerated substance-abusing juvenile offenders.

    Science.gov (United States)

    Tolou-Shams, Marina; Conrad, Selby; Louis, Alaina; Shuford, Sarah Hart; Brown, Larry K

    2015-11-01

    Juvenile offenders are a subgroup of adolescents at particular risk for HIV/STI infection. Although HIV prevalence among these youth is low (justice system, which is known to have an extremely high rate of HIV infection. US constitutional mandates provide HIV/STI testing for incarcerated juveniles, but close to 80% of juvenile arrestees are never detained. Moreover, although they engage in similar HIV risk behaviors as those detained, they have limited access to available HIV/STI testing services. Thus, our study examined rates of lifetime HIV testing among a pilot sample of 60 court-involved, substance-using juveniles monitored in the community to explore rates of testing and the reasons related to lifetime testing among a high-risk, yet understudied US juvenile population.

  18. Lower Granite Dam Smolt Monitoring Program, 2005-2006 Annual Report.

    Energy Technology Data Exchange (ETDEWEB)

    Mensik, Fred; Rapp, Shawn; Ross, Doug (Washington Department of Fish and Wildlife, Olympia, WA)

    2007-01-01

    The 2005 fish collection season at Lower Granite Dam (LGR) was characterized by average water temperatures, below average flows, above average spill, low levels of debris and the record number of smolts collected compared to the previous five years. With the continued release of unclipped supplementation chinook and steelhead above LGR, we cannot accurately distinguish wild chinook, steelhead, and sockeye/kokanee in the sample. For the purposes of this report we will designate fish as clipped and unclipped. This season a total of 13,030,967 juvenile salmonids were collected at LGR. Of these, 12,099,019 were transported to release sites below Bonneville Dam, 12,032,623 by barge and 66,396 by truck. An additional 898,235 fish were bypassed to the river due to over-capacity of the raceways, barges or trucks and for research purposes. This was the first season of summer spill at LGR. Spill was initiated at 12:01am June 20 as directed by the ruling set forth by Judge James Redden of the United States District Court (Order CV 01-640-RE). In addition, the Lower Granite project also conducted a summer spill test alternating spill and spill patterns between spill to the gas cap without the removable spillway weir (RSW) and spill with up to 20 kcfs utilizing the RSW. Because of the forecast low flow this year, most hatchery reared subyearling fall chinook were released up to three weeks early. With the unexpected high flows in late May and early June, more than 90% of the subyearling chinook were collected prior to the initiation of the court ordered summer spill program. Collection number fluctuations reflect river flow and project operations for any given year. For example, low flow years (2001, 2004 and 2005) result in higher collection numbers. Court ordered spill throughout the summer migration will directly affect collection of fall subyearling chinook collection numbers. The editors of this report urge the reader to use caution when comparing fish collection numbers

  19. Lower Granite Dam Smolt Monitoring Program, Annual Report 2005-2006.

    Energy Technology Data Exchange (ETDEWEB)

    Menski, Fred

    2007-01-01

    The 2005 fish collection season at Lower Granite Dam (LGR) was characterized by average water temperatures, below average flows, above average spill, low levels of debris and the record number of smolts collected compared to the previous five years. With the continued release of unclipped supplementation chinook and steelhead above LGR, we cannot accurately distinguish wild chinook, steelhead, and sockeye/kokanee in the sample. For the purposes of this report we will designate fish as clipped and unclipped. This season a total of 13,030,967 juvenile salmonids were collected at LGR. Of these, 12,099,019 were transported to release sites below Bonneville Dam, 12,032,623 by barge and 66,396 by truck. An additional 898,235 fish were bypassed to the river due to over-capacity of the raceways, barges or trucks and for research purposes. This was the first season of summer spill at LGR. Spill was initiated at 12:01am June 20 as directed by the ruling set forth by Judge James Redden of the United States District Court (Order CV 01-640-RE). In addition, the Lower Granite project also conducted a summer spill test alternating spill and spill patterns between spill to the gas cap without the removable spillway weir (RSW) and spill with up to 20 kcfs utilizing the RSW. Because of the forecast low flow this year, most hatchery reared subyearling fall chinook were released up to three weeks early. With the unexpected high flows in late May and early June, more than 90% of the subyearling chinook were collected prior to the initiation of the court ordered summer spill program. Collection number fluctuations reflect river flow and project operations for any given year. For example, low flow years (2001, 2004 and 2005) result in higher collection numbers. Court ordered spill throughout the summer migration will directly affect collection of fall subyearling chinook collection numbers. The editors of this report urge the reader to use caution when comparing fish collection numbers

  20. Susceptibility of ocean- and stream-type Chinook salmon to isolates of the L, U, and M genogroups of infectious hematopoietic necrosis virus (IHNV)

    Science.gov (United States)

    Hernandez, Daniel; Purcell, Maureen K.; Friedman, Carolyn S.; Kurath, Gael

    2016-01-01

    This study examined the susceptibility of Chinook salmon Oncorhynchus tshawytscha to viral strains from the L, U, and M genogroups of infectious hematopoietic necrosis virus (IHNV) present in western North America. The goal of this investigation was to establish a baseline understanding of the susceptibility of ocean- and stream-type Chinook salmon to infection and mortality caused by exposure to commonly detected strains of L, U, and M IHNV. The L IHNV strain tested here was highly infectious and virulent in both Chinook salmon populations, following patterns previously reported for Chinook salmon. Furthermore, ocean- and stream-type Chinook salmon fry at 1 g can also become subclinically infected with U and M strains of IHNV without experiencing significant mortality. The stream-type life history phenotype was generally more susceptible to infection and suffered greater mortality than the ocean-type phenotype. Between the U and M genogroup strains tested, the U group strains were generally more infectious than the M group strains in both Chinook salmon types. Substantial viral clearance occurred by 30 d post exposure, but persistent viral infection was observed with L, U, and M strains in both host populations. While mortality decreased with increased host size in stream-type Chinook salmon, infection prevalence was not lower for all strains at a greater size. These results suggest that Chinook salmon may serve as reservoirs and/or vectors of U and M genogroup IHNV.

  1. AFSC/REFM: Amendment 91 Chinook Salmon Economic Data Report Dataset

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Annual series of economic data collected for years 2012 and forward for the Amendment 91 (A91) Chinook Salmon Economic Data Report (EDR). Reporting is required of...

  2. Effects of the proposed California WaterFix North Delta Diversion on survival of juvenile Chinook salmon (Oncorhynchus tshawytscha) in the Sacramento-San Joaquin River Delta, northern California

    Science.gov (United States)

    Perry, Russell W.; Pope, Adam C.

    2018-05-11

    The California Department of Water Resources and Bureau of Reclamation propose new water intake facilities on the Sacramento River in northern California that would convey some of the water for export to areas south of the Sacramento-San Joaquin River Delta (hereinafter referred to as the Delta) through tunnels rather than through the Delta. The collection of water intakes, tunnels, pumping facilities, associated structures, and proposed operations are collectively referred to as California WaterFix. The water intake facilities, hereinafter referred to as the North Delta Diversion (NDD), are proposed to be located on the Sacramento River downstream of the city of Sacramento and upstream of the first major river junction where Sutter Slough branches from the Sacramento River. The NDD can divert a maximum discharge of 9,000 cubic feet per second (ft3 /s) from the Sacramento River, which reduces the amount of Sacramento River inflow into the Delta. In this report, we conduct four analyses to investigate the effect of the NDD and its proposed operation on survival of juvenile Chinook salmon (Oncorhynchus tshawytscha). All analyses used the results of a Bayesian survival model that allowed us to simulate travel time, migration routing, and survival of juvenile Chinook salmon migrating through the Delta in response to NDD operations, which affected both inflows to the Delta and operation of the Delta Cross Channel (DCC). For the first analysis, we evaluated the effect of the NDD bypass rules on salmon survival. The NDD bypass rules are a set of operational rule curves designed to provide adaptive levels of fish protection by defining allowable diversion rates as a function of (1) Sacramento River discharge as measured at Freeport, and (2) time of year when endangered runs requiring the most protection are present. We determined that all bypass rule curves except constant low-level pumping (maximum diversion of 900 ft3 /s) could cause a sizeable decrease in survival by as

  3. 76 FR 20302 - Listing Endangered and Threatened Species; 90-Day Finding on a Petition To List Chinook Salmon

    Science.gov (United States)

    2011-04-12

    ... a Petition To List Chinook Salmon AGENCY: National Marine Fisheries Service (NMFS), National Oceanic... salmon (Oncorhynchus tshawytscha) in the Upper Klamath and Trinity Rivers Basin as threatened or... conduct a status review of the Chinook salmon in the Upper Klamath and Trinity Rivers Basin to determine...

  4. Development of an Index to Bird Predation of Juvenile Salmonids within the Yakima River, 2000 Annual Report.

    Energy Technology Data Exchange (ETDEWEB)

    Grassley, James M.; Grue, Christian E.; Major, III, Walter (University of Washington, School of Aquatic and Fishery Science, Seattle, WA)

    2002-01-01

    Avian predation of fish is suspected to contribute to the loss of juvenile spring chinook salmon in the Yakima Basin, potentially constraining natural production. In 1997 and 1998, the Yakama/Klickitat Fisheries Project (YKFP) and the Washington Department of Fish and Wildlife (WDFW)--whose goal is to increase natural production historically present within the Yakima River--initiated investigations to assess the feasibility of developing an index to avian predation of juvenile salmon within the river. This research--conducted by Dr. Steve Mathews and David Phinney of the University of Washington--confirmed that Ring-billed Gulls and Common Mergansers were the primary avian predators of juvenile salmon, and that under certain conditions could impact migrating smolt populations. Beginning in 1999, the Washington Cooperative Fish and Wildlife Research Unit (WACFWRU) was asked by the YKFP and the WDFW to continue development of avian consumption indices. Monitoring methods developed by Phinney et al. (1998) were adopted (with modifications) and monitoring of impacts to juvenile salmon along river reaches and at areas of high predator/prey concentrations (colloquially referred to as ''hotspots'') continued through 2000. In 2000, piscivorous birds were counted from river banks at hotspots and from a raft or drift boat along river reaches. Consumption by gulls at Hotspots was based on direct observations of foraging success and modeled abundance; consumption by all other piscivorous birds was estimated using published dietary requirements and modeled abundance. Further development of the avian consumption index model provided an estimation of smolt consumption for the 2000 survey season. Seasonal patterns of avian piscivore abundance were identified, diurnal patterns of gull abundance at hotspots were identified, predation indices were calculated for hotspots and spring and summer river reaches, and the efficacy of aerial surveys for estimating bird

  5. Conservation of Native Fishes of the San Francisco Estuary: Considerations for Artificial Propagation of Chinook Salmon, Delta Smelt, and Green Sturgeon

    Directory of Open Access Journals (Sweden)

    Joshua A. Israel

    2011-04-01

    Full Text Available Many native fishes in the San Francisco Estuary and its watersheds have reached all-time low abundances. Some of these declining species (e.g., Chinook salmon Oncorhynchus tschawytscha have been under artificial propagation for decades. For others (e.g., delta smelt, Hypomesus transpacificus, and green sturgeon, Acipenser medirostris, this management option is just beginning to be discussed and implemented. Propagation strategies, in which organisms spend some portion of their lives in captivity, pose well-documented genetic and ecological threats to natural populations. Negative impacts of propagation have been documented for all Central Valley Chinook salmon runs, but limited efforts have been made to adapt hatchery operations to minimize the genetic and ecological threats caused by propagated fishes. A delta smelt propagation program is undergoing intensive design and review for operations and monitoring. However, if limiting factors facing this species in its estuarine habitat are not effectively addressed, captive propagation may not be a useful conservation approach, regardless of how carefully the propagation activity is designed or monitored. Scientifically defensible, ecologically based restoration programs that include monitoring and research aimed at quantifying natural population vital rates should be fully implemented before there is any attempt to supplement natural populations of delta smelt. Green sturgeon are also likely to face risks from artificial propagation if a large–scale program is implemented before this species’ limiting factors are better understood. In each of these cases, restoring habitats, and reducing loss from human actions, are likely to be the best strategy for rebuilding and supporting self–sustaining populations.

  6. Cryopreservation of Adult Male Spring and Summer Chinook Salmon Gametes in the Snake River Basin, 1997 Annual Report.

    Energy Technology Data Exchange (ETDEWEB)

    Faurot, Dave; Kucera, Paul A.; Armstrong, Robyn D. (Nez Perce Tribe, Lapwai, ID)

    1998-06-01

    Chinook salmon populations in the Northwest are decreasing in number. The Nez Perce Tribe was funded in 1997 by the Bonneville Power Administration to coordinate and initiate gene banking of adult male gametes from Endangered Species Act (ESA) listed spring and summer chinook salmon in the Snake River basin.

  7. 77 FR 19597 - Listing Endangered and Threatened Species; 12-Month Finding on a Petition To List Chinook Salmon...

    Science.gov (United States)

    2012-04-02

    ... broodstock origin, history, and genetics for these three Chinook salmon hatchery stocks and concluded that... Science Center, USFWS, and U.S. Forest Service with expertise in the biology, genetics, and ecology of... specific expertise on UKTR Chinook salmon genetics, and the other reviewer has expertise in the ecology of...

  8. Evaluation of the hydraulic and biological performance of the portable floating fish collector at Cougar Reservoir and Dam, Oregon, 2014

    Science.gov (United States)

    Beeman, John W.; Evans, Scott D.; Haner, Philip V.; Hansel, Hal C.; Hansen, Amy C.; Hansen, Gabriel S.; Hatton, Tyson W.; Sprando, Jamie M.; Smith, Collin D.; Adams, Noah S.

    2016-01-12

    The biological and hydraulic performance of a new portable floating fish collector (PFFC) located in a cul-de-sac within the forebay of Cougar Dam, Oregon, was evaluated during 2014. The purpose of the PFFC was to explore surface collection as a means to capture juvenile salmonids at one or more sites using a small, cost-effective, pilot-scale device. The PFFC used internal pumps to draw attraction flow over an inclined plane about 3 meters (m) deep, through a flume at a design velocity of as much as 6 feet per second (ft/s), and to empty a small amount of water and any entrained fish into a collection box. Performance of the PFFC was evaluated at 64 cubic feet per second (ft3/s) (Low) and 109 ft3/s (High) inflow rates alternated using a randomized-block schedule from May 27 to December 16, 2014. The evaluation of the biological performance was based on trap catch; behaviors, locations, and collection of juvenile Chinook salmon (Oncorhynchus tshawytscha) tagged with acoustic transmitters plus passive integrated transponder (PIT) tags; collection of juvenile Chinook salmon implanted with only PIT tags; and untagged fish monitored near and within the PFFC using acoustic cameras. The evaluation of hydraulic performance was based on measurements of water velocity and direction of flow in the PFFC.

  9. Yakima/Klickitat Fisheries Project Genetic Studies; Yakima/Klickitat Fisheries Project Monitoring and Evaluation, 2000-2001 Annual Report.

    Energy Technology Data Exchange (ETDEWEB)

    Busack, Craig A.; Schroder, Steven L.; Young, Sewall F. (Washington Department of Fish and Wildlife, Olympia, WA)

    2002-11-01

    Genetic work for 2001 consisted of two major phases, both reported on here. The first is a DNA microsatellite analysis of several hundred juveniles from the experimental spawning channel at the Cle Elum Supplementation Research Facility, using the genetic markers to assign the juveniles to parents, and thus judge reproductive success of individual fish. The second is a reevaluation and revision of plans for studying domestication in the spring chinook supplementation effort. The pedigree analysis was significant in three respects. First, it showed that this approach can be successfully applied to the spawning channel research. Secondly it showed that this approach does indeed yield very useful information about the relative reproductive success of fish in the channel. Finally, it showed that this information can yield additional information about the experimental design. Of the 961 juveniles on which analysis was attempted, 774 yielded enough genetic information to be used in the pedigree analysis. Of these, 754 were assigned to males and females known to have been placed into the channel. Of the other 20, all were assignable to females, but sires were unknown. The genotypes of 17 of these were consistent with a single theoretical male genotype, suggesting a single precocial male sired them. The inferred parentage of the fish demonstrated that there had been substantial leakage of juveniles from one section of the channel into another. Reproductive success of females was fairly even, but success of males varied considerably. In a group of seven males (including the hypothetical one), one contributed 79% of the progeny analyzed, and three contributed none. The domestication experimental design evaluation was prompted by a critical review of the project by the Independent Scientific Review Panel (ISRP). The ISRP review set into motion a design revision process which extended beyond the contract period; the report presented here is intended to be an account of our

  10. Evaluation of fall chinook salmon spawning adjacent to the In-Situ Redox Manipulation treatability test site, Hanford Site, Washington

    International Nuclear Information System (INIS)

    Mueller, R.P.; Geist, D.R.

    1998-10-01

    The In Situ Redox Manipulation (ISRM) experiment is being evaluated as a potential method to remove contaminants from groundwater adjacent to the Columbia River near the 100-D Area. The ISRM experiment involves using sodium dithionate (Na 2 O 6 S 2 ) to precipitate chromate from the groundwater. The treatment will likely create anoxic conditions in the groundwater down-gradient of the ISRM treatability test site; however, the spatial extent of this anoxic plume is not exactly known. Surveys were conducted in November 1997, following the peak spawning of fall chinook salmon. Aerial surveys documented 210 redds (spawning nests) near the downstream island in locations consistent with previous surveys. Neither aerial nor underwater surveys documented fall chinook spawning in the vicinity of the ISRM treatability test site. Based on measurements of depth, velocity, and substrate, less than 1% of the study area contained suitable fall chinook salmon spawning habitat, indicating low potential for fall chinook salmon to spawn in the vicinity of the ISRM experiment

  11. Survival Estimates for the Passage of Juvenile Salmonids through Snake River Dams and Reservoirs, 1997 Annual Report.

    Energy Technology Data Exchange (ETDEWEB)

    Hockersmith, Eric E.

    1999-03-01

    This report consists of two parts describing research activities completed during 1997 under Bonneville Power Administration Project Number 93-29. Part 1 provides reach survival and travel time estimates for 1997 for PIT-tagged hatchery steelhead and yearling chinook salmon in the Snake and Columbia Rivers. The results are reported primarily in the form of tables and figures with a minimum of text. More detailed information on methodology and the statistical models used in the analysis are provided in previous annual reports cited in the text. Analysis of the relationships among travel time, survival, and environmental factors for 1997 and previous years of the study will be reported elsewhere. Part 2 of this report describes research to determine areas of loss and delay for juvenile hatchery salmonids above Lower Granite Reservoir.

  12. Asymmetric hybridization and introgression between pink salmon and chinook salmon in the Laurentian Great Lakes

    Science.gov (United States)

    Rosenfield, Jonathan A.; Todd, Thomas; Greil, Roger

    2000-01-01

    Among Pacific salmon collected in the St. Marys River, five natural hybrids of pink salmon Oncorhynchus gorbuscha and chinook salmon Oncorhynchus tshawytscha and one suspected backcross have been detected using morphologic, meristic, and color evidence. One allozyme (LDH, l-lactate dehydrogenase from muscle) and one nuclear DNA locus (growth hormone) for which species-specific fixed differences exist were analyzed to detect additional hybrids and to determine if introgression had occurred. Restriction fragment length polymorphism of mitochondrial DNA (mtDNA) was used to identify the maternal parent of each hybrid. Evidence of introgression was found among the five previously identified hybrids. All hybrid specimens had chinook salmon mtDNA, indicating that hybridization between chinook salmon and pink salmon in the St. Marys River is asymmetric and perhaps unidirectional. Ecological, physiological, and sexual selection forces may contribute to this asymmetric hybridization. Introgression between these highly differentiated species has implications for management, systematics, and conservation of Pacific salmon.

  13. Wild Steelhead Studies, Salmon and Clearwater Rivers, 1994 Annual Report.

    Energy Technology Data Exchange (ETDEWEB)

    Holubetz, Terry B; Leth, Brian D.

    1997-05-01

    To enumerate chinook salmon Oncorhynchus tshawytscha and steelhead O. mykiss adult escapements, weirs were operated in Marsh, Chamberlain, West Fork Chamberlain, and Running creeks. Beginning in late July 1994, a juvenile trap was installed in Running Creek to estimate juvenile outmigrants. Plans have been completed to install a weir in Rush Creek to enumerate steelhead adult escapement beginning in spring 1995. Design and agreements are being developed for Johnson Creek and Captain John Creek. Data collected in 1993 and 1994 indicate that spring chinook salmon and group-B steelhead populations and truly nearing extinction levels. For example, no adult salmon or steelhead were passed above the West Fork Chamberlain Creek weir in 1984, and only 6 steelhead and 16 chinook salmon were passed into the important spawning area on upper Marsh Creek. Group-A steelhead are considerably below desirable production levels, but in much better status than group-B stocks. Production of both group-A and group-B steelhead is being limited by low spawning escapements. Studies have not been initiated on wild summer chinook salmon stocks.

  14. Historic Habitat Opportunities and Food-Web Linkages of Juvenile Salmon in the Columbia River Estuary, Annual Report of Research.

    Energy Technology Data Exchange (ETDEWEB)

    Bottom, Daniel L.; Simenstad, Charles A.; Campbell, Lance [Northwest Fisheries Science Center

    2009-05-15

    In 2002 with support from the U.S. Army Corps of Engineers (USACE), an interagency research team began investigating salmon life histories and habitat use in the lower Columbia River estuary to fill significant data gaps about the estuary's potential role in salmon decline and recovery . The Bonneville Power Administration (BPA) provided additional funding in 2004 to reconstruct historical changes in estuarine habitat opportunities and food web linkages of Columbia River salmon (Onchorhynchus spp.). Together these studies constitute the estuary's first comprehensive investigation of shallow-water habitats, including selected emergent, forested, and scrub-shrub wetlands. Among other findings, this research documented the importance of wetlands as nursery areas for juvenile salmon; quantified historical changes in the amounts and distributions of diverse habitat types in the lower estuary; documented estuarine residence times, ranging from weeks to months for many juvenile Chinook salmon (O. tshawytscha); and provided new evidence that contemporary salmonid food webs are supported disproportionately by wetland-derived prey resources. The results of these lower-estuary investigations also raised many new questions about habitat functions, historical habitat distributions, and salmon life histories in other areas of the Columbia River estuary that have not been adequately investigated. For example, quantitative estimates of historical habitat changes are available only for the lower 75 km of the estuary, although tidal influence extends 217 km upriver to Bonneville Dam. Because the otolith techniques used to reconstruct salmon life histories rely on detection of a chemical signature (strontium) for salt water, the estuarine residency information we have collected to date applies only to the lower 30 or 35 km of the estuary, where fish first encounter ocean water. We lack information about salmon habitat use, life histories, and growth within the long tidal

  15. Size, growth, and size‐selective mortality of subyearling Chinook Salmon during early marine residence in Puget Sound

    Science.gov (United States)

    Gamble, Madilyn M.; Connelly, Kristin A.; Gardner, Jennifer R.; Chamberlin, Joshua W.; Warheit, Kenneth I.; Beauchamp, David A.

    2018-01-01

    In marine ecosystems, survival can be heavily influenced by size‐selective mortality during juvenile life stages. Understanding how and when size‐selective mortality operates on a population can reveal underlying growth dynamics and size‐selective ecological processes affecting the population and thus can be used to guide conservation efforts. For subyearling Chinook Salmon Oncorhynchus tshawytscha in Puget Sound, previous research reported a strong positive relationship between marine survival and body mass during midsummer in epipelagic habitats within Puget Sound, suggesting that early marine growth drives survival. However, a fine‐scale analysis of size‐selective mortality is needed to identify specific critical growth periods and habitats. The objectives of this study were to (1) describe occupancy patterns across estuarine delta, nearshore marine, and offshore epipelagic habitats in Puget Sound; (2) describe changes in FL and weight observed across habitats and time; (3) evaluate evidence for size‐selective mortality; and (4) illustrate how marine survival of the stocks studied may be affected by variation in July weight. In 2014 and 2015, we sampled FLs, weights, and scales from seven hatchery‐origin and two natural‐origin stocks of subyearling Chinook Salmon captured every 2 weeks during out‐migration and rearing in estuary, nearshore, and offshore habitats within Puget Sound. Natural‐origin stocks had more protracted habitat occupancy patterns than hatchery‐origin stocks and were smaller than hatchery‐origin stocks in both years. Regardless of origin, subyearlings were longer and heavier and grew faster in offshore habitats compared to estuary and nearshore habitats. For all stocks, we found little evidence of size‐selective mortality among habitats in Puget Sound. These patterns were consistent in both years. Finally, the weights of subyearlings sampled during July in the offshore habitat predicted Puget Sound‐wide marine

  16. Smolt monitoring at the head of Lower Granite Reservoir and Lower Granite Dam; ANNUAL

    International Nuclear Information System (INIS)

    Brimmer, Arnold F.; Buettner, Edwin W.

    1998-01-01

    This project monitored the daily passage of chinook salmon Oncorhynchus tshawytscha and steelhead trout O.mykiss smolts during the 1996 spring outmigration at migrant traps on the Snake River and Salmon River

  17. Umatilla River Fish Passage Operations Project : Annual Progress Report October 2007 - September 2008.

    Energy Technology Data Exchange (ETDEWEB)

    Bronson, James P.; Loffink, Ken; Duke, Bill

    2008-12-31

    Threemile Falls Dam (Threemile Dam), located near the town of Umatilla, is the major collection and counting point for adult salmonids returning to the Umatilla River. Returning salmon and steelhead were enumerated at Threemile Dam from June 7, 2007 to August 11, 2008. A total of 3,133 summer steelhead (Oncorhynchus mykiss); 1,487 adult, 1,067 jack, and 999 subjack fall Chinook (O. tshawytscha); 5,140 adult and 150 jack coho (O. kisutch); and 2,009 adult, 517 jack, and 128 subjack spring Chinook (O. tshawytscha) were counted. All fish were enumerated at the east bank facility. Of the fish counted, 1,442 summer steelhead and 88 adult and 84 jack spring Chinook were hauled upstream from Threemile Dam. There were 1,497 summer steelhead; 609 adult, 1,018 jack and 979 subjack fall Chinook; 5,036 adult and 144 jack coho; and 1,117 adult, 386 jack and 125 subjack spring Chinook either released at, or allowed to volitionally migrate past, Threemile Dam. Also, 110 summer steelhead; 878 adult and 43 jack fall Chinook; and 560 adult and 28 jack spring Chinook were collected as broodstock for the Umatilla River hatchery program. In addition, there were 241 adult and 15 jack spring Chinook collected at Threemile Dam for outplanting in the South Fork Walla Walla River and Mill Cr, a tributary of the mainstem Walla Walla River. The Westland Canal juvenile facility (Westland), located near the town of Echo at river mile (RM) 27, is the major collection point for out-migrating juvenile salmonids and steelhead kelts. The canal was open for 158 days between February 11, 2008 and July 18, 2008. During that period, fish were bypassed back to the river 150 days and were trapped 6 days. There were also 2 days when fish were directed into and held in the canal forebay between the time the bypass was closed and the trap opened. An estimated 64 pounds of fish were transported from the Westland trapping facility. Approximately 25.8% of the fish transported were salmonids. In addition, one

  18. Effects of Domestication on Predation Mortality and Competitive Dominance; Yakima/Klickitat Fisheries Project Monitoring and Evaluation, 2004-2005 Annual Report.

    Energy Technology Data Exchange (ETDEWEB)

    Pearsons, Todd N.; Fritts, Anthony L.; Scott, Jennifer L. (Washington Department of Fish and Wildlife, Olympia, WA)

    2005-05-01

    other project reports. It is anticipated that it will take at least two to five generations to detect measurable responses in many domestication response variables (Busack et al. 2003). This report addresses domestication after one generation of hatchery rearing. This report is organized into two chapters that represent major topics associated with monitoring hatchery domestication. Chapter 1 reports the results of domestication on predation mortality of juvenile spring chinook salmon. Chapter 2 describes the affects of domestication on competitive dominance of juvenile spring chinook salmon. The chapters in this report are in various stages of development and should be considered preliminary unless they have been published in a peer-reviewed journal. Additional field work and/or analysis is in progress for topics covered in this report. Throughout this report, a premium was placed on presenting data in tables so that other interested parties could have access to the data.

  19. 2008 NWFSC Tidal Freshwater Genetics Results

    Energy Technology Data Exchange (ETDEWEB)

    David Teel

    2009-05-01

    Genetic Analysis of Juvenile Chinook Salmon for inclusion in 'Ecology of Juvenile Salmon in Shallow Tidal Freshwater Habitats in the Vicinity of the Sandy River Delta, Lower Columbia River, 2008. Annual Report to Bonneville Power Administration, Contract DE-AC05-76RL01830.'

  20. Effects of Hydroelectric Dam Operations on the Restoration Potential of Snake River Fall Chinook Salmon (Oncorhynchus tshawytscha) Spawning Habitat Final Report, October 2005 - September 2007.

    Energy Technology Data Exchange (ETDEWEB)

    Hanrahan, Timothy P.; Richmond, Marshall C.; Arntzen, Evan V. [Pacific Northwest National Laboratory

    2007-11-13

    This report describes research conducted by the Pacific Northwest National Laboratory for the Bonneville Power Administration (BPA) as part of the Fish and Wildlife Program directed by the Northwest Power and Conservation Council. The study evaluated the restoration potential of Snake River fall Chinook salmon spawning habitat within the impounded lower Snake River. The objective of the research was to determine if hydroelectric dam operations could be modified, within existing system constraints (e.g., minimum to normal pool levels; without partial removal of a dam structure), to increase the amount of available fall Chinook salmon spawning habitat in the lower Snake River. Empirical and modeled physical habitat data were used to compare potential fall Chinook salmon spawning habitat in the Snake River, under current and modified dam operations, with the analogous physical characteristics of an existing fall Chinook salmon spawning area in the Columbia River. The two Snake River study areas included the Ice Harbor Dam tailrace downstream to the Highway 12 bridge and the Lower Granite Dam tailrace downstream approximately 12 river kilometers. These areas represent tailwater habitat (i.e., riverine segments extending from a dam downstream to the backwater influence from the next dam downstream). We used a reference site, indicative of current fall Chinook salmon spawning areas in tailwater habitat, against which to compare the physical characteristics of each study site. The reference site for tailwater habitats was the section extending downstream from the Wanapum Dam tailrace on the Columbia River. Fall Chinook salmon spawning habitat use data, including water depth, velocity, substrate size and channelbed slope, from the Wanapum reference area were used to define spawning habitat suitability based on these variables. Fall Chinook salmon spawning habitat suitability of the Snake River study areas was estimated by applying the Wanapum reference reach habitat

  1. Assessment of the flow-survival relationship obtained by Sims and Ossiander (1981) for Snake River spring/summer chinook salmon smolts. Final report

    International Nuclear Information System (INIS)

    Steward, C.R.

    1994-04-01

    There has been much debate recently among fisheries professionals over the data and functional relationships used by Sims and Ossiander to describe the effects of flow in the Snake River on the survival and travel time of chinook salmon and steelhead smolts. The relationships were based on mark and recovery experiments conducted at various Snake and Columbia River sites between 1964 and 1979 to evaluate the effects of dams and flow regulation on the migratory characteristic's chinook sa mon and steelhead trout smolts. The reliability of this information is crucial because it forms the logical basis for many of the flow management options being considered today to protect,upriver populations of chinook salmon and steelhead trout. In this paper I evaluate the primary data, assumptions, and calculations that underlie the flow-survival relationship derived by Sims and Ossiander (1981) for chinook salmon smolts

  2. Analysis of Chinook Salmon in the Columbia River from an Ecosystem Perspective. Final Report.

    Energy Technology Data Exchange (ETDEWEB)

    Lichatowich, James A.; Mobrand, Lars E.

    1995-01-01

    Ecosystem Diagnosis and Treatment (EDT) methodology was applied to the analysis of chinook salmon in the mid-Columbia subbasins which flow through the steppe and steppe-shrub vegetation zones. The EDT examines historical changes in life history diversity related to changes in habitat. The emphasis on life history, habitat and historical context is consistent with and ecosystem perspective. This study is based on the working hypothesis that the decline in chinook salmon was at least in part due to a loss of biodiversity defined as the intrapopulation life history diversity. The mid Columbia subbasins included in the study are the Deschutes, John Day, Umatilla, Tucannon and Yakima.

  3. Grande Ronde Basin Spring Chinook Salmon Captive Broodstock Program, 1995-2002 Summary Report.

    Energy Technology Data Exchange (ETDEWEB)

    Hoffnagle, Timothy; Carmichael, Richard; Noll, William

    2003-12-01

    survey areas in 1995 from as high as 1,205 redds in the same area in 1969 (Table 1). All streams reached low points (0-6 redds in the index areas) in the 1990's, except those in which no redds were found for several years and surveys were discontinued, such as Spring, Sheep and Indian creeks which had a total of 109 redds in 1969. The Minam and Wenaha rivers are tributaries of the Grande Ronde River located primarily in wilderness areas. Chinook salmon numbers in these two streams (based on redd counts) also decreased dramatically beginning in the early 1970's (Table 1). Since then there have been a few years of increasing numbers of redds but counts have generally been 25-40% of the number seen in the 1960's. No hatchery fish have been released into either of these streams and we monitor them during spawning ground surveys for the presence of hatchery strays. These populations will be used as a type of control for evaluating our supplementation efforts in Catherine Creek, upper Grande Ronde River and Lostine River. In this way, we can attempt to filter out the effects of downstream variables, over which we have no control, when we interpret the results of the captive broodstock program as the F1 and F2 generations spawn and complete their life cycles in the wild. The Grande Ronde Basin Captive Broodstock Program was initiated because these chinook salmon populations had reached critical levels where dramatic and unprecedented efforts were needed to prevent extinction and preserve any future options for use of endemic fish for artificial propagation programs for recovery and mitigation. This program was designed to quickly increase numbers of returning adults, while maintaining the genetic integrity of each endemic population.

  4. Impact of stressors on transmission potential of Renibacterium salmoninarum in Chinook salmon

    Science.gov (United States)

    Purcell, Maureen K.; Winton, James R.

    2014-01-01

    Renibacterium salmoninarum is the causative agent of bacterial kidney disease (BKD) affecting several species of Pacific salmon.  The severity of BKD can range from a chronic infection to overt disease with high mortality as in the case of large losses of adult Chinook salmon (Oncorhynchus tshawytscha) in the Great Lakes during late 1980s. The goal of this study was to empirically evaluate how environmental stressors relevant to the Great Lakes impact R. salmoninarum disease progression and bacterial shedding, the latter parameter being a proxy of horizontal transmission. In the first study (Aim 1), we focused on how endogenous host thiamine levels and dietary fatty acids impacted resistance of Chinook salmon to R. salmoninarum. Juvenile fish were fed one of four experimental diets, including a (1) thiamine replete diet formulated with fish oil, (2) thiamine deplete diet formulated with fish oil, (3) thiamine replete diet formulated with soybean oil, and (4) thiamine deplete diet formulated with soybean oil, before being challenged with buffer or R. salmoninarum. We observed significantly higher mortality in the R. salmoninarum infected groups relative to the corresponding mock controls in only the thiamine replete diet groups. We also observed a significant effect of time and diet on kidney bacterial load and bacterial shedding, with a significant trend towards higher shedding and bacterial load in the fish oil – thiamine replete diet group. However, during the course of the study, unexpected mortality occurred in all groups attributed to the myxozoan parasite Ceratomyxa shasta. Since the fish were dually-infected with C. shasta, we evaluated parasite DNA levels (parasitic load) in the kidney of sampled fish. We found that parasite load varied across time points but there was no significant effect of diet. However, parasite load did differ significantly between the mock and R. salmoninarum challenge groups with a trend towards longer persistence of C. shasta

  5. Proteomic analysis of chinook salmon (Oncorhynchus tshawytscha ovarian fluid.

    Directory of Open Access Journals (Sweden)

    Sheri L Johnson

    Full Text Available The ovarian, or coelomic, fluid that is released with the egg mass of many fishes is increasingly found to play an important role in several biological processes crucial for reproductive success. These include maintenance of oocyte fertility and developmental competence, prolonging of sperm motility, and enhancing sperm swimming speed. Here we examined if and how the proteome of chinook salmon (Oncorhynchus tshawytscha ovarian fluid varied among females and then sought to examine the composition of this fluid. Ovarian fluid in chinook salmon was analyzed using 1D SDS PAGE and LC-MS/MS tryptic digest screened against Mascot and Sequest databases. We found marked differences in the number and concentrations of proteins in salmon ovarian fluid across different females. A total of 174 proteins were identified in ovarian fluid, 47 of which were represented by six or more peptides, belonging to one of six Gene Ontology pathways. The response to chemical stimulus and response to hypoxia pathways were best represented, accounting for 26 of the 174 proteins. The current data set provides a resource that furthers our understanding of those factors that influence successful egg production and fertilisation in salmonids and other species.

  6. Adolescent neglect, juvenile delinquency and the risk of recidivism.

    Science.gov (United States)

    Ryan, Joseph P; Williams, Abigail B; Courtney, Mark E

    2013-03-01

    Victims of child abuse and neglect are at an increased risk of involvement with the juvenile justice and adult correctional systems. Yet, little is known about the continuation and trajectories of offending beyond initial contact with law enforcement. Neglect likely plays a critical role in continued offending as parental monitoring, parental rejection and family relationships are instrumental in explaining juvenile conduct problems. This study sought to determine whether neglect is associated with recidivism for moderate and high risk juvenile offenders in Washington State. Statewide risk assessments and administrative records for child welfare, juvenile justice, and adult corrections were analyzed. The sample was diverse (24 % female, 13 % African American, 8 % Hispanic, 5 % Native American) and included all moderate and high risk juvenile offenders screened by juvenile probation between 2004 and 2007 (n = 19,833). Official records from child protection were used to identify juvenile offenders with a history of child neglect and to identify juvenile offenders with an ongoing case of neglect. Event history models were developed to estimate the risk of subsequent offending. Adolescents with an ongoing case neglect were significantly more likely to continue offending as compared with youth with no official history of neglect. These findings remain even after controlling for a wide range of family, peer, academic, mental health, and substance abuse covariates. Interrupting trajectories of offending is a primary focus of juvenile justice. The findings of the current study indicate that ongoing dependency issues play a critical role in explaining the outcomes achieved for adolescents in juvenile justice settings. The implications for improved collaboration between child welfare and juvenile justice are discussed.

  7. Assessment of the Flow-Survival Relationship Obtained by Sims and Ossiander (1981) for Snake River Spring/Summer Chinook Salmon Smolts, Final Report.

    Energy Technology Data Exchange (ETDEWEB)

    Steward, C.R. (Cleveland R.)

    1994-04-01

    There has been much debate recently among fisheries professionals over the data and functional relationships used by Sims and Ossiander to describe the effects of flow in the Snake River on the survival and travel time of chinook salmon and steelhead smolts. The relationships were based on mark and recovery experiments conducted at various Snake and Columbia River sites between 1964 and 1979 to evaluate the effects of dams and flow regulation on the migratory characteristic`s chinook sa mon and steelhead trout smolts. The reliability of this information is crucial because it forms the logical basis for many of the flow management options being considered today to protect,upriver populations of chinook salmon and steelhead trout. In this paper I evaluate the primary data, assumptions, and calculations that underlie the flow-survival relationship derived by Sims and Ossiander (1981) for chinook salmon smolts.

  8. Tucannon River Spring Chinook Salmon Captive Broodstock Program, Annual Report 2002.

    Energy Technology Data Exchange (ETDEWEB)

    Gallinat, Michael; Varney, Michelle

    2003-05-01

    This report summarizes the objectives, tasks, and accomplishments of the Tucannon River Spring Chinook Captive Broodstock Program during 2002. The WDFW initiated a captive broodstock program in 1997. The overall goal of the Tucannon River captive broodstock program is for the short-term, and eventually long-term, rebuilding of the Tucannon River spring chinook salmon run, with the hope that natural production will sustain itself. The project goal is to rear captive salmon selected from the supplementation program to adults, spawn them, rear their progeny, and release approximately 150,000 smolts annually into the Tucannon River between 2003-2007. These smolt releases, in combination with the current hatchery supplementation program (132,000 smolts) and wild production, are expected to produce 600-700 returning adult spring chinook to the Tucannon River each year from 2005-2010. The captive broodstock program collected fish from five (1997-2001) brood years (BY). As of January 1, 2003, WDFW has approximately 11 BY 1998, 194 BY 1999, 314 BY 2000, 447 BY 2001, and 300 BY 2002 (for extra males) fish on hand at LFH. The 2002 eggtake from the 1997 brood year (Age 5) was 13,176 eggs from 10 ripe females. Egg survival was 22%. Mean fecundity based on the 5 fully spawned females was 1,803 eggs/female. The 2002 eggtake from the 1998 brood year (Age 4) was 143,709 eggs from 93 ripe females. Egg survival was 29%. Mean fecundity based on the 81 fully spawned females was 1,650 eggs/female. The 2002 eggtake from the 1999 brood year (Age 3) was 19,659 eggs from 18 ripe females. Egg survival was 55%. Mean fecundity based on the 18 fully spawned fish was 1,092 eggs/female. The total 2002 eggtake from the captive brood program was 176,544 eggs. A total of 120,833 dead eggs (68%) were removed with 55,711 live eggs remaining for the program. As of May 1, 2003 we had 46,417 BY 2002 captive brood progeny on hand A total of 20,592 excess BY 01 fish were marked as parr (AD/CWT) and

  9. AFSC/ABL: Stock composition, timing, and spawning distribution of Yukon River Chinook salmon

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Radio telemetry was used to determine the distribution, locate spawning sites, and evaluate the tagging response of wild Chinook salmon Oncorhynchus tshawytscha...

  10. A Virus-like disease of chinook salmon

    Science.gov (United States)

    Ross, A.J.; Pelnar, J.; Rucker, R.R.

    1960-01-01

    Consideration is given to a recurring disease of early feeding chinook salmon fingerlings at the Coleman, California, Federal Fish Cultural Station. The infection becomes manifest in the early spring months at low water temperatures and abates as the water temperature rises. Bacteriological studies have failed to yield the presence of a disease agent, either by cultural or staining procedures. The disease has been successfully transmitted from infected fish to healthy fish by the injection of bacteria-free filtrates prepared from diseased fish tissue. The causative agent is therefore believed to be a virus-like entity.

  11. Northeast Oregon Hatchery Spring Chinook Master Plan, Technical Report 2000.

    Energy Technology Data Exchange (ETDEWEB)

    Ashe, Becky L.; Concannon, Kathleen; Johnson, David B.

    2000-04-01

    Spring chinook salmon populations in the Imnaha and Grande Ronde rivers are listed as threatened under the Endangered Species Act (ESA) and are at high risk of extirpation. The Nez Perce Tribe, the Confederated Tribes of the Umatilla Indian Reservation, and Oregon Department of Fish and Wildlife, are co-managers of conservation/restoration programs for Imnaha and Grande Ronde spring chinook salmon that use hatchery supplementation and conventional and captive broodstock techniques. The immediate goal of these programs is to prevent extirpation and provide the potential for restoration once factors limiting production are addressed. These programs redirect production occurring under the Lower Snake River Compensation Plan (LSRCP) from mitigation to conservation and restoration. Both the Imnaha and Grande Ronde conservation/restoration programs are described in ESA Section 10 permit applications and the co-managers refer to the fish production from these programs as the Currently Permitted Program (CPP). Recently, co-managers have determined that it is impossible to produce the CPP at Lookingglass Hatchery, the LSRCP facility intended for production, and that without additional facilities, production must be cut from these conservation programs. Development of new facilities for these programs through the Columbia Basin Fish and Wildlife Program is considered a new production initiative by the Northwest Power Planning Council (NPPC) and requires a master plan. The master plan provides the NPPC, program proponents and others with the information they need to make sound decisions about whether the proposed facilities to restore salmon populations should move forward to design. This master plan describes alternatives considered to meet the facility needs of the CPP so the conservation program can be fully implemented. Co-managers considered three alternatives: modify Lookingglass Hatchery; use existing facilities elsewhere in the Basin; and use new facilities in

  12. Smolt Monitoring at the Head of Lower Granite Reservoir and Lower Granite Dam, 1994 Annual Report.

    Energy Technology Data Exchange (ETDEWEB)

    Buettner, Edwin W.; Brimmer, Arnold F.

    1994-10-01

    This project monitored the daily passage of chinook salmon Oncorhynchus tshawytscha and steelhead trout O. mykiss smolts during the 1994 spring outmigration at migrant traps on the Snake River, Clearwater River, and Salmon River. The 1994 snowpack was among the lowest since the beginning of the present drought, and the subsequent runoff was very poor. All hatchery chinook salmon released above Lower Granite Dam were marked with a fin clip in 1994. Total annual (hatchery + wild) chinook salmon catch at the Snake River trap was 1.5 times greater than in 1993. Hatchery and wild steelhead trout catches were similar to 1993. The Snake River trap collected 30 age 0 chinook salmon. Hatchery chinook salmon catch at the Clearwater River trap was 3.5 times higher than in 1993, and wild chinook salmon catch was 4.2 times higher. Hatchery steelhead trout trap catch was less than half of 1993 numbers because the trap was fishing near the north shore during the majority of the hatchery steelhead movement due to flow augmentations from Dworshak. Wild steelhead trout trap catch was 2 times higher than in 1993. The Salmon River trap was operated for about a month longer in 1994 than in 1993 due to extremely low flows. Hatchery chinook salmon catch was 1.4 times greater in 1994 than the previous year. Wild chinook salmon catch was slightly less in 1994. The 1994 hatchery steelhead trout collection did not change significantly from 1993 numbers. Wild steelhead trout collection in 1994 was 59% of the 1993 catch. Fish tagged with Passive Integrated Transponder (PIT) tags at the Snake River trap were interrogated at four dams with PIT tag detection systems (Lower Granite, Little Goose, Lower Monumental, and McNary dams). Because of the addition of the fourth interrogation site (Lower Monumental) in 1993, cumulative interrogation data is not comparable with the prior five years (1988-1992).

  13. Recovery of barotrauma injuries in Chinook salmon, Oncorhynchus tshawytscha from exposure to pile driving sound.

    Directory of Open Access Journals (Sweden)

    Brandon M Casper

    Full Text Available Juvenile Chinook salmon, Oncorhynchus tshawytscha, were exposed to simulated high intensity pile driving signals to evaluate their ability to recover from barotrauma injuries. Fish were exposed to one of two cumulative sound exposure levels for 960 pile strikes (217 or 210 dB re 1 µPa(2·s SEL(cum; single strike sound exposure levels of 187 or 180 dB re 1 µPa(2⋅s SEL(ss respectively. This was followed by an immediate assessment of injuries, or assessment 2, 5, or 10 days post-exposure. There were no observed mortalities from the pile driving sound exposure. Fish exposed to 217 dB re 1 µPa(2·s SEL(cum displayed evidence of healing from injuries as post-exposure time increased. Fish exposed to 210 dB re 1 µPa(2·s SEL(cum sustained minimal injuries that were not significantly different from control fish at days 0, 2, and 10. The exposure to 210 dB re 1 µPa(2·s SEL(cum replicated the findings in a previous study that defined this level as the threshold for onset of injury. Furthermore, these data support the hypothesis that one or two Mild injuries resulting from pile driving exposure are unlikely to affect the survival of the exposed animals, at least in a laboratory environment.

  14. Salmon Supplementation Studies in Idaho Rivers; Field Activities Conducted on Clear and Pete King Creeks, 2002 Annual Report.

    Energy Technology Data Exchange (ETDEWEB)

    Bretz, Justin K.; Olson, Jill M. (US Fish and Wildlife Service, Idaho Fishery Resource Office, Ahsahka, ID)

    2003-03-01

    In 2002 the Idaho Fisheries Resource Office continued working as a cooperator on the Salmon Supplementation Studies in Idaho Rivers (ISS) project on Pete King and Clear creeks. Data relating to supplementation treatment releases, juvenile sampling, juvenile PIT tagging, broodstock spawning and rearing, spawning ground surveys, and snorkel surveys were used to evaluate the project data points and augment past data. Supplementation treatments included the release of 51,329 left ventral-clipped smolts into Clear Creek (750 were PIT tagged), and 12,000 unmarked coded-wire tagged parr into Pete King Creek (998 were PIT tagged). Using juvenile collection methods, Idaho Fisheries Resource Office staff PIT tagged and released 579 naturally produced spring chinook juveniles in Clear Creek, and 54 on Pete King Creek, for minimum survival estimates to Lower Granite Dam. For Clear Creek, minimum survival estimates to Lower Granite Dam of hatchery produced supplementation and naturally produced PIT tagged smolts, were 36.0%, and 53.1%, respectively. For Pete King Creek, minimum survival estimates to Lower Granite Dam, of hatchery produced supplementation smolts and naturally produced smolts PIT tagged as parr and presmolts, were 18.8%, and 8.3%, respectively. Adults collected for broodstock in 2002 represented the final adult broodstock group collected for the ISS project. Twenty-six ventral clipped, and 28 natural adult spring chinook were transported above the weir. Monitoring and evaluation of spawning success was continued on Clear and Pete King creeks. A total of 69 redds were counted and 79 carcasses were recovered on Clear Creek. Two redds were observed and no carcasses were collected on Pete King Creek.

  15. A spatial model to assess the effects of hydropower operations on Columbia River fall Chinook Salmon spawning habitat

    Science.gov (United States)

    Hatten, James R.; Tiffan, Kenneth F.; Anglin, Donald R.; Haeseker, Steven L.; Skalicky, Joseph J.; Schaller, Howard

    2009-01-01

    Priest Rapids Dam on the Columbia River produces large daily and hourly streamflow fluctuations throughout the Hanford Reach during the period when fall Chinook salmon Oncorhynchus tshawytscha are selecting spawning habitat, constructing redds, and actively engaged in spawning. Concern over the detrimental effects of these fluctuations prompted us to quantify the effects of variable flows on the amount and persistence of fall Chinook salmon spawning habitat in the Hanford Reach. Specifically, our goal was to develop a management tool capable of quantifying the effects of current and alternative hydrographs on predicted spawning habitat in a spatially explicit manner. Toward this goal, we modeled the water velocities and depths that fall Chinook salmon experienced during the 2004 spawning season, plus what they would probably have experienced under several alternative (i.e., synthetic) hydrographs, using both one- and two-dimensional hydrodynamic models. To estimate spawning habitat under existing or alternative hydrographs, we used cell-based modeling and logistic regression to construct and compare numerous spatial habitat models. We found that fall Chinook salmon were more likely to spawn at locations where velocities were persistently greater than 1 m/s and in areas where fluctuating water velocities were reduced. Simulations of alternative dam operations indicate that the quantity of spawning habitat is expected to increase as streamflow fluctuations are reduced during the spawning season. The spatial habitat models that we developed provide management agencies with a quantitative tool for predicting, in a spatially explicit manner, the effects of different flow regimes on fall Chinook salmon spawning habitat in the Hanford Reach. In addition to characterizing temporally varying habitat conditions, our research describes an analytical approach that could be applied in other highly variable aquatic systems.

  16. Framework for Assessing Viability of Threatened and Endangered Chinook Salmon and Steelhead in the Sacramento–San Joaquin Basin

    Directory of Open Access Journals (Sweden)

    Steven T. Lindley

    2007-02-01

    Full Text Available Protected evolutionarily significant units (ESUs of salmonids require objective and measurable criteria for guiding their recovery. In this report, we develop a method for assessing population viability and two ways to integrate these population-level assessments into an assessment of ESU viability. Population viability is assessed with quantitative extinction models or criteria relating to population size, population growth rate, the occurrence of catastrophic declines, and the degree of hatchery influence. ESU viability is assessed by examining the number and distribution of viable populations across the landscape and their proximity to sources of catastrophic disturbance. Central Valley spring-run and winter-run Chinook salmon ESUs are not currently viable, according to the criteria-based assessment. In both ESUs, extant populations may be at low risk of extinction, but these populations represent a small portion of the historical ESUs, and are vulnerable to catastrophic disturbance. The winter-run Chinook salmon ESU, in the extreme case, is represented by a single population that spawns outside of its historical spawning range. We are unable to assess the status of the Central Valley steelhead ESU with our framework because almost all of its roughly 80 populations are classified as data deficient. The few exceptions are those populations with a closely associated hatchery, and the naturally-spawning fish in these streams are at high risk of extinction. Population monitoring in this ESU is urgently needed. Global and regional climate change poses an additional risk to the survival of salmonids in the Central Valley. A literature review suggests that by 2100, mean summer temperatures in the Central Valley region may increase by 2-8°C, precipitation will likely shift to more rain and less snow, with significant declines in total precipitation possible, and hydrographs will likely change, especially the the southern Sierra Nevada mountains

  17. Juvenile angiofibroma

    Science.gov (United States)

    Nasal tumor; Angiofibroma - juvenile; Benign nasal tumor; Juvenile nasal angiofibroma; JNA ... Juvenile angiofibroma is not very common. It is most often found in adolescent boys. The tumor contains many blood ...

  18. Coronary ligation reduces maximum sustained swimming speed in Chinook salmon, Oncorhynchus tshawytscha

    DEFF Research Database (Denmark)

    Farrell, A P; Steffensen, J F

    1987-01-01

    The maximum aerobic swimming speed of Chinook salmon (Oncorhynchus tshawytscha) was measured before and after ligation of the coronary artery. Coronary artery ligation prevented blood flow to the compact layer of the ventricular myocardium, which represents 30% of the ventricular mass, and produced...

  19. Salmon Supplementation Studies in Idaho Rivers; Field Activities Conducted on Clear and Pete King Creeks, 2001 Annual Report.

    Energy Technology Data Exchange (ETDEWEB)

    Gass, Carrie; Olson, Jim M. (US Fish and Wildlife Service, idaho Fishery Resource Office, Ahsahka, ID)

    2004-11-01

    In 2001 the Idaho Fisheries Resource Office continued as a cooperator on the Salmon Supplementation Studies in Idaho Rivers (ISS) project on Pete King and Clear creeks. Data relating to supplementation treatment releases, juvenile sampling, juvenile PIT tagging, brood stock spawning and rearing, spawning ground surveys, and snorkel surveys were used to evaluate project data points and augment past data. Due to low adult spring Chinook returns to Kooskia National Fish Hatchery (KNFH) in brood year 1999 there was no smolt supplementation treatment release into Clear Creek in 2001. A 17,014 spring Chinook parr supplementation treatment (containing 1000 PIT tags) was released into Pete King Creek on July 24, 2001. On Clear Creek, there were 412 naturally produced spring Chinook parr PIT tagged and released. Using juvenile collection methods, Idaho Fisheries Resource Office staff PIT tagged and released 320 naturally produced spring Chinook pre-smolts on Clear Creek, and 16 natural pre-smolts on Pete King Creek, for minimum survival estimates to Lower Granite Dam. There were no PIT tag detections of brood year 1999 smolts from Clear or Pete King creeks. A total of 2261 adult spring Chinook were collected at KNFH. Forty-three females were used for supplementation brood stock, and 45 supplementation (ventral fin-clip), and 45 natural (unmarked) adults were released upstream of KNFH to spawn naturally. Spatial and temporal distribution of 37 adults released above the KNFH weir was determined through the use of radio telemetry. On Clear Creek, a total of 166 redds (8.2 redds/km) were observed and data was collected from 195 carcasses. Seventeen completed redds (2.1 redds/km) were found, and data was collected data from six carcasses on Pete King Creek.

  20. Hood River Production Program Monitoring and Evaluation (M&E) - Confederated Tribes of Warm Springs : Annual Report For Fiscal Year, October 2007 – September 2008.

    Energy Technology Data Exchange (ETDEWEB)

    Gerstenberger, Ryan [Confederated Tribes of Warm Springs Reservation

    2009-07-27

    This progress report describes work performed by the Confederated Tribes of Warm Springs (CTWSRO) portion of the Hood River Production Program Monitoring and Evaluation Project (HRPP) during the 2008 fiscal year. A total of 64,736 hatchery winter steelhead, 12,108 hatchery summer steelhead, and 68,426 hatchery spring Chinook salmon smolts were acclimated and released in the Hood River basin during the spring. The HRPP exceeded program goals for a release of and 50,000 winter steelhead but fell short of the steelhead release goals of 30,000 summer steelhead and 75,000 spring Chinook in 2008. Passive Integrated Transponders (PIT) tags were implanted in 6,652 hatchery winter steelhead, and 1,196 hatchery summer steelhead, to compare migratory attributes and survival rates of hatchery fish released into the Hood River. Water temperatures were recorded at six locations within the Hood River subbasin to monitor for compliance with Oregon Department of Environmental Quality water quality standards. A preseason spring Chinook salmon adult run forecast was generated, which predicted an abundant return adequate to meet escapement goal and brood stock needs. As a result the tribal and sport fisheries were opened. A tribal creel was conducted from May 22 to July 18 during which an estimated 172 spring Chinook were harvested. One hundred sixteen Spring Chinook salmon redds were observed and 72 carcasses were inspected on 19.4 miles of spawning grounds throughout the Hood River Basin during 2008. Annual salvage operations were completed in two irrigation canals resulting in the liberation of 1,641 fish back to the Hood River.

  1. Demographic Monitoring of juvenile Acropora spp. in the Florida Keys 2002

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Caribbean acroporid species have undergone extreme declines in abundance since the 1980s. Population-level recovery will depend on re-colonization by juveniles...

  2. Analyses of potential factors affecting survival of juvenile salmonids volitionally passing through turbines at McNary and John Day Dams, Columbia River

    Science.gov (United States)

    Beeman, John; Hansel, Hal; Perry, Russell; Hockersmith, Eric; Sandford, Ben

    2011-01-01

    This report describes analyses of data from radio- or acoustic-tagged juvenile salmonids passing through hydro-dam turbines to determine factors affecting fish survival. The data were collected during a series of studies designed to estimate passage and survival probabilities at McNary (2002-09) and John Day (2002-03) Dams on the Columbia River during controlled experiments of structures or operations at spillways. Relatively few tagged fish passed turbines in any single study, but sample sizes generally were adequate for our analyses when data were combined from studies using common methods over a series of years. We used information-theoretic methods to evaluate biological, operational, and group covariates by creating models fitting linear (all covariates) or curvilinear (operational covariates only) functions to the data. Biological covariates included tag burden, weight, and water temperature; operational covariates included spill percentage, total discharge, hydraulic head, and turbine unit discharge; and group covariates included year, treatment, and photoperiod. Several interactions between the variables also were considered. Support of covariates by the data was assessed by comparing the Akaike Information Criterion of competing models. The analyses were conducted because there was a lack of information about factors affecting survival of fish passing turbines volitionally and the data were available from past studies. The depth of acclimation, tag size relative to fish size (tag burden), turbine unit discharge, and area of entry into the turbine intake have been shown to affect turbine passage survival of juvenile salmonids in other studies. This study indicates that turbine passage survival of the study fish was primarily affected by biological covariates rather than operational covariates. A negative effect of tag burden was strongly supported in data from yearling Chinook salmon at John Day and McNary dams, but not for subyearling Chinook salmon or

  3. Smolt monitoring at the head of lower granite reservoir and lower Granite Dam, annual report 1999 operations.; ANNUAL

    International Nuclear Information System (INIS)

    United States. Bonneville Power Administration. Division of Fish and Wildlife; Idaho. Dept. of Fish and Game.

    2001-01-01

    This project monitored the daily passage of chinook salmon Oncorhynchus tshawytscha, steelhead trout O. mykiss, and sockeye salmon smolts O. nerka during the 1999 spring out-migration at migrant traps on the Snake River and Salmon River. All hatchery chinook salmon released above Lower Granite Dam were marked with a fin clip in 1999. Total annual hatchery chinook salmon catch at the Snake River trap was 440% of the 1998 number. The wild chinook catch was 603% of the previous year's catch. Hatchery steelhead trout catch was 93% of 1998 numbers. Wild steelhead trout catch was 68% of 1998 numbers. The Snake River trap collected 62 age-0 chinook salmon. During 1998 the Snake River trap captured 173 hatchery and 37 wild/natural sockeye salmon and 130 hatchery coho salmon O. kisutch. Differences in trap catch between years are due to fluctuations not only in smolt production, but also differences in trap efficiency and duration of trap operation associated with high flows. Trap operations began on March 14 and were terminated for the season due to high flows on May 25. The trap was out of operation for 18 d during the season due to high flow and debris. Hatchery chinook salmon catch at the Salmon River trap was 214%, and wild chinook salmon catch was 384% of 1998 numbers. The hatchery steelhead trout collection in 1999 was 210% of the 1998 numbers. Wild steelhead trout collection in 1999 was 203% of the 1998 catch. Trap operations began on March 14 and were terminated for the season due to high flows on May 21. The trap was out of operation for 17 d during the season due to high flow and debris

  4. Smolt monitoring at the head of Lower Granite Reservoir and Lower Granite Dam, annual report 1997 operations.; ANNUAL

    International Nuclear Information System (INIS)

    United States. Bonneville Power Administration. Division of Fish and Wildlife.

    1999-01-01

    This project monitored the daily passage of chinook salmon Oncorhynchus tshawytscha and steelhead trout O. mykiss smolts during the 1997 spring out-migration at migrant traps on the Snake River and Salmon River. All hatchery chinook salmon released above Lower Granite Dam were marked with a fin clip in 1997. Total annual hatchery chinook salmon catch at the Snake River trap was 49% of the 1996 number but only 6% of the 1995 catch. The wild chinook catch was 77% of the 1996 but was only 13% of 1995. Hatchery steelhead trout catch was 18% of 1996 numbers but only 7% of the 1995 numbers. Wild steelhead trout catch was 22% of 1996 but only 11% of the 1995 numbers. The Snake River trap collected eight age-0 chinook salmon and one sockeye/kokanee salmon O. nerka. Differences in trap catch between years are due to fluctuations not only in smolt production, but also differences in trap efficiency and duration of trap operation associated with high flows. Trap operations were terminated for the season due to high flows and trap damage on May 8 and were out of operation for 23 d due to high flow and debris. Hatchery chinook salmon catch at the Salmon River trap was 37% and wild chinook salmon catch was 60% of 1996 numbers but only 5% and 11% of 1995 catch, respectively. The 1997 hatchery steelhead trout collection was 13% of the 1996 catch and 32% of the 1995 numbers. Wild steelhead trout collection in 1997 was 21% of the 1996 catch and 13% of the 1995 numbers. Trap operations were terminated for the season due to high flows and trap damage on May 7 and were out of operation for 19 d due to high flow and debris

  5. Gas Supersaturation May Reduce the Survival of Yearling Chinook Salmon in the Lower Columbia River and Ocean Plume

    Science.gov (United States)

    Brosnan, Ian; Welch, David; Scott, Melinda Jacobs

    2015-01-01

    Unusually high flows in the Columbia River in 2011 raised total dissolved gas (TDG) levels in the river above the 120 percent legal limit imposed to prevent harmful impacts to aquatic organisms. This provided a unique opportunity to evaluate the effect on smolt survival. In-river (IR) migrating juvenile yearling Chinook released at Bonneville Dam with acoustic tags during periods when TDG exceeded 120 percent received estimated maximum exposures of 134 TDG. Subsequent daily survival rates in the lower river and plume were reduced by 0.06 per day (SE equals 0.01) and 0.15 per day (SE equals 0.05) relative to IR migrant fish released when TDG was less than 120 percent. Transported smolts (T) released 10-13 kilometers below Bonneville Dam had lower maximum exposure levels (126 percent) and experienced no difference in daily survival rates relative to unexposed smolts. River temperature levels and trends in turbidity and disease prevalence between releases of high and low exposure smolts were not consistent with the observed effects on survival rates. We conclude that smolts may suffer from chronic effects of elevated TDG exposure while migrating through the Columbia River and plume. Consideration should be given to measuring these survival losses in an explicit experimental framework that isolates possible confounding factors.

  6. Spatial consistency of Chinook salmon redd distribution within and among years in the Cowlitz River, Washington

    Energy Technology Data Exchange (ETDEWEB)

    Klett, Katherine J.; Torgersen, Christian; Henning, Julie; Murray, Christopher J.

    2013-04-28

    We investigated the spawning patterns of Chinook salmon Oncorhynchus tshawytscha on the lower Cowlitz River, Washington (USA) using a unique set of fine- and coarse-scale 35 temporal and spatial data collected during bi-weekly aerial surveys conducted in 1991-2009 (500 m to 28 km resolution) and 2008-2009 (100-500 m resolution). Redd locations were mapped from a helicopter during 2008 and 2009 with a hand-held global positioning system (GPS) synchronized with in-flight audio recordings. We examined spatial patterns of Chinook salmon redd reoccupation among and within years in relation to segment-scale geomorphic features. Chinook salmon spawned in the same sections each year with little variation among years. On a coarse scale, five years (1993, 1998, 2000, 2002, and 2009) were compared for reoccupation. Redd locations were highly correlated among years resulting in a minimum correlation coefficient of 0.90 (adjusted P = 0.002). Comparisons on a fine scale (500 m) between 2008 and 2009 also revealed a high degree of consistency among redd locations (P < 0.001). On a finer temporal scale, we observed that salmon spawned in the same sections during the first and last week (2008: P < 0.02; and 2009: P < 0.001). Redds were clustered in both 2008 and 2009 (P < 0.001). Regression analysis with a generalized linear model at the 500-m scale indicated that river kilometer and channel bifurcation were positively associated with redd density, whereas sinuosity was negatively associated with redd density. Collecting data on specific redd locations with a GPS during aerial surveys was logistically feasible and cost effective and greatly enhanced the spatial precision of Chinook salmon spawning surveys.

  7. Captive Rearing Program for Salmon River Chinook Salmon, 2000 Project Progress Report.

    Energy Technology Data Exchange (ETDEWEB)

    Venditti, David A.

    2002-04-01

    During 2000, the Idaho Department of Fish and Game (IDFG) continued to develop techniques to rear chinook salmon Oncorhynchus tshawytscha to sexual maturity in captivity and to monitor their reproductive performance under natural conditions. Eyed-eggs were collected to establish captive cohorts from three study streams and included 503 eyed-eggs from East Fork Salmon River (EFSR), 250 from the Yankee Fork Salmon River, and 304 from the West Fork Yankee Fork Salmon River (WFYF). After collection, the eyed-eggs were immediately transferred to the Eagle Fish Hatchery, where they were incubated and reared by family group. Juveniles collected the previous summer were PIT and elastomer tagged and vaccinated against vibrio Vibrio spp. and bacterial kidney disease before the majority (approximately 75%) were transferred to the National Marine Fisheries Service, Manchester Marine Experimental Station for saltwater rearing through sexual maturity. Smolt transfers included 158 individuals from the Lemhi River (LEM), 193 from the WFYF, and 372 from the EFSR. Maturing fish transfers from the Manchester facility to the Eagle Fish Hatchery included 77 individuals from the LEM, 45 from the WFYF, and 11 from the EFSR. Two mature females from the WFYF were spawned in captivity with four males in 2000. Only one of the females produced viable eggs (N = 1,266), which were placed in in-stream incubators by personnel from the Shoshone-Bannock Tribe. Mature adults (N = 70) from the Lemhi River were released into Big Springs Creek to evaluate their reproductive performance. After release, fish distributed themselves throughout the study section and displayed a progression of habitat associations and behavior consistent with progressing maturation and the onset of spawning. Fifteen of the 17 suspected redds spawned by captive-reared parents in Big Springs Creek were hydraulically sampled to assess survival to the eyed stage of development. Eyed-eggs were collected from 13 of these, and

  8. Umatilla Basin natural production monitoring and evaluation. Annual progress report, 1994--1995

    International Nuclear Information System (INIS)

    Contor, C.R.; Hoverson, E.; Kissner, P.; Volkman, J.

    1996-04-01

    This report summarizes the activities of the Umatilla Basin Natural Production Monitoring and Evaluation Project (UBNPME) from September 30, 1994 to September 29, 1995. This program was funded by Bonneville Power Administration and was managed under the Fisheries Program, Department of Natural Resources, Confederated Tribes of the Umatilla Indian Reservation. An estimated 36.7 km (22.6 miles) of stream habitat were inventoried on the Umatilla River, Moonshine, Mission, Cottonwood and Coonskin Creeks. A total of 384 of 3,652 (10.5%) habitat units were electrofished. The number of juvenile fish captured follows: 2,953 natural summer steelhead (including resident rainbow trout; Oncorhynchus mykiss), one hatchery steelhead, 341 natural chinook salmon (O. tshawytscha), 163 natural coho salmon (O. kisutch), five bull trout (Salvelinus confluentus), 185 mountain whitefish (Prosopium williamsoni), and six northern squawfish (Ptychoicheilus oregonensis). The expanded population estimate for the areas surveyed was 73,716 salmonids with a mean density of 0.38 fish/m 2 . Relative salmonid abundance, seasonal distribution and habitat utilization were monitored at index sites throughout the basin. During index site monitoring, the following species were collected in addition to those listed above: american shad (Alosa sapidissima), smallmouth bass (Micropterus dolomieu), carp (Cyprinus carpio) and chiselmouth (Acrocheilus alutaceus). Thirty-nine sites were electrofished during the spring and summer seasons, while 36 sites were sampled in the fall season. A study of the migration movements and homing requirements of adult salmonids in the Umatilla River was conducted during the 1994-95 return years. Radio telemetry was used to evaluate the movements of adult salmonids past diversion dams in the lower Umatilla River and to determine migrational movements of salmonids following upstream transport

  9. Umatilla Basin Natural Production Monitoring and Evaluation; 1995-1996 Annual Report.

    Energy Technology Data Exchange (ETDEWEB)

    Contor, Craig R.; Kissner, Paul; Volkman, Jed [Confederated Tribes of the Umatilla Indian Reservation, Pendleton, OR (United States). Dept. of Natural Resources

    1997-08-01

    This report summarizes the activities of the Umatilla Basin Natural Production Monitoring and Evaluation Project (UBNPME) from September 30, 1995 to September 29, 1996. This program was funded by Bonneville Power Administration and was managed under the Fisheries Program, Department of Natural Resources, Confederated Tribes of the Umatilla Indian Reservation. The goal was to evaluate the implementation of the Umatilla River Basin fisheries restoration plan with respect to natural production, adult passage, and tribal harvest. An estimated 56.1 river miles (RM) of habitat was inventoried on the lower Umatilla River (RM 0--56.1) from June 4, to August 1, 1996. The majority of the lower River was found to be too polluted and physically altered to provide suitable rearing or migration habitat for salmonids during the summer. High water temperatures, irrigation withdrawals, altered channels, and urban and agricultural pollution all contributed to degrade the lower Umatilla River. Small springs provided cooler waters and created small areas that were suitable for salmonid rearing. The river below the mouth of Mckay Creek (RM 27.2 to 50.6) was also cooler and more suitable to salmonid rearing when water was released from Mckay Dam. Two hundred sixty-three of 1,832 (14.4%) habitat units were electrofished from June 19 to August 29, 1996. The number of natural juvenile salmonids captured between RM 1.5--52.4 follow: (1) 141 juvenile steelhead (including resident rainbow trout; Oncoryhnchus mykiss), (2) 13 mountain whitefish (Prosopium williamsoni, including adults), (3) four chinook salmon (O. tshawytscha), and (4) two coho salmon (O. kisutch). The expanded population estimate for the areas surveyed was 2,445 salmonids. Mean density was 0.147 salmonids/100 square meter. Mean density of fast water habitat types was 4.5 times higher than slow water types (0.358 and 0.079 s/100 m{sup 2}).

  10. Umatilla Basin natural production monitoring and evaluation. Annual report 1995-1996

    International Nuclear Information System (INIS)

    Contor, C.R.; Hoverson, E.; Kissner, P.; Volkman, J.

    1997-08-01

    This report summarizes the activities of the Umatilla Basin Natural Production Monitoring and Evaluation Project (UBNPME) from September 30, 1995 to September 29, 1996. This program was funded by Bonneville Power Administration and was managed under the Fisheries Program, Department of Natural Resources, Confederated Tribes of the Umatilla Indian Reservation. The goal was to evaluate the implementation of the Umatilla River Basin fisheries restoration plan with respect to natural production, adult passage, and tribal harvest. An estimated 56.1 river miles (RM) of habitat was inventoried on the lower Umatilla River (RM 0--56.1) from June 4, to August 1, 1996. The majority of the lower River was found to be too polluted and physically altered to provide suitable rearing or migration habitat for salmonids during the summer. High water temperatures, irrigation withdrawals, altered channels, and urban and agricultural pollution all contributed to degrade the lower Umatilla River. Small springs provided cooler waters and created small areas that were suitable for salmonid rearing. The river below the mouth of Mckay Creek (RM 27.2 to 50.6) was also cooler and more suitable to salmonid rearing when water was released from Mckay Dam. Two hundred sixty-three of 1,832 (14.4%) habitat units were electrofished from June 19 to August 29, 1996. The number of natural juvenile salmonids captured between RM 1.5--52.4 follow: (1) 141 juvenile steelhead (including resident rainbow trout; Oncoryhnchus mykiss), (2) 13 mountain whitefish (Prosopium williamsoni, including adults), (3) four chinook salmon (O. tshawytscha), and (4) two coho salmon (O. kisutch). The expanded population estimate for the areas surveyed was 2,445 salmonids. Mean density was 0.147 salmonids/100 square meter. Mean density of fast water habitat types was 4.5 times higher than slow water types (0.358 and 0.079 s/100 m 2 )

  11. Spatial dynamics of juvenile anchovy in the Bay of Biscay

    KAUST Repository

    Boyra, Guillermo

    2016-07-08

    In autumn 2009, the implementation of two successive acoustic surveys targeting juvenile anchovy (Engraulis encrasicolus) in the Bay of Biscay allowed us to monitor the changes in the spatial distribution and aggregation patterns of juveniles of this species during 45 days under fairly stable meteorological conditions. Juvenile anchovy changed its biological condition and behavior in a different manner in two distinct areas. In the Spanish sector, the juveniles migrated 20 nautical miles (n.mi.) towards the coast, but they remained on the shelf and near the surface during the whole surveyed period. As the advance towards the shelf break progressed, their area of distribution decreased, their density increased and the juveniles spread in fewer but heavier shoals. In the French sector, the juveniles also migrated from slope waters towards the coast at a similar velocity, but they crossed the shelf break into the continental shelf, where they increased their mean depth significantly until gradually adopting the typical nyctemeral migrations of adult anchovy. The mean length of the juveniles that adopted the nyctemeral migrations was significantly higher than that of the juveniles remaining at the surface, suggesting that body size is relevant to accomplish this change. Besides, the stronger temperature gradients between the shelf and oceanic waters in the Spanish sector, favored by a narrow shelf, may have acted as a barrier influencing the distinct observed spatial patterns in the two areas. © 2016 John Wiley & Sons Ltd

  12. Spatial dynamics of juvenile anchovy in the Bay of Biscay

    KAUST Repository

    Boyra, Guillermo; Peñ a, Marian; Cotano, Unai; Irigoien, Xabier; Rubio, Anna; Nogueira, Enrique

    2016-01-01

    In autumn 2009, the implementation of two successive acoustic surveys targeting juvenile anchovy (Engraulis encrasicolus) in the Bay of Biscay allowed us to monitor the changes in the spatial distribution and aggregation patterns of juveniles of this species during 45 days under fairly stable meteorological conditions. Juvenile anchovy changed its biological condition and behavior in a different manner in two distinct areas. In the Spanish sector, the juveniles migrated 20 nautical miles (n.mi.) towards the coast, but they remained on the shelf and near the surface during the whole surveyed period. As the advance towards the shelf break progressed, their area of distribution decreased, their density increased and the juveniles spread in fewer but heavier shoals. In the French sector, the juveniles also migrated from slope waters towards the coast at a similar velocity, but they crossed the shelf break into the continental shelf, where they increased their mean depth significantly until gradually adopting the typical nyctemeral migrations of adult anchovy. The mean length of the juveniles that adopted the nyctemeral migrations was significantly higher than that of the juveniles remaining at the surface, suggesting that body size is relevant to accomplish this change. Besides, the stronger temperature gradients between the shelf and oceanic waters in the Spanish sector, favored by a narrow shelf, may have acted as a barrier influencing the distinct observed spatial patterns in the two areas. © 2016 John Wiley & Sons Ltd

  13. Smolt Monitoring at the Head of Lower Granite Reservoir and Lower Granite Dam, 2003 Annual Report.

    Energy Technology Data Exchange (ETDEWEB)

    Buettner, Edwin W.; Putnam, Scott A. [Idaho Department of Fish and Game

    2009-02-18

    This project monitored the daily passage of Chinook salmon Oncorhynchus tshawytscha, steelhead trout O. mykiss, and sockeye salmon O. nerka smolts during the 2003 spring out-migration at migrant traps on the Snake River and Salmon River. In 2003 fish management agencies released significant numbers of hatchery Chinook salmon and steelhead trout above Lower Granite Dam that were not marked with a fin clip or coded-wire tag. Generally, these fish were distinguishable from wild fish by the occurrence of fin erosion. Total annual hatchery Chinook salmon catch at the Snake River trap was 2.1 times less in 2003 than in 2002. The wild Chinook catch was 1.1 times less than the previous year. Hatchery steelhead trout catch was 1.7 times less than in 2002. Wild steelhead trout catch was 2.1 times less than the previous year. The Snake River trap collected 579 age-0 Chinook salmon of unknown rearing. During 2003, the Snake River trap captured five hatchery and 13 wild/natural sockeye salmon and 36 coho salmon O. kisutch of unknown rearing. Differences in trap catch between years are due to fluctuations not only in smolt production, but also differences in trap efficiency and duration of trap operation associated with flow. The significant differences in catch between 2003 and the previous year were due mainly to low flows during much of the trapping season and then very high flows at the end of the season, which terminated the trapping season 12 days earlier than in 2002. Trap operations began on March 9 and were terminated on May 27. The trap was out of operation for a total of zero days due to mechanical failure or debris. Hatchery Chinook salmon catch at the Salmon River trap was 16.8% less and wild Chinook salmon catch was 1.7 times greater than in 2002. The hatchery steelhead trout collection in 2003 was 5.6% less than in 2002. Wild steelhead trout collection was 19.2% less than the previous year. Trap operations began on March 9 and were terminated on May 24 due to high

  14. Redd site selection and spawning habitat use by fall chinook salmon: The importance of geomorphic features in large rivers

    International Nuclear Information System (INIS)

    Geist, D.R.; Oregon State Univ., Corvallis, OR; Dauble, D.D.

    1998-01-01

    Knowledge of the three-dimensional connectivity between rivers and groundwater within the hyporheic zone can be used to improve the definition of fall chinook salmon (Oncorhynchus tshawytscha) spawning habitat. Information exists on the microhabitat characteristics that define suitable salmon spawning habitat. However, traditional spawning habitat models that use these characteristics to predict available spawning habitat are restricted because they can not account for the heterogeneous nature of rivers. The authors present a conceptual spawning habitat model for fall chinook salmon that describes how geomorphic features of river channels create hydraulic processes, including hyporheic flows, that influence where salmon spawn in unconstrained reaches of large mainstem alluvial rivers. Two case studies based on empirical data from fall chinook salmon spawning areas in the Hanford Reach of the Columbia River are presented to illustrate important aspects of the conceptual model. The authors suggest that traditional habitat models and the conceptual model be combined to predict the limits of suitable fall chinook salmon spawning habitat. This approach can incorporate quantitative measures of river channel morphology, including general descriptors of geomorphic features at different spatial scales, in order to understand the processes influencing redd site selection and spawning habitat use. This information is needed in order to protect existing salmon spawning habitat in large rivers, as well as to recover habitat already lost

  15. Fish distribution studies near N Reactor, Summer 1983

    Energy Technology Data Exchange (ETDEWEB)

    Dauble, D.D.; Page, T.L.

    1984-06-01

    This report summarizes field studies that were initiated in July 1983 to provide estimates of the relative distribution of late-summer outmigrant juvenile salmonids and juvenile resident fish upstream of the N Reactor 009 Outfall. Chinook salmon are among the fish species most sensitive to thermal effects, and impacts to the juvenile outmigrant populations are of particular concern to state and federal regulatory and fisheries management agencies. Therefore, the distribution studies were conducted from late July through September, a period when high ambient river temperatures and low river flows make these salmonid populations most susceptible to thermal effects. In addition, data were not available on the spatial distribution of outmigrant juvenile chinook salmon in late summer. Information on the relative distribution of resident fish populations was also gathered. Previous studies of midstream distribution of juvenile resident fish were limited to a description of ichthyoplankton populations (Beak Consultants, Inc. 1980 Page et al. 1982), and no data were available on vertical or horizontal distribution of juvenile resident fish species near N Reactor. Relative densities and spatial distribution estimates of juvenile salmonid and resident fish species will be used in conjunction with laboratory thermal effects studies (Neitzel et al. 1984) and with plume characterization studies (Ecker et al. 1983) to assess potential impacts of thermal discharge on fish populations near N Reactor.

  16. Effect of survey design and catch rate estimation on total catch estimates in Chinook salmon fisheries

    Science.gov (United States)

    McCormick, Joshua L.; Quist, Michael C.; Schill, Daniel J.

    2012-01-01

    Roving–roving and roving–access creel surveys are the primary techniques used to obtain information on harvest of Chinook salmon Oncorhynchus tshawytscha in Idaho sport fisheries. Once interviews are conducted using roving–roving or roving–access survey designs, mean catch rate can be estimated with the ratio-of-means (ROM) estimator, the mean-of-ratios (MOR) estimator, or the MOR estimator with exclusion of short-duration (≤0.5 h) trips. Our objective was to examine the relative bias and precision of total catch estimates obtained from use of the two survey designs and three catch rate estimators for Idaho Chinook salmon fisheries. Information on angling populations was obtained by direct visual observation of portions of Chinook salmon fisheries in three Idaho river systems over an 18-d period. Based on data from the angling populations, Monte Carlo simulations were performed to evaluate the properties of the catch rate estimators and survey designs. Among the three estimators, the ROM estimator provided the most accurate and precise estimates of mean catch rate and total catch for both roving–roving and roving–access surveys. On average, the root mean square error of simulated total catch estimates was 1.42 times greater and relative bias was 160.13 times greater for roving–roving surveys than for roving–access surveys. Length-of-stay bias and nonstationary catch rates in roving–roving surveys both appeared to affect catch rate and total catch estimates. Our results suggest that use of the ROM estimator in combination with an estimate of angler effort provided the least biased and most precise estimates of total catch for both survey designs. However, roving–access surveys were more accurate than roving–roving surveys for Chinook salmon fisheries in Idaho.

  17. Redd Site Selection and Spawning Habitat Use by Fall Chinook Salmon, Hanford Reach, Columbia River : Final Report 1995 - 1998.

    Energy Technology Data Exchange (ETDEWEB)

    Geist, David R.

    1999-05-01

    This report summarizes results of research activities conducted from 1995 through 1998 on identifying the spawning habitat requirements of fall chinook salmon (Oncorhynchus tshawytscha) in the Hanford Reach of the Columbia River. The project investigated whether traditional spawning habitat models could be improved in order to make better predictions of available habitat for fall chinook salmon in the Snake River. Results suggest models could be improved if they used spawning area-specific, rather than river-specific, spawning characteristics; incorporated hyporheic discharge measurements; and gave further consideration to the geomorphic features that are present in the unconstrained segments of large alluvial rivers. Ultimately the recovery of endangered fall chinook salmon will depend on how well we are able to recreate the characteristics once common in alluvial floodplains of large rivers. The results from this research can be used to better define the relationship between these physical habitat characteristics and fall chinook salmon spawning site selection, and provide more efficient use of limited recovery resources. This report is divided into four chapters which were presented in the author's doctoral dissertation which he completed through the Department of Fisheries and Wildlife at Oregon State University. Each of the chapters has been published in peer reviewed journals or is currently under review. Chapter one is a conceptual spawning habitat model that describes how geomorphic features of river channels create hydraulic processes, including hyporheic flows, that influence where salmon spawn in unconstrained reaches of large mainstem alluvial rivers. Chapter two describes the comparison of the physical factors associated with fall chinook salmon redd clusters located at two sites within the Reach. Spatial point pattern analysis of redds showed that redd clusters averaged approximately 10 hectares in area and their locations were consistent from

  18. The Chief Joseph Hatchery Program 2013 Annual Report

    Science.gov (United States)

    Baldwin, Casey; Pearl, Andrea; Laramie, Matthew; Rohrback, John; Phillips, Pat; Wolf, Keith

    2016-01-01

    The Chief Joseph Hatchery is the fourth hatchery obligated under the Grand Coulee Dam/Dry Falls project, originating in the 1940s. Leavenworth, Entiat, and Winthrop National Fish Hatcheries were built and operated as mitigation for salmon blockage at Grand Coulee Dam, but the fourth hatchery was not built, and the obligation was nearly forgotten. After the Colville Tribes successfully collaborated with the United States to resurrect the project, planning of the hatchery began in 2001 and construction was completed in 2013. The monitoring program began in 2012 and adult Chinook Salmon were brought on station for the first time in June 2013. BPA is the primary funding source for CJH, and the Mid-Columbia PUDs (Douglas, Grant and Chelan County) have entered into cost-share agreements with the tribes and BPA in order to meet some of their mitigation obligations. The CJH production level was set at 60% in 2013 in order to train staff and test hatchery facility systems during the first year of operation. Leavenworth National Fish Hatchery (LNFH) provided 422 Spring Chinook broodstock in June, 2013; representing the official beginning of CJH operations. In July and August the CCT used a purse seine vessel to collect 814 summer/fall Chinook as broodstock that were a continuation and expansion of the previous Similkameen Pond program. In-hatchery survival for most life stages exceeded survival targets and, as of April 2014, the program was on track to exceed the 60% production target for its start-up year. The CJH monitoring project collected field data to determine Chinook population status, trend, and hatchery effectiveness centered on five major activities; 1) rotary screw traps (juvenile outmigration, natural-origin smolt PIT tagging) 2) beach seine (naturalorigin smolt PIT tagging) 3) lower Okanogan adult fish pilot weir (adult escapement, proportion of hatchery-origin spawners [pHOS], broodstock) 4) spawning ground surveys (redd and carcass surveys)(viable salmonid

  19. Self-reporting bias in Chinook salmon sport fisheries in Idaho: implications for roving creel surveys

    Science.gov (United States)

    McCormick, Joshua L.; Quist, Michael C.; Schill, Daniel J.

    2013-01-01

    Self-reporting bias in sport fisheries of Chinook Salmon Oncorhynchus tshawytscha in Idaho was quantified by comparing observed and angler-reported data. A total of 164 observed anglers fished for 541 h and caught 74 Chinook Salmon. Fifty-eight fish were harvested and 16 were released. Anglers reported fishing for 604 h, an overestimate of 63 h. Anglers reported catching 66 fish; four less harvested and four less released fish were reported than observed. A Monte Carlo simulation revealed that when angler-reported data were used, total catch was underestimated by 14–15 fish (19–20%) using the ratio-of-means estimator to calculate mean catch rate. Negative bias was reduced to six fish (8%) when the means-of-ratio estimator was used. Multiple linear regression models to predict reporting bias in time fished had poor predictive value. However, actual time fished and a categorical covariate indicating whether the angler fished continuously during their fishing trip were two variables that were present in all of the top a priori models evaluated. Underreporting of catch and overreporting of time fished by anglers present challenges when managing Chinook Salmon sport fisheries. However, confidence intervals were near target levels and using more liberal definitions of angling when estimating effort in creel surveys may decrease sensitivity to bias in angler-reported data.

  20. Piscine reovirus, but not Jaundice Syndrome, was transmissible to Chinook Salmon, Oncorhynchus tshawytscha (Walbaum), Sockeye Salmon, Oncorhynchus nerka (Walbaum), and Atlantic Salmon, Salmo salar L.

    Science.gov (United States)

    Garver, Kyle A.; Marty, Gary D.; Cockburn, Sarah N.; Richard, Jon; Hawley, Laura M.; Müller, Anita; Thompson, Rachel L.; Purcell, Maureen K.; Saksida, Sonja M.

    2015-01-01

    A Jaundice Syndrome occurs sporadically among sea-pen-farmed Chinook Salmon in British Columbia, the westernmost province of Canada. Affected salmon are easily identified by a distinctive yellow discolouration of the abdominal and periorbital regions. Through traditional diagnostics, no bacterial or viral agents were cultured from tissues of jaundiced Chinook Salmon; however, piscine reovirus (PRV) was identified via RT-rPCR in all 10 affected fish sampled. By histopathology, Jaundice Syndrome is an acute to peracute systemic disease, and the time from first clinical signs to death is likely jaundiced Chinook Salmon, developed no gross or microscopic evidence of jaundice despite persistence of PRV for the 5-month holding period. The results from this study demonstrate that the Jaundice Syndrome was not transmissible by injection of material from infected fish and that PRV was not the sole aetiological factor for the condition. Additionally, these findings showed the Pacific coast strain of PRV, while transmissible, was of low pathogenicity for Atlantic Salmon, Chinook Salmon and Sockeye Salmon.

  1. Linking functional response and bioenergetics to estimate juvenile salmon growth in a reservoir food web

    Science.gov (United States)

    Haskell, Craig A.; Beauchamp, David A.; Bollens, Stephen M.

    2017-01-01

    Juvenile salmon (Oncorhynchus spp.) use of reservoir food webs is understudied. We examined the feeding behavior of subyearling Chinook salmon (O. tshawytscha) and its relation to growth by estimating the functional response of juvenile salmon to changes in the density of Daphnia, an important component of reservoir food webs. We then estimated salmon growth across a broad range of water temperatures and daily rations of two primary prey, Daphnia and juvenile American shad (Alosa sapidissima) using a bioenergetics model. Laboratory feeding experiments yielded a Type-II functional response curve: C = 29.858 P *(4.271 + P)-1 indicating that salmon consumption (C) of Daphnia was not affected until Daphnia densities (P) were < 30 · L-1. Past field studies documented Daphnia densities in lower Columbia River reservoirs of < 3 · L-1 in July but as high as 40 · L-1 in August. Bioenergetics modeling indicated that subyearlings could not achieve positive growth above 22°C regardless of prey type or consumption rate. When feeding on Daphnia, subyearlings could not achieve positive growth above 20°C (water temperatures they commonly encounter in the lower Columbia River during summer). At 16–18°C, subyearlings had to consume about 27,000 Daphnia · day-1 to achieve positive growth. However, when feeding on juvenile American shad, subyearlings had to consume 20 shad · day-1 at 16–18°C, or at least 25 shad · day-1 at 20°C to achieve positive growth. Using empirical consumption rates and water temperatures from summer 2013, subyearlings exhibited negative growth during July (-0.23 to -0.29 g · d-1) and August (-0.05 to -0.07 g · d-1). By switching prey from Daphnia to juvenile shad which have a higher energy density, subyearlings can partially compensate for the effects of higher water temperatures they experience in the lower Columbia River during summer. However, achieving positive growth as piscivores requires subyearlings to feed at

  2. Assessment of potential impacts of major groundwater contaminants to fall chinook salmon (Oncorhynchus tshawytscha) in the Hanford Reach, Columbia River

    International Nuclear Information System (INIS)

    Geist, D.R.; Poston, T.M.; Dauble, D.D.

    1994-10-01

    Past operations of Hanford Site facilities have contaminated the groundwater adjacent to the Hanford Reach of the Columbia River, Washington, with various chemical and radiological constituents. The groundwater is hydraulically connected to the river and contains concentrations of contaminants that sometimes exceed federal and/or state drinking water standards or standards for the protection of aquatic life. For example, concentrations of chromium in shoreline seeps and springs at most 100 Area operable units exceed concentrations found to be toxic to fish. Nitrate and tritium concentrations in shoreline seeps are generally below drinking water standards and concentrations potentially toxic to aquatic life, but nitrate concentrations may be high enough to synergistically interact with and exacerbate chromium toxicity. The Hanford Reach also supports the largest run of fall chinook salmon (Oncorhynchus tshawytscha) in the Columbia River Basin. Numbers of fall chinook salmon returning to the Hanford Reach have increased relative to other mainstem populations during the last 30 years. Groundwater discharge appears to occur near some salmon spawning areas, but contaminants are generally not detectable in surface water samples. The concentration and potential toxicity of contaminants in the interstitial waters of the substrate where fall chinook salmon embryogenesis occurs are presently unknown. New tools are required to characterize the extent of groundwater contaminant discharge to the Hanford Reach and to resolve uncertainties associated with assessment of potential impacts to fall chinook salmon

  3. Depth preference in released juvenile turbot Psetta maxima

    DEFF Research Database (Denmark)

    Albertsen, Christoffer Moesgaard; Støttrup, Josianne; Nielsen, Anders

    2014-01-01

    Hatchery-reared juvenile turbot Psetta maxima were tagged with Passive Integrated Transponder (PIT) tags and released at three different depths in a sandy bay in Denmark. About 2–7% of the released fish were registered daily to monitor their distribution using a tag antenna mounted on a modified...

  4. A Markov chain analysis of the movements of juvenile salmonids, including sockeye salmon, in the forebay of McNary Dam, Washington and Oregon, 2006-09

    Science.gov (United States)

    Adams, Noah S.; Hatton, Tyson W.

    2012-01-01

    facilitate comparison among species in this report, we combined JBS and turbine passage for yearling Chinook salmon, steelhead, and subyearling Chinook salmon even though we were able to differentiate between passage through the JBS or turbines for these three species. Information on passage proportions through the JBS and turbines can be found in the first report. Numerically summarizing the behavior of juvenile salmonids in the forebay of McNary Dam using the Markov chain analysis allowed us to confirm what had been previously summarized using visualization software. For example, within the powerhouse region, passage proportions among the three powerhouse areas were often greater in the southern and middle areas of the powerhouse compared to the northern area of the powerhouse for yearling and subyearling Chinook salmon. The opposite generally was observed for steelhead. The results of this analysis also allowed us to confirm and quantify the extent of milling behavior that was observed for steelhead. For fish that were first detected in the powerhouse region, less than 0.10 of the steelhead, on average, passed within each of the powerhouse areas. Instead, steelhead transitioned to adjoining areas in the spillway before passing the dam. In comparison, greater than 0.20 of the Chinook salmon passed within each of the powerhouse areas. Less milling behavior was observed for all species for fish that first approached the spillway. Compared to the powerhouse areas, a higher proportion of fish, regardless of species, passed the spillway areas and fewer transitioned to adjoining areas in the powerhouse. In addition to quantifying what had been previously speculated about the behavior of fish in the forebay of McNary Dam, the Markov chain analysis refined our understanding of how fish behavior and passage can be influenced by changes to the operations and structure of McNary Dam. For example, the addition of TSWs to the spillway area clearly influenced the passage of fish

  5. Juvenile rheumatoid arthritis

    Science.gov (United States)

    ... joints. This form of JIA may turn into rheumatoid arthritis. It may involve 5 or more large and ... no known prevention for JIA. Alternative Names Juvenile rheumatoid arthritis (JRA); Juvenile chronic polyarthritis; Still disease; Juvenile spondyloarthritis ...

  6. Collaborative Systemwide Monitoring and Evaluation Project (CSMEP) - Year 5 : Annual Report for FY 2008.

    Energy Technology Data Exchange (ETDEWEB)

    Marmorek, David R.; Porter, Marc; Pickard, Darcy; Wieckowski, Katherine

    2008-11-19

    The Collaborative Systemwide Monitoring and Evaluation Project (CSMEP) is a coordinated effort to improve the quality, consistency, and focus of fish population and habitat data to answer key monitoring and evaluation questions relevant to major decisions in the Columbia River Basin. CSMEP was initiated by the Columbia Basin Fish and Wildlife Authority (CBFWA) in October 2003. The project is funded by the Bonneville Power Administration (BPA) through the Northwest Power and Conservation Council's Fish and Wildlife Program (NPCC). CSMEP is a major effort of the federal state and Tribal fish and wildlife managers to develop regionally integrated monitoring and evaluation (M&E) across the Columbia River Basin. CSMEP has focused its work on five monitoring domains: status and trends monitoring of populations and action effectiveness monitoring of habitat, harvest, hatcheries, and the hydrosystem. CSMEP's specific goals are to: (1) interact with federal, state and tribal programmatic and technical entities responsible for M&E of fish and wildlife, to ensure that work plans developed and executed under this project are well integrated with ongoing work by these entities; (2) document, integrate, and make available existing monitoring data on listed salmon, steelhead, bull trout and other fish species of concern; (3) critically assess strengths and weaknesses of these data for answering key monitoring questions; and (4) collaboratively design, implement and evaluate improved M&E methods with other programmatic entities in the Pacific Northwest. During FY2008 CSMEP biologists continued their reviews of the strengths and weaknesses (S&W) of existing subbasin inventory data for addressing monitoring questions about population status and trends at different spatial and temporal scales. Work was focused on Lower Columbia Chinook and steelhead, Snake River fall Chinook, Upper Columbia Spring Chinook and steelhead, and Middle Columbia River Chinook and steelhead. These

  7. Otolith output - Project to study alternative life history types of fall Chinook based on otoliths

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The life-history complexity of Snake River fall Chinook salmon has hindered efforts to manage the ESU. In particular, the existence of an overwintering behavior in a...

  8. Tucannon River Spring Chinook Captive Broodstock Program Final Environmental Assessment and Finding of No Significant Impact

    Energy Technology Data Exchange (ETDEWEB)

    N/A

    2000-05-24

    Bonneville Power Administration (BPA) is proposing to fund the Tucannon River Spring Chinook Captive Broodstock Program, a small-scale production initiative designed to increase numbers of a weak but potentially recoverable population of spring chinook salmon in the Tucannon River in the State of Washington. BPA has prepared an Environmental Assessment (EA) (DOE/EA-l326) evaluating the proposed project. Based on the analysis in the EA, BPA has determined that the proposed action is not a major Federal action significantly affecting the quality of the human environment, within the meaning of the National Environmental Policy Act (NEPA) of 1969. Therefore, the preparation of an Environmental Impact Statement (EIS) is not required, and BPA is issuing this Finding of No Significant Impact (FONSI).

  9. Idaho Habitat/Natural Production Monitoring, Pt. I: General Monitoring Subproject : Annual Progress Report 1990.

    Energy Technology Data Exchange (ETDEWEB)

    Rich, Bruce A.; Scully, Richard J.; Petrosky, Charles Edward

    1992-01-01

    The Idaho Department of Fish and Game (IDFG) has been monitoring and evaluating proposed and existing habitat improvement projects for rainbow-steelhead trout Oncorhynchus mykiss, hereafter called steelhead, and chinook salmon O. tshawytscha, hereafter called chinook, in the Clearwater and Salmon River drainages for the past seven years. Projects included in the evaluation are funded by, or proposed for funding by, the Bonneville Power Administration (BPA) under the Northwest Power Planning Act as off-site mitigation for downstream hydropower development on the Snake and Columbia rivers. This evaluation project is also funded under the same authority (Fish and Wildlife Program, Northwest Power Planning Council). A mitigation record is being developed using increased carrying capacity and/or survival as the best measure of benefit from a habitat enhancement project. Determination of full benefit from a project depends on completion or maturation of the project and presence of adequate numbers of fish to document actual increases in fish production. The depressed status of upriver anadromous stocks has precluded measuring full benefits of any habitat project in Idaho. Partial benefit is credited to the mitigation record in the interim period of run restoration.

  10. 75 FR 7228 - Fisheries of the Exclusive Economic Zone Off Alaska; Chinook Salmon Bycatch Management Measures...

    Science.gov (United States)

    2010-02-18

    ... submit attachments to electronic comments in Microsoft Word, Excel, WordPerfect, or Adobe PDF file... the addition of an IPA that could impose rewards for avoiding Chinook salmon bycatch, penalties for...

  11. Smolt Monitoring at the Head of Lower Granite Reservoir and Lower Granite Dam, 2002 Annual Report.

    Energy Technology Data Exchange (ETDEWEB)

    Buettner, Edwin W.; Putnam, Scott A. [Idaho Department of Fish and Game

    2009-02-18

    This project monitored the daily passage of Chinook salmon Oncorhynchus tshawytscha, steelhead trout O. mykiss, and sockeye salmon smolts O. nerka during the 2002 spring out-migration at migrant traps on the Snake River and Salmon River. In 2002 fish management agencies released significant numbers of hatchery Chinook salmon and steelhead trout above Lower Granite Dam that were not marked with a fin clip or coded-wire tag. Generally, these fish were distinguishable from wild fish by the occurrence of fin erosion. Total annual hatchery Chinook salmon catch at the Snake River trap was 11.4 times greater in 2002 than in 2001. The wild Chinook catch was 15.5 times greater than the previous year. Hatchery steelhead trout catch was 2.9 times greater than in 2001. Wild steelhead trout catch was 2.8 times greater than the previous year. The Snake River trap collected 3,996 age-0 Chinook salmon of unknown rearing. During 2002, the Snake River trap captured 69 hatchery and 235 wild/natural sockeye salmon and 114 hatchery coho salmon O. kisutch. Differences in trap catch between years are due to fluctuations not only in smolt production, but also differences in trap efficiency and duration of trap operation associated with flow. The significant increase in catch in 2002 was due to a 3.1 fold increase in hatchery Chinook production and a more normal spring runoff. Trap operations began on March 10 and were terminated on June 7. The trap was out of operation for a total of four days due to mechanical failure or debris. Hatchery Chinook salmon catch at the Salmon River trap was 4.2 times greater and wild Chinook salmon catch was 2.4 times greater than in 2001. The hatchery steelhead trout collection in 2002 was 81% of the 2001 numbers. Wild steelhead trout collection in 2002 was 81% of the previous year's catch. Trap operations began on March 10 and were terminated on May 29 due to high flows. The trap was out of operation for four days due to high flow or debris. The

  12. Testing of candidate non-lethal sampling methods for detection of Renibacterium salmoninarum in juvenile Chinook salmon Oncorhynchus tshawytscha

    Science.gov (United States)

    Elliott, Diane G.; McKibben, Constance L.; Conway, Carla M.; Purcell, Maureen K.; Chase, Dorothy M.; Applegate, Lynn M.

    2015-01-01

    Non-lethal pathogen testing can be a useful tool for fish disease research and management. Our research objectives were to determine if (1) fin clips, gill snips, surface mucus scrapings, blood draws, or kidney biopsies could be obtained non-lethally from 3 to 15 g Chinook salmon Oncorhynchus tshawytscha, (2) non-lethal samples could accurately discriminate between fish exposed to the bacterial kidney disease agent Renibacterium salmoninarum and non-exposed fish, and (3) non-lethal samples could serve as proxies for lethal kidney samples to assess infection intensity. Blood draws and kidney biopsies caused ≥5% post-sampling mortality (Objective 1) and may be appropriate only for larger fish, but the other sample types were non-lethal. Sampling was performed over 21 wk following R. salmoninarum immersion challenge of fish from 2 stocks (Objectives 2 and 3), and nested PCR (nPCR) and real-time quantitative PCR (qPCR) results from candidate non-lethal samples were compared with kidney tissue analysis by nPCR, qPCR, bacteriological culture, enzyme-linked immunosorbent assay (ELISA), fluorescent antibody test (FAT) and histopathology/immunohistochemistry. R. salmoninarum was detected by PCR in >50% of fin, gill, and mucus samples from challenged fish. Mucus qPCR was the only non-lethal assay exhibiting both diagnostic sensitivity and specificity estimates >90% for distinguishing between R. salmoninarum-exposed and non-exposed fish and was the best candidate for use as an alternative to lethal kidney sample testing. Mucus qPCR R. salmoninarum quantity estimates reflected changes in kidney bacterial load estimates, as evidenced by significant positive correlations with kidney R. salmoninaruminfection intensity scores at all sample times and in both fish stocks, and were not significantly impacted by environmentalR. salmoninarum concentrations.

  13. Effect of Ichthyophonus on blood plasma chemistry of spawning Chinook salmon and their resulting offspring in a Yukon River tributary.

    Science.gov (United States)

    Floyd-Rump, T P; Horstmann-Dehn, L A; Atkinson, S; Skaugstad, C

    2017-01-24

    Ichthyophonus is a protozoan parasite of Alaska Chinook salmon Oncorhynchus tshawytscha. In this study, we determined whether spawning Chinook salmon in the Yukon River drainage exhibited a measurable stress response (i.e. elevated plasma cortisol concentrations) and detectable changes in selected blood plasma chemistry parameters when infected with Ichthyophonus. The resulting alevin were also analyzed for any differences in blood plasma chemistry caused by parental infection with Ichthyophonus. In 2010, 2011, and 2012, spawning adult Chinook salmon were collected from the Salcha River, Alaska, USA, and the prevalence of Ichthyophonus in these fish was 7.8, 6.3, and 8.3%, respectively. Fish with no clinical signs of Ichthyophonus and Ichthyophonus-positive parents were cross-fertilized to investigate potential second-generation effects as a result of Ichthyophonus infection. We found no significant difference in cortisol concentrations in blood plasma between Ichthyophonus-positive and -negative adults or between alevin from Ichthyophonus-positive and -negative parents. There were no significant differences in blood plasma parameters (e.g. alanine aminotransferase, creatine kinase, glucose) of Ichthyophonus-negative and -positive adults, with the exception of aspartate aminotransferase, which was significantly higher in plasma of Ichthyophonus-negative adults. All clinical chemistry parameters for alevin resulting from both Ichthyophonus-negative and -positive parents were not significantly different. Based on this study, which has a limited sample size and low prevalence of Ichthyophonus, offspring of Chinook salmon appear to suffer no disadvantage as a result of Ichthyophonus infection in their parents on the Salcha River.

  14. Pathological and immunological responses associated with differential survival of Chinook salmon following Renibacterium salmoninarum challenge

    Science.gov (United States)

    Metzger, David C.; Elliott, Diane G.; Wargo, Andrew; Park, Linda K.; Purcell, Maureen K.

    2010-01-01

    Chinook salmon Oncorhynchus tshawytscha are highly susceptible to Renibacterium salmoninarum, the causative agent of bacterial kidney disease (BKD). Previously we demonstrated that introduced Chinook salmon from Lake Michigan, Wisconsin (WI), USA, have higher survival following R. salmoninarum challenge relative to the progenitor stock from Green River, Washington, USA. In the present study, we investigated the pathological and immunological responses that are associated with differential survival in the 2 Chinook salmon stocks following intra-peritoneal R. salmoninarum challenge of 2 different cohort years (2003 and 2005). Histological evaluation revealed delayed appearance of severe granulomatous lesions in the kidney and lower overall prevalence of membranous glomerulopathy in the higher surviving WI stock. The higher survival WI stock had a lower bacterial load at 28 d post-infection, as measured by reverse-transcriptase quantitative polymerase chain reaction (RT-qPCR). However, at all other time points, bacterial load levels were similar despite higher mortality in the more susceptible Green River stock, suggesting the possibility that the stocks may differ in their tolerance to infection by the bacterium. Interferon-γ, inducible nitric oxide synthase (iNOS), Mx-1, and transferrin gene expression were up-regulated in both stocks following challenge. A trend of higher iNOS gene expression at later time points (≥28 d post-infection) was observed in the lower surviving Green River stock, suggesting the possibility that higher iNOS expression may contribute to greater pathology in that stock.

  15. Effects of Tidal Turbine Noise on Fish Task 2.1.3.2: Effects on Aquatic Organisms: Acoustics/Noise - Fiscal Year 2011 - Progress Report - Environmental Effects of Marine and Hydrokinetic Energy

    Energy Technology Data Exchange (ETDEWEB)

    Halvorsen, Michele B.; Carlson, Thomas J.; Copping, Andrea E.

    2011-09-30

    Naturally spawning stocks of Chinook salmon (Oncorhynchus tshawytscha) that utilize Puget Sound are listed as threatened (http://www.nwr.noaa.gov/ESA-Salmon-Listings/Salmon-Populations/ Chinook/CKPUG.cfm). Plans exist for prototype tidal turbines to be deployed into their habitat. Noise is known to affect fish in many ways, such as causing a threshold shift in auditory sensitivity or tissue damage. The characteristics of noise, its spectra and level, are important factors that influence the potential for the noise to injure fish. For example, the frequency range of the tidal turbine noise includes the audiogram (frequency range of hearing) of most fish. This study (Effects on Aquatic Organisms, Subtask 2.1.3.2: Acoustics) was performed during FY 2011 to determine if noise generated by a 6-m-diameter open-hydro turbine might affect juvenile Chinook salmon hearing or cause barotrauma. After they were exposed to simulated tidal turbine noise, the hearing of juvenile Chinook salmon was measured and necropsies performed to check for tissue damage. Experimental groups were (1) noise exposed, (2) control (the same handling as treatment fish but without exposure to tidal turbine noise), and (3) baseline (never handled). Preliminary results indicate that low levels of tissue damage may have occurred but that there were no effects of noise exposure on the auditory systems of the test fish.

  16. Umatilla hatchery satellite facilities operation and maintenance. Annual report 1996

    International Nuclear Information System (INIS)

    Rowan, G.D.

    1997-06-01

    The Confederated Tribes of the Umatilla Indian Reservation (CTUIR) and Oregon Department of Fish and Wildlife (ODFW) are cooperating in a joint effort to enhance steelhead and re-establish salmon runs in the Umatilla River Basin. As an integral part of this program, Bonifer Pond, Minthorn Springs, Imeques C-mem-ini-kem and Thornhollow satellite facilities are operated for acclimation and release of juvenile summer steelhead (Oncorhynchus mykiss), fall and spring chinook salmon (O. tshawytscha) and coho salmon (O. kisutch). Minthorn is also used for holding and spawning adult summer steelhead and Three Mile Dam is used for holding and spawning adult fall chinook and coho salmon. Bonifer, Minthorn, Imeques and Thornhollow facilities are operated for acclimation and release of juvenile salmon and summer steelhead. The main goal of acclimation is to reduce stress from trucking prior to release and improve imprinting of juvenile salmonids in the Umatilla River Basin. Juveniles are transported to the acclimation facilities primarily from Umatilla and Bonneville Hatcheries. This report details activities associated with operation and maintenance of the Bonifer, Minthorn, Imeques, Thornhollow and Three Mile Dam facilities in 1996

  17. Smolt monitoring at the head of Lower Granite Reservoir and Lower Granite Dam, 1998.; ANNUAL

    International Nuclear Information System (INIS)

    2000-01-01

    This project monitored the daily passage of chinook salmon Oncorhynchus tshawytscha, steelhead trout O. mykiss, and sockeye salmon smolts O. nerka, during the 1998 spring outmigration at migrant traps on the Snake and Salmon rivers. All hatchery chinook salmon released above Lower Granite Dam 19 1998 were marked with a fin-clip. Total annual hatchery chinook salmon catch at the Snake River trap was 226% of the 1997 number and 110% of the 1996 catch. The wild chinook catch was 120% of the 1997 catch but was only 93% of 1996. Hatchery steelhead trout catch was 501% of 1997 numbers but only 90% of the 1996 numbers. Wild steelhead trout catch was 569% of 1997 and 125% of the 1996 numbers. The Snake River trap collected 106 age-0 chinook salmon. During 1998, for the first time, the Snake River trap captured a significant number of hatchery sockeye salmon (1,552) and hatchery coho salmon O. kisutch (166). Differences in trap catch between years are due to fluctuations not only in smolt production, but also differences in trap efficiency and duration of trap operation associated with high flows. Trap operations began on March 8 and were terminated for the season due to high flows on June 12. The trap was out of operation for 34 d during the season due to high flow and debris. Hatchery chinook salmon catch at the Salmon River trap was 476% and wild chinook salmon catch was 137% of 1997 numbers and 175% and 82% of 1996 catch, respectively. The hatchery steelhead trout collection in 1998 was 96% of the 1997 catch and 13% of the 1996 numbers. Wild steelhead trout collection in 1998 was 170% of the 1997 catch and 37% of the 1996 numbers. Travel time (d) and migration rate (km/d) through Lower Granite Reservoir for PIT-tagged chinook salmon and steelhead trout, marked at the head of the reservoir were affected by discharge. For fish tagged at the Snake River trap, statistical analysis of 1998 detected a significant relation between migration rate and discharge. For hatchery and

  18. Estuarine habitat use by juvenile dusky kob Argyrosomus japonicus ...

    African Journals Online (AJOL)

    The spatial and temporal area-use patterns of estuarinedependent juvenile dusky kob Argyrosomus japonicus in the Great Fish Estuary, South Africa, were examined using acoustic telemetry. In all, 29 individuals (307–400 mm total length) were surgically equipped with individually coded transmitters and monitored for a ...

  19. Captive Rearing Program for Salmon River Chinook Salmon : Project Progress Report, 2001 Annual Report.

    Energy Technology Data Exchange (ETDEWEB)

    Venditti, David A.

    2003-10-01

    During 2001, the Idaho Department of Fish and Game continued to develop techniques to rear chinook salmon Oncorhynchus tshawytscha to sexual maturity in captivity and to monitor their reproductive performance under natural conditions. Eyed-eggs were hydraulically collected from redds in the East Fork Salmon River (EFSR; N = 311) and the West Fork Yankee Fork Salmon River (WFYF; N = 272) to establish brood year 2001 culture cohorts. The eyed-eggs were incubated and reared by family group at the Eagle Fish Hatchery (Eagle). Juveniles collected the previous summer were PIT and elastomer tagged and vaccinated against vibrio Vibrio spp. and bacterial kidney disease prior to the majority of them being transferred to the National Marine Fisheries Service, Manchester Marine Experimental Station for saltwater rearing through maturity. Smolt transfers included 210 individuals from the Lemhi River (LEM), 242 from the WFYF, and 178 from the EFSR. Maturing fish transfers from Manchester to Eagle included 62 individuals from the LEM, 72 from the WFYF, and 27 from the EFSR. Additional water chilling capacity was added at Eagle in 2001 to test if spawn timing could be advanced by temperature manipulations, and adults from the LEM and WFYF were divided into chilled ({approx} 9 C) and ambient ({approx} 13.5 C) water temperature groups while at Eagle. Twenty-five mature females from the LEM (11 chilled, 14 ambient) were spawned in captivity with 23 males with the same temperature history in 2001. Water temperature group was not shown to affect the spawn timing of these females, but males did mature earlier. Egg survival to the eyed stage of development averaged 37.9% and did not differ significantly between the two temperature groups. A total of 8,154 eyed-eggs from these crosses were placed in in-stream incubators by personnel from the Shoshone-Bannock Tribe. Mature adults (N = 89) were released into the WFYF to evaluate their reproductive performance. After release, fish

  20. Conceptualizing juvenile prostitution as child maltreatment: findings from the National Juvenile Prostitution Study.

    Science.gov (United States)

    Mitchell, Kimberly J; Finkelhor, David; Wolak, Janis

    2010-02-01

    Two studies were conducted to identify the incidence (Study 1) and characteristics (Study 2) of juvenile prostitution cases known to law enforcement agencies in the United States. Study 1 revealed a national estimate of 1,450 arrests or detentions (95% confidence interval [CI]: 1,287-1,614) in cases involving juvenile prostitution during a 1-year period. In Study 2, exploratory data were collected from a subsample of 138 cases from police records in 2005. The cases are broadly categorized into three main types: (a) third-party exploiters, (b) solo prostitution, and (c) conventional child sexual abuse (CSA) with payment. Cases were classified into three initial categories based on police orientation toward the juvenile: (a) juveniles as victims (53%), (b) juveniles as delinquents (31%), and (c) juvenile as both victims and delinquents (16%). When examining the status of the juveniles by case type, the authors found that all the juveniles in CSA with payment cases were treated as victims, 66% in third-party exploiters cases, and 11% in solo cases. Findings indicate law enforcement responses to juvenile prostitution are influential in determining whether such youth are viewed as victims of commercial sexual exploitation or as delinquents.

  1. Hydroacoustic Evaluation of Juvenile Salmonid Passage and Distribution at Lookout Point Dam, 2010

    Energy Technology Data Exchange (ETDEWEB)

    Khan, Fenton; Johnson, Gary E.; Royer, Ida M.; Hughes, James S.; Fischer, Eric S.; Trott, Donna M.; Ploskey, Gene R.

    2011-07-01

    This report presents the results of an evaluation of juvenile salmonid passage and distribution at Lookout Point Dam (LOP) on the Middle Fork Willamette River. The study was conducted by the Pacific Northwest National Laboratory for the U.S. Army Corps of Engineers, Portland District (USACE). The goal of the study was to provide fish passage and distribution data to support decisions on long-term measures to enhance downstream passage at LOP and others dams in USACE’s Willamette Valley Project in response to the listing of Upper Willamette River Spring Chinook salmon (Oncorhynchus tshawytscha) and Upper Willamette River steelhead (O. mykiss) as threatened under the Endangered Species Act. During the year-long study period - February 1, 2010 to January 31, 2011the objectives of the hydroacoustic evaluation of fish passage and distribution at LOP were to: 1. Estimate passage rates, run timing, horizontal distribution, and diel distribution at turbine penstock intakes for smolt-size fish. 2. Estimate passage rates, run timing and diel distribution at turbine penstock intakes for small-size fish. 3. Estimate passage rates and run timing at the regulating outlets for smolt-size fish. 4. Estimate vertical distribution of smolt-size fish in the forebay near the upstream face of the dam. The fixed-location hydroacoustic technique was used to accomplish the objectives of this study. Transducers (420 kHz) were deployed in each penstock intake, above each RO entrance, and on the dam face; a total of nine transducers (2 single-beam and 7 split-beam) were used. We summarize the findings from the hydroacoustic evaluation of juvenile salmonid passage and distribution at LOP during February 2010 through January 2011 as follows. • Fish passage rates for smolt-size fish (> ~90 mm) were highest during December-January and lowest in mid-summer through early fall. • During the entire study period, an estimated total of 142,463 fish ± 4,444 (95% confidence interval) smolt

  2. 1997 Lower Granite dam smolt monitoring program : annual report.; ANNUAL

    International Nuclear Information System (INIS)

    Morrill, Charles; Ross, Doug; Verhey, Peter; Witalis, Shirley

    1997-01-01

    The 1997 fish collection season at Lower Granite was characterized by high spring flows, extensive spill, cool spring and early summer water temperatures and comparatively low numbers of fish, particularly yearling chinook. The Fish Passage Center's Smolt Monitoring Program is designed to provide a consistent, real-time database of fish passage and document the migrational characteristics of the many stocks of salmon and steelhead in the Columbia Basin

  3. Movement and habitat studies of chinook salmon and white sturgeon. [Oncorhynchus tshawytscha, Acipenser transmontanus

    Energy Technology Data Exchange (ETDEWEB)

    Haynes, J.M.

    1978-09-01

    Swimming depths of adult chinook salmon (Oncorhynchus tshawytscha), in relation to hydroelectric dam created gas supersaturation levels in the Snake River, were evaluated using pressure-sensitive radiofrequency transmitters. Gas saturation levels in spring 1976 ranged from 120 to 130% and chinook salmon depth of travel averaged 6.4 m. In fall 1976 and spring 1977, when gas saturation levels were below 108%, average salmon depths of travel were 3.0 and 4.0 m, respectively. In all cases, average depth of travel was below the critical zone (110% effective saturation), but spring 1976 chinook salmon traveled significantly deeper than fall 1976 and spring 1977 salmon. Internal and external radio transmitter attachment techniques were compared and results indicated the methods are equally reliable given proper insertion and attachment procedures. Percent returning and travel times to upstream dams were compared between equal numbers of radiotagged and spaghetti-anchor tagged control salmon. There were no significant differences in percent return or travel times between control and externally tagged salmon, but procedural difficulties involving internally tagged salmon altered their behavior to preclude such comparisons. Presence and operation of hydroelectric dams delayed salmon passage through the river and appeared to alter upstream migratory behavior. Movements of radiotagged white sturgeon (Acipenser transmontanus) from 1975 through 1977 were highly seasonal, beginning in June and ending in October. River temperatures apparently influenced both seasonal and diurnal movement activities. Movements began in June after water temperatures passed 13/sup 0/C and ceased when temperatures reached 13/sup 0/C (again) in autumn each year. Information derived from sturgeon carrying temperature sensing transmitters, combined with position determinations, indicated apparent diurnal movement cycles for sturgeon.

  4. Trophic ontogeny of fluvial Bull Trout and seasonal predation on Pacific Salmon in a riverine food web

    Science.gov (United States)

    Lowery, Erin D.; Beauchamp, David A.

    2015-01-01

    Bull Trout Salvelinus confluentus are typically top predators in their host ecosystems. The Skagit River in northwestern Washington State contains Bull Trout and Chinook Salmon Oncorhynchus tshawytschapopulations that are among the largest in the Puget Sound region and also contains a regionally large population of steelhead O. mykiss (anadromous Rainbow Trout). All three species are listed as threatened under the Endangered Species Act (ESA). Our objective was to determine the trophic ecology of Bull Trout, especially their role as predators and consumers in the riverine food web. We seasonally sampled distribution, diets, and growth of Bull Trout in main-stem and tributary habitats during 2007 and winter–spring 2008. Consumption rates were estimated with a bioenergetics model to (1) determine the annual and seasonal contributions of different prey types to Bull Trout energy budgets and (2) estimate the potential impacts of Bull Trout predation on juvenile Pacific salmon populations. Salmon carcasses and eggs contributed approximately 50% of the annual energy budget for large Bull Trout in main-stem habitats, whereas those prey types were largely inaccessible to smaller Bull Trout in tributary habitats. The remaining 50% of the energy budget was acquired by eating juvenile salmon, resident fishes, and immature aquatic insects. Predation on listed Chinook Salmon and steelhead/Rainbow Trout was highest during winter and spring (January–June). Predation on juvenile salmon differed between the two study years, likely due to the dominant odd-year spawning cycle for Pink Salmon O. gorbuscha. The population impact on ocean- and stream-type Chinook Salmon was negligible, whereas the impact on steelhead/Rainbow Trout was potentially very high. Due to the ESA-listed status of Bull Trout, steelhead, and Chinook Salmon, the complex trophic interactions in this drainage provide both challenges and opportunities for creative adaptive management strategies.

  5. Investigations of Bull Trout (Salvelinus Confluentus), Steelhead Trout (Oncorhynchus Mykiss), and Spring Chinook Salmon (O. Tshawytscha) Interactions in Southeast Washington Streams : 1991 Annual Report.

    Energy Technology Data Exchange (ETDEWEB)

    Martin, Steven W.

    1992-07-01

    Bull trout (Salvelinus confluentus) are native to many tributaries of the Snake River in southeast Washington. The Washington Department of Wildlife (WDW) and the American Fisheries Society (AFS) have identified bull trout as a species of special concern which means that they may become threatened or endangered by relatively, minor disturbances to their habitat. Steelhead trout/rainbow trout (Oncorhynchus mykiss) and spring chinook salmon (O.tshawytscha) are also native to several tributaries of the Snake river in southeast Washington. These species of migratory fishes are depressed, partially due to the construction of several dams on the lower Snake river. In response to decreased run size, large hatchery program were initiated to produce juvenile steelhead and salmon to supplement repressed tributary stocks, a practice known as supplementation. There is a concern that supplementing streams with artificially high numbers of steelhead and salmon may have an impact on resident bull trout in these streams. Historically, these three species of fish existed together in large numbers, however, the amount of high-quality habitat necessary for reproduction and rearing has been severely reduced in recent years, as compared to historic amounts. The findings of the first year of a two year study aimed at identifying species interactions in southeast Washington streams are presented in this report. Data was collected to assess population dynamics; habitat utilization and preference, feeding habits, fish movement and migration, age, condition, growth, and the spawning requirements of bull trout in each of four streams. A comparison of the indices was then made between the study streams to determine if bull trout differ in the presence of the putative competitor species. Bull trout populations were highest in the Tucannon River (supplemented stream), followed by Mill Creek (unsupplemented stream). Young of the year bull trout utilized riffle and cascade habitat the most in all

  6. Juvenile Arthritis

    Science.gov (United States)

    Juvenile arthritis (JA) is arthritis that happens in children. It causes joint swelling, pain, stiffness, and loss of motion. It can affect any joint, but ... of JA that children get is juvenile idiopathic arthritis. There are several other forms of arthritis affecting ...

  7. Hydroacoustic Evaluation of Juvenile Salmonid Passage and Distribution at Lookout Point Dam, 2010

    Energy Technology Data Exchange (ETDEWEB)

    Khan, Fenton; Johnson, Gary E.; Royer, Ida M.; Hughes, James S.; Fischer, Eric S.; Trott, Donna M.; Ploskey, Gene R.

    2012-05-31

    Pacific Northwest National Laboratory evaluated juvenile salmonid passage and distribution at Lookout Point Dam (LOP) on the Middle Fork Willamette River for the U.S. Army Corps of Engineers, Portland District (USACE), to provide data to support decisions on long-term measures to enhance downstream passage at LOP and others dams in USACE's Willamette Valley Project. This study was conducted in response to the listing of Upper Willamette River Spring Chinook salmon (Oncorhynchus tshawytscha) and Upper Willamette River steelhead (O. mykiss) as threatened under the Endangered Species Act. We conducted a hydroacoustic evaluation of juvenile salmonid passage and distribution at LOP during February 2010 through January 2011. Findings from this 1 year of study should be applied carefully because annual variation can be expected due to variability in adult salmon escapement, egg-to-fry and fry-to-smolt survival rates, reservoir rearing and predation, dam operations, and weather. Fish passage rates for smolt-size fish (> {approx}90 mm and < 300 mm) were highest during December-January and lowest in mid-summer through early fall. Passage peaks were also evident in early spring, early summer, and late fall. During the entire study period, an estimated total of 142,463 fish {+-} 4,444 (95% confidence interval) smolt-size fish passed through turbine penstock intakes. Of this total, 84% passed during December-January. Run timing for small-size fish ({approx}65-90 mm) peaked (702 fish) on December 18. Diel periodicity of smolt-size fish showing crepuscular peaks was evident in fish passage into turbine penstock intakes. Relatively few fish passed into the Regulating Outlets (ROs) when they were open in summer (2 fish/d) and winter (8 fish/d). Overall, when the ROs were open, RO efficiency (RO passage divided by total project passage) was 0.004. In linear regression analyses, daily fish passage (turbines and ROs combined) for smolt-size fish was significantly related to

  8. What Is Juvenile Arthritis?

    Science.gov (United States)

    ... Initiative Breadcrumb Home Health Topics English Español Juvenile Arthritis Basics In-Depth Download Download EPUB Download PDF What is it? Points To Remember About Juvenile Arthritis Juvenile arthritis is the term used to describe ...

  9. Captive Rearing Program for Salmon River Chinook Salmon, 2002 Annual Report.

    Energy Technology Data Exchange (ETDEWEB)

    Venditti, David; Willard, Catherine; James, Chris

    2003-11-01

    During 2002, the Idaho Department of Fish and Game continued to develop techniques to rear Chinook salmon Oncorhynchus tshawytscha to sexual maturity in captivity and to monitor their reproductive performance under natural conditions. Eyed-eggs were hydraulically collected from redds in the East Fork Salmon River (EFSR; N = 328) and the West Fork Yankee Fork Salmon River (WFYF; N = 308) to establish brood year 2002 culture cohorts. The eyed-eggs were incubated and reared at the Eagle Fish Hatchery, Eagle, Idaho (Eagle). Juveniles collected in 2000 were PIT and elastomer tagged and vaccinated against vibrio Vibrio spp. and bacterial kidney disease prior to being transferred to the NOAA Fisheries, Manchester Marine Experimental Station, Manchester, Washington (Manchester) for saltwater rearing through maturity. Smolt transfers included 203 individuals from the WFYF and 379 from the EFSR. Maturing fish transfers from Manchester to Eagle included 107 individuals from the LEM, 167 from the WFYF, and 82 from the EFSR. This was the second year maturing adults were held on chilled water at Eagle to test if water temperature manipulations could advance spawn timing. Adults from the LEM and WFYF were divided into chilled ({approx} 9 C) and ambient ({approx} 13.5 C) temperature groups while at Eagle. Forty-seven mature females from the LEM (19 chilled, 16 ambient, and 12 ambient not included in the temperature study) were spawned at Eagle with 42 males in 2002. Water temperature group was not shown to affect the spawn timing of these females, but males did mature earlier. Egg survival to the eyed stage averaged 66.5% and did not differ significantly between the temperature groups. Personnel from the Shoshone-Bannock Tribe placed a total of 47,977 eyed-eggs from these crosses in in-stream incubators. Mature adults (N = 215 including 56 precocial males) were released into the WFYF to evaluate their reproductive performance. After release, fish distributed themselves throughout

  10. Umatilla Hatchery Monitoring and Evaluation, 1992-1993 Annual Report.

    Energy Technology Data Exchange (ETDEWEB)

    Keefe, MaryLouise; Hayes, Michael C.; Groberg, Jr., Warren J. (Oregon Department of Fish and Wildlife)

    1994-06-01

    The Umatilla Hatchery is the foundation for rehabilitating chinook salmon and enhancing summer steelhead in the Umatilla River and expected to contribute significantly to the Northwest Power Planning Council`s goal of doubling salmonid production in the Columbia Basin. This report covers the second year of comprehensive monitoring and evaluation of the Umatilla Hatchery. As both the hatchery and the evaluation study are in the early stages of implementation, much of the information contained in this report is preliminary.

  11. Yakima River Species Interactions Studies; Yakima/Klickitat Fisheries Project Monitoring and Evaluation, 2004-2005 Annual Report.

    Energy Technology Data Exchange (ETDEWEB)

    Pearsons, Todd N.; Temple, Gabriel M.; Fritts, Anthony L. (Washington Department of Fish and Wildlife, Olympia, WA)

    2005-05-01

    be limited by strong ecological interactions such as predation or competition (Busack et al. 1997). Our work has adapted to new information needs as the YKFP has evolved. Initially, our work focused on interactions between anadromous steelhead and resident rainbow trout (for explanation see Pearsons et al. 1993), then interactions between spring chinook salmon and rainbow trout, and recently interactions between spring chinook salmon and highly valued non-target taxa (NTT; e.g., bull trout); and interactions between strong interactor taxa (e.g., those that may strongly influence the abundance of spring chinook salmon; e.g., smallmouth bass) and spring chinook salmon. The change in emphasis to spring chinook salmon has largely been influenced by the shift in the target species planned for supplementation (Bonneville Power Administration et al. 1996; Fast and Craig 1997). Originally, steelhead and spring chinook salmon were proposed to be supplemented simultaneously (Clune and Dauble 1991). However, due in part to the uncertainties associated with interactions between steelhead and rainbow trout, spring chinook and coho salmon were supplemented before steelhead. This redirection in the species to be supplemented has prompted us to prioritize interactions between spring chinook and rainbow trout, while beginning to investigate other ecological interactions of concern. Prefacility monitoring of variables such as rainbow trout density, distribution, and size structure was continued and monitoring of other NTT was initiated in 1997. This report is organized into five chapters that represent major topics associated with monitoring stewardship, utilization, and strong interactor taxa. Chapter 1 reports the results of non-target taxa monitoring after the sixth release of hatchery salmon smolts in the upper Yakima River Basin. Chapter 2 reports on the impacts of supplementation and reintroduction of salmon to trout. Chapter 2 was submitted as a manuscript to the North American

  12. Evaluation of juvenile salmonid behavior near a prototype weir box at Cowlitz Falls Dam, Washington, 2013

    Science.gov (United States)

    Kock, Tobias J.; Liedtke, Theresa L.; Ekstrom, Brian K.; Tomka, Ryan G.; Rondorf, Dennis W.

    2014-01-01

    Collection of juvenile salmonids at Cowlitz Falls Dam is a critical part of the effort to restore salmon in the upper Cowlitz River because the majority of fish that are not collected at the dam pass downstream and enter a large reservoir where they become landlocked and lost to the anadromous fish population. However, the juvenile fish collection system at Cowlitz Falls Dam has failed to achieve annual collection goals since it first began operating in 1996. Since that time, numerous modifications to the fish collection system have been made and several prototype collection structures have been developed and tested, but these efforts have not substantially increased juvenile fish collection. Studies have shown that juvenile steelhead (Oncorhynchus mykiss), coho salmon (Oncorhynchus kisutch), and Chinook salmon (Oncorhynchus tshawytscha) tend to locate the collection entrances effectively, but many of these fish are not collected and eventually pass the dam through turbines or spillways. Tacoma Power developed a prototype weir box in 2009 to increase capture rates of juvenile salmonids at the collection entrances, and this device proved to be successful at retaining those fish that entered the weir. However, because of safety concerns at the dam, the weir box could not be deployed near a spillway gate where the prototype was tested, so the device was altered and re-deployed at a different location, where it was evaluated during 2013. The U.S. Geological Survey conducted an evaluation using radiotelemetry to monitor fish behavior near the weir box and collection flumes. The evaluation was conducted during April–June 2013. Juvenile steelhead and coho salmon (45 per species) were tagged with a radio transmitter and passive integrated transponder (PIT) tag, and released upstream of the dam. All tagged fish moved downstream and entered the forebay of Cowlitz Falls Dam. Median travel times from the release site to the forebay were 0.8 d for steelhead and 1.2 d for coho

  13. Identification of the Spawning, Rearing, and Migratory Requirements of Fall Chinook Salmon in the Columbia River Basin, Annual Report 1994.

    Energy Technology Data Exchange (ETDEWEB)

    Rondorf, Dennis W.; Tiffan, Kenneth F.

    1996-08-01

    Spawning ground surveys were conducted in 1994 as part of a five year study of Snake River chinook salmon Oncorhynchus tshawyacha begun in 1991. Observations of fall chinook salmon spawning in the Snake River were limited to infrequent aerial red counts in the years prior to 1987. From 1987-1990, red counts were made on a limited basis by an interagency team and reported by the Washington Department of Fisheries. Starting in 1991, the U.S. Fish and Wildlife Service (USFWS), and other cooperating agencies and organizations, expanded the scope of spawning ground surveys to include: (1) additional aerial surveys to improve red counts and provide data on the timing of spawning; (2) the validation (ground truthing) of red counts from aerial surveys to improve count accuracy; (3) underwater searches to locate reds in water too deep to allow detection from the air; and (4) bathymetric mapping of spawning sites for characterizing spawning habitat. This document is the 1994 annual progress report for selected studies of fall chinook salmon. The studies were undertaken because of the growing concern about the declining salmon population in the Snake River basin.

  14. Model structure of the stream salmonid simulator (S3)—A dynamic model for simulating growth, movement, and survival of juvenile salmonids

    Science.gov (United States)

    Perry, Russell W.; Plumb, John M.; Jones, Edward C.; Som, Nicholas A.; Hetrick, Nicholas J.; Hardy, Thomas B.

    2018-04-06

    Fisheries and water managers often use population models to aid in understanding the effect of alternative water management or restoration actions on anadromous fish populations. We developed the Stream Salmonid Simulator (S3) to help resource managers evaluate the effect of management alternatives on juvenile salmonid populations. S3 is a deterministic stage-structured population model that tracks daily growth, movement, and survival of juvenile salmon. A key theme of the model is that river flow affects habitat availability and capacity, which in turn drives density dependent population dynamics. To explicitly link population dynamics to habitat quality and quantity, the river environment is constructed as a one-dimensional series of linked habitat units, each of which has an associated daily time series of discharge, water temperature, and usable habitat area or carrying capacity. The physical characteristics of each habitat unit and the number of fish occupying each unit, in turn, drive survival and growth within each habitat unit and movement of fish among habitat units.The purpose of this report is to outline the underlying general structure of the S3 model that is common among different applications of the model. We have developed applications of the S3 model for juvenile fall Chinook salmon (Oncorhynchus tshawytscha) in the lower Klamath River. Thus, this report is a companion to current application of the S3 model to the Trinity River (in review). The general S3 model structure provides a biological and physical framework for the salmonid freshwater life cycle. This framework captures important demographics of juvenile salmonids aimed at translating management alternatives into simulated population responses. Although the S3 model is built on this common framework, the model has been constructed to allow much flexibility in application of the model to specific river systems. The ability for practitioners to include system-specific information for the

  15. Juvenile Firesetting.

    Science.gov (United States)

    Peters, Brittany; Freeman, Bradley

    2016-01-01

    Juvenile firesetting is a significant cause of morbidity and mortality in the United States. Male gender, substance use, history of maltreatment, interest in fire, and psychiatric illness are commonly reported risk factors. Interventions that have been shown to be effective in juveniles who set fires include cognitive behavior therapy and educational interventions, whereas satiation has not been shown to be an effective intervention. Forensic assessments can assist the legal community in adjudicating youth with effective interventions. Future studies should focus on consistent assessment and outcome measures to create more evidence for directing evaluation and treatment of juvenile firesetters. Copyright © 2016 Elsevier Inc. All rights reserved.

  16. Behavior and movement of formerly landlocked juvenile coho salmon after release into the free-flowing Cowlitz River, Washington

    Science.gov (United States)

    Kock, Tobias J.; Henning, Julie A.; Liedtke, Theresa L.; Royer, Ida M.; Ekstrom, Brian K.; Rondorf, Dennis W.

    2011-01-01

    Formerly landlocked Coho Salmon (Oncorhynchus kisutch) juveniles (age 2) were monitored following release into the free-flowing Cowlitz River to determine if they remained in the river or resumed seaward migration. Juvenile Coho Salmon were tagged with a radio transmitter (30 fish) or Floy tag (1050 fish) and their behavior was monitored in the lower Cowlitz River. We found that 97% of the radio-tagged fish remained in the Cowlitz River beyond the juvenile outmigration period, and the number of fish dispersing downstream decreased with increasing distance from the release site. None of the tagged fish returned as spawning adults in the 2 y following release. We suspect that fish in our study failed to migrate because they exceeded a threshold in size, age, or physiological status. Tagged fish in our study primarily remained in the Cowlitz River, thus it is possible that these fish presented challenges to juvenile salmon migrating through the system either directly by predation or indirectly by competition for food or habitat. Given these findings, returning formerly landlocked Coho Salmon juveniles to the free-flowing river apparently provided no benefit to the anadromous population. These findings have management implications in locations where landlocked salmon have the potential to interact with anadromous species of concern.

  17. Fish Passage Center; Columbia Basin Fish and Wildlife Authority, 2002 Annual Report.

    Energy Technology Data Exchange (ETDEWEB)

    DeHart, Michele; Berggren, Thomas J.; Filardo, Margaret (Columbia Basin Fish and Wildlife Authority, Fish Passage Center, Portland, OR)

    2003-09-01

    The runoff volumes in 2002 were near average for the January to July period above Lower Granite Dam (80%) and The Dalles Dam (97%). The year 2002 hydrosystem operations and runoff conditions resulted in flows that were less than the seasonal Biological Opinion (Opinion) flow objectives at Lower Granite Dam for both the spring and summer period. The seasonal flow objectives for Priest Rapids and McNary dams were exceeded for the spring period, but at McNary Dam summer flow objectives were not met. While seasonal flow objectives were exceeded for the spring at McNary Dam, the 2002 season illustrated that Biological Opinion management to seasonal flow targets can result in conditions where a major portion of the juvenile fish migration migrates in conditions that are less than the flow objectives. The delay in runoff due to cool weather conditions and the inability of reservoirs to augment flows by drafting lower than the flood control elevations, resulted in flows less than the Opinion objectives until May 22, 2002. By this time approximately 73% of the yearling chinook and 56% of steelhead had already passed the project. For the most part, spill in 2002 was managed below the gas waiver limits for total dissolved gas levels and the NMFS action criteria for dissolved gas signs were not exceeded. The exception was at Lower Monumental Dam where no Biological Opinion spill occurred due to the need to conduct repairs in the stilling basin. Survival estimates obtained for PIT tagged juveniles were similar in range to those observed prior to 2001. A multi-year analysis of juvenile survival and the factors that affect it was conducted in 2002. A water transit time and flow relation was demonstrated for spring migrating chinook and steelhead of Snake River and Mid Columbia River origin. Returning numbers of adults observed at Bonneville Dam declined for spring chinook, steelhead and coho, while summer and fall chinook numbers increased. However, all numbers were far greater

  18. The Umatilla Basin Natural Production Monitoring and Evaluation Project, 2008 Annual Progress Report.

    Energy Technology Data Exchange (ETDEWEB)

    Contor, Craig R.; Harris, Robin; King, Marty [Confederated Tribes of the Umatilla Indian Reservation

    2009-06-10

    The Umatilla Basin Natural Production Monitoring and Evaluation Project (UBNPMEP) is funded by Bonneville Power Administration (BPA) as directed by section 4(h) of the Pacific Northwest Electric Power Planning and Conservation Act of 1980 (P.L.96-501). This project is in accordance with and pursuant to measures 4.2A, 4.3C.1, 7.1A.2, 7.1C.3, 7.1C.4 and 7.1D.2 of the Northwest Power Planning Council's (NPPC) Columbia River Basin Fish and Wildlife Program (NPPC 1994). Work was conducted by the Fisheries Program of the Confederated Tribes of the Umatilla Indian Reservation (CTUIR). The UBNPMEP is coordinated with two Oregon Department of Fish and Wildlife (ODFW) research projects that also monitor and evaluate the success of the Umatilla Fisheries Restoration Plan. This project deals with the natural production component of the plan, and the ODFW projects evaluate hatchery operations (project No. 1990-005-00, Umatilla Hatchery M & E) and smolt outmigration (project No. 1989-024-01, Evaluation of Juvenile Salmonid Outmigration and Survival in the Lower Umatilla River). Collectively these three projects monitor and evaluate natural and hatchery salmonid production in the Umatilla River Basin. The need for natural production monitoring has been identified in multiple planning documents including Wy-Kan-Ush-Mi Wa-Kish-Wit Volume I, 5b-13 (CRITFC 1996), the Umatilla Hatchery Master Plan (CTUIR & ODFW 1990), the Umatilla Basin Annual Operation Plan, the Umatilla Subbasin Summary (CTUIR & ODFW 2001), the Subbasin Plan (CTUIR & ODFW 2004), and the Comprehensive Research, Monitoring, and Evaluation Plan (CTUIR and ODFW 2006). Natural production monitoring and evaluation is also consistent with Section III, Basinwide Provisions, Strategy 9 of the 2000 Columbia River Basin Fish and Wildlife Program (NPPC 1994, NPCC 2004). The Umatilla Basin M&E plan developed along with efforts to restore natural populations of spring and fall Chinook salmon, (Oncorhynchus tshawytsha), coho

  19. Upstream passage, spawning, and stock identification of fall chinook in the Snake River, 1992 and 1993. Final report

    International Nuclear Information System (INIS)

    Blankenship, H.L.; Mendel, G.W.

    1997-05-01

    This final report of the 3-year study summarizes activities and results for 1993. Study objectives were to: (1) determine the source of losses (or accounting errors) for adult chinook salmon between Ice Harbor Dam (IHR) and Lower Granite Dam (LGR), and upstream of LGR in the Snake River; (2) identify spawning locations upstream of LGR for calibration of aerial redd surveys, redd habitat mapping, carcass recovery for genetic stock profile analysis, and correction of estimated adult/redd ratios; and (3) estimate passage and migration times at Snake River. 200 fall chinook salmon were radio tagged and tracked with aerial, fixed-site, and ground mobile tracking. Fish were released upstream of IHR at Charbonneau Park (CHAR). 190 of the fish were tracked or relocated away from CHAR. 59 fish descended to below IHR without crossing Lower Monumental Dam (LMO). Another 128 salmon passed upstream of LMO without falling back at IHR. Only 80 salmon passed Little Goose Dam (LGO) without falling back at a downstream dam; 66 of these fish passed LGR. Many fish that fell back reascended the dams. A total of 72 salmon released at CHAR passed upstream of LGR, including fish that had fallen back and reascended a dam. Over 80 percent of the salmon that entered Lyons Ferry Hatchery each year had reached LGO before descending to the hatchery. Extensive wandering was documented between LMO and upstream of LGR before salmon entered Lyons Ferry Hatchery or the Tucannon River. In 1993, 41 salmon were found to be of hatchery origin when recovered. These fish entered Lyons Ferry Hatchery with similar movements to unmarked salmon. Each year a few salmon have remained near the hatchery without entering, which suggests the hatchery may have inadequate attraction flows. Fall chinook passed lower Snake River dams in 2-5 days each on average. Median travel times through LMO and LGO were 1.0-1.3 days each, which was slower than for spring chinook or steelhead in 1993. 5 refs., 21 figs., 20 tabs

  20. Yakima/Klickitat Fisheries Project Genetic Studies; Yakima/Klickitat Fisheries Project Monitoring and Evaluation Report 1 of 7, 2003-2004 Annual Report.

    Energy Technology Data Exchange (ETDEWEB)

    Busack, Craig A.; Frye, Alice; Kassler, Todd (Washington Department of Fish and Wildlife, Olympia, WA)

    2004-05-01

    Genetic work for 2003, as in previous years, was quite diverse. In chapter 1 we report on the use of DNA microsatellite markers to sex spring chinook collected at Roza. We have learned through comparison of sex determinations at Roza and then at CESRF that sexing green fish on the basis of morphology is somewhat inaccurate, and accurate sexing of fish at Roza is needed to estimate sex ratios of fish on the spawning grounds. Using DNA microsatellite markers, sexing accuracy was high, but not perfect. In chapter 2 we report on new genetic risk concepts currently being developed and their implications for the YKFP spring chinook program. The impact on domestication of gene flow between the natural and hatchery spawning components is now much better understood. It is now possible to compare the risk of different hatchery programs much more quantitatively in the past. Thus, we can now make good predictions of how much less domesticating the Yakima spring chinook supplementation effort is than other programs. In chapter 3 we present the initial results of morphological comparisons of adult (1) hatchery-origin Upper Yakima spring chinook, (2) natural-origin U. Yakima spring chinook, and (3) Naches spring chinook. Canonical variate analysis allowed both sexes of the three groups to be classified correctly with over accuracy. The differences are subtle, but hatchery-origin fish appear to be someone thinner than natural-origin fish. This is consistent with observations of hatchery vs wild morphology in coho. In chapter 4 we describe the ongoing work to refine the Domestication Research/Monitoring Plan. Work for last year included analysis of the impact of HC line precocious males spawning in the wild, development of a misting incubation system for off-site incubation of Naches eggs, and refinement of some aspects of experimental design. The misting incubation system has broad applicability outside the project. The most recent version of the domestication monitoring plan is

  1. Bi-Annual Report 2010-2011: Shaping pulse flows to meet environmental and energy objectives

    Energy Technology Data Exchange (ETDEWEB)

    Jager, Yetta [ORNL

    2010-10-01

    This report describes a bioenergetic model developed to allocate seasonal pulse flows to benefit salmon growth. The model links flow with floodplain inundation and production of invertebrate prey eaten by juvenile Chinook salmon. A unique quantile modeling approach is used to describe temporal variation among juvenile salmon spawned at different times. Preliminary model outputs are presented and future plans to optimize flows both to maximize salmon growth and hydropower production are outlined.

  2. Development of known-fate survival monitoring techniques for juvenile wild pigs (Sus scrofa)

    Science.gov (United States)

    David A. Keiter; John C. Kilgo; Mark A. Vukovich; Fred L. Cunningham; James C. Beasley

    2017-01-01

    Context. Wild pigs are an invasive species linked to numerous negative impacts on natural and anthropogenic ecosystems in many regions of the world. Robust estimates of juvenile wild pig survival are needed to improve population dynamics models to facilitate management of this economically and ecologically...

  3. Research on Captive Broodstock Programs for Pacific Salmon, 2004-2005 Annual Report.

    Energy Technology Data Exchange (ETDEWEB)

    Berejikian, Barry A. (National Marine Fisheries Service)

    2005-11-01

    The success of captive broodstock programs depends on high in-culture survival, appropriate development of the reproductive system, and the behavior and survival of cultured salmon after release, either as adults or juveniles. Continuing captive broodstock research designed to improve technology is being conducted to cover all major life history stages of Pacific salmon. Accomplishments detailed in this report and those since the last project review period (FY 2003) are listed below by major objective. Objective 1: (i) Developed tools for monitoring the spawning success of captively reared Chinook salmon that can now be used for evaluating the reintroduction success of ESA-listed captive broodstocks in their natal habitats. (ii) Developed an automated temperature controlled rearing system to test the effects of seawater rearing temperature on reproductive success of Chinook salmon. Objective 2: (i) Determined that Columbia River sockeye salmon imprint at multiple developmental stages and the length of exposure to home water is important for successful imprinting. These results can be utilized for developing successful reintroduction strategies to minimize straying by ESA-listed sockeye salmon. (ii) Developed behavioral and physiological assays for imprinting in sockeye salmon. Objective 3: (i) Developed growth regime to reduce age-two male maturation in spring Chinook salmon, (ii) described reproductive cycle of returning hatchery Snake River spring Chinook salmon relative to captive broodstock, and (iii) found delays in egg development in captive broodstock prior to entry to fresh water. (iv) Determined that loss of Redfish Lake sockeye embryos prior to hatch is largely due to lack of egg fertilization rather than embryonic mortality. Objective 4 : (i) Demonstrated safety and efficacy limits against bacterial kidney disease (BKD) in fall Chinook of attenuated R. salmoninarum vaccine and commercial vaccine Renogen, (ii) improved prophylactic and therapeutic

  4. DNA fingerprint similarity between female and juvenile brown-headed cowbirds trapped together

    Science.gov (United States)

    Hahn, D.C.; Fleischer, R.C.

    1995-01-01

    This DNA fingerprinting study investigates whether females of the brood parasite brown-headed cowbird, Molothrus ater, associate with their own juvenile offspring at feeding sites more often than would be expected by chance. Cowbirds lay their eggs in the nests of a variety of host species and, as far as is known, leave them to the care of foster parents. Using baited walk-in funnel traps, 36 adult female-juvenile pairs (or trios) of cowbirds were trapped. Blood samples were collected from these individuals to conduct DNA fingerprinting analyses, calculate similarity indices, and to compare S-values for the 11 comparisons of juveniles and the females with which they were caught with S-values of random pairings of juveniles and the females in adjacent gel lanes with which they were not caught. Overall band-sharing was significantly higher for the individuals trapped together than for the random pairings. These associations between juvenile cowbirds and their mothers could occur as a result of female cowbirds monitoring the development of their young in the nests where they have laid. Alternatively, nestling cowbirds in the nest could become familiar visually and locally with a female parent that is frequently in their territory and could follow her when she departs for feeding grounds. In either case these data suggest that adult cowbirds associate with juveniles, in some cases their own offspring, and that offspring may learn to function as cowbirds in part from this association.

  5. Concentrations of boron, molybdenum, and selenium in chinook salmon

    Science.gov (United States)

    Hamilton, Steven J.; Wiedmeyer, Raymond H.

    1990-01-01

    The concentrations of boron, molybdenum, and selenium in young chinook salmon Oncorhynchus tshawytscha were determined in three partial life cycle chronic toxicity studies. In each study, fish were exposed to a mixture of boron, molybdenum, selenate, and selenite in the proportions found in subsurface agricultural drainage water in the basin of the San Joaquin Valley, California. Tests were conducted in well water and in site-specific fresh and brackish waters. No boron or molybdenum was detected in fish exposed to concentrations as high as 6,046 μg boron/L and 193 μg molybdenum/L for 90 d in well water or fresh water; however, whole-body concentrations of selenium increased with increasing exposure concentrations in well water and fresh water, but not in brackish water. Concentrations of selenium in chinook salmon were strongly correlated with reduced survival and growth of fish in well water and with reduced survival in a 15-d seawater challenge test of fish from fresh water. Concentrations of selenium in fish seemed to reach a steady state after 60 d of exposure in well water or fresh water. Fish in brackish water had only background concentrations of selenium after 60 d of exposure, and no effects on survival and growth in brackish water or on survival in a 10-d seawater challenge test were exhibited. This lack of effect in brackish water was attributed to initiation of the study with advanced fry, which were apparently better able to metabolize the trace element mixture than were the younger fish used in studies with well water and fresh water. In all three experimental waters, concentration factors (whole-body concentration/waterborne concentration) for selenium decreased with increasing exposure concentrations, suggesting decreased uptake or increased excretion, or both, of selenium at the higher concentrations.

  6. Juvenile Court Statistics - 1972.

    Science.gov (United States)

    Office of Youth Development (DHEW), Washington, DC.

    This report is a statistical study of juvenile court cases in 1972. The data demonstrates how the court is frequently utilized in dealing with juvenile delinquency by the police as well as by other community agencies and parents. Excluded from this report are the ordinary traffic cases handled by juvenile court. The data indicate that: (1) in…

  7. Juvenile Court Statistics, 1974.

    Science.gov (United States)

    Corbett, Jacqueline; Vereb, Thomas S.

    This report presents information on juvenile court processing of youth in the U.S. during 1974. It is based on data gathered under the National Juvenile Court Statistical Reporting System. Findings can be summarized as follows: (1) 1,252,700 juvenile delinquency cases, excluding traffic offenses, were handled by courts in the U.S. in 1974; (2) the…

  8. Imaging of juvenile spondyloarthritis. Part II: Ultrasonography and magnetic resonance imaging

    Directory of Open Access Journals (Sweden)

    Iwona Sudoł-Szopińska

    2017-09-01

    Full Text Available Juvenile spondyloarthropathies are mainly manifested by symptoms of peripheral arthritis and enthesitis. Early involvement of sacroiliac joints and spine is exceptionally rare in children; this usually happens in adulthood. Conventional radiographs visualize late inflammatory lesions. Early diagnosis is possible with the use of ultrasonography and magnetic resonance imaging. The first part of the article presented classifications and radiographic presentation of juvenile spondyloarthropathies. This part discusses changes seen on ultrasonography and magnetic resonance imaging. In patients with juvenile spondyloarthropathies, these examinations are conducted to diagnose inflammatory lesions in peripheral joints, tendon sheaths, tendons and bursae. Moreover, magnetic resonance also shows subchondral bone marrow edema, which is considered an early sign of inflammation. Ultrasonography and magnetic resonance imaging do not show specific lesions for any rheumatic disease. Nevertheless, they are conducted for early diagnosis, treatment monitoring and identifying complications. This article presents a spectrum of inflammatory changes and discusses the diagnostic value of ultrasonography and magnetic resonance imaging.

  9. Determine movement patterns and survival rates of Central Valley Chinook salmon, steelhead and their predators using acoustic tags.

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The project’s objective is to document movement patterns and survival rates of Chinook salmon, steelhead, green sturgeon, and other fish from several sources in...

  10. Umatilla Basin Natural Production Monitoring and Evaluation; 2003-2004 Annual Report.

    Energy Technology Data Exchange (ETDEWEB)

    Schwartz, Jesse D.M.; Contor, Craig C.; Hoverson, Eric (Confederated Tribes of the Umatilla Indian Reservation, Department of Natural Resources, Pendleton, OR)

    2005-10-01

    The Umatilla Basin Natural Production Monitoring and Evaluation Project (UBNPMEP) is funded by Bonneville Power Administration (BPA) as directed by section 4(h) of the Pacific Northwest Electric Power Planning and Conservation Act of 1980 (P. L. 96-501). This project is in accordance with and pursuant to measures 4.2A, 4.3C.1, 7.1A.2, 7.1C.3, 7.1C.4 and 7.1D.2 of the Northwest Power Planning Council's (NPPC) Columbia River Basin Fish and Wildlife Program (NPPC 1994). Work was conducted by the Fisheries Program of the Confederated Tribes of the Umatilla Indian Reservation (CTUIR). UBNPMEP is coordinated with two ODFW research projects that also monitor and evaluate the success of the Umatilla Fisheries Restoration Plan. Our project deals with the natural production component of the plan, and the ODFW projects evaluate hatchery operations (project No. 19000500, Umatilla Hatchery M & E) and smolt outmigration (project No. 198902401, Evaluation of Juvenile Salmonid Outmigration and Survival in the Lower Umatilla River). Collectively these three projects comprehensively monitor and evaluate natural and hatchery salmonid production in the Umatilla River Basin. Table 1 outlines relationships with other BPA supported projects. The need for natural production monitoring has been identified in multiple planning documents including Wy-Kan-Ush-Mi Wa-Kish-Wit Volume I, 5b-13 (CRITFC 1996), the Umatilla Hatchery Master Plan (CTUIR & ODFW 1990), the Umatilla Basin Annual Operation Plan (ODFW and CTUIR 2004), the Umatilla Subbasin Summary (CTUIR & ODFW 2001), the Subbasin Plan (CTUIR & ODFW 2004), and the Comprehensive Research, Monitoring, and Evaluation Plan (Schwartz & Cameron Under Revision). Natural production monitoring and evaluation is also consistent with Section III, Basinwide Provisions, Strategy 9 of the 2000 Columbia River Basin Fish and Wildlife Program (NPPC 1994, NPPC 2004). The need for monitoring the natural production of salmonids in the Umatilla River

  11. Do benthic sediment characteristics explain the distribution of juveniles of the deposit-feeding sea cucumber Australostichopus mollis?

    Science.gov (United States)

    Slater, Matthew J.; Jeffs, Andrew G.

    2010-10-01

    Despite the economic importance of many deposit-feeding sea cucumbers, the ecology of their juveniles is poorly understood and factors influencing juvenile habitat selection remain largely unexplained. We investigated the importance of the characteristics of the available sediment in determining the highly localised distribution of juveniles of the deposit-feeding Australasian sea cucumber Australostichopus mollis. Wild-caught juveniles were displaced to non-juvenile habitats with surface sediments characterised by lower total organic content (TOM) and nitrogen content, higher chlorophyll- a content and coarser grain size profiles compared to juvenile sites. The growth of displaced individual animals was monitored over 9 months and compared to control animals caged in the juvenile habitats. Displaced juvenile sea cucumbers had high survival rates that did not differ significantly from juvenile habitats. Displaced juveniles exhibited significantly higher specific growth rate (SGR) than those at juvenile sites ( p < 0.001), although the growth of individuals was highly variable within individual cages and among sites. The lower TOM and nitrogen content, and coarser grain size profiles at non-juvenile sites did not result in reductions in juvenile survival or growth. Higher microphytobenthic activity may have resulted in the higher growth rates observed at shallow non-juvenile sites. The SGR of juveniles over the first 6 months of the experiment ranged between 0.45% d - 1 and 0.74% d - 1 for all sites. This was followed by marked growth limitation between 6 and 9 months either as a result of increasing juvenile biomass in cages or seasonal growth limitation. A subsequent reduction in juvenile density resulted in markedly increased growth over the following 3 month period. Juvenile A. mollis show an ability to exploit a variety of benthic sediment food sources, indicating that their highly localised distribution is not due to differences in the food quality of

  12. THE STUDY OF FEATURES OF GUILT OF JUVENILE OFFENDERS IN THE CONTEXT OF JUVENILE JUSTICE

    Directory of Open Access Journals (Sweden)

    Natalija Vladimirovna Galkina

    2015-08-01

    Full Text Available The article is devoted to the results of empirical studies of the experiences of guilt of juvenile offenders in the context of juvenile justice where a minor appears as the subject of legal relations. Restorative approach of juvenile justice is based on an admission of guilt to the victim. In connection with it, the research of features of the guilt of minors who have committed an offence and the conditions for the development of the subjectivity will enhance understanding of the possibilities of restorative juvenile justice system in the prevention of juvenile delinquency.Thus, the results of empirical research presented in the article are important for determining of the psychological bases of realization of rehabilitation programs in the context of juvenile justice. In particular, the results are important for the organization and conduct of psychological work to overcome the psychological barriers in the behavior of juveniles having inherently maladaptive guilt and destructive psychological defense mechanisms.

  13. Juvenile Justice in Mexico

    Directory of Open Access Journals (Sweden)

    Martha Frías Armenta

    2014-08-01

    Full Text Available The first tribunal in Mexico was established in the central state of San Luis Potosi in 1926. The Law Regarding Social Prevention and Juvenile Delinquency for the Federal District and Mexican territories was promulgated in 1928. In 2005, Article 18 of the Mexican Constitution was modified to establish a comprehensive system (“Sistema Integral de justicia” in Spanish of justice for juveniles between 12 and 18 years old who had committed a crime punishable under criminal law. Its objective was to guarantee juveniles all the due process rights established for adults, in addition to the special ones recognized for minors. The constitutional reform also provides a framework that includes special tribunals as well as alternative justice options for juveniles. With these reforms, institutionalization of minors was to be considered an extreme measure applicable only to felonies and to juveniles older than 14. In 2006, all states within the Mexican federation enacted the “Law of justice for adolescents”. This system, at both the federal and state levels, formalizes a new global paradigm with regard to the triangular relationship between children, the State and the Law. It recognizes that children are also bearers of the inherent human rights recognized for all individuals, instead of simply objects in need of protection. However, despite formally aligning Mexican juvenile justice law with the Convention on the Rights of the Child (CRC, issues of actual substantive rights remained and new ones have appeared. For example, juveniles younger than 14 who have not committed a felony are released from institutions without any rehabilitation or treatment options, and alternative forms of justice were included without evaluating their possibilities of application or their conditions for success. In addition, the economic status of most juvenile detainees continues to be one of the most important determining factors in the administration of justice

  14. Coronary ligation reduces maximum sustained swimming speed in Chinook salmon, Oncorhynchus tshawytscha

    DEFF Research Database (Denmark)

    Farrell, A P; Steffensen, J F

    1987-01-01

    The maximum aerobic swimming speed of Chinook salmon (Oncorhynchus tshawytscha) was measured before and after ligation of the coronary artery. Coronary artery ligation prevented blood flow to the compact layer of the ventricular myocardium, which represents 30% of the ventricular mass, and produced...... a statistically significant 35.5% reduction in maximum swimming speed. We conclude that the coronary circulation is important for maximum aerobic swimming and implicit in this conclusion is that maximum cardiac performance is probably necessary for maximum aerobic swimming performance....

  15. Juvenile mammary papillomatosis; Papilomatosis juvenil mamaria

    Energy Technology Data Exchange (ETDEWEB)

    Alvarez, M.; Jimenez, A. V. [Hospital Reina Sofia. Cordoba (Spain)

    2001-07-01

    Juvenile mammary papillomatosis is a benign proliferative disease of young patients, generally under 30 years of age. The most frequent clinical presentation is the existence of an elastic and mobile lymph node of the breast. Anatomopathologically, it is characterized because it presents ductal epithelial hyperplasia, sometimes with marked atypia, and there are numerous cysts having different sizes among the findings. It has been associated with an increase in the incidence of breast cancer, both in the patient herself as well as her family. We review the literature on the subject and present the mammographic and ultrasonographic findings of a 22 year old woman diagnosed of juvenile mammary papillomatosis. (Author) 12 refs.

  16. Relationship of otolith strontium-to-calcium ratios and salinity: Experimental validation for juvenile salmonids

    Science.gov (United States)

    Zimmerman, C.E.

    2005-01-01

    Analysis of otolith strontium (Sr) or strontium-to-calcium (Sr:Ca) ratios provides a powerful tool to reconstruct the chronology of migration among salinity environments for diadromous salmonids. Although use of this method has been validated by examination of known individuals and translocation experiments, it has never been validated under controlled experimental conditions. In this study, incorporation of otolith Sr was tested across a range of salinities and resulting levels of ambient Sr and Ca concentrations in juvenile chinook salmon (Oncorhynchus tshawytscha), coho salmon (Oncorhynchus kisutch), sockeye salmon (Oncorhynchus nerka), rainbow trout (Oncorhynchus rnykiss), and Arctic char (Salvelinus alpinus). Experimental water was mixed, using stream water and seawater as end members, to create experimental salinities of 0.1, 6.3, 12.7, 18.6, 25.5, and 33.0 psu. Otolith Sr and Sr:Ca ratios were significantly related to salinity for all species (r2 range: 0.80-0.91) but provide only enough predictive resolution to discriminate among fresh water, brackish water, and saltwater residency. These results validate the use of otolith Sr:Ca ratios to broadly discriminate salinity histories encountered by salmonids but highlight the need for further research concerning the influence of osmoregulation and physiological changes associated with smoking on otolith microchemistry.

  17. Spawning distribution of fall chinook salmon in the Snake River : annual report 1998.; ANNUAL

    International Nuclear Information System (INIS)

    Garcia, Aaron P.

    1999-01-01

    In 1998 data was collected on the spawning distribution of the first adult fall chinook salmon to return from releases of yearling hatchery fish upriver of Lower Granite Dam. Yearling fish were released at three locations with the intent of distributing spawning throughout the existing habitat. The project was designed to use radio-telemetry to determine if the use of multiple release sites resulted in widespread spawning

  18. Otolith development in larval and juvenile Schizothorax davidi: ontogeny and growth increment characteristics

    Science.gov (United States)

    Yan, Taiming; Hu, Jiaxiang; Cai, Yueping; Xiong, Sen; Yang, Shiyong; Wang, Xiongyan; He, Zhi

    2017-09-01

    Laboratory-reared Schizothorax davidi larvae and juveniles were examined to assess the formation and characteristics of David's schizothoracin otoliths. Otolith development was observed and their formation period was verified by monitoring larvae and juveniles of known age. The results revealed that lapilli and sagittae developed before hatching, and the first otolith increment was identified at 2 days post hatching in both. The shape of lapilli was relatively stable during development compared with that of sagittae; however, growth of four sagittae and lapilli areas was consistent, but the posterior area grew faster than the anterior area and the ventral surface grew faster than the dorsal surface. Similarly, the sum length of the radius of the anterior and posterior areas on sagittae and lapilli were linearly and binomially related to total fish length, respectively. Moreover, daily deposition rates were validated by monitoring knownage larvae and juveniles. The increase in lapilli width was 1.88±0.080 0 μm at the ninth increment, which reached a maximum and the decreased gradually toward the otolith edge, whereas that of sagittae increased more slowly. These results illustrate the developmental biology of S. davidi, which will aid in population conservation and fish stock management.

  19. Post-Release Attributes and Survival of Hatchery and Natural Fall Chinook Salmon in the Snake River, Annual Report 1998.

    Energy Technology Data Exchange (ETDEWEB)

    Tiffan, Kenneth F.; Rondorf, Dennis W.; Connor, William P.; Burge, Howard L.

    1999-12-01

    This report summarizes results of research activities conducted primarily in 1997 and 1998. This report communicates significant findings that will aid in the management and recovery of fall chinook salmon in the Columbia River Basin.

  20. Juvenile giant fibroadenoma

    Directory of Open Access Journals (Sweden)

    Vipul Yagnik

    2011-07-01

    Full Text Available Fibroadenomas are benign solid tumor associated with aberration of normal lobular development. Juvenile giant fibroadenoma is usually single and >5 cm in size /or >500 gms in weight. Important differential diagnoses are: phyllodes tumor and juvenile gigantomastia. Simple excision is the treatment of choice.

  1. Evaluation of the Contribution of Fall Chinook Salmon Reared at Columbia River Hatcheries to the Pacific Salmon Fisheries, 1989 Final Report.

    Energy Technology Data Exchange (ETDEWEB)

    Vreeland, Robert R.

    1989-10-01

    In 1979 this study was initiated to determine the distribution, contribution, and value of artificially propagated fall chinook salmon from the Columbia River. Coded wire tagging (CWT) of hatchery fall chinook salmon began in 1979 with the 1978 brood and was completed in 1982 with the 1981 brood of fish at rearing facilities on the Columbia River system. From 18 to 20 rearing facilities were involved in the study each brood year. Nearly 14 million tagged fish, about 4% of the production, were released as part of this study over the four years, 1979 through 1982. Sampling for recoveries of these tagged fish occurred from 1980 through 1986 in the sport and commercial marine fisheries from Alaska through California, Columbia River fisheries, and returns to hatcheries and adjacent streams. The National Marine Fisheries Service coordinated this study among three fishery agencies: US Fish and Wildfire Service, Oregon Department of Fish and Wildlife, and Washington Department of Fisheries. The objectives of this study were to determine the distribution, fishery contribution, survival, and value of the production of fall chinook salmon from each rearing facility on the Columbia River system to Pacific coast salmon fisheries. To achieve these objectives fish from each hatchery were given a distinctive CWT. 81 refs., 20 figs., 68 tabs.

  2. Hood River and Pelton Ladder monitoring and evaluation project and Hood River fish habitat project : annual progress report 1999-2000.; ANNUAL

    International Nuclear Information System (INIS)

    Lambert, Michael B.; McCanna, Joseph P.; Jennings, Mick

    2001-01-01

    The Hood River subbasin is home to four species of anadromous salmonids: chinook salmon (Oncorhynchus tshawytscha), coho salmon (Oncorhynchus kisutch), steelhead (Oncorhynchus mykiss), and sea run cutthroat trout (Salmo clarki). Indigenous spring chinook salmon were extirpated during the late 1960's. The naturally spawning spring chinook salmon currently present in the subbasin are progeny of Deschutes stock. Historically, the Hood River subbasin hatchery steelhead program utilized out-of-basin stocks for many years. Indigenous stocks of summer and winter steelhead were listed in March 1998 by National Marine Fisheries Service (NMFS) under the Endangered Species Act (ESA) as a ''Threatened'' Species along with similar genetically similar steelhead in the Lower Columbia Basin. This annual report summarizes work for two consecutive contract periods: the fiscal year (FY) 1999 contract period was 1 October, 1998 through 30 September, 1999 and 1 October, 1999 through 30 September, 2000 for FY 2000. Work implemented during FY 1999 and FY 2000 included (1) acclimation of hatchery spring chinook salmon and hatchery summer and winter steelhead smolts, (2) spring chinook salmon spawning ground surveys on the West Fork Hood River (3) genetic analysis of steelhead and cutthroat[contractual service with the ODFW], (4) Hood River water temperature studies, (5) Oak Springs Hatchery (OSH) and Round Butte Hatchery (RBH) coded-wire tagging and clipping evaluation, (6) preparation of the Hood River Watershed Assessment (Coccoli et al., December 1999) and the Fish Habitat Protection, Restoration, and Monitoring Plan (Coccoli et al., February 2000), (7) project implementation of early action habitat protection and restoration projects, (8) Pelton Ladder evaluation studies, (9) management oversight and guidance to BPA and ODFW engineering on HRPP facilities, and (10) preparation of an annual report summarizing project objectives for FY 1999 and FY 2000

  3. Assessing survival of Mid-Columbia River released juvenile salmonids at McNary Dam, Washington, 2008-09

    Science.gov (United States)

    Evans, Scott D.; Walker, Christopher E.; Brewer, Scott J.; Adams, Noah S.

    2010-01-01

    Few studies have evaluated survival of juvenile salmon over long river reaches in the Columbia River and information regarding the survival of sockeye salmon at lower Columbia River dams is lacking. To address these information gaps, the U.S. Geological Survey was contracted by the U.S. Army Corps of Engineers to evaluate the possibility of using tagged fish released in the Mid-Columbia River to assess passage and survival at and downstream of McNary Dam. Using the acoustic telemetry systems already in place for a passage and survival study at McNary Dam, fish released from the tailraces of Wells, Rocky Reach, Rock Island, Wanapum, and Priest Rapids Dams were detected at McNary Dam and at the subsequent downstream arrays. These data were used to generate route-specific survival probabilities using single-release models from fish released in the Mid-Columbia River. We document trends in passage and survival probabilities at McNary Dam for yearling Chinook and sockeye salmon and juvenile steelhead released during studies in the Mid-Columbia River. Trends in the survival and passage of these juvenile salmonid species are presented and discussed. However, comparisons made across years and between study groups are not possible because of differences in the source of the test fish, the type of acoustic tags used, the absence of the use of passive integrated transponder tags in some of the release groups, differences in tagging and release protocols, annual differences in dam operations and configurations, differences in how the survival models were constructed (that is, number of routes that could be estimated given the number of fish detected), and the number and length of reaches included in the analysis (downstream reach length and arrays). Despite these differences, the data we present offer a unique opportunity to examine the migration behavior and survival of a group of fish that otherwise would not be studied. This is particularly true for sockeye salmon because

  4. 77 FR 14304 - Fisheries of the Exclusive Economic Zone Off Alaska; Chinook Salmon Bycatch Management in the...

    Science.gov (United States)

    2012-03-09

    .... 110207103-2041-02] RIN 0648-BA80 Fisheries of the Exclusive Economic Zone Off Alaska; Chinook Salmon Bycatch Management in the Bering Sea Pollock Fishery; Economic Data Collection; Correction AGENCY: National Marine... Management in the Bering Sea Pollock Fishery; Economic Data Collection published on February 3, 2012. This...

  5. Juvenile Idiopathic Arthritis

    Directory of Open Access Journals (Sweden)

    Kenan Barut

    2017-04-01

    Full Text Available Juvenile idiopathic arthritis is the most common chronic rheumatic disease of unknown aetiology in childhood and predominantly presents with peripheral arthritis. The disease is divided into several subgroups, according to demographic characteristics, clinical features, treatment modalities and disease prognosis. Systemic juvenile idiopathic arthritis, which is one of the most frequent disease subtypes, is characterized by recurrent fever and rash. Oligoarticular juvenile idiopathic arthritis, common among young female patients, is usually accompanied by anti-nuclear antibodie positivity and anterior uveitis. Seropositive polyarticular juvenile idiopathic arthritis, an analogue of adult rheumatoid arthritis, is seen in less than 10% of paediatric patients. Seronegative polyarticular juvenile idiopathic arthritis, an entity more specific for childhood, appears with widespread large- and small-joint involvement. Enthesitis-related arthritis is a separate disease subtype, characterized by enthesitis and asymmetric lower-extremity arthritis. This disease subtype represents the childhood form of adult spondyloarthropathies, with human leukocyte antigen-B27 positivity and uveitis but commonly without axial skeleton involvement. Juvenile psoriatic arthritis is characterized by a psoriatic rash, accompanied by arthritis, nail pitting and dactylitis. Disease complications can vary from growth retardation and osteoporosis secondary to treatment and disease activity, to life-threatening macrophage activation syndrome with multi-organ insufficiency. With the advent of new therapeutics over the past 15 years, there has been a marked improvement in juvenile idiopathic arthritis treatment and long-term outcome, without any sequelae. The treatment of juvenile idiopathic arthritis patients involves teamwork, including an experienced paediatric rheumatologist, an ophthalmologist, an orthopaedist, a paediatric psychiatrist and a physiotherapist. The primary goals

  6. Crocodylus acutus (American Crocodile). Long distance juvenile movement

    Science.gov (United States)

    Crespo, Rafael; Beauchamp, Jeffrey S.; Mazzotti, Frank; Cherkiss, Michael S.

    2015-01-01

    the distance traveled ranged from 0.3 km to 90.2 km. The data showed that the smaller alligators moved greater distance than larger ones (Lance et al. 2011. Southeast Nat. 10:389–398). An ongoing 30 year mark and recapture study for Crocodylus acutus in Florida allowed us to look at long distance movement (>30 km) of juveniles (30km). Initial and most recent captures as a juvenile were used to analyze distances moved (Fig. 1). These distances were measured linearly between capture locations. Maximum linear distances of 76.3 km and 69.6 km were recorded for animals 4838 and 6662. All crocodiles moved from nesting habitat through potentially optimal nursery habitat prior to reaching their recapture locations. These juvenile long distance movements could be due to larger crocodiles facilitating their dispersal from the nest location (Lance et al. 2011. op. cit.). These data (Table 1.) support that there is exchange of individuals among the nesting colonies and our ongoing efforts to monitor this threatened species allow us to make observations of how juvenile crocodiles are moving throughout the landscape in an ecosystem currently undergoing restoration.

  7. Hanford Reach Fall Chinook Redd Monitoring Report for Calendar Year 2013

    Energy Technology Data Exchange (ETDEWEB)

    Lindsey, Cole T. [Mission Support Alliance, Richland, WA (United States); Nugent, John J. [Mission Support Alliance, Richland, WA (United States)

    2014-02-10

    The U.S. Department of Energy, Richland Operations Office (DOE-RL) conducts ecological monitoring on the Hanford Site to collect and track data needed to ensure compliance with an array of environmental laws, regulations, and policies governing DOE activities. Ecological monitoring data provide baseline information about the plants, animals, and habitat under DOE-RL stewardship at Hanford required for decision-making under the National Environmental Policy Act (NEPA) and Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA). The Hanford Site Comprehensive Land Use Plan (CLUP, DOE/EIS-0222-F) which is the Environmental Impact Statement for Hanford Site activities, helps ensure that DOE-RL, its contractors, and other entities conducting activities on the Hanford Site are in compliance with NEPA.

  8. Juvenile Osprey Navigation during Trans-Oceanic Migration.

    Directory of Open Access Journals (Sweden)

    Travis W Horton

    Full Text Available To compensate for drift, an animal migrating through air or sea must be able to navigate. Although some species of bird, fish, insect, mammal, and reptile are capable of drift compensation, our understanding of the spatial reference frame, and associated coordinate space, in which these navigational behaviors occur remains limited. Using high resolution satellite-monitored GPS track data, we show that juvenile ospreys (Pandion haliaetus are capable of non-stop constant course movements over open ocean spanning distances in excess of 1500 km despite the perturbing effects of winds and the lack of obvious landmarks. These results are best explained by extreme navigational precision in an exogenous spatio-temporal reference frame, such as positional orientation relative to Earth's magnetic field and pacing relative to an exogenous mechanism of keeping time. Given the age (<1 year-old of these birds and knowledge of their hatching site locations, we were able to transform Enhanced Magnetic Model coordinate locations such that the origin of the magnetic coordinate space corresponded with each bird's nest. Our analyses show that trans-oceanic juvenile osprey movements are consistent with bicoordinate positional orientation in transformed magnetic coordinate or geographic space. Through integration of movement and meteorological data, we propose a new theoretical framework, chord and clock navigation, capable of explaining the precise spatial orientation and temporal pacing performed by juvenile ospreys during their long-distance migrations over open ocean.

  9. Adaptive genetic markers discriminate migratory runs of Chinook salmon (Oncorhynchus tshawytscha) amid continued gene flow.

    Science.gov (United States)

    O'Malley, Kathleen G; Jacobson, Dave P; Kurth, Ryon; Dill, Allen J; Banks, Michael A

    2013-12-01

    Neutral genetic markers are routinely used to define distinct units within species that warrant discrete management. Human-induced changes to gene flow however may reduce the power of such an approach. We tested the efficiency of adaptive versus neutral genetic markers in differentiating temporally divergent migratory runs of Chinook salmon (Oncorhynchus tshawytscha) amid high gene flow owing to artificial propagation and habitat alteration. We compared seven putative migration timing genes to ten microsatellite loci in delineating three migratory groups of Chinook in the Feather River, CA: offspring of fall-run hatchery broodstock that returned as adults to freshwater in fall (fall run), spring-run offspring that returned in spring (spring run), and fall-run offspring that returned in spring (FRS). We found evidence for significant differentiation between the fall and federally listed threatened spring groups based on divergence at three circadian clock genes (OtsClock1b, OmyFbxw11, and Omy1009UW), but not neutral markers. We thus demonstrate the importance of genetic marker choice in resolving complex life history types. These findings directly impact conservation management strategies and add to previous evidence from Pacific and Atlantic salmon indicating that circadian clock genes influence migration timing.

  10. Whole-body MRI of juvenile spondyloarthritis: protocols and pictorial review of characteristic patterns

    Energy Technology Data Exchange (ETDEWEB)

    Aquino, Michael R. [Cincinnati Children' s Hospital Medical Center, Department of Radiology, Cincinnati, OH (United States); Tse, Shirley M.L.; Rachlis, Alisa C. [Hospital for Sick Children, Department of Rheumatology, Toronto (Canada); Gupta, Sumeet; Stimec, Jennifer [Hospital for Sick Children, Department of Radiology, Toronto (Canada)

    2015-05-01

    Spondyloarthritides are a group of inflammatory rheumatological diseases that cause arthritis with a predilection for spinal or sacroiliac involvement in addition to a high association with HLA-B27. Juvenile spondyloarthritis is distinct from adult spondyloarthritis and manifests more frequently as peripheral arthritis and enthesitis. Consequently juvenile spondyloarthritis is often referred to as enthesitis-related arthritis (ERA) subtype under the juvenile idiopathic arthritis (JIA) classification criteria. The American College of Rheumatology Treatment Recommendations for JIA, including ERA, are based on the following clinical parameters: current treatment, disease activity and the presence of poor prognostic features. The MRI features of juvenile spondyloarthritis include marrow edema, peri-enthesal soft-tissue swelling and edema, synovitis and joint or bursal fluid. Marrow edema is nonspecific and can be seen with other pathologies as well as in healthy subjects, and this is an important pitfall to consider. With further longitudinal study and validation, however, whole-body MRI with dedicated images of the more commonly affected areas such as the spine, sacroiliac joints, hips, knees, ankles and feet can serve as a more objective tool compared to clinical exam for early detection and monitoring of disease activity and ultimately direct therapeutic management. (orig.)

  11. Survival and causes of mortality in juvenile Puerto Rican parrots

    Science.gov (United States)

    G.D. Lindsey; W.J. Arendt; J. Kalina

    1994-01-01

    Fifteen juvenile Puerto Rican Parrots (Amazona vittata) from wild nests in 1985, 1986 and 1987 were radio monitored an average of 110 +_ 15.9 (SE) d (range 4-209 d) post-fiedging.. Minimum survival was 67% (n = 3) in 1985, 100%( n = 4) in 1986 and 43% (n = 7) in 1987. Most mortality (three of five deaths) occurred during the first 35 d following fledging. A major...

  12. Smolt migration characteristics and mainstem Snake and Columbia River detection rates of pit-tagged Grande Ronde and Imnaha River naturally produced spring chinook salmon. 1993, 1994 and 1995 annual reports

    International Nuclear Information System (INIS)

    Walters, T.R.; Carmichael, R.W.; Keefe, M.L.; Sankovich, P.

    1997-01-01

    This reports on the second, third, and fourth years of a multi-year study to assess smolt migration characteristics and cumulative detection rates of naturally produced spring chinook salmon (Oncorhynchus tshawytscha) from Northeast Oregon streams. The goal of this project is to develop an understanding of interpopulational and interannual variation in several early life history parameters of naturally produced spring and summer chinook salmon in the Grande Ronde and Imnaha River subbasins. This project will provide information to assist chinook salmon population recovery efforts. Specific populations included in the study are: (1) Catherine Creek; (2) Upper Grande Ronde River; (3) Lostine River; (4) Imnaha River; (5) Wenaha River; and (6) Minam River. In this document, the authors present findings and activities from research completed in 1993, 1994, and 1995

  13. Smolt Monitoring at the Head of Lower Granite Reservoir and Lower Granite Dam, 1995 Annual Report.

    Energy Technology Data Exchange (ETDEWEB)

    Buettner, Edwin W.; Brimmer, Arnold F.

    1996-10-01

    This project monitored the daily passage of chinook salmon Oncorhynchus tshawytscha and steelhead trout O. mykiss smolts during the 1995 spring outmigration at migrant traps on the Snake River, Clearwater River, and Salmon River. The 1995 snowpack was below average through February. Heavy precipitation from the Salmon River drainage south, in March through May, provided the best runoff conditions in the Salmon River since the drought began in 1987.

  14. Smolt monitoring at the head of Lower Granite Reservoir and Lower Granite Dam. Annual report 1995

    International Nuclear Information System (INIS)

    Buettner, E.W.; Brimmer, A.F.

    1996-10-01

    This project monitored the daily passage of chinook salmon Oncorhynchus tshawytscha and steelhead trout O. mykiss smolts during the 1995 spring outmigration at migrant traps on the Snake River, Clearwater River, and Salmon River. The 1995 snowpack was below average through February. Heavy precipitation from the Salmon River drainage south, in March through May, provided the best runoff conditions in the Salmon River since the drought began in 1987

  15. Juvenile magma recognition and eruptive dynamics inferred from the analysis of ash time series: The 2015 reawakening of Cotopaxi volcano

    Science.gov (United States)

    Gaunt, H. Elizabeth; Bernard, Benjamin; Hidalgo, Silvana; Proano, Antonio; Wright, Heather M.; Mothes, Patricia; Criollo, Evelyn; Kueppers, Ulrich

    2016-01-01

    Forecasting future activity and performing hazard assessments during the reactivation of volcanoes remain great challenges for the volcanological community. On August 14, 2015 Cotopaxi volcano erupted for the first time in 73 years after approximately four months of precursory activity, which included an increase in seismicity, gas emissions, and minor ground deformation. Here we discuss the use of near real-time petrological monitoring of ash samples as a complementary aid to geophysical monitoring, in order to infer eruption dynamics and evaluate possible future eruptive activity at Cotopaxi. Twenty ash samples were collected between August 14 and November 23, 2015 from a monitoring site on the west flank of the volcano. These samples contain a range of grain types that we classified as: hydrothermal/altered, lithic, juvenile, and free crystals. The relative proportions of theses grains evolved as the eruption progressed, with increasing amounts of juvenile material and a decrease in hydrothermally altered material. In samples from the initial explosion, juvenile grains are glassy, microlite-poor and contain hydrothermal minerals (opal and alunite). The rising magma came in contact with the hydrothermal system under confinement, causing hydro-magmatic explosions that cleared the upper part of the plumbing system. Subsequently, the magmatic column produced a thermal aureole in the conduit and dried out the hydrothermal system, allowing for dry eruptions. Magma ascent rates were low enough to allow for efficient outgassing and microlite growth. Constant supply of magma from below caused quasi-continuous disruption of the uppermost magma volume through a combination of shear-deformation and gas expansion. The combination of increasing crystallinity of juvenile grains, and high measured SO2 flux indicate decreasing integrated magma ascent rates and clearing of the hydrothermal system along transport pathways in a system open to gas loss. The near real

  16. Juvenile angiofibromer

    DEFF Research Database (Denmark)

    Thuesen, Anne Daugaard; Jakobsen, John; Nepper-Rasmussen, Jørgen

    2005-01-01

    Juvenile angiofibroma is a rare, benign, rich vascular tumor, and approximately one new case is diagnosed in Denmark each year. It sits in the foramen sphenopalatinum and occurs in boys from 14 to 25 years of age. The most frequent initial symptoms are nasal obstruction and epistaxis. Through...... the years, the treatment of juvenile angiofibroma has included many methods, including surgical excision, electrocoagulation, interstitial or external radiation therapy, cryosurgery, hormone administration and chemotherapy. Radiation, chemotherapy and surgery have proven to be the most effective treatments...

  17. Genetic differences in growth, migration, and survival between hatchery and wild steelhead and Chinook salmon: Introduction and executive summary

    Science.gov (United States)

    Rubin, Steve P.; Reisenbichler, Reginald; Wetzel, Lisa A.; Hayes, Michael C.

    2012-01-01

    This report presents results of studies testing for genetically based differences in performance (growth, migration, and survival) between hatchery and wild populations of steelhead and Chinook salmon (Project Number 90-052). The report is organized into 10 chapters with a general study introduction preceding the first chapter. A growing body of data shows that domestication and a resulting loss of fitness for natural rearing occur in hatchery populations of anadromous salmonids; however, the magnitude of domestication will vary among species and hatchery programs. Better information on domestication is needed to accurately predict the consequences when hatchery and wild fish interbreed. The intent of hatchery supplementation is to increase natural production through introduction of hatchery fish into natural production areas. The goal of this study was to provide managers with information on the genetic risks of hatchery supplementation to wild populations of Columbia River Basin summer steelhead and spring Chinook salmon.

  18. 76 FR 77757 - Fisheries of the Exclusive Economic Zone Off Alaska; Chinook Salmon Bycatch Management in the...

    Science.gov (United States)

    2011-12-14

    ... comments in Microsoft Word, Excel, WordPerfect, or Adobe PDF file formats only. Electronic copies of the... apportionment of PSC in that area, effectively rewarding the fleet in that area for its high levels of Chinook salmon PSC. The Council did not feel it was appropriate to reward the fleets for unacceptably high levels...

  19. Parenting and juvenile delinquency

    NARCIS (Netherlands)

    Hoeve, M.

    2008-01-01

    Juvenile delinquency is a noteworthy problem. This thesis addressed the association between parenting and juvenile delinquency by analyzing the concepts of parenting adopted in family research in relation to criminological concepts and measures of delinquent behavior. Four studies were conducted.

  20. Juvenile delinquency and correctional treatment in Britain

    OpenAIRE

    堀尾, 良弘; ホリオ, ヨシヒロ; Yoshihiro, Horio

    2006-01-01

    Japanese modernistic culture is influenced not a little from Britain. In looking at the Juvenile Law and the history of correctional treatment in Britain, understanding of today's juvenile delinquency and treatment deepen. Moreover, the background and issue of juvenile delinquency in Britain are also discussed. As a feature of the juvenile delinquency in Britain, the common field with Japan and the field peculiar to Britain became clear in each. It is common to the world that the juvenile del...

  1. Walla Walla River Fish Passage Operations Program, 2003-2004 Annual Report.

    Energy Technology Data Exchange (ETDEWEB)

    Bronson, James P. (Confederated Tribes of the Umatilla Indian Reservation, Department of Natural Resources, Pendleton, OR)

    2004-12-01

    In the late 1990s, the Confederated Tribes of the Umatilla Indian Reservation, Oregon Department of Fish and Wildlife, and Washington Department of Fish and Wildlife, along with many other agencies, began implementing fisheries restoration activities in the Walla Walla Basin. An integral part of these efforts is to alleviate the inadequate fish migration conditions in the basin. The migration concerns are being addressed by removing diversion structures, constructing fish passage facilities, implementing minimum instream flow requirements, and providing trap and haul efforts when needed. The objective of the Walla Walla River Fish Passage Operations Project is to increase the survival of migrating adult and juvenile salmonids in the Walla Walla River basin. The project is responsible for coordinating operation and maintenance of ladders, screen sites, bypasses, trap facilities, and transportation equipment. In addition, the project provides technical input on passage criteria and passage and trapping facility design and operation. Operation of the various passage facilities and passage criteria guidelines are outlined in an annual operations plan that the project develops. During the 2003-2004 project year, there were 379 adult summer steelhead (Oncorhynchus mykiss), 36 adult bull trout (Salvelinus confluentus); 108 adult and 3 jack spring chinook (O. tshawytscha) enumerated at the Nursery Bridge Dam fishway video counting window between December 21, 2003, and June 30, 2004. Summer steelhead and spring chinook were observed moving upstream while bull trout were observed moving both upstream and downstream of the facility. In addition, the old ladder trap was operated by the WWBNPME project in order to radio tag spring chinook adults. A total of 2 adult summer steelhead, 4 bull trout, and 23 adult spring chinook were enumerated at the west ladder at Nursery Bridge Dam during the trapping operations between May 6 and May 23, 2004. Operation of the Little Walla Walla

  2. Juvenile prison in parallel legislation

    Directory of Open Access Journals (Sweden)

    Lutovac Mitar

    2016-01-01

    Full Text Available The need for punishment of juveniles occurred from the time when there was no clear line separating them from the adult criminal population. At the same time, the evolution of the juvenile punishment is not in itself involve substantial changes to their criminal status. On the contrary, the status of minors in society did not show serious differences regarding the status of young adults, as well as the adult elderly. On the other hand, on the ground of their punishment is recorded deviations that go in the direction of application of mild corporal punishment. Closing the minor was performed in a physically separate parts of the general penal institutions with the use of a lower degree of restrictions while serving juvenile prison. Due to the different treatment of minors during the evolution of their criminal status leads to their different treatment in comparative law. That is why we are witnessing the existence of numerous differences in the juvenile punishment in some countries in the world. On the European continent there is a wide range of different legal solutions when it comes to punishing juveniles. There are considerable differences in the procedure pronouncing juvenile prison and in particular penal treatment of juveniles in penitentiary institutions. For these reasons, the author has decided to show the basic statutory provisions in the part that relates to the issue of punishment of minors in the legislation of individual countries.

  3. AFSC/ABL: Eastern Bering Sea (BASIS) Coastal Research on Juvenile Salmon

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Pacific salmon (Oncorhynchus spp.) runs in rivers that flow into the eastern Bering Sea have been inconsistent and at times very weak. Low returns of chinook (O....

  4. National Coral Reef Monitoring Program: Stratified Random Surveys (StRS) of Coral Demography (Adult and Juvenile Corals) across American Samoa since 2015

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The data described here result from benthic coral demographic surveys for two life stages (juveniles, adults) across American Samoa in 2015. Juvenile colony surveys...

  5. Effects of the proposed California WaterFix North Delta Diversion on flow reversals and entrainment of juvenile Chinook salmon (Oncorhynchus tshawytscha) into Georgiana Slough and the Delta Cross Channel, northern California

    Science.gov (United States)

    Perry, Russell W.; Romine, Jason G.; Pope, Adam C.; Evans, Scott D.

    2018-02-27

    The California Department of Water Resources and Bureau of Reclamation propose new water intake facilities on the Sacramento River in northern California that would convey some of the water for export to areas south of the Sacramento-San Joaquin River Delta (hereinafter referred to as the Delta) through tunnels rather than through the Delta. The collection of water intakes, tunnels, pumping facilities, associated structures, and proposed operations are collectively referred to as California WaterFix. The water intake facilities, hereinafter referred to as the North Delta Diversion (NDD), are proposed to be located on the Sacramento River downstream of the city of Sacramento and upstream of the first major river junction where Sutter Slough branches from the Sacramento River. The NDD can divert a maximum discharge of 9,000 cubic feet per second (ft3/s) from the Sacramento River, which reduces the amount of Sacramento River inflow into the Delta.In this report, we conducted three analyses to investigate the effect of the NDD and its proposed operation on entrainment of juvenile Chinook salmon (Oncorhynchus tshawytscha) into Georgiana Slough and the Delta Cross Channel (DCC). Fish that enter the interior Delta (the network of channels to the south of the Sacramento River) through Georgiana Slough and the DCC survive at lower rates than fish that use other migration routes (Sacramento River, Sutter Slough, and Steamboat Slough). Therefore, fisheries managers were concerned about the extent to which operation of the NDD would increase the proportion of the population entering the interior Delta, which, all else being equal, would lower overall survival through the Delta by increasing the fraction of the population subject to lower survival rates. Operation of the NDD would reduce flow in the Sacramento River, which has the potential to increase the magnitude and duration of reverse flows of the Sacramento River downstream of Georgiana Slough.In the first analysis, we

  6. Status after 5 Years of Survival Compliance Testing in the Federal Columbia River Power System (FCRPS)

    Energy Technology Data Exchange (ETDEWEB)

    Skalski, John R.; Weiland, Mark A.; Ham, Kenneth D.; Ploskey, Gene R.; McMichael, Geoffrey A.; Colotelo, Alison H.; Carlson, Thomas J.; Woodley, Christa M.; Eppard, M. Brad; Hockersmith, Eric E.

    2016-06-27

    Survival studies of juvenile salmonids implanted with acoustic tags have been conducted at hydroelectric dams within the Federal Columbia River Power System (FCRPS) in the Columbia and Snake rivers between 2010 and 2014 to assess compliance with dam passage survival standards stipulated in the 2008 Biological Opinion (BiOp). For juvenile salmonids migrating downstream in the spring, dam passage survival defined as survival from the upstream dam face to the tailrace mixing zone must be ≥96% and for summer migrants, ≥93%, and estimated with a standard error ≤1.5% (i.e., 95% confidence interval of ±3%). A total of 29 compliance tests have been conducted at 6 of 8 FCRPS main-stem dams, using over 109,000 acoustic-tagged salmonid smolts. Of these 29 compliance studies, 23 met the survival standards and 26 met the precision requirements. Of the 6 dams evaluated to date, individual survival estimates range from 0.9597 to 0.9868 for yearling Chinook Salmon, 0.9534 to 0.9952 for steelhead, and 0.9076 to 0.9789 for subyearling Chinook Salmon. These investigations suggest the large capital investment over the last 20 years to improve juvenile salmon passage through the FCRPS dams has been beneficial.

  7. Losses of Sacramento River Chinook Salmon and Delta Smelt to Entrainment in Water Diversions in the Sacramento–San Joaquin Delta

    Directory of Open Access Journals (Sweden)

    Wim J. Kimmerer

    2008-06-01

    Full Text Available Pumping at the water export facilities in the southern Sacramento-San Joaquin Delta kills fish at and near the associated fish-salvage facilities. Correlative analyses of salvage counts with population indices have failed to provide quantitative estimates of the magnitude of this mortality. I estimated the proportional losses of Sacramento River Chinook salmon (Oncorhynchus tshawytscha and delta smelt (Hypomesus transpacificus to place these losses in a population context. The estimate for salmon was based on recoveries of tagged smolts released in the upper Sacramento River basin, and recovered at the fish-salvage facilities in the south Delta and in a trawling program in the western Delta. The proportion of fish salvaged increased with export flow, with a mean value around 10% at the highest export flows recorded. Mortality was around 10% if pre-salvage losses were about 80%, but this value is nearly unconstrained. Losses of adult delta smelt in winter and young delta smelt in spring were estimated from salvage data (adults corrected for estimated pre-salvage survival, or from trawl data in the southern Delta (young. These losses were divided by population size and accumulated over the respective seasons. Losses of adult delta smelt were 1–50% (median 15% although the highest value may have been biased upward. Daily losses of larvae and juveniles were 0–8%, and seasonal losses accumulated were 0–25% (median 13%. The effect of these losses on population abundance was obscured by subsequent 50-fold variability in survival from summer to fall.

  8. Bilateral, independent juvenile nasopharyngeal angiofibroma

    DEFF Research Database (Denmark)

    Mørkenborg, Marie-Louise; Frendø, M; Stavngaard, T

    2015-01-01

    BACKGROUND: Juvenile nasopharyngeal angiofibroma is a benign, vascular tumour that primarily occurs in adolescent males. Despite its benign nature, aggressive growth patterns can cause potential life-threatening complications. Juvenile nasopharyngeal angiofibroma is normally unilateral, originating...... from the sphenopalatine artery, but bilateral symptoms can occur if a large tumour extends to the contralateral side of the nasopharynx. This paper presents the first reported case of true bilateral extensive juvenile nasopharyngeal angiofibroma involving clinically challenging pre-surgical planning...... embolisation. Radical removal performed as one-step, computer-assisted functional endoscopic sinus surgery was performed. The follow-up period was uncomplicated. CONCLUSION: This case illustrates the importance of suspecting bilateral juvenile nasopharyngeal angiofibroma in patients presenting with bilateral...

  9. Criminal Profiles of Violent Juvenile Sex and Violent Juvenile Non-Sex Offenders: An Explorative Longitudinal Study

    Science.gov (United States)

    van Wijk, Anton Ph.; Mali, Bas R. F.; Bullens, Ruud A. R.; Vermeiren, Robert R.

    2007-01-01

    Few studies have longitudinally investigated the criminal profiles of violent juvenile sex and violent juvenile non-sex offenders. To make up for this lack, this study used police records of juveniles to determine the nature of the criminal profiles of violent sex offenders (n = 226) and violent non-sex offenders (n = 4,130). All offenders…

  10. Anti-adalimumab antibodies in juvenile idiopathic arthritis-related uveitis.

    Science.gov (United States)

    Leinonen, Sanna T; Aalto, Kristiina; Kotaniemi, Kaisu M; Kivelä, Tero T

    2017-01-01

    To evaluate the association of adalimumab trough levels and anti-adalimumab antibodies with activity of uveitis in juvenile idiopathic arthritis-related uveitis. This was a retrospective observational case series in a clinical setting at the Department of Ophthalmology, Helsinki University Hospital, Finland in 2014-2016. Thirty-one paediatric patients with chronic anterior juvenile idiopathic arthritis-related uveitis in 58 eyes and who had been on adalimumab ≥6 months were eligible for the study. Uveitis activity during adalimumab treatment, adalimumab trough levels and anti-adalimumab antibody levels were recorded. Anti-adalimumab antibody levels ≥12 AU /ml were detected in nine patients (29%). This level of anti-adalimumab antibodies was associated with a higher grade of uveitis (puveitis that was not in remission (p=0.001) and with lack of concomitant methotrexate therapy (p=0.043). In patients with anti-adalimumab antibody levels uveitis (p=0.86). Adalimumab treatment might be better guided by monitoring anti-adalimumab antibody formation in treating JIA-related uveitis.

  11. Juvenile morphology in baleen whale phylogeny.

    Science.gov (United States)

    Tsai, Cheng-Hsiu; Fordyce, R Ewan

    2014-09-01

    Phylogenetic reconstructions are sensitive to the influence of ontogeny on morphology. Here, we use foetal/neonatal specimens of known species of living baleen whales (Cetacea: Mysticeti) to show how juvenile morphology of extant species affects phylogenetic placement of the species. In one clade (sei whale, Balaenopteridae), the juvenile is distant from the usual phylogenetic position of adults, but in the other clade (pygmy right whale, Cetotheriidae), the juvenile is close to the adult. Different heterochronic processes at work in the studied species have different influences on juvenile morphology and on phylogenetic placement. This study helps to understand the relationship between evolutionary processes and phylogenetic patterns in baleen whale evolution and, more in general, between phylogeny and ontogeny; likewise, this study provides a proxy how to interpret the phylogeny when fossils that are immature individuals are included. Juvenile individuals in the peramorphic acceleration clades would produce misleading phylogenies, whereas juvenile individuals in the paedomorphic neoteny clades should still provide reliable phylogenetic signals.

  12. Larval, pre-juvenile and juvenile development of Diapterus peruvianus (Perciformes: Gerreidae

    Directory of Open Access Journals (Sweden)

    Sylvia Patricia Adelheid Jiménez Rosenberg

    2003-06-01

    Full Text Available The development of Diapterus peruvianus (Sauvage 1879 is based on 60 larvae collected in superficial tows made in Bahía Concepción, and on 16 prejuvenile and juvenile organisms collected in Bahía de La Paz, B. C. S., México, using a standard plankton net and a rectangular epibenthonic net, respectively. Larvae of D. peruvianus show three large blotches on the dorsum of the gut that can fuse together and give the appearance of one large continuous blotch. There are two to three pre-anal pigments and 16 post-anal pigments in the ventral midline; cephalic pigments are present from the postflexion stage, as well as a serrated preoperculum. The prejuvenile and juvenile organisms are distinguished by their body depth, the analfin formula, the serrated preoperculum and the base pigments in the dorsal and anal fins.El desarrollo de Diapterus peruvianus se analizó con base en 60 larvas recolectadas en Bahía Concepción y 16 pre-juveniles y juveniles recolectados en la Ensenada de La Paz, B. C. S. México, usando respectivamente, una red estándar de plancton en arrastres superficiales y una red epibentónica para arrastres de plancton. Las larvas presentan desde la pre-flexión tres manchas alargadas sobre la superficie dorsal de la masa visceral, que pueden unirse y dar apariencia de pigmentación continua, observándose hasta 16 pigmentos post-anales en la línea media ventral y de dos a tres pigmentos pre-anales; la pigmentación cefálica así como la forma aserrada del pre-opérculo característica del género, aparecen a partir de la post-flexión. Los organismos pre-juveniles y juveniles se distinguen por la profundidad del cuerpo, la fórmula de la aleta anal, la fina forma aserrada del pre-opérculo y la pigmentación en la base de las aletas dorsal y anal.

  13. Juvenile Residential Facility Census, 2010: Selected Findings. Juvenile Offenders and Victims: National Report Series. Bulletin NCJ 241134

    Science.gov (United States)

    Hockenberry, Sarah; Sickmund, Melissa; Sladky, Anthony

    2013-01-01

    This bulletin is part of the "Juvenile Offenders and Victims National Report Series." The "National Report" offers a comprehensive statistical overview of the problems of juvenile crime, violence, and victimization and the response of the juvenile justice system. During each interim year, the bulletins in the "National…

  14. Juvenile Confinement in Context

    Science.gov (United States)

    Mendel, Richard A.

    2012-01-01

    For more than a century, the predominant strategy for the treatment and punishment of serious and sometimes not-so-serious juvenile offenders in the United States has been placement into large juvenile corrections institutions, alternatively known as training schools, reformatories, or youth corrections centers. America's heavy reliance on…

  15. Juvenile Angiofibroma: Evolution of Management

    Science.gov (United States)

    Nicolai, Piero; Schreiber, Alberto; Bolzoni Villaret, Andrea

    2012-01-01

    Juvenile angiofibroma is a rare benign lesion originating from the pterygopalatine fossa with distinctive epidemiologic features and growth patterns. The typical patient is an adolescent male with a clinical history of recurrent epistaxis and nasal obstruction. Although the use of nonsurgical therapies is described in the literature, surgery is currently considered the ideal treatment for juvenile angiofibroma. Refinement in preoperative embolization has provided significant reduction of complications and intraoperative bleeding with minimal risk of residual disease. During the last decade, an endoscopic technique has been extensively adopted as a valid alternative to external approaches in the management of small-intermediate size juvenile angiofibromas. Herein, we review the evolution in the management of juvenile angiofibroma with particular reference to recent advances in diagnosis and treatment. PMID:22164185

  16. Juvenile Angiofibroma: Evolution of Management

    Directory of Open Access Journals (Sweden)

    Piero Nicolai

    2012-01-01

    Full Text Available Juvenile angiofibroma is a rare benign lesion originating from the pterygopalatine fossa with distinctive epidemiologic features and growth patterns. The typical patient is an adolescent male with a clinical history of recurrent epistaxis and nasal obstruction. Although the use of nonsurgical therapies is described in the literature, surgery is currently considered the ideal treatment for juvenile angiofibroma. Refinement in preoperative embolization has provided significant reduction of complications and intraoperative bleeding with minimal risk of residual disease. During the last decade, an endoscopic technique has been extensively adopted as a valid alternative to external approaches in the management of small-intermediate size juvenile angiofibromas. Herein, we review the evolution in the management of juvenile angiofibroma with particular reference to recent advances in diagnosis and treatment.

  17. National Coral Reef Monitoring Program: Stratified Random Surveys (StRS) of Coral Demography (Adult and Juvenile Corals) across the Hawaiian Archipelago since 2013

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The data described here result from benthic coral demographic surveys for two life stages (juveniles, adults) across the Hawaiian archipelago since 2013. Juvenile...

  18. National Coral Reef Monitoring Program: Stratified Random Surveys (StRS) of Coral Demography (Adult and Juvenile Corals) across the Mariana Archipelago since 2014

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The data described here result from benthic coral demographic surveys for two life stages (juveniles, adults) across the Mariana archipelago since 2014. Juvenile...

  19. The Role of Family Affect in Juvenile Drug Court Offenders' Substance Use and HIV Risk

    Science.gov (United States)

    Tolou-Shams, Marina; Hadley, Wendy; Conrad, Selby M.; Brown, Larry K.

    2012-01-01

    Family-based interventions targeting parenting factors, such as parental monitoring and parent-child communication, have been successful in reducing adolescent offenders' substance use and delinquency. This pilot, exploratory study focuses on family and parenting factors that may be relevant in reducing juvenile offenders' substance use and sexual…

  20. Evaluation of Juvenile Salmonid Outmigration and Survival in the Lower Umatilla River Basin; 1996 Annual Report.

    Energy Technology Data Exchange (ETDEWEB)

    Knapp, Suzanne M.; Kern, J. Chris; Carmichael, Richard W. (Oregon Department of Fish and Wildlife, Portland, OR)

    1997-01-01

    This is the second year report of a multi-year project that monitors the outmigration and survival of hatchery and naturally-produced juvenile salmonids in the lower Umatilla River. This project supplements and complements ongoing or completed fisheries projects in the Umatilla River basin. Knowledge gained on outmigration and survival will assist researchers and managers in adapting hatchery practices, flow enhancement strategies, canal operations, and supplementation and enhancement efforts for natural and restored fish populations. The authors also report on tasks related to evaluating juvenile salmonid passage at Three Mile Falls Dam and West Extension Canal.

  1. Evaluation of juvenile salmonid outmigration and survival in the lower Umatilla River basin. Annual report, 1996

    International Nuclear Information System (INIS)

    Knapp, S.M.; Kern, J.C.; Cameron, W.A.; Snedaker, S.M.; Carmichael, R.W.

    1996-01-01

    This is the second year report of a multi-year project that monitors the outmigration and survival of hatchery and naturally-produced juvenile salmonids in the lower Umatilla River. This project supplements and complements ongoing or completed fisheries projects in the Umatilla River basin. Knowledge gained on outmigration and survival will assist researchers and managers in adapting hatchery practices, flow enhancement strategies, canal operations, and supplementation and enhancement efforts for natural and restored fish populations. The authors also report on tasks related to evaluating juvenile salmonid passage at Three Mile Falls Dam and West Extension Canal

  2. Combined effects of climate change and bank stabilization on shallow water habitats of chinook salmon.

    Science.gov (United States)

    Jorgensen, Jeffrey C; McClure, Michelle M; Sheer, Mindi B; Munn, Nancy L

    2013-12-01

    Significant challenges remain in the ability to estimate habitat change under the combined effects of natural variability, climate change, and human activity. We examined anticipated effects on shallow water over low-sloped beaches to these combined effects in the lower Willamette River, Oregon, an area highly altered by development. A proposal to stabilize some shoreline with large rocks (riprap) would alter shallow water areas, an important habitat for threatened Chinook salmon (Oncorhynchus tshawytscha), and would be subject to U.S. Endangered Species Act-mandated oversight. In the mainstem, subyearling Chinook salmon appear to preferentially occupy these areas, which fluctuate with river stages. We estimated effects with a geospatial model and projections of future river flows. Recent (1999-2009) median river stages during peak subyearling occupancy (April-June) maximized beach shallow water area in the lower mainstem. Upstream shallow water area was maximized at lower river stages than have occurred recently. Higher river stages in April-June, resulting from increased flows predicted for the 2080s, decreased beach shallow water area 17-32%. On the basis of projected 2080s flows, more than 15% of beach shallow water area was displaced by the riprap. Beach shallow water area lost to riprap represented up to 1.6% of the total from the mouth to 12.9 km upstream. Reductions in shallow water area could restrict salmon feeding, resting, and refuge from predators and potentially reduce opportunities for the expression of the full range of life-history strategies. Although climate change analyses provided useful information, detailed analyses are prohibitive at the project scale for the multitude of small projects reviewed annually. The benefits of our approach to resource managers include a wider geographic context for reviewing similar small projects in concert with climate change, an approach to analyze cumulative effects of similar actions, and estimation of the

  3. Juvenile polyposis syndrome

    OpenAIRE

    Hsiao, Yi-Han; Wei, Chin-Hung; Chang, Szu-Wen; Chang, Lung; Fu, Yu-Wei; Lee, Hung-Chang; Liu, Hsuan-Liang; Yeung, Chun-Yan

    2016-01-01

    Abstract Background: Juvenile polyposis syndrome, a rare disorder in children, is characterized with multiple hamartomatous polyps in alimentary tract. A variety of manifestations include bleeding, intussusception, or polyp prolapse. In this study, we present an 8-month-old male infant of juvenile polyposis syndrome initially presenting with chronic anemia. To the best of our knowledge, this is the youngest case reported in the literature. Methods: We report a rare case of an 8-month-old male...

  4. Effects of individual pre-fledging traits and environmental conditions on return patterns in juvenile king penguins.

    Science.gov (United States)

    Saraux, Claire; Viblanc, Vincent A; Hanuise, Nicolas; Le Maho, Yvon; Le Bohec, Céline

    2011-01-01

    Despite the importance of early life stages in individuals' life history and population dynamics, very few studies have focused on the constraints to which these juvenile traits are subjected. Based on 10 years of automatic monitoring of over 2500 individuals, we present the first study on the effects of environmental conditions and individual pre-fledging traits on the post-fledging return of non-banded king penguins to their natal colony. Juvenile king penguins returned exclusively within one of the three austral summers following their departure. A key finding is that return rates (range 68-87%) were much higher than previously assumed for this species, importantly meaning that juvenile survival is very close to that of adults. Such high figures suggest little juvenile dispersal, and selection occurring mostly prior to fledging in king penguins. Pre-fledging conditions had a strong quadratic impact on juvenile return rates. As expected, cohorts reared under very unfavourable years (as inferred by the breeding success of the colony) exhibited low return rates but surprisingly, so did those fledged under very favourable conditions. Juvenile sojourns away from the colony were shorter under warm conditions and subsequent return rates higher, suggesting a positive effect of climate warming. The longer the post-fledging trip (1, 2 or 3 years), the earlier in the summer birds returned to their natal colony and the longer they stayed before leaving for the winter journey. The presence of juveniles in the colony was more than twice the duration required for moulting purposes, yet none attempted breeding in the year of their first return. Juvenile presence in the colony may be important for acquiring knowledge on the social and physical colonial environment and may play an important part in the learning process of mating behaviour. Further studies are required to investigate its potential implications on other life-history traits such as recruitment age.

  5. Effects of water quality alterations on fish behavior

    International Nuclear Information System (INIS)

    Gray, R.H.; Haynes, J.M.; Montgomery, J.C.; Genoway, R.G.; Barraclough, S.A.; Anderson, D.R.; Thatcher, T.O.; Bean, R.M.; Page, T.L.

    1977-01-01

    Objectives of this project are to study behavioral patterns of ecologically or economically valuable fish. Information on sensory--avoidance behavior, or preferential foraging habits, if definitively established by systematic observation can be constructively used in both outfall and water intake design to ameliorate potentially noxious disturbances caused by these structures. The work is applicable to both nuclear and fossil fuel-fired steam electric plants. The instantaneous response of juvenile chinook salmon encountering a simulated river thermal plume interface was also evaluated in a model raceway. Tests indicate that juvenile chinook salmon perceive and avoid discharge temperatures greater than 9 to 11 0 C above ambient, regardless of acclimation temperature. Chlorine is a major chemical compound to reduce biofouling in steam electric power plants. Chlorination of large volumes of cooling waters poses the problem of the formation of chlorination by-products discharged to natural water systems. Long-term bioassays, both fresh and salt water, are underway with indepth analytical chemistry to determine the magnitude of the chlorination by-product problem

  6. Social and psychological aspects of criminal juvenile justice in the world practice (Anglo-Saxon model of juvenile justice

    Directory of Open Access Journals (Sweden)

    D.S. Oshevsky

    2013-10-01

    Full Text Available The article is the final part of the review of existing foreign models of juvenile criminal justice system. We analyze the principles of juvenile justice in the criminal trial: protective orientation, personalization and social richness of the trial, the emphasis on educational influences. We present the foreign experience of incorporating social, psychological and clinical special knowledge into specialized justice concerning juvenile offenders. We analyze modern trends in the development of juvenile justice in the United States and Canada. We present material related to methods of risk assessment of re-offending among adolescents. We highlight approaches to complex long-term follow-up of juvenile offenders in Anglo-Saxon juvenile justice. We describe some aspects of the probation service using the method of case management. In the context of the accepted “National Strategy for Action for the Benefit of Children for 2012-2017”, the prospects for the development of specialized criminal justice for young offenders in the Russian Federation are discussed

  7. Genetic identification of F1 and post-F1 serrasalmid juvenile hybrids in Brazilian aquaculture.

    Directory of Open Access Journals (Sweden)

    Diogo Teruo Hashimoto

    Full Text Available Juvenile fish trade monitoring is an important task on Brazilian fish farms. However, the identification of juvenile fish through morphological analysis is not feasible, particularly between interspecific hybrids and pure species individuals, making the monitoring of these individuals difficult. Hybrids can be erroneously identified as pure species in breeding facilities, which might reduce production on farms and negatively affect native populations due to escapes or stocking practices. In the present study, we used a multi-approach analysis (molecular and cytogenetic markers to identify juveniles of three serrasalmid species (Colossoma macropomum, Piaractus mesopotamicus and Piaractus brachypomus and their hybrids in different stocks purchased from three seed producers in Brazil. The main findings of this study were the detection of intergenus backcrossing between the hybrid ♀ patinga (P. mesopotamicus×P. brachypomus×♂ C. macropomum and the occurrence of one hybrid triploid individual. This atypical specimen might result from automixis, a mechanism that produces unreduced gametes in some organisms. Moreover, molecular identification indicated that hybrid individuals are traded as pure species or other types of interspecific hybrids, particularly post-F1 individuals. These results show that serrasalmid fish genomes exhibit high genetic heterogeneity, and multi-approach methods and regulators could improve the surveillance of the production and trade of fish species and their hybrids, thereby facilitating the sustainable development of fish farming.

  8. Juvenile polyposis syndrome

    Science.gov (United States)

    Hsiao, Yi-Han; Wei, Chin-Hung; Chang, Szu-Wen; Chang, Lung; Fu, Yu-Wei; Lee, Hung-Chang; Liu, Hsuan-Liang; Yeung, Chun-Yan

    2016-01-01

    Abstract Background: Juvenile polyposis syndrome, a rare disorder in children, is characterized with multiple hamartomatous polyps in alimentary tract. A variety of manifestations include bleeding, intussusception, or polyp prolapse. In this study, we present an 8-month-old male infant of juvenile polyposis syndrome initially presenting with chronic anemia. To the best of our knowledge, this is the youngest case reported in the literature. Methods: We report a rare case of an 8-month-old male infant who presented with chronic anemia and gastrointestinal bleeding initially. Panendoscopy and abdominal computed tomography showed multiple polyposis throughout the entire alimentary tract leading to intussusception. Technetium-99m-labeled red blood cell (RBC) bleeding scan revealed the possibility of gastrointestinal tract bleeding in the jejunum. Histopathological examination on biopsy samples showed Peutz-Jeghers syndrome was excluded, whereas the diagnosis of juvenile polyposis syndrome was established. Results: Enteroscopic polypectomy is the mainstay of the treatment. However, polyps recurred and occupied the majority of the gastrointestinal tract in 6 months. Supportive management was given. The patient expired for severe sepsis at the age of 18 months. Conclusion: Juvenile polyposis syndrome is an inherited disease, so it is not possible to prevent it. Concerning of its poor outcome and high mortality rate, it is important that we should increase awareness and education of the parents at its earliest stages. PMID:27631205

  9. Acupuntura em adolescentes com fibromialgia juvenil Acupuntura en adolescentes con fibromialgia juvenil Acupuncture in adolescents with juvenile fibromyalgia

    Directory of Open Access Journals (Sweden)

    Marialda Höfling P. Dias

    2012-01-01

    Full Text Available OBJETIVO: Descrever a utilização da acupuntura em adolescentes com fibromialgia juvenil. MÉTODOS: Estudo retrospectivo realizado em pacientes com fibromialgia juvenil (critérios do Colégio Americano de Reumatologia submetidos a, pelo menos, 11 sessões semanais de acupuntura. As avaliações antes e após acupuntura incluíram dados demográficos, características da dor musculoesquelética, número de pontos dolorosos (NPD, escala visual analógica (EVA de dor, algiometria e índice miálgico (IM. Durante o estudo, os pacientes puderam usar analgésicos, amitriptilina e foram orientados a praticar atividade física aeróbica. Os resultados antes e após acupuntura foram comparados pelo teste não paramétrico de Wilcoxon. RESULTADOS: Dos 38 pacientes com fibromialgia juvenil acompanhados em oito anos consecutivos, 13 tinham todas as informações nos prontuários e nas fichas de acupuntura e foram avaliados. Destes 13, sete obtiveram melhora nos três parâmetros analisados (número de pontos dolorosos, EVA de dor e IM. As medianas do número de pontos dolorosos e da EVA de dor foram significativamente maiores antes do tratamento quando comparados ao final do tratamento com as sessões de acupuntura [14 (11-18 versus 10 (0-15, p=0,005; 6 (2-10 versus 3 (0-10, p=0,045; respectivamente]. Em contraste, a mediana do IM foi significativamente menor antes do tratamento [3,4 (2,49-4,39 versus 4,2 (2,71-5,99, p=0,02]. Nenhum dos pacientes com fibromialgia juvenil apresentou eventos adversos associados à acupuntura. CONCLUSÕES: Acupuntura é uma modalidade de Medicina Tradicional Chinesa que pode ser utilizada nos pacientes pediátricos com fibromialgia. Futuros estudos controlados serão necessários.OBJETIVO: Describir el uso de acupuntura en adolescentes con fibromialgia juvenil. MÉTODOS: Estudio retrospectivo realizado en pacientes con fibromialgia juvenil (criterios del Colegio Americano de Reumatología sometidos a al menos 11 sesiones

  10. Sequence features and phylogenetic analysis of the stress protein Hsp90α in chinook salmon Oncorhynchus tshawytscha, a poikilothermic vertebrate

    Science.gov (United States)

    Palmisano, Aldo N.; Winton, James R.; Dickhoff, Walton W.

    1999-01-01

    We cloned and sequenced a chinook salmon Hsp90 cDNA; sequence analysis shows it to be Hsp90??. Phylogenetic analysis supports the hypothesis that ?? and ?? paralogs of Hsp90 arose as a result of a gene duplication event and that they diverged early in the evolution of vertebrates, before tetrapods separated from the teleost lineage. Among several differences distinguishing poikilothermic Hsp90?? sequences from their bird and mammal orthologs, the teleost versions specifically lack a characteristic QTQDQP phosphorylation site near the N-terminus. We used the cDNA to develop an RNA (Northern) blot to quantify cellular Hsp90 mRNA levels. Chinook salmon embryonic (CHSE-214) cells responded to heat shock with a rapid rise in Hsp90 mRNA through 4 h, followed by a gradual decline over the next 20 h. Hsp90 mRNA level may be useful as a stress indicator, especially in a laboratory setting or in response to acute heat stress.

  11. St Andrews Bay, Florida, Juvenile Reeffish Survey from 2002-07-05 to 2015-08-13 (NCEI Accession 0156994)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This data set contains Excel and CSV files containing fish length of Juvenile Reeffish. Trawls were made during the summer months in shallow seagrass beds to monitor...

  12. Evidence of deepwater spawning of fall chinook salmon (Oncorhynchus tshawytscha): spawning near Ives and Pierce Island of the Columbia River, 1999; ANNUAL

    International Nuclear Information System (INIS)

    Mueller, Robert P.; Dauble, Dennis D.

    2000-01-01

    Fall chinook salmon Oncorhynchus tshawytscha, thought to originate from Bonneville Hatchery, were first noted to be spawning downstream of Bonneville Dam by Washington Department of Fisheries and Wildlife (WDFW) biologists in 1993 (Hymer 1997). Known spawning areas include gravel beds on the Washington side of the river near Hamilton Creek and Ives island. Limited spawning ground surveys were conducted in the area around Ives and Pierce Islands during 1994-1997 and based on these surveys it was believed that fall chinook salmon successfully spawned in this area. The size of this population from 1994 to 1996 was estimated at 1,800 to 5,200 fish (Hymer 1997). Recently, chum salmon were also documented spawning downstream of Bonneville Dam. Chum salmon O. kisutch were listed as threatened under the Endangered Species Act (ESA) in March, 1999. There are several ongoing investigations to define the physical habitat characteristics associated with fall chinook and chum salmon spawning areas downstream of Bonneville Dam. A major concern is to determine what flows (i.e. surface elevations) are necessary to ensure their long-term survival. Our objective was to locate deepwater spawning locations in the main Columbia River channel and to collect additional data on physical habitat parameters at the site. This objective is consistent with the high priority that the Northwest Power Planning Council's Independent Advisory Board and the salmon managers have placed on determining the importance of mainstem habitats to the production of salmon in the Columbia River Basin

  13. A Two-Stage Information-Theoretic Approach to Modeling Landscape-Level Attributes and Maximum Recruitment of Chinook Salmon in the Columbia River Basin.

    Energy Technology Data Exchange (ETDEWEB)

    Thompson, William L.; Lee, Danny C.

    2000-11-01

    Many anadromous salmonid stocks in the Pacific Northwest are at their lowest recorded levels, which has raised questions regarding their long-term persistence under current conditions. There are a number of factors, such as freshwater spawning and rearing habitat, that could potentially influence their numbers. Therefore, we used the latest advances in information-theoretic methods in a two-stage modeling process to investigate relationships between landscape-level habitat attributes and maximum recruitment of 25 index stocks of chinook salmon (Oncorhynchus tshawytscha) in the Columbia River basin. Our first-stage model selection results indicated that the Ricker-type, stock recruitment model with a constant Ricker a (i.e., recruits-per-spawner at low numbers of fish) across stocks was the only plausible one given these data, which contrasted with previous unpublished findings. Our second-stage results revealed that maximum recruitment of chinook salmon had a strongly negative relationship with percentage of surrounding subwatersheds categorized as predominantly containing U.S. Forest Service and private moderate-high impact managed forest. That is, our model predicted that average maximum recruitment of chinook salmon would decrease by at least 247 fish for every increase of 33% in surrounding subwatersheds categorized as predominantly containing U.S. Forest Service and privately managed forest. Conversely, mean annual air temperature had a positive relationship with salmon maximum recruitment, with an average increase of at least 179 fish for every increase in 2 C mean annual air temperature.

  14. Burrowing Owl Monitoring Report for Calendar Year 2012

    Energy Technology Data Exchange (ETDEWEB)

    Wilde, Justin W.; Lindsey, Cole T.; Nugent, John J.

    2013-03-14

    The monitoring during 2012 focused on documenting the status of known burrows. Newly identified burrows were documented while examining historical locations, during ecological resource reviews, or discovered during other monitoring efforts. The timing of the monitoring effort allowed staff to perform the surveys without disrupting any breeding or hatching, while also allowing for easy discernment of adults from juveniles, which helped in determining burrow-use type.

  15. Puget Sound Dredged Disposal Analysis (PSDDA). Final Environmental Impact Statement Unconfined Open-Water Disposal for Dredged Material, Phase 2. (North and South Puget Sound)

    Science.gov (United States)

    1989-09-01

    chinook have a more diverse diet spectrum. Their prey would consist of riverborne insects , small crustaceans, and juvenile fish. They also are prey to...stant Manager Division of Acuatic Lands 206/586-6375 c: MPWG Os.cg D D-3 MSPH R. BLUM. tDirect or- - "- ’, i ’"" STATE OF WASHINGTON DEPARTMENT OF

  16. Juvenile dispersal in Calomys venustus (Muridae: Sigmodontinae)

    Science.gov (United States)

    Priotto, José; Steinmann, Andrea; Provensal, Cecilia; Polop, Jaime

    2004-05-01

    Both spacing behaviour and dispersal movement are viewed as hierarchical processes in which the effects may be expressed at spatial scale. This research was carried out to examine the hypothesis that the presence of parents promotes the dispersal of juveniles from their natal nest and their father or mother home-range, in Calomys venustus.The study was carried out in four 0.25 ha fences (two controls and two experimentals), in a natural pasture. This study had two periods: Father Removal (FR) (August and December 1997; year one) and Mother Removal (MR) (August 1998 and January 1999; year two). For the FR treatment fathers were removed after juveniles were born, but in the MR treatment mothers were removed after the juveniles were weaned. The effect of parents on the dispersal distance of juveniles was analysed with respect to their natal nest and their mother and father home-range. Dispersal distance from the nest of C. venustus was independent of either male or female parent. Juveniles were more dispersing in relation to the centre of activity of their mothers than to that of their fathers, and females were more dispersing than males. Female juveniles overlap their home-range with their parents less than male juveniles do. The differences observed between female and male juveniles would be related to their different sexual maturation times, as well as to the female territoriality.

  17. Essential habitat for sardine juveniles in Iberian waters

    Directory of Open Access Journals (Sweden)

    Sílvia Rodríguez-Climent

    2017-09-01

    Full Text Available In a period when the Iberian sardine stock abundance is at its historical minimum, knowledge of the sardine juvenile’s distribution is crucial for the development of fishery management strategies. Generalized additive models were used to relate juvenile sardine presence with geographical variables and spawning grounds (egg abundance and to model juvenile abundance with the concurrent environmental conditions. Three core areas of juvenile distribution were identified: the Northern Portuguese shelf (centred off Aveiro, the coastal region in the vicinity of the Tagus estuary, and the eastern Gulf of Cadiz. Spatial differences in the relationship between juvenile presence and egg abundances suggest that essential juvenile habitat might partially differ from the prevailing spawning grounds. Models also depicted significant relationships between juvenile abundance, temperature and geographical variables in combination with salinity in the west and with zooplankton in the south. Results indicate that the sardine juvenile distribution along the Iberian Peninsula waters are an outcome of a combination of dynamic processes occurring early in life, such as egg and larva retention, reduced mortality and favourable feeding grounds for both larvae and juveniles.

  18. Juvenile offenders: competence to stand trial.

    Science.gov (United States)

    Soulier, Matthew

    2012-12-01

    This article details the legal background and assists the reader in the preparation and practical conduct of evaluations regarding juvenile adjudicative competency. The material is presented to be useful as a guide to direct questions of competency and covers aspects of evaluation that include: legal standard for competency to stand trial, developmental immaturity, current practice in juvenile competency to stand trial, forensic evaluation of juvenile competency to stand trial, organizing the evaluation, collateral sources of information, psychiatric evaluation of juvenile adjudicative competency, assessment of mental disorder and intellectual disability, assessment of developmental status, assessment of functional abilities for adjudicative competence, and reaching the forensic opinion. Copyright © 2012 Elsevier Inc. All rights reserved.

  19. Effects of Tidal Turbine Noise on Fish Hearing and Tissues - Draft Final Report - Environmental Effects of Marine and Hydrokinetic Energy

    Energy Technology Data Exchange (ETDEWEB)

    Halvorsen, Michele B.; Carlson, Thomas J.; Copping, Andrea E.

    2011-09-30

    Snohomish Public Utility District No.1 plans to deploy two 6 meter OpenHydro tidal turbines in Admiralty Inlet in Puget Sound, under a FERC pilot permitting process. Regulators and stakeholders have raised questions about the potential effect of noise from the turbines on marine life. Noise in the aquatic environment is known to be a stressor to many types of aquatic life, including marine mammals, fish and birds. Marine mammals and birds are exceptionally difficult to work with for technical and regulatory reasons. Fish have been used as surrogates for other aquatic organisms as they have similar auditory structures. This project was funded under the FY09 Funding Opportunity Announcement (FOA) to Snohomish PUD, in partnership with the University of Washington - Northwest National Marine Renewable Energy Center, the Sea Mammal Research Unit, and Pacific Northwest National Laboratory. The results of this study will inform the larger research project outcomes. Proposed tidal turbine deployments in coastal waters are likely to propagate noise into nearby waters, potentially causing stress to native organisms. For this set of experiments, juvenile Chinook salmon (Oncorhynchus tshawytscha) were used as the experimental model. Plans exist for prototype tidal turbines to be deployed into their habitat. Noise is known to affect fish in many ways, such as causing a threshold shift in auditory sensitivity or tissue damage. The characteristics of noise, its spectra and level, are important factors that influence the potential for the noise to injure fish. For example, the frequency range of the tidal turbine noise includes the audiogram (frequency range of hearing) of most fish. This study was performed during FY 2011 to determine if noise generated by a 6-m diameter OpenHydro turbine might affect juvenile Chinook salmon hearing or cause barotrauma. Naturally spawning stocks of Chinook salmon that utilize Puget Sound are listed as threatened (http://www.nwr.noaa.gov/ESA-Salmon-Listings/Salmon-Populations/Chinook

  20. Network-scale spatial and temporal variation in Chinook salmon (Oncorhynchus tshawytscha) redd distributions: patterns inferred from spatially continuous replicate surveys

    Science.gov (United States)

    Daniel J. Isaak; Russell F. Thurow

    2006-01-01

    Spatially continuous sampling designs, when temporally replicated, provide analytical flexibility and are unmatched in their ability to provide a dynamic system view. We have compiled such a data set by georeferencing the network-scale distribution of Chinook salmon (Oncorhynchus tshawytscha) redds across a large wilderness basin (7330 km2) in...

  1. Parenting and juvenile delinquency

    OpenAIRE

    Hoeve, M.

    2008-01-01

    Juvenile delinquency is a noteworthy problem. This thesis addressed the association between parenting and juvenile delinquency by analyzing the concepts of parenting adopted in family research in relation to criminological concepts and measures of delinquent behavior. Four studies were conducted. The first study addressed a meta-analysis on parenting characteristics and styles in relation to delinquency. In this meta-analysis, previous manuscripts were systematically analyzed, computing mean ...

  2. PSYCHOSOCIAL PROFILE OF JUVENILE DIABETES

    Science.gov (United States)

    Dass, Jyoti; Dhavale, H.S.; Rathi, Anup

    1999-01-01

    A study of the complex relationships between the patient characteristics, family and environmental influences, physician's behaviour and the demands of the disease with its management in Juvenile Diabetics was taken up at a general hospital. 90 subjects were selected for the study and grouped into three. Group A consisted of 30 Juvenile Diabetics, Group B of 30 Adult Diabetics and Group C of 30 Normal healthy adolescents. The impact of the illness was measured on the Diabetes Impact Measurement Scale (DIMS), the behavioural deviations and the parental attitudes towards child rearing on the Fallstrom's Questionnaire (FQ) and the family environment on the Family Climate Scale (FCS). Psychiatric morbidity was assessed using DSM-IV criteria. Group A & B were compared on the DIMS and Group A & C on FQ & FCS. Adult diabetics had a greater impact of diabetes. Juvenile diabetics had significantly higher frequency of behavioural deviations as compared to controls. Also there was a higher number of responses on questions indicating an overprotecting attitude amongst parents of juvenile diabetics. There was an increased incidence of psychiatric morbidity in juvenile diabetics as compared to normal adolescents irrespective of the family environment. The results are discussed in relation to current literature. PMID:21430802

  3. AFSC/ABL: Eastern Bering Sea (BASIS) Coastal Research on Juvenile Salmon (Oceanography data)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Pacific salmon (Oncorhynchus spp.) runs in rivers that flow into the eastern Bering Sea have been inconsistent and at times very weak. Low returns of chinook (O....

  4. Juvenile Prostitution.

    Science.gov (United States)

    Csapo, Marg

    1986-01-01

    Recent research and Canadian government committee reports concerning juvenile prostitution are reviewed. Proposals are made in the realms of law and social policy; and existing programs are described. (DB)

  5. "Research to Improve the Efficacy of Captive Broodstock Programs and Advance Hatchery Reform Throughout the Columbia River Basin." [from the Abstract], 2007-2008 Annual Progress Report.

    Energy Technology Data Exchange (ETDEWEB)

    Berejikian, Barry A. [National Marine Fisheries Service

    2009-04-08

    This project was developed to conduct research to improve the efficacy of captive broodstock programs and advance hatchery reform throughout the Columbia river basin. The project has three objectives: (1) maintain adaptive life history characteristics in Chinook salmon, (2) improve imprinting in juvenile sockeye salmon, and (3) match wild phenotypes in Chinook and sockeye salmon reared in hatcheries. A summary of the results are as follows: Objective 1: Adult and jack Chinook salmon males were stocked into four replicate spawning channels at a constant density (N = 16 per breeding group), but different ratios, and were left to spawn naturally with a fixed number of females (N = 6 per breeding group). Adult males obtained primary access to females and were first to enter the nest at the time of spawning. Jack male spawning occurred primarily by establishing satellite positions downstream of the courting pair, and 'sneaking' into the nest at the time of spawning. Male dominance hierarchies were fairly stable and strongly correlated with the order of nest entry at the time of spawning. Spawning participation by jack and adult males is consistent with a negative frequency dependent selection model, which means that selection during spawning favors the rarer life history form. Results of DNA parentage assignments will be analyzed to estimate adult-to-fry fitness of each male. Objective 2: To determine the critical period(s) for imprinting for sockeye salmon, juvenile salmon were exposed to known odorants at key developmental stages. Molecular assessments of imprinting-induced changes in odorant receptor gene expression indicated that regulation of odorant expression is influenced by developmental status and odor exposure history. The results suggest that sockeye salmon are capable of imprinting to homing cues during the developmental periods that correspond to several of current release strategies employed as part of the Captive Broodstock program

  6. Predicting occurrence of juvenile shark habitat to improve conservation planning.

    Science.gov (United States)

    Oh, Beverly Z L; Sequeira, Ana M M; Meekan, Mark G; Ruppert, Jonathan L W; Meeuwig, Jessica J

    2017-06-01

    Fishing and habitat degradation have increased the extinction risk of sharks, and conservation strategies recognize that survival of juveniles is critical for the effective management of shark populations. Despite the rapid expansion of marine protected areas (MPAs) globally, the paucity of shark-monitoring data on large scales (100s-1000s km) means that the effectiveness of MPAs in halting shark declines remains unclear. Using data collected by baited remote underwater video systems (BRUVS) in northwestern Australia, we developed generalized linear models to elucidate the ecological drivers of habitat suitability for juvenile sharks. We assessed occurrence patterns at the order and species levels. We included all juvenile sharks sampled and the 3 most abundant species sampled separately (grey reef [Carcharhinus amblyrhynchos], sandbar [Carcharhinus plumbeus], and whitetip reef sharks [Triaenodon obesus]). We predicted the occurrence of juvenile sharks across 490,515 km 2 of coastal waters and quantified the representation of highly suitable habitats within MPAs. Our species-level models had higher accuracy (ĸ ≥ 0.69) and deviance explained (≥48%) than our order-level model (ĸ = 0.36 and deviance explained of 10%). Maps of predicted occurrence revealed different species-specific patterns of highly suitable habitat. These differences likely reflect different physiological or resource requirements between individual species and validate concerns over the utility of conservation targets based on aggregate species groups as opposed to a species-focused approach. Highly suitable habitats were poorly represented in MPAs with the most restrictions on extractive activities. This spatial mismatch possibly indicates a lack of explicit conservation targets and information on species distribution during the planning process. Non-extractive BRUVS provided a useful platform for building the suitability models across large scales to assist conservation planning across

  7. The relationship between survival of Columbia River fall chinook salmon and in-river environmental factors -- Analysis of historic data for juvenile and adult salmonid production: Phase 2. Final report

    International Nuclear Information System (INIS)

    Skalski, J.R.; Townsend, R.L.; Donnelly, R.F.; Hilborn, R.W.

    1996-12-01

    This project analyzes in greater detail the coded-wire-tag (CWT) returns of Priest Rapids Hatchery fall chinook for the years 1976--1989 initially begun by Hilborn et al. (1993a). These additional analyses were prompted by suggestions made by peer reviews of the initial draft report. The initial draft and the peer review comments are included in this final report (Appendices A and B). The statistical analyses paired Priest Rapids stock with potential downriver reference stocks to isolate in-river survival rates. Thirty-three potential reference stocks were initially examined for similar ocean recovery rates; the five stocks with the most similar recovery patterns (i.e., Bonneville Brights, Cowlitz, Gray's River, Tanner Creek, and Washougal) to the Priest Rapids stock were used in the subsequent analysis of in-river survival. Three alternate forms of multiple regression models were used to investigate the relationship between predicted in-river survival and ambient conditions. Analyses were conducted with and without attempts to adjust for smolt transportation at McNary Dam. Independent variables examined in the analysis included river flows, temperature, turbidity, and spill along with the total biomass of hatchery releases in the Columbia-Snake River Basin

  8. Using broad landscape level features to predict redd densities of steelhead trout (Oncorhynchus mykiss) and Chinook Salmon (Oncorhynchus tshawytscha) in the Methow River watershed, Washington

    Science.gov (United States)

    Romine, Jason G.; Perry, Russell W.; Connolly, Patrick J.

    2013-01-01

    We used broad-scale landscape feature variables to model redd densities of spring Chinook salmon (Oncorhynchus tshawytscha) and steelhead trout (Oncorhynchus mykiss) in the Methow River watershed. Redd densities were estimated from redd counts conducted from 2005 to 2007 and 2009 for steelhead trout and 2005 to 2009 for spring Chinook salmon. These densities were modeled using generalized linear mixed models. Variables examined included primary and secondary geology type, habitat type, flow type, sinuosity, and slope of stream channel. In addition, we included spring effect and hatchery effect variables to account for high densities of redds near known springs and hatchery outflows. Variables were associated with National Hydrography Database reach designations for modeling redd densities within each reach. Reaches were assigned a dominant habitat type, geology, mean slope, and sinuosity. The best fit model for spring Chinook salmon included sinuosity, critical slope, habitat type, flow type, and hatchery effect. Flow type, slope, and habitat type variables accounted for most of the variation in the data. The best fit model for steelhead trout included year, habitat type, flow type, hatchery effect, and spring effect. The spring effect, flow type, and hatchery effect variables explained most of the variation in the data. Our models illustrate how broad-scale landscape features may be used to predict spawning habitat over large areas where fine-scale data may be lacking.

  9. Using cure models for analyzing the influence of pathogens on salmon survival

    Science.gov (United States)

    Ray, Adam R; Perry, Russell W.; Som, Nicholas A.; Bartholomew, Jerri L

    2014-01-01

    Parasites and pathogens influence the size and stability of wildlife populations, yet many population models ignore the population-level effects of pathogens. Standard survival analysis methods (e.g., accelerated failure time models) are used to assess how survival rates are influenced by disease. However, they assume that each individual is equally susceptible and will eventually experience the event of interest; this assumption is not typically satisfied with regard to pathogens of wildlife populations. In contrast, mixture cure models, which comprise logistic regression and survival analysis components, allow for different covariates to be entered into each part of the model and provide better predictions of survival when a fraction of the population is expected to survive a disease outbreak. We fitted mixture cure models to the host–pathogen dynamics of Chinook Salmon Oncorhynchus tshawytscha and Coho Salmon O. kisutch and the myxozoan parasite Ceratomyxa shasta. Total parasite concentration, water temperature, and discharge were used as covariates to predict the observed parasite-induced mortality in juvenile salmonids collected as part of a long-term monitoring program in the Klamath River, California. The mixture cure models predicted the observed total mortality well, but some of the variability in observed mortality rates was not captured by the models. Parasite concentration and water temperature were positively associated with total mortality and the mortality rate of both Chinook Salmon and Coho Salmon. Discharge was positively associated with total mortality for both species but only affected the mortality rate for Coho Salmon. The mixture cure models provide insights into how daily survival rates change over time in Chinook Salmon and Coho Salmon after they become infected with C. shasta.

  10. Imágenes juveniles, medios y nuevos escenarios

    Directory of Open Access Journals (Sweden)

    Oscar Aguilera Ruiz

    2015-01-01

    Full Text Available Este artículo nace del análisis de los discursos radiales producidos exclusivamente para jóvenes en Santiago de Chile. Aborda además las categorías comprensivas de la vida juvenil, la vida juvenil de los años 90, el imaginario juvenil des-simbolizado, hacia una comprensión de lo juvenil, dinámica social propuesta por los medios y estrategias comunicacionales.

  11. Metro Multnomah Wetlands - Multnomah Channel Wetland Restoration Monitoring Project

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The Multnomah Channel Wetland Restoration Monitoring Project characterizes wetlands use by juvenile salmonids and other fishes in the Multnomah Channel Marsh Natural...

  12. Survival and Passage of Yearling and Subyearling Chinook Salmon and Steelhead at The Dalles Dam, 2010

    Energy Technology Data Exchange (ETDEWEB)

    Johnson, Gary E.; Skalski, J. R.; Carlson, Thomas J.; Ploskey, Gene R.; Weiland, Mark A.; Deng, Zhiqun; Fischer, Eric S.; Hughes, James S.; Khan, Fenton; Kim, Jin A.; Townsend, Richard L.

    2011-12-01

    The acoustic telemetry study reported here was conducted by researchers at Pacific Northwest National Laboratory (PNNL) and the University of Washington (UW) for the U.S. Army Corps of Engineers, Portland District (USACE). The purpose of the study was to estimate dam passage survival and other performance measures for yearling and subyearling Chinook salmon and steelhead at The Dalles Dam as stipulated by the 2008 Biological Opinion on operation of the Federal Columbia River Power System (FCRPS) and 2008 Columbia Basin Fish Accords.

  13. Vegetative propagation of mature and juvenile northern red oak

    Science.gov (United States)

    James J. Zaczek; K. C. Steiner; C. W., Jr. Heuser

    1993-01-01

    Rooting trials were established to evaluate rooting success of cuttings from mature and juvenile, grafted and ungrafted northern red oak (NRO). Buds from 4 mature NRO ortets and juvenile seedlings were grafted onto juvenile and mature rootstock. Cuttings were collected from the grafts and from juvenile and mature shoots developed in situ and...

  14. Comparing the Reproductive Success of Yakima River Hatchery- and Wild-Origin Spring Chinook; Yakima/Klickitat Fisheries Project Monitoring and Evaluation, 2005-2006 Annual Report.

    Energy Technology Data Exchange (ETDEWEB)

    Schroder, S.L.; Pearsons, T.N. (Washington Department of Fish and Wildlife, Olympia, WA); Knudsen, C.M. (Oncorh Consulting, Olympia, WA)

    2006-05-01

    Reproductive success in wild- and first generation hatchery-origin spring Chinook males was examined by allowing the fish to compete for spawning opportunities in two sections of an observation stream. Behavioral observations were used to characterize the frequency of aggression and courting activities. Microsatellite DNA from each male and fry collected from the observation stream were used in pedigree analyses to estimate reproductive success. The coefficient of variation in male reproductive success equaled 116 and 86% in the two populations. No differences were detected in reproductive success due to hatchery or wild origin. Nor were any behavioral differences found between hatchery and wild males. Although statistical power was low due to intrinsic variation a great deal of overlap existed in the reproductive success values of hatchery and wild males. Significant disparities existed among the males on their ability to produce offspring. Males achieving high reproductive success mated with numerous females, were socially dominant, aggressive, and tended to stay in localized areas, courting and spawning with females that were adjacent to one another.

  15. Antibodies in juvenile-onset myositis.

    Science.gov (United States)

    Tansley, Sarah L

    2016-11-01

    Juvenile-onset myositis is a highly heterogeneous disease. Myositis-specific and associated autoantibodies provide a potential means of subdividing patients into clinically homogenous subgroups. Given the increasing availability of autoantibody testing, this review explores the phenotypes associated with different autoantibodies in juvenile-onset myositis and the potential clinical utility of autoantibody testing. Autoantibodies can be identified in 60-70% of children with myositis and the recent discovery of novel myositis-associated autoantibodies in adult patients suggests this may increase in the near future. Detailed phenotype descriptions are now known for several autoantibodies commonly identified in juvenile-onset disease. Whilst there is insufficient evidence to recommend a differential treatment approach based on autoantibody status, it is becoming increasingly clear that some autoantibody subgroups are often treatment resistant and may benefit from a more aggressive approach. The validation of nonspecialised methods for myositis-specific autoantibody detection should lead to more widely available testing. In juvenile-onset disease, this will provide detailed prognostic information and in the future may also influence approach.

  16. REFORMATIONS IN ZIMBABWE'S JUVENILE JUSTICE SYSTEM

    African Journals Online (AJOL)

    Mugumbate

    1996-05-23

    May 23, 1996 ... The article is based on a desk review of existing literature on juvenile crime in the country. ... that Zimbabwe's juvenile justice system is transforming from being ... recommendations include expanding the Pre-trial Diversion ...

  17. Common Marmosets: A Potential Translational Animal Model of Juvenile Depression

    Directory of Open Access Journals (Sweden)

    Nicole Leite Galvão-Coelho

    2017-09-01

    Full Text Available Major depression is a psychiatric disorder with high prevalence in the general population, with increasing expression in adolescence, about 14% in young people. Frequently, it presents as a chronic condition, showing no remission even after several pharmacological treatments and persisting in adult life. Therefore, distinct protocols and animal models have been developed to increase the understanding of this disease or search for new therapies. To this end, this study investigated the effects of chronic social isolation and the potential antidepressant action of nortriptyline in juvenile Callithrix jacchus males and females by monitoring fecal cortisol, body weight, and behavioral parameters and searching for biomarkers and a protocol for inducing depression. The purpose was to validate this species and protocol as a translational model of juvenile depression, addressing all domain criteria of validation: etiologic, face, functional, predictive, inter-relational, evolutionary, and population. In both sexes and both protocols (IDS and DPT, we observed a significant reduction in cortisol levels in the last phase of social isolation, concomitant with increases in autogrooming, stereotyped and anxiety behaviors, and the presence of anhedonia. The alterations induced by chronic social isolation are characteristic of the depressive state in non-human primates and/or in humans, and were reversed in large part by treatment with an antidepressant drug (nortriptyline. Therefore, these results indicate C. jacchus as a potential translational model of juvenile depression by addressing all criteria of validation.

  18. Persistent association of nailfold capillaroscopy changes and skin involvement over thirty-six months with duration of untreated disease in patients with juvenile dermatomyositis.

    Science.gov (United States)

    Christen-Zaech, Stéphanie; Seshadri, Roopa; Sundberg, Joyce; Paller, Amy S; Pachman, Lauren M

    2008-02-01

    To determine the association of changes on nailfold capillaroscopy with clinical findings and genotype in children with juvenile dermatomyositis (DM), in order to identify potential differences in disease course over 36 months. At diagnosis of juvenile DM in 61 children prior to the initiation of treatment, tumor necrosis factor alpha (TNFalpha) -308 allele and DQA1*0501 status was determined, juvenile DM Disease Activity Scores (DAS) were obtained, and nailfold capillaroscopy was performed. The disease course was monitored for 36 months. Variations within and between patients were assessed by regression analysis. At diagnosis, shorter duration of untreated disease (P = 0.05) and a lower juvenile DM skin DAS (P = 0.035) were associated with a unicyclic disease course. Over 36 months, end-row loop (ERL) regeneration was associated with lower skin DAS (P nailfold capillaroscopy changes. The correlation of nailfold capillaroscopy results with cutaneous but not with musculoskeletal signs of juvenile DM over a 36-month period suggests that the cutaneous and muscle vasculopathies have different pathophysiologic mechanisms. These findings indicate that efforts to identify the optimal treatment of cutaneous features in juvenile DM require greater attention.

  19. AFSC/ABL: Eastern Bering Sea (BASIS) Coastal Research on Juvenile Salmon (TSG-thermosalinigraph data)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Pacific salmon (Oncorhynchus spp.) runs in rivers that flow into the eastern Bering Sea have been inconsistent and at times very weak. Low returns of chinook (O....

  20. Using Goal Achievement Training in juvenile justice settings to improve substance use services for youth on community supervision.

    Science.gov (United States)

    Fisher, Jacqueline Horan; Becan, Jennifer E; Harris, Philip W; Nager, Alexis; Baird-Thomas, Connie; Hogue, Aaron; Bartkowski, John P; Wiley, Tisha

    2018-04-30

    The link between substance use and involvement in the juvenile justice system has been well established. Justice-involved youth tend to have higher rates of drug use than their non-offending peers. At the same time, continued use can contribute to an elevated risk of recidivism, which leads to further, and oftentimes more serious, involvement with the juvenile justice system. Because of these high rates of use, the juvenile justice system is well positioned to help identify youth with substance use problems and connect them to treatment. However, research has found that only about 60% of juvenile probation agencies screen all youth for substance involvement, and even fewer provide comprehensive assessment or help youth enroll in substance use treatment. This paper describes an integrated training curriculum that was developed to help juvenile justice agencies improve their continuum of care for youth probationers with substance use problems. Goal Achievement Training (GAT) provides a platform for continuous quality improvement via two sessions delivered onsite to small groups of staff from juvenile justice and behavioral health agencies. In the first session, participants are taught to identify goals and goal steps for addressing identified areas of unmet need (i.e., screening, assessment, and linkage to treatment services). In the second session, participants learn principles and strategies of data-driven decision-making for achieving these goals. This paper highlights GAT as a model for the effective implementation of cost-efficient training strategies designed to increase self-directed quality improvement activities that can be applied to any performance domain within juvenile justice settings. Efforts to monitor implementation fidelity of GAT within the specific context of the juvenile justice settings are highlighted. Challenges to setting the stage for process improvement generally, as well as specific hurdles within juvenile justice settings are discussed