WorldWideScience

Sample records for molten corium concrete

  1. A study on the modeling of molten corium-concrete interaction

    International Nuclear Information System (INIS)

    Park, Soo Yong

    1994-02-01

    The phenomenon known as molten corium concrete interaction (MCCI) has been recognized as important aspects of severe reactor accidents. The potential hazard of a MCCI is the threat to the integrity of the containment building due to the possibility of a basemat melt through, containment overpressurization by noncondensible gases, or oxidation of combustible gases. Over the past several years, a large experimental and analytical effort has been under taken in corium-concrete interaction phenomena by several organization. The purpose of this paper is to investigate the previous analytical results and computer programs, and finally to establish a new stand alone model which can predict the corium-concrete interaction. A model to predict the behavior of molten corium-concrete interaction in the reactor cavity during vessel ruptured accidents is established. Gas film model, gas bubble model, slag model and periodic contact model are employed as a major heat transfer model between corium and concrete. Solidified debris crust is considered at the boundary of molten corium. Upon the experimental observations, no layer stratification is assumed due to the strong dispersion of the metallic melt in the oxidic phase. With the assumption of temperature profile within the corium pool and crust, the temperature distribution of concrete is found by explicit solution of heat conduction equation. The sideward heat transfer rate can be obtained by considering multiplication factor to the downward heat transfer rate. The multiplication factor is treated as a user input because of its large uncertainty. Comparisons are made with two large scale experiments, SURC-2 and BETA V3.3. There is a reasonable agreement in the corium temperature, erosion depth and gas generation between the experimental data and the predicted results with periodic contact model given the uncertainties in the input data or the measurement. The gas bubble model has the highest heat transfer coefficient, and the

  2. A comparative analysis of molten corium-concrete interaction models employed in MELCOR and MAAP codes

    International Nuclear Information System (INIS)

    Park, Soo Yong; Song, Y. M.; Kim, D. H.; Kim, H. D.

    1999-03-01

    The purpose of this report are to identify the modelling differences by review phenomenological models related to MCCI, and to investigate modelling uncertainty by performing sensitivity analysis, and finally to identify models to be improved in MELCOR. As the results, the most important uncertain parameter in the MCCI area is the debris stratification/mixing, and heat transfer between molten corium and overlying water pool. MAAP has a very simple and flexible corium-water heat transfer model, which seems to be needed in MELCOR for evaluation of real plants as long as large phenomenological uncertainty still exists. During the corium-concrete interaction, there is a temperature distribution inside basemat concrete. This would affect the amount or timing of gas generation. While MAAP calculates the temperature distribution through nodalization methodology, MELCOR calculates concrete response based on one-dimensional steady-state ablation, with no consideration given to conduction into the concrete or to decomposition in advanced of the ablation front. The code may be inaccurate for analysis of combustible gas generation during MCCI. Thus there is a necessity to improve the concrete decomposition model in MELCOR. (Author). 12 refs., 5 tabs., 42 figs

  3. Behavior of concrete in contact with molten corium in the case of a hypothetical core melt accident

    International Nuclear Information System (INIS)

    Peehs, M.; Skokan, A.; Reimann, M.

    1979-01-01

    The temperature-dependent properties of basaltic and limestone concrete as needed for predicting Corium melt propagation in concrete (elongation behavior, specific heat and degradation enthalpy, thermal diffusivity, and conductivity) are determined experimentally together with the chemical and physical reactions occurring in heated concrete. The determined oxidation potential of -335 kJ/mole for molten Corium interacting with the concrete is in accordance with the observed H 2 generation due to the melt internal oxidation of zirconium, chromium, and iron. The liquefaction temperatures of the different concretes investigated are approx. 1300 to 1400 0 C. The relatively high degradation enthalpy of basaltic and limestone concrete is the reason for the barrier effect of concrete against propagating molten Corium

  4. State-of-the-Art Report on Molten Corium Concrete Interaction and Ex-Vessel Molten Core Coolability

    International Nuclear Information System (INIS)

    Bonnet, Jean-Michel; Cranga, Michel; Vola, Didier; Marchetto, Cathy; Kissane, Martin; ); Robledo, Fernando; Farmer, Mitchel T.; Spengler, Claus; Basu, Sudhamay; Atkhen, Kresna; Fargette, Andre; Fisher, Manfred; Foit, Jerzi; Hotta, Akitoshi; Morita, Akinobu; Journeau, Christophe; Moiseenko, Evgeny; Polidoro, Franco; Zhou, Quan

    2017-01-01

    Activities carried out over the last three decades in relation to core-concrete interactions and melt coolability, as well as related containment failure modes, have significantly increased the level of understanding in this area. In a severe accident with little or no cooling of the reactor core, the residual decay heat in the fuel can cause the core materials to melt. One of the challenges in such cases is to determine the consequences of molten core materials causing a failure of the reactor pressure vessel. Molten corium will interact, for example, with structural concrete below the vessel. The reaction between corium and concrete, commonly referred to as MCCI (molten core concrete interaction), can be extensive and can release combustible gases. The cooling behaviour of ex-vessel melts through sprays or flooding is also complex. This report summarises the current state of the art on MCCI and melt coolability, and thus should be useful to specialists seeking to predict the consequences of severe accidents, to model developers for severe-accident computer codes and to designers of mitigation measures

  5. Molten Corium-Concrete Interaction Behavior Analyses for Severe Accident Management in CANDU Reactor

    International Nuclear Information System (INIS)

    Choi, Y.; Kim, D. H.; Song, Y. M.

    2014-01-01

    After the last few severe accidents, the importance of accident management in nuclear power plants has increased. Many countries, including the United States (US) and Canada, have focused on understanding severe accidents in order to identify ways to further improve the safety of nuclear plants. It has been recognized that severe accident analyses of nuclear power plants will be beneficial in understanding plant-specific vulnerabilities during severe accidents. The objectives of this paper are to describe the molten corium behavior to identify a plant response with various concrete specific components. Accident analyses techniques using ISSAC can be useful tools for MCCI behavior in severe accident mitigation

  6. KAPOOL experiments to simulate molten corium - sacrificial concrete interaction

    International Nuclear Information System (INIS)

    Eppinger, B.; Fieg, G.; Tromm, W.

    2001-01-01

    In future Light Water Reactors special devices (core catchers) might be required to prevent containment failure by basement erosion after reactor pressure vessel melt-through during a core meltdown accident. In the planned European Pressurized Reactor (EPR) the core melt is retained in the reactor cavity for ∼ 1 h to pick up late melts after the failure of the reactor pressure vessel. The reactor cavity is protected by a layer of sacrificial concrete and closed by a melt gate at the bottom towards the spreading compartment. After erosion of the sacrificial concrete and melt-through of the gate the core melt should be distributed homogeneously into the spreading compartment. There the melt is cooled by flooding with water. The knowledge of the sacrificial concrete erosion phase in the reactor cavity is essential for the severe accident assessment. Several KAPOOL experiments have been performed to investigate the erosion of two possible compositions of sacrificial concretes using alumina-iron thermite melts as a simulant for the core melt. Erosion rates as a function of the melt temperature and the inhomogeneity of the melt front are presented in this paper. (authors)

  7. Molten corium concrete interaction: investigation of heat transfer in two-phase flow

    International Nuclear Information System (INIS)

    Amizic, Milan

    2014-01-01

    In the context of severe accident research for the second and the third generation of nuclear power plants, there are still open issues concerning some aspects of the concrete cavity ablation during the molten corium - concrete interaction (MCCI). The determination of heat transfer along the interfacial region between the molten corium pool and the ablating basemat concrete is crucial for the assessment of concrete ablation progression and eventually the basemat melt through. For the purpose of experimental investigation of thermal hydraulics inside a liquid pool agitated by gas bubbles, the CLARA project has been launched. The CLARA experiments are performed using simulant materials and they reveal the influence of superficial gas velocity, liquid viscosity and pool geometry on the heat transfer coefficient between the internally heated liquid pool and vertical and horizontal pool walls maintained at uniform temperature. The first test campaign has been conducted with the small pool configuration (50 cm * 25 cm * 25 cm). The tests have been performed with liquids covering a wide range of dynamic viscosity from approximately 1 mPa s to 10000 mPa s and the superficial gas velocity is varied up to 8 cm/s. This thesis comprises a brief description of MCCI phenomenology, literature reviews on the existing heat transfer correlations for two phase flow and the void fraction, a description of CLARA setup, experimental results and their interpretation. The experimental results are compared with existing models and some new models for the assessment of heat transfer coefficient in two-phase flow. (author) [fr

  8. Investigation of molten corium-concrete interaction phenomena and aerosol release

    International Nuclear Information System (INIS)

    Spencer, B.W.; Thompson, D.H.; Armstrong, D.R.; Fink, J.K.; Gunther, W.H.; Kilsdonk, D.J.; Sehgal, B.R.

    1987-01-01

    The Electric Power Research Institute is sponsoring a program of laboratory investigations at Argonne National Laboratory to study the interaction between molten core materials and reactor concrete basemats during postulated severe reactor accidents, with particular emphasis on measurements of the magnitude and chemical species present in the aerosol releases. The approach in this program is to sustain internal heat generation in reactor-material corium using direct electrical heating and to develop test operating and diagnostics capabilities with a series of small- and intermediate-scale scoping tests followed by fully instrumented large-scale testing. Real reactor materials (UO 2 , ZrO 2 , oxides of stainless steel, plus metallics) are used, with small amounts of La 2 O 3 , BaO, and SrO added to simulate nonvolatile fission products. In intermediate-scale scoping tests completed to date, corium inventories of up to 29 kg have been heated with power inputs in excess of 1 kW/kg melt. The measured concrete ablation rates have ranged from 0.9 to 3.9 mm/minute. Aerosol samples have been examined using a scanning electron microscope and show submicron particles, 2-6 micrometer spheres, and agglomerates that range from a few micrometers to string 13 micrometers in length

  9. Analysis of top flooding during molten corium concrete interaction (MCCI) with the code MEDICIS using a simplified approach for the combined effect of crust formation and boiling

    International Nuclear Information System (INIS)

    Spengler, C.

    2012-01-01

    The objective of this work is to provide adequate models in the code MEDICIS for the molten corium concrete interaction (MCCI) phase in a severe accident. Here, the multidimensional distribution of heat fluxes from the molten pool of corium to the sidewall and bottom wall concrete structures in the reactor pit and to the top surface is a persistent subject of international research activities on MCCI. In recent experi-ments with internally heated oxide melts it was observed that the erosion progress may be anisotropic - with an apparent preference of the sidewall compared to the bottom wall - or isotropic, in dependence of the type of concrete with which the cori-um interacts. The lumped parameter code MEDICIS, which is part of the severe accident codes ASTEC and COCOSYS - developed and used at IRSN/GRS respectively GRS for the latter one -, is dedicated to simulate the phenomenology during MCCI. In this work a simplified modelling in MEDICIS is tested to account for the observed ablation behaviour during MCCI, with focus on the heat transfer to the top surface under flooded conditions. This approach is assessed by calculations for selected MCCI experiments involving the top flooding of the melt. (orig.)

  10. Viscosities of corium-concrete mixtures

    International Nuclear Information System (INIS)

    Seiler, J.M.; Ganzhorn, J.

    1997-01-01

    Severe accidents on nuclear reactors involve many situations such as pools of molten core material, melt spreading, melt/concrete interactions, etc. The word 'corium' designates mixtures of materials issued from the molten core at high temperature; these mixtures involve mainly: UO2, ZrO2, Zr and, in small amounts, Ni, Cr, Ag, In, Cd. These materials, when flowing out of the reactor vessel, may interact with the concrete of the reactor building thus introducing decomposition products of concrete into the original mixture. These decomposition products are mainly: SiO 2 , FeO, MgO, CaO and Al 2 O 3 in different amounts depending on the nature of the concrete being considered. Siliceous concrete is rich in SiO 2 , limestone concrete contains both SiO 2 and CaO. Liquidus temperatures of such mixtures are generally obove 2300 K whereas solidus temperatures are ∝1400 K. (orig.)

  11. Improvements in modelling (by ESCADRE mod1.0) radiative heat losses through gas and aerosols generated by molten corium-concrete interactions

    International Nuclear Information System (INIS)

    Passalacqua, R.

    1996-01-01

    Aerosols generated during the molten core-concrete interaction (MCCI) influence the reactor cavity thermal hydraulics: the cloud of aerosols, located inside the reactor cavity, restrains the upward-directed heat exchange consequently the cool-down of the high-temperature molten corium for a considerable period of time. IPSN is developing a computer code system for source predictions in severe accident scenarios. This code system is named ESCADRE. WECHSL/CALTHER is internal module dealing with MCCI (it is also a stand-alone code): it models the heat transfers involving the superior volume of the cavity. When modelling the upward-directed power distribution by WECHSL/CALTHER, a faster concrete basemat penetration takes place due to the low heat losses of the closed MCCI cavity enclosure. The model, here presented, is going to be validated with data from the AEROSTAT experiment. This experiment, planned at CEA Cadarache, will evaluate the influence of aerosols on the global power distribution in the reactor cavity. Radiative heat losses are important especially for cavity configurations such as those of new plant designs (equipped with a core-catcher) where the upward power losses are promoted by the corium spreading in a flat cavity

  12. Experimental studies of oxidic molten corium-vessel steel interaction

    International Nuclear Information System (INIS)

    Bechta, S.V.; Khabensky, V.B.; Vitol, S.A.; Krushinov, E.V.; Lopukh, D.B.; Petrov, Yu.B.; Petchenkov, A.Yu.; Kulagin, I.V.; Granovsky, V.S.; Kovtunova, S.V.; Martinov, V.V.; Gusarov, V.V.

    2001-01-01

    The experimental results of molten corium-steel specimen interaction with molten corium on the 'Rasplav-2' test facility are presented. In the experiments, cooled vessel steel specimens positioned on the molten pool bottom and uncooled ones lowered into the molten pool were tested. Interaction processes were studied for different corium compositions, melt superheating and in alternative (inert and air) overlying atmosphere. Hypotheses were put forward explaining the observed phenomena and interaction mechanisms. The studies presented in the paper were aimed at the detection of different corium-steel interaction mechanisms. Therefore certain identified phenomena are more typical of the ex-vessel localization conditions than of the in-vessel corium retention. Primarily, this can be referred to the phenomena of low-temperature molten corium-vessel steel interaction in oxidizing atmosphere

  13. Experimental studies of oxidic molten corium-vessel steel interaction

    Energy Technology Data Exchange (ETDEWEB)

    Bechta, S.V. E-mail: niti-npc@sbor.net; Khabensky, V.B.; Vitol, S.A.; Krushinov, E.V.; Lopukh, D.B.; Petrov, Yu.B.; Petchenkov, A.Yu.; Kulagin, I.V.; Granovsky, V.S.; Kovtunova, S.V.; Martinov, V.V.; Gusarov, V.V

    2001-12-01

    The experimental results of molten corium-steel specimen interaction with molten corium on the 'Rasplav-2' test facility are presented. In the experiments, cooled vessel steel specimens positioned on the molten pool bottom and uncooled ones lowered into the molten pool were tested. Interaction processes were studied for different corium compositions, melt superheating and in alternative (inert and air) overlying atmosphere. Hypotheses were put forward explaining the observed phenomena and interaction mechanisms. The studies presented in the paper were aimed at the detection of different corium-steel interaction mechanisms. Therefore certain identified phenomena are more typical of the ex-vessel localization conditions than of the in-vessel corium retention. Primarily, this can be referred to the phenomena of low-temperature molten corium-vessel steel interaction in oxidizing atmosphere.

  14. Two-dimensional interaction of oxidic corium with concretes: The VULCANO VB test series

    Energy Technology Data Exchange (ETDEWEB)

    Journeau, Christophe [CEA, DEN, STRI/LMA, Cadarache, F-13108 St Paul lez Durance (France)], E-mail: christophe.journeau@cea.fr; Piluso, Pascal; Haquet, Jean-Francois; Boccaccio, Eric; Saldo, Valerie; Bonnet, Jean-Michel; Malaval, Sophie; Carenini, Laure [CEA, DEN, STRI/LMA, Cadarache, F-13108 St Paul lez Durance (France); Brissonneau, Laurent [CEA, DEN, STPA/LPC, Cadarache, F-13108 St Paul lez Durance (France)

    2009-10-15

    Three two-dimensional Molten Core-Concrete Interaction tests have been conducted in the VULCANO facility with prototypic oxidic corium. The major finding is that for the two tests with silica-rich concrete, the ablation was anisotropic while it was isotropic for limestone-rich concrete. The cause of this behaviour is not yet well understood. Post Test Examinations have indicated that for the silica-rich concrete, the corium melt mixed specifically with mortar, while, for limestone-rich concretes, the analysed samples were in accordance with a corium-concrete mixing. The experimental results are described and compared to numerical codes. Separate Effect Tests with Artificial Concretes and prototypic corium are proposed to understand the phenomena governing the ablation geometry.

  15. Two-dimensional interaction of oxidic corium with concretes: The VULCANO VB test series

    International Nuclear Information System (INIS)

    Journeau, Christophe; Piluso, Pascal; Haquet, Jean-Francois; Boccaccio, Eric; Saldo, Valerie; Bonnet, Jean-Michel; Malaval, Sophie; Carenini, Laure; Brissonneau, Laurent

    2009-01-01

    Three two-dimensional Molten Core-Concrete Interaction tests have been conducted in the VULCANO facility with prototypic oxidic corium. The major finding is that for the two tests with silica-rich concrete, the ablation was anisotropic while it was isotropic for limestone-rich concrete. The cause of this behaviour is not yet well understood. Post Test Examinations have indicated that for the silica-rich concrete, the corium melt mixed specifically with mortar, while, for limestone-rich concretes, the analysed samples were in accordance with a corium-concrete mixing. The experimental results are described and compared to numerical codes. Separate Effect Tests with Artificial Concretes and prototypic corium are proposed to understand the phenomena governing the ablation geometry.

  16. Oxide-metal corium-concrete interaction test in the Vulcano facility

    International Nuclear Information System (INIS)

    Journeau, Ch.; Piluso, P.; Haquet, J.F.; Saretta, S.; Boccaccio, E.; Bonnet, J.M.

    2007-01-01

    Corium is likely to melt through the vessel and interact with the reactor pit concrete. Corium is made of a UO 2 -rich oxidic part, in which most of the decay heat is dissipated, and of a metallic part, mainly molten steel. An experiment has been set up in the Vulcano facility in which oxidic and metallic mixtures are molten in separate furnaces and poured in a concrete cavity. Induction heating is provided to the pool upper part thanks to shielding coils, so that, in case of stratification, the lighter oxidic corium-concrete mixture receives most of the power. Pre-calculations with the TOLBIAC-ICB corium-concrete interaction code based on the phase segregation model have provided valuable information for the dimensioning of this test: a thick metallic layer (>10 kg or 4 cm) has been chosen in order to obtain significant cavity ablation profiles depending on the selected heat transfer and stratification models. Stratification of the two liquid phases is predicted to occur in less than 10 minutes. In September 2006, the experiment was performed in the Vulcano facility. The corium was made of about 15 kg of steel at 1700 C and 30 kg of oxides (70% UO 2 , 16 % ZrO 2 and 14% concrete load) above 2000 C. It was poured in a limestone-rich concrete. This concrete type was selected for the first test, since the ablation is isotropic except for the initial transient, during oxidic corium-concrete interaction tests. 32 kW of induction power have been provided to the pool during the 4-hour test. The destruction of in-concrete thermocouples indicates that ablation was first mainly radial then became isotropic. This is quite similar to the ablation progression observed during previous tests with oxidic corium interacting with this type of concrete. Important 'volcanic activity' has been observed at the corium pool surface, compared to the previous oxidic corium experiments at Vulcano. (authors)

  17. Interaction of concretes with oxide + metal corium. The VULCANO VBS series

    International Nuclear Information System (INIS)

    Journeau, Christophe; Bonnet, Jean-Michel; Ferry, Lionel; Haquet, Jean-Francois; Piluso, Pascal

    2009-01-01

    In the hypothetical case of a severe accident, the reactor core could melt and the formed mixture, called corium, could melt through the vessel and interact with the reactor pit concrete. Corium is made from a UO 2 -rich oxidic part, in which most of the decay heat is dissipated, and a metallic part, mainly molten steel. Up to now, due to experimental constraints, most of the experiments have been performed with solely oxidic prototypic corium, or where designed so that most of the simulated decay heat was dissipated in the metallic layer. An experimental program has been set up in the VULCANO facility in which oxidic and metallic mixtures are melted in separate furnaces and poured in a concrete cavity. Induction heating is provided to the pool upper part thanks to shielding coils, so that, in case of stratification, the lighter oxidic corium-concrete mixture receives most of the power. Three experiments have been conducted: one with a limestone-rich concrete and two with a silica-rich concrete. Metal stratification has been determined from modifications of the corium electrical properties in front of the inductor and is in good accordance with calculations. Concrete ablation has been monitored. A significant vertical ablation has been observed, even in case of silica-rich concretes, for which largely radial ablation has been observed in the case of pure oxidic corium melts. Post Test Examinations have shown unexpected repartitions of metal in the pool. (author)

  18. Corrosion of vessel steel during its interaction with molten corium

    International Nuclear Information System (INIS)

    Bechta, S.V.; Khabensky, V.B.; Vitol, S.A.; Krushinov, E.V.; Granovsky, V.S.; Lopukh, D.B.; Gusarov, V.V.; Martinov, A.P.; Martinov, V.V.; Fieg, G.; Tromm, W.; Bottomley, D.; Tuomisto, H.

    2006-01-01

    An experimental examination of the cooled vessel steel corrosion during the interaction with molten corium is presented. The experiments have been conducted on 'Rasplav-2' test facility and followed up with physico-chemical and metallographic analyses of melt samples and corium-specimen ingots. The results discussed in the first part of the paper have revealed specific corrosion mechanisms for air and inert atmosphere above the melt. Models have been proposed based on this information and approximate curves constructed for the estimation of the corrosion rate or corrosion depth of vessel steel in conditions simulated by the experiments

  19. Corrosion of vessel steel during its interaction with molten corium

    International Nuclear Information System (INIS)

    Bechta, S.V.; Khabensky, V.B.; Vitol, S.A.; Krushinov, E.V.; Granovsky, V.S.; Lopukh, D.B.; Gusarov, V.V.; Martinov, A.P.; Martinov, V.V.; Fieg, G.; Tromm, W.; Bottomley, D.; Tuomisto, H.

    2006-01-01

    This paper is concerned with corrosion of a cooled vessel steel structure interacting with molten corium in air and neutral (nitrogen) atmospheres during an in-vessel retention scenario. The data on corrosion kinetics at different temperatures on the heated steel surface, heat flux densities and oxygen potential in the system are presented. The post-test physico-chemical and metallographic analyses of melt samples and the corium-specimen ingot have clarified certain mechanisms of steel corrosion taking place during the in-vessel melt interaction

  20. Corrosion of vessel steel during its interaction with molten corium

    Energy Technology Data Exchange (ETDEWEB)

    Bechta, S.V. [Scientific Research Technological Institute (NITI), Sosnovy Bor of Leningrad Oblast 188540 (Russian Federation)]. E-mail: bechta@sbor.spb.su; Khabensky, V.B. [Scientific Research Technological Institute (NITI), Sosnovy Bor of Leningrad Oblast 188540 (Russian Federation); Vitol, S.A. [Scientific Research Technological Institute (NITI), Sosnovy Bor of Leningrad Oblast 188540 (Russian Federation); Krushinov, E.V. [Scientific Research Technological Institute (NITI), Sosnovy Bor of Leningrad Oblast 188540 (Russian Federation); Granovsky, V.S. [Scientific Research Technological Institute (NITI), Sosnovy Bor of Leningrad Oblast 188540 (Russian Federation); Lopukh, D.B. [SPb Electrotechnical University (SpbGETU), Professor Popov str., b.5/3, 197376 St. Petersburg (Russian Federation); Gusarov, V.V. [Institute of Silicate Chemistry of Russian Academy of Science (ISC of RAS), Odoevsky str., b. 24/2, 199155 St. Petersburg (Russian Federation); Martinov, A.P. [SPb Electrotechnical University (SpbGETU), Professor Popov str., b.5/3, 197376 St. Petersburg (Russian Federation); Martinov, V.V. [Scientific Research Technological Institute (NITI), Sosnovy Bor of Leningrad Oblast 188540 (Russian Federation); Fieg, G. [Forshungszentrum Karlsruhe (FZK), Institut fur Neutronenphysik and Reaktortechnik, Postfach 3640, D-78021 Karlsruhe (Germany); Tromm, W. [Forshungszentrum Karlsruhe (FZK), Institut fur Neutronenphysik and Reaktortechnik, Postfach 3640, D-78021 Karlsruhe (Germany); Bottomley, D. [Europaeische Kommission, General Direktion GFS, Institut fuer Transurane (ITU), Postfach 2340, 76125 Karlsruhe (Germany); Tuomisto, H. [Fortum Engineering Ltd. 00048 FORTUM, Rajatorpantie 8, Vantaa (Finland)

    2006-07-15

    An experimental examination of the cooled vessel steel corrosion during the interaction with molten corium is presented. The experiments have been conducted on 'Rasplav-2' test facility and followed up with physico-chemical and metallographic analyses of melt samples and corium-specimen ingots. The results discussed in the first part of the paper have revealed specific corrosion mechanisms for air and inert atmosphere above the melt. Models have been proposed based on this information and approximate curves constructed for the estimation of the corrosion rate or corrosion depth of vessel steel in conditions simulated by the experiments.

  1. The jet impingement phase of molten core-concrete interactions

    International Nuclear Information System (INIS)

    Sienicki, J.J.; Spencer, B.W.

    1986-01-01

    Scoping calculations have been carried out demonstrating that a significant and abrupt reduction in the corium temperature may be realized when molten corium drains as a jet from a localized breach in the RPV lower head to impinge upon the concrete basemat. The temperature decrease may range from a value of ∼170 K (∼140 K) for limestone (basaltic) aggregate concrete to a value approaching the initial corium superheat depending upon whether the forced convection impingement heat flux is assumed to be controlled by either thermal conduction across a slag film layer or the temperature boundary condition represented by a corium crust. The magnitude of the temperature reduction remains significant as the initial corium temperature, impinging corium mass, and initial localized breach size are varied over their range of potential values

  2. Thermodynamic study on the in-vessel corium - Application to the corium/concrete interaction

    International Nuclear Information System (INIS)

    Quaini, Andrea

    2015-01-01

    During a severe accident in a pressurised water reactor, the nuclear fuel can interact with the Zircaloy cladding, the neutronic absorber and the surrounding metallic structure forming a partially or completely molten mixture. The molten core can then interact with the reactor steel vessel forming a mixture called in-vessel corium. In the worst case, this mixture can pierce the vessel and pour onto the concrete underneath the reactor, leading the formation of the ex-vessel corium. Furthermore, depending on the considered scenario, the corium can be formed by a liquid phase or by two liquids, one metallic the other oxide. The objective of this thesis is the investigation of the thermodynamics of the prototypic in-vessel corium U-Pu-Zr- Fe-O. The approach used during the thesis is based on the CALPHAD method, which allows to obtain a thermodynamic model for this complex system starting from phase diagram and thermodynamic data. Heat treatments performed on the O-U-Zr system allowed to measure two tie-lines in the miscibility gap in the liquid phase at 2567 K. Furthermore, the liquidus temperatures of three Zr-enriched samples have been obtained by laser heating in collaboration with ITU. With the same laser heating technique, solidus temperatures have been obtained on the UO 2 -PuO 2 -ZrO 2 system. The influence of the reducing or oxidising on the melting behaviour of this system has been studied for the first time. The results show that the oxygen stoichiometry of these oxides strongly depends on the oxygen potential and on the metal composition of the samples. The miscibility gap in the liquid phase of the U-Zr-Fe-O system has been also observed. The whole set of experimental results with the literature data allowed to develop the thermodynamic model of the U-Pu-Zr-Fe-O system. Solidification path calculations have been performed for all the investigated samples to interpret the microstructures of the solidified samples. A good accordance has been obtained between

  3. Physics of coolability of top flooded molten corium

    International Nuclear Information System (INIS)

    Kulkarni, P.P.; Singh, R.K.; Nayak, A.K.; Vijayan, P.K.; Saha, D.; Sinha, R.K.

    2011-01-01

    During a postulated severe accident in a nuclear reactor in case of ex-vessel scenario the molten corium can be relocated in the containment cavity forming a melt pool. In order to arrest further progression of severe accident, complete quenching of the molten corium pool is necessary. Most common way to deal with ex-vessel scenario is to flood the melt pool with large quantity of water. However, the mechanism of coolability is much more complex involving multi-component, multiphase heat, mass and momentum transfer. In this paper, a mechanistic model has been presented for the corium coolability under top flooding conditions. The model has been validated with the experimental data of COMECO test facility available in literature. Simulations have been carried out using the model to explore the physics behind the corium coolability with MCCI under top flooding condition. Variations in the thermo-physical properties as a result of MCCI have been considered and its effect on coolability has been studied. (author)

  4. Oxide-metal corium-concrete interaction test in the Vulcano facility

    Energy Technology Data Exchange (ETDEWEB)

    Journeau, Ch.; Piluso, P.; Haquet, J.F.; Saretta, S.; Boccaccio, E.; Bonnet, J.M. [CEA Cadarache, Severe Accident Mastery experimental Lab. (DEN/DTN/STRI/LMA), 13 - Saint Paul lez Durance (France)

    2007-07-01

    Corium is likely to melt through the vessel and interact with the reactor pit concrete. Corium is made of a UO{sub 2}-rich oxidic part, in which most of the decay heat is dissipated, and of a metallic part, mainly molten steel. An experiment has been set up in the Vulcano facility in which oxidic and metallic mixtures are molten in separate furnaces and poured in a concrete cavity. Induction heating is provided to the pool upper part thanks to shielding coils, so that, in case of stratification, the lighter oxidic corium-concrete mixture receives most of the power. Pre-calculations with the TOLBIAC-ICB corium-concrete interaction code based on the phase segregation model have provided valuable information for the dimensioning of this test: a thick metallic layer (>10 kg or 4 cm) has been chosen in order to obtain significant cavity ablation profiles depending on the selected heat transfer and stratification models. Stratification of the two liquid phases is predicted to occur in less than 10 minutes. In September 2006, the experiment was performed in the Vulcano facility. The corium was made of about 15 kg of steel at 1700 C and 30 kg of oxides (70% UO{sub 2}, 16 % ZrO{sub 2} and 14% concrete load) above 2000 C. It was poured in a limestone-rich concrete. This concrete type was selected for the first test, since the ablation is isotropic except for the initial transient, during oxidic corium-concrete interaction tests. 32 kW of induction power have been provided to the pool during the 4-hour test. The destruction of in-concrete thermocouples indicates that ablation was first mainly radial then became isotropic. This is quite similar to the ablation progression observed during previous tests with oxidic corium interacting with this type of concrete. Important 'volcanic activity' has been observed at the corium pool surface, compared to the previous oxidic corium experiments at Vulcano. (authors)

  5. Cold crucible technique for interaction test of molten corium with structure

    International Nuclear Information System (INIS)

    Ha, Kwang Soon; An, Sang Mo; Min, Beong Tae; Kim, Hwan Yeol

    2012-01-01

    During a severe accident, the molten corium might interact with several structures in a nuclear power plant such as core peripheral structures, lower plenum, lower head vessel, and external structures of a reactor vessel. The interaction of the molten corium with the structure depends on the molten corium composition, temperature, structural materials, and environmental conditions such as pressure and humidity. For example, the interaction of a metallic molten corium containing metal uranium (U) and zirconium (Zr) with the oxidized steel structure (Fe 2O3 ) is affected by not only thermal ablation but oxidation reduction reaction because the oxidation quotients of the U and Zr are higher than that of Fe. KAERI set up an experimental facility and technique using a cold crucible melting method to verify the interaction mechanism between the metallic molten corium and structural materials. This technique includes the generation of the metallic melt, melt delivery, measurement of the interaction process, and post analyses after the test

  6. Thermal behavior of molten corium during TMI-2 core relocation event

    International Nuclear Information System (INIS)

    Anderson, J.L.; Sienicki, J.J.

    1988-01-01

    During the TMI-2 accident, a pool of molten corium formed in the central region of the core and was contained by solidified crusts. Failure of the crust surrounding the molten material, at approximately 224 min, resulted in a relocation of an estimated 20-25 tons of molten corium through peripheral fuel assemblies in the east side of the vessel, as well as through the core barrel assembly (CBA) at the periphery of the core. This paper presents the results of an analyses carried out to investigate the thermal interactions of molten corium with the CBA structures during the relocation event. The principal objectives of the analyses are: (a) to assess the potential for relocation to take place through the CBA versus the flow of molten core material directly downward through the core via the fuel assemblies; and (b) to understand the distribution of prior molten corium observed during vessel defueling examinations. 5 refs., 1 fig

  7. Differences between silica and limestone concretes that may affect their interaction with corium

    International Nuclear Information System (INIS)

    Journeau, C.; Haquet, J. F.; Piluso, P.; Bonnet, J. M.

    2008-01-01

    Recent Molten Core Concrete Interaction tests performed at Argonne National Laboratory and at CEA Cadarache have shown that, whereas the ablation of limestone-rich concretes is almost isotropic, the ablation of silica-rich concretes is much faster towards the sides than towards the bottom of the cavity. The following differences exists between limestone-rich and silica-rich concretes: limestone concretes liberate about twice as much gas, at a given ablation rate than siliceous concretes (more than 50% more at constant heat flux) and this can affect pool hydraulics and crust stability: limestone concrete has a higher liquidus temperature than siliceous concrete and molten limestone concrete has a larger diffusion coefficient and can more easily dissolve a corium crust than siliceous melt; limestone aggregates are destroyed by de-carbonation at around 1000 K while silica aggregates melt only above 2000 K, so that floating silica aggregates can form cold spots increasing corium solidification near the interface; de-carbonation of limestone leads to a significant shrinkage of concrete melt volume compared to the cold solid that hampers the mechanical stability of overlying crusts; the chemical composition of molten mortar (sand + cement) and concrete (sand + gravel + cement) is close for limestone-rich concretes while it is different for siliceous concretes, so that the melt composition may vary significantly in case of non-simultaneous melting of the siliceous concrete constituents; molten silicates have a large viscosity, so that transport properties are different for the two types of concretes. The small range of plant concrete compositions that have been considered for MCCI experiments has not yet been found sufficient to determine which of the above-mentioned differences is paramount to explain the observed difference in ablation patterns. Separate Effect Tests using specially-designed 'artificial concretes' and prototypic corium would provide the necessary

  8. Thermal hydraulic study of a corium molten pool

    International Nuclear Information System (INIS)

    Pigny, S.; Grand, D.; Seiler, J.M.; Durin, M.

    1993-01-01

    The thermohydraulic behaviour of a mass of molten core is investigated, in the frame of PWR severe accidents studies. The corium may be located in the vessel lower head or in an external core-catcher. It is assumed to be present in the container instantaneously. Its motion is described by one velocity field. It may be homogeneous or made of two stratified fluids. The residual power is assumed to be constant and uniform in the UO 2 phase. The radiative losses and the external water-cooling are taken into account. The thermal resistance of a peripheral crust is considered. The influence of the crust on the pool geometry may be studied. The wall behaviour is analysed by a conduction calculation. The interest of a sacrificial layer is underlined, so as the necessity of a multicomponent multiphase model to study the behaviour of a core catcher. It is also concluded that some experiments are needed for code validation about volume heated natural convection and multiphase flows. (author). 14 figs., 3 refs

  9. Corium crust strength measurements

    Energy Technology Data Exchange (ETDEWEB)

    Lomperski, S. [Argonne National Laboratory, 9700 S. Cass Avenue, Argonne, IL 60439-4840 (United States)], E-mail: lomperski@anl.gov; Farmer, M.T. [Argonne National Laboratory, 9700 S. Cass Avenue, Argonne, IL 60439-4840 (United States)], E-mail: farmer@anl.gov

    2009-11-15

    Corium strength is of interest in the context of a severe reactor accident in which molten core material melts through the reactor vessel and collects on the containment basemat. Some accident management strategies involve pouring water over the melt to solidify it and halt corium/concrete interactions. The effectiveness of this method could be influenced by the strength of the corium crust at the interface between the melt and coolant. A strong, coherent crust anchored to the containment walls could allow the yet-molten corium to fall away from the crust as it erodes the basemat, thereby thermally decoupling the melt from the coolant and sharply reducing the cooling rate. This paper presents a diverse collection of measurements of the mechanical strength of corium. The data is based on load tests of corium samples in three different contexts: (1) small blocks cut from the debris of the large-scale MACE experiments, (2) 30 cm-diameter, 75 kg ingots produced by SSWICS quench tests, and (3) high temperature crusts loaded during large-scale corium/concrete interaction (CCI) tests. In every case the corium consisted of varying proportions of UO{sub 2}, ZrO{sub 2}, and the constituents of concrete to represent a LWR melt at different stages of a molten core/concrete interaction. The collection of data was used to assess the strength and stability of an anchored, plant-scale crust. The results indicate that such a crust is likely to be too weak to support itself above the melt. It is therefore improbable that an anchored crust configuration could persist and the melt become thermally decoupled from the water layer to restrict cooling and prolong an attack of the reactor cavity concrete.

  10. Study of the rheological behaviour of corium/concrete mixtures

    International Nuclear Information System (INIS)

    Ramacciotti, M.

    1999-01-01

    In the hypothetical event of a severe accident in a Light Water Reactor, scenarios in which the reactor pressure vessel (RPV) fails and the core melt mixture (called corium) relocates into the reactor cavity, cannot be excluded. The viscosity (in fact, corium rheological behaviour) plays a major role in many phenomena such as core melt down, discharge from reactor pressure vessel, interaction with structural materials (concrete,...) and spreading in a core-catcher. For these reasons, it is important to be able to predict the rheological behaviour of corium melts of different compositions (essentially based on UO 2 , ZrO 2 , Fe x O y and Fe for in-vessel scenarios, plus SiO 2 and CaO for ex-vessel scenarios) at temperatures above solidus temperature. In the case of corium-concrete mixtures, the increase of viscosity depends not only on the increase of particles in the melts but also on the increase of the residual liquid phase viscosity (due to the increase in silica contents). The Urban correlation is used to calculate the viscosity of the carrying liquid with silica. This model was tested and gave good agreements between measured and estimated viscosities of various basalts among which one contained 18 wt% of UO 2 . Then, in the solidification range, the analysis of published data showed that the viscosity cannot be described by a suspension viscosity model of non-interactive spherical particles; consequently we proposed an Arrhenius type law with a multiplying factor such as η r = exp(2.5 Cφ) and the C factor value varies between 4 and 8. This factor is more important in the case of low shear rates and low cooling rates. The analysis of the samples structure after quenching shows a dependence of this factor on the particle morphology. Finally, for a value of 6.1 of the C factor, we obtained the best agreement with experimental data for a corium spreading test at 2100 K on a horizontal surface. (author)

  11. Fundamental experiment on simulated molten core/concrete interaction

    International Nuclear Information System (INIS)

    Toda, S.; Katsumura, Y.

    1994-01-01

    gas from concrete, respectively. Fundamental experiments were performed using simulated materials to observe the behaviors of the hot pool, slag and gases at the interface. From the experimental observation, a model without empirical constants was proposed to calculate the interface heat transfer. In this system, comparison between theoretical predictions and experimental results showed good agreement. For the future work, it is necessary to develop heat transfer models under other conditions for molten corium concrete reaction (MCCI) evaluation

  12. Experimental Study on the Molten Corium Interaction with Structure by Induction Heating Technique

    Energy Technology Data Exchange (ETDEWEB)

    An, Sang Mo; Ha, Kwang Soon; Min, Beong Tae; Hong, Seong Ho; Kim, Hwan Yeol [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2014-05-15

    The corium compositions strongly depend on the accident scenarios, and thus the melt generation technique for various melt compositions is essential to investigate the corium-structural material interaction characteristics according to the accident scenarios. Since 1997, KAERI has several years of experiences with melt generation to investigate the material ablation characteristics and steam explosion phenomena. Based on the experiences of the TROI (Test for Real cOrium Interaction with water) facility for the steam explosion experiments, the VESTA (Verification of Ex-vessel corium STAbilization) test facility was designed and constructed in 2010 for the development of a core catcher under the APR+ project. At the same time, the VESTA-S (VESTA-Small) was established for small scale material ablation experiments. Some experimental results were reported for the interactions of metallic or oxidic melt with the structural materials such as special concrete or penetration weld. The objective of this paper is to provide the specific features of the VESTA and VESTA-S facilities including information on the melt generation technique adopted for the facilities. Some issues are also addressed in this paper for further facility improvement. In the present paper, the principles of induction heating adopted for the VESTA and VESTA-S facilities were summarized briefly and the system features for the melt-structural material interaction experiments were explained. As a major characteristic of the VESTA facility, up to 400 kg of corium melt is expected to be generated using the currently installed system. The jet impingement effect on the material ablation characteristics was demonstrated successfully in the VESTA facility. In the VESTA-S facility, the small scale material ablation experiments by long term melt interaction were performed properly by adopting the melt delivery method. However, for a more realistic severe accident simulation, we need to improve the melt temperature

  13. Influence of corium oxidation on fission product release from molten pool

    Energy Technology Data Exchange (ETDEWEB)

    Bechta, S.V., E-mail: bechta@sbor.spb.s [Alexandrov Scientific-Research Institute of Technology (NITI), Sosnovy Bor (Russian Federation); Krushinov, E.V.; Vitol, S.A.; Khabensky, V.B.; Kotova, S.Yu.; Sulatsky, A.A. [Alexandrov Scientific-Research Institute of Technology (NITI), Sosnovy Bor (Russian Federation); Gusarov, V.V.; Almyashev, V.I. [Grebenschikov Institute of Silicate Chemistry of the Russian Academy of Sciences (ISC RAS), St. Petersburg (Russian Federation); Ducros, G.; Journeau, C. [CEA, DEN, Cadarache, F-13108 St. Paul lez Durance (France); Bottomley, D. [Joint Research Centre Institut fuer Transurane (ITU), Karlsruhe (Germany); Clement, B. [Institut de Radioprotection et Surete Nucleaire (IRSN), St. Paul lez Durance (France); Herranz, L. [CIEMAT, Madrid (Spain); Guentay, S. [PSI, Wuerenlingen (Switzerland); Trambauer, K. [GRS, Muenchen (Germany); Auvinen, A. [VTT, Espoo (Finland); Bezlepkin, V.V. [SPbAEP, St. Petersburg (Russian Federation)

    2010-05-15

    Qualitative and quantitative determination of the release of low-volatile fission products and core materials from molten oxidic corium was investigated in the EVAN project under the auspices of ISTC. The experiments carried out in a cold crucible with induction heating and RASPLAV test facility are described. The results are discussed in terms of reactor application; in particular, pool configuration, melt oxidation kinetics, critical influence of melt surface temperature and oxidation index on the fission product release rate, aerosol particle composition and size distribution. The relevance of measured high release of Sr from the molten pool for the reactor application is highlighted. Comparisons of the experimental data with those from the COLIMA CA-U3 test and the VERCORS tests, as well as with predictions from IVTANTHERMO and GEMINI/NUCLEA codes are made. Recommendations for further investigations are proposed following the major observations and discussions.

  14. Influence of corium oxidation on fission product release from molten pool

    International Nuclear Information System (INIS)

    Bechta, S.V.; Krushinov, E.V.; Vitol, S.A.

    2009-01-01

    Release of low-volatile fission products and core materials from molten oxidic corium was investigated in the EVAN project under the auspices of ISTC. The experiments carried out in cold crucible with induction heating and RASPLAV test facility are described. The results are discussed in terms of reactor application; in particular, pool configuration, melt oxidation kinetics, critical influence of melt surface temperature and oxidation index on the fission product release rate and aerosol particle composition. The relevance of measured high release of Sr from the molten pool for the reactor application is highlighted. Comparisons of the experimental data with those from the COLIMA CA-U3 test and the VERCORS tests, as well as with predictions from IVTANTHERMO and GEMINI/NUCLEA are set. (author)

  15. Corium Spreading Over Concrete: The Vulcano VE-U7 and VE-U8 Tests

    International Nuclear Information System (INIS)

    Journeau, Christophe; Boccaccio, Eric; Fouquart, Pascal; Jegou, Claude; Piluso, Pascal

    2002-01-01

    Two experiments have been performed in the VULCANO facility in which prototypic corium has been spread over concrete. In the VE-U7 test, a mixture representative of what can be expected at the opening of EPR reactor-pit gate has been spread on siliceous concrete and on a reference channel in inert refractory ceramic. The spreading progression was not much affected by the presence of concrete and sparging gases. In the VE-U8 test, a UO 2 -ZrO 2 mixture, prototypic of in-vessel corium, has been spread over a lime-siliceous concrete. Although residual power was not simulated in this experiment, up to 2 cm of concrete have been eroded during the test. Results in terms of spreading behaviour, effects of gases, concrete erosion and thermal attack are presented and discussed. (authors)

  16. Modelling of heat transfer between molten core and concrete with account of phase changes in the melt

    International Nuclear Information System (INIS)

    Petukhov, S.M.; Zemlianoukhin, V.V.

    1992-01-01

    The analysis of the process of heat transfer between molten corium and concrete in the case of severe accident in a PWR is performed. It is shown that Bradley's model may be improved for the case of an oxidic melt. A new model is developed and incorporated in the WECHSL-Mod2 Code. Post-test calculations of melt-concrete interaction experiments are carried out. The comparison and analysis of the experimental results and calculations are presented. (9 figures) (Author)

  17. Modelling of molten fuel/concrete interactions

    International Nuclear Information System (INIS)

    Muir, J.F.; Benjamin, A.S.

    1980-01-01

    A computer program modelling the interaction between molten core materials and structural concrete (CORCON) is being developed to provide quantitative estimates of fuel-melt accident consequences suitable for risk assessment of light water reactors. The principal features of CORCON are reviewed. Models developed for the principal interaction phenomena, inter-component heat transfer, concrete erosion, and melt/gas chemical reactions, are described. Alternative models for the controlling phenomenon, heat transfer from the molten pool to the surrounding concrete, are presented. These models, formulated in conjunction with the development of CORCON, are characterized by the presence or absence of either a gas film or viscous layer of molten concrete at the melt/concrete interface. Predictions of heat transfer based on these models compare favorably with available experimental data

  18. Étude thermodynamique du corium en cuve - Application à l'interaction corium/béton

    OpenAIRE

    Quaini , Andrea

    2015-01-01

    During a severe accident in a pressurised water reactor, the nuclear fuel can interact with the Zircaloy cladding, the neutronic absorber and the surrounding metallic structure forming a partially or completely molten mixture. The molten core can then interact with the reactor steel vessel forming a mixture called in-vessel corium. In the worst case, this mixture can pierce the vessel and pour onto the concrete underneath the reactor, leading the formation of the ex-vessel corium. Furthermore...

  19. An analysis of molten-corium-induced failure of drain pipes in BWR Mark 2 containments

    International Nuclear Information System (INIS)

    Taleyarkhan, R.P.; Podowski, M.Z.

    1991-01-01

    This study has focused on mechanistic simulation and analysis of potential failure modes for inpedestal drywell drain pipes in the Limerick boiling water reactor (BWR) Mark 2 containment. Physical phenomena related to surface tension breakdown, heatup, melting, ablation, crust formation and failure, and core material relocation into drain pipes with simultaneous melting of pipe walls were modeled and analyzed. The results of analysis have been used to assess the possibility of drain pipe failure and the resultant loss of pressure-suppression capability. Estimates have been made for the timing and amount of molten corium released to the wetwell. The study has revealed that significantly different melt progression sequences can result depending upon the failure characteristics of the frozen metallic crust which forms over the drain cover during the initial stages of debris pour. Another important result is that it can take several days for the molten fuel to ablate the frozen metallic debris layer -- if the frozen layer has cooled below 1100 K before fuel attack. 10 refs., 3 figs., 4 tabs

  20. Results of fission product release from intermediate-scale MCCI [molten core-concrete interaction] tests

    International Nuclear Information System (INIS)

    Spencer, B.W.; Thompson, D.H.; Fink, J.K.; Gunther, W.H.; Sehgal, B.R.

    1988-01-01

    A program of reactor-material molten core-concrete interaction (MCCI) tests and related analyses are under way at Argonne National Laboratory under sponsorship of the Electric Power Research Institute (EPRI). The particular objective of these tests is to provide data pertaining to the release of nonvolatile fission products such as La, Ba, and Sr, plus other aerosol materials, from the coupled thermal-hydraulic and chemical processes of the MCCI. The first stages of the program involving small and intermediate-scale tests have been completed. Three small-scale tests (/approximately/5 kg corium) and nine intermediate-scale tests (/approximately/30 kg corium) were performed between September 1985 and September 1987. Real reactor materials were used in these tests. Sustained internal heat generation at nominally 1 kW per kg of melt was provided by direct electrical heating of the corium mixture. MCCI tests were performed with both fully and partially oxidized corium mixtures that contained a variety of nonradioactive materials such as La 2 O 3 , BaO, and SrO to represent fission products. Both limestone/common sand and basaltic concrete basemats were used. The system was instrumented for characterization of the thermal hydraulic, chemical, gas release, and aerosol release processes

  1. Experimental investigation on molten pool representing corium composition at Fukushima Daiichi nuclear power plant

    Energy Technology Data Exchange (ETDEWEB)

    An, Sang Mo, E-mail: sangmoan@kaeri.re.kr [Korea Atomic Energy Research Institute, 989-111 Daedeok-daero, Yueong-gu, Daejeon, 305-353 (Korea, Republic of); Song, Jin Ho [Korea Atomic Energy Research Institute, 989-111 Daedeok-daero, Yueong-gu, Daejeon, 305-353 (Korea, Republic of); Kim, Jong-Yun [Korea Atomic Energy Research Institute, 989-111 Daedeok-daero, Yueong-gu, Daejeon, 305-353 (Korea, Republic of); Radiochemistry & Nuclear Nonproliferation, University of Science & Technology, Gajeong-ro 217, Yuseong-gu, Daejeon, 34113 (Korea, Republic of); Kim, HwanYeol [Korea Atomic Energy Research Institute, 989-111 Daedeok-daero, Yueong-gu, Daejeon, 305-353 (Korea, Republic of); Naitoh, Masanori [The Institute of Applied Energy, 1-14-2 Nishi-shimbashi, 1-Chome, Minato-ku, Tokyo, 105-0003 (Japan)

    2016-09-15

    A configuration of molten core in the Fukushima Daiichi NPP (nuclear power plant) was investigated by a melting and solidification experiment. About 5 kg of a mixture, whose composition in terms of weight is UO{sub 2} (60%), Zr + ZrO{sub 2} (25%), stainless steel (14%), B{sub 4}C (1%), was melted in a cold crucible using an induction heating technique. It was shown that the solidified melt consists of upper crust and lower solidified ingot. The solidified ingot was separated into two layers. A physical and chemical analysis was performed for the samples taken from the solidified melt to investigate the morphology and chemical characteristics. It was found that the solidified ingot consists of a metal-rich layer on the top and an oxide-rich layer at the bottom. In addition, the oxide layer at the bottom has composition close to the initial charge composition and surrounded by a thin crust layer. It turned out that B{sub 4}C was more concentrated in the upper metal-rich layer. These findings provide important insights for understanding the core melt progression and taking proper post-accident recovery actions for the Fukushima Daiichi NPP. - Highlights: • A configuration of molten core in the Fukushima Daiich NPP unit 1 is investigated. • Corium ingot consists of metallic layer on the top and oxidic layer at the bottom. • Boron carbide was more concentrated in the upper metallic layer. • Two layered configuration would contribute to the post-accident recovery actions.

  2. Numerical Analysis of Molten Corium Dispersion during Hypothetical High-Pressure Accidents in APR1400 Nuclear Power Plant

    International Nuclear Information System (INIS)

    Kim, Jong Tae; Ha, Kwang Soon; Kim, Sang Baik; Kim, Hee Dong; Jeong, Jae Sik

    2010-01-01

    During a hypothetical high-pressure accident in a nuclear power plant (NPP), molten corium can be ejected through a breach of a reactor pressure vessel (RPV) and dispersed by the following jet of a high pressure steam in the RPV. The dispersed corium is fragmented into smaller droplets in a reactor cavity of the NPP by the steam jet with very high velocity and is released into the upper compartment of the NPP by an overpressure in the cavity. The heat-carrying fragments of the corium transfer the thermal energy to the ambient air in the containment and react chemically with steam and generate hydrogen which may be burnt in the containment. The thermal loads from the ejected molten corium on the containment which is called direct containment heating (DCH) can threaten the integrity of the containment. New generation NPPs such as APR1400 and EPR have been designed in consideration of reducing the possibility of the containment failure from the DCH. In order for that, APR1400 has a convolute-type corium chamber connected to the reactor cavity. In the case of EPR, severe-accident dedicated depressurization valves are installed to preclude a high pressure melt ejection (HPME). DCH in a NPP containment is related to many physical phenomena such as multi-phase hydrodynamics, thermodynamics and chemical reaction. In the evaluation of the DCH load, the melt dispersion rates depending on the RPV pressure are the most important parameter. Mostly, DCH was evaluated by using lumped-analysis codes with some correlations obtained from experiments for the dispersion rates. The corium dispersion rates for many types of the NPP containments had been obtained by experiments in 90s. And some correlations from the experimental data were developed. As mentioned above, APR1400 has a corium chamber to reduce the corium dispersion rate. But there is no experimental data for the dispersion rate specific to the APR1400 cavity geometry. So its performance for capturing of the dispersed corium

  3. Assessment of models for steam release from concrete and implications for modeling corium behavior in reactor cavities

    International Nuclear Information System (INIS)

    Washington, K.E.; Carroll, D.E.

    1988-01-01

    Models for concrete outgassing have been developed and incorporated into a developmental version of the CONTAIN code for the assessment of corium behavior in reactor cavities. The resultant code, referred to as CONTAIN/OR in order to distinguish it from the released version of CONTAIN, has the capability to model transient heat conduction and concrete outgassing in core-concrete interaction problems. This study focused on validation and assessment of the outgassing model through comparisons with other concrete response codes. In general, the model is not mechanistic; however, there are certain important processes and feedback effects that are treated rigorously. The CONTAIN outgassing model was compared against two mechanistic concrete response codes (USINT and SLAM). Gas release and temperature profile predictions for several concrete thicknesses and heating rates were performed with acceptable agreement seen in each case. The model was also applied to predict corium behavior in a reactor cavity for a hypothetical severe accident scenario. In this calculation, gases evolving from the concrete during nonablating periods fueled exothermic Zr chemical reactions in the corium. Higher corium temperatures and more concrete ablation were observed when compared with that seen when concrete outgassing was neglected. Even though this result depends somewhat upon the makeup of the corium sources and the concrete type in the cavity, it does show that concrete outgassing can be important in the modeling of corium behavior in reactor cavities. In particular, the need to expand the traditional role of CORCON from steady-state ablation to the consideration of more transient events is clearly evident as a result of this work. 5 refs., 11 figs., 1 tab

  4. Molten Core - Concrete interactions in nuclear accidents. Theory and design of an experimental facility

    International Nuclear Information System (INIS)

    Sevon, T.

    2005-11-01

    In a hypothetical severe accident in a nuclear power plant, the molten core of the reactor may flow onto the concrete floor of containment building. This would cause a molten core . concrete interaction (MCCI), in which the heat transfer from the hot melt to the concrete would cause melting of the concrete. In assessing the safety of nuclear reactors, it is important to know the consequences of such an interaction. As background to the subject, this publication includes a description of the core melt stabilization concept of the European Pressurized water Reactor (EPR), which is being built in Olkiluoto in Finland. The publication includes a description of the basic theory of the interaction and the process of spalling or cracking of concrete when it is heated rapidly. A literature survey and some calculations of the physical properties of concrete and corium. concrete mixtures at high temperatures have been conducted. In addition, an equation is derived for conservative calculation of the maximum possible concrete ablation depth. The publication also includes a literature survey of experimental research on the subject of the MCCI and discussion of the results and deficiencies of the experiments. The main result of this work is the general design of an experimental facility to examine the interaction of molten metals and concrete. The main objective of the experiments is to assess the probability of spalling, or cracking, of concrete under pouring of molten material. A program of five experiments has been designed, and pre-test calculations of the experiments have been conducted with MELCOR 1.8.5 accident analysis program and conservative analytic calculations. (orig.)

  5. Core-concrete molten pool dynamics and interfacial heat transfer

    International Nuclear Information System (INIS)

    Benjamin, A.S.

    1980-01-01

    Theoretical models are derived for the heat transfer from molten oxide pools to an underlying concrete surface and from molten steel pools to a general concrete containment. To accomplish this, two separate effects models are first developed, one emphasizing the vigorous agitation of the molten pool by gases evolving from the concrete and the other considering the insulating effect of a slag layer produced by concrete melting. The resulting algebraic expressions, combined into a general core-concrete heat transfer representation, are shown to provide very good agreement with experiments involving molten steel pours into concrete crucibles

  6. VVER vessel steel corrosion at interaction with molten corium in oxidizing atmosphere

    Energy Technology Data Exchange (ETDEWEB)

    Bechta, S.V. [Alexandrov Research Institute of Technologies (NITI), Sosnovy Bor (Russian Federation)], E-mail: bechta@sbor.spb.su; Granovsky, V.S.; Khabensky, V.B.; Krushinov, E.V.; Vitol, S.A.; Sulatsky, A.A. [Alexandrov Research Institute of Technologies (NITI), Sosnovy Bor (Russian Federation); Gusarov, V.V.; Almiashev, V.I. [Institute of Silicate Chemistry, Russian Academy of Sciences (ISCh RAS), St. Petersburg (Russian Federation); Lopukh, D.B. [SPb State Electrotechnical University (SPbGETU), St. Petersburg (Russian Federation); Bottomley, D. [EUROPAISCHE KOMMISSION, Joint Research Centre Institut fuer Transurane (ITU), Karlsruhe (Germany); Fischer, M. [AREVA NP GmbH, Erlangen (Germany); Piluso, P. [CEA/DEN/DSNI, Saclay (France); Miassoedov, A.; Tromm, W. [Forschungszentrum Karlsruhe, Karlsruhe (Germany); Altstadt, E. [Forschungszentrum Rossendorf (FZR), Dresden (Germany); Fichot, F. [IRSN/DPAM/SEMCA, St. Paul lez Durance (France); Kymalainen, O. [FORTUM Nuclear Services Ltd., Espoo (Finland)

    2009-06-15

    The long-term in-vessel corium retention (IVR) in the lower head bears a risk of the vessel wall deterioration caused by steel corrosion. The ISTC METCOR Project has studied physicochemical impact of prototypic coria having different compositions in air and steam and has generated valuable experimental data on vessel steel corrosion. It is found that the corrosion rate is sensitive to corium composition, but the composition of oxidizing above-melt atmosphere (air, steam) has practically no influence on it. A model of the corrosion process that integrates the experimental data, is proposed and used for development of correlations.

  7. VVER vessel steel corrosion at interaction with molten corium in oxidizing atmosphere

    International Nuclear Information System (INIS)

    Bechta, S.V.; Granovsky, V.S.; Khabensky, V.B.; Krushinov, E.V.; Vitol, S.A.; Sulatsky, A.A.; Gusarov, V.V.; Almiashev, V.I.; Lopukh, D.B.; Bottomley, D.; Fischer, M.; Piluso, P.; Miassoedov, A.; Tromm, W.; Altstadt, E.; Fichot, F.; Kymalainen, O.

    2009-01-01

    The long-term in-vessel corium retention (IVR) in the lower head bears a risk of the vessel wall deterioration caused by steel corrosion. The ISTC METCOR Project has studied physicochemical impact of prototypic coria having different compositions in air and steam and has generated valuable experimental data on vessel steel corrosion. It is found that the corrosion rate is sensitive to corium composition, but the composition of oxidizing above-melt atmosphere (air, steam) has practically no influence on it. A model of the corrosion process that integrates the experimental data, is proposed and used for development of correlations.

  8. Interaction between the radiative flux emitted by a corium melt and aerosols from corium/concrete interaction

    Energy Technology Data Exchange (ETDEWEB)

    Zabiego, M.; Cognet, G. [CEA-DRN/DER/SERA - CE Cadarache, Saint-Paul-Lez-Durance (France); Henderson, D. [Univ. of Wisconsin, Madison, WI (United States)

    1995-09-01

    In this paper we present a one-dimensional numerical model that deals with radiative transfer in a medium where aerosols are present. This model is written with the aim of performing radiative transfer calculations in the framework of severe Pressurized Water Reactor accidents, especially during the last stage of such an accident Molten Core Concrete Interaction (MCCI) when aerosols are very numerous. We explain the theoretical basis of our model, writing the general radiative transfer equation, knowing that aerosol droplets participate in radiation transport. We then simplify this equation for a one-dimensional medium and we propose to solve it using the spherical harmonics approximation. This gives us the radiative intensity and we can then deduce the radiative flux. Aerosol optical properties (extinction and scattering coefficients) are also required in such a calculation. They are determined using Rayleigh or Mie theory, depending, depending on the aerosol size. In order to provide an example of results one can expect from such a calculation, we applied our model to a test problem with given aerosol size and concentration distributions. Our example does not model any experiment explicitly but the physical conditions used are very close to the L4 test from the Advanced Containment Experiment (ACE) program.

  9. Study of the rheological behaviour of corium/concrete mixtures; Etude du comportement rheologique de melanges issus de l'interaction corium/beton

    Energy Technology Data Exchange (ETDEWEB)

    Ramacciotti, M

    1999-09-24

    In the hypothetical event of a severe accident in a Light Water Reactor, scenarios in which the reactor pressure vessel (RPV) fails and the core melt mixture (called corium) relocates into the reactor cavity, cannot be excluded. The viscosity (in fact, corium rheological behaviour) plays a major role in many phenomena such as core melt down, discharge from reactor pressure vessel, interaction with structural materials (concrete,...) and spreading in a core-catcher. For these reasons, it is important to be able to predict the rheological behaviour of corium melts of different compositions (essentially based on UO{sub 2}, ZrO{sub 2}, Fe{sub x}O{sub y} and Fe for in-vessel scenarios, plus SiO{sub 2} and CaO for ex-vessel scenarios) at temperatures above solidus temperature. In the case of corium-concrete mixtures, the increase of viscosity depends not only on the increase of particles in the melts but also on the increase of the residual liquid phase viscosity (due to the increase in silica contents). The Urban correlation is used to calculate the viscosity of the carrying liquid with silica. This model was tested and gave good agreements between measured and estimated viscosities of various basalts among which one contained 18 wt% of UO{sub 2}. Then, in the solidification range, the analysis of published data showed that the viscosity cannot be described by a suspension viscosity model of non-interactive spherical particles; consequently we proposed an Arrhenius type law with a multiplying factor such as {eta}{sub r} = exp(2.5 C{phi}) and the C factor value varies between 4 and 8. This factor is more important in the case of low shear rates and low cooling rates. The analysis of the samples structure after quenching shows a dependence of this factor on the particle morphology. Finally, for a value of 6.1 of the C factor, we obtained the best agreement with experimental data for a corium spreading test at 2100 K on a horizontal surface. (author)

  10. Analysis of B4C influences on thermodynamic properties and phase separation of molten corium with ionic liquid U-Zr-Fe-O-B-C-FPs database

    International Nuclear Information System (INIS)

    Fukasawa, Masanori; Tamura, Shigeyuki; Saito, Masaki

    2009-01-01

    Boron carbide influences on thermodynamic properties and phase separation of molten corium such as liquidus temperature were estimated with our U-Zr-Fe-O-B-C-FPs thermodynamic database. The liquidus temperature of the oxide for the typical corium was estimated to increase by a hundred degrees with B 4 C addition when the corium included up to 10 wt% Fe. On the other hand, the liquidus temperature was hardly changed when the corium included 50 wt% Fe. The interaction temperature between the steel and the corium with B 4 C was estimated at 1130 K. We define the interaction temperature as the lowest temperature where the solid Fe and the liquid phase of a corium are in equilibrium, at which interactions such as microstructure change of the vessel were observed in test studies. Although it is 180 K lower than that without B 4 C, the estimated temperature is still over 200 K higher than the criterion temperature where the vessel loses its structural strength, which has been used in the feasibility evaluation of the in-vessel retention. Other thermodynamic influences of B 4 C were also estimated as not having a negative impact on the in-vessel retention. (author)

  11. Numerical analysis of crust formation in molten core-concrete interaction using MPS method

    International Nuclear Information System (INIS)

    Seiichi, Koshizuka; Shoji, Matsuura; Mizue, Sekine; Yoshiaki, Oka

    2001-01-01

    A two-dimensional code is developed for molten core-concrete interaction (MCCI) based on Moving Particle Semi-implicit (MPS) method. Heat transfer is calculated without any specific correlations. A particle can be changed to a moving (fluid) or fixed (solid) particle corresponding to its enthalpy, which provide the phase change model for particles. The phase change model is verified by one-dimensional test calculations. Nucleate boiling and radiation heat transfers are considered between the core debris and the water pool. The developed code is applied to SWISS-2 experiment in which stainless steel is used as the melt material. Calculated heat flux to the water pool agrees well with the experiment, though the ablation speed in the concrete is a little slower. A stable crust is formed in a short time after water is poured in and the heat flux to the water pool rapidly decreases. MACE-M0 using corium is also analyzed. The ablation speed of concrete is slower than that of SWISS-2 because of low heat conduction in corium. An unlimited geometry is analyzed by setting the cyclic boundary condition on the sides. When the crust is broken by the decomposition gas, heat transfer to the water pool is kept high for a longer time because the crust re-formation is delayed. (author)

  12. Developing of two-dimensional model of the corium cooling and behavior with non-condensible gas injection

    Energy Technology Data Exchange (ETDEWEB)

    Chung, Chang Hyun; Cho, Jae Seon; Kim, Ju Youl; Kim, Do Hyoung [Seoul National University, Seoul (Korea, Republic of)

    1997-07-01

    The purpose of this study is to understand the effect of the non-condensible gas injection into the molten corium on the heat transfer and dynamic behavior within the melt when molten core-concrete interaction occurs during the hypothetical severe accident. Corium behavior with gas injection effect is two phase fluid pattern in which droplet has dispersed gas phase in continuous liquid phase of corium. To analyze this behavior, two dimensional governing equation using the governing equation, the computer program is accomplished using the finite difference method and SIMPLER algorithm. And benchmarking calculation is performed for the KfK experiment, which consider the gas injection effect. After this pre-calculation, an analyses is performed with typical corium under severe accidents. It is concluded that the heat transfer within corium increases as the metal components of the corium and gas injection velocity increase. 88 refs., 23 tabs., 35 figs. (author)

  13. European Experiments on 2-D Molten Core Concrete Interaction: Hecla and Vulcano

    International Nuclear Information System (INIS)

    Journeau, Ch.; Bonnet, J. M.; Boccaccio, E.; Piluso, P.; Monerris, J.; Breton, M.; Fritz, G.; Sevon, Tuomo; Pankakoski Pekka, H.; Holmstrom, St.; Virta, Jouko

    2010-01-01

    This paper presents results from two ongoing European experimental programs on molten core concrete interactions: HECLA at VTT and VULCANO at the Commissariat a l'Energie Atomique. In the HECLA experiments, metallic melt is poured into a cylindrical concrete crucible. The focus is on the initial, pouring phase of the interaction. Therefore, decay heat simulation is not required. The HECLA-2 experiment involved 50 kg of stainless steel at 1700 C and siliceous concrete. The final ablation depths were 25-30 mm in the basemat and similar to 15 mm in the side wall. The VULCANO VB experiments have been devoted to the study of the interaction of 28 to 45 kg of oxidic corium with silica-rich or limestone-rich concretes. These tests focus on long-term ablation and require the use of induction heating to simulate the decay heat fluxes. Anisotropic ablation between the horizontal and vertical direction has been observed with silica-rich concrete, confirming the CCI tests. A new series of experiments VULCANO VBS has been launched in which there are both oxide and metallic phases in the melt. In these tests, magnetic screening is used so that the induction power is provided almost only to the upper oxidic layer after stratification. (authors)

  14. Current european experiments on 2d molten core concrete interaction: HECLA and VULCANO

    International Nuclear Information System (INIS)

    Journeau, C.; Bonnet, J. M.; Boccaccio, E.; Piluso, P.; Sevon, T.; Pankakoski, P. H.; Holmstroem, S.; Virta, J.

    2008-01-01

    This paper presents results from two ongoing European experimental programs on molten core concrete interactions: HECLA at VTT and VULCANO at CEA. In the HECLA experiments, metallic melt is poured into a cylindrical concrete crucible. The focus is on the initial, pouring phase of the interaction. Therefore, decay heat simulation is not required. The HECLA-2 experiment involved 50 kg of stainless steel at 1700 deg. C and siliceous concrete. The final ablation depths were 25-30 mm in the basemat and about 15 mm in the sidewall. The VULCANO VB experiments have been devoted to the study of the interaction of 28 to 45 kg of oxidic corium with silica-rich or limestone-rich concretes. These tests are focusing on long-term ablation and require the use of induction heating to simulate the decay heat fluxes. Anisotropic ablation between the horizontal and vertical direction has been observed with silica-rich concrete, confirming the CCI tests. A new series of experiments VULCANO VBS has been launched in which there are both oxide and metallic phases in the melt. In these tests, magnetic screening is used so that the induction power is provided almost only to the upper oxidic layer after stratification. (authors)

  15. European Experiments on 2-D Molten Core Concrete Interaction: Hecla and Vulcano

    Energy Technology Data Exchange (ETDEWEB)

    Journeau, Ch.; Bonnet, J. M.; Boccaccio, E.; Piluso, P.; Monerris, J.; Breton, M.; Fritz, G. [CEA Cadarache, Dept Technol Nucl, Serv Technol Reacteurs Ind, Lab Essais Maitrise Accid Graves, F-13108 St Paul Les Durance (France); Sevon, Tuomo; Pankakoski Pekka, H.; Holmstrom, St.; Virta, Jouko [VTT Tech Res Ctr Finland, FI-02044 Espoo (Finland)

    2010-07-01

    This paper presents results from two ongoing European experimental programs on molten core concrete interactions: HECLA at VTT and VULCANO at the Commissariat a l'Energie Atomique. In the HECLA experiments, metallic melt is poured into a cylindrical concrete crucible. The focus is on the initial, pouring phase of the interaction. Therefore, decay heat simulation is not required. The HECLA-2 experiment involved 50 kg of stainless steel at 1700 C and siliceous concrete. The final ablation depths were 25-30 mm in the basemat and similar to 15 mm in the side wall. The VULCANO VB experiments have been devoted to the study of the interaction of 28 to 45 kg of oxidic corium with silica-rich or limestone-rich concretes. These tests focus on long-term ablation and require the use of induction heating to simulate the decay heat fluxes. Anisotropic ablation between the horizontal and vertical direction has been observed with silica-rich concrete, confirming the CCI tests. A new series of experiments VULCANO VBS has been launched in which there are both oxide and metallic phases in the melt. In these tests, magnetic screening is used so that the induction power is provided almost only to the upper oxidic layer after stratification. (authors)

  16. Corium spreading issue; Le corium et son etalement

    Energy Technology Data Exchange (ETDEWEB)

    Cognet, G.; Brayer, C.; Cranga, M.; Journeau, C.; Laffont, G.; Splinder, B.; Veteau, J.M. [CEA Grenoble, Dept. de Thermohydraulique et de Physique (DPT), 38 (France)

    1999-07-01

    Safety is one of the major issues for nuclear power plants; its improvement is a constant R and D axis for the CEA. In the event of a highly unlikely core melt-down accident in Light Water Reactors, the Safety Authorities of several EU countries have requested the industries and utilities to consider severe accidents with reactor pressure vessel failure for the design of the next generation of nuclear power plants. The objective is to preserve the integrity of the containment as the main barrier of fission product release to the environment. This can only be achieved if the core melt mixture (called corium, essentially composed of UO{sub 2}, ZrO{sub 2}, Zr, Fe and fission products) is stabilized before it can penetrate the basement. Consequently, various core-catcher concepts are under investigation for future reactors in order to prevent basement erosion, and to stabilize and control the corium within the containment. In particular, in the EPR (European Pressurized Reactor) core-catcher concept, the corium is mixed with a special concrete, and the molten mixture spread over a large multi-layer surface cooled from the bottom; with subsequent cooling by flooding with water. Therefore, melt spreading requires intensive investigation in order to determine and quantify the key phenomena, which govern the spreading. For some years now, the Nuclear Reactor Division of the Atomic Energy Commission (CEA/DRN) has been conducting a large program to improve knowledge on corium behaviour and coolability. This program is based on experimental (with simulant and prototypic materials) and theoretical investigations, which are finally gathered into scenario and mechanistic computer codes. Within this framework, a large part is currently devoted to the study of corium spreading. After a reminder of the general objectives and a description of the DRn approach and facilities, this paper presents the most important results. (authors)

  17. Assessment of Two-Phase Flow Heat Transfer Correlations for Molten Core-Concrete Interaction Study

    International Nuclear Information System (INIS)

    Tourniaire, B.; Varo, O.

    2006-01-01

    The prediction of heat transfer between corium pool and concrete basemat is of particular significance in the framework of the study of PWR's severe accident. Heat transfer directly governs the ablation velocity of concrete in case of molten core-concrete interaction (MCCI) and, consequently, the time delay when the reactor cavity may fail. From a restricted hydrodynamic point of view, this issue is related to heat transfer between a heated bubbling pool and a porous wall with gas injection. Several experimental studies have been performed with simulant materials and many correlations have been provided to address this issue. The main purpose of this paper is to assess these correlations from comparisons against the available experimental data. After a review of these data, the different correlations are presented. Attention focuses here on the correlations generally used in MCCI study: Kutateladze-Malenkov, Konsetov and BALI correlations. The Deckwer's correlation is also included in this review. The comparisons between the results of these correlations and the experimental data are then discussed. (authors)

  18. A heat transfer correlation based on a surface renewal model for molten core concrete interaction study

    International Nuclear Information System (INIS)

    Tourniaire, B. . E-mail bruno.tourniaire@cea.fr

    2006-01-01

    The prediction of heat transfer between corium pool and concrete basemat is of particular significance in the framework of the study of PWR's severe accident. Heat transfer directly governs the ablation velocity of concrete in case of molten core concrete interaction (MCCI) and, consequently, the time delay when the reactor cavity may fail. From a restricted hydrodynamic point of view, this issue is related to heat transfer between a heated bubbling pool and a porous wall with gas injection. Several experimental studies have been performed with simulant materials and many correlations have been provided to address this issue. The comparisons of the results of these correlations with the measurements and their extrapolation to reactor materials show that strong discrepancies between the results of these models are obtained which probably means that some phenomena are not well taken into account. The main purpose of this paper is to present an alternative heat transfer model which was originally developed for chemical engineering applications (bubble columns) by Deckwer. A part of this work is devoted to the presentation of this model, which is based on a surface renewal assumption. Comparison of the results of this model with available experimental data in different systems are presented and discussed. These comparisons clearly show that this model can be used to deal with the particular problem of MCCI. The analyses also lead to enrich the original model by taking into account the thermal resistance of the wall: a new formulation of the Deckwer's correlation is finally proposed

  19. Radiation heat transfer in a pressurized water reactor lower head filled with molten corium

    International Nuclear Information System (INIS)

    Šadek, Siniša; Grgić, Davor; Debrecin, Nenad

    2013-01-01

    Highlights: ► We develop radiation heat exchange model for a reactor pressure vessel lower head. ► Model is used during a late in-vessel phase of severe accidents. ► View factors are calculated automatically for a time-dependent enclosure. ► Model is included in the RELAP5/SCDAPSIM computer code. ► Inclusion of heat radiation causes faster heat-up rate of RPV lower head structures. - Abstract: Following a core melt, molten material may slump to the lower head of a reactor pressure vessel (RPV). In that case, some structures like lower parts of fuel elements and a core support plate would remain intact. Since the melt is at high temperature and there are no obstacles between the melt and the supporting plate, the plate is exposed to an intense radiation heating. The radiation heat exchange model of the lower head was developed and applied to a finite element code COUPLE which is a part of the detailed mechanistic code RELAP5/SCDAPSIM. The radiation enclosure consisted of three surfaces: the upper surface of the relocated material, the inner surface of the RPV wall above the relocated material and the lower surface of the core support plate. View factors were calculated for the enclosure geometry that is changing in time because of intermittent accumulation of molten material. The enclosure surfaces were covered by mesh of polygonal areas and view factors were calculated, for each pair of the element areas, by solving the definite integrals using the algorithms for adaptive integrations by means of Gaussian quadrature. Algebraic equations for radiosity and irradiation vectors were solved by LU decomposition and the radiation model was explicitly coupled with the heat conduction model. The results show that there is a possibility of the core support plate failure after being heated up due to radiation heat exchange with the melt.

  20. Penetration of molten core materials into basaltic and limestone concrete

    International Nuclear Information System (INIS)

    Sutherland, H.J.

    1978-01-01

    In conjunction with the small-scale, melt-concrete interaction tests being conducted at Sandia Laboratories, an acoustic technique has been used to monitor the penetration of molten core materials into basaltic and limestone concrete. Real time plots of the position of the melt/concrete interface have been obtained, and they illustrate that the initial penetration rate of the melt may be of the order of 80 mm/min. Phenomena deduced by the technique include a non-wetted melt/concrete interface

  1. The VULCANO VE-U7 Corium spreading benchmark

    Energy Technology Data Exchange (ETDEWEB)

    Journeau, Christophe; Haquet, Jean-Francois [CEA Cadarache, Severe Accident Mastering experimental Laboratory (DEN/DTN/STRI/LMA), 13108 St Paul lez Durance (France); Spindler, Bertrand [CEA Grenoble, Physicochemistry and Multiphasic Thermalhydraulics Laboratory (DEN/DTN/SE2T/LPTM), 17 rue des Martyrs, F-38054 Grenoble CEDEX 9 (France); Spengler, Claus [Gesellschaft fuer Reaktorsicherheit mbH, Department for Thermohydraulics/Process Engineering, Schwertnergasse 1, D-50667 Koeln (Germany); Foit, Jerzy [Forschungszentrum Karlsruhe GmbH, Institut fuer Kern nd Energietechnik (IKET), P.O. Box 3640, D-76021 Karlsruhe (Germany)

    2006-07-01

    In a hypothetical nuclear reactor severe accident, corium spreading is one possible mitigation measure that has been selected for the EPR design. A post-test benchmark exercise has been organized on the VULCANO VE-U7 corium spreading experiment. In this test, a prototypic corium mixture representative of what could be expected at the opening of EPR reactor-pit gate has been spread on siliceous concrete and on a reference channel in inert refractory ceramic. The spreading progression was not much affected by the presence of concrete and sparging gases. The procedure used to estimate the corium physical properties from its composition and temperature provided a satisfactory data set. The CORFLOW, LAVA and THEMA codes provide satisfactory calculations of the spreading front evolution and of its final length. LAVA and THEMA estimations of the substrate temperatures, which are the initial conditions for longer term Molten Core Concrete Interaction or Corium Ceramic Interaction computations, are also close to the measured data, within the experimental uncertainties. (authors)

  2. The VULCANO VE-U7 Corium spreading benchmark

    International Nuclear Information System (INIS)

    Journeau, Christophe; Haquet, Jean-Francois; Spindler, Bertrand; Spengler, Claus; Foit, Jerzy

    2006-01-01

    In a hypothetical nuclear reactor severe accident, corium spreading is one possible mitigation measure that has been selected for the EPR design. A post-test benchmark exercise has been organized on the VULCANO VE-U7 corium spreading experiment. In this test, a prototypic corium mixture representative of what could be expected at the opening of EPR reactor-pit gate has been spread on siliceous concrete and on a reference channel in inert refractory ceramic. The spreading progression was not much affected by the presence of concrete and sparging gases. The procedure used to estimate the corium physical properties from its composition and temperature provided a satisfactory data set. The CORFLOW, LAVA and THEMA codes provide satisfactory calculations of the spreading front evolution and of its final length. LAVA and THEMA estimations of the substrate temperatures, which are the initial conditions for longer term Molten Core Concrete Interaction or Corium Ceramic Interaction computations, are also close to the measured data, within the experimental uncertainties. (authors)

  3. Influence of Concrete Properties on Molten Core-Concrete Interaction: A Simulation Study

    Directory of Open Access Journals (Sweden)

    Jin-yang Jiang

    2016-01-01

    Full Text Available In a severe nuclear power plant accident, the molten core can be released into the reactor pit and interact with sacrificial concrete. In this paper, a simulation study is presented that aims to address the influence of sacrificial concrete properties on molten core-concrete interaction (MCCI. In particular, based on the MELCOR Code, the ferrosiliceous concrete used in European Pressurized Water Reactor (EPR is taken into account with respect to the different ablation enthalpy and Fe2O3 and H2O contents. Results indicate that the concrete ablation rate as well as the hydrogen generation rate depends much on the concrete ablation enthalpy and Fe2O3 and H2O contents. In practice, the ablation enthalpy of sacrificial concrete is the higher the better, while the Fe2O3 and H2O content of sacrificial concrete is the lower the better.

  4. Void fraction for gas bubbling in shallow viscous pools-application to molten core concrete interaction

    International Nuclear Information System (INIS)

    Journeau, C.; Haquet, J.F.

    2005-01-01

    During Molten Core-Concrete Interaction, the concrete will release gases (mainly steam and carbon oxides) that will flow through the corium pool. To obtain reliable heat transfer prediction, it is necessary to model the void fraction in the pool as a function of the gas mass flow (or superficial velocity at the interface). A series of simulant-materials have been performed with water-air and sugar syrup-air in order to study how the drift model could be applied to a shallow pool (where the bubbly flow is not fully developed) and to liquids which are more viscous (with higher Morton numbers) than water. The bubble average diameter was estimated around 3 mm with spherical to ellipsoidal shapes. For all the configurations, even with the shallowest pools (6 cm height for 38 cm diameter) the experimental void fractions follow the drift-model relationship. In water, the distribution coefficient C 0 tends to the classical value of 1.2 while the drift velocity V jg tends to the 23 cm/s predicted by Ishii (1975) model for churn flows. For the more viscous syrup, the drift velocity tends to 13 cm/s which is significantly lower than the value obtained from the Ishii correlation for bubbly or churn flows (established for water). These results are then applied to MCCI experimental configurations. (authors)

  5. Interaction between molten corium UO2+x-ZrO2-FeOy and VVER vessel steel

    International Nuclear Information System (INIS)

    Bechta, S. V.; Granovsky, V. S.; Khabensky, V. B.; Krushinov, E. V.; Vitol, S. A.; Sulatsky, A. A.; Gusarov, V. V.; Almiashev, V. I.; Lopukh, D. B.; Bottomley, D.; Fischer, M.; Piluso, P.; Miassoedov, A.; Tromm, W.; Altstadt, E.; Fichot, F.; Kymalainen, O.

    2010-01-01

    In case of in-vessel corium retention during a severe accident in a light water reactor, weakening of the vessel wall and deterioration of the vessel steel properties can be caused both by the melting of the steel and by its physicochemical interaction with corium. The interaction behavior has been studied in medium-scale experiments with prototypic corium. The experiments yielded data for the steel corrosion rate during interaction with UO 2+x -ZrO 2 -FeO y melt in air and steam at different steel surface temperatures and heat fluxes from the corium to the steel. It has been observed that the corrosion rates in air and steam atmosphere are almost the same. Further, if the temperature at the interface increases beyond a certain level, corrosion intensifies. This is explained by the formation of liquid phases in the interaction Zone. The available experimental data have been used to develop a correlation for the corrosion rate as a function of temperature and heat flux. (authors)

  6. Thermal-hydraulic studies on molten core-concrete interactions

    International Nuclear Information System (INIS)

    Greene, G.A.

    1986-10-01

    This report discusses studies carried out in connection with light water power reactor accidents. Recent assessments have indicated that the consequences of molten-core concrete interactions dominate the considerations of severe accidents. The two areas of interest that have been investigated are interlayer heat and mass transfer and liquid-liquid boiling. Interlayer heat and mass transfer refers to processes that occur within a core melt between the stratified, immiscible phases of core oxides and metals. Liquid-liquid boiling refers to processes that occur at the melt-concrete on melt-coolant interface

  7. Experiment on heat transfer in simulated molten core/concrete interaction

    International Nuclear Information System (INIS)

    Katsumura, Yukihiro; Hashizume, Hidetoshi; Toda, Saburo; Kawaguchi, Takahiro.

    1993-01-01

    In order to investigate heat transfer between molten core and concrete in LWR severe accidents, experiments were performed using water as the molten core, paraffin as the concrete, and air as gases from the decomposition of concrete. It was found that the heat transfer on the interface between paraffin and water were promoted strongly by the air gas. (author)

  8. Molten LWR core material interactions with water and with concrete

    International Nuclear Information System (INIS)

    Dahlgren, D.A.; Buxton, L.D.; Muir, J.F.; Murfin, W.B.; Nelson, L.S.; Powers, D.A.

    1977-01-01

    Nuclear power reactors are designed and operated to minimize the possibility of fuel melting. Nevertheless, in order to assess the risks associated with reactor operation, a realistic assessment is required for postulated accident sequences in which melting occurs. To investigate the experimental basis of the fuel melt accident analyses, a comprehensive review was performed at Sandia Laboratories. The results of that study indicated several phenomenological areas where additional experimental data should be gathered to verify common assumptions made in risk studies. In particular, vapor explosions and molten core material/concrete interactions were identified for further study. Results of these studies are presented

  9. OECD MCCI project long-term 2-D molten core concrete interaction test design report, Rev. 0. September 30, 2002

    International Nuclear Information System (INIS)

    Farmer, M.T.; Kilsdonk, D.J.; Lomperski, S.; Aeschliman, R.W.; Basu, S.

    2011-01-01

    The Melt Attack and Coolability Experiments (MACE) program at Argonne National Laboratory addressed the issue of the ability of water to cool and thermally stabilize a molten core-concrete interaction when the reactants are flooded from above. These tests provided data regarding the nature of corium interactions with concrete, the heat transfer rates from the melt to the overlying water pool, and the role of noncondensable gases in the mixing processes that contribute to melt quenching. As a follow-on program to MACE, The Melt Coolability and Concrete Interaction Experiments (MCCI) project is conducting reactor material experiments and associated analysis to achieve the following two technical objectives: (1) resolve the ex-vessel debris coolability issue through a program that focuses on providing both confirmatory evidence and test data for the coolability mechanisms identified in MACE integral effects tests, and (2) address remaining uncertainties related to long-term two-dimensional molten core-concrete interactions under both wet and dry cavity conditions. Achievement of these two objectives will demonstrate the efficacy of severe accident management guidelines for existing plants, and provide the technical basis for better containment designs for future plants. In terms of the first program objective, the Small-Scale Water Ingression and Crust Strength (SSWICS) test series has been initiated to provide fundamental information on the ability of water to ingress into cracks and fissures that form in the debris during quench, thereby augmenting the otherwise conduction-limited heat transfer process. A test plan for Melt Eruption Separate Effects Tests (MESET) has also been developed to provide information on the extent of crust growth and melt eruptions as a function of gas sparging rate under well-controlled experiment conditions. In terms of the second program objective, the project Management Board (MB) has approved startup activities required to carry out

  10. Simulation of Molten Core-Concrete Interaction in oxide/metal stratified configuration with the TOLBIAC-ICB code

    International Nuclear Information System (INIS)

    Tourniaire, B.; Spindler, B.

    2005-01-01

    The frame of this work is the validation of the TOLBIAC-ICB code which is devoted to the simulation of Molten Core-Concrete Interaction (MCCI) for reactor safety analysis. Attention focuses here on the validation of TOLBIAC-ICB in configurations expected to be representative of the long term phase of MCCI i.e. during an interaction between an oxide/metal stratified corium melt and a concrete structure. Up to now the BETA tests performed at the Forschungszentrum Karlsruhe (FzK) are the only tests available to study such kind of interaction. The BETA tests are first described and the operating conditions are reminded. The TOLBIAC-ICB code is then briefly described, with emphasis on the models used for stratified configurations. The results of the simulations are discussed. A sensitivity study is also performed with the power generated in the oxide layer instead of the metal layer as in the test. This last calculation shows that the large axial ablation observed in the tests is probably due to the peculiar configuration of the test with input power in the bottom metal layer. Since in the reactor case the residual power would be mainly concentrated in the upper oxide layer, the conclusions of the BETA tests for the reactor applications, in term of axial ablation, must be derived with caution. (author)

  11. EPRI [Electric Power Research Institute]/ANL investigations of MCCI [molten core-concrete interactions] phenomena and aerosol release

    International Nuclear Information System (INIS)

    Spencer, B.W.; Gunther, W.H.; Armstrong, D.R.; Thompson, D.H.; Chasanov, M.G.; Sehgal, B.R.

    1986-01-01

    A program of laboratory investigations has been undertaken at Argonne National Laboratory, under sponsorship of the Electric Power Research Institute, in which the interaction between molten core materials and concrete is studied, with particular emphasis on measurements of the magnitude and chemical species present in the aerosol releases. The experiment technique used in these investigations is direct electrical heating in which a high electric current is passed through the core debris to sustain the high-temperature melt condition for potentially long periods of time. In the scoping experiments completed to date, this technique has been successfully used for corium masses of 5 and 20 kg, generating an internal heating rate of 1 kw/kg and achieving melt temperatures of 2000C. Experiments have been performed both with a concrete base and also with a cooled base with the addition of H 2 /CO sparging gas to represent chemical processes in a stratified layer. An aerosol and gas sampling system is being used to collect aerosol samples. Test results are now becoming available including masses of aerosols, x-ray diffraction, and scanning electron microscope analyses

  12. Experimental simulation of the water cooling of corium spread over the floor of a BWR containment

    Energy Technology Data Exchange (ETDEWEB)

    Morage, F.; Lahey, R.T. Jr.; Podowski, M.Z. [Rensselaer Polytechnic Institute, Troy, NY (United States)

    1995-09-01

    This paper is concerned with an experimental investigation of the cooling effect of water collected on the surface of corium released onto the floor of a BWR drywell. In the present experiments, the actual reactor materials were replaced by simulant materials. Specifically, the results are shown for Freon-11 film boiling over liquid Wood`s metal spread above a solid porous surface through which argon gas was injected. An analysis of the obtained experimental data revealed that the actual film boiling heat transfer between a molten pool of corium and the water above the pool should be more efficient than predicted by using standard correlations for boiling over solid surfaces. This effect will be further augmented by the gas released due to the ablation of concrete floor beneath the corium and percolating towards its upper surface and into through the water layer above.

  13. Assessment of Mass Fraction and Melting Temperature for the Application of Limestone Concrete and Siliceous Concrete to Nuclear Reactor Basemat Considering Molten Core–Concrete Interaction

    Directory of Open Access Journals (Sweden)

    Hojae Lee

    2016-04-01

    Full Text Available Severe accident scenarios in nuclear reactors, such as nuclear meltdown, reveal that an extremely hot molten core may fall into the nuclear reactor cavity and seriously affect the safety of the nuclear containment vessel due to the chain reaction caused by the reaction between the molten core and concrete. This paper reports on research focused on the type and amount of vapor produced during the reaction between a high-temperature molten core and concrete, as well as on the erosion rate of concrete and the heat transfer characteristics at its vicinity. This study identifies the mass fraction and melting temperature as the most influential properties of concrete necessary for a safety analysis conducted in relation to the thermal interaction between the molten core and the basemat concrete. The types of concrete that are actually used in nuclear reactor cavities were investigated. The H2O content in concrete required for the computation of the relative amount of gases generated by the chemical reaction of the vapor, the quantity of CO2 necessary for computing the cooling speed of the molten core, and the melting temperature of concrete are evaluated experimentally for the molten core–concrete interaction analysis.

  14. Assessment of mass fraction and melting temperature for the application of limestone concrete and siliceous concrete to nuclear reactor basemat considering molten core-concrete interaction

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Ho Jae; Kim, Do Gyeum [Korea Institute of Civil Engineering and Building Technology, Goyang (Korea, Republic of); Cho, Jae Leon [Korea Hydro and Nuclear Power Co., Ulsan (Korea, Republic of); Yoon, Eui Sik [Korea Institute of Nuclear Safety, Daejeon (Korea, Republic of); Cho, Myung Suk [Korea Hydro and Nuclear Power Co., Central Research Institute, Daejeon (Korea, Republic of)

    2016-04-15

    Severe accident scenarios in nuclear reactors, such as nuclear meltdown, reveal that an extremely hot molten core may fall into the nuclear reactor cavity and seriously affect the safety of the nuclear containment vessel due to the chain reaction caused by the reaction between the molten core and concrete. This paper reports on research focused on the type and amount of vapor produced during the reaction between a high-temperature molten core and concrete, as well as on the erosion rate of concrete and the heat transfer characteristics at its vicinity. This study identifies the mass fraction and melting temperature as the most influential properties of concrete necessary for a safety analysis conducted in relation to the thermal interaction between the molten core and the basemat concrete. The types of concrete that are actually used in nuclear reactor cavities were investigated. The H2O content in concrete required for the computation of the relative amount of gases generated by the chemical reaction of the vapor, the quantity of CO2 necessary for computing the cooling speed of the molten core, and the melting temperature of concrete are evaluated experimentally for the molten core-concrete interaction analysis.

  15. Modelling of the Molten Core Concrete Interaction (MCCI)

    International Nuclear Information System (INIS)

    Guillaume, M.

    2008-01-01

    Severe accidents of nuclear power plants are very unlikely to occur, yet it is necessary to be able to predict the evolution of the accident. In some situations, heat generation due to the disintegration of fission products could lead to the melting of the core. If the molten core falls on the floor of the building, it would provoke the melting of the concrete floor. The objective of the studies is to calculate the melting rate of the concrete floor. The work presented in this report is in the continuity of the segregation phase model of Seiler and Froment. It is based on the results of the ARTEMIS experiments. Firstly, we have developed a new model to simulate the transfers within the interfacial area. The new model explains how heat is transmitted to concrete: by conduction, convection and latent heat generation. Secondly, we have modified the coupled modelling of the pool and the interfacial area. We have developed two new models: the first one is the 'liquidus model', whose main hypothesis is that there is no resistance to solute transfer between the pool and the interfacial area. The second one is 'the thermal resistance model', whose main hypothesis is that there is no solute transfer and no dissolution of the interfacial area. The second model is able to predict the evolution of the pool temperature and the melting rate in the tests 3 and 4, with the condition that the obstruction time of the interfacial area is about 10 5 s. The model is not able to explain precisely the origin of this value. The liquidus model is able to predict correctly the evolution of the pool temperature and the melting rate in the tests 2 and 6. (author) [fr

  16. CFD approach to modeling of core-concrete interaction

    International Nuclear Information System (INIS)

    Vladimir V Chudanov; Anna E Aksenova; Valerii A Pervichko

    2005-01-01

    Full text of publication follows: A large attention is given to research behavior of concrete structures at high mechanical and thermal loadings, which those suffer at the severe accidents on Nuclear Power Plants with core melting and falling of the molten corium mass into reactor shaft. There are enough programs for analysis of heat and mass transfer processes at interaction of the molten corium with concrete. Most known among them CORCON and WECHSL, which were developed more than twenty years ago, allow considering a quasi-stationary phase decomposition of concrete and the some transition regimes. In opposing to the mentioned codes a new more generalized mathematical model and software are developed for modeling of a wide range of the heat and mass transfer processes under study of the molten core-concrete interaction. The developed mathematical model is based on the Navier-Stokes equations with variable properties with taking into account of a density jump under melting of concrete together with a heat transfer equation. The offered numerical technique is based on modern algorithms with small scheme diffusion, whose discrete approximations are constructed with use of finite-volume methods and the fully staggered grids. The developed software corresponds to modern level of development of computers and takes into account all phenomenology, used by mentioned codes, and allows to simulate the such phenomena and processes as: multidimensional heat transfer in concrete for modeling of transients for an intermediate thermal flux to concrete; direct erosion of concrete at a quasi-stationary regime of interaction with molten fuel masses; heat and mass transfer in corium and convective intermixing in a melt of corium with taking into account of its stratification on two layers of the metal and oxide components and heat transfer by radiation in a cavity of the reactor shaft; change physical properties of corium at concrete decomposition and release in corium of its

  17. CORCON: a computer program for modelling molten fuel/concrete interactions

    International Nuclear Information System (INIS)

    Muir, J.F.

    1980-01-01

    A computer program modelling the interaction between molten core materials and structural concrete is being developed to provide a capability for making quantitative estimates of reactor fuel-melt accidents. The principal phenomenological models, inter-component heat transfer, concrete erosion, and melt/gas chemical reactions, are described. A code test comparison calculation is discussed

  18. KATS experiments to simulate corium spreading in the EPR core catcher concept

    International Nuclear Information System (INIS)

    Eppinger, B.; Fieg, G.; Schuetz, W.; Stegmaier, U.

    2001-01-01

    In future Light Water Reactors special devices (core catchers) might be required to prevent containment failure by basement erosion after reactor pressure vessel melt-through during a core meltdown accident. Quick freezing of the molten core masses is desirable to reduce release of radioactivity. Several concepts of core catcher de-vices have been proposed based on the spreading of corium melt onto flat surfaces with subsequent cooling by flooding with water. Therefore a series of experiments to investigate high temperature melt spreading on flat surfaces has been carried out using alumina-iron thermite melts as a simulant. The oxidic thermite melt is conditioned by adding other oxides to simulate a realistic corium melt as close as possible. Spreading of oxidic and metallic melts have been performed in one- and two-dimensional geometry. Substrates were chemically inert ceramic layers, dry concrete and concrete with a shallow water layer on top. (authors)

  19. Study of evaluation methods for in-vessel corium retention through external vessel cooling and safety of reactor cavity

    Energy Technology Data Exchange (ETDEWEB)

    Park, Jae Hong; Huh, Hoon; Chang, Soon Heung [Korea Advanced Institute of Science and Technology, Taejon (Korea, Republic of)] (and others)

    1999-03-15

    Cooling methodologies for the molten corium resulted from the severe accident of the Nuclear Power Plant is suggested as one of most important items for the safety of the NPP. In this regard, considerable experimental and analytical works have been devoted. In the second phase of this project, current status of research about corium-concrete interaction and corium coolability which can occur on the reactor cavity has been surveyed, and the researches about lower head failure mechanism have also been surveyed. And, severe accident analysis for Ulchin 3 and 4 has been conducted, and collapse load of lower head has been analyzed through structural analysis considering various heat transfer conditions. The results of accident analysis can be used as a basic input for structural analysis which will be conducted in 3rd phase of this study.

  20. Core-concrete interactions using molten urania with zirconium on a limestone concrete basemat

    Energy Technology Data Exchange (ETDEWEB)

    Copus, E.R.; Brockmann, J.E.; Simpson, R.B.; Lucero, D.A. (Sandia National Labs., Albuquerque, NM (United States)); Blose, R.E. (Ktech Corp., Albuquerque, NM (United States))

    1992-09-01

    An inductively heated experiment SURC-1, using UO[sub 2]-ZrO[sub 2] material, was executed to measure and assess the thermal, gas, and aerosol source terms produced during core debris/concrete interactions. The SURC-1 experiment eroded a total of 27 cm of limestone concrete during 130 minutes of sustained interaction using 204.2 kg of molten prototypic UO[sub 2]-ZrO[sub 2] core debris material that included 18 kg of zr metal and 3.4 kg of fission product simulants. The melt pool temperature ranged from 2100 to 2400[degrees]C during the first 50 minutes of the test, followed by steady temperatures of 2000 to 2100[degrees]C during the middle portion of the test and temperatures of 1800 to 2000[degrees]C during the final 50 minutes of testing. The total erosion during the first 50 minutes was 16 cm with an additional 2 cm during the middle part of the test and 9 cm of ablation during the final 50 minutes. Aerosols were continuously released in concentrations ranging from 30 to 200 g/m[sup 3]. Comprehensive gas flow rates, gas compositions, and aerosol compositions were also measured during the SURC-1 test.

  1. Core-concrete interactions using molten urania with zirconium on a limestone concrete basemat

    International Nuclear Information System (INIS)

    Copus, E.R.; Brockmann, J.E.; Simpson, R.B.; Lucero, D.A.; Blose, R.E.

    1992-09-01

    An inductively heated experiment SURC-1, using UO 2 -ZrO 2 material, was executed to measure and assess the thermal, gas, and aerosol source terms produced during core debris/concrete interactions. The SURC-1 experiment eroded a total of 27 cm of limestone concrete during 130 minutes of sustained interaction using 204.2 kg of molten prototypic UO 2 -ZrO 2 core debris material that included 18 kg of zr metal and 3.4 kg of fission product simulants. The melt pool temperature ranged from 2100 to 2400 degrees C during the first 50 minutes of the test, followed by steady temperatures of 2000 to 2100 degrees C during the middle portion of the test and temperatures of 1800 to 2000 degrees C during the final 50 minutes of testing. The total erosion during the first 50 minutes was 16 cm with an additional 2 cm during the middle part of the test and 9 cm of ablation during the final 50 minutes. Aerosols were continuously released in concentrations ranging from 30 to 200 g/m 3 . Comprehensive gas flow rates, gas compositions, and aerosol compositions were also measured during the SURC-1 test

  2. New set of convective heat transfer coefficients established for pools and validated against CLARA experiments for application to corium pools

    Energy Technology Data Exchange (ETDEWEB)

    Michel, B., E-mail: benedicte.michel@irsn.fr

    2015-05-15

    Highlights: • A new set of 2D convective heat transfer correlations is proposed. • It takes into account different horizontal and lateral superficial velocities. • It is based on previously established correlations. • It is validated against recent CLARA experiments. • It has to be implemented in a 0D MCCI (molten core concrete interaction) code. - Abstract: During an hypothetical Pressurized Water Reactor (PWR) or Boiling Water Reactor (BWR) severe accident with core meltdown and vessel failure, corium would fall directly on the concrete reactor pit basemat if no water is present. The high temperature of the corium pool maintained by the residual power would lead to the erosion of the concrete walls and basemat of this reactor pit. The thermal decomposition of concrete will lead to the release of a significant amount of gases that will modify the corium pool thermal hydraulics. In particular, it will affect heat transfers between the corium pool and the concrete which determine the reactor pit ablation kinetics. A new set of convective heat transfer coefficients in a pool with different lateral and horizontal superficial gas velocities is modeled and validated against the recent CLARA experimental program. 155 tests of this program, in two size configurations and a high range of investigated viscosity, have been used to validate the model. Then, a method to define different lateral and horizontal superficial gas velocities in a 0D code is proposed together with a discussion about the possible viscosity in the reactor case when the pool is semi-solid. This model is going to be implemented in the 0D ASTEC/MEDICIS code in order to determine the impact of the convective heat transfer in the concrete ablation by corium.

  3. Exploratory study of molten core material/concrete interactions, July 1975--March 1977

    International Nuclear Information System (INIS)

    Powers, D.A.; Dahlgren, D.A.; Muir, J.F.; Murfin, W.D.

    1978-02-01

    An experimental study of the interaction between high-temperature molten materials and structural concrete is described. The experimental efforts focused on the interaction of melts of reactor core materials weighing 12 to 200 kg at temperatures 1700 to 2800 0 C with calcareous and basaltic concrete representative of that found in existing light-water nuclear reactors. Observations concerning the rate and mode of melt penetration into concrete, the nature and generation rate of gases liberated during the interaction, and heat transfer from the melt to the concrete are described. Concrete erosion is shown to be primarily a melting process with little contribution from mechanical spallation. Water and carbon dioxide thermally released from the concrete are extensively reduced to hydrogen and carbon monoxide. Heat transfer from the melt to the concrete is shown to be dependent on gas generation rate and crucible geometry. Interpretation of results from the interaction experiments is supported by separate studies of the thermal decomposition of concretes, response of bulk concrete to intense heat fluxes (28 to 280 W/cm 2 ), and heat transfer from molten materials to decomposing solids. The experimental results are compared to assumptions made in previous analytic studies of core meltdown accidents in light-water nuclear reactors. A preliminary computer code, INTER, which models and extrapolates results of the experimental program is described. The code allows estimation of the effect of physical parameters on the nature of the melt/concrete interaction

  4. Interaction between molten corium UO{sub 2+x}-ZrO{sub 2}-FeO{sub y} and VVER vessel steel

    Energy Technology Data Exchange (ETDEWEB)

    Bechta, S. V.; Granovsky, V. S.; Khabensky, V. B.; Krushinov, E. V.; Vitol, S. A.; Sulatsky, A. A. [Alexandrov Sci Res Technol Inst, Sosnovyi Bor (Russian Federation); Gusarov, V. V.; Almiashev, V. I. [Russian Acad Sci, Inst Silicate Chem, St Petersburg (Russian Federation); Lopukh, D. B. [SPb State Electrotech Univ LETI SPbGETU, St Petersburg (Russian Federation); Bottomley, D. [Joint Res Ctr, Inst Transurane, Karlsruhe (Germany); Fischer, M. [AREVA NP GmbH, Erlangen (Germany); Piluso, P. [CEA Saclay, DEN, DSNI, Saclay (France); Miassoedov, A.; Tromm, W. [Forschungszentrum Karlsruhe, D-76021 Karlsruhe (Germany); Altstadt, E. [Forschungszentrum Dresden Rossendorf, Dresden (Germany); Fichot, F. [CEA Cadarache, SEMCA, DPAM, IRSN, St Paul Les Durance (France); Kymalainen, O. [FORTUM Nucl Serv Ltd, Espoo (Finland)

    2010-07-01

    In case of in-vessel corium retention during a severe accident in a light water reactor, weakening of the vessel wall and deterioration of the vessel steel properties can be caused both by the melting of the steel and by its physicochemical interaction with corium. The interaction behavior has been studied in medium-scale experiments with prototypic corium. The experiments yielded data for the steel corrosion rate during interaction with UO{sub 2+x}-ZrO{sub 2}-FeO{sub y} melt in air and steam at different steel surface temperatures and heat fluxes from the corium to the steel. It has been observed that the corrosion rates in air and steam atmosphere are almost the same. Further, if the temperature at the interface increases beyond a certain level, corrosion intensifies. This is explained by the formation of liquid phases in the interaction Zone. The available experimental data have been used to develop a correlation for the corrosion rate as a function of temperature and heat flux. (authors)

  5. Evaluation of upward heat flux in ex-vessel molten core heat transfer using MELCOR

    International Nuclear Information System (INIS)

    Park, S.Y.; Park, J.H.; Kim, S.D.; Kim, D.H.; Kim, H.D.

    2000-01-01

    The purpose of this study is to share experiences of MELCOR application to resolve the molten corium-concrete interaction (MCCI) issue in the Korea Next Generation Reactor (KNGR). In the evaluation of concrete erosion, the heat transfer modeling from the molten corium internal to the corium pool surface is very important and uncertain. MELCOR employs Kutateladze or Greene's bubble-enhanced heat transfer model for the internal heat transfer. The phenomenological uncertainty is so large that the model provides several model parameters in addition to the phenomenological model for user flexibility. However, the model parameters do not work on Kutateladze correlation at the top of the molten layer. From our experience, a code modification is suggested to match the upward heat flux with the experimental results. In this analysis, minor modification was carried out to calculate heat flux from the top molten layer to corium surface, and efforts were made to find out the best value of the model parameter based on upward heat flux of MACE test M1B. Discussion also includes its application to KNGR. (author)

  6. Oxidation effects during corium melt in-vessel retention

    Energy Technology Data Exchange (ETDEWEB)

    Almyashev, V.I.; Granovsky, V.S.; Khabensky, V.B.; Krushinov, E.V.; Sulatsky, A.A.; Vitol, S.A. [Alexandrov Scientific-Research Institute of Technology (NITI), Sosnovy Bor (Russian Federation); Gusarov, V.V. [Ioffe Institute, St. Petersburg (Russian Federation); Bechta, S. [Royal Institute of Technology (KHT), Stockholm (Sweden); Barrachin, M.; Fichot, F. [Institut de Radioprotection et de Sûreté Nucléaire (IRSN), St Paul lez Durance (France); Bottomley, P.D., E-mail: paul.bottomley@ec.europa.eu [Joint Research Centre, Institut für Transurane (ITU), Karlsruhe (Germany); Fischer, M. [AREVA GmbH, Erlangen (Germany); Piluso, P. [CEA Cadarache-DEN/DTN/STRI (France)

    2016-08-15

    Highlights: • Corium–steel interaction tests were re-examined particularly for transient processes. • Oxidation of corium melt was sensitive to oxidant supply and surface characteristics. • Consequences for vessel steel corrosion rates in severe accidents were discussed. - Abstract: In the in-vessel corium retention studies conducted on the Rasplav-3 test facility within the ISTC METCOR-P project and OECD MASCA program, experiments were made to investigate transient processes taking place during the oxidation of prototypic molten corium. Qualitative and quantitative data have been produced on the sensitivity of melt oxidation rate to the type of oxidant, melt composition, molten pool surface characteristics. The oxidation rate is a governing factor for additional heat generation and hydrogen release; also for the time of secondary inversion of oxidic and metallic layers of corium molten pool.

  7. Development of a Chemical Equilibrium Model for a Molten Core-Concrete Interaction Analysis Module

    Energy Technology Data Exchange (ETDEWEB)

    Seo, Jae Uk; Lee, Dae Young; Park, Chang Hwan [FNC Technology Co., Yongin (Korea, Republic of)

    2016-10-15

    This molten core could interact with the reactor cavity region which consists of concrete. In this process, components of molten core react with components of concrete through a lot of chemical reactions. As a result, many kinds of gas species are generated and those move up forming rising bubbles into the reactor containment atmosphere. These rising bubbles are the carrier of the many kinds of the aerosols coming from the MCCI (Molten Core Concrete Interaction) layers. To evaluate the amount of the aerosols released from the MCCI layers, the amount of the gas species generated from those layers should be calculated. The chemical equilibrium state originally implies the final state of the multiple chemical reactions; therefore, investigating the equilibrium composition of molten core can be applicable to predict the gas generation status. The most common way for finding the chemical equilibrium state is a minimization of total Gibbs free energy of the system. In this paper, the method to make good guess of initial state is suggested and chemical reaction results are compared with results of CSSI report No 164. Total mass of system and the number of atoms of each element are conserved. The tendency of calculation results is similar with results presented in CSNI Report except a few species. These differences may be caused by absence of Gibbs energy data of the species such as Fe{sub 2}SiO{sub 4}, CaFe{sub 2}O{sub 4}, U(OH){sub 3}, UO(OH), UO{sub 2}(OH), U{sub 3}O{sub 7}, La, Ce.

  8. Modeling of molten core-concrete interactions and fission-product release

    International Nuclear Information System (INIS)

    Norkus, J.K.; Corradini, M.L.

    1991-09-01

    The study of molten core-concrete interaction is important in estimating the possible consequences of a severe nuclear reactor accident. CORCON-Mod2 is a computer program which models the thermal, chemical, and physical phenomena associated with molten core-concrete interactions. Models have been added to extend and improve the modeling of these phenomena. An ideal solution chemical equilibrium methodology is presented to predict the fission-product vaporization release. Additional chemical species have been added, and the calculation of chemical equilibrium has been expanded to the oxidic layer and to the mixed layer configuration. Recent experiments performed at Argonne National Laboratory are compared to CORCON predictions of melt temperature, erosion depth, and release fraction of fission products. The results consistently underpredicted the melt temperatures and erosion rates. However, the predictions of release of Te, Ba, Sr, and U were good. A sensitivity study of the effects of initial temperature, concrete type, use of the mixing option, degree of zirconium oxidation, cavity size, and amount of control material on erosion, gas production, and release of radioactive materials was performed for a PWR and a BWR. The initial melt temperature had the greatest effect on the results of interest. Concrete type and cavity size also had important effects. 78 refs., 35 figs., 40 tabs

  9. Corium quench in deep pool mixing experiments

    International Nuclear Information System (INIS)

    Spencer, B.W.; McUmber, L.; Gregorash, D.; Aeschlimann, R.; Sienicki, J.J.

    1985-01-01

    The results of two recent corium-water thermal interaction (CWTI) tests are described in which a stream of molten corium was poured into a deep pool of water in order to determine the mixing behavior, the corium-to-water heat transfer rates, and the characteristic sizes of the quenched debris. The corium composition was 60% UO 2 , 16% ZrO 2 , and 24% stainless steel by weight; its initial temperature was 3080 K, approx.160 K above the oxide phase liquidus temperature. The corium pour stream was a single-phase 2.2 cm dia liquid column which entered the water pool in film boiling at approx.4 m/s. The water subcooling was 6 and 75C in the two tests. Test results showed that with low subcooling, rapid steam generation caused the pool to boil up into a high void fraction regime. In contrast, with large subcooling no net steam generation occurred, and the pool remained relatively quiescent. Breakup of the jet appeared to occur by surface stripping. In neither test was the breakup complete during transit through the 32 cm deep water pool, and molten corium channeled to the base where it formed a melt layer. The characteristic heat transfer rates measured 3.5 MJ/s and 2.7 MJ/s during the fall stage for small and large subcooling, respectively; during the initial stage of bed quench, the surface heat fluxes measured 2.4 MW/m 2 and 3.7 MW/m 2 , respectively. A small mass of particles was formed in each test, measuring typically 0.1 to 1 mm and 1 to 5 mm dia for the large and small subcooling conditions, respectively. 9 refs., 13 figs., 1 tab

  10. Heat transfer in reactor cavity during core-concrete interaction

    International Nuclear Information System (INIS)

    Adroguer, B.; Cenerino, G.

    1989-08-01

    In the unlikely event of a severe accident in a nuclear power plant, the core may melt through the vessel and slump into the concrete reactor cavity. The hot mixture of the core material called corium interacts thermally with the concrete basemat. The WECHSL code, developed at K.f.K. Karlsruhe in Germany is used at the Protection and Nuclear Safety Institute (I.P.S.N.) of CEA to compute this molten corium concrete interaction (MCCI). Some uncertainties remain in the partition of heat from the corium between the basemat and the upper surrounding structures in the cavity where the thermal conditions are not computer. The CALTHER code, under development to perform a more mechanistic evaluation of the upward heat flux has been linked to WECHSL-MOD2 code. This new version enables the modelling of the feedback effects from the conditions in the cavity to the MCCI and the computation of the fraction of upward flux directly added to the cavity atmosphere. The present status is given in the paper. Preliminary calculations of the reactor case for silicate and limestone common sand (L.C.S.) concretes are presented. Significant effects are found on concrete erosion, gases release and temperature of the upper part of corium, particularly for L.C.S. concrete

  11. Proceedings of the Second OECD (NEA) CSNI Specialist Meeting on Molten Core Debris-Concrete Interactions

    International Nuclear Information System (INIS)

    1992-01-01

    The Second CSNI Specialist Meeting on Molten Core Debris-Concrete Interactions was held at Kernforschungszentrum Karlsruhe, Germany on April 1-3, 1992. The status and progress in this field of severe reactor accidents were discussed from researchers around the world including participants from Russia and the Czech and Slovak Federal Republic. The contributions concentrated on two main topics. The first topic is the 'classical' core debris-concrete interaction, both experimental and theoretical. Integral effects and separate effects were addressed in thermal hydraulics and heat transfer, material interaction, and aerosol release during concrete erosion, with some applications to prototypical nuclear power plants. The second topic gaining more and more interest is the possibility of controlling and ending the erosion of the concrete by spreading of the core melt, and/or achieving coolability by the addition of water. In the final session it was concluded that considerable progress has been made in understanding and modelling the important phenomena. For the first topic a broad and generally sufficient experimental data base is existing, allowing further improvement qualification of the theoretical models which at present give reasonable agreement with the most important experimental data. A validation matrix is recommended for final validation of the codes. With respect to fission product release during MCCI measurements show that the releases are significantly less than previously estimated. The relatively new topic of melt coolability deserves further investigations which are already underway at different places or international coordinated efforts

  12. Proceedings of the Second OECD (NEA) CSNI Specialist Meeting on Molten Core Debris-Concrete Interactions

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1992-07-01

    The Second CSNI Specialist Meeting on Molten Core Debris-Concrete Interactions was held at Kernforschungszentrum Karlsruhe, Germany on April 1-3, 1992. The status and progress in this field of severe reactor accidents were discussed from researchers around the world including participants from Russia and the Czech and Slovak Federal Republic. The contributions concentrated on two main topics. The first topic is the 'classical' core debris-concrete interaction, both experimental and theoretical. Integral effects and separate effects were addressed in thermal hydraulics and heat transfer, material interaction, and aerosol release during concrete erosion, with some applications to prototypical nuclear power plants. The second topic gaining more and more interest is the possibility of controlling and ending the erosion of the concrete by spreading of the core melt, and/or achieving coolability by the addition of water. In the final session it was concluded that considerable progress has been made in understanding and modelling the important phenomena. For the first topic a broad and generally sufficient experimental data base is existing, allowing further improvement qualification of the theoretical models which at present give reasonable agreement with the most important experimental data. A validation matrix is recommended for final validation of the codes. With respect to fission product release during MCCI measurements show that the releases are significantly less than previously estimated. The relatively new topic of melt coolability deserves further investigations which are already underway at different places or international coordinated efforts.

  13. Oxidation kinetics of corium pool

    Energy Technology Data Exchange (ETDEWEB)

    Sulatsky, A.A., E-mail: andrei314@mail.ru [Alexandrov Research Institute of Technologies (NITI), Sosnovy Bor (Russian Federation); Smirnov, S.A. [D.V. Efremov Scientific Research Institute of Electrophysical Apparatus (NIIEFA), St. Petersburg (Russian Federation); Granovsky, V.S.; Khabensky, V.B.; Krushinov, E.V.; Vitol, S.A.; Kotova, S.Yu. [Alexandrov Research Institute of Technologies (NITI), Sosnovy Bor (Russian Federation); Fischer, M.; Hellmann, S. [AREVA NP GmbH, Erlangen (Germany); Tromm, W.; Miassoedov, A. [Forschungzentrum Karlsruhe (FZK), Karlsruhe (Germany); Bottomley, D. [EUROPÄISCHE KOMMISSION, Joint Research Centre Institut für Transurane (ITU), Karlsruhe (Germany); Piluso, P. [CEA Cadarache-DEN/DTN/STRI, St.Paul-lez-Durance (France); Barrachin, M. [Institut de Radioprotection et Sûreté Nucléaire, St.Paul-lez-Durance (France)

    2013-09-15

    Highlights: • The analysis of experimental data on molten corium oxidation was been carried out. • The analysis has revealed the main factors influencing the oxidation kinetics. • The analysis was used for developing a qualitative analytical model. • The numerical modeling has confirmed the results of experimental data analysis. -- Abstract: Experimental, theoretical and numerical studies of oxidation kinetics of an open surface corium pool have been reported. The experiments have been carried out within OECD MASCA program and ISTC METCOR, METCOR-P and EVAN projects. It has been shown that the melt oxidation is controlled by an oxidant supply to the melt free surface from the atmosphere, not by the reducer supply from the melt. The project experiments have not detected any input of the zirconium oxidation kinetics into the process chemistry. The completed analysis puts forward a simple analytical model, which gives an explanation of the main features of melt oxidation process. The numerical modeling results are in good agreement with experimental data and theoretical considerations.

  14. Oxidation kinetics of corium pool

    International Nuclear Information System (INIS)

    Sulatsky, A.A.; Smirnov, S.A.; Granovsky, V.S.; Khabensky, V.B.; Krushinov, E.V.; Vitol, S.A.; Kotova, S.Yu.; Fischer, M.; Hellmann, S.; Tromm, W.; Miassoedov, A.; Bottomley, D.; Piluso, P.; Barrachin, M.

    2013-01-01

    Highlights: • The analysis of experimental data on molten corium oxidation was been carried out. • The analysis has revealed the main factors influencing the oxidation kinetics. • The analysis was used for developing a qualitative analytical model. • The numerical modeling has confirmed the results of experimental data analysis. -- Abstract: Experimental, theoretical and numerical studies of oxidation kinetics of an open surface corium pool have been reported. The experiments have been carried out within OECD MASCA program and ISTC METCOR, METCOR-P and EVAN projects. It has been shown that the melt oxidation is controlled by an oxidant supply to the melt free surface from the atmosphere, not by the reducer supply from the melt. The project experiments have not detected any input of the zirconium oxidation kinetics into the process chemistry. The completed analysis puts forward a simple analytical model, which gives an explanation of the main features of melt oxidation process. The numerical modeling results are in good agreement with experimental data and theoretical considerations

  15. An experimental study of steam explosions involving CORIUM melts

    International Nuclear Information System (INIS)

    Millington, R.A.

    1984-05-01

    An experimental programme to investigate molten fuel coolant interactions involving 0.5 kg thermite-generated CORIUM melts and water has been carried out. System pressures and initial coolant subcoolings were chosen to enhance the probability of steam explosions. Yields and efficiencies of the interactions were found to be very close to those obtained from similar experiments using molten UO 2 generated from a Uranium/Molybdenum Trioxide thermite. (author)

  16. Experimental results of core-concrete interactions using molten steel with zirconium

    International Nuclear Information System (INIS)

    Copus, E.R.; Blose, R.E.; Brockmann, J.E.; Gomez, R.D.; Lucero, D.A.

    1990-07-01

    Four inductively sustained experiments, QT-D, QT-E, SURC-3, and SURC-3A, were performed in order to investigate the additional effects of zirconium metal oxidation on core debris-concrete interactions using molten stainless steel as the core debris simulant. The QT-D experiment ablated 18 cm of concrete axially during 50 minutes of interaction on limestone-common sand concrete using a 10 kg charge of 304 stainless steel to which 2 kg of zirconium metal was added subsequent to the onset of erosion. The QT-E experiment ablated 10 cm of limestone-common sand concrete axially and 10 cm radially during 35 minutes of sustained interaction using 50 kg of stainless steel and 10 kg of zirconium. The SURC-3 experiment had a 45 kg charge of stainless steel to which 1.1 kg of zirconium was subsequently added. SURC-3 axially eroded 33 cm of limestone concrete during two hours of interaction. The fourth experiment, SURC-3A, eroded 25 cm of limestone concrete axially and 9 cm radially during 90 minutes of sustained interaction. It utilized 40 kg of stainless steel and 2.2 kg of added zirconium as the charge material. All four experiments showed in a large increase in erosion rate, gas production, and aerosol release following the addition of Zr metal to the melt. In the SURC-3 and SURC-3A tests the measured erosion rates increased from 14 cm/hr to 27 cm/hr, gas release increased from 50 slpm to 100 slpm, and aerosol release increased from .02 q/sec to .04 q/sec. The effluent gas was composed of 80% CO, 10% CO 2 , and 2% H 2 before Zr addition and 92% CO, 4% CO 2 , 4% H 2 during the Zr interactions which lasted 10--20 minutes. Addition measurements indicated that the melt pool temperature ranged from 1600 degree C--1800 degree and that the aerosols produced were comprised primarily of Te and Fe oxides. 21 refs., 120 figs., 51 tabs

  17. Experimental results of core-concrete interactions using molten steel with zirconium

    Energy Technology Data Exchange (ETDEWEB)

    Copus, E.R.; Blose, R.E.; Brockmann, J.E.; Gomez, R.D.; Lucero, D.A. (Sandia National Labs., Albuquerque, NM (USA))

    1990-07-01

    Four inductively sustained experiments, QT-D, QT-E, SURC-3, and SURC-3A, were performed in order to investigate the additional effects of zirconium metal oxidation on core debris-concrete interactions using molten stainless steel as the core debris simulant. The QT-D experiment ablated 18 cm of concrete axially during 50 minutes of interaction on limestone-common sand concrete using a 10 kg charge of 304 stainless steel to which 2 kg of zirconium metal was added subsequent to the onset of erosion. The QT-E experiment ablated 10 cm of limestone-common sand concrete axially and 10 cm radially during 35 minutes of sustained interaction using 50 kg of stainless steel and 10 kg of zirconium. The SURC-3 experiment had a 45 kg charge of stainless steel to which 1.1 kg of zirconium was subsequently added. SURC-3 axially eroded 33 cm of limestone concrete during two hours of interaction. The fourth experiment, SURC-3A, eroded 25 cm of limestone concrete axially and 9 cm radially during 90 minutes of sustained interaction. It utilized 40 kg of stainless steel and 2.2 kg of added zirconium as the charge material. All four experiments showed in a large increase in erosion rate, gas production, and aerosol release following the addition of Zr metal to the melt. In the SURC-3 and SURC-3A tests the measured erosion rates increased from 14 cm/hr to 27 cm/hr, gas release increased from 50 slpm to 100 slpm, and aerosol release increased from .02 q/sec to .04 q/sec. The effluent gas was composed of 80% CO, 10% CO{sub 2}, and 2% H{sub 2} before Zr addition and 92% CO, 4% CO{sub 2}, 4% H{sub 2} during the Zr interactions which lasted 10--20 minutes. Addition measurements indicated that the melt pool temperature ranged from 1600{degree}C--1800{degree} and that the aerosols produced were comprised primarily of Te and Fe oxides. 21 refs., 120 figs., 51 tabs.

  18. Experimental investigations of long-term interactions of molten UO2 with MgO and concrete at Argonne National Laboratory

    International Nuclear Information System (INIS)

    Stein, R.P.; Farhadieh, R.; Pedersen, D.R.; Gunther, W.H.; Purviance, R.T.

    1982-01-01

    Experimental work at Argonne is being performed to investigate the long-term molten-core-debris retention capability of the ex-vessel cavity following a postulated meltdown accident. The eventual objective of the work is to determine if normal structural material (concrete) or a specifically selected sacrificial material (MgO) located in the ex-vessel cavity region can effectively contain molten core debris. The materials under investigation at ANL are various types of concrete (limestone, basalt and magnetite) and commercially-available MgO brick. Results are presented of the status of real material experimental investigation at ANL into (1) molten UO 2 pool heat transfer, (2) long-term molten UO 2 penetration into concrete and (3) long-term molten UO 2 penetration into refractory substrates. The decay heating in the fuel has been simulated by direct electrical heating permitting the study of the long-term interaction

  19. Experimental investigations of long-term interactions of molten UO2 with MgO and concrete at Argonne National Laboratory

    International Nuclear Information System (INIS)

    Stein, R.P.; Farhadieh, R.; Pedersen, D.R.; Gunther, W.H.; Purviance, R.T.

    1982-01-01

    Experimental work at Argonne is being performed to investigate the long-term molten core debris retention capability of the ex-vessel cavity following a postulated meltdown accident. The eventual objective of the work is to determine if normal structural material (concrete) or a specifically selected sacrificial material (MgO) located in the ex-vessel cavity region can effectively contain molten core debris. The materials under investigation at ANL are various types of concrete (limestone, basalt and magnetite) and commercially-available MgO brick. Results are presented of the status of real material experimental investigation at ANL into 1) molten UO 2 pool heat transfer, 2) long-term molten UO 2 penetration into concrete and 3) long-term molten UO 2 penetration into refractory substrates. The decay heating in the fuel has been simulated by direct electrical heating permitting the study of the long-term interaction

  20. Final synthesis of Sarnet (Phase 1) corium activities

    International Nuclear Information System (INIS)

    Journeau, Ch.; Steinbruck, M.; Repetto, G.; Duriez, Ch.; Koundy, V.; Ma, W.M.; Burger, M.; Spindler, B.

    2009-01-01

    Within the SARNET Severe Accident Research Network of excellence, the Corium topic covers all the behaviour of corium (mixture formed by the molten materials arising from a postulated nuclear reactor severe accident) from early phase of core degradation to in or ex-vessel corium recovery with the exception of corium interaction with water, direct containment heating and fission product release. The Corium topic regroups in three work packages the critical mass of competence to improve significantly the corium behaviour knowledge. The spirit of the SARNET networking is to share the knowledge, the facilities and the simulation tools for severe accidents, so to reach a better efficiency and to rationalize the R and D effort at European level. Extensive benchmarking has been launched in most of the areas of research. These benchmarks were mainly dedicated to the recalculation of analytical experiments, integral experiments or reactor applications. Eventually, all the knowledge will be accumulated in the ASTEC severe accident simulation code through physical model improvements and extension of validation database. This report summarizes the progress that has been achieved in the frame of the networking activities for the four and half years of the FP6 project. (authors)

  1. In-calandria retention of corium in Indian PHWR - experimental simulations with decay heat

    International Nuclear Information System (INIS)

    Nayak, A.K.

    2015-01-01

    The severe accident at Fukushima has compelled the nuclear community to relook at the safety of existing nuclear power plants (NPP) against natural origin events of beyond design basis and prolonged station black out (SBO). A major lesson learned is to assess the capability of the safety systems to cool the reactor core and spent fuel storage facilities in the event of a prolonged station black out (SBO). Similar safety review is planned for the Indian Pressurized Heavy Water Reactors (PHWRs) considering a prolonged SBO. The Indian PHWR is a heavy water-moderated and cooled, natural uranium-fuelled reactor in which the horizontal fuel channels are submerged in a pool of heavy water moderator located inside the calandria vessel. The calandria vessel is surrounded by a calandria vault having large volume of light water. Concerns are raised that in the event of an unmitigated SBO, it may result into a low probable severe accident leading to core melt down. The core melt may further fail the calandria vessel in case the melt is not quenched. If the calandria vessel fails, the corium shall interact with the cold calandria vault water and concrete resulting in generation of large amount of non-condensable gases and steam which will lead to over pressurization of containment and may cause its failure. Therefore, in-calandria corium retention via external cooling using vault water can be considered as an important accident management program in PHWR. In this strategy, the core melt retains inside the calandria vessel by continually removing the stored heat and decay heat through outer surface of the vessel by cooling water and maintaining the integrity of the vessel. The present study focuses on experimental investigation in a scaled facility of an Indian PHWR to investigate the coolability of molten corium with simulated decay heat by using the calandria vault water. Molten borosilicate glass was used as the simulant due to its comparable heat transfer characteristics

  2. Thermodynamic evaluation of the solidification phase of molten core–concrete under estimated Fukushima Daiichi nuclear power plant accident conditions

    Energy Technology Data Exchange (ETDEWEB)

    Kitagaki, Toru, E-mail: kitagaki.toru@jaea.go.jp; Yano, Kimihiko; Ogino, Hideki; Washiya, Tadahiro

    2017-04-01

    The solidification phases of molten core–concrete under the estimated molten core–concrete interaction (MCCI) conditions in the Fukushima Daiichi Nuclear Power Plant Unit 1 were predicted using the thermodynamic equilibrium calculation tool, FactSage 6.2, and the NUCLEA database in order to contribute toward the 1F decommissioning work and to understand the accident progression via the analytical results for the 1F MCCI products. We showed that most of the U and Zr in the molten core–concrete forms (U,Zr)O{sub 2} and (Zr,U)SiO{sub 4}, and the formation of other phases with these elements is limited. However, the formation of (Zr,U)SiO{sub 4} requires a relatively long time because it involves a change in the crystal structure from fcc-(U,Zr)O{sub 2} to tet-(U,Zr)O{sub 2}, followed by the formation of (Zr,U)SiO{sub 4} by reaction with SiO{sub 2}. Therefore, the formation of (Zr,U)SiO{sub 4} is limited under quenching conditions. Other common phases are the oxide phases, CaAl{sub 2}Si{sub 2}O{sub 8}, SiO{sub 2}, and CaSiO{sub 3}, and the metallic phases of the Fe–Si and Fe–Ni alloys. The solidification phenomenon of the crust under quenching conditions and that of the molten pool under thermodynamic equilibrium conditions in the 1F MCCI progression are discussed.

  3. A study on corium behaviour under external vessel cooling

    Energy Technology Data Exchange (ETDEWEB)

    Park, Rae Joon; Kim, Sang Baik; Kang, Kyung Ho; Koo, Kil Mo; Kim, Hee Dong

    2000-04-01

    This study presents the results of evaluation and analysis on the second phase of the RASPLAV project for three years between July 1, 1997 and June 30, 2000. In the RASPLAV Phase II study, two large-scale experiments of RASPLAV-AW-200-3, 4 were conducted to estimate the heat flux distribution in the corium and thermal interaction between the corium and the reactor vessel. Several small-scale experiments such as TULPAN, TF, and STF were conducted to analyze thermal stratification and additive effect of core materials on corium behavior. The Salt experiments were conducted to estimate the crust and the mushy region formation, as well as natural convection heat transfer in the corium. Material properties of the corium and the salt were measured in the RASPLAV project. During the RASPLAV-AW-200-3 test, approximately 22 kg of the corium leaked from the test furnace, because Fe from the FeO, which was additive to reduce the melting temperature of fuel pellet, interacted with Tungsten protector. It is concluded from the AW-200-3 test results that the oxidized U-Zr-O is not separated. From the RASPLAV-AW-200-4 test results, the C-32 fuel with the miscibility gap and low content of carbon was not separated thermally. The carbon is known as a dominant factor in the thermal stratification of the corium from the small and medium scale test results such as TULPAN, TF, and STF. The fuel composition, test method and condition in the RASPLAV-AW-2003,4 were selected using the small and medium scale test results. It is confirmed from the Salt test that the analytical model of the CONV code predicts heat transfer with crust formation in the molten pool very well.

  4. A study on corium behaviour under external vessel cooling

    International Nuclear Information System (INIS)

    Park, Rae Joon; Kim, Sang Baik; Kang, Kyung Ho; Koo, Kil Mo; Kim, Hee Dong

    2000-04-01

    This study presents the results of evaluation and analysis on the second phase of the RASPLAV project for three years between July 1, 1997 and June 30, 2000. In the RASPLAV Phase II study, two large-scale experiments of RASPLAV-AW-200-3, 4 were conducted to estimate the heat flux distribution in the corium and thermal interaction between the corium and the reactor vessel. Several small-scale experiments such as TULPAN, TF, and STF were conducted to analyze thermal stratification and additive effect of core materials on corium behavior. The Salt experiments were conducted to estimate the crust and the mushy region formation, as well as natural convection heat transfer in the corium. Material properties of the corium and the salt were measured in the RASPLAV project. During the RASPLAV-AW-200-3 test, approximately 22 kg of the corium leaked from the test furnace, because Fe from the FeO, which was additive to reduce the melting temperature of fuel pellet, interacted with Tungsten protector. It is concluded from the AW-200-3 test results that the oxidized U-Zr-O is not separated. From the RASPLAV-AW-200-4 test results, the C-32 fuel with the miscibility gap and low content of carbon was not separated thermally. The carbon is known as a dominant factor in the thermal stratification of the corium from the small and medium scale test results such as TULPAN, TF, and STF. The fuel composition, test method and condition in the RASPLAV-AW-2003,4 were selected using the small and medium scale test results. It is confirmed from the Salt test that the analytical model of the CONV code predicts heat transfer with crust formation in the molten pool very well

  5. Results and analysis of reactor-material experiments on ex-vessel corium quench and dispersal

    International Nuclear Information System (INIS)

    Spencer, B.W.; McUmber, L.M.; Sienicki, J.J.; Squarer, D.

    1984-01-01

    The results of reactor material experiments and related analysis are described in which molten corium is injected into a mock-up of the reactor cavity region of a PWR. The experiments address exvessel interactions such as steam generation (for those cases in which water is present), water and corium dispersal from the cavity, hydrogen generation, direct atmosphere heating by dispersed corium, and debrids characterization. Test results indicate efficiencies of steam generation by corium quench ranging up to 65%. Corium sweepout of up to 62% of the injected material was found for those conditions in which steam generation flowrate was augmented by vessel blowdown. The dispersed corium caused very little direct heating of the atmosphere for the configuration employing a trap at the exit of the cavity-to-containment pathway. Corium sweepout phenomena were modeled for high-pressure blowdown conditions, and the results applied to the full-size reactor system predict essentially complete sweepout of corium from the reactor cavity. (orig.)

  6. Results and analysis of reactor-material experiments on ex-vessel corium quench and dispersal

    International Nuclear Information System (INIS)

    Spencer, B.W.; McUmber, L.M.; Sienicki, J.J.; Squarer, D.

    1984-01-01

    Results of reactor-material experiments and related analysis are described in which molten corium is injected into a mock-up of the reactor cavity region of a PWR. The experiments address ex-vessel interactions such as steam generation (for those cases in which water is present), water and corium dispersal from the cavity, hydrogen generation, direct atmosphere heating by dispersed corium, and debris characterization. Test results indicate efficiencies of steam generation by corium quench ranging up to 65%. Corium sweepout of up to 62% of the injected material was found for those conditions in which steam generation flowrate was augmented by vessel blowdown. The dispersed corium caused very little direct heating of the atmosphere for the configuration employing a trap at the exit of the cavity-to-containment pathway. Corium sweepout phenomena were modeled for high-pressure blowdown conditions, and the results applied to the full-size reactor system predict essentially complete sweepout of corium from the reactor cavity

  7. Experimental investigation of interface conditions between oxidic melt and ablating concrete during MCCI by means of simulating material experiments: the Artemis program

    Energy Technology Data Exchange (ETDEWEB)

    Veteau, J.M. [Commissariat a l' Energie Atomique, DEN/DTN/SE2T/LPTM, 17 rue des Martyrs 38 - Grenoble cedex 9 (France)

    2005-07-01

    Full text of publication follows: In the frame work of R and D on Severe Accidents in PWR plants, an estimation by codes of time of basemat melt-through by Corium is required. For this, the heat flux distribution along the cavity wall must be properly modelled. Hence the knowledge of the heat transfer coefficient as well as the temperature at the interface between the melt and the solid become key issues. Phase diagram of the melt and composition governs the interface temperature which controls, at least partly, the thickness of the Corium crust formed on the molten concrete. Crust behaviour (time evolution of thickness, mechanical interaction with gas) implies a release mode of molten concrete in Corium which in turn alters the melt composition. Clearly, the molten corium-concrete interaction (MCCI) phenomenon is the result of a strong coupling between physico-chemistry and thermohydraulics. The main goal of the first test series of the Artemis program is to make a link between the interface temperature and the physico-chemistry of the melt (phase diagram) through tests conducted with simulating materials and to provide an insight on the existence, the behaviour and the composition of the crust. This test series considers 1D MCCI using a non eutectic LiCl-BaCl{sub 2} mixture poured at 1000 deg. C in a cylindrical test section (internal diameter 0.3 m) to interact with the 0.35 m deep basemat made of the same salt mixture at the eutectic composition. This 'concrete' was especially manufactured with sintered granulates to allow gas flow from the bottom (argon), then simulating gas released by concrete in the reactor case. Constant power is applied in the pool with an helical coil and 1D MCCI is ensured by counterbalancing heat losses by controlled heating at the lateral walls and at the top of the test section. Concrete ablation is followed from the output of 45 0.5 mm diameter thermocouples. An instrumented rod periodically investigates the temperature

  8. Experimental investigation of interface conditions between oxidic melt and ablating concrete during MCCI by means of simulating material experiments: the Artemis program

    International Nuclear Information System (INIS)

    Veteau, J.M.

    2005-01-01

    Full text of publication follows: In the frame work of R and D on Severe Accidents in PWR plants, an estimation by codes of time of basemat melt-through by Corium is required. For this, the heat flux distribution along the cavity wall must be properly modelled. Hence the knowledge of the heat transfer coefficient as well as the temperature at the interface between the melt and the solid become key issues. Phase diagram of the melt and composition governs the interface temperature which controls, at least partly, the thickness of the Corium crust formed on the molten concrete. Crust behaviour (time evolution of thickness, mechanical interaction with gas) implies a release mode of molten concrete in Corium which in turn alters the melt composition. Clearly, the molten corium-concrete interaction (MCCI) phenomenon is the result of a strong coupling between physico-chemistry and thermohydraulics. The main goal of the first test series of the Artemis program is to make a link between the interface temperature and the physico-chemistry of the melt (phase diagram) through tests conducted with simulating materials and to provide an insight on the existence, the behaviour and the composition of the crust. This test series considers 1D MCCI using a non eutectic LiCl-BaCl 2 mixture poured at 1000 deg. C in a cylindrical test section (internal diameter 0.3 m) to interact with the 0.35 m deep basemat made of the same salt mixture at the eutectic composition. This 'concrete' was especially manufactured with sintered granulates to allow gas flow from the bottom (argon), then simulating gas released by concrete in the reactor case. Constant power is applied in the pool with an helical coil and 1D MCCI is ensured by counterbalancing heat losses by controlled heating at the lateral walls and at the top of the test section. Concrete ablation is followed from the output of 45 0.5 mm diameter thermocouples. An instrumented rod periodically investigates the temperature and the position

  9. Improvement of molten core-concrete interaction model of the debris spreading analysis model in the SAMPSON code - 15193

    International Nuclear Information System (INIS)

    Hidaka, M.; Fujii, T.; Sakai, T.

    2015-01-01

    A debris spreading analysis (DSA) module has been developed and improved. The module is used in the severe accident analysis code SAMPSON and it has models for 3-dimensional natural convection with simultaneous spreading, melting and solidification. The existing analysis method of the quasi-3D boundary transportation to simulate downward concrete erosion for evaluation of molten-core concrete interaction (MCCI) was improved to full-3D to solve, for instance, debris lateral erosion under concrete floors at the bottom of the sump pit. In the advanced MCCI model, buffer cells were defined in order to solve numerical problems in case of trammel formation. Mass, momentum, and the advection term of energy between the debris melt cells and the buffer cells are solved. On the other hand, only the heat transfer and thermal conduction are solved between the debris melt cells and the structure cells, and the crust cells and the structure cells. As a preliminary analysis, a validation calculation was performed for erosion that occurred in the core-concrete interaction (CCI-2) test in the OECD/MCCI program. Comparison between the calculation and the CCI-2 test results showed the analysis has the ability to simulate debris lateral erosion under concrete floors. (authors)

  10. Physical properties of core-concrete systems: Al{sub 2}O{sub 3}-ZrO{sub 2} molten materials measured by aerodynamic levitation

    Energy Technology Data Exchange (ETDEWEB)

    Ohishi, Yuji, E-mail: ohishi@see.eng.osaka-u.ac.jp [Graduate School of Engineering, Osaka University (Japan); Kargl, F. [Institute of Materials Physics in Space, German Aerospace Center (Germany); Nakamori, F.; Muta, Hiroaki; Kurosaki, Ken [Graduate School of Engineering, Osaka University (Japan); Yamanaka, Shinsuke [Graduate School of Engineering, Osaka University (Japan); Research Institute of Nuclear Engineering, University of Fukui (Japan)

    2017-04-15

    During a molten core–concrete interaction, molten oxides consisting of molten core materials (UO{sub 2} and ZrO{sub 2}) and concrete (Al{sub 2}O{sub 3}, SiO{sub 2}, CaO) are formed. Reliable data on the physical properties of the molten oxides will allow us to accurately predict the progression of a nuclear reactor core meltdown accident. In this study, the viscosities and densities of molten (ZrO{sub 2}){sub x}(Al{sub 2}O{sub 3}){sub 1-x} (x = 0.356 and 0.172) were measured using an aerodynamic levitation technique. The densities of two small samples were estimated from their masses and their volumes (calculated from recorded images of the molten samples). The droplets were forced to oscillate using speakers, and their viscosities were evaluated from the damping behaviors of their oscillations. The results showed that the viscosity of molten (ZrO{sub 2}){sub x}(Al{sub 2}O{sub 3}){sub 1-x} compared to that of pure molten Al{sub 2}O{sub 3} is 25% lower for x = 0.172, while it is unexpectedly 20% higher for x = 0.356. - Highlights: •The physical properties of molten (ZrO{sub 2}){sub x}(Al{sub 2}O{sub 3}){sub 1-x} (x = 0.356 and 0.172) have been evaluated. •The measurement was conducted using an aerodynamic levitation technique. •The density and viscosity were measured.

  11. Two-Phase Flow Effect on the Ex-Vessel Corium Debris Bed Formation in Severe Accident

    International Nuclear Information System (INIS)

    Kim, Eunho; Park, Jin Ho; Kim, Moo Hwan; Park, Hyun Sun; Ma, Weimin; Bechta, Sevostian V.

    2014-01-01

    In Korean IVR-ERVC(In-Vessel Retention of molten corium through External Reactor Vessel Cooling) strategy, if the situation degenerates into insufficient external vessel cooling, the molten core mixture can directly erupt into the flooded cavity pool from the weakest point of the vessel. Then, FCI (molten Fuel Coolant Interaction) will fragment the corium jet into small particulates settling down to make porous debris bed on the cavity basemat. To secure the containment integrity against the MCCI (Molten Core - Concrete Interaction), cooling of the heat generating porous corium debris bed is essential and it depends on the characteristics of the bed itself. For the characteristics of corium debris bed, many previous experimental studies with simulant melts reported the heap-like shape mostly. There were also following experiments to develop the correlation for the heap-like shaped debris bed. However, recent studies started to consider the effect of the decay heat and reported some noticeable results with the two-phase flow effect on the debris bed formation. The Kyushu University and JAEA group reported the experimental studies on the 'self-leveling' effect which is the flattening effect of the particulate bed by the inside gas generation. The DECOSIM simulation study of RIT (Royal Institute of Technology, Sweden) with Russian researchers showed the 'large cavity pool convection' effect, which is driven by the up-rising gas bubble flow from the pre-settled debris bed, on the particle settling trajectories and ultimately final bed shape. The objective of this study is verification of the two-phase flow effect on the ex-vessel corium debris bed formation in the severe accident. From the analysis on the test movie and resultant particle beds, the two-phase flow effect on the debris bed formation, which has been reported in the previous studies, was verified and the additional findings were also suggested. For the first, in quiescent pool the

  12. Thermalhydraulic Phenomena in Corium Pools: Numerical Simulation with TOLBIAC and Experimental Validation with BALI

    International Nuclear Information System (INIS)

    Bernaz, L.; Bonnet, J.M.; Spindler, B.; Villermaux, C.

    1999-01-01

    In the frame of severe accidents studies, the behavior of corium pools is simulated by the TOLBIAC code. After a short description of the model and peculiarities of the code, its capacities are illustrated with results of the simulation of the behavior of a corium pool in a core catcher made of concrete. The BALI experiments and first results are then presented, and finally BALI tests simulation with TOLBIAC. (authors)

  13. Thermodynamic data bases and calculation code adapted to the modelling of molten core concrete interaction (M.C.C.I.) phenomena, developed jointly by Thermodata and the ''Institut de Protection et de Surete Nucleaire'' (France)

    International Nuclear Information System (INIS)

    Cenerino, G.

    1992-01-01

    An oxide data base containing the main five oxides Al 2 O 3 , CaO, SiO 2 , UO 2 and ZrO 2 of a corium obtained if the reactor core melts through the vessel and slumps into the concrete reactor cavity is developed using the GEMINI2 code. This oxide quinary system study takes into account physical realistic thermodynamical modeling of all the possible equilibrium species of the system. Two applications are presented: the determination of liquidus and solidus temperatures of some selected mixtures of the quinary system (core: UO 2 -ZrO 2 and concrete: Al 2 O 3 -CaO-SiO 2 ), a better modeling of the fission products release by vaporization from the corium. (A.B.). 5 refs., 2 figs

  14. Molten pool-lower head integrity. Heat transfer models including advanced numerical simulations (DNS)

    International Nuclear Information System (INIS)

    Seiler, J.M.; Bonnet, J.M.; Bernaz, L.

    2001-01-01

    Extensive studies have been performed to investigate the heat transfer within a molten corium pool (homogeneous, stratified and with miscibility gap): Synthesis of heat transfer correlations in molten pool (homogeneous and stratified), Focusing effect in stratified metal layer, DNS analysis of Rayleigh Benard instabilities at the top boundary; interpretation of the different convection regimes and exponents affecting the Rayleigh number in the heat transfer correlations, Molten pool model for corium presenting a miscibility gap. Condition for de-stratification. (authors)

  15. Molten pool-lower head integrity. Heat transfer models including advanced numerical simulations (DNS)

    Energy Technology Data Exchange (ETDEWEB)

    Seiler, J.M.; Bonnet, J.M.; Bernaz, L. [CEA Grenoble (France)

    2001-07-01

    Extensive studies have been performed to investigate the heat transfer within a molten corium pool (homogeneous, stratified and with miscibility gap): Synthesis of heat transfer correlations in molten pool (homogeneous and stratified), Focusing effect in stratified metal layer, DNS analysis of Rayleigh Benard instabilities at the top boundary; interpretation of the different convection regimes and exponents affecting the Rayleigh number in the heat transfer correlations, Molten pool model for corium presenting a miscibility gap. Condition for de-stratification. (authors)

  16. Second OECD (NEA) CSNI specialist meeting on molten core debris-concrete interactions

    International Nuclear Information System (INIS)

    Alsmeyer, H.

    1992-11-01

    The 37 contributions concentrated on two main topics. The first topic is the 'classical' core debris-concrete interaction, both experimental and theoretical. Integral effects and separate effects were addressed in thermal hydraulics and heat transfer, material interaction, and aerosol release during concrete erosion, with some applications to prototypical nuclear power plants. The second topic is the possibility of controlling and ending the erosion of the concrete by spreading of the core melt, and/or achieving coolability by the addition of water. (orig./HP) [de

  17. Simulation of In-Vessel Corium Retention through External Reactor Vessel Cooling for SMART using SIMPLE

    Energy Technology Data Exchange (ETDEWEB)

    Jang, Jin-Sung; Son, Donggun; Park, Rae-Joon [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2016-10-15

    Thermal load analysis from the corium pool to the outer reactor vessel in the lower plenum of the reactor vessel is necessary to evaluate the effect of the IVR-ERVC during a severe accident for SMART. A computational code called SIMPLE (Sever Invessel Melt Progression in Lower plenum Environment) has been developed for analyze transient behavior of molten corium in the lower plenum, interaction between corium and coolant, and heat-up and ablation of reactor vessel wall. In this study, heat load analysis of the reactor vessel for SMART has been conducted using the SIMPLE. Transient behavior of the molten corium in the lower plenum and IVR-ERVC for SMART has been simulated using SIMPLE. Heat flux from the corium pool to the outer reactor vessel is concentrated in metallic layer by the focusing effect. As a result, metallic layer shows higher temperature than the oxidic layer. Also, vessel wall of metallic layer has been ablated by the high in-vessel temperature. Ex-vessel temperature of the metallic layer was maintained 390 K and vessel thickness was maintained 14 cm. It means that the reactor vessel integrity is maintained by the IVR-ERVC.

  18. Simulation of heat and mass transfer processes in molten core debris-concrete systems. [LMFBR

    Energy Technology Data Exchange (ETDEWEB)

    Felde, D K

    1979-01-01

    The heat and mass transport phenomena taking place in volumetrically-heated fluids have become of interest in recent years due to their significance in assessments of fast reactor safety and post-accident heat removal (PAHR). Following a hypothetical core disruptive accident (HCDA), the core and reactor internals may melt down. The core debis melting through the reactor vessel and guard vessel may eventually contact the concrete of the reactor cell floor. The interaction of the core debris with the concrete as well as the melting of the debris pool into the concrete will significantly affect efforts to prevent breaching of the containment and the resultant release of radioactive effluents to the environment.

  19. CORCON-MOD3: An integrated computer model for analysis of molten core-concrete interactions

    International Nuclear Information System (INIS)

    Bradley, D.R.; Gardner, D.R.; Brockmann, J.E.; Griffith, R.O.

    1993-10-01

    The CORCON-Mod3 computer code was developed to mechanistically model the important core-concrete interaction phenomena, including those phenomena relevant to the assessment of containment failure and radionuclide release. The code can be applied to a wide range of severe accident scenarios and reactor plants. The code represents the current state of the art for simulating core debris interactions with concrete. This document comprises the user's manual and gives a brief description of the models and the assumptions and limitations in the code. Also discussed are the input parameters and the code output. Two sample problems are also given

  20. Corium melt researches at VESTA test facility

    Directory of Open Access Journals (Sweden)

    Hwan Yeol Kim

    2017-10-01

    Full Text Available VESTA (Verification of Ex-vessel corium STAbilization and VESTA-S (-small test facilities were constructed at the Korea Atomic Energy Research Institute in 2010 to perform various corium melt experiments. Since then, several tests have been performed for the verification of an ex-vessel core catcher design for the EU-APR1400. Ablation tests of an impinging ZrO2 melt jet on a sacrificial material were performed to investigate the ablation characteristics. ZrO2 melt in an amount of 65–70 kg was discharged onto a sacrificial material through a well-designed nozzle, after which the ablation depths were measured. Interaction tests between the metallic melt and sacrificial material were performed to investigate the interaction kinetics of the sacrificial material. Two types of melt were used: one is a metallic corium melt with Fe 46%, U 31%, Zr 16%, and Cr 7% (maximum possible content of U and Zr for C-40, and the other is a stainless steel (SUS304 melt. Metallic melt in an amount of 1.5–2.0 kg was delivered onto the sacrificial material, and the ablation depths were measured. Penetration tube failure tests were performed for an APR1400 equipped with 61 in-core instrumentation penetration nozzles and extended tubes at the reactor lower vessel. ZrO2 melt was generated in a melting crucible and delivered down into an interaction crucible where the test specimen is installed. To evaluate the tube ejection mechanism, temperature distributions of the reactor bottom head and in-core instrumentation penetration were measured by a series of thermocouples embedded along the specimen. In addition, lower vessel failure tests for the Fukushima Daiichi nuclear power plant are being performed. As a first step, the configuration of the molten core in the plant was investigated by a melting and solidification experiment. Approximately 5 kg of a mixture, whose composition in terms of weight is UO2 60%, Zr 10%, ZrO2 15%, SUS304 14%, and B4C 1%, was melted in a

  1. Fragmentation and quench behavior of corium melt streams in water

    International Nuclear Information System (INIS)

    Spencer, B.W.; Wang, K.; Blomquist, C.A.; McUmber, L.M.; Schneider, J.P.

    1994-02-01

    The interaction of molten core materials with water has been investigated for the pour stream mixing mode. This interaction plays a crucial role during the later stages of in-vessel core melt progression inside a light water reactor such as during the TMI-2 accident. The key issues which arise during the molten core relocation include: (i) the thermal attack and possible damage to the RPV lower head from the impinging molten fuel stream and/or the debris bed, (ii) the molten fuel relocation pathways including the effects of redistribution due to core support structure and the reactor lower internals, (iii) the quench rate of the molten fuel through the water in the lower plenum, (iv) the steam generation and hydrogen generation during the interaction, (v) the transient pressurization of the primary system, and (vi) the possibility of a steam explosion. In order to understand these issues, a series of six experiments (designated CCM-1 through -6) was performed in which molten corium passed through a deep pool of water in a long, slender pour stream mode. Results discussed include the transient temperatures and pressures, the rate and magnitude of steam/hydrogen generation, and the posttest debris characteristics

  2. Draft paper: On the analysis of diffusive mass transfer in ex-vessel corium pools

    International Nuclear Information System (INIS)

    Frolov, Kyrill N.

    2003-01-01

    In case of a severe accident at a nuclear power plant (NPP) involving the reactor pressure vessel (RPV) melt-through, confident solidification of ex-vessel corium is the imperative condition of its safe retention within the plant containment. The rate-determining process for solidification of ex-vessel coriums in the long-term is the chemical diffusion in the liquid phase at the solid-liquid interface. The process of chemical diffusion in the diffusive boundary layer can evolve taking on different rates, depending on the boundary conditions and the melt composition. Nonetheless, the chemical diffusion rates would entwine the self-diffusivities of corium constituents, which in turn would depend on the melt chemical composition. This work looks at some aspects of analytical and experimental determination of self-diffusivities of corium constituents. Following the corium-concrete interaction, an ex-vessel corium melt would contain several chemical components, including a fraction of silica. Accordingly, ex-vessel corium is considered in this paper as a silicate melts. In the realm of the geological and glass sciences, where silicate melts are most often discussed, the diffusive transport and viscous flow are conceived interrelated from a phenomenological point of view. Though the viscous and diffusive mass transfer mechanisms are not identical for different species even in the same melt, a combination of semi-empirical models can still provide an estimation of the diffusion thresholds in ex-vessel corium melts. Thus, the first part of this paper presents an analysis of the applicability of such empirical models for simple silicate melts based on the published data. This is followed by an estimation of diffusivities in melt compositions typical of ex-vessel coriums. Alternatively, although the general trend towards a coupled description of the viscous flow and diffusion for ex-vessel corium melts seems promising, it is limited to published data on self-diffusivities of

  3. Experimental simulation of corium dispersion phenomena in direct containment heating

    International Nuclear Information System (INIS)

    Wu, Q.

    1996-01-01

    In a direct containment heating (DCH) accident scenario, the degree of corium dispersion is one of the most significant factors responsible for the reactor containment heating and pressurization. To study the mechanisms of the corium dispersion phenomenon, a DCH separate effect test facility of 1:10 linear scale for Zion PWR geometry is constructed. Experiments are carried out with air-water and air-woods metal simulating steam and molten core materials. The physical process of corium dispersion is studied in detail through various instruments, as well as with flow visualization at several locations. The accident transient begins with the liquid jet discharge at the bottom of the reactor pressure vessel. Once the jet impinges on the cavity bottom floor, it immediately spreads out and moves rapidly to the cavity exit as a film flow. Part of the discharged liquid flows out of the cavity before gas blowdown, and the rest is subjected to the entrainment process due to the high speed gas stream. The liquid film and droplet flows from the reactor cavity will then experience subcompartment trapping and re-entrainment. Consequently, the dispersed liquid droplets that follow the gas stream are transported into the containment atmosphere, resulting in containment heating and pressurization in the prototypic condition. Comprehensive measurements are obtained in this study, including the liquid jet velocity, liquid film thickness and velocity transients in the test cavity, gas velocity and velocity profile in the cavity, droplet size distribution and entrainment rate, and the fraction of dispersed liquid in the containment building. These data are of great importance for better understanding of the corium dispersion mechanisms. (orig.)

  4. Thermochemical properties of some alkaline-earth silicates and zirconates. Fission product behaviour during molten core-concrete interactions

    Energy Technology Data Exchange (ETDEWEB)

    Huntelaar, M.E.

    1996-06-19

    This thesis aims to make a contribution to a better understanding of the chemical processes occurring during an ex-vessel MCCI accident with a western-type of nuclear reactor. Chosen is for a detailed thermochemical study of the silicates and zirconates of barium and strontium. In Chapter one a short introduction in the history of (research in) nuclear safety is given, followed by the state-of-the-art of molten core-concrete interactions in Chapter two. In both Chapters the role of chemical thermodynamics on this particular subject is dealt with. The experimental work on the silicates and zirconates of barium and strontium performed for this thesis, is described in the Chapters three, four, five, six, and parts of eight. In Chapter three the basis for all thermochemical measurements, the sample preparation is given. Because the sample preparation effects the accuracy of the thermodynamic measurements, a great deal of effort is spent in optimizing the synthesis of the silicates which resulted in the TEOS-method widely employed here. In the next Chapters the different thermochemical techniques used, are described: The low-temperature heat capacity measurements and the enthalpy increment measurements in Chapter four, the enthalpy-of-solution measurements in Chapter five, and measurements to determine the crystal structures in Chapter six. (orig.).

  5. Thermochemical properties of some alkaline-earth silicates and zirconates. Fission product behaviour during molten core-concrete interactions

    International Nuclear Information System (INIS)

    Huntelaar, M.E.

    1996-01-01

    This thesis aims to make a contribution to a better understanding of the chemical processes occurring during an ex-vessel MCCI accident with a western-type of nuclear reactor. Chosen is for a detailed thermochemical study of the silicates and zirconates of barium and strontium. In Chapter one a short introduction in the history of (research in) nuclear safety is given, followed by the state-of-the-art of molten core-concrete interactions in Chapter two. In both Chapters the role of chemical thermodynamics on this particular subject is dealt with. The experimental work on the silicates and zirconates of barium and strontium performed for this thesis, is described in the Chapters three, four, five, six, and parts of eight. In Chapter three the basis for all thermochemical measurements, the sample preparation is given. Because the sample preparation effects the accuracy of the thermodynamic measurements, a great deal of effort is spent in optimizing the synthesis of the silicates which resulted in the TEOS-method widely employed here. In the next Chapters the different thermochemical techniques used, are described: The low-temperature heat capacity measurements and the enthalpy increment measurements in Chapter four, the enthalpy-of-solution measurements in Chapter five, and measurements to determine the crystal structures in Chapter six. (orig.)

  6. Development of severe accident analysis code - A study on the molten core-concrete interaction under severe accidents

    Energy Technology Data Exchange (ETDEWEB)

    Jung, Chang Hyun; Lee, Byung Chul; Huh, Chang Wook; Kim, Doh Young; Kim, Ju Yeul [Seoul National University, Seoul (Korea, Republic of)

    1996-07-01

    The purpose of this study is to understand the phenomena of the molten core/concrete interaction during the hypothetical severe accident, and to develop the model for heat transfer and physical phenomena in MCCIs. The contents of this study are analysis of mechanism in MCCIs and assessment of heat transfer models, evaluation of model in CORCON code and verification in CORCON using SWISS and SURC Experiments, and 1000 MWe PWR reactor cavity coolability, and establishment a model for prediction of the crust formation and temperature of melt-pool. The properties and flow condition of melt pool covering with the conditions of severe accident are used to evaluate the heat transfer coefficients in each reviewed model. Also, the scope and limitation of each model for application is assessed. A phenomenological analysis is performed with MELCOR 1.8.2 and MELCOR 1.8.3 And its results is compared with corresponding experimental reports of SWISS and SURC experiments. And the calculation is performed to assess the 1000 MWe PWR reactor cavity coolability. To improve the heat transfer model between melt-pool and overlying coolant and analyze the phase change of melt-pool, 2 dimensional governing equations are established using the enthalpy method and computational program is accomplished in this study. The benchmarking calculation is performed and its results are compared to the experiment which has not considered effects of the coolant boiling and the gas injection. Ultimately, the model shall be developed for considering the gas injection effect and coolant boiling effect. 66 refs., 10 tabs., 29 refs. (author)

  7. Vaporization of chemical species and the production of aerosols during a core debris/concrete interaction

    International Nuclear Information System (INIS)

    Butland, A.T.D.; Mignanelli, M.A.; Potter, P.E.; Smith, P.N.

    1987-01-01

    The equilibrium chemical composition within gas bubbles sparging through isothermal molten corium-concrete mixtures has been evaluated theoretically. A series of sensitivity calculations gives some insight into a number of factors which are of importance in determining the radionuclide and non-radioactive releases during core-concrete interaction. The degree of mixing or layering of the pool has turned out to be of paramount importance in determining the magnitudes of the releases. The presence of unoxidized zirconium in the melt tends to enhance the release of a number of species and the type of concrete used for the base mat can have a significant effect. The predictions can be sensitive to the thermodynamic data used in the calculations. The vaporization of various species into the gas bubbles can require large amounts of heat; the loss of this heat from the melt can have an effect on the extent of the vaporization

  8. Presentation of the Vulcano installation which uses a plasma transferred arc rotary furnace for corium melting

    International Nuclear Information System (INIS)

    Cognet, G.; Laffont, G.; Jegou, C.; Pierre, J.; Journeau, C.; Sudreau, F.; Roubaud, A.

    1998-01-01

    In the case of loss coolant accident, the reactor core could melt and turn into a mixture of uranium oxides, zirconium, iron and steel called corium. A large experimental program has been launched to study corium behaviour, to qualify solutions to stabilize it and to confine it in the reactor containment. The Vulcano installation has been designed to that purpose. It is made up of: i) a plasma transferred arc rotary furnace, ii) a testing surface covered with refractory materials, iii) an induction heating system in order to simulate the residual power of corium, iv) instrumentation devices such as video cameras, thermocouples, infra-red pyrometers and flowmeters, and v) a laboratory to perform chemical analysis of corium samples. The first experimental results show that a mixture of corium and concrete spreads better than expected. It seems that a low initial height of matter can produce a great distance flowing while having a chaotic behaviour. This characteristic suggests that the mixture acts as a Bingham type threshold fluid. (A.C.)

  9. Ex-vessel corium spreading: results from the VULCANO spreading tests

    Energy Technology Data Exchange (ETDEWEB)

    Journeau, Christophe E-mail: christophe.journeau@cea.fr; Boccaccio, Eric E-mail: eric.boccaccio@cea.fr; Brayer, Claude; Cognet, Gerard E-mail: gerard.cognet@cea.fr; Haquet, Jean-Francois E-mail: haquet@eloise.cad.cea.fr; Jegou, Claude E-mail: claude.jegou@cea.fr; Piluso, Pascal E-mail: pascal.piluso@cea.fr; Monerris, Jose E-mail: jose.monerris@cea.fr

    2003-07-01

    In the hypothetical case of a nuclear reactor severe accident, the reactor core could melt and form a mixture, called corium, of highly refractory oxides (UO{sub 2}, ZrO{sub 2}) and metallic or oxidized steel, that could eventually flow out of the vessel and mix with the basemat decomposition products (generally oxides such as SiO{sub 2}, Al{sub 2}O{sub 3}, CaO, Fe{sub 2}O{sub 3}, ...). For some years, the French Atomic Energy Commission (CEA) has launched an R and D program which aimed at providing the tools for improving the mastering of severe accidents. Within this program, the VULCANO experimental facility is operated to perform experiments with prototypic corium (corium of realistic chemical composition including depleted UO{sub 2}). This is coupled with the use of specific high-temperature instrumentation requiring in situ cross calibration. This paper is devoted to the 'spreading experiments' performed in the VULCANO facility, in which the effects of flow and solidification are studied. Due to the complex behavior of corium in the solidification range, an interdisciplinary approach has been used combining thermodynamics of multicomponent mixtures, rheological models of silicic semisolid materials, heat transfer at high temperatures, free-surface flow of a fluid with temperature-dependant properties. Twelve high-temperature spreading tests have been performed and analyzed. The main experimental results are the good spreadability of corium-concrete mixtures having large solidification ranges even with viscous silicic melts, the change of microstructure due to cooling rates, the occurrence of a large thermal contact resistance at the corium-substrate interface, the presence of a steep viscosity gradient at the surface, the transient concrete ablation. Furthermore, the experiments showed the presence of the gaseous inclusions in the melt even without concrete substrate. This gas release is linked to the local oxygen content in the melt which is

  10. Corium phase equilibria based on MASCA, METCOR and CORPHAD results

    Energy Technology Data Exchange (ETDEWEB)

    Bechta, S.V.; Granovsky, V.S.; Khabensky, V.B. [Alexandrov Research Institute of Technologies (NITI), Sosnovy Bor (Russian Federation); Gusarov, V.V.; Almiashev, V.I.; Mezentseva, L.P. [Grebenshikov Institute of Silicate Chemistry, Russian Academy of Sciences (ISCh RAS), St. Petersburg (Russian Federation); Krushinov, E.V.; Kotova, S.Yu.; Kosarevsky, R.A. [Alexandrov Research Institute of Technologies (NITI), Sosnovy Bor (Russian Federation); Barrachin, M. [Institut de Radioprotection et Surete Nucleaire IRSN/DPAM, St Paul lez Durance (France); Bottomley, D. [EUROPAISCHE KOMMISSION, Joint Research Centre Institut fuer Transurane (ITU), Karlsruhe (Germany); Fichot, F. [Institut de Radioprotection et Surete Nucleaire IRSN/DPAM, St Paul lez Durance (France); Fischer, M. [AREVA NP GmbH, Erlangen (Germany)], E-mail: Manfred.Fischer@areva.com

    2008-10-15

    Experimental data on component partitioning between suboxidized corium melt and steel in the in-vessel melt retention (IVR) conditions are compared. The data are produced within the OECD MASCA program and the ISTC CORPHAD project under close-to-isothermal conditions and in the ISTC METCOR project under thermal gradient conditions. Chemical equilibrium in the U-Zr-Fe(Cr,Ni,...)-O system is reached in all experiments. In MASCA tests the molten pool formed under inert atmosphere has two immiscible liquids, oxygen-enriched (oxidic) and oxygen-depleted (metallic), resulting of the miscibility gap of the mentioned system. Sub-system data of the U-Zr-Fe(Cr,Ni,...)-O phase diagram investigated within the ISTC CORPHAD project are interpreted in relation with the MASCA results. In METCOR tests the equilibrium is established between oxidic liquid and mushy metallic part of the system. Results of comparison are discussed and the implications for IVR noted.

  11. Validation of ASTEC V2 models for the behaviour of corium in the vessel lower head

    International Nuclear Information System (INIS)

    Carénini, L.; Fleurot, J.; Fichot, F.

    2014-01-01

    The paper is devoted to the presentation of validation cases carried out for the models describing the corium behaviour in the “lower plenum” of the reactor vessel implemented in the V2.0 version of the ASTEC integral code, jointly developed by IRSN (France) and GRS (Germany). In the ASTEC architecture, these models are grouped within the single ICARE module and they are all activated in typical accident scenarios. Therefore, it is important to check the validity of each individual model, as long as experiments are available for which a single physical process is involved. The results of ASTEC applications against the following experiments are presented: FARO (corium jet fragmentation), LIVE (heat transfer between a molten pool and the vessel), MASCA (separation and stratification of corium non miscible phases) and OLHF (mechanical failure of the vessel). Compared to the previous ASTEC V1.3 version, the validation matrix is extended. This work allows determining recommended values for some model parameters (e.g. debris particle size in the fragmentation model and criterion for debris bed liquefaction). Almost all the processes governing the corium behaviour, its thermal interaction with the vessel wall and the vessel failure are modelled in ASTEC and these models have been assessed individually with satisfactory results. The main uncertainties appear to be related to the calculation of transient evolutions

  12. ASTEC application to in-vessel corium retention

    International Nuclear Information System (INIS)

    Tarabelli, D.; Ratel, G.; Pelisson, R.; Guillard, G.; Barnak, M.; Matejovic, P.

    2009-01-01

    This paper summarizes the work done in the SARNET European Network of Excellence on Severe Accidents (6th Framework Programme of the European Commission) on the capability of the ASTEC code to simulate in-vessel corium retention (IVR). This code, jointly developed by the French Institut de Radioprotection et de Surete Nucleaire (IRSN) and the German Gesellschaft fuer Anlagen und Reaktorsicherheit mbH (GRS) for simulation of severe accidents, is now considered as the European reference simulation tool. First, the DIVA module of ASTEC code is briefly introduced. This module treats the core degradation and corium thermal behaviour, when relocated in the reactor lower head. Former ASTEC V1.2 version assumed a predefined stratified molten pool configuration with a metallic layer on the top of the volumetrically heated oxide pool. In order to reflect the results of the MASCA project, improved models that enable modelling of more general corium pool configurations were implemented by the CEA (France) into the DIVA module of the ASTEC V1.3 code. In parallel, the CEA was working on ASTEC modelling of the external reactor vessel cooling (ERVC). The capability of the ASTEC CESAR circuit thermal-hydraulics to simulate the ERVC was tested. The conclusions were that the CESAR module is capable of simulating this system although some numerical and physical instabilities can occur. Developments were then made on the coupling between both DIVA and CESAR modules in close collaboration with IRSN. In specific conditions, code oscillations remain and an analysis was made to reduce the numerical part of these oscillations. A comparison of CESAR results of the SULTAN experiments (CEA) showed an agreement on the pressure differences. The ASTEC V1.2 code version was applied to IVR simulation for VVER-440/V213 reactors assuming defined corium mass, composition and decay heat. The external cooling of reactor wall was simulated by applying imposed coolant temperature and heat transfer

  13. Thermophysical properties of liquid UO2, ZrO2 and corium by molecular dynamics and predictive models

    International Nuclear Information System (INIS)

    Kim, Woong Kee; Shim, Ji Hoon; Kaviany Massoud

    2016-01-01

    The analysis of such accidents (fate of the melt), requires accurate corium thermophysical properties data up to 5000 K. In addition, the initial corium melt superheat melt, determined from such properties, are key in predicting the fuel-coolant interactions (FCIs) and convection and retention of corium in accident scenarios, e.g., core-melt down corium discharge from reactor pressure vessels and spreading in external core-catcher. Due to the high temperatures, data on molten corium and its constituents are limited, so there are much data scatters and mostly extrapolations (even from solid state) have been used. Here we predict the thermophysical properties of molten UO 2 and ZrO 2 using classical molecular dynamics (MD) simulations (properties of corium are predicted using the mixture theories and UO 2 and ZrO 2 properties). The thermophysical properties (density, compressibility, heat capacity, viscosity and surface tension) of liquid UO 2 and ZrO 2 are predicted using classical molecular dynamics simulations, up to 5000 K. For atomic interactions, the CRG and the Teter potential models are found most appropriate. The liquid behavior is verified with the random motion of the constituent atoms and the pair-distribution functions, starting with the solid phase and raising the temperature to realize liquid phase. The viscosity and thermal conductivity are calculated with the Green-Kubo autocorrelation decay formulae and compared with the predictive models of Andrade and Bridgman. For liquid UO 2 , the CRG model gives satisfactory MD predictions. For ZrO 2 , the density is reliably predicted with the CRG potential model, while the compressibility and viscosity are more accurately predicted by the Teter model

  14. Behavior of a corium jet in high pressure melt ejection from a reactor pressure vessel

    International Nuclear Information System (INIS)

    Frid, W.

    1987-01-01

    This report provides results from analytical and experimental investigations on the behavior of a gas supersaturated molten jet expelled from a pressurized vessel. Aero-hydrodynamic stability of liquid jets in gas, stream degassing of molten metals and gas bubble nucleation in molten metals are relevant problems which are addressed in this work. Models are developed for jet expansion, primary breakup of the jet and secondary fragmentation of melt droplets resulting from violent effervescence of dissolved gas. The jet expansion model is based on a general relation for bubble growth which includes both inertia-controlled and diffusion-controlled growth phases. The jet expansion model is able to predict the jet void fraction, jet radius as a function of axial distance from the pressure vessel, bubble size and bubble pressure. The number density of gas bubbles in the melt, which is a basic parameter in the model, was determined experimentally and is about 10 8 per m 3 of liquid. The primary breakup of the jet produces a spray of droplets, about 2-3 mm in diameter. Parametric calculations for a TMLB' reactor accident sequence show that the corium jet is disrupted within a few initial jet diameters from the reactor vessel and that the radius of corium spray at the level of the reactor cavity floor is in the range of 0.8 to 2.6 m. (orig./HP)

  15. Development and validation of corium oxidation model for the VAPEX code

    International Nuclear Information System (INIS)

    Blinkov, V.N.; Melikhov, V.I.; Davydov, M.V.; Melikhov, O.I.; Borovkova, E.M.

    2011-01-01

    In light water reactor core melt accidents, the molten fuel (corium) can be brought into contact with coolant water in the course of the melt relocation in-vessel and ex-vessel as well as in an accident mitigation action of water addition. Mechanical energy release from such an interaction is of interest in evaluating the structural integrity of the reactor vessel as well as of the containment. Usually, the source for the energy release is considered to be the rapid transfer of heat from the molten fuel to the water ('vapor explosion'). When the fuel contains a chemically reactive metal component, there could be an additional source for the energy release, which is the heat release and hydrogen production due to the metal-water chemical reaction. In Electrogorsk Research and Engineering Center the computer code VAPEX (VAPor EXplosion) has been developed for analysis of the molten fuel coolant interaction. Multifield approach is used for modeling of dynamics of following phases: water, steam, melt jet, melt droplets, debris. The VAPEX code was successfully validated on FARO experimental data. Hydrogen generation was observed in FARO tests even though corium didn't contain metal component. The reason for hydrogen generation was not clear, so, simplified empirical model of hydrogen generation was implemented in the VAPEX code to take into account input of hydrogen into pressure increase. This paper describes new more detailed model of hydrogen generation due to the metal-water chemical reaction and results of its validation on ZREX experiments. (orig.)

  16. Analysis of corium recovery concepts by the EUROCORE group

    International Nuclear Information System (INIS)

    Seiler, J.-M.; Latrobe, A.; Sehgal, B.R.; Alsmeyer, H.; Kymaelaeinen, O.; Turland, B.; Grange, J.-L.; Fischer, M.; Azarian, G.; Buerger, M.; Cirauqui, C.J.; Zurita, A.

    2003-01-01

    The objective of the EUROCORE (European Group for Analysis of Corium Recovery Concepts) Concerted Action is to obtain a clear view of the state-of-the-art for melt stabilisation as considered in accident management schemes and to better identify Research and Development (R and D) needs. Five different melt stabilisation concepts have been discussed: in-vessel retention with external cooling, core-concrete interaction with top cooling, ex-vessel spreading with top flooding, water injection by bottom flooding, and crucible concept with sacrificial material. For each concept, main unresolved problems are discussed in this paper and recommended R and D actions are outlined. The project started on 1 March 2000 and ended on 28 February 2002

  17. Experimental study of the fragmentation and quench behavior of corium melts in water

    International Nuclear Information System (INIS)

    Wang, S.K.; Blomquist, C.A.; Spencer, B.W.; McUmber, L.M.; Schneider, J.P.; Illinois Univ., Urbana, IL

    1989-01-01

    The interaction of molten core materials with water has been investigated for the pour stream mixing mode. This interaction plays a crucial role during the later stages of in-vessel core melt progression inside a light water reactor such as during the TMI-2 accident. The key issues which arise during the molten core relocation include: (1) the thermal attack and possible damage to the RPV lower head from the impinging molten fuel stream and/or the debris bed, (2) the molten fuel relocation pathways including the effects of redistribution due to core support structure and the reactor lower internals, (3) the quench rate of the molten fuel through the water in the lower plasma, (4) the steam generation and hydrogen generation during the interaction, (5) the transient pressurization of the primary system, and (6) the possibility of a steam explosion. In order to understand these issues, a series of six experiments (designated CCM-1 through -6) was performed in which molten corium passed through a deep pool of water in a long, slender pour stream mode. Results discussed include the transient temperatures and pressures, the rate and magnitude of steam/hydrogen generation, and the posttest debris characteristics. 9 refs., 29 figs

  18. Concrete

    DEFF Research Database (Denmark)

    2015-01-01

    Concrete is a component of coherent transition between a concrete base and a wooden construction. The structure is based on a quantity of investigations of the design possibilities that arise when combining digital fabrication tools and material capacities. Through tangible experiments the project...... specific for this to happen. And the knowledge and intention behind the drawing becomes specialised through the understanding of the fabrication processes and their affect on the materials.The structure Concrete is a result of a multi-angled kerf series in ash wood and a concrete base. The ash wood is cut...... using a 5-axis CNC router with a thin saw blade attached. The programming of the machining results in variations of kerfs that lets the ash wood twist into unique shapes.The shapes of the revolving ash ribbons continue into the concrete creating a cohesive shape. The form for the concrete itself is made...

  19. Core-concrete interactions using molten UO2 with zirconium on a basaltic basemat: The SURC-2 experiment

    International Nuclear Information System (INIS)

    Copus, E.R.; Brockmann, J.E.; Simpson, R.B.; Lucero, D.A.; Blose, R.E.

    1992-08-01

    An inductively heated experiment, SURC-2, using prototypic U0 2 -ZrO 2 materials was executed as part of the Integral Core-Concrete Interactions Experiments Program. The purpose of this experimental program was to measure and assess the variety of source terms produced during core debris/concrete interactions. These source terms include thermal energy released to both the reactor basemat and the containment environment, as well as flammable gas, condensable vapor and toxic or radioactive aerosols generated during the course of a severe reactor accident. The SURC-2 experiment eroded a total of 35 cm of basaltic concrete during 160 minutes of sustained interaction using 203.9 kg of prototypic U0 2 -ZrO 2 core debris material that included 18 kg of Zr metal and 3.4 kg of fission product simulants. The meltpool temperature ranged from 2400--1900 degrees C during the first 50 minutes of the test followed by steady temperatures of 1750--1800 degrees C during the middle portion of the test and increased temperatures of 1800--1900 degrees C during the final 50 minutes of testing. The total erosion during the first 50 minutes was 15 cm with an additional 7 cm during the middle part of the test and 13 cm of ablation during the final 50 minutes. Comprehensive gas flowrates, gas compositions, and aerosol release rates were also measured during the SURC-2 test. When combined with the SURC-1 results, SURC-2 forms a complete data base for prototypic U0 2 -ZrO 2 core debris interactions with concrete

  20. Core-concrete interactions using molten UO sub 2 with zirconium on a basaltic basemat: The SURC-2 experiment

    Energy Technology Data Exchange (ETDEWEB)

    Copus, E.R.; Brockmann, J.E.; Simpson, R.B.; Lucero, D.A. (Sandia National Labs., Albuquerque, NM (United States)); Blose, R.E. (Ktech Corp., Albuquerque, NM (United States))

    1992-08-01

    An inductively heated experiment, SURC-2, using prototypic U0{sub 2}-ZrO{sub 2} materials was executed as part of the Integral Core-Concrete Interactions Experiments Program. The purpose of this experimental program was to measure and assess the variety of source terms produced during core debris/concrete interactions. These source terms include thermal energy released to both the reactor basemat and the containment environment, as well as flammable gas, condensable vapor and toxic or radioactive aerosols generated during the course of a severe reactor accident. The SURC-2 experiment eroded a total of 35 cm of basaltic concrete during 160 minutes of sustained interaction using 203.9 kg of prototypic U0{sub 2}-ZrO{sub 2} core debris material that included 18 kg of Zr metal and 3.4 kg of fission product simulants. The meltpool temperature ranged from 2400--1900{degrees}C during the first 50 minutes of the test followed by steady temperatures of 1750--1800{degrees}C during the middle portion of the test and increased temperatures of 1800--1900{degrees}C during the final 50 minutes of testing. The total erosion during the first 50 minutes was 15 cm with an additional 7 cm during the middle part of the test and 13 cm of ablation during the final 50 minutes. Comprehensive gas flowrates, gas compositions, and aerosol release rates were also measured during the SURC-2 test. When combined with the SURC-1 results, SURC-2 forms a complete data base for prototypic U0{sub 2}-ZrO{sub 2} core debris interactions with concrete.

  1. Corium Oxidation at Temperatures Above 2000 K

    International Nuclear Information System (INIS)

    Hagrman, Donald L.; Rempe, Joy L.

    2001-01-01

    A mechanistic model, based on a quasi-equilibrium analysis of oxidation reactions, is proposed for predicting high-temperature corium oxidation. The analysis suggests that oxide forming on the surface of corium containing uranium, zirconium, and iron is similar to the oxides formed on zirconium and uranium as long as there is a small percentage of unoxidized zirconium or uranium in the metallic phase. This is because of the higher affinity of zirconium and uranium for oxygen. Hence, oxidation rates and heat production rates are similar to (U,Zr) compounds until nearly all the uranium and zirconium in the corium oxidizes. Oxidation rates after this point are predicted to be similar to those implied by the oxide thickness present when the forming oxide ceases to be protective, and heat generation rates should be similar to those implied by iron oxidation, i.e., ∼4% of the zirconium oxidation heating rate.The maximum atomic ratio of unoxidized iron to unoxidized liquid zirconium plus uranium for the formation of a solid protective oxide below 2800 K is estimated for a temperature, T (in Kelvin), as follows:(unoxidized iron)/(unoxidized zirconium + turanium) = (1/28){5.7/exp[-(147 061 + 12.08T log(T) - 61.03T - 0.000555T 2 /1.986T)]} 1/2 .As long as this limit is not exceeded, either zirconium or uranium metal oxidation rates and heating describe the corium oxidation rate. If this limit is exceeded, diffusion of steam to the corium surface will limit the oxidation rate, and linear time-dependent growth of a nonprotective, mostly FeO, layer will occur below the protective (Zr,U) O 2 scale. When this happens, the oxidation should be at the constant rate given by the thickness of the protective layer. Heat generation should be similar to that of iron oxidation

  2. Corium Oxidation at Temperatures Above 2000 K

    Energy Technology Data Exchange (ETDEWEB)

    Hagrman, Donald Lee; Rempe, Joy Lynn

    2001-02-01

    A mechanistic model, based on a quasi-equilibrium analysis of oxidation reactions, is proposed for predicting high-temperature corium oxidation. The analysis suggests that oxide forming on the surface of corium containing uranium, zirconium, and iron is similar to the oxides formed on zirconium and uranium as long as there is a small percentage of unoxidized zirconium or uranium in the metallic phase. This is because of the higher affinity of zirconium and uranium for oxygen. Hence, oxidation rates and heat production rates are similar to (U,Zr) compounds until nearly all the uranium and zirconium in the corium oxidizes. Oxidation rates after this point are predicted to be similar to those implied by the oxide thickness present when the forming oxide ceases to be protective, and heat generation rates should be similar to those implied by iron oxidation, i.e., ~4% of the zirconium oxidation heating rate. The maximum atomic ratio of unoxidized iron to unoxidized liquid zirconium plus uranium for the formation of a solid protective oxide below 2800 K is estimated for a temperature, T (in Kelvin), as follows: (unoxidized iron)/(unoxidized zirconium + turanium) = (1/28){5.7/exp[-(147 061 + 12.08T log(T) - 61.03T - 0.000555T2/1.986T)]}1/2. As long as this limit is not exceeded, either zirconium or uranium metal oxidation rates and heating describe the corium oxidation rate. If this limit is exceeded, diffusion of steam to the corium surface will limit the oxidation rate, and linear time-dependent growth of a nonprotective, mostly FeO, layer will occur below the protective (Zr,U) O2 scale. When this happens, the oxidation should be at the constant rate given by the thickness of the protective layer. Heat generation should be similar to that of iron oxidation.

  3. Thermodynamic analysis for molten stratification test MASCA with ionic liquid U-Zr-Fe-O-B-C-FPs database

    International Nuclear Information System (INIS)

    Fukasawa, Masanori; Tamura, Shigeyuki

    2007-01-01

    The molten corium stratification tested in the OECD MASCA project was analyzed with our thermo-dynamic database and the database was verified to be effective for the stratification analysis. The MASCA test shows that the molten corium can be stratified with the metal layer under the oxide when sub-oxidized corium including iron was retained in the lower head of the reactor vessel. This stratification is caused by the increased density of the metal layer attributed to a transfer of uranium metal that was reduced from uranium oxide by zirconium. Thermodynamic equilibrium calculations with the database, which was developed for the corium U-Zr-Fe-O-B-C-FPs system using the ionic two-sublattice model for liquid, show quantitative agreements with the MASCA test, such as the composition of each layer, fission product (FP) partitioning between the layers and B 4 C effect on the stratification. (author)

  4. FARO tests corium-melt cooling in water pool: Roles of melt superheat and sintering in sediment

    Energy Technology Data Exchange (ETDEWEB)

    Hwang, Gisuk [Department of Mechanical Engineering, Wichita State University, Wichita, KS 67260 (United States); Kaviany, Massoud [Department of Mechanical Engineering, University of Michigan, Ann Arbor, MI 48109 (United States); Division of Advance Nuclear Engineering, POSTECH, Pohang, Gyeongbuk 790-784 (Korea, Republic of); Moriyama, Kiyofumi [Division of Advance Nuclear Engineering, POSTECH, Pohang, Gyeongbuk 790-784 (Korea, Republic of); Park, Hyun Sun, E-mail: hejsunny@postech.ac.kr [Division of Advance Nuclear Engineering, POSTECH, Pohang, Gyeongbuk 790-784 (Korea, Republic of); Hwang, Byoungcheol; Lee, Mooneon; Kim, Eunho; Park, Jin Ho [Division of Advance Nuclear Engineering, POSTECH, Pohang, Gyeongbuk 790-784 (Korea, Republic of); Nasersharifi, Yahya [Department of Mechanical Engineering, Wichita State University, Wichita, KS 67260 (United States)

    2016-08-15

    Highlights: • The numerical approach for FARO experimental data is suggested. • The cooling mechanism of ex-vessel corium is suggested. • The predicted minimum pool depth for no cake formation is suggested. - Abstract: The FARO tests have aimed at understanding an important severe accident mitigation action in a light water reactor when the accident progresses from the reactor pressure vessel boundary. These tests have aimed to measure the coolability of a molten core material (corium) gravity dispersed as jet into a water pool, quantifying the loose particle diameter distribution and fraction converted to cake under range of initial melt superheat and pool temperature and depth. Under complete hydrodynamic breakup of corium and consequent sedimentation in the pool, the initially superheated corium can result in debris bed consisting of discrete solid particles (loose debris) and/or a solid cake at the bottom of the pool. The success of the debris bed coolability requires cooling of the cake, and this is controlled by the large internal resistance. We postulate that the corium cake forms when there is a remelting part in the sediment. We show that even though a solid shell forms around the melt particles transiting in the water pool due to film-boiling heat transfer, the superheated melt allows remelting of the large particles in the sediment (depending on the water temperature and the transit time) using the COOLAP (Coolability Analysis with Parametric fuel-cooant interaction models) code. With this remelting and its liquid-phase sintering of the non-remelted particles, we predict the fraction of the melt particles converting to a cake through liquid sintering. Our predictions are in good agreement with the existing results of the FARO experiments. We address only those experiments with pool depths sufficient/exceeding the length required for complete breakup of the molten jet. Our analysis of the fate of molten corium aimed at devising the effective

  5. Internal corium catcher of a nuclear reactor

    International Nuclear Information System (INIS)

    Anatolii S Vlasov; Vladimir N Mineev; Aleksandr S Sidorov; Yuri A Zeigarnik

    2005-01-01

    Full text of publication follows: A corium catcher is one of the main devices of a nuclear reactor that provides corium melt and fission products retention within a containment during severe accidents. Several studies and design developments have shown that corium retention within a reactor vessel can be attained with a moderate capacity of the latter (up to 600 - 650 MW el.). With a higher reactor capacity external corium catchers are applied both at Russian (VVER-1000) and European (EPR) reactors. In the external catcher of a VVER-1000 reactor, most technological problems are solved due to using sacrificial material. They are as follows: (a) endo-thermal interaction of corium and sacrificial material reduces a level of the temperatures in the final melt pool; (b) solution in the melt of a great amount of the sacrificial material reduces the specific heat release density and the heat flux density at the boundaries of a melt; (c) due to changing of the oxide-component density an inverse stratification of the metallic and oxide components of the corium takes place, thus excluding heat-flux focusing in the zone of the metallic layer and making it possible to supply water on the free surface of the corium without a danger of incipience of the vapor explosion; (d) final oxidation of zirconium occurs without hydrogen generation. The above principles have been realized in the external catcher of the VVER- 1000 reactor at Tyanvan NPS that is presently under construction in China. Successfully solving of the problems concerning to the external catcher makes it possible to return on the new conceptual and technological basis to the idea of retention of the corium melt inside the vessel of a nuclear reactor of large capacity, that is, to provide the reactor vessel to play a role of an internal catcher. For this purpose, a reactor vessel is elongated by approximately two meters. In the lower part of the vessel, on elliptical bottom, pieces of sacrificial material are arranged

  6. Oxidation effect on steel corrosion and thermal loads during corium melt in-vessel retention

    Energy Technology Data Exchange (ETDEWEB)

    Granovsky, V.S.; Khabensky, V.B.; Krushinov, E.V.; Vitol, S.A.; Sulatsky, A.A.; Almjashev, V.I. [Alexandrov Scientific-Research Technology Institute (NITI), Sosnovy Bor (Russian Federation); Bechta, S.V. [KTH, Stockholm (Sweden); Gusarov, V.V. [SPb State Technology University (SPbGTU), St. Petersburg (Russian Federation); Barrachin, M. [Institut de Radioprotection et de Sûreté Nucléaire (IRSN), St Paul lez Durance (France); Bottomley, P.D., E-mail: paul.bottomley@ec.europa.eu [EC-Joint Research Centre, Institute for Transuranium Elements (ITU), Karlsruhe (Germany); Fischer, M. [AREVA GmbH, Erlangen (Germany); Piluso, P. [Commissariat à l’Energie Atomique et aux Energies Alternatives (CEA), Cadarache, St Paul lez Durance (France)

    2014-10-15

    Highlights: • The METCOR facility simulates vessel steel corrosion in contact with corium. • Steel corrosion rates in UO{sub 2+x}–ZrO{sub 2}–FeO{sub y} coria accelerate above 1050 K. • However corrosion rates can also be limited by melt O{sub 2} supply. • The impact of this on in-vessel retention (IVR) strategy is discussed. - Abstract: During a severe accident with core meltdown, the in-vessel molten core retention is challenged by the vessel steel ablation due to thermal and physicochemical interaction of melt with steel. In accidents with oxidizing atmosphere above the melt surface, a low melting point UO{sub 2+x}–ZrO{sub 2}–FeO{sub y} corium pool can form. In this case ablation of the RPV steel interacting with the molten corium is a corrosion process. Experiments carried out within the International Scientific and Technology Center's (ISTC) METCOR Project have shown that the corrosion rate can vary and depends on both surface temperature of the RPV steel and oxygen potential of the melt. If the oxygen potential is low, the corrosion rate is controlled by the solid phase diffusion of Fe ions in the corrosion layer. At high oxygen potential and steel surface layer temperature of 1050 °C and higher, the corrosion rate intensifies because of corrosion layer liquefaction and liquid phase diffusion of Fe ions. The paper analyzes conditions under which corrosion intensification occurs and can impact on in-vessel melt retention (IVR)

  7. Thermophysical properties of liquid UO{sub 2}, ZrO{sub 2} and corium by molecular dynamics and predictive models

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Woong Kee; Shim, Ji Hoon [Pohang University of Science and Technology, Pohang (Korea, Republic of); Kaviany Massoud [University of Michigan, Ann Arbor (United States)

    2016-10-15

    The analysis of such accidents (fate of the melt), requires accurate corium thermophysical properties data up to 5000 K. In addition, the initial corium melt superheat melt, determined from such properties, are key in predicting the fuel-coolant interactions (FCIs) and convection and retention of corium in accident scenarios, e.g., core-melt down corium discharge from reactor pressure vessels and spreading in external core-catcher. Due to the high temperatures, data on molten corium and its constituents are limited, so there are much data scatters and mostly extrapolations (even from solid state) have been used. Here we predict the thermophysical properties of molten UO{sub 2} and ZrO{sub 2} using classical molecular dynamics (MD) simulations (properties of corium are predicted using the mixture theories and UO{sub 2} and ZrO{sub 2} properties). The thermophysical properties (density, compressibility, heat capacity, viscosity and surface tension) of liquid UO{sub 2} and ZrO{sub 2} are predicted using classical molecular dynamics simulations, up to 5000 K. For atomic interactions, the CRG and the Teter potential models are found most appropriate. The liquid behavior is verified with the random motion of the constituent atoms and the pair-distribution functions, starting with the solid phase and raising the temperature to realize liquid phase. The viscosity and thermal conductivity are calculated with the Green-Kubo autocorrelation decay formulae and compared with the predictive models of Andrade and Bridgman. For liquid UO{sub 2}, the CRG model gives satisfactory MD predictions. For ZrO{sub 2}, the density is reliably predicted with the CRG potential model, while the compressibility and viscosity are more accurately predicted by the Teter model.

  8. Concrete

    OpenAIRE

    Kruse Aagaard, Anders

    2015-01-01

    Concrete is a component of coherent transition between a concrete base and a wooden construction. The structure is based on a quantity of investigations of the design possibilities that arise when combining digital fabrication tools and material capacities.Through tangible experiments the project discusses materiality and digitally controlled fabrications tools as direct expansions of the architect’s digital drawing and workflow. The project sees this expansion as an opportunity to connect th...

  9. Analysis of the corium phases by X-ray diffraction; Analyses des phases du corium par diffraction des rayons X

    Energy Technology Data Exchange (ETDEWEB)

    Trillon, G

    2004-07-01

    In the framework of the severe accidents R and D studies led by CEA, the better knowledge of the corium behaviour, corium coming from the melting of a nuclear reactor, are fundamental stakes in order to master this kind of accident. Among the available physical properties of the corium, the nature of the final crystalline compounds which have been made during the, cooling gives information about its solidification and its stabilisation. X-Rays Diffraction is the reference method used in order to characterize the corium coming from the different facilities of the European platform PLINIUS of CEA-Cadarache. This work presents the scientific approach that has been followed in order to obtain information both qualitative and quantitative on corium, using X-Rays Diffraction. For instance, a specific method for identifying U{sub 1-x}Zr{sub x}O{sub 2} solid solutions has been developed, and the validity of quantitative analysis of corium crystalline phases using the Rietveld method (with an internal standard), has been tested. This last method has also permitted semi-quantitative measurements of amorphous phases within corium. For these studies, analysis of prototypical corium has been conducted on samples coming from the experiences led on the different facilities of the PLINIUS platform. These analysis allowed for the first time to obtain quantitative data of the corium crystalline phases in order to validate thermodynamic databases and has been used to estimate the thereto-physical properties of the corium. New information on crystalline phases of corium has also been found, especially for the UO{sub 2}-ZrO{sub 2} pseudo binary system. (author)

  10. Success for the Vulcano's team. First real corium flow

    International Nuclear Information System (INIS)

    Carnoy, M.

    1998-01-01

    The aim of the joint CEA-DRN/EDF-DER project 'Vulcano' is the mastery of the corium spreading and cooling on a recovery device. The first real corium spreading test has been successfully performed at the CEA/Cadarache centre (France). This short paper describes the experimental setup and the first results of the experiment. (J.S.)

  11. Premixing of corium into water during a Fuel-Coolant Interaction. The models used in the 3 field version of the MC3D code and two examples of validation on Billeau and FARO experiments

    Energy Technology Data Exchange (ETDEWEB)

    Berthoud, G.; Crecy, F. de; Duplat, F.; Meignen, R.; Valette, M. [CEA/Grenoble, DRN/DTP, 17 Avenue des Martyrs, 38054 Grenoble Cedex 9 (France)

    1998-01-01

    This paper presents the <> application of the multiphasic 3D computer code MC3D. This application is devoted to the premixing phase of a Fuel Coolant Interaction (FCI) when large amounts of molten corium flow into water and interact with it. A description of the new features of the model is given (a more complete description of the full model is given in annex). Calculations of Billeau experiments (cold or hot spheres dropped into water) and of a FARO test (<> corium dropped into 5 MPa saturated water) are presented. (author)

  12. Modeling of corium dispersion in DCH accidents

    International Nuclear Information System (INIS)

    Wu, Q.

    1996-01-01

    A model that governs the dispersion process in the direct containment heating (DCH) reactor accident scenario is developed by a stepwise approach. In this model, the whole transient is subdivided into four phases with an isothermal assumption. These are the liquid and gas discharge, the liquid film flow in the cavity before gas blowdown, the liquid and gas flow in the cavity with droplet entrainment, and the liquid transport and re-entrainment in the subcompartment. In each step, the dominant driving mechanisms are identified to construct the governing equations. By combining all the steps together, the corium dispersion information is obtained in detail. The key parameters are predicted quantitatively. These include the fraction of liquid that flows out of the cavity before gas blowdown, the dispersion fraction and the mean droplet diameter in the cavity, the cavity pressure rise due to the liquid friction force, and the dispersion fractions in the containment via different paths. Compared with the data of the 1:10 scale experiments carried out at Purdue University, fairly good agreement is obtained. A stand-alone prediction of the corium dispersion under prototypic Zion reactor conditions is carried out by assuming an isothermal process without chemical reactions. (orig.)

  13. Technical evaluation of corium cooling at the reactor cavity

    International Nuclear Information System (INIS)

    Yang, Soo Hyung; Chan, Eun Sun; Lee, Jae Hun; Lee, Jong In

    1998-01-01

    To terminate the progression of the severe accident and mitigate the accident consequences, corium cooling has been suggested as one of most important design features considered in the severe accident mitigation. Till now, some kinds of cooling methodologies have been identified and, specially, the corium cooling at the reactor cavity has been considered as one of the most promising cooling methodologies. Moreover, several design requirements related to the corium cooling at the reactor cavity have been also suggested and applied to the design of the next generation reactor. In this study, technical descriptions are briefly described for the important issues related to the corium cooling at the reactor cavity, i.e. cavity area, cavity flooding system, etc., and simple evaluations for those items have been performed considering present technical levels including the experiment and analytical works

  14. Steam explosion triggering phenomena: stainless steel and corium-E simulants studied with a floodable arc melting apparatus

    International Nuclear Information System (INIS)

    Nelson, L.S.; Buxton, L.D.

    1978-05-01

    Laboratory-scale experiments on the thermal interaction of light water reactor core materials with water have been performed. Samples (10--35 g) of Type 304 stainless steel and Corium-E simulants were each flooded with approximately 1.5 litres of water to determine whether steam explosions would occur naturally. Many of the experiments also employed artificially induced pressure transients in an attempt to initiate steam explosions. Vigorous interactions were not observed when the triggering pulse was not applied, and for stainless steel the triggering pulse initiated only coarse fragmentation. Two-stage, pressure-producing interactions were triggered for an ''oxidic'' Corium-E simulant. An impulse-initiated gas release theory has been simulated to explain the initial sample fragmentation. Although the delayed second stage of the event is not fully understood, it does not appear to be readily explained with classical vapor explosion theory. Rather, some form of metastability of the melt seems to be involved

  15. CFD to modeling molten core behavior simultaneously with chemical phenomena

    International Nuclear Information System (INIS)

    Vladimir V Chudanov; Anna E Aksenova; Valerii A Pervichko

    2005-01-01

    Full text of publication follows: This paper deals with the basic features of a computing procedure, which can be used for modeling of destruction and melting of a core with subsequent corium retaining into the reactor vessel. The destruction and melting of core mean the account of the following phenomena: a melting, draining (moving of the melt through a porous layer of core debris), freezing with release of an energy, change of geometry, formation of the molten pool, whose convective intermixing and distribution influence on a mechanism of borders destruction. It is necessary to take into account that during of heating molten pool and development in it of convective fluxes a stratification of a multi-component melt on two layers of metal light and of oxide heavy components is observed. These layers are in interaction, they can exchange by the separate components as result of diffusion or oxidizing reactions. It can have an effect considerably on compositions, on a specific weight, and on properties of molten interacting phases, and on a structure of the molten stratified pool. In turn, the retaining of the formed molten masses in reactor vessel requires the solution of a matched heat exchange problem, namely, of a natural convection in a heat generating fluid in partially or completely molten corium and of heat exchange problem with taking into account of a melting of the reactor vessel. In addition, it is necessary to take into account phase segregation, caused by influence of local and of global natural convective flows and thermal lag of heated up boundaries. The mathematical model for simulation of the specified phenomena is based on the Navier-Stokes equations with variable properties together with the heat transfer equation. For modeling of a corium moving through a porous layer of core debris, the special computing algorithm to take into account density jump on interface between a melt and a porous layer of core debris is designed. The model was

  16. Stress analysis and scaling studies of corium crusts

    International Nuclear Information System (INIS)

    Feng, Z.; Engelstad, R.L.; Lovell, E.G.; Corradini, M.L.

    1992-01-01

    In the event of a severe accident in a LWR, water may be input to cool the molten mixture of fuel and concrete. A number of structural models are developed and used to predict whether a crust will be formed and remain stable between the melt and water. Bending stresses and membrane stresses due to pressure loadings and the temperature differential are considered in the analyses to investigate the stability of the crust as a function of the time, thickness and span. The results from parametric studies show the conditions under which a crust could develop, and how such structural models could be used to determine scaling effects and provide correlations to prototypic accident situations. (orig.)

  17. Analysis of heat transfer mechanism on in-vessel corium coolability in severe accidents

    International Nuclear Information System (INIS)

    Park, Rae Joon; Jeong, Ji Whan; Kim, Sang Baik; Kang, Kyung Ho; Kim, Jong Whan

    1998-04-01

    When the molten core material relocates to the lower plenum of the reactor vessel, the cooling process of corium and the related heat transfer mechanism have been analyzed. The critical heat flux in gap (CHFG) test is being performed as a part of simulation of naturally arrested thermal attack in (SONATA-IV) project and the state of art on CHF has been reviewed. A series of complex heat transfer mechanism of molten pool formation, natural convection in the molten pool, solidification and remelting of the corium, conduction in the solidified crust, and boiling heat transfer to surroundings can be occurred in the lower plenum. Many studies are needed to investigate the complex heat transfer mechanism in the lower plenum, because these phenomena have not been clearly understand until now. The SONATA-IV/CHFG experiments are being carried out to develop CHF correlation in a hemispherical gap, which is the upper limit of heat transfer. There is no experimental or analytical CHF correlation applicable to a hemispherical gap. So lots of analytical and experimental correlations developed using the similar experimental condition were gathered and compared with each other. According to the experimental work that was carried out with pool boiling condition, CHF in a parallel gap was reduced by 1/30 compared with the value measured without gap. A basic form of a CHF correlation has been developed to correlate measurements that will be made in the SONATA-IV/CHFG experiments. That correlation is based on the fact that the CHF in a hemispherical gap is enhanced by CCFL and a Kutateladze type CCFL correlation develops CCFL date will in geometry like this. The experimental facility consists of a heater, a pressure vessel, a heat exchanger and lots of sensors. The heater capacity is 40 kw and the maximum heat flux at the surface is 100 kw/m 2 . The experiments will be carried out in the range of 1 to 10 atm and the gap size of 0.5, 1, 2 mm. The CHF will be detected using 66 type

  18. Experimental study on thermal interaction between a high-temperature molten jet and plates

    International Nuclear Information System (INIS)

    Sato, K.; Saito, M.; Furutani, A.; Isozaki, M.; Imahori, S.; Konishi, K.

    1994-01-01

    This paper summarizes the recent simulant experiments to study molten corium-structure interactions under postulated core disruptive accident (CDA) conditions in liquid-metal fast breeder reactors (LMFMRs). These experiments were conducted in the MELT-II facility generating high-temperature molten simulants by an induction heating technique. From a series of molten jet-structure interaction experiments, the effects of the solidified crust layer and molten layer on the erosion behavior were identified, and analytical models were developed to assess the structure erosion rate with and without crust formation. Especially, we revealed the inherent mitigation mechanism that when the molten oxide jet with high melting point falls down onto the structure plate, solidified crust of the oxide can significantly reduce the erosion rate. (author)

  19. Description of premixing with the MC3D code including molten jet behavior modeling. Comparison with FARO experimental results

    Energy Technology Data Exchange (ETDEWEB)

    Berthoud, G.; Crecy, F. de; Meignen, R.; Valette, M. [CEA-G, DRN/DTP/SMTH, 17 rue des Martyrs, 38054 Grenoble Cedex 9 (France)

    1998-01-01

    The premixing phase of a molten fuel-coolant interaction is studied by the way of mechanistic multidimensional calculation. Beside water and steam, corium droplet flow and continuous corium jet flow are calculated independent. The 4-field MC3D code and a detailed hot jet fragmentation model are presented. MC3D calculations are compared to the FARO L14 experiment results and are found to give satisfactory results; heat transfer and jet fragmentation models are still to be improved to predict better final debris size values. (author)

  20. RELOS.MOD2: a code system for the determination of instationary fission product releases from molten pools

    International Nuclear Information System (INIS)

    Kortz, Ch.; Koch, M.K.; Unger, H.; Funke, F.

    1999-01-01

    For the assessment of molten corium pool source terms, a mechanistic model has been developed to describe the transport of fission products from liquid corium pool surfaces into a colder gas atmosphere. Modelling is based on an approach for diffusive and convective transport processes coupled with thermochemical equilibrium considerations enabling detailed speciation analyses of the fission products released. Both have been implemented into the code system RELOS.MOD2. RELOS.MOD2 sensitivity calculations on possible effects of anticipated uncertainties in the thermo-chemical data on the fission product release predictions are presented. (author)

  1. Analysis on the Multiplication Factor with the Change of Corium Mass and Void Fraction

    Energy Technology Data Exchange (ETDEWEB)

    Jeong, Hae Sun; Park, Chang Je; Song, Jin Ho; Ha, Kwang Soon [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2013-05-15

    The neutron absorbing materials and fuel rods would be separately arranged and relocated, since the control materials in metallic structures have lower melting points than that of the oxide fuel (UO{sub 2}) rod materials. In addition, core reflood for a BWR is normally accomplished by supplying unborated water unlikely for a PWR. Therefore, a potential for a recriticality event to occur may exist, if unborated coolant injection is initiated with this configuration in the reactor core. The re-criticality in this system, however, brings into question what the uranium mass is required to achieve a critical level. Furthermore, the additional decay heat from molten fuel (corium) will produce an increase of void and eventually results in under-moderation of neutrons. The prior verification of these consequential physical variations in criticality eigenvalue (effective multiplication factor, k{sub eff}) should be greatly contributed to control and termination of re-criticality. Therefore, this study addresses what uranium mass of corium could achieve re-criticality of an accident core, and how effect the coolant void fraction has on eigenvalue (k{sub eff}) and its reactivity. To analyze the critical mass and the effect on criticality upon changing coolant density, k{sub eff} values were calculated using the MCNPX 2.5.0 code, and the reactivity change was also investigated. As a result, a large change in corium mass leads to a little change in k{sub eff} value, nevertheless, only about 60 kg of uranium is necessary to achieve a critical level. Thus, the amounts to reach a re-criticality are not fairly large, considering the actual uranium quantities loaded in the reactor core. Based on the condition with k{sub eff} greater than unity, the absolute values of k{sub eff} decrease rate and the coolant density coefficient were gradually increased due to the steady increments of coolant void (i.e., decrease in coolant density). In addition, the k{sub eff} value approaches the

  2. The WECHSL-Mod3 code: A computer program for the interaction of a core melt with concrete including the long term behavior. Model description and user's manual

    International Nuclear Information System (INIS)

    Foit, J.J.; Adroguer, B.; Cenerino, G.; Stiefel, S.

    1995-02-01

    The WECHSL-Mod3 code is a mechanistic computer code developed for the analysis of the thermal and chemical interaction of initially molten reactor materials with concrete in a two-dimensional as well as in a one-dimensional, axisymmetrical concrete cavity. The code performs calculations from the time of initial contact of a hot molten pool over start of solidification processes until long term basemat erosion over several days with the possibility of basemat penetration. It is assumed that an underlying metallic layer exists covered by an oxidic layer or that only one oxidic layer is present which can contain a homogeneously dispersed metallic phase. Heat generation in the melt is by decay heat and chemical reactions from metal oxidation. Energy is lost to the melting concrete and to the upper containment by radiation or evaporation of sumpwater possibly flooding the surface of the melt. Thermodynamic and transport properties as well as criteria for heat transfer and solidification processes are internally calculated for each time step. Heat transfer is modelled taking into account the high gas flux from the decomposing concrete and the heat conduction in the crusts possibly forming in the long term at the melt/concrete interface. The CALTHER code (developed at CEA, France) which models the radiative heat transfer from the upper surface of the corium melt to the surrounding cavity is implemented in the present WECHSL version. The WECHSL code in its present version was validated by the BETA, ACE and SURC experiments. The test samples include a BETA and the SURC2 post test calculations and a WECHSL application to a reactor accident. (orig.) [de

  3. Sensitivity analysis using DECOMP and METOXA subroutines of the MAAP code in modelling core concrete interaction phenomena and post test calculations for ACE-MCCI experiment L-5

    International Nuclear Information System (INIS)

    Passalacqua, R.A.

    1991-01-01

    A parametric analysis approach was chosen in order to study core-concrete interaction phenomena. The analysis was performed using a stand-alone version of the MAAP-DECOMP model (DOE version). This analysis covered only those parameters known to have the largest effect on thermohydraulics and fission product aerosol release. Even though the main purpose of the effort was model validation, it eventually resulted in a better understanding of the core-concrete interaction physics and to a more correct interpretation of the ACE-MCCI L5 experimental data. Unusual low heat transfer fluxes from the debris pool to the cavity (corium surrounding volume) were modeled in order to have a good benchmark with the experimental data. Therefore, higher debris pool temperatures were predicted. In case of water flooding, as a consequence of the critical heat flux through the upper crust and the increase of the crust thickness, resulting high debris pool temperatures cause an increase in the concrete ablation rate in the short term. DECOMP model predicts a quick increase of the crust thickness and as a result, causes the quenching of the molten mass. However, especially for fast transient, phenomena of crust bridge formation can occur. Thus, the upward directed heat flux is minimized and the concrete erosion rate remains conspicuous also in the long term. The model validation is based, in these calculations, on post-test predictions using the MCCI L5 test data: these data are derived from results of the 'Molten Core Concrete Interaction' (MCCI) experiments, which in turn are part of the larger Advanced Containment Experiment (ACE) program. Other calculations were also performed for the new proposed MACE (Melt Debris Attack and Coolability) experiments simulating the water flooding of the cavity. Those calculations are preliminarily compared with the recent MACE scoping test results. (author) 4 tabs., 59 figs., 5 refs

  4. Thermal Load Analysis of Multilayered Corium in the Lower Head of Reactor Pressure Vessel during Severe Accident

    Energy Technology Data Exchange (ETDEWEB)

    Whang, Seok Won; Park, Hyun Sun [POSTECH, Pohang (Korea, Republic of); Hwang, Tae Suk [Korea Institute of Nuclear Safety, Daejeon (Korea, Republic of)

    2014-05-15

    In-Vessel Retention (IVR) is one of the severe accident management strategies to terminate or mitigate the severe accident which is also called 'core-melt accident'. The reactor vessel would be cooled by flooding the cavity with water. The molten core mixture is divided into two or three layers due to the density difference. Light metal layer which contains Fe and Zr is on the oxide layer which is consist of UO{sub 2} and ZrO{sub 2}. Heavy metal layer which contains U, Fe and Zr is located under the oxide layer. In oxide layer, the crust which is solidified material is formed along the boundary. The assessment of IVR for nuclear power plant has been conducted with lumped parameter method by Theofanous, Rempe and Esmaili. In this paper, the numerical analysis was performed and verified with the Esmaili's work to analyze thermal load of multilayered corium in pressurized reactor vessel and also to examine the condition of in-vessel corium characteristic before the vessel failure that lead to ex-vessel severe accident progression for example, ex-vessel debris bed cooling. The in-vessel coolability analysis for several scenarios is conducted for the plant which has higher power than AP1000. Two sensitivity analyses are conducted, the first is emissivity of light metal layer and the second is the heat transfer coefficient correlations of oxide layer. The effect of three layered system also investigated. In this paper, the numerical analysis was performed and verified with Esmaili's model to analyze thermal load of multilayered corium in pressurized reactor vessel. For two layered system, thermal load was analyzed according to the severe accident scenarios, emissivity of the light metal layer and heat transfer correlations of the.

  5. A simplified geometrical model for transient corium propagation in core for LWR with heavy reflector

    Directory of Open Access Journals (Sweden)

    Saas Laurent

    2017-01-01

    Full Text Available In the context of the simulation of the Severe Accidents (SA in Light Water Reactors (LWR, we are interested on the in-core corium pool propagation transient in order to evaluate the corium relocation in the vessel lower head. The goal is to characterize the corium and debris flows from the core to accurately evaluate the corium pool propagation transient in the lower head and so the associated risk of vessel failure. In the case of LWR with heavy reflector, to evaluate the corium relocation into the lower head, we have to study the risk associated with focusing effect and the possibility to stabilize laterally the corium in core with a flooded down-comer. It is necessary to characterize the core degradation and the stratification of the corium pool that is formed in core. We assume that the core degradation until the corium pool formation and the corium pool propagation could be modeled separately. In this document, we present a simplified geometrical model (0D model for the in-core corium propagation transient. A degraded core with a formed corium pool is used as an initial state. This state can be obtained from a simulation computed with an integral code. This model does not use a grid for the core as integral codes do. Geometrical shapes and 0D models are associated with the corium pool and the other components of the degraded core (debris, heavy reflector, core plate…. During the transient, these shapes evolve taking into account the thermal and stratification behavior of the corium pool and the melting of the core surrounding components. Some results corresponding to the corium pool propagation in core transients obtained with this model on a LWR with a heavy reflector are given and compared to grid approach of the integral codes MAAP4.

  6. Numerical investigation on natural convection and solidification of molten pool with OpenFOAM

    International Nuclear Information System (INIS)

    Wang Xi; Meng Zhaocan; Cheng Xu

    2015-01-01

    The in-vessel retention is adopted by the third generation nuclear power technology as an important severe accident mitigation strategy. The integrity of reactor pressure vessel depends on the heat flux distribution of molten pool. In present study, the solidification model in open source CFD software OpenFOAM was applied to simulate solidification and natural convection which was driven by internal heat source or temperature difference. The stratified molten pool heat transfer experiment carried out by Royal Institute of Technology was analyzed in the paper, and the solidified crust, temperature and heat flux distributions were obtained. The simulation results were compared with experimental data. It is shown that this numerical method can be used in the simulation of natural convection and solidification of molten pool, and it will probably be used in the analysis of molten corium behavior in reactor lower head. (authors)

  7. Success for the Vulcano`s team. First real corium flow; Succes pour l`equipe de Vulcano. Premiere coulee de corium reel

    Energy Technology Data Exchange (ETDEWEB)

    Carnoy, M. [CEA Cadarache, 13 - Saint-Paul-Lez-Durance (France). Dept. d`Etude des Reacteurs

    1998-03-01

    The aim of the joint CEA-DRN/EDF-DER project `Vulcano` is the mastery of the corium spreading and cooling on a recovery device. The first real corium spreading test has been successfully performed at the CEA/Cadarache centre (France). This short paper describes the experimental setup and the first results of the experiment. (J.S.)

  8. Thermo-physical properties of corium: development of an assessed data base for severe accident applications

    Energy Technology Data Exchange (ETDEWEB)

    Strizhov, V.F.; Galimov, R.G.; Ozrin, V.D. [Nuclear Safety Institute of the Russian Academy of Sciences, Moscow (Russian Federation); Yu Zitserman, V.; Kobzev, G.I.; Fokin, L.R. [Institute of high temperatures, Russian Academy of Sciences, Moscow (Russian Federation); Piluso, P. [CEA Cadarache (DEN/DTN/STRI), Lab. d' essais pour la Maitrise des Accidents graves, 13 - Saint Paul lez Durance (France); Chalaye, H. [CEA Saclay, Dir. de l' Energie Nucleaire, 91 - Gif sur Yvette (France)

    2007-07-01

    In a hypothetical case of a core melt-down scenarios a very high temperature would be reached (up to 3000 K). In this case, the materials of the core and structural materials (fuel, cladding, metallic alloys, concrete, etc.) could melt to form complex and aggressive mixtures called corium. Modelling of severe accident phenomena, code development and assessments of nuclear safety require a reliable knowledge of the thermophysical properties of corium at wide temperature range (below solidus temperature, between solidus and liquidus temperature and above the liquidus temperature). Common Russian-French project ISTC 3078, has been devoted to the development, assessment and recommendation for the establishment of a reliable thermophysical data base for severe accident applications. The project consists of two tasks related to properties of pure metallic (U, Zr, Fe, Cr, Ni) and oxide (UO{sub 2}, U{sub 3}O{sub 8}, U{sub 4}O{sub 9}, NiO, ZrO{sub 2}, Cr{sub 2}O{sub 3}, FeO, Fe{sub 2}O{sub 3}, Fe{sub 3}O{sub 4}, Al{sub 2}O{sub 3}, CaO, MgO, SiO{sub 2}, HfO{sub 2}, CeO{sub 2}) components, and mixtures relevant to severe accident conditions. Three categories of data (on UPAK classification) were considered: experimental data, critically evaluated data, and predicted data. The data of the first category is a result of specific experiment, data of the second category is a result of the analysis of data consistency and co-processing (expert and statistical) obtained in several experiments, data of the third category are based on model estimates, using correlations between different physical properties. The process of assessing, review and development of recommendation is described in the paper and illustrated by examples on thermophysical properties. (authors)

  9. Natural convection heat transfer in the molten metal pool

    International Nuclear Information System (INIS)

    Park, R.J.; Kim, S.B.; Kim, H.D.; Choi, S.M.

    1997-01-01

    Analytical studies using the FLOW-3D computer program have been performed on natural convection heat transfer of a high density molten metal pool, in order to evaluate the coolability of the corium pool. The FLOW-3D results on the temperature distribution and the heat transfer rate in the molten metal pool region have been compared and evaluated with the experimental data. The FLOW-3D results have shown that the developed natural convection flow contributes to the solidified crust formation of the high density molten metal pool. The present FLOW-3D results, on the relationship between the Nusselt number and the Rayleigh number in the molten metal pool region, are more similar to the calculated results of Globe and Dropkin's correlation than any others. The natural convection heat transfer in the low aspect ratio case is more substantial than that in the high aspect ratio case. The FLOW-3D results, on the temperature profile and on the heat transfer rate in the molten metal pool region, are very similar to the experimental data. The heat transfer rate of the internal heat generation case is higher than that of the bottom heating case at the same heat supply condition. (author)

  10. Analysis of a thermite experiment to study low pressure corium dispersion

    International Nuclear Information System (INIS)

    Wilhelm, D.

    2001-08-01

    The report describes the recalculation of a thermite experiment in a reduced scale which simulates the discharge of molten core materials out of the pressure vessel of a light water reactor into the open compartments and the dome of the containment. The experiment was performed in the framework of a multinational effort at the Sandia National Laboratory, U.S.A. It is being followed by the DISCO program at the Forschungszentrum Karlsruhe. A computational fluid dynamics code was supplemented with specific models to recalculate the Sandia experiment in order to identify problem areas which need to be addressed in the future. Therefore, a first attempt was undertaken to extrapolate to reactor conditions. This was done in two steps to separate geometric from material scaling relationships. The study shows that important experimental results can be extrapolated according to general scaling laws but that there are sensitivities, especially when replacing thermite by corium. The results show a considerable scatter and a dependence on geometric resolution and dynamics of energy transfer between participating components. (orig.) [de

  11. Assessment of in-vessel corium retention in CPR1000

    International Nuclear Information System (INIS)

    Chen Xing; Zhang Shishun; Lin Jiming

    2011-01-01

    The In-Vessel corium Retention (IVR) strategy of Chinese 1000 MW class commercial pressurized water reactor (CPR1000) is assessed by Risk-Oriented Accident Analysis Methodology (ROAAM). Four representative severe accident scenarios are selected for the IVR assessment in this paper. According to four representative severe accident scenarios consequence calculated by the deterministic code combined with engineering judgment, the input probability distribution of the assessment is determined. Success probability of IVR from the viewpoint of thermal failure is then predicted using MOPOL code. MOPOL is a code developed basing on the well known ROAAM frame and heat transfer model of corium. It is demonstrated that the success probability of IVR by Reactor Cavity Flooding in CPR1000 is potentially higher than 99%. Application of IVR strategy in CPR1000 is envisioned probable if a further more comprehensive risk-benefit evaluation conclusion is positive. (authors)

  12. OECD MCCI project 2-D Core Concrete Interaction (CCI) tests : CCI-3 test data report-thermalhydraulic results. Rev. 0 October 15, 2005.

    Energy Technology Data Exchange (ETDEWEB)

    Farmer, M. T.; Lomperski, S.; Kilsdonk, D. J.; Aeschlimann, R. W.; Basu, S. (Nuclear Engineering Division); (NRC)

    2011-05-23

    The Melt Attack and Coolability Experiments (MACE) program addressed the issue of the ability of water to cool and thermally stabilize a molten core-concrete interaction when the reactants are flooded from above. These tests provided data regarding the nature of corium interactions with concrete, the heat transfer rates from the melt to the overlying water pool, and the role of noncondensable gases in the mixing processes that contribute to melt quenching. As a follow-on program to MACE, The Melt Coolability and Concrete Interaction Experiments (MCCI) project is conducting reactor material experiments and associated analysis to achieve the following objectives: (1) resolve the ex-vessel debris coolability issue through a program that focuses on providing both confirmatory evidence and test data for the coolability mechanisms identified in MACE integral effects tests, and (2) address remaining uncertainties related to long-term two-dimensional molten core-concrete interactions under both wet and dry cavity conditions. Achievement of these two program objectives will demonstrate the efficacy of severe accident management guidelines for existing plants, and provide the technical basis for better containment designs for future plants. In terms of satisfying these objectives, the Management Board (MB) approved the conduct of a third long-term 2-D Core-Concrete Interaction (CCI) experiment designed to provide information in several areas, including: (i) lateral vs. axial power split during dry core-concrete interaction, (ii) integral debris coolability data following late phase flooding, and (iii) data regarding the nature and extent of the cooling transient following breach of the crust formed at the melt-water interface. This data report provides thermal hydraulic test results from the CCI-3 experiment, which was conducted on September 22, 2005. Test specifications for CCI-3 are provided in Table 1-1. This experiment investigated the interaction of a fully oxidized 375

  13. Results of recent KROTOS FCI tests. Alumina vs. corium melts

    Energy Technology Data Exchange (ETDEWEB)

    Huhtiniemi, I.; Magallon, D.; Hohmann, H. [Commission of the European Communities, Ispra (Italy). Joint Research Center

    1998-01-01

    Recent results from KROTOS fuel-coolant interaction experiments are discussed. Five tests with alumina were performed under highly subcooled conditions, all of these tests resulted in spontaneous steam explosions. Additionally, four tests were performed at low subcooling to confirm, on one hand, the suppression of spontaneous steam explosions under such conditions and, on the other hand, that such a system is still triggerable using an external initiator. The other test parameters in these alumina tests included the melt superheat and the initial pressure. All the tests in the investigated superheat range (150 K - 750 K) produced a steam explosion and no evidence of the explosion suppression by the elevated initial pressure (in the limited range of 0.1 - 0.375 MPa) was observed in the alumina tests. The corium test series include a test with 3 kg of melt under both subcooled and near saturated conditions at ambient pressure. Two additional tests were performed with subcooled water; one test was performed at an elevated pressure of 0.2 MPa with 2.4 kg of melt and another test with 5.1 kg of melt at ambient pressure. None of these tests with corium produced a propagating energetic steam explosion. However, propagating low energy (about twice the energy of the trigger pulse) events were observed. All corium tests produced significantly higher water level swells during the mixing phase than the corresponding alumina tests. Present experimental evidence suggests that the water depletion in the mixing zone suppresses energetic steam explosions with corium melts at ambient pressure and in the present pour geometry. Processes that could produce such a difference in void generation are discussed. (author)

  14. Water boiling on the corium melt surface under VVER severe accident conditions

    International Nuclear Information System (INIS)

    Bechta, S.V.; Vitol, S.A.; Krushinov, E.V.; Granovsky, V.S.; Sulatsky, A.A.; Khabensky, V.B.; Lopukh, D.B.; Petrov, Y.B.; Pechenkov, A.Y.

    2000-01-01

    Experimental results are presented on the interaction of corium melt with water supplied on its surface. The tests were conducted in the 'Rasplav-2' experimental facility. Corium melt was generated by induction melting in the cold crucible. The following data were obtained: heat transfer at boiling water-melt surface interaction, gas and aerosol release, post-interaction solidified corium structure. The corium melt charge had the following composition, mass%: 60% UO 2+x -16% ZrO 2 -15% Fe 2 O 3 -6% Cr 2 O 3 -3% Ni 2 O 3 . The melt surface temperature ranged within 1920-1970 K. (orig.)

  15. Status of the corquench model for calculation of ex-vessel corium coolability by an overlying water layer

    International Nuclear Information System (INIS)

    Farmer, M.T.; Spencer, B.W.

    2000-01-01

    The results of melt attack and coolability experiment (MACE) tests have identified several heat transfer mechanisms which could potentially lead to long term corium coolability. Based on physical observations from these tests, an integrated model of corium quenching (CORQUENCH) behavior is being developed. Aside from modeling of the primary physical processes observed in the tests, considerable effort has also been devoted to modeling of test occurrences which deviate from the behavior expected at reactor scale. In this manner, extrapolation of the models validated against the test data to the reactor case can be done with increased confidence. The integrated model currently addresses early bulk cooling and incipient crust formation heat transfer phases, as well as a follow-on water ingression phase which leads to development of a sustained quench front progressing downwards through the debris. In terms of experiment distortions, the model is also able to mechanistically calculate crust anchoring to the test section sidewalls, as well as the subsequent melt/crust separation phase which arises due to concrete densification upon melting. In this paper, the status of the model development and validation activities are described. In addition, representative calculations for PWR plant conditions are provided in order to illustrate the potential benefits of overlying water on mitigation of the accident sequence. (orig.)

  16. OECD MCCI 2-D Core Concrete Interaction (CCI) tests : CCI-2 test data report-thermalhydraulic results, Rev. 0 October 15, 2004.

    Energy Technology Data Exchange (ETDEWEB)

    Farmer, M. T.; Lomperski, S.; Kilsdonk, D. J.; Aeschlimann, R. W.; Basu, S. (Nuclear Engineering Division); (NRC)

    2011-05-23

    The Melt Attack and Coolability Experiments (MACE) program addressed the issue of the ability of water to cool and thermally stabilize a molten core-concrete interaction when the reactants are flooded from above. These tests provided data regarding the nature of corium interactions with concrete, the heat transfer rates from the melt to the overlying water pool, and the role of noncondensable gases in the mixing processes that contribute to melt quenching. As a follow-on program to MACE, The Melt Coolability and Concrete Interaction Experiments (MCCI) project is conducting reactor material experiments and associated analysis to achieve the following objectives: (1) resolve the ex-vessel debris coolability issue through a program that focuses on providing both confirmatory evidence and test data for the coolability mechanisms identified in MACE integral effects tests, and (2) address remaining uncertainties related to long-term two-dimensional molten core-concrete interactions under both wet and dry cavity conditions. Achievement of these two program objectives will demonstrate the efficacy of severe accident management guidelines for existing plants, and provide the technical basis for better containment designs for future plants. In terms of satisfying these objectives, the Management Board (MB) approved the conduct of two long-term 2-D Core-Concrete Interaction (CCI) experiments designed to provide information in several areas, including: (i) lateral vs. axial power split during dry core-concrete interaction, (ii) integral debris coolability data following late phase flooding, and (iii) data regarding the nature and extent of the cooling transient following breach of the crust formed at the melt-water interface. This data report provides thermal hydraulic test results from the CCI-2 experiment, which was conducted on August 24, 2004. Test specifications for CCI-2 are provided in Table 1-1. This experiment investigated the interaction of a fully oxidized 400 kg

  17. Molten salt breeder reactor

    International Nuclear Information System (INIS)

    1977-01-01

    MSBR Study Group formed in October 1974 has studied molten salt breeder reactor and its various aspects. Usage of a molten salt fuel, extremely interesting as reactor chemistry, is a great feature to MSBR; there is no need for separate fuel making, reprocessing, waste storage facilities. The group studied the following, and these results are presented: molten salt technology, molten salt fuel chemistry and reprocessing, reactor characteristics, economy, reactor structural materials, etc. (Mori, K.)

  18. Comparison of different surface quantitative analysis methods. Application to corium

    International Nuclear Information System (INIS)

    Guilbaud, N.; Blin, D.; Perodeaud, Ph.; Dugne, O.; Gueneau, Ch.

    2000-01-01

    In case of a severe hypothetical accident in a pressurized water reactor, the reactor assembly melts partially or completely. The material formed, called corium, flows out and spreads at the bottom of the reactor. To limit and control the consequences of such an accident, the specifications of the O-U-Zr basic system must be known accurately. To achieve this goal, the corium mix was melted by electron bombardment at very high temperature (3000 K) followed by quenching of the ingot in the Isabel 1 evaporator. Metallographic analyses were then required to validate the thermodynamic databases set by the Thermo-Calc software. The study consists in defining an overall surface quantitative analysis method that is fast and reliable, in order to determine the overall corium composition. The analyzed ingot originated in a [U+Fe+Y+UO 2 +ZrO 2 ) mix, with a total mass of 2253.7 grams. Several successive heating with average power were performed before a very brief plateau at very high temperature, so that the ingot was formed progressively and without any evaporation liable to modify its initial composition. The central zone of the ingot was then analyzed by qualitative and quantitative global surface methods, to yield the volume composition of the analyzed zone. Corium sample analysis happens to be very complex because of the variety and number of elements present, and also because of the presence of oxygen in a heavy element like the uranium based matrix. Three different global quantitative surface analysis methods were used: global EDS analysis (Energy Dispersive Spectrometry), with SEM, global WDS analysis (Wavelength Dispersive Spectrometry) with EPMA, and coupling of image analysis with EDS or WDS point spectroscopic analyses. The difficulties encountered during the study arose from sample preparation (corium is very sensitive to oxidation), and the choice of acquisition parameters of the images and analyses. The corium sample studied consisted of two zones displaying

  19. Thermal hydraulic phenomena in corium pools: the BALI experiment

    International Nuclear Information System (INIS)

    Bonnet, J.M.

    1999-01-01

    In the framework of severe accident studies, the BALI experiment has been designed to create a data base about heat transfer distribution at corium pool boundaries for in-vessel or ex-vessel configurations. The mechanism investigated is natural convection at high internal Rayleigh number (10 15 to 10 17 ) in cavities with volumetric heating. After a description of the facility and a synthesis of results obtained for in-vessel configurations, the purpose of this paper is to present or extend local or average heat transfer correlations in the prototypic range of dimensionless parameters. (author)

  20. OECD MMCI 2-D Core Concrete Interaction (CCI) tests : CCCI-1 test data report-thermalhydraulic results. Rev 0 January 31, 2004.

    Energy Technology Data Exchange (ETDEWEB)

    Farmer, M. T.; Lomperski, S.; Aeschlimann, R. W.; Basu, S. (Nuclear Engineering Division)

    2011-05-23

    The Melt Attack and Coolability Experiments (MACE) program addressed the issue of the ability of water to cool and thermally stabilize a molten core-concrete interaction when the reactants are flooded from above. These tests provided data regarding the nature of corium interactions with concrete, the heat transfer rates from the melt to the overlying water pool, and the role of noncondensable gases in the mixing processes that contribute to melt quenching. As a follow-on program to MACE, The Melt Coolability and Concrete Interaction Experiments (MCCI) project is conducting reactor material experiments and associated analysis to achieve the following objectives: (1) resolve the ex-vessel debris coolability issue through a program that focuses on providing both confirmatory evidence and test data for the coolability mechanisms identified in MACE integral effects tests, and (2) address remaining uncertainties related to long-term two-dimensional molten coreconcrete interactions under both wet and dry cavity conditions. Achievement of these two program objectives will demonstrate the efficacy of severe accident management guidelines for existing plants, and provide the technical basis for better containment designs for future plants. In terms of satisfying these objectives, the Management Board (MB) approved the conduct of two long-term 2-D Core-Concrete Interaction (CCI) experiments designed to provide information in several areas, including: (i) lateral vs. axial power split during dry core-concrete interaction, (ii) integral debris coolability data following late phase flooding, and (iii) data regarding the nature and extent of the cooling transient following breach of the crust formed at the melt-water interface. This data report provides thermal hydraulic test results from the CCI-1 experiment, which was conducted on December 19, 2003. Test specifications for CCI-1 are provided in Table 1-1. This experiment investigated the interaction of a fully oxidized 400 kg

  1. Experimental investigation of 150-KG-scale corium melt jet quenching in water

    Energy Technology Data Exchange (ETDEWEB)

    Magallon, D.; Hohmann, H.

    1995-09-01

    This paper compares and discusses the results of two large scale FARO quenching tests known as L-11 and L-14, which involved, respectively, 151 kg of W% 76.7 UO{sub 2} + 19.2 ZrO{sub 2} + 4.1 Zr and 125 kg of W% 80 UO{sub 2} + 20 ZrO{sub 2} melts poured into 600-kg, 2-m-depth water at saturation at 5.0 MPa. The results are further compared with those of two previous tests performed using a pure oxidic melt, respectively 18 and 44 kg of W% 80 UO{sub 2} + 20 ZrO{sub 2} melt quenched in 1-m-depth water at saturation at 5.0 MPa. In all the tests, significant breakup and quenching took place during the melt fall through the water. No steam explosion occurred. In the tests performed with a pure oxide UO{sub 2}-ZrO{sub 2} melt, part of the corium (from 1/6 to 1/3) did not breakup and reached the bottom plate still molten whatever the water depth was. Test L-11 data suggest that full oxidation and complete breakup of the melt occurred during the melt fall through the water. A proportion of 64% of the total energy content of the melt was released to the water during this phase ({approximately}1.5 s), against 44% for L-14. The maximum temperature increase of the bottom plate was 330 K (L-14). The mean particle size of the debris ranged between 2.5 and 4.8mm.

  2. Presentation of the Vulcano installation which uses a plasma transferred arc rotary furnace for corium melting; Utilisation d`un four tournant a arc plasma transfere pour fondre et couler des melanges d`oxydes autour de 2000 C. Presentation du film Vulcano

    Energy Technology Data Exchange (ETDEWEB)

    Cognet, G.; Laffont, G.; Jegou, C.; Pierre, J.; Journeau, C.; Sudreau, F.; Roubaud, A. [CEA Cadarache, 13 - Saint-Paul-lez-Durance (France). Dept. d`Etudes des Reacteurs

    1998-06-01

    In the case of loss coolant accident, the reactor core could melt and turn into a mixture of uranium oxides, zirconium, iron and steel called corium. A large experimental program has been launched to study corium behaviour, to qualify solutions to stabilize it and to confine it in the reactor containment. The Vulcano installation has been designed to that purpose. It is made up of: i) a plasma transferred arc rotary furnace, ii) a testing surface covered with refractory materials, iii) an induction heating system in order to simulate the residual power of corium, iv) instrumentation devices such as video cameras, thermocouples, infra-red pyrometers and flowmeters, and v) a laboratory to perform chemical analysis of corium samples. The first experimental results show that a mixture of corium and concrete spreads better than expected. It seems that a low initial height of matter can produce a great distance flowing while having a chaotic behaviour. This characteristic suggests that the mixture acts as a Bingham type threshold fluid. (A.C.) 5 refs.

  3. Corium spreading: hydrodynamics, rheology and solidification of a high-temperature oxide melt

    International Nuclear Information System (INIS)

    Journeau, Ch.

    2006-06-01

    In the hypothesis of a nuclear reactor severe accident, the core could melt and form a high- temperature (2000-3000 K) mixture called corium. In the hypothesis of vessel rupture, this corium would spread in the reactor pit and adjacent rooms as occurred in Chernobyl or in a dedicated core-catcher s in the new European Pressurized reactor, EPR. This thesis is dedicated to the experimental study of corium spreading, especially with the prototypic corium material experiments performed in the VULCANO facility at CEA Cadarache. The first step in analyzing these tests consists in interpreting the material analyses, with the help of thermodynamic modelling of corium solidification. Knowing for each temperature the phase repartition and composition, physical properties can be estimated. Spreading termination is controlled by corium rheological properties in the solidification range, which leads to studying them in detail. The hydrodynamical, rheological and solidification aspects of corium spreading are taken into account in models and computer codes which have been validated against these tests and enable the assessment of the EPR spreading core-catcher concept. (author)

  4. An effect of corium composition variations on occurrence of a steam explosion in the TROI experiments

    International Nuclear Information System (INIS)

    Kim, J. W.; Park, I. K.; Hong, S. W.; Min, B. T.; Shin, Y. S.; Song, J. H.; Kim, H. D.

    2003-01-01

    Recently series of steam explosion experiments have been performed in the TROI facility using corium melts of various compositions. The compositions (UO 2 : ZrO 2 ) of the corium were 0 : 100, 50 : 50, 70 : 30, 80 : 20 and 87 : 13 in weight percent and the mass of the corium was about 10kg. An experiment using 0 : 100 corium (pure zirconia) caused a steam explosion. An experiment using 50 : 50 corium did not cause a steam explosion while a steam spike occurred in an experiment using 70 : 30 corium which was the eutectic point of corium. A steam spike is considered to be the fact that a triggering of a steam explosion occurred but a propagation process does not occur so as to cause a weak interaction. However, the possibility of a steam explosion with this composition can not be ruled out since many steam explosions occurred in the previous experiments. In the two experiments using 80 : 20 corium, a steam spike occurred in one experiment but no steam explosion occurred in the other experiment. However, the triggerability of a steam explosion with this composition is not clear since few steam explosions occurred in the previous experiments. And no steam explosion occurred in an experiment using 87 : 13 corium of which urania content was the greatest among the experiments performed in the TROI facility. From this, the possibility of a steam explosion or a steam spike is appeared to be high in the non-mush zone. It is considered that an explosive interaction could easily occur with the eutectic composition. Since the solidification temperature around the eutectic point is low, the melt is likely to maintain its liquid state at the time of triggering so as to cause an explosive phenomenon

  5. Considerations concerning the strategy of corium retention in the reactor vessel

    International Nuclear Information System (INIS)

    2015-01-01

    Third-generation nuclear reactors are characterised by consideration during design of core meltdown accidents. More specifically, dedicated measures or devices must be implemented to avoid basemat melt-through in the reactor building. These devices must have a high level of confidence. The strategy of corium retention in the reactor vessel, if supported by appropriate research and development, makes it possible to achieve this objective. IRSN works alone or in partnerships to address all the issues associated with in-vessel corium retention. This document describes the in-vessel corium retention strategy and its limitations, along with the research programs conducted by IRSN in this area

  6. Water boiling on the corium melt surface under VVER severe accident conditions

    International Nuclear Information System (INIS)

    Bechta, S.V.; Vitol, S.A.; Krushinov, E.V.

    1999-01-01

    Experimental results are presented on the interaction between corium melt and water supplied onto its surface. The tests were conducted on the Rasplav-2' experimental facility. Induction melting in a cold crucible was used to produce the melt. The following data have been obtained: heat transfer at water boiling on the melt surface, aerosol release, structure of the post-interaction solidified corium. The corium melt had the following composition, mass %: 60%UO 2 - 16%ZrO 2 - 15%Fe 2 O 3 - 6%Cr 2 O 3 -3%Ni 2 O 3 . The melt surface temperature was 1650-1700degC. (author)

  7. FCI experiments in the corium/water system

    Energy Technology Data Exchange (ETDEWEB)

    Huhtiniemi, I.; Hohmann, H.; Magallon, D.

    1995-09-01

    The KROTOS fuel coolant interaction (FCI) tests aim at providing benchmark data to examine the effect of fuel/coolant initial conditions and mixing on explosion energetics. Experiments, fundamental in nature, are performed in well-controlled geometries and are complementary to the FARO large scale tests. Recently, a new test series was started using 3 kg of prototypical core material (80 w/o UO{sub 2}, 20 w/o ZrO{sub 2}) which was poured into a water column of {le} 1.25 m in height (95 mm and 200 mm in diameter) under 0.1 MPa ambient pressure. Four tests have been performed in the test section of 95 mm in diameter (ID) with different subcooling levels (10-80K) and with and without an external trigger. Additionally, one test has been performed with a test section of 200 mm in diameter (ID) and with an external trigger. No spontaneous or triggered energetic FCIs (steam explosions) have been observed in these corium tests. This is in sharp contrast with the steam explosions observed in the previously reported Al{sub 2}O{sub 3} test series which had the same initial conditions of ambient pressure and subcooling. The post-test analysis of the corium experiments indicated that strong vaporisation at the melt/water contact led to a partial expulsion of the melt from the test section into the pressure vessel. In order to avoid this and to obtain a good penetration and premixing os the corium melt, an additional test has been performed with a larger diameter test section. In all the UO{sub 2}-ZrO{sub 2} tests an efficient quenching process (0.7-1.2 MW/kg-melt) with total fuel fragmentation (mass mean diameter 1.4-2.5 mm) was observed. Results from Al{sub 2}O{sub 3} tests under the same initial conditions are also presented for further confirmation of the observed differences in behaviour between Al{sub 2}O{sub 3} and UO{sub 2}-ZrO{sub 2} melts.

  8. Elements of thought on corium containment strategy in reactor vessel

    International Nuclear Information System (INIS)

    2015-01-01

    As accidents with core fusion are taken into account for the design of third-generation nuclear reactors, this brief document presents the corium containment strategy for a reactor vessel, its limitations, as well as research programs undertaken by the IRSN in this field. The report describes the controlled management of a severe accident, the major objective being to minimise releases in the environment, that which requires to maintain the reactor containment enclosure tightness. Practical actions are briefly indicated. Key points indicating the feasibility of a strategy of containment in vessel are discussed. The impact of reactor power on the robustness of an approach with containment in vessel is also discussed. An overview of technological evolutions and contributions of researches made by the IRSN is finally proposed

  9. Control Carbon to Prevent corium Stratification In-Vessel Retention

    Energy Technology Data Exchange (ETDEWEB)

    Go, A Ra; Hong, Seung Hyun; Kim, Sang Nyung [Kyung Hee Univ., Yongin (Korea, Republic of)

    2013-10-15

    As a result, the thermal margin decreases, and the nuclear reactor vessel may be destroyed. To control Carbons, which is the major cause of stratification, Ruthenium and Hafnium are inserted inside the lower reactor head which initiates a chemical reaction with Carbon. SPARTAN program is used to confirm a reaction probability which is measured in bond energy and strength etc. To analyze the possibility of bonding with Carbon, the initial property of Ruthenium and Carbon are measured during the calculated absorbing process. After following that theory, the Spartan program is able to determine if it can insert the metal. After verifying the combination of Ruthenium and Carbon, the Spartan program analyzes the impact of the Carbon to prevent the corium stratification. It determines the possibility of the success with the introduction of the IVR concept. Ruthenium is suitable to Carbon bonding process to decrease affect to corium behavior which do not form stratification. The metal which can combine with Carbon should be satisfied with temperature as high as 2800 .deg. C. Therefore, the further research works are determined by using the Spartan program to calculate the Carbon and Ruthenium bonding energy, and to check other bonding results as follows. After check the results, review this theory to insert the Ruthenium in reactor vessel. APR1400 and OPR1000, Korea Hydro and Nuclear power plant core meltdown accident has been evaluated a high level in severe accident. When the reactor core is melted down, it is stratified into the metal layer and the ceramic layer. As the heat conductivity of metal layer is higher than that of the ceramic layer, heat concentration occurs in the upper part of the bottom hemisphere which comes into contact with the metal layer.

  10. Water boiling on the corium melt surface under VVER severe accident conditions

    Energy Technology Data Exchange (ETDEWEB)

    Bechta, S.V.; Vitol, S.A.; Krushinov, E.V.; Granovsky, V.S.; Sulatsky, A.A.; Khabensky, V.B. [Sci. Res. Technol. Inst., Leningrad (Russian Federation); Lopukh, D.B.; Petrov, Y.B.; Pechenkov, A.Y. [St. Petersburg Electrotechnical University (SPbEU), Prof. Popov st 5/3, St. Petersburg (Russian Federation)

    2000-01-01

    Experimental results are presented on the interaction of corium melt with water supplied on its surface. The tests were conducted in the 'Rasplav-2' experimental facility. Corium melt was generated by induction melting in the cold crucible. The following data were obtained: heat transfer at boiling water-melt surface interaction, gas and aerosol release, post-interaction solidified corium structure. The corium melt charge had the following composition, mass%: 60% UO{sub 2+x}-16% ZrO{sub 2}-15% Fe{sub 2}O{sub 3}-6% Cr{sub 2}O{sub 3}-3% Ni{sub 2}O{sub 3}. The melt surface temperature ranged within 1920-1970 K. (orig.)

  11. Quality improvements of thermodynamic data applied to corium interactions for severe accident modelling in SARNET2

    Czech Academy of Sciences Publication Activity Database

    Bakardjieva, Snejana; Barrachin, M.; Bechta, S.; Bezdička, Petr; Bottomley, D.; Brissoneau, L.; Cheynet, B.; Dugne, O.; Fischer, E.; Fischer, M.; Gusarov, V.; Journeau, C.; Khabensky, V.; Kiselová, M.; Manara, D.; Piluso, P.; Sheindlin, M.; Tyrpekl, V.; Wiss, T.

    2014-01-01

    Roč. 74, SI (2014), s. 110-124 ISSN 0306-4549 Institutional support: RVO:61388980 Keywords : Corium * Severe accidents * Thermodynamic database Subject RIV: CA - Inorganic Chemistry Impact factor: 0.960, year: 2014

  12. Molten salt electrorefining method

    International Nuclear Information System (INIS)

    Tanaka, Hiroshi; Nakamura, Hitoshi; Shoji, Yuichi; Matsumaru, Ken-ichi.

    1994-01-01

    A molten cadmium phase (lower side) and a molten salt phase (upper side) are filled in an electrolytic bath. A basket incorporating spent nuclear fuels is inserted/disposed in the molten cadmium phase. A rotatable solid cathode is inserted/disposed in the molten salt phase. The spent fuels, for example, natural uranium, incorporated in the basket is dissolved in the molten cadmium phase. In this case, the uranium concentration in the molten salt phase is determined as from 0.5 to 20wt%. Then, electrolysis is conducted while setting a stirring power for stirring at least the molten salt phase of from 2.5 x 10 2 to 1 x 10 4 based on a reynolds number. Crystalline nuclei of uranium are precipitated uniformly on the surface of the solid cathode, and they grow into fine dendrites. With such procedures, since short-circuit between the cathode precipitates and the molten cadmium phase (anode) is scarcely caused, to improve the recovering rate of uranium. (I.N.)

  13. A simplified geometrical model for transient corium propagation in core for LWR with heavy reflector - 15271

    International Nuclear Information System (INIS)

    Saas, L.; Le Tellier, R.; Bajard, S.

    2015-01-01

    In this document, we present a simplified geometrical model (0D model) for both the in-core corium propagation transient and the characterization of the mode of corium transfer from the core to the vessel. A degraded core with a formed corium pool is used as an initial state. This initial state can be obtained from a simulation computed with an integral code. This model does not use a grid for the core as integral codes do. Geometrical shapes and 0D models are associated with the corium pool and the other components of the degraded core (debris, heavy reflector, core plate...). During the transient, these shapes evolve taking into account the thermal and stratification behavior of the corium pool and the melting of the core surrounding components. Some results corresponding to the corium pool propagation in core transients obtained with this model on a LWR with a heavy reflector are given and compared to grid approach of the integral codes MAAP4

  14. Zirconium carbide coating for corium experiments related to water-cooled and sodium-cooled reactors

    Energy Technology Data Exchange (ETDEWEB)

    Plevacova, K. [CEA, DEN, STRI, LMA, Cadarache, 3108 St. Paul lez Durance (France); Journeau, C., E-mail: christophe.journeau@cea.fr [CEA, DEN, STRI, LMA, Cadarache, 3108 St. Paul lez Durance (France); Piluso, P. [CEA, DEN, STRI, LMA, Cadarache, 3108 St. Paul lez Durance (France); Zhdanov, V.; Baklanov, V. [IAE, National Nuclear Centre, Material Structure Investigation Dept., Krasnoarmeiskaya, 10, Kurchatov City (Kazakhstan); Poirier, J. [CEMHTI, 1D, av. de la Recherche Scientifique, 45071 Orleans Cedex 2 (France)

    2011-07-01

    Since the TMI and Chernobyl accidents the risk of nuclear severe accident is intensively studied for existing and future reactors. In case of a core melt-down accident in a nuclear reactor, a complex melt, called corium, forms. To be able to perform experiments with prototypic corium materials at high temperature, a coating which resists to different corium melts related to Generation I and II Water Reactors and Generation IV sodium fast reactor was researched in our experimental platforms both in IAE NNC in Kazakhstan and in CEA in France. Zirconium carbide was selected as protective coating for graphite crucibles used in our induction furnaces: VCG-135 and VITI. The method of coating application, called reactive wetting, was developed. Zirconium carbide revealed to resist well to the (U{sub x}, Zr{sub y})O{sub 2-z} water reactor corium. It has also the advantage not to bring new elements to this chemical system. The coating was then tested with sodium fast reactor corium melts containing steel or absorbers. Undesirable interactions were observed between the coating and these materials, leading to the carburization of the corium ingots. Concerning the resistance of the coating to oxide melts without ZrO{sub 2}, the zirconium carbide coating keeps its role of protective barrier with UO{sub 2}-Al{sub 2}O{sub 3} below 2000 deg. C but does not resist to a UO{sub 2}-Eu{sub 2}O{sub 3} mixture.

  15. Fuel-coolant interaction visualization test for in-vessel corium retention external reactor vessel cooling (IVR-ERVC) condition

    Energy Technology Data Exchange (ETDEWEB)

    Na, Young Su; Hong, Seong Ho; Song, Jin Ho; Hong, Seong Wan [Severe Accident and PHWR Safety Research Division, Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2016-12-15

    A visualization test of the fuel-coolant interaction in the Test for Real cOrium Interaction with water (TROI) test facility was carried out. To experimentally simulate the In-Vessel corium Retention (IVR)- External Reactor Vessel Cooling (ERVC) conditions, prototypic corium was released directly into the coolant water without a free fall in a gas phase before making contact with the coolant. Corium (34.39 kg) consisting of uranium oxide and zirconium oxide with a weight ratio of 8:2 was superheated, and 22.54 kg of the 34.39 kg corium was passed through water contained in a transparent interaction vessel. An image of the corium jet behavior in the coolant was taken by a high-speed camera every millisecond. Thermocouple junctions installed in the vertical direction of the coolant were cut sequentially by the falling corium jet. It was clearly observed that the visualization image of the corium jet taken during the fuel-coolant interaction corresponded with the temperature variations in the direction of the falling melt. The corium penetrated through the coolant, and the jet leading edge velocity was 2.0 m/s. Debris smaller than 1 mm was 15% of the total weight of the debris collected after a fuel-coolant interaction test, and the mass median diameter was 2.9 mm.

  16. Behaviour of molten reactor fuels under accident conditions

    International Nuclear Information System (INIS)

    Xavier Swamikannu, A.; Mathews, C.K.

    1980-01-01

    The behaviour of molten reactor fuels under accident conditions has received considerable importance in recent times. The chemical processes that occur in the molten state among the fuel, the clad components and the concrete of the containment building under the conditions of a core melt down accident in oxide fuelled reactors have been reviewed with the purpose of identifying areas of developmental work required to be performed to assess and minimize the consequences of such an accident. This includes the computation and estimation of vapour pressure of various gaseous species over the fuel, the clad and the coolant, providing of sacrificial materials in the concrete in order to protect the containment building in order to prevent release of radioactive gases into the atmosphere and understanding the distribution and chemical state of fission products in the molten fuel in order to provide for the effective removal of their decay heats. (auth.)

  17. Gases in molten salts

    CERN Document Server

    Tomkins, RPT

    1991-01-01

    This volume contains tabulated collections and critical evaluations of original data for the solubility of gases in molten salts, gathered from chemical literature through to the end of 1989. Within the volume, material is arranged according to the individual gas. The gases include hydrogen halides, inert gases, oxygen, nitrogen, hydrogen, carbon dioxide, water vapor and halogens. The molten salts consist of single salts, binary mixtures and multicomponent systems. Included also, is a special section on the solubility of gases in molten silicate systems, focussing on slags and fluxes.

  18. Metalcasting: Filtering Molten Metal

    International Nuclear Information System (INIS)

    Lauren Poole; Lee Recca

    1999-01-01

    A more efficient method has been created to filter cast molten metal for impurities. Read about the resulting energy and money savings that can accrue to many different industries from the use of this exciting new technology

  19. Lessons learnt from FARO/TERMOS corium melt quenching experiments

    Energy Technology Data Exchange (ETDEWEB)

    Magallon, D.; Huhtiniemi, I.; Hohmann, H. [Commission of the European Communities, Ispra (Italy). Joint Research Center

    1998-01-01

    The influence of melt quantity, melt composition, water depth and initial pressure on quenching is assessed on the basis of seven tests performed in various conditions in the TERMOS vessel of the FARO facility at JRC-Ispra. Tests involved UO{sub 2}-based melt quantities in the range 18-176 kg at a temperature of approximately 3000 K poured into saturated water. The results suggest that erosion of the melt jet column is an efficient contributor to the amount of break-up, and thus quenching, for large pours of corium melt. The presence of Zr metal in the melt induced a much more efficient quenching than in a similar test with no Zr metal, attributed to the oxidation of the Zr. Significant amounts of H{sub 2} were produced also in tests with pure oxidic melts (e.g. about 300 g for 157 kg melt). In the tests at 5.0 and 2.0 MPa good mixing with significant melt break-up and quenching was obtained during the penetration in the water. At 0.5 MPa, good penetration of the melt into the water could still be achieved, but a jump in the vessel pressurisation occurred when the melt contacted the bottom and part (5 kg) of the debris was re-ejected from the water. (author)

  20. Study of corium radial spreading between fuel rods in a PWR core

    International Nuclear Information System (INIS)

    Roche, S.; Gatt, J.M.

    1996-01-01

    In the framework of severe accident studies for PWR like Three Mile Island Unit 2 (TMI-2), the reactor core essentially constituted of fuel rods begins to heat and then to melt. During the early degradation phase, a melt (essentially UO2 and ZrO2) that constitutes the corium flows first along the rods, and after a blockage formation, may radially propagate towards the core periphery. A simplified model has been elaborated to study the corium freezing phenomena during its crossflow between the fuel rods. The corium spreads on an horizontal support made, of either a corium crust, or a grid assembly. The model solves numerically the interface energy balance equation at the solid-liquid corium interface and the monodimensional heat balance equation in transient process with convective terms and heat source (residual power). ''Zukauskas'' correlations are used to calculate heat transfer coefficients. The model can be integrated in severe accident codes like ICARE II (IPSN) describing the in-vessel degradation scenarios. (author). 5 refs, 10 figs

  1. How Concrete Is Concrete?

    Science.gov (United States)

    Gravemeijer, Koeno

    2011-01-01

    If we want to make something concrete in mathematics education, we are inclined introduce, what we call, "manipulatives", in the form of tactile objects or visual representations. If we want to make something concrete in a everyday-life conversation, we look for an example. In the former, we try to make a concrete model of our own,…

  2. Development of Lower Plenum Molten Pool Module of Severe Accident Analysis Code in Korea

    International Nuclear Information System (INIS)

    Son, Donggun; Kim, Dong-Ha; Park, Rae-Jun; Bae, Jun-Ho; Shim, Suk-Ku; Marigomen, Ralph

    2014-01-01

    To simulate a severe accident progression of nuclear power plant and forecast reactor pressure vessel failure, we develop computational software called COMPASS (COre Meltdown Progression Accident Simulation Software) for whole physical phenomena inside the reactor pressure vessel from a core heat-up to a vessel failure. As a part of COMPASS project, in the first phase of COMPASS development (2011 - 2014), we focused on the molten pool behavior in the lower plenum, heat-up and ablation of reactor vessel wall. Input from the core module of COMPASS is relocated melt composition and mass in time. Molten pool behavior is described based on the lumped parameter model. Heat transfers in between oxidic, metallic molten pools, overlying water, steam and debris bed are considered in the present study. The models and correlations used in this study are appropriately selected by the physical conditions of severe accident progression. Interaction between molten pools and reactor vessel wall is also simulated based on the lumped parameter model. Heat transfers between oxidic pool, thin crust of oxidic pool and reactor vessel wall are considered and we solve simple energy balance equations for the crust thickness of oxidic pool and reactor vessel wall. As a result, we simulate a benchmark calculation for APR1400 nuclear power plant, with assumption of relocated mass from the core is constant in time such that 0.2ton/sec. We discuss about the molten pool behavior and wall ablation, to validate our models and correlations used in the COMPASS. Stand-alone SIMPLE program is developed as the lower plenum molten pool module for the COMPASS in-vessel severe accident analysis code. SIMPLE program formulates the mass and energy balance for water, steam, particulate debris bed, molten corium pools and oxidic crust from the first principle and uses models and correlations as the constitutive relations for the governing equations. Limited steam table and the material properties are provided

  3. Simulation of the thermalhydraulic behavior of a molten core within a structure, with the three dimensions three components TOLBIAC code

    Energy Technology Data Exchange (ETDEWEB)

    Spindler, B.; Moreau, G.M.; Pigny S. [Centre d`Etudes Nucleaires de Grenoble (France)

    1995-09-01

    The TOLBIAC code is devoted to the simulation of the behavior of a molten core within a structure (pressure vessel of core catcher), taking into account the relative position of the core components, the wall ablation and the crust formation. The code is briefly described: 3D model, physical properties and constitutive laws. wall ablation and crust model. Two results are presented: the simulation of the COPO experiment (natural convection with water in a 1/2 scale elliptic pressure vessel), and the simulation of the behavior of a corium in a PWR pressure vessel, with ablation and crust formation.

  4. Water boiling on the corium melt surface under VVER severe accident conditions

    Energy Technology Data Exchange (ETDEWEB)

    Bechta, S.V.; Vitol, S.A.; Krushinov, E.V. [Research Institute of Technology, Sosnovy Bor (NITI) (RU)] [and others

    1999-07-01

    Experimental results are presented on the interaction between corium melt and water supplied onto its surface. The tests were conducted on the Rasplav-2' experimental facility. Induction melting in a cold crucible was used to produce the melt. The following data have been obtained: heat transfer at water boiling on the melt surface, aerosol release, structure of the post-interaction solidified corium. The corium melt had the following composition, mass %: 60%UO{sub 2}- 16%ZrO{sub 2}- 15%Fe{sub 2}O{sub 3} - 6%Cr{sub 2}O{sub 3}-3%Ni{sub 2}O{sub 3}. The melt surface temperature was 1650-1700degC. (author)

  5. Physico-Chemistry and Corium Properties for In-Vessel Retention

    International Nuclear Information System (INIS)

    Froment, K.; Seiler, J.M.; Gueneau, C.; Dauvois, V.; Barbier, F.; Bellon, M.; Tourasse, M.; Ducros, G.; Cognet, G.; Sudreau, F.

    1999-01-01

    This paper focuses on some important aspects of consequences of material behaviour and interactions on in-vessel retention capabilities. It discusses the behaviour of corium oxide mixtures at elevated temperatures (miscibility gap and density effects, separation due to density effects in the solid-liquid mixture according to the analysis of the Rasplav experiment results), and then the interaction between metallic layer and vessel wall (physical-chemical interaction of corium with the carbon steel vessel wall, migration of low melting point metallic elements in the solid vessel wall). It proposes a mode for the calculation of melt viscosity (liquid phase viscosity and viscosity in the solidification range), addresses the issue of barium release and residual power and of distribution of the residual power in an oxidic corium

  6. Transient stratification modelling of a corium pool in a LWR vessel lower head

    International Nuclear Information System (INIS)

    Le Tellier, R.; Saas, L.; Bajard, S.

    2015-01-01

    Highlights: • A kinetic stratification model is proposed for the simulation of the in-vessel corium behaviour during a LWR severe accident. • The different associated “modes” of vessel failure by thermal focusing effect are highlighted and discussed. • A sensitivity study for a 1650 MWe GenIII PWR is presented with this model in order to illustrate the associated R&D issues. - Abstract: In the context of light water reactor severe accidents analysis, this paper is focused on one key parameter of in-vessel corium phenomenology: the immiscible phases stratification and its impact on the heat flux distribution at the corium pool lateral boundary with the so-called focusing effect related to a “thin” top metal phase and the potential vessel failure at that point. More particularly, based on the limited knowledge of the stratification transient phenomenon derived from the MASCA-RCW experiment, a basic model is proposed that can be used for corium in lower head sensitivity analyses. It has been implemented in the PROCOR platform developed at CEA Cadarache. A short parametric study on a simple hypothetical transient is presented in order to highlight the different focusing effect “modes” that can be encountered based on this in-vessel corium pool model. An early mode may occur during the formation of the top metal layer while two other modes may appear later during the thinning of this top metal layer because of thermochemically induced mass transfers. Some associated relevant parameters (model or scenario-dependent) and modelling issues are mentioned and illustrated with some results of a Monte-Carlo based sensitivity calculation on the transient behaviour of the corium in the lower head of a 1650 MWe GenIII PWR. Within the limiting modelling hypotheses, the thermal modelling of the steel layer for small (centimetre) heights and the mass diffusivity (limited in this case to the uranium diffusivity in the oxidic layer) are main sensitive parameters

  7. Modeling of the corium cooling and loading factor analysis for containment during severe accidents

    International Nuclear Information System (INIS)

    Konoval, A.V.; Kalvand, Ali.; Kazachkov, I.V.

    2013-01-01

    The paper is devoted to the development and study of the mathematical model for corium melt interaction with low-temperature melting blocks in the passive protection systems (PPS) against severe accidents at the NPP, and learning the peculiarities of construction and operation of the PPS. The configurations of cooling blocks' distributions considered and the results of their work in the corium cooling pool are compared to the data of other PPS's conceptions. The conclusion is made that the models developed and the results obtained may be useful for constructing the PPS against severe accidents

  8. Modeling of the corium cooling and loading factor analysis for containment during severe accidents

    Directory of Open Access Journals (Sweden)

    O. V. Konoval

    2013-09-01

    Full Text Available The paper is devoted to the development and study of the mathematical model for corium melt interaction with low-temperature melting blocks in the passive protection systems (PPS against severe accidents at the NPP, and learning the peculiarities of construction and operation of the PPS. The configurations of cooling blocks’ distributions considered and the results of their work in the corium cooling pool are compared to the data of oth-er PPS’s conceptions. The conclusion is made that the models developed and the results obtained may be useful for constructing the PPS against severe accidents.

  9. Behavior of a corium jet in high pressure melt ejection from a reactor pressure vessel

    International Nuclear Information System (INIS)

    Frid, W.E.

    1986-01-01

    A model has been developed to calculate the expansion and fragmentation of a corium jet, due to the evolution of dissolved gas, during a postulated core meltdown accident. Parametric calculations have been performed for a PWR high pressure accident scenario. Jet breakup occurs within a few jet diameters from the RPV. The diameter of the fragmented jet at the level of the reactor cavity floor is predicted to be 40-130 times the discharge diameter. Particles generated by fragmentation of corium melt are predicted to be in the 30-150 μm size range

  10. Interaction between a fluid at high temperature and a concrete: contribution to the modeling of heat and mass transfers

    International Nuclear Information System (INIS)

    Introini, C.

    2010-01-01

    In the late phases of some scenario of hypothetical severe accident in Pressurized Water Reactors, a molten mixture of core and vessel structures, called corium, comes to interact with the concrete basemat. The safety numerical tools are lumped parameter codes. They are based on a large averaged description of heat and mass transfers which raises some uncertainties about the multi-scale description of the exchanges but also about the adopted boundary layer structure in the vicinity of the ablation front. In this context, the aim of this work is to tackle the problem of the boundary layer structure by means of direct numerical simulation. This work joins within the more general framework of a multi-scale description and a multi-scale modeling, namely from the local scale associated with the vicinity of the ablation front to the scale associated with the lumped parameter codes. Such a multi-scale description raises not only the problem of the local description of the multiphase multicomponent flow but also the problem of the up-scaling between the local- and the macro-scale which is associated with the convective structures within the pool of corium. Here, we are particularly interested in the building of effective boundary conditions or wall laws for macro-scale models. The difficulty of the multiphase multicomponent problem at the local scale leads us to consider a relatively simplified problem. Effective boundary conditions are built in the frame of a domain decomposition method and numerical experiments are performed for a natural convection problem in a stamp shaped cavity to assess the validity of the proposed wall laws. Even if the treated problem is still far from the target applications, this contribution can be viewed as a first step of a multi-scale modeling of the exchanges for the molten core concrete issue. In the more complicated case of multiphase multicomponent flows, it is necessary to have a direct numerical simulation tool of the flow at the local

  11. Performance of "Waterless Concrete"

    Science.gov (United States)

    Toutanji, H. A.; Grugel, R. N.

    2009-01-01

    Waterless concrete consists of molten elementary sulfur and aggregate. The aggregates in a lunar environment will be lunar rocks and soil. Sulfur is present on the Moon in Troilite soil (FeS) and, by oxidation of the soil, iron and sulfur can be produced. Sulfur concrete specimens were cycled between liquid nitrogen (approx.]91 C) and room temperature (^21 C) to simulate exposure to a lunar environment. Cycled and control specimens were subsequently tested in compression at room temperatures (^21 C) and ^-101 C. Test results showed that due to temperature cycling, the compressive strength of cycled specimens was 20% of those non-cycled. This reduction in strength can be attributed to the large differences in thermal coefficients of expansion of the materials constituting the concrete which promoted cracking. Similar sulfur concrete mixtures were strengthened with short and long glass fibres. The lunar regolith simulant was melted in a 25 cc Pt- Rh crucible in a Sybron Thermoline high temperature MoSi2 furnace at melting temperatures of 1450 to 1600 C for times of 30 min to i hour. Glass fibres and small rods were pulled from the melt. The glass fibres were used to reinforce sulfur concrete plated to improve the flexural strength of the sulfur concrete. Beams strengthened with glass fibres showed to exhibit an increase in the flexural strength by as much as 45%.

  12. Corium spreading: hydrodynamics, rheology and solidification of a high-temperature oxide melt; L'etalement du corium: hydrodynamique, rheologie et solidification d'unbain d'oxydes a haute temperature

    Energy Technology Data Exchange (ETDEWEB)

    Journeau, Ch

    2006-06-15

    In the hypothesis of a nuclear reactor severe accident, the core could melt and form a high- temperature (2000-3000 K) mixture called corium. In the hypothesis of vessel rupture, this corium would spread in the reactor pit and adjacent rooms as occurred in Chernobyl or in a dedicated core-catcher s in the new European Pressurized reactor, EPR. This thesis is dedicated to the experimental study of corium spreading, especially with the prototypic corium material experiments performed in the VULCANO facility at CEA Cadarache. The first step in analyzing these tests consists in interpreting the material analyses, with the help of thermodynamic modelling of corium solidification. Knowing for each temperature the phase repartition and composition, physical properties can be estimated. Spreading termination is controlled by corium rheological properties in the solidification range, which leads to studying them in detail. The hydrodynamical, rheological and solidification aspects of corium spreading are taken into account in models and computer codes which have been validated against these tests and enable the assessment of the EPR spreading core-catcher concept. (author)

  13. Prototypic corium oxidation and hydrogen release during the Fuel-Coolant Interaction

    Czech Academy of Sciences Publication Activity Database

    Tyrpekl, J.; Piluso, P.; Bakardjieva, Snejana; Nižňanský, D.; Rehspringer, J.L.; Bezdička, Petr; Dugne, O.

    2015-01-01

    Roč. 75, JAN (2015), s. 210-218 ISSN 0306-4549 Institutional support: RVO:61388980 Keywords : Corium * Fuel -Coolant Interaction * Hydrogen release * Material effect * Nuclear reactor severe accident Subject RIV: CA - Inorganic Chemistry Impact factor: 1.174, year: 2015

  14. Molten salt reactors

    International Nuclear Information System (INIS)

    Bouchter, J.C.; Dufour, P.; Guidez, J.; Simon, N.; Renault, C.

    2014-01-01

    Molten salt reactors are one of the 6 concepts retained for the 4. generation of nuclear reactors. The principle of this reactor is very innovative: the nuclear fuel is dissolved in the coolant which allows the online reprocessing of the fuel and the online recovery of the fission products. A small prototype: the Molten Salt Reactor Experiment (MSRE - 8 MWt) was operating a few years in the sixties in the USA. The passage towards a fast reactor by the suppression of the graphite moderator leads to the concept of Molten Salt Fast Reactor (MSFR) which is presently studied through different European projects such as MOST, ALISIA and EVOL. Worldwide the main topics of research are: the adequate materials resisting to the high level of corrosiveness of the molten salts, fuel salt reprocessing, the 3-side coupling between neutron transport, thermohydraulics and thermo-chemistry, the management of the changing chemical composition of the salt, the enrichment of lithium with Li 7 in the case of the use of lithium fluoride salt and the use of MSFR using U 233 fuel (thorium cycle). The last part of the article presents a preliminary safety analysis of the MSFR. (A.C.)

  15. Molten salt reactors: chemistry

    International Nuclear Information System (INIS)

    1983-01-01

    This work is a critical analysis of the 1000 MW MSBR project. Behavior of rare gases in the primary coolant circuit, their extraction from helium. Coating of graphite by molybdenum, chemistry of protactinium and niobium produced in the molten salt, continuous reprocessing of the fuel salt and use of stainless steel instead of hastelloy are reviewed [fr

  16. Molten fluoride fuel salt chemistry

    International Nuclear Information System (INIS)

    Toth, L.M.; Del Cul, G.D.; Dai, S.; Metcalf, D.H.

    1995-01-01

    The chemistry of molten fluorides is traced from their development as fuels in the Molten Salt Reactor Experiment with important factors in their selection being discussed. Key chemical characteristics such as solubility, redox behavior, and chemical activity are explained as they relate to the behavior of molten fluoride fuel systems. Development requirements for fitting the current state of the chemistry to modern nuclear fuel system are described. It is concluded that while much is known about molten fluoride behavior which can be used effectively to reduce the amount of development required for future systems, some significant molten salt chemical questions must still be addressed. copyright American Institute of Physics 1995

  17. TRANSPARENT CONCRETE

    OpenAIRE

    Sandeep Sharma*, Dr. O.P. Reddy

    2017-01-01

    Transparent concrete is the new type of concrete introduced in todays world which carries special property of light transmitting due to presence of light Optical fibres. Which is also known as translucent concrete or light transmitting concrete, it is achieved by replacing coarse aggregates with transparent alternate materials (Optical fibres). The binding material in transparent concrete may be able to transmit light by using clear resins the concrete mix. The concrete used in industry in pr...

  18. Characterisation of Ceramic-Coated 316LN Stainless Steel Exposed to High-Temperature Thermite Melt and Molten Sodium

    Science.gov (United States)

    Ravi Shankar, A.; Vetrivendan, E.; Shukla, Prabhat Kumar; Das, Sanjay Kumar; Hemanth Rao, E.; Murthy, S. S.; Lydia, G.; Nashine, B. K.; Mallika, C.; Selvaraj, P.; Kamachi Mudali, U.

    2017-11-01

    Currently, stainless steel grade 316LN is the material of construction widely used for core catcher of sodium-cooled fast reactors. Design philosophy for core catcher demands its capability to withstand corium loading from whole core melt accidents. Towards this, two ceramic coatings were investigated for its application as a layer of sacrificial material on the top of core catcher to enhance its capability. Plasma-sprayed thermal barrier layer of alumina and partially stabilised zirconia (PSZ) with an intermediate bond coat of NiCrAlY are selected as candidate material and deposited over 316LN SS substrates and were tested for their suitability as thermal barrier layer for core catcher. Coated specimens were exposed to high-temperature thermite melt to simulate impingement of molten corium. Sodium compatibility of alumina and PSZ coatings were also investigated by exposing samples to molten sodium at 400 °C for 500 h. The surface morphology of high-temperature thermite melt-exposed samples and sodium-exposed samples was examined using scanning electron microscope. Phase identification of the exposed samples was carried out by x-ray diffraction technique. Observation from sodium exposure tests indicated that alumina coating offers better protection compared to PSZ coating. However, PSZ coating provided better protection against high-temperature melt exposure, as confirmed during thermite melt exposure test.

  19. How Concrete is Concrete

    OpenAIRE

    Koeno Gravemeijer

    2010-01-01

    If we want to make something concrete in mathematics education, we are inclined introduce, what we call, ‘manipulatives’, in the form of tactile objects or visual representations. If we want to make something concrete in a everyday-life conversation, we look for an example. In the former, we try to make a concrete model of our own, abstract, knowledge; in the latter, we try to find an example that the others will be familiar with. This article first looks at the tension between these two diff...

  20. How Concrete is Concrete

    Directory of Open Access Journals (Sweden)

    Koeno Gravemeijer

    2010-07-01

    Full Text Available If we want to make something concrete in mathematics education, we are inclined introduce, what we call, ‘manipulatives’, in the form of tactile objects or visual representations. If we want to make something concrete in a everyday-life conversation, we look for an example. In the former, we try to make a concrete model of our own, abstract, knowledge; in the latter, we try to find an example that the others will be familiar with. This article first looks at the tension between these two different ways of making things concrete. Next another role of manipulatives, will be discussed, namely that of means for scaffolding and communication. In this role, manipulatives may function as means of support in a process that aims at helping students to build on their own thinking while constructing more sophisticated mathematics

  1. Molten salt breeder reactor

    International Nuclear Information System (INIS)

    Furukawa, Kazuo; Tsukada, Kineo; Nakahara, Yasuaki; Oomichi, Toshihiko; Oono, Hideo.

    1982-01-01

    Purpose: To simplify the structure, as well as improve the technical reliability and safety by the elimination of a proton beam entering window. Constitution: The nuclear reactor container main body is made of Hastelloy N and provided at the inner surface with two layers of graphite shields except for openings. An aperture was formed in the upper surface of the container, through which protons accelerated by a linear accelerator are directly entered to the liquid surface of molten salts such as 7LiF-BeF 2 -ThF 4 , 7LiF-NaF-ThF 4 , 7LiF-Rb-UF 4 , NaF-KF-UF 4 and the like. The heated molten salts are introduced by way of a pipeway into a heat exchanger where the heat is transferred to coolant salts and electric generation is conducted by way of heated steams. (Furukawa, Y.)

  2. Molten core retention assembly

    International Nuclear Information System (INIS)

    Lampe, R.F.

    1976-01-01

    Molten fuel produced in a core overheating accident is caught by a molten core retention assembly consisting of a horizontal baffle plate having a plurality of openings therein, heat exchange tubes having flow holes near the top thereof mounted in the openings, and a cylindrical imperforate baffle attached to the plate and surrounding the tubes. The baffle assembly is supported from the core support plate of the reactor by a plurality of hanger rods which are welded to radial beams passing under the baffle plate and intermittently welded thereto. Preferably the upper end of the cylindrical baffle terminates in an outwardly facing lip to which are welded a plurality of bearings having slots therein adapted to accept the hanger rods

  3. Preliminary model for core/concrete interactions

    International Nuclear Information System (INIS)

    Murfin, W.B.

    1977-08-01

    A preliminary model is described for computing the rate of penetration of concrete by a molten LWR core. Among the phenomena included are convective stirring of the melt by evolved gases, admixture of concrete decomposition products to the melt, chemical reactions, radiative heat loss, and variation of heat transfer coefficients with local pressure. The model is most applicable to a two-phase melt (metallic plus oxidic) having a fairly high metallic content

  4. Investigation on influence of crust formation on VULCANO VE-U7 corium spreading with MPS method

    International Nuclear Information System (INIS)

    Yasumura, Yusan; Yamaji, Akifumi; Furuya, Masahiro; Ohishi, Yuji; Duan, Guangtao

    2017-01-01

    Highlights: • The new crust formation model was developed for the MPS spreading analysis code. • The VULCANO VE-U7 corium spreading experiment was analyzed by the developed code. • The termination of the spreading was governed by the crust formation at the leading edge. - Abstract: In a severe accident of a light water reactor, the corium spreading behavior on a containment floor is important as it may threaten the containment vessel integrity. The Moving Particle Semi-implicit (MPS) method is one of the Lagrangian particle methods for simulation of incompressible flow. In this study, the MPS method is further developed to simulate corium spreading involving not only flow, but also heat transfer, phase change and thermo-physical property change of corium. A new crust formation model was developed, in which, immobilization of crust was modeled by stopping the particle movement when its solid fraction is above the threshold and is in contact with the substrate or any other immobilized particles. The VULCANO VE-U7 corium spreading experiment was analyzed by the developed MPS spreading analysis code to investigate influences of different particle sizes, the corium viscosity changes, and the “immobilization solid fraction” of the crust formation model on the spreading and its termination. Viscosity change of the corium was influential to the overall progression of the spreading leading edge, whereas termination of the spreading was primarily determined by the immobilization of the leading edge (i.e., crust formation). The progression of the leading edge and termination of the spreading were well predicted, but the simulation overestimated the substrate temperature. Further investigations may be necessary for the future study to see if thermal resistance at the corium-substrate boundary has significant influence on the overall spreading behavior and its termination.

  5. Severe accident in pressurized water reactors: molten fuel-coolant interaction

    International Nuclear Information System (INIS)

    Battail-Claret, Sylvie

    1993-01-01

    In order to study the phenomenon of interaction between corium and water, the author of this research thesis proposes a scenario to describe the behaviour of a drop of molten iron oxide suddenly plunged into a bath of liquid at room temperature. First, she addresses the modelling of the evolution of the vapour film which surrounds the hot drop and comprises a phase of establishment of a steady film and the phase of destabilisation of this film when an external pressure wave passes by. Besides, she modelled the process of fragmentation of a hot body induced by the destabilisation of a process due to the impact of liquid water micro-jets with water trapping in the hot body. Finally, a model of 'bubble dynamics' is proposed to describe the evolution of the vapour bubble fed by fragments. Theoretical results are compared with experimental results [fr

  6. Detection and removal of molten salts from molten aluminum alloys

    Energy Technology Data Exchange (ETDEWEB)

    K. Butcher; D. Smith; C. L. Lin; L. Aubrey

    1999-08-02

    Molten salts are one source of inclusions and defects in aluminum ingots and cast shapes. A selective adsorption media was used to remove these inclusions and a device for detection of molten salts was tested. This set of experiments is described and the results are presented and analyzed.

  7. Numerical analysis of vapor explosion in the system 'corium-water'

    International Nuclear Information System (INIS)

    Melikhov, O.I.; Melikhov, V.I.; Sokolin, A.V.

    2000-01-01

    The thermal detonation taking into account the microinteraction processes model has been applied to study thermal detonation wave escalation and propagation in the corium-water mixture. Transient escalation stage and subsequent steady-state propagation stage of the thermal detonation have been calculated. The essential decrease of the escalation length in comparison with the previous results calculated without microinteraction concept has been obtained. (author)

  8. The modeling of core melting and in-vessel corium relocation in the APRIL code

    Energy Technology Data Exchange (ETDEWEB)

    Kim. S.W.; Podowski, M.Z.; Lahey, R.T. [Rensselaer Polytechnic Institute, Troy, NY (United States)] [and others

    1995-09-01

    This paper is concerned with the modeling of severe accident phenomena in boiling water reactors (BWR). New models of core melting and in-vessel corium debris relocation are presented, developed for implementation in the APRIL computer code. The results of model testing and validations are given, including comparisons against available experimental data and parametric/sensitivity studies. Also, the application of these models, as parts of the APRIL code, is presented to simulate accident progression in a typical BWR reactor.

  9. Escalation and propagation of thermal detonation in the corium-water systems

    International Nuclear Information System (INIS)

    Melikhov, O.I.; Melikhov, V.I.; Sokolin, A.V.

    2001-01-01

    The thermal detonation taking into account micro-interaction processes model has been applied to study thermal detonation wave escalation and propagation in the corium-water mixture. Transient escalation stage and subsequent steady-state propagation stage of the thermal detonation have been calculated. The essential decrease of the escalation length in comparison with the previous results calculated without micro-interaction concept has been obtained. (authors)

  10. Corium Configuration and Penetration Tube Failure for Fukushima Daiichi Nuclear Power Plant

    International Nuclear Information System (INIS)

    An, Sang Mo; Lee, Jae Bong; Kim, Hwan Yeol; Song, Jin Ho

    2016-01-01

    For the LWRs (light water reactors), the penetration tubes at the reactor vessel lower head are regarded as the most vulnerable structures along with a global vessel failure during a severe accident because they can be seriously damaged by a corium melt or debris relocated into the lower plenum of the vessel. The research on the penetration tube failure is of higher importance in the BWRs, as it could lead to melt discharge into the containment and subsequent release of radioactive materials to the environment due to the containment failure. There are more than one hundred of penetration tubes in the Fukushima Daiichi NPPs (nuclear power plants), such as ICM-GTs (in-core monitoring guide tubes), CRGTs (control rod guide tubes) and drain tubes. The ICM-GTs include SRMs (source range monitors), IRMs (intermediate range monitors), LPRMs (local power range monitors) and TIPs (traversing in-core probes), which are much thinner than other tubes. The experimental researches to investigate the corium configuration and the penetration tube failure for the Fukushima Daiichi NPPs were introduced and some meaningful results were summarized. It was shown that the corium ingot was separated into two layers, of which the upper layer was metal-rich while the lower one was oxide-rich. It seemed that B 4 C would contribute to reducing the density of the metallic melt. The two-layered configuration will provide useful information to understand the core melt progression and post-recovery actions for the Fukushima Daiichi NPPs. In addition, we performed a large scale penetration tube failure experiment for the SRM/IRM guide tube, and showed high possibilities of large amount of corium discharge out of the reactor vessel lower head, which followed by the tube melting in a very short time. We are planning to perform the penetration tube failure experiments for another dry tube of ICM-GT (LPRM guide tube), and later for the wet tube (CRGT)

  11. Corium Configuration and Penetration Tube Failure for Fukushima Daiichi Nuclear Power Plant

    Energy Technology Data Exchange (ETDEWEB)

    An, Sang Mo; Lee, Jae Bong; Kim, Hwan Yeol; Song, Jin Ho [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2016-10-15

    For the LWRs (light water reactors), the penetration tubes at the reactor vessel lower head are regarded as the most vulnerable structures along with a global vessel failure during a severe accident because they can be seriously damaged by a corium melt or debris relocated into the lower plenum of the vessel. The research on the penetration tube failure is of higher importance in the BWRs, as it could lead to melt discharge into the containment and subsequent release of radioactive materials to the environment due to the containment failure. There are more than one hundred of penetration tubes in the Fukushima Daiichi NPPs (nuclear power plants), such as ICM-GTs (in-core monitoring guide tubes), CRGTs (control rod guide tubes) and drain tubes. The ICM-GTs include SRMs (source range monitors), IRMs (intermediate range monitors), LPRMs (local power range monitors) and TIPs (traversing in-core probes), which are much thinner than other tubes. The experimental researches to investigate the corium configuration and the penetration tube failure for the Fukushima Daiichi NPPs were introduced and some meaningful results were summarized. It was shown that the corium ingot was separated into two layers, of which the upper layer was metal-rich while the lower one was oxide-rich. It seemed that B{sub 4}C would contribute to reducing the density of the metallic melt. The two-layered configuration will provide useful information to understand the core melt progression and post-recovery actions for the Fukushima Daiichi NPPs. In addition, we performed a large scale penetration tube failure experiment for the SRM/IRM guide tube, and showed high possibilities of large amount of corium discharge out of the reactor vessel lower head, which followed by the tube melting in a very short time. We are planning to perform the penetration tube failure experiments for another dry tube of ICM-GT (LPRM guide tube), and later for the wet tube (CRGT)

  12. Proposal of In-vessel corium retention concept for Paks NPP

    International Nuclear Information System (INIS)

    Elter, J.; Toth, E.; Matejovic, P.

    2011-01-01

    The in-vessel corium retention (IVR) via external reactor vessel cooling (ERVC) seems to be a promising severe accident management strategy not only for new generation of advanced PWRs, but also for VVER-440/V213 reactors, which were designed several years ago. The basic idea of in-vessel retention of corium is to prevent RPV failure by flooding the reactor cavity so that the reactor pressure vessel is submerged in water up to its support structures, and thus the decay heat can be transferred from the corium pool through the vessel wall and into the water surrounding the vessel. An IVR concept with simple ECVR loop based only on minor modifications of existing plant technology was proposed for the Paks Nuclear Power Plant. 2 severe accident (LB and SB LOCA) without availability of HP and LP safety injection in power upgrade (108%) conditions were simulated using the ASTEC code. The analyses show that the proposed solution is effective in preserving RPV integrity in the case of severe accident. Possible uncertainties in code predictions are covered by the applied conservative assumptions

  13. Experimental Study of Interactions Between Sub-oxidized Corium and Reactor Vessel Steel

    International Nuclear Information System (INIS)

    Bechta, S.V.; Khabensky, V.B.; Granovsky, V.S.; Krushinov, E.V.; Vitol, S.A.; Gusarov, V.V.; Almiashev, V.I.; Lopukh, D.B.; Tromm, W.; Miassoedov, A.; Bottomley, D.; Fischer, M.; Piluso, P.; Altstadt, E.; Willschutz, H.G.; Fichoti, F.

    2006-01-01

    One of the critical factors in the analysis of in-vessel melt retention is the vessel strength. It is, in particular, sensitive to the thickness of intact vessel wall, which, in its turn, depends on the thermal conditions and physicochemical interactions with corium. Physicochemical interaction of prototypic UO 2 -ZrO 2 -Zr corium melt and VVER vessel steel was examined during the 2. Phase of the ISTC METCOR Project. Rasplav-3 test facility was used for conducting four tests, in which the Zr oxidation degree and interaction front temperature were varied; in one of the tests, stainless steel was added to the melt. Direct experimental measurements and post-test analyses were used for determining corrosion kinetics and maximum corrosion depth (i.e. the physicochemical impact of corium on the cooled vessel steel specimens), as well as the steel temperature conditions during the interaction, and finally the structure and composition of crystallized ingots, including the interaction zone. The minimum temperature on the interaction front boundary, which determined its final position and maximum corrosion depth was ∼ 1090 deg. C. An empirical correlation for calculation of corrosion kinetics has been derived. (authors)

  14. Problem of corium melt coolability in passive protection systems against severe accidents in the containment

    Directory of Open Access Journals (Sweden)

    Ali Kalvand

    2018-05-01

    Full Text Available Paper is devoted to the development of the mathematical model and analysis of the problem of corium melt interaction with low-temperature melting blocks in the passive protection systems against severe accidents at the NPP, which is of high importance for substantiation of the nuclear power safety, for building and successful op-erating of passive protection systems. In the third-generation reactors passive protection systems against severe accidents at the NPP are mandatory, therefore this paper is of importance for the nuclear power safety. A few configurations for the cooling blocks’ distribution have been considered and an analysis of the blocks’ melting and corium’s cooling in the pool under reactor vessel have been done, which can serve more effective for further improvement of the safety current systems and for the development of new ones. The ways for solution of the problems and the methods for their successful elaboration were discussed. The developed mathematical models and the analysis performed in the paper might be helpful for the design of passive protection systems of the cori-um melt retention inside the containment after corium melt eruption from the broken reactor vessel.

  15. Molten carbonate fuel cell

    Science.gov (United States)

    Kaun, T.D.; Smith, J.L.

    1986-07-08

    A molten electrolyte fuel cell is disclosed with an array of stacked cells and cell enclosures isolating each cell except for access to gas manifolds for the supply of fuel or oxidant gas or the removal of waste gas. The cell enclosures collectively provide an enclosure for the array and effectively avoid the problems of electrolyte migration and the previous need for compression of stack components. The fuel cell further includes an inner housing about and in cooperation with the array enclosure to provide a manifold system with isolated chambers for the supply and removal of gases. An external insulated housing about the inner housing provides thermal isolation to the cell components.

  16. Validation of Numerical Schemes in a Thermal-Hydraulic Analysis Code for a Natural Convection Heat Transfer of a Molten Pool

    International Nuclear Information System (INIS)

    Kim, Jong Tae; Ha, Kwang Soon; Kim, Hwan Yeol; Park, Rae Joon; Song, Jin Ho

    2010-01-01

    It is postulated that a fuel of a water-cooled nuclear reactor can be melted during a hypothetical severe accident. There are two strategies for cooling the molten corium, which are in-vessel corium cooling and exvessel corium cooling. They can be chosen depending on cooling characteristics of the reactor. The coolability of the molten pool is determined by comparing the thermal load from the pool and the maximum heat flux removable by cooling mechanism such as radiative or boiling heat transfer on the pool boundaries. In order to evaluate the molten pool coolability, it is important to correctly expect the thermal load by a natural convection heat transfer of the corium pool. Many correlations have been developed by conducting experiments for the natural convection of a pool. The main parameters of the heat transfer by the natural convection are Rayleigh (Ra) number, Prandtl (Pr) number and the geometry of the pool. Sometimes, the use of the correlations for the evaluation of the thermal load from the molten pool is limited by a high Ra number of the pool and its different shape from the existing correlations. Computational fluid dynamics (CFD) has been used for the analysis of the heat transfer by a natural convection. In principle, CFD is applicable to the corium pool analysis. But unfortunately, some difficulties are encountered during the analysis, which are from numerical and physical instabilities. The physical instability is from turbulence fluctuation and inverted thermal layer near the upper surface of the volumetric-heated molten pool with a high Ra number. In order to resolve turbulent natural convection, buoyancy-modified two-equation turbulence models such as a k-e or k-w model with time-averaged Navier- Stokes equations are commonly used. Because an unsteadiness of a natural convection becomes nontrivial in a high Ra number pool, it is very difficult to get accurate heat flux on the pool surface with the time averaged turbulence model. Recently

  17. How Concrete is Concrete?

    Directory of Open Access Journals (Sweden)

    Koeno Gravemeijer

    2011-01-01

    Full Text Available If we want to make something concrete in mathematics education, we are inclined introduce, what we call, ‘manipulatives’, in the form of tactile objects or visual representations. If we want to make something concrete in a everyday-life conversation, we look for an example. In the former, we try to make a concrete model of our own, abstract, knowledge; in the latter, we try to find an example that the others will be familiar with. This article first looks at the tension between these two different ways of making things concrete. Next another role of manipulatives, will be discussed, namely that of means for scaffolding and communication. In this role, manipulatives may function as means of support in a process that aims at helping students to build on their own thinking while constructing more sophisticated mathematics.Key words:  Conceret Learning Materials, School Math, Common Sense, Scaffolding, Communication DOI: http://dx.doi.org/10.22342/jme.2.1.780.1-14

  18. Molten fuel studies at Winfrith

    International Nuclear Information System (INIS)

    Edwards, A.J.; Knowles, J.B.; Tattersall, R.B.

    1988-01-01

    This report describes the experimental facilities available for molten fuel studies at Winfrith. These include a large facility capable of testing components at full LMFBR subassembly scale and also a high pressure facility for experiments at pressures up to 25 MPa, covering the whole range of temperatures and pressures of interest for the PWR. If the hypothetical accident conditions initiating the release of molten fuel do not produce an explosive transfer of thermal energy on contact of molten fuel with the reactor coolant, then an intermediate rate of heat transfer over several hundred milliseconds may occur. Theoretical work is described which is being carried out to predict the resulting pressurisation and the degree of mechanical loading on the reactor structure. Finally the current programme of molten fuel studies and recent progress are reviewed, and future plans, which are chiefly focussed on the study of thermal interactions between molten fuel and sodium coolant for the LMFBR are outlined. (author)

  19. Molten salt reactor concept

    International Nuclear Information System (INIS)

    Sood, D.D.

    1980-01-01

    Molten salt reactor is an advanced breeder concept which is suited for the utilization of thorium for nuclear power production. This reactor is based on the use of solutions of uranium or plutonium fluorides in LiF-BeF 2 -ThF 4 as fuel. Unlike the conventional reactors, no external coolant is used in the reactor core and the fuel salt itself is circulated through heat exchangers to transfer the fission produced heat to a secondary salt (NaF-NaBF 4 ) for steam generation. A part of the fuel stream is continuously processed to isolate 233 Pa, so that it can decay to fissile 233 U without getting converted to 234 Pa, and for the removal of neutron absorbing fission products. This on-line processing scheme makes this reactor concept to achieve a breeding ratio of 1.07 which is the highest for any thermal breeder reactor. Experimental studies at the Bhabha Atomic Research Centre, Bombay, have established the use of plutonium as fuel for this reactor. This molten salt reactor concept is described and the work conducted at the Bhabha Atomic Research Centre is summarised. (auth.)

  20. Molten salt reactor type

    International Nuclear Information System (INIS)

    1977-01-01

    This document is one of the three parts of a first volume devoted to the compilations of American data on the molten salt reactor concept. This part describes the MSBR core (data presented are from ORNL 4541). The principal characteristics of the core are presented in tables together with plane and elevation drawings, stress being put upon the reflector, and loading and unloading. Neutronic, and thermal and hydraulic characteristics (core and reflectors) are more detailed. The reasons why a graphite with a tight graphite layer has been chosen are briefly exposed. The physical properties of the standard graphite (irradiation behavior) have been determined for an isotropic graphite with fine granulometry; its dimensional variations largely ressemble that of Gilsonite. The mechanical stresses computed (Wigner effect) do not implicate in any way the graphite stack [fr

  1. Molten salt reactor type

    International Nuclear Information System (INIS)

    1977-01-01

    This document is one of the three parts of a first volume devoted to the compilations of American data on the molten salt reactor concept. This part 'CIRCUITS' regroups under a condensed form - in French and using international units - the essential information contained in both basic documents of the American project for a molten-salt breeder power plant. This part is only dealing with things relating to the CEA-EDF workshop 'CIRCUITS'. It is not concerned with information on: the reactor and the moderator replacement, the primary and secondary salts, and the fuel salt reprocessing, that are dealt with in parts 'CORE' and 'CHEMISTRY' respectively. The possible evolutions in the data - and solutions - taken by the American designers for their successive projects (1970 to 1972) are shown. The MSBR power plant comprises three successive heat transfer circuits. The primary circuit (Hastelloy N), radioactive and polluted, containing the fuel salt, includes the reactor, pumps and exchangers. The secondary circuit (pipings made of modified Hastelloy N) contaminated in the exchanger, ensures the separation between the fuel and the fluid operating the turbo-alternator. The water-steam circuit feeds the turbine with steam. This steam is produced in the steam generator flowed by the secondary fluid. Some subsidiary circuits (discharge and storage of the primary and secondary salts, ventilation of the primary circuit ...) complete the three principal circuits which are briefly described. All circuits are enclosed inside the controlled-atmosphere building of the nuclear boiler. This building also ensures the biological protection and the mechanical protection against outer aggressions [fr

  2. The Live program - Results of test L1 and joint analyses on transient molten pool thermal hydraulics

    Energy Technology Data Exchange (ETDEWEB)

    Buck, M.; Buerger, M. [Univ Stuttgart, Inst Kernenerget and Energiesyst, D-70569 Stuttgart (Germany); Miassoedov, A.; Gaus-Liu, X.; Palagin, A. [IRSN Forschungszentrum Karlsruhe GmbH, D-76021 Karlsruhe, (Germany); Godin-Jacqmin, L. [CEA Cadarache, DEN STRI LMA, F-13115 St Paul Les Durance (France); Tran, C. T.; Ma, W. M. [KTH, AlbaNova Univ Ctr, S-10691 Stockholm (Sweden); Chudanov, V. [Nucl Safety Inst, Moscow 113191 (Russian Federation)

    2010-07-01

    The development of a corium pool in the lower head and its behaviour is still a critical issue. This concerns, in general, the understanding of a severe accident with core melting, its course, major critical phases and timing, and the influence of these processes on the accident progression as well as, in particular, the evaluation of in-vessel melt retention by external vessel flooding as an accident mitigation strategy. Previous studies were especially related to the in-vessel retention question and often just concentrated on the quasi-steady state behaviour of a large molten pool in the lower head, considered as a bounding configuration. However, non-feasibility of the in-vessel retention concept for high power density reactors and uncertainties e. g. due to layering effects even for low or medium power reactors, turns this to be insufficient. Rather, it is essential to consider the whole evolution of the accident, including e. g. formation and growth of the in-core melt pool, characteristics of corium arrival in the lower head, and molten pool behaviour after the debris re-melting. These phenomena have a strong impact on a potential termination of a severe accident. The general objective of the LIVE program at FZK is to study these phenomena resulting from core melting experimentally in large-scale 3D geometry and in supporting separate-effects tests, with emphasis on the transient behaviour. Up to now, several tests on molten pool behaviour have been performed within the LIVE experimental program with water and with non-eutectic melts (KNO{sub 3}-NaNO{sub 3}) as simulant fluids. The results of these experiments, performed in nearly adiabatic and in isothermal conditions, allow a direct comparison with findings obtained earlier in other experimental programs (SIMECO, ACOPO, BALI, etc. ) and will be used for the assessment of the correlations derived for the molten pool behaviour. Complementary to other international programs with real corium melts, the results

  3. Pervious Concrete

    OpenAIRE

    Torsvik, Øyvind André Hoff

    2012-01-01

    Pervious concrete is a material with a high degree of permeability but generally low strength. The material is primarily used for paving applications but has shown promise in many other areas of usage. This thesis investigates the properties of pervious concrete using normal Norwegian aggregates and practices. An overview of important factors when it comes to designing and producing pervious concrete is the result of this investigation. Several experiments have been performed in the concrete ...

  4. Structural Precast Concrete Handbook

    DEFF Research Database (Denmark)

    Kjærbye, Per Oluf H

    Structural concept for precast concrete systems. Design og precast reinforced concrete components. Design of precast concrete connections. Illustrations on design of precast concrete buildings. Precast concrete assembly.......Structural concept for precast concrete systems. Design og precast reinforced concrete components. Design of precast concrete connections. Illustrations on design of precast concrete buildings. Precast concrete assembly....

  5. The molten salt reactor adventure

    International Nuclear Information System (INIS)

    MacPherson, H.G.

    1985-01-01

    A personal history of the development of molten salt reactors in the United States is presented. The initial goal was an aircraft propulsion reactor, and a molten fluoride-fueled Aircraft Reactor Experiment was operated at Oak Ridge National Laboratory in 1954. In 1956, the objective shifted to civilian nuclear power, and reactor concepts were developed using a circulating UF 4 -ThF 4 fuel, graphite moderator, and Hastelloy N pressure boundary. The program culminated in the successful operation of the Molten Salt Reactor Experiment in 1965 to 1969. By then the Atomic Energy Commission's goals had shifted to breeder development; the molten salt program supported on-site reprocessing development and study of various reactor arrangements that had potential to breed. Some commercial and foreign interest contributed to the program which, however, was terminated by the government in 1976. The current status of the technology and prospects for revived interest are summarized

  6. Internal structure of an ex-vessel corium debris bed during severe accidents of LWRs

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Eunho; Park, Jin Ho; Moriyama, Kiyofumi; Park, Hyun Sun [POSTECH, Daejeon (Korea, Republic of)

    2015-10-15

    In the aspect of the coolability assessment the configuration of the debris bed, including internal and external characteristics, has significant importance as boundary conditions for simulations, however, relatively little investigation of the sedimentation process. For the development of a debris bed, recently there have been several studies that focused on thermal characteristics of corium particles. Yakush et al. performed simulation studies and showed that two phase natural convection affects the particle settling trajectory and changes the final arrival location of particles to result more flattened bed. Those simulation results have been supported by the experimental studies of Kim et al. using simulant particles and air bubble injection. For the internal structure of a debris bed, there have been several simulation and experimental studies, which investigated the effect of internal structure on debris bed coolability. Magallon has reported the particle size distribution at three elevations of the debris bed of FARO L-31 case, where the mean particle size was bigger for the lower elevation. However, there is a lack of detailed information on the characteristics of the debris bed, including the local structure and porosity. In this study, we investigated the internal structure of the debris bed using a mixture of stainless steel particles and air bubble injection. Local particle sedimentation quantity, particle size distribution change in radial direction and axial direction, and bed porosity was measured to investigate a relationship between the internal structure and the accident condition. An experimental investigation was carried out for the internal structure of ex-vessel corium debris bed in the flooded cavity during sever accident. Moderate corium discharge in high flooding level was assumed for full fragmentation of melt jet. The test particle mixture was prepared by following an empirical correlation, which reflects the particle size distribution of

  7. Ex-Vessel corium coolability and steam explosion energetics in nordic light water reactors

    Energy Technology Data Exchange (ETDEWEB)

    Dinh, T.N.; Ma, W.M.; Karbojian, A.; Kudinov, P.; Tran, C.T.; Hansson, C.R. [Royal Institute of Technology (KTH), (Sweden)

    2008-03-15

    This report presents advances and insights from the KTH's study on corium pool heat transfer in the BWR lower head; debris bed formation; steam explosion energetics; thermal hydraulics and coolability in bottom-fed and heterogeneous debris beds. Specifically, for analysis of heat transfer in a BWR lower plenum an advanced threedimensional simulation tool was developed and validated, using a so-called effective convectivity approach and Fluent code platform. An assessment of corium retention and coolability in the reactor pressure vessel (RPV) lower plenum by means of water supplied through the Control Rod Guide Tube (CRGT) cooling system was performed. Simulant material melt experiments were performed in an intermediate temperature range (1300-1600K) on DEFOR test facility to study formation of debris beds in high and low subcooled water pools characteristic of in-vessel and ex-vessel conditions. Results of the DEFOR-E scoping experiments and related analyses strongly suggest that porous beds formed in ex-vessel from a fragmented high-temperature debris is far from homogeneous. Calculation results of bed thermal hydraulics and dryout heat flux with a two-dimensional thermal-hydraulic code give the first basis to evaluate the extent by which macro and micro inhomogeneity can enhance the bed coolability. The development and validation of a model for two-phase natural circulation through a heated porous medium and its application to the coolability analysis of bottom-fed beds enables quantification of the significant effect of dryout heat flux enhancement (by a factor of 80-160%) due to bottom coolant injection. For a qualitative and quantitative understanding of steam explosion, the SHARP system and its image processing methodology were used to characterize the dynamics of a hot liquid (melt) drop fragmentation and the volatile liquid (coolant) vaporization. The experimental results provide a basis to suggest that the melt drop preconditioning is instrumental to

  8. The modeling and analysis of in-vessel corium/structure interaction in boiling water reactors

    International Nuclear Information System (INIS)

    Podowski, M.Z.; Kurul, N.; Kim, S.-W.; Baltyn, W.; Frid, W.

    1997-01-01

    A complete stand-alone state-of-the-art model has been developed of the interaction between corium debris in the lower plenum and the RPV walls and internal structures, including the vessel failure mechanisms. This new model has been formulated as a set of consistent computer modules which could be linked with other existing models and/or computer codes. The combined lower head and lower plenum modules were parametrically tested and applied to predict the consequences of a hypothetical station blackout in a Swedish BWR. (author)

  9. Ex-Vessel corium coolability and steam explosion energetics in nordic light water reactors

    International Nuclear Information System (INIS)

    Dinh, T.N.; Ma, W.M.; Karbojian, A.; Kudinov, P.; Tran, C.T.; Hansson, C.R.

    2008-03-01

    This report presents advances and insights from the KTH's study on corium pool heat transfer in the BWR lower head; debris bed formation; steam explosion energetics; thermal hydraulics and coolability in bottom-fed and heterogeneous debris beds. Specifically, for analysis of heat transfer in a BWR lower plenum an advanced threedimensional simulation tool was developed and validated, using a so-called effective convectivity approach and Fluent code platform. An assessment of corium retention and coolability in the reactor pressure vessel (RPV) lower plenum by means of water supplied through the Control Rod Guide Tube (CRGT) cooling system was performed. Simulant material melt experiments were performed in an intermediate temperature range (1300-1600K) on DEFOR test facility to study formation of debris beds in high and low subcooled water pools characteristic of in-vessel and ex-vessel conditions. Results of the DEFOR-E scoping experiments and related analyses strongly suggest that porous beds formed in ex-vessel from a fragmented high-temperature debris is far from homogeneous. Calculation results of bed thermal hydraulics and dryout heat flux with a two-dimensional thermal-hydraulic code give the first basis to evaluate the extent by which macro and micro inhomogeneity can enhance the bed coolability. The development and validation of a model for two-phase natural circulation through a heated porous medium and its application to the coolability analysis of bottom-fed beds enables quantification of the significant effect of dryout heat flux enhancement (by a factor of 80-160%) due to bottom coolant injection. For a qualitative and quantitative understanding of steam explosion, the SHARP system and its image processing methodology were used to characterize the dynamics of a hot liquid (melt) drop fragmentation and the volatile liquid (coolant) vaporization. The experimental results provide a basis to suggest that the melt drop preconditioning is instrumental to the

  10. Vulcano: a dedicated R and D program to master corium recuperation for future reactors

    Energy Technology Data Exchange (ETDEWEB)

    Bouchter, J.C.; Cognet, G.

    1994-12-31

    In the field of Severe Accident studies for future Nuclear Power Plants, the CEA (Commissariat a l`Energie Atomique) has launched an important program operating with UO{sub 2} materials. General objectives cover the qualification of industrial core-catcher concepts as well as the improvement of the understanding of corium behaviour inside the pressure vessel. After a presentation of the general scope of the project, the paper focuses on the first experimental phase (VULCANO E-30) which deals with major questions of core-catcher concepts based on spreading and flooding principles. (authors). 3 refs., 6 figs.

  11. Vulcano: a dedicated R and D program to master corium recuperation for future reactors

    International Nuclear Information System (INIS)

    Bouchter, J.C.; Cognet, G.

    1994-01-01

    In the field of Severe Accident studies for future Nuclear Power Plants, the CEA (Commissariat a l'Energie Atomique) has launched an important program operating with UO 2 materials. General objectives cover the qualification of industrial core-catcher concepts as well as the improvement of the understanding of corium behaviour inside the pressure vessel. After a presentation of the general scope of the project, the paper focuses on the first experimental phase (VULCANO E-30) which deals with major questions of core-catcher concepts based on spreading and flooding principles. (authors). 3 refs., 6 figs

  12. Internal structure of an ex-vessel corium debris bed during severe accidents of LWRs

    International Nuclear Information System (INIS)

    Kim, Eunho; Park, Jin Ho; Moriyama, Kiyofumi; Park, Hyun Sun

    2015-01-01

    In the aspect of the coolability assessment the configuration of the debris bed, including internal and external characteristics, has significant importance as boundary conditions for simulations, however, relatively little investigation of the sedimentation process. For the development of a debris bed, recently there have been several studies that focused on thermal characteristics of corium particles. Yakush et al. performed simulation studies and showed that two phase natural convection affects the particle settling trajectory and changes the final arrival location of particles to result more flattened bed. Those simulation results have been supported by the experimental studies of Kim et al. using simulant particles and air bubble injection. For the internal structure of a debris bed, there have been several simulation and experimental studies, which investigated the effect of internal structure on debris bed coolability. Magallon has reported the particle size distribution at three elevations of the debris bed of FARO L-31 case, where the mean particle size was bigger for the lower elevation. However, there is a lack of detailed information on the characteristics of the debris bed, including the local structure and porosity. In this study, we investigated the internal structure of the debris bed using a mixture of stainless steel particles and air bubble injection. Local particle sedimentation quantity, particle size distribution change in radial direction and axial direction, and bed porosity was measured to investigate a relationship between the internal structure and the accident condition. An experimental investigation was carried out for the internal structure of ex-vessel corium debris bed in the flooded cavity during sever accident. Moderate corium discharge in high flooding level was assumed for full fragmentation of melt jet. The test particle mixture was prepared by following an empirical correlation, which reflects the particle size distribution of

  13. Molten material-containing vessel

    International Nuclear Information System (INIS)

    Akagawa, Katsuhiko

    1998-01-01

    The molten material-containing vessel of the present invention comprises a vessel main body having an entrance opened at the upper end, a lid for closing the entrance, an outer tube having an upper end disposed at the lower surface of the lid, extended downwardly and having an closed lower end and an inner tube disposed coaxially with the outer tube. When a molten material is charged from the entrance to the inside of the vessel main body of the molten material-containing vessel and the entrance is closed by the lid, the outer tube and the inner tube are buried in the molten material in the vessel main body, accordingly, a fluid having its temperature elevated by absorption of the heat of the molten material rises along the inner circumferential surface of the outer tube, abuts against the lower surface of the lid and cooled by exchanging heat with the lid and forms a circulating flow. Since the heat in the molten material is continuously absorbed by the fluid, transferred to the lid and released from the lid to the atmospheric air, heat releasing efficiency can be improved compared with conventional cases. (N.H.)

  14. Glazed Concrete

    DEFF Research Database (Denmark)

    Bache, Anja Margrethe

    2010-01-01

    Why glazed concrete? Concrete hardens and finds its strength at room temperature whereas clay products must first be fired before they achieve this strength. They are stronger and three times as durable as clay products, which is a weighty reason for choosing concrete.5 Another reason, which....... If this succeeds, it will be possible to manufacture thin, large-scale glazed concrete panels comparable in size to concrete sandwich construction and larger which, with or without back-casting, can work as load-bearing construction elements....

  15. VULCANO: a large scale U O2 program to study corium behaviour and cooling for future reactors

    International Nuclear Information System (INIS)

    Cognet, G.; Bouchter, J.C.

    1994-01-01

    The CEA has launched the VULCANO project, a large experimental facility whose objectives are the understanding of corium behaviour from core melting up to vessel melt-through, and the qualification of core-catcher concepts. This paper deals with the strategy adopted to overcome the difficulties of such experiments (use of real materials such as U O 2 , controlled temperature and flowrate...); in particular, it describes the feasibility studies undertaken on corium production, and on sustained heating within the melt (micro-waves). Some indications are also given on scaling studies for experiments devoted to vessel integrity. 7 figs., 3 refs

  16. Concrete Hinges

    DEFF Research Database (Denmark)

    Halding, Philip Skov; Hertz, Kristian Dahl; Schmidt, Jacob Wittrup

    2014-01-01

    In the first part of the 20th century concrete hinges developed by Freyssinet and Mesnager were widely tested and implemented in concrete structures. The concrete hinges were used a great deal in closed-spandrel arch bridges. Since such a bridge type has not been competitive for the past 40 years......, the research in concrete hinges has not evolved significantly in that period. But introducing a new state-of-the-art concrete arch bridge solution (Pearl-Chain arches invented at the Technical University of Denmark) creates a necessity of a concrete hinge research based on modern standards. Back when research...... in concrete hinges was more common different designs were proposed for the geometry and reinforcement. Previous research focused on fatigue, multi-axial stresses around the hinge throat, and the relation between rotation- and moment. But many different test-setups were proposed by different researchers...

  17. Concrete structures

    CERN Document Server

    Setareh, Mehdi

    2017-01-01

    This revised, fully updated second edition covers the analysis, design, and construction of reinforced concrete structures from a real-world perspective. It examines different reinforced concrete elements such as slabs, beams, columns, foundations, basement and retaining walls and pre-stressed concrete incorporating the most up-to-date edition of the American Concrete Institute Code (ACI 318-14) requirements for the design of concrete structures. It includes a chapter on metric system in reinforced concrete design and construction. A new chapter on the design of formworks has been added which is of great value to students in the construction engineering programs along with practicing engineers and architects. This second edition also includes a new appendix with color images illustrating various concrete construction practices, and well-designed buildings. The ACI 318-14 constitutes the most extensive reorganization of the code in the past 40 years. References to the various sections of the ACI 318-14 are pro...

  18. Melting experiment on concrete waste using a hollow type plasma torch mounted on furnace

    International Nuclear Information System (INIS)

    Moon, Y. P.; Kim, T. W.; Kim, H. S.; Shin, S. U.; Lee, M. C.

    2000-01-01

    A furnace coupled with a hollow type plasma torch was manufactured and installed in order to develop a volume reduction technology for non-combustible radioactive waste using plasma. A melting test with 10kg of concrete waste was carried out for the evaluation of melting characteristics in the non-transferred operation mode for 20 minutes with the melter. Feeded concrete was completely melted. However, the molten bath was not easily discharged because of its high viscosity. It was found that some molten slag spat from the molten bath was coated on the surface of torch which was mounted vertically inside furnace

  19. Molten salt reactor type

    International Nuclear Information System (INIS)

    1977-01-01

    This document is one of the three parts of a first volume devoted to the compilations of American data on the molten salt reactor concept. Emphasize is put essentially on the fuel salt of the primary circuit inside which fission reactions occur. The reasons why the (LiF-BeF 2 -ThF 4 -UF 4 ) salt was chosen for the M.S.B.R. concept are examined; the physical, physicochemical and chemical properties of this salt are discussed with its interactions with the structural materials and its evolution in time. An important part of this volume is devoted to the continuous reprocessing of the active salt, the project designers having deemed advisable to take advantage at best from the availability of a continuous purification, in a thermal breeding. The problem of tritium formation and distribution inside the reactor is also envisaged and the fundamentals of the chemistry of the secondary coolant salt are given. The solutions proposed are: the hydrogen scavenging of the primary circuit, a reduction in metal permeability by an oxyde layer deposition on the side in contact with the vapor, and tritium absorption through an isotope exchange with the hydroxifluoroborate [fr

  20. Evaluation of In-Vessel Corium Retention under a Severe Accident

    Energy Technology Data Exchange (ETDEWEB)

    Park, Rae-Joon; Kang, Kyung-Ho; Ha, Kwang-Soon; Kim, Jong-Tae; Koo, Kil-Mo; Cho, Young-Ro; Hong, Seong-Wan; Kim, Sang-Baik; Kim, Hee-Dong

    2008-02-15

    The current study on In-Vessel corium Retention and its application activities to the actual nuclear power plant have been reviewed and discussed in this study. Severe accident sequence which determines an initial condition of the IVR has been evaluated and late phase melt progression, heat transfer on the outer reactor vessel, and in-vessel corium cooling mechanism have been estimated in detail. During the high pressure sequence of the reactor coolant system, a natural circulation flow of the hot steam leads to a failure of the pressurizer surge line before the reactor vessel failure, which leads to a rapid decrease of the reactor coolant system pressure. The results of RASPLAV/MASCA study by OECD/NEA have shown that a melt stratification has occurred in the lower plenum of the reactor vessel. In particular, laver inversion has occurred, which is that a high density of the metal melt moves to the lower part of the oxidic melt layer. A method of heat transfer enhancement on the outer reactor vessel is an optimal design of the reactor vessel insulation for an increase of the natural circulation flow between the outer reactor vessel and the its insulation, and an increase of the critical Heat flux on the outer reactor vessel by using various method, such as Nono fluid, coated reactor vessel, and so on. An increase method of the in-vessel melt cooling is a development of the In-vessel core catcher and a decrease of focusing effect in the metal layer.

  1. A view of treatment process of melted nuclear fuel on a severe accident plant using a molten salt system

    Energy Technology Data Exchange (ETDEWEB)

    Fujita, R.; Takahashi, Y.; Nakamura, H.; Mizuguchi, K. [Power and Industrial Research and Development Center, Toshiba Corporation Power Systems Company, 4-1 Ukishima-cho, Kawasaki-ku, Kawasaki 210-0862 (Japan); Oomori, T. [Chemical System Design and Engineering Department, Toshiba Corporation Power Systems Company, 8 Shinsugita-cho, Isogo-ku, Yokohama 235-8523 (Japan)

    2013-07-01

    At severe accident such as Fukushima Daiichi Nuclear Power Plant Accident, the nuclear fuels in the reactor would melt and form debris which contains stable UO2-ZrO2 mixture corium and parts of vessel such as zircaloy and iron component. The requirements for solution of issues are below; -) the reasonable treatment process of the debris should be simple and in-situ in Fukushima Daiichi power plant, -) the desirable treatment process is to take out UO{sub 2} and PuO{sub 2} or metallic U and TRU metal, and dispose other fission products as high level radioactive waste; and -) the candidate of treatment process should generate the smallest secondary waste. Pyro-process has advantages to treat the debris because of the high solubility of the debris and its total process feasibility. Toshiba proposes a new pyro-process in molten salts using electrolysing Zr before debris fuel being treated.

  2. Concrete Fibrations

    OpenAIRE

    Pagnan, Ruggero

    2017-01-01

    As far as we know, no notion of concrete fibration is available. We provide one such notion in adherence to the foundational attitude that characterizes the adoption of the fibrational perspective in approaching fundamental subjects in category theory and discuss it in connection with the notion of concrete category and the notions of locally small and small fibrations. We also discuss the appropriateness of our notion of concrete fibration for fibrations of small maps, which is relevant to a...

  3. Analysis of hydrogen generation according to the specific concrete composition during severe accident

    International Nuclear Information System (INIS)

    Seo, M. R.; Kim, M. K.

    2001-01-01

    The chemical composition of reactor cavity floor concrete affects the kind and amout of gases generated by MCCI and ablation of concrete. And if affects the physical and chemical characteristics of molten pool formed in the cavity. So, the specific concrete compostion is inputted in the MAAP Code used in the Level 2 PSA. and since Ulchin Unit 3 and 4 PSA, the analysis of concrete composition has been performed by the concrete mold prepared for this usage at the installation of cavity floor concrete. But, the composition of domestic concrete for construction of NPP is nearly the same as that of the standard basaltic concrete, and the effect of minor variation in composition is expected to be negligible. This report analyze the effect of the concrete composition to the generation of hydrogen due to MCCI, and discuss the necessity of analysis about the specific concrete composition for Level 2 PSA

  4. A study on corium melt pool behavior under external vessel cooling : investigation of the first phase research results in the OECD RASPLAV project

    Energy Technology Data Exchange (ETDEWEB)

    Park, Rae Joon; Kim, Sang Baik; Kim, Hee Dong; Yoo, Kun Joong

    1998-04-01

    The scope and contents of the OECD RASPLAV program are to investigate natural convection heat transfer in the corium, chemical and mechanical interaction between the corium and the reactor vessel, crust formation of the corium, and thermal behaviour of the corium by experiments and model development during external vessel cooling to prevent reactor vessel failure in severe accidents of nuclear power plant. This study includes evaluation and analysis of the RASPLAV V phase I results for three years between July 1, 1994 and June 30, 1997. These results supply technical basis for our experimental program on severe accident research. Two large-scale experiments of RASPLAV-AW-between the corium and the reactor vessel. Several small-scale experiments were conducted to analyze thermal stratification in the corium. The salt experiments were conducted to estimate the crust and the mushy region formation, and natural convection heat transfer in the corium. In the analytical studies, pre and post analysis of the RASPLAV-AW-200 experiments and evaluation of the salt test results have been performed using CONV 2 and 3D computer codes, which were developed during RASPLAV program phase I. Low density corium was separated from the high density corium during the RASPLAV-AW-200 tests and the TULPAN test, which was a new finding in the RASPLAV project phase I. From the salts test, heat flux distribution in the side wall heating case is similar to the direct internal heat generation case, and the crust formation is a little effect on heat transfer rate. The results of CONV 2 and 3 D were very well with with the experimental results. The results of RASLAV project phase I, such as furnace design and the techniques on fuel melting, are very helpful to our severe accident experimental program. (author). 57 refs., 13 tabs., 52 figs.

  5. Molten fuel-moderator interaction

    International Nuclear Information System (INIS)

    Lee, J.H.S.; Kynstautas, R.

    1987-02-01

    A critical review of the current understanding of vapor explosions was carried out. It was concluded that, on the basis of actual industrial accidents and large scale experiments, energetic high yield steam explosion cannot be regarded as an improbable event if large quantities of molten fuel and coolant are mixed together. This study also reviewed a hydrodynamic transient model proposed by Henry and Fauske Associates to assess a molten fuel-moderator interaction event. It was found that the proposed model negates a priori the possibility of a violent event, by introducing two assumptions: 1) fine fragmentation of the molten fuel, and ii) rapid heat transfer from the fine fragments to form steam. Using the Hicks and Menzies thermodynamic model, maximum work potential and pressure rise in the calandria were estimated. However, it is recommended that a more representative upper bound model based on an underwater explosion of a pressurized volume of steam be developed

  6. Ceramics for Molten Materials Transfer

    Science.gov (United States)

    Standish, Evan; Stefanescu, Doru M.; Curreri, Peter A.

    2009-01-01

    The paper reviews the main issues associated with molten materials transfer and handling on the lunar surface during the operation of a hig h temperature electrowinning cell used to produce oxygen, with molten iron and silicon as byproducts. A combination of existing technolog ies and purposely designed technologies show promise for lunar exploi tation. An important limitation that requires extensive investigation is the performance of refractory currently used for the purpose of m olten metal containment and transfer in the lunar environment associa ted with electrolytic cells. The principles of a laboratory scale uni t at a scale equivalent to the production of 1 metric ton of oxygen p er year are introduced. This implies a mass of molten materials to be transferred consistent with the equivalent of 1kg regolithlhr proces sed.

  7. Aluminum titanate crucible for molten uranium

    International Nuclear Information System (INIS)

    Asbury, J.J.

    1975-01-01

    An improved crucible for molten uranium is described. The crucible or crucible liner is formed of aluminum titanate which essentially eliminates contamination of uranium and uranium alloys during molten states thereof. (U.S.)

  8. NANOMODIFIED CONCRETE

    Directory of Open Access Journals (Sweden)

    B. M. Khroustalev

    2015-01-01

    Full Text Available One of the main directions in construction material science is the development of  next generation concrete that is ultra-dense, high-strength, ultra-porous, high heat efficient, extra corrosion-resistant. Selection of such direction is caused by extreme operational impacts on the concrete, namely: continuously increasing load on the concrete and various dynamics of such loads; the necessity in operation of concrete products in a wide temperature range and their exposure to various chemical and physical effects.The next generation concrete represents high-tech concrete mixtures with additives that takes on and retain the required properties when hardening and being used under any operational conditions. A differential characteristic of the next generation concrete is its complexity that presumes usage of various mineral dispersed components, two- and three fractional fine and coarse aggregates, complex chemical additives, combinations of polymer and iron reinforcement.Design strength and performance properties level of the next generation concrete is achieved by high-quality selection of the composition, proper selection of manufacturing techniques, concrete curing, bringing the quality of concrete items to the required level of technical condition during the operational phase. However, directed formation of its structure is necessary in order to obtain high-tech concrete.Along with the traditional methods for regulation of the next generation concrete structure, modification of concrete while using silica nanoparticles is also considered as a perspective one because the concrete patterning occurs due to introduction of a binder in a mineral matrix. Due to this it is possible to obtain nano-modified materials with completely new properties.The main problem with the creation of nano-modified concrete is a uniform distribution of nano-materials in the volume of the cement matrix which is particularly important in the cases of adding a modifier in

  9. Molten-salt converter reactors

    International Nuclear Information System (INIS)

    Perry, A.M.

    1975-01-01

    Molten-salt reactors appear to have substantial promise as advanced converters. Conversion ratios of 0.85 to 0.9 should be attainable with favourable fuel cycle costs, with 235 U valued at $12/g. An increase in 235 U value by a factor of two or three ($10 to $30/lb. U 3 O 8 , $75/SWU) would be expected to increase the optimum conversion ratio, but this has not been analyzed in detail. The processing necessary to recover uranium from the fuel salt has been partially demonstrated in the MSRE. The equipment for doing this would be located at the reactor, and there would be no reliance on an established recycle industry. Processing costs are expected to be quite low, and fuel cycle optimization depends primarily on inventory and burnup or replacement costs for the fuel and for the carrier salt. Significant development problems remain to be resolved for molten-salt reactors, notably the control of tritium and the elimination of intergranular cracking of Hastelloy-N in contact with tellurium. However, these problems appear to be amenable to solution. It is appropriate to consider separating the development schedule for molten-salt reactors from that for the processing technology required for breeding. The Molten-Salt Converter Reactor should be a useful reactor in its own right and would be an advance towards the achievement of true breeding in thermal reactors. (author)

  10. Catalysis in Molten Ionic Media

    DEFF Research Database (Denmark)

    Boghosian, Soghomon; Fehrmann, Rasmus

    2013-01-01

    This chapter deals with catalysis in molten salts and ionic liquids, which are introduced and reviewed briefly, while an in-depth review of the oxidation catalyst used for the manufacturing of sulfuric acid and cleaning of flue gas from electrical power plants is the main topic of the chapter...

  11. thermic oil and molten salt

    African Journals Online (AJOL)

    Boukelia T.E, Mecibah M.S and Laouafi A

    1 mai 2016 ... [27] Zavoico, AB. Solar Power Tower Design Basis Document. Tech. rep, Sandia National. Laboratories, SAND2001-2100, 2001. How to cite this article: Boukelia T.E, Mecibah M.S and Laouafi A. Performance simulation of parabolic trough solar collector using two fluids (thermic oil and molten salt).

  12. An interpretation of the observations performed on rasplav AW200-1 corium

    International Nuclear Information System (INIS)

    Froment, K.; Seiler, J.M.; CEA Centre d'Etudes de Grenoble, 38

    1997-01-01

    The RASPLAV test AW-200-1, performed in the Kurchatov Institute in 1996, showed unexpected results: elevated measured temperatures and stratification of the C-22 corium. Thermalhydraulic and thermodynamic calculations allowed us to give some explanation of the phenomenon which took place in the device: due to the large range between the solidus and the liquidus temperature of the initial mixture, and due to the density difference between the liquid and the solid phase in this temperature domain separation of these two phases had happened during the melting of the mixture (we have no explanation why this separation occurred). GEMINI2 calculations of the solidification paths are consistent with metallographic analyses which were carried out in these two separated layers after solidification. (author)

  13. Breakup Behavior of Molten Wood's Metal Jet in Subcooled Water

    Energy Technology Data Exchange (ETDEWEB)

    Heo, Hyo; Park, Seong Dae; Bang, In Cheol [Ulsan National Institute of Science and Technology, Ulsan (Korea, Republic of); Jerng, Dong Wook [Chung-Ang Univ., Seoul (Korea, Republic of)

    2014-10-15

    There are safety characteristics of the metal fueled sodium fast-cooled reactor (SFR), by identifying the possibility of early termination of severe accidents. If the molten fuel is ejected from the cladding, the ejected molten fuel can interact with the coolant in the reactor vessel. This phenomenon is called as fuel-coolant interaction (FCI). The FCI occurs at the initial phase leading to severe accidents like core disruptive accident (CDA) in the SFR. A part of the corium energy is intensively transferred to the coolant in a very short time during the FCI. The coolant vaporizes at high pressure and expands so results in steam explosion that can threat to the integrity of nuclear reactor. The intensity of steam explosion is determined by jet breakup and the fragmentation behavior. Therefore, it is necessary to understand the jet breakup between the molten fuel jet and the coolant in order to evaluate whether the steam explosion occurs or not. The liquid jet breakup has been studied in various areas, such as aerosols, spray and combustion. In early studies, small diameter jets of low density liquids were studied. The jet breakup for large density liquids has been studied in nuclear reactor field with respect to safety. The existence of vapor film layer between the melt and liquid fluid is only in case of large density breakup. This paper deals with the jet breakup experiment in non-boiling conditions in order to analyze hydraulic effect on the jet behavior. In the present study, the wood's metal was used as the jet material. It has similar properties to the metal fuel. The physical properties of molten materials and coolants are listed in Table I, respectively. It is easy to conduct the experiment due to low melting point of the wood's metal. In order to clarify the dominant factors determining jet breakup and size distribution of the debris, the experiment that the molten wood's metal was injected into the subcooled condition was conducted. The

  14. Research on the fundamental process of thermal-hydraulic behaviors in severe accident. Breakup and cooling of molten material jets. JAERI's nuclear research promotion program, H10-027-2. Contract research

    International Nuclear Information System (INIS)

    Sugiyama, Ken-ichiro; Iguchi, Kentarou

    2002-03-01

    Core melt accidents could lead to the pouring of molten core materials into a body of water accumulating in the reactor lower head in the form of jets with a few centimeters up to a few tens of centimeters. If molten core jets penetrate the body of water without breakup. A poor coolability of the molten core bed would occur, which means the difficulty of maintaining the molten core bed in the reactor vessel. Hence, the breakup mechanism of molten core jets had to be well understood for the evaluation of the coolability of molten core bed. The objective of the present experimental study is to confirm that, even in molten material jets, the breakup of jet originating in the coolant entrained within a molten material jet due to 'the organized motion' between the coolant and the jet, which has been recognized in the field of fluid mechanics, is caused. The first series of experiment was conducted to observe this type of breakup by using molten tin jets up to 25 mm in diameter. Molten tin jet was expected to easily cause this kind of breakup of jet because of a low kinematic viscosity, which means a easy transformation of jet due to the organized motion for the coolant to entrain. The second series of experiment was conducted by using molten copper jet of 25 mm in diameter, of which kinematic viscosity is about same as that of molten UO 2 . The breakup of jet due to the entrainment of the coolant was observed up to high ambient Weber numbers, which cover the atomization regime. The mechanism of the breakup observed in the present study is able to reasonably explain the apparent difference between the breakup lengths of 150 kg-scale corium jets and the breakup lengths of about 8 kg-scale lead-bismuth alloy jets. The breakup by the mechanism reported here also assures a high coolability of molten jets because of an efficient entrainment of coolant within the jet. (author)

  15. Research on the fundamental process of thermal-hydraulic behaviors in severe accident. Breakup and cooling of molten material jets. JAERI's nuclear research promotion program, H10-027-2. Contract research

    Energy Technology Data Exchange (ETDEWEB)

    Sugiyama, Ken-ichiro; Iguchi, Kentarou [Hokkaido Univ., Graduate School of Engineering, Sapporo, Hokkaido (Japan)

    2002-03-01

    Core melt accidents could lead to the pouring of molten core materials into a body of water accumulating in the reactor lower head in the form of jets with a few centimeters up to a few tens of centimeters. If molten core jets penetrate the body of water without breakup. A poor coolability of the molten core bed would occur, which means the difficulty of maintaining the molten core bed in the reactor vessel. Hence, the breakup mechanism of molten core jets had to be well understood for the evaluation of the coolability of molten core bed. The objective of the present experimental study is to confirm that, even in molten material jets, the breakup of jet originating in the coolant entrained within a molten material jet due to 'the organized motion' between the coolant and the jet, which has been recognized in the field of fluid mechanics, is caused. The first series of experiment was conducted to observe this type of breakup by using molten tin jets up to 25 mm in diameter. Molten tin jet was expected to easily cause this kind of breakup of jet because of a low kinematic viscosity, which means a easy transformation of jet due to the organized motion for the coolant to entrain. The second series of experiment was conducted by using molten copper jet of 25 mm in diameter, of which kinematic viscosity is about same as that of molten UO{sub 2}. The breakup of jet due to the entrainment of the coolant was observed up to high ambient Weber numbers, which cover the atomization regime. The mechanism of the breakup observed in the present study is able to reasonably explain the apparent difference between the breakup lengths of 150 kg-scale corium jets and the breakup lengths of about 8 kg-scale lead-bismuth alloy jets. The breakup by the mechanism reported here also assures a high coolability of molten jets because of an efficient entrainment of coolant within the jet. (author)

  16. Assessment of In-vessel corium retention for VVER-440/V213

    International Nuclear Information System (INIS)

    Matejovic, P.; Barnak, M.; Bachraty, M.; Berky, R.

    2011-01-01

    In-vessel corium retention (IVR) via external reactor vessel cooling (ERVC) has been recognised as a feasible and promising severe accident management strategy for VVER-440/V213 reactors. In general, the avoiding of boiling crisis on outer (cooled) RPV (reactor pressure vessel) surface is sufficient condition for preserving the RPV integrity. The crucial point of the proposed IVR concept for VVER-440/V213 is the narrow gap between elliptical lower head and thermal and biological shield. In the cold conditions the width of this gap is only about 2 cm and would be even lower in hot IVR conditions, when the reactor wall is subjected to large thermal gradients due to temperature difference between the hot inner surface (loaded by corium) and cold outer surface (which is cooled by water in flooded cavity). Sufficient gap should remain free for coolant flow for the success of the proposed IVR concept. Thus, realistic estimation of thermal load and corresponding deformations of reactor wall and their impact on gap width are of primarily importance. Two different approaches were used for the estimation of the thermal load: a conservative approach and a transient approach, both were computed with the ASTEC code. The structural analysis of RPV subjected to IVR load was performed using the finite element method (FEM) code ANSYS release 10.0. From the results obtained it follows, that even when the RPV is subjected to limiting loading conditions during severe accident, there should be sufficient gap width (∼ 1 cm) between RPV wall and thermal/biological shield for the coolant flow in natural circulation regime alongside the outer surface of the RPV wall

  17. Behavior of a corium jet in high pressure melt ejection from a reactor pressure vessel

    International Nuclear Information System (INIS)

    Frid, W.

    1988-04-01

    Discharge of the molten core debris from a pressurized reactor vessel has been recognized as an important accident scenario for pressurized water reactors. Recent high-pressure melt streaming experiments conducted at Sandia National Laboratories, designed to study cavity and containment events related to melt ejection, have resulted in two important observations: (1) Expansion and breakup of the ejected molten jet. (2) Significant aerosol generation during the ejection process. The expansion and breakup of the jet in the experiments are attributed to rapid evolution of the pressurizing gas (nitrogen or hydrogen) dissolved in the melt. It has been concluded that aerosol particles may be formed by condensation of melt vapor and mechanical breakup of the melt and generation. It was also shown that the above stated phenomena are likely to occur in reactor accidents. This report provides results from analytical and experimental investigations on the behavior of a gas supersaturated molten jet expelled from a pressurized vessel. Aero-hydrodynamic stability of liquid jets in gas, stream degassing of molten metals, and gas bubble nucleation in molten metals are relevant problems that are addressed in this work

  18. Fluid-mechanic/thermal interaction of a molten material and a decomposing solid

    International Nuclear Information System (INIS)

    Larson, D.W.; Lee, D.O.

    1976-12-01

    Bench-scale experiments of a molten material in contact with a decomposing solid were conducted to gain insight into the expected interaction of a hot, molten reactor core with a concrete base. The results indicate that either of two regimes can occur: violent agitation and splattering of the melt or a very quiescent settling of the melt when placed in contact with the solid. The two regimes appear to be governed by the interface temperature condition. A conduction heat transfer model predicts the critical interface temperature with reasonable accuracy. In addition, a film thermal resistance model correlates well with the data in predicting the time for a solid skin to form on the molten material

  19. Concrete domains

    OpenAIRE

    Kahn, G.; Plotkin, G.D.

    1993-01-01

    This paper introduces the theory of a particular kind of computation domains called concrete domains. The purpose of this theory is to find a satisfactory framework for the notions of coroutine computation and sequentiality of evaluation.

  20. Application of the core-concrete interaction code Wechsl to reactor case

    International Nuclear Information System (INIS)

    Cenerino, G.

    1986-09-01

    The WECHSL code, developed at Kernforschungszentrum Karlsruhe, West-Germany, is used for core melt accidents in nuclear power plants. The first calculations, considering silicate and limestone/common sand concretes of different compositions, analyze the influence of the initial mass of Zirconium in the corium and, in one case, the effect of sump water ingression on the top of the melt. Moreover, for a limestone concrete, a sensitivity study is made on the melting temperature of the concrete influencing the decomposition enthalpy. The main conclusion of that paper is that, in any case, the temperature of the melt drops rapidly from the initial temperature to a temperature level close to the solidification temperature of the metal phase in a relatively short period of time (approximately 15 minutes) and then a balance between the removed heat from the melt and heating sources inside the melt is established

  1. Photocatalyticpaving concrete

    OpenAIRE

    Lyapidevskaya Ol'ga Borisovna; Fraynt Mikhail Aleksandrovich

    2014-01-01

    Today bituminous concrete is a conventional paving material. Among its advantages one can name dustlessness and noiselessness, fine wear (up to 1 mm a year) and fine maintainability. As the main disadvantages of this material one can name high slipperiness under humidification, low durability and weather resistance. Besides that, during placement of the bituminous concrete a lot of different air pollutants are emitted, which are harmful for environment and human’s health (they are listed in t...

  2. Photocatalyticpaving concrete

    Directory of Open Access Journals (Sweden)

    Lyapidevskaya Ol'ga Borisovna

    2014-02-01

    Full Text Available Today bituminous concrete is a conventional paving material. Among its advantages one can name dustlessness and noiselessness, fine wear (up to 1 mm a year and fine maintainability. As the main disadvantages of this material one can name high slipperiness under humidification, low durability and weather resistance. Besides that, during placement of the bituminous concrete a lot of different air pollutants are emitted, which are harmful for environment and human’s health (they are listed in the paper according to the US Environmental Protection Agency materials. As an alternative, one can use cement-concrete pavement, which is in many ways more efficient than the bituminous concrete. It is proposed to enhance environmental performance of the cement-concrete pavement via usage of photocatalysis. The mechanism of different photocatalytic reactions is described in the paper, namely heterogeneous and homogeneous photocatalysis, photo-induces, photoactivated catalysis and catalytical photoreactions. It is pro-posed to use heterogeneous photocatalysis with titanium dioxide as a photocatalyst. The mechanism of photo oxidation of air contaminants, with the usage of titanium dioxide is2described. The paper sets problems, connected with the sensibilization of TiOto thevisible light (it is proposed to use titanium dioxide, doped with the atoms of certain elements to increase its sensibility to the visible light and with the development of a new photocatalytic paving concrete, which will meet the requirements, specified for paving in the climatic and traffic conditions of the Russian Federation.

  3. Analysis methodology for RBMK-1500 core safety and investigations on corium coolability during a LWR severe accident

    International Nuclear Information System (INIS)

    Jasiulevicius, Audrius

    2003-01-01

    CORETRAN provides an adequate response to the changes in the reactor parameters. Chapters 5 and 6 describe the experiments and the analysis performed on the coolability of particulate debris bed and melt pool during a postulated severe accident in the LWR. In the Chapter 5, the coolability potential, offered by the presence of a large number of the Control Rod Guide Tubes (CRGTs) in the BWR lower head is presented. The experimental investigations for the enhancement of coolability possible with CRGTs were performed on two experimental facilities: POMECO (POrous MEdium COolability) and COMECO (COrium MElt COolability). It was found that the presence of the CRGTs in the lower head of a BWR offers a substantial potential for heat removal during a postulated severe accident. Additional 10-20 kW of heat were removed from the POMECO and COMECO test sections through the CRGT. This corresponds to the average heat flux on the CRGT wall equal to 100-300 kW/m 2 . In the Chapter 6 the ex-vessel particulate debris bed coolability is investigated, considering the non-condensable gases released from the concrete ablation process. The influence of the flow of the non-condensable gases on the process of quenching a hot porous debris bed was considered. The POMECO test facility was modified, adding the air supply at the bottom of the test section, to simulate the noncondensable gas release. The process was investigated for both high and low porosity debris beds. It was found that for the low porosity bed composition the countercurrent flooding limit could be exceeded, which would degrade the quenching process for such bed compositions

  4. Fission Product Release from Molten Pool: ceramic melt tests

    Energy Technology Data Exchange (ETDEWEB)

    Petrov, Yu.B.; Lopukh, D.B.; Petchenkov, A.Yu. [AO ' NP Sintez' , St. Petersburg (RU)] [and others

    1999-07-01

    Experimental results are presented on the volatilisation of UO{sub 2{+-}}{sub x}, SrO, BaO, CeO{sub 2} from corium melts. Corium melts were generated by high frequency induction melting in a cold crucible. The surface temperature of the melts was in the range from 1753 to 3023 K. Some results of the tests are discussed and a comparison with published data is made. (author)

  5. Self-Placing Concrete

    OpenAIRE

    ECT Team, Purdue

    2007-01-01

    Certain concrete pours have areas where the congestion of reinforcing bars make placement of concrete almost impossible. Using conventional placing and vibration techniques, the resulting concrete can have considerable honeycombing due to the development of voids. Self-placing concrete is a possible solution to the problem. Also known as self-compactable concrete, self-consolidating concrete, flowable concrete, and non-vibration concrete. These concretes eliminate the need for vibration in a ...

  6. Accelerator molten-salt breeder reactor

    International Nuclear Information System (INIS)

    Furukawa, Kazuo; Kuroi, Hideo; Kato, Yoshio; Oomichi, Toshihiko.

    1979-01-01

    Purpose: To obtain fission products and to transmute transuranium elements and other radioactive wastes by the use of Accelerator Molten-Salt Breeder Reactor. Constitution: Beams from an accelerator pipe at one end of a target vessel is injected through a window into target molten salts filled inside of the target vessel. The target molten salts are subjected to pump recycling or spontaneous convection while forcively cooled by blanket molten salts in an outer vessel. Then, energy is recovered from the blanket molten salts or the target molten salts at high temperatures through electric power generation or the like. Those salts containing such as thorium 232 and uranium 238 are used as the blanket molten salts so that fission products may be produced by neutrons generated in the target molten salts. PbCl 2 -PbF 2 and LiF-BeF 2 -ThF 4 can be used as the target molten salts and as the blanket molten salts respectively. (Seki, T.)

  7. Thermal interactions of a molten core debris pool with surrounding structural materials

    International Nuclear Information System (INIS)

    Baker, L. Jr.; Cheung, F.B.; Farhadieh, R.; Stein, R.P.; Gabor, J.D.; Bingle, J.D.

    1979-01-01

    Analytical and experimental results on individual aspects of the overall problem of the interaction of a large mass of LMFBR core debris with concrete or other materials are reviewed. Results of recent heat transfer experiments with molten UO 2 have indicated the importance of internal thermal radiation and methods to take account of this are developed. Effects of gas release and density difference are considered. The GROWS-2 Code is used to illustrate the effects of various assumptions

  8. Partially molten magma ocean model

    International Nuclear Information System (INIS)

    Shirley, D.N.

    1983-01-01

    The properties of the lunar crust and upper mantle can be explained if the outer 300-400 km of the moon was initially only partially molten rather than fully molten. The top of the partially molten region contained about 20% melt and decreased to 0% at 300-400 km depth. Nuclei of anorthositic crust formed over localized bodies of magma segregated from the partial melt, then grew peripherally until they coverd the moon. Throughout most of its growth period the anorthosite crust floated on a layer of magma a few km thick. The thickness of this layer is regulated by the opposing forces of loss of material by fractional crystallization and addition of magma from the partial melt below. Concentrations of Sr, Eu, and Sm in pristine ferroan anorthosites are found to be consistent with this model, as are trends for the ferroan anorthosites and Mg-rich suites on a diagram of An in plagioclase vs. mg in mafics. Clustering of Eu, Sr, and mg values found among pristine ferroan anorthosites are predicted by this model

  9. Modelling of multicomponent diffusion in a two-phase oxide-metal corium pool by a diffuse interface method

    International Nuclear Information System (INIS)

    Cardon, Clement

    2016-01-01

    This Ph.D. topic is focused on the modelling of stratification kinetics for an oxide-metal corium pool (U-O-Zr-steel system) in terms of multicomponent and multiphase diffusion. This work is part of a larger research effort for the development of a detailed corium pool modelling based on a CFD approach for thermal hydraulics. The overall goal is to improve the understanding of the involved phenomena and obtain closure laws for integral macroscopic models. The phase-field method coupled with an energy functional using the CALPHAD method appears to be relevant for this purpose. In a first part, we have developed a diffuse interface model in order to describe the diffusion process in the U-O system. This model has been coupled with a CALPHAD thermodynamic database and its parameterization has been developed with, in particular, an up-scaling procedure related to the interface thickness. Then, within the framework of a modelling for the U-O-Zr ternary system, we have proposed a generalization of the diffuse interface model through an assumption of local equilibrium for redox mechanisms. A particular attention was paid to the model analysis by 1D numerical simulations with a special focus on the steady state composition profiles. Finally we have applied this model to the U-O-Zr-Fe system. For that purpose, we have considered a configuration close to small-scale experimental tests of oxide-metal corium pool stratification. (author) [fr

  10. Partial structures in molten AgBr

    Energy Technology Data Exchange (ETDEWEB)

    Ueno, Hiroki [Department of Condensed Matter Chemistry and Physics, Faculty of Sciences, Kyushu University, 4-2-1 Ropponmatsu, Chuo-ku, Fukuoka 810-8560 (Japan)], E-mail: ueno@gemini.rc.kyushu-u.ac.jp; Tahara, Shuta [Faculty of Pharmacy, Niigata University of Pharmacy and Applied Life Science, Higashijima, Akiha-ku, Niigata 956-8603 (Japan); Kawakita, Yukinobu [Department of Physics, Faculty of Sciences, Kyushu University, 4-2-1 Ropponmatsu, Chuo-ku, Fukuoka 810-8560 (Japan); Kohara, Shinji [Research and Utilization Division, Japan Synchrotron Radiation Research Institute (JASRI, SPring-8), 1-1-1 Koto, Sayo-cho, Sayo-gun, Hyogo 679-5198 (Japan); Takeda, Shin' ichi [Department of Physics, Faculty of Sciences, Kyushu University, 4-2-1 Ropponmatsu, Chuo-ku, Fukuoka 810-8560 (Japan)

    2009-02-21

    The structure of molten AgBr has been studied by means of neutron and X-ray diffractions with the aid of structural modeling. It is confirmed that the Ag-Ag correlation has a small but well-defined first peak in the partial pair distribution function whose tail penetrates into the Ag-Br nearest neighbor distribution. This feature on the Ag-Ag correlation is intermediate between that of molten AgCl (non-superionic melt) and that of molten AgI (superionic melt). The analysis of Br-Ag-Br bond angle reveals that molten AgBr preserves a rocksalt type local ordering in the solid phase, suggesting that molten AgBr is clarified as non-superionic melt like molten AgCl.

  11. Thermal performances of molten salt steam generator

    International Nuclear Information System (INIS)

    Yuan, Yibo; He, Canming; Lu, Jianfeng; Ding, Jing

    2016-01-01

    Highlights: • Thermal performances of molten salt steam generator were experimentally studied. • Overall heat transfer coefficient reached maximum with optimal molten salt flow rate. • Energy efficiency first rose and then decreased with salt flow rate and temperature. • Optimal molten salt flow rate and temperature existed for good thermal performance. • High inlet water temperature benefited steam generating rate and energy efficiency. - Abstract: Molten salt steam generator is the key technology for thermal energy conversion from high temperature molten salt to steam, and it is used in solar thermal power station and molten salt reactor. A shell and tube type molten salt steam generator was set up, and its thermal performance and heat transfer mechanism were studied. As a coupling heat transfer process, molten salt steam generation is mainly affected by molten salt convective heat transfer and boiling heat transfer, while its energy efficiency is also affected by the heat loss. As molten salt temperature increased, the energy efficiency first rose with the increase of heat flow absorbed by water/steam, and then slightly decreased for large heat loss as the absorbed heat flow still rising. At very high molten salt temperature, the absorbed heat flow decreased as boiling heat transfer coefficient dropping, and then the energy efficiency quickly dropped. As the inlet water temperature increased, the boiling region in the steam generator remarkably expanded, and then the steam generation rate and energy efficiency both rose with the overall heat transfer coefficient increasing. As the molten salt flow rate increased, the wall temperature rose and the boiling heat transfer coefficient first increased and then decreased according to the boiling curve, so the overall heat transfer coefficient first increased and then decreased, and then the steam generation rate and energy efficiency of steam generator both had maxima.

  12. Concrete durability

    OpenAIRE

    Gaspar Tébar, Demetrio

    1991-01-01

    The evidence that the concrete is not a material for ever was noticed from the beginning of its industrial use. In the present work, the author describes the studies carried out during the last century and the early ages of the present one, mainly devoted to the study of the durability in sea water. At the present days, and in spite of the numerous papers published from then, the study of the concrete durability continues focusing the research priorities and economical resources of rese...

  13. The behaviour of concrete under attack of liquid steel

    International Nuclear Information System (INIS)

    Schneider, U.; Ehm, C.; Diederichs, U.

    1983-01-01

    Investigations were carried out to study the interaction between concrete and liquid steel. Different types and different forms of concrete were investigated at temperatures of liquid steel between 1.600 and 2.600 0 C. The liquid steel of 1.600 0 C was produced in an induction furnace, the liquid steel of 2.600 0 C was produced in concrete crucibles by metallothermic reactions. The reactions occuring during the interaction of concrete and liquid steel may be summarized as follows: - Concrete reacts violently upon sudden loading with high temperatures and high heat fluxes. Great quantities of steam and gases are generated. The mechanical strength decreases rapidly with increasing temperature. -At about 1.200 0 C concrete begins to melt. First the cement matrix melts, than the aggregates melt. The melts of different concretes consist of different constituents and their reactions with liquid steel vary. The temperature of the liquid steel significantly influences the intensity of the reactions and the erosion rates. - The erosion rates amounted to 30 mm/min, when liquid steel was produced in concrete crucibles. When cylindrical concrete specimens were immersed in molten steel the rate of melting off amounted up to 66 mm/min. - The dissipation of heat during the interaction brings about that the reactions between concrete and liquid steel vanish gradually, if no additional energy is fed into the system. (orig.)

  14. Historic Concrete : From Concrete Repair to Concrete Conservation

    NARCIS (Netherlands)

    Heinemann, H.A.

    2013-01-01

    Concrete like materials were already applied during the Roman Empire. After the decline of the Roman Empire, a wide scale application of concrete only reappeared in the 19th century. Here lies also the origin of modern (reinforced) concrete. Since then, both concrete application and composition have

  15. Design feasibility study on corium stabilization in bottom end-fitting for AHWR under accident condition

    International Nuclear Information System (INIS)

    Gokhale, Onkar; Mukhopadhyay, D.; Chatterjee, B.; Singh, R.K.

    2015-01-01

    Advanced Heavy Water Reactor (AHWR) is being designed in a robust way to cater both Design and Beyond Design Basis Accidents to meet all the safety functions. All the functions are met by passive means with special emphasis on 'residual heat removal' which is catered by passive natural circulation mode. In context to Design Basis Accidents, several features are designed to handle worst kind of scenario like Station Black Out. For Design Extension Conditions (DEC), the means of passive natural circulation is adopted as a design means to meet the DEC-A conditions like cooling of moderator by natural circulation means with GDWP inventory. Under the DEC-B condition where large scale of fuel melting is envisaged, a core catcher is designed with active/passive cooling modes to take care of the residual heat of the core. All the mentioned features utilizes the natural mode of heat transfer to meet one of the safety function i.e. 'residual heat removal'. The analysis shows that the tube sheet as well as lattice tube temperatures remain low and are able to take out the heat from corium through sub-cooled nucleate boiling. The ES cooling is sufficient to maintain the cooling water in subcooled condition. The integrity of tube sheet and lattice tube is maintained

  16. Coupled thermo-mechanical analysis of corium-loaded lower head of pressure vessel

    International Nuclear Information System (INIS)

    Mishra, J.; Balasubramaniyan, V.

    2016-01-01

    A severe accident in the pressurised water reactor may lead to the relocation of core materials to the lower head of Reactor Pressure Vessel (RPV). The core debris at the bottom of RPV forms a melt pool of corium due to decay heat. The understanding of behaviour of pressure vessel, characterised by failure mode and time to failure, in this scenario is one of the important steps in predicting the accident progression. The most predominant failure mode is multi-axial creep deformation of the vessel with a non-uniform temperature field. Towards this, a numerical analysis methodology is developed for the prediction of pressure vessel deformation during the severe accidents. The methodology involves 2-D finite element modelling under multi-physics environment, which account the creep phenomena using Norton-Bailey creep law with a typical damage model of RPV material. The validation of the methodology is carried out using the results from OLHF experiment carried out in Sandia National Laboratory (SNL), USA, within the framework of an OECD. (author)

  17. Niobium electrodeposition from molten fluorides

    International Nuclear Information System (INIS)

    Sartori, A.F.

    1987-01-01

    Niobium electrodeposition from molten alkali fluorides has been studied aiming the application of this technic to the processes of electrorefining and galvanotechnic of this metal. The effects of current density, temperature, niobium concentration in the bath, electrolysis time, substrate nature, ratio between anodic and cathodic areas, electrodes separation and the purity of anodes were investigated in relation to the cathodic current efficiency, electrorefining, electroplating and properties of the deposit and the electrolytic solution. The work also gives the results of the conctruction and operation of a pilot plant for refractory metals electrodeposition and shows the electrorefining and electroplating compared to those obtained at the laboratory scale. (author) [pt

  18. Compatibility of molten salt and structural materials

    International Nuclear Information System (INIS)

    Kawakami, Masahiro

    1994-01-01

    As the important factors for considering the compatibility of fuel salt and coolant salt with structural materials in molten salt reactors, there are the moisture remaining in molten salt and the fluorine potential in molten salt. In this study, as for the metals which are the main components of corrosion resistant alloys, the corrosion by the moisture remaining in molten salt and the dependence of the corrosion on fluorine potential were examined. As the molten salts, an eutectic molten salt LiF-BeF 2 was mainly used, and LiF-KF was used in combination. As the metallic materials, Cr, Ni and Cu which are the main components of corrosion resistant and heat resistant alloys, Hastelloy and Monel, were used. In the experiment, the metal pieces were immersed in the molten salt, and by sampling the molten salt, the change with time lapse of the concentration of the dissolved metals was examined. Besides, the electrochemical measurement was carried out for Cr, of which the corrosion was remarkable, and the change with time lapse of the dissolved ions was examined. The experimental setup, the experimental method, and the results of the immersion test and the electrochemical test are reported. The experiment on the corrosion of metals depending on fluorine potential is also reported. (K.I.)

  19. Compatibility of molten salt and structural materials

    Energy Technology Data Exchange (ETDEWEB)

    Kawakami, Masahiro [Toyohashi Univ. of Technology, Aichi (Japan)

    1994-12-01

    As the important factors for considering the compatibility of fuel salt and coolant salt with structural materials in molten salt reactors, there are the moisture remaining in molten salt and the fluorine potential in molten salt. In this study, as for the metals which are the main components of corrosion resistant alloys, the corrosion by the moisture remaining in molten salt and the dependence of the corrosion on fluorine potential were examined. As the molten salts, an eutectic molten salt LiF-BeF{sub 2} was mainly used, and LiF-KF was used in combination. As the metallic materials, Cr, Ni and Cu which are the main components of corrosion resistant and heat resistant alloys, Hastelloy and Monel, were used. In the experiment, the metal pieces were immersed in the molten salt, and by sampling the molten salt, the change with time lapse of the concentration of the dissolved metals was examined. Besides, the electrochemical measurement was carried out for Cr, of which the corrosion was remarkable, and the change with time lapse of the dissolved ions was examined. The experimental setup, the experimental method, and the results of the immersion test and the electrochemical test are reported. The experiment on the corrosion of metals depending on fluorine potential is also reported. (K.I.).

  20. Fundamentals of molten-salt thermal technology

    International Nuclear Information System (INIS)

    1980-08-01

    This book has been published by the Society of Molten-Salt Thermal Technology to publish a part of the achievement of its members. This book is composed of seven chapters. The chapter 1 is Introduction. The chapter 2 explains the physical properties of molten salts, such as thermal behavior, surface tension, viscosity, electrical conductivity and others. The chapter 3 presents the compatibility with construction materials. Corrosion in molten salts, the electrochemical behavior of fluoride ions on carbon electrodes in fluoride melts, the behaviors of hastelloy N and metals in melts are items of this chapter. The equipments and instruments for molten salts are described in chapter 4. The heat transfer in molten salts is discussed in chapter 5. The chapter 6 explains the application of molten salt technology. The molten salt technology can be applied not only to thermal engineering and energy engineering but also to chemical and nuclear engineerings, and the technical fundamentals, current development status, technical problems and the perspective for the future are outlined. The chapter 7 is the summary of this book. The commercialization of molten salt power reactors is discussed at the end of this book. (Kato, T.)

  1. Metal Production by Molten Salt Electrolysis

    DEFF Research Database (Denmark)

    Grjotheim, K.; Kvande, H.; Qingfeng, Li

    Chemistry and electrochemistry of molten salts are reviewed. Technological aspects of electrolytic production of aluminium, magnesium, and other metals are comprehensively surveyed.......Chemistry and electrochemistry of molten salts are reviewed. Technological aspects of electrolytic production of aluminium, magnesium, and other metals are comprehensively surveyed....

  2. OECD/MCCI 2-D Core Concrete Interaction (CCI) tests : final report February 28, 2006.

    Energy Technology Data Exchange (ETDEWEB)

    Farmer, M. T.; Lomperski, S.; Kilsdonk, D. J.; Aeschlimann, R. W.; Basu, S. (Nuclear Engineering Division); (NRC)

    2011-05-23

    Although extensive research has been conducted over the last several years in the areas of Core-Concrete Interaction (CCI) and debris coolability, two important issues warrant further investigation. The first issue concerns the effectiveness of water in terminating a CCI by flooding the interacting masses from above, thereby quenching the molten core debris and rendering it permanently coolable. This safety issue was investigated in the EPRI-sponsored Melt Attack and Coolability Experiments (MACE) program. The approach was to conduct large scale, integral-type reactor materials experiments with core melt masses ranging up to two metric tons. These experiments provided unique, and for the most part repeatable, indications of heat transfer mechanism(s) that could provide long term debris cooling. However, the results did not demonstrate definitively that a melt would always be completely quenched. This was due to the fact that the crust anchored to the test section sidewalls in every test, which led to melt/crust separation, even at the largest test section lateral span of 1.20 m. This decoupling is not expected for a typical reactor cavity, which has a span of 5-6 m. Even though the crust may mechanically bond to the reactor cavity walls, the weight of the coolant and the crust itself is expected to periodically fracture the crust and restore contact with the melt. Although crust fracturing does not ensure that coolability will be achieved, it nonetheless provides a pathway for water to recontact the underlying melt, thereby allowing other debris cooling mechanisms to proceed. A related task of the current program, which is not addressed in this particular report, is to measure crust strength to check the hypothesis that a corium crust would not be strong enough to sustain melt/crust separation in a plant accident. The second important issue concerns long-term, two-dimensional concrete ablation by a prototypic core oxide melt. As discussed by Foit the existing

  3. HECLA experiments on interaction between metallic melt and hematite-containing concrete

    Energy Technology Data Exchange (ETDEWEB)

    Sevon, Tuomo, E-mail: tuomo.sevon@vtt.f [VTT Technical Research Centre of Finland, P.O. Box 1000, FI-02044 VTT, Espoo (Finland); Kinnunen, Tuomo; Virta, Jouko; Holmstroem, Stefan; Kekki, Tommi; Lindholm, Ilona [VTT Technical Research Centre of Finland, P.O. Box 1000, FI-02044 VTT, Espoo (Finland)

    2010-10-15

    In a hypothetical severe accident in a nuclear power plant, molten materials may come into contact with concrete, causing concrete ablation. In five HECLA experiments the interaction between metallic melt and concrete was investigated by pouring molten stainless steel at almost 1800 {sup o}C into cylindrical concrete crucibles. The tests were transient, i.e. no decay heat simulation was used. The main objective was to test the behavior of the FeSi concrete, containing hematite (Fe{sub 2}O{sub 3}) and siliceous aggregates. This special concrete type is used as a sacrificial layer in the Olkiluoto 3 EPR reactor pit, and very scarce experimental data is available about its behavior at high temperatures. It is concluded that no clear differences between the ablation of FeSi concrete and ordinary siliceous concrete were observed. The ablation depths were small, 25 mm at maximum. No dramatic effects, such as cracking of large pieces of concrete due to the thermal shock, took place. An important side result of the test series was gaining knowledge of the properties of the special concrete type. Chemical analyses were conducted and mechanical properties were measured.

  4. Molten salt processes in special materials preparation

    International Nuclear Information System (INIS)

    Krishnamurthy, N.; Suri, A.K.

    2013-01-01

    As a class, molten salts are the largest collection of non aqueous inorganic solvents. On account of their stability at high temperature and compatibility to a number of process requirements, molten salts are considered indispensable to realize many of the numerous benefits of high temperature technology. They play a crucial role and form the basis for numerous elegant processes for the preparation of metals and materials. Molten salt are considered versatile heat transfer media and have led to the evolution of many interesting reactor concepts in fission and possibly in fusion. They also have been the basis of thinking for few novel processes for power generation. While focusing principally on the actual utilization of molten salts for a variety of materials preparation efforts in BARC, this lecture also covers a few of the other areas of technological applications together with the scientific basis for considering the molten salts in such situations. (author)

  5. Improvement to molten salt reactors

    International Nuclear Information System (INIS)

    Bienvenu, Claude.

    1975-01-01

    The invention proposes a molten salt nuclear reactor whose core includes a mass of at least one fissile element salt to which can be added other salts to lower the melting temperature of the mass. This mass also contains a substance with a low neutron capture section that does not give rise to a chemical reaction or to an azeotropic mixture with these salts and having an atmospheric boiling point under that of the mass in operation. Means are provided for collecting this substance in the vapour state and returning it as a liquid to the mass. The kind of substance chosen will depend on that of the molten salts (fissile element salts and, where required, salts to lower the melting temperature). In actual practice, the substance chosen will have an atmospheric pressure boiling point of between 600 and 1300 0 C and a melting point sufficiently below 600 0 C to prevent solidification and clogging in the return line of the substance from the exchanger. Among the materials which can be considered for use, mention is made of magnesium, rubidium, cesium and potassium but metal cesium is not employed in the case of many fissile salts, such as fluorides, which it would reduced to the planned working temperatures [fr

  6. High Performance Concrete

    Directory of Open Access Journals (Sweden)

    Traian Oneţ

    2009-01-01

    Full Text Available The paper presents the last studies and researches accomplished in Cluj-Napoca related to high performance concrete, high strength concrete and self compacting concrete. The purpose of this paper is to raid upon the advantages and inconveniences when a particular concrete type is used. Two concrete recipes are presented, namely for the concrete used in rigid pavement for roads and another one for self-compacting concrete.

  7. Concrete spirituality

    OpenAIRE

    Kritzinger, Johannes N.J.

    2014-01-01

    This article reflects on a number of liturgical innovations in the worship of Melodi ya Tshwane, an inner-city congregation of the Uniting Reformed Church in Southern Africa (URCSA). The focus of the innovations was to implement the understanding of justice in Article 4 of the Confession of Belhar, a confessional standard of the URCSA. The basic contention of the article is that well designed liturgies that facilitate experiences of beauty can nurture a concrete spirituality to mobilise urba...

  8. Validation of ASTEC v2.0 corium jet fragmentation model using FARO experiments

    International Nuclear Information System (INIS)

    Hermsmeyer, S.; Pla, P.; Sangiorgi, M.

    2015-01-01

    Highlights: • Model validation base extended to six FARO experiments. • Focus on the calculation of the fragmented particle diameter. • Capability and limits of the ASTEC fragmentation model. • Sensitivity analysis of model outputs. - Abstract: ASTEC is an integral code for the prediction of Severe Accidents in Nuclear Power Plants. As such, it needs to cover all physical processes that could occur during accident progression, yet keeping its models simple enough for the ensemble to stay manageable and produce results within an acceptable time. The present paper is concerned with the validation of the Corium jet fragmentation model of ASTEC v2.0 rev3 by means of a selection of six experiments carried out within the FARO facility. The different conditions applied within these six experiments help to analyse the model behaviour in different situations and to expose model limits. In addition to comparing model outputs with experimental measurements, sensitivity analyses are applied to investigate the model. Results of the paper are (i) validation runs, accompanied by an identification of situations where the implemented fragmentation model does not match the experiments well, and discussion of results; (ii) its special attention to the models calculating the diameter of fragmented particles, the identification of a fault in one model implemented, and the discussion of simplification and ad hoc modification to improve the model fit; and, (iii) an investigation of the sensitivity of predictions towards inputs and parameters. In this way, the paper offers a thorough investigation of the merit and limitation of the fragmentation model used in ASTEC

  9. Study of evaluation methods for in-vessel corium retention through external vessel cooling and safety of reactor cavity

    Energy Technology Data Exchange (ETDEWEB)

    Huh, Hoon; Chang, Soon Heung; Kim, Soo Hyung; Kim, Kee Poong; Lee, Hyoung Wook; Jang, Kwang Keol; Jeong, Yong Hoon; Kim, Sang Jin; Lee, Seong Jin [Korea Advanced Institute of Science and Technology, Taejon (Korea, Republic of); Park, Jae Hong [Korea Institute of Nuclear Safety, Taejon (Korea, Republic of)

    2001-03-15

    In this work, assessment system for methodology for reactor pressure vessel integrity is developed. Assessment system is make up of severe accident assessment code which can calculate the conditions of plant and structural analysis code which can assess the integrity of reactor vessel using given plant conditions. An assessment of cavity flooding using containment spray system has been done. As a result, by the containment spray, cavity can be flooded successfully and CCI can be reduced. The technical backgrounds for external vessel cooling and corium cooling on the cavity are summarized and provided in this report.

  10. Development of an ex-vessel corium debris bed with two-phase natural convection in a flooded cavity

    International Nuclear Information System (INIS)

    Kim, Eunho; Lee, Mooneon; Park, Hyun Sun; Moriyama, Kiyofumi; Park, Jin Ho

    2016-01-01

    Highlights: • For ex-vessel severe accidents in LWRs with wet-cavity strategy, development of debris bed with two-phase natural convection flow due to thermal characteristics of prototypic corium particles was investigated experimentally by using simulant particles and local air bubble control system. • Based on the experimental results of this study, an analytical model was established to describe the spreading of the debris bed in terms of two-phase flow and the debris injection parameters. • This model was then used to analyze the formation of debris beds at the reactor scale, and a sensitivity analysis was carried out based on key accident parameters. - Abstract: During severe accidents of light water reactors (LWRs), the coolability of relocated corium from the reactor vessel is a significant safety issue and a threat to the integrity of containment. With a flooded cavity, a porous debris bed is expected to develop on the bottom of the pool due to breakup and fragmentation of the melt jet. As part of the coolability assessment under accident conditions, the geometrical configuration of the debris bed is important. The Debris Bed Research Apparatus for Validation of the Bubble-Induced Natural Convection Effect Issue (DAVINCI) experimental apparatus facility was constructed to investigate the formation of debris beds under the influence of a two-phase flow induced by steam generation due to the decay heat of the debris bed. Using this system, five kilograms of stainless steel simulant debris were injected from the top of the water level, while air bubbles simulating the vapor flow were injected from the bottom of the particle catcher plate. The airflow rate was determined based on the quantity of settled debris, which will form a heat source due to the decay of corium. The radial distribution of the settled debris was examined using a ‘gap–tooth’ approach. Based on the experimental results of this study, an analytical model was established to

  11. Development of an ex-vessel corium debris bed with two-phase natural convection in a flooded cavity

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Eunho; Lee, Mooneon; Park, Hyun Sun, E-mail: hejsunny@postech.ac.kr; Moriyama, Kiyofumi; Park, Jin Ho

    2016-03-15

    Highlights: • For ex-vessel severe accidents in LWRs with wet-cavity strategy, development of debris bed with two-phase natural convection flow due to thermal characteristics of prototypic corium particles was investigated experimentally by using simulant particles and local air bubble control system. • Based on the experimental results of this study, an analytical model was established to describe the spreading of the debris bed in terms of two-phase flow and the debris injection parameters. • This model was then used to analyze the formation of debris beds at the reactor scale, and a sensitivity analysis was carried out based on key accident parameters. - Abstract: During severe accidents of light water reactors (LWRs), the coolability of relocated corium from the reactor vessel is a significant safety issue and a threat to the integrity of containment. With a flooded cavity, a porous debris bed is expected to develop on the bottom of the pool due to breakup and fragmentation of the melt jet. As part of the coolability assessment under accident conditions, the geometrical configuration of the debris bed is important. The Debris Bed Research Apparatus for Validation of the Bubble-Induced Natural Convection Effect Issue (DAVINCI) experimental apparatus facility was constructed to investigate the formation of debris beds under the influence of a two-phase flow induced by steam generation due to the decay heat of the debris bed. Using this system, five kilograms of stainless steel simulant debris were injected from the top of the water level, while air bubbles simulating the vapor flow were injected from the bottom of the particle catcher plate. The airflow rate was determined based on the quantity of settled debris, which will form a heat source due to the decay of corium. The radial distribution of the settled debris was examined using a ‘gap–tooth’ approach. Based on the experimental results of this study, an analytical model was established to

  12. A Heat Transfer Model for a Stratified Corium-Metal Pool in the Lower Plenum of a Nuclear Reactor

    International Nuclear Information System (INIS)

    Sohal, M.S.; Siefken, L.J.

    1999-01-01

    This preliminary design report describes a model for heat transfer in a corium-metal stratified pool. It was decided to make use of the existing COUPLE model. Currently available correlations for natural convection heat transfer in a pool with and without internal heat generation were obtained. The appropriate correlations will be incorporated in the existing COUPLE model. Heat conduction and solidification modeling will be done with existing algorithms in the COUPLE. Assessment of the new model will be done by simple energy conservation problems

  13. Study of evaluation methods for in-vessel corium retention through external vessel cooling and safety of reactor cavity

    International Nuclear Information System (INIS)

    Huh, Hoon; Chang, Soon Heung; Kim, Soo Hyung; Kim, Kee Poong; Lee, Hyoung Wook; Jang, Kwang Keol; Jeong, Yong Hoon; Kim, Sang Jin; Lee, Seong Jin; Park, Jae Hong

    2001-03-01

    In this work, assessment system for methodology for reactor pressure vessel integrity is developed. Assessment system is make up of severe accident assessment code which can calculate the conditions of plant and structural analysis code which can assess the integrity of reactor vessel using given plant conditions. An assessment of cavity flooding using containment spray system has been done. As a result, by the containment spray, cavity can be flooded successfully and CCI can be reduced. The technical backgrounds for external vessel cooling and corium cooling on the cavity are summarized and provided in this report

  14. Sampling device for radioactive molten salt

    International Nuclear Information System (INIS)

    Shindo, Masato

    1998-01-01

    The present invention provides a device for accurately sampling molten salts to which various kinds of metals in a molten salt storage tank are mixed for analyzing them during a spent fuel dry type reprocessing. Namely, the device comprises a sampling tube having an opened lower end to be inserted into the radioactive molten salts stored in a tank and keeps reduced pressure from the upper end, and a pressure reducing pipeline having one end connected to the sampling tube and other end connected to an evacuating pump. In this device, the top end of the sampling tube is inserted to a position for sampling the radioactive molten salts (molten salts). The pressure inside the evacuating pipeline connected to the upper portion of the sampling tube is reduced for a while. In this case, the inside of the pressure reducing pipeline is previously evacuated by the evacuating pump so as to keep a predetermined pressure. Since the pressure in the sampling tube is lowered, molten salts are inserted into the sampling tube, the sampling tube is withdrawn, and the molten salts flown in the sampling tube are analyzed. (I.S.)

  15. Solid particle effects on heat transfer in a multi-layered molten pool with gas injection

    International Nuclear Information System (INIS)

    Bilbao y Leon, Rosa Marina; Corradini, Michael L.

    2006-01-01

    In the very unlikely event of a severe reactor accident involving core melt and pressure vessel failure, it is important to identify the circumstances that would allow the molten core material to cool down and resolidify, bringing core debris to a stable coolable state. To achieve this, it has been proposed to flood the cavity with water from above forming a layered structure where upward heat loss from the molten pool to the water will cause the core material to quench and solidify. In this situation the molten pool would become a three-phase mixture: e.g., a solid and liquid slurry formed by the molten pool as it cools to a temperature below the temperature of liquidus, agitated by the gases formed in the concrete ablation process. The present work quantifies the partition of the heat losses upward and downward in this multi-layered configuration, considering the influence of the viscosity and the solid fraction in the pool, from test data obtained from intermediate scale experiments at the University of Wisconsin-Madison. These experimental results show heat transfer behavior for multi-layered pools for a range of viscosities and solid fractions. These results are compared to previous experimental studies and well known correlations and models

  16. Thermal conductivity of molten metals

    Energy Technology Data Exchange (ETDEWEB)

    Peralta-Martinez, Maria Vita

    2000-02-01

    A new instrument for the measurement of the thermal conductivity of molten metals has been designed, built and commissioned. The apparatus is based on the transient hot-wire technique and it is intended for operation over a wide range of temperatures, from ambient up to 1200 K, with an accuracy approaching 2%. In its present form the instrument operates up to 750 K. The construction of the apparatus involved four different stages, first, the design and construction of the sensor and second, the construction of an electronic system for the measurement and storage of data. The third stage was the design and instrumentation of the high temperature furnace for the melting and temperature control of the sample, and finally, an algorithm was developed for the extraction of the thermal conductivity from the raw measurement data. The sensor consists of a cylindrical platinum-wire symmetrically sandwiched between two rectangular plane sheets of alumina. The rectangular sensor is immersed in the molten metal of interest and a voltage step is applied to the ends of the platinum wire to induce heat dissipation and a consequent temperature rise which, is in part, determined by the thermal conductivity of the molten metal. The process is described by a set of partial differential equations and appropriate boundary conditions rather than an approximate analytical solution. An electronic bridge configuration was designed and constructed to perform the measurement of the resistance change of the platinum wire in the time range 20 {mu}s to 1 s. The resistance change is converted to temperature change by a suitable calibration. From these temperature measurements as a function of time the thermal conductivity of the molten metals has been deduced using the Finite Element Method for the solution of the working equations. This work has achieved its objective of improving the accuracy of the measurement of the thermal conductivity of molten metals from {+-}20% to {+-}2%. Measurements

  17. Inertia-confining thermonuclear molten salt reactors

    International Nuclear Information System (INIS)

    Furukawa, Kazuo; Yamanaka, Chiyoe; Nakai, Sadao; Imon, Shunji; Nakajima, Hidenori; Nakamura, Norio; Kato, Yoshio.

    1984-01-01

    Purpose: To increase the heat generating efficiency while improving the reactor safety and thereby maintaining the energy balance throughout the reactor. Constitution: In an inertia-confining type D-T thermonuclear reactor, the blanket is made of lithium-containing fluoride molten salts (LiF.BeF 2 , LiF.NaF.KF, LiF.KF, etc) which are cascaded downwardly in a large thickness (50 - 100 cm) along the inner wall of the thermonuclear reaction vessel, and neutrons generated by explosive compression are absorbed to lithium in the molten salts to produce tritium, Heat transportation is carried out by the molten salts. (Ikeda, J.)

  18. Influence of the oxidation of a molten pool on fission product release by the computer code RELOS

    International Nuclear Information System (INIS)

    Kleinhietpass, I.D.

    2006-01-01

    The objective of reactor safety research is to prevent the release of radionuclides into the environment of a nuclear power plant. Although Light Water Reactors are well configured by a multitude of safety systems and a severe accident seems very unlikely to happen, risk analyses are made implying a severe accident. In that the reactor core might melt in consequence of insuffient cooling, relocate and accumulate forming a molten pool and thus providing a potential contribution to the aerosol source term. For the investigation of the release of radionuclides from a molten pool the code RELOS is under development at the Chair of Energy Systems and Energy Economics of the Ruhr- Universitaet Bochum. RELOS calculates for a multi-component/multi-phase system that amount of a component which evaporates from a hot liquid phase into a cooler gas atmosphere. The release behaviour of a radionuclide is determined by its volatility. Chemical reactions of less volatile elements could produce components being more volatile. Particularly the formation of (higher) metallic oxides could influence the volatility in evidence. In RELOS chemical compositions are determined by thermochemical equilibrium analyses in terms of free enthalpy minimization. In order to investigate the impact of pool oxidation on the fission product release behaviour RELOS is calculating, mechanistic models were implemented calculating the amount of oxygen being available at the pool surface and its transfer into the liquid corium phase. For this a diffusion and a convection model were provided. The diffusion model is based on Fick's second law and was realised using Crank-Nicolson, an implicit differential method. The convection model considers a mass transfer coefficient and the difference of the concentrations at the phase boundary and the bulk of the liquid corium. Moreover, the convection model includes both the temperature induced convection resulting from a cooler pool surface and a heated bottom - as it

  19. Refractory concretes

    International Nuclear Information System (INIS)

    Holcombe, C.E. Jr.

    1979-01-01

    Novel concrete compositions comprise particles of aggregate material embedded in a cement matrix, said cement matrix produced by contacting an oxide selected from the group of Y 2 O 3 , La 2 O 3 , Nd 2 O 3 , Sm 2 O 3 , Eu 2 O 3 and Gd 2 O 3 with an aqueous solution of a salt selected from the group of NH 4 HO 3 , NH 4 Cl, YCl 3 and Mg(NO 3 ) 2 to form a fluid mixture; and allowing the fluid mixture to harden

  20. Concrete construction engineering handbook

    CERN Document Server

    Nawy, Edward G

    2008-01-01

    Provides coverage of concrete construction engineering and technology. This work features discussions focusing on: the advances in engineered concrete materials; reinforced concrete construction; specialized construction techniques; and, design recommendations for high performance.

  1. Structure and thermodynamics of molten salts

    International Nuclear Information System (INIS)

    Papatheodorou, G.N.

    1983-01-01

    This chapter investigates single-component molten salts and multicomponent salt mixtures. Molten salts provide an important testing ground for theories of liquids, solutions, and plasmas. Topics considered include molten salts as liquids (the pair potential, the radial distribution function, methods of characterization), single salts (structure, thermodynamic correlations), and salt mixtures (the thermodynamics of mixing; spectroscopy and structure). Neutron and X-ray scattering techniques are used to determine the structure of molten metal halide salts. The corresponding-states theory is used to obtain thermodynamic correlations on single salts. Structural information on salt mixtures is obtained by using vibrational (Raman) and electronic absorption spectroscopy. Charge-symmetrical systems and charge-unsymmetrical systems are used to examine the thermodynamics of salt mixtures

  2. Waste treatment using molten salt oxidation

    International Nuclear Information System (INIS)

    Navratil, J.D.; Stewart, A.E.

    1996-01-01

    MSO technology can be characterized as a submerged oxidation process; the basic concept is to introduce air and wastes into a bed of molten salt, oxidize the organic wastes in the molten salt, use the heat of oxidation to keep the salt molten and remove the salt for disposal or processing and recycling. The molten salt (usually sodium carbonate at 900-1000 C) provides four waste management functions: providing a heat transfer medium, catalyzing the oxidation reaction, preventing the formation of acid gases by forming stable salts, and efficiently capturing ash particles and radioactive materials by the combined effects of wetting, encapsulation and dissolution. The MSO process requires no wet scrubbing system for off-gas treatment. The process has been developed through bench-scale and pilot-scale testing, with successful destruction demonstration of a wide variety of hazardous and mixed (radioactive and hazardous wastes). (author). 24 refs, 2 tabs, 2 figs

  3. Molten salts processes and generic simulation

    International Nuclear Information System (INIS)

    Ogawa, Toru; Minato, Kazuo

    2001-01-01

    Development of dry separation process (pyrochemical process) using molten salts for the application of spent-nuclear fuel reprocessing requires a rather complete fundamental database as well as process simulation technique with wide applicability. The present report concerns recent progress and problems in this field taking behaviors of co-electrodeposition of UO 2 and PuO 2 in molten salts as an example, and using analytical simulation of local equilibrium combined with generic diffusion. (S. Ohno)

  4. Molten salts processes and generic simulation

    Energy Technology Data Exchange (ETDEWEB)

    Ogawa, Toru; Minato, Kazuo [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment

    2001-12-01

    Development of dry separation process (pyrochemical process) using molten salts for the application of spent-nuclear fuel reprocessing requires a rather complete fundamental database as well as process simulation technique with wide applicability. The present report concerns recent progress and problems in this field taking behaviors of co-electrodeposition of UO{sub 2} and PuO{sub 2} in molten salts as an example, and using analytical simulation of local equilibrium combined with generic diffusion. (S. Ohno)

  5. Controlling the discharge of molten material

    International Nuclear Information System (INIS)

    Geel, J. van; Dobbels, F.; Theunissen, W.

    1980-01-01

    A method and device are described for controlling the discharge of molten material from a melter or an intermediate vessel, in which a primary outflow is fed to an overflow system, the working level of which is regulated by means of pneumatic pressure on a communicating chamber pertaining to the overflow system. Molten material may be led into a primary overflow by means of a pneumatic lift. The material melted may be a glass used for disposing of radioactive liquid wastes. (author)

  6. Electrochemical ion separation in molten salts

    Science.gov (United States)

    Spoerke, Erik David; Ihlefeld, Jon; Waldrip, Karen; Wheeler, Jill S.; Brown-Shaklee, Harlan James; Small, Leo J.; Wheeler, David R.

    2017-12-19

    A purification method that uses ion-selective ceramics to electrochemically filter waste products from a molten salt. The electrochemical method uses ion-conducting ceramics that are selective for the molten salt cations desired in the final purified melt, and selective against any contaminant ions. The method can be integrated into a slightly modified version of the electrochemical framework currently used in pyroprocessing of nuclear wastes.

  7. Interation between a superheated uranium dioxide jet and cold concrete

    International Nuclear Information System (INIS)

    Howe, L.D.; Denham, M.K.; Turland, B.D.; Dop, L.M.G.; Humphreys, R.J.

    1992-01-01

    A scoping experiment has been carried out at the Winfrith Technology Centre using its Molten Fuel Test Facilities to examine the initial interaction between a fuel melt and concrete. A molten fuel simulant consisting of 81% UO 2 and 19% Mo with a large superheat (T≅3600 K) was poured onto a basaltic concrete target. Thermocouple data indicate that there was an initial high rate of ablation. The test demonstrated that in the case of such high superheats, a vigorous interaction between the jet and the target takes place, with much of the impinging material ejected within the first few seconds. There was a depression eroded into the target by the jet. The experiment has subsequently been modeled at Culham Laboratory using a version of the CORCON MCCI (molten core-concrete interaction) computer code. The calculations were able to produce a representation of this effect. The results of the experiment and the calculation have been compared with jetting correlations, and reasonable agreement has been found. We conclude by advising caution when applying the results of this isolated test to more prototypic interactions. (orig.)

  8. Recycled concrete aggregate in portland cement concrete.

    Science.gov (United States)

    2013-01-01

    Aggregates can be produced by crushing hydraulic cement concrete and are known as recycled concrete : aggregates (RCA). This report provides results from a New Jersey Department of Transportation study to identify : barriers to the use of RCA in new ...

  9. Synthetic analyses of the LAVA experimental results on in-vessel corium retention through gap cooling

    International Nuclear Information System (INIS)

    Kang, Kyoung Ho; Cho, Young Ro; Koo, Kil Mo; Park, Rae Joon; Kim, Jong Hwan; Kim, Jong Tae; Ha, Kwang Sun; Kim, Sang Baik; Kim, Hee Dong

    2001-03-01

    LAVA(Lower-plenum Arrested Vessel Attack) has been performed to gather proof of gap formation between the debris and lower head vessel and to evaluate the effect of the gap formation on in-vessel cooling. Through the total of 12 tests, the analyses on the melt relocation process, gap formation and the thermal and mechanical behaviors of the vessel were performed. The thermal behaviors of the lower head vessel were affected by the formation of the fragmented particles and melt pool during the melt relocation process depending on mass and composition of melt and subcooling and depth of water. During the melt relocation process 10.0 to 20.0 % of the melt mass was fragmented and also 15.5 to 47.5 % of the thermal energy of the melt was transferred to water. The experimental results address the non-adherence of the debris to the lower head vessel and the consequent gap formation between the debris and the lower head vessel in case there was an internal pressure load across the vessel abreast with the thermal load induced by the thermite melt. The thermal behaviors of the lower head vessel during the cooldown period were mainly affected by the heat removal characteristics through this gap, which were determined by the possibilities of the water ingression into the gap depending on the melt composition of the corium simulant. The enhanced cooling capacity through the gap was distinguished in the Al 2 O 3 melt tests. It could be inferred from the analyses on the heat removal capacity through the gap that the lower head vessel could effectively cooldown via heat removal in the gap governed by counter current flow limits(CCFL) even if 2mm thick gap should form in the 30 kg Al 2 O 3 melt tests, which was also confirmed through the variations of the conduction heat flux in the vessel and rapid cool down of the vessel outer surface in the Al 2 O 3 melt tests. In the case of large melt mass of 70 kg Al 2 O 3 melt, however, the infinite possibility of heat removal through the

  10. MCCI study for Pressurized Heavy Water Reactor under hypothetical accident condition

    International Nuclear Information System (INIS)

    Verma, Vishnu; Mukhopadhyay, Deb; Chatterjee, B.; Singh, R.K.; Vaze, K.K.

    2011-01-01

    In case of severe core damage accident in Pressurized Heavy Water Reactor (PHWR), large amount of molten corium is expected to come out into the calandria vault due to failure of calandria vessel. Molten corium at high temperature is sufficient to decompose and ablate concrete. Such attack could fail CV by basement penetration. Since containment is ultimate barrier for activity release. The Molten Core Concrete Interaction (MCCI) of the resulting pool of debris with the concrete has been identified as an important part of the accident sequence. MCCI Analysis has been carried out for PHWR for a hypothetical accident condition where total core material is considered to be relocated in calandria vault. Concrete ablation rate in vertical and radial direction is evaluated for rectangular geometry using MEDICIS module of ASTEC Code. Amount of gases released during MCCI is also evaluated. (author)

  11. Ex-vessel corium coolability sensitivity study with the CORQUENCH code

    International Nuclear Information System (INIS)

    Robb, Kevin; Corradini, Michael

    2009-01-01

    An unresolved safety issue for light water reactor beyond design basis accidents is the coolability and stabilization of ex-vessel core melt debris by top flooding. Several experimental programs, including the OECD MACE, MCCI-1, and the current MCCI-2 program, have investigated core-concrete interactions and debris cooling of ex-vessel core melts. As part of the OECD programs, the CORQUENCH computer model was developed based on phenomena identified from the experiments. Predictions by CORQUENCH have previously been compared against experiments and have also been extrapolated to reactor scale. The current study applied statistical techniques to investigate the importance of initial system parameters and cooling phenomena in CORQUENCH 3.01 on the accident progression of ex-vessel core melts. The purpose of this sensitivity study is to identify parameters that are of major importance, any code peculiarities over the range of inputs, and where modeling improvements may produce the most gain in prediction accuracy. The sensitivity studies were carried out over a range of input conditions, in 1-D and 2-D geometries, and for two concrete compositions. In terms of initial system parameters, the melt height had the most importance on concrete ablation and melt coolability. With respect to cooling phenomena, the amount of melt entrainment through the crust had the most importance on concrete ablation and melt coolability. (author)

  12. The Future Concrete: Self-Compacting Concrete

    Directory of Open Access Journals (Sweden)

    Liana Iureş

    2010-01-01

    Full Text Available The paper presents the characteristics of the self-compacting concretes, their advantages and disadvantages when they are used in buildings. Due to its properties and composition, the self-compacting concrete is described here as being one of the future friendly enviromental material for buildings. Tests concerning to obtaining a self-compacting concrete, together with the specific fresh concrete properties tests, are described.

  13. The Future Concrete: Self-Compacting Concrete

    OpenAIRE

    Iureş, Liana; Bob, Corneliu

    2010-01-01

    The paper presents the characteristics of the self-compacting concretes, their advantages and disadvantages when they are used in buildings. Due to its properties and composition, the self-compacting concrete is described here as being one of the future friendly enviromental material for buildings. Tests concerning to obtaining a self-compacting concrete, together with the specific fresh concrete properties tests, are described.

  14. Concrete durability

    Directory of Open Access Journals (Sweden)

    Gaspar Tébar, Demetrio

    1991-03-01

    Full Text Available The evidence that the concrete is not a material for ever was noticed from the beginning of its industrial use. In the present work, the author describes the studies carried out during the last century and the early ages of the present one, mainly devoted to the study of the durability in sea water. At the present days, and in spite of the numerous papers published from then, the study of the concrete durability continues focusing the research priorities and economical resources of researchers and industries related with this material. Moreover, the new laboratory techniques are allowing to understand old problems and even to open again the discussion on reaction mechanisms which were believed to be completely understood. The article finalizes with a brief description of the numerous studies carried out at the Institute Eduardo Torroja on concrete durability, mainly those related with the resistance against gypsum attack (so abundant in our country land and against sea water attack.

    La realidad de que el hormigón no es un material eterno y es susceptible de sufrir ataques por agentes químicos, fue constatada desde el comienzo mismo de su uso industrial. En el presente trabajo el autor enumera los estudios realizados el siglo pasado y a comienzos del presente sobre la durabilidad del hormigón en agua de mar. En la actualidad y a pesar de los numerosos trabajos desarrollados desde entonces, el estudio de la durabilidad del hormigón sigue centrando la atención prioritaria y los recursos económicos de los investigadores e industrias relacionadas con este material. Además las nuevas técnicas de estudio están permitiendo comprender antiguos problemas e incluso reabrir la discusión sobre mecanismos de reacción que se creían completamente explicados. Finaliza el artículo con una descripción somera de los múltiples trabajos realizados en el Instituto Eduardo Torreja sobre la materia, en especial los estudios realizados sobre

  15. Concrete Memories

    DEFF Research Database (Denmark)

    Wiegand, Frauke Katharina

    2015-01-01

    This article traces the presence of Atlantikwall bunkers in amateur holiday snapshots and discusses the ambiguous role of the bunker site in visual cultural memory. Departing from my family’s private photo collection from twenty years of vacationing at the Danish West coast, the different mundane...... and poetic appropriations and inscriptions of the bunker site are depicted. Ranging between overlooked side presences and an overwhelming visibility, the concrete remains of fascist war architecture are involved in and motivate different sensuous experiences and mnemonic appropriations. The article meets...... the bunkers’ changing visuality and the cultural topography they both actively transform and are being transformed by through juxtaposing different acts and objects of memory over time and in different visual articulations....

  16. Apparatus for making molten silicon

    Science.gov (United States)

    Levin, Harry (Inventor)

    1988-01-01

    A reactor apparatus (10) adapted for continuously producing molten, solar grade purity elemental silicon by thermal reaction of a suitable precursor gas, such as silane (SiH.sub.4), is disclosed. The reactor apparatus (10) includes an elongated reactor body (32) having graphite or carbon walls which are heated to a temperature exceeding the melting temperature of silicon. The precursor gas enters the reactor body (32) through an efficiently cooled inlet tube assembly (22) and a relatively thin carbon or graphite septum (44). The septum (44), being in contact on one side with the cooled inlet (22) and the heated interior of the reactor (32) on the other side, provides a sharp temperature gradient for the precursor gas entering the reactor (32) and renders the operation of the inlet tube assembly (22) substantially free of clogging. The precursor gas flows in the reactor (32) in a substantially smooth, substantially axial manner. Liquid silicon formed in the initial stages of the thermal reaction reacts with the graphite or carbon walls to provide a silicon carbide coating on the walls. The silicon carbide coated reactor is highly adapted for prolonged use for production of highly pure solar grade silicon. Liquid silicon (20) produced in the reactor apparatus (10) may be used directly in a Czochralski or other crystal shaping equipment.

  17. High temperature measurements in severe accident experiments on the PLINIUS Platform

    International Nuclear Information System (INIS)

    Bouyer, V.; Cassiaut-Louis, N.; Fouquart, P.; Journeau, C.; Piluso, P.; Parga, C.

    2013-06-01

    Severe accident experiments are conducted on the PLINIUS platform in Cadarache, using prototypic corium. During these experiments, it is essential to measure the temperature to know the thermo-physical state of the corium in static and dynamic conditions or to monitor the concrete ablation phenomenology. Temperature in the corium can reach about 2000 to 3000 K. Such aggressive conditions restrict the type of diagnostics that can be employed to do high temperature measurements during the experiments. We employ both non-intrusive (pyrometers) and intrusive (K-type and C-type thermocouples) diagnostics. In this paper, we present the different high temperature measurements techniques and the results that can be obtained in severe accident experiments as corium heating tests and molten core concrete interaction experiments. (authors)

  18. A method of measuring a molten metal liquid pool volume

    Science.gov (United States)

    Garcia, G.V.; Carlson, N.M., Donaldson, A.D.

    1990-12-12

    A method of measuring a molten metal liquid pool volume and in particular molten titanium liquid pools, including the steps of (a) generating an ultrasonic wave at the surface of the molten metal liquid pool, (b) shining a light on the surface of a molten metal liquid pool, (c) detecting a change in the frequency of light, (d) detecting an ultrasonic wave echo at the surface of the molten metal liquid pool, and (e) computing the volume of the molten metal liquid. 3 figs.

  19. Self-Compacting Concrete

    OpenAIRE

    Okamura, Hajime; Ouchi, Masahiro

    2003-01-01

    Self-compacting concrete was first developed in 1988 to achieve durable concrete structures. Since then, various investigations have been carried out and this type of concrete has been used in practical structures in Japan, mainly by large construction companies. Investigations for establishing a rational mix-design method and self-compactability testing methods have been carried out from the viewpoint of making self-compacting concrete a standard concrete.

  20. Molten salts and nuclear energy production

    International Nuclear Information System (INIS)

    Le Brun, Christian

    2007-01-01

    Molten salts (fluorides or chlorides) were considered near the beginning of research into nuclear energy production. This was initially due to their advantageous physical and chemical properties: good heat transfer capacity, radiation insensitivity, high boiling point, wide range solubility for actinides. In addition it was realised that molten salts could be used in numerous situations: high temperature heat transfer, core coolants with solid fuels, liquid fuel in a molten salt reactor, solvents for spent nuclear solid fuel in the case of pyro-reprocessing and coolant and tritium production in the case of fusion. Molten salt reactors, one of the six innovative concepts chosen by the Generation IV international forum, are particularly interesting for use as either waste incinerators or thorium cycle systems. As the neutron balance in the thorium cycle is very tight, the possibility to perform online extraction of some fission product poisons from the salt is very attractive. In this article the most important questions that must be addressed to demonstrate the feasibility of molten salt reactor will be reviewed

  1. Electrochemistry of plutonium in molten halides

    International Nuclear Information System (INIS)

    McCurry, L.E.; Moy, G.M.M.; Bowersox, D.F.

    1987-01-01

    The electrochemistry of plutonium in molten halides is of technological importance as a method of purification of plutonium. Previous authors have reported that plutonium can be purified by electrorefining impure plutonium in various molten haldies. Work to eluciate the mechanism of the plutonium reduction in molten halides has been limited to a chronopotentiometric study in LiCl-KCl. Potentiometric studies have been carried out to determine the standard reduction potential for the plutonium (III) couple in various molten alkali metal halides. Initial cyclic voltammetric experiments were performed in molten KCL at 1100 K. A silver/silver chloride (10 mole %) in equimolar NaCl-KCl was used as a reference electrode. Working and counter electrodes were tungsten. The cell components and melt were contained in a quartz crucible. Background cyclic voltammograms of the KCl melt at the tungsten electrode showed no evidence of electroactive impurities in the melt. Plutonium was added to the melt as PuCl/sub 3/, which was prepared by chlorination of the oxide. At low concentrations of PuCl/sub 3/ in the melt (0.01-0.03 molar), no reduction wave due to the reduction of Pu(III) was observed in the voltammograms up to the potassium reduction limit of the melt. However on scan reversal after scanning into the potassium reduction limit a new oxidation wave was observed

  2. Physical properties of molten carbonate electrolyte

    Energy Technology Data Exchange (ETDEWEB)

    Kojima, T.; Yanagida, M.; Tanimoto, K. [Osaka National Research Institute (Japan)] [and others

    1996-12-31

    Recently many kinds of compositions of molten carbonate electrolyte have been applied to molten carbonate fuel cell in order to avoid the several problems such as corrosion of separator plate and NiO cathode dissolution. Many researchers recognize that the addition of alkaline earth (Ca, Sr, and Ba) carbonate to Li{sub 2}CO{sub 3}-Na{sub 2}CO{sub 3} and Li{sub 2}CO{sub 3}-K{sub 2}CO{sub 3} eutectic electrolytes is effective to avoid these problems. On the other hand, one of the corrosion products, CrO{sub 4}{sup 2-} ion is found to dissolve into electrolyte and accumulated during the long-term MCFC operations. This would affect the performance of MCFC. There, however, are little known data of physical properties of molten carbonate containing alkaline earth carbonates and CrO{sub 4}{sup 2-}. We report the measured and accumulated data for these molten carbonate of electrical conductivity and surface tension to select favorable composition of molten carbonate electrolytes.

  3. Modeling of spreading of the melted corium jet inside the pool of emergency heat removal during severe accidents at NPP

    Directory of Open Access Journals (Sweden)

    I. V. Kazachkov

    2012-03-01

    Full Text Available Important nuclear power safety problem in touch with modeling of melted corium jet spreading inside the coolant pool is considered in the paper. It appears by development of the passive protection systems against se-vere accidents. The non-linear mathematical developed model is presented for the jet under reactor vessel pool for one of the perspective passive protection systems and the results of its analysis and studies are given. The performed analysis and the results of the numerical simulation done on the base of the model have allowed estab-lishing the interesting behaviors of the system, which may be useful for the scientists, as well as the engineers-constructors of the passive protection systems against severe accidents.

  4. Prediction of corium debris characteristics in lower plenum of a nordic BWR in different accident scenarios using MELCOR code - 15367

    International Nuclear Information System (INIS)

    Phung, V.A.; Galushin, S.; Raub, S.; Goronovski, A.; Villanueva, W.; Koeoep, K; Grishchenko, D.; Kudinov, P.

    2015-01-01

    Severe accident management strategy in Nordic boiling water reactors (BWRs) relies on ex-vessel core debris coolability. The mode of corium melt release from the vessel determines conditions for ex-vessel accident progression and threats to containment integrity, e.g., formation of a non-coolable debris bed and possibility of energetic steam explosion. In-vessel core degradation and relocation is an important stage which determines characteristics of corium debris in the vessel lower plenum, such as mass, composition, thermal properties, timing of relocation, and decay heat. These properties affect debris reheating and remelting, melt interactions with the vessel structures, and possibly vessel failure and melt ejection mode. Core degradation and relocation is contingent upon the accident scenario parameters such as recovery time and capacity of safety systems. The goal of this work is to obtain a better understanding of the impact of the accident scenarios and timing of the events on core relocation phenomena and resulting properties of the debris bed in the vessel lower plenum of Nordic BWRs. In this study, severe accidents in a Nordic BWR reference plant are initiated by a station black out event, which is the main contributor to core damage frequency of the reactor. The work focuses on identifying ranges of debris bed characteristics in the lower plenum as functions of the accident scenario with different recovery timing and capacity of safety systems. The severe accident analysis code MELCOR coupled with GA-IDPSA is used in this work. GA-IDPSA is a Genetic Algorithm-based Integrated Deterministic Probabilistic Safety Analysis tool, which has been developed to search uncertain input parameter space. The search is guided by different target functions. Scenario grouping and clustering approach is applied in order to estimate the ranges of debris characteristics and identify scenario regions of core relocation that can lead to significantly different debris bed

  5. Conributions of the VULCANO experimental programme to ther understaing of MCCI phenomena

    Energy Technology Data Exchange (ETDEWEB)

    Journeau, Christophe; Piluso, Pascal; Correggio, Patricia; Ferry, Lionel; Fritz, Gerald; Haquet, Jean Francois; Monerris, Jose; Ruggieri, Jean Michel; Sanchez- Brusset, Mathieu; Parga, Clemente [CEA, DEN, Cadarache, STRI/LMA, lez Durance (France)

    2012-04-15

    Molten Core Concrete Interaction (MCCI) is a complex process characterized by concrete ablation and volatile generation; Thermal and solutal convection in a bubble-agitated melt; Physico-chemical evolution of the corium pool with a wide solidification range (of the order of 1000 K). Twelve experiments have been carried out in the VULCANO facility with prototypic corium and sustained heating. The dry oxidic corium tests have contributed to show that silica-rich concrete experience an anisotropic ablation. This unexpected ablation pattern is quite reproducible and can be recalculated, provided an empirical anisotropy factor is assumed. Dry tests with oxide and metal liquid phases have also yielded unexpected results: a larger than expected steel oxidation and unexpected topology of the metallic phase (at the bottom of the cavity and also on the vertical concrete walls). Finally, VULCANO has proved its interest for the study of mitigation solutions such as the COMET bottom flooding core catcher.

  6. Conributions of the VULCANO experimental programme to ther understaing of MCCI phenomena

    International Nuclear Information System (INIS)

    Journeau, Christophe; Piluso, Pascal; Correggio, Patricia; Ferry, Lionel; Fritz, Gerald; Haquet, Jean Francois; Monerris, Jose; Ruggieri, Jean Michel; Sanchez- Brusset, Mathieu; Parga, Clemente

    2012-01-01

    Molten Core Concrete Interaction (MCCI) is a complex process characterized by concrete ablation and volatile generation; Thermal and solutal convection in a bubble-agitated melt; Physico-chemical evolution of the corium pool with a wide solidification range (of the order of 1000 K). Twelve experiments have been carried out in the VULCANO facility with prototypic corium and sustained heating. The dry oxidic corium tests have contributed to show that silica-rich concrete experience an anisotropic ablation. This unexpected ablation pattern is quite reproducible and can be recalculated, provided an empirical anisotropy factor is assumed. Dry tests with oxide and metal liquid phases have also yielded unexpected results: a larger than expected steel oxidation and unexpected topology of the metallic phase (at the bottom of the cavity and also on the vertical concrete walls). Finally, VULCANO has proved its interest for the study of mitigation solutions such as the COMET bottom flooding core catcher.

  7. Development of viscometers for molten salts

    International Nuclear Information System (INIS)

    Hayashi, Hirokazu; Kato, Yoshio; Ogawa, Toru; Sato, Yuzuru.

    1997-06-01

    Viscometers specially designed for molten salts were made. One is a oscillating cup type and the other is a capillary type. In the case of the oscillating cup viscometer, the viscosity is determined absolutely through the period and the logarithmic decrement of oscillation with other physical parameters. The period and the logarithmic decrement are calculated from the time intervals between two photo-detectors' intercepts of the reflected laser beam. The capillary viscometer used is made of quartz and the sample is sealed under vacuum, which is placed in a transparent furnace. Efflux time is measured by direct visual observation. Cell constants are determined with distilled water as a calibrating liquid. Viscosities of molten KCl are measured with each viscometer. The differences between measured and standard values of molten KCl at several temperatures are within 5% for the oscillating cup viscometer and within 3% for the capillary viscometer. (author)

  8. Molten salt burner fuel behaviour and treatment

    International Nuclear Information System (INIS)

    Ignatiev, V.V.; Zakirov, R.Y.; Grebenkine, K.F.

    2001-01-01

    The objective of this paper is to discuss the feasibility of molten salt reactor technology for treatment of Pu, minor actinides and fission products, when the reactor and fission product clean-up unit are planned as an integral system. This contribution summarises the available R and D which led to selection of the fuel compositions for the molten salt reactor of the TRU burner type (MSB). Special characteristics of behaviour of TRUs and fission products during power operation of MSB concepts are presented. The present paper briefly reviews the processing developments underlying the prior molten salt reactor programmes and relates them to the separation requirements of the MSB concept, including the permissible range of processing cycle times and removal times. Status and development needs in the thermodynamic properties of fluorides, fission product clean-up methods and container materials compatibility with the working fluids for the fission product clean-up unit are discussed. (authors)

  9. Molten salt reactors - safety options galore

    International Nuclear Information System (INIS)

    Gat, U.; Dodds, H.L.

    1997-01-01

    Safety features and attributes of molten salt reactors (MSR) are described. The unique features of fluid fuel reactors of on-line continuous processing and the ability for so-called external cooling result in simple and safe designs with low excess reactivity, low fission product inventory, and small source term. These, in turn, make a criticality accident unlikely and reduce the severity of a loss of coolant to where they are no longer severe accidents. A melt down is not an accident for a reactor that uses molten fuel. The molten salts are stable, non-reactive and efficient heat transfer media that operate at high temperatures at low pressures and are highly compatible with selected structural materials. All these features reduce the accident plethora. Freeze valves can be used for added safety. An ultimate safe reactor (U.S.R) is described with safety features that are passive, inherent and non-tamperable (PINT)

  10. Thorium Molten-Salt Nuclear Energy Synergetics

    International Nuclear Information System (INIS)

    Furukawa, Kazuo; Lecocq, A.; Kato, Yoshio; Mitachi, Kohshi.

    1990-01-01

    In the next century, the 'fission breeder' concept will not be practical to solve the global energy problems, including environmental and North-South problems. As a new measure, a simple rational Th molten salt breeding fuel cycle system, named 'Thorium Molten-Salt Nuclear Energy Synergetics (THORIMS-NES)', which composed of simple power stations and fissile producers, is proposed. This is effective to establish the essential improvement in issues of resources, safety, power-size flexibility, anti-nuclear proliferation and terrorism, radiowaste, economy, etc. securing the simple operation, maintenance, chemical processing, and rational breeding fuel cycle. As examples, 155 MWe fuel self-sustaining power station 'FUJI-II', 7 MWe pilot-plant 'miniFUJI-II', 1 GeV-300 mA proton Accelerator Molten-Salt Breeder 'AMSB', and their combined fuel cycle system are explained. (author)

  11. Process for recovering tritium from molten lithium metal

    Science.gov (United States)

    Maroni, Victor A.

    1976-01-01

    Lithium tritide (LiT) is extracted from molten lithium metal that has been exposed to neutron irradiation for breeding tritium within a thermonuclear or fission reactor. The extraction is performed by intimately contacting the molten lithium metal with a molten lithium salt, for instance, lithium chloride - potassium chloride eutectic to distribute LiT between the salt and metal phases. The extracted tritium is recovered in gaseous form from the molten salt phase by a subsequent electrolytic or oxidation step.

  12. Experimental studies of actinides in molten salts

    International Nuclear Information System (INIS)

    Reavis, J.G.

    1985-06-01

    This review stresses techniques used in studies of molten salts containing multigram amounts of actinides exhibiting intense alpha activity but little or no penetrating gamma radiation. The preponderance of studies have used halides because oxygen-containing actinide compounds (other than oxides) are generally unstable at high temperatures. Topics discussed here include special enclosures, materials problems, preparation and purification of actinide elements and compounds, and measurements of various properties of the molten volts. Property measurements discussed are phase relationships, vapor pressure, density, viscosity, absorption spectra, electromotive force, and conductance. 188 refs., 17 figs., 6 tabs

  13. Experimental studies of actinides in molten salts

    Energy Technology Data Exchange (ETDEWEB)

    Reavis, J.G.

    1985-06-01

    This review stresses techniques used in studies of molten salts containing multigram amounts of actinides exhibiting intense alpha activity but little or no penetrating gamma radiation. The preponderance of studies have used halides because oxygen-containing actinide compounds (other than oxides) are generally unstable at high temperatures. Topics discussed here include special enclosures, materials problems, preparation and purification of actinide elements and compounds, and measurements of various properties of the molten volts. Property measurements discussed are phase relationships, vapor pressure, density, viscosity, absorption spectra, electromotive force, and conductance. 188 refs., 17 figs., 6 tabs.

  14. Chemistry and technology of Molten Salt Reactors - history and perspectives

    International Nuclear Information System (INIS)

    Uhlir, Jan

    2007-01-01

    Molten Salt Reactors represent one of promising future nuclear reactor concept included also in the Generation IV reactors family. This reactor type is distinguished by an extraordinarily close connection between the reactor physics and chemical technology, which is given by the specific features of the chemical form of fuel, representing by molten fluoride salt and circulating through the reactor core and also by the requirements of continuous 'on-line' reprocessing of the spent fuel. The history of Molten Salt Reactors reaches the period of fifties and sixties, when the first experimental Molten Salt Reactors were constructed and tested in ORNL (US). Several molten salt techniques dedicated to fresh molten salt fuel processing and spent fuel reprocessing were studied and developed in those days. Today, after nearly thirty years of discontinuance, a renewed interest in the Molten Salt Reactor technology is observed. Current experimental R and D activities in the area of Molten Salt Reactor technology are realized by a relatively small number of research institutions mainly in the EU, Russia and USA. The main effort is directed primarily to the development of separation processes suitable for the molten salt fuel processing and reprocessing technology. The techniques under development are molten salt/liquid metal extraction processes, electrochemical separation processes from the molten salt media, fused salt volatilization techniques and gas extraction from the molten salt medium

  15. Broadband phase difference method for ultrasonic velocimetry in molten glass

    International Nuclear Information System (INIS)

    Kikura, Hiroshige; Ihara, Tomonori

    2016-01-01

    This study aims to develop ultrasonic Doppler velocimetry in molten glass. Realization of such a technique has two difficulties: ultrasonic transmission into molten salt and Doppler signal processing. Buffer rod technique was developed in our research to transmit ultrasound into high temperature molten glass. This article discusses newly developed signal processing technique named broadband phase difference method. (J.P.N.)

  16. Refractory thermowell for continuous high temperature measurement of molten metal

    International Nuclear Information System (INIS)

    Thiesen, T.J.

    1992-01-01

    This patent describes a vessel for handling molten metal having an interior refractory lining, apparatus for continuous high temperature measurement of the molten metal. It comprises a thermowell; the thermowell containing a multiplicity of thermocouples; leads being coupled to a means for continuously indicating the temperature of the molten metal in the vessel

  17. Development of gap measurement technique in-vessel corium retention using ultrasonic pulse echo method

    International Nuclear Information System (INIS)

    Koo, Kil Mo; Kim, Jong Hwan; Kang, Kyung Ho; Kim, Sang Baik; Sim, Cheul Muu

    1999-03-01

    A gap between a molten material and a lower vessel is formed in the LAVA experiment, a phase 1 study of Sonata-IV program. In this technical report, quantitative results of the gap measurement using an off-line ultrasonic pulse echo method are presented. This report aims at development of an appropriate ultrasonics test method, by analyzing the problems from the external environmental reason and the internal characteristic reason. The signal analyzing methods to improve the S/N ratio in these problems are divided into the time variant synthesized signal analyzing method and the time invariant synthesized signal analyzing method. In this report, the possibility of the application of these two methods to the gap signal and the noise is considered. In this test, the signal of the propagational direction and reflectional direction through solid-liquid-solid specimen was analyzed to understand the behavior of the reflectional signal in a multi-layered structure by filling the gap with water between the melt and the lower head vessel. The quantitative gap measurement using the off-line ultrasonic pulse echo method was available for a little of the scanned region. But furtherly using DSP technique and imaging technique, the better results will be obtained. Some of the measured signals are presented as 2-dimensional spherical mapping method using distance and amplitude. Other signals difficult in quantitative measurement are saved for a new signal processing method. (author). 11 refs., 4 tabs., 54 figs

  18. Fibre Concrete 2017

    Science.gov (United States)

    2017-09-01

    9th international conference on fibre reinforced concretes (FRC), textile reinforced concretes (TRC) and ultra-high performance concretes (UHPC) Preface The Fibre Concrete Conference series is held biennially to provide a platform to share knowledge on fibre reinforced concretes, textile concretes and ultra-high performance concretes regarding material properties and behaviour, technology procedures, topics of long-term behaviour, creep, durability; sustainable aspects of concrete including utilisation of waste materials in concrete production and recycling of concrete. The tradition of Fibre Concrete Conferences started in eighties of the last century. Nowadays the conference is organized by the Department of Concrete and Masonry Structures of the Czech Technical University in Prague, Faculty of Civil Engineering. The 9th International Conference Fibre Concrete 2017 had 109 participants from 27 countries all over the world. 55 papers were presented including keynote lectures of Professor Bažant, Professor Bartoš and Dr. Broukalová. The conference program covered wide range of topics from scientific research to practical applications. The presented contributions related to performance and behaviour of cement based composites, their long-term behaviour and durability, sustainable aspects, advanced analyses of structures from these composites and successful applications. This conference was organized also to honour Professor Zděnek P. Bažant on the occasion of his jubilee and to appreciate his merits and discoveries in the field of fibre reinforced composites, structural mechanics and engineering.

  19. Combined system of accelerator molten-salt breeder (AMSB) apd molten-salt converter reactor (MSCR)

    International Nuclear Information System (INIS)

    Furukawa, K.; Kato, Y.; Ohmichi, T.; Ohno, H.

    1983-01-01

    A design and research program is discUssed of the development of accelerator molten-salt breeder (AMSB) consisting of a proton accelerator and a molten fluoride target. The target simultaneously serves as a blanket for fissionable material prodUction. An addition of some amoUnt of fissile nuclides to a melt expands the AMSB potentialities as the fissionable material production increases and the energy generation also grows up to the level of self-provision. Besides the blanket salts may be used as nuclear fuel for molten-salt converter reactor (MSCR). The combined AM SB+MSCR system has better parameters as compared to other breeder reactors, molten-salt breeder reactors (MSBR) included

  20. Recent electroanalytical studies in molten fluorides

    International Nuclear Information System (INIS)

    Manning, D.L.; Mamantov, G.

    1976-01-01

    This paper summarizes the voltametric and chronopotentiometric studies of Bi, Fe, Te, oxide and U(IV)/U(III) ratio determinations in molten LiF--BeF 2 --ThF 4 (72-16-12 mole percent) and LiF--BeF 2 --ZrF 4 (65.6-29.4-5.0 mole percent). 54 references, 11 figures

  1. Investigation of molten salt fast reactor

    International Nuclear Information System (INIS)

    Kubota, Kenichi; Konomura, Mamoru

    2002-01-01

    On survey research for practicability strategy of fast reactor (FR) (phase 1), to extract future practicability image candidates of FR from wide options, in addition to their survey and investigation objects of not only solid fuel reactors of conventional research object but also molten salt reactor as a flowing fuel reactor, investigation on concept of molten salt FR plant was carried out. As a part of the first step of the survey research for practicability strategy, a basic concept on plant centered at nuclear reactor facility using chloride molten salt reactor capable of carrying out U-Pu cycle was examined, to perform a base construction to evaluate economical potential for a practical FBR. As a result, a result could be obtained that because of inferior fuel inventory and heat transmission to those in Na cooling reactor in present knowledge, mass of reactor vessel and intermediate heat exchanger were to widely increased to expect reduction of power generation unit price even on considering cheapness of its fuel cycle cost. Therefore, at present step further investigation on concept design of the chloride molten salt reactor plant system is too early in time, and it is at a condition where basic and elementary researches aiming at upgrading of economical efficiency such as wide reduction of fuel inventory, a measure expectable for remarkable rationalization effect of reprocessing system integrating a reactor to a processing facility, and so on. (G.K.)

  2. Galvanic high energy cells with molten electrolytes

    Energy Technology Data Exchange (ETDEWEB)

    Borger, W.; Kappus, W.; Kunze, D.; Laig-Hoerstebrock, H.; Panesar, H.; Sterr, G.

    1981-01-01

    To develop a galvanic cell with molten salt electrolyte for electric vehicle propulsion and load leveling as well as to fabricate ten prototype cells with a capacity of at least 150 Ah (5 hour rate) and an energy density of 80 Wh/kg was the objective of this project.

  3. Interaction and penetration of heated UO2 with limestone concrete

    International Nuclear Information System (INIS)

    Farhadieh, R.; Pedersen, D.R.; Purviance, R.; Carlson, N.

    1982-01-01

    To safeguard the environment against radiological releases, the major question of concern in PAHR safety assessment, following an HCDA, involves confinement and dilution of the molten core-debris. Significant to the study is the directional growth of the core-debris in the concrete foundation of the reactor building or the concrete below the reactor cavity. The real material experiments were carried out in the test apparatus shown. Casts of CRBRP limestone concrete were prepared in graphite cylinders, each having an internal diameter of 8.9 cm and a depth of 30.5 cm. The 17.8-cm-deep concrete samples were allowed to cure for at least 28 days. Experiments were conducted within two months of curing time. The cavity above concrete was packed with 3 kg of pure UO 2 particles (1 to 3 mm). A uranothermic mixture was placed on the top of UO 2 powder. Heating and possible melting of UO 2 was achieved resistively after the ignition of the thermite. Total experimental time was about 60 minutes, during which time a maximum electrical power input of 1.8 watts/gr was applied to the UO 2 . Three gas samples were taken at temperatures of 100, 600, and 950 0 C, measured in the plane of the No. 2 thermocouple. Selection of three temperatures were to study the amount and the type of gases released from different phases of concrete

  4. Analysis of materials in connection with corium melt retention in WWER reactor vessels. Final report for the period 15 October 1995 - 14 October 1996

    International Nuclear Information System (INIS)

    Efanov, A.D.

    1997-02-01

    Analysis of the state of severe accident codes being developed in Russia describing processes of corium - reactor pressure vessel interaction during severe accidents showed that at present there is no reliable validated and verified code. This study considered some of the most advanced severe accident codes which include models of heat generating liquid convections and RPV tolerance capacity however the possibility of physico-chemical interactions is not being considered. The final report demonstrates one of the examples for the settlement modelling of processes of reactor core debris cooling and corium pool mirror cooling with the use of the KOSTER 2 Code developed at IPPE. It was shown that cooling by water spray within some definite region of drop dimensions (0.5 / 4 mm in diameter) could provide the opportunity of the WWER type RPV integrity preservation under the accepted conditions. Due to some uncertainties in calculation modules obtained results are recommended to be treated as preliminary. (author). 26 refs, figs, tabs

  5. Study of water permeability in concrete by neutron and gamma-ray techniques

    International Nuclear Information System (INIS)

    Abd El-Monem, A.M.M.

    2010-01-01

    water infiltration in various building materials , namely concrete used for buildings basement and underwater construction is the main concern of the studies performed in this thesis. The studies aim to develop a nuclear techniques for investigation a concrete mixes with different additives capable to decrease concrete porosity and intern resist water propagation inside concrete materials without any deterioration of concrete physical and mechanical properties . These issues were achieved through the preparation of ordinary concrete mixes with different percentages of silica fume. Concrete samples of different shape and geometries were made to study water diffusion when the concrete samples are submerged in water for different periods of time. The concrete samples were first sealed by molten asphalt from all sides expect two opposite faces to ensure water migration only along one direction. Water infiltration in concrete samples with different percentages of silica fume and submerged in tap and seawater for different periods of time was studied by neutrons and gamma techniques. Also, water propagation in mortar samples with different percentages of silica fume was studied by electrical methods based on measuring the variation in electrical conductivity of these samples.

  6. Sustainable Concrete Technology

    Directory of Open Access Journals (Sweden)

    Sim J.

    2015-12-01

    Full Text Available The growing concern over global warming and significant ecological changes requires sustainable development in all fields of science and technology. Concrete not only consumes huge amount of energy and natural sources, but also emits large amount of CO2, mainly due to the production of cement. It is evident that such large amount of concrete production has put significant impact on the energy, resource, environment, and ecology of the society. Hence, how to develop the concrete technology in a sustainable way has become a significant issue. In this paper, some of Korean researches for sustainable development of concrete are presented. These are sustainable strengthening for deteriorated concrete structure, sustainable reinforcement of new concrete structure, sustainable concrete using recycled aggregate and supplementary cementing materials and finally application of each technique to precast concrete.

  7. Concrete pavement joint deterioration.

    Science.gov (United States)

    2015-12-01

    Concrete pavements are an important part of our national infrastructure. In recent years the relatively small number of reported joints deteriorating prematurely in concrete pavements around Indiana has increased. Changes over the past 45 years in IN...

  8. Concrete aggregate durability study.

    Science.gov (United States)

    2009-06-01

    There are many factors that affect the durability of Portland cement concrete (PCC), including the mix design and the : materials used, the quality of construction, and the environment. Durability is not an intrinsic property of the concrete, but : i...

  9. Thorium Molten Salt Nuclear Energy Synergetic System (THORIMS-NES)

    International Nuclear Information System (INIS)

    Yoshioka, Ritsuo; Mitachi, Koshi

    2013-01-01

    The authors have been promoting nuclear energy technology based on thorium molten salt as Thorium Molten Salt Nuclear Energy Synergetic System (THORIMS-NES). This system is a combination of fission power reactor of Molten Salt Reactor (MSR), and Accelerator Molten Salt Breeder (AMSB) for production of fissile 233 U with connecting chemical processing facility. In this paper, concept of THORIMS-NES, advantages of thorium and molten salt recent MSR design results such as FUJI-U3 using 233 U fuel, FUJI-Pu, large sized super-FUJI, pilot plant miniFUJI, AMSB, and chemical processing facility are described. (author)

  10. Molten salt: Corrosion problems and electrometallurgy in nuclear applications

    International Nuclear Information System (INIS)

    Santarini, G.

    1981-01-01

    A bibliographic survey is given of corrosion problems and electrometallurgical problems of molten salt in nuclear reactor applications. Due to the high potential to be achieved, their high ionic conductivity and the rapidity of reactions in a molten salt atmosphere, molten salts are interesting solvents for various electrometallurgical processes. Another important field of application is in the separation or electrolytical refining of various metals (Be, U, Pu, Th, Hf, Zr). However, these very characteristics of molten salts may also cause serious corrosion problems. Results obtained for the molten-salt reactor and the different causes of corrosion are reviewed an possible countermeasures analyzed. (orig.)

  11. Lunar concrete for construction

    Science.gov (United States)

    Cullingford, Hatice S.; Keller, M. Dean

    1988-01-01

    Feasibility of using concrete for lunar-base construction has been discussed recently without relevant data for the effects of vacuum on concrete. Experimental studies performed earlier at Los Alamos have shown that concrete is stable in vacuum with no deterioration of its quality as measured by the compressive strength. Various considerations of using concrete successfully on the moon are provided in this paper along with specific conclusions from the existing data base.

  12. Computer simulation on molten ionic salts

    International Nuclear Information System (INIS)

    Kawamura, K.; Okada, I.

    1978-01-01

    The extensive advances in computer technology have since made it possible to apply computer simulation to the evaluation of the macroscopic and microscopic properties of molten salts. The evaluation of the potential energy in molten salts systems is complicated by the presence of long-range energy, i.e. Coulomb energy, in contrast to simple liquids where the potential energy is easily evaluated. It has been shown, however, that no difficulties are encountered when the Ewald method is applied to the evaluation of Coulomb energy. After a number of attempts had been made to approximate the pair potential, the Huggins-Mayer potential based on ionic crystals became the most often employed. Since it is thought that the only appreciable contribution to many-body potential, not included in Huggins-Mayer potential, arises from the internal electrostatic polarization of ions in molten ionic salts, computer simulation with a provision for ion polarization has been tried recently. The computations, which are employed mainly for molten alkali halides, can provide: (1) thermodynamic data such as internal energy, internal pressure and isothermal compressibility; (2) microscopic configurational data such as radial distribution functions; (3) transport data such as the diffusion coefficient and electrical conductivity; and (4) spectroscopic data such as the intensity of inelastic scattering and the stretching frequency of simple molecules. The computed results seem to agree well with the measured results. Computer simulation can also be used to test the effectiveness of a proposed pair potential and the adequacy of postulated models of molten salts, and to obtain experimentally inaccessible data. A further application of MD computation employing the pair potential based on an ionic model to BeF 2 , ZnCl 2 and SiO 2 shows the possibility of quantitative interpretation of structures and glass transformation phenomena

  13. Reactor Vessel External Cooling for Corium Retention SULTAN Experimental Program and Modelling with CATHARE Code

    International Nuclear Information System (INIS)

    Rouge, S.; Dor, I.; Geffraye, G.

    1999-01-01

    In case of severe accident, a molten pool may form at the bottom of the lower head, and some pessimistic scenarios estimate that heat fluxes up to 1.5 MW/m 2 should be transferred through the vessel wall. An efficient, though completely passive, removal of heat flux during a long time is necessary to prevent total wall ablation, and a possible solution is to flood the cavity with water and establish boiling in natural convection. High heat exchanges are expected, especially if the system design (deflector along the vessel, riser...) emphasize water natural circulation, but are unfortunately limited by the critical heat flux phenomena (CHF). CHF data are very scarce in the adequate range of hydraulic and geometric parameters and are clearly dependent of the system effect in natural convection. The system effect can both modify flow velocity and two phase flow regimes, counter-current phenomena and flow static or dynamic instabilities. The SULTAN experimental program purpose was of two kinds, increasing CHF data for realistic situations, and improving the modeling of large 3D two phase flow circuits in natural convection. The CATHARE thermal-hydraulic code is used for interpreting the data and for extrapolation to real geometry. As a first step, a one-dimensional model is used. It is shown that some closure laws have to be improved. Reasonable predictions may be obtained but, for some test conditions, multi-dimensional effects such as recirculation appear to be dominant. Therefore the 3-dimensional module of CATHARE is also used to investigate these effects. This model well predicts qualitatively the existence and the development of a 2-phase layer along the heated wall as well as the existence of a recirculation zone. But modelling problems still require further development as part of a long term program for a better prediction of multi-dimensional two-phase flows

  14. Reinforced sulphur concrete

    NARCIS (Netherlands)

    2014-01-01

    Reinforced sulphur concrete wherein one or more metal reinforcing members are in contact with sulphur concrete is disclosed. The reinforced sulphur concrete comprises an adhesion promoter that enhances the interaction between the sulphur and the one or more metal reinforcing members.

  15. Deterioration of Concrete Structures

    DEFF Research Database (Denmark)

    Thoft-Christensen, Palle

    Chloride ingress is a common cause of deterioration of reinforced concrete bridges. Concrete may be exposed to chloride by seawater or de-icing salts. The chloride initiates corrosion of the reinforcement, which through expansion disrupts the concrete. In addition, the corrosion reduces the cross...

  16. concrete5 for developers

    CERN Document Server

    Uzayr, Sufyan bin

    2014-01-01

    Whether you have had some previous experience with concrete5 or are entirely new to it, this book will help you understand all that you need to know in order to get started with concrete5 development. A background in PHP is required; some knowledge of HTML/CSS is needed in order to fully grasp the concepts underlying concrete5 theme development.

  17. Feet sunk in molten aluminium: The burn and its prevention.

    Science.gov (United States)

    Alonso-Peña, David; Arnáiz-García, María Elena; Valero-Gasalla, Javier Luis; Arnáiz-García, Ana María; Campillo-Campaña, Ramón; Alonso-Peña, Javier; González-Santos, Jose María; Fernández-Díaz, Alaska Leonor; Arnáiz, Javier

    2015-08-01

    Nowadays, despite improvements in safety rules and inspections in the metal industry, foundry workers are not free from burn accidents. Injuries caused by molten metals include burns secondary to molten iron, aluminium, zinc, copper, brass, bronze, manganese, lead and steel. Molten aluminium is one of the most common causative agents of burns (60%); however, only a few publications exist concerning injuries from molten aluminium. The main mechanisms of lesion from molten aluminium include direct contact of the molten metal with the skin or through safety apparel, or when the metal splash burns through the pants and rolls downward along the leg. Herein, we report three cases of deep dermal burns after 'soaking' the foot in liquid aluminium and its evolutive features. This paper aims to show our experience in the management of burns due to molten aluminium. We describe the current management principles and the key features of injury prevention. Copyright © 2014 Elsevier Ltd and ISBI. All rights reserved.

  18. The Plinius/Colima CA-U3 test on fission-product aerosol release over a VVER-type corium pool

    International Nuclear Information System (INIS)

    Journeau, Ch.; Piluso, P.; Correggio, P.; Godin-Jacqmin, L.

    2007-01-01

    In a hypothetical case of severe accident in a PWR type VVER-440, a complex corium pool could be formed and fission products could be released. In order to study aerosols release in terms of mechanisms, kinetics, nature or quantity, and to better precise the source term of VVER-440, a series of experiments have been performed in the Colima facility and the test Colima CA-U3 has been successfully performed thanks to technological modifications to melt a prototypical corium at 2760 C degrees. Specific instrumentation has allowed us to follow the evolution of the corium melt and the release, transport and deposition of the fission products. The main conclusions are: -) there is a large release of Cr, Te, Sr, Pr and Rh (>95%w), -) there is a significant release of Fe (50%w), -) there is a small release of Ba, Ce, La, Nb, Nd and Y (<90%w), -) there is a very small release of U in proportion (<5%w) but it is one of the major released species in mass, and -) there is no release of Zr. The Colima experimental results are consistent with previous experiments on irradiated fuels except for Ba, Fe and U releases. (A.C.)

  19. Symbiotic molten-salt systems coupled with accelerator molten-salt breeder (AMSB) or inertial-confined fusion hybrid molten-salt breeder (IHMSB) and their comparison

    International Nuclear Information System (INIS)

    Furukawa, K.

    1984-01-01

    Two types of breeder systems are proposed. One is the combined system of Accelerator Molten-Salt Breeder (AMSB) and Molten-Salt Converter Reactor (MSCR), and the other is the combined system of Inertial-confined Fusion Hybrid Molten-Salt Breeder (IHMSB) and modified MSCR. Both apply the molten-fluorides and have technically deep relations. AMSB would be much simpler and have already high technical feasibility. This will become economical the Th breeder system having a doubling time shorter than ten years and distributing any size of power stations MSCR. (orig.) [de

  20. Modified pavement cement concrete

    Science.gov (United States)

    Botsman, L. N.; Ageeva, M. S.; Botsman, A. N.; Shapovalov, S. M.

    2018-03-01

    The paper suggests design principles of pavement cement concrete, which covers optimization of compositions and structures at the stage of mixture components selection due to the use of plasticizing agents and air-retaining substances that increase the viability of a concrete mixture. It also demonstrates advisability of using plasticizing agents together with air-retaining substances when developing pavement concrete compositions, which provides for the improvement of physical and mechanical properties of concrete and the reduction of cement binding agent consumption thus preserving strength indicators. The paper shows dependences of the main physical-mechanical parameters of concrete on cement consumption, a type and amount of additives.

  1. Material properties characterization - concrete

    International Nuclear Information System (INIS)

    England, G.L.; MacLeod, J.S.

    1978-01-01

    A review is presented of the six contributions in the SMiRT 4 conference to Session H5 on structural analysis of prestressed concrete reactor pressure vessels. These relate to short term stress-strain aspects of concrete loaded beyond the linear range in uniaxial and biaxial stress fields, to some time and temperature dependent properties of concrete at working stress levels, and to a programme of strain-gauge testing for the assessment of concrete properties. From the information discussed, it is clear that there are difficulties in determining material properties for concrete, and these are summarised. (UK)

  2. Intermediate-scale tests of sodium interactions with calcite and dolomite aggregate concretes

    International Nuclear Information System (INIS)

    Randich, E.; Acton, R.U.

    1983-09-01

    Two intermediate-scale tests were performed to compare the behavior of calcite and dolomite aggregate concretes when attacked by molten sodium. The tests were performed as part of an interlaboratory comparison between Sandia National Laboratories and Hanford Engineering Development Laboratories. Results of the tests at Sandia National Laboratories are reported here. The results show that both concretes exhibit similar exothermic reactions with molten sodium. The large difference in reaction vigor suggested by thermodynamic considerations of CO 2 release from calcite and dolomite was not realized. Penetration rates of 1.4 to 1.7 mm/min were observed for short periods of time with reaction zone temperatures in excess of 800 0 C during the energetic attack. The penetration was not uniform over the entire sodium-concrete contact area. Rapid attack may be localized due to inhomogeneities in the concrete. The chemical reaction zone is less then one cm thick for the calcite concrete but is about seven cm thick for the dolomite concrete

  3. Advanced heat exchanger development for molten salts

    Energy Technology Data Exchange (ETDEWEB)

    Sabharwall, Piyush, E-mail: Piyush.Sabharwall@inl.gov [Idaho National Laboratory, Idaho Falls, ID 83415 (United States); Clark, Denis; Glazoff, Michael [Idaho National Laboratory, Idaho Falls, ID 83415 (United States); Zheng, Guiqiu; Sridharan, Kumar; Anderson, Mark [University of Wisconsin, Madison (United States)

    2014-12-15

    Highlights: • Hastelloy N and 242, shows corrosion resistance to molten salt at nominal operating temperatures. • Both diffusion welds and sheet material in Hastelloy N were corrosion tested in at 650, 700, and 850 °C for 200, 500, and 1000 h. • Thermal gradients and galvanic couples in the molten salts enhance corrosion rates. • Corrosion rates found were typically <10 mils per year. - Abstract: This study addresses present work concerned with advanced heat exchanger development for molten salt in nuclear and non-nuclear thermal systems. The molten salt systems discussed herein use alloys, such as Hastelloy N and 242, that show good corrosion resistance in molten salt at nominal operating temperatures up to 700 °C. These alloys were diffusion welded, and the corresponding information is presented. Test specimens were prepared for exposing diffusion welds to molten salt environments. Hastelloy N and 242 were found to be weldable by diffusion welding, with ultimate tensile strengths about 90% of base metal values. Both diffusion welds and sheet material in Hastelloy N were corrosion tested in 58 mol% KF and 42 mol% ZrF{sub 4} at 650, 700, and 850 °C for 200, 500, and 1000 h. Corrosion rates were similar between welded and nonwelded materials, typically <100 μm per year after 1000 h of corrosion tests. No catastrophic corrosion was observed in the diffusion welded regions. For materials of construction, nickel-based alloys and alloys with dense nickel coatings are effectively inert to corrosion in fluorides, but not so in chlorides. Hence, additional testing of selected alloys for resistance to intergranular corrosion is needed, as is a determination of corrosion rate as a function of the type of salt impurity and alloy composition, with respect to chromium and carbon, to better define the best conditions for corrosion resistance. Also presented is the division of the nuclear reactor and high-temperature components per American Society of Mechanical

  4. Autogenous Deformation of Concrete

    DEFF Research Database (Denmark)

    Autogenous deformation of concrete can be defined as the free deformation of sealed concrete at a constant temperature. A number of observed problems with early age cracking of high-performance concretes can be attributed to this phenomenon. During the last 10 years , this has led to an increased...... focus on autogenous deformation both within concrete practice and concrete research. Since 1996 the interest has been significant enough to hold international, yearly conferences entirely devoted to this subject. The papers in this publication were presented at two consecutive half-day sessions...... at the American Concrete Institute’s Fall Convention in Phoenix, Arizona, October 29, 2002. All papers have been reviewed according to ACI rules. This publication, as well as the sessions, was sponsored by ACI committee 236, Material Science of Concrete. The 12 presentations from 8 different countries indicate...

  5. Mechanical Properties and Durability of "Waterless Concrete"

    Science.gov (United States)

    Toutanji, Houssam; Grugel, Richard N.

    2008-01-01

    Waterless concrete consists of molten elementary sulfur and aggregate. The aggregates in lunar environment will be lunar rocks and soil. Sulfur is present on the Moon in Troilite soil (FeS) and by oxidation soil iron and sulfur can be produced. Iron can be used to reinforce the sulfur concrete. Sulfur concrete specimens were cycled between liquid nitrogen (approximately 191 C) and room temperature (approximately 21 C) to simulate exposure to a lunar environment. Cycled and control specimens were subsequently tested in compression at room temperatures (approximately 21 C) and approximately 101 C. Test results showed that due to temperature cycling, compressive strength of cycled specimens was 20% of those non-cycled. Microscopic examination of the fracture surfaces from the cycled samples showed clear de-bonding of the sulfur from the aggregate material whereas it was seen well bonded in those non-cycled. This reduction in strength can be attributed to the large differences in thermal coefficients of expansion of the materials constituting the concrete which promoted cracking. Similar sulfur concrete mixtures were strengthened with short and long glass fibers. The glass fibers from lunar regolith simulant was melted in a 25 cc Pt-Rh crucible in a Sybron Thermoline high temperature MoSi2 furnace at melting temperatures of 1450 to 1600 C for times of 30 min to 1 hour. Glass fibers were cast from the melt into graphite crucibles and were annealed for a couple of hours at 600 C. Glass fibers and small rods were pulled from the melt. The glass melt wets the ceramic rod and long continuous glass fibers were easily hand drawn. The glass fibers were immediately coated with a protective polymer to maintain the mechanical strength. The glass fibers were used to reinforce sulfur concrete plated to improve the flexural strength of the sulfur concrete. Prisms beams strengthened with glass fibers were tested in 4-point bending test. Beams strengthened with glass fiber showed to

  6. Recycled Concrete as Aggregate for Structural Concrete Production

    OpenAIRE

    Mirjana Malešev; Vlastimir Radonjanin; Snežana Marinković

    2010-01-01

    A comparative analysis of the experimental results of the properties of fresh and hardened concrete with different replacement ratios of natural with recycled coarse aggregate is presented in the paper. Recycled aggregate was made by crushing the waste concrete of laboratory test cubes and precast concrete columns. Three types of concrete mixtures were tested: concrete made entirely with natural aggregate (NAC) as a control concrete and two types of concrete made with natural fine and recycle...

  7. Dynamics of the Molten Contact Line

    Science.gov (United States)

    Sonin, Ain A.; Duthaler, Gregg; Liu, Michael; Torresola, Javier; Qiu, Taiqing

    1999-01-01

    The purpose of this program is to develop a basic understanding of how a molten material front spreads over a solid that is below its melting point, arrests, and freezes. Our hope is that the work will contribute toward a scientific knowledge base for certain new applications involving molten droplet deposition, including the "printing" of arbitrary three-dimensional objects by precise deposition of individual molten microdrops that solidify after impact. Little information is available at this time on the capillarity-driven motion and arrest of molten contact line regions. Schiaffino and Sonin investigated the arrest of the contact line of a molten microcrystalline wax spreading over a subcooled solid "target" of the same material. They found that contact line arrest takes place at an apparent liquid contact angle that depends primarily on the Stefan number S=c(T(sub f) -T(sub t)/L based on the temperature difference between the fusion point and the target temperature, and proposed that contact line arrest occurs when the liquid's dynamic contact angle approaches the angle of attack of the solidification front just behind the contact line. They also showed, however, that the conventional continuum equations and boundary conditions have no meaningful solution for this angle. The solidification front angle is determined by the heat flux just behind the contact line, and the heat flux is singular at that point. By comparing experiments with numerical computations, Schiaffino and Sonin estimated that the conventional solidification model must break down within a distance of order 0.1 - 1 microns of the contact line. The physical mechanism for this breakdown is as yet undetermined, and no first-principles theory exists for the contact angle at arrest. Schiaffino and Sonin also presented a framework for understanding how to moderate Weber number molten droplet deposition in terms of similarity laws and experimentation. The study is based on experiments with three molten

  8. Mixing of zeolite powders and molten salt

    International Nuclear Information System (INIS)

    Pereira, C.; Zyryanov, V.N.; Lewis, M.A.; Ackerman, J.P.

    1996-01-01

    Transuranics and fission products in a molten salt can be incorporated into zeolite A by an ion exchange process and by a batch mixing or blending process. The zeolite is then mixed with glass and consolidated into a monolithic waste form for geologic disposal. Both processes require mixing of zeolite powders with molten salt at elevated temperatures (>700 K). Complete occlusion of salt and a uniform distribution of chloride and fission products are desired for incorporation of the powders into the final waste form. The relative effectiveness of the blending process was studied over a series of temperature, time, and composition profiles. The major criteria for determining the effectiveness of the mixing operations were the level and uniformity of residual free salt in the mixtures. High operating temperatures (>775 K) improved salt occlusion. Reducing the chloride levels in the mixture to below 80% of the full salt capacity of the zeolite significantly reduced the free salt level in the final product

  9. Molten-salt reactor information system

    International Nuclear Information System (INIS)

    Haubenreich, P.N.; Cardwell, D.W.; Engel, J.R.

    1975-06-01

    The Molten-Salt Reactor Information System (MSRIS) is a computer-based file of abstracts of documents dealing with the technology of molten-salt reactors. The file is stored in the IBM-360 system at ORNL, and may be searched through the use of established interactive computer programs from remote terminals connected to the computer via telephone lines. The system currently contains 373 entries and is subject to updating and expansion as additional information is developed. The nature and general content of the data file, a general approach for obtaining information from it, and the manner in which material is added to the file are described. Appendixes provide the list of keywords currently in use, the subject categories under which information is filed, and simplified procedures for searching the file from remote terminals. (U.S.)

  10. Molten salt reactors. The AMSTER concept

    International Nuclear Information System (INIS)

    Vergnes, J.; Garzenne, C.; Lecarpentier, D.; Mouney, H.

    2001-01-01

    This article presents the concept of actinide molten salt transmuter (AMSTER). This reactor is graphite-moderated and is dedicated to the burning of actinides. The main difference with a molten salt reactor is that its liquid fuel undergoes an on-line partial reprocessing in which fission products are extracted and heavy nuclei are reintroduced into the fuel. In order to maintain the reactivity regular injections of 235 U-salt are made. In classical reactors, fuel burn-up is limited by the swelling of the cladding and the radiation fuel pellets resistance, in AMSTER there is no limitation to the irradiation time of the fuel, so all the actinides can be burnt or transmuted. (A.C.)

  11. Molten salt combustion of radioactive wastes

    International Nuclear Information System (INIS)

    Grantham, L.F.; McKenzie, D.E.; Richards, W.L.; Oldenkamp, R.D.

    1976-01-01

    The Atomics International Molten Salt Combustion Process reduces the weight and volume of combustible β-γ contaminated transuranic waste by utilizing air in a molten salt medium to combust organic materials, to trap particulates, and to react chemically with any acidic gases produced during combustion. Typically, incomplete combustion products such as hydrocarbons and carbon monoxide are below detection limits (i.e., 3 ) is directly related to the sodium chloride vapor pressure of the melt; >80% of the particulate is sodium chloride. Essentially all metal oxides (combustion ash) are retained in the melt, e.g., >99.9% of the plutonium, >99.6% of the europium, and >99.9% of the ruthenium are retained in the melt. Both bench-scale radioactive and pilot scale (50 kg/hr) nonradioactive combustion tests have been completed with essentially the same results. Design of three combustors for industrial applications are underway

  12. Analysis of a molten salt reactor benchmark

    International Nuclear Information System (INIS)

    Ghosh, Biplab; Bajpai, Anil; Degweker, S.B.

    2013-01-01

    This paper discusses results of our studies of an IAEA molten salt reactor (MSR) benchmark. The benchmark, proposed by Japan, involves burnup calculations of a single lattice cell of a MSR for burning plutonium and other minor actinides. We have analyzed this cell with in-house developed burnup codes BURNTRAN and McBURN. This paper also presents a comparison of the results of our codes and those obtained by the proposers of the benchmark. (author)

  13. Molten salt battery having inorganic paper separator

    Science.gov (United States)

    Walker, Jr., Robert D.

    1977-01-01

    A high temperature secondary battery comprises an anode containing lithium, a cathode containing a chalcogen or chalcogenide, a molten salt electrolyte containing lithium ions, and a separator comprising a porous sheet comprising a homogenous mixture of 2-20 wt.% chrysotile asbestos fibers and the remainder inorganic material non-reactive with the battery components. The non-reactive material is present as fibers, powder, or a fiber-powder mixture.

  14. Electrochemical studies in molten sodium fluoroborate

    International Nuclear Information System (INIS)

    Brigaudeau, M.; Wagner, J.F.

    1979-01-01

    Physical properties of sodium fluoroborate are recalled and first results obtained during experimental study of molten NaBF 4 are exposed. The system Cu/CuF is used as an indicator of fluoride ion activity and dissociation constant of the solvent is determined by adding NaF to NaBF 4 saturated with BF 3 at a pressure of 1 atm and found equal to 2.7x10 -3 [fr

  15. Corrosion of technical ceramics by molten aluminium

    NARCIS (Netherlands)

    Schwabe, U.; Wolff, L.R.; Loo, van F.J.J.; Ziegler, G.

    1992-01-01

    The corrosion of 8 types of ceramics, i.e., 1 grade of hot isostatically pressed reaction-bonded Si3N4 (HIPRBSN), 3 grades of hot pressed Si3N4 (HPSN), and 4 grades of RBSN, and 2 types of SiC (HIPSiC and Si-impregnated SiC (SiSiC)) in molten Al (pure Al and AlZnMgCu1.5) was studied. The HIPRBSN and

  16. Stepwise integral scaling method for severe accident analysis and its application to corium dispersion in direct containment heating

    International Nuclear Information System (INIS)

    Ishii, M.; Zhang, G.; No, H. C.; Eltwila, F.

    1994-01-01

    Accident sequences which lead to severe core damage and to possible radioactive fission products into the environment have a very low probability. However, the interest in this area increased significantly due to the occurrence of the small break loss-of-coolant accident at TMI-2 which led to partial core damage, and of the Chernobyl accident in the former USSR which led to extensive core disassembly and significant release of fission products over several countries. In particular, the latter accident raised the international concern over the potential consequences of severe accidents in nuclear reactor systems. One of the significant shortcomings in the analyses of severe accidents is the lack of well-established and reliable scaling criteria for various multiphase flow phenomena. However, the scaling criteria are essential to the severe accident, because the full scale tests are basically impossible to perform. They are required for (1) designing scaled down or simulation experiments, (2) evaluating data and extrapolating the data to prototypic conditions, and (3) developing correctly scaled physical models and correlations. In view of this, a new scaling method is developed for the analysis of severe accidents. Its approach is quite different from the conventional methods. In order to demonstrate its applicability, this new stepwise integral scaling method has been applied to the analysis of the corium dispersion problem in the direct containment heating. ((orig.))

  17. Concrete laying laboratory

    International Nuclear Information System (INIS)

    Bastlova, K.

    1986-01-01

    The task of the concrete laying laboratory established within a special department for quality control and assurance at the Dukovany nuclear power plant, is to check the composition of concrete mixes produced by the central concrete production plant on the site, and the shipment, laying and processing of concrete. The composition is given of special barite and serpentinite concretes designed for biological shields. The system of checks and of filing the results is briefly described. Esperience is summed up from the operation of the concrete laying laboratory, and conclusions are formulated which should be observed on similar large construction sites. They include the precise definition of the designer's requirements for the quality of concrete, the surface finish of concrete surfaces, the method of concreting specific structures around bushings, increased density reinforcements and various technological elements, and requirements for shipment to poorly accessible or remote places. As for the equipment of the laboratory, it should be completed with an instrument for the analysis of fresh concrete mixes, a large capacity drying kiln, etc. (Z.M.)

  18. Special protective concretes

    International Nuclear Information System (INIS)

    Bouniol, P.

    2001-01-01

    Concrete is the most convenient material when large-scale radiation protection is needed. Thus, special concretes for nuclear purposes are used in various facilities like reactors, reprocessing centers, storage sites, accelerators, hospitals with nuclear medicine equipment, food ionization centers etc.. The recent advances made in civil engineering for the improvement of concrete durability and compactness are for a large part transposable to protection concretes. This article presents the basic knowledge about protection concretes with the associated typological and technological aspects. A large part is devoted to the intrinsic properties of concretes and to their behaviour in irradiation and temperature conditions: 1 - definition and field of application of special protective concretes; 2 - evolution of concepts and technologies (durability of structures, techniques of formulation, new additives, market evolution); 3 - design of protective structures (preliminary study, radiation characteristics, thermal constraints, damping and dimensioning, mechanical criteria); 4 - formulation of special concretes (general principles, granulates, hydraulic binders, pulverulent additives, water/cement ratio, reference composition of some special concretes); 5 - properties of special concretes (damping and thermo-mechanical properties); 6 - induced-irradiation and temperature phenomena (activation, radiolysis, mineralogical transformations, drying, shrinking, creep, corrosion of reinforcement). (J.S.)

  19. Thorium molten-salt nuclear energy synergetics

    International Nuclear Information System (INIS)

    Furukawa, Kazuo

    1989-01-01

    One of the most practical and rational approaches for establishing the idealistic Thorium resource utilization program has been presented, which might be effective to solve the principal energy problems, concerning safety, proliferation and terrorism, resource, power size and fuel cycle economy, for the next century. The first step will be the development of Small Molten-Salt Reactors as a flexible power station, which is suitable for early commercialization of Th reactors not necessarily competing with proven Large Solid-Fuel Reactors. Therefore, the more detailed design works and practical R and D planning should be performed under the international cooperations soon, soundly depending on the basic technology established by ORNL already. R and D cost would be surprisingly low. This reactor(MSR) seems to be idealistic not only in power-size, siting, safety, safeguard and economy, but also as an effective partner of Molten-Salt Fissile Breeders(MSB) in order to establish the simplest and economical Thorium molten-salt breeding fuel cycle named THORIMS-NES in all over the world including the developing countries and isolated areas. This would be one of the most practical replies to the Lilienthal's appeal of 'A NEW START' in Nuclear Energy. (author)

  20. Thermal Characterization of Molten Salt Systems

    Energy Technology Data Exchange (ETDEWEB)

    Toni Y. Gutknecht; Guy L. Fredrickson

    2011-09-01

    The phase stability of molten salts in an electrorefiner (ER) may be adversely affected by the buildup of sodium, fission products, and transuranics in the electrolyte. Potential situations that need to be avoided are the following: (1) salt freezing due to an unexpected change in the liquidus temperature, (2) phase separation or non-homogeneity of the molten salt due to the precipitation of solids or formation of immiscible liquids, and (3) any mechanism that can result in the separation and concentration of fissile elements from the molten salt. Any of these situations would result in an off-normal condition outside the established safety basis for electrorefiner (ER) operations. The stability (and homogeneity) of the phases can potentially be monitored through the thermal characterization of the salts, which can be a function of impurity concentration. This report describes the experimental results of typical salts compositions, which consist of chlorides of potassium, lithium, strontium, samarium, praseodymium, lanthanum, barium, cerium, cesium, neodymium, sodium and gadolinium chlorides as a surrogate for both uranium and plutonium, used for the processing of used nuclear fuels.

  1. Thermal interaction of molten copper with water

    International Nuclear Information System (INIS)

    Zyszkowski, W.

    1975-01-01

    Experimental work was performed to study the thermal interaction between molten copper particles (in the range of temperature from the copper melting point to about 1800 0 C) and water from about 15-80 0 C. The transient temperatures of the copper particles and water before and during their thermal interaction were measured. The history of the phenomena was filmed by means of a high speed FASTAX camera (to 8000 f/s). Classification of the observed phenomena and description of the heat-transfer modes were derived. One among the phenomena was the thermal explosion. The necessary conditions for the thermal explosion are discussed and their physical interpretation is given. According to the hypothesis proposed, the thermal explosion occurs when the molten metal has the temperature of its solidification and the heat transfer on its surface is sufficiently intensive. The 'sharp-change' of the crystalline structure during the solidification of the molten metal is the cause of the explosion fragmentation. (author)

  2. Effects of Basalt Fibres on Mechanical Properties of Concrete

    Directory of Open Access Journals (Sweden)

    El-Gelani A. M.

    2018-01-01

    Full Text Available This paper presents the results of an experimental program carried out to investigate the effects of Basalt Fibre Reinforced Polymers (BFRP on some fundamental mechanical properties of concrete. Basalt fibres are formed by heating crushed basalt rocks and funnelling the molten basalt through a spinneret to form basalt filaments. This type of fibres have not been widely used till recently. Two commercially available chopped basalt fibres products with different aspect ratios were investigated, which are dry basalt (GeoTech Fibre and basalt pre-soaked in an epoxy resin (GeoTech Matrix .The experimental work included compression tests on 96 cylinders made of multiple batches of concrete with varying amounts of basalt fibre additives of the two mentioned types, along with control batches containing no fibres. Furthermore, flexural tests on 24 prisms were carries out to measure the modulus of rupture, in addition to 30 prisms for average residual strength test. Results of the research indicated that use of basalt fibres has insignificant effects on compressive strength of plain concrete, where the increase in strength did not exceed about 5%. On the other hand, results suggest that the use of basalt fibres may increase the compressive strength of concrete containing fly as up top 40%. The rupture strength was increased also by 8% to 28% depending on mix and fibre types and contents. Finally, there was no clear correlation between the average residual strength and ratios of basalt fibres mixed with the different concrete batches.

  3. The Experiences and Challenges in Drilling into Semi molten or Molten Intrusive in Menengai Geothermal Field

    Science.gov (United States)

    Mortensen, A. K.; Mibei, G. K.

    2017-12-01

    Drilling in Menengai has experienced various challenges related to drilling operations and the resource itself i.e. quality discharge fluids vis a vis gas content. The main reason for these challenges is related to the nature of rocks encountered at depths. Intrusives encountered within Menengai geothermal field have been group into three based on their geological characteristics i.e. S1, S2 and S3.Detailed geology and mineralogical characterization have not been done on these intrusive types. However, based on physical appearances, S1 is considered as a diorite dike, S2 is syenite while S3 is molten rock material. This paper summarizes the experiences in drilling into semi molten or molten intrusive (S3).

  4. Molten salt engineering for thorium cycle. Electrochemical studies as examples

    International Nuclear Information System (INIS)

    Ito, Yasuhiko

    1998-01-01

    A Th-U nuclear energy system utilizing accelerator driven subcritical molten salt breeder reactor has several advantages compared to conventional U-Pu nuclear system. In order to obtain fundamental data on molten salt engineering of Th-U system, electrochemical study was conducted. As the most primitive simulated study of beam irradiation of molten salt, discharge electrolysis was investigated in molten LiCl-KCl-AgCl system. Stationary discharge was generated under atmospheric argon gas and fine Ag particles were obtained. Hydride ion (H - ) behavior in molten salts was also studied to predict the behavior of tritide ion (T - ) in molten salt fuel. Finally, hydrogen behavior in metals at high temperature was investigated by electrochemical method, which is considered to be important to confine and control tritium. (author)

  5. Tritium loss in molten flibe systems

    Energy Technology Data Exchange (ETDEWEB)

    Longhurst, G.R.; Anderl, R.A. [Idaho National Eng. and Environ. Lab., Idaho Falls, ID (United States); Scott Willms, R. [Los Alamos National Lab., NM (United States)

    2000-04-01

    An emerging issue relative to beryllium technology in fusion involves tritium interactions with molten beryllium-bearing salts. Innovative designs for fusion reactors, both magnetic and inertially confined, feature the molten salt mixture 2LiF.BeF{sub 2}, commonly called Flibe, as a tritium breeder and coolant. Tritium is bred in the Flibe as neutrons from the plasma are absorbed by Li atoms, which then transmute to tritium and helium. Transmutation of tritium from Be also occurs. Among the issues to be resolved for such coolant systems is the potential loss of tritium from the Flibe coolant to the walls of the system, particularly through heat exchanger tubes, and from there into secondary coolants or working fluids and the environment. Effectively removing tritium from Flibe in clean-up units is also important. In quiescent or low Reynolds number flow, tritium movement through Flibe is governed by diffusion. For Flibe in turbulent flow, as in heat exchanger tubes, transport is by turbulent mixing, and the same flow conditions and structural design features that maximize heat transfer to the heat exchanger walls will enhance the transport of tritium to those same surfaces. Analyses have been performed to estimate the fractional loss of tritium through heat exchanger tubes and release rates from Flibe droplets in vacuum disengagers in molten Flibe systems. The calculations suggest unacceptably large losses of tritium through heat exchanger tubes. The gravity of the implications of these estimates calls for experimental verification to determine if tritium losses through molten Flibe heat exchangers or other Flibe systems can really be so high and whether vacuum disengagers will really work. There is also a need for better information on evolution of tritium from Flibe droplets in a vacuum. Several experiments are presently being planned to address these issues and are discussed. These include experiments to induce tritium in Flibe using spontaneous fission neutrons

  6. Tritium loss in molten flibe systems

    International Nuclear Information System (INIS)

    Longhurst, G.R.; Anderl, R.A.; Scott Willms, R.

    2000-01-01

    An emerging issue relative to beryllium technology in fusion involves tritium interactions with molten beryllium-bearing salts. Innovative designs for fusion reactors, both magnetic and inertially confined, feature the molten salt mixture 2LiF.BeF 2 , commonly called Flibe, as a tritium breeder and coolant. Tritium is bred in the Flibe as neutrons from the plasma are absorbed by Li atoms, which then transmute to tritium and helium. Transmutation of tritium from Be also occurs. Among the issues to be resolved for such coolant systems is the potential loss of tritium from the Flibe coolant to the walls of the system, particularly through heat exchanger tubes, and from there into secondary coolants or working fluids and the environment. Effectively removing tritium from Flibe in clean-up units is also important. In quiescent or low Reynolds number flow, tritium movement through Flibe is governed by diffusion. For Flibe in turbulent flow, as in heat exchanger tubes, transport is by turbulent mixing, and the same flow conditions and structural design features that maximize heat transfer to the heat exchanger walls will enhance the transport of tritium to those same surfaces. Analyses have been performed to estimate the fractional loss of tritium through heat exchanger tubes and release rates from Flibe droplets in vacuum disengagers in molten Flibe systems. The calculations suggest unacceptably large losses of tritium through heat exchanger tubes. The gravity of the implications of these estimates calls for experimental verification to determine if tritium losses through molten Flibe heat exchangers or other Flibe systems can really be so high and whether vacuum disengagers will really work. There is also a need for better information on evolution of tritium from Flibe droplets in a vacuum. Several experiments are presently being planned to address these issues and are discussed. These include experiments to induce tritium in Flibe using spontaneous fission neutrons

  7. Report of Task Group on Ex-Vessel Thermal-Hydraulics Corium/concrete interactions and combustible gas distribution in large dry containments

    International Nuclear Information System (INIS)

    1987-11-01

    The Task Group on Ex-Vessel Thermal-Hydraulics was established by the PWG 2 to address the physical processes that occur in the ex-vessel phase of severe accidents, to study their impact on containment loading and failure, and to assess the available calculation methods. This effort is part of an overall CSNI effort to come to an international understanding of the issues involved. The Task Group decided to focus its initial efforts on the Large Dry Containment used extensively to contain the consequences of postulated (design basis) accidents in Light Water Reactors (LWR). Although such containments have not been designed with explicit consideration of severe accidents, recent assessments indicate a substantial inherent capability for these accidents. The Task Group has examined the loads likely to challenge the integrity of the containment, and considered the calculation of the containment's response. This report is the outcome of this effort

  8. Nanostructured silicate polymer concrete

    Directory of Open Access Journals (Sweden)

    Figovskiy Oleg L'vovich

    2014-03-01

    Full Text Available It has been known that acid-resistant concretes on the liquid glass basis have high porosity (up to 18~20 %, low strength and insufficient water resistance. Significant increasing of silicate matrix strength and density was carried out by incorporation of special liquid organic alkali-soluble silicate additives, which block superficial pores and reduce concrete shrinkage deformation. It was demonstrated that introduction of tetrafurfuryloxisilane additive sharply increases strength, durability and shock resistance of silicate polymer concrete in aggressive media. The experiments showed, that the strength and density of silicate polymer concrete increase in case of decreasing liquid glass content. The authors obtained optimal content of silicate polymer concrete, which possesses increased strength, durability, density and crack-resistance. Diffusive permeability of concrete and its chemical resistance has been investigated in various corroding media.

  9. Molten metal feed system controlled with a traveling magnetic field

    International Nuclear Information System (INIS)

    Praeg, W.F.

    1991-01-01

    This patent describes a continuous metal casting system in which the feed of molten metal controlled by means of a linear induction motor capable of producing a magnetic traveling wave in a duct that connects a reservoir of molten metal to a caster. The linear induction motor produces a traveling magnetic wave in the duct in opposition to the pressure exerted by the head of molten metal in the reservoir

  10. Compatibility studies of potential molten-salt breeder reactor materials in molten fluoride salts

    International Nuclear Information System (INIS)

    Keiser, J.R.

    1977-05-01

    The molten fluoride salt compatibility studies carried out during the period 1974--76 in support of the Molten-Salt Reactor Program are summarized. Thermal-convection and forced-circulation loops were used to measure the corrosion rate of selected alloys. Results confirmed the relationship of time, initial chromium concentration, and mass loss developed by previous workers. The corrosion rates of Hastelloy N and Hastelloy N modified by the addition of 1--3 wt percent Nb were well within the acceptable range for use in an MSBR. 13 figures, 3 tables

  11. Evaluation of recycled concrete as aggregate in new concrete pavements.

    Science.gov (United States)

    2014-04-01

    This study evaluated the use of recycled concrete as coarse aggregate in new concrete pavements. : Recycled concrete aggregate (RCA) produced from demolished pavements in three geographically dispersed locations in Washington state were used to perfo...

  12. Accelerator molten-salt breeding and thorium fuel cycle

    International Nuclear Information System (INIS)

    Furukawa, Kazuo; Nakahara, Yasuaki; Kato, Yoshio; Ohno, Hideo; Mitachi, Kohshi.

    1990-01-01

    The recent efforts at the development of fission energy utilization have not been successful in establishing fully rational technology. A new philosophy should be established on the basis of the following three principles: (1) thorium utilization, (2) molten-salt fuel concept, and (3) separation of fissile-breeding and power-generating functions. Such philosophy is called 'Thorium Molten-Salt Nuclear Energy Synergetics [THORIMS-NES]'. The present report first addresses the establishment of 233 U breeding fuel cycle, focusing on major features of the Breeding and Chemical Processing Centers and a small molten-salt power station (called FUJI-II). The development of fissile producing breeders is discussed in relation to accelerator molten-salt breeder (AMSB), impact fusion molten-salt breeder, and inertial-confined fusion hybrid molten-salt breeder. Features of the accelerator molten-salt breeder are described, focusing on technical problems with accelerator breeders (or spallators), design principle of the accelerator molten-salt breeder, selection of molten salt compositions, and nuclear- and reactor-chemical aspects of AMSB. Discussion is also made of further research and development efforts required in the future for AMSB. (N.K.)

  13. Crust formation and its effect on the molten pool coolability

    Energy Technology Data Exchange (ETDEWEB)

    Park, R.J.; Lee, S.J.; Sim, S.K. [Korea Atomic Energy Research Institute, Taejon (Korea, Republic of)

    1995-09-01

    Experimental and analytical studies of the crust formation and its effect on the molten pool coolability have been performed to examine the crust formation process as a function of boundary temperatures as well as to investigate heat transfer characteristics between molten pool and overlying water in order to evaluate coolability of the molten pool. The experimental test results have shown that the surface temperature of the bottom plate is a dominant parameter in the crust formation process of the molten pool. It is also found that the crust thickness of the case with direct coolant injection into the molten pool is greater than that of the case with a heat exchanger. Increasing mass flow rate of direct coolant injection to the molten pool does not affect the temperature of molten pool after the crust has been formed in the molten pool because the crust behaves as a thermal barrier. The Nusselt number between the molten pool and the coolant of the case with no crust formation is greater than that of the case with crust formation. The results of FLOW-3D analyses have shown that the temperature distribution contributes to the crust formation process due to Rayleigh-Benard natural convection flow.

  14. Studies on components for a molten salt reactor

    International Nuclear Information System (INIS)

    Nejedly, M.; Matal, O.

    2003-01-01

    The aim is contribute to a design of selected components of molten salt reactors with fuel in the molten fluoride salt matrix. Molten salt reactors (MSRs) permit the utilization of plutonium and minor actinides as new nuclear fuel from a traditional nuclear power station with production of electric energy. Results of preliminary feasibility studies of an intermediate heat exchanger, a small power molten salt pump and a modular conception of a steam generator for a demonstration unit of the MSR (30 MW) are summarized. (author)

  15. Concrete portable handbook

    CERN Document Server

    Woodson, R Dodge

    2011-01-01

    Whether or not, you are on the job site or back in the office, this book will help you to avoid mistakes, code violations, and wasted time and money. The book's four part treatment begins with constituent materials followed by self contained parts on Concrete Properties, Processes, and Concrete Repair and Rehabilitation. Designed to be an ""all in one"" reference, the author includes a wealth information for the most popular types of testing. This includes: Analysis of Fresh Concrete; Testing Machines; Accelerated Testing Methods; Analysis of Hardened Concrete and Mortar; Core Sampl

  16. Evaluation of Sulfur 'Concrete' for Use as a Construction Material on the Lunar Surface

    Science.gov (United States)

    Grugel, R. N.

    2008-01-01

    Combining molten sulfur with any number of aggregate materials forms, when solid, a mixture having attributes similar, if not better, to conventional water-based concrete. As a result the use of sulfur "concrete" on Earth is well established, particularly in corrosive environments. Consequently, discovery of troilite (FeS) on the lunar surface prompted numerous scenarios about its reduction to elemental sulfur for use, in combination with lunar regolith, as a potential construction material; not requiring water, a precious resource, for its manufacture is an obvious advantage. However, little is known about the viability of sulfur concrete in an environment typified by extreme temperatures and essentially no atmosphere. The experimental work presented here evaluates the response of pure sulfur and sulfur concrete subjected to laboratory conditions that approach those expected on the lunar surface, the results suggesting a narrow window of application.

  17. LIGHTWEIGHT CONCRETE BASED GRANSHLAK

    Directory of Open Access Journals (Sweden)

    NETESA M. I.

    2016-02-01

    Full Text Available Raising of problem. Concrete advisable to obtain a low strength with local secondary resources for recycling and reduce the environmental burden on the environment. But it is important to design such concrete compositions with a reduced flow of cement. It is known that the coefficient of efficiency of use of cement in the concrete of the heavy and B10 is less than about 0.5, which is almost two times smaller than in class B15 concrete and above. Even lower coefficient of efficiency in light concrete cement low strength. Therefore, it is important to find patterns determining the composition of lightweight concrete based on local-products industry with more efficient use of cement in them. Purpose.. Based on the analysis of earlier research results, including with the use of methods of mathematical planning of experiments to determine the concrete contents, which can provide the requirements for the underlying layers of the floor, the compressive strength of which should correspond to the class B5. It is important to provide the required strength at minimum flow of the cement, which is the most expensive and energy-intensive part of concrete. Conclusion. Analysis of the test results of control samples of concrete in 28-day-old, the following laws. The required tensile strength of concrete compressive strength of 7.0 MPa can be obtained in the test range when used in formulations as a filler as the Dnieper hydroelectric power station fly ash and tailings Krivoy Rog iron ore YuGOK. To ensure providing the required characteristic strength of the concrete in the underlying layers of the floor is advisable to use a nominal composition per cubic meter of concrete: cement 160 kg granshlaka Plant named after Petrovsky, 675 kg of fly ash Dnieper HPP 390 kg, 400 kg of sand, 230 liters of water. Thus, while ensuring rational grain composition components can obtain the desired strength lightweight concrete based granshlaka plant Petrovsky, using as fillers

  18. Thorium-based Molten Salt Reactor (TMSR) project in China

    International Nuclear Information System (INIS)

    Dai, Zhimin; Liu, Wei

    2013-01-01

    Making great efforts in development of nuclear energy is one of the long-term-plan in China's energy strategies. The advantages of Thorium-based nuclear energy are: rich resource in nature, less nuclear waste, low toxicity, nuclear non-proliferation and so on. Furthermore, China is a country with abundant thorium, thus it is necessary to develop the Thorium-based Molten Salt Reactor (TMSR) in China. Shanghai Institute of Applied Physics, Chinese Academy of Sciences (SINAP) had designed and constructed the first China's light-water reactor and developed a zero-power thorium-based molten salt reactor successfully in the early 1970s. The applied research project 'thorium molten salt reactor nuclear power system' by SINAP together with several other institutes had been accepted and granted by China government in 2011. The whole project has been divided into three stages: Firstly, built a 2 MW-zero-power high temperature solid molten salt reactor in 2015 and a 2 MW-zero-power high temperature liquid molten salt reactor in 2017. Secondly, in 2020 built a 10 MW high temperature liquid molten salt reactor. Thirdly, on the base of previous work, a 100 MW high temperature molten salt reactor should be achieving in 2030. After more than one years of efforts, a high quality scientific research team has been formed, which is able to design the molten salt reactor, the molten salt loop and related key equipment, the systems of molten salt preparation, purification and the radioactive gas removal. In the past one year, the initial physical design of high temperature molten salt reactor has been completed; the nuclear chemistry and radiation chemical laboratory has been built, a high temperature salt (HTS) loop and radioactive gas removal experiment device system have been successfully developed and constructed. Further, the preliminary study on reactor used carbon-carbon composite material has been investigated. (author)

  19. The Plinius/Colima CA-U3 test on fission-product aerosol release over a VVER-type corium pool; L'essai Plinius/Colima CA-U3 sur le relachement des aerosols de produits de fission au-dessus d'un bain de corium de type VVER

    Energy Technology Data Exchange (ETDEWEB)

    Journeau, Ch.; Piluso, P.; Correggio, P.; Godin-Jacqmin, L

    2007-07-01

    In a hypothetical case of severe accident in a PWR type VVER-440, a complex corium pool could be formed and fission products could be released. In order to study aerosols release in terms of mechanisms, kinetics, nature or quantity, and to better precise the source term of VVER-440, a series of experiments have been performed in the Colima facility and the test Colima CA-U3 has been successfully performed thanks to technological modifications to melt a prototypical corium at 2760 C degrees. Specific instrumentation has allowed us to follow the evolution of the corium melt and the release, transport and deposition of the fission products. The main conclusions are: -) there is a large release of Cr, Te, Sr, Pr and Rh (>95%w), -) there is a significant release of Fe (50%w), -) there is a small release of Ba, Ce, La, Nb, Nd and Y (<90%w), -) there is a very small release of U in proportion (<5%w) but it is one of the major released species in mass, and -) there is no release of Zr. The Colima experimental results are consistent with previous experiments on irradiated fuels except for Ba, Fe and U releases. (A.C.)

  20. Effect of UV-B and high visual radiation on photosynthesis in freshwater (nostoc spongiaeforme) and marine (Phormidium corium) cyanobacteria.

    Science.gov (United States)

    Bhandari, Rupali; Sharma, Prabhat Kumar

    2007-08-01

    Human activity is causing depletion of ozone in stratosphere, resulting in increased UV-B radiation and global warming. However, impact of these climatic changes on the aquatic organism (especially marine) is not fully understood. Here, we have studied the effect of excess UV-B and visible radiation on photosynthetic pigments, fatty acids content, lipid peroxidation, nitrogen content, nitrogen reductase activity and membrane proteins, induction of mycosporine-like amino acids (MAAs) and antioxidant enzymes superoxide dismutase (SOD) and ascorbate peroxidase (APX) in freshwater (Nostoc spongiaeform) and marine (Phormidium corium) cyanobacteria. UV-B treatment resulted in an increase in photosynthetic pigments in Nostoc and decrease in Phormidium, but high light treatment caused photobleaching of most of the pigments in both the species. Unsaturation level of fatty acids of both total and glycolipids remained unchanged in both the cyanobacteria, as a result of UV-B and high light treatments. Saturated fatty acids of total and glycolipids declined slightly in Nostoc by both the treatments. but remained unchanged in Phormidium. No changes in the unsaturated lipid content in our study probably suggested adaptation of the organism to the treatments. However, both treatments resulted in peroxidation of membrane lipids, indicating oxidative damage to lipids without any change in the level of unsaturation of fatty acid in the cell membrane. Qualitative and quantitative changes were observed in membrane protein profile due to the treatments. Cyanobacteria were able to synthesize MAAs in response to the UV-B treatment. Both treatments also increased the activities of SOD and APX. In conclusion, the study demonstrated induction of antioxidants such as SOD and APX under visible light treatment and screening pigment (MAAs) under UV-B treatment, which might protect the cyanobacteria from oxidative damage caused by high light and UV-B radiation.

  1. Electrochemical studies on plutonium in molten salts

    International Nuclear Information System (INIS)

    Bourges, G.; Lambertin, D.; Rochefort, S.; Delpech, S.; Picard, G.

    2007-01-01

    Electrochemical studies on plutonium have been supporting the development of pyrochemical processes involving plutonium at CEA. The electrochemical properties of plutonium have been studied in molten salts - ternary eutectic mixture NaCl-KCl-BaCl 2 , equimolar mixture NaCl-KCl and pure CaCl 2 - and in liquid gallium at 1073 K. The formal, or apparent, standard potential of Pu(III)/Pu redox couple in eutectic mixture of NaCl-KCl-BaCl 2 at 1073 K determined by potentiometry is equal to -2.56 V (versus Cl 2 , 1 atm/Cl - reference electrode). In NaCl-KCl eutectic mixture and in pure CaCl 2 the formal standard potentials deduced from cyclic voltammetry are respectively -2.54 V and -2.51 V. These potentials led to the calculation of the activity coefficients of Pu(III) in the molten salts. Chronoamperometry on plutonium in liquid gallium using molten chlorides - CaCl 2 and equimolar NaCl/KCl - led to the determination of the activity coefficient of Pu in liquid Ga, log γ = -7.3. This new data is a key parameter to assess the thermodynamic feasibility of a process using gallium as solvent metal. By comparing gallium with other solvent metals - cadmium, bismuth, aluminum - gallium appears to be, with aluminum, more favorable for the selectivity of the separation at 1073 K of plutonium from cerium. In fact, compared with a solid tungsten electrode, none of these solvent liquid metals is a real asset for the selectivity of the separation. The role of a solvent liquid metal is mainly to trap the elements

  2. Magnesium oxychloride cement concrete

    Indian Academy of Sciences (India)

    The durability of MOC concrete compositions against extreme environmental conditions viz. heating–cooling, freezing–thawing, wetting–drying and penetration and deposition of salts etc were investigated. The results reveal that MOC concrete has high compressive strength associated with high flexural strength and the ...

  3. Radiographic testing of concrete

    International Nuclear Information System (INIS)

    Porter, James F.

    1997-01-01

    The increase in construction activity in the Philippines, reinforced concrete building is still a favorite among designers, because it is much cheaper to build and it requires qualified welders, etc. and extensive nondestructive testing and inspection of metals, welds and castings. Of all the techniques radiography is widely used for concrete

  4. Concrete deck material properties.

    Science.gov (United States)

    2009-01-01

    The two-fold focus of this study was (a) to develop an understanding of the mechanisms responsible for causing : cracking in the concrete; and (b) to study the influence of the local materials on the performance of NYSDOTs HP : concrete mixture. R...

  5. Concrete-Design

    Directory of Open Access Journals (Sweden)

    Leczovics Péter

    2014-12-01

    Full Text Available Present paper introduces a new interpretation of concrete, demonstrating some extreme possibilities of this rigid material such as a design element. In the first part a brief overview of the previous achievements are shown. The second part of this paper focuses on the relationship between concrete and fashion.

  6. Danish High Performance Concretes

    DEFF Research Database (Denmark)

    Nielsen, M. P.; Christoffersen, J.; Frederiksen, J.

    1994-01-01

    In this paper the main results obtained in the research program High Performance Concretes in the 90's are presented. This program was financed by the Danish government and was carried out in cooperation between The Technical University of Denmark, several private companies, and Aalborg University...... concretes, workability, ductility, and confinement problems....

  7. Concrete, hardened: Self desiccation

    DEFF Research Database (Denmark)

    Hansen, Ernst Jan De Place; Hansen, Kurt Kielsgaard; Persson, Bertil

    1999-01-01

    The test method covers the determination of internal relative humidity (RH) in hardened concrete and cement mortar using RH instruments. The determination of RH is done on crushed samples of concrete or cement motar. This test method is only for measuring equipment which gives off or takes up...

  8. concrete5 Beginner's Guide

    CERN Document Server

    Laubacher, Remo

    2011-01-01

    This book is part of Packt's Beginner's Guide series. You will be guided through the set up of a Concrete5 site with step-by-step practical examples. This book is ideal for developers who would like to build their first site with Concrete5. Some k

  9. Applications of molten salts in plutonium processing

    International Nuclear Information System (INIS)

    Bowersox, D.F.; Christensen, D.C.; Williams, J.D.

    1987-01-01

    Plutonium is efficiently recovered from scrap at Los Alamos by a series of chemical reactions and separations conducted at temperatures ranging from 700 to 900 0 C. These processes usually employ a molten salt or salt eutectic as a heat sink and/or reaction medium. Salts for these operations were selected early in the development cycle. The selection criteria are being reevaluated. In this article we describe the processes now in use at Los Alamos and our studies of alternate salts and eutectics

  10. Apparatus for controlling molten core debris

    International Nuclear Information System (INIS)

    Golden, M.P.; Tilbrook, R.W.; Heylmun, N.F.

    1972-01-01

    Disclosed is an apparatus for containing, cooling, diluting, dispersing and maintaining subcritical the molten core debris assumed to melt through the bottom of a nuclear reactor pressure vessel in the unlikely event of a core meltdown. The apparatus is basically a sacrificial bed system which includes an inverted conical funnel, a core debris receptacle including a spherical dome, a spherically layered bed of primarily magnesia bricks, a cooling system of zig-zag piping in graphite blocks about and below the bed and a cylindrical liner surrounding the graphite blocks including a steel shell surrounded by firebrick. Tantalum absorber rods are used in the receptacle and bed. 9 claims, 22 figures

  11. Electrorecovery of tantalum in molten fluorides

    International Nuclear Information System (INIS)

    Espinola, A.; Dutra, A.J.B.; Silva, F.T. da

    1988-01-01

    Considering the privileged situation of Brazil as a productor of tantaliferous minerals, the authors have in view the development of a technology for production of metallic tantalum via molten salts electrolysis; this has the advantage of improving the aggregate value of exportation products, additionally to tantalum oxide and tantalum concentrates. Having in view the preliminary determintion of better conditions of temperature, electrolyte composition and current density for this process, electrolysis were conducted with a solvent composed of an eutetic mixture of lithium, sodium and potassium fluoride for dipotassium fluotantalate and occasionally for tantalum oxide. Current efficiencies as high as 83% were obtained in favoured conditions. (author) [pt

  12. Safe actinide disposition in molten salt reactors

    International Nuclear Information System (INIS)

    Gat, U.

    1997-01-01

    Safe molten salt reactors (MSR) can readily accommodate the burning of all fissile actinides. Only minor compromises associated with plutonium are required. The MSRs can dispose safely of actinides and long lived isotopes to result in safer and simpler waste. Disposing of actinides in MSRs does increase the source term of a safety optimized MSR. It is concluded that the burning and transmutation of actinides in MSRs can be done in a safe manner. Development is needed for the processing to handle and separate the actinides. Calculations are needed to establish the neutron economy and the fuel management. 9 refs

  13. Radiation shielding concrete

    International Nuclear Information System (INIS)

    Kunishima, Shigeru.

    1990-01-01

    The radiation shielding concretes comprise water, cement, fine aggregates consisting of serpentines and blown mist slags, coarse aggregates consisting of serpentines and kneading materials. Since serpentines containing a relatively great amount of water of crystallization in rocks as coarse aggregates and fine aggregates, the hydrogen content in the radiation shielding concretes is increased and the neutron shielding effect is improved. In addition, since serpentines are added as the fine aggregates and blown mists slags of a great specific gravity are used, the specific gravity of the shielding concretes is increased to improve the γ-ray shielding effect. Further, by the use of the kneading material having a water reducing effect and fluidizing effect, and by the bearing effect of the spherical blown mist slags used as the fine aggregates, concrete fluidity can be increased. Accordingly, workability of the radiation shielding concretes can be improved. (T.M.)

  14. Concrete quality assurance

    Energy Technology Data Exchange (ETDEWEB)

    Holz, N. [Harza Engineering Company, Chicago, IL (United States)

    2000-08-01

    This short article reports on progress at the world's largest civil construction project, namely China's Three Gorges hydro project. Work goes on around the clock to put in place nearly 28 M m{sup 3} of concrete. At every stage of the work there is strong emphasis on quality assurance (QA) and concrete is no exception. The US company Harza Engineering has been providing QA since the mid-1980s and concrete QA has been based on international standards. Harza personnel work in the field with supervisors developing educational tools for supervising concrete construction and quality, as well as providing training courses in concrete technology. Some details on flood control, capacity, water quality and environmental aspects are given..

  15. Interaction of calcium oxide with molten alkali metal chlorides

    International Nuclear Information System (INIS)

    Volkovich, A.V.; Zhuravlev, V.I.; Ermakov, D.S.; Magurina, M.V.

    1999-01-01

    Calcium oxide solubility in molten lithium, sodium, potassium, cesium chlorides and their binary mixtures is determined in a temperature range of 973-1173 K by the method of isothermal saturation. Mechanisms of calcium oxide interaction with molten alkali metal chlorides are proposed

  16. Molten salt fueled reactors with a fast salt draining

    International Nuclear Information System (INIS)

    Ventre, Edmond; Blum, J.M.

    1976-01-01

    This invention relates to a molten salt nuclear reactor which comprises a new arrangement for shutting it down in complete safety. This nuclear reactor has a molten salt primary circuit comprising, in particular, the core of this reactor. It includes a leak tight vessel the capacity of which is appreciably greater than that of the molten salt volume of the circuit and placed so that the level of the molten salt, when all the molten salt of the circuit is contained in this vessel, is less than that of the base of the core. There are facilities for establishing and maintaining an inert gas pressure in the vessel above the molten salt, for releasing the compressed gas and for connecting the vessel to the primary circuit entering this vessel at a lower level than that of the molten salt and enabling molten salt to enter or leave the vessel according to the pressure of the inert gas. The particular advantage of this reactor is that it can be shut down safely since the draining of the primary circuit no longer results from a 'positive action' but from the suppression of an arrangement essential for the operation of the reactor consisting of the build-up of the said inert gas pressure in the said vessel [fr

  17. Advancing Molten Salts and Fuels at Sandia National Laboratories

    Energy Technology Data Exchange (ETDEWEB)

    Rodriguez, Salvador B. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2017-09-26

    SNL has a combination of experimental facilities, nuclear engineering, nuclear security, severe nuclear accidents, and nuclear safeguards expertise that can enable significant progress towards molten salts and fuels for Molten Salt Reactors (MSRs). The following areas and opportunities are discussed in more detail in this white paper.

  18. On the ionic equilibrium between complexes in molten fluoroaluminates

    International Nuclear Information System (INIS)

    Akdeniz, Z.; Tankeshwar, K.; Tosi, M.P.

    1991-02-01

    We discuss theoretically (i) the effect of the alkali cation species on the ionic equilibrium between (AlF 6 ) 3- and (AlF 4 ) - complexes in molten alkali fluoroaluminates, and (ii) the possible presence of (AlF 5 ) 2 - complexes in molten cryolite, in relation to very recent Raman scattering experiments by Gilbert and Materne. (author). 7 refs, 2 tabs

  19. 46 CFR 151.50-55 - Sulfur (molten).

    Science.gov (United States)

    2010-10-01

    ... BULK LIQUID HAZARDOUS MATERIAL CARGOES Special Requirements § 151.50-55 Sulfur (molten). (a.... Heat transfer media shall be steam, and alternate media will require specific approval of the... 46 Shipping 5 2010-10-01 2010-10-01 false Sulfur (molten). 151.50-55 Section 151.50-55 Shipping...

  20. Measurement and analyses of molten Ni-Co alloy density

    Institute of Scientific and Technical Information of China (English)

    XIAO Feng; K. MUKAI; FANG Liang; FU Ya; YANG Ren-hui

    2006-01-01

    With the advent of powerful mathematical modeling techniques for material phenomena, there is renewed interest in reliable data for the density of the Ni-based superalloys. Up to now, there has been few report on the density of molten Ni-Co alloy.In order to obtain more accurate density data for molten Ni-Co alloy, the density of molten Ni-Co alloy was measured with a modified sessile drop method, and the accommodation of different atoms in molten Ni-Co alloy was analyzed. The density of alloy is found to decrease with increasing temperature and Co concentration in the alloy. The molar volume of molten Ni-Co alloy increases with increasing Co concentration. The molar volume of Ni-Co alloy determined shows a positive deviation from the linear molar volume, and the deviation of molar volume from ideal mixing increases with increasing Co concentration over the experimental concentration range.

  1. Advances in molten salt electrochemistry towards future energy systems

    International Nuclear Information System (INIS)

    Ito, Yasuhiko

    2005-01-01

    This review article describes some selected novel molten salt electrochemical processes which have been created/developed by the author and his coworkers, with emphasis on the applications towards future energy systems. After showing a perspective of the applications of molten salt electrochemistry from the viewpoints of energy and environment, several selected topics are described in detail, which include nitride fuel cycle in a nuclear field, hydrogen energy system coupled with ammonia economy, thermally regenerative fuel cell systems, novel Si production process for solar cell and novel molten salt electrochemical processes for various energy and environment related functional materials including nitrides, rare earth-transition metal alloys, fine particles obtained by plasma-induced electrolysis, and carbon film. And finally, the author stresses again, the importance and potential of molten salt electrochemistry, and encourages young students, scientists and researchers to march in a procession hand in hand towards a bright future of molten salts. (author)

  2. Molten salt extractive distillation process for zirconium-hafnium separation

    International Nuclear Information System (INIS)

    McLaughlin, D.F.; Stoltz, R.A.

    1989-01-01

    This patent describes an improvement in a process for zirconium-hafnium separation. It utilizes an extractive distillation column with a mixture of zirconium and hafnium tetrachlorides introduced into a distillation column having a top and bottom with hafnium enriched overheads taken from the top of the column and a molten salt solvent circulated through the column to provide a liquid phase, and with molten salt solvent containing zirconium chloride being taken from the bottom of the distillation column. The improvements comprising: utilizing a molten salt solvent consisting principally of lithium chloride and at least one of sodium, potassium, magnesium and calcium chlorides; stripping of the zirconium chloride taken from the bottom of the distillation column by electrochemically reducing zirconium from the molten salt solvent; and utilizing a pressurized reflux condenser on the top of the column to add the hafnium chloride enriched overheads to the molten salt solvent previously stripped of zirconium chloride

  3. Molten core material holding device in a nuclear reactor

    International Nuclear Information System (INIS)

    Nakamura, Hisashi; Tanaka, Nobuo; Takahashi, Katsuro.

    1985-01-01

    Purpose: To improve the function of cooling to hold molten core materials in a molten core material holding device. Constitution: Plenum structures are formed into a pan-like configuration, in which liners made of metal having high melting point and relatively high heat conductivity such as tantalum, tungsten, rhenium or alloys thereof are integrally appended to hold and directly cool the molten reactor core materials. Further, a plurality of heat pipes, passing through the plenum structures, facing the cooling portion thereof to the coolants at the outer side and immersing the heating portion into the molten core materials fallen to deposit in the inner liners are disposed radially. Furthermore, heat pipes embodded in the plenum structure are disposed in the same manner below the liners. Thus, the plenum structures and the molten reactor core materials can be cooled at a high efficiency. (Seki, T.)

  4. Liquid entrainment through orifices by sparging gas

    International Nuclear Information System (INIS)

    Bonnet, J.M.; Malara, M.; Amblard, M.; Seiler, J.M.

    2001-01-01

    Corium Coolability by water flood during an MCCI (Molten Corium Concrete Interaction) is still an open problem. Several physical mechanisms have been identified which may reduce significantly and finally stop the ablation of concrete. Among these mechanisms, corium ejection by sparging gas into the overlying water may represent an important contribution. This mechanism was at the origin of a large and coolable debris bed and volcano formation in the MACE M3B test. This mechanism has also been observed in simulant material tests performed at UCSB and at FZK. The objective of the work, which is described in the present paper, is to model this mechanism and to quantify the liquid entrainment rate by sparging gas. (author)

  5. Fuel processing for molten-salt reactors

    International Nuclear Information System (INIS)

    Hightower, J.R. Jr.

    1976-01-01

    Research devoted to development of processes for the isolation of protactinium and for the removal of fission products from molten-salt breeder reactors is reported. During this report period, engineering development progressed on continuous fluorinators for uranium removal, the metal transfer process for rare-earth removal, the fuel reconstitution step, and molten salt--bismuth contactors to be used in reductive extraction processes. The metal transfer experiment MTE-3B was started. In this experiment all parts of the metal transfer process for rare-earth removal are demonstrated using salt flow rates which are about 1 percent of those required to process the fuel salt in a 1000-MW(e) MSBR. During this report period the salt and bismuth phases were transferred to the experimental vessels, and two runs with agitator speeds of 5 rps were made to measure the rate of transfer of neodymium from the fluoride salt to the Bi--Li stripper solution. The uranium removed from the fuel salt by fluorination must be returned to the processed salt in the fuel reconstitution step before the fuel salt is returned to the reactor. An engineering experiment to demonstrate the fuel reconstitution step is being installed. In this experiment gold-lined equipment will be used to avoid introducing products of corrosion by UF 6 and UF 5 . Alternative methods for providing the gold lining include electroplating and mechanical fabrication

  6. Organic waste processing using molten salt oxidation

    Energy Technology Data Exchange (ETDEWEB)

    Adamson, M. G., LLNL

    1998-03-01

    Molten Salt Oxidation (MSO) is a thermal means of oxidizing (destroying) the organic constituents of mixed wastes, hazardous wastes, and energetic materials while retaining inorganic and radioactive constituents in the salt. For this reason, MSO is considered a promising alternative to incineration for the treatment of a variety of organic wastes. The U. S. Department of Energy`s Office of Environmental Management (DOE/EM) is currently funding research that will identify alternatives to incineration for the treatment of organic-based mixed wastes. (Mixed wastes are defined as waste streams which have both hazardous and radioactive properties.) One such project is Lawrence Livermore National Laboratory`s Expedited Technology Demonstration of Molten Salt Oxidation (MSO). The goal of this project is to conduct an integrated demonstration of MSO, including off-gas and spent salt treatment, and the preparation of robust solid final forms. Livermore National Laboratory (LLNL) has constructed an integrated pilot-scale MSO treatment system in which tests and demonstrations are presently being performed under carefully controlled (experimental) conditions. The system consists of a MSO process vessel with dedicated off-gas treatment, a salt recycle system, feed preparation equipment, and equipment for preparing ceramic final waste forms. In this paper we describe the integrated system and discuss its capabilities as well as preliminary process demonstration data. A primary purpose of these demonstrations is to identify the most suitable waste streams and waste types for MSO treatment.

  7. Concrete sample point: 304 Concretion Facility

    International Nuclear Information System (INIS)

    Rollison, M.D.

    1995-01-01

    This report contains information concerning the analysis of concretes for volatile organic compounds. Included are the raw data for these analysis and the quality control data, the standards data, and all of the accompanying chains-of-custody records and requests for special analysis

  8. Ex-vessel molten core debris interactions at CANDU nuclear power plants

    Energy Technology Data Exchange (ETDEWEB)

    Lewis, M J; Oyinloye, J O; Chambers, I [Electrowatt Consulting Engineers and Scientists, Warrington, Cheshire (United Kingdom); Scott, C K [Atlantic Nuclear Services, Fredericton, NB (Canada); Omar, A M [Atomic Energy Control Board, Ottawa, ON (Canada)

    1991-12-31

    Currently, the Atomic Energy Control Board (AECB) of Canada is sponsoring a project with a long term objective of obtaining an evaluation, independent of the industry, of the consequences to the public and the environment of postulated severe accidents at a Canadian nuclear power plant. Phase 1 of this project is a scoping study conducted to establish the relative consequences of a number of postulated event sequences. The studies in this paper model a multi-unit CANDU reactor at which pre-defined initiating events and their consequences could lead to severe core damage and relocation of the core debris onto the floor of the concrete reactor vault. Depending on the accident sequence assumptions made, an overlying pool of water may or may not be present. The US-NRC computer code CORCON Mod 2.0 was used to calculate the behaviour of the core material interacting with the concrete. The code calculates the decomposition of concrete by the molten core, and also the gases produced, which are released into the containment. The challenges to containment integrity are described, from the viewpoint of foundation decomposition and failure due to overpressure. The containment thermal-hydraulic behaviour is examined using an in-house computer code (CREM) written for this purpose. It is found that the containment envelope, in the absence of mitigating operator actions or design safety features, even for a case involving early core disassembly with the vacuum building unavailable, is unlikely to be failed within the 48 hours time frame examined. The paper identifies several areas for improvement in the models for future studies of core-concrete interactions for CANDU reactor plants. (author). 8 refs., 1 tab., 5 figs.

  9. Ex-vessel molten core debris interactions at CANDU nuclear power plants

    International Nuclear Information System (INIS)

    Lewis, M.J.; Oyinloye, J.O.; Chambers, I.; Scott, C.K.; Omar, A.M.

    1990-01-01

    Currently, the Atomic Energy Control Board (AECB) of Canada is sponsoring a project with a long term objective of obtaining an evaluation, independent of the industry, of the consequences to the public and the environment of postulated severe accidents at a Canadian nuclear power plant. Phase 1 of this project is a scoping study conducted to establish the relative consequences of a number of postulated event sequences. The studies in this paper model a multi-unit CANDU reactor at which pre-defined initiating events and their consequences could lead to severe core damage and relocation of the core debris onto the floor of the concrete reactor vault. Depending on the accident sequence assumptions made, an overlying pool of water may or may not be present. The US-NRC computer code CORCON Mod 2.0 was used to calculate the behaviour of the core material interacting with the concrete. The code calculates the decomposition of concrete by the molten core, and also the gases produced, which are released into the containment. The challenges to containment integrity are described, from the viewpoint of foundation decomposition and failure due to overpressure. The containment thermal-hydraulic behaviour is examined using an in-house computer code (CREM) written for this purpose. It is found that the containment envelope, in the absence of mitigating operator actions or design safety features, even for a case involving early core disassembly with the vacuum building unavailable, is unlikely to be failed within the 48 hours time frame examined. The paper identifies several areas for improvement in the models for future studies of core-concrete interactions for CANDU reactor plants. (author). 8 refs., 1 tab., 5 figs

  10. Melt coolability modeling and comparison to MACE test results

    International Nuclear Information System (INIS)

    Farmer, M.T.; Sienicki, J.J.; Spencer, B.W.

    1992-01-01

    An important question in the assessment of severe accidents in light water nuclear reactors is the ability of water to quench a molten corium-concrete interaction and thereby terminate the accident progression. As part of the Melt Attack and Coolability Experiment (MACE) Program, phenomenological models of the corium quenching process are under development. The modeling approach considers both bulk cooldown and crust-limited heat transfer regimes, as well as criteria for the pool thermal hydraulic conditions which separate the two regimes. The model is then compared with results of the MACE experiments

  11. Accident analyses on TMLB' and LOCA for KNGR using MELCOR code

    Energy Technology Data Exchange (ETDEWEB)

    Park, Soo Yong; Choi, Y.; Ahn, K.I

    2000-11-01

    Plant specific phenomenological analyses for the Korean Next Generation Reactor, using MELCOR program, are described in this report. The most important two accident sequences, a station blackout and a loss of coolant scenario, are selected. Complete coverage of corium behavior both in-vessel and ex-vessel, and the corresponding containment responses, are analyzed. The in-vessel progression includes the thermal hydraulics in the primary system, core heat up, hydrogen generation, and melt progression up to the reactor vessel breach. The ex-vessel progression describes molten corium - concrete interaction phenomena and the pressure behavior in the containment atmosphere.

  12. Selective Adsorption of Sodium Aluminum Fluoride Salts from Molten Aluminum

    Energy Technology Data Exchange (ETDEWEB)

    Leonard S. Aubrey; Christine A. Boyle; Eddie M. Williams; David H. DeYoung; Dawid D. Smith; Feng Chi

    2007-08-16

    Aluminum is produced in electrolytic reduction cells where alumina feedstock is dissolved in molten cryolite (sodium aluminum fluoride) along with aluminum and calcium fluorides. The dissolved alumina is then reduced by electrolysis and the molten aluminum separates to the bottom of the cell. The reduction cell is periodically tapped to remove the molten aluminum. During the tapping process, some of the molten electrolyte (commonly referred as “bath” in the aluminum industry) is carried over with the molten aluminum and into the transfer crucible. The carryover of molten bath into the holding furnace can create significant operational problems in aluminum cast houses. Bath carryover can result in several problems. The most troublesome problem is sodium and calcium pickup in magnesium-bearing alloys. Magnesium alloying additions can result in Mg-Na and Mg-Ca exchange reactions with the molten bath, which results in the undesirable pickup of elemental sodium and calcium. This final report presents the findings of a project to evaluate removal of molten bath using a new and novel micro-porous filter media. The theory of selective adsorption or removal is based on interfacial surface energy differences of molten aluminum and bath on the micro-porous filter structure. This report describes the theory of the selective adsorption-filtration process, the development of suitable micro-porous filter media, and the operational results obtained with a micro-porous bed filtration system. The micro-porous filter media was found to very effectively remove molten sodium aluminum fluoride bath by the selective adsorption-filtration mechanism.

  13. Performance of Waterless Concrete

    Science.gov (United States)

    Toutanji, Houssam; Evans, Steve; Grugel, Richard N.

    2010-01-01

    The development of permanent lunar bases is constrained by performance of construction materials and availability of in-situ resources. Concrete seems a suitable construction material for the lunar environment, but water, one of its major components, is an extremely scarce resource on the Moon. This study explores an alternative to hydraulic concrete by replacing the binding mix of concrete (cement and water) with sulfur. Sulfur is a volatile element on the lunar surface that can be extracted from lunar soils by heating. Sulfur concrete mixes were prepared to investigate the effect of extreme environmental conditions on the properties of sulfur concrete. A hypervelocity impact test was conducted, having as its target a 5-cm cubic sample of sulfur concrete. This item consisted of JSC-1 lunar regolith simulant (65%) and sulfur (35%). The sample was placed in the MSFC Impact Test Facility s Micro Light Gas Gun target chamber, and was struck by a 1-mm diameter (1.4e-03 g) aluminum projectile at 5.85 km/s. In addition, HZTERN code, provided by NASA was used to study the effectiveness of sulfur concrete when subjected to space radiation.

  14. Electrokinetic decontamination of concrete

    International Nuclear Information System (INIS)

    Lomasney, H.L.; SenGupta, A.K.; Yachmenev, V.

    1996-01-01

    ELECTROSORB Electrokinetic Extraction Technology, developed by ISOTRON Corp., offers a cost-effective approach to treating contaminated concrete. Heavy metals/radionuclides trapped in concrete can be extracted using this process if they are chemically solubilized; solubilizers used are citric acid alone and a mixture of citric and nitric acids. A DC electric field is applied across the contaminated concrete to electrokinetically transport the solubilized contaminants from the concrete pores to a collector on the concrete surface. The collector is an extraction pad laid on the surface. The pad provides confinement for a planar electrode and solubilizer solution; it is operated under a vacuum to hold the pad against the concrete surface. Operation requires little attendance, reducing the workers' health hazards. The process incorporates a mechanism for recycling the solubilizer solution. A field demonstration of the process took place in Building 21 of DOE's Mound facility in Miamisburg, OH, over 12 days in June 1996. The thorium species present in this building's concrete floors included ThO 2 and thorium oxalate. The nitric acid was found to facilitate Th extraction

  15. Steel fiber reinforced concrete

    International Nuclear Information System (INIS)

    Baloch, S.U.

    2005-01-01

    Steel-Fiber Reinforced Concrete is constructed by adding short fibers of small cross-sectional size .to the fresh concrete. These fibers reinforce the concrete in all directions, as they are randomly oriented. The improved mechanical properties of concrete include ductility, impact-resistance, compressive, tensile and flexural strength and abrasion-resistance. These uniqlte properties of the fiber- reinforcement can be exploited to great advantage in concrete structural members containing both conventional bar-reinforcement and steel fibers. The improvements in mechanical properties of cementitious materials resulting from steel-fiber reinforcement depend on the type, geometry, volume fraction and material-properties of fibers, the matrix mix proportions and the fiber-matrix interfacial bond characteristics. Effects of steel fibers on the mechanical properties of concrete have been investigated in this paper through a comprehensive testing-programme, by varying the fiber volume fraction and the aspect-ratio (Lid) of fibers. Significant improvements are observed in compressive, tensile, flexural strength and impact-resistance of concrete, accompanied by marked improvement in ductility. optimum fiber-volume fraction and aspect-ratio of steel fibers is identified. Test results are analyzed in details and relevant conclusions drawn. The research is finally concluded with future research needs. (author)

  16. Effect of insulating concrete forms in concrete compresive strength

    Science.gov (United States)

    Martinez Jerez, Silvio R.

    The subject presented in this thesis is the effect of Insulating Concrete Forms (ICF's) on concrete compressive strength. This work seeks to identify if concrete cured in ICF's has an effect in compressive strength due to the thermal insulation provided by the forms. Modern construction is moving to energy efficient buildings and ICF's is becoming more popular in new developments. The thesis used a concrete mixture and a mortar mixture to investigate the effects of ICF's on concrete compressive strength. After the experimentations were performed, it was concluded that the ICF's do affect concrete strength. It was found that the forms increase concrete strength without the need for additional curing water. An increase of 50% in strength at 56 days was obtained. It was concluded that the longer concrete cures inside ICF's, the higher strength it reaches, and that ICF's effect on concrete strength is proportional to volume of concrete.

  17. Concrete and criticality

    International Nuclear Information System (INIS)

    Carter, R.D.

    1978-01-01

    Concrete is a widely used structural material which occurs frequently in systems requiring criticality analyses. Ordinarily, we give little thought to what its actual composition is (as compared to reference compositions), yet in criticality safety, differences in composition can cause large changes in k-effective and it may not be easy to predict in which direction the change will occur. Concrete composition is quite variable with differences in the aggregate used in the concrete in various parts of the country providing relative large differences in k-effective. The water content of concrete can also strongly affect the reactivity of a system in which it acts as a reflector or is interspersed between fissile units. Because concrete is so common and is often (but not always) a better reflector than water, one must know the concrete compositions or be prepared to use a ''worst case'' composition. It may be a problem, however, to determine just what is the worst case. At the Hanford Plant, the aggregate normally used is basalt, which gives a composition very low in carbon as opposed to those areas (e.g., Oak Ridge) where the use of limestone aggregate will result in concrete with a high carbon content. The data presented show some of the effects found in situations using ''Hanford'' concrete, but similar effects might be found with other compositions. In some cases, the use of concrete may be incidental to the effects shown. While the numbers shown are those for actual systems, the primary intent is to alert the reader that these effects can occur. In applying this information, the analyst should use material specific to the systems being analyzed

  18. Biodecontamination of concrete

    International Nuclear Information System (INIS)

    Hamilton, M.A.; Rogers, R.D.; Benson, J.

    1996-01-01

    A novel technology for biologically decontaminating concrete is being jointly developed by scientists at the Idaho National Engineering Laboratory (INEL) and British Nuclear Fuels plc (BNFL). The technology exploits a naturally occurring phenomenon referred to as microbially influenced degradation (MID) in which bacteria produce acids that dissolve the cement matrix of concrete. Most radionuclide contamination of concrete is fixed in the outer few mm of the concrete surface. By capturing and controlling this natural process, a biological method of removing the surface of concrete to depths up to several mm is being developed. Three types of bacteria are known to be important in MID of concrete: nitrifying bacteria that produce nitric acid, sulfur oxidizing bacteria that produce sulfuric acid, and certain heterotrophic bacteria that produce organic acids. An investigation of natural environments demonstrated with scanning electron microscopy the presence of bacteria on concrete surfaces of a variety of structures, such as bridges and dams, where corrosion is evident. Enumeration of sulfur oxidizing and nitrifying bacteria revealed their presence and activity on structures to varying degrees in different environments. Under ideal conditions, Thiobacillus thiooxidans, a sulfur oxidizing bacteria, attached to and colonized the surface of concrete specimens. Over 1mm depth of material from a 10 cm x 10 cm square surface was removed in 68 days in the Thiobacillus treated specimen compared to a sterile control. Laboratory and field demonstrations are currently being conducted using experimental chambers designed to be mounted directly to concrete surfaces where radionuclide contamination exists. Data is being obtained in order to determine actual rates of surface removal and limitations to the system. This information will be used to develop a full scale decontamination technology

  19. concrete5 cookbook

    CERN Document Server

    Strack, David

    2013-01-01

    The Cookbook-style recipes allow you to go both directly to your topic of interest or follow topics throughout a chapter to gain in-depth knowledge. This practical Cookbook will cater to the needs of both intermediate and advanced concrete5 developers.This book is geared towards intermediate to advanced PHP developers who would like to learn more about the concrete5 content management system. Developers already familiar with concrete5 will learn new time-saving tricks and will find the book to be a great reference tool.

  20. Concrete = aggregate, cement, water?

    International Nuclear Information System (INIS)

    Jelinek, J.

    1990-01-01

    Concrete for the Temelin nuclear power plant is produced to about 70 different formulae. For quality production, homogeneous properties of aggregates, accurate proportioning devices, technological discipline and systematic inspections and tests should be assured. The results are reported of measuring compression strength after 28 days for different concrete samples. The results of such tests allow reducing the proportion of cement, which brings about considerable savings. Reduction in cement quantities can also be achieved by adding ash to the concrete mixes. Ligoplast, a plasticizer addition is used for improving workability. (M.D). 8 figs

  1. Importance of the in and ex-vessel corium coolability in case of severe accident for the French PWRs. Some views from L2 PSA and perspectives

    International Nuclear Information System (INIS)

    Raimond, E.; Caroli, C.; Meignen, R.; Rahni, N.; Laurent, B.

    2011-01-01

    In the case of a severe accident on a NPP leading to core degradation after a default in the core cooling as during the accident of Three Mile Island (TMI2), the most efficient way to stop the accident progression would be the in-vessel water injection if a specific mean is available. The TMI2 accident has shown that the accident can be stopped and that the corium, even if highly degraded, can be cooled, but no one can generalize the TMI2 accident termination to all situations. The present paper aims at presenting the situation for the French operated PWRs and is mainly based on the IRSN experience in level 2 probabilistic safety assessment (L2 PSA) development for this type of reactor. It tries to highlight the benefit that could be obtained from a better understanding of the corium cooling phenomenology, including both possible positive and negative effects. Three main negative effects of in-vessel flooding have to be taken into account in a L2 PSA for a PWR: an increase of the hydrogen production rate, a risk of in-vessel pressure increase and the development of conditions for steam explosion. L2 PSAs in France have now reached a certain maturity allowing raising some more precise issues, but for the issues presented in this paper, some progress from the research-development and the simulation tools (mainly the ASTEC integral code) are still necessary to support decision-making

  2. Properties of high-workability concrete with recycled concrete aggregate

    OpenAIRE

    Safiuddin,; Alengaram,Ubagaram Johnson; Salam,Abdus; Jumaat,Mohd Zamin; Jaafar,Fahrol Fadhli; Saad,Hawa Binti

    2011-01-01

    This study presents the effects of recycled concrete aggregate (RCA) on the key fresh and hardened properties of concrete. RCA was used to produce high-workability concrete substituting 0-100% natural coarse aggregate (NCA) by weight. The slump and slump flow of fresh concretes were determined to ensure high workability. In addition, the compressive, flexural and splitting tensile strengths, modulus of elasticity, and permeable voids of hardened concretes were determined. The test results rev...

  3. COMPARATIVE STUDY OF GLASS FIBRE CONCRETE AND NORMAL CONCRETE

    OpenAIRE

    Mr.Yogesh S.Lanjewar*

    2018-01-01

    Concrete is basically the most important material concerning with the construction and infrastructural procedures, for which it should be of good strength and durability. Many researches are being conducted to make concrete more sustainable and of more strength and durability. Therefore keeping this in mind i have chosen to do the comparative study regarding the strength of normal concrete with the glass fibre added concrete using mix design procedure as per IS 10262-2009 for concrete. As w...

  4. Electrokenitic Corrosion Treatment of Concrete

    Science.gov (United States)

    Cardenas, Henry E (Inventor)

    2015-01-01

    A method and apparatus for strengthening cementitious concrete by placing a nanoparticle carrier liquid in contact with a first surface of a concrete section and inducing a current across the concrete section at sufficient magnitude and for sufficient time that nanoparticles in the nanoparticle carrier liquid migrate through a significant depth of the concrete section.

  5. Electrokinetic Strength Enhancement of Concrete

    Science.gov (United States)

    Cardenas, Henry E. (Inventor)

    2016-01-01

    A method and apparatus for strengthening cementitious concrete by placing a nanoparticle carrier liquid in contact with a first surface of a concrete section and inducing a current across the concrete section at sufficient magnitude and for sufficient time that nanoparticles in the nanoparticle carrier liquid migrate through a significant depth of the concrete section.

  6. Shrinkage Reducing Admixture for Concrete

    OpenAIRE

    ECT Team, Purdue

    2007-01-01

    Concrete shrinkage cracking is a common problem in all types of concrete structures, especially for structures and environments where the cracks are prevalent and the repercussions are most severe. A liquid shrinkage reducing admixture for concrete, developed by GRACE Construction Products and ARCO Chemical Company, that reduces significantly the shrinkage during concrete drying and potentially reduces overall cracking over time.

  7. A historical examination of concrete

    International Nuclear Information System (INIS)

    Mallinson, L.G.; Li Davies, I.

    1987-01-01

    The requirement that concrete in radioactive waste repositories be stable physically and chemically for very long times has initiated studies of ancient and old concretes. This report is a contribution to this effort. After a description of the history of cement and concrete, the published literature relating to the analysis of old and ancient concrete is reviewed. A series of samples spanning the history of concrete has been obtained; a variety of physical and chemical techniques have been employed to characterize these samples. Reasons for survival of ancient concretes, and for durability of early, reinforced concretes are identified. Recommendations for further studies are given. 132 refs

  8. Three-dimensional numerical study on the mechanism of anisotropic MCCI by improved MPS method

    Energy Technology Data Exchange (ETDEWEB)

    Li, Xin, E-mail: lixin@fuji.waseda.jp; Yamaji, Akifumi

    2017-04-01

    Highlights: • 3-D simulation of a MCCI test was presented with improved moving particle method. • The influence of thermally stable silica aggregates on MCCI has been investigated. • The mechanisms for isotropic/anisotropic ablation have been clarified mechanistically. - Abstract: In two-dimensional (2-D) molten corium-concrete interaction (MCCI) experiments with prototypic corium and siliceous concrete, the more pronounced lateral concrete erosion behavior than that in the axial direction, namely anisotropic ablation, has been a research interest. However, the knowledge of the mechanism on this anisotropic ablation behavior, which is important for severe accident analysis and management, is still limited. In this paper, 3-D simulation of 2-D MCCI experiment VULCANO VB-U7 has been carried out with improved Moving Particle Semi-implicit (MPS) method. Heat conduction, phase change, and corium viscosity models have been developed and incorporated into MPS code MPS-SW-MAIN-Ver.2.0 for current study. The influence of thermally stable silica aggregates has been investigated by setting up different simulation cases for analysis. The simulation results suggested reasonable models and assumptions to be considered in order to achieve best estimation of MCCI with prototypic oxidic corium and siliceous concrete. The simulation results also indicated that silica aggregates can contribute to anisotropic ablation. The mechanisms for anisotropic ablation pattern in siliceous concrete as well as isotropic ablation pattern in limestone-rich concrete have been clarified from a mechanistic perspective.

  9. Anchorage in concrete construction

    CERN Document Server

    Eligehausen, Rolf; Silva, John F

    2013-01-01

    A comprehensive treatment of current fastening technology using inserts (anchor channels, headed stud), anchors (metal expansion anchor, undercut anchor, bonded anchor, concrete screw and plastic anchor) as well as power actuated fasteners in concrete. It describes in detail the fastening elements as well as their effects and load-bearing capacities in cracked and non-cracked concrete. It further focuses on corrosion behaviour, fire resistance and characteristics with earthquakes and shocks. It finishes off with the design of fastenings according to the European Technical Approval Guideline (ETAG 001), the Final Draft of the CEN Technical Specification 'Design of fastenings for use in concrete' and the American Standards ACI 318-05, Appendix D and ACI 349-01, Appendix B.

  10. Concrete Research Facility

    Data.gov (United States)

    Federal Laboratory Consortium — This is a 20,000-sq ft laboratory that supports research on all aspects of concrete and materials technology. The staff of this facility offer wide-ranging expertise...

  11. Prestressed concrete design

    CERN Document Server

    Hurst, MK

    1998-01-01

    This edition provides up-to-date guidance on the detailed design of prestressed concrete structures. All major topics are dealt with, including prestressed flat slabs, an important and growing application in the design of buildings.

  12. Magnesium oxychloride cement concrete

    Indian Academy of Sciences (India)

    TECS

    exposure to water and salt attack by replacing 10% magnesium chloride solution by magnesium sulphate solution ... Having tremendous load bearing capacity, it can withstand .... retention coefficients for similar concrete compositions.

  13. Improving concrete overlay construction.

    Science.gov (United States)

    2010-03-01

    Several road construction projects involving concrete overlays at the state and county levels in Iowa in 2009 were studied for : construction techniques and methods. The projects that were evaluated consisted of sites in four Iowa counties: Osceola, ...

  14. Concrete decontamination scoping tests

    International Nuclear Information System (INIS)

    Archibald, K.E.

    1995-01-01

    This report details the research efforts and scoping tests performed at the Idaho Chemical Process Plant using scabbling, chemical, and electro-osmotic decontamination techniques on radiologically contaminated concrete

  15. Modeling reinforced concrete durability.

    Science.gov (United States)

    2014-06-01

    This project developed a next-generation modeling approach for projecting the extent of : reinforced concrete corrosion-related damage, customized for new and existing Florida Department of : Transportation bridges and suitable for adapting to broade...

  16. Parametric study of natural circulation flow in molten salt fuel in molten salt reactor

    Energy Technology Data Exchange (ETDEWEB)

    Pauzi, Anas Muhamad, E-mail: Anas@uniten.edu.my [Centre of Nuclear Energy, Universiti Tenaga Nasional (UNITEN), Jalan IKRAM-UNITEN, 43000 Kajang, Selangor (Malaysia); Cioncolini, Andrea; Iacovides, Hector [School of Mechanical, Aerospace, and Civil Engineering (MACE), University of Manchester, Oxford Road, M13 9PL Manchester (United Kingdom)

    2015-04-29

    The Molten Salt Reactor (MSR) is one of the most promising system proposed by Generation IV Forum (GIF) for future nuclear reactor systems. Advantages of the MSR are significantly larger compared to other reactor system, and is mainly achieved from its liquid nature of fuel and coolant. Further improvement to this system, which is a natural circulating molten fuel salt inside its tube in the reactor core is proposed, to achieve advantages of reducing and simplifying the MSR design proposed by GIF. Thermal hydraulic analysis on the proposed system was completed using a commercial computation fluid dynamics (CFD) software called FLUENT by ANSYS Inc. An understanding on theory behind this unique natural circulation flow inside the tube caused by fission heat generated in molten fuel salt and tube cooling was briefly introduced. Currently, no commercial CFD software could perfectly simulate natural circulation flow, hence, modeling this flow problem in FLUENT is introduced and analyzed to obtain best simulation results. Results obtained demonstrate the existence of periodical transient nature of flow problem, hence improvements in tube design is proposed based on the analysis on temperature and velocity profile. Results show that the proposed system could operate at up to 750MW core power, given that turbulence are enhanced throughout flow region, and precise molten fuel salt physical properties could be defined. At the request of the authors and the Proceedings Editor the name of the co-author Andrea Cioncolini was corrected from Andrea Coincolini. The same name correction was made in the Acknowledgement section on page 030004-10 and in reference number 4. The updated article was published on 11 May 2015.

  17. Recycling of concrete

    International Nuclear Information System (INIS)

    Halaszovich, S.

    1988-01-01

    The paper reviews potentials and problems of disposal or recycling of concrete removed from nuclear installations. Due to the difficulties in determining radioactivity limits that are compatible with utilization of recycled material in practice, a method is proposed that takes into account inhalation of dusts, as occurring during the reprocessing or recycling of the concrete, for instance in road building. This method is based on the maximum permissible radioactivity uptake by inhalation of a nuclide mixture of unknown composition. (RB) [de

  18. Sulfur polymer cement concrete

    International Nuclear Information System (INIS)

    Weber, H.H.; McBee, W.C.

    1990-01-01

    Sulfur-based composite materials formulated using sulfur polymer cement (SPC) and mineral aggregates are described and compared with conventional portland cement based materials. Materials characteristics presented include mechanical strength, chemical resistance, impact resistance, moisture permeation, and linear shrinkage during placement and curing. Examples of preparation and placement of sulfur polymer cement concrete (SC) are described using commercial scale equipment. SC applications presented are focused into hostile chemical environments where severe portland cement concrete (PCC) failure has occurred

  19. ADVANCEMENTS IN CONCRETE TECHNOLOGY

    OpenAIRE

    Shri Purvansh B. Shah; Shri Prakash D. Gohil; Shri Hiren J. Chavda; Shri Tejas D. Khediya

    2015-01-01

    Developing and maintaining world’s infrastructure to meet the future needs of industrialized and developing countries is necessary to economically grow and improve the quality of life. The quality and performance of concrete plays a key role for most of infrastructure including commercial, industrial, residential and military structures, dams, power plants. Concrete is the single largest manufactured material in the world and accounts for more than 6 billion metric tons of materials annual...

  20. The results of the CCI-3 reactor material experiment investigating 2-D core-concrete interaction and debris coolability with a siliceous concrete crucible

    International Nuclear Information System (INIS)

    Farmer, M.T.; Basu, S.

    2006-01-01

    The OECD-sponsored Melt Coolability and Concrete Interaction (MCCI) program is conducting reactor material experiments and associated analysis with the objectives of resolving the ex-vessel debris coolability issue, and to address remaining uncertainties related to long-term two-dimensional molten core-concrete interactions under both wet and dry cavity conditions. Achievement of these two objectives will demonstrate the efficacy of severe accident management guidelines for existing plants and provide the technical basis for better containment designs for future plants. Despite years of international research, there are remaining uncertainties in the models that evaluate the lateral vs. axial power split during core-concrete interaction because of a lack of truly two-dimensional experiment data. As a result, there are differences in the 2-D cavity erosion predicted by codes such as MELCOR, WECHSL, and COSACO. In the continuing effort to bridge this data gap, the third in a series of large scale Core-Concrete Interaction experiments (CCI-3) has been conducted as part of the MCCI program. This test involved the interaction of a 375 kg core-oxide melt within a two-dimensional siliceous concrete crucible. The initial phase of the test was conducted under dry conditions. After a predetermined ablation depth was reached, the cavity was flooded to obtain data on the coolability of a core melt after core-concrete interaction has progressed for some time. This paper provides a summary description of the test facility and an overview of test results

  1. Fast Thorium Molten Salt Reactors Started with Plutonium

    International Nuclear Information System (INIS)

    Merle-Lucotte, E.; Heuer, D.; Le Brun, C.; Brissot, R.; Liatard, E.; Meplan, O.; Nuttin, A.; Mathieu, L.

    2006-01-01

    One of the pending questions concerning Molten Salt Reactors based on the 232 Th/ 233 U fuel cycle is the supply of the fissile matter, and as a consequence the deployment possibilities of a fleet of Molten Salt Reactors, since 233 U does not exist on earth and is not yet produced in the current operating reactors. A solution may consist in producing 233 U in special devices containing Thorium, in Pressurized Water or Fast Neutrons Reactors. Two alternatives to produce 233 U are examined here: directly in standard Molten Salt Reactors started with Plutonium as fissile matter and then operated in the Th/ 233 U cycle; or in dedicated Molten Salt Reactors started and fed with Plutonium as fissile matter and Thorium as fertile matter. The idea is to design a critical reactor able to burn the Plutonium and the minor actinides presently produced in PWRs, and consequently to convert this Plutonium into 233 U. A particular reactor configuration is used, called 'unique channel' configuration in which there is no moderator in the core, leading to a quasi fast neutron spectrum, allowing Plutonium to be used as fissile matter. The conversion capacities of such Molten Salt Reactors are excellent. For Molten Salt Reactors only started with Plutonium, the assets of the Thorium fuel cycle turn out to be quickly recovered and the reactor's characteristics turn out to be equivalent to Molten Salt Reactors operated with 233 U only. Using a combination of Molten Salt Reactors started or operated with Plutonium and of Molten Salt Reactors started with 233 U, the deployment capabilities of these reactors fully satisfy the condition of sustainability. (authors)

  2. Corrosion study in molten fluoride salt

    International Nuclear Information System (INIS)

    Keny, S.J.; Kumbhar, A.G.; Rangarajan, S.; Gupta, V.K.; Maheshwari, N.K.; Vijayan, P.K.

    2013-01-01

    Corrosion behaviors of two alloys viz. Inconel 625 and Inconel 617 were tested in molten fluoride salts of lithium, sodium and potassium (FLiNaK) in the temperature range of 550-750 ℃ in a nickel lined Inconel vessel. Electrochemical polarization (Tafel plot) technique was used for this purpose. For both alloys, the corrosion rate was found to increase sharply beyond 650 ℃ . At 600 ℃ , Inconel 625 showed a decreasing trend in the corrosion rate over a period of 24 hours, probably due to changes in the surface conditions. After fifteen days, re-testing of Inconel 625 in the same melt showed an increase in the corrosion rate. Inconel 625 was found to be more corrosion resistant than Inconel 617. (author)

  3. The Integral Molten Salt Reactor (IMSR)

    Energy Technology Data Exchange (ETDEWEB)

    Leblanc, D. [Terrestrial Energy, Mississauga, Ontario (Canada)

    2014-12-15

    The Integral Molten Salt Reactor is a simple burner or converter design that seeks to maximize passive and inherent safety features in order to minimize development time and achieve true cost innovation. Its integration of all primary systems into a unit sealed for the design life of the reactor will be reviewed with focus on the unique design aspects that make this a pragmatic approach. The IMSR is being developed by Terrestrial Energy in a range of power outputs with initial focus on an 80 MWth (32.5 MWe) unit primarily for remote energy needs. Similar units of modestly larger dimension and up to 600 MWth (291 MWe) are planned that remain truck transportable and able to compete in base load electricity markets worldwide. (author)

  4. The Integral Molten Salt Reactor (IMSR)

    Energy Technology Data Exchange (ETDEWEB)

    LeBlanc, D., E-mail: dleblanc@terrestrialenergy.com [Terrestrial Energy, Mississauga, Ontario (Canada)

    2014-07-01

    The Integral Molten Salt Reactor is a simple burner or converter design that seeks to maximize passive and inherent safety features in order to minimize development time and achieve true cost innovation. Its integration of all primary systems into a unit sealed for the design life of the reactor will be reviewed with focus on the unique design aspects that make this a pragmatic approach. The IMSR is being developed by Terrestrial Energy in a range of power outputs with initial focus on an 80 MWth (32.5 MWe) unit primarily for remote energy needs. Similar units of modestly larger dimension and up to 600 MWth (291 MWe) are planned that remain truck transportable and able to compete in base load electricity markets worldwide. (author)

  5. Structure of partly quenched molten copper chloride

    International Nuclear Information System (INIS)

    Pastore, G.; Tosi, M.P.

    1995-09-01

    The structural modifications induced in a model of molten CuCl by quenching the chlorine component into a microporous disordered matrix are evaluated using the hypernetted-chain closure in Ornstein-Zernike relations for the pair distribution functions in random systems. Aside from obvious changes in the behaviour of long-wavelength density fluctuations, the main effect of partial quenching is an enhanced delocalization of the Cu + ions. The model suggests that the ionic mobility in a superionic glass is enhanced relative to the melt at the same temperature and density. Only very minor quantitative differences are found in the structural functions when the replica Ornstein-Zernike relations derived by Given and Stell for a partly quenched system are simplified to those given earlier by Madden and Glandt. (author). 19 refs, 6 figs

  6. Terrestrial Energy bets on molten salt reactors

    International Nuclear Information System (INIS)

    Anon.

    2015-01-01

    Terrestrial Energy is a Canadian enterprise, founded in 2013, for marketing the integral molten salt reactor (IMSR). A first prototype (called MSRE and with an energy output of 8 MW) was designed and operated between 1965 and 1969 by the Oak Ridge National Laboratory. IMSR is a small, modular reactor with a thermal energy output of 400 MW. According to Terrestrial Energy the technology of conventional power reactors is too complicated and too expensive. On the contrary IMSR's technology appears to be simple, easy to operate and affordable. With a staff of 30 people Terrestrial Energy appears to be a start-up in the nuclear sector. A process of pre-licensing will be launched in 2016 with the Canadian nuclear safety authority. (A.C.)

  7. Fracture Mechanics of Concrete

    DEFF Research Database (Denmark)

    Ulfkjær, Jens Peder

    Chapter 1 Chapter l contains the introduction to this thesis. The scope of the thesis is partly to investigate different numerical and analytical models based on fracture mechanical ideas, which are able to predict size effects, and partly to perform an experimental investigation on high-strength......Chapter 1 Chapter l contains the introduction to this thesis. The scope of the thesis is partly to investigate different numerical and analytical models based on fracture mechanical ideas, which are able to predict size effects, and partly to perform an experimental investigation on high......-strength concrete. Chapter 2 A description of the factors which influence the strength and cracking of concrete and high strength concrete is made. Then basic linear fracture mechanics is outlined followed by a description and evaluation of the models used to describe concrete fracture in tension. The chapter ends...... and the goveming equations are explicit and simple. These properties of the model make it a very powerful tool, which is applicable for the designing engineer. The method is also extended to reinforced concrete, where the results look very promising. The large experimental investigation on high-strength concrete...

  8. Fibre-concrete container

    International Nuclear Information System (INIS)

    2000-01-01

    In this leaflet the fibre-concrete container for radioactive wastes is described. The fibre container is made of fibre-concrete that contains cement, aggregate, sand, filter, flame-silica, super-plastificator, water and scattered metal fibres. The fibre-concrete container has a dice shape with outer dimension 1.7 x 1.7 x 1.7 m. It is mounted of a container body, a container cover and two caps. Total weight of container is 4,240 kg, maximum weight of loaded container do not must exceed 15,000 kg. The physical and mechanical properties of the fibre-concrete container are described in detail. The fibre-concrete container manufactured for storing of low and intermediate radioactive wastes. A fibre-concrete container utilization to store of radioactive wastes solves these problems: increase of stability of stored packages of radioactive waste; watertightness within 300 years at least; static stability of bearing space; better utilization of bearing spaces; insulation of radioactive waste in a case of seismic and geological event; increase of fire resistance; and transport of radioactive waste

  9. Concrete radiation shielding

    International Nuclear Information System (INIS)

    Kaplan, M.F.

    1989-01-01

    The increased use of nuclear energy has given rise to a growth in the amount of artificially produced radiation and radioactive materials. The design and construction of shielding to protect people, equipment and structures from the effects of radiation has never been more important. Experience has shown that concrete is an effective, versatile and economical material for the construction of radiation shielding. This book provides information on the principles governing the interaction of radiation with matter and on relevant nuclear physics to give the engineer an understanding of the design and construction of concrete shielding. It covers the physical, mechanical and nuclear properties of concrete; the effects of elevated temperatures and possible damage to concrete due to radiation; basic procedures for the design of concrete radiation shields and finally the special problems associated with their construction and cost. Although written primarily for engineers concerned with the design and construction of concrete shielding, the book also reviews the widely scattered data and information available on this subject and should therefore be of interest to students and those wishing to research further in this field. (author)

  10. Separation of contaminated concrete

    International Nuclear Information System (INIS)

    Bakiewicz, J.L.; Reymer, A.P.S.

    1990-01-01

    Separating the contaminated parts from the non-contaminated parts from decommissioned nuclear facilities may strongly reduce the amount of contaminated concrete. The reduction in volume of the radioactive contaminated concrete is dependent on how much cementstone is in the concrete. This research program shows that the radioactive contamination is mostly in the cementstone. However the choice that the cementstone parts, (or better said the radioactive parts) are smaller than 1 mm may not always be true. Normally the cementstone takes about 30% of the total concrete volume. A separation procedure composed by a combination of milling and thermal shock has been assessed. Both the cold and hot thermal shock in combination with milling are not able to separate the cementstone from the larger aggregates completely. However, the cementstone from the concrete with a low nominal grain size seems to be almost completely removed by the combination cold thermal shock/milling, while the cementstone from the concrete with a high nominal grain size seems to be almost completely removed by the combination hot thermal shock/milling. After both methods a layer of cementstone was still visible on the aggregates. Washing followed by a nitric acid treatment removed each 2 wt% of cementstone

  11. Fuel processing for molten-salt reactors

    International Nuclear Information System (INIS)

    Hightower, J.R. Jr.

    1975-01-01

    Progress is reported on the development of processes for the isolation of protactinium and for the removal of fission products from molten-salt breeder reactors. The metal transfer experiment MTE-3 (for removing rare earths from MSRE fuel salt) was completed and the equipment used in that experiment was examined. The examination showed that no serious corrosion had occurred on the internal surfaces of the vessels, but that serious air oxidation occurred on the external surfaces of the vessels. Analyses of the bismuth phases indicated that the surfaces in contact with the salts were enriched in thorium and iron. Mass transfer coefficients in the mechanically agitated nondispersing contactors were measured in the Salt/Bismuth Flow-through Facility. The measured mass transfer coefficients are about 30 to 40 percent of those predicted by the preferred literature correlation, but were not as low as those seen in some of the runs in MTE-3. Additional studies using water--mercury systems to simulate molten salt-bismuth systems indicated that the model used to interpret results from previous measurements in the water--mercury system has significant deficiencies. Autoresistance heating studies were continued to develop a means of internal heat generation for frozen-wall fluorinators. Equipment was built to test a design of a side arm for the heating electrode. Results of experiments with this equipment indicate that for proper operation the wall temperature must be held much lower than that for which the equipment was designed. Studies with an electrical analog of the equipment indicate that no regions of abnormally high current density exist in the side arm. (JGB)

  12. Fast Spectrum Molten Salt Reactor Options

    Energy Technology Data Exchange (ETDEWEB)

    Gehin, Jess C [ORNL; Holcomb, David Eugene [ORNL; Flanagan, George F [ORNL; Patton, Bruce W [ORNL; Howard, Rob L [ORNL; Harrison, Thomas J [ORNL

    2011-07-01

    During 2010, fast-spectrum molten-salt reactors (FS-MSRs) were selected as a transformational reactor concept for light-water reactor (LWR)-derived heavy actinide disposition by the Department of Energy-Nuclear Energy Advanced Reactor Concepts (ARC) program and were the subject of a preliminary scoping investigation. Much of the reactor description information presented in this report derives from the preliminary studies performed for the ARC project. This report, however, has a somewhat broader scope-providing a conceptual overview of the characteristics and design options for FS-MSRs. It does not present in-depth evaluation of any FS-MSR particular characteristic, but instead provides an overview of all of the major reactor system technologies and characteristics, including the technology developments since the end of major molten salt reactor (MSR) development efforts in the 1970s. This report first presents a historical overview of the FS-MSR technology and describes the innovative characteristics of an FS-MSR. Next, it provides an overview of possible reactor configurations. The following design features/options and performance considerations are described including: (1) reactor salt options-both chloride and fluoride salts; (2) the impact of changing the carrier salt and actinide concentration on conversion ratio; (3) the conversion ratio; (4) an overview of the fuel salt chemical processing; (5) potential power cycles and hydrogen production options; and (6) overview of the performance characteristics of FS-MSRs, including general comparative metrics with LWRs. The conceptual-level evaluation includes resource sustainability, proliferation resistance, economics, and safety. The report concludes with a description of the work necessary to begin more detailed evaluation of FS-MSRs as a realistic reactor and fuel cycle option.

  13. Large scale sodium interactions. Part 3. Chemical phenomena with limestone concrete

    International Nuclear Information System (INIS)

    Sallach, R.A.

    1977-01-01

    The description of the chemical processes and reaction products resulting from the exposure of concrete to molten sodium metal is important for a thorough, realistic assessment of the safety of CRBR-type reactors. Concretes are in general complex heterogenous substances whose ingredients can be derived from many sources. Consequently a wide variety of reaction processes and products might be anticipated. Initial attention has focused on a concrete in which both the aggregate and sandy components are derived from limestone. Presented are the chemical observations and experimental data from tests in which molten sodium metal at approximately 500 0 C is dropped into cold limestone concrete crucibles. Thermocouples immersed in the sodium pool indicate that the reaction proceeds in two stages. In the first stage which lasts 5 to 8 minutes, the temperature of the reacting mass hovers around 500 0 C. This stage is followed by a second stage of longer duration--greater than 100 minutes--where the temperature is 700 to 800 0 C. The main reaction product is a hard, fused, black slag which contains about 3/4 of the sodium in the initial charge. A secondary product is sodium oxide aerosol which accounts for the remaining 1/4 of the charge. It is significant that no free sodium metal is found in the slag; all sodium has completely reacted

  14. Design and analysis of concrete reactor vessels: New developments, problems and trends

    International Nuclear Information System (INIS)

    Bazant, Z.P.

    1984-01-01

    This lecture reviews new developments in analysis and design of prestressed concrete reactor vessels (PCRV). After a brief assessment of the current status and experience, the advantages, disadvantages, and especially the safety features of PCRV, are discussed. Attention is then focused on the design of penetrations and openings, and on the design for high-temperature resistance - areas in which further developments are needed. Various possible designs for high-temperature exposure of concrete in a hypothetical accident are analyzed. Considered are not only PCRVs for gas-cooled reactors (GCR), but also guard vessels for liquid metal fast breeder reactors (LMFBR), for which designs mitigating the adverse effects of molten sodium, molten steel, and core melt are surveyed. Realistic analysis of the problems requires further development in the knowledge of material behavior and its mathematical modeling. Recent advances in the modeling of high-temperature response of concrete, including pore water transfer, pore pressure, creep and shrinkage are outlined. This is followed by a discussion of new developments in the analysis of cracking of concrete, where the need of switching from stress criteria to energy criteria for fracture is emphasized. The lecture concludes with a brief discussion of long-time behavior, the effect of aging, and probabilistic analysis of creep. (orig.)

  15. Offshore concrete structures

    International Nuclear Information System (INIS)

    Lamas Pardo, M.; Carral Couce, L. M.

    2011-01-01

    In the offshore industry there are two possible materials for the construction of the hull of a structure; the steel and concrete, with the first one widely used until now, as in the rest of the shiphuidling industry of merchant ships, warships, etc. Materials such as aluminum, GRP or timber areused in small units with lengths lower than 100 m, and in less adverse conditions than in the offshore industry. Nevertheless, some ships/barges have been built of concrete in the past, but have been rather isolated cases which have not changed the practice in the industry. In the First and Second World War were built by the scarcity of materials, while the series of barges by Alfred A. Yee was a rare exception. Other units were also made in concrete, but almost anecdotal. Still, the behaviour of these concrete structures, especially in terms of maintenance, has been excellent. Therefore, the fact that the concrete has not had an adequate reception so far in shipbuilding, does not mean that in will not be the material best suited for the offshore industry in the future. The extra displacement and associated fuel costs in concrete ships have been found prohibitive in the past. But the loss of mobility of a concrete hull in relation to a steel hull can be perfectly offset by the advantages offered by the concrete, as the shipping and offshore industry have very different priorities. One of the main differences in these priorities is in terms of maintenance and resistance to fatigue, precisely where the concrete performs better. ships can easily be dry docked for maintenance and repair, while in the offshore platforms these works have to be done in situ so maintenance and fatigue are crucial to them. Besides these, the concrete has other advantages according to findings of several studies. And although they are interested in the conclusions that the makes as they came from people in the concrete industry, the fact that in recent years concrete offshore unit shave been built

  16. Novel waste printed circuit board recycling process with molten salt

    OpenAIRE

    Riedewald, Frank; Sousa-Gallagher, Maria

    2015-01-01

    The objective of the method was to prove the concept of a novel waste PCBs recycling process which uses inert, stable molten salts as the direct heat transfer fluid and, simultaneously, uses this molten salt to separate the metal products in either liquid (solder, zinc, tin, lead, etc.) or solid (copper, gold, steel, palladium, etc.) form at the operating temperatures of 450?470??C. The PCB recovery reactor is essentially a U-shaped reactor with the molten salt providing a continuous fluid, a...

  17. Mechanical structure and problem of thorium molten salt reactor

    International Nuclear Information System (INIS)

    Kamei, Takashi

    2011-01-01

    After Fukushima Daiichi accident, there became great interest in Thorium Molten Salt Reactor (MSR) for the safety as station blackout leading to auto drainage of molten salts with freeze valve. This article described mechanical structure of MSR and problems of materials and pipes. Material corrosion problem by molten salts would be solved using modified Hastelloy N with Ti and Nb added, which should be confirmed by operation of an experimental reactor. Trends in international activities of MSR were also referred including China declaring MSR development in January 2011 to solve thorium contamination issues at rare earth production and India rich in thorium resources. (T. Tanaka)

  18. Indian programme on molten salt cooled nuclear reactors

    International Nuclear Information System (INIS)

    DuIera, I.V.; Vijayan, P.K.; Sinha, R.K.

    2013-01-01

    Bhabha Atomic Research Centre (BARC) is developing a 600 MWth pebble bed high temperature reactor, cooled by natural circulation of molten fluoride salts and is capable of supplying process heat at 1000 ℃ to facilitate hydrogen production by splitting water. BARC has also initiated studies for a reactor concept in which salts of molten fluoride fuel and coolant in fluid form, flows through the reactor core of graphite moderator, resulting in nuclear fission within the molten salt. For thorium fuel cycle, this concept is very attractive, since the fuel can be re-processed on-line, enabling it to be an efficient neutron breeder. (author)

  19. Recycled Concrete as Aggregate for Structural Concrete Production

    Directory of Open Access Journals (Sweden)

    Mirjana Malešev

    2010-04-01

    Full Text Available A comparative analysis of the experimental results of the properties of fresh and hardened concrete with different replacement ratios of natural with recycled coarse aggregate is presented in the paper. Recycled aggregate was made by crushing the waste concrete of laboratory test cubes and precast concrete columns. Three types of concrete mixtures were tested: concrete made entirely with natural aggregate (NAC as a control concrete and two types of concrete made with natural fine and recycled coarse aggregate (50% and 100% replacement of coarse recycled aggregate. Ninety-nine specimens were made for the testing of the basic properties of hardened concrete. Load testing of reinforced concrete beams made of the investigated concrete types is also presented in the paper. Regardless of the replacement ratio, recycled aggregate concrete (RAC had a satisfactory performance, which did not differ significantly from the performance of control concrete in this experimental research. However, for this to be fulfilled, it is necessary to use quality recycled concrete coarse aggregate and to follow the specific rules for design and production of this new concrete type.

  20. Development of MPS Method for Analyzing Melt Spreading Behavior and MCCI in Severe Accidents

    Science.gov (United States)

    Yamaji, Akifumi; Li, Xin

    2016-08-01

    Spreading of molten core (corium) on reactor containment vessel floor and molten corium-concrete interaction (MCCI) are important phenomena in the late phase of a severe accident for assessment of the containment integrity and managing the severe accident. The severe accident research at Waseda University has been advancing to show that simulations with moving particle semi-implicit (MPS) method (one of the particle methods) can greatly improve the analytical capability and mechanical understanding of the melt behavior in severe accidents. MPS models have been developed and verified regarding calculations of radiation and thermal field, solid-liquid phase transition, buoyancy, and temperature dependency of viscosity to simulate phenomena, such as spreading of corium, ablation of concrete by the corium, crust formation and cooling of the corium by top flooding. Validations have been conducted against experiments such as FARO L26S, ECOKATS-V1, Theofanous, and SPREAD for spreading, SURC-2, SURC-4, SWISS-1, and SWISS-2 for MCCI. These validations cover melt spreading behaviors and MCCI by mixture of molten oxides (including prototypic UO2-ZrO2), metals, and water. Generally, the analytical results show good agreement with the experiment with respect to the leading edge of spreading melt and ablation front history of concrete. The MPS results indicate that crust formation may play important roles in melt spreading and MCCI. There is a need to develop a code for two dimensional MCCI experiment simulation with MPS method as future study, which will be able to simulate anisotropic ablation of concrete.