WorldWideScience

Sample records for molecules clusters surfaces

  1. PREFACE: International Conference on Many Particle Spectroscopy of Atoms, Molecules, Clusters and Surfaces (MPS2014)

    Science.gov (United States)

    Ancarani, Lorenzo Ugo

    2015-04-01

    This volume contains a collection of contributions from the invited speakers at the 2014 edition of the International Conference on Many Particle Spectroscopy of Atoms, Molecules, Clusters and Surfaces held in Metz, France, from 15th to 18th July 2014. This biennial conference alternates with the ICPEAC satellite International Symposium on (e,2e), Double Photoionization and Related Topics, and is concerned with experimental and theoretical studies of radiation interactions with matter. These include many-body and electron-electron correlation effects in excitation, and in single and multiple ionization of atoms, molecules, clusters and surfaces with various projectiles: electrons, photons and ions. More than 80 scientists, from 19 different countries around the world, came together to discuss the most recent progress on these topics. The scientific programme included 28 invited talks and a poster session extending over the three days of the meeting. Amongst the 51 posters, 11 have been selected and were advertised through short talks. Besides, Professor Nora Berrah gave a talk in memory of Professor Uwe Becker who sadly passed away shortly after co-chairing the previous edition of this conference. Financial support from the Institut Jean Barriol, Laboratoire SRSMC, Groupement de Recherche THEMS (CNRS), Ville de Metz, Metz Métropole, Conseil Général de la Moselle and Région Lorraine is gratefully acknowledged. Finally, I would like to thank the members of the local committee and the staff of the Université de Lorraine for making the conference run smoothly, the International Advisory Board for building up the scientific programme, the sessions chairpersons, those who gave their valuable time in carefully refereeing the articles of this volume and last, but not least, all participants for contributing to lively and fruitful discussions throughout the meeting.

  2. Tetrahedral cluster and pseudo molecule: New approaches to Calculate Absolute Surface Energy of Zinc Blende (111)/(-1-1-1) Surface

    Science.gov (United States)

    Zhang, Yiou; Zhang, Jingzhao; Tse, Kinfai; Wong, Lun; Chan, Chunkai; Deng, Bei; Zhu, Junyi

    Determining accurate absolute surface energies for polar surfaces of semiconductors has been a great challenge in decades. Here, we propose pseudo-hydrogen passivation to calculate them, using density functional theory approaches. By calculating the energy contribution from pseudo-hydrogen using either a pseudo molecule method or a tetrahedral cluster method, we obtained (111)/(-1-1-1) surfaces energies of Si, GaP, GaAs, and ZnS with high self-consistency. Our findings may greatly enhance the basic understandings of different surfaces and lead to novel strategies in the crystal growth. We would like to thank Su-huai Wei for helpful discussions. Computing resources were provided by the High Performance Cluster Computing Centre, Hong Kong Baptist University. This work was supported by the start-up funding and direct Grant with the Project.

  3. Elucidating the role of surface passivating ligand structural parameters in hole wave function delocalization in semiconductor cluster molecules.

    Science.gov (United States)

    Teunis, Meghan B; Nagaraju, Mulpuri; Dutta, Poulami; Pu, Jingzhi; Muhoberac, Barry B; Sardar, Rajesh; Agarwal, Mangilal

    2017-09-28

    This article describes the mechanisms underlying electronic interactions between surface passivating ligands and (CdSe) 34 semiconductor cluster molecules (SCMs) that facilitate band-gap engineering through the delocalization of hole wave functions without altering their inorganic core. We show here both experimentally and through density functional theory calculations that the expansion of the hole wave function beyond the SCM boundary into the ligand monolayer depends not only on the pre-binding energetic alignment of interfacial orbitals between the SCM and surface passivating ligands but is also strongly influenced by definable ligand structural parameters such as the extent of their π-conjugation [π-delocalization energy; pyrene (Py), anthracene (Anth), naphthalene (Naph), and phenyl (Ph)], binding mode [dithiocarbamate (DTC, -NH-CS 2 - ), carboxylate (-COO - ), and amine (-NH 2 )], and binding head group [-SH, -SeH, and -TeH]. We observe an unprecedentedly large ∼650 meV red-shift in the lowest energy optical absorption band of (CdSe) 34 SCMs upon passivating their surface with Py-DTC ligands and the trend is found to be Ph- wave function delocalization rather than carrier trapping and/or phonon-mediated relaxation. Taken together, knowledge of how ligands electronically interact with the SCM surface is crucial to semiconductor nanomaterial research in general because it allows the tuning of electronic properties of nanomaterials for better charge separation and enhanced charge transfer, which in turn will increase optoelectronic device and photocatalytic efficiencies.

  4. Coupled Cluster Theory for Large Molecules

    DEFF Research Database (Denmark)

    Baudin, Pablo

    This thesis describes the development of local approximations to coupled cluster (CC) theory for large molecules. Two different methods are presented, the divide–expand–consolidate scheme (DEC), for the calculation of ground state energies, and a local framework denoted LoFEx, for the calculation...

  5. Cluster ions and van der Waals molecules

    CERN Document Server

    Smirnov, Boris M

    1992-01-01

    This review discusses current ideas in the physics and chemistry of cluster ions and Van der Waals molecules as well as presenting numerical data on their parameters and the processes involving them. It is also a detailed reference on basic data relating to many species.

  6. Nanospectroscopy of thiacyanine dye molecules adsorbed on silver nanoparticle clusters

    Science.gov (United States)

    Ralević, Uroš; Isić, Goran; Anicijević, Dragana Vasić; Laban, Bojana; Bogdanović, Una; Lazović, Vladimir M.; Vodnik, Vesna; Gajić, Radoš

    2018-03-01

    The adsorption of thiacyanine dye molecules on citrate-stabilized silver nanoparticle clusters drop-cast onto freshly cleaved mica or highly oriented pyrolytic graphite surfaces is examined using colocalized surface-enhanced Raman spectroscopy and atomic force microscopy. The incidence of dye Raman signatures in photoluminescence hotspots identified around nanoparticle clusters is considered for both citrate- and borate-capped silver nanoparticles and found to be substantially lower in the former case, suggesting that the citrate anions impede the efficient dye adsorption. Rigorous numerical simulations of light scattering on random nanoparticle clusters are used for estimating the electromagnetic enhancement and elucidating the hotspot formation mechanism. The majority of the enhanced Raman signal, estimated to be more than 90%, is found to originate from the nanogaps between adjacent nanoparticles in the cluster, regardless of the cluster size and geometry.

  7. Dependence of energy per molecule on sputtering yields with reactive gas cluster ions

    International Nuclear Information System (INIS)

    Toyoda, Noriaki; Yamada, Isao

    2010-01-01

    Gas cluster ions show dense energy deposition on a target surface, which result in the enhancement of chemical reactions. In reactive sputtering with gas cluster ions, the energy per atom or molecule plays an important role. In this study, the average cluster size (N, the number of atoms or molecules in a cluster ion) was controlled; thereby the dependences of the energy per molecule on the sputtering yields of carbon by CO 2 cluster ions and that of Si by SF 6 /Ar mixed gas cluster ions were investigated. Large CO 2 cluster ions with energy per molecule of 1 eV showed high reactive sputtering yield of an amorphous carbon film. However, these ions did not cause the formation of large craters on a graphite surface. It is possible to achieve very low damage etching by controlling the energy per molecule of reactive cluster ions. Further, in the case of SF 6 /Ar mixed cluster ions, it was found that reactive sputtering was enhanced when a small amount of SF 6 gas (∼10%) was mixed with Ar. The reactive sputtering yield of Si by one SF 6 molecule linearly increased with the energy per molecule.

  8. Enhanced polarizability of aromatic molecules placed in the vicinity of silver clusters

    International Nuclear Information System (INIS)

    Mayer, A; Schatz, G C

    2009-01-01

    We use a charge-dipole interaction model to study the polarizability of aromatic molecules that are placed between two silver clusters. In particular we examine the enhancement in polarizability induced by the clusters at plasmon-like resonant frequencies of the cluster-molecule-cluster system. The model used for these simulations relies on representation of the atoms by both a net electric charge and a dipole. By relating the time variation of the atomic charges to the currents that flow through the bonds of the structures considered, a least-action principle can be formulated that enables the atomic charges and dipoles to be determined. We consider benzene, naphthalene and anthracene for this study, comparing the polarizability of these aromatic molecules when placed in the middle between two Ag 120 clusters, with their polarizability as isolated molecules. We find that the polarizability of these molecules is enhanced by the clusters, and this increases the electromagnetic coupling between the two clusters. This results in significant red-shifting (by up to 0.8 eV) of the lowest energy optical transition in the cluster-molecule-cluster system compared to plasmon-like excitation in the cluster-cluster system. The resulting resonant polarizability enhancement leads to an electromagnetic enhancement in surface-enhanced Raman scattering of over 10 6 .

  9. Vacancy clusters at nanoparticle surfaces

    Energy Technology Data Exchange (ETDEWEB)

    Xu, J.; Moxom, J.; Somieski, B.; White, C.W. [Oak Ridge National Lab., TN (United States); Mills, A.P. Jr. [Bell Labs., Lucent Technologies, Murray Hill, NJ (United States); Suzuki, R.; Ishibashi, S. [Electrotechnical Lab., Tsukuba, Ibaraki (Japan); Ueda, A.; Henderson, D. [Physics Dept., Fisk Univ., Nashville, TN (United States)

    2001-07-01

    We detect vacancy clusters at Au nanoparticle surfaces using a combination of positron lifetime spectroscopy, 1- detector, and 2-detector measurements of Doppler broadening of annihilation radiation. Gold nanoparticles are formed by MeV implantation of gold ions into MgO (100) followed by annealing. Clusters of two Mg and two O vacancies (v{sub 4}) are attached to the gold nanoparticle surfaces within the projected range (R{sub p}). (orig.)

  10. Vacancy clusters at nanoparticle surfaces

    International Nuclear Information System (INIS)

    Xu, J.; Moxom, J.; Somieski, B.; White, C.W.; Mills, A.P. Jr.; Suzuki, R.; Ishibashi, S.; Ueda, A.; Henderson, D.

    2001-01-01

    We detect vacancy clusters at Au nanoparticle surfaces using a combination of positron lifetime spectroscopy, 1- detector, and 2-detector measurements of Doppler broadening of annihilation radiation. Gold nanoparticles are formed by MeV implantation of gold ions into MgO (100) followed by annealing. Clusters of two Mg and two O vacancies (v 4 ) are attached to the gold nanoparticle surfaces within the projected range (R p ). (orig.)

  11. Modelling of energetic molecule-surface interactions

    International Nuclear Information System (INIS)

    Kerford, M.

    2000-09-01

    This thesis contains the results of molecular dynamics simulations of molecule-surface interactions, looking particularly at fullerene molecules and carbon surfaces. Energetic impacts of fullerene molecules on graphite create defect craters. The relationship between the parameters of the impacting molecule and the parameters of the crater axe examined and found to be a function of the energy and velocity of the impacting molecule. Less energetic fullerene molecules can be scattered from a graphite surface and the partitioning of energy after a scattering event is investigated. It is found that a large fraction of the kinetic energy retained after impact is translational energy, with a small fraction of rotational energy and a number of vibrational modes. At impact energies where the surface is not broken and at normal incidence, surface waves axe seen to occur. These waves axe used to develop a method of desorbing molecules from a graphite surface without damage to either the surface or the molecules being desorbed. A number of fullerene molecules are investigated and ways to increase the desorption yield are examined. It is found that this is a successful technique for desorbing large numbers of intact molecules from graphite. This technique could be used for desorbing intact molecules into a gas phase for mass spectrometric analysis. (author)

  12. Individual Magnetic Molecules on Ultrathin Insulating Surfaces

    Science.gov (United States)

    El Hallak, Fadi; Warner, Ben; Hirjibehedin, Cyrus

    2012-02-01

    Single molecule magnets have attracted ample interest because of their exciting magnetic and quantum properties. Recent studies have demonstrated that some of these molecules can be evaporated on surfaces without losing their magnetic properties [M. Mannini et al., Nature 468, 417, (2010)]. This remarkable progress enhances the chances of real world applications for these molecules. We present STM imaging and spectroscopy data on iron phthalocyanine molecules deposited on Cu(100) and on a Cu2N ultrathin insulating surface. These molecules have been shown to display a large magnetic anisotropy on another thin insulating surface, oxidized Cu(110) [N. Tsukahara et al., Phys. Rev. Lett. 102, 167203 (2009)]. By using a combination of elastic and inelastic electron tunnelling spectroscopy, we investigate the binding of the molecules to the surface and the impact that the surface has on their electronic and magnetic properties.

  13. Formation of nuclear molecules in cluster radioactivity. On interpretation of the cluster radioactivity mechanism

    International Nuclear Information System (INIS)

    Volkov, V.V.; Cherepanov, E.A.

    2012-01-01

    The basis for cluster radioactivity is the property of nuclei of light isotopes of elements heavier than lead to spontaneously form clusters - nuclei of light elements - from valence nucleons, which gives rise to asymmetric nuclear molecules. The cluster formation proceeds through successive excitation-free transfer of valence nucleons to the particle and to subsequent light nuclei. Nuclear molecule formation is accompanied by a considerable amount of released energy, which allows quantum-mechanical penetration of the cluster through the exit Coulomb barrier

  14. Atoms, molecules, clusters and synchrotron radiation

    International Nuclear Information System (INIS)

    Kui Rexi; Ju Xin

    1995-01-01

    The importance of synchrotron radiation, especially the third generation synchrotron radiation light source, in atomic, molecular and cluster physics is discussed and some views are presented on new methods which may become available for research in the above fields

  15. Adsorption of organic molecules may explain growth of newly nucleated clusters and new particle formation

    Science.gov (United States)

    Wang, Jian; Wexler, Anthony S.

    2013-05-01

    New particle formation consists of formation of thermodynamically stable clusters from trace gas molecules (homogeneous nucleation) followed by growth of these clusters to a detectable size. Because of the large coagulation rate of clusters smaller than 3 nm with the preexisting aerosol population, for new particle formation to take place, these clusters need to grow sufficiently fast to escape removal by coagulation. Previous studies have indicated that condensation of low-volatility organic vapor may play an important role in the initial growth of the clusters. However, due to the relatively high vapor pressure and partial molar volume of even highly oxidized organic compounds, the strong Kelvin effect may prevent typical ambient organics from condensing on these small clusters. Earlier studies did not consider that adsorption of organic molecules on the cluster surface, due to the intermolecular forces between the organic molecule and cluster, may occur and substantially alter the growth process under sub-saturated conditions. Using the Brunauer-Emmett-Teller (BET) isotherm, we show that the adsorption of organic molecules onto the surface of clusters may significantly reduce the saturation ratio required for condensation of organics to occur, and therefore may provide a physico-chemical explanation for the enhanced initial growth by condensation of organics despite the strong Kelvin effect.

  16. Spectral simulations of polar diatomic molecules immersed in He clusters: application to the ICl (X) molecule

    International Nuclear Information System (INIS)

    Villarreal, P; Lara-Castells, M P de; Prosmiti, R; Delgado-Barrio, G; Lopez-Duran, D; Gianturco, F A; Jellinek, J

    2007-01-01

    A recently developed quantum-chemistry-like methodology to study molecules solvated in atomic clusters is applied to the ICl (iodine chloride) polar diatomic molecule immersed in clusters of He atoms. The atoms of the solvent clusters are treated as the 'electrons' and the solvated molecule as a structured 'nucleus' of the combined solvent-solute system. The helium-helium and helium-dopant interactions are represented by parametrized two-body and ab initio three-body potentials, respectively. The ground-state wavefunctions are used to compute the infrared (IR) spectra of the solvated molecule. In agreement with the experimental observations, the computed spectra exhibit considerable differences depending on whether the solvent cluster is comprised of bosonic ( 4 He) or fermionic ( 3 He) atoms. The source of these differences is attributed to the different spin-statistics of the solvent clusters. The bosonic versus fermionic nature of the solvent is reflected in the IR absorption selection rules. Only P and R branches with single state transitions appear in the spectrum when the molecule is solvated in a bosonic cluster. On the other hand, when the solvent represents a fermionic environment, quasi-degenerate multiplets of spin states contribute to each branch and, in addition, the Q-branch becomes also allowed. Combined, these two factors explain the more congested nature of the spectrum in the fermionic case

  17. Clusters of atoms and molecules theory, experiment, and clusters of atoms

    CERN Document Server

    1994-01-01

    Clusters of Atoms and Molecules is devoted to theoretical concepts and experimental techniques important in the rapidly expanding field of cluster science. Cluster properties are dicussed for clusteres composed of alkali metals, semiconductors, transition metals, carbon, oxides and halides of alkali metals, rare gases, and neutral molecules. The book is composed of several well-integrated treatments all prepared by experts. Each contribution starts out as simple as possible and ends with the latest results so that the book can serve as a text for a course, an introduction into the field, or as a reference book for the expert.

  18. An algebraic model for three-cluster giant molecules

    International Nuclear Information System (INIS)

    Hess, P.O.; Bijker, R.; Misicu, S.

    2001-01-01

    After an introduction to the algebraic U(7) model for three bodies, we present a relation of a geometrical description of three-cluster molecule to the algebraic U(7) model. Stiffness parameters of oscillations between each of two clusters are calculated and translated to the model parameter values of the algebraic model. The model is applied to the trinuclear system l32 Sn+ α + ll6 Pd which occurs in the ternary cold fission of 252 Cf. (Author)

  19. SASP - Symposium on atomic, cluster and surface physics `94

    Energy Technology Data Exchange (ETDEWEB)

    Maerk, T D; Schrittwieser, R; Smith, D

    1994-12-31

    This international symposium (Founding Chairman: W. Lindinger, Innsbruck) is one in a continuing biennial series of conferences which seeks to promote the growth of scientific knowledge and its effective exchange among scientists in the field of atomic, molecular, cluster and surface physics and related areas. The symposium deals in particular with interactions between ions, electrons, photons, atoms, molecules, and clusters and their interactions with surfaces. (author).

  20. Molecule scattering from insulator and metal surfaces

    International Nuclear Information System (INIS)

    Moroz, Iryna; Ambaye, Hailemariam; Manson, J R

    2004-01-01

    Calculations are carried out and compared with data for the scattering of CH 4 molecules from a LiF(001) surface and for O 2 scattering from Al(111). The theory is a mixed classical-quantum formalism that includes energy and momentum transfers between the surface and projectile for translational and rotational motions as well as internal mode excitation of the projectile molecule. The translational and rotational degrees of freedom couple most strongly to multiphonon excitations of the surface and are treated with classical dynamics. Internal vibrational excitations of the molecules are treated with a semiclassical formalism with extension to arbitrary numbers of modes and arbitrary quantum numbers. Calculations show good agreement for the dependence on incident translational energy, incident beam angle and surface temperature when compared with data for energy-resolved intensity spectra and angular distributions

  1. Ultrafast relaxation dynamics of electrons in Au clusters capped with dodecanethiol molecules

    International Nuclear Information System (INIS)

    Hamanaka, Y.; Fukagawa, K.; Tai, Y.; Murakami, J.; Nakamura, A.

    2006-01-01

    We have investigated electron relaxation dynamics of size-selected Au clusters capped by dodecanethiol molecules in the cluster sizes of 28-142 atoms using femtosecond pump-probe spectroscopy. Absorption spectra of 28-71-atom clusters show discrete peaks due to the optical transitions between quantized states, while an absorption band due to the surface plasmon is observed in 142-atom clusters. In the differential absorption spectra measured by the pump-probe experiments, a large redshift of 140 meV lasting over 10 ps and absorption bleaching decaying within 2 ps are observed at the absorption peaks of 28-atom clusters. The redshift is ascribed to a charge transfer between Au clusters and dodecanethiol molecules adsorbed on the cluster surface, and the bleaching is due to blocking of the optical transitions between the ground state and the occupied electronic states due to the Pauli's-exclusion principle. Such behavior is in contrast to the 142-atom clusters, where the cooling of hot electrons generated by photo-excitation determines the relaxation dynamics. These results indicate molecular properties of the 28-atom Au cluster-dodecanethiol system

  2. Photochemical dynamics of surface oriented molecules

    International Nuclear Information System (INIS)

    Ho, W.

    1992-01-01

    The period 8/01/91-7/31/92 is the first year of a new project titled ''Photochemical Dynamics of Surface Oriented Molecules'', initiated with DOE Support. The main objective of this project is to understand the dynamics of elementary chemical reactions by studying photochemical dynamics of surface-oriented molecules. In addition, the mechanisms of photon-surface interactions need to be elucidated. The strategy is to carry out experiments to measure the translational energy distribution, as a function of the angle from the surface normal, of the photoproducts by time-of-flight (TOF) technique by varying the photon wavelength, intensity, polarization, and pulse duration. By choosing adsorbates with different bonding configuration, the effects of adsorbate orientation on surface photochemical dynamics can be studied

  3. Threshold electron impact ionization of molecules (CF4, CHF3, CH4, C3H8) and clusters (Ar, Ne, H2, D2), dissociative electron attachment to hydrogen and surface induced reactions of fullerenes (Cn, n=50-60)

    International Nuclear Information System (INIS)

    Fiegele, T.

    2001-02-01

    After many years of research the accurate determination and interpretation of threshold energies at which a molecule is ionized by electron impact remains still difficult. The reasons for this are a number of technical obstacles like preparing electrons with a high energy resolution and a complicated physical situation in the reaction complex involving a quantum mechanical many body system. The use of photoionization sometimes appears to be less difficult but nevertheless the values obtained by this technique are not directly comparable to those obtained by electron impact studies. With the use of a newly constructed hemispherical electron monochromator the interaction of electrons under high energy resolution (up to 30 meV) with atoms, molecules and clusters was investigated. In the present study two new techniques have been invoked to obtain more information about the energy resolution of the electrons. Up to now it was only possible to determine the electron energy resolution with the help of s-wave attachment cross sections, e.g. the Cl-/CCl4 resonance at 0 eV. The new techniques allow the investigation at higher energies (at about 12 up to about 58 eV) and by using positive ions. Especially in the case of measuring threshold energies of positive ions the new methods have the advantage that there is no need to change between positive and negative ions. Additionally one gets information about the calibration and the linearity of the energy scale. The value at which the resolution is determined lies also in the range of the threshold. The results show that the resolution is constant over a large electron energy range. Due to low ion signals at the threshold regions the used electron energy resolution was set at about 120 meV for most of the present measurements. In the present work it was for the first time possible to measure accurately the appearance energies for rare gas cluster ions (Ar, Ne) and for hydrogen cluster ions. There are two important observations

  4. Scattering of atoms by molecules adsorbed at solid surfaces

    International Nuclear Information System (INIS)

    Parra, Zaida.

    1988-01-01

    The formalism of collisional time-correlation functions, appropriate for scattering by many-body targets, is implemented to study energy transfer in the scattering of atoms and ions from molecules adsorbed on metal surfaces. Double differential cross-sections for the energy and angular distributions of atoms and ions scattered by a molecule adsorbed on a metal surface are derived in the limit of impulsive collisions and within a statistical model that accounts for single and double collisions. They are found to be given by the product of an effective cross-section that accounts for the probability of deflection into a solid angle times a probability per unit energy transfer. A cluster model is introduced for the vibrations of an adsorbed molecule which includes the molecular atoms, the surface atoms binding the molecule, and their nearest neighbors. The vibrational modes of CO adsorbed on a Ni(001) metal surface are obtained using two different cluster models to represent the on-top and bridge-bonding situations. A He/OC-Ni(001) potential is constructed from a strongly repulsive potential of He interacting with the oxygen atom in the CO molecule and a van der Waals attraction accounting for the He interaction with the free Ni(001) surface. A potential is presented for the Li + /OC-Ni(001) where a coulombic term is introduced to account for the image force. Trajectory studies are performed and analyzed in three dimensions to obtain effective classical cross-sections for the He/OC-Ni(001) and Li + /OC-Ni(001) systems. Results for the double differential cross-sections are presented as functions of scattering angles, energy transfer and collisional energy. Temperature dependence results are also analyzed. Extensions of the approach and inclusion of effects such as anharmonicity, collisions at lower energies, and applications of the approach to higher coverages are discussed

  5. Stochastic models for surface diffusion of molecules

    Energy Technology Data Exchange (ETDEWEB)

    Shea, Patrick, E-mail: patrick.shea@dal.ca; Kreuzer, Hans Jürgen [Department of Physics and Atmospheric Science, Dalhousie University, Halifax, Nova Scotia B3H 3J5 (Canada)

    2014-07-28

    We derive a stochastic model for the surface diffusion of molecules, starting from the classical equations of motion for an N-atom molecule on a surface. The equation of motion becomes a generalized Langevin equation for the center of mass of the molecule, with a non-Markovian friction kernel. In the Markov approximation, a standard Langevin equation is recovered, and the effect of the molecular vibrations on the diffusion is seen to lead to an increase in the friction for center of mass motion. This effective friction has a simple form that depends on the curvature of the lowest energy diffusion path in the 3N-dimensional coordinate space. We also find that so long as the intramolecular forces are sufficiently strong, memory effects are usually not significant and the Markov approximation can be employed, resulting in a simple one-dimensional model that can account for the effect of the dynamics of the molecular vibrations on the diffusive motion.

  6. Electrons from fixed in space molecules and clusters

    International Nuclear Information System (INIS)

    Doerner, R.; Jahnke, T.; Czasch, A.; Jagutzki, O.; Schmidt-Boecking; Kreidi, K.; Knapp, A.; Schmidt, L.; Schoeffler, M.; Foucar, L.; Cocke, C.L.; Osipov, T.; Alnaser, A.

    2004-01-01

    Full text: We use modern multi particle momentum imaging techniques (COLTRIMS) to measure the vector momenta of all charged fragments, ions, photoelectrons and Auger electrons for small molecules excited by synchrotron radiation. These complete images of the fragmentation give an umprecedented detailed insight in the molecular photoionization and Auger process. Also latest results on molecular double ionisation and on cluster fragmentation unveiling interatomic coulomb decay will be presented

  7. Energy redistribution in diatomic molecules on surfaces

    International Nuclear Information System (INIS)

    Asscher, M.; Somorjai, G.A.

    1984-04-01

    Translational and internal degrees of freedom of a scattered beam of NO molecules from a Pt(111) single crystal surface were measured as a function of scattering angle and crystal temperature in the range 450 to 1250K. None of the three degrees of freedom were found to fully accommodate to the crystal temperature, the translational degree being the most accommodated and the rotational degree of freedom the least. A precursor state model is suggested to account for the incomplete accommodation of translational and vibrational degrees of freedom as a function of crystal temperature and incident beam energy. The vibrational accommodation is further discussed in terms of a competition between desorption and vibrational excitation processes, thus providing valuable information on the interaction between vibrationally excited molecules and surfaces. Energy transfer into rotational degrees of freedom is qualitatively discussed

  8. Far-Infrared Spectroscopy of Weakly Bound Hydrated Cluster Molecules

    DEFF Research Database (Denmark)

    Andersen, Jonas

    The thermodynamic properties of condensed phases, the functionality of many materials and the molecular organization in biological organisms are all governed by the classes of non-covalent interactions that occur already on the microscopic scale between pairs of molecules. A detailed investigation...... of the intermolecular interactions between prototypical molecular assemblies are valuable for accurate descriptions of larger supramolecular systems such as materials, gas hydrates and biological macromolecules. The aim of this PhD dissertation is to investigate intermolecular interactions fora series of medium...... vibrational bands of the cluster molecules in the challenging far-infrared and terahertz spectral regions.A key parameter in the validation of the performance of theoretical predictions for weak non-covalent intermolecular interactions is the dissociation energy D0 that depends heavily on the class of large...

  9. Desorption of large molecules with light-element clusters: Effects of cluster size and substrate nature

    Energy Technology Data Exchange (ETDEWEB)

    Delcorte, Arnaud, E-mail: arnaud.delcorte@uclouvain.be [Institute of Condensed Matter and Nanosciences - Bio and Soft Matter, Universite catholique de Louvain, Croix du Sud, 1 bte 3, B-1348 Louvain-la-Neuve (Belgium); Garrison, Barbara J. [Department of Chemistry, Penn State University, University Park, PA 16802 (United States)

    2011-07-15

    This contribution focuses on the conditions required to desorb a large hydrocarbon molecule using light-element clusters. The test molecule is a 7.5 kDa coil of polystyrene (PS61). Several projectiles are compared, from C{sub 60} to 110 kDa organic droplets and two substrates are used, amorphous polyethylene and mono-crystalline gold. Different aiming points and incidence angles are examined. Under specific conditions, 10 keV nanodrops can desorb PS61 intact from a gold substrate and from a soft polyethylene substrate. The prevalent mechanism for the desorption of intact and 'cold' molecules is one in which the molecules are washed away by the projectile constituents and entrained in their flux, with an emission angle close to {approx}70 deg. The effects of the different parameters on the dynamics and the underlying physics are discussed in detail and the predictions of the model are compared with other published studies.

  10. Desorption of large molecules with light-element clusters: Effects of cluster size and substrate nature

    International Nuclear Information System (INIS)

    Delcorte, Arnaud; Garrison, Barbara J.

    2011-01-01

    This contribution focuses on the conditions required to desorb a large hydrocarbon molecule using light-element clusters. The test molecule is a 7.5 kDa coil of polystyrene (PS61). Several projectiles are compared, from C 60 to 110 kDa organic droplets and two substrates are used, amorphous polyethylene and mono-crystalline gold. Different aiming points and incidence angles are examined. Under specific conditions, 10 keV nanodrops can desorb PS61 intact from a gold substrate and from a soft polyethylene substrate. The prevalent mechanism for the desorption of intact and 'cold' molecules is one in which the molecules are washed away by the projectile constituents and entrained in their flux, with an emission angle close to ∼70 deg. The effects of the different parameters on the dynamics and the underlying physics are discussed in detail and the predictions of the model are compared with other published studies.

  11. Electric dipole moments of nanosolvated acid molecules in water clusters.

    Science.gov (United States)

    Guggemos, Nicholas; Slavíček, Petr; Kresin, Vitaly V

    2015-01-30

    The electric dipole moments of (H2O)nDCl (n=3-9) clusters have been measured by the beam-deflection method. Reflecting the (dynamical) charge distribution within the system, the dipole moment contributes information about the microscopic structure of nanoscale solvation. The addition of a DCl molecule to a water cluster results in a strongly enhanced susceptibility. There is evidence for a noticeable rise in the dipole moment occurring at n≈5-6. This size is consistent with predictions for the onset of ionic dissociation. Additionally, a molecular-dynamics model suggests that even with a nominally bound impurity an enhanced dipole moment can arise due to the thermal and zero-point motion of the proton and the water molecules. The experimental measurements and the calculations draw attention to the importance of fluctuations in defining the polarity of water-based nanoclusters and generally to the essential role played by motional effects in determining the response of fluxional nanoscale systems under realistic conditions.

  12. Molecular limit of a bulk semiconductor: size dependent optical spectroscopy study of CdSe cluster molecules

    Energy Technology Data Exchange (ETDEWEB)

    Soloviev, V.N.; Banin, U. [Hebrew Univ., Jerusalem (Israel). Dept. of Physical Chemistry; Eichhoefer, A. [Forschungszentrum Karlsruhe GmbH Technik und Umwelt (Germany). Inst. fuer Nanotechnologie; Fenske, D. [Forschungszentrum Karlsruhe GmbH Technik und Umwelt (Germany). Inst. fuer Nanotechnologie; Karlsruhe Univ. (T.H.) (Germany). Inst. fuer Anorganische Chemie

    2001-03-01

    Steady state and time-resolved photoluminescence measurements of a homologous series of CdSe cluster molecules were performed over a broad temperature range (T = 5-200 K). The absorption and low temperature PLE onset of the clusters shifts systematically to the blue in smaller clusters, manifesting the quantum confinement effect. The emission in all cluster molecules is observed only at low temperatures and is red-shifted significantly from the absorption onset. It is assigned to optically forbidden transitions involving surface states, as substantiated by the {mu}s range of lifetimes and by the involvement of low frequency vibrations of capping selenophenol ligands in the nonradiative relaxation of excited cluster molecules. (orig.)

  13. Ultrafast dynamics of electronically excited molecules and clusters

    International Nuclear Information System (INIS)

    Lietard, Aude

    2014-01-01

    This PhD thesis investigated the ultrafast dynamics of photo-chromic molecules and argon clusters in the gas phase at the femtosecond timescale. Pump-probe experiments are performed in a set-up which associates a versatile pulsed molecular beam coupled to a photoelectron/photoion velocity map imager (VMI) and a time-of-flight mass spectrometer (TOF-MS). Theses pump-probe experiments provides the temporal evolution of the electronic distribution for each system of interest. Besides, a modelization has been performed in order to characterize the density and the velocity distribution in the pulsed beam. Regarding the photo-chromic di-thienyl-ethene molecules, parallel electronic relaxation pathways were observed. This contrasts with the observation of sequential relaxation processes in most molecules studied so far. In the present case, the initial wave packet splits in two parts. One part is driven to the ground state at the femtosecond time scale through a conical intersection, and the second part remains for ps in the excited state and experiences oscillations in a suspended well. This study has shed light into the intrinsic dynamics of the molecules under study and a general relaxation mechanism has been proposed, which applies to the whole family of di-thienyl-ethene molecules whatever the state of matter (gas phase or solution) in which they have been investigated. Concerning argon clusters excited at about 14 eV, two behaviors of different time scale have been observed at different time scales. The first one occurs in the first picoseconds of the dynamics. It corresponds to the electronic relaxation of an excitonic state at a rate of 1 eV.ps -1 . The second phenomenon corresponds to the localization of the exciton on the excimer Ar 2 *. This phenomenon is observed 4-5 ps after the excitation. In this study, we also observed the ejection of excited argon atoms, addressing the lifetime of the delocalized excitonic state. This work provide additional informations

  14. Cluster Formation of Polyphilic Molecules Solvated in a DPPC Bilayer

    Directory of Open Access Journals (Sweden)

    Xiang-Yang Guo

    2017-10-01

    Full Text Available We analyse the initial stages of cluster formation of polyphilic additive molecules which are solvated in a dipalmitoylphosphatidylcholine (DPPC lipid bilayer. Our polyphilic molecules comprise an aromatic (trans-bilayer core domain with (out-of-bilayer glycerol terminations, complemented with a fluorophilic and an alkyl side chain, both of which are confined within the aliphatic segment of the bilayer. Large-scale molecular dynamics simulations (1 μ s total duration of a set of six of such polyphilic additives reveal the initial steps towards supramolecular aggregation induced by the specific philicity properties of the molecules. For our intermediate system size of six polyphiles, the transient but recurrent formation of a trimer is observed on a characteristic timescale of about 100 ns. The alkane/perfluoroalkane side chains show a very distinct conformational distribution inside the bilayer thanks to their different philicity, despite their identical anchoring in the trans-bilayer segment of the polyphile. The diffusive mobility of the polyphilic additives is about the same as that of the surrounding lipids, although it crosses both bilayer leaflets and tends to self-associate.

  15. Beam broadening of polar molecules and clusters in deflection experiments.

    Science.gov (United States)

    Bulthuis, J; Kresin, V V

    2012-01-07

    A beam of rotating dipolar particles (molecules or clusters) will broaden when passed through an electric or magnetic field gradient region. This broadening, which is a common experimental observable, can be expressed in terms of the variance of the distribution of the resulting polarization orientation (the direction cosine). Here, the broadening for symmetric-top and linear rotors is discussed. These two types of rotors have qualitatively different low-field orientation distribution functions, but behave similarly in a strong field. While analytical expressions for the polarization variance can be derived from first-order perturbation theory, for experimental guidance it is important to identify the applicability and limitations of these expressions, and the general dependence of the broadening on the experimental parameters. For this purpose, the analytical results are compared with the full diagonalization of the rotational Stark-effect matrices. Conveniently for experimental estimations, it is found that for symmetric tops, the dependence of the broadening parameter on the rotational constant, the axial ratio, and the field strength remains similar to the analytical expression even outside of the perturbative regime. Also, it is observed that the shape envelope, the centroid, and the width of the orientation distribution function for a symmetric top are quite insensitive to the value of its rotational constant (except at low rotational temperatures).

  16. Cluster structures influenced by interaction with a surface.

    Science.gov (United States)

    Witt, Christopher; Dieterich, Johannes M; Hartke, Bernd

    2018-05-30

    Clusters on surfaces are vitally important for nanotechnological applications. Clearly, cluster-surface interactions heavily influence the preferred cluster structures, compared to clusters in vacuum. Nevertheless, systematic explorations and an in-depth understanding of these interactions and how they determine the cluster structures are still lacking. Here we present an extension of our well-established non-deterministic global optimization package OGOLEM from isolated clusters to clusters on surfaces. Applying this approach to intentionally simple Lennard-Jones test systems, we produce a first systematic exploration that relates changes in cluster-surface interactions to resulting changes in adsorbed cluster structures.

  17. Exploring the free energy surfaces of clusters using reconnaissance metadynamics

    Science.gov (United States)

    Tribello, Gareth A.; Cuny, Jérôme; Eshet, Hagai; Parrinello, Michele

    2011-09-01

    A new approach is proposed for exploring the low-energy structures of small to medium-sized aggregates of atoms and molecules. This approach uses the recently proposed reconnaissance metadynamics method [G. A. Tribello, M. Ceriotti, and M. Parrinello. Proc. Natl. Acad. Sci. U.S.A. 107(41), 17509 (2010), 10.1073/pnas.1011511107] in tandem with collective variables that describe the average structure of the coordination sphere around the atoms/molecules. We demonstrate this method on both Lennard-Jones and water clusters and show how it is able to quickly find the global minimum in the potential energy surface, while exploring the finite temperature free energy surface.

  18. Multipole moments of water molecules in clusters and ice Ih from first principles calculations

    International Nuclear Information System (INIS)

    Batista, E.R.; Xantheas, S.S.; Jonsson, H.

    1999-01-01

    We have calculated molecular multipole moments for water molecules in clusters and in ice Ih by partitioning the charge density obtained from first principles calculations. Various schemes for dividing the electronic charge density among the water molecules were used. They include Bader close-quote s zero flux surfaces and Voronoi partitioning schemes. A comparison was also made with an induction model including dipole, dipole-quadrupole, quadrupole-quadrupole polarizability and first hyperpolarizability as well as fixed octopole and hexadecapole moments. We have found that the different density partitioning schemes lead to widely different values for the molecular multipoles, illustrating how poorly defined molecular multipoles are in clusters and condensed environments. For instance, the magnitude of the molecular dipole moment in ice Ih ranges between 2.3 D and 3.1 D depending on the partitioning scheme used. Within each scheme, though, the value for the molecular dipole moment in ice is larger than in the hexamer. The magnitude of the molecular dipole moment in the clusters shows a monotonic increase from the gas phase value to the one in ice Ih, with the molecular dipole moment in the water ring hexamer being smaller than the one in ice Ih for all the partitioning schemes used. copyright 1999 American Institute of Physics

  19. Advances in single-molecule magnet surface patterning through microcontact printing

    NARCIS (Netherlands)

    Mannini, Matteo; Bonacchi, D.; Bonacchi, Daniele; Zobbi, Laura; Piras, Federica M.; Speets, E.A.; Caneschi, Andrea; Cornia, Andrea; Magnani, Agnese; Ravoo, B.J.; Reinhoudt, David; Sessoli, Roberta; Gatteschi, Dante

    2005-01-01

    We present an implementation of strategies to deposit single-molecule magnets (SMMs) using microcontact printing (uCP). We describe different approaches of CP to print stripes of a sulfur-functionalized dodecamanganese(III,IV) cluster on gold surfaces. Comparison by atomic force microscopy profile

  20. A density-dependent switch drives stochastic clustering and polarization of signaling molecules.

    Directory of Open Access Journals (Sweden)

    Alexandra Jilkine

    2011-11-01

    Full Text Available Positive feedback plays a key role in the ability of signaling molecules to form highly localized clusters in the membrane or cytosol of cells. Such clustering can occur in the absence of localizing mechanisms such as pre-existing spatial cues, diffusional barriers, or molecular cross-linking. What prevents positive feedback from amplifying inevitable biological noise when an un-clustered "off" state is desired? And, what limits the spread of clusters when an "on" state is desired? Here, we show that a minimal positive feedback circuit provides the general principle for both suppressing and amplifying noise: below a critical density of signaling molecules, clustering switches off; above this threshold, highly localized clusters are recurrently generated. Clustering occurs only in the stochastic regime, suggesting that finite sizes of molecular populations cannot be ignored in signal transduction networks. The emergence of a dominant cluster for finite numbers of molecules is partly a phenomenon of random sampling, analogous to the fixation or loss of neutral mutations in finite populations. We refer to our model as the "neutral drift polarity model." Regulating the density of signaling molecules provides a simple mechanism for a positive feedback circuit to robustly switch between clustered and un-clustered states. The intrinsic ability of positive feedback both to create and suppress clustering is a general mechanism that could operate within diverse biological networks to create dynamic spatial organization.

  1. Effects on energetic impact of atomic clusters with surfaces

    International Nuclear Information System (INIS)

    Popok, V.N.; Vuchkovich, S.; Abdela, A.; Campbell, E.E.B.

    2007-01-01

    A brief state-of-the-art review in the field of cluster ion interaction with surface is presented. Cluster beams are efficient tools for manipulating agglomerates of atoms providing control over the synthesis as well as modification of surfaces on the nm-scale. The application of cluster beams for technological purposes requires knowledge of the physics of cluster-surface impact. This has some significant differences compared to monomer ion - surface interactions. The main effects of cluster-surface collisions are discussed. Recent results obtained in experiments on silicon surface nanostructuring using keV-energy implantation of inert gas cluster ions are presented and compared with molecular dynamics simulations. (authors)

  2. State selective dynamics of molecules, clusters, and nanostructures

    International Nuclear Information System (INIS)

    John W. Keto

    2005-01-01

    Early objectives of this grant were: (1) Measure two-photon excitation of even parity excitons in liquid an solid xenon, (2) Study state-to-state energy transfer between two-photon laser excited states or rare-gas atoms to other rare has atoms, (3) study reactive half-collisions between xenon and chlorine leading to the XeCl* B state, (4) measure the spectra of ro-vibrational states of cluster ions and radicals formed in high-pressure discharges and to study their dynamics, (5) measure the surface and bulk electronic states of nanoparticles produced by a unique method of synthesis--laser ablation of microspheres (LAM). Using near-field and microluminescence techniques, we obtained spectra of single nanocrystals to compare with spectra obtained in a supersonic jet apparatus using resonance excitation followed by photoionization (REMPI) with time-of-flight mass analysis. These materials combine the functional advantages obtained from the size-tunable properties of nanocomposite materials with the fabrication and direct-write advantages of NPs manufactured by LAM. We demonstrated that CdSe nanoparticles produced by LAM were efficient fluorescers, even when deposited dry on sapphire substrates. Si nanoparticles were fluorescent when captured in ethylene glycol. We also obtained efficient fluorescence from Er doped phosphate glass nanoparticles which have application to gain waveguides in integrated optics or to nanoslush lasers. We used a femptosecond laser to study the nonlinear spectra of NC composites. We are currently measuring fluorescence and second and third-order susceptibilities of composites of Ag, Si, and GaN nanoparticles encapsulated within thin films of sapphire or SiO2

  3. State selective dynamics of molecules, clusters, and nanostructures

    Energy Technology Data Exchange (ETDEWEB)

    Keto, John W. [Univ. of Texas, Austin, TX (United States)

    2005-06-01

    Early objectives of this grant were: (1) Measure two-photon excitation of even parity excitons in liquid an solid xenon, (2) Study state-to-state energy transver between two-photon laser excited states or rare-gas atoms to other rare has atoms, (3) study reactive half-collisions between xenon and chlorine leading to the XeCl* B state, (4) measure the spectra of ro-vibrational states of cluster ions and radicals formed in high-pressure discharges and to study their dynamics, (5) measure the surface and bulk electronic states of nanoparticles produced by a unique method of synthesis--laser ablation of microspheres (LAM). Using near-field and microluminescence techniques, we obtained spectra of single nanocrystals to compare with spectra obtained in a supersonic jet apparatus using resonance excitation followed by photoionization (REMPI) with time-of-flight mass analysis. These materials combine the functional advantages obtained from the size-tunable properties of nanocomposite materials with the fabrication and direct-write advantages of NPs manufactured by LAM. We demostrated that CdSe nanoparticles produced by LAM were efficiient fluorescers, even when deposited dry on sapphire substrates. Si nanoparticles were fluorescent when captured in ethylene glycol. We also obtiained efficient fluorescence from Er doped phosphate glass nanopartiicles which have application to gain wafeguides in integrated optics or to nanoslush lasers. We used a femptosecond laser to study the nonlinear spectra of NC composites. We are currently measuring fluorescence and second and third-order susceptibilities of composites of Ag, Si, and GaN nanoparticles encapsulated within thin films of sapphire or SiO 2.

  4. Mode selectivity in cluster-molecule interactions: Ni13 + D2

    International Nuclear Information System (INIS)

    Jellinek, J.; Guevenc, Z.B.

    1991-01-01

    Results of a detailed quasiclassical simulation study of the Ni 13 + D 2 collision system are presented. The dissociative adsorption of the molecule as well as its scattering from the cluster are analyzed as functions of the initial rovibrational molecular state, collision energy and structure of the cluster. Mode-specific features of the reactive and nonreactive channels of the cluster-molecule interaction are displayed and discussed. Evidence for resonances and for a strong cluster structure-reactivity correlation is presented. 13 refs., 6 figs

  5. Manipulation of Origin of Life Molecules: Recognizing Single-Molecule Conformations in β-Carotene and Chlorophyll-a/β-Carotene Clusters

    Energy Technology Data Exchange (ETDEWEB)

    Ngo, Anh T.; Skeini, Timur [Nanoscale; amp, Quantum Phenomena Institute and Physics & amp, Astronomy Department, Ohio University, Athens, Ohio 45701, United States; Iancu, Violeta [Nanoscale; amp, Quantum Phenomena Institute and Physics & amp, Astronomy Department, Ohio University, Athens, Ohio 45701, United States; Redfern, Paul C.; Curtiss, Larry A.; Hla, Saw Wai [Nanoscale; amp, Quantum Phenomena Institute and Physics & amp, Astronomy Department, Ohio University, Athens, Ohio 45701, United States

    2018-01-11

    Carotenoids and chlorophyll are essential parts of plant leaves and are involved in photosynthesis, a vital biological process responsible for the origin of life on Earth. Here, we investigate how beta-carotene and chlorophyll-a form mixed molecular phases On a Au(111) surface using low-temperature scanning tunneling microscopy and molecular manipulation at the single-molecule level supported by density functional theory calculations. By isolating individual molecules from nanoscale molecular clusters with a scanning tunneling microscope tip, we are able to identify five beta-carotene conformations including a structure exhibiting a three-dimensional conformation. Furthermore, molecular resolution images enable direct visualization of beta-carotene/chlorophyll-a clsuters, with intimate structural details highlighting how they pair: beta-carotene preferentially positions next to chlorophyll-a and induces switching of chlorophyll-a from straight to several bent tail conformations in the molecular clusters.

  6. Molecular recognition of chromophore molecules to amine terminated surfaces

    International Nuclear Information System (INIS)

    Flores-Perez, Rosangelly; Ivanisevic, Albena

    2007-01-01

    We report the design and characterization of quartz surfaces that can bind to three retinal based chromophores. The amine terminated surfaces were engineered in order to mimic the environment of the opsin protein that accommodates binding of chromophore molecules in the human eye. Each surface coupling step was characterized by water contact angle measurements, ellipsometry, atomic force microscopy, X-ray photoelectron spectroscopy, and transmission infrared spectroscopy. The spectroscopic techniques confirmed that the three chromophore molecules can bind to the surface using a Schiff base mode. Our data suggests that the availability of the amine groups on the surface is critical in the accommodation of the binding of different chromophores

  7. Magnetic memory of a single-molecule quantum magnet wired to a gold surface.

    Science.gov (United States)

    Mannini, Matteo; Pineider, Francesco; Sainctavit, Philippe; Danieli, Chiara; Otero, Edwige; Sciancalepore, Corrado; Talarico, Anna Maria; Arrio, Marie-Anne; Cornia, Andrea; Gatteschi, Dante; Sessoli, Roberta

    2009-03-01

    In the field of molecular spintronics, the use of magnetic molecules for information technology is a main target and the observation of magnetic hysteresis on individual molecules organized on surfaces is a necessary step to develop molecular memory arrays. Although simple paramagnetic molecules can show surface-induced magnetic ordering and hysteresis when deposited on ferromagnetic surfaces, information storage at the molecular level requires molecules exhibiting an intrinsic remnant magnetization, like the so-called single-molecule magnets (SMMs). These have been intensively investigated for their rich quantum behaviour but no magnetic hysteresis has been so far reported for monolayers of SMMs on various non-magnetic substrates, most probably owing to the chemical instability of clusters on surfaces. Using X-ray absorption spectroscopy and X-ray magnetic circular dichroism synchrotron-based techniques, pushed to the limits in sensitivity and operated at sub-kelvin temperatures, we have now found that robust, tailor-made Fe(4) complexes retain magnetic hysteresis at gold surfaces. Our results demonstrate that isolated SMMs can be used for storing information. The road is now open to address individual molecules wired to a conducting surface in their blocked magnetization state, thereby enabling investigation of the elementary interactions between electron transport and magnetism degrees of freedom at the molecular scale.

  8. Single atom and-molecules chemisorption on solid surfaces

    International Nuclear Information System (INIS)

    Anda, E.V.; Ure, J.E.; Majlis, N.

    1981-01-01

    A simplified model for the microscopic interpretation of single atom and- molecules chemisorption on metallic surfaces is presented. An appropriated hamiltonian for this problem is resolved, through the Green's function formalism. (L.C.) [pt

  9. bcl::Cluster : A method for clustering biological molecules coupled with visualization in the Pymol Molecular Graphics System.

    Science.gov (United States)

    Alexander, Nathan; Woetzel, Nils; Meiler, Jens

    2011-02-01

    Clustering algorithms are used as data analysis tools in a wide variety of applications in Biology. Clustering has become especially important in protein structure prediction and virtual high throughput screening methods. In protein structure prediction, clustering is used to structure the conformational space of thousands of protein models. In virtual high throughput screening, databases with millions of drug-like molecules are organized by structural similarity, e.g. common scaffolds. The tree-like dendrogram structure obtained from hierarchical clustering can provide a qualitative overview of the results, which is important for focusing detailed analysis. However, in practice it is difficult to relate specific components of the dendrogram directly back to the objects of which it is comprised and to display all desired information within the two dimensions of the dendrogram. The current work presents a hierarchical agglomerative clustering method termed bcl::Cluster. bcl::Cluster utilizes the Pymol Molecular Graphics System to graphically depict dendrograms in three dimensions. This allows simultaneous display of relevant biological molecules as well as additional information about the clusters and the members comprising them.

  10. Surface Passivation for Single-molecule Protein Studies

    Science.gov (United States)

    Chandradoss, Stanley D.; Haagsma, Anna C.; Lee, Young Kwang; Hwang, Jae-Ho; Nam, Jwa-Min; Joo, Chirlmin

    2014-01-01

    Single-molecule fluorescence spectroscopy has proven to be instrumental in understanding a wide range of biological phenomena at the nanoscale. Important examples of what this technique can yield to biological sciences are the mechanistic insights on protein-protein and protein-nucleic acid interactions. When interactions of proteins are probed at the single-molecule level, the proteins or their substrates are often immobilized on a glass surface, which allows for a long-term observation. This immobilization scheme may introduce unwanted surface artifacts. Therefore, it is essential to passivate the glass surface to make it inert. Surface coating using polyethylene glycol (PEG) stands out for its high performance in preventing proteins from non-specifically interacting with a glass surface. However, the polymer coating procedure is difficult, due to the complication arising from a series of surface treatments and the stringent requirement that a surface needs to be free of any fluorescent molecules at the end of the procedure. Here, we provide a robust protocol with step-by-step instructions. It covers surface cleaning including piranha etching, surface functionalization with amine groups, and finally PEG coating. To obtain a high density of a PEG layer, we introduce a new strategy of treating the surface with PEG molecules over two rounds, which remarkably improves the quality of passivation. We provide representative results as well as practical advice for each critical step so that anyone can achieve the high quality surface passivation. PMID:24797261

  11. Controlled Clustering of Gold Nanoparticles using Solid-support for Surface-enhanced Raman Spectroscopic Probes

    International Nuclear Information System (INIS)

    Chang, Hyejin; Chae, Jinjoo; Jeong, Hong; Kang, Homan; Lee, Yoonsik

    2014-01-01

    We fabricated small clusters of gold nanoparticles by using solid-supported aggregation of gold nanoparticles. The fabricated Au nanoclusters consisting mainly of dimers showed homogeneous characteristics in cluster size and SERS intensity. The SERS enhancement of 4-ABT molecules in an effective area within 2-nm gap appeared to be approximately 10. Detachment process by ultrasonication was successively carried out in order to use the nanoclusters as SERS probes. The possibility of these clusters as SERS probe was proved in terms of signal and cluster size. Single molecule-level sensitivity of surface-enhanced Raman scattering (SERS) was known approximately fifteen years ago. Ever since there have been many different applications benefiting from the ultra-high sensitivity such as single molecule detection, chemical sensing and bio-molecular probes. Especially, SERS has drawn much attention in bio-multiplexing probes owing to its unique optical characteristics claiming extremely narrow bandwidth, high sensitivity of light signals, and non-bleaching feature

  12. Controlled Clustering of Gold Nanoparticles using Solid-support for Surface-enhanced Raman Spectroscopic Probes

    Energy Technology Data Exchange (ETDEWEB)

    Chang, Hyejin; Chae, Jinjoo; Jeong, Hong [Department of Chemistry Education, Seoul (Korea, Republic of); Kang, Homan; Lee, Yoonsik [Interdisciplinary Program in Nano-Science and Technology, Pohang (Korea, Republic of)

    2014-03-15

    We fabricated small clusters of gold nanoparticles by using solid-supported aggregation of gold nanoparticles. The fabricated Au nanoclusters consisting mainly of dimers showed homogeneous characteristics in cluster size and SERS intensity. The SERS enhancement of 4-ABT molecules in an effective area within 2-nm gap appeared to be approximately 10. Detachment process by ultrasonication was successively carried out in order to use the nanoclusters as SERS probes. The possibility of these clusters as SERS probe was proved in terms of signal and cluster size. Single molecule-level sensitivity of surface-enhanced Raman scattering (SERS) was known approximately fifteen years ago. Ever since there have been many different applications benefiting from the ultra-high sensitivity such as single molecule detection, chemical sensing and bio-molecular probes. Especially, SERS has drawn much attention in bio-multiplexing probes owing to its unique optical characteristics claiming extremely narrow bandwidth, high sensitivity of light signals, and non-bleaching feature.

  13. Photo-stimulated desorption from water and methane clusters on the surface of solid neon

    International Nuclear Information System (INIS)

    Arakawa Ichiri; Matsumoto Dairo; Takekuma Shinichi; Tamura Reimi; Miura Takashi

    2012-01-01

    Photo-stimulated desorption of ions from methane and water heterocluster on the surface of solid neon was studied. The desorption yields of the variety of photo-desorbed species showed strong dependence on the composition and the size of the mother cluster. It was found that the presence of a water molecule in the cluster significantly enhanced, or was almost essential for, the desorption of any species observed. Systematic investigation of the correlation between the cluster size and the desorption yield of each ion has revealed the mother cluster which yields the each desorbed ion.

  14. Surface functionalization of aluminosilicate nanotubes with organic molecules

    Directory of Open Access Journals (Sweden)

    Wei Ma

    2012-02-01

    Full Text Available The surface functionalization of inorganic nanostructures is an effective approach for enriching the potential applications of existing nanomaterials. Inorganic nanotubes attract great research interest due to their one-dimensional structure and reactive surfaces. In this review paper, recent developments in surface functionalization of an aluminosilicate nanotube, “imogolite”, are introduced. The functionalization processes are based on the robust affinity between phosphate groups of organic molecules and the aluminol (AlOH surface of imogolite nanotubes. An aqueous modification process employing a water soluble ammonium salt of alkyl phosphate led to chemisorption of molecules on imogolite at the nanotube level. Polymer-chain-grafted imogolite nanotubes were prepared through surface-initiated polymerization. In addition, the assembly of conjugated molecules, 2-(5’’-hexyl-2,2’:5’,2’’-terthiophen-5-ylethylphosphonic acid (HT3P and 2-(5’’-hexyl-2,2’:5’,2’’-terthiophen-5-ylethylphosphonic acid 1,1-dioxide (HT3OP, on the imogolite nanotube surface was achieved by introducing a phosphonic acid group to the corresponding molecules. The optical and photophysical properties of these conjugated-molecule-decorated imogolite nanotubes were characterized. Moreover, poly(3-hexylthiophene (P3HT chains were further hybridized with HT3P modified imogolite to form a nanofiber hybrid.

  15. Advances in single-molecule magnet surface patterning through microcontact printing.

    Science.gov (United States)

    Mannini, Matteo; Bonacchi, Daniele; Zobbi, Laura; Piras, Federica M; Speets, Emiel A; Caneschi, Andrea; Cornia, Andrea; Magnani, Agnese; Ravoo, Bart Jan; Reinhoudt, David N; Sessoli, Roberta; Gatteschi, Dante

    2005-07-01

    We present an implementation of strategies to deposit single-molecule magnets (SMMs) using microcontact printing microCP). We describe different approaches of microCP to print stripes of a sulfur-functionalized dodecamanganese (III, IV) cluster on gold surfaces. Comparison by atomic force microscopy profile analysis of the patterned structures confirms the formation of a chemically stable single layer of SMMs. Images based on chemical contrast, obtained by time-of-flight secondary ion mass spectrometry, confirm the patterned structure.

  16. MHCcluster, a method for functional clustering of MHC molecules

    DEFF Research Database (Denmark)

    Thomsen, Martin Christen Frølund; Lundegaard, Claus; Buus, Søren

    2013-01-01

    The identification of peptides binding to major histocompatibility complexes (MHC) is a critical step in the understanding of T cell immune responses. The human MHC genomic region (HLA) is extremely polymorphic comprising several thousand alleles, many encoding a distinct molecule. The potentially...... binding specificity. The method has a flexible web interface that allows the user to include any MHC of interest in the analysis. The output consists of a static heat map and graphical tree-based visualizations of the functional relationship between MHC variants and a dynamic TreeViewer interface where...

  17. Surface-enhanced resonance Raman scattering spectroscopy of single R6G molecules

    Institute of Scientific and Technical Information of China (English)

    Zhou Zeng-Hui; Liu Li; Wang Gui-Ying; Xu Zhi-Zhan

    2006-01-01

    Surface-enhanced resonance Raman scattering (SERRS) of Rhodamine 6G (R6G) adsorbed on colloidal silver clusters has been studied. Based on the great enhancement of the Raman signal and the quench of the fluorescence, the SERRS spectra of R6G were recorded for the samples of dye colloidal solution with different concentrations. Spectral inhomogeneity behaviours from single molecules in the dried sample films were observed with complementary evidences, such as spectral polarization, spectral diffusion, intensity fluctuation of vibrational lines and even "breathing" of the molecules. Sequential spectra observed from a liquid sample with an average of 0.3 dye molecules in the probed volume exhibited the expected Poisson distribution for actually measuring 0, 1 or 2 molecules. Difference between the SERRS spectra of R6G excited by linearly and circularly polarized light were experimentally measured.

  18. Ab initio dynamics and photoionization mass spectrometry reveal ion-molecule pathways from ionized acetylene clusters to benzene cation.

    Science.gov (United States)

    Stein, Tamar; Bandyopadhyay, Biswajit; Troy, Tyler P; Fang, Yigang; Kostko, Oleg; Ahmed, Musahid; Head-Gordon, Martin

    2017-05-23

    The growth mechanism of hydrocarbons in ionizing environments, such as the interstellar medium (ISM), and some combustion conditions remains incompletely understood. Ab initio molecular dynamics (AIMD) simulations and molecular beam vacuum-UV (VUV) photoionization mass spectrometry experiments were performed to understand the ion-molecule growth mechanism of small acetylene clusters (up to hexamers). A dramatic dependence of product distribution on the ionization conditions is demonstrated experimentally and understood from simulations. The products change from reactive fragmentation products in a higher temperature, higher density gas regime toward a very cold collision-free cluster regime that is dominated by products whose empirical formula is (C 2 H 2 ) n + , just like ionized acetylene clusters. The fragmentation products result from reactive ion-molecule collisions in a comparatively higher pressure and temperature regime followed by unimolecular decomposition. The isolated ionized clusters display rich dynamics that contain bonded C 4 H 4 + and C 6 H 6 + structures solvated with one or more neutral acetylene molecules. Such species contain large amounts (>2 eV) of excess internal energy. The role of the solvent acetylene molecules is to affect the barrier crossing dynamics in the potential energy surface (PES) between (C 2 H 2 ) n + isomers and provide evaporative cooling to dissipate the excess internal energy and stabilize products including the aromatic ring of the benzene cation. Formation of the benzene cation is demonstrated in AIMD simulations of acetylene clusters with n > 3, as well as other metastable C 6 H 6 + isomers. These results suggest a path for aromatic ring formation in cold acetylene-rich environments such as parts of the ISM.

  19. Ab initio dynamics and photoionization mass spectrometry reveal ion–molecule pathways from ionized acetylene clusters to benzene cation

    Science.gov (United States)

    Stein, Tamar; Bandyopadhyay, Biswajit; Troy, Tyler P.; Fang, Yigang; Kostko, Oleg

    2017-01-01

    The growth mechanism of hydrocarbons in ionizing environments, such as the interstellar medium (ISM), and some combustion conditions remains incompletely understood. Ab initio molecular dynamics (AIMD) simulations and molecular beam vacuum-UV (VUV) photoionization mass spectrometry experiments were performed to understand the ion–molecule growth mechanism of small acetylene clusters (up to hexamers). A dramatic dependence of product distribution on the ionization conditions is demonstrated experimentally and understood from simulations. The products change from reactive fragmentation products in a higher temperature, higher density gas regime toward a very cold collision-free cluster regime that is dominated by products whose empirical formula is (C2H2)n+, just like ionized acetylene clusters. The fragmentation products result from reactive ion–molecule collisions in a comparatively higher pressure and temperature regime followed by unimolecular decomposition. The isolated ionized clusters display rich dynamics that contain bonded C4H4+ and C6H6+ structures solvated with one or more neutral acetylene molecules. Such species contain large amounts (>2 eV) of excess internal energy. The role of the solvent acetylene molecules is to affect the barrier crossing dynamics in the potential energy surface (PES) between (C2H2)n+ isomers and provide evaporative cooling to dissipate the excess internal energy and stabilize products including the aromatic ring of the benzene cation. Formation of the benzene cation is demonstrated in AIMD simulations of acetylene clusters with n > 3, as well as other metastable C6H6+ isomers. These results suggest a path for aromatic ring formation in cold acetylene-rich environments such as parts of the ISM. PMID:28484019

  20. Exactly soluble models for surface partition of large clusters

    International Nuclear Information System (INIS)

    Bugaev, K.A.; Bugaev, K.A.; Elliott, J.B.

    2007-01-01

    The surface partition of large clusters is studied analytically within a framework of the 'Hills and Dales Model'. Three formulations are solved exactly by using the Laplace-Fourier transformation method. In the limit of small amplitude deformations, the 'Hills and Dales Model' gives the upper and lower bounds for the surface entropy coefficient of large clusters. The found surface entropy coefficients are compared with those of large clusters within the 2- and 3-dimensional Ising models

  1. Surface-confined electroactive molecules for multistate charge storage information.

    Science.gov (United States)

    Mas-Torrent, M; Rovira, C; Veciana, J

    2013-01-18

    Bi-stable molecular systems with potential for applications in binary memory devices are raising great interest for device miniaturization. Particular appealing are those systems that operate with electrical inputs since they are compatible with existing electronic technologies. The processing of higher memory densities in these devices could be accomplished by increasing the number of memory states in each cell, although this strategy has not been much explored yet. Here we highlight the recent advances devoted to the fabrication of charge-storage molecular surface-confined devices exhibiting multiple states. Mainly, this goal has been realized immobilizing a variety (or a combination) of electroactive molecules on a surface, although alternative approaches employing non-electroactive systems have also been described. Undoubtedly, the use of molecules with chemically tunable properties and nanoscale dimensions are raising great hopes for the devices of the future in which molecules can bring new perspectives such as multistability.

  2. Deposition of size-selected atomic clusters on surfaces

    International Nuclear Information System (INIS)

    Carroll, S.J.

    1999-06-01

    This dissertation presents technical developments and experimental and computational investigations concerned with the deposition of atomic clusters onto surfaces. It consists of a collection of papers, in which the main body of results are contained, and four chapters presenting a subject review, computational and experimental techniques and a summary of the results presented in full within the papers. Technical work includes the optimization of an existing gas condensation cluster source based on evaporation, and the design, construction and optimization of a new gas condensation cluster source based on RF magnetron sputtering (detailed in Paper 1). The result of cluster deposition onto surfaces is found to depend on the cluster deposition energy; three impact energy regimes are explored in this work. (1) Low energy: n clusters create a defect in the surface, which pins the cluster in place, inhibiting cluster diffusion at room temperature (Paper V). (3) High energy: > 50 eV/atom. The clusters implant into the surface. For Ag 20 -Ag 200 clusters, the implantation depth is found to scale linearly with the impact energy and inversely with the cross-sectional area of the cluster, with an offset due to energy lost to the elastic compression of the surface (Paper VI). For smaller (Ag 3 ) clusters the orientation of the cluster with respect to the surface and the precise impact site play an important role; the impact energy has to be 'focused' in order for cluster implantation to occur (Paper VII). The application of deposited clusters for the creation of Si nanostructures by plasma etching is explored in Paper VIII. (author)

  3. The Role of Molecule Clustering by Hydrogen Bond in Hydrous Ethanol on Laminar Burning Velocity

    Directory of Open Access Journals (Sweden)

    I Made Suarta

    2016-01-01

    Full Text Available The role of hydrogen bond molecule clustering in laminar burning velocities was observed. The water in hydrous ethanol can change the interaction between water-ethanol molecules. A certain amount of water can become oxygenated which increases the burning velocity. The hydrogen bond interaction pattern of ethanol and water molecules was modeled. Based on the molecular model, azeotropic behavior emerges from ethanol-water hydrogen bond, which is at a 95.1%v composition. The interaction with water molecule causes the ethanol molecule to be clustered with centered oxygenated compound. So, it supplies extra oxygen and provides intermolecular empty spaces that are easily infiltrated by the air. In the azeotropic composition, the molecular bond chain is the shortest, so hypothetically the burning velocity is anticipated to increase. The laminar burning velocity of ethanol fuel was tested in a cylindrical explosion bomb in lean, stoichiometric, and rich mixtures. The experimental result showed that the maximum burning velocity occurred at hydrous ethanol of 95.5%v composition. This discrepancy is the result of the addition of energy from 7.7% free ethanol molecules that are not clustered. At the rich mixture, the burning velocity of this composition is higher than that of anhydrous ethanol.

  4. Current status and future perspectives of electron interactions with molecules, clusters, surfaces, and interfaces [Workshop on Fundamental challenges in electron-driven chemistry; Workshop on Electron-driven processes: Scientific challenges and technological opportunities

    Energy Technology Data Exchange (ETDEWEB)

    Becker, Kurt H.; McCurdy, C. William; Orlando, Thomas M.; Rescigno, Thomas N.

    2000-09-01

    This report is based largely on presentations and discussions at two workshops and contributions from workshop participants. The workshop on Fundamental Challenges in Electron-Driven Chemistry was held in Berkeley, October 9-10, 1998, and addressed questions regarding theory, computation, and simulation. The workshop on Electron-Driven Processes: Scientific Challenges and Technological Opportunities was held at Stevens Institute of Technology, March 16-17, 2000, and focused largely on experiments. Electron-molecule and electron-atom collisions initiate and drive almost all the relevant chemical processes associated with radiation chemistry, environmental chemistry, stability of waste repositories, plasma-enhanced chemical vapor deposition, plasma processing of materials for microelectronic devices and other applications, and novel light sources for research purposes (e.g. excimer lamps in the extreme ultraviolet) and in everyday lighting applications. The life sciences are a rapidly advancing field where the important role of electron-driven processes is only now beginning to be recognized. Many of the applications of electron-initiated chemical processes require results in the near term. A large-scale, multidisciplinary and collaborative effort should be mounted to solve these problems in a timely way so that their solution will have the needed impact on the urgent questions of understanding the physico-chemical processes initiated and driven by electron interactions.

  5. Hyperthermal surface ionization mass spectrometry of organic molecules: monoterpenes

    International Nuclear Information System (INIS)

    Kishi, Hiroshi; Fujii, Toshihiro.

    1997-01-01

    This paper describes an experimental study on the influence of kinetic energy of fast monoterpene molecules on the surface ionization efficiency and on the mass spectral patterns, using rhenium oxide (ReO 2 ) surface. Molecular kinetic energy, given to the molecules through the acceleration in the seeded supersonic molecular beam, ranged from 1 to 10 eV. Hyperthermal surface ionization mass spectra (HSIMS) were taken for various incident kinetic energies and surface temperatures. The observed mass spectra were interpreted in a purely empirical way, by means of evidence from the previous investigations, and they were compared with conventional EI techniques and with the thermal energy surface ionization technique (SIOMS; Surface Ionization Organic Mass Spectrometry). Ionization efficiency (β) was also studied. Under hyperthermal surface ionization (HSI) conditions, many kinds of fragment ions, including quite abundant odd electron ions (OE +· ) are observed. HSIMS patterns of monoterpenes are different among 6-isomers, contrary to those of SIOMS and EIMS, where very similar patterns for isomers are observed. HSIMS patterns are strongly dependent on the molecular kinetic energies. The surface temperature does not affect much the spectral patterns, but it controls the total amount of ion formation. We conclude from these mass spectral findings, HSI-mechanism contains an impulsive process of ion formation, followed by the fragmentation process as a results of the internal energies acquired through the collision processes. (author)

  6. Internal state distributions of molecules scattering and desorbing from surfaces

    International Nuclear Information System (INIS)

    Auerbach, D.J.

    1983-01-01

    Attempts are made to interpret scattering experiments of NO molecules on Ag(111) where a (rotational) state-specific detector has been used. A model using an anisotropic potential is proposed to explain the observed incoming energy- and angle dependence. The so-called rotational rainbows are explained. It is concluded, that in this way information on intermolecular potentials and the transfer of translational to rotational energy in the dynamics of trapping and sticking of molecules on surfaces can be extracted. (G.Q.)

  7. Low-energy electron scattering from molecules, biomolecules and surfaces

    CERN Document Server

    Carsky, Petr

    2011-01-01

    Since the turn of the 21st century, the field of electron molecule collisions has undergone a renaissance. The importance of such collisions in applications from radiation chemistry to astrochemistry has flowered, and their role in industrial processes such as plasma technology and lighting are vital to the advancement of next generation devices. Furthermore, the development of the scanning tunneling microscope highlights the role of such collisions in the condensed phase, in surface processing, and in the development of nanotechnology.Low-Energy Electron Scattering from Molecules, Biomolecule

  8. Dynamics of photoprocesses induced by femtosecond infrared radiation in free molecules and clusters of iron pentacarbonyl

    International Nuclear Information System (INIS)

    Kompanets, V. O.; Lokhman, V. N.; Poydashev, D. G.; Chekalin, S. V.; Ryabov, E. A.

    2016-01-01

    The dynamics of photoprocesses induced by femtosecond infrared radiation in free Fe(CO) 5 molecules and their clusters owing to the resonant excitation of vibrations of CO bonds in the 5-μm range has been studied. The technique of infrared excitation and photoionization probing (λ = 400 nm) by femtosecond pulses has been used in combination with time-of-flight mass spectrometry. It has been found that an infrared pulse selectively excites vibrations of CO bonds in free molecules, which results in a decrease in the yield of the Fe(CO) 5 + molecular ion. Subsequent relaxation processes have been analyzed and the results have been interpreted. The time of the energy transfer from excited vibrations to other vibrations of the molecule owing to intramolecular relaxation has been measured. The dynamics of dissociation of [Fe(CO) 5 ] n clusters irradiated by femtosecond infrared radiation has been studied. The time dependence of the yield of free molecules has been measured under different infrared laser excitation conditions. We have proposed a model that well describes the results of the experiment and makes it possible, in particular, to calculate the profile of variation of the temperature of clusters within the “evaporation ensemble” concept. The intramolecular and intracluster vibrational relaxation rates in [Fe(CO) 5 ] n clusters have been estimated.

  9. Clustering and segregation of small vacancy clusters near tungsten (0 0 1) surface

    Science.gov (United States)

    Duan, Guohua; Li, Xiangyan; Xu, Yichun; Zhang, Yange; Jiang, Yan; Hao, Congyu; Liu, C. S.; Fang, Q. F.; Chen, Jun-Ling; Luo, G.-N.; Wang, Zhiguang

    2018-01-01

    Nanoporous metals have been shown to exhibit radiation-tolerance due to the trapping of the defects by the surface. However, the behavior of vacancy clusters near the surface is not clear which involves the competition between the self-trapping and segregation of small vacancy clusters (Vn) nearby the surface. In this study, we investigated the energetic and kinetic properties of small vacancy clusters near tungsten (0 0 1) surface by combining molecular statics (MS) calculations and object Kinetic Monte Carlo (OKMC) simulations. Results show that vacancies could be clustered with the reduced formation energy and migration energy of the single vacancy around a cluster as the respective energetic and kinetic driving forces. The small cluster has a migration energy barrier comparable to that for the single vacancy; the migration energy barriers for V1-5 and V7 are 1.80, 1.94, 2.17, 2.78, 3.12 and 3.11 eV, respectively. Clusters and become unstable near surface (0 0 1) and tend to dissociate into the surface. At the operation temperature of 1000 K, the single vacancy, V2, 2 V 3 V3 and V4 were observed to segregate to the surface within a time of one hour. Meanwhile, larger clusters survived near the surface, which could serve as nucleating center for voids near the surface. Our results suggest that under a low radiation dose, surface (0 0 1) could act as a sink for small vacancy clusters, alleviating defect accumulation in the material under a low radiation dose. We also obtained several empirical expressions for the vacancy cluster formation energy, binding energy, and trapping radius as a function of the number of vacancies in the cluster.

  10. Fano-induced spontaneous emission enhancement of molecule placed in a cluster of asymmetrically-arranged metallic nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Le, Khai Q., E-mail: khai.lequang@hoasen.edu.vn [Faculty of Science and Technology, Hoa Sen University, Ho Chi Minh (Viet Nam); Department of Electrical Engineering, University of Minnesota, Duluth, MN 55812 (United States); Bai, Jing [Department of Electrical Engineering, University of Minnesota, Duluth, MN 55812 (United States); Nguyen, H.P.T. [Department of Electrical and Computer Engineering, New Jersey Institute of Technology, NJ 07102 (United States)

    2016-05-15

    We demonstrate that plasmonic Fano resonance significantly boosts spontaneous emission rate of a single emitter, e.g. atom, molecule and quantum dot, over a moderately broad emission spectrum. An emission enhancement of up to 140 times compared to the system with no external inclusion at tunable frequencies is achieved, providing a new complementary enhancement mechanism. Fano resonance is induced in clusters of four asymmetric-arranged nanoparticles with ultra-small inter-particle gaps. It is shown to play a dominant role in light-emitting enhancement, mediated by combined localized surface plasmon resonances.

  11. Indium tin oxide surface smoothing by gas cluster ion beam

    CERN Document Server

    Song, J H; Choi, W K

    2002-01-01

    CO sub 2 cluster ions are irradiated at the acceleration voltage of 25 kV to remove hillocks on indium tin oxide (ITO) surfaces and thus to attain highly smooth surfaces. CO sub 2 monomer ions are also bombarded on the ITO surfaces at the same acceleration voltage to compare sputtering phenomena. From the atomic force microscope results, the irradiation of monomer ions makes the hillocks sharper and the surfaces rougher from 1.31 to 1.6 nm in roughness. On the other hand, the irradiation of CO sub 2 cluster ions reduces the height of hillocks and planarize the ITO surfaces as smooth as 0.92 nm in roughness. This discrepancy could be explained by large lateral sputtering yield of the cluster ions and re-deposition of sputtered particles by the impact of the cluster ions on surfaces.

  12. Improved density functional calculations for atoms, molecules and surfaces

    International Nuclear Information System (INIS)

    Fricke, B.; Anton, J.; Fritzsche, S.; Sarpe-Tudoran, C.

    2005-01-01

    The non-collinear and collinear descriptions within relativistic density functional theory is described. We present results of both non-collinear and collinear calculations for atoms, diatomic molecules, and some surface simulations. We find that the accuracy of our density functional calculations for the smaller systems is comparable to good quantum chemical calculations, and thus this method provides a sound basis for larger systems where no such comparison is possible. (author)

  13. Interaction of intense electromagnetic fields with SF6 molecules and clusters in supersonic expansion

    International Nuclear Information System (INIS)

    Airoldi, V.J.T.

    1987-01-01

    A method of measuring SF 6 cluster formation and inhibition in pulsed supersonic expansion in the presence of intense electromagnetic radiation is presented. The characterization of the expansion of SF 6 molecules was done and, the extension of the collision region was determined. An improved unidimensional theory of supersonic expansion showed good agreement with the experimental results. The spectra of multiphoton absorption of SF 6 molecules in supersonic jet and the average energy absorved by each molecule were determined. The absorption spectra of molecule in the collision region present absorption maxima different from those obtained in the collisionless region. The results, if compared with the literature data, show good agreement, with a small difference in the spetra corresponding to the collisionless region. This difference was observed, for the first time in the multiphoton absorption and is attribuited to cluster formation in the jet. A new technique for measuring cluster formation in the supersonic jet, based on determination of the spatial distribution of the energy of molecules in the jet after passing through a skimmer located in the collision region is shown. The inhibition of cluster formation, due to the incidence of intense electromagnetic radiation from a CO 2 -TEA pulsed laser in the initial collision region of the jet, causes a second expansion in the skimmer. The results obtained show that this method can lead to a new isotope separation process. All the parts of the experimental set up, for example, high vacuum system, pulsed valve and pyroelectric detector, were developed and constructed specially for the experiment. (Author) [pt

  14. Surface processing with ionized cluster beams: computer simulation

    International Nuclear Information System (INIS)

    Insepov, Z.; Yamada, I.

    1999-01-01

    Molecular Dynamics (MD) and Monte Carlo (MC) models of energetic gas cluster irradiation of a solid surface have been developed to investigate the phenomena of crater formation, sputtering, surface treatment, and the material hardness evaluation by irradiation with cluster ions. Theoretical estimation of crater dimensions formed with Ar gas cluster ion irradiation of different substrates, based on hydrodynamics and MD simulation, are presented. The atomic scale shock waves arising from cluster impact were obtained by calculating the pressure, temperature and mass-velocity of the target atoms. The crater depth is given as a unique 1/3 dependence on the cluster energy and on the cold material Brinell hardness number (BHN). A new 'true material hardness' scale which can be very useful for example for thin film coatings deposited on a soft substrate, is defined. This finding could be used as a new technique for measuring of a material hardness. Evolution of surface morphology under cluster ion irradiation was described by the surface relaxation equation which contains a term of crater formation at cluster impact. The formation of ripples on a surface irradiated with oblique cluster ion beams was predicted. MD and MC models of Decaborane ion (B 10 H 14 ) implantation into Si and the following rapid thermal annealing (RTA) have been developed

  15. Cluster-surface interaction: from soft landing to implantation

    DEFF Research Database (Denmark)

    Popok, Vladimir; Barke, Ingo; Campbell, Eleanor E.B.

    2011-01-01

    applications of keV-energy cluster ion beams. This includes ultra-shallow doping of semiconductors and formation of ultrathin insulating layers. A few examples of MeV-energy cluster implantation, leading to the formation of nanosize hillocks or pillars on the surface as well as to local phase transitions (for...... instance, graphite-to-diamond) are also discussed. The review is finalized by an outlook on the future development of cluster beam research....

  16. Site-specific fragmentation of polystyrene molecule using size-selected Ar gas cluster ion beam

    International Nuclear Information System (INIS)

    Moritani, Kousuke; Mukai, Gen; Hashinokuchi, Michihiro; Mochiji, Kozo

    2009-01-01

    The secondary ion mass spectrum (SIMS) of a polystyrene thin film was investigated using a size-selected Ar gas cluster ion beam (GCIB). The fragmentation in the SIM spectrum varied by kinetic energy per atom (E atom ); the E atom dependence of the secondary ion intensity of the fragment species of polystyrene can be essentially classified into three types based on the relationship between E atom and the dissociation energy of a specific bonding site in the molecule. These results indicate that adjusting E atom of size-selected GCIB may realize site-specific bond breaking within a molecule. (author)

  17. Webs on surfaces, rings of invariants, and clusters.

    Science.gov (United States)

    Fomin, Sergey; Pylyavskyy, Pavlo

    2014-07-08

    We construct and study cluster algebra structures in rings of invariants of the special linear group action on collections of 3D vectors, covectors, and matrices. The construction uses Kuperberg's calculus of webs on marked surfaces with boundary.

  18. Electrostrictive deformations in small carbon clusters, hydrocarbon molecules, and carbon nanotubes

    International Nuclear Information System (INIS)

    Cabria, I.; Lopez, M. J.; Alonso, J. A.; Amovilli, C.; March, N. H.

    2006-01-01

    The electrostrictive response of small carbon clusters, hydrocarbon molecules, and carbon nanotubes is investigated using the density functional theory. For ringlike carbon clusters, one can get insight on the deformations induced by an electric field from a simple two-dimensional model in which the positive charge of the carbon ions is smeared out in a circular homogeneous line of charge and the electronic density is calculated for a constant applied electric field within a two-dimensional Thomas-Fermi method. According to the Hellmann-Feynman theorem, this model predicts, for fields of about 1 V/A ring , only a small elongation of the ring clusters in the direction of the electric field. Full three-dimensional density functional calculations with an external electric field show similar small deformations in the ring carbon clusters compared to the simple model. The saturated benzene and phenanthrene hydrocarbon molecules do not experience any deformation, even under the action of relatively intense (1 V/A ring ) electric fields. In contrast, finite carbon nanotubes experience larger elongations (∼2.9%) induced by relatively weak (0.1 V/A ring ) applied electric fields. Both C-C bond length elongation and the deformation of the honeycomb structure contribute equally to the nanotube elongation. The effect of the electric field in hydrogen terminated nanotubes is reduced with respect to the nanotubes with dangling bonds in the edges

  19. Formation of clusters composed of C60 molecules via self-assembly in critical fluids

    International Nuclear Information System (INIS)

    Fukuda, Takahiro; Ishii, Koji; Kurosu, Shunji; Whitby, Raymond; Maekawa, Toru

    2007-01-01

    Fullerenes are promising candidates for intelligent, functional nanomaterials because of their unique mechanical, electronic and chemical properties. However, it is necessary to invent some efficient but relatively simple methods of producing structures composed of fullerenes for the development of nanomechatronic, nanoelectronic and biochemical devices and sensors. In this paper, we show that various structures such as straight fibres, networks formed by fibres, wide sheets and helical structures, which are composed of C 60 molecules, are created by placing C 60 -crystals in critical ethane, carbon dioxide and xenon even though C 60 molecules do not dissolve or disperse in the above fluids. It is supposed, judging by the intermolecular potentials between C 60 and C 60 , between C 60 and ethane, and between ethane and ethane, that C 60 -clusters grow with the assistance of solvent molecules, which are trapped between C 60 molecules under critical conditions. This room-temperature self-assembly cluster growth process in critical fluids may open up a new methodology of forming structures built up with fullerenes without the need for any ultra-fine processing technologies

  20. Light controllable catalytic activity of Au clusters decorated with photochromic molecules

    Science.gov (United States)

    Guo, Na; Meng Yam, Kah; Zhang, Chun

    2018-06-01

    By ab initio calculations, we show that when decorated with a photochromic molecule, the catalytic activity of an Au nanocluster can be reversibly controlled by light. The combination of a photochromic thiol-pentacarbonyl azobenzene (TPA) molecule and an Au8 cluster is chosen as a model catalyst. The TPA molecule has two configurations (trans and cis) that can be reversibly converted to each other upon photo-excitation. Our calculations show that when the TPA takes the trans configuration, the combined system (trans-Au8) is an excellent catalyst for CO oxidation. The reaction barrier of the catalyzed CO oxidation is less than 0.4 eV. While, the reaction barrier of CO oxidation catalyzed by cis-Au8 is very high (>2.7 eV), indicating that the catalyst is inactive. These results pave the way for a new class of light controllable nanoscale catalysts.

  1. Suzaku observations of low surface brightness cluster Abell 1631

    Science.gov (United States)

    Babazaki, Yasunori; Mitsuishi, Ikuyuki; Ota, Naomi; Sasaki, Shin; Böhringer, Hans; Chon, Gayoung; Pratt, Gabriel W.; Matsumoto, Hironori

    2018-06-01

    We present analysis results for a nearby galaxy cluster Abell 1631 at z = 0.046 using the X-ray observatory Suzaku. This cluster is categorized as a low X-ray surface brightness cluster. To study the dynamical state of the cluster, we conduct four-pointed Suzaku observations and investigate physical properties of the Mpc-scale hot gas associated with the A 1631 cluster for the first time. Unlike relaxed clusters, the X-ray image shows no strong peak at the center and an irregular morphology. We perform spectral analysis and investigate the radial profiles of the gas temperature, density, and entropy out to approximately 1.5 Mpc in the east, north, west, and south directions by combining with the XMM-Newton data archive. The measured gas density in the central region is relatively low (a few ×10-4 cm-3) at the given temperature (˜2.9 keV) compared with X-ray-selected clusters. The entropy profile and value within the central region (r clusters. These features are also observed in another low surface brightness cluster, Abell 76. The spatial distributions of galaxies and the hot gas appear to be different. The X-ray luminosity is relatively lower than that expected from the velocity dispersion. A post-merger scenario may explain the observed results.

  2. Low surface brightness galaxies in the cluster A1367

    International Nuclear Information System (INIS)

    Davies, J.I.; Phillipps, S.; Disney, M.J.

    1989-01-01

    We have obtained deep CCD frames of apparently blank regions of sky in the hope of detecting very low surface brightness (LSB) objects in the cluster A1367. We discuss our data reduction, and image detection and selection techniques. If the galaxies detected are actually cluster members then they are dwarfs and the conclusions of a previous paper on the Fornax cluster are essentially confirmed. One area of variance is that the lowest surface brightness galaxies do not appear to be preferentially concentrated towards the cluster centre. This can be explained by there being a much larger density of dwarf galaxies over this bright galaxy-rich region of the universe. We find over our small area approximately four times as many LSB galaxies as would be expected from our Fornax data. We speculate on the possible origin and likely intensity of intergalactic light within clusters. (author)

  3. Dimensional scale effects on surface enhanced Raman scattering efficiency of self-assembled silver nanoparticle clusters

    International Nuclear Information System (INIS)

    Fasolato, C.; Domenici, F.; De Angelis, L.; Luongo, F.; Postorino, P.; Sennato, S.; Mura, F.; Costantini, F.; Bordi, F.

    2014-01-01

    A study of the Surface Enhanced Raman Scattering (SERS) from micrometric metallic nanoparticle aggregates is presented. The sample is obtained from the self-assembly on glass slides of micro-clusters of silver nanoparticles (60 and 100 nm diameter), functionalized with the organic molecule 4-aminothiophenol in water solution. For nanoparticle clusters at the micron scale, a maximum enhancement factor of 10 9 is estimated from the SERS over the Raman intensity ratio normalized to the single molecule contribution. Atomic force microscopy, correlated to spatially resolved Raman measurements, allows highlighting the connection between morphology and efficiency of the plasmonic system. The correlation between geometric features and SERS response of the metallic structures reveals a linear trend of the cluster maximum scattered intensity as a function of the surface area of the aggregate. On given clusters, the intensity turns out to be also influenced by the number of stacking planes of the aggregate, thus suggesting a plasmonic waveguide effect. The linear dependence results weakened for the largest area clusters, suggesting 30 μm 2 as the upper limit for exploiting the coherence over large scale of the plasmonic response.

  4. Electron attachment to molecules and clusters of atmospheric relevance: oxygen and ozone

    International Nuclear Information System (INIS)

    Matejcik, S.; Cicman, P.; Skalny, J.; Kiendler, A.; Stampfli, P.; Maerk, T.D.; Illenberger, E.; Chu, Y.; Stamatovic, A.

    1996-01-01

    Highly monochromatized electrons are used in a crossed beams experiment to investigate electron attachment to oxygen clusters (O 2 )-n at electron energies from approximately zero eV up to 2 eV. At energies close to zero the attachment cross section for the reaction (O 2 ) n + e → O 2 - varies inversely with the electron energy, indicative of s-wave electron capture to (O 2 ) n . Peaks in the attachment cross section present at higher energies can be ascribed to vibrational levels of the oxygen anion. The vibrational spacings observed can be quantitatively accounted for. In addition electron attachment to ozone and mixed oxygen/ozone clusters has been studied in the energy range up to 4 eV. Absolute attachment cross sections for both fragment ions anions, O - and O 2 - , from ozone could be deduced. Moreover, despite the initially large excess of oxygen molecules in the neutral oxygen/ozone clusters the dominant attachment products are un-dissociated cluster ions (O 3 ) m - including the O 3 - monomer while oxygen cluster ions (O 2 ) n appear with comparatively low intensity. (authors)

  5. Structure determination by photoelectron diffraction of small molecules on surfaces

    International Nuclear Information System (INIS)

    Booth, N.A.

    1998-05-01

    The synchrotron radiation based technique of Photoelectron Diffraction (PhD) has been applied to three adsorption systems. Structure determinations, are presented for each system which involve the adsorption of small molecules on the low index {110} plane of single crystal Cu and Ni substrates. For the NH 3 -Cu(110) system PhD was successful in determining a N-Cu bondlength of 2.05 ± 0.03 A as well as values for the anisotropic vibrational amplitudes of the N and an expansion of the 1st to 2nd Cu substrate layer spacing from the bulk value of 0.08 ± 0.08 A. The most significant and surprising structural parameter determined for this system was that the N atom occupies an asymmetric adsorption site. Rather than being situated in the expected high symmetry atop site the N atom was found to be offset parallel to the surface by 0.37 ± 0.12 A in the [001] azimuth. In studying the glycine-Cu(110) system the adsorption structure of an amino-acid has been quantified. The local adsorption geometries of all the atoms involved in the molecule to surface bond have been determined. The glycine molecule is found to be bonded to the surface via both its amino and carboxylate functional groups. The molecule straddles two [11-bar0] rows of the Cu substrate. The two O atoms are found to be in identical sites both approximately atop Cu atoms on the [11-bar0] rows offset parallel to the surface by 0.80 ± 0.05 A in the [001] azimuth, the O-Cu bondlength was found to be 2.03 ± 0.05 A. The N atom was also found to adsorb in an approximately atop geometry but offset parallel to the surface by 0.24 ± 0.10A in the [11-bar0] direction, the N-Cu bondlength was found to be 2.05± 0.05 A. PhD was unsuccessful in determining the positions of the two C atoms that form a bridge between the two functional groups bonded to the surface due to difficulties in separating the two inequivalent contributions to the final intensity modulation function. For the CN-Ni(110) system both PhD and Near Edge

  6. Decoration of carbon nano surfaces with hydrogen and hydrogen rich molecules

    International Nuclear Information System (INIS)

    Zöttl, S.

    2013-01-01

    The use of helium nano droplets as a matrix to investigate different atomic and molecular samples is a well established experimental technique. The unique properties of helium allow for different analytical methods and at the same time provide a stable ambient temperature. Cluster growth inside helium nano droplets can be accomplished by repeatedly doping the droplets with sample particles in a controlled environment. The experimental work represented in this thesis was performed using helium nano droplets to create clusters of fullerenes like C 60 and C 70 . The adsorption properties of these fullerene clusters regarding hydrogen and hydrogen rich molecules have been subject to investigation. The observed results suggest that curved carbon nano surfaces offer higher storage densities than planar graphite surfaces. The use of C 60 as a model carbon nano structure provides a well understood molecule for testing and evaluating computational methods to calculate surface properties of various carbon nano materials. The cost effective storage of hydrogen for mobile applications plays a key role in the development of alternatives to fossil fuels. For that reason, the application of carbon nano materials to store hydrogen by adsorption has attracted much scientific attention lately. The insights gained in the presented thesis contribute to the collective efforts and deliver more refined tools to estimate the adsorption properties of future carbon nano materials. In addition to the aforementioned, a time-of-flight mass spectrometer for educational purpose has been designed and constructed in the framework of my PhD thesis. The instrument is successfully used in various lab courses and information on the setup can be found in the Appendix of this work. (author) [de

  7. Spectroscopic and electric properties of the LiCs molecule: a coupled cluster study including higher excitations

    Science.gov (United States)

    Sørensen, L. K.; Fleig, T.; Olsen, J.

    2009-08-01

    Aimed at obtaining complete and highly accurate potential energy surfaces for molecules containing heavy elements, we present a new general-order coupled cluster method which can be applied in the framework of the spin-free Dirac formalism. As an initial application we present a systematic study of electron correlation and relativistic effects on the spectroscopic and electric properties of the LiCs molecule in its electronic ground state. In particular, we closely investigate the importance of excitations higher than coupled cluster doubles, spin-free and spin-dependent relativistic effects and the correlation of outer-core electrons on the equilibrium bond length, the harmonic vibrational frequency, the dissociation energy, the dipole moment and the static electric dipole polarizability. We demonstrate that our new implementation allows for highly accurate calculations not only in the bonding region but also along the complete potential curve. The quality of our results is demonstrated by a vibrational analysis where an almost complete set of vibrational levels has been calculated accurately.

  8. Spectroscopic and electric properties of the LiCs molecule: a coupled cluster study including higher excitations

    International Nuclear Information System (INIS)

    Soerensen, L K; Fleig, T; Olsen, J

    2009-01-01

    Aimed at obtaining complete and highly accurate potential energy surfaces for molecules containing heavy elements, we present a new general-order coupled cluster method which can be applied in the framework of the spin-free Dirac formalism. As an initial application we present a systematic study of electron correlation and relativistic effects on the spectroscopic and electric properties of the LiCs molecule in its electronic ground state. In particular, we closely investigate the importance of excitations higher than coupled cluster doubles, spin-free and spin-dependent relativistic effects and the correlation of outer-core electrons on the equilibrium bond length, the harmonic vibrational frequency, the dissociation energy, the dipole moment and the static electric dipole polarizability. We demonstrate that our new implementation allows for highly accurate calculations not only in the bonding region but also along the complete potential curve. The quality of our results is demonstrated by a vibrational analysis where an almost complete set of vibrational levels has been calculated accurately.

  9. Independent center, independent electron approximation for dynamics of molecules and clusters

    International Nuclear Information System (INIS)

    McGuire, J.H.; Straton, J.C.; Wang, J.; Wang, Y.D.; Weaver, O.L.; Corchs, S.E.; Rivarola, R.D.

    1996-01-01

    A formalism is developed for evaluating probabilities and cross sections for multiple-electron transitions in scattering of molecules and clusters by charged collision partners. First, the molecule is divided into subclusters each made up of identical centers (atoms). Within each subcluster coherent scattering from identical centers may lead to observable phase terms and a geometrical structure factor. Then, using a mean field approximation to describe the interactions between centers we obtain A I ∼ summation k product ke iδ k I A Ik . Second, the independent electron approximation for each center may be obtained by neglecting the correlation between electrons in each center. The probability amplitude for each center is then a product of single electron transition probability amplitudes, a Ik i , i.e. A Ik ≅ product iaik i . Finally, the independent subcluster approximation is introduced by neglecting the interactions between different subclusters in the molecule or cluster. The total probability amplitude then reduces to a simple product of amplitudes for each subcluster, A≅ product IAI . Limitations of this simple approximation are discussed. copyright 1996 American Institute of Physics

  10. Three exciting areas of experimental physical sciences : high temperature superconductors, metal clusters and super molecules of carbon

    International Nuclear Information System (INIS)

    Rao, C.N.

    1992-01-01

    The author has narrated his experience in carrying out research in three exciting areas of physical sciences. These areas are : high temperature superconductors, metal clusters and super molecules of carbon. (M.G.B.)

  11. Lanczos-driven coupled-cluster damped linear response theory for molecules in polarizable environments

    DEFF Research Database (Denmark)

    List, Nanna Holmgaard; Coriani, Sonia; Kongsted, Jacob

    2014-01-01

    are specifically motivated by a twofold aim: (i) computation of core excitations in realistic surroundings and (ii) examination of the effect of the differential response of the environment upon excitation solely related to the CC multipliers (herein denoted the J matrix) in computations of excitation energies......We present an extension of a previously reported implementation of a Lanczos-driven coupled-cluster (CC) damped linear response approach to molecules in condensed phases, where the effects of a surrounding environment are incorporated by means of the polarizable embedding formalism. We...... and transition moments of polarizable-embedded molecules. Numerical calculations demonstrate that the differential polarization of the environment due to the first-order CC multipliers provides only minor contributions to the solvatochromic shift for all transitions considered. We thus complement previous works...

  12. High-intensity X-rays interaction with matter processes in plasmas, clusters, molecules and solids

    CERN Document Server

    Hau-Riege, Stefan P

    2012-01-01

    Filling the need for a book bridging the effect of matter on X-ray radiation and the interaction of x-rays with plasmas, this monograph provides comprehensive coverage of the topic. As such, it presents and explains such powerful new X-ray sources as X-ray free-electron lasers, as well as short pulse interactions with solids, clusters, molecules, and plasmas, and X-ray matter interactions as a diagnostic tool. Equally useful for researchers and practitioners working in the field.

  13. Cell surface clustering of Cadherin adhesion complex induced by antibody coated beads

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    Cadherin receptors mediate cell-cell adhesion, signal transduction and assembly of cytoskeletons. How a single transmembrane molecule Cadherin can be involved in multiple functions through modulating its binding activities with many membrane adhesion molecules and cytoskeletal components is an unanswered question which can be elucidated by clues from bead experiments. Human lung cells expressing N-Cadherin were examined. After co-incubation with anti-N-Cadherin monoclonal antibody coated beads, cell surface clustering of N-Cadherin was induced. Immunofluorescent detection demonstrated that in addition to Cadherin, β-Catenin, α-Catenin, α-Actinin and Actin fluorescence also aggregated respectively at the membrane site of bead attachment. Myosin heavy chain (MHC), another major component of Actin cytoskeleton, did not aggregate at the membrane site of bead attachment. Adhesion unrelated protein Con A and polylysine conjugated beads did not induce the clustering of adhesion molecules. It is indicated that the Cadherin/Catenins/α-Actinin/Actin complex is formed at Cadherin mediated cell adherens junction; occupancy and cell surface clustering of Cadherin is crucial for the formation of Cadherin adhesion protein complexes.

  14. MSINDO quantum chemical modeling study of water molecule adsorption at nano-sized anatase TiO2 surfaces

    International Nuclear Information System (INIS)

    Wahab, Hilal S.; Bredow, Thomas; Aliwi, Salah M.

    2008-01-01

    In this work, we studied the adsorption of water molecule onto the (1 0 0), (0 1 0) and (0 0 1) surfaces of nano-sized anatase TiO 2 with semiempirical SCF MO method, MSINDO. The anatase TiO 2 particles are modeled with free clusters (TiO 2 ) n, where n = 20-80. Whereas, the surfaces have been modeled with two saturated clusters, Ti 21 O 58 H 32 and Ti 36 O 90 H 36 . The surface lattice fivefold coordinated titanium atoms (Ti 5C ), which represent the Lewis acid sites, are selected as adsorption centers. We also investigated the effect of TiO 2 cluster size on the computed band gap energy. Results reveal that the electronic properties of a cluster in the lowest excited state differ from that of the ground state. Furthermore, the MSINDO band gap energies of 3.68-3.77 eV for the anatase TiO 2 are in a fair accordance with other literature data. In agreement with other computational and experimental studies, the dissociated form of water molecule adsorption on anatase TiO 2 surfaces is always more stabilized than the molecular form

  15. Reaction dynamics of small molecules at metal surfaces

    International Nuclear Information System (INIS)

    Samson, P.A.

    1999-09-01

    The dissociation-desorption dynamics of D 2 upon the Sn/Pt(111) surface alloy are dependent on the surface concentration of Sn. The p(2 x 2) Sn/Pt(111) alloy surface (Θ Sn = 0.25 ML), is initially ∼30 times less reactive towards D 2 adsorption than clean Pt(111). On the (√3 x √3) R30 deg Sn/Pt(111) alloy surface (Θ Sn = 0.33 ML), increased inhibition of D 2 adsorption is reported, with S o ∼ 10 -5 at low energy, coinciding with the loss of stable Pt 3 hollow sites and a significant reduction in the D atom binding energy. Sticking on the √3 alloy is activated with an increased energy threshold of ∼280 meV, with no evidence that vibration enhances dissociation. The barrier to dissociation remains in the entrance channel before the D 2 bond begins to stretch. Vibrational excitation is, however, observed in nitrogen desorption from the catalytic reaction of NO + H 2 over Pd(110). For a surface at 600 K, N 2 vibrational state population ratios of P(v=1/v=0) = 0.50 ± 0.05 and P(v=2/v=0) = 0.60 ± 0.20 are reported. Desorption occurs via the N(ad) + N(ad) recombination channel with little energy released into translation and rotation. The translational energy release observed is dependent on the N 2 vibrational state, with translational temperatures of 425 K, 315 K and 180 K reported for the v=0, 1 and 2 states respectively. Sub-thermal energy releases and normally directed angular distributions suggest the influence of a trapping mechanism, recombining molecules scattering through a molecularly adsorbed state, with a transition state of large d NN responsible for the product vibrational excitation. Although N 2 dissociation on Fe(100) forms a simple overlayer structure, on Fe(110), molecular chemisorption does not occur at or above room temperature and the sticking is extremely small (∼10 -6 to 10 -7 ). Activated nitrogen bombardment can be used to prepare a 'surface nitride' with a structure related to the geometry of bulk Fe 4 N. Scanning tunnelling

  16. Linear and nonlinear surface spectroscopy of supported size selected metal clusters and organic adsorbates

    Energy Technology Data Exchange (ETDEWEB)

    Thaemer, Martin Georg

    2012-03-08

    The spectroscopic investigation of supported size selected metal clusters over a wide wavelength range plays an important role for understanding their outstanding catalytic properties. The challenge which must be overcome to perform such measurements is the difficult detection of the weak spectroscopic signals from these samples. As a consequence, highly sensitive spectroscopic methods are applied, such as surface Cavity Ringdown Spectroscopy and surface Second Harmonic Generation Spectroscopy. The spectroscopic apparatus developed is shown to have a sensitivity which is high enough to detect sub-monolayer coverages of adsorbates on surfaces. In the measured spectra of small supported silver clusters of the sizes Ag{sub 4}2, Ag{sub 2}1, Ag{sub 9}, and Ag atoms a stepwise transition from particles with purely metallic character to particles with molecule-like properties can be observed within this size range.

  17. Suzaku observations of low surface brightness cluster Abell 1631

    Science.gov (United States)

    Babazaki, Yasunori; Mitsuishi, Ikuyuki; Ota, Naomi; Sasaki, Shin; Böhringer, Hans; Chon, Gayoung; Pratt, Gabriel W.; Matsumoto, Hironori

    2018-04-01

    We present analysis results for a nearby galaxy cluster Abell 1631 at z = 0.046 using the X-ray observatory Suzaku. This cluster is categorized as a low X-ray surface brightness cluster. To study the dynamical state of the cluster, we conduct four-pointed Suzaku observations and investigate physical properties of the Mpc-scale hot gas associated with the A 1631 cluster for the first time. Unlike relaxed clusters, the X-ray image shows no strong peak at the center and an irregular morphology. We perform spectral analysis and investigate the radial profiles of the gas temperature, density, and entropy out to approximately 1.5 Mpc in the east, north, west, and south directions by combining with the XMM-Newton data archive. The measured gas density in the central region is relatively low (a few ×10-4 cm-3) at the given temperature (˜2.9 keV) compared with X-ray-selected clusters. The entropy profile and value within the central region (r < 0.1 r200) are found to be flatter and higher (≳400 keV cm2). The observed bolometric luminosity is approximately three times lower than that expected from the luminosity-temperature relation in previous studies of relaxed clusters. These features are also observed in another low surface brightness cluster, Abell 76. The spatial distributions of galaxies and the hot gas appear to be different. The X-ray luminosity is relatively lower than that expected from the velocity dispersion. A post-merger scenario may explain the observed results.

  18. Impact of 4 Lactobacillus plantarum capsular polysaccharide clusters on surface glycan composition and host cell signaling

    Directory of Open Access Journals (Sweden)

    Remus Daniela M

    2012-11-01

    Full Text Available Abstract Background Bacterial cell surface-associated polysaccharides are involved in the interactions of bacteria with their environment and play an important role in the communication between pathogenic bacteria and their host organisms. Cell surface polysaccharides of probiotic species are far less well described. Therefore, improved knowledge on these molecules is potentially of great importance to understand the strain-specific and proposed beneficial modes of probiotic action. Results The Lactobacillus plantarum WCFS1 genome encodes 4 clusters of genes that are associated with surface polysaccharide production. Two of these clusters appear to encode all functions required for capsular polysaccharide formation (cps2A-J and cps4A-J, while the remaining clusters are predicted to lack genes encoding chain-length control functions and a priming glycosyl-transferase (cps1A-I and cps3A-J. We constructed L. plantarum WCFS1 gene deletion mutants that lack individual (Δcps1A-I, Δcps2A-J, Δcps3A-J and Δcps4A-J or combinations of cps clusters (Δcps1A-3J and Δcps1A-3I, Δcps4A-J and assessed the genome wide impact of these mutations by transcriptome analysis. The cps cluster deletions influenced the expression of variable gene sets in the individual cps cluster mutants, but also considerable numbers of up- and down-regulated genes were shared between mutants in cps cluster 1 and 2, as well as between mutant in cps clusters 3 and 4. Additionally, the composition of overall cell surface polysaccharide fractions was altered in each mutant strain, implying that despite the apparent incompleteness of cps1A-I and cps3A-J, all clusters are active and functional in L. plantarum. The Δcps1A-I strain produced surface polysaccharides in equal amounts as compared to the wild-type strain, while the polysaccharides were characterized by a reduced molar mass and the lack of rhamnose. The mutants that lacked functional copies of cps2A-J, cps3A-J or cps4A

  19. Fundamental properties of molecules on surfaces. Molecular switching and interaction of magnetic molecules with superconductors

    Energy Technology Data Exchange (ETDEWEB)

    Hatter, Nino

    2016-12-14

    In this thesis, we investigate individual molecular switches and metal-organic complexes on surfaces with scanning tunneling microscopy (STM) and spectroscopy (STS) at low temperatures. One focus addresses the switching ability and mechanism of diarylethene on Ag(111). The other focus lies on resolving and tuning magnetic interactions of individual molecules with superconductors. 4,4'-(4,4'-(perfluorocyclopent-1-ene-1,2-diyl)bis (5-methylthiophene-4,2-diyl)dip yridine (PDTE) is a prototypical photochromic switch. We can induce a structural change of individual PDTE molecules on Ag(111) with the STM tip. This change is accompanied by a reduction of the energy gap between the occupied and unoccupied molecular orbitals. Density functional theory (DFT) calculations reveal that the induced switching corresponds to a ring-closing reaction from an open isomer in a flat adsorption configuration to a ring-closed isomer with its methyl groups in a cis configuration. The final product is thermodynamically stabilized by strong dispersion interactions with the surface. A linear dependence of the switching threshold with the tip-sample distance with a minimal threshold of 1.4 V is found, which we assign to a combination of an electric-field induced process and a tunneling-electron contribution. DFT calculations suggest a large activation barrier for a ring-closing reaction from the open flat configuration into the closed cis configuration. The interaction of magnetic molecules with superconductors is studied on manganese phthalocyanine (MnPc) adsorbed on Pb(111). We find triplets of Shiba states inside the superconducting gap. Different adsorption sites of MnPc provide a large variety of exchange coupling strengths, which lead to a collective energy shift of the Shiba triplets. We can assign the splitting of the Shiba states to be an effect of magnetic anisotropy in the system. A quantum phase transition from a ''Kondo screened'' to a &apos

  20. Single Molecule Cluster Analysis Identifies Signature Dynamic Conformations along the Splicing Pathway

    Science.gov (United States)

    Blanco, Mario R.; Martin, Joshua S.; Kahlscheuer, Matthew L.; Krishnan, Ramya; Abelson, John; Laederach, Alain; Walter, Nils G.

    2016-01-01

    The spliceosome is the dynamic RNA-protein machine responsible for faithfully splicing introns from precursor messenger RNAs (pre-mRNAs). Many of the dynamic processes required for the proper assembly, catalytic activation, and disassembly of the spliceosome as it acts on its pre-mRNA substrate remain poorly understood, a challenge that persists for many biomolecular machines. Here, we developed a fluorescence-based Single Molecule Cluster Analysis (SiMCAn) tool to dissect the manifold conformational dynamics of a pre-mRNA through the splicing cycle. By clustering common dynamic behaviors derived from selectively blocked splicing reactions, SiMCAn was able to identify signature conformations and dynamic behaviors of multiple ATP-dependent intermediates. In addition, it identified a conformation adopted late in splicing by a 3′ splice site mutant, invoking a mechanism for substrate proofreading. SiMCAn presents a novel framework for interpreting complex single molecule behaviors that should prove widely useful for the comprehensive analysis of a plethora of dynamic cellular machines. PMID:26414013

  1. Investigating the conformation of polymeric dispersant molecules on nanoparticle surface

    International Nuclear Information System (INIS)

    Yasin, S.; Luckham, P.F.; Iqbal, T

    2016-01-01

    Block copolymers are widely used as stabilizers in industrial dispersions. These polymers adsorb on surfaces by an anchor chain and extend by a hydrophilic chain. Scaling model or de Gennes theory has been used to determine the grafting density of the block copolymers. By implementing this theory to the block copolymers, conformation of the polymer molecules as a function of distance between adjacent anchor chains can be determined. The scaling model was applied to a selection of block copolymers (PE/F 103, PE/F 108, NPE1800, Triton X100, Triton X405, Lugalvan BNO12, Hypermer LP1, Hypermer B246 and OLOA 11000) in this study. The cross sectional area sc, distance s (square root of sc) and the Flory radius (end to end dimension of polymer), Rf, for all the polymers was determined. The cross sectional area per PEO (Poly Ethylene Oxide) chain (nm2) was found to be increasing with the size of stabilizing chain. Triton X100 and Lugalvan BNO12 has the smaller stabilizing chains so occupy smaller cross sectional areas whereas PE/F108 and triton X405 have larger number of PEO units and occupy a larger cross sectional area. This shows that stabilizing chain regulates the adsorption amounts that are lower in case of lower number of EO units. The application of de Gennes theory to experimental results suggested brush configuration of adsorbed polymer molecules in case of PE/F 103, PE/F 108, Triton X100, Triton X405, NPE1800, Lugalvan BNO12, Hypermer B246 and OLOA 11000. Whereas, Hypermer LP1 is more likely found to be adsorbed on graphitic carbon black in loops and trains. (author)

  2. Ion collision-induced chemistry in pure and mixed loosely bound clusters of coronene and C60 molecules.

    Science.gov (United States)

    Domaracka, Alicja; Delaunay, Rudy; Mika, Arkadiusz; Gatchell, Michael; Zettergren, Henning; Cederquist, Henrik; Rousseau, Patrick; Huber, Bernd A

    2018-05-23

    Ionization, fragmentation and molecular growth have been studied in collisions of 22.5 keV He2+- or 3 keV Ar+-projectiles with pure loosely bound clusters of coronene (C24H12) molecules or with loosely bound mixed C60-C24H12 clusters by using mass spectrometry. The heavier and slower Ar+ projectiles induce prompt knockout-fragmentation - C- and/or H-losses - from individual molecules and highly efficient secondary molecular growth reactions before the clusters disintegrate on picosecond timescales. The lighter and faster He2+ projectiles have a higher charge and the main reactions are then ionization by ions that are not penetrating the clusters. This leads mostly to cluster fragmentation without molecular growth. However, here penetrating collisions may also lead to molecular growth but to a much smaller extent than with 3 keV Ar+. Here we present fragmentation and molecular growth mass distributions with 1 mass unit resolution, which reveals that the same numbers of C- and H-atoms often participate in the formation and breaking of covalent bonds inside the clusters. We find that masses close to those with integer numbers of intact coronene molecules, or with integer numbers of both intact coronene and C60 molecules, are formed where often one or several H-atoms are missing or have been added on. We also find that super-hydrogenated coronene is formed inside the clusters.

  3. "Trampoline" ejection of organic molecules from graphene and graphite via keV cluster ions impacts

    Science.gov (United States)

    Verkhoturov, Stanislav V.; Gołuński, Mikołaj; Verkhoturov, Dmitriy S.; Geng, Sheng; Postawa, Zbigniew; Schweikert, Emile A.

    2018-04-01

    We present the data on ejection of molecules and emission of molecular ions caused by single impacts of 50 keV C602+ on a molecular layer of deuterated phenylalanine (D8Phe) deposited on free standing, 2-layer graphene. The projectile impacts on the graphene side stimulate the abundant ejection of intact molecules and the emission of molecular ions in the transmission direction. To gain insight into the mechanism of ejection, Molecular Dynamic simulations were performed. It was found that the projectile penetrates the thin layer of graphene, partially depositing the projectile's kinetic energy, and molecules are ejected from the hot area around the hole that is made by the projectile. The yield, Y, of negative ions of deprotonated phenylalanine, (D8Phe-H)-, emitted in the transmission direction is 0.1 ions per projectile impact. To characterize the ejection and ionization of molecules, we have performed the experiments on emission of (D8Phe-H)- from the surface of bulk D8Phe (Y = 0.13) and from the single molecular layer of D8Phe deposited on bulk pyrolytic graphite (Y = 0.15). We show that, despite the similar yields of molecular ions, the scenario of the energy deposition and ejection of molecules is different for the case of graphene due to the confined volume of projectile-analyte interaction. The projectile impact on the graphene-D8Phe sample stimulates the collective radial movement of analyte atoms, which compresses the D8Phe layer radially from the hole. At the same time, this compression bends and stretches the graphene membrane around the hole thus accumulating potential energy. The accumulated potential energy is transformed into the kinetic energy of correlated movement upward for membrane atoms, thus the membrane acts as a trampoline for the molecules. The ejected molecules are effectively ionized; the ionization probability is ˜30× higher compared to that obtained for the bulk D8Phe target. The proposed mechanism of ionization involves tunneling of

  4. "Trampoline" ejection of organic molecules from graphene and graphite via keV cluster ions impacts.

    Science.gov (United States)

    Verkhoturov, Stanislav V; Gołuński, Mikołaj; Verkhoturov, Dmitriy S; Geng, Sheng; Postawa, Zbigniew; Schweikert, Emile A

    2018-04-14

    We present the data on ejection of molecules and emission of molecular ions caused by single impacts of 50 keV C 60 2+ on a molecular layer of deuterated phenylalanine (D8Phe) deposited on free standing, 2-layer graphene. The projectile impacts on the graphene side stimulate the abundant ejection of intact molecules and the emission of molecular ions in the transmission direction. To gain insight into the mechanism of ejection, Molecular Dynamic simulations were performed. It was found that the projectile penetrates the thin layer of graphene, partially depositing the projectile's kinetic energy, and molecules are ejected from the hot area around the hole that is made by the projectile. The yield, Y, of negative ions of deprotonated phenylalanine, (D8Phe-H) - , emitted in the transmission direction is 0.1 ions per projectile impact. To characterize the ejection and ionization of molecules, we have performed the experiments on emission of (D8Phe-H) - from the surface of bulk D8Phe (Y = 0.13) and from the single molecular layer of D8Phe deposited on bulk pyrolytic graphite (Y = 0.15). We show that, despite the similar yields of molecular ions, the scenario of the energy deposition and ejection of molecules is different for the case of graphene due to the confined volume of projectile-analyte interaction. The projectile impact on the graphene-D8Phe sample stimulates the collective radial movement of analyte atoms, which compresses the D8Phe layer radially from the hole. At the same time, this compression bends and stretches the graphene membrane around the hole thus accumulating potential energy. The accumulated potential energy is transformed into the kinetic energy of correlated movement upward for membrane atoms, thus the membrane acts as a trampoline for the molecules. The ejected molecules are effectively ionized; the ionization probability is ∼30× higher compared to that obtained for the bulk D8Phe target. The proposed mechanism of ionization involves

  5. On surface clustering and Pauli principle effects in alpha decay

    International Nuclear Information System (INIS)

    Holan, S.

    1983-01-01

    The importance of the correct description of nuclear surface region in alpha decay calculations is pointed out. A model is proposed takinq into account explicitly surface clustering and Pauli principle effects which are essential in this region. A method for solving the main integrodifferential equation of the model by using the oscillator shell basis and the Collatz method is worked out. The first numerical results are obtained for nonlocal potential of the atpha particle-daughter nucleus interaction

  6. Cluster-surface collisions: Characteristics of Xe55- and C20 - Si[111] surface bombardment

    International Nuclear Information System (INIS)

    Cheng, H.

    1999-01-01

    Molecular dynamics (MD) simulations are performed to study the cluster-surface collision processes. Two types of clusters, Xe 55 and C 20 are used as case studies of materials with very different properties. In studies of Xe 55 - Si[111] surface bombardment, two initial velocities, 5.0 and 10.0 km/s (normal to the surface) are chosen to investigate the dynamical consequences of the initial energy or velocity in the cluster-surface impact. A transition in the speed of kinetic energy propagation, from subsonic velocities to supersonic velocities, is observed. Energy transfer, from cluster translational motion to the substrate, occurs at an extremely fast rate that increases as the incident velocity increases. Local melting and amorphous layer formation in the surfaces are found via energetic analysis of individual silicon atoms. For C 20 , the initial velocity ranges from 10 to 100 km/s. The clusters are damaged immediately upon impact. Similar to Xe 55 , increase in the potential energy is larger than the increase in internal kinetic energy. However, the patterns of energy distribution are different for the two types of clusters. The energy transfer from the carbon clusters to Si(111) surface is found to be slower than that found in the Xe clusters. Fragmentation of the carbon cluster occurs when the initial velocity is greater than 30 km/s. At 10 km/s, the clusters show recrystallization at later times. The average penetration depth displays a nonlinear dependence on the initial velocity. Disturbance in the surface caused by C 20 is discussed and compared to the damage caused by Xe 55 . Energetics, structures, and dynamics of these systems are fully analyzed and characterized. copyright 1999 American Institute of Physics

  7. Formation of self-assembled monolayer of curcuminoid molecules on gold surfaces

    International Nuclear Information System (INIS)

    Berlanga, Isadora; Etcheverry-Berríos, Álvaro; Mella, Andy; Jullian, Domingo; Gómez, Victoria Alejandra; Aliaga-Alcalde, Núria; Fuenzalida, Victor; Flores, Marcos

    2017-01-01

    Highlights: • Thiophene curcuminoid molecules deposited on a gold surface by immersion. • Molecular dynamic studies of the molecular arrangement approaching the surface. • XPS and STM studies showing different arrangement of the molecules on the surface. • Molecular Interaction with surface depends on the sulfur position in thiophene rings. • Temporal evolution of the molecular arrangement on the surface. - Abstract: We investigated the formation of self-assembled monolayers of two thiophene curcuminoid molecules, 2-thphCCM (1) and 3-thphCCM (2), on polycrystalline gold substrates prepared by immersion of the surfaces in a solution of the molecules during 24 h. The functionalized surfaces were studied by scanning tunneling microscopy (STM) and X-ray photoelectron spectroscopy (XPS). Despite the fact that both molecules have the same composition and almost the same structure, these molecules exhibit different behavior on the gold surface, which can be explained by the different positions of the sulfur atoms in the terminal aromatic rings. In the case of molecule 1, the complete formation of a SAM can be observed after 24 h of immersion. In the case of molecule 2, the transition from flat-lying to upright configuration on the surface is still in process after 24 h of immersion. This is attributed to the fact that molecule 2 have the sulfur atoms more exposed than molecule 1.

  8. Formation of self-assembled monolayer of curcuminoid molecules on gold surfaces

    Energy Technology Data Exchange (ETDEWEB)

    Berlanga, Isadora [Departamento de Física, Facultad de Ciencias Físicas y Matemáticas, Universidad de Chile, Av. Blanco Encalada 2008, Santiago (Chile); Etcheverry-Berríos, Álvaro; Mella, Andy; Jullian, Domingo [Departamento de Ciencia de los Materiales, Facultad de Ciencias Físicas y Matemáticas, Universidad de Chile, Beaucheff 851, Santiago (Chile); Gómez, Victoria Alejandra [Departamento de Física, Facultad de Ciencias Físicas y Matemáticas, Universidad de Chile, Av. Blanco Encalada 2008, Santiago (Chile); Aliaga-Alcalde, Núria [ICREA (Institució Catalana de Recerca i Estudis Avançats), Passeig Lluís Companys, 23, 08018, Barcelona (Spain); CSIC-ICMAB (Institut de Ciència dels Materials de Barcelona), Campus de la Universitat Autònoma de Barcelona, 08193 Bellaterra (Spain); Fuenzalida, Victor [Departamento de Física, Facultad de Ciencias Físicas y Matemáticas, Universidad de Chile, Av. Blanco Encalada 2008, Santiago (Chile); Flores, Marcos, E-mail: mflorescarra@ing.uchile.cl [Departamento de Física, Facultad de Ciencias Físicas y Matemáticas, Universidad de Chile, Av. Blanco Encalada 2008, Santiago (Chile); and others

    2017-01-15

    Highlights: • Thiophene curcuminoid molecules deposited on a gold surface by immersion. • Molecular dynamic studies of the molecular arrangement approaching the surface. • XPS and STM studies showing different arrangement of the molecules on the surface. • Molecular Interaction with surface depends on the sulfur position in thiophene rings. • Temporal evolution of the molecular arrangement on the surface. - Abstract: We investigated the formation of self-assembled monolayers of two thiophene curcuminoid molecules, 2-thphCCM (1) and 3-thphCCM (2), on polycrystalline gold substrates prepared by immersion of the surfaces in a solution of the molecules during 24 h. The functionalized surfaces were studied by scanning tunneling microscopy (STM) and X-ray photoelectron spectroscopy (XPS). Despite the fact that both molecules have the same composition and almost the same structure, these molecules exhibit different behavior on the gold surface, which can be explained by the different positions of the sulfur atoms in the terminal aromatic rings. In the case of molecule 1, the complete formation of a SAM can be observed after 24 h of immersion. In the case of molecule 2, the transition from flat-lying to upright configuration on the surface is still in process after 24 h of immersion. This is attributed to the fact that molecule 2 have the sulfur atoms more exposed than molecule 1.

  9. Lipid-Mediated Clusters of Guest Molecules in Model Membranes and Their Dissolving in the Presence of Lipid Rafts.

    Science.gov (United States)

    Kardash, Maria E; Dzuba, Sergei A

    2017-05-25

    The clustering of molecules is an important feature of plasma membrane organization. It is challenging to develop methods for quantifying membrane heterogeneities because of their transient nature and small size. Here, we obtained evidence that transient membrane heterogeneities can be frozen at cryogenic temperatures which allows the application of solid-state experimental techniques sensitive to the nanoscale distance range. We employed the pulsed version of electron paramagnetic resonance (EPR) spectroscopy, the electron spin echo (ESE) technique, for spin-labeled molecules in multilamellar lipid bilayers. ESE decays were refined for pure contribution of spin-spin magnetic dipole-dipolar interaction between the labels; these interactions manifest themselves at a nanometer distance range. The bilayers were prepared from different types of saturated and unsaturated lipids and cholesterol (Chol); in all cases, a small amount of guest spin-labeled substances 5-doxyl-stearic-acid (5-DSA) or 3β-doxyl-5α-cholestane (DChl) was added. The local concentration found of 5-DSA and DChl molecules was remarkably higher than the mean concentration in the bilayer, evidencing the formation of lipid-mediated clusters of these molecules. To our knowledge, formation of nanoscale clusters of guest amphiphilic molecules in biological membranes is a new phenomenon suggested only recently. Two-dimensional 5-DSA molecular clusters were found, whereas flat DChl molecules were found to be clustered into stacked one-dimensional structures. These clusters disappear when the Chol content is varied between the boundaries known for lipid raft formation at room temperatures. The room temperature EPR evidenced entrapping of DChl molecules in the rafts.

  10. Influencing the bonding and assembly of a multiterminal molecule on a metal surface

    Energy Technology Data Exchange (ETDEWEB)

    Lukas, Maya; Doessel, Kerrin; Fink, Karin; Fuhr, Olaf [Karlsruhe Institute of Technology (KIT), Institute of Nanotechnology, D-76021 Karlsruhe (Germany); DFG Center of Functional Nanostructures (CFN), D-76049 Karlsruhe (Germany); Schramm, Alexandrina; Stroh, Christophe [Karlsruhe Institute of Technology (KIT), Institute of Nanotechnology, D-76021 Karlsruhe (Germany); Mayor, Marcel [Karlsruhe Institute of Technology (KIT), Institute of Nanotechnology, D-76021 Karlsruhe (Germany); DFG Center of Functional Nanostructures (CFN), D-76049 Karlsruhe (Germany); University of Basel, Department of Chemistry, CH-4056 Basel (Switzerland); Loehneysen, Hilbert von [Karlsruhe Institute of Technology (KIT), Institute of Nanotechnology, D-76021 Karlsruhe (Germany); DFG Center of Functional Nanostructures (CFN), D-76049 Karlsruhe (Germany); Karlsruhe Institute of Technology (KIT), Physics Institute and Institute for Solid State Physics, D-76049 Karlsruhe (Germany)

    2011-07-01

    The bond of a molecule to a metallic electrode is known to have a crucial influence on the molecular conductance. As electronic functionalities are integrated into molecules or several subunits are connected to a three-dimensional multiterminal molecule, it is not obvious that a ''well-known'' chemical linker group will lead to the bonding configuration known from simpler molecules. We investigated a series of tripodal molecules on metal surfaces by STM. The chemical linker groups and the complex connecting the three wire-units are varied. We find that the position of molecules on the surface is governed by a subtle balance of intermolecular and molecule-surface interactions, partly in strong contrast to expectations. This emphasizes the need to characterize the nature of molecule-electrode contacts along with the investigation of the electronic conductance.

  11. Effects of incident cluster size, substrate temperature, and incident energy on bombardment of Ni clusters onto Cu (0 0 1) surface studied using molecular dynamics simulation

    International Nuclear Information System (INIS)

    Lin, Shiang-Jiun; Wu, Cheng-Da; Fang, Te-Hua; Chen, Guan-Hung

    2012-01-01

    The bombardment process of a Ni cluster onto a Cu (0 0 1) surface is studied using molecular dynamics (MD) simulations based on the tight-binding second-moment approximation (TB-SMA) many-body potential. The effects of incident cluster size, substrate temperature, and incident energy are evaluated in terms of molecular trajectories, kinetic energy, stress, self-diffusion coefficient, and sputtering yield. The simulation results clearly show that the penetration depth and Cu surface damage increase with increasing incident cluster size for a given incident energy per atom. The self-diffusion coefficient and the penetration depth of a cluster significantly increase with increasing substrate temperature. An incident cluster can be scattered into molecules or atoms that become embedded in the surface after incidence. When the incident energy is increased, the number of volcano-like defects and the penetration depth increase. A high sputtering yield can be obtained by increasing the incident energy at high temperature. The sputtering yield significantly increases with cluster size when the incident energy is above 5 eV/atom.

  12. Thermal dynamics of silver clusters grown on rippled silica surfaces

    Energy Technology Data Exchange (ETDEWEB)

    Bhatnagar, Mukul, E-mail: mkbh10@gmail.com [FCIPT, Institute for Plasma Research, Gandhinagar, Gujarat (India); Nirma University, Ahmedabad, Gujarat (India); Ranjan, Mukesh [FCIPT, Institute for Plasma Research, Gandhinagar, Gujarat (India); Nirma University, Ahmedabad, Gujarat (India); Jolley, Kenny; Lloyd, Adam; Smith, Roger [Dept. of Mathematical Sciences, Loughborough University, Leicestershire LE11 3TU (United Kingdom); Mukherjee, Subroto [FCIPT, Institute for Plasma Research, Gandhinagar, Gujarat (India); Nirma University, Ahmedabad, Gujarat (India)

    2017-02-15

    Highlights: • Low energy oblique angle ion bombardment forms ripple pattern on silicon surface. • The ripple patterns have wavelengths between 20 and 45 nm and correspondingly low height. • Silver nanoparticles have been deposited at an angle of 70° on patterned silicon templates. • The as-deposited np are annealed in vacuo at temperature of 573 K for a time duration of 1 h. • MD simulation is used to model the process and compare the results to the experiment. • Results show that silver clusters grow preferentially along parallel to the rippled surface. • Mobility of silver atoms depends on the site to which they are bonded on this amorphous surface. • MD simulations show contour ordered coalescence which is dependent on ripple periodicity. - Abstract: Silver nanoparticles have been deposited on silicon rippled patterned templates at an angle of incidence of 70° to the surface normal. The templates are produced by oblique incidence argon ion bombardment and as the fluence increases, the periods and heights of the structures increase. Structures with periods of 20 nm, 35 nm and 45 nm have been produced. Moderate temperature vacuum annealing shows the phenomenon of cluster coalescence following the contour of the more exposed faces of the ripple for the case of 35 nm and 45 nm but not at 20 nm where the silver aggregates into larger randomly distributed clusters. In order to understand this effect, the morphological changes of silver nanoparticles deposited on an asymmetric rippled silica surface are investigated through the use of molecular dynamics simulations for different deposition angles of incidence between 0° and 70° and annealing temperatures between 500 K and 900 K. Near to normal incidence, clusters are observed to migrate over the entire surface but for deposition at 70°, a similar patterning is observed as in the experiment. The random distribution of clusters for the periodicity ≈ of 20 nm is linked to the geometry of the silica

  13. Properties of clusters in the gas phase: V. Complexes of neutral molecules onto negative ions

    International Nuclear Information System (INIS)

    Keesee, R.G.; Lee, N.; Castleman, A.W. Jr.

    1980-01-01

    Ion--molecules association reactions of the form A - (B)/sub n1/-+B=A - (B)/sub n/ were studied over a range of temperatures in the gas phase using high pressure mass spectrometry. Enthalpy and entropy changes were determined for the stepwise clustering reactions of (1) sulfur dioxide onto Cl - , I - , and NO 2 - with n ranging from one to three or four, and onto SO 2 - and SO 3 - with n equal to one; and (2) carbon dioxide onto Cl - , I - , NO 2 - , CO 3 - , and SO 3 - with n equal to one. From these data and earlier hydration results, the order of the magnitude of the enthalpy changes on the association of the first neutral for a series of negative ions was found to parallel the gas-phase basicity of those anions. For any given ion, the relative order of the addition enthalpies among the neutrals was found to be dependent on the polarizabilities of the neutrals and on the covalency in the ion-neutral bond. Dispersion of charge via covalent bonding was found to affect significantly the succeeding clustering steps

  14. Adsorption of metal-phthalocyanine molecules onto the Si(111) surface passivated by δ doping: Ab initio calculations

    Science.gov (United States)

    Veiga, R. G. A.; Miwa, R. H.; McLean, A. B.

    2016-03-01

    We report first-principles calculations of the energetic stability and electronic properties of metal-phthalocyanine (MPc) molecules (M = Cr, Mn, Fe, Co, Ni, Cu, and Zn) adsorbed on the δ -doped Si(111)-B (√{3 }×√{3 }) reconstructed surface. (i) It can be seen that CrPc, MnPc, FePc, and CoPc are chemically anchored to the topmost Si atom. (ii) Contrastingly, the binding of the NiPc, CuPc, and ZnPc molecules to the Si (111 ) -B (√{3 }×√{3 }) surface is exclusively ruled by van der Waals interactions, the main implication being that these molecules may diffuse and rearrange to form clusters and/or self-organized structures on this surface. The electronic structure calculations reveal that in point (i), owing to the formation of the metal-Si covalent bond, the net magnetic moment of the molecule is quenched by 1 μB , remaining unchanged in point (ii). In particular, the magnetic moment of CuPc (1 μB ) is preserved after adsorption. Finally, we verify that the formation of ZnPc, CuPc, and NiPc molecular (self-assembled) arrangements on the Si(111)-B (√{3 }×√{3 } ) surface is energetically favorable, in good agreement with recent experimental findings.

  15. Single-molecule conductivity of non-redox and redox molecules at pure and gold-mined Au(111)-electrode surfaces

    DEFF Research Database (Denmark)

    Zhang, Jingdong; Chi, Qijin; Ulstrup, Jens

    The structure, two-dimensional organization, and function of molecules immobilized on solid surfaces can be addressed in a degree of detail that has reached the level of the single-molecule. In this context redox molecules are “smart” molecules adding sophisticated electronic function. Redox meta...

  16. A magnetic nanoparticle-clustering biosensor for blu-ray based optical detection of small-molecules

    DEFF Research Database (Denmark)

    Yang, Jaeyoung; Donolato, Marco; Antunes, Paula Soares Martins

    2014-01-01

    MNP-clustering facilitates high-resolution small-molecule assays. For experiments, aptamer-functionalized MNPs (Apt-MNPs) were first incubated with adenosine-5'-triphosphate (ATP) followed by adding MNPs with linker strands (linker-MNPs). The linker hybridizes with a region of aptamer sequences...

  17. Bonding in Mercury Molecules Described by the Normalized Elimination of the Small Component and Coupled Cluster Theory

    NARCIS (Netherlands)

    Cremer, Dieter; Kraka, Elfi; Filatov, Michael

    2008-01-01

    Bond dissociation energies (BDEs) of neutral HgX and cationic HgX(+) molecules range from less than a kcal mol(-1) to as much as 60 kcal mol(-1). Using NESCICCCSD(T) [normalized elimination of the small component and coupled-cluster theory with all single and double excitations and a perturbative

  18. Advances on the nanostructuration of magnetic molecules on surfaces: the case of single-molecule magnets (SMM).

    Science.gov (United States)

    Gómez-Segura, Jordi; Veciana, Jaume; Ruiz-Molina, Daniel

    2007-09-28

    SMMs exhibit slow magnetization relaxation rates characteristic of nanodomain particles whose origin is however on individual molecules. For this reason, they have attracted much interest due to their potential applications in high-density information storage devices and quantum computing applications, where for instance, each molecule can be used as a magnetic bit of information. However, for this to become a reality, several basic studies such as their deposition on surfaces are still highly required. Here we will revise all the experimental approximations that have been so far reported for their addressing, nanostructuration and study on surfaces, from the use of stamps as templates to their anchorage to gold surface through the use of thiol-based ligands. It is also important to emphasize that the results and methodologies described along this review are applicable not only to SMMs but to any molecular material.

  19. Low surface brightness galaxies in the Fornax Cluster: automated galaxy surface photometry

    International Nuclear Information System (INIS)

    Davies, J.I.; Phillipps, S.; Disney, M.J.

    1988-01-01

    A sample is presented of low surface brightness galaxies (with extrapolated central surface brightness fainter than 22.0 Bμ) in the Fornax Cluster region which has been measured by the APM machine. Photometric parameters, namely profile shape, scale length, central brightness and total magnitude, are derived for the sample galaxies and correlations between the parameters of low surface brightness dwarf galaxies are discussed, with particular reference to the selection limits. Contrary to previous authors we find no evidence for a luminosity-surface brightness correlation in the sense of lower surface brightness galaxies having lower luminosities and scale sizes. In fact, the present data suggest that it is the galaxies with the largest scale lengths which are more likely to be of very low surface brightness. In addition, the larger scale length galaxies occur preferentially towards the centre of the Cluster. (author)

  20. Site-Specific Molecule-Surface Interactions on Metal Oxides

    National Research Council Canada - National Science Library

    Reisler, Hanna

    1998-01-01

    .... At low incident energies rotational and translational temperatures of scattered HCl were equal to the surface temperature, and residence times in the millisecond regime were observed at low surface temperature. When HCl(v=2, J=1...

  1. Single DNA molecules as probes for interrogating silica surfaces after various chemical treatments

    International Nuclear Information System (INIS)

    Liu Xia; Wu Zhan; Nie Huagui; Liu Ziling; He Yan; Yeung, E.S.

    2007-01-01

    We examined the adsorption of single YOYO-1-labeled λ-DNA molecules at glass surfaces after treatment with various chemical cleaning methods by using total internal reflection fluorescence microscopy (TIRFM). The characteristics of these surfaces were further assessed using contact angle (CA) measurements and atomic force microscopy (AFM). By recording the real-time dynamic motion of DNA molecules at the liquid/solid interface, subtle differences in adsorption affinities were revealed. The results indicate that the driving force for adsorption of DNA molecules on glass surfaces is mainly hydrophobic interaction. We also found that surface topography plays a role in the adsorption dynamics

  2. Cluster ion-surface interactions: from meV to MeV energies

    Energy Technology Data Exchange (ETDEWEB)

    Nordlund, Kai; Meinander, Kristoffer; Jaervi, Tommi T.; Peltola, Jarkko; Samela, Juha [Accelerator Laboratory, University of Helsinki (Finland)

    2008-07-01

    The nature of cluster ion-surface interactions changes dramatically with the kinetic energy of the incoming cluster species. In this talk I review some of our recent work on the nature of cluster-surface interactions spanning an energy range from a few MeV/cluster to about 1 MeV/cluster and cluster sizes in the range of 10 - 1000 atoms/cluster. In the energy range of a few MeV/cluster ion, the kinetic energy of the incoming ion is insignificant compared to the energy gained when the surface potential energy at the cluster-surface interface is released and partly translated into kinetic energy. Even in this energy regime I show that surprisingly drastic effects can occur. When the energy of the incoming cluster is raised to a few eV/atom, the kinetic energy of the incoming cluster starts to affect the deposition. It will cause the cluster to entirely reform on impact. When the energy is raised to the range of keV's/cluster, the clusters start to penetrate the sample, fairly similar to conventional ion implantation. However, in dense targets the cluster ions may stick close to each other long enough to cause a significant enhancement of the heat spike in the material. Finally, I show that at kinetic energies around 1 MeV/cluster the cluster enhancement of the heat spike may lead to dramatic surface effects.

  3. Adsorption Mechanism of Inhibitor and Guest Molecules on the Surface of Gas Hydrates.

    Science.gov (United States)

    Yagasaki, Takuma; Matsumoto, Masakazu; Tanaka, Hideki

    2015-09-23

    The adsorption of guest and kinetic inhibitor molecules on the surface of methane hydrate is investigated by using molecular dynamics simulations. We calculate the free energy profile for transferring a solute molecule from bulk water to the hydrate surface for various molecules. Spherical solutes with a diameter of ∼0.5 nm are significantly stabilized at the hydrate surface, whereas smaller and larger solutes exhibit lower adsorption affinity than the solutes of intermediate size. The range of the attractive force is subnanoscale, implying that this force has no effect on the macroscopic mass transfer of guest molecules in crystal growth processes of gas hydrates. We also examine the adsorption mechanism of a kinetic hydrate inhibitor. It is found that a monomer of the kinetic hydrate inhibitor is strongly adsorbed on the hydrate surface. However, the hydrogen bonding between the amide group of the inhibitor and water molecules on the hydrate surface, which was believed to be the driving force for the adsorption, makes no contribution to the adsorption affinity. The preferential adsorption of both the kinetic inhibitor and the spherical molecules to the surface is mainly due to the entropic stabilization arising from the presence of cavities at the hydrate surface. The dependence of surface affinity on the size of adsorbed molecules is also explained by this mechanism.

  4. Molecules on vicinal Au surfaces studied by scanning tunnelling microscopy

    International Nuclear Information System (INIS)

    Kroeger, J; Neel, N; Jensen, H; Berndt, R; Rurali, R; Lorente, N

    2006-01-01

    Using low-temperature scanning tunnelling microscopy and spectroscopy we investigated the adsorption characteristics of 3,4,9,10-perylenetetracarboxylic-dianhydride and fullerenes on Au(788), Au(433), and Au(778). On Au(788) and Au(778), 3,4,9,10-perylenetetracarboxylic-dianhydride exhibits three coexisting superstructures, which do not reflect the periodicity of the hosting substrate. The adsorption on Au(433) leads to the formation of molecule chains along the step edges after annealing the sample. Fullerene molecules on Au(788) arrange in a mesh of islands, which extends over several hundreds of nanometres with an extraordinarily high periodicity. A combination of fullerene adsorption and annealing leads to facetting of Au(433) and the formation of extraordinarily long fullerene stripes

  5. Multivalent adhesion molecule 7 clusters act as signaling platform for host cellular GTPase activation and facilitate epithelial barrier dysfunction.

    Directory of Open Access Journals (Sweden)

    Jenson Lim

    2014-09-01

    Full Text Available Vibrio parahaemolyticus is an emerging bacterial pathogen which colonizes the gastrointestinal tract and can cause severe enteritis and bacteraemia. During infection, V. parahaemolyticus primarily attaches to the small intestine, where it causes extensive tissue damage and compromises epithelial barrier integrity. We have previously described that Multivalent Adhesion Molecule (MAM 7 contributes to initial attachment of V. parahaemolyticus to epithelial cells. Here we show that the bacterial adhesin, through multivalent interactions between surface-induced adhesin clusters and phosphatidic acid lipids in the host cell membrane, induces activation of the small GTPase RhoA and actin rearrangements in host cells. In infection studies with V. parahaemolyticus we further demonstrate that adhesin-triggered activation of the ROCK/LIMK signaling axis is sufficient to redistribute tight junction proteins, leading to a loss of epithelial barrier function. Taken together, these findings show an unprecedented mechanism by which an adhesin acts as assembly platform for a host cellular signaling pathway, which ultimately facilitates breaching of the epithelial barrier by a bacterial pathogen.

  6. Surface functionalization of bioactive glasses with natural molecules of biological significance, Part I: Gallic acid as model molecule

    Science.gov (United States)

    Zhang, Xin; Ferraris, Sara; Prenesti, Enrico; Verné, Enrica

    2013-12-01

    Gallic acid (3,4,5-trihydroxybenzoic acid, GA) and its derivatives are a group of biomolecules (polyphenols) obtained from plants. They have effects which are potentially beneficial to heath, for example they are antioxidant, anticarcinogenic and antibacterial, as recently investigated in many fields such as medicine, food and plant sciences. The main drawbacks of these molecules are both low stability and bioavailability. In this research work the opportunity to graft GA to bioactive glasses is investigated, in order to deliver the undamaged biological molecule into the body, using the biomaterial surfaces as a localized carrier. GA was considered for functionalization since it is a good model molecule for polyphenols and presents several interesting biological activities, like antibacterial, antioxidant and anticarcinogenic properties. Two different silica based bioactive glasses (SCNA and CEL2), with different reactivity, were employed as substrates. UV photometry combined with the Folin&Ciocalteu reagent was adopted to test the concentration of GA in uptake solution after functionalization. This test verified how much GA consumption occurred with surface modification and it was also used on solid samples to test the presence of GA on functionalized glasses. XPS and SEM-EDS techniques were employed to characterize the modification of material surface properties and functional group composition before and after functionalization.

  7. Single OR molecule and OR atomic circuit logic gates interconnected on a Si(100)H surface

    International Nuclear Information System (INIS)

    Ample, F; Joachim, C; Duchemin, I; Hliwa, M

    2011-01-01

    Electron transport calculations were carried out for three terminal OR logic gates constructed either with a single molecule or with a surface dangling bond circuit interconnected on a Si(100)H surface. The corresponding multi-electrode multi-channel scattering matrix (where the central three terminal junction OR gate is the scattering center) was calculated, taking into account the electronic structure of the supporting Si(100)H surface, the metallic interconnection nano-pads, the surface atomic wires and the molecule. Well interconnected, an optimized OR molecule can only run at a maximum of 10 nA output current intensity for a 0.5 V bias voltage. For the same voltage and with no molecule in the circuit, the output current of an OR surface atomic scale circuit can reach 4 μA.

  8. Multilayer Choline Phosphate Molecule Modified Surface with Enhanced Cell Adhesion but Resistance to Protein Adsorption.

    Science.gov (United States)

    Chen, Xingyu; Yang, Ming; Liu, Botao; Li, Zhiqiang; Tan, Hong; Li, Jianshu

    2017-08-22

    Choline phosphate (CP), which is a new zwitterionic molecule, and has the reverse order of phosphate choline (PC) and could bind to the cell membrane though the unique CP-PC interaction. Here we modified a glass surface with multilayer CP molecules using surface-initiated atom-transfer radical polymerization (SI-ATRP) and the ring-opening method. Polymeric brushes of (dimethylamino)ethyl methacrylate (DMAEMA) were synthesized by SI-ATRP from the glass surface. Then the grafted PDMAEMA brushes were used to introduce CP groups to fabricate the multilayer CP molecule modified surface. The protein adsorption experiment and cell culture test were used to evaluate the biocompatibility of the modified surfaces by using human umbilical veinendothelial cells (HUVECs). The protein adsorption results demonstrated that the multilayer CP molecule decorated surface could prevent the adsorption of fibrinogen and serum protein. The adhesion and proliferation of cells were improved significantly on the multilayer CP molecule modified surface. Therefore, the biocompatibility of the material surface could be improved by the modified multilayer CP molecule, which exhibits great potential for biomedical applications, e.g., scaffolds in tissue engineering.

  9. Selection of conformational states in surface self-assembly for a molecule with eight possible pairs of surface enantiomers

    DEFF Research Database (Denmark)

    Nuermaimaiti, Ajiguli; Schultz-Falk, Vickie; Lind Cramer, Jacob

    2016-01-01

    Self-assembly of a molecule with many distinct conformational states, resulting in eight possible pairs of surface enantiomers, is investigated on a Au(111) surface under UHV conditions. The complex molecule is equipped with alkyl and carboxyl moieties to promote controlled self-assembly of lamel......Self-assembly of a molecule with many distinct conformational states, resulting in eight possible pairs of surface enantiomers, is investigated on a Au(111) surface under UHV conditions. The complex molecule is equipped with alkyl and carboxyl moieties to promote controlled self......-assembly of lamellae structures. From statistical analysis of Scanning Tunnelling Microscopy (STM) data we observe a clear selection of specific conformational states after self-assembly. Using Density Functional Theory (DFT) calculations we rationalise how this selection is correlated to the orientation of the alkyl...

  10. On determination of the dynamics of hydrocarbon molecules on catalyst's surfaces by means of neutron scattering

    International Nuclear Information System (INIS)

    Stockmeyer, R.

    1976-01-01

    The intensity distribution of slow neutrons scattered by adsorbed hydrocarbon molecules contains information on the dynamics of the molecules. In this paper the scattering law for incoherently scattering molecules is derived taking into account the very different mobility perpendicular and parallel to the surface. In contrast to the well known scattering law of threedimensionally diffusing particles the scattering law for twodimensional diffusion diverges logarithmically at zero energy transfer. Conclusions relevant to the interpretation of neutron scattering data are discussed. (orig.) [de

  11. Adsorption of simple molecules on clean metal surfaces

    International Nuclear Information System (INIS)

    Na Lamphun, O.-A.

    1980-06-01

    The adsorption of nitric oxide, oxygen, krypton and xenon on evaporated tungsten, nickel and iron films is studied. The theoretical and experimental aspects of adsorption are reviewed, a preliminary study of adsorption by the volumetric method is presented, surface potential and sticking probability studies of adsorption using ion gauges are investigated and an analysis of residual gases, sticking probability and surface potential studies using quadrupole mass spectrometry, given. (author)

  12. Delta self-consistent field method to obtain potential energy surfaces of excited molecules on surfaces

    DEFF Research Database (Denmark)

    Gavnholt, Jeppe; Olsen, Thomas; Engelund, Mads

    2008-01-01

    is a density-functional method closely resembling standard density-functional theory (DFT), the only difference being that in Delta SCF one or more electrons are placed in higher lying Kohn-Sham orbitals instead of placing all electrons in the lowest possible orbitals as one does when calculating the ground......-state energy within standard DFT. We extend the Delta SCF method by allowing excited electrons to occupy orbitals which are linear combinations of Kohn-Sham orbitals. With this extra freedom it is possible to place charge locally on adsorbed molecules in the calculations, such that resonance energies can...... be estimated, which is not possible in traditional Delta SCF because of very delocalized Kohn-Sham orbitals. The method is applied to N2, CO, and NO adsorbed on different metallic surfaces and compared to ordinary Delta SCF without our modification, spatially constrained DFT, and inverse...

  13. Structural and electronic properties of single molecules and organic layers on surfaces

    NARCIS (Netherlands)

    Sotthewes, Kai

    2016-01-01

    Single molecules and organic layers on well-defined solid surfaces have attracted tremendous attention owing to their interesting physical and chemical properties. The ultimate utility of single molecules or self-assembled monolayers (SAMs) for potential applications is critically dependent on the

  14. Anchoring of organic molecules to a metal surface: HtBDC on Cu(110)

    DEFF Research Database (Denmark)

    Schunack, M.; Petersen, L.; Kuhnle, A.

    2001-01-01

    The interaction of largish molecules with metal surfaces has been studied by combining the imaging and manipulation capabilities of the scanning tunneling microscope (STM). At the atomic scale, the STM results directly reveal that the adsorption of a largish organic molecule can induce...

  15. Colliding holes in Riemann surfaces and quantum cluster algebras

    Science.gov (United States)

    Chekhov, Leonid; Mazzocco, Marta

    2018-01-01

    In this paper, we describe a new type of surgery for non-compact Riemann surfaces that naturally appears when colliding two holes or two sides of the same hole in an orientable Riemann surface with boundary (and possibly orbifold points). As a result of this surgery, bordered cusps appear on the boundary components of the Riemann surface. In Poincaré uniformization, these bordered cusps correspond to ideal triangles in the fundamental domain. We introduce the notion of bordered cusped Teichmüller space and endow it with a Poisson structure, quantization of which is achieved with a canonical quantum ordering. We give a complete combinatorial description of the bordered cusped Teichmüller space by introducing the notion of maximal cusped lamination, a lamination consisting of geodesic arcs between bordered cusps and closed geodesics homotopic to the boundaries such that it triangulates the Riemann surface. We show that each bordered cusp carries a natural decoration, i.e. a choice of a horocycle, so that the lengths of the arcs in the maximal cusped lamination are defined as λ-lengths in Thurston-Penner terminology. We compute the Goldman bracket explicitly in terms of these λ-lengths and show that the groupoid of flip morphisms acts as a generalized cluster algebra mutation. From the physical point of view, our construction provides an explicit coordinatization of moduli spaces of open/closed string worldsheets and their quantization.

  16. Effects of microwave electric fields on the translational diffusion of dipolar molecules in surface potential: A simulation study

    Science.gov (United States)

    Kapranov, Sergey V.; Kouzaev, Guennadi A.

    2018-01-01

    Variations of effective diffusion coefficient of polar molecules exposed to microwave electric fields in a surface potential are studied by solving coupled stochastic differential equations of motion with a deterministic component of the surface force. Being an essential tool for the simulation interpretation, a theoretical approach to effective diffusion in surface potential is first developed. The effective diffusion coefficient is represented as the product of the normal diffusion coefficient and potential-dependent correction function, whose temperature dependence is close to the Arrhenius form. The analytically found zero-diffusion condition defines the state of thermal equilibrium at the surface. The diffusion of a water-like dipole molecule in the potential of graphite surface is simulated in the field-free conditions and in the presence of the alternating electric fields of various magnitude intensities and frequencies. Temperature dependence of the correction function exhibits field-induced variations of the effective Lennard-Jones energy parameter. It demonstrates maximum departure from the zero-field value at certain frequencies and intensities, which is associated with variations in the rotational dynamics. A concept of the amplitude-frequency resonance put forward to interpret the simulation results is explained using a heuristic reasoning and is corroborated by semi-quantitative considerations in terms of the Dissado-Hill cluster theory of dielectric relaxation.

  17. Renormalization of Optical Excitations in Molecules near a Metal Surface

    DEFF Research Database (Denmark)

    García Lastra, Juan Maria; Thygesen, Kristian Sommer

    2011-01-01

    consequence we find that close to the metal surface the optical gap of benzene can exceed its quasiparticle gap. A classical image charge model for the screened Coulomb interaction can account for all these effects which, on the other hand, are completely missed by standard time-dependent density functional...

  18. Desorption dynamics of deuterium molecules from the Si(100)-(3x1) dideuteride surface.

    Science.gov (United States)

    Niida, T; Tsurumaki, H; Namiki, A

    2006-01-14

    We measured polar angle (theta)-resolved time-of-flight spectra of D2 molecules desorbing from the Si(100)-(3x1) dideuteride surface. The desorbing D2 molecules exhibit a considerable translational heating with mean desorption kinetic energies of approximately 0.25 eV, which is mostly independent of the desorption angles for 0 degreesdynamics of deuterium was discussed along the principle of detailed balance to predict their adsorption dynamics onto the monohydride Si surface.

  19. In Situ Detection of Organic Molecules on the Martian Surface With the Mars Organic Molecule Analyzer (MOMA) on Exomars 2018

    Science.gov (United States)

    Li, Xiang; Brinckerhoff, William B.; Pinnick, Veronica T; van Amerom, Friso H. W.; Danell, Ryan M.; Arevalo, Ricardo D., Jr.; Getty, Stephanie; Mahaffy, Paul R.

    2015-01-01

    The Mars Organic Molecule Analyzer (MOMA) investigation on the 2018 ExoMars rover will examine the chemical composition of samples acquired from depths of up to two meters below the martian surface, where organics may be protected from radiative and oxidative degradation. The MOMA instrument is centered around a miniaturized linear ion trap (LIT) that facilitates two modes of operation: i) pyrolysisgas chromatography mass spectrometry (pyrGC-MS); and, ii) laser desorptionionization mass spectrometry (LDI-MS) at ambient Mars pressures. The LIT also enables the structural characterization of complex molecules via complementary analytical capabilities, such as multi-frequency waveforms (i.e., SWIFT) and tandem mass spectrometry (MSMS). When combined with the complement of instruments in the rovers Pasteur Payload, MOMA has the potential to reveal the presence of a wide range of organics preserved in a variety of mineralogical environments, and to begin to understand the structural character and potential origin of those compounds.

  20. Interactions between nitrogen molecules and barium atoms on Ru (0001) surface

    International Nuclear Information System (INIS)

    Zhao Xinxin; Mi Yiming; Xu Hongxia; Wang Lili; Ren Li; Tao Xiangming; Tan Mingqiu

    2011-01-01

    We had performed first principles calculations on interactions between nitrogen molecules and barium atoms on Ru (0001) surface using density function theory methods. It was shown that effects of barium atoms weakened the bond strength of nitrogen molecules. The bond length of nitrogen molecule increases from 0.113 nm on Ru (001)-N 2 to 0.120 nm on Ru (001)-N 2 /Ba surface. While stretch vibrational frequency of nitrogen molecule decreased from 2222 cm -1 and charge transfer toward nitrogen molecule increased from 0.3 e to 1.1 e. Charge was mainly translated from 6 s orbitals of barium atoms to 4 d orbitals of substrate, which enhanced the hybridization between 4 d and 2 π orbitals and increased the dipole moment of 5 σ and d π orbitals of nitrogen molecule. The molecular dipole moment of nitrogen molecule was increased by -0.136 e Anstrom. It was suggested that barium had some characters to be an electronic promoter on the process of activating nitrogen molecules on Ru (0001) surface. (authors)

  1. Manipulating individual dichlorotin phthalocyanine molecules on Cu(100) surface at room temperature by scanning tunneling microscopy

    International Nuclear Information System (INIS)

    Li, Chao; Xiang, Feifei; Wang, Zhongping; Liu, Xiaoqing; Jiang, Danfeng; Wang, Li; Wang, Guang; Zhang, Xueao; Chen, Wei

    2014-01-01

    Single molecule manipulations have been achieved on dichlorotin phthalocyanine(SnCl 2 Pc) molecules adsorbed on Cu (100) at room temperature. Scanning tunneling microscopy observations directly demonstrate that the individual SnCl 2 Pc molecules can be moved along the [100] direction on Cu(100) surface by employing a scanning tunneling microscope tip fixed at the special position of the molecules. The orientation of the molecule can be switched between two angles of ±28° with respect to the [011] surface direction in the same way. Dependences of the probability of molecular motion on the distances between the tip and the molecules reveal that the mechanism for such manipulation of a SnCl 2 Pc molecule is dominated by the repulsive interactions between the tip and the molecules. With the assistance of this manipulation process, a prototype molecular storage array with molecular orientation as information carrier and an artificial hydrogen bonded supramolecular structure have been constructed on the surface. (paper)

  2. Vascular Cell Adhesion Molecule 1, Intercellular Adhesion Molecule 1, and Cluster of Differentiation 146 Levels in Patients with Type 2 Diabetes with Complications.

    Science.gov (United States)

    Hocaoglu-Emre, F Sinem; Saribal, Devrim; Yenmis, Guven; Guvenen, Guvenc

    2017-03-01

    Type 2 diabetes mellitus (T2DM) is a multisystemic, chronic disease accompanied by microvascular complications involving various complicated mechanisms. Intercellular adhesion molecule 1 (ICAM-1), vascular cell adhesion molecule 1 (VCAM-1), and cluster of differentiation-146 (CD146) are mainly expressed by endothelial cells, and facilitate the adhesion and transmigration of immune cells, leading to inflammation. In the present study, we evaluated the levels of soluble adhesion molecules in patients with microvascular complications of T2DM. Serum and whole blood samples were collected from 58 T2DM patients with microvascular complications and 20 age-matched healthy subjects. Levels of soluble ICAM-1 (sICAM-1) and soluble VCAM-1 (sVCAM-1) were assessed using enzyme-linked immunosorbent assay, while flow cytometry was used to determine CD146 levels. Serum sICAM-1 levels were lower in T2DM patients with microvascular complications than in healthy controls (Pmolecule levels were not correlated with the complication type. In the study group, most of the patients were on insulin therapy (76%), and 95% of them were receiving angiotensin-converting enzyme (ACE)-inhibitor agents. Insulin and ACE-inhibitors have been shown to decrease soluble adhesion molecule levels via various mechanisms, so we suggest that the decreased or unchanged levels of soluble forms of cellular adhesion molecules in our study group may have resulted from insulin and ACE-inhibitor therapy, as well as tissue-localized inflammation in patients with T2DM. Copyright © 2017 Korean Endocrine Society

  3. Anchoring of alkyl chain molecules on oxide surface using silicon alkoxide

    Energy Technology Data Exchange (ETDEWEB)

    Narita, Ayumi, E-mail: narita.ayumi@jaea.go.jp [Quantum Beam Science Directorate, Japan Atomic Energy Agency, Tokai-mura, Naka-gun, Ibaraki-ken 319-1195 (Japan); Graduate School of Science and Engineering, Ibaraki University, Bunnkyo, Mito-shi, Ibaraki-ken 310-8512 (Japan); Baba, Yuji; Sekiguchi, Tetsuhiro; Shimoyama, Iwao; Hirao, Norie [Quantum Beam Science Directorate, Japan Atomic Energy Agency, Tokai-mura, Naka-gun, Ibaraki-ken 319-1195 (Japan); Yaita, Tsuyoshi [Quantum Beam Science Directorate, Japan Atomic Energy Agency, Tokai-mura, Naka-gun, Ibaraki-ken 319-1195 (Japan); Graduate School of Science and Engineering, Ibaraki University, Bunnkyo, Mito-shi, Ibaraki-ken 310-8512 (Japan)

    2012-01-01

    Chemical states of the interfaces between octadecyl-triethoxy-silane (ODTS) molecules and sapphire surface were measured by X-ray photoelectron spectroscopy (XPS) and near edge X-ray absorption fine structure (NEXAFS) using synchrotron soft X-rays. The nearly self-assembled monolayer of ODTS was formed on the sapphire surface. For XPS and NEXAFS measurements, it was elucidated that the chemical bond between silicon alkoxide in ODTS and the surface was formed, and the alkane chain of ODTS locates upper side on the surface. As a result, it was elucidated that the silicon alkoxide is a good anchor for the immobilization of organic molecules on oxides.

  4. Ultrahigh-sensitive detection of molecules produced in catalytic reactions by uni-atomic-composition bi-element clusters supported on solid substrate

    International Nuclear Information System (INIS)

    Yasumatsu, H; Fukui, N

    2013-01-01

    An apparatus has been developed for measuring catalytic activities of uni-atomic-composition bi-element clusters supported on a solid substrate. The cluster sample is prepared by irradiating a cluster-ion beam having the uni-atomic composition onto the substrate on a soft-landing condition in an ultra-high vacuum. The catalytic activity is measured by temperature-programmed desorption (TPD) mass analysis. Molecules at a density as low as 3 cm −3 have been detected with an ultrahigh-sensitive TPD mass spectrometer consisting of a cylindrical electron gun, a quadrupole mass filter and a micro-channel-plate ion-detector. The high reproducibility has been achieved by careful calibration of the TPD mass spectrometer. As a benchmark example, thermal oxidation of CO catalysed on Pt 30 disks supported on a silicon surface was studied. The CO 2 products have been successfully observed at the Pt 30 density as low as 3 × 10 12 clusters in a circular area of 8 mm in diameter at the ramping rate of the sample temperature as low as 0.3 K s −1 .

  5. Observation of the adsorption and desorption of vibrationally excited molecules on a metal surface

    Science.gov (United States)

    Shirhatti, Pranav R.; Rahinov, Igor; Golibrzuch, Kai; Werdecker, Jörn; Geweke, Jan; Altschäffel, Jan; Kumar, Sumit; Auerbach, Daniel J.; Bartels, Christof; Wodtke, Alec M.

    2018-06-01

    The most common mechanism of catalytic surface chemistry is that of Langmuir and Hinshelwood (LH). In the LH mechanism, reactants adsorb, become thermalized with the surface, and subsequently react. The measured vibrational (relaxation) lifetimes of molecules adsorbed at metal surfaces are in the range of a few picoseconds. As a consequence, vibrational promotion of LH chemistry is rarely observed, with the exception of LH reactions occurring via a molecular physisorbed intermediate. Here, we directly detect adsorption and subsequent desorption of vibrationally excited CO molecules from a Au(111) surface. Our results show that CO (v = 1) survives on a Au(111) surface for 1 × 10-10 s. Such long vibrational lifetimes for adsorbates on metal surfaces are unexpected and pose an interesting challenge to the current understanding of vibrational energy dissipation on metal surfaces. They also suggest that vibrational promotion of surface chemistry might be more common than is generally believed.

  6. Current-induced switching of magnetic molecules on topological insulator surfaces

    Science.gov (United States)

    Locane, Elina; Brouwer, Piet W.

    2017-03-01

    Electrical currents at the surface or edge of a topological insulator are intrinsically spin polarized. We show that such surface or edge currents can be used to switch the orientation of a molecular magnet weakly coupled to the surface or edge of a topological insulator. For the edge of a two-dimensional topological insulator as well as for the surface of a three-dimensional topological insulator the application of a well-chosen surface or edge current can lead to a complete polarization of the molecule if the molecule's magnetic anisotropy axis is appropriately aligned with the current direction. For a generic orientation of the molecule a nonzero but incomplete polarization is obtained. We calculate the probability distribution of the magnetic states and the switching rates as a function of the applied current.

  7. Comparison and combination of "direct" and fragment based local correlation methods: Cluster in molecules and domain based local pair natural orbital perturbation and coupled cluster theories

    Science.gov (United States)

    Guo, Yang; Becker, Ute; Neese, Frank

    2018-03-01

    Local correlation theories have been developed in two main flavors: (1) "direct" local correlation methods apply local approximation to the canonical equations and (2) fragment based methods reconstruct the correlation energy from a series of smaller calculations on subsystems. The present work serves two purposes. First, we investigate the relative efficiencies of the two approaches using the domain-based local pair natural orbital (DLPNO) approach as the "direct" method and the cluster in molecule (CIM) approach as the fragment based approach. Both approaches are applied in conjunction with second-order many-body perturbation theory (MP2) as well as coupled-cluster theory with single-, double- and perturbative triple excitations [CCSD(T)]. Second, we have investigated the possible merits of combining the two approaches by performing CIM calculations with DLPNO methods serving as the method of choice for performing the subsystem calculations. Our cluster-in-molecule approach is closely related to but slightly deviates from approaches in the literature since we have avoided real space cutoffs. Moreover, the neglected distant pair correlations in the previous CIM approach are considered approximately. Six very large molecules (503-2380 atoms) were studied. At both MP2 and CCSD(T) levels of theory, the CIM and DLPNO methods show similar efficiency. However, DLPNO methods are more accurate for 3-dimensional systems. While we have found only little incentive for the combination of CIM with DLPNO-MP2, the situation is different for CIM-DLPNO-CCSD(T). This combination is attractive because (1) the better parallelization opportunities offered by CIM; (2) the methodology is less memory intensive than the genuine DLPNO-CCSD(T) method and, hence, allows for large calculations on more modest hardware; and (3) the methodology is applicable and efficient in the frequently met cases, where the largest subsystem calculation is too large for the canonical CCSD(T) method.

  8. DNA origami as biocompatible surface to match single-molecule and ensemble experiments

    Science.gov (United States)

    Gietl, Andreas; Holzmeister, Phil; Grohmann, Dina; Tinnefeld, Philip

    2012-01-01

    Single-molecule experiments on immobilized molecules allow unique insights into the dynamics of molecular machines and enzymes as well as their interactions. The immobilization, however, can invoke perturbation to the activity of biomolecules causing incongruities between single molecule and ensemble measurements. Here we introduce the recently developed DNA origami as a platform to transfer ensemble assays to the immobilized single molecule level without changing the nano-environment of the biomolecules. The idea is a stepwise transfer of common functional assays first to the surface of a DNA origami, which can be checked at the ensemble level, and then to the microscope glass slide for single-molecule inquiry using the DNA origami as a transfer platform. We studied the structural flexibility of a DNA Holliday junction and the TATA-binding protein (TBP)-induced bending of DNA both on freely diffusing molecules and attached to the origami structure by fluorescence resonance energy transfer. This resulted in highly congruent data sets demonstrating that the DNA origami does not influence the functionality of the biomolecule. Single-molecule data collected from surface-immobilized biomolecule-loaded DNA origami are in very good agreement with data from solution measurements supporting the fact that the DNA origami can be used as biocompatible surface in many fluorescence-based measurements. PMID:22523083

  9. Photodissociation of hydrogen iodide on the surface of large argon clusters: The orientation of the librational wave function and the scattering from the cluster cage

    International Nuclear Information System (INIS)

    Slavicek, Petr; Jungwirth, Pavel; Lewerenz, Marius; Nahler, N. Hendrik; Farnik, Michal; Buck, Udo

    2004-01-01

    A set of photodissociation experiments and simulations of hydrogen iodide (HI) on Ar n clusters, with an average size =139, has been carried out for different laser polarizations. The doped clusters are prepared by a pick-up process. The HI molecule is then photodissociated by a UV laser pulse and the outgoing H fragment is ionized by resonance enhanced multiphoton ionization in a (2+1) excitation scheme within the same laser pulse at the wavelength of 243 nm. The measured time-of-flight spectra are transformed into hydrogen kinetic energy distributions. They exhibit a strong fraction of caged H atoms at zero-kinetic energy and peaks at the unperturbed cage exit for both spin-orbit channels nearly independent of the polarization. At this dissociation wavelength, the bare HI molecule exhibits a strict state separation, with a parallel transition to the spin-orbit excited state and perpendicular transitions to the ground state. The experimental results have been reproduced using molecular simulation techniques. Classical molecular dynamics was used to estimate the HI dopant distribution after the pick-up procedure. Subsequently, quasi-classical molecular dynamics (Wigner trajectories approach) has been applied for the photodissociation dynamics. The following main results have been obtained: (i) The HI dopant lands on the surface of the argon cluster during the pick-up process, (ii) zero-point energy plays a dominant role for the hydrogen orientation in the ground state of HI-Ar n surface clusters, qualitatively changing the result of the photodissociation experiment upon increasing the number of argon atoms, and, finally, (iii) the scattering of hydrogen atoms from the cage which originate from different dissociation states seriously affects the experimentally measured kinetic energy distributions

  10. Switching behavior of double-decker single molecule magnets on a metal surface

    Energy Technology Data Exchange (ETDEWEB)

    Fu, Yingshuang; Schwoebel, Joerg; Hoffmann, Germar; Brede, Jens; Wiesendanger, Roland [University of Hamburg, Hamburg (Germany); Dillulo, Andrew [Ohio University, Athens (United States); Klyatskaya, Svetlana [Karlsruhe Institute of Technology, Karlsruhe (Germany); Ruben, Mario [Karlsruhe Institute of Technology, Karlsruhe (Germany); Universite de Strasbourg, Strasbourg (France)

    2011-07-01

    Single molecule magnets (SMM) are most promising materials for spin based molecular electronics. Due to their large magnetic anisotropy stabilized by inside chemical bonds, SMM can potentially be used for information storage at the single molecule level. For applications, it is of importance to adsorb the SMM onto surfaces and to study their subsequent conformational, electronic and magnetic properties. We have investigated the adsorption behavior of Tb and Dy based double-decker SMM on an Ir(111) surface with low temperature scanning tunneling microscopy and spectroscopy. It is found that Tb double-decker molecules bind tightly to the Ir(111) surface. By resonantly injecting tunneling electrons into its LUMO or HOMO state, the Tb double-decker molecule can be switched from a four-lobed structure to an eight-lobed structure. After switching, energy positions of the HOMO and LUMO states both shift closer to the Fermi level. Dy double-decker molecules also exhibit the same switching properties on the Ir(111) surface. The switching behavior of the molecules is tentatively attributed to a conformational change of the double-decker molecular frame.

  11. Discrete Visible Luminescence of Helium Atoms and Molecules Desorbing from Helium Clusters: The Role of Electronic, Vibrational, and Rotational Energy Transfer

    International Nuclear Information System (INIS)

    von Haeften, K.; von Pietrowski, R.; Moeller, T.; Joppien, M.; Moussavizadeh, L.; de Castro, A.R.

    1997-01-01

    Discrete visible and near-infrared luminescence of a beam of photoexcited helium clusters is reported. The emission lines are attributed to free helium atoms and molecules desorbing from clusters in electronically excited states. Depending on the excitation energy, various atomic and molecular singlet and triplet states are involved in the relaxation process. With increasing cluster size the intensity of molecular transitions becomes dominant. The temperature of ejected molecules could be estimated to T vib ∼2500 K and T rot ∼450 K and is much higher than that of the cluster itself. copyright 1997 The American Physical Society

  12. Brome isotope selective control of CF3Br molecule clustering by IR laser radiation in gas-dynamic expansion of CF3Br - Ar mixture

    Science.gov (United States)

    Apatin, V. M.; Lokhman, V. N.; Makarov, G. N.; Ogurok, N.-D. D.; Ryabov, E. A.

    2018-02-01

    We report the results of research on the experimental control of CF3Br molecule clustering under gas-dynamic expansion of the CF3Br - Ar mixture at a nozzle exit by using IR laser radiation. A cw CO2 laser is used for exciting molecules and clusters in the beam and a time-of-flight mass-spectrometer with laser UV ionisation of particles for their detection. The parameters of the gas above the nozzle are determined (compositions and pressure) at which intensive molecule clustering occurs. It is found that in the case of the CF3Br gas without carrier when the pressure P0 above the nozzle does not exceed 4 atm, molecular clusters actually are not generated in the beam. If the gas mixture of CF3Br with argon is used at a pressure ratio 1 : N, where N >= 3, and the total pressure above the nozzle is P0 >= 2 atm, then there occurs molecule clustering. We study the dependences of the efficiency of suppressing the molecule clustering on parameters of the exciting pulse, gas parameters above the nozzle, and on a distance of the molecule irradiation zone from the nozzle exit section. It is shown that in the case of resonant vibrational excitation of gas-dynamically cooled CF3Br molecules at the nozzle exit one can realise isotope-selective suppression of molecule clustering with respect to bromine isotopes. With the CF3Br - Ar mixtures having the pressure ratio 1 : 3 and 1 : 15, the enrichment factors obtained with respect to bromine isotopes are kenr ≈ 1.05 ± 0.005 and kenr ≈ 1.06 ± 0.007, respectively, under jet irradiation by laser emission in the 9R(30) line (1084.635 cm-1). The results obtained let us assume that this method can be used to control clustering of molecules comprising heavy element isotopes, which have a small isotopic shift in IR absorption spectra.

  13. Stable perovskite solar cells by surface modification with surfactant molecules

    Energy Technology Data Exchange (ETDEWEB)

    Holanda, Matheus Serra de; Nogueira, Ana Flavia, E-mail: mholandabsb@outlook.com [Universidade Estadual de Campinas (UNICAMP), SP (Brazil). Instituto de Quimica

    2016-07-01

    Full text: Surface modification on organic-inorganic perovskite films using dodecylammonium chloride was done to improve the stability of the material over the air moisture, which is considered extremely harmful to these materials and complicates their application on solar cell technology. Perovskite CH{sub 3}NH{sub 3}PbI{sub 3} was prepared by single step method using a solution containing PbI{sub 2} and CH{sub 3}NH{sub 3}I on DMF:DMSO (2:1) on a concentration of 0.88 mol L{sup -1}. The film was deposited over a planar film of TiO{sub 2}, previously deposited over FTO glass, by using spin-casting method. 25 μL of the solution was spread over the substrate which was turned at 4000 RPM for 45 s. In the last 10 s, 800 μL of monochlorobenzene was dropped. The film was submitted to a thermal treatment so the conversion of the perovskite could be completed. After the thermal treatment, the modifier was spin coated over the perovskite film from 5 and 10 mg mL{sup -1} solutions of the dodecylammonium chloride in chloroform. The perovskite films were characterized by SEM, XRD and UV-Vis spectroscopy. SEM images have shown that the modifiers agglomerate and they cover the perovskite film, forming a protection layer. XRD and UV-Vis carried out after the film preparation, 7 and 15 days after the deposition. The first results show that the protection layer is able to avoid degradation of the perovskite film. Photovoltaic devices were prepared by depositing Spiro-OMeTAD as HTM layer and gold as electrode. It was observed that the increase on the thickness of the surfactant layer causes a decrease on the short-circuit current density (JSC), which is expected since is starts to act like an insulating layer. This effect is also the cause of the reduction of the fill factor (FF). More experiments need to be carried out to improve the solar cells devices, but the present data has shown the potential of the method developed, which uses easy access surfactants and a simple

  14. Stable perovskite solar cells by surface modification with surfactant molecules

    International Nuclear Information System (INIS)

    Holanda, Matheus Serra de; Nogueira, Ana Flavia

    2016-01-01

    Full text: Surface modification on organic-inorganic perovskite films using dodecylammonium chloride was done to improve the stability of the material over the air moisture, which is considered extremely harmful to these materials and complicates their application on solar cell technology. Perovskite CH 3 NH 3 PbI 3 was prepared by single step method using a solution containing PbI 2 and CH 3 NH 3 I on DMF:DMSO (2:1) on a concentration of 0.88 mol L -1 . The film was deposited over a planar film of TiO 2 , previously deposited over FTO glass, by using spin-casting method. 25 μL of the solution was spread over the substrate which was turned at 4000 RPM for 45 s. In the last 10 s, 800 μL of monochlorobenzene was dropped. The film was submitted to a thermal treatment so the conversion of the perovskite could be completed. After the thermal treatment, the modifier was spin coated over the perovskite film from 5 and 10 mg mL -1 solutions of the dodecylammonium chloride in chloroform. The perovskite films were characterized by SEM, XRD and UV-Vis spectroscopy. SEM images have shown that the modifiers agglomerate and they cover the perovskite film, forming a protection layer. XRD and UV-Vis carried out after the film preparation, 7 and 15 days after the deposition. The first results show that the protection layer is able to avoid degradation of the perovskite film. Photovoltaic devices were prepared by depositing Spiro-OMeTAD as HTM layer and gold as electrode. It was observed that the increase on the thickness of the surfactant layer causes a decrease on the short-circuit current density (JSC), which is expected since is starts to act like an insulating layer. This effect is also the cause of the reduction of the fill factor (FF). More experiments need to be carried out to improve the solar cells devices, but the present data has shown the potential of the method developed, which uses easy access surfactants and a simple preparation method to improve the stability of

  15. Molecular-dynamics analysis of mobile helium cluster reactions near surfaces of plasma-exposed tungsten

    Energy Technology Data Exchange (ETDEWEB)

    Hu, Lin; Maroudas, Dimitrios, E-mail: maroudas@ecs.umass.edu [Department of Chemical Engineering, University of Massachusetts, Amherst, Massachusetts 01003-9303 (United States); Hammond, Karl D. [Department of Chemical Engineering, University of Missouri, Columbia, Missouri 65211 (United States); Wirth, Brian D. [Department of Nuclear Engineering, University of Tennessee, Knoxville, Tennessee 37996 (United States)

    2015-10-28

    We report the results of a systematic atomic-scale analysis of the reactions of small mobile helium clusters (He{sub n}, 4 ≤ n ≤ 7) near low-Miller-index tungsten (W) surfaces, aiming at a fundamental understanding of the near-surface dynamics of helium-carrying species in plasma-exposed tungsten. These small mobile helium clusters are attracted to the surface and migrate to the surface by Fickian diffusion and drift due to the thermodynamic driving force for surface segregation. As the clusters migrate toward the surface, trap mutation (TM) and cluster dissociation reactions are activated at rates higher than in the bulk. TM produces W adatoms and immobile complexes of helium clusters surrounding W vacancies located within the lattice planes at a short distance from the surface. These reactions are identified and characterized in detail based on the analysis of a large number of molecular-dynamics trajectories for each such mobile cluster near W(100), W(110), and W(111) surfaces. TM is found to be the dominant cluster reaction for all cluster and surface combinations, except for the He{sub 4} and He{sub 5} clusters near W(100) where cluster partial dissociation following TM dominates. We find that there exists a critical cluster size, n = 4 near W(100) and W(111) and n = 5 near W(110), beyond which the formation of multiple W adatoms and vacancies in the TM reactions is observed. The identified cluster reactions are responsible for important structural, morphological, and compositional features in the plasma-exposed tungsten, including surface adatom populations, near-surface immobile helium-vacancy complexes, and retained helium content, which are expected to influence the amount of hydrogen re-cycling and tritium retention in fusion tokamaks.

  16. Surface single-molecule dynamics controlled by entropy at low temperatures

    Science.gov (United States)

    Gehrig, J. C.; Penedo, M.; Parschau, M.; Schwenk, J.; Marioni, M. A.; Hudson, E. W.; Hug, H. J.

    2017-02-01

    Configuration transitions of individual molecules and atoms on surfaces are traditionally described using an Arrhenius equation with energy barrier and pre-exponential factor (attempt rate) parameters. Characteristic parameters can vary even for identical systems, and pre-exponential factors sometimes differ by orders of magnitude. Using low-temperature scanning tunnelling microscopy (STM) to measure an individual dibutyl sulfide molecule on Au(111), we show that the differences arise when the relative position of tip apex and molecule changes by a fraction of the molecule size. Altering the tip position on that scale modifies the transition's barrier and attempt rate in a highly correlated fashion, which results in a single-molecular enthalpy-entropy compensation. Conversely, appropriately positioning the STM tip allows selecting the operating point on the compensation line and modifying the transition rates. The results highlight the need to consider entropy in transition rates of single molecules, even at low temperatures.

  17. The quantitative analysis of silicon carbide surface smoothing by Ar and Xe cluster ions

    Science.gov (United States)

    Ieshkin, A. E.; Kireev, D. S.; Ermakov, Yu. A.; Trifonov, A. S.; Presnov, D. E.; Garshev, A. V.; Anufriev, Yu. V.; Prokhorova, I. G.; Krupenin, V. A.; Chernysh, V. S.

    2018-04-01

    The gas cluster ion beam technique was used for the silicon carbide crystal surface smoothing. The effect of processing by two inert cluster ions, argon and xenon, was quantitatively compared. While argon is a standard element for GCIB, results for xenon clusters were not reported yet. Scanning probe microscopy and high resolution transmission electron microscopy techniques were used for the analysis of the surface roughness and surface crystal layer quality. The gas cluster ion beam processing results in surface relief smoothing down to average roughness about 1 nm for both elements. It was shown that xenon as the working gas is more effective: sputtering rate for xenon clusters is 2.5 times higher than for argon at the same beam energy. High resolution transmission electron microscopy analysis of the surface defect layer gives values of 7 ± 2 nm and 8 ± 2 nm for treatment with argon and xenon clusters.

  18. A Classical Potential to Model the Adsorption of Biological Molecules on Oxidized Titanium Surfaces.

    Science.gov (United States)

    Schneider, Julian; Ciacchi, Lucio Colombi

    2011-02-08

    The behavior of titanium implants in physiological environments is governed by the thin oxide layer that forms spontaneously on the metal surface and mediates the interactions with adsorbate molecules. In order to study the adsorption of biomolecules on titanium in a realistic fashion, we first build up a model of an oxidized Ti surface in contact with liquid water by means of extensive first-principles molecular dynamics simulations. Taking the obtained structure as reference, we then develop a classical potential to model the Ti/TiOx/water interface. This is based on the mapping with Coulomb and Lennard-Jones potentials of the adsorption energy landscape of single water and ammonia molecules on the rutile TiO2(110) surface. The interactions with arbitrary organic molecules are obtained via standard combination rules to established biomolecular force fields. The transferability of our potential to the case of organic molecules adsorbing on the oxidized Ti surface is checked by comparing the classical potential energy surfaces of representative systems to quantum mechanical results at the level of density functional theory. Moreover, we calculate the heat of immersion of the TiO2 rutile surface and the detachment force of a single tyrosine residue from steered molecular dynamics simulations, finding good agreement with experimental reference data in both cases. As a first application, we study the adsorption behavior of the Arg-Gly-Asp (RGD) peptide on the oxidized titanium surface, focusing particularly on the calculation of the free energy of desorption.

  19. Nanocoating of titanium implant surfaces with organic molecules. Polysaccharides including glycosaminoglycans

    DEFF Research Database (Denmark)

    Gurzawska, Katarzyna Aleksandra; Svava, Rikke; Jørgensen, Niklas Rye

    2012-01-01

    Long-term stability of titanium implants are dependent on a variety of factors. Nanocoating with organic molecules is one of the method used to improve osseointegration. Nanoscale modification of titanium implants affects surface properties, such as hydrophilicity, biochemical bonding capacity...... and roughness. This influences cell behaviour on the surface such as adhesion, proliferation and differentiation of cells as well as the mineralization of the extracellular matrix at the implant surfaces. The aim of the present systematic review was to describe organic molecules used for surface nanocoating...... nanocoatings. The included in vivo studies, showed improvement of bone interface reactions measured as increased Bone-to-Implant Contact length and Bone Mineral Density adjacent to the polysaccharide coated surfaces. Based on existing literature, surface modification with polysaccharide and glycosaminoglycans...

  20. Probing Enzyme-Surface Interactions via Protein Engineering and Single-Molecule Techniques

    Science.gov (United States)

    2017-06-26

    SECURITY CLASSIFICATION OF: The overall objective of this research was to exploit protein engineering and fluorescence single-molecule methods to...enhance our understanding of the interaction of proteins and surfaces. Given this objective, the specific aims of this research were to: 1) exploit the...incorporation of unnatural amino acids in proteins to introduce single-molecule probes (i.e., fluorophores for fluorescence resonance energy transfer

  1. Production of molecules on a surface under plasma exposure: example of NO on pyrex

    International Nuclear Information System (INIS)

    Marinov, D; Guaitella, O; Rousseau, A; Ionikh, Y

    2010-01-01

    We propose a new experimental approach to the study of surface-catalysed nitric oxide production under plasma exposure. Stable nitrogen species are grafted to the surface of a pyrex discharge tube during N 2 plasma pretreatment. These species are trapped by surface active sites and on being exposed to O 2 plasma, they initiate the production of NO molecules, which are detected using tunable diode laser absorption spectroscopy. Supposing that nitrogen species are adsorbed N atoms, we estimate the initial surface coverage as [N ads ] = 3 x 10 13 cm -2 . This gives an assessment of the lower boundary of the density of surface active sites.

  2. Interface properties of organic molecules on metal surfaces; Grenzflaecheneigenschaften organischer Molekuele auf Metalloberflaechen

    Energy Technology Data Exchange (ETDEWEB)

    Karacuban, Hatice

    2010-01-28

    In this work, the growth of the archetype molecules CuPc and PTCDA was investigated on Cu(111). PTCDA was also studied on NaCl/Cu(111). The main experiments were carried out with a scanning tunneling microscope. Structural analysis of CuPc on Cu (111) is only possible at low temperatures, since at room temperature the molecules exhibit a high surface mobility. For the investigation of these structures and especially to enable scanning tunneling spectroscopy, a low-temperature scanning tunneling microscope was developed. Using this home built STM the experiments could be carried out at about 10 K. After the adsorption of CuPc on Cu (111) a substrate-induced symmetry reduction of the molecules can be observed in scanning tunneling microscopy. When the occupied states of the molecules are imaged, a switching between two distinct levels is found. These modifications are determined by the adsorption geometry of the molecules. Based on high resolution STM data, an on-top adsorption geometry of the CuPc-molecules on Cu (111)-substrate can be deducted. At low temperatures, two new superstructures of PTCDA on Cu(111) are observed. The molecules within these superstructures are tilted with respect to the substrate. Intermolecular interactions may be the crucial factor for the realignment of the molecules. If PTCDA molecules are adsorbed on a NaCl/Cu (111) substrate, at room temperature, also two new superstructures on the copper substrate were found. They indicate the formation of a metall-organic-complex. On top of the NaCl layer the molecules exclusively grow at polar NaCl step edges. This is an indication for electrostatic interaction between the PTCDA molecules and the NaCl layer. When the molecule density is further increased, a Vollmer-Weber growth sets in. If both molecules PTCDA and CuPc are present on the sample at the same time, local spectroscopy provides information on the metal-organic interface in direct comparison. The STS-results of CuPc/PTCDA on Cu (111

  3. Endocytic pathway rapidly delivers internalized molecules to lysosomes: an analysis of vesicle trafficking, clustering and mass transfer.

    Science.gov (United States)

    Pangarkar, Chinmay; Dinh, Anh-Tuan; Mitragotri, Samir

    2012-08-20

    Lysosomes play a critical role in intracellular drug delivery. For enzyme-based therapies, they represent a potential target site whereas for nucleic acid or many protein drugs, they represent the potential degradation site. Either way, understanding the mechanisms and processes involved in routing of materials to lysosomes after cellular entry is of high interest to the field of drug delivery. Most therapeutic cargoes other than small hydrophobic molecules enter the cells through endocytosis. Endocytosed cargoes are routed to lysosomes via microtubule-based transport and are ultimately shared by various lysosomes via tethering and clustering of endocytic vesicles followed by exchange of their contents. Using a combined experimental and numerical approach, here we studied the rates of mass transfer into and among the endocytic vesicles in a model cell line, 3T3 fibroblasts. In order to understand the relationship of mass transfer with microtubular transport and vesicle clustering, we varied both properties through various pharmacological agents. At the same time, microtubular transport and vesicle clustering were modeled through diffusion-advection equations and the Smoluchowski equations, respectively. Our analysis revealed that the rate of mass transfer is optimally related to microtubular transport and clustering properties of vesicles. Further, the rate of mass transfer is highest in the innate state of the cell. Any perturbation to either microtubular transport or vesicle aggregation led to reduced mass transfer to lysosome. These results suggest that in the absence of an external intervention the endocytic pathway appears to maximize molecular delivery to lysosomes. Strategies are discussed to reduce mass transfer to lysosomes so as to extend the residence time of molecules in endosomes or late endosomes, thus potentially increasing the likelihood of their escape before disposition in the lysosomes. Copyright © 2012 Elsevier B.V. All rights reserved.

  4. Desorption dynamics of deuterium molecules from the Si(100)-(3×1) dideuteride surface

    OpenAIRE

    Niida, T; Tsurumaki, Hiroshi; Namiki, Akira

    2006-01-01

    We measured polar angle ()-resolved time-of-flight spectra of D2 molecules desorbing from the Si(100)-(3×1) dideuteride surface. The desorbing D2 molecules exhibit a considerable translational heating with mean desorption kinetic energies of 0.25 eV, which is mostly independent of the desorption angles for 0°30°. The observed desorption dynamics of deuterium was discussed along the principle of detailed balance to predict their adsorption dynamics onto the monohydride Si surface.

  5. Surface Compositions of Red Giant Stars in Globular Clusters

    Science.gov (United States)

    Cheng, Eric; Lau, Marie; Smith, Graeme; Chen, Brian

    2018-01-01

    Globular clusters (GCs) are excellent “laboratories” to study the formation and evolution of our galaxy. In order to understand, more specifically, the chemical compositions and stellar evolution of the stars in GCs, we ask whether or not deep internal mixing occurs in red giants or if in fact the compositions come from the primordial interstellar medium or previous generations of stars. It has been discovered that as a star evolves up the red giant branch, the surface carbon abundance decreases, which is evidence of deep internal mixing. We questioned whether these processes also affect O or Na abundance as a star evolves. We collected measurement data of red giants from GCs out of academic journals and sorted the data into catalogs. Then, we plotted the catalogs into figures, comparing surface O and Na each with stellar luminosity. Statistical tests were ran to quantify the amount of correlation between the variables. Out of 27 GCs, we concluded that eight show a positive correlation between Na and luminosity, and two show a negative correlation between O and luminosity. Properties of GCs were compared to determine if chemical distribution in stars depends on GCs as the self-enrichment scenario suggests. We created histograms of sodium distribution to test for bimodality to examine if there are separate trends in each GC. In six GCs, two different sequences of red giants appear for Na versus luminosity, suggesting evidence that the depth of mixing may differ among each red giant in a GC. This study has provided new evidence that the changing chemical abundances on the surfaces of red giants can be due to stellar evolutionary effects and deep internal mixing, which may not necessarily depend on the GC and may differ in depth among each red giant. Through this study, we learn more about stellar evolution which will eventually help us understand the origins of our universe. Most of this work was carried out by high school students working under the auspices of

  6. Photochemistry of Nitrophenol Molecules and Clusters: Intra- vs Intermolecular Hydrogen Bond Dynamics

    Czech Academy of Sciences Publication Activity Database

    Grygoryeva, Kateřina; Kubečka, J.; Pysanenko, Andriy; Lengyel, Jozef; Slavíček, Petr; Fárník, Michal

    2016-01-01

    Roč. 120, č. 24 (2016), s. 4139-4146 ISSN 1089-5639 R&D Projects: GA ČR(CZ) GA15-12386S Institutional support: RVO:61388955 Keywords : photochemistry * clusters * laser techniques Subject RIV: CF - Physical ; Theoretical Chemistry Impact factor: 2.847, year: 2016

  7. Deposition of metal Islands, metal clusters and metal containing single molecules on self-assembled monolayers

    NARCIS (Netherlands)

    Speets, Emiel Adrianus

    2005-01-01

    The central topic of this thesis is the deposition of metals on Self-Assembled Monolayers (SAMs). Metals are deposited in the form of submicron scale islands, nanometer scale clusters, and as supramolecular, organometallic coordination cages. Several SAMs on various substrates were prepared and

  8. Adsorption behavior of sulfur-containing amino acid molecule on transition metal surface studied by S K-edge NEXAFS

    International Nuclear Information System (INIS)

    Yagi, S.; Matsumura, K.; Nakano, Y.; Ikenaga, E.; Sardar, S.A.; Syed, J.A.; Soda, K.; Hashimoto, E.; Tanaka, K.; Taniguchi, M.

    2003-01-01

    Adsorption behavior of a sulfur-containing amino acid L-cysteine molecule on transition metal surface have been investigated by S K-edge near-edge X-ray absorption fine structure. The L-cysteine molecule for first adsorption layer was found to dissociate on polycrystalline nickel surface, whereas molecularly adsorbed on copper surface at room temperature. Most of the L-cysteine molecules have been dissociated on nickel surface in annealing condition up to 353 K. On the other hand, the L-cysteine molecule did not dissociate on copper surface and the elongation of the S-C bonding occurred at 353 K

  9. Using self-consistent Gibbs free energy surfaces to calculate size distributions of neutral and charged clusters for the sulfuric acid-water binary system

    Science.gov (United States)

    Smith, J. A.; Froyd, K. D.; Toon, O. B.

    2012-12-01

    We construct tables of reaction enthalpies and entropies for the association reactions involving sulfuric acid vapor, water vapor, and the bisulfate ion. These tables are created from experimental measurements and quantum chemical calculations for molecular clusters and a classical thermodynamic model for larger clusters. These initial tables are not thermodynamically consistent. For example, the Gibbs free energy of associating a cluster consisting of one acid molecule and two water molecules depends on the order in which the cluster was assembled: add two waters and then the acid or add an acid and a water and then the second water. We adjust the values within the tables using the method of Lagrange multipliers to minimize the adjustments and produce self-consistent Gibbs free energy surfaces for the neutral clusters and the charged clusters. With the self-consistent Gibbs free energy surfaces, we calculate size distributions of neutral and charged clusters for a variety of atmospheric conditions. Depending on the conditions, nucleation can be dominated by growth along the neutral channel or growth along the ion channel followed by ion-ion recombination.

  10. Acoustically Induced Microparticle Orbiting and Clustering on a Solid Surface

    Science.gov (United States)

    Abdel-Fattah, A.; Tarimala, S.; Roberts, P. M.

    2008-12-01

    Behavior of colloidal particles in the bulk solution or at interfaces under the effect of high-frequency acoustics is critical to many seemingly different applications ranging from enhanced oil recovery to improved mixing in microfluidic channels and from accelerated contaminant extractions to surface cleaning, drug delivery and microelectronics. It can be detrimental or beneficial, depending on the application. In medical research, flow cytometry and microfluidics, for example, acoustically induced clustering of tracer particles and/or their sticking to the walls of channels, vessels, or tubes often becomes a problem. On the other hand, it can be tailored to enhance processes such as mixing in microfluidic devices, particle separation and sizing, and power generation microdevices. To better understand the underlying mechanisms, microscopic visualization experiments were performed in which polystyrene fluorescent (468/508 nm wavelength) microspheres with a mean diameter of 2.26-µm and density of 1.05 g/cm3, were suspended in either de-ionized water or a 0.1M NaCl solution. The freshly-prepared colloidal suspension was injected into a parallel-plate glass flow cell, which was subjected to high-frequency acoustics (200-500 kHz) through a piezoelectric transducer attached to one of the cell's outer walls. When the suspending medium is de-ionized water, acoustic stimulation of the cell at 313 kHz induced three distinct particle behaviors: 1) entrainment and bulk transport via wavelength-scale Rayleigh streaming, 2) transport via direct radiation forces to concentrate at nodal or anti-nodal planes, and 3) entrapment via boundary layer vorticular microstreaming resulting in mobile particles orbiting deposited particles. This latter phenomenon is intriguing. It occurs at specific frequencies and the shape of the orbits is determined by the applied frequency, whereas the rotation speed is proportional to the applied amplitude. At the higher ionic strength, on the other

  11. Heat transfer and forces on concave surfaces in free molecule flow.

    Science.gov (United States)

    Fan, C.

    1971-01-01

    A Monte Carlo modeling technique is described for mathematically simulating free molecular flows over a concave spherical surface and a concave cylindrical surface of finite length. The half-angle of the surfaces may vary from 0 to 90 degrees, and the incident flow may have an arbitrary speed ratio and an arbitrary angle of attack. Partial diffuse reflection and imperfect energy accommodation for molecules colliding with the surfaces are also considered. Results of heat transfer, drag and lift coefficients are presented for a variety of flow conditions. The present Monte Carlo results are shown to be in very good agreement with certain available theoretical solutions.

  12. Cluster observations of surface waves on the dawn flank magnetopause

    Directory of Open Access Journals (Sweden)

    C. J. Owen

    2004-03-01

    Full Text Available On 14 June 2001 the four Cluster spacecraft recorded multiple encounters of the dawn-side flank magnetopause. The characteristics of the observed electron populations varied between a cold, dense magnetosheath population and warmer, more rarified boundary layer population on a quasi-periodic basis. The demarcation between these two populations can be readily identified by gradients in the scalar temperature of the electrons. An analysis of the differences in the observed timings of the boundary at each spacecraft indicates that these magnetopause crossings are consistent with a surface wave moving across the flank magnetopause. When compared to the orientation of the magnetopause expected from models, we find that the leading edges of these waves are approximately 45° steeper than the trailing edges, consistent with the Kelvin-Helmholtz (KH driving mechanism. A stability analysis of this interval suggests that the magnetopause is marginally stable to this mechanism during this event. Periods in which the analysis predicts that the magnetopause is unstable correspond to observations of greater wave steepening. Analysis of the pulses suggests that the waves have an average wavelength of approximately 3.4 RE and move at an average speed of ~65km s-1 in an anti-sunward and northward direction, despite the spacecraft location somewhat south of the GSE Z=0 plane. This wave propagation direction lies close to perpendicular to the average magnetic field direction in the external magnetosheath, suggesting that these waves may preferentially propagate in the direction that requires no bending of these external field lines

    Key words. Magnetospheric physics (magnetospheric configuration and dynamics; MHD waves and unstabilities; solar wind-magnetosphere interactions

  13. Potential energy surface from spectroscopic data in the photodissociation of polyatomic molecules

    International Nuclear Information System (INIS)

    Kim, Hwa Joong; Kim, Young Sik

    2001-01-01

    The time-dependent tracking inversion method is studied to extract the potential energy surface of the electronic excited state in the photodissociation of triatomic molecules. Based on the relay of the regularized inversion procedure and time-dependent wave packet propagation, the algorithm extracts the underlying potential energy surface piece by tracking the time-dependent data, which can be synthesized from Raman excitation profiles. We have demonstrated the algorithm to extract the potential energy surface of electronic excited state for NO 2 molecule where the wave packet split on a saddle-shaped surface. Finally, we describe the merits of the time-dependent tracking inversion method compared with the time-dependent inversion method and discussed several extensions of the algorithm

  14. Charge Transfer Effect on Raman and Surface Enhanced Raman Spectroscopy of Furfural Molecules.

    Science.gov (United States)

    Wan, Fu; Shi, Haiyang; Chen, Weigen; Gu, Zhaoliang; Du, Lingling; Wang, Pinyi; Wang, Jianxin; Huang, Yingzhou

    2017-08-02

    The detection of furfural in transformer oil through surface enhanced Raman spectroscopy (SERS) is one of the most promising online monitoring techniques in the process of transformer aging. In this work, the Raman of individual furfural molecules and SERS of furfural-M x (M = Ag, Au, Cu) complexes are investigated through density functional theory (DFT). In the Raman spectrum of individual furfural molecules, the vibration mode of each Raman peak is figured out, and the deviation from experimental data is analyzed by surface charge distribution. In the SERS of furfural-M x complexes, the influence of atom number and species on SERS chemical enhancement factors (EFs) are studied, and are further analyzed by charge transfer effect. Our studies strengthen the understanding of charge transfer effect in the SERS of furfural molecules, which is important in the online monitoring of the transformer aging process through SERS.

  15. Bio-active molecules modified surfaces enhanced mesenchymal stem cell adhesion and proliferation

    International Nuclear Information System (INIS)

    Mobasseri, Rezvan; Tian, Lingling; Soleimani, Masoud; Ramakrishna, Seeram; Naderi-Manesh, Hossein

    2017-01-01

    Surface modification of the substrate as a component of in vitro cell culture and tissue engineering, using bio-active molecules including extracellular matrix (ECM) proteins or peptides derived ECM proteins can modulate the surface properties and thereby induce the desired signaling pathways in cells. The aim of this study was to evaluate the behavior of human bone marrow mesenchymal stem cells (hBM-MSCs) on glass substrates modified with fibronectin (Fn), collagen (Coll), RGD peptides (RGD) and designed peptide (R-pept) as bio-active molecules. The glass coverslips were coated with fibronectin, collagen, RGD peptide and R-peptide. Bone marrow mesenchymal stem cells were cultured on different substrates and the adhesion behavior in early incubation times was investigated using scanning electron microscopy (SEM) and confocal microscopy. The MTT assay was performed to evaluate the effect of different bio-active molecules on MSCs proliferation rate during 24 and 72 h. Formation of filopodia and focal adhesion (FA) complexes, two steps of cell adhesion process, were observed in MSCs cultured on bio-active molecules modified coverslips, specifically in Fn coated and R-pept coated groups. SEM image showed well adhesion pattern for MSCs cultured on Fn and R-pept after 2 h incubation, while the shape of cells cultured on Coll and RGD substrates indicated that they might experience stress condition in early hours of culture. Investigation of adhesion behavior, as well as proliferation pattern, suggests R-peptide as a promising bio-active molecule to be used for surface modification of substrate in supporting and inducing cell adhesion and proliferation. - Highlights: • Bioactive molecules modified surface is a strategy to design biomimicry scaffold. • Bi-functional Tat-derived peptide (R-pept) enhanced MSCs adhesion and proliferation. • R-pept showed similar influences to fibronectin on FA formation and attachment.

  16. Scaling properties of adsorption energies for hydrogen-containing molecules on transition-metal surfaces

    DEFF Research Database (Denmark)

    Abild-Pedersen, Frank; Greeley, Jeffrey Philip; Studt, Felix

    2007-01-01

    Density functional theory calculations are presented for CHx, x=0,1,2,3, NHx, x=0,1,2, OHx, x=0,1, and SHx, x=0,1 adsorption on a range of close-packed and stepped transition-metal surfaces. We find that the adsorption energy of any of the molecules considered scales approximately with the adsorp...

  17. Spontaneous dissociation of a conjugated molecule on the Si(100) surface

    DEFF Research Database (Denmark)

    Lin, Rong; Galili, Michael; Quaade, Ulrich

    2002-01-01

    The adsorption mechanism of alpha-sexithiophene (alpha-6T) on the clean Si(100)-(2x1) surface has been investigated using scanning tunneling microscopy (STM) and first principles electronic structure calculations. We find that at submonolayer coverage, the alpha-6T molecules are not stable and di...

  18. Simulation of resonance hyper-Rayleigh scattering of molecules and metal clusters using a time-dependent density functional theory approach.

    Science.gov (United States)

    Hu, Zhongwei; Autschbach, Jochen; Jensen, Lasse

    2014-09-28

    Resonance hyper-Rayleigh scattering (HRS) of molecules and metal clusters have been simulated based on a time-dependent density functional theory approach. The resonance first-order hyperpolarizability (β) is obtained by implementing damped quadratic response theory using the (2n + 1) rule. To test this implementation, the prototypical dipolar molecule para-nitroaniline (p-NA) and the octupolar molecule crystal violet are used as benchmark systems. Moreover, small silver clusters Ag 8 and Ag 20 are tested with a focus on determining the two-photon resonant enhancement arising from the strong metal transition. Our results show that, on a per atom basis, the small silver clusters possess two-photon enhanced HRS comparable to that of larger nanoparticles. This finding indicates the potential interest of using small metal clusters for designing new nonlinear optical materials.

  19. Surface-enhanced Raman scattering of dipolar molecules by the graphene Fermi surface modulation with different dipole moments

    Science.gov (United States)

    Zhang, Mingjia; Leng, Yandan; Huang, Jing; Yu, JiaoJiao; Lan, Zhenggang; Huang, Changshui

    2017-12-01

    We report the modulation of Raman scattering spectrum of chromophore/graphene hybrids by tunning the molecular polarization with different terminal groups (methyl, methoxy, nitrile, and two nitros). Based on the density functional theory, the specific dipole moment values of the chromophore molecules are calculated. An obvious surface-enhanced Raman scattering (SERS) was observed and the scattering intensity of molecule increases with enlarged dipole moment. According to the analysis of G band Raman shifts of graphene, the enhancement of the Raman signal can be attributed to strong electronic coupling between graphene and chromophore, which is closely related with the modulation of graphene Fermi surface by changing the dipole moment of the molecule. Besides, the optimization of the ground state geometry and the binding energy of the hybrids were also calculated with the Density Functional Based Tight Bonding (DFTB) method, which confirms that the enhanced Raman scattering of molecules on graphene arises from the improved energy level matching between graphene Fermi surface and molecular band, further providing a new way to design novel SERS devices.

  20. Excitation of chiral molecules and their hydrated by clusters by R2PI studies

    International Nuclear Information System (INIS)

    Satta, M.; Piccirillo, S.; Scuderia, D.; Paladini, A.; Della Vedova, L.; Filippi, A.; Speranza, M.; Giardini, A.

    2002-01-01

    Molecular clusters play a key role in the molecular scale explanation of macroscopic phenomena, being in between the isolated gas phase and the condensed phase. Thus, allowing to obtain information on intermolecular forces simply by studying the physicochemical properties of isolated clusters and to extend them macroscopic systems. A comprehensive study of the short-range forces operating in the molecular complexes between several chiral aromatic alcohols (M) and water (solv), through the application of mass resolved REMPI technique is reported. The experimental setup was composed by a supersonic molecular beam, two Nd-YAG pumped dye lasers and a time of flight mass spectrometer. The photoionization efficiency curves were obtained as follows: a) the first exciting laser (hv 1 ) was tuned on the S 1 0 transition of the species of interest; b) the laser intensity is lowered to about 1 % of the initial fluence to minimize the hv 1 absorption; c)a second laser (hv 2 ) is scanned through the cluster ionization and fragmentation threshold regions. The binding energy of the M-solv adduct was computed from the differences between its dissociative ionization threshold and the ionization threshold of bare M. The mass-resolved one colour R2PI excitation spectra of l-tetralol (THN R ), THN R -H 2 O, l i ndanol (I R ) and I R -H 2 O are given. (nevyjel)

  1. Low energy Cu clusters slow deposition on a Fe (001) surface investigated by molecular dynamics simulation

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Shixu [School of Nuclear Science and Technology, Lanzhou University, Lanzhou 730000 (China); Laboratory of Advanced Nuclear Materials, Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou 730000 (China); Gong, Hengfeng [School of Nuclear Science and Technology, Lanzhou University, Lanzhou 730000 (China); Division of Nuclear Materials Science and Engineering, Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai 201800 (China); Chen, Xuanzhi [School of Nuclear Science and Technology, Lanzhou University, Lanzhou 730000 (China); Li, Gongping, E-mail: ligp@lzu.edu.cn [School of Nuclear Science and Technology, Lanzhou University, Lanzhou 730000 (China); Wang, Zhiguang, E-mail: zhgwang@impcas.ac.cn [Laboratory of Advanced Nuclear Materials, Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou 730000 (China)

    2014-09-30

    Highlights: • We study the deposition of low energy Cu clusters on Fe (001) surface by molecular dynamics. • The interaction between low energy cluster and substrate can be divided to the landing and the thermal diffusion phases. • The phenomenon of contact epitaxy of cluster occurred. • The thermal diffusion of cluster atoms was analyzed. - Abstract: The slow deposition of low energy Cu clusters on a Fe (001) surface was investigated by molecular dynamics simulation. A many-body potential based on Finnis–Sinclair model was used to describe the interactions among atoms. Three clusters comprising of 13, 55 and 147 atoms, respectively, were deposited with incident energies ranging from 0.0 to 1.0 eV/atom at various substrate temperatures (0, 300 and 800 K). The rearrangement and the diffusion of cluster can occur, only when the cluster atoms are activated and obtained enough migration energy. The interaction between low energy cluster and substrate can be divided to the landing and the thermal diffusion phases. In the former, the migration energy originates from the latent heat of binding energy for the soft deposition regime and primarily comes from the incident energy of cluster for the energetic cluster deposition regime. In the latter, the thermal vibration would result in some cluster atoms activated again at medium and high substrate temperatures. Also, the effects of incident energy, cluster size and substrate temperature on the interaction potential energy between cluster and substrate, the final deposition morphology of cluster, the spreading index and the structure parameter of cluster are analyzed.

  2. Isonitrile ligand effects on small-molecule-sequestering in bimetalladodecaborane clusters

    Czech Academy of Sciences Publication Activity Database

    Bould, Jonathan; Londesborough, Michael Geoffrey Stephen; Kennedy, JD.; Macias, R.; Winter, REK.; Císařová, I.; Kubát, Pavel; Lang, Kamil

    2013-01-01

    Roč. 747, december (2013), s. 76-84 ISSN 0022-328X R&D Projects: GA ČR GAP207/11/1577; GA ČR GAP208/10/1678; GA ČR GAP207/11/0705 Institutional support: RVO:61388980 ; RVO:61388955 Keywords : Metallaboranes * Small molecule * Sequestration * DFT * Isonitrile * Carbon monoxide Subject RIV: CA - Inorganic Chemistry; CF - Physical ; Theoretical Chemistry (UFCH-W) Impact factor: 2.302, year: 2013

  3. Simulation of depositions of a Lennard-Jones cluster on a crystalline surface

    International Nuclear Information System (INIS)

    Saitoh, Kuniyasu; Hayakawa, Hisao

    2009-01-01

    Depositions of amorphous Lennard-Jones clusters on a crystalline surface are numerically investigated. From the results of the molecular dynamics simulation, we found that the deposited clusters exhibit a transition from multilayered adsorption to monolayered adsorption at a critical incident speed. Employing the energy conservation law, we can explain the behavior of the ratio of the number of atoms adsorbed on the substrate to the cluster size. The boundary shape of the deposited cluster depends strongly on the incident speed, and some unstable modes grow during the spread of the deposited cluster on the substrate. We also discuss the wettability between different Lennard-Jones atoms. (author)

  4. Metal cluster compounds - chemistry and importance; clusters containing isolated main group element atoms, large metal cluster compounds, cluster fluxionality

    International Nuclear Information System (INIS)

    Walther, B.

    1988-01-01

    This part of the review on metal cluster compounds deals with clusters containing isolated main group element atoms, with high nuclearity clusters and metal cluster fluxionality. It will be obvious that main group element atoms strongly influence the geometry, stability and reactivity of the clusters. High nuclearity clusters are of interest in there own due to the diversity of the structures adopted, but their intermediate position between molecules and the metallic state makes them a fascinating research object too. These both sites of the metal cluster chemistry as well as the frequently observed ligand and core fluxionality are related to the cluster metal and surface analogy. (author)

  5. Theory of the reaction dynamics of small molecules on metal surfaces

    Energy Technology Data Exchange (ETDEWEB)

    Jackson, Bret [Univ. of Massachusetts, Amherst, MA (United States)

    2016-09-09

    The objective of this project has been to develop realistic theoretical models for gas-surface interactions, with a focus on processes important in heterogeneous catalysis. The dissociative chemisorption of a molecule on a metal is a key step in many catalyzed reactions, and is often the rate-limiting step. We have explored the dissociative chemisorption of H2, H2O and CH4 on a variety of metal surfaces. Most recently, our extensive studies of methane dissociation on Ni and Pt surfaces have fully elucidated its dependence on translational energy, vibrational state and surface temperature, providing the first accurate comparisons with experimental data. We have explored Eley-Rideal and hot atom reactions of H atoms with H- and C-covered metal surfaces. H atom interactions with graphite have also been explored, including both sticking and Eley-Rideal recombination processes. Again, our methods made it possible to explain several experiments studying these reactions. The sticking of atoms on metal surfaces has also been studied. To help elucidate the experiments that study these processes, we examine how the reaction dynamics depend upon the nature of the molecule-metal interaction, as well as experimental variables such as substrate temperature, beam energy, angle of impact, and the internal states of the molecules. Electronic structure methods based on Density Functional Theory are used to compute each molecule-metal potential energy surface. Both time-dependent quantum scattering techniques and quasi-classical methods are used to examine the reaction or scattering dynamics. Much of our effort has been directed towards developing improved quantum methods that can accurately describe reactions, as well as include the effects of substrate temperature (lattice vibration).

  6. Interaction of Model Inhibitor Compounds with Minimalist Cluster Representations of Hydroxyl Terminated Metal Oxide Surfaces

    Directory of Open Access Journals (Sweden)

    Christopher D. Taylor

    2018-01-01

    Full Text Available The computational modeling of corrosion inhibitors at the level of molecular interactions has been pursued for decades, and recent developments are allowing increasingly realistic models to be developed for inhibitor–inhibitor, inhibitor–solvent and inhibitor–metal interactions. At the same time, there remains a need for simplistic models to be used for the purpose of screening molecules for proposed inhibitor performance. Herein, we apply a reductionist model for metal surfaces consisting of a metal cation with hydroxide ligands and use quantum chemical modeling to approximate the free energy of adsorption for several imidazoline class candidate corrosion inhibitors. The approximation is made using the binding energy and the partition coefficient. As in some previous work, we consider different methods for incorporating solvent and reference systems for the partition coefficient. We compare the findings from this short study with some previous theoretical work on similar systems. The binding energies for the inhibitors to the metal hydroxide clusters are found to be intermediate to the binding energies calculated in other work for bare metal vs. metal oxide surfaces. The method is applied to copper, iron, aluminum and nickel metal systems.

  7. Molecular dynamics simulation of nanoscale surface diffusion of heterogeneous adatoms clusters

    International Nuclear Information System (INIS)

    Imran, Muhammad; Hussain, Fayyaz; Ullah, Hafeez; Ahmad, Ejaz; Rashid, Muhammad; Ismail, Muhammad; Cai, Yongqing; Javid, M Arshad; Ahmad, S A

    2016-01-01

    Molecular dynamics simulation employing the embedded atom method potential is utilized to investigate nanoscale surface diffusion mechanisms of binary heterogeneous adatoms clusters at 300 K, 500 K, and 700 K. Surface diffusion of heterogeneous adatoms clusters can be vital for the binary island growth on the surface and can be useful for the formation of alloy-based thin film surface through atomic exchange process. The results of the diffusion process show that at 300 K, the diffusion of small adatoms clusters shows hopping, sliding, and shear motion; whereas for large adatoms clusters (hexamer and above), the diffusion is negligible. At 500 K, small adatoms clusters, i.e., dimer, show almost all possible diffusion mechanisms including the atomic exchange process; however no such exchange is observed for adatoms clusters greater than dimer. At 700 K, the exchange mechanism dominates for all types of clusters, where Zr adatoms show maximum tendency and Ag adatoms show minimum or no tendency toward the exchange process. Separation and recombination of one or more adatoms are also observed at 500 K and 700 K. The Ag adatoms also occupy pop-up positions over the adatoms clusters for short intervals. At 700 K, the vacancies are also generated in the vicinity of the adatoms cluster, vacancy formation, filling, and shifting can be observed from the results. (paper)

  8. Jump rates for surface diffusion of large molecules from first principles

    Energy Technology Data Exchange (ETDEWEB)

    Shea, Patrick, E-mail: patrick.shea@dal.ca; Kreuzer, Hans Jürgen [Department of Physics and Atmospheric Science, Dalhousie University, Halifax, Nova Scotia B3H 3J5 (Canada)

    2015-04-21

    We apply a recently developed stochastic model for the surface diffusion of large molecules to calculate jump rates for 9,10-dithioanthracene on a Cu(111) surface. The necessary input parameters for the stochastic model are calculated from first principles using density functional theory (DFT). We find that the inclusion of van der Waals corrections to the DFT energies is critical to obtain good agreement with experimental results for the adsorption geometry and energy barrier for diffusion. The predictions for jump rates in our model are in excellent agreement with measured values and show a marked improvement over transition state theory (TST). We find that the jump rate prefactor is reduced by an order of magnitude from the TST estimate due to frictional damping resulting from energy exchange with surface phonons, as well as a rotational mode of the diffusing molecule.

  9. Interplay of radiative and nonradiative transitions in surface hopping with radiation-molecule interactions

    Energy Technology Data Exchange (ETDEWEB)

    Bajo, Juan José [Departamento de Química-Física I, Universidad Complutense de Madrid, 28040 Madrid (Spain); Granucci, Giovanni, E-mail: giovanni.granucci@unipi.it; Persico, Maurizio [Università di Pisa, Dipartimento di Chimica e Chimica Industriale, via Risorgimento 35, 56126 Pisa (Italy)

    2014-01-28

    We implemented a method for the treatment of field induced transitions in trajectory surface hopping simulations, in the framework of the local diabatization scheme, especially suited for on-the-fly dynamics. The method is applied to a simple one-dimensional model with an avoided crossing and compared with quantum wavepacket dynamics. The results show the importance of introducing a proper decoherence correction to surface hopping, in order to obtain meaningful results. Also the energy conservation policy of standard surface hopping must be revised: in fact, the quantum wavepacket energetics is well reproduced if energy absorption/emission is allowed for in the hops determined by radiation-molecule coupling. To our knowledge, this is the first time the issues of decoherence and energy conservation have been analyzed in depth to devise a mixed quantum-classical method for dynamics with molecule-field interactions.

  10. Controlled enzymatic cutting of DNA molecules adsorbed on surfaces using soft lithography

    Science.gov (United States)

    Auerbach, Alyssa; Budassi, Julia; Shea, Emily; Zhu, Ke; Sokolov, Jonathan

    2013-03-01

    The enzyme DNase I was applied to adsorbed and aligned DNA molecules (Lamda, 48.5 kilobase pairs (kbp), and T4, 165.6 kbp), stretched linearly on a surface, by stamping with a polydimethylsiloxane (PDMS) grating. The DNAs were cut by the enzyme into separated, micron-sized segments along the length of the molecules at positions determined by the grating dimensions (3-20 microns). Ozone-treated PDMS stamps were coated with DNase I solutions and placed in contact with surface-adsorbed DNA molecules deposited on a 750 polymethylmethacrylate (PMMA) film spun-cast onto a silicon substrate. The stamps were applied under pressure for times up to 15 minutes at 37 C. The cutting was observed by fluorescence microscopy imaging of DNA labeled with YOYO dye. Cutting was found to be efficient despite the steric hindrance due to surface attachment of the molecules. Methods for detaching and separating the cut segments for sequencing applications will be discussed. Supported by NSF-DMR program.

  11. Adsorption and dissociation of oxygen molecules on Si(111)-(7×7) surface

    International Nuclear Information System (INIS)

    Niu, Chun-Yao; Wang, Jian-Tao

    2013-01-01

    The adsorption and dissociation of O 2 molecules on Si(111)-(7×7) surface have been studied by first-principles calculations. Our results show that all the O 2 molecular species adsorbed on Si(111)-(7×7) surface are unstable and dissociate into atomic species with a small energy barrier about 0.1 eV. The single O 2 molecule adsorption tends to form an ins×2 or a new metastable ins×2* structure on the Si adatom sites and the further coming O 2 molecules adsorb on those structures to produce an ad-ins×3 structure. The ad-ins×3 structure is indeed highly stable and kinetically limited for diving into the subsurface layer to form the ins×3-tri structure by a large barrier of 1.3 eV. Unlike the previous views, we find that all the ad-ins, ins×2, and ad-ins×3 structures show bright images, while the ins×2*, ins×3, and ins×3-tri structures show dark images. The proposed oxidation pathways and simulated scanning tunneling microscope images account well for the experimental results and resolve the long-standing confusion and issue about the adsorption and reaction of O 2 molecules on Si(111) surface

  12. Spin tunneling in magnetic molecules: Quantitative estimates for Fe8 clusters

    Science.gov (United States)

    Galetti, D.; Silva, Evandro C.

    2007-12-01

    Spin tunneling in the particular case of the magnetic molecular cluster octanuclear iron(III), Fe8, is treated by an effective Hamiltonian that allows for an angle-based description of the process. The presence of an external magnetic field along the easy axis is also taken into account in this description. Analytic expressions for the energy levels and barriers are obtained from a harmonic approximation of the potential function which give results in good agreement with the experimental results. The energy splittings due to spin tunneling is treated in an adapted WKB approach and it is shown that the present description can give results to a reliable degree of accuracy.

  13. Molecule-surface interaction processes of relevance to gas blanket type fusion device divertor design

    Energy Technology Data Exchange (ETDEWEB)

    Snowdon, K.J. [Newcastle Univ. (United Kingdom). Dept. of Physics; Tawara, H.

    1997-01-01

    The mechanisms which may lead to the departure of molecular species from surfaces exposed to low energy (0.1-100 eV) particle or photon and electron irradiation are reviewed. Where possible, the charge and electronic state, angular, translational and internal energy distributions of the departing molecules are described and the physical origin of the nature of those distributions identified. The consequences, for the departing molecules, of certain material choices become apparent from such an analysis. Such information may help guide the choice of appropriate materials for plasma facing components of gas-blanket type divertors such as that recently proposed for the International Thermonuclear Experimental Reactor (ITER). (author). 71 refs.

  14. A fitting program for potential energy surfaces of bent triatomic molecules

    International Nuclear Information System (INIS)

    Searles, D.J.; Nagy-Felsobuki, E.I. von

    1992-01-01

    A program has been developed in order to fit analytical power series expansions (Dunham, Simon-Parr-Finlan, Ogilvie and their exponential variants) and Pade approximants to discrete ab initio potential energy surfaces of non-linear triatomic molecules. The program employs standard least-squares fitting techniques using the singular decomposition method in order to dampen the higher-order coefficients (if deemed necessary) without significantly degrading the fit. The program makes full use of the symmetry of a triatomic molecule and so addresses the D 3h , C 2v and C S cases. (orig.)

  15. Adsorption of organic molecules on mineral surfaces studied by first-principle calculations: A review.

    Science.gov (United States)

    Zhao, Hongxia; Yang, Yong; Shu, Xin; Wang, Yanwei; Ran, Qianping

    2018-04-09

    First-principle calculations, especially by the density functional theory (DFT) methods, are becoming a power technique to study molecular structure and properties of organic/inorganic interfaces. This review introduces some recent examples on the study of adsorption models of organic molecules or oligomers on mineral surfaces and interfacial properties obtained from first-principles calculations. The aim of this contribution is to inspire scientists to benefit from first-principle calculations and to apply the similar strategies when studying and tailoring interfacial properties at the atomistic scale, especially for those interested in the design and development of new molecules and new products. Copyright © 2017. Published by Elsevier B.V.

  16. Selective on site separation and detection of molecules in diluted solutions with super-hydrophobic clusters of plasmonic nanoparticles

    KAUST Repository

    Gentile, Francesco T.; Coluccio, Maria Laura; Proietti Zaccaria, Remo; Francardi, Marco; Cojoc, Gheorghe; Perozziello, Gerardo; Raimondo, Raffaella; Candeloro, Patrizio; Di Fabrizio, Enzo M.

    2014-01-01

    Super-hydrophobic surfaces are bio-inspired interfaces with a superficial texture that, in its most common evolution, is formed by a periodic lattice of silicon micro-pillars. Similar surfaces reveal superior properties compared to conventional flat surfaces, including very low friction coefficients. In this work, we modified meso-porous silicon micro-pillars to incorporate networks of metal nano-particles into the porous matrix. In doing so, we obtained a multifunctional-hierarchical system in which (i) at a larger micrometric scale, the super-hydrophobic pillars bring the molecules dissolved in an ultralow-concentration droplet to the active sites of the device, (ii) at an intermediate meso-scale, the meso-porous silicon film adsorbs the low molecular weight content of the solution and, (iii) at a smaller nanometric scale, the aggregates of silver nano-particles would measure the target molecules with unprecedented sensitivity. In the results, we demonstrated how this scheme can be utilized to isolate and detect small molecules in a diluted solution in very low abundance ranges. The presented platform, coupled to Raman or other spectroscopy techniques, is a realistic candidate for the protein expression profiling of biological fluids. © 2014 the Partner Organisations.

  17. Multiple atomic scale solid surface interconnects for atom circuits and molecule logic gates

    International Nuclear Information System (INIS)

    Joachim, C; Martrou, D; Gauthier, S; Rezeq, M; Troadec, C; Jie Deng; Chandrasekhar, N

    2010-01-01

    The scientific and technical challenges involved in building the planar electrical connection of an atomic scale circuit to N electrodes (N > 2) are discussed. The practical, laboratory scale approach explored today to assemble a multi-access atomic scale precision interconnection machine is presented. Depending on the surface electronic properties of the targeted substrates, two types of machines are considered: on moderate surface band gap materials, scanning tunneling microscopy can be combined with scanning electron microscopy to provide an efficient navigation system, while on wide surface band gap materials, atomic force microscopy can be used in conjunction with optical microscopy. The size of the planar part of the circuit should be minimized on moderate band gap surfaces to avoid current leakage, while this requirement does not apply to wide band gap surfaces. These constraints impose different methods of connection, which are thoroughly discussed, in particular regarding the recent progress in single atom and molecule manipulations on a surface.

  18. Dependence of partial molecules surface area on the third component in lyotropic liquid crystals

    International Nuclear Information System (INIS)

    Badalyan, H.G.; Ghazaryan, Kh.M.; Yayloyan, S.M.

    2015-01-01

    Free surface of one amphiphilic molecule head of a lyotropic liquid crystal has been investigated by X-Ray diffraction method, at small and large angles, in the presence of the third component. The pentadecilsulphonat-water system in the presence of cholesterol as well as the lecithin-water system in the presence of decanol were investigated. It is shown that the above mentioned free surface decreases if the cholesterol concentration increases, while this surface increases in the case of water concentration increase. However, it increases slower than in the case of the two-component system. The same is observed for the lecithin-water-decanol system

  19. Bonding and vibrational dynamics of a large π-conjugated molecule on a metal surface

    International Nuclear Information System (INIS)

    Temirov, R; Soubatch, S; Lassise, A; Tautz, F S

    2008-01-01

    The interplay between the substrate bonding of a large π-conjugated semiconductor molecule and the dynamical properties of the metal-organic interface is studied, employing the prototypical PTCDA/Ag(111) monolayer as an example. Both the coupling of molecular vibrations to the electron-hole-pair continuum of the metal surface and the inelastic scattering of tunnelling electrons by the molecular vibrations on their passage through the molecule are considered. The results of both types of experiment are consistent with the findings of measurements which probe the geometric and electronic structure of the adsorbate-substrate complex directly; generally speaking, they can be understood in the framework of standard theories for the electron-vibron coupling. While the experiments reported here in fact provide additional qualitative insights into the substrate bonding of our π-conjugated model molecule, their detailed quantitative understanding would require a full calculation of the dynamical interface properties, which is currently not available

  20. Single-Molecule Tribology: Force Microscopy Manipulation of a Porphyrin Derivative on a Copper Surface.

    Science.gov (United States)

    Pawlak, Rémy; Ouyang, Wengen; Filippov, Alexander E; Kalikhman-Razvozov, Lena; Kawai, Shigeki; Glatzel, Thilo; Gnecco, Enrico; Baratoff, Alexis; Zheng, Quanshui; Hod, Oded; Urbakh, Michael; Meyer, Ernst

    2016-01-26

    The low-temperature mechanical response of a single porphyrin molecule attached to the apex of an atomic force microscope (AFM) tip during vertical and lateral manipulations is studied. We find that approach-retraction cycles as well as surface scanning with the terminated tip result in atomic-scale friction patterns induced by the internal reorientations of the molecule. With a joint experimental and computational effort, we identify the dicyanophenyl side groups of the molecule interacting with the surface as the dominant factor determining the observed frictional behavior. To this end, we developed a generalized Prandtl-Tomlinson model parametrized using density functional theory calculations that includes the internal degrees of freedom of the side group with respect to the core and its interactions with the underlying surface. We demonstrate that the friction pattern results from the variations of the bond length and bond angles between the dicyanophenyl side group and the porphyrin backbone as well as those of the CN group facing the surface during the lateral and vertical motion of the AFM tip.

  1. Coronene molecules in helium clusters: Quantum and classical studies of energies and configurations

    Energy Technology Data Exchange (ETDEWEB)

    Rodríguez-Cantano, Rocío; Pérez de Tudela, Ricardo; Bartolomei, Massimiliano; Hernández, Marta I.; Campos-Martínez, José; González-Lezana, Tomás, E-mail: t.gonzalez.lezana@csic.es; Villarreal, Pablo [Instituto de Física Fundamental, IFF-CSIC, Serrano 123, 28006 Madrid (Spain); Hernández-Rojas, Javier; Bretón, José [Departamento de Física and IUdEA, Universidad de La Laguna, 38205 Tenerife (Spain)

    2015-12-14

    Coronene-doped helium clusters have been studied by means of classical and quantum mechanical (QM) methods using a recently developed He–C{sub 24}H{sub 12} global potential based on the use of optimized atom-bond improved Lennard-Jones functions. Equilibrium energies and geometries at global and local minima for systems with up to 69 He atoms were calculated by means of an evolutive algorithm and a basin-hopping approach and compared with results from path integral Monte Carlo (PIMC) calculations at 2 K. A detailed analysis performed for the smallest sizes shows that the precise localization of the He atoms forming the first solvation layer over the molecular substrate is affected by differences between relative potential minima. The comparison of the PIMC results with the predictions from the classical approaches and with diffusion Monte Carlo results allows to examine the importance of both the QM and thermal effects.

  2. Determination of surface concentrations of individual molecule-layers used in nanoscale biosensors by in situ ATR-FTIR spectroscopy

    KAUST Repository

    Punzet, Manuel; Baurecht, Dieter; Varga, Franz; Karlic, Heidrun; Heitzinger, Clemens

    2012-01-01

    formation of typical functionalization protocols and to determine the respective molecule surface concentrations. BSA, anti-TNF-α and anti-PSA antibodies were bound via 3-(trimethoxy)butylsilyl aldehyde linkers to silicon-oxide surfaces in order

  3. Assessment of surface water quality using hierarchical cluster analysis

    Directory of Open Access Journals (Sweden)

    Dheeraj Kumar Dabgerwal

    2016-02-01

    Full Text Available This study was carried out to assess the physicochemical quality river Varuna inVaranasi,India. Water samples were collected from 10 sites during January-June 2015. Pearson correlation analysis was used to assess the direction and strength of relationship between physicochemical parameters. Hierarchical Cluster analysis was also performed to determine the sources of pollution in the river Varuna. The result showed quite high value of DO, Nitrate, BOD, COD and Total Alkalinity, above the BIS permissible limit. The results of correlation analysis identified key water parameters as pH, electrical conductivity, total alkalinity and nitrate, which influence the concentration of other water parameters. Cluster analysis identified three major clusters of sampling sites out of total 10 sites, according to the similarity in water quality. This study illustrated the usefulness of correlation and cluster analysis for getting better information about the river water quality.International Journal of Environment Vol. 5 (1 2016,  pp: 32-44

  4. Hut clusters on Ge(001) surfaces studied by STM and synchrotron X-ray diffraction

    DEFF Research Database (Denmark)

    Nielsen, M.; Smilgies, D.-M.; Feidenhans'l, R.

    1996-01-01

    Nanoscale hut clusters formed on Ge(001) surfaces by depositing one monolayer of indium and annealing at temperatures between 350 and 500 degrees C were studied by scanning tunnelling microscopy and synchrotron X-ray diffraction. It was found that the hut clusters form regular arrays over...

  5. The effect of oxygen molecule adsorption on lead iodide perovskite surface by first-principles calculation

    Science.gov (United States)

    Ma, Xia-Xia; Li, Ze-Sheng

    2018-01-01

    Oxygen molecule has a negative effect on perovskite solar cells, which has been investigated experimentally. However, detailed theoretical research is still rare. This study presents a microscopic view to reveal the interaction mechanism between O2 and perovskite based on the first-principles calculation. The results show that O2 is adsorbed on the (100) surface of MAPbI3 perovskite mainly by Van der Waals force. O2 adsorption makes the MAPbI3 surface generate a small number of positive charges, which leads to the increase of the work function of the MAPbI3 surface. This is in agreement with the experimental measurement. And increased work function of MAPbI3 surface is not beneficial to electron transfer from perovskite to electronic extraction layer (such as TiO2). Comparison of the density of states (DOS) of the clean (100) surface and the adsorbed system shows that an in-gap state belonging to O2 appears, which can explain the phenomenon observed from experiments that electron transfers from the surface of perovskite to O2 to form superoxide. The theoretical power conversion efficiency of the system with and without O2 adsorption is evaluated, and it turns out that the power conversion efficiency of the system with O2 adsorption is slightly lower than that of the system without O2 adsorption. This result indicates that avoiding the introduction of O2 molecules between perovskite and electronic extraction layer is beneficial to the perovskite solar cell.

  6. Interface formation between hydrocarbon ring molecules and III-V semiconductor surfaces

    Energy Technology Data Exchange (ETDEWEB)

    Passmann, Regina

    2008-08-15

    In this work a systematical study to investigate the adsorption structures of small hydrocarbon ring shaped molecules on III-V semiconductor surfaces with Photo-Emission Spectroscopy (PES), Reflectance Anisotropy Spectroscopy (RAS), Scanning Tunneling Microscopy (STM) as well as Low Electron Energy Diffraction (LEED) was performed. To investigate the influence of the surface structure in detail the surface dimer configuration to the adsorption process of organic molecules GaAs(001) surfaces, the c(4 x 4), the (2 x 4) and the (4 x 2) have been investigated as well as the adsorption of cyclopentene on the InP(001)(2 x 4) reconstructed surface. In the direct comparison it is shown that cyclopentene bonds to the InP(001)(2 x 4) surface via a cycloaddition like reaction. During this adsorption the double bond splits which is in contrast to the adsorption of cyclopentene on the GaAs(001) surfaces. Therefrom it is concluded that the surface geometry has an influence on the resulting adsorption structure. In order to investigate the influence of the intra-molecular double bonds, cyclopentene (one double bond), 1,4-cyclohexadiene (two double bonds) and benzene (three double bonds) were used for the characterization of the interface formation. With the investigations on the GaAs(001) reconstructed surfaces it was shown that a dependency of the bonding configuration on the intra-molecular double bonds exists. During the adsorption of cyclopentene no evidence was found that the double bond has to be involved in the interface formation while during the adsorption of 1,4-cyclohexadiene and benzene the double bonds are involved. Furthermore it was found that a bonding to As atoms of the surface is more likely than a bonding to Ga atoms. (orig.)

  7. Interface formation between hydrocarbon ring molecules and III-V semiconductor surfaces

    International Nuclear Information System (INIS)

    Passmann, Regina

    2008-01-01

    In this work a systematical study to investigate the adsorption structures of small hydrocarbon ring shaped molecules on III-V semiconductor surfaces with Photo-Emission Spectroscopy (PES), Reflectance Anisotropy Spectroscopy (RAS), Scanning Tunneling Microscopy (STM) as well as Low Electron Energy Diffraction (LEED) was performed. To investigate the influence of the surface structure in detail the surface dimer configuration to the adsorption process of organic molecules GaAs(001) surfaces, the c(4 x 4), the (2 x 4) and the (4 x 2) have been investigated as well as the adsorption of cyclopentene on the InP(001)(2 x 4) reconstructed surface. In the direct comparison it is shown that cyclopentene bonds to the InP(001)(2 x 4) surface via a cycloaddition like reaction. During this adsorption the double bond splits which is in contrast to the adsorption of cyclopentene on the GaAs(001) surfaces. Therefrom it is concluded that the surface geometry has an influence on the resulting adsorption structure. In order to investigate the influence of the intra-molecular double bonds, cyclopentene (one double bond), 1,4-cyclohexadiene (two double bonds) and benzene (three double bonds) were used for the characterization of the interface formation. With the investigations on the GaAs(001) reconstructed surfaces it was shown that a dependency of the bonding configuration on the intra-molecular double bonds exists. During the adsorption of cyclopentene no evidence was found that the double bond has to be involved in the interface formation while during the adsorption of 1,4-cyclohexadiene and benzene the double bonds are involved. Furthermore it was found that a bonding to As atoms of the surface is more likely than a bonding to Ga atoms. (orig.)

  8. Single NdPc{sub 2} molecules on surfaces. Adsorption, interaction, and molecular magnetism

    Energy Technology Data Exchange (ETDEWEB)

    Fahrendorf, Sarah

    2013-01-24

    They have huge potential for application in molecular-spin-transistors, molecular-spinvalves, and molecular quantum computing. SMMs are characterized by high spin ground states with zero-field splitting leading to high relaxation barriers and long relaxation times. A relevant class of molecules are the lanthanide double-decker phthalocyanines (LaPc{sub 2}) with only one metal atom sandwiched between two organic phthalocyanine (Pc) ligands. For envisaged spintronic applications it is important to understand the interaction between the molecules and the substrate and its influence on the electronic and magnetic properties. The subject of this thesis is the investigation of the adsorbed neodymium double-decker phthalocyanine (NdPc{sub 2}) by means of low temperature scanning tunneling microscopy and spectroscopy (STM and STS). The molecules are deposited by sublimation onto different substrates. It is observed that a large fraction of the double-decker molecules decomposes during deposition. The decomposition probability strongly depends on the chosen substrate. Therefore it is concluded that the substrate modifies the electronic structure of the molecule leading to a stabilization or destabilization of the molecular entity. Charge transfer from the surface to the molecule is identified as a potential stabilizing mechanism. The electronic and magnetic properties are investigated in detail for adsorbed NdPc{sub 2} molecules on Cu(100). The results of the experimental study are compared to state-of-the-art density functional theory calculations performed by our colleagues from the Peter Gruenberg Institute (PGI-1) at the Forschungszentrum Juelich. Interestingly, the lower Pc ring of the molecule hybridizes intensely with the substrate leading to strong chemisorption of the molecule, while the upper Pc ring keeps its molecular type electronic states, which can be energetically shifted by an external electric field. Importantly, it is possible to get direct access to the

  9. Single NdPc2 molecules on surfaces. Adsorption, interaction, and molecular magnetism

    International Nuclear Information System (INIS)

    Fahrendorf, Sarah

    2013-01-01

    They have huge potential for application in molecular-spin-transistors, molecular-spinvalves, and molecular quantum computing. SMMs are characterized by high spin ground states with zero-field splitting leading to high relaxation barriers and long relaxation times. A relevant class of molecules are the lanthanide double-decker phthalocyanines (LaPc 2 ) with only one metal atom sandwiched between two organic phthalocyanine (Pc) ligands. For envisaged spintronic applications it is important to understand the interaction between the molecules and the substrate and its influence on the electronic and magnetic properties. The subject of this thesis is the investigation of the adsorbed neodymium double-decker phthalocyanine (NdPc 2 ) by means of low temperature scanning tunneling microscopy and spectroscopy (STM and STS). The molecules are deposited by sublimation onto different substrates. It is observed that a large fraction of the double-decker molecules decomposes during deposition. The decomposition probability strongly depends on the chosen substrate. Therefore it is concluded that the substrate modifies the electronic structure of the molecule leading to a stabilization or destabilization of the molecular entity. Charge transfer from the surface to the molecule is identified as a potential stabilizing mechanism. The electronic and magnetic properties are investigated in detail for adsorbed NdPc 2 molecules on Cu(100). The results of the experimental study are compared to state-of-the-art density functional theory calculations performed by our colleagues from the Peter Gruenberg Institute (PGI-1) at the Forschungszentrum Juelich. Interestingly, the lower Pc ring of the molecule hybridizes intensely with the substrate leading to strong chemisorption of the molecule, while the upper Pc ring keeps its molecular type electronic states, which can be energetically shifted by an external electric field. Importantly, it is possible to get direct access to the spin

  10. Collisions of ideal gas molecules with a rough/fractal surface. A computational study.

    Science.gov (United States)

    Panczyk, Tomasz

    2007-02-01

    The frequency of collisions of ideal gas molecules (argon) with a rough surface has been studied. The rough/fractal surface was created using random deposition technique. By applying various depositions, the roughness of the surface was controlled and, as a measure of the irregularity, the fractal dimensions of the surfaces were determined. The surfaces were next immersed in argon (under pressures 2 x 10(3) to 2 x 10(5) Pa) and the numbers of collisions with these surfaces were counted. The calculations were carried out using a simplified molecular dynamics simulation technique (only hard core repulsions were assumed). As a result, it was stated that the frequency of collisions is a linear function of pressure for all fractal dimensions studied (D = 2, ..., 2.5). The frequency per unit pressure is quite complex function of the fractal dimension; however, the changes of that frequency with the fractal dimension are not strong. It was found that the frequency of collisions is controlled by the number of weakly folded sites on the surfaces and there is some mapping between the shape of adsorption energy distribution functions and this number of weakly folded sites. The results for the rough/fractal surfaces were compared with the prediction given by the Langmuir-Hertz equation (valid for smooth surface), generally the departure from the Langmuir-Hertz equation is not higher than 48% for the studied systems (i.e. for the surfaces created using the random deposition technique).

  11. Microassay for measurement of binding of radiolabelled ligands to cell surface molecules

    International Nuclear Information System (INIS)

    Woof, J.M.; Burton, D.R.

    1988-01-01

    An improved technique for measuring the binding of radiolabelled ligands to cell surface molecules has been developed by modification of a procedure using centrifugation through a water-immiscible oil to separate free and cell-bound ligand. It maximises the percentage of ligand bound since cell-bound and free ligand can be separated easily and reproducibly even when very small reaction volumes are used. This permits low levels of ligand radiolabelling and relatively low numbers of cells to be used

  12. Toward single-molecule detection with sensors based on propagating surface plasmons

    Czech Academy of Sciences Publication Activity Database

    Kvasnička, Pavel; Chadt, Karel; Vala, Milan; Bocková, Markéta; Homola, Jiří

    2012-01-01

    Roč. 37, č. 2 (2012), s. 163-165 ISSN 0146-9592 R&D Projects: GA AV ČR KAN200670701; GA MŠk OC09058; GA MŠk(CZ) LH11102 Institutional research plan: CEZ:AV0Z20670512 Keywords : optical biosenzor * single molecule * surface plasmon microscopy Subject RIV: JA - Electronics ; Optoelectronics, Electrical Engineering Impact factor: 3.385, year: 2012

  13. SEM visualization of glycosylated surface molecules using lectin-coated microspheres

    Science.gov (United States)

    Duke, J.; Janer, L.; Campbell, M.

    1985-01-01

    There are several techniques currently used to localize glycosylated surface molecules by scanning electron microscopy (Grinnell, 1980; Molday, 1976; Linthicum and Sell, 1975; Nicolson, 1974; Lo Buglio, et al, 1972). A simple and rapid method, using a modification of Grinnell's technique is reported here. Essentially, microspheres coated with Concavalin A are used to bind to glycosylated regions of the palatal shelf epithelium and are visualized in the scanning electron microscope (SEM).

  14. Detecting groups of coevolving positions in a molecule: a clustering approach

    Directory of Open Access Journals (Sweden)

    Galtier Nicolas

    2007-11-01

    Full Text Available Abstract Background Although the patterns of co-substitutions in RNA is now well characterized, detection of coevolving positions in proteins remains a difficult task. It has been recognized that the signal is typically weak, due to the fact that (i amino-acid are characterized by various biochemical properties, so that distinct amino acids changes are not functionally equivalent, and (ii a given mutation can be compensated by more than one mutation, at more than one position. Results We present a new method based on phylogenetic substitution mapping. The two above-mentioned problems are addressed by (i the introduction of a weighted mapping, which accounts for the biochemical effects (volume, polarity, charge of amino-acid changes, (ii the use of a clustering approach to detect groups of coevolving sites of virtually any size, and (iii the distinction between biochemical compensation and other coevolutionary mechanisms. We apply this methodology to a previously studied data set of bacterial ribosomal RNA, and to three protein data sets (myoglobin of vertebrates, S-locus Receptor Kinase and Methionine Amino-Peptidase. Conclusion We succeed in detecting groups of sites which significantly depart the null hypothesis of independence. Group sizes range from pairs to groups of size ≃ 10, depending on the substitution weights used. The structural and functional relevance of these groups of sites are assessed, and the various evolutionary processes potentially generating correlated substitution patterns are discussed.

  15. Measuring the force of single protein molecule detachment from surfaces with AFM.

    Science.gov (United States)

    Tsapikouni, Theodora S; Missirlis, Yannis F

    2010-01-01

    Atomic force microscopy (AFM) was used to measure the non-specific detachment force of single fibrinogen molecules from glass surfaces. The identification of single unbinding events was based on the characteristics of the parabolic curves, recorded during the stretching of protein molecules. Fibrinogen molecules were covalently bound to Si(3)N(4) AFM tips, previously modified with 3-aminopropyl-dimethyl-ethoxysilane, through a homobifunctional poly(ethylene glycol) linker bearing two hydroxysulfosuccinimide esters. The most probable detachment force was found to be 210 pN, when the tip was retracting with a velocity of 1400 nm/s, while the distribution of the detachment distances indicated that the fibrinogen chain can be elongated beyond the length of the physical conformation before detachment. The dependence of the most probable detachment force on the loading rate was examined and the dynamics of fibrinogen binding to the surface were found amenable to the simple expression of the Bell-Evans theory. The theory's expansion, however, by incorporating the concept of the rupture of parallel residue-surface bonds could only describe the detachment of fibrinogen for a small number of such bonds. Finally, the mathematical expression of the Worm-Like Chain model was used to fit the stretching curves before rupture and two interpretations are suggested for the description of the AFM curves with multiple detachment events.

  16. A theoretical and experimental investigation of the interaction between gas molecules and cryogenic surfaces

    International Nuclear Information System (INIS)

    Varlam, M.; Steflea, D.; Chiriloaie, N.

    1992-01-01

    The cryo-pumping performance of a cryo-surface subjected to the impingement of low-pressure, thermal-velocity air flow is experimentally and theoretically investigated. Our purpose is to determine the angular dependence of capture coefficients for gas molecules incident on a cryogenic surface under conditions closely approximating those prevailing in cryo-pumped high vacuum chambers. The classical model for the interaction of gas atoms and the solid surface - the 'soft-tube' model - is developed and the basic assumption are examined. Starting from this theory we have calculated the capture coefficient of the Ag - N system and these values are discussed in terms of principal parameters considered. Despite the many simplifying assumptions, this model has the important attribute that it yields closed-form expressions for the capture coefficient of gas molecules. The molecular beam technique offers a direct experimental method for determining the capture coefficient for molecules with given angles of incidence by measuring the incident and reflected molecular fluxes. An experimental setup is also designed and the method for determining these coefficients is proposed. (Author)

  17. Quantum Monte-Carlo programming for atoms, molecules, clusters, and solids

    International Nuclear Information System (INIS)

    Schattke, Wolfgang; Diez Muino, Ricardo

    2013-01-01

    This is a book that initiates the reader into the basic concepts and practical applications of Quantum Monte Carlo. Because of the simplicity of its theoretical concept, the authors focus on the variational Quantum Monte Carlo scheme. The reader is enabled to proceed from simple examples as the hydrogen atom to advanced ones as the Lithium solid. In between, several intermediate steps are introduced, including the Hydrogen molecule (2 electrons), the Lithium atom (3 electrons) and expanding to an arbitrary number of electrons to finally treat the three-dimensional periodic array of Lithium atoms in a crystal. The book is unique, because it provides both theory and numerical programs. It pedagogically explains how to transfer into computational tools what is usually described in a theoretical textbook. It also includes the detailed physical understanding of methodology that cannot be found in a code manual. The combination of both aspects allows the reader to assimilate the fundamentals of Quantum Monte Carlo not only by reading but also by practice.

  18. Electronic properties and assambly of DNA-based molecules on gold surfaces

    DEFF Research Database (Denmark)

    Salvatore, Princia

    , highly base specific voltammetric peak in the presence of spermidine ions. A capacitive origin was attributed to this peak, and a novel route to detection of hybridization and base pair mismatches proposed on the basis of the high sensitivity to base pair mismatches showed by such ON-based monolayers...... as widely employed as Au(111) surfaces). In particular, SERS offered a valuable and rapid way ofcharacterising interactions between the DNA-based molecules and the NP surface, with no need for complex sample preparation....

  19. Theoretical characterization of the F(2)O(3) molecule by coupled-cluster methods.

    Science.gov (United States)

    Huang, Ming-Ju; Watts, John D

    2010-09-23

    Coupled-cluster calculations with extended basis sets that include noniterative connected triple excitations (CCSD(T)) have been used to study the FOOOF isomer of F(2)O(3). Second-order Moller-Plessett perturbation theory (MP2) and density-functional theory (B3LYP functional) calculations have also been performed for comparison. Two local minima of similar energy, namely, conformers of C(2) and C(s) symmetry have been located. Structures, harmonic vibrational frequencies, and standard enthalpies and free energies of formation have been calculated. The calculated bond lengths of F(2)O(3) are more characteristic of those in F(2)O and a "normal" peroxide than the unusual bond lengths in F(2)O(2). Both conformers have equal F-O and O-O bond lengths, contrary to a recent suggestion of an unsymmetrical structure. The harmonic vibrational frequencies can aid possible identification of gaseous F(2)O(3). The calculated Δ(f)H° and Δ(f)G° are 110 and 173 kJ mol(-1), respectively. These values are based on extrapolation of CCSD(T) results with augmented triple- and quadruple-ζ basis sets and are expected to be within chemical accuracy (i.e., 1 kcal mol(-1) or 4 kJ mol(-1)). F(2)O(3) is calculated to be stable to decomposition to either FO + FOO or F(2) + O(3), but unstable to decomposition to its elements, to F(2)O(2) + (1)/(2)O(2), and to F(2)O + O(2).

  20. Stability of Ta-encapsulating Si clusters on Si(111)-(7x7) surfaces

    CERN Document Server

    Uchida, N; Miyazaki, T; Kanayama, T

    2003-01-01

    Tantalum containing Si cluster ions TaSi sub 1 sub 0 sub - sub 1 sub 3 H sub x sup + were synthesized in an ion trap and deposited onto Si(111)-(7x7) surfaces with a kinetic energy of 18 eV. Scanning tunnelling microscope observations revealed that the clusters adsorbed on the surface without decomposition, consistent with ab initio calculation results, that predicted the clusters would have stable Si-cage structures with a Ta atom at the centre. (rapid communication)

  1. Bright galaxies in the Fornax cluster. Automated galaxy surface photometry: Pt. 7

    International Nuclear Information System (INIS)

    Disney, M.J.; Phillipps, S.; Davies, J.L.; Cawson, M.G.M.; Kibblewhite, E.J.

    1990-01-01

    We have determined surface-brightness profiles for all galaxies down to magnitude B = 16 in the central region of the Fornax cluster. Using existing redshift data, we have determined the distributions of surface brightness for both the whole sample and for cluster disc galaxies only. Although both distributions peak at extrapolated central surface brightness ∼ 21.7B mag/arcsec 2 (the canonical result), it is shown that they are, in fact, consistent with very broad distributions of disc central surface brightness once selection effects and the effects of bulge contamination of the profile are taken into account. (author)

  2. Adsorption of ethyl xanthate on ZnS(110) surface in the presence of water molecules: A DFT study

    Energy Technology Data Exchange (ETDEWEB)

    Long, Xianhao [School of Chemistry and Chemical Engineering, Guangxi University, Nanning 530004 (China); Chen, Jianhua, E-mail: jhchen@gxu.edu.cn [School of Chemistry and Chemical Engineering, Guangxi University, Nanning 530004 (China); Guangxi Colleges and University Key Laboratory of Minerals Engineering, 530004 (China); Chen, Ye, E-mail: fby18@126.com [College of Resources and Metallurgy, Guangxi University, Nanning 530004 (China)

    2016-05-01

    Graphical abstract: - Highlights: • Adsorption of water molecules decreases the reactivity of surface Zn atom. • Copper impurities decrease the band gap of ZnS surface. • Copper impurities enhance the adsorption of xanthate on the ZnS surface. • Water molecules have little influence on the properties of Cu-substituted ZnS surface. • The xanthate S atom can interact with the surface S atom of Cu-substituted ZnS surface. - Abstracts: The interaction of collector with the mineral surface plays a very important role in the froth flotation of sphalerite. The adsorptions occurred at the interface between the mineral surface and waters; however most of DFT simulations are performed in vacuum, without consideration of water effect. Semiconductor surface has an obvious proximity effect, which will greatly influence the surface reactivity. To understand the mechanism of xanthate interacting with sphalerite surface in the presence of water molecules, the ethyl xanthate molecule adsorption on un-activated and Cu-activated ZnS(110) surface in the absence and presence of water molecules were performed using the density functional theory (DFT) method. The calculated results show that the adsorption of water molecules dramatically changes the properties of ZnS surface, resulting in decreasing the reactivity of surface Zn atoms with xanthate. Copper activation of ZnS surface changes the surface properties, leading to the totally different adsorption behaviors of xanthate. The presence of waters has little influence on the properties of Cu-activated ZnS surface. The xanthate S atom can interact with the surface S atom of Cu-substituted ZnS surface, which would result in the formation of dixanthogen.

  3. Adhesion of Model Molecules to Metallic Surfaces, the Implications for Corrosion Protection

    International Nuclear Information System (INIS)

    De Wit, J. H. W.; Van den Brand, J.; De Wit, F. M.; Mol, J. M. C.

    2008-01-01

    The majority of the described experimental results deal with relatively pure aluminium. Variations were made in the pretreatment of the aluminum substrates and an investigation was performed on the resulting changes in oxide layer composition and chemistry. Subsequently, the bonding behavior of the surfaces was investigated by using model adhesion molecules. These molecules were chosen to represent the bonding functionality of an organic polymer. They were applied onto the pretreated surfaces as a monolayer and the bonding behavior was studied using infrared reflection absorption spectroscopy. A direct and clear relation was found between the hydroxyl fraction on the oxide surfaces and the amount of molecules that subsequently bonded to the surface. Moreover, it was found that most bonds between the oxide surface and organic functional groups are not stable in the presence of water. The best performance was obtained using molecules, which are capable of chemisorption with the oxide surface. Finally, it was found that freshly prepared relatively pure aluminum substrates, which are left in air, rapidly lose their bonding capacity towards organic functional groups. This can be attributed to the adsorption of contamination and water to the oxide surface. in addition the adhesion of a typical epoxy-coated aluminum system was investigated during exposure to water at different temperatures. The coating was found to quite rapidly lose its adhesion upon exposure to water. This rapid loss of adhesion corresponds well with the data where it was demonstrated that the studied epoxy coating only bonds through physisorptive hydrogen bonding, these bonds not being stable in the presence of water. After the initial loss the adhesion of the coating was however found to recover again and even exceeded the adhesion prior to exposure. The improvement could be ascribed to the growth of a thin oxyhydroxide layer on the aluminum substrate, which forms a new, water-stable and stronger bond

  4. Dynamics diffusion behaviors of Pd small clusters on a Pd(1 1 1) surface

    International Nuclear Information System (INIS)

    Liu, Fusheng; Hu, Wangyu; Deng, Huiqiu; He, Rensheng; Yang, Xiyuan; Lu, Kuilin; Deng, Lei; Luo, Wenhua

    2010-01-01

    Using molecular dynamics, nudged elastic band and modified analytic embedded atom methods, the self-diffusion dynamics properties of palladium atomic clusters up to seven atoms on the Pd (1 1 1) surface have been studied at temperatures ranging from 300 to 1000 K. The simulation time varies from 20 to 75 ns according to the cluster sizes and the temperature ranges. The heptamer and trimer are more stable than the other neighboring clusters. The diffusion coefficients of the clusters are derived from the mean square displacement of the cluster's mass-center, and the diffusion prefactors D 0 and activation energies E a are derived from the Arrhenius relation. The activation energy of the clusters increases with the increasing atom number in the clusters, especially for Pd 6 to Pd 7 . The analysis of trajectories shows the noncompact clusters diffuse by the local diffusion mechanism but the compact clusters diffuse mainly by the whole gliding mechanism, and some static energy barriers of the diffusion modes are calculated. From Pd 2 to Pd 6 , the prefactors are in the range of the standard value 10 −3  cm 2  s −1 , and the prefactor of Pd 7 cluster is 2 orders of magnitude greater than that of the single Pd adatom because of a large number of nonequivalent diffusion processes. The heptamer can be the nucleus in the room temperature range according to nucleation theory

  5. Single-Molecule Chemistry with Surface- and Tip-Enhanced Raman Spectroscopy.

    Science.gov (United States)

    Zrimsek, Alyssa B; Chiang, Naihao; Mattei, Michael; Zaleski, Stephanie; McAnally, Michael O; Chapman, Craig T; Henry, Anne-Isabelle; Schatz, George C; Van Duyne, Richard P

    2017-06-14

    Single-molecule (SM) surface-enhanced Raman spectroscopy (SERS) and tip-enhanced Raman spectroscopy (TERS) have emerged as analytical techniques for characterizing molecular systems in nanoscale environments. SERS and TERS use plasmonically enhanced Raman scattering to characterize the chemical information on single molecules. Additionally, TERS can image single molecules with subnanometer spatial resolution. In this review, we cover the development and history of SERS and TERS, including the concept of SERS hot spots and the plasmonic nanostructures necessary for SM detection, the past and current methodologies for verifying SMSERS, and investigations into understanding the signal heterogeneities observed with SMSERS. Moving on to TERS, we cover tip fabrication and the physical origins of the subnanometer spatial resolution. Then, we highlight recent advances of SMSERS and TERS in fields such as electrochemistry, catalysis, and SM electronics, which all benefit from the vibrational characterization of single molecules. SMSERS and TERS provide new insights on molecular behavior that would otherwise be obscured in an ensemble-averaged measurement.

  6. Molecule Matters van der Waals Molecules

    Indian Academy of Sciences (India)

    Home; Journals; Resonance – Journal of Science Education; Volume 14; Issue 12. Molecule Matters van der Waals Molecules - Noble Gas Clusters are London Molecules! E Arunan. Feature Article Volume 14 Issue 12 December 2009 pp 1210-1222 ...

  7. The specificity of targeted vaccines for APC surface molecules influences the immune response phenotype.

    Directory of Open Access Journals (Sweden)

    Gunnveig Grødeland

    Full Text Available Different diseases require different immune responses for efficient protection. Thus, prophylactic vaccines should prime the immune system for the particular type of response needed for protection against a given infectious agent. We have here tested fusion DNA vaccines which encode proteins that bivalently target influenza hemagglutinins (HA to different surface molecules on antigen presenting cells (APC. We demonstrate that targeting to MHC class II molecules predominantly induced an antibody/Th2 response, whereas targeting to CCR1/3/5 predominantly induced a CD8(+/Th1 T cell response. With respect to antibodies, the polarizing effect was even more pronounced upon intramuscular (i.m delivery as compared to intradermal (i.d. vaccination. Despite these differences in induced immune responses, both vaccines protected against a viral challenge with influenza H1N1. Substitution of HA with ovalbumin (OVA demonstrated that polarization of immune responses, as a consequence of APC targeting specificity, could be extended to other antigens. Taken together, the results demonstrate that vaccination can be tailor-made to induce a particular phenotype of adaptive immune responses by specifically targeting different surface molecules on APCs.

  8. Analysis of functional organic molecules at noble metal surfaces by means of vibrational spectroscopies

    Energy Technology Data Exchange (ETDEWEB)

    Leyssner, Felix

    2011-10-24

    The goal of this work is to optimize the efficiency of photoinduced molecular switching processes on surfaces via controlled variations of the adsorption and electronic properties of the switch. We investigated the influence of external stimuli, i.e. photons and thermal activation, on surface bound molecular switches undergoing trans/cis-isomerizations and ring-opening/closing-reactions, respectively. High resolution electron energy loss spectroscopy (HREELS) and sum-frequency generation (SFG) spectroscopy have been used as the main tools to investigate the adsorption behavior and the molecular switching properties. Two basic concepts of coupling the molecular switch to the surface have been studied: (i) physisorbed or weakly chemisorbed systems deposited on noble metal surfaces under UHV conditions and (ii) molecular switches bound covalently via anchor groups. In the HREELS study following concept (i), we investigated the adsorption geometry and isomerization behavior of various molecular switches on metal substrates which are able to undergo a photoinduced trans/cis-isomerization in solution. We investigated three isoelectronic molecules on Au where we systematically changed the photochemically active group from the diazo-group in an azobenzene-derivative (on Cu(111)) to the imine-group, and the vinylene-group, respectively. Finding the photoisomerization quenched for all systems we observed considerable differences in their thermal isomerization behavior. Comparable we find the photoinduced ring-opening/closing-reaction of spiropyran quenched on Au(111) but a thermally induced ring-opening reaction resulting in the open form being strongly stabilized by the metal. SFG spectroscopy is employed to investigate the reversible, photoinduced trans/cis-isomerization of an azobenzene-functionalized self-assembled monolayer (SAM) on gold using a tripodal linker system. In consequence of the decoupling provided by the tripodal linker, the switching behavior of the

  9. Temperature Dependence of Arn+ Cluster Backscattering from Polymer Surfaces: a New Method to Determine the Surface Glass Transition Temperature.

    Science.gov (United States)

    Poleunis, Claude; Cristaudo, Vanina; Delcorte, Arnaud

    2018-01-01

    In this work, time-of-flight secondary ion mass spectrometry (ToF-SIMS) was used to study the intensity variations of the backscattered Ar n + clusters as a function of temperature for several amorphous polymer surfaces (polyolefins, polystyrene, and polymethyl methacrylate). For all these investigated polymers, our results show a transition of the ratio Ar 2 + /(Ar 2 + + Ar 3 + ) when the temperature is scanned from -120 °C to +125 °C (the exact limits depend on the studied polymer). This transition generally spans over a few tens of degrees and the temperature of the inflection point of each curve is always lower than the bulk glass transition temperature (T g ) reported for the considered polymer. Due to the surface sensitivity of the cluster backscattering process (several nanometers), the presented analysis could provide a new method to specifically evaluate a surface transition temperature of polymers, with the same lateral resolution as the gas cluster beam. Graphical abstract ᅟ.

  10. Surface chemical reactions induced by molecules electronically-excited in the gas

    DEFF Research Database (Denmark)

    Petrunin, Victor V.

    2011-01-01

    and alignment are taking place, guiding all the molecules towards the intersections with the ground state PES, where transitions to the ground state PES will occur with minimum energy dissipation. The accumulated kinetic energy may be used to overcome the chemical reaction barrier. While recombination chemical...... be readily produced. Products of chemical adsorption and/or chemical reactions induced within adsorbates are aggregated on the surface and observed by light scattering. We will demonstrate how pressure and spectral dependencies of the chemical outcomes, polarization of the light and interference of two laser...... beams inducing the reaction can be used to distinguish the new process we try to investigate from chemical reactions induced by photoexcitation within adsorbed molecules and/or gas phase photolysis....

  11. Epitaxially Grown Films of Standing and Lying Pentacene Molecules on Cu(110) Surfaces

    Science.gov (United States)

    2011-01-01

    Here, it is shown that pentacene thin films (30 nm) with distinctively different crystallographic structures and molecular orientations can be grown under essentially identical growth conditions in UHV on clean Cu(110) surfaces. By X-ray diffraction, we show that the epitaxially oriented pentacene films crystallize either in the “thin film” phase with standing molecules or in the “single crystal” structure with molecules lying with their long axes parallel to the substrate. The morphology of the samples observed by atomic force microscopy shows an epitaxial alignment of pentacene crystallites, which corroborates the molecular orientation observed by X-ray diffraction pole figures. Low energy electron diffraction measurements reveal that these dissimilar growth behaviors are induced by subtle differences in the monolayer structures formed by slightly different preparation procedures. PMID:21479111

  12. Nucleolytic degradation of homologous and heterologous deoxyribonucleic acid molecules at the surface of competent pneumococci

    International Nuclear Information System (INIS)

    Seto, H.; Lopez, R.; Garrigan, O.; Tomasz, A.

    1975-01-01

    Competent pneumococci can catalyze the rapid and quantitative degradation of extracellular deoxyribonucleic acid (DNA) molecules through the activity of surface-located nucleases (endo- and, possibly, exonucleases as well). Both homologous and heterologous DNAs are degraded by a mechanism that seems to involve a cyclic process: (i) attachment of DNA to the cell surface followed by (ii) nucleolytic attack, and (iii) release to the medium. Processes (ii) and (iii) are both inhibited by ethylenediaminetetraacetate. Whereas surface nuclease activity is specific for competent cells, the bulk of this activity is not coupled to irreversible DNA uptake (deoxyribonuclease-resistant binding). Pneumococcal DNA treated with ultraviolet irradiation or nitrous acid (cross-linking) is selectively impaired in the ability to irreversibly bind to competent cells, whereas reversible binding is normal. (U.S.)

  13. Strategies For Immobilization Of Bioactive Organic Molecules On Titanium Implant Surfaces – A Review

    Directory of Open Access Journals (Sweden)

    Panayotov Ivan V.

    2015-03-01

    Full Text Available Numerous approaches have been used to improve the tissue-implant interface of titanium (Ti and titanium alloy (Ti6Al4V. They all aim at increasing cell migration and attachment to the metal, preventing unspecific protein adsorption and improving post-implantation healing process. Promising methods for titanium and titanium alloy surface modification are based on the immobilization of biologically active organic molecules. New and interesting biochemical approaches to such surface modification include layer-by-layer deposition of polyelectrolyte films, phage display-selected surface binding peptides and self-assembled DNA monolayer systems. The present review summarizes the scientific information about these methods, which are at in vitro or in vivo development stages, and hopes to promote their future application in dental implantology and in oral and maxillofacial surgery.

  14. Line printing solution-processable small molecules with uniform surface profile via ink-jet printer.

    Science.gov (United States)

    Liu, Huimin; Xu, Wei; Tan, Wanyi; Zhu, Xuhui; Wang, Jian; Peng, Junbiao; Cao, Yong

    2016-03-01

    Line printing offers a feasible approach to remove the pixel well structure which is widely used to confine the ink-jet printed solution. In the study, a uniform line is printed by an ink-jet printer. To achieve a uniform surface profile of the printed line, 10vol% low-volatile solvent DMA (3,4-Dimethylanisole) is mixed with high-volatile solvent Pxy (p-xylene) as the solvent. After a solution-processable small molecule is dissolved, the surface tension of DMA solution becomes lower than that of Pxy solution, which creates an inward Marangoni flow during the solvent evaporation. The inward Marangoni flow balances out the outward capillary flow, thereby forming a flat film surface. The line width of the printed line depends on the contact angle of the solution on the hole injection layer. Copyright © 2015 Elsevier Inc. All rights reserved.

  15. Electrons as probes of dynamics in molecules and clusters: A contribution from Time Dependent Density Functional Theory

    International Nuclear Information System (INIS)

    Wopperer, P.; Dinh, P.M.; Reinhard, P.-G.; Suraud, E.

    2015-01-01

    There are various ways to analyze the dynamical response of clusters and molecules to electromagnetic perturbations. Particularly rich information can be obtained from measuring the properties of electrons emitted in the course of the excitation dynamics. Such an analysis of electron signals covers observables such as total ionization, Photo-Electron Spectra (PES), Photoelectron Angular Distributions (PAD), and ideally combined PES/PAD. It has a long history in molecular physics and was increasingly used in cluster physics as well. Recent progress in the design of new light sources (high intensity, high frequency, ultra short pulses) opens new possibilities for measurements and thus has renewed the interest on these observables, especially for the analysis of various dynamical scenarios, well beyond a simple access to electronic density of states. This, in turn, has motivated many theoretical investigations of the dynamics of electronic emission for molecules and clusters up to such a complex and interesting system as C 60 . A theoretical tool of choice is here Time-Dependent Density Functional Theory (TDDFT) propagated in real time and on a spatial grid, and augmented by a Self-Interaction Correction (SIC). This provides a pertinent, robust, and efficient description of electronic emission including the detailed pattern of PES and PAD. A direct comparison between experiments and well founded elaborate microscopic theories is thus readily possible, at variance with more demanding observables such as for example fragmentation or dissociation cross sections. The purpose of this paper is to describe the theoretical tools developed on the basis of real-time and real-space TDDFT and to address in a realistic manner the analysis of electronic emission following irradiation of clusters and molecules by various laser pulses. After a general introduction, we shall present in a second part the available experimental results motivating such studies, starting from the simplest

  16. An immersion calorimetric study of the interactions between some organic molecules and functionalized carbon nanotube surfaces

    International Nuclear Information System (INIS)

    Castillejos-López, E.; Bachiller-Baeza, B.; Guerrero-Ruiz, A.; Rodriguez-Ramos, I.

    2013-01-01

    Highlights: ► The interaction of organic chemicals with the surface of modified CNTs was studied. ► Specific π–π interactions between graphitic CNTs and toluene have been considered. ► Confinement effects in CNTs increase the adsorption strength of aromatic compounds. ► Methanol molecules form H-bonds with the oxygen functional groups on CNT surfaces. - Abstract: The interaction of organic chemicals with the surface of carbon nanotubes has been studied by immersion calorimetry revealing significant differences in the properties when these materials are modified thermally or chemically. Therefore, multiwall carbon nanotubes have been synthesized using a chemical vapour deposition procedure and subsequently aliquots were treated with HNO 3 at reflux, maintaining the reaction during different times, in order to incorporate oxygen surface groups, or were treated at 2873 K under inert atmosphere. The aim of this thermal treatment is to eliminate structural defects of the carbon nanostructures and to graphitize the amorphous carbon phases. These features were confirmed by high-resolution transmission electron microscopy. The immersion in organic compounds, including toluene, methanol and methylcyclohexane, of all these carbon nanotubes samples reveals that the surface properties are remarkably modified. Thus, the formation of different types of interaction, depending on the surface, gives place to changes in the immersion enthalpies

  17. Adsorption of small NaCl clusters on surfaces of silicon nanostructures

    International Nuclear Information System (INIS)

    Amsler, Maximilian; Alireza Ghasemi, S; Goedecker, Stefan; Neelov, Alexey; Genovese, Luigi

    2009-01-01

    We have studied possible adsorption geometries of neutral NaCl clusters on the disordered surface of a large silicon model tip used in non-contact atomic force microscopy. The minima hopping method was used to determine low energy model tip configurations as well as ground state geometries of isolated NaCl clusters. The combined system was treated with density functional theory. Alkali halides have proven to be strong structure seekers and tend to form highly stable ground state configurations whenever possible. The favored adsorption geometry for four Na and four Cl atoms was found to be an adsorption of four NaCl dimers due to the formation of Cl-Si bonds. However, for larger NaCl clusters, the increasing energy required to dissociate the cluster into NaCl dimers suggests that adsorption of whole clusters in their isolated ground state configuration is preferred.

  18. Implanting very low energy atomic ions into surface adsorbed cage molecules: the formation/emission of Cs/C60+

    International Nuclear Information System (INIS)

    Kolodney, Eli; Kaplan, Andrey; Manor, Yoni; Bekkerman, Anatoly; Tsipinyuk, Boris

    2004-01-01

    Full Text: We demonstrate the formation of an endo-complex via a collision of energetic ions with molecular overlayers on a surface. An incoming atomic ion is encapsulated inside a very large molecule or cluster by implanting the primary ion into the target species, which then recovers its original structure or rearrange itself around the implanted ion in some stable configuration. Here we describe an experiment resulting in the formation and ejection of an endo-complex, within a single collision. We study the formation and emission of endohedral fullerenes, Cs/C 60 + and Cs/C 70 + , following a single collision of Cs + ion with a sub-monolayer of C 60 (steady state coverage) on gold and silicon surfaces and with a sub-monolayer of C 70 on gold. A continuous low energy (E 0 =35-220 eV) Cs + ion beam hit the Cs + covered surface and the collisional formation and ejection of the endohedral Cs/Cs 60 + complex, within a single Cs + /C 60 collision was observed and characterized. Several experimental observations clearly demonstrate the single collision nature of the combined atom penetration endo-complex ejection event. The fullerene molecule is actually being picked up off the surface by the penetrating Cs + ion. The evidence for the trapping of the Cs + ion inside the fullerene cage is given both by the appearance of the Cs/Cs (602-2n) + (n=1-5) sequence and its termination at Cs/Cs 50 + . Kinetic Energy Distributions (KEDs) of the outgoing Cs/Cs 60 + were measured for two different Cs + impact energies under field-free conditions. The most striking observation is the near independence of the KEDs on the impact energy. Both KEDs peak around 1.2 eV with similar line shapes. A simple model for the formation/ejection/fragmentation dynamics of the endohedral complex is proposed and is found to be in good agreement with the experimental results

  19. The adsorption and dissociation of water molecule on goethite (010) surface: A DFT approach

    Energy Technology Data Exchange (ETDEWEB)

    Zhou, Long, E-mail: shuweixia@ouc.edu.cn [Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education, Ocean University of China, College of Chemistry and Chemical Engineering (China); Xiu, Fangyuan [Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education, Ocean University of China, College of Chemistry and Chemical Engineering (China); Qiu, Meng [Qingdao Institute of Bioenergy and Bioprocess Technology (China); Xia, Shuwei; Yu, Liangmin [Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education, Ocean University of China, College of Chemistry and Chemical Engineering (China)

    2017-01-15

    Graphical abstract: The optimized structure of hydrated goethite (010) surface with medium water coverage (water density about 6.7 H{sub 2}O/nm{sup 2}). - Highlights: • Stable adsorption and dissociation structure of H{sub 2}O on goethite (010) surface was investigated by DFT. • Reasonable path for water dissociation was proposed by transitional state analysis. • The mechanism of water adsorption on goethite and binding nature were revealed by PDOS. - Abstract: Using density functional theory (DFT) calculation, we investigate the configuration, stability and electronic properties of fresh cleaved (010) goethite surface (Pnma) and this surface exposed to water monolayer at low, medium and high coverage. Water is predicted to be chemisorbed to the surface, together with the surface reconstruction. The interaction energy of the most stable configuration of both low and medium coverage per water molecule is almost the same (−1.17 eV), while that of high coverage is much lower (less than 1.03 eV). It indicates that highly hydrated surface is less stable. PDOS analysis reveals the adsorption of H{sub 2}O is due to the formation of Fe−O bond, caused by overlapping of Fe's 3d and O's 2p orbitals. Dissociation processes at low and medium water coverage are non-spontaneous; while at high coverage, it can undertake spontaneously both thermodynamically and dynamically. The dissociation paths of all three water coverage are the similar. The proton from one adsorbed water is likely to dissociate to bind to the vicinal surface μ{sub 3}−O as an intermediate product; the proton belonged to μ{sub 3}−O transferred to the neighbor surface μ{sub 2}−O as the dissociative configuration.

  20. A Raman spectroscopy study on the effects of intermolecular hydrogen bonding on water molecules absorbed by borosilicate glass surface

    Science.gov (United States)

    Li, Fabing; Li, Zhanlong; Wang, Ying; Wang, Shenghan; Wang, Xiaojun; Sun, Chenglin; Men, Zhiwei

    2018-05-01

    The structural forms of water/deuterated water molecules located on the surface of borosilicate capillaries have been first investigated in this study on the basis of the Raman spectral data obtained at different temperatures and under atmospheric pressure for molecules in bulk and also for molecules absorbed by borosilicate glass surface. The strongest two fundamental bands locating at 3063 cm-1 (2438 cm-1) in the recorded Raman spectra are assigned here to the Osbnd H (Osbnd D) bond stretching vibrations and they are compared with the corresponding bands observed at 3124 cm-1 (2325 cm-1) in the Raman spectrum of ice Ih. Our spectroscopic observations have indicated that the structure of water and deuterated water molecules on borosilicate surface is similar to that of ice Ih (hexagonal phase of ice). These observations have also indicated that water molecules locate on the borosilicate surface so as to construct a bilayer structure and that strong and weak intermolecular hydrogen bonds are formed between water/deuterated molecules and silanol groups on borosilicate surface. In accordance with these findings, water and deuterated water molecules at the interface of capillary have a higher melting temperature.

  1. A Monte Carlo simulation of the exchange reaction between gaseous molecules and the atoms on a heterogeneous solid surface

    International Nuclear Information System (INIS)

    Imai, Hisao

    1980-01-01

    A method of the Monte Carlo simulation of the isotopic exchange reaction between gaseous molecules and the atoms on an arbitrarily heterogeneous solid surface is described by employing hydrogen as an example. (author)

  2. Interactions of molecules with surfaces. Progress report, 1 February 1985-31 January 1986

    International Nuclear Information System (INIS)

    Greene, E.F.

    1986-01-01

    The angular distributions of beams of Ne and Ar atoms scattered nearly elastically from LiF (100) at 294 K show structure that is obscured by inelastic scattering when the whole range of velocities leaving the crystal is recorded. Increased fluxes of neutral species in beams from an effusive source of alkali halide vapor observed when a beam of electrons is coaxial with the neutral beam are shown to be well accounted for by a model involving electron stimulated desorption of alkali atoms. A simple model is proposed for the compensation observed for changes of the preexponential factor and activation energy in rate coefficients for the desorption of molecules from surfaces undergoing surface phase transitions. The isomerization of perfluoroDewarbenzene to perfluorobenzene can be produced in yields of 10% after single energetic collisions with a surface of polytetrafluoroethylene. The yield of ions produced when a beam of Na atoms strikes a Si(111) surface is increased over the equilibrium value observed for thermal beams by a factor of 10 or more when the kinetic energy of the incoming atoms is increased to 14 eV. The yield is sensitive to the dynamics of electron exchange between the surface and the ion. 12 refs., 1 fig

  3. Nanometer-scale discernment of field emission from tungsten surface with single carbon monoxide molecule

    Science.gov (United States)

    Matsunaga, Soichiro; Suwa, Yuji; Katagiri, Souichi

    2017-12-01

    Unusual quantized beam fluctuations were found in the emission current from a cold-field emitter (CFE) operating in an extremely high vacuum of 10-10 Pa. To clarify the microscopic mechanism behind these fluctuations, we developed a new calculation method to evaluate the field emission from a heterogeneous surface under a strong electric field of 4 × 109 V/m by using the local potential distribution obtained by a first-principles calculation, instead of by using the work function. As a result of the first-principles calculations of a single molecule adsorbed on a tungsten surface, we found that dissociative adsorption of a carbon monoxide (CO) molecule enhances the emission current by changing the potential barrier in the area surrounding the C and O adatoms when these two atoms are placed at their most stable positions. It is also found that the migration of the O atom from the most stable position reduces the emission current. These types of enhancement and reduction of the emission current quantitatively explain the observed quantized fluctuations of the CFE emission current.

  4. Density functional studies: First principles and semiempirical calculations of clusters and surfaces

    International Nuclear Information System (INIS)

    Sinnott, S.B.

    1993-01-01

    In the research presented here, various theoretical electronic structure techniques are utilized to analyze widely different systems from silicon clusters to transition metal solids and surfaces. For the silicon clusters, first principles density functional methods are used to investigate Si N for N = 2-8. The goal is to understand the different types of bonding that can occur in such small clusters where the coordination of the atoms differs substantially from that of the stable bulk tetrahedral bonding. Such uncoordinated structures can provide a good test of more approximate theories that can be used eventually to model silicon surfaces, of obvious technological importance. For the transition metal systems, non-self-consistent electronic structure methods are used to provide an understanding of the driving force for surface relaxations. An in-depth analysis of the results is presented and the physical basis of surface relaxation within the theory is discussed. In addition, the limitations inherent in calculations of metal surface relaxation are addressed. Finally, in an effort to increase understanding of approximate methods, a novel non-self-consistent density functional electronic structure method is developed that is ∼1000 times faster computationally than more sophisticated methods. This new method is tested for a variety of systems including diatomics, mixed clusters, surfaces and bulk lattices. The strengths and weaknesses of the new theory are discussed in detail, leading to greater understanding of non-self-consistent density functional theories as a whole

  5. Modification on surface oxide layer structure and surface morphology of niobium by gas cluster ion beam treatments

    International Nuclear Information System (INIS)

    Wu, A.T.; Swenson, D.R.; Insepov, Z.

    2010-01-01

    Recently, it was demonstrated that significant reductions in field emission on Nb surfaces could be achieved by means of a new surface treatment technique called gas cluster ion beam (GCIB). Further study as shown in this paper revealed that GCIB treatments could modify surface irregularities and remove surface asperities leading to a smoother surface finish as demonstrated through measurements using a 3D profilometer, an atomic force microscope, and a scanning electron microscope. These experimental observations were supported by computer simulation via atomistic molecular dynamics and a phenomenological surface dynamics. Measurements employing a secondary ion mass spectrometry found that GCIB could also alter Nb surface oxide layer structure. Possible implications of the experimental results on the performance of Nb superconducting radio frequency cavities treated by GCIB will be discussed. First experimental results on Nb single cell superconducting radio frequency cavities treated by GCIB will be reported.

  6. Differential Expression of Osteo-Modulatory Molecules in Periodontal Ligament Stem Cells in Response to Modified Titanium Surfaces

    Directory of Open Access Journals (Sweden)

    So Yeon Kim

    2014-01-01

    Full Text Available This study assessed differential gene expression of signaling molecules involved in osteogenic differentiation of periodontal ligament stem cells (PDLSCs subjected to different titanium (Ti surface types. PDLSCs were cultured on tissue culture polystyrene (TCPS, and four types of Ti discs (PT, SLA, hydrophilic PT (pmodPT, and hydrophilic SLA (modSLA with no osteoinductive factor and then osteogenic activity, including alkaline phosphatase (ALP activity, mRNA expression of runt-related gene 2, osterix, FOSB, FRA1, and protein levels of osteopontin and collagen type IA, were examined. The highest osteogenic activity appeared in PDLSCs cultured on SLA, compared with the TCPS and other Ti surfaces. The role of surface properties in affecting signaling molecules to modulate PDLSC behavior was determined by examining the regulation of Wnt pathways. mRNA expression of the canonical Wnt signaling molecules, Wnt3a and β-catenin, was higher on SLA and modSLA than on smooth surfaces, but gene expression of the calcium-dependent Wnt signaling molecules Wnt5a, calmodulin, and NFATc1 was increased significantly on PT and pmodPT. Moreover, integrin α2/β1, sonic hedgehog, and Notch signaling molecules were affected differently by each surface modification. In conclusion, surface roughness and hydrophilicity can affect differential Wnt pathways and signaling molecules, targeting the osteogenic differentiation of PDLSCs.

  7. Mobility of chemisorbed molecules and surface regeneration of active centers during dehydration of isopropanol on aluminium oxide and aluminosilicate

    International Nuclear Information System (INIS)

    Makhlis, L.A.; Vasserberg, V.Eh.

    1976-01-01

    By a differential isotope method involving 14 C the authors have investigated the surface mobility of chemisorbed molecules of isopropanol during its dehydration in an adsorption layer on aluminium oxide and aluminosilicate. The chemisorbed alcohol molecules possess marked surface mobility which plays a decisive part in the mechanism of surface regeneration of the active catalyst centers in the process of dehydration. The cessation of the reaction long before the adsorbed alcohol is completely used up is explained by the hypothesis that there is local overpopulation of the active sectors by water formed by the reaction; this hinders further surface regeneration and repetition of the elementary events of dehydration

  8. Ab-initio perturbed-cluster study of carbon monoxide adsorption at a stepped LiF(001) surface

    Science.gov (United States)

    Pisani, C.; Corà, F.; Orlando, R.; Nada, R.

    1993-02-01

    The perturbed-cluster ab-initio Hartree-Fock approach to the study of local defects in crystals [J. Chem. Phys. 92(1990)7448] is applied to the study of CO adsorption at a stepped LiF(001) surface. The step is simulated by a tablet of four ions superimposed on an infinite LiF(001) monolayer. The geometry of the step is first optimized, and corresponds to an important relaxation of cations and anions of the tablet inwards and outwards, respectively. The equilibrium configuration, adsorption energy and vibrational frequency of CO at a corner of the tablet occupied by a lithium cation are calculated. With respect to adsorption at a perfect (100) face, there is a large increase in interaction energy, especially when adsorption occurs via the oxygen atom. This difference is essentially related to modifications of the electrostatic field experienced by the adsorbed molecule.

  9. Detection of high mass cluster ions sputtered from Bi surfaces

    Energy Technology Data Exchange (ETDEWEB)

    Shepard, A; Hewitt, R W; Slusser, G J; Baitinger, W E; Cooks, R G; Winograd, N [Purdue Univ., Lafayette, Ind. (USA). Dept. of Chemistry; Delgass, W N [Purdue Univ., Lafayette, Ind. (USA); Varon, A; Devant, G [Societe RIBER, 92 - Rueil-Malmaison (France)

    1976-12-01

    The technique of secondary ion mass spectrometry (SIMS) has been employed to detect Bi/sup 3 +/ ions and associated oxides Bi/sub 3/Osub(x)sup(+)(x=1 to 4) from a Bi foil. Using a 3 keV Ar/sup +/ ion primary beam of 5x10/sup -7/ A/cm/sup 2/, mass resolution to nearly 700 with the requisite sensitivity has been achieved. The Bi surface was also monitored by X-ray photoelectron spectroscopy (XPS or ESCA). The presence of a weak O 1s peak at 532.7 eV and a strong SIMS Bi/sup 3 +/ peak is interpreted to mean that the oxygen is weakly incorporated into the Bi lattice without disrupting metal-metal bonds.

  10. Metallic behavior and negative differential resistance properties of (InAs)n (n = 2 − 4) molecule cluster junctions via a combined non–equilibrium Green's function and density functional theory study

    International Nuclear Information System (INIS)

    Wang, Qi; Li, Rong; Xu, Yuanlan; Zhang, Jianbing; Miao, Xiangshui; Zhang, Daoli

    2014-01-01

    In this present work, the geometric structures and electronic transport properties of (InAs) n (n = 2, 3, 4) molecule cluster junctions are comparatively investigated using NEGF combined with DFT. Results indicate that all (InAs) n molecule cluster junctions present metallic behavior at the low applied biases ([−2V, 2V]), while NDR appears at a certain high bias range. Our calculation shows that the current of (InAs) 4 molecule cluster–based junction is almost the largest at any bias. The mechanisms of the current–voltage characteristics of all the three molecule cluster junctions are proposed.

  11. Detecting edges in the X-ray surface brightness of galaxy clusters

    Science.gov (United States)

    Sanders, J. S.; Fabian, A. C.; Russell, H. R.; Walker, S. A.; Blundell, K. M.

    2016-08-01

    The effects of many physical processes in the intracluster medium of galaxy clusters imprint themselves in X-ray surface brightness images. It is therefore important to choose optimal methods for extracting information from and enhancing the interpretability of such images. We describe in detail a gradient filtering edge detection method that we previously applied to images of the Centaurus cluster of galaxies. The Gaussian gradient filter measures the gradient in the surface brightness distribution on particular spatial scales. We apply this filter on different scales to Chandra X-ray observatory images of two clusters with active galactic nucleus feedback, the Perseus cluster and M 87, and a merging system, A 3667. By combining filtered images on different scales using radial filters spectacular images of the edges in a cluster are produced. We describe how to assess the significance of features in filtered images. We find the gradient filtering technique to have significant advantages for detecting many kinds of features compared to other analysis techniques, such as unsharp masking. Filtering cluster images in this way in a hard energy band allows shocks to be detected.

  12. B and R CCD surface photometry of selected low surface brightness galaxies in the region of the Fornax cluster

    International Nuclear Information System (INIS)

    Davies, J.I.; Phillipps, S.; Disney, M.J.

    1990-01-01

    The recent discoveries of large numbers of low surface brightness (LSB) galaxies in clusters and of the extreme LSB giant galaxy Malin 1 are changing our view of the galactic contents of the Universe. In this paper we describe B and R band CCD photometry of a sample of LSB galaxies previously identified from photographic plates of the Fornax cluster. This sample contains some of the lowest surface brightness galaxies known, one having the same central surface brightness as Main 1. The objects in this sample have a wide range of morphologies, and galaxies of similar appearance may have very different (B-R) colours. The range of (B-R) colours for this sample (almost all of which would have been described as dE from their B band morphology alone) is as large as that of the entire Hubble sequence. (author)

  13. Self-diffusion dynamic behavior of atomic clusters on Re(0 0 0 1) surface

    Energy Technology Data Exchange (ETDEWEB)

    Liu Fusheng [Department of Applied Physics, Hunan University, Changsha 410082 (China); Hu Wangyu, E-mail: wangyuhu2001cn@yahoo.com.cn [Department of Applied Physics, Hunan University, Changsha 410082 (China); Deng Huiqiu; Luo Wenhua; Xiao Shifang [Department of Applied Physics, Hunan University, Changsha 410082 (China); Yang Jianyu [Department of Maths and Physics, Hunan Institute of Engineering, Xiangtan 411104 (China)

    2009-08-15

    Using molecular dynamics simulations and a modified analytic embedded atom potential, the self-diffusion dynamics of rhenium atomic clusters up to seven atoms on Re(0 0 0 1) surface have been studied in the temperature ranges from 600 K to 1900 K. The simulation time varies from 20 ns to 200 ns according to the cluster sizes and the temperature. The heptamer and trimer are more stable comparing to other neighboring non-compact clusters. The diffusion coefficients of clusters are derived from the mean square displacement of cluster's mass-center, and diffusion prefactors D{sub 0} and activation energies E{sub a} are derived from the Arrhenius relation. It is found that the Arrhenius relation of the adatom can be divided into two parts at different temperature range. The activation energy of clusters increases with the increasing of the atom number in clusters. The prefactor of the heptamer is 2-3 orders of magnitude higher than a usual prefactor because of a large number of nonequivalent diffusion processes. The trimer and heptamer are the nuclei at different temperature range according to the nucleation theory.

  14. Dissociation of N{sub 2}O on anatase TiO{sub 2} (001) surface – The effect of oxygen vacancy and presence of Ag cluster

    Energy Technology Data Exchange (ETDEWEB)

    Sowmiya, M.; Senthilkumar, K., E-mail: ksenthil@buc.edu.in

    2016-12-15

    Highlights: • This study elucidates the dissociation of N{sub 2}O on anatase TiO{sub 2} (001) surface. • N{sub 2}O is decomposed into N{sub 2} and O on reduced TiO{sub 2} even in the presence of Ag cluster. • Excess charge in reduced TiO{sub 2} surface is transferred to the adsorbed N{sub 2}O molecule. • The vibrational frequency analysis also performed to study the dissociation of N{sub 2}O. • Anatase TiO{sub 2} with oxygen vacancies is a suitable catalyst for decomposition of N{sub 2}O. - Abstract: The increase in concentration of nitrous oxide (N{sub 2}O) in the atmosphere is one of the major contributors to the greenhouse effect, ozone depletion and climate change. Therefore, it is important to decompose harmful N{sub 2}O molecule into harmless N{sub 2}. In the present work, we have studied the decomposition of N{sub 2}O on anatase TiO{sub 2} (001) surface using first principle calculations. The results indicates that the N{sub 2}O molecule is physisorbed on perfect TiO{sub 2} surface without any dissociation, and is dissociated into N{sub 2} and oxygen on the reduced TiO{sub 2} surface. In addition, it has been found that the interaction between N{sub 2}O and TiO{sub 2} is augmented by the presence of Ag cluster on anatase (001) surface. On the basis of Bader charge analysis and electron density difference plot, it has been found that the excess charge in the reduced anatase TiO{sub 2} (001) surface is transferred to the adsorbed N{sub 2}O molecule, which results the weakening of N–O bond of N{sub 2}O followed by the decomposition of N{sub 2}O into N{sub 2} and O. Vibrational frequency analysis also performed to confirm the decomposition of N{sub 2}O molecule. From the pathway for N{sub 2}O dissociation on reduced TiO{sub 2} and Ag/TiO{sub 2} surfaces, it has been observed that the dissociation reaction of N{sub 2}O on TiO{sub 2} surface is highly exothermic with activation energy barrier of 0.25 eV. The results presented in this work show that the

  15. Computational studies of atmospherically-relevant chemical reactions in water clusters and on liquid water and ice surfaces.

    Science.gov (United States)

    Gerber, R Benny; Varner, Mychel E; Hammerich, Audrey D; Riikonen, Sampsa; Murdachaew, Garold; Shemesh, Dorit; Finlayson-Pitts, Barbara J

    2015-02-17

    CONSPECTUS: Reactions on water and ice surfaces and in other aqueous media are ubiquitous in the atmosphere, but the microscopic mechanisms of most of these processes are as yet unknown. This Account examines recent progress in atomistic simulations of such reactions and the insights provided into mechanisms and interpretation of experiments. Illustrative examples are discussed. The main computational approaches employed are classical trajectory simulations using interaction potentials derived from quantum chemical methods. This comprises both ab initio molecular dynamics (AIMD) and semiempirical molecular dynamics (SEMD), the latter referring to semiempirical quantum chemical methods. Presented examples are as follows: (i) Reaction of the (NO(+))(NO3(-)) ion pair with a water cluster to produce the atmospherically important HONO and HNO3. The simulations show that a cluster with four water molecules describes the reaction. This provides a hydrogen-bonding network supporting the transition state. The reaction is triggered by thermal structural fluctuations, and ultrafast changes in atomic partial charges play a key role. This is an example where a reaction in a small cluster can provide a model for a corresponding bulk process. The results support the proposed mechanism for production of HONO by hydrolysis of NO2 (N2O4). (ii) The reactions of gaseous HCl with N2O4 and N2O5 on liquid water surfaces. Ionization of HCl at the water/air interface is followed by nucleophilic attack of Cl(-) on N2O4 or N2O5. Both reactions proceed by an SN2 mechanism. The products are ClNO and ClNO2, precursors of atmospheric atomic chlorine. Because this mechanism cannot result from a cluster too small for HCl ionization, an extended water film model was simulated. The results explain ClNO formation experiments. Predicted ClNO2 formation is less efficient. (iii) Ionization of acids at ice surfaces. No ionization is found on ideal crystalline surfaces, but the process is efficient on

  16. clusters

    Indian Academy of Sciences (India)

    2017-09-27

    Sep 27, 2017 ... Author for correspondence (zh4403701@126.com). MS received 15 ... lic clusters using density functional theory (DFT)-GGA of the DMOL3 package. ... In the process of geometric optimization, con- vergence thresholds ..... and Postgraduate Research & Practice Innovation Program of. Jiangsu Province ...

  17. clusters

    Indian Academy of Sciences (India)

    environmental as well as technical problems during fuel gas utilization. ... adsorption on some alloys of Pd, namely PdAu, PdAg ... ried out on small neutral and charged Au24,26,27, Cu,28 ... study of Zanti et al.29 on Pdn (n = 1–9) clusters.

  18. Stochastic clustering of material surface under high-heat plasma load

    Science.gov (United States)

    Budaev, Viacheslav P.

    2017-11-01

    The results of a study of a surface formed by high-temperature plasma loads on various materials such as tungsten, carbon and stainless steel are presented. High-temperature plasma irradiation leads to an inhomogeneous stochastic clustering of the surface with self-similar granularity - fractality on the scale from nanoscale to macroscales. Cauliflower-like structure of tungsten and carbon materials are formed under high heat plasma load in fusion devices. The statistical characteristics of hierarchical granularity and scale invariance are estimated. They differ qualitatively from the roughness of the ordinary Brownian surface, which is possibly due to the universal mechanisms of stochastic clustering of material surface under the influence of high-temperature plasma.

  19. Liquefaction of H2 molecules upon exterior surfaces of carbon nanotube bundles

    International Nuclear Information System (INIS)

    Han, Sang Soo; Kang, Jeung Ku; Lee, Hyuck Mo; Duin, Adri C.T. van; Goddard, William A. III

    2005-01-01

    We have used molecular dynamics simulations to investigate interaction of H 2 molecules on the exterior surfaces of carbon nanotubes (CNTs): single and bundle types. At 80 K and 10 MPa, it is found that charge transfer occurs from a low curvature region to a high curvature region of the deformed CNT bundle, which develops charge polarization only on the deformed structure. The long-range electrostatic interactions of polarized charges on the deformed CNT bundle with hydrogen molecules are observed to induce a high local-ordering of H 2 gas that results in hydrogen liquefaction. Our predicted heat of hydrogen liquefaction on the CNT bundle is 97.6 kcal kg -1 . On the other hand, hydrogen liquefaction is not observed in the CNT of a single type. This is because charge polarization is not developed on the single CNT as it is symmetrically deformed under the same pressure. Consequently, the hydrogen storage capacity on the CNT bundle is much higher due to liquefaction than that on the single CNT. Additionally, our results indicate that it would also be possible to liquefy H 2 gas on a more strongly polarized CNT bundle at temperatures higher than 80 K

  20. On-Demand Final State Control of a Surface-Bound Bistable Single Molecule Switch.

    Science.gov (United States)

    Garrido Torres, José A; Simpson, Grant J; Adams, Christopher J; Früchtl, Herbert A; Schaub, Renald

    2018-04-12

    Modern electronic devices perform their defined action because of the complete reliability of their individual active components (transistors, switches, diodes, and so forth). For instance, to encode basic computer units (bits) an electrical switch can be used. The reliability of the switch ensures that the desired outcome (the component's final state, 0 or 1) can be selected with certainty. No practical data storage device would otherwise exist. This reliability criterion will necessarily need to hold true for future molecular electronics to have the opportunity to emerge as a viable miniaturization alternative to our current silicon-based technology. Molecular electronics target the use of single-molecules to perform the actions of individual electronic components. On-demand final state control over a bistable unimolecular component has therefore been one of the main challenges in the past decade (1-5) but has yet to be achieved. In this Letter, we demonstrate how control of the final state of a surface-supported bistable single molecule switch can be realized. On the basis of the observations and deductions presented here, we further suggest an alternative strategy to achieve final state control in unimolecular bistable switches.

  1. The extraction of liquid, protein molecules and yeast cells from paper through surface acoustic wave atomization.

    Science.gov (United States)

    Qi, Aisha; Yeo, Leslie; Friend, James; Ho, Jenny

    2010-02-21

    Paper has been proposed as an inexpensive and versatile carrier for microfluidics devices with abilities well beyond simple capillary action for pregnancy tests and the like. Unlike standard microfluidics devices, extracting a fluid from the paper is a challenge and a drawback to its broader use. Here, we extract fluid from narrow paper strips using surface acoustic wave (SAW) irradiation that subsequently atomizes the extracted fluid into a monodisperse aerosol for use in mass spectroscopy, medical diagnostics, and drug delivery applications. Two protein molecules, ovalbumin and bovine serum albumin (BSA), have been preserved in paper and then extracted using atomized mist through SAW excitation; protein electrophoresis shows there is less than 1% degradation of either protein molecule in this process. Finally, a solution of live yeast cells was infused into paper, which was subsequently dried for preservation then remoistened to extract the cells via SAW atomization, yielding live cells at the completion of the process. The successful preservation and extraction of fluids, proteins and yeast cells significantly expands the usefulness of paper in microfluidics.

  2. Coupling between diffusion and orientation of pentacene molecules on an organic surface.

    Science.gov (United States)

    Rotter, Paul; Lechner, Barbara A J; Morherr, Antonia; Chisnall, David M; Ward, David J; Jardine, Andrew P; Ellis, John; Allison, William; Eckhardt, Bruno; Witte, Gregor

    2016-04-01

    The realization of efficient organic electronic devices requires the controlled preparation of molecular thin films and heterostructures. As top-down structuring methods such as lithography cannot be applied to van der Waals bound materials, surface diffusion becomes a structure-determining factor that requires microscopic understanding. Scanning probe techniques provide atomic resolution, but are limited to observations of slow movements, and therefore constrained to low temperatures. In contrast, the helium-3 spin-echo (HeSE) technique achieves spatial and time resolution on the nm and ps scale, respectively, thus enabling measurements at elevated temperatures. Here we use HeSE to unveil the intricate motion of pentacene admolecules diffusing on a chemisorbed monolayer of pentacene on Cu(110) that serves as a stable, well-ordered organic model surface. We find that pentacene moves along rails parallel and perpendicular to the surface molecules. The experimental data are explained by admolecule rotation that enables a switching between diffusion directions, which extends our molecular level understanding of diffusion in complex organic systems.

  3. Structure investigation of organic molecules on Au(111) surfaces; Strukturuntersuchung organischer Molekuele auf Au(111)-Oberflaechen

    Energy Technology Data Exchange (ETDEWEB)

    Kazempoor, Michel

    2009-02-02

    The present work covers two topics namely the coadsorption of formic acid and water on Au(111) and the structure of biphenylalkanthiole SAMs on Au(111) surfaces. The coadsorption of formic acid and water on Au(111) surfaces has been investigated by means of vibrational and photoelectron spectroscopy (HREELS, XPS). Formic acid adsorbs at 90 K molecularly with vibrational modes characteristic for flat lying zig-zag chains in the mono- and multilayer regime, like in solid formic acid. The structure of the flat lying formic acid chains was determined by low energy electron diffraction (LEED) as a (2r3 x r19) unit cell. Annealing results in a complete desorption at 190 K. Sequential adsorption of formic acid and water at 90 K shows no significant chemical interaction. Upon annealing the coadsorbed layer to 140 K a hydrogenbonded cyclic complex of formic acid with one water molecule could be identified using isotopically labelled adsorbates. Upon further annealing this complex decomposes leaving molecularly adsorbed formic acid on the surface at 160 K, accompanied by a proton exchange between formic acid and water. The influence of the alkane spacer chain length on the structure of biphenylalkanethiols on Au(111) surfaces was investigated as well. A systematic study was done on BPn-SAMs deposited from the gas phase. For every chain length a structure was found by LEED. Furthermore the influence of temperature on the structure was investigated in the range from room temperature up to about 400 K. To obviate influences from different preparation methods BP3 and BP4 was deposited from gas phase and from solution. No LEED spots were observed on BP4 SAMs deposited from solution. For BP3 an influence of the preparation could be excluded. For all BPn-SAMs a good agreement between LEED and STM data's was found. Nevertheless different unit cells were determined by LEED and STM consistent structures could be suggested considering the unit cell size given by LEED and the

  4. Dependence of surface smoothing, sputtering and etching phenomena on cluster ion dosage

    CERN Document Server

    Song, J H; Choi, W K

    2002-01-01

    The dependence of surface smoothing and sputtering phenomena of Si (1 0 0) solid surfaces irradiated by CO sub 2 cluster ions on cluster-ion dosage was investigated using an atomic force microscope. The flux and total ion dosage of impinging cluster ions at the acceleration voltage of 50 kV were fixed at 10 sup 9 ions/cm sup 2 s and were scanned from 5x10 sup 1 sup 0 to 5x10 sup 1 sup 3 ions/cm sup 2 , respectively. The density of hillocks induced by cluster ion impact was gradually increased with the dosage up to 5x10 sup 1 sup 1 ions/cm sup 2 , which caused that the irradiated surface became rough from 0.4 to 1.24 nm in root-mean-square roughness (sigma sub r sub m sub s). At the boundary of the ion dosage of 10 sup 1 sup 2 ions/cm sup 2 , the density of the induced hillocks was decreased and sigma sub r sub m sub s was about 1.21 nm, not being deteriorated further. At the dosage of 5x10 sup 1 sup 3 ions/cm sup 2 , the induced hillocks completely disappeared and the surface became very flat as much as sigma...

  5. Surface Collisions of Small Cluster Ions at Incident Energies 10-102 eV

    Czech Academy of Sciences Publication Activity Database

    Herman, Zdeněk

    2004-01-01

    Roč. 233, - (2004), s. 361-371 ISSN 1387-3806 R&D Projects: GA MŠk ME 561 Grant - others:XE(CZ) EURATOM-IPP.CR Institutional research plan: CEZ:AV0Z4040901 Keywords : surface collisions * cluster ions * unimolecular dissociation Subject RIV: CF - Physical ; Theoretical Chemistry Impact factor: 2.235, year: 2004

  6. Production and characterization of protonated molecular clusters containing a given number of water molecules with the DIAM set-up

    International Nuclear Information System (INIS)

    Bruny, G.

    2010-01-01

    nano-scale characterization of irradiation in bio-molecular systems requires observation of novel features which are now achievable with the recent technical progress. This work is a central part in the development of DIAM which is a new experimental set-up devoted to irradiation of bio-molecular clusters at the Institut de Physique Nucleaire de Lyon. The development of the cluster source and of a double focusing mass spectrometer leads to the production of intense beams of mass selected protonated molecular clusters. Combined with this mass selected cluster beams an innovative detection technique is demonstrated in collision induced dissociation experiments. The results contribute to the knowledge of the stability and the structure of the small protonated water clusters and mixed clusters of water and pyridine. (author)

  7. Single Molecule Raman Detection of Enkephalin on Silver Colloidal Particles

    DEFF Research Database (Denmark)

    Kneipp, Katrin; Kneipp, Holger; Abdali, Salim

    2004-01-01

    the Raman signal the enkephalin molecules have been attached to silver colloidal cluster structures. The experiments demonstrate that the SERS signal of the strongly enhanced ring breathing vibration of phenylalanine at 1000 cm-1 can be used as “intrinsic marker” for detecting a single enkephalin molecule...... and for monitoring its diffusion on the surface of the silver colloidal cluster without using a specific label molecule....

  8. Applying the Coupled-Cluster Ansatz to Solids and Surfaces in the Thermodynamic Limit

    Science.gov (United States)

    Gruber, Thomas; Liao, Ke; Tsatsoulis, Theodoros; Hummel, Felix; Grüneis, Andreas

    2018-04-01

    Modern electronic structure theories can predict and simulate a wealth of phenomena in surface science and solid-state physics. In order to allow for a direct comparison with experiment, such ab initio predictions have to be made in the thermodynamic limit, substantially increasing the computational cost of many-electron wave-function theories. Here, we present a method that achieves thermodynamic limit results for solids and surfaces using the "gold standard" coupled cluster ansatz of quantum chemistry with unprecedented efficiency. We study the energy difference between carbon diamond and graphite crystals, adsorption energies of water on h -BN, as well as the cohesive energy of the Ne solid, demonstrating the increased efficiency and accuracy of coupled cluster theory for solids and surfaces.

  9. Vacancy Clusters on Surfaces of Au Nanoparticles Embedded in MgO

    International Nuclear Information System (INIS)

    Xu, Jun; Mills, A. P. Jr.; Ueda, A.; Henderson, D. O.; Suzuki, R.; Ishibashi, S.

    1999-01-01

    MeV implantation of gold ions into MgO(100) followed by annealing is a method to form gold nanoparticles for obtaining modified optical properties. We show from variable-energy positron spectroscopy that clusters of 2 Mg and 2 O vacancies (v 4 ) are attached to the gold nanoparticle surfaces within the projected range (R p ) . We also find that v 4 vacancy clusters are created at depths less than R p , and extend into the region greater than R p due to damage induced by knock-on collisions. (c) 1999 The American Physical Society

  10. Post-Spaceflight (STS-135 Mouse Splenocytes Demonstrate Altered Activation Properties and Surface Molecule Expression.

    Directory of Open Access Journals (Sweden)

    Shen-An Hwang

    Full Text Available Alterations in immune function have been documented during or post-spaceflight and in ground based models of microgravity. Identification of immune parameters that are dysregulated during spaceflight is an important step in mitigating crew health risks during deep space missions. The in vitro analysis of leukocyte activity post-spaceflight in both human and animal species is primarily focused on lymphocytic function. This report completes a broader spectrum analysis of mouse lymphocyte and monocyte changes post 13 days orbital flight (mission STS-135. Analysis includes an examination in surface markers for cell activation, and antigen presentation and co-stimulatory molecules. Cytokine production was measured after stimulation with T-cell mitogen or TLR-2, TLR-4, or TLR-5 agonists. Splenocyte surface marker analysis immediate post-spaceflight and after in vitro culture demonstrated unique changes in phenotypic populations between the flight mice and matched treatment ground controls. Post-spaceflight splenocytes (flight splenocytes had lower expression intensity of CD4+CD25+ and CD8+CD25+ cells, lower percentage of CD11c+MHC II+ cells, and higher percentage of CD11c+MHC I+ populations compared to ground controls. The flight splenocytes demonstrated an increase in phagocytic activity. Stimulation with ConA led to decrease in CD4+ population but increased CD4+CD25+ cells compared to ground controls. Culturing with TLR agonists led to a decrease in CD11c+ population in splenocytes isolated from flight mice compared to ground controls. Consequently, flight splenocytes with or without TLR-agonist stimulation showed a decrease in CD11c+MHC I+, CD11c+MHC II+, and CD11c+CD86+ cells compared to ground controls. Production of IFN-γ was decreased and IL-2 was increased from ConA stimulated flight splenocytes. This study demonstrated that expression of surface molecules can be affected by conditions of spaceflight and impaired responsiveness persists under

  11. Study of Si wafer surfaces irradiated by gas cluster ion beams

    International Nuclear Information System (INIS)

    Isogai, H.; Toyoda, E.; Senda, T.; Izunome, K.; Kashima, K.; Toyoda, N.; Yamada, I.

    2007-01-01

    The surface structures of Si (1 0 0) wafers subjected to gas cluster ion beam (GCIB) irradiation have been analyzed by cross-sectional transmission electron microscopy (XTEM) and atomic force microscopy (AFM). GCIB irradiation is a promising technique for both precise surface etching and planarization of Si wafers. However, it is very important to understand the crystalline structure of Si wafers after GCIB irradiation. An Ar-GCIB used for the physically sputtering of Si atoms and a SF 6 -GCIB used for the chemical etching of the Si surface are also analyzed. The GCIB irradiation increases the surface roughness of the wafers, and amorphous Si layers are formed on the wafer surface. However, when the Si wafers are annealed in hydrogen at a high temperature after the GCIB irradiation, the surface roughness decreases to the same level as that before the irradiation. Moreover, the amorphous Si layers disappear completely

  12. Imbalanced expression of functional surface molecules in regulatory and effector T cells in systemic lupus erythematosus

    Energy Technology Data Exchange (ETDEWEB)

    Mesquita Júnior, D. [Disciplina de Reumatologia, Departamento de Medicina, Escola Paulista de Medicina, Universidade Federal de São Paulo, São Paulo, SP (Brazil); Cruvinel, W.M. [Disciplina de Reumatologia, Departamento de Medicina, Escola Paulista de Medicina, Universidade Federal de São Paulo, São Paulo, SP (Brazil); Departamento de Biomedicina, Universidade Católica de Goiás, Goiânia, GO (Brazil); Araujo, J.A.P. [Disciplina de Reumatologia, Departamento de Medicina, Escola Paulista de Medicina, Universidade Federal de São Paulo, São Paulo, SP (Brazil); Salmazi, K.C.; Kallas, E.G. [Disciplina de Imunologia Clínica e Alergia, Departamento de Clínica Médica, Faculdade de Medicina, Universidade de São Paulo, São Paulo, SP (Brazil); Andrade, L.E.C. [Disciplina de Reumatologia, Departamento de Medicina, Escola Paulista de Medicina, Universidade Federal de São Paulo, São Paulo, SP (Brazil)

    2014-08-22

    Regulatory T (TREG) cells play an important role in maintaining immune tolerance and avoiding autoimmunity. We analyzed the expression of membrane molecules in TREG and effector T cells in systemic lupus erythematosus (SLE). TREG and effector T cells were analyzed for the expression of CTLA-4, PD1, CD28, CD95, GITR, HLA-DR, OX40, CD40L, and CD45RO in 26 patients with active disease, 31 with inactive disease, and 26 healthy controls. TREG cells were defined as CD25{sup +/high}CD127{sup Ø/low}FoxP3{sup +}, and effector T cells were defined as CD25{sup +}CD127{sup +}FoxP3{sup Ø}. The ratio of TREG to effector T cells expressing GITR, PD1, HLA-DR, OX40, CD40L, and CD45RO was determined in the three groups. The frequency of TREG cells was similar in patients with SLE and controls. However, SLE patients had a decreased frequency of CTLA-4{sup +}TREG and CD28{sup +}TREG cells and an increased frequency of CD40L{sup +}TREG cells. There was a decrease in the TREG/effector-T ratio for GITR{sup +}, HLA-DR{sup +}, OX40{sup +}, and CD45RO{sup +} cells, and an increased ratio of TREG/effector-T CD40L{sup +} cells in patients with SLE. In addition, CD40L{sup +}TREG cell frequency correlated with the SLE disease activity index (P=0.0163). In conclusion, our findings showed several abnormalities in the expression of functionally critical surface molecules in TREG and effector T cells in SLE that may be relevant to the pathogenesis of this disease.

  13. Imbalanced expression of functional surface molecules in regulatory and effector T cells in systemic lupus erythematosus

    International Nuclear Information System (INIS)

    Mesquita Júnior, D.; Cruvinel, W.M.; Araujo, J.A.P.; Salmazi, K.C.; Kallas, E.G.; Andrade, L.E.C.

    2014-01-01

    Regulatory T (TREG) cells play an important role in maintaining immune tolerance and avoiding autoimmunity. We analyzed the expression of membrane molecules in TREG and effector T cells in systemic lupus erythematosus (SLE). TREG and effector T cells were analyzed for the expression of CTLA-4, PD1, CD28, CD95, GITR, HLA-DR, OX40, CD40L, and CD45RO in 26 patients with active disease, 31 with inactive disease, and 26 healthy controls. TREG cells were defined as CD25 +/high CD127 Ø/low FoxP3 + , and effector T cells were defined as CD25 + CD127 + FoxP3 Ø . The ratio of TREG to effector T cells expressing GITR, PD1, HLA-DR, OX40, CD40L, and CD45RO was determined in the three groups. The frequency of TREG cells was similar in patients with SLE and controls. However, SLE patients had a decreased frequency of CTLA-4 + TREG and CD28 + TREG cells and an increased frequency of CD40L + TREG cells. There was a decrease in the TREG/effector-T ratio for GITR + , HLA-DR + , OX40 + , and CD45RO + cells, and an increased ratio of TREG/effector-T CD40L + cells in patients with SLE. In addition, CD40L + TREG cell frequency correlated with the SLE disease activity index (P=0.0163). In conclusion, our findings showed several abnormalities in the expression of functionally critical surface molecules in TREG and effector T cells in SLE that may be relevant to the pathogenesis of this disease

  14. Control of magnetism in dilute magnetic semiconductor (Ga,Mn)As films by surface decoration of molecules

    Science.gov (United States)

    Wang, Hailong; Wang, Xiaolei; Xiong, Peng; Zhao, Jianhua

    2016-03-01

    The responses of magnetic moments to external stimuli such as magnetic-field, heat, light and electric-field have been utilized to manipulate the magnetism in magnetic semiconductors, with many of the novel ideas applied even to ferromagnetic metals. Here, we review a new experimental development on the control of magnetism in (Ga,Mn)As thin films by surface decoration of organic molecules: Molecules deposited on the surface of (Ga,Mn)As thin films are shown to be capable of significantly modulating their saturation magnetization and Curie temperature. These phenomena are shown to originate from the carrier-mediated ferromagnetism in (Ga,Mn)As and the surface molecules acting as acceptors or donors depending on their highest occupied molecular orbitals, resembling the charge transfer mechanism in a pn junction in which the equilibrium state is reached on the alignment of Fermi levels.

  15. Control of magnetism in dilute magnetic semiconductor (Ga,MnAs films by surface decoration of molecules

    Directory of Open Access Journals (Sweden)

    Hailong eWang

    2016-03-01

    Full Text Available The responses of magnetic moments to external stimuli such as magnetic-field, heat, light and electric-field have been utilized to manipulate the magnetism in magnetic semiconductors, with many of the novel ideas applied even to ferromagnetic metals. Here, we review a new experimental development on the control of magnetism in (Ga,MnAs thin films by surface decoration of organic molecules: Molecules deposited on the surface of (Ga,MnAs thin films are shown to be capable of significantly modulating their saturation magnetization and Curie temperature. These phenomena are shown to originate from the carrier-mediated ferromagnetism in (Ga,MnAs and the surface molecules acting as acceptors or donors depending on their highest occupied molecular orbitals, resembling the charge transfer mechanism in a pn junction in which the equilibrium state is reached on the alignment of Fermi levels.

  16. High resolution spectroscopy on adsorbed molecules on a Ni (110)-surface: vibrational states and electronic levels

    International Nuclear Information System (INIS)

    Kardinal, I.

    1998-01-01

    The complementary techniques of HR-XPS and HREELS have been applied to two distinct problems. The first studies adsorption and dissociation of C 2 N 2 on Ni (110) at room temperature (RT) and at 90 K and its co-adsorption with CO. At RT C 2 N 2 dissociates and forms a c(2x2)-CN structure. The resulting CN is found to be bound in the grooves of the (110) surface yielding the lowest C-N vibrational energy yet observed. C 2 N 2 was found to dissociate even at 90 K however the resulting CN overlayer after warming to RT showed remarkable differences to that of the RT adsorption. As well as the in-groove species a number of adsorption sites on the ridges with a bond order higher have been identified. Preadsorbed CO is completely driven of the Ni (110) surface by co-adsorption of CN at RT. HREELS indicates that first CO is desorbed from the on-top-sites and then from the bridge-sites of the (110)-ridges involving a considerable increase of the HREELS cross section for the CO on the bridge-sites. Also the signal intensity of the coadsorbed CN is suppressed by the CO present on the surface. The second study investigated the adsorption of bithiophene (BiT) on clean Ni (110) and the S-modified c(2x2)-S-Ni (110) and p(4x1)-S-Ni (110). The latter provided a strongly structured substrate which forced the assembly of the adsorbed BiT-molecules. The high degree of order of this adsorbate/substrate system was obvious in both the HR-XPS results and the BREELS results with strong azimuthal anisotropy. This system was used to asses the ability to use the HREELS impact selection rules to determine molecular orientation of a reasonably complex adsorbate overlayer. (author)

  17. Long-term surface EMG monitoring using K-means clustering and compressive sensing

    Science.gov (United States)

    Balouchestani, Mohammadreza; Krishnan, Sridhar

    2015-05-01

    In this work, we present an advanced K-means clustering algorithm based on Compressed Sensing theory (CS) in combination with the K-Singular Value Decomposition (K-SVD) method for Clustering of long-term recording of surface Electromyography (sEMG) signals. The long-term monitoring of sEMG signals aims at recording of the electrical activity produced by muscles which are very useful procedure for treatment and diagnostic purposes as well as for detection of various pathologies. The proposed algorithm is examined for three scenarios of sEMG signals including healthy person (sEMG-Healthy), a patient with myopathy (sEMG-Myopathy), and a patient with neuropathy (sEMG-Neuropathr), respectively. The proposed algorithm can easily scan large sEMG datasets of long-term sEMG recording. We test the proposed algorithm with Principal Component Analysis (PCA) and Linear Correlation Coefficient (LCC) dimensionality reduction methods. Then, the output of the proposed algorithm is fed to K-Nearest Neighbours (K-NN) and Probabilistic Neural Network (PNN) classifiers in order to calclute the clustering performance. The proposed algorithm achieves a classification accuracy of 99.22%. This ability allows reducing 17% of Average Classification Error (ACE), 9% of Training Error (TE), and 18% of Root Mean Square Error (RMSE). The proposed algorithm also reduces 14% clustering energy consumption compared to the existing K-Means clustering algorithm.

  18. Electronic structure and dynamics of ordered clusters with ME or RE ions on oxide surface

    Energy Technology Data Exchange (ETDEWEB)

    Kulagin, N.A., E-mail: nkulagin@bestnet.kharkov.u [Kharkiv National University for Radio Electronics, Avenue Shakespeare 6-48, 61045 Kharkiv (Ukraine)

    2011-03-15

    Selected data of ab initio simulation of the electronic structure and spectral properties of either cluster with ions of iron, rare earth or actinium group elements have been presented here. Appearance of doped Cr{sup +4} ions in oxides, Cu{sup +2} in HTSC, Nd{sup +2} in solids has been discussed. Analysis of experimental data for plasma created ordered structures of crystallites with size of about 10{sup -9} m on surface of separate oxides are given, too. Change in the spectroscopic properties of clusters and nano-structures on surface of strontium titanate crystals discussed shortly using the X-ray line spectroscopy experimental results. - Research highlights: External influence and variation of technology induce changes in valence of nl ions in compounds. Wave function of cluster presented as anti-symmetrical set of ions wave functions. The main equation describes the self-consistent field depending on state of all electrons of cluster. Level scheme of Cr{sup 4+} ions in octo- and tetra-site corresponds to doped oxides spectra after treatment. Plasma treatment effects in appearance of systems of unit crystallites with size of about 10{sup -6}-10{sup -9} m.

  19. Electronic structure and dynamics of ordered clusters with ME or RE ions on oxide surface

    International Nuclear Information System (INIS)

    Kulagin, N.A.

    2011-01-01

    Selected data of ab initio simulation of the electronic structure and spectral properties of either cluster with ions of iron, rare earth or actinium group elements have been presented here. Appearance of doped Cr +4 ions in oxides, Cu +2 in HTSC, Nd +2 in solids has been discussed. Analysis of experimental data for plasma created ordered structures of crystallites with size of about 10 -9 m on surface of separate oxides are given, too. Change in the spectroscopic properties of clusters and nano-structures on surface of strontium titanate crystals discussed shortly using the X-ray line spectroscopy experimental results. - Research highlights: → External influence and variation of technology induce changes in valence of nl ions in compounds. → Wave function of cluster presented as anti-symmetrical set of ions wave functions. → The main equation describes the self-consistent field depending on state of all electrons of cluster. → Level scheme of Cr 4+ ions in octo- and tetra-site corresponds to doped oxides spectra after treatment. → Plasma treatment effects in appearance of systems of unit crystallites with size of about 10 -6 -10 -9 m.

  20. Control of the interparticle spacing in superparamagnetic iron oxide nanoparticle clusters by surface ligand engineering

    Science.gov (United States)

    Dan, Wang; Bingbing, Lin; Taipeng, Shen; Jun, Wu; Fuhua, Hao; Chunchao, Xia; Qiyong, Gong; Huiru, Tang; Bin, Song; Hua, Ai

    2016-07-01

    Polymer-mediated self-assembly of superparamagnetic iron oxide (SPIO) nanoparticles allows modulation of the structure of SPIO nanocrystal cluster and their magnetic properties. In this study, dopamine-functionalized polyesters (DA-polyester) were used to directly control the magnetic nanoparticle spacing and its effect on magnetic resonance relaxation properties of these clusters was investigated. Monodisperse SPIO nanocrystals with different surface coating materials (poly(ɛ-caprolactone), poly(lactic acid)) of different molecular weights containing dopamine (DA) structure (DA-PCL2k, DA-PCL1k, DA-PLA1k)) were prepared via ligand exchange reaction, and these nanocrystals were encapsulated inside amphiphilic polymer micelles to modulate the SPIO nanocrystal interparticle spacing. Small-angle x-ray scattering (SAXS) was applied to quantify the interparticle spacing of SPIO clusters. The results demonstrated that the tailored magnetic nanoparticle clusters featured controllable interparticle spacing providing directly by the different surface coating of SPIO nanocrystals. Systematic modulation of SPIO nanocrystal interparticle spacing can regulate the saturation magnetization (M s) and T 2 relaxation of the aggregation, and lead to increased magnetic resonance (MR) relaxation properties with decreased interparticle spacing. Project supported by the National Key Basic Research Program of China (Grant No. 2013CB933903), the National Key Technology R&D Program of China (Grant No. 2012BAI23B08), and the National Natural Science Foundation of China (Grant Nos. 20974065, 51173117, and 50830107).

  1. Surface EMG decomposition based on K-means clustering and convolution kernel compensation.

    Science.gov (United States)

    Ning, Yong; Zhu, Xiangjun; Zhu, Shanan; Zhang, Yingchun

    2015-03-01

    A new approach has been developed by combining the K-mean clustering (KMC) method and a modified convolution kernel compensation (CKC) method for multichannel surface electromyogram (EMG) decomposition. The KMC method was first utilized to cluster vectors of observations at different time instants and then estimate the initial innervation pulse train (IPT). The CKC method, modified with a novel multistep iterative process, was conducted to update the estimated IPT. The performance of the proposed K-means clustering-Modified CKC (KmCKC) approach was evaluated by reconstructing IPTs from both simulated and experimental surface EMG signals. The KmCKC approach successfully reconstructed all 10 IPTs from the simulated surface EMG signals with true positive rates (TPR) of over 90% with a low signal-to-noise ratio (SNR) of -10 dB. More than 10 motor units were also successfully extracted from the 64-channel experimental surface EMG signals of the first dorsal interosseous (FDI) muscles when a contraction force was held at 8 N by using the KmCKC approach. A "two-source" test was further conducted with 64-channel surface EMG signals. The high percentage of common MUs and common pulses (over 92% at all force levels) between the IPTs reconstructed from the two independent groups of surface EMG signals demonstrates the reliability and capability of the proposed KmCKC approach in multichannel surface EMG decomposition. Results from both simulated and experimental data are consistent and confirm that the proposed KmCKC approach can successfully reconstruct IPTs with high accuracy at different levels of contraction.

  2. Extracting Galaxy Cluster Gas Inhomogeneity from X-Ray Surface Brightness: A Statistical Approach and Application to Abell 3667

    Science.gov (United States)

    Kawahara, Hajime; Reese, Erik D.; Kitayama, Tetsu; Sasaki, Shin; Suto, Yasushi

    2008-11-01

    Our previous analysis indicates that small-scale fluctuations in the intracluster medium (ICM) from cosmological hydrodynamic simulations follow the lognormal probability density function. In order to test the lognormal nature of the ICM directly against X-ray observations of galaxy clusters, we develop a method of extracting statistical information about the three-dimensional properties of the fluctuations from the two-dimensional X-ray surface brightness. We first create a set of synthetic clusters with lognormal fluctuations around their mean profile given by spherical isothermal β-models, later considering polytropic temperature profiles as well. Performing mock observations of these synthetic clusters, we find that the resulting X-ray surface brightness fluctuations also follow the lognormal distribution fairly well. Systematic analysis of the synthetic clusters provides an empirical relation between the three-dimensional density fluctuations and the two-dimensional X-ray surface brightness. We analyze Chandra observations of the galaxy cluster Abell 3667, and find that its X-ray surface brightness fluctuations follow the lognormal distribution. While the lognormal model was originally motivated by cosmological hydrodynamic simulations, this is the first observational confirmation of the lognormal signature in a real cluster. Finally we check the synthetic cluster results against clusters from cosmological hydrodynamic simulations. As a result of the complex structure exhibited by simulated clusters, the empirical relation between the two- and three-dimensional fluctuation properties calibrated with synthetic clusters when applied to simulated clusters shows large scatter. Nevertheless we are able to reproduce the true value of the fluctuation amplitude of simulated clusters within a factor of 2 from their two-dimensional X-ray surface brightness alone. Our current methodology combined with existing observational data is useful in describing and inferring the

  3. Single molecule force measurements delineate salt, pH and surface effects on biopolymer adhesion

    International Nuclear Information System (INIS)

    Pirzer, T; Geisler, M; Hugel, T; Scheibel, T

    2009-01-01

    In this paper we probe the influence of surface properties, pH and salt on the adhesion of recombinant spider silk proteins onto solid substrates with single molecule force spectroscopy. A single engineered spider silk protein (monomeric C 16 or dimeric (QAQ) 8 NR3) is covalently bound with one end to an AFM tip, which assures long-time measurements for hours with one and the same protein. The tip with the protein is brought into contact with various substrates at various buffer conditions and then retracted to desorb the protein. We observe a linear dependence of the adhesion force on the concentration of three selected salts (NaCl, NaH 2 PO 4 and NaI) and a Hofmeister series both for anions and cations. As expected, the more hydrophobic C 16 shows a higher adhesion force than (QAQ) 8 NR3, and the adhesion force rises with the hydrophobicity of the substrate. Unexpected is the magnitude of the dependences—we never observe a change of more than 30%, suggesting a surprisingly well-regulated balance between dispersive forces, water-structure-induced forces as well as co-solute-induced forces in biopolymer adhesion

  4. Single molecule force measurements delineate salt, pH and surface effects on biopolymer adhesion

    Science.gov (United States)

    Pirzer, T.; Geisler, M.; Scheibel, T.; Hugel, T.

    2009-06-01

    In this paper we probe the influence of surface properties, pH and salt on the adhesion of recombinant spider silk proteins onto solid substrates with single molecule force spectroscopy. A single engineered spider silk protein (monomeric C16 or dimeric (QAQ)8NR3) is covalently bound with one end to an AFM tip, which assures long-time measurements for hours with one and the same protein. The tip with the protein is brought into contact with various substrates at various buffer conditions and then retracted to desorb the protein. We observe a linear dependence of the adhesion force on the concentration of three selected salts (NaCl, NaH2PO4 and NaI) and a Hofmeister series both for anions and cations. As expected, the more hydrophobic C16 shows a higher adhesion force than (QAQ)8NR3, and the adhesion force rises with the hydrophobicity of the substrate. Unexpected is the magnitude of the dependences—we never observe a change of more than 30%, suggesting a surprisingly well-regulated balance between dispersive forces, water-structure-induced forces as well as co-solute-induced forces in biopolymer adhesion.

  5. Electronic coupling effects and charge transfer between organic molecules and metal surfaces

    Energy Technology Data Exchange (ETDEWEB)

    Forker, Roman

    2010-07-01

    We employ a variant of optical absorption spectroscopy, namely in situ differential reflectance spectroscopy (DRS), for an analysis of the structure-properties relations of thin epitaxial organic films. Clear correlations between the spectra and the differently intense coupling to the respective substrates are found. While rather broad and almost structureless spectra are obtained for a quaterrylene (QT) monolayer on Au(111), the spectral shape resembles that of isolated molecules when QT is grown on graphite. We even achieve an efficient electronic decoupling from the subjacent Au(111) by inserting an atomically thin organic spacer layer consisting of hexa-peri-hexabenzocoronene (HBC) with a noticeably dissimilar electronic behavior. These observations are further consolidated by a systematic variation of the metal substrate (Au, Ag, and Al), ranging from inert to rather reactive. For this purpose, 3,4,9,10-perylenetetracarboxylic dianhydride (PTCDA) is chosen to ensure comparability of the molecular film structures on the different metals, and also because its electronic alignment on various metal surfaces has previously been studied with great intensity. We present evidence for ionized PTCDA at several interfaces and propose the charge transfer to be related to the electronic level alignment governed by interface dipole formation on the respective metals. (orig.)

  6. Ozone kinetics in low-pressure discharges: vibrationally excited ozone and molecule formation on surfaces

    Science.gov (United States)

    Marinov, Daniil; Guerra, Vasco; Guaitella, Olivier; Booth, Jean-Paul; Rousseau, Antoine

    2013-10-01

    A combined experimental and modeling investigation of the ozone kinetics in the afterglow of pulsed direct current discharges in oxygen is carried out. The discharge is generated in a cylindrical silica tube of radius 1 cm, with short pulse durations between 0.5 and 2 ms, pressures in the range 1-5 Torr and discharge currents ˜40-120 mA. Time-resolved absolute concentrations of ground-state atoms and ozone molecules were measured simultaneously in situ, by two-photon absorption laser-induced fluorescence and ultraviolet absorption, respectively. The experiments were complemented by a self-consistent model developed to interpret the results and, in particular, to evaluate the roles of vibrationally excited ozone and of ozone formation on surfaces. It is found that vibrationally excited ozone, O_3^{*} , plays an important role in the ozone kinetics, leading to a decrease in the ozone concentration and an increase in its formation time. In turn, the kinetics of O_3^{*} is strongly coupled with those of atomic oxygen and O2(a 1Δg) metastables. Ozone formation at the wall does not contribute significantly to the total ozone production under the present conditions. Upper limits for the effective heterogeneous recombination probability of O atoms into ozone are established.

  7. Ozone kinetics in low-pressure discharges: vibrationally excited ozone and molecule formation on surfaces

    International Nuclear Information System (INIS)

    Marinov, Daniil; Guaitella, Olivier; Booth, Jean-Paul; Rousseau, Antoine; Guerra, Vasco

    2013-01-01

    A combined experimental and modeling investigation of the ozone kinetics in the afterglow of pulsed direct current discharges in oxygen is carried out. The discharge is generated in a cylindrical silica tube of radius 1 cm, with short pulse durations between 0.5 and 2 ms, pressures in the range 1–5 Torr and discharge currents ∼40–120 mA. Time-resolved absolute concentrations of ground-state atoms and ozone molecules were measured simultaneously in situ, by two-photon absorption laser-induced fluorescence and ultraviolet absorption, respectively. The experiments were complemented by a self-consistent model developed to interpret the results and, in particular, to evaluate the roles of vibrationally excited ozone and of ozone formation on surfaces. It is found that vibrationally excited ozone, O 3 * , plays an important role in the ozone kinetics, leading to a decrease in the ozone concentration and an increase in its formation time. In turn, the kinetics of O 3 * is strongly coupled with those of atomic oxygen and O 2 (a 1 Δ g ) metastables. Ozone formation at the wall does not contribute significantly to the total ozone production under the present conditions. Upper limits for the effective heterogeneous recombination probability of O atoms into ozone are established. (paper)

  8. Monocyte and lymphocyte surface molecules in severe sepsis and non-septic critically ill Patients.

    Science.gov (United States)

    Jämsä, Joel; Syrjälä, Hannu; Huotari, Virva; Savolainen, Eeva-Riitta; Ala-Kokko, Tero

    2017-06-01

    The aim of the present study was to investigate whether expression of monocyte and lymphocyte surface molecules differs between patients with severe sepsis and non-septic patients treated in the intensive care unit (ICU). The expression of monocyte CD14, CD40, CD80 and HLA-DR, and lymphocyte CD69 were analyzed using quantitative flow cytometry on three consecutive days in 27 patients with severe sepsis and in 15 non-septic patients. Receiver operating characteristic analyses were performed and each corresponding area under the curve (AUC) was determined. The results showed that the expression levels of CD40 on monocytes and CD69 on CD4+ T cells and on natural killer (NK) cells were highest in patients with severe sepsis (p sepsis and positive blood culture compared with those with negative blood culture (p sepsis detection were 0.836 for CD40, 0.872 for CD69 on NK cells, and 0.795 for CD69 on CD4+ T cells. These findings suggest that monocyte CD40 and CD69 on NK cells and CD4+ T cells could prove useful for new approaches in the identification of severe sepsis in the ICU. © 2017 APMIS. Published by John Wiley & Sons Ltd.

  9. Ge clusters and wetting layers forming from granular films on the Si(001) surface

    International Nuclear Information System (INIS)

    Storozhevykh, M S; Arapkina, L V; Yuryev, V A

    2016-01-01

    The report studies the transformation of a Ge granular film deposited on the Si(001) surface at room temperature into a Ge/Si(001) heterostructure as a result of rapid heating and annealing at 600 °C. As a result of the short-term annealing at 600 °C in conditions of a closed system, the Ge granular film transforms into a usual wetting layer and Ge clusters with multimodal size distribution and Ge oval drops having the highest number density. After the long-term thermal treatment of the Ge film at the same temperature, Ge drops disappear; the large clusters increase their sizes at the expense of the smaller ones. The total density of Ge clusters on the surface drastically decreases. The wetting layer mixed c(4 x 2) + p(2 x 2) reconstruction transforms into a single c(4 x 2) one which is likely to be thermodynamically favoured. Pyramids or domes are not observed on the surface after any annealing. (paper)

  10. Possibility of 1-nm level localization of a single molecule with gap-mode surface-enhanced Raman scattering

    International Nuclear Information System (INIS)

    Choi, Han Kyu; Kim, Zee Hwan

    2015-01-01

    The electromagnetic (EM) enhancement mechanism of surface-enhanced Raman scattering (SERS) has been well established through 30 years of extensive investigation: molecules adsorbed on resonantly driven silver or gold nanoparticles (NPs) experience strongly enhanced field and thus show enhanced Raman scattering. Even stronger SERS enhancement is possible with a gap structure in which two or more NPs form assemblies with gap sizes of 1 nm or less. We have theoretically shown that the measurement of SERS angular distribution can reveal the position of a single molecule near the gap with 1-nm accuracy, even though the spatial extent of the enhanced field is ~10 nm. Real implementation of such experiment requires extremely well-defined (preferably a single crystal) dimeric junctions. Nevertheless, the experiment will provide spatial as well as frequency domain information on single-molecule dynamics at metallic surfaces

  11. Study of the Adsorption of Atoms and Molecules on Silicon Surfaces: Crystallographics and Electronic Structure

    International Nuclear Information System (INIS)

    Bengio, Silvina

    2003-01-01

    This thesis work has been concerned with adsorption properties of silicon surfaces.The atomic and electronic structure of molecules and atoms adsorbed on Si has been investigated by means of photoemission experiments combined with synchrotron radiation.The quantitative atomic structure determination was held applying the photoelectron diffraction technique.This technique is sensible to the local structure of a reference atomic specie and has elemental and chemical-state specificity.This approach has been applied to three quite different systems with different degrees of complexity, Sb/Si(111) √3x √3R30 0 , H 2 O/Si(100)2x1 and NH 3 /Si(111)7x7.Our results show that Sb which forms a ( √3√3)R30 0 phase produces a bulklike-terminated Si(111)1x1 substrate free of stacking faults.Regarding the atomic structure of its interface, this study strongly favours the T4-site milkstool model over the H3 one.An important aspect regarding the H 2 O/Si(100)(2x1) system was establishing the limits of precision with which one can determine not only the location of the adsorbed hydroxyl (OH) species, but also the extent to which this adsorption modifes the asymmetric dimers of the clean surface to which it is bonded.On the Si(111)(7x7) surface the problem is particularly complex because there are several different potentially active sites for NH3 adsorption and fragmentation.The application of the PhD method, however, has shown that the majority of the N atoms are on so-called 'rest atom' sites when deposited at RT.This is consistent with the N in the NH2 chemical state.This investigation represents the first quantitative structural study of any molecular adsorbate on the complex Si(111)(7x7) surface.This atomic structures determination shows the PhD is a powerful tool for the atomic structure determination.The molecular systems interacting with the active sites of the substrate fragments producing a short-range order surface.This long-range disorder is produced by the

  12. Surface Chemistry Dependence of Mechanochemical Reaction of Adsorbed Molecules-An Experimental Study on Tribopolymerization of α-Pinene on Metal, Metal Oxide, and Carbon Surfaces.

    Science.gov (United States)

    He, Xin; Kim, Seong H

    2018-02-20

    Mechanochemical reactions between adsorbate molecules sheared at tribological interfaces can induce association of adsorbed molecules, forming oligomeric and polymeric products often called tribopolymers). This study revealed the role or effect of surface chemistry of the solid substrate in mechanochemical polymerization reactions. As a model reactant, α-pinene was chosen because it was known to readily form tribopolymers at the sliding interface of stainless steel under vapor-phase lubrication conditions. Eight different substrate materials were tested-palladium, nickel, copper, stainless steel, gold, silicon oxide, aluminum oxide, and diamond-like carbon (DLC). All metal substrates and DLC were initially covered with surface oxide species formed naturally in air or during the oxidative sample cleaning. It was found that the tribopolymerization yield of α-pinene is much higher on the substrates that can chemisorb α-pinene, compared to the ones on which only physisorption occurs. From the load dependence of the tribopolymerization yield, it was found that the surfaces capable of chemisorption give a smaller critical activation volume for the mechanochemical reaction, compared to the ones capable of physisorption only. On the basis of these observations and infrared spectroscopy analyses of the adsorbed molecules and the produced polymers, it was concluded that the mechanochemical reaction mechanisms might be different between chemically reactive and inert surfaces and that the chemical reactivity of the substrate surface greatly influences the tribochemical polymerization reactions of adsorbed molecules.

  13. Self-consistent meta-generalized gradient approximation study of adsorption of aromatic molecules on noble metal surfaces

    DEFF Research Database (Denmark)

    Ferrighi, Lara; Madsen, Georg Kent Hellerup; Hammer, Bjørk

    2011-01-01

    aromatic molecules considered. The adsorption of pentacene is studied on Au, Ag, and Cu surfaces. In agreement with experiment, the adsorption energies are found to increase with decreasing nobleness, but the dependency is underestimated. We point out how the kinetic energy density can discriminate between...

  14. A multi purpose source chamber at the PLEIADES beamline at SOLEIL for spectroscopic studies of isolated species: cold molecules, clusters, and nanoparticles.

    Science.gov (United States)

    Lindblad, Andreas; Söderström, Johan; Nicolas, Christophe; Robert, Emmanuel; Miron, Catalin

    2013-11-01

    This paper describes the philosophy and design goals regarding the construction of a versatile sample environment: a source capable of producing beams of atoms, molecules, clusters, and nanoparticles in view of studying their interaction with short wavelength (vacuum ultraviolet and x-ray) synchrotron radiation. In the design, specific care has been taken of (a) the use standard components, (b) ensuring modularity, i.e., that swiftly switching between different experimental configurations was possible. To demonstrate the efficiency of the design, proof-of-principle experiments have been conducted by recording x-ray absorption and photoelectron spectra from isolated nanoparticles (SiO2) and free mixed clusters (Ar/Xe). The results from those experiments are showcased and briefly discussed.

  15. The influence of internal degrees of freedom on the unimolecular decay of the molecule-cluster compound Au8+CH3OH

    Science.gov (United States)

    Vogel, M.; Hansen, K.; Herlert, A.; Schweikhard, L.; Walther, C.

    2002-06-01

    Time-resolved photodissociation measurements of the sequential reaction Au8+CH3OH→Au8+→Au7+ and the direct reaction Au8+→Au7+ have been performed for several excitation energies. The production rates and yields of the final state Au7+ in the sequential process are strongly influenced by the excitation energy deposited into the evaporated methanol molecule during the initial fragmentation step. Both the rate constants and yields can be fitted with a single parameter, the cluster-methanol binding energy.

  16. Atomistic interactions of clusters on surfaces using molecular dynamics and hyper molecular dynamics

    International Nuclear Information System (INIS)

    Sanz-Navarro, Carlos F.

    2002-01-01

    The work presented in this thesis describes the results of Molecular Dynamics (MD) simulations applied to the interaction of silver clusters with graphite surfaces and some numerical and theoretical methods concerning the extension of MD simulations to longer time scales (hyper-MD). The first part of this thesis studies the implantation of clusters at normal incidence onto a graphite surface in order to determine the scaling of the penetration depth (PD) against the impact energy. A comparison with experimental results is made with good agreement. The main physical observations of the impact process are described and analysed. It is shown that there is a threshold impact velocity above which the linear dependence on PD on impact energy changes to a linear dependence on velocity. Implantation of silver clusters at oblique incidence is also considered. The second part of this work analyses the validity and feasibility of the three minimisation methods for the hyper-MD simulation method whereby time scales of an MD simulation can be extended. A correct mathematical basis for the iterative method is derived. It is found that one of the iterative methods, upon which hyper-lD is based, is very likely to fail in high-dimensional situations because it requires a too expensive convergence. Two new approximations to the hyper-MD approach are proposed, which reduce the computational effort considerably. Both approaches, although not exact, can help to search for some of the most likely transitions in the system. Some examples are given to illustrate this. (author)

  17. Automated detection of very Low Surface Brightness galaxies in the Virgo Cluster

    Science.gov (United States)

    Prole, D. J.; Davies, J. I.; Keenan, O. C.; Davies, L. J. M.

    2018-04-01

    We report the automatic detection of a new sample of very low surface brightness (LSB) galaxies, likely members of the Virgo cluster. We introduce our new software, DeepScan, that has been designed specifically to detect extended LSB features automatically using the DBSCAN algorithm. We demonstrate the technique by applying it over a 5 degree2 portion of the Next-Generation Virgo Survey (NGVS) data to reveal 53 low surface brightness galaxies that are candidate cluster members based on their sizes and colours. 30 of these sources are new detections despite the region being searched specifically for LSB galaxies previously. Our final sample contains galaxies with 26.0 ≤ ⟨μe⟩ ≤ 28.5 and 19 ≤ mg ≤ 21, making them some of the faintest known in Virgo. The majority of them have colours consistent with the red sequence, and have a mean stellar mass of 106.3 ± 0.5M⊙ assuming cluster membership. After using ProFit to fit Sérsic profiles to our detections, none of the new sources have effective radii larger than 1.5 Kpc and do not meet the criteria for ultra-diffuse galaxy (UDG) classification, so we classify them as ultra-faint dwarfs.

  18. Surface self-diffusion behavior of individual tungsten adatoms on rhombohedral clusters

    International Nuclear Information System (INIS)

    Yang Jianyu; Hu Wangyu; Tang Jianfeng

    2011-01-01

    The diffusion of single tungsten adatoms on the surfaces of rhombohedral clusters is studied by means of molecular dynamics and the embedded atom method. The energy barriers for the adatom diffusing across and along the step edge between a {110} facet and a neighboring {110} facet are calculated using the nudged elastic band method. We notice that the tungsten adatom diffusion across the step edge has a much higher barrier than that for face-centered cubic metal clusters. The result shows that diffusion from the {110} facet to a neighboring {110} facet could not take place at low temperatures. In addition, the calculated energy barrier for an adatom diffusing along the step edge is lower than that for an adatom on the flat (110) surface. The results show that the adatom could diffuse easily along the step edge, and could be trapped by the facet corner. Taking all of this evidence together, we infer that the {110} facet starts to grow from the facet corner, and then along the step edge, and finally toward the {110} facet center. So the tungsten rhombohedron can grow epitaxially along the {110} facet one facet at a time and the rhombohedron should be the stable structure for both large and small tungsten clusters. (paper)

  19. Graphite surface topography induced by Ta cluster impact and oxidative etching

    International Nuclear Information System (INIS)

    Reimann, C.T.; Olsson, L.; Erlandsson, R.; Henkel, M.; Urbassek, H.M.

    1998-01-01

    Freshly cleaved highly oriented pyrolytic graphite (HOPG), when baked in air at ∝630 C, forms one-monolayer(ML)-deep circular pits due to oxidation initiated at surface defect sites. We found that the areal density and depths of these pits could be modulated by deliberately introducing surface and sub-surface defects by energetic ion bombardment prior to baking. Bombardment by 555-eV/atom Ta 1 + , Ta 2 + , Ta 4 + , or Ta 9 + , always enhanced the areal density of etch pits, but only bombardment by Ta 4 + , or Ta 9 + significantly enhanced the depths of the pits. We performed molecular dynamics simulations of Ta n cluster bombardment of HOPG (n = 1, 2, 4, and 9) with the aim of characterizing the damage structures induced by the bombardment and correlating them with the experimental data. For Ta 9 + , the simulations showed a high level of damage extending from the surface down to nine MLs, in agreement with the most probable etch pit depth observed. For other cluster species, predicted etch pit depths were deeper than the observed ones. Annealing or steric requirements for initiating oxidation may account for some of the differences between simulations and experimental results. (orig.)

  20. Selective scanning tunnelling microscope electron-induced reactions of single biphenyl molecules on a Si(100) surface.

    Science.gov (United States)

    Riedel, Damien; Bocquet, Marie-Laure; Lesnard, Hervé; Lastapis, Mathieu; Lorente, Nicolas; Sonnet, Philippe; Dujardin, Gérald

    2009-06-03

    Selective electron-induced reactions of individual biphenyl molecules adsorbed in their weakly chemisorbed configuration on a Si(100) surface are investigated by using the tip of a low-temperature (5 K) scanning tunnelling microscope (STM) as an atomic size source of electrons. Selected types of molecular reactions are produced, depending on the polarity of the surface voltage during STM excitation. At negative surface voltages, the biphenyl molecule diffuses across the surface in its weakly chemisorbed configuration. At positive surface voltages, different types of molecular reactions are activated, which involve the change of adsorption configuration from the weakly chemisorbed to the strongly chemisorbed bistable and quadristable configurations. Calculated reaction pathways of the molecular reactions on the silicon surface, using the nudge elastic band method, provide evidence that the observed selectivity as a function of the surface voltage polarity cannot be ascribed to different activation energies. These results, together with the measured threshold surface voltages and the calculated molecular electronic structures via density functional theory, suggest that the electron-induced molecular reactions are driven by selective electron detachment (oxidation) or attachment (reduction) processes.

  1. Using Force to Probe Single-Molecule Receptor-Cytoskeletal Anchoring Beneath the Surface of a Living Cell

    DEFF Research Database (Denmark)

    Evans, Evan; Kinoshita, Koji

    2007-01-01

    -cytoskeletal unbinding increased exponentially with the level of force, suggesting disruption at a site of single-molecule interaction. Since many important enzymes and signaling molecules are closely associated with a membrane receptor-cytoskeletal linkage, pulling on a receptor could alter interactions among its......The ligation of cell surface receptors often communicates a signal that initiates a cytoplasmic chemical cascade to implement an important cell function. Less well understood is how physical stress applied to a cell surface adhesive bond propagates throughout the cytostructure to catalyze...... or trigger important steps in these chemical processes. Probing the nanoscale impact of pulling on cell surface bonds, we discovered that receptors frequently detach prematurely from the interior cytostructure prior to failure of the exterior adhesive bond [Evans, E., Heinrich, V., Leung, A., and Kinoshita...

  2. GAS SURFACE DENSITY, STAR FORMATION RATE SURFACE DENSITY, AND THE MAXIMUM MASS OF YOUNG STAR CLUSTERS IN A DISK GALAXY. II. THE GRAND-DESIGN GALAXY M51

    International Nuclear Information System (INIS)

    González-Lópezlira, Rosa A.; Pflamm-Altenburg, Jan; Kroupa, Pavel

    2013-01-01

    We analyze the relationship between maximum cluster mass and surface densities of total gas (Σ gas ), molecular gas (Σ H 2 ), neutral gas (Σ H I ), and star formation rate (Σ SFR ) in the grand-design galaxy M51, using published gas data and a catalog of masses, ages, and reddenings of more than 1800 star clusters in its disk, of which 223 are above the cluster mass distribution function completeness limit. By comparing the two-dimensional distribution of cluster masses and gas surface densities, we find for clusters older than 25 Myr that M 3rd ∝Σ H I 0.4±0.2 , whereM 3rd is the median of the five most massive clusters. There is no correlation withΣ gas ,Σ H2 , orΣ SFR . For clusters younger than 10 Myr, M 3rd ∝Σ H I 0.6±0.1 and M 3rd ∝Σ gas 0.5±0.2 ; there is no correlation with either Σ H 2 orΣ SFR . The results could hardly be more different from those found for clusters younger than 25 Myr in M33. For the flocculent galaxy M33, there is no correlation between maximum cluster mass and neutral gas, but we have determined M 3rd ∝Σ gas 3.8±0.3 , M 3rd ∝Σ H 2 1.2±0.1 , and M 3rd ∝Σ SFR 0.9±0.1 . For the older sample in M51, the lack of tight correlations is probably due to the combination of strong azimuthal variations in the surface densities of gas and star formation rate, and the cluster ages. These two facts mean that neither the azimuthal average of the surface densities at a given radius nor the surface densities at the present-day location of a stellar cluster represent the true surface densities at the place and time of cluster formation. In the case of the younger sample, even if the clusters have not yet traveled too far from their birth sites, the poor resolution of the radio data compared to the physical sizes of the clusters results in measuredΣ that are likely quite diluted compared to the actual densities relevant for the formation of the clusters.

  3. Energy-switching potential energy surface for the water molecule revisited: A highly accurate singled-sheeted form.

    Science.gov (United States)

    Galvão, B R L; Rodrigues, S P J; Varandas, A J C

    2008-07-28

    A global ab initio potential energy surface is proposed for the water molecule by energy-switching/merging a highly accurate isotope-dependent local potential function reported by Polyansky et al. [Science 299, 539 (2003)] with a global form of the many-body expansion type suitably adapted to account explicitly for the dynamical correlation and parametrized from extensive accurate multireference configuration interaction energies extrapolated to the complete basis set limit. The new function mimics also the complicated Sigma/Pi crossing that arises at linear geometries of the water molecule.

  4. Variable surface composition and radial interface formation in self-assembled free, mixed Ar/Xe clusters

    International Nuclear Information System (INIS)

    Tchaplyguine, M.; Maartensson, N.; Lundwall, M.; Oehrwall, G.; Feifel, R.; Svensson, S.; Bjoerneholm, O.; Gisselbrecht, M.; Sorensen, S.

    2004-01-01

    Using photoelectron spectroscopy, we demonstrate how the self-assembling process of cluster formation in an adiabatic expansion leads to radial segregation and layering as well as to variable surface composition for binary Ar/Xe clusters. The radial structuring can be qualitatively understood from the different interatomic bonding strengths of the two components

  5. Surface self-diffusion of adatom on Pt cluster with truncated octahedron structure

    International Nuclear Information System (INIS)

    Yang Jianyu; Hu Wangyu; Chen Shuguang

    2010-01-01

    Surface diffusion of single Pt adatom on Pt cluster with truncated octahedron structure is investigated through a combination of molecular dynamics and nudged elastic band method. Using an embedded atom method to describe the atomic interactions, the minimum energy paths are determined and the energy barriers for adatom diffusion across and along step are evaluated. The diffusion of adatom crossing step edge between {111} and {100} facets has a surprisingly low barrier of 0.03 eV, which is 0.12 eV lower than the barrier for adatom diffusion from {111} to neighboring {111} facet. Owing to the small barrier of adatom diffusion across the step edge between {111} and {100} facets, the diffusion of adatom along the step edge cannot occur. The molecular dynamics simulations at low temperatures also support these results. Our results show that mass transport will prefer step with {100} microfacet and the Pt clusters can have only {111} facets in epitaxial growth.

  6. Effect of nontronite smectite clay on the chemical evolution of several organic molecules under simulated Mars surface UV radiation conditions

    Science.gov (United States)

    Poch, Olivier; Dequaire, Tristan; Stalport, Fabien; Jaber, Maguy; Lambert, Jean-François; Szopa, Cyril; Coll, Patrice

    2015-04-01

    The search for organic carbon-containing molecules at the surface of Mars, as clues of past habitability or remnants of life, is a major scientific goal for Mars exploration. Several lines of evidence, including the detection of phyllosilicates, suggest that early Mars offered favorable conditions for long-term sustaining of water. As a consequence, we can assume that in those days, endogenous chemical processes, or even primitive life, may have produced organic matter on Mars. Moreover, exogenous delivery from small bodies or dust particles is likely to have brought fresh organic molecules to the surface of Mars up today. Organic matter is therefore expected to be present at the surface/subsurface of the planet. But the current environmental conditions at the surface - UV radiation, oxidants and energetic particles - generate physico-chemical processes that may affect organic molecules. On the other hand, on Earth, phyllosilicates are known to accumulate and preserve organic matter. But are phyllosilicates efficient at preserving organic molecules under the current environmental conditions at the surface of Mars? We have monitored the qualitative and quantitative evolutions of glycine, urea and adenine interacting with the Fe3+-smectite clay nontronite, one of the most abundant phyllosilicates present at the surface of Mars, under simulated Martian surface ultraviolet light (190-400 nm), mean temperature (218 ± 2 K) and pressure (6 ± 1 mbar) in a laboratory simulation setup. We have tested organic-rich samples which may be representative of the evaporation of a warm little pond of liquid water having concentrated organics on Mars. For each molecule, we have observed how the nontronite influences the quantum efficiency of its photodecomposition and the nature of its solid evolution products. The results reveal a pronounced photoprotective effect of nontronite on the evolution of glycine and adenine: their efficiencies of photodecomposition are reduced by a factor

  7. The neural cell adhesion molecule L1 is distinct from the N-CAM related group of surface antigens BSP-2 and D2

    DEFF Research Database (Denmark)

    Faissner, A; Kruse, J; Goridis, C

    1984-01-01

    The neural cell adhesion molecule L1 and the group of N-CAM related molecules, BSP-2 and D2 antigen, are immunochemically distinct molecular species. The two groups of surface molecules are also functionally distinct entities, since inhibition of Ca2+-independent adhesion among early post-natal m...

  8. Theoretical studies of molecule surface scattering: Rotationally inelastic diffraction and dissociative dynamics of H2 on metals

    International Nuclear Information System (INIS)

    Cruz Pol, A.J.

    1993-01-01

    The interaction of H 2 and its isotopes with metal surfaces has been the subject of many investigations. The scattering experiments provide data such as the final rotational state distribution, sticking coefficients, kinetic energy distribution, and diffraction data. In the first study of this thesis the author implemented a model for looking at the rotationally inelastic diffraction probabilities for H 2 , HD, and D 2 , as a function of surface temperature. The surface is treated in a quantum mechanical fashion using a recently developed formalism. The center of mass translational motion is treated semiclassically using Gaussian wave packets, and the rotations are described quantum mechanically. The phonon summed rotation-diffraction probabilities as well as the probability distribution for a scattering molecule exchanging an amount of energy ΔE with the surface were computed. In the second and third study of this thesis the author implemented a mixed quantum-classical model to compute the probability for dissociation and rotational excitation for H 2 , HD, and D 2 scattered from Ni(100) dimensionally in dynamics simulations. Of the six degrees of freedom for the dissociative adsorption of a diatomic molecule on a static surface, the author treats Z,d the center of mass distance above the surface plan, r, the internuclear separation, θ, the polar orientation angle, quantum mechanically. The remaining three degrees of freedom, X and Y, the center of mass position on the surface plane, and oe, the azimuthal orientation angle, are treated classically. Probabilities for dissociation and ro-vibrational excitation are computed as a function of incident translational energy. Two sudden approximations are tested, in which either the center of mass translation parallel to the surface or the azimuthal orientation of the molecule are frozen. Comparisons are made between low and high dimensionality results and with fully classical results

  9. Plasmonic nanoantenna arrays for surface-enhanced Raman spectroscopy of lipid molecules embedded in a bilayer membrane.

    Science.gov (United States)

    Kühler, Paul; Weber, Max; Lohmüller, Theobald

    2014-06-25

    We demonstrate a strategy for surface-enhanced Raman spectroscopy (SERS) of supported lipid membranes with arrays of plasmonic nanoantennas. Colloidal lithography refined with plasma etching is used to synthesize arrays of triangular shaped gold nanoparticles. Reducing the separation distance between the triangle tips leads to plasmonic coupling and to a strong enhancement of the electromagnetic field in the nanotriangle gap. As a result, the Raman scattering intensity of molecules that are located at this plasmonic "hot-spot" can be increased by several orders of magnitude. The nanoantenna array is then embedded with a supported phospholipid membrane which is fluid at room temperature and spans the antenna gap. This configuration offers the advantage that molecules that are mobile within the bilayer membrane can enter the "hot-spot" region via diffusion and can therefore be measured by SERS without static entrapment or adsorption of the molecules to the antenna itself.

  10. Performance improvement of haptic collision detection using subdivision surface and sphere clustering.

    Directory of Open Access Journals (Sweden)

    A Ram Choi

    Full Text Available Haptics applications such as surgery simulations require collision detections that are more precise than others. An efficient collision detection method based on the clustering of bounding spheres was proposed in our prior study. This paper analyzes and compares the applied effects of the five most common subdivision surface methods on some 3D models for haptic collision detection. The five methods are Butterfly, Catmull-Clark, Mid-point, Loop, and LS3 (Least Squares Subdivision Surface. After performing a number of experiments, we have concluded that LS3 method is the most appropriate for haptic simulations. The more we applied surface subdivision, the more the collision detection results became precise. However, it is observed that the performance becomes better until a certain threshold and degrades afterward. In order to reduce the performance degradation, we adopted our prior work, which was the fast and precise collision detection method based on adaptive clustering. As a result, we obtained a notable improvement of the speed of collision detection.

  11. Ureaplasma diversum Genome Provides New Insights about the Interaction of the Surface Molecules of This Bacterium with the Host.

    Directory of Open Access Journals (Sweden)

    Lucas M Marques

    Full Text Available Whole genome sequencing and analyses of Ureaplasma diversum ATCC 49782 was undertaken as a step towards understanding U. diversum biology and pathogenicity. The complete genome showed 973,501 bp in a single circular chromosome, with 28.2% of G+C content. A total of 782 coding DNA sequences (CDSs, and 6 rRNA and 32 tRNA genes were predicted and annotated. The metabolic pathways are identical to other human ureaplasmas, including the production of ATP via hydrolysis of the urea. Genes related to pathogenicity, such as urease, phospholipase, hemolysin, and a Mycoplasma Ig binding protein (MIB-Mycoplasma Ig protease (MIP system were identified. More interestingly, a large number of genes (n = 40 encoding surface molecules were annotated in the genome (lipoproteins, multiple-banded antigen like protein, membrane nuclease lipoprotein and variable surface antigens lipoprotein. In addition, a gene encoding glycosyltransferase was also found. This enzyme has been associated with the production of capsule in mycoplasmas and ureaplasma. We then sought to detect the presence of a capsule in this organism. A polysaccharide capsule from 11 to 17 nm of U. diversum was observed trough electron microscopy and using specific dyes. This structure contained arabinose, xylose, mannose, galactose and glucose. In order to understand the inflammatory response against these surface molecules, we evaluated the response of murine macrophages J774 against viable and non-viable U. diversum. As with viable bacteria, non-viable bacteria were capable of promoting a significant inflammatory response by activation of Toll like receptor 2 (TLR2, indicating that surface molecules are important for the activation of inflammatory response. Furthermore, a cascade of genes related to the inflammasome pathway of macrophages was also up-regulated during infection with viable organisms when compared to non-infected cells. In conclusion, U. diversum has a typical ureaplasma genome and

  12. Ureaplasma diversum Genome Provides New Insights about the Interaction of the Surface Molecules of This Bacterium with the Host.

    Science.gov (United States)

    Marques, Lucas M; Rezende, Izadora S; Barbosa, Maysa S; Guimarães, Ana M S; Martins, Hellen B; Campos, Guilherme B; do Nascimento, Naíla C; Dos Santos, Andrea P; Amorim, Aline T; Santos, Verena M; Farias, Sávio T; Barrence, Fernanda  C; de Souza, Lauro M; Buzinhani, Melissa; Arana-Chavez, Victor E; Zenteno, Maria E; Amarante-Mendes, Gustavo P; Messick, Joanne B; Timenetsky, Jorge

    2016-01-01

    Whole genome sequencing and analyses of Ureaplasma diversum ATCC 49782 was undertaken as a step towards understanding U. diversum biology and pathogenicity. The complete genome showed 973,501 bp in a single circular chromosome, with 28.2% of G+C content. A total of 782 coding DNA sequences (CDSs), and 6 rRNA and 32 tRNA genes were predicted and annotated. The metabolic pathways are identical to other human ureaplasmas, including the production of ATP via hydrolysis of the urea. Genes related to pathogenicity, such as urease, phospholipase, hemolysin, and a Mycoplasma Ig binding protein (MIB)-Mycoplasma Ig protease (MIP) system were identified. More interestingly, a large number of genes (n = 40) encoding surface molecules were annotated in the genome (lipoproteins, multiple-banded antigen like protein, membrane nuclease lipoprotein and variable surface antigens lipoprotein). In addition, a gene encoding glycosyltransferase was also found. This enzyme has been associated with the production of capsule in mycoplasmas and ureaplasma. We then sought to detect the presence of a capsule in this organism. A polysaccharide capsule from 11 to 17 nm of U. diversum was observed trough electron microscopy and using specific dyes. This structure contained arabinose, xylose, mannose, galactose and glucose. In order to understand the inflammatory response against these surface molecules, we evaluated the response of murine macrophages J774 against viable and non-viable U. diversum. As with viable bacteria, non-viable bacteria were capable of promoting a significant inflammatory response by activation of Toll like receptor 2 (TLR2), indicating that surface molecules are important for the activation of inflammatory response. Furthermore, a cascade of genes related to the inflammasome pathway of macrophages was also up-regulated during infection with viable organisms when compared to non-infected cells. In conclusion, U. diversum has a typical ureaplasma genome and metabolism, and

  13. Efficient Synthesis of Ir-Polyoxometalate Cluster Using a Continuous Flow Apparatus and STM Investigation of Its Coassembly Behavior on HOPG Surface.

    Science.gov (United States)

    Zhang, Junyong; Chang, Shaoqing; Suryanto, Bryan H R; Gong, Chunhua; Zeng, Xianghua; Zhao, Chuan; Zeng, Qingdao; Xie, Jingli

    2016-06-06

    Taking advantage of a continuous-flow apparatus, the iridium(III)-containing polytungstate cluster K12Na2H2[Ir2Cl8P2W20O72]·37H2O (1) was obtained in a reasonable yield (13% based on IrCl3·H2O). Compound 1 was characterized by Fourier transform IR, UV-visible, (31)P NMR, electrospray ionization mass spectrometry (ESI-MS), and thermogravimetric analysis measurements. (31)P NMR, ESI-MS, and elemental analysis all indicated 1 was a new polytungstate cluster compared with the reported K14[(IrCl4)KP2W20O72] compound. Intriguingly, the successful isolation of 1 relied on the custom-built flow apparatus, demonstrating the uniqueness of continuous-flow chemistry to achieve crystalline materials. The catalytic properties of 1 were assessed by investigating the activity on catalyzing the electro-oxidation of ruthenium tris-2,2'-bipyridine [Ru(bpy)3](2+/3+). The voltammetric behavior suggested a coupled catalytic behavior between [Ru(bpy)3](3+/2+) and 1. Furthermore, on the highly oriented pyrolytic graphite surface, 1,3,5-tris(10-carboxydecyloxy) benzene (TCDB) was used as the two-dimensional host network to coassemble cluster 1; the surface morphology was observed by scanning tunneling microscope technique. "S"-shape of 1 was observed, indicating that the cluster could be accommodated in the cavity formed by two TCDB host molecules, leading to a TCDB/cluster binary structure.

  14. Structural study of CH4, CO2 and H2O clusters containing from several tens to several thousands of molecules

    Science.gov (United States)

    Torchet, G.; Farges, J.; de Feraudy, M. F.; Raoult, B.

    Clusters are produced during the free jet expansion of gaseous CH4, CO2 or H2O. For a given stagnation temperature To, the mean cluster size is easily increased by increasing the stagnation pressure p0. On the other hand, the cluster temperature does not depend on stagnation conditions but mainly on properties of the condensed gas. An electron diffraction analysis provides information about the cluster structure. Depending on whether the diffraction patterns exhibit crystalline lines or not, the structure is worked out either by using crystallographic methods or by constructing cluster models. When they contain more than a few thousand molecules, clusters show a crystalline structure identical to that of one phase, namely, the cubic phase, known in bulk solid: plastic phase (CH4), unique solid phase (CO2) or metastable cubic phase (H2O). When decreasing the cluster size, the studied compounds behave quite differently: CO2 clusters keep the same crystalline structure, CH4 clusters show the multilayer icosahedral structure wich has been found in rare gas clusters, and H2O clusters adopt a disordered structure different from the amorphous structures of bulk ice. Des agrégats sont produits au cours de la détente en jet libre des gaz CH4, CO2 ou H2O. Pour une température initiale donnée To, on accroît facilement la taille moyenne des agrégats en augmentant la pression initiale po . Par contre, la température des agrégats dépend principalement des propriétés du gaz condensé. Une analyse par diffraction électronique permet l'étude de la structure des agrégats. Selon que les diagrammes de diffraction contiennent ou non des raies cristallines, on a recours soit à des méthodes cristallographiques soit à la construction de modèles d'agrégats. Lorsqu'ils renferment plus de quelques milliers de molécules, les agrégats adoptent la structure cristalline de l'une des phases connues du solide massif et plus précisément la phase cubique : phase plastique pour

  15. Conserved water molecules in bacterial serine hydroxymethyltransferases.

    Science.gov (United States)

    Milano, Teresa; Di Salvo, Martino Luigi; Angelaccio, Sebastiana; Pascarella, Stefano

    2015-10-01

    Water molecules occurring in the interior of protein structures often are endowed with key structural and functional roles. We report the results of a systematic analysis of conserved water molecules in bacterial serine hydroxymethyltransferases (SHMTs). SHMTs are an important group of pyridoxal-5'-phosphate-dependent enzymes that catalyze the reversible conversion of l-serine and tetrahydropteroylglutamate to glycine and 5,10-methylenetetrahydropteroylglutamate. The approach utilized in this study relies on two programs, ProACT2 and WatCH. The first software is able to categorize water molecules in a protein crystallographic structure as buried, positioned in clefts or at the surface. The other program finds, in a set of superposed homologous proteins, water molecules that occur approximately in equivalent position in each of the considered structures. These groups of molecules are referred to as 'clusters' and represent structurally conserved water molecules. Several conserved clusters of buried or cleft water molecules were found in the set of 11 bacterial SHMTs we took into account for this work. The majority of these clusters were not described previously. Possible structural and functional roles for the conserved water molecules are envisaged. This work provides a map of the conserved water molecules helpful for deciphering SHMT mechanism and for rational design of molecular engineering experiments. © The Author 2015. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  16. Comparison of Degrees of Potential-Energy-Surface Anharmonicity for Complexes and Clusters with Hydrogen Bonds

    Science.gov (United States)

    Kozlovskaya, E. N.; Doroshenko, I. Yu.; Pogorelov, V. E.; Vaskivskyi, Ye. V.; Pitsevich, G. A.

    2018-01-01

    Previously calculated multidimensional potential-energy surfaces of the MeOH monomer and dimer, water dimer, malonaldehyde, formic acid dimer, free pyridine-N-oxide/trichloroacetic acid complex, and protonated water dimer were analyzed. The corresponding harmonic potential-energy surfaces near the global minima were constructed for series of clusters and complexes with hydrogen bonds of different strengths based on the behavior of the calculated multidimensional potential-energy surfaces. This enabled the introduction of an obvious anharmonicity parameter for the calculated potential-energy surfaces. The anharmonicity parameter was analyzed as functions of the size of the analyzed area near the energy minimum, the number of points over which energies were compared, and the dimensionality of the solved vibrational problem. Anharmonicity parameters for potential-energy surfaces in complexes with strong, medium, and weak H-bonds were calculated under identical conditions. The obtained anharmonicity parameters were compared with the corresponding diagonal anharmonicity constants for stretching vibrations of the bridging protons and the lengths of the hydrogen bridges.

  17. School playground surfacing and arm fractures in children: a cluster randomized trial comparing sand to wood chip surfaces.

    Directory of Open Access Journals (Sweden)

    Andrew W Howard

    2009-12-01

    Full Text Available The risk of playground injuries, especially fractures, is prevalent in children, and can result in emergency room treatment and hospital admissions. Fall height and surface area are major determinants of playground fall injury risk. The primary objective was to determine if there was a difference in playground upper extremity fracture rates in school playgrounds with wood fibre surfacing versus granite sand surfacing. Secondary objectives were to determine if there were differences in overall playground injury rates or in head injury rates in school playgrounds with wood fibre surfacing compared to school playgrounds with granite sand surfacing.The cluster randomized trial comprised 37 elementary schools in the Toronto District School Board in Toronto, Canada with a total of 15,074 students. Each school received qualified funding for installation of new playground equipment and surfacing. The risk of arm fracture from playground falls onto granitic sand versus onto engineered wood fibre surfaces was compared, with an outcome measure of estimated arm fracture rate per 100,000 student-months. Schools were randomly assigned by computer generated list to receive either a granitic sand or an engineered wood fibre playground surface (Fibar, and were not blinded. Schools were visited to ascertain details of the playground and surface actually installed and to observe the exposure to play and to periodically monitor the depth of the surfacing material. Injury data, including details of circumstance and diagnosis, were collected at each school by a prospective surveillance system with confirmation of injury details through a validated telephone interview with parents and also through collection (with consent of medical reports regarding treated injuries. All schools were recruited together at the beginning of the trial, which is now closed after 2.5 years of injury data collection. Compliant schools included 12 schools randomized to Fibar that installed

  18. A first principles investigation of the oxygen adsorption on Zr(0001) surface using cluster expansions

    Science.gov (United States)

    Samin, Adib J.; Taylor, Christopher D.

    2017-11-01

    The design of corrosion resistant zircalloys is important for a variety of technological applications ranging from medicine to the nuclear industry. Since corrosion resistance is mainly attributed to the formation of a surface oxide layer, developing a detailed understanding of this process may assist in future corrosion resistance design. In this work, we conduct a systematic multi-scale investigation of the early stages of oxide formation. This was accomplished by first using a database of fully relaxed DFT calculations to build a cluster-expansion description of the potential function. The developed potential was reasonably good at predicting DFT energies as evidenced by the cross-validation score of 4.4 meV/site. The effective cluster expansion parameters were indicative of repulsive adsorbate interactions in the adlayer in agreement with the literature. The potential then allowed for a systematic investigation of the oxygen configurations on the Zr(0001) surface via Monte Carlo simulations. The adsorption energy was recorded as a function of coverage and an increasing trend was observed in agreement with DFT predictions and the repulsive nature of interactions in the adlayer. The convex hull diagram was recorded indicating the most stable configuration to occur around a coverage of 0.6 ML. The adsorption isotherm was also recorded and contrasted for two temperatures relevant for different applications.

  19. Electrochemistry of Single Metalloprotein and DNA‐Based Molecules at Au(111) Electrode Surfaces

    DEFF Research Database (Denmark)

    Salvatore, Princia; Zeng, Dongdong; Karlsen, Kasper Kannegård

    2013-01-01

    We have briefly overviewed recent efforts in the electrochemistry of single transition metal complex, redox metalloprotein, and redox‐marked oligonucleotide (ON) molecules. We have particularly studied self‐assembled molecular monolayers (SAMs) of several 5′‐C6‐SH single‐ (ss) and double‐strand (...

  20. DNA Origami Directed Au Nanostar Dimers for Single-Molecule Surface-Enhanced Raman Scattering.

    Science.gov (United States)

    Tanwar, Swati; Haldar, Krishna Kanta; Sen, Tapasi

    2017-12-06

    We demonstrate the synthesis of Au nanostar dimers with tunable interparticle gap and controlled stoichiometry assembled on DNA origami. Au nanostars with uniform and sharp tips were immobilized on rectangular DNA origami dimerized structures to create nanoantennas containing monomeric and dimeric Au nanostars. Single Texas red (TR) dye was specifically attached in the junction of the dimerized origami to act as a Raman reporter molecule. The SERS enhancement factors of single TR dye molecules located in the conjunction region in dimer structures having interparticle gaps of 7 and 13 nm are 2 × 10 10 and 8 × 10 9 , respectively, which are strong enough for single analyte detection. The highly enhanced electromagnetic field generated by the plasmon coupling between sharp tips and cores of two Au nanostars in the wide conjunction region allows the accommodation and specific detection of large biomolecules. Such DNA-directed assembled nanoantennas with controlled interparticle separation distance and stoichiometry, and well-defined geometry, can be used as excellent substrates in single-molecule SERS spectroscopy and will have potential applications as a reproducible platform in single-molecule sensing.

  1. Isolated single-molecule magnets on native gold.

    Science.gov (United States)

    Zobbi, Laura; Mannini, Matteo; Pacchioni, Mirko; Chastanet, Guillaume; Bonacchi, Daniele; Zanardi, Chiara; Biagi, Roberto; Del Pennino, Umberto; Gatteschi, Dante; Cornia, Andrea; Sessoli, Roberta

    2005-03-28

    The incorporation of thioether groups in the structure of a Mn12 single-molecule magnet, [Mn12(O12)(L)16(H2O)4] with L = 4-(methylthio)benzoate, is a successful route to the deposition of well-separated clusters on native gold surfaces and to the addressing of individual molecules by scanning tunnelling microscopy.

  2. Expansion Hamiltonian model for a diatomic molecule adsorbed on a surface: Vibrational states of the CO/Cu(100) system including surface vibrations

    Energy Technology Data Exchange (ETDEWEB)

    Meng, Qingyong, E-mail: mengqingyong@dicp.ac.cn [State Key Laboratory of Molecular Reaction Dynamics, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Zhongshan Road 457, 116023 Dalian (China); Meyer, Hans-Dieter, E-mail: hans-dieter.meyer@pci.uni-heidelberg.de [Theoretische Chemie, Physikalisch-Chemisches Institut, Ruprecht-Karls Universität Heidelberg, Im Neuenheimer Feld 229, D-69120 Heidelberg (Germany)

    2015-10-28

    Molecular-surface studies are often done by assuming a corrugated, static (i.e., rigid) surface. To be able to investigate the effects that vibrations of surface atoms may have on spectra and cross sections, an expansion Hamiltonian model is proposed on the basis of the recently reported [R. Marquardt et al., J. Chem. Phys. 132, 074108 (2010)] SAP potential energy surface (PES), which was built for the CO/Cu(100) system with a rigid surface. In contrast to other molecule-surface coupling models, such as the modified surface oscillator model, the coupling between the adsorbed molecule and the surface atoms is already included in the present expansion SAP-PES model, in which a Taylor expansion around the equilibrium positions of the surface atoms is performed. To test the quality of the Taylor expansion, a direct model, that is avoiding the expansion, is also studied. The latter, however, requests that there is only one movable surface atom included. On the basis of the present expansion and direct models, the effects of a moving top copper atom (the one to which CO is bound) on the energy levels of a bound CO/Cu(100) system are studied. For this purpose, the multiconfiguration time-dependent Hartree calculations are carried out to obtain the vibrational fundamentals and overtones of the CO/Cu(100) system including a movable top copper atom. In order to interpret the results, a simple model consisting of two coupled harmonic oscillators is introduced. From these calculations, the vibrational levels of the CO/Cu(100) system as function of the frequency of the top copper atom are discussed.

  3. Nonadiabatic effects on surfaces: Kohn anomaly, electronic damping of adsorbate vibrations, and local heating of single molecules

    International Nuclear Information System (INIS)

    Kroeger, J

    2008-01-01

    Three aspects of electron-phonon coupling at metal surfaces are reviewed. One aspect is the Kohn effect, which describes an anomalous dispersion relation of surface phonons due to quasi-one-dimensional nesting of Fermi surface contours. The combination of electron energy loss spectroscopy and angle-resolved photoelectron spectroscopy allows us to unambiguously characterize Kohn anomaly systems. A second aspect is the nonadiabatic damping of adsorbate vibrations. Characteristic spectroscopic line shapes of vibrational modes allow us to estimate the amount of energy transfer between the vibrational mode and electron-hole pairs. Case studies of a Kohn anomaly and nonadiabatic damping are provided by the hydrogen- and deuterium-covered Mo(110) surface. As a third aspect of interaction between electrons and phonons, local heating of a C 60 molecule adsorbed on Cu(100) and in contact with the tip of a scanning tunnelling microscope is covered

  4. Osmium Atoms and Os2 Molecules Move Faster on Selenium-Doped Compared to Sulfur-Doped Boronic Graphenic Surfaces.

    Science.gov (United States)

    Barry, Nicolas P E; Pitto-Barry, Anaïs; Tran, Johanna; Spencer, Simon E F; Johansen, Adam M; Sanchez, Ana M; Dove, Andrew P; O'Reilly, Rachel K; Deeth, Robert J; Beanland, Richard; Sadler, Peter J

    2015-07-28

    We deposited Os atoms on S- and Se-doped boronic graphenic surfaces by electron bombardment of micelles containing 16e complexes [Os(p-cymene)(1,2-dicarba-closo-dodecarborane-1,2-diselenate/dithiolate)] encapsulated in a triblock copolymer. The surfaces were characterized by energy-dispersive X-ray (EDX) analysis and electron energy loss spectroscopy of energy filtered TEM (EFTEM). Os atoms moved ca. 26× faster on the B/Se surface compared to the B/S surface (233 ± 34 pm·s(-1) versus 8.9 ± 1.9 pm·s(-1)). Os atoms formed dimers with an average Os-Os distance of 0.284 ± 0.077 nm on the B/Se surface and 0.243 ± 0.059 nm on B/S, close to that in metallic Os. The Os2 molecules moved 0.83× and 0.65× more slowly than single Os atoms on B/S and B/Se surfaces, respectively, and again markedly faster (ca. 20×) on the B/Se surface (151 ± 45 pm·s(-1) versus 7.4 ± 2.8 pm·s(-1)). Os atom motion did not follow Brownian motion and appears to involve anchoring sites, probably S and Se atoms. The ability to control the atomic motion of metal atoms and molecules on surfaces has potential for exploitation in nanodevices of the future.

  5. Effect of nontronite smectite clay on the chemical evolution of several organic molecules under simulated martian surface ultraviolet radiation conditions.

    Science.gov (United States)

    Poch, Olivier; Jaber, Maguy; Stalport, Fabien; Nowak, Sophie; Georgelin, Thomas; Lambert, Jean-François; Szopa, Cyril; Coll, Patrice

    2015-03-01

    Most of the phyllosilicates detected at the surface of Mars today are probably remnants of ancient environments that sustained long-term bodies of liquid water at the surface or subsurface and were possibly favorable for the emergence of life. Consequently, phyllosilicates have become the main mineral target in the search for organics on Mars. But are phyllosilicates efficient at preserving organic molecules under current environmental conditions at the surface of Mars? We monitored the qualitative and quantitative evolutions of glycine, urea, and adenine in interaction with the Fe(3+)-smectite clay nontronite, one of the most abundant phyllosilicates present at the surface of Mars, under simulated martian surface ultraviolet light (190-400 nm), mean temperature (218 ± 2 K), and pressure (6 ± 1 mbar) in a laboratory simulation setup. We tested organic-rich samples that were representative of the evaporation of a small, warm pond of liquid water containing a high concentration of organics. For each molecule, we observed how the nontronite influences its quantum efficiency of photodecomposition and the nature of its solid evolution products. The results reveal a pronounced photoprotective effect of nontronite on the evolution of glycine and adenine; their efficiencies of photodecomposition were reduced by a factor of 5 when mixed at a concentration of 2.6 × 10(-2) mol of molecules per gram of nontronite. Moreover, when the amount of nontronite in the sample of glycine was increased by a factor of 2, the gain of photoprotection was multiplied by a factor of 5. This indicates that the photoprotection provided by the nontronite is not a purely mechanical shielding effect but is also due to stabilizing interactions. No new evolution product was firmly identified, but the results obtained with urea suggest a particular reactivity in the presence of nontronite, leading to an increase of its dissociation rate.

  6. Density functional study of TaSin (n = 1-3, 12) clusters adsorbed to graphene surface

    International Nuclear Information System (INIS)

    Guo Ping; Zheng Lin; Zheng Jiming; Zhang Ruizhi; Yang Luna; Ren, Zhaoyu

    2011-01-01

    A plane-wave density functional theory (DFT) calculations have been performed to investigate structural and electronic properties of TaSi n (n = 1-3, 12) clusters supported by graphene surface. The resulting adsorption structures are described and discussed in terms of stability, bonding, and electron transfer between the cluster and the graphene. The TaSi n clusters on graphene surface favor their free-standing ground-state structures. Especially in the cases of the linear TaSi 2 and the planar TaSi 3 , the graphene surface may catalyze the transition of the TaSi n clusters from an isomer of lower dimensionality into the ground-state structure. The adsorption site and configuration of TaSi n on graphene surface are dominated by the interaction between Ta atom and graphene. Ta atom prefers to adsorb on the hollow site of graphene, and Si atoms tend to locate on the bridge site. Further, the electron transfer is found to proceed from the cluster to the surface for n = 1 and 2, while its direction reverses as n > 2. For the case of TaSi, chemisorption is shown to prevail over physisorption as the dominant mode of surface-adsorbate interaction by charge density analysis.

  7. Influence of the water molecules near surface of viral protein on virus activation process

    Energy Technology Data Exchange (ETDEWEB)

    O, Shepelenko S; S, Salnikov A; V, Rak S; P, Goncharova E; B, Ryzhikov A, E-mail: shep@vector.nsc.r, E-mail: shep@ngs.r [Federal State Research Institution State Research Center of Virology and Biotechnology VECTOR of the Federal Service for Surveillance in Consumer Rights Protection and Human Well-being (FSRI SRC VB VECTOR) Koltsovo, Novosibirsk Region (Russian Federation)

    2009-06-01

    The infection of a cell with influenza virus comprises the stages of receptor binding to the cell membrane, endocytosis of virus particle, and fusion of the virus envelope and cell endosome membrane, which is determined by the conformational changes in hemagglutinin, a virus envelope protein, caused by pH decrease within the endosome. The pH value that induces conformation rearrangements of hemagglutinin molecule considerably varies for different influenza virus strains, first and foremost, due to the differences in amino acid structure of the corresponding proteins. The main goal of this study was to construct a model making it possible to assess the critical pH value characterizing the fusogenic activity of influenza virus hemagglutinin from the data on hemagglutinin structure and experimental verification of this model. Under this model, we assume that when the electrostatic force between interacting hemagglutinin molecules in the virus envelop exceeds a certain value, the hemagglutinin HA1 subunits are arranged so that they form a cavity sufficient for penetration of water molecules. This event leads to an irreversible hydration of the inner fragments of hemagglutinin molecule in a trimer and to the completion of conformational changes. The geometry of electrostatic field in hemagglutinin trimer was calculated taking into account the polarization effects near the interface of two dielectrics, aqueous medium and protein macromolecule. The critical pH values for the conformational changes in hemagglutinin were measured by the erythrocyte hemolysis induced by influenza virus particles when decreasing pH. The critical pH value conditionally separating the pH range into the regions with and without the conformational changes was calculated for several influenza virus H1N1 and H3N2 strains based on the data on the amino acid structure of the corresponding hemagglutinin molecules. Comparison of the theoretical and experimental values of critical pH values for

  8. Spinterface between tris(8-hydroxyquinoline)metal(III) molecules and magnetic surfaces: a first-principles study

    Science.gov (United States)

    Jiang, W.; Wang, Jingying; Dougherty, Daniel; Liu, Feng; Feng Liu Team; Daniel Dougherty Team

    Using first-principles calculations, we have systematically investigated the hybridization between tris(8-hydroxyquinoline)metal(III) (Mq3, M = Fe, Cr, Al) molecules and magnetic substrates (Co and Cr). Mq3 with different central metal elements but the same organic framework has dramatically different interaction with different magnetic substrates, which affect the interface state significantly. AFM coupling was observed between magnetic Mq3 molecules and ferromagnetic (Co) as well as antiferromagnetic (Cr) substrate, manifested with a superexchange and direct exchange interaction, respectively. Such strong magnetic interfacial coupling may open a gap around the Fermi level and significantly change interface transport properties. Nonmagnetic Alq3 molecule was found to enhance the interface spin polarization due to hybridization between the lowest unoccupied molecular orbitals (LUMO) of Alq3 and metallic surface state. These findings will help better understand spinterface and shed new light on future application of Mq3 molecules in spintronics devices. This work was support by NSF-MRSEC (DMR-1121252) and DOE-BES (DE-FG02-04ER46148).

  9. Electronic and magnetic properties of Mn{sub 12} single-molecule magnets on the Au(111) surface

    Energy Technology Data Exchange (ETDEWEB)

    Voss, Soenke; Burgert, Michael; Fonin, Mikhail; Groth, Ulrich; Ruediger, Ulrich [Universitaet Konstanz (Germany); Michaelis, Christian; Brihuega, Ivan; Kern, Klaus [Max-Planck-Institut fuer Festkoerperforschung, Stuttgart (Germany); Dedkov, Yury S. [Institut fuer Festkoerperphysik, Technische Universitaet Dresden (Germany)

    2008-07-01

    The paramount interest in single-molecule magnets (SMMs) like Mn{sub 12}-acetate and its derivatives was inspired by numerous experimental and theoretical insights indicating the feasibility of addressing quantum effects of magnetism on a molecular scale. Due to its relatively high blocking temperature ({proportional_to}3 K) combined with the ability to identify well-defined spin states, Mn{sub 12} still remains the most favoured SMM possibly allowing the detection of magnetic fingerprints in transport properties of a single molecule. In this work, the electronic properties of Mn{sub 12} molecules chemically grafted on Au(111) surfaces have been studied by means of low temperature as well as room temperature scanning tunneling microscopy and spectroscopy (STS), X-ray absorption spectroscopy and photoelectron spectroscopy. The results revealed signatures from most probably intact Mn{sub 12} molecules while STS measurements in magnetic fields indicate the possibility to identify magnetic fingerprints in scanning tunneling spectra. The results will be discussed with respect to previous attempts to perform transport measurements on Mn{sub 12} SMMs.

  10. Metallic nanocone array photonic substrate for high-uniformity surface deposition and optical detection of small molecules

    International Nuclear Information System (INIS)

    Coppe, Jean-Philippe; Xu Zhida; Chen Yi; Logan Liu, G

    2011-01-01

    Molecular probe arrays printed on solid surfaces such as DNA, peptide, and protein microarrays are widely used in chemical and biomedical applications especially genomic and proteomic studies (Pollack et al 1999 Nat. Genet. 23 41-6, Houseman et al 2002 Nat. Biotechnol. 20 270-4, Sauer et al 2005 Nat. Rev. Genet. 6 465-76) as well as surface imaging and spectroscopy (Mori et al 2008 Anal. Biochem. 375 223-31, Liu et al 2006 Nat. Nanotechnol. 1 47-52, Liu 2010 IEEE J. Sel. Top. Quantum Electron. 16 662-71). Unfortunately the printed molecular spots on solid surfaces often suffer low distribution uniformity due to the lingering 'coffee stain' (Deegan et al 1997 Nature 389 827-9) problem of molecular accumulations and blotches, especially around the edge of deposition spots caused by solvent evaporation and convection processes. Here we present, without any surface chemistry modification, a unique solid surface of high-aspect-ratio silver-coated silicon nanocone arrays that allows highly uniform molecular deposition and thus subsequent uniform optical imaging and spectroscopic molecular detection. Both fluorescent Rhodamine dye molecules and unlabeled oligopeptides are printed on the metallic nanocone photonic substrate surface as circular spot arrays. In comparison with the printed results on ordinary glass slides and silver-coated glass slides, not only high printing density but uniform molecular distribution in every deposited spot is achieved. The high-uniformity and repeatability of molecular depositions on the 'coffee stain'-free nanocone surface is confirmed by laser scanning fluorescence imaging and surface enhanced Raman imaging experiments. The physical mechanism for the uniform molecular deposition is attributed to the superhydrophobicity and localized pinned liquid-solid-air interface on the silver-coated silicon nanocone surface. The unique surface properties of the presented nanocone surface enabled high-density, high-uniformity probe spotting beneficial

  11. Cell surface and gene expression regulation molecules in dystrophinopathy: mdx vs. Duchenne

    Directory of Open Access Journals (Sweden)

    RICARDO FADIC

    2005-01-01

    Full Text Available Duchenne muscular dystrophy (DMD is secondary to loss-of-function mutations in the dystrophin gene. The causes underlying the progression of DMD, differential muscle involvement, and the discrepancies in phenotypes among species with the same genetic defect are not understood. The mdx mouse, an animal model with dystrophin mutation, has a milder phenotype. This article reviews the available information on expression of signaling-related molecules in DMD and mdx. Extracellular matrix proteoglycans, growth factors, integrins, caveolin-3, and neuronal nitric oxide synthase expression do not show significant differences. Calcineurin is inconsistently activated in mdx, which is associated with lack of cardiomyopathy, compared to the permanent calcineurin activation in mdx/utrophin null mice that have a DMD-like cardiomyopathy. Levels of focal adhesion kinase (FAK and extracellular regulated kinases (ERKs differ among mdx and DMD. Further work is needed to identify the point of discrepancy in these signaling molecules' pathways in dystrophynopathies.

  12. Coupled cluster calculations of mean excitation energies of the noble gas atoms He, Ne and Ar and of the H2 molecule

    DEFF Research Database (Denmark)

    Sauer, Stephan P. A.; Ul Haq, Inam; Sabin, John R.

    2014-01-01

    by about 1%. For the two-electron systems He and H2, our CCSD results (for a Lanczos chain length equal to the full excitation space), I0 = 42:28 eV (Helium) and I0 = 19:62 eV (H2), correspond to full conguration interaction results and are therefore the exact, non-relativistic theoretical values......Using an asymmetric-Lanczos-chain algorithm for the calculation of the coupled cluster linear response functions at the CCSD and CC2 levels of approximation, we have calculated the mean excitation energies of the noble gases He, Ne and Ar, and of the hydrogen molecule H2. Convergence with respect...... for the mean excitation energy of these two systems within the Bethe theory for the chosen basis set and, in the case of H2, at the experimental equilibrium geometry....

  13. Inelastic transitions of atoms and molecules induced by van der Waals interaction with a surface

    International Nuclear Information System (INIS)

    Baudon, J.; Hamamda, M.; Boustimi, M.; Bocvarski, V.; Taillandier-Loize, T.; Dutier, G.; Perales, F.; Ducloy, M.

    2012-01-01

    Inelastic processes occuring in thermal-velocity metastable atoms and molecules passing at a mean distance (1–100 nm) are investigated. These processes are caused by the quadrupolar part of the van der Waals interaction: fine-structure transitions in atoms (Ar ∗ , Kr ∗ ), rovibrational transitions in N 2 ∗ ( 3 Σ u + ), transitions among magnetic sub-levels in the presence of a magnetic field.

  14. Coupling of carbon monoxide molecules over oxygen-defected UO2(111) single crystal and thin film surfaces.

    Science.gov (United States)

    Senanayake, S D; Waterhouse, G I N; Idriss, H; Madey, Theodore E

    2005-11-22

    While coupling reactions of carbon-containing compounds are numerous in organometallic chemistry, they are very rare on well-defined solid surfaces. In this work we show that the reductive coupling of two molecules of carbon monoxide to C2 compounds (acetylene and ethylene) could be achieved on oxygen-defected UO2(111) single crystal and thin film surfaces. This result allows in situ electron spectroscopic investigation of a typical organometallic reaction such as carbon coupling and extends it to heterogeneous catalysis and solids. By using high-resolution photoelectron spectroscopy (HRXPS) it was possible to track the changes in surface states of the U and O atoms as well as identify the intermediate of the reaction. Upon CO adsorption U cations in low oxidation states are oxidized to U4+ ions; this was accompanied by an increase of the O-to-U surface ratios. The HRXPS C 1s lines show the presence of adsorbed species assigned to diolate species (-OCH=CHO-) that are most likely the reaction intermediate in the coupling of two CO molecules to acetylene and ethylene.

  15. Coupling of Carbon Monoxide Molecules over Oxygen Defected UO2 (111) Single Crystal and Thin Film Surfaces

    International Nuclear Information System (INIS)

    Senanayake, S.; Waterhouse, G.; Idriss, H.; Madey, T.

    2005-01-01

    While coupling reactions of carbon-containing compounds are numerous in organometallic chemistry, they are very rare on well-defined solid surfaces. In this work we show that the reductive coupling of two molecules of carbon monoxide to C 2 compounds (acetylene and ethylene) could be achieved on oxygen-defected UO 2 (111) single crystal and thin film surfaces. This result allows in situ electron spectroscopic investigation of a typical organometallic reaction such as carbon coupling and extends it to heterogeneous catalysis and solids. By using high-resolution photoelectron spectroscopy (HRXPS) it was possible to track the changes in surface states of the U and O atoms as well as identify the intermediate of the reaction. Upon CO adsorption U cations in low oxidation states are oxidized to U 4+ ions; this was accompanied by an increase of the O-to-U surface ratios. The HRXPS C 1s lines show the presence of adsorbed species assigned to diolate species (-OCH=CHO-) that are most likely the reaction intermediate in the coupling of two CO molecules to acetylene and ethylene

  16. Revealing dynamically-organized receptor ion channel clusters in live cells by a correlated electric recording and super-resolution single-molecule imaging approach.

    Science.gov (United States)

    Yadav, Rajeev; Lu, H Peter

    2018-03-28

    The N-methyl-d-aspartate (NMDA) receptor ion-channel is activated by the binding of ligands, along with the application of action potential, important for synaptic transmission and memory functions. Despite substantial knowledge of the structure and function, the gating mechanism of the NMDA receptor ion channel for electric on-off signals is still a topic of debate. We investigate the NMDA receptor partition distribution and the associated channel's open-close electric signal trajectories using a combined approach of correlating single-molecule fluorescence photo-bleaching, single-molecule super-resolution imaging, and single-channel electric patch-clamp recording. Identifying the compositions of NMDA receptors, their spatial organization and distributions over live cell membranes, we observe that NMDA receptors are organized inhomogeneously: nearly half of the receptor proteins are individually dispersed; whereas others exist in heterogeneous clusters of around 50 nm in size as well as co-localized within the diffraction limited imaging area. We demonstrate that inhomogeneous interactions and partitions of the NMDA receptors can be a cause of the heterogeneous gating mechanism of NMDA receptors in living cells. Furthermore, comparing the imaging results with the ion-channel electric current recording, we propose that the clustered NMDA receptors may be responsible for the variation in the current amplitude observed in the on-off two-state ion-channel electric signal trajectories. Our findings shed new light on the fundamental structure-function mechanism of NMDA receptors and present a conceptual advancement of the ion-channel mechanism in living cells.

  17. A new experimental setup for high-pressure catalytic activity measurements on surface deposited mass-selected Pt clusters

    International Nuclear Information System (INIS)

    Watanabe, Yoshihide; Isomura, Noritake

    2009-01-01

    A new experimental setup to study catalytic and electronic properties of size-selected clusters on metal oxide substrates from the viewpoint of cluster-support interaction and to formulate a method for the development of heterogeneous catalysts such as automotive exhaust catalysts has been developed. The apparatus consists of a size-selected cluster source, a photoemission spectrometer, a scanning tunneling microscope (STM), and a high-pressure reaction cell. The high-pressure reaction cell measurements provided information on catalytic properties in conditions close to practical use. The authors investigated size-selected platinum clusters deposited on a TiO 2 (110) surface using a reaction cell and STM. Catalytic activity measurements showed that the catalytic activities have a cluster-size dependency.

  18. Single-molecule resolution of protein dynamics on polymeric membrane surfaces: the roles of spatial and population heterogeneity.

    Science.gov (United States)

    Langdon, Blake B; Mirhossaini, Roya B; Mabry, Joshua N; Sriram, Indira; Lajmi, Ajay; Zhang, Yanxia; Rojas, Orlando J; Schwartz, Daniel K

    2015-02-18

    Although polymeric membranes are widely used in the purification of protein pharmaceuticals, interactions between biomolecules and membrane surfaces can lead to reduced membrane performance and damage to the product. In this study, single-molecule fluorescence microscopy provided direct observation of bovine serum albumin (BSA) and human monoclonal antibody (IgG) dynamics at the interface between aqueous buffer and polymeric membrane materials including regenerated cellulose and unmodified poly(ether sulfone) (PES) blended with either polyvinylpyrrolidone (PVP), polyvinyl acetate-co-polyvinylpyrrolidone (PVAc-PVP), or polyethylene glycol methacrylate (PEGM) before casting. These polymer surfaces were compared with model surfaces composed of hydrophilic bare fused silica and hydrophobic trimethylsilane-coated fused silica. At extremely dilute protein concentrations (10(-3)-10(-7) mg/mL), protein surface exchange was highly dynamic with protein monomers desorbing from the surface within ∼1 s after adsorption. Protein oligomers (e.g., nonspecific dimers, trimers, or larger aggregates), although less common, remained on the surface for 5 times longer than monomers. Using newly developed super-resolution methods, we could localize adsorption sites with ∼50 nm resolution and quantify the spatial heterogeneity of the various surfaces. On a small anomalous subset of the adsorption sites, proteins adsorbed preferentially and tended to reside for significantly longer times (i.e., on "strong" sites). Proteins resided for shorter times overall on surfaces that were more homogeneous and exhibited fewer strong sites (e.g., PVAc-PVP/PES). We propose that strong surface sites may nucleate protein aggregation, initiated preferentially by protein oligomers, and accelerate ultrafiltration membrane fouling. At high protein concentrations (0.3-1.0 mg/mL), fewer strong adsorption sites were observed, and surface residence times were reduced. This suggests that at high concentrations

  19. In-Situ Measurement of Chirality of Molecules and Molecular Assemblies with Surface Nonlinear Spectroscopy

    International Nuclear Information System (INIS)

    Wang, Hongfei

    2012-01-01

    Developments in quantitative measurement and analysis in nonlinear surface spectroscopy, namely, second harmonic generation linear dichroism (SHG-LD) and sum frequency generation vibrational spectroscopy linear dichroism (SFG-VS-LD), provide new opportunities for probing the surface chirality of monolayers and thin films. In this book chapter, the up-to-date theoretical background and experimental methodology, as well as examples and future perspectives on the developments with surface nonlinear spectroscopy in surface chirality studies are to be summarized and outlined for general readers.

  20. High Surface Area of Porous Silicon Drives Desorption of Intact Molecules

    Science.gov (United States)

    Northen, Trent R.; Woo, Hin-Koon; Northen, Michael T.; Nordström, Anders; Uritboonthail, Winnie; Turner, Kimberly L.; Siuzdak, Gary

    2007-01-01

    The surface structure of porous silicon used in desorption/ionization on porous silicon (DIOS) mass analysis is known to play a primary role in the desorption/ionization (D/I) process. In this study, mass spectrometry and scanning electron microscopy (SEM) are used to examine the correlation between intact ion generation with surface ablation, and surface morphology. The DIOS process is found to be highly laser energy dependent and correlates directly with the appearance of surface ions (Sin+ and OSiH+). A threshold laser energy for DIOS is observed (10 mJ/cm2), which supports that DIOS is driven by surface restructuring and is not a strictly thermal process. In addition, three DIOS regimes are observed which correspond to surface restructuring and melting. These results suggest that higher surface area silicon substrates may enhance DIOS performance. A recent example which fits into this mechanism is silicon nanowires surface which have a high surface energy and concomitantly requires lower laser energy for analyte desorpton. PMID:17881245

  1. Bayesian optimization for constructing potential energy surfaces of polyatomic molecules with the smallest number of ab initio calculations

    Science.gov (United States)

    Vargas-Hernandez, Rodrigo A.; v Krems, Roman

    2017-04-01

    We examine the application of kernel methods of machine learning for constructing potential energy surfaces (PES) of polyatomic molecules. In particular, we illustrate the application of Bayesian optimization with Gaussian processes as an efficient method for sampling the configuration space of polyatomic molecules. Bayesian optimization relies on two key components: a prior over an objective function and a mechanism for sampling the configuration space. We use Gaussian processes to model the objective function and various acquisition functions commonly used in computer science to quantify the accuracy of sampling. The PES is obtained through an iterative process of adding ab initio points at the locations maximizing the acquisition function and re-trainig the Gaussian process with new points added. We sample different PESs with one or many acquisition functions and show how the acquisition functions affect the construction of the PESs.

  2. On the widths of Stokes lines in Raman scattering from molecules adsorbed at metal surfaces and in molecular conduction junctions

    Energy Technology Data Exchange (ETDEWEB)

    Gao, Yi, E-mail: yig057@ucsd.edu; Galperin, Michael, E-mail: migalperin@ucsd.edu [Department of Chemistry and Biochemistry, University of California San Diego, La Jolla, California 92093 (United States); Nitzan, Abraham, E-mail: nitzan@post.tau.ac.il [Department of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA and School of Chemistry, Tel Aviv University, Tel Aviv 69978 (Israel)

    2016-06-28

    Within a generic model we analyze the Stokes linewidth in surface enhanced Raman scattering (SERS) from molecules embedded as bridges in molecular junctions. We identify four main contributions to the off-resonant Stokes signal and show that under zero voltage bias (a situation pertaining also to standard SERS experiments) and at low bias junctions only one of these contributions is pronounced. The linewidth of this component is determined by the molecular vibrational relaxation rate, which is dominated by interactions with the essentially bosonic thermal environment when the relevant molecular electronic energy is far from the metal(s) Fermi energy(ies). It increases when the molecular electronic level is close to the metal Fermi level so that an additional vibrational relaxation channel due to electron-hole (eh) exciton in the molecule opens. Other contributions to the Raman signal, of considerably broader linewidths, can become important at larger junction bias.

  3. Maleimide-activated aryl diazonium salts for electrode surface functionalization with biological and redox-active molecules.

    Science.gov (United States)

    Harper, Jason C; Polsky, Ronen; Wheeler, David R; Brozik, Susan M

    2008-03-04

    A versatile and simple method is introduced for formation of maleimide-functionalized surfaces using maleimide-activated aryl diazonium salts. We show for the first time electrodeposition of N-(4-diazophenyl)maleimide tetrafluoroborate on gold and carbon electrodes which was characterized via voltammetry, grazing angle FTIR, and ellipsometry. Electrodeposition conditions were used to control film thickness and yielded submonolayer-to-multilayer grafting. The resulting phenylmaleimide surfaces served as effective coupling agents for electrode functionalization with ferrocene and the redox-active protein cytochrome c. The utility of phenylmaleimide diazonium toward formation of a diazonium-activated conjugate, followed by direct electrodeposition of the diazonium-modified DNA onto the electrode surface, was also demonstrated. Effective electron transfer was obtained between immobilized molecules and the electrodes. This novel application of N-phenylmaleimide diazonium may facilitate the development of bioelectronic devices including biofuel cells, biosensors, and DNA and protein microarrays.

  4. Cloning and expression of the receptor for human urokinase plasminogen activator, a central molecule in cell surface, plasmin dependent proteolysis

    DEFF Research Database (Denmark)

    Roldan, A.L.; Cubellis, M.V.; Masucci, M.T.

    1990-01-01

    , and therefore the capacity of cells to migrate and invade neighboring tissues. We have isolated a 1.4 kb cDNA clone coding for the entire human uPAR. An oligonucleotide synthesized on the basis of the N-terminal sequence of the purified protein was used to screen a cDNA library made from SV40 transformed human......, a size very close to that of the cloned cDNA. Expression of the uPAR cDNA in mouse cells confirms that the clone is complete and expresses a functional uPA binding protein, located on the cell surface and with properties similar to the human uPAR. Caseinolytic plaque assay, immunofluorescence analysis......The surface receptor for urokinase plasminogen activator (uPAR) has been recognized in recent years as a key molecule in regulating plasminogen mediated extracellular proteolysis. Surface plasminogen activation controls the connections between cells, basement membrane and extracellular matrix...

  5. Surface self-diffusion of adatom on Pt cluster with truncated octahedron structure

    Energy Technology Data Exchange (ETDEWEB)

    Yang Jianyu, E-mail: wuliyangjianyu@yahoo.com.c [Department of Maths and Physics, Hunan Institute of Engineering, Xiangtan 411104 (China); Hu Wangyu, E-mail: wangyuhu2001@yahoo.com.c [Department of Applied Physics, Hunan University, Changsha 410082 (China); Chen Shuguang [Department of Applied Physics, Hunan University, Changsha 410082 (China)

    2010-05-03

    Surface diffusion of single Pt adatom on Pt cluster with truncated octahedron structure is investigated through a combination of molecular dynamics and nudged elastic band method. Using an embedded atom method to describe the atomic interactions, the minimum energy paths are determined and the energy barriers for adatom diffusion across and along step are evaluated. The diffusion of adatom crossing step edge between {l_brace}111{r_brace} and {l_brace}100{r_brace} facets has a surprisingly low barrier of 0.03 eV, which is 0.12 eV lower than the barrier for adatom diffusion from {l_brace}111{r_brace} to neighboring {l_brace}111{r_brace} facet. Owing to the small barrier of adatom diffusion across the step edge between {l_brace}111{r_brace} and {l_brace}100{r_brace} facets, the diffusion of adatom along the step edge cannot occur. The molecular dynamics simulations at low temperatures also support these results. Our results show that mass transport will prefer step with {l_brace}100{r_brace} microfacet and the Pt clusters can have only {l_brace}111{r_brace} facets in epitaxial growth.

  6. Formation of transition metal cluster adducts on the surface of single-walled carbon nanotubes: HRTEM studies

    KAUST Repository

    Kalinina, Irina V.

    2014-01-01

    We report the formation of chromium clusters on the outer walls of single-walled carbon nanotubes (SWNTs). The clusters were obtained by reacting purified SWNTs with chromium hexacarbonyl in dibutyl ether at 100°C. The functionalized SWNTs were characterized by thermogravimetic analysis, XPS, and high-resolution TEM. The curvature of the SWNTs and the high mobility of the chromium moieties on graphitic surfaces allow the growth of the metal clusters and we propose a mechanism for their formation. © 2014 Taylor and Francis Group, LLC.

  7. Decomposition of SnH{sub 4} molecules on metal and metal–oxide surfaces

    Energy Technology Data Exchange (ETDEWEB)

    Ugur, D. [TNO, Stieltjesweg 1, 2628 CK Delft (Netherlands); Delft University of Technology, Department of Materials Science and Engineering, Mekelweg 2, 2628 CD Delft (Netherlands); Storm, A.J.; Verberk, R. [TNO, Stieltjesweg 1, 2628 CK Delft (Netherlands); Brouwer, J.C. [Delft University of Technology, Department of Materials Science and Engineering, Mekelweg 2, 2628 CD Delft (Netherlands); Sloof, W.G., E-mail: w.g.sloof@tudelft.nl [Delft University of Technology, Department of Materials Science and Engineering, Mekelweg 2, 2628 CD Delft (Netherlands)

    2014-01-01

    Atomic hydrogen cleaning is a promising method for EUV lithography systems, to recover from surface oxidation and to remove carbon and tin contaminants. Earlier studies showed, however, that tin may redeposit on nearby surfaces due to SnH{sub 4} decomposition. This phenomenon of SnH{sub 4} decomposition during tin cleaning has been quantified for various metallic and metal-oxide surfaces using X-ray photoelectron spectroscopy (XPS). It was observed that the metal oxide surfaces (TiO{sub 2} and ZrO{sub 2}) were significantly less contaminated than metallic surfaces. Tin contamination due to SnH{sub 4} decomposition can thus be reduced or even mitigated by application of a suitable metal-oxide coating.

  8. Theoretical Study On The Interaction Between Xenon And Positive Silver Clusters In Gas Phase And On The (001) Chabazite Surface

    International Nuclear Information System (INIS)

    Hunter, D.

    2009-01-01

    A systematic study on the adsorption of xenon on silver clusters in the gas phase and on the (001) surface of silver-exchanged chabazite is reported. Density functional theory at the B3LYP level with the cluster model was employed. The results indicate that the dominant part of the binding is the σ donation, which is the charge transfer from the 5p orbital of Xe to the 5s orbital of Ag and is not the previously suggested d π -d π back-donation. A correlation between the binding energy and the degree of σ donation is found. Xenon was found to bind strongly to silver cluster cations and not to neutral ones. The binding strength decreases as the cluster size increases for both cases, clusters in the gas-phase and on the chabazite surface. The Ag + cation is the strongest binding site for xenon both in gas phase and on the chabazite surface with the binding energies of 73.9 and 14.5 kJ/mol, respectively. The results also suggest that the smaller silver clusters contribute to the negative chemical shifts observed in the 129 Xe NMR spectra in experiments.

  9. Generation of murine tumor cell lines deficient in MHC molecule surface expression using the CRISPR/Cas9 system.

    Directory of Open Access Journals (Sweden)

    Krishna Das

    Full Text Available In this study, the CRISPR/Cas9 technology was used to establish murine tumor cell lines, devoid of MHC I or MHC II surface expression, respectively. The melanoma cell line B16F10 and the murine breast cancer cell line EO-771, the latter stably expressing the tumor antigen NY-BR-1 (EO-NY, were transfected with an expression plasmid encoding a β2m-specific single guide (sgRNA and Cas9. The resulting MHC I negative cells were sorted by flow cytometry to obtain single cell clones, and loss of susceptibility of peptide pulsed MHC I negative clones to peptide-specific CTL recognition was determined by IFNγ ELISpot assay. The β2m knockout (KO clones did not give rise to tumors in syngeneic mice (C57BL/6N, unless NK cells were depleted, suggesting that outgrowth of the β2m KO cell lines was controlled by NK cells. Using sgRNAs targeting the β-chain encoding locus of the IAb molecule we also generated several B16F10 MHC II KO clones. Peptide loaded B16F10 MHC II KO cells were insusceptible to recognition by OT-II cells and tumor growth was unaltered compared to parental B16F10 cells. Thus, in our hands the CRISPR/Cas9 system has proven to be an efficient straight forward strategy for the generation of MHC knockout cell lines. Such cell lines could serve as parental cells for co-transfection of compatible HLA alleles together with human tumor antigens of interest, thereby facilitating the generation of HLA matched transplantable tumor models, e.g. in HLAtg mouse strains of the newer generation, lacking cell surface expression of endogenous H2 molecules. In addition, our tumor cell lines established might offer a useful tool to investigate tumor reactive T cell responses that function independently from MHC molecule surface expression by the tumor.

  10. Gold Cluster Diffusion Kinetics on Stoichiometric and Reduced Surfaces of Rutile TiO 2 (110)

    Energy Technology Data Exchange (ETDEWEB)

    Goldman, Nir; Browning, Nigel D.

    2011-06-16

    Gold clusters on rutile TiO2 are known to serve as efficient oxidation catalysts for pollutants and environmental contaminants. However, the mechanism by which highly mobile small clusters migrate and aggregate into larger species relevant to gold’s catalytic activity remains unresolved. We report herein on ab initio simulations of the diffusion of atomic gold clusters up to the trimer on rutile TiO2(110) surfaces. We show that, on the stoichiometric surface, both the dimer and the trimer can exhibit relatively low surface mobility due to high energetic barriers for diffusion out of their energetic minima coupled with low barriers for the reverse motion. On the reduced surface, these clusters can diffuse relatively quickly between energetic minima within the oxygen vacancy site due to the large degree of vibrational entropy in their transition states. Our computed diffusion times provide a point of comparison for future experiments and will aid in development of models of gold cluster island sintering.

  11. 3D nanostar dimers with a sub-10-nm gap for single-/few-molecule surface-enhanced raman scattering

    KAUST Repository

    Chirumamilla, Manohar

    2014-01-22

    Plasmonic nanostar-dimers, decoupled from the substrate, have been fabricated by combining electron-beam lithography and reactive-ion etching techniques. The 3D architecture, the sharp tips of the nanostars and the sub-10 nm gap size promote the formation of giant electric-field in highly localized hot-spots. The single/few molecule detection capability of the 3D nanostar-dimers has been demonstrated by Surface-Enhanced Raman Scattering. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  12. 3D nanostar dimers with a sub-10-nm gap for single-/few-molecule surface-enhanced raman scattering

    KAUST Repository

    Chirumamilla, Manohar; Toma, Andrea; Gopalakrishnan, Anisha; Das, Gobind; Proietti Zaccaria, Remo; Krahne, Roman; Rondanina, Eliana; Leoncini, Marco; Liberale, Carlo; De Angelis, Francesco De; Di Fabrizio, Enzo M.

    2014-01-01

    Plasmonic nanostar-dimers, decoupled from the substrate, have been fabricated by combining electron-beam lithography and reactive-ion etching techniques. The 3D architecture, the sharp tips of the nanostars and the sub-10 nm gap size promote the formation of giant electric-field in highly localized hot-spots. The single/few molecule detection capability of the 3D nanostar-dimers has been demonstrated by Surface-Enhanced Raman Scattering. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  13. Nuclear magnetic resonance study of the structure of simple molecules adsorbed on metal surfaces: acetylene on platinum

    International Nuclear Information System (INIS)

    Wang, P.K.

    1984-01-01

    We have used NMR to determine the structure of acetylene (HC - CH) adsorbed at room temperature on small platinum particles by studying the 13 C- 13 C, 13 C- 1 H, and 1 H- 1 H dipolar interactions among the nuclei in the adsorbed molecules. We find a model of 77% CCH 2 and 23% HCCH to be the only one consistent with all of our data. The C-C bond length of the majority species, CCH 2 , is determined as 1.44 +- 0.02 A, midway between a single and double bond, suggesting that both carbon atoms bond to the surface. 36 references, 29 figures, 1 table

  14. Intense Visible Luminescence in CdSe Quantum Dots by Efficiency Surface Passivation with H2O Molecules

    Directory of Open Access Journals (Sweden)

    Hyeoung Woo Park

    2012-01-01

    Full Text Available We have investigated the effect of water (H2O cooling and heat treatment on the luminescence efficiency of core CdSe quantum dots (QDs. The photoluminescence (PL quantum yield of the CdSe QDs was enhanced up to ~85%, and some periodic bright points were observed in wide color ranges during the heat treatment of QDs mixed with H2O. The PL enhancement of QDs could be attributed to the recovery of QDs surface traps by unreacted ligands confined within the hydrophilic H2O molecule containers.

  15. Strategies for creating antifouling surfaces using selfassembled poly(ethylene glycol) thiol molecules

    DEFF Research Database (Denmark)

    Lokanathan, Arcot R.

    2011-01-01

    of microbial species, but then the environment is also teeming with pathogenic microbes that pose serious threat to human health. Hence the success of human survival not only depends on exploiting the useful microbes but also on our ability to defend ourselves against the pathogenic ones. Microbes...... have substantial impact on human health, as many bacterial infections are caused by or involve biofilms. Biofilm infections are for example often associated with medical implants, as artificial surfaces in the human body provide a safe haven where biofilms can form. The food industry daily combats...... polymers for making non-adhesive coatings. The work presented in this thesis involves grafting PEG chains onto surfaces using different modifications of the ‘grafting to’ technique. The main aim of studies presented in this thesis was to develop surfaces which would prevent bacteria from forming biofilm...

  16. Tapping mode AFM study on the surface dynamics of a single glucose oxidase molecule on a Au(1 1 1) surface in water with implication for a surface-induced unfolding pathway

    International Nuclear Information System (INIS)

    Otsuka, Ichiro; Yaoita, Masashi; Higano, Michi; Nagashima, Seiiichi; Kataoka, Ryoichi

    2004-01-01

    We have investigated a surface-induced unfolding dynamics of a single glucose oxidase (GO) molecule on Au(1 1 1) in air-saturated water, using tapping mode atomic force microscopy (TMAFM). We followed the unfolding process by measuring the maximum height of a well-isolated GO molecule on a terrace near a step-edge of the surface as a function of contact time. We find three linear portions with two intersections in a power-law fit to the selected values of the observed heights. The kinetic TMAFM result implies that there exist at least two distinct dynamic regimes in the unfolding

  17. Preparation of theoretical scanning tunneling microscope images of adsorbed molecules: a theoretical study of benzene on the Cu(110) surface

    International Nuclear Information System (INIS)

    Shapter, J.G.; Rogers, B.L.; Ford, M.J.

    2003-01-01

    Full text: Since its development in 1982, the Scanning Tunneling Microscope (STM) has developed into a powerful tool for the study of surfaces and adsorbates. However, the utility of the technique can be further enhanced through the development of techniques for generating theoretical STM images. This is particularly true when studying molecules adsorbed on a substrate, as the results are often interpreted superficially due to an inadequate understanding of the orbital overlap probed in the experiment. A method of preparing theoretical scanning tunneling microscope (STM) images using comparatively inexpensive desktop computers and the commercially available CRYSTAL98 package is presented through a study of benzene adsorbed on the Cu(110) surface. Density Functional Theory (DFT) and Hartree-Fock (HF) methods are used to model clean Cu(110) slabs of various thicknesses and to simulate the adsorption of benzene onto these slabs. Eight possible orientations of benzene on the Cu(110) surface are proposed, and the optimum orientation according to the calculations is presented. Theoretical STM images of the Cu(110) surface and benzene adsorbed on the Cu(110) surface are compared with experimental STM images of the system from a published study. Significant differences are observed and are examined in detail

  18. Determination of surface concentrations of individual molecule-layers used in nanoscale biosensors by in situ ATR-FTIR spectroscopy

    KAUST Repository

    Punzet, Manuel

    2012-01-01

    For the development of nanowire sensors for chemical and medical detection purposes, the optimal functionalization of the surface is a mandatory component. Quantitative ATR-FTIR spectroscopy was used in situ to investigate the step-by-step layer formation of typical functionalization protocols and to determine the respective molecule surface concentrations. BSA, anti-TNF-α and anti-PSA antibodies were bound via 3-(trimethoxy)butylsilyl aldehyde linkers to silicon-oxide surfaces in order to investigate surface functionalization of nanowires. Maximum determined surface concentrations were 7.17 × 10 -13 mol cm -2 for BSA, 1.7 × 10 -13 mol cm -2 for anti-TNF-α antibody, 6.1 × 10 -13 mol cm -2 for anti-PSA antibody, 3.88 × 10 -13 mol cm -2 for TNF-α and 7.0 × 10 -13 mol cm -2 for PSA. Furthermore we performed antibody-antigen binding experiments and determined the specific binding ratios. The maximum possible ratio of 2 was obtained at bulk concentrations of the antigen in the μg ml -1 range for TNF-α and PSA. © 2012 The Royal Society of Chemistry.

  19. Quantum theory of scattering of atoms and diatomic molecules by solid surfaces

    International Nuclear Information System (INIS)

    Liu, W.S.

    1973-01-01

    The unitary treatment, based on standard t-matrix theory, of the quantum theory of scattering of atoms by solid surfaces, is extended to the scattering of particles having internal degrees of freedom by perfect harmonic crystalline surfaces. The diagonal matrix element of the interaction potential which enters into the quantum scattering theory is obtained to represent the potential for the specular beam. From the two-potential formula, the scattering intensities for the diffracted beams and the inelastic beams with or without internal transitions of the particles are obtained by solving the equation for the t-matrix elements. (author)

  20. GPI-anchored proteins are confined in subdiffraction clusters at the apical surface of polarized epithelial cells.

    Science.gov (United States)

    Paladino, Simona; Lebreton, Stéphanie; Lelek, Mickaël; Riccio, Patrizia; De Nicola, Sergio; Zimmer, Christophe; Zurzolo, Chiara

    2017-12-01

    Spatio-temporal compartmentalization of membrane proteins is critical for the regulation of diverse vital functions in eukaryotic cells. It was previously shown that, at the apical surface of polarized MDCK cells, glycosylphosphatidylinositol (GPI)-anchored proteins (GPI-APs) are organized in small cholesterol-independent clusters of single GPI-AP species (homoclusters), which are required for the formation of larger cholesterol-dependent clusters formed by multiple GPI-AP species (heteroclusters). This clustered organization is crucial for the biological activities of GPI-APs; hence, understanding the spatio-temporal properties of their membrane organization is of fundamental importance. Here, by using direct stochastic optical reconstruction microscopy coupled to pair correlation analysis (pc-STORM), we were able to visualize and measure the size of these clusters. Specifically, we show that they are non-randomly distributed and have an average size of 67 nm. We also demonstrated that polarized MDCK and non-polarized CHO cells have similar cluster distribution and size, but different sensitivity to cholesterol depletion. Finally, we derived a model that allowed a quantitative characterization of the cluster organization of GPI-APs at the apical surface of polarized MDCK cells for the first time. Experimental FRET (fluorescence resonance energy transfer)/FLIM (fluorescence-lifetime imaging microscopy) data were correlated to the theoretical predictions of the model. © 2017 The Author(s).

  1. Organic molecules as tools to control the growth, surface structure, and redox activity of colloidal quantum dots.

    Science.gov (United States)

    Weiss, Emily A

    2013-11-19

    In order to achieve efficient and reliable technology that can harness solar energy, the behavior of electrons and energy at interfaces between different types or phases of materials must be understood. Conversion of light to chemical or electrical potential in condensed phase systems requires gradients in free energy that allow the movement of energy or charge carriers and facilitate redox reactions and dissociation of photoexcited states (excitons) into free charge carriers. Such free energy gradients are present at interfaces between solid and liquid phases or between inorganic and organic materials. Nanostructured materials have a higher density of these interfaces than bulk materials. Nanostructured materials, however, have a structural and chemical complexity that does not exist in bulk materials, which presents a difficult challenge: to lower or eliminate energy barriers to electron and energy flux that inevitably result from forcing different materials to meet in a spatial region of atomic dimensions. Chemical functionalization of nanostructured materials is perhaps the most versatile and powerful strategy for controlling the potential energy landscape of their interfaces and for minimizing losses in energy conversion efficiency due to interfacial structural and electronic defects. Colloidal quantum dots are semiconductor nanocrystals synthesized with wet-chemical methods and coated in organic molecules. Chemists can use these model systems to study the effects of chemical functionalization of nanoscale organic/inorganic interfaces on the optical and electronic properties of a nanostructured material, and the behavior of electrons and energy at interfaces. The optical and electronic properties of colloidal quantum dots have an intense sensitivity to their surface chemistry, and their organic adlayers make them dispersible in solvent. This allows researchers to use high signal-to-noise solution-phase spectroscopy to study processes at interfaces. In this

  2. Energetics and self-diffusion behavior of Zr atomic clusters on a Zr(0 0 0 1) surface

    Energy Technology Data Exchange (ETDEWEB)

    Liu Fusheng [Department of Applied Physics, Hunan University, Changsha 410082 (China); Hu Wangyu [Department of Applied Physics, Hunan University, Changsha 410082 (China)], E-mail: wangyuhu2001cn@yahoo.com.cn; Deng Huiqiu; Luo Wenhua; Xiao Shifang [Department of Applied Physics, Hunan University, Changsha 410082 (China); Yang Jianyu [Department of Maths and Physics, Hunan Institute of Engineering, Xiangtan 411104 (China)

    2009-09-15

    Using a molecular dynamics method and a modified analytic embedded atom potential, the energetic and the self-diffusion dynamics of Zr atomic clusters up to eight atoms on {alpha}-Zr(0 0 0 1) surface have been studied. The simulation temperature ranges from 300 to 1100 K and the simulation time varies from 20 to 40 ns. It's found that the heptamer and trimer are more stable comparing to other neighboring non-compact clusters. The diffusion coefficients of clusters are derived from the mean square displacement of cluster's mass-center and the present diffusion coefficients for clusters exhibit an Arrhenius behavior. The Arrhenius relation of the single adatom can be divided into two parts in different temperature range because of their different diffusion mechanisms. The migration energies of clusters increase with increasing the number of atoms in cluster. The differences of the prefactors also come from the diverse diffusion mechanisms. On the facet of 60 nm, the heptamer can be the nuclei in the crystal growth below 370 K.

  3. Thermodynamic analysis of water molecules at the surface of proteins and applications to binding site prediction and characterization.

    Science.gov (United States)

    Beuming, Thijs; Che, Ye; Abel, Robert; Kim, Byungchan; Shanmugasundaram, Veerabahu; Sherman, Woody

    2012-03-01

    Water plays an essential role in determining the structure and function of all biological systems. Recent methodological advances allow for an accurate and efficient estimation of the thermodynamic properties of water molecules at the surface of proteins. In this work, we characterize these thermodynamic properties and relate them to various structural and functional characteristics of the protein. We find that high-energy hydration sites often exist near protein motifs typically characterized as hydrophilic, such as backbone amide groups. We also find that waters around alpha helices and beta sheets tend to be less stable than waters around loops. Furthermore, we find no significant correlation between the hydration site-free energy and the solvent accessible surface area of the site. In addition, we find that the distribution of high-energy hydration sites on the protein surface can be used to identify the location of binding sites and that binding sites of druggable targets tend to have a greater density of thermodynamically unstable hydration sites. Using this information, we characterize the FKBP12 protein and show good agreement between fragment screening hit rates from NMR spectroscopy and hydration site energetics. Finally, we show that water molecules observed in crystal structures are less stable on average than bulk water as a consequence of the high degree of spatial localization, thereby resulting in a significant loss in entropy. These findings should help to better understand the characteristics of waters at the surface of proteins and are expected to lead to insights that can guide structure-based drug design efforts. Copyright © 2011 Wiley Periodicals, Inc.

  4. Miniaturized Quantum Semiconductor Surface Plasmon Resonance Platform for Detection of Biological Molecules

    Directory of Open Access Journals (Sweden)

    Jan J. Dubowski

    2013-06-01

    Full Text Available The concept of a portable, inexpensive and semi-automated biosensing platform, or lab-on-a-chip, is a vision shared by many researchers and venture industries. Under this scope, we have investigated the application of optical emission from quantum well (QW microstructures for monitoring surface phenomena on gold layers remaining in proximity (<300 nm with QW microstructures. The uncollimated QW radiation excites surface plasmons (SP and through the surface plasmon resonance (SPR effect allows for detection of small perturbation in the density surface adsorbates. The SPR technology is already commonly used for biochemical characterization in pharmaceutical industries, but the reduction of the distance between the SP exciting source and the biosensing platform to a few hundreds of nanometers is an innovative approach enabling us to achieve an ultimate miniaturization of the device. We evaluate the signal quality of this nanophotonic QW-SPR device using hyperspectral-imaging technology, and we compare its performance with that of a standard prism-based commercial system. Two standard biochemical agents are employed for this characterization study: bovine serum albumin and inactivated influenza A virus. With an innovative conical method of SPR data collection, we demonstrate that individually collected SPR scan, each in less than 2.2 s, yield a resolution of the detection at 1.5 × 10−6 RIU.

  5. Identification of a regulatory T cell specific cell surface molecule that mediates suppressive signals and induces Foxp3 expression.

    Science.gov (United States)

    Wang, Rui; Wan, Qi; Kozhaya, Lina; Fujii, Hodaka; Unutmaz, Derya

    2008-07-16

    Regulatory T (T(reg)) cells control immune activation and maintain tolerance. How T(regs) mediate their suppressive function is unclear. Here we identified a cell surface molecule, called GARP, (or LRRC32), which within T cells is specifically expressed in T(regs) activated through the T cell receptor (TCR). Ectopic expression of GARP in human naïve T (T(N)) cells inhibited their proliferation and cytokine secretion upon TCR activation. Remarkably, GARP over-expression in T(N) cells induced expression of T(reg) master transcription factor Foxp3 and endowed them with a partial suppressive function. The extracellular but not the cytoplasmic region of GARP, was necessary for these functions. Silencing Foxp3 in human T(reg) cells reduced expression of GARP and attenuated their suppressive function. However, GARP function was not affected when Foxp3 was downregulated in GARP-overexpressing cells, while silencing GARP in Foxp3-overexpressing cells reduced their suppressive activity. These findings reveal a novel cell surface molecule-mediated regulatory mechanism, with implications for modulating aberrant immune responses.

  6. Identification of a regulatory T cell specific cell surface molecule that mediates suppressive signals and induces Foxp3 expression.

    Directory of Open Access Journals (Sweden)

    Rui Wang

    2008-07-01

    Full Text Available Regulatory T (T(reg cells control immune activation and maintain tolerance. How T(regs mediate their suppressive function is unclear. Here we identified a cell surface molecule, called GARP, (or LRRC32, which within T cells is specifically expressed in T(regs activated through the T cell receptor (TCR. Ectopic expression of GARP in human naïve T (T(N cells inhibited their proliferation and cytokine secretion upon TCR activation. Remarkably, GARP over-expression in T(N cells induced expression of T(reg master transcription factor Foxp3 and endowed them with a partial suppressive function. The extracellular but not the cytoplasmic region of GARP, was necessary for these functions. Silencing Foxp3 in human T(reg cells reduced expression of GARP and attenuated their suppressive function. However, GARP function was not affected when Foxp3 was downregulated in GARP-overexpressing cells, while silencing GARP in Foxp3-overexpressing cells reduced their suppressive activity. These findings reveal a novel cell surface molecule-mediated regulatory mechanism, with implications for modulating aberrant immune responses.

  7. Molecular dynamic simulation of interaction of low-energy Ar and Xe ions with copper clusters at graphite surface

    International Nuclear Information System (INIS)

    Kornich, G.V.; Lozovskaya, L.I.; Betts, G.; Zaporozhchenko, V.I.; Faupel, F.

    2005-01-01

    One conducted molecular and dynamic simulation of sputtering of isolated clusters consisting of 13, 27 and 195 Cu atoms from the (0001) graphite surface by 200 eV energy Ar and Xe ions. It is shown that the factors of reflection of Ar and Xe ions from copper clusters differ from one another insignificantly, though the energy of the reflected Xe ions is essentially lower than that of Ar ions. The values of the factor of cluster sputtering by Xe ions are higher in contrast to sputtering by Ar ions. One identified two mechanisms of cluster sputtering resulting in the maximum of sputtering intensity at the polar angles near the normal one, and in periodicity of maximums within the azimuth distributions of sputtering intensity with 60 deg period [ru

  8. MRD-CI potential surfaces using balanced basis sets. IV. The H2 molecule and the H3 surface

    International Nuclear Information System (INIS)

    Wright, J.S.; Kruus, E.

    1986-01-01

    The utility of midbond functions in molecular calculations was tested in two cases where the correct results are known: the H 2 potential curve and the collinear H 3 potential surface. For H 2 , a variety of basis sets both with and without bond functions was compared to the exact nonrelativistic potential curve of Kolos and Wolniewicz [J. Chem. Phys. 43, 2429 (1965)]. It was found that optimally balanced basis sets at two levels of quality were the double zeta single polarization plus sp bond function basis (BF1) and the triple zeta double polarization plus two sets of sp bond function basis (BF2). These gave bond dissociation energies D/sub e/ = 4.7341 and 4.7368 eV, respectively (expt. 4.7477 eV). Four basis sets were tested for basis set superposition errors, which were found to be small relative to basis set incompleteness and therefore did not affect any conclusions regarding basis set balance. Basis sets BF1 and BF2 were used to construct potential surfaces for collinear H 3 , along with the corresponding basis sets DZ*P and TZ*PP which contain no bond functions. Barrier heights of 12.52, 10.37, 10.06, and 9.96 kcal/mol were obtained for basis sets DZ*P, TZ*PP, BF1, and BF2, respectively, compared to an estimated limiting value of 9.60 kcal/mol. Difference maps, force constants, and relative rms deviations show that the bond functions improve the surface shape as well as the barrier height

  9. A procedure to analyze surface profiles of the protein molecules visualized by quick-freeze deep-etch replica electron microscopy

    Energy Technology Data Exchange (ETDEWEB)

    Kimori, Yoshitaka [Division of Biomolecular Imaging, Institute of Medical Science, The University of Tokyo, Minato-ku, Tokyo 108-8639 (Japan); Department of Bioscience and Bioinformatics, Kyushu Institute of Technology, Iizuka, Fukuoka 820-8502 (Japan); Oguchi, Yosuke [Department of Electric Engineering, Kogakuin University, Hachioji, Tokyo 192-0015 (Japan); Ichise, Norihiko [Department of Visual Communication, Komazawa Women' s University, Inagi, Tokyo 206-8511 (Japan); Baba, Norio [Department of Electric Engineering, Kogakuin University, Hachioji, Tokyo 192-0015 (Japan); Katayama, Eisaku [Division of Biomolecular Imaging, Institute of Medical Science, The University of Tokyo, Minato-ku, Tokyo 108-8639 (Japan)]. E-mail: ekatayam@ims.u-tokyo.ac.jp

    2007-01-15

    Quick-freeze deep-etch replica electron microscopy gives high contrast snapshots of individual protein molecules under physiological conditions in vitro or in situ. The images show delicate internal pattern, possibly reflecting the rotary-shadowed surface profile of the molecule. As a step to build the new system for the 'Structural analysis of single molecules', we propose a procedure to quantitatively characterize the structural property of individual molecules; e.g. conformational type and precise view-angle of the molecules, if the crystallographic structure of the target molecule is available. This paper presents a framework to determine the observed face of the protein molecule by analyzing the surface profile of individual molecules visualized in freeze-replica specimens. A comprehensive set of rotary-shadowed views of the protein molecule was artificially generated from the available atomic coordinates using light-rendering software. Exploiting new mathematical morphology-based image filter, characteristic features were extracted from each image and stored as template. Similar features were extracted from the true replica image and the most likely projection angle and the conformation of the observed particle were determined by quantitative comparison with a set of archived images. The performance and the robustness of the procedure were examined with myosin head structure in defined configuration for actual application.

  10. A procedure to analyze surface profiles of the protein molecules visualized by quick-freeze deep-etch replica electron microscopy

    International Nuclear Information System (INIS)

    Kimori, Yoshitaka; Oguchi, Yosuke; Ichise, Norihiko; Baba, Norio; Katayama, Eisaku

    2007-01-01

    Quick-freeze deep-etch replica electron microscopy gives high contrast snapshots of individual protein molecules under physiological conditions in vitro or in situ. The images show delicate internal pattern, possibly reflecting the rotary-shadowed surface profile of the molecule. As a step to build the new system for the 'Structural analysis of single molecules', we propose a procedure to quantitatively characterize the structural property of individual molecules; e.g. conformational type and precise view-angle of the molecules, if the crystallographic structure of the target molecule is available. This paper presents a framework to determine the observed face of the protein molecule by analyzing the surface profile of individual molecules visualized in freeze-replica specimens. A comprehensive set of rotary-shadowed views of the protein molecule was artificially generated from the available atomic coordinates using light-rendering software. Exploiting new mathematical morphology-based image filter, characteristic features were extracted from each image and stored as template. Similar features were extracted from the true replica image and the most likely projection angle and the conformation of the observed particle were determined by quantitative comparison with a set of archived images. The performance and the robustness of the procedure were examined with myosin head structure in defined configuration for actual application

  11. Design and fabrication of structural color by local surface plasmonic meta-molecules

    International Nuclear Information System (INIS)

    Ma Ya-Qi; Shao Jin-Hai; Lu Bing-Rui; Zhang Si-Chao; Chen Yi-Fang; Zhang Ya-Feng; Sun Yan; Qu Xin-Ping

    2015-01-01

    In this paper, we propose a new form of nanostructures with Al film deposited on a patterned dielectric material for generating structural color, which is induced by local surface plasmonic resonant (LSPR) absorption in sub-wavelength-indented hole/ring arrays. Unlike other reported results obtained by using focus ion beam (FIB) to create metallic nanostructures, the nano-sized hole/ring arrays in Al film in this work are replicated by high resolution electron beam lithography (EBL) combined with self-aligned metallization. Clear structural color is observed and systematically studied by numerical simulations as well as optical characterizations. The central color is strongly related to the geometric size, which provides us with good opportunities to dye the colorless Al surface by controlling the hole/ring dimensions (both diameter and radius), and to open up broad applications in display, jewelry decoration, green production of packing papers, security code, and counterfeits prevention. (paper)

  12. Surface species formed by the adsorption and dissociation of water molecules on Ru(0001) surface containing a small coverage of carbon atoms studied by scanning tunneling microscopy

    Energy Technology Data Exchange (ETDEWEB)

    Dept of Materials Science and Engineering UCB; Dept of Applied Science and Technology, UCB; Institut de Ciencia de Materials de Barcelona, Barcelona, Spain; Instituto de Ciencia de Materiales de Madrid, Madrid, Spain; Department of Mechanical Engineering, Yale University; Salmeron, Miquel; Shimizu, Tomoko K.; Mugarza, Aitor; Cerda, Jorge I.; Heyde, Markus; Qi, Yabing; Schwarz, Udo D.; Ogletree, D. Frank; Salmeron, Miquel

    2008-04-26

    The adsorption and dissociation of water on a Ru(0001) surface containing a small amount ({le} 3 %) of carbon impurities was studied by scanning tunneling microscopy (STM). Various surface species are formed depending on the temperature. These include molecular H{sub 2}O, H{sub 2}O-C complexes, H, O, OH and CH. Clusters of either pure H{sub 2}O or mixed H{sub 2}O-OH species are also formed. Each of these species produces a characteristic contrast in the STM images and can be identified by experiment and by ab initio total energy calculations coupled with STM image simulations. Manipulation of individual species via excitation of vibrational modes with the tunneling electrons has been used as supporting evidence.

  13. Influence of Surface Phenomena on Free-Molecule Gas Flow in Fine Channels.

    Czech Academy of Sciences Publication Activity Database

    Levdansky, V.V.; Smolík, Jiří; Moravec, Pavel

    2007-01-01

    Roč. 34, 7 (2007) , s. 796-800 ISSN 0735-1933 R&D Projects: GA ČR(CZ) GA101/05/2214; GA ČR(CZ) GA101/05/2524 Institutional research plan: CEZ:AV0Z40720504 Keywords : adsorption * surface diffusion * sticking coefficient Subject RIV: CF - Physical ; Theoretical Chemistry Impact factor: 0.945, year: 2007

  14. The application of polythiol molecules for protein immobilisation on sensor surfaces.

    Science.gov (United States)

    Kyprianou, Dimitris; Guerreiro, Antonio R; Nirschl, Martin; Chianella, Iva; Subrahmanyam, Sreenath; Turner, Anthony P F; Piletsky, Sergey

    2010-01-15

    The immobilisation of bio-receptors on transducer surfaces is a key step in the development of biosensors. The immobilisation needs to be fast, cheap and most importantly should not affect the biorecognition activity of the immobilised receptor. The development of a protocol for biomolecule immobilisation onto a surface plasmon resonance (SPR) sensor surface using inexpensive polythiol compounds is presented here. The method used here is based on the reaction between primary amines and thioacetal groups, formed upon reaction of o-phthaldialdehyde (OPA) and thiol compounds. The self-assembled thiol monolayers were characterised using contact angle and XPS. The possibility to immobilise proteins on monolayers was assessed by employing BSA as a model protein. For the polythiol layers exhibiting the best performance, a general protocol was optimised suitable for the immobilisation of enzymes and antibodies such as anti-prostate specific antigen (anti-PSA) and anti Salmonella typhimurium. The kinetic data was obtained for PSA binding to anti-PSA and for S. typhimurium cells with a detection limit of 5x10(6) cells mL(-1) with minimal non-specific binding of other biomolecules. These findings make this technique a very promising alternative for amine coupling compared to peptide bond formation. Additionally, it offers opportunity for immobilising proteins (even those with low isoelectric point) on neutral polythiol layers without any activation step. Copyright 2009 Elsevier B.V. All rights reserved.

  15. Cluster-cluster clustering

    International Nuclear Information System (INIS)

    Barnes, J.; Dekel, A.; Efstathiou, G.; Frenk, C.S.; Yale Univ., New Haven, CT; California Univ., Santa Barbara; Cambridge Univ., England; Sussex Univ., Brighton, England)

    1985-01-01

    The cluster correlation function xi sub c(r) is compared with the particle correlation function, xi(r) in cosmological N-body simulations with a wide range of initial conditions. The experiments include scale-free initial conditions, pancake models with a coherence length in the initial density field, and hybrid models. Three N-body techniques and two cluster-finding algorithms are used. In scale-free models with white noise initial conditions, xi sub c and xi are essentially identical. In scale-free models with more power on large scales, it is found that the amplitude of xi sub c increases with cluster richness; in this case the clusters give a biased estimate of the particle correlations. In the pancake and hybrid models (with n = 0 or 1), xi sub c is steeper than xi, but the cluster correlation length exceeds that of the points by less than a factor of 2, independent of cluster richness. Thus the high amplitude of xi sub c found in studies of rich clusters of galaxies is inconsistent with white noise and pancake models and may indicate a primordial fluctuation spectrum with substantial power on large scales. 30 references

  16. Physisorption of three amine terminated molecules (TMBDA, BDA, TFBDA) on the Au(111) Surface: The Role of van der Waals Interaction

    Science.gov (United States)

    Aminpour, Maral; Le, Duy; Rahman, Talat S.

    2012-02-01

    Recently, the electronic properties and alignment of tetramethyl-1,4-benzenediamine (TMBDA), 1,4-benzenediamine (BDA) and tetrafluro-1,4-benzenediamine (TFBDA) molecules were studied experimentally. Discrepancies were found for both the binding energy and the molecule tilt angle with respect to the surface, when results were compared with density functional theory calculations [1]. We have included the effect of vdW interactions both between the molecules and the Au(111) surface and find binding energies which are in very good agreement with experiments. We also find that at low coverages each of these molecules would adsorb almost parallel to the surface. N-Au bond lengths and charge redistribution on adsorption of the molecules are also analyzed. Our calculations are based on DFT using vdW-DF exchange correlation functionals. For BDA (since we are aware of experimental data), we show that for higher coverage, inclusion of intermolecular van der Waals interaction leads to tilting of the molecules with respect to the surface and formation of line structures. Our results demonstrate the central role played by intermolecular interaction in pattern formation on this surface.[4pt] [1] M. Dell'Angela et al, Nano Lett. 2010, 10, 2470; M. Kamenetska et al, J. Phys. Chem. C, 2011, 115, 12625

  17. Surface study of organopalladium molecules on S-terminated GaAs

    International Nuclear Information System (INIS)

    Konishi, Tomoya; Toujyou, Takashi; Ishikawa, Takuma; Teraoka, Teruki; Ueta, Yukiko; Kihara, Yoshifumi; Moritoki, Hideji; Tono, Tatsuo; Musashi, Mio; Tada, Takashi; Tsukamoto, Shiro; Nishiwaki, Nagatoshi; Fujikawa, Seiji; Takahasi, Masamitu; Bell, Gavin; Shimoda, Masahiko

    2011-01-01

    Organopalladium species ({Pd}) immobilized on an S-terminated GaAs substrate (S/GaAs) effectively catalyzes C-C bond formation in the Mizoroki-Heck reaction with cycle durability. However, the immobilizing mechanism of {Pd} is unknown. In this study, we deposited Pd(OCOCH 3 ) 2 on S/GaAs in two different methods, namely dry-physical vapor-deposition and wetchemical deposition, and compared the catalytic activities in the Mizoroki-Heck reaction. Also, S-termination and {Pd}-immobilization on GaAs grains were performed by the wet-chemical method to monitor the change in the surface chemical structure during the preparation process with diffuse reflectance Fourier transform infrared spectroscopy (FT-IR). FT-IR measurements implied that the immobilization of catalytic active {Pd} was related to the OH groups on the S-terminated surface. {Pd}-S/GaAs prepared dryphysically showed poor catalytic activity, because {Pd} was not immobilized under absence of OH groups. (copyright 2011 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  18. Design and fabrication of structural color by local surface plasmonic meta-molecules

    Science.gov (United States)

    Ma, Ya-Qi; Shao, Jin-Hai; Zhang, Ya-Feng; Lu, Bing-Rui; Zhang, Si-Chao; Sun, Yan; Qu, Xin-Ping; Chen, Yi-Fang

    2015-08-01

    In this paper, we propose a new form of nanostructures with Al film deposited on a patterned dielectric material for generating structural color, which is induced by local surface plasmonic resonant (LSPR) absorption in sub-wavelength-indented hole/ring arrays. Unlike other reported results obtained by using focus ion beam (FIB) to create metallic nanostructures, the nano-sized hole/ring arrays in Al film in this work are replicated by high resolution electron beam lithography (EBL) combined with self-aligned metallization. Clear structural color is observed and systematically studied by numerical simulations as well as optical characterizations. The central color is strongly related to the geometric size, which provides us with good opportunities to dye the colorless Al surface by controlling the hole/ring dimensions (both diameter and radius), and to open up broad applications in display, jewelry decoration, green production of packing papers, security code, and counterfeits prevention. Project partially supported by the National Natural Science Foundation of China (Grant No. 61205148).

  19. The metrics of surface adsorbed small molecules on the Young's fringe dual-slab waveguide interferometer

    International Nuclear Information System (INIS)

    Cross, Graham H; Reeves, Andrew; Brand, Stuart; Swann, Marcus J; Peel, Louise L; Freeman, Neville J; Lu, Jian R

    2004-01-01

    A method for analysing thin films using a dual-waveguide interferometric technique is described. Alternate dual polarization addressing of the interferometer sensor using a ferroelectric liquid crystal polarization switch allowed the opto-geometrical properties (density and thickness) of adsorbed layers at a solid-liquid interface to be determined. Differences in the waveguide mode dispersion between the transverse electric and transverse magnetic modes allowed unique combinations of layer thickness and refractive index to be determined at all stages of the layer formation process. The technique has been verified by comparing the analysis of the surface adsorption of surfactants with data obtained using neutron scattering techniques, observing their behaviour on trimethylsilane coated silicon oxynitride surfaces. The data obtained were found to be in excellent agreement with analogous neutron scattering experiments and the precision of the measurements taken to be of the order of 40 pm with respect to adsorbed layer thicknesses. The study was extended to a series of surfactants whose layer morphology could be correlated with their hydrophilicity/lipophilicity balance. Those in the series with longer alkyl chains were observed to form thinner, denser layers at the hydrophobic solid/aqueous liquid interface and the degree of order attained at sub-critical micelle concentrations to be correlated with molecular fluidity. The technique is expected to find utility with those interested in thin film analysis. An important and growing area of application is within the life sciences, especially in the field of protein structure and function

  20. Adsorption of a cationic dye molecule on polystyrene microspheres in colloids: effect of surface charge and composition probed by second harmonic generation.

    Science.gov (United States)

    Eckenrode, Heather M; Jen, Shih-Hui; Han, Jun; Yeh, An-Gong; Dai, Hai-Lung

    2005-03-17

    Nonlinear optical probe, second harmonic generation (SHG), of the adsorption of the dye molecule malachite green (MG), in cationic form at pH polystyrene microspheres in aqueous solution is used to study the effect of surface charge and composition on molecular adsorption. Three types of polystyrene microspheres with different surface composition are investigated: (1) a sulfate terminated, anionic surface, (2) a neutral surface without any functional group termination, and (3) an amine terminated, cationic surface. The cationic dye was found to adsorb at all three surfaces, regardless of surface charge. The adsorption free energies, DeltaG's, measured for the three surfaces are -12.67, -12.39, and -10.46 kcal/mol, respectively, with the trend as expected from the charge interactions. The adsorption density on the anionic surface, where attractive charge-charge interaction dominates, is determined by the surface negative charge density. The adsorption densities on the neutral and cationic surfaces are on the other hand higher, perhaps as a result of a balance between minimizing repulsive charge interaction and maximizing attractive molecule-substrate and intermolecular interactions. The relative strength of the SH intensity per molecule, in combination of a model calculation, reveals that the C(2) axis of the MG molecule is nearly perpendicular to the surface on the anionic surface and tilts away from the surface norm when the surface is neutral and further away when cationic. Changing the pH of the solution may alter the surface charge and subsequently affect the adsorption configuration and SH intensity.

  1. Influence of the crystallographic structure of the electrode surface on the structure of the electrical double layer and adsorption of organic molecules

    International Nuclear Information System (INIS)

    Kochorovski, Z.; Zagorska, I.; Pruzhkovska-Drakhal, R.; Trasatti, S.

    1995-01-01

    The results of systematic investigation of influence of crystal structure of Bi-, Sb- and Cd-electrode surfaces on regularities of double electric layer structure in aqueous and nonaqueous solutions of surface-nonactive electrolyte are given. Influence of electrode surface characteristics on adsorptive behaviour of different organic molecules has been studied. General regularities of of chemical nature influence and surface crystallographic structure on the double layer structure and on organic compounds adsorption have been established. 57 refs., 7 figs., 4 tabs

  2. Heparanase facilitates cell adhesion and spreading by clustering of cell surface heparan sulfate proteoglycans.

    Directory of Open Access Journals (Sweden)

    Flonia Levy-Adam

    2008-06-01

    Full Text Available Heparanase is a heparan sulfate (HS degrading endoglycosidase participating in extracellular matrix degradation and remodeling. Apart of its well characterized enzymatic activity, heparanase was noted to exert also enzymatic-independent functions. Non-enzymatic activities of heparanase include enhanced adhesion of tumor-derived cells and primary T-cells. Attempting to identify functional domains of heparanase that would serve as targets for drug development, we have identified heparin binding domains of heparanase. A corresponding peptide (residues Lys(158-Asp(171, termed KKDC was demonstrated to physically associate with heparin and HS, and to inhibit heparanase enzymatic activity. We hypothesized that the pro-adhesive properties of heparanase are mediated by its interaction with cell surface HS proteoglycans, and utilized the KKDC peptide to examine this possibility. We provide evidence that the KKDC peptide interacts with cell membrane HS, resulting in clustering of syndecan-1 and syndecan-4. We applied classical analysis of cell morphology, fluorescent and time-lapse microscopy and demonstrated that the KKDC peptide efficiently stimulates the adhesion and spreading of various cell types, mediated by PKC, Src, and the small GTPase Rac1. These results support, and further substantiate the notion that heparanase function is not limited to its enzymatic activity.

  3. Surface assisted oxidation of flat lying organic molecules - a real-time STM study

    Energy Technology Data Exchange (ETDEWEB)

    Waldmann, Thomas; Roos, Michael; Breitruck, Achim; Hoster, Harry E.; Behm, R. Juergen [Institute of Surface Chemistry and Catalysis, Ulm University, D-89069 Ulm (Germany); Kuenzel, Daniela; Gross, Axel [Institute of Theoretical Chemistry, Ulm University, D-89069 Ulm (Germany)

    2010-07-01

    Using time resolved scanning tunneling microscopy (STM), we tested the interaction of O{sub 2} from gas-phase with ordered adlayers of the Bis(terpyridine) derivative 2,4'-BTP on Au(111), Ag(111) and graphite (HOPG) surfaces at T = 300 K. At an O{sub 2} pressure of 10{sup -5} mbar, the adlayers on Ag(111) undergo chemical and structural changes. These include modifications of the 2-pyridyl rings of individual 2,4'-BTP adsorbates and rearrangements of the hydrogen bonded adlayer. Since we do not observe similar changes on HOPG and Au(111), we assume that Ag(111) acts as catalyst for the underlying processes. Based on our STM data in combination with DFT calculations, we conclude that the observed reaction is pyridyl-N-oxide formation. Furthermore, we derive reaction yields, enantiomeric excess, reaction rates and reaction orders from the time-resolved STM data.

  4. Growth Mechanism of Cluster-Assembled Surfaces: From Submonolayer to Thin-Film Regime

    Science.gov (United States)

    Borghi, Francesca; Podestà, Alessandro; Piazzoni, Claudio; Milani, Paolo

    2018-04-01

    Nanostructured films obtained by assembling preformed atomic clusters are of strategic importance for a wide variety of applications. The deposition of clusters produced in the gas phase onto a substrate offers the possibility to control and engineer the structural and functional properties of the cluster-assembled films. To date, the microscopic mechanisms underlying the growth and structuring of cluster-assembled films are poorly understood, and, in particular, the transition from the submonolayer to the thin-film regime is experimentally unexplored. Here we report the systematic characterization by atomic force microscopy of the evolution of the structural properties of cluster-assembled films deposited by supersonic cluster beam deposition. As a paradigm of nanostructured systems, we focus our attention on cluster-assembled zirconia films, investigating the influence of the building block dimensions on the growth mechanisms and roughening of the thin films, following the growth process from the early stages of the submonolayer to the thin-film regime. Our results demonstrate that the growth dynamics in the submonolayer regime determines different morphological properties of the cluster-assembled thin film. The evolution of the roughness with the number of deposited clusters reproduces the growth exponent of the ballistic deposition in the 2 +1 model from the submonolayer to the thin-film regime.

  5. Machine learning of single molecule free energy surfaces and the impact of chemistry and environment upon structure and dynamics.

    Science.gov (United States)

    Mansbach, Rachael A; Ferguson, Andrew L

    2015-03-14

    The conformational states explored by polymers and proteins can be controlled by environmental conditions (e.g., temperature, pressure, and solvent) and molecular chemistry (e.g., molecular weight and side chain identity). We introduce an approach employing the diffusion map nonlinear machine learning technique to recover single molecule free energy landscapes from molecular simulations, quantify changes to the landscape as a function of external conditions and molecular chemistry, and relate these changes to modifications of molecular structure and dynamics. In an application to an n-eicosane chain, we quantify the thermally accessible chain configurations as a function of temperature and solvent conditions. In an application to a family of polyglutamate-derivative homopeptides, we quantify helical stability as a function of side chain length, resolve the critical side chain length for the helix-coil transition, and expose the molecular mechanisms underpinning side chain-mediated helix stability. By quantifying single molecule responses through perturbations to the underlying free energy surface, our approach provides a quantitative bridge between experimentally controllable variables and microscopic molecular behavior, guiding and informing rational engineering of desirable molecular structure and function.

  6. Generation of functional scFv intrabody to abate the expression of CD147 surface molecule of 293A cells

    Directory of Open Access Journals (Sweden)

    Mai Sabine

    2008-01-01

    Full Text Available Abstract Background Expression of intracellular antibodies (intrabodies has become a broadly applicable technology for generation of phenotypic knockouts in vivo. The method uses surface depletion of cellular membrane proteins to examine their biological function. In this study, we used this strategy to block the transport of cell surface molecule CD147 to the cell membrane. Phage display technology was introduced to generate the functional antibody fragment to CD147, and we subsequently constructed a CD147-specific scFv that was expressed intracellularly and retained in the endoplasmic reticulum by adenoviral gene transfer. Results The recombinant antibody fragments, Fab and scFv, of the murine monoclonal antibody (clone M6-1B9 reacted specifically to CD147 by indirect enzyme-linked immunosorbent assays (ELISA using a recombinant CD147-BCCP as a target. This indicated that the Fab- and scFv-M6-1B9 displaying on phage surfaces were correctly folded and functionally active. We subsequently constructed a CD147-specific scFv, scFv-M6-1B9-intrabody, in 293A cells. The expression of CD147 on 293A cell surface was monitored at 36 h after transduction by flow cytometry and demonstrated remarkable reduction. Colocalization of scFv-M6-1B9 intrabody with CD147 in the ER network was depicted using a 3D deconvolution microscopy system. Conclusion The results suggest that our approach can generate antibody fragments suitable for decreasing the expression of CD147 on 293A cells. This study represents a step toward understanding the role of the cell surface protein, CD147.

  7. Quantum model of a solid-state spin qubit: Ni cluster on a silicon surface by the generalized spin Hamiltonian and X-ray absorption spectroscopy investigations

    Science.gov (United States)

    Farberovich, Oleg V.; Mazalova, Victoria L.; Soldatov, Alexander V.

    2015-11-01

    We present here the quantum model of a Ni solid-state electron spin qubit on a silicon surface with the use of a density-functional scheme for the calculation of the exchange integrals in the non-collinear spin configurations in the generalized spin Hamiltonian (GSH) with the anisotropic exchange coupling parameters linking the nickel ions with a silicon substrate. In this model the interaction of a spin qubit with substrate is considered in GSH at the calculation of exchange integrals Jij of the nanosystem Ni7-Si in the one-electron approach taking into account chemical bonds of all Si-atoms of a substrate (environment) with atoms of the Ni7-cluster. The energy pattern was found from the effective GSH Hamiltonian acting in the restricted spin space of the Ni ions by the application of the irreducible tensor operators (ITO) technique. In this paper we offer the model of the quantum solid-state N-spin qubit based on the studying of the spin structure and the spin-dynamics simulations of the 3d-metal Ni clusters on the silicon surface. The solution of the problem of the entanglement between spin states in the N-spin systems is becoming more interesting when considering clusters or molecules with a spectral gap in their density of states. For quantifying the distribution of the entanglement between the individual spin eigenvalues (modes) in the spin structure of the N-spin system we use the density of entanglement (DOE). In this study we have developed and used the advanced high-precision numerical techniques to accurately assess the details of the decoherence process governing the dynamics of the N-spin qubits interacting with a silicon surface. We have studied the Rabi oscillations to evaluate the N-spin qubits system as a function of the time and the magnetic field. We have observed the stabilized Rabi oscillations and have stabilized the quantum dynamical qubit state and Rabi driving after a fixed time (0.327 μs). The comparison of the energy pattern with the

  8. Heterogeneous nucleation of polymorphs on polymer surfaces: polymer-molecule interactions using a Coulomb and van der Waals model.

    Science.gov (United States)

    Wahlberg, Nanna; Madsen, Anders Ø; Mikkelsen, Kurt V

    2018-06-09

    The nucleation processes of acetaminophen on poly(methyl methacrylate) and poly(vinyl acetate) have been investigated and the mechanisms of the processes are studied. This is achieved by a combination of theoretical models and computational investigations within the framework of a modified QM/MM method; a Coulomb-van der Waals model. We have combined quantum mechanical computations and electrostatic models at the atomistic level for investigating the stability of different orientations of acetaminophen on the polymer surfaces. Based on the Coulomb-van der Waals model, we have determined the most stable orientation to be a flat orientation, and the strongest interaction is seen between poly(vinyl acetate) and the molecule in a flat orientation in vacuum.

  9. Surface diffusion of long chainlike molecules: The role of memory effects and stiffness on effective diffusion barriers

    DEFF Research Database (Denmark)

    Hjelt, T.; Vattulainen, Ilpo Tapio

    2000-01-01

    stiffness. Our primary aim is to consider the role played by chain stiffness and the resulting memory effects in tracer diffusion, and in particular their role in the effective tracer diffusion barrier E-A(T) extracted from the well-known Arrhenius form. We show that the memory effects in tracer diffusion......, for a single diffusing chain, about 20% of E-A(T) arises from temperature variations in the memory effects, while only the remaining part comes from thermally activated chain segment movements. At a finite coverage, the memory contribution in E-A(T) is even larger and is typically about 20%-40%. Further...... of recent experimental work as regards surface diffusion of long DNA molecules on a biological interface. (C) 2000 American Institute of Physics....

  10. Surface-supported Ag islands stabilized by a quantum size effect: Their interaction with small molecules relevant to ethylene epoxidation

    Energy Technology Data Exchange (ETDEWEB)

    Shao, Dahai [Iowa State Univ., Ames, IA (United States)

    2013-05-15

    This dissertation focuses on how QSE-stabilized, surface-supported Ag nanoclusters will interact with ethylene or oxygen. Experiments are performed to determine whether the QSE-mediated Ag islands react differently toward adsorption of ethylene or oxygen, or whether the adsorption of these small molecules will affect the QSE-mediated stability of Ag islands. Studies of the interaction of oxygen with Ag/Si(111)-7×7 were previously reported, but these studies were performed at a low Ag coverage where 3D Ag islands were not formed. So the study of such a system at a higher Ag coverage will be a subject of this work. The interaction of ethylene with Ag/Si(111)-7×7, as well as the interaction of oxygen with Ag/NiAl(110) are also important parts of this study.

  11. Precursor state of oxygen molecules on the Si(001) surface during the initial room-temperature adsorption

    Science.gov (United States)

    Hwang, Eunkyung; Chang, Yun Hee; Kim, Yong-Sung; Koo, Ja-Yong; Kim, Hanchul

    2012-10-01

    The initial adsorption of oxygen molecules on Si(001) is investigated at room temperature. The scanning tunneling microscopy images reveal a unique bright O2-induced feature. The very initial sticking coefficient of O2 below 0.04 Langmuir is measured to be ˜0.16. Upon thermal annealing at 250-600 °C, the bright O2-induced feature is destroyed, and the Si(001) surface is covered with dark depressions that seem to be oxidized structures with -Si-O-Si- bonds. This suggests that the observed bright O2-induced feature is an intermediate precursor state that may be either a silanone species or a molecular adsorption structure.

  12. Use of fluorescence to probe the surface dynamics during disorder-to-order transition and cluster formation in dihalonaphthalene-water thin films on Al2O3(0001)

    International Nuclear Information System (INIS)

    Evans, M.A.; Hoss, D.R.; Howard, K.E.; Louie, A.D.; Bishop, A.J.; Martin, K.A.; Nishimura, A.M.

    2006-01-01

    Amorphous dihalonaphthalenes that are prepared by vacuum deposition onto a cold Al 2 O 3 surface form electronically excited dimers when optically pumped, and their emission is characteristically red-shifted, broad and featureless compared to the monomeric fluorescence. If the surface is heated, the adlayer undergoes a disorder-to-order transition at a temperature characteristic of the molecule. Since pure crystalline dihalonaphthalenes typically fluoresce and do not exhibit excimeric features, the transition was studied by taking advantage of the changes in the spectral characteristics of the adlayer. These included transmittance, and emission from fluorescence and excimer. The combination of these methods allowed a close look at the surface dynamics of molecules on the surface of Al 2 O 3 as the adlayer was heated from the deposition temperature to desorption. If a bilayer is formed by depositing water onto the surface with the organic adlayer on top, water, with its lower desorption energy, can be made to percolate into the organic layer. The optical probes indicate that the water clearly associates with the organic molecules while the excess water desorbs. By varying the coverage of either the water or the dihalonaphthalene, the stoichiometric composition of the cluster can be determined and are reported here

  13. Single Molecule and Nanoparticle Imaging in Biophysical, Surface, and Photocatalysis Studies

    Energy Technology Data Exchange (ETDEWEB)

    Ha, Ji Won [Iowa State Univ., Ames, IA (United States)

    2013-01-01

    A differential interference contrast (DIC) polarization anisotropy is reported that was successfully used for rotational tracking of gold nanorods attached onto a kinesin-driven microtubule. A dual-wavelength detection of single gold nanorods rotating on a live cell membrane is described. Both transverse and longitudinal surface plasmon resonance (SPR) modes were used for tracking the rotational motions during a fast dynamic process under a DIC microscope. A novel method is presented to determine the full three-dimensional (3D) orientation of single plasmonic gold nanorods rotating on live cell membranes by combining DIC polarization anisotropy with an image pattern recognition technique. Polarization- and wavelength-sensitive DIC microscopy imaging of 2- m long gold nanowires as optical probes in biological studies is reported. A new method is demonstrated to track 3D orientation of single gold nanorods supported on a gold film without angular degeneracy. The idea is to use the interaction (or coupling) of gold nanorods with gold film, yielding characteristic scattering patterns such as a doughnut shape. Imaging of photocatalytic activity, polarity and selectivity on single Au-CdS hybrid nanocatalysts using a high-resolution superlocalization fluorescence imaging technique is described.

  14. Mechanism of Shiga Toxin Clustering on Membranes

    DEFF Research Database (Denmark)

    Pezeshkian, Weria; Gao, Haifei; Arumugam, Senthil

    2017-01-01

    between them. The precise mechanism by which this clustering occurs remains poorly defined. Here, we used vesicle and cell systems and computer simulations to show that line tension due to curvature, height, or compositional mismatch, and lipid or solvent depletion cannot drive the clustering of Shiga...... toxin molecules. By contrast, in coarse-grained computer simulations, a correlation was found between clustering and toxin nanoparticle-driven suppression of membrane fluctuations, and experimentally we observed that clustering required the toxin molecules to be tightly bound to the membrane surface...... molecules (several nanometers), and persist even beyond. This force is predicted to operate between manufactured nanoparticles providing they are sufficiently rigid and tightly bound to the plasma membrane, thereby suggesting a route for the targeting of nanoparticles to cells for biomedical applications....

  15. Benchmarking semiempirical and DFT methods for the interaction of thiophene and diethyl sulfide molecules with a Ti(OH)4(H2O) cluster.

    Science.gov (United States)

    Vorontsov, Alexander V; Smirniotis, Panagiotis G

    2017-08-01

    Semiempirical methods pm6 and pm7 as well as density functional theory functionals exchange LSDA, exchange-correlation PW91 and PBE, hybrid B3LYP1 and PBE0 were compared for energy and geometry of thiophene, diethyl sulfide (DES) molecules and their binding to a frozen Ti(OH) 4 (H 2 O) complex having one coordinatively unsaturated Ti 5C site representing small fragment of TiO 2 anatase (001) surface. PBE0/6-31G(d) with DFT-D3 dispersion correction was the best method for description of thiophene and DES molecules geometries as comparison with experimental data demonstrated. Semiempirical methods pm6 and pm7 resulted in only three of four possible binding configurations of thiophene with the Ti(OH) 4 (H 2 O) complex while pm7 described correctly the enthalpy and all configurations of DES binding with the Ti(OH) 4 (H 2 O) complex. SBKJC pseudopotential and LSDA with and without dispersion correction produced flawed results for many configurations. PBE0 and PBE with and without dispersion correction and PW91 with 6-31G(d) basis set systematically produced dependable results for thiophene and DES binding to the Ti(OH) 4 (H 2 O) complex. PBE0-D3/6-31G(d), B3LYP1-D3/6-31G(d), and PBE-D3/6-31G(d) gave best match of binding energy for thiophene while PBE0/6-31G(d) gave best match of DES binding energy as comparison with CCSD(T) energy demonstrated. On the basis of the superior results obtained with PBE0/6-31G(d), it is the recommended method for modeling of adsorption over TiO 2 surfaces. Such a conclusion is in agreement with recent literature.

  16. The mechanics of bacterial cluster formation on plant leaf surfaces as revealed by bioreporter technology

    NARCIS (Netherlands)

    Tecon, R.; Leveau, J.H.J.

    2012-01-01

    Bacteria that colonize the leaves of terrestrial plants often occur in clusters whose size varies from a few to thousands of cells. For the formation of such bacterial clusters, two non-mutually exclusive but very different mechanisms may be proposed: aggregation of multiple cells or clonal

  17. Growth of CdTe on Si(100) surface by ionized cluster beam technique: Experimental and molecular dynamics simulation

    Energy Technology Data Exchange (ETDEWEB)

    Araghi, Houshang, E-mail: araghi@aut.ac.ir [Department of Physics, Amirkabir University of Technology, Tehran (Iran, Islamic Republic of); Zabihi, Zabiholah [Department of Physics, Amirkabir University of Technology, Tehran (Iran, Islamic Republic of); Nayebi, Payman [Department of Physics, College of Technical and Engineering, Saveh Branch, Islamic Azad University, Saveh (Iran, Islamic Republic of); Ehsani, Mohammad Mahdi [Department of Physics, Amirkabir University of Technology, Tehran (Iran, Islamic Republic of)

    2016-10-15

    II–VI semiconductor CdTe was grown on the Si(100) substrate surface by the ionized cluster beam (ICB) technique. In the ICB method, when vapors of solid materials such as CdTe were ejected through a nozzle of a heated crucible into a vacuum region, nanoclusters were created by an adiabatic expansion phenomenon. The clusters thus obtained were partially ionized by electron bombardment and then accelerated onto the silicon substrate at 473 K by high potentials. The cluster size was determined using a retarding field energy analyzer. The results of X-ray diffraction measurements indicate the cubic zinc blende (ZB) crystalline structure of the CdTe thin film on the silicon substrate. The CdTe thin film prepared by the ICB method had high crystalline quality. The microscopic processes involved in the ICB deposition technique, such as impact and coalescence processes, have been studied in detail by molecular dynamics (MD) simulation.

  18. Synchrotron far-IR RAIRS studies of interfaces created by polyfunctional organic molecules at defined metal surfaces

    International Nuclear Information System (INIS)

    Raval, R.; Williams, J.; Roberts, A.J.; Nunney, T.S.; Surman, M.

    1998-01-01

    Far-IR Reflection Absorption Infrared Spectroscopy (RAIRS) has been used to probe sub monolayers and multilayers of polyfunctional organic ad layers deposited under clean controlled conditions on small-area single-crystal surfaces, using the newly commissioned Daresbury 13.3 far-IR synchrotron beamline. It's shown that the current performance of the beamline allows to monitor fractions of monolayers of formate species on Cu(110), formed at 300 K from the deprotonation of formic acid. Two distinct vCu-O vibrations are observed for coverages up to 0.25 monolayer. The paper attributes the two bands to at least two chemically distinct species, each possessing a local site symmetry of C 2v and bonded to the metal surface via the two oxygen atoms. The two types of formate species are thought to arise from local density fluctuations in formate coverage across the ad layer which leads to local changes in the Cu-O bond. In additions, it's reported far-IR RAIRS spectra of bio molecule/metal interfaces created by depositing thin films (3-10 layers) of the chiral amino-acid, L-methionine, on Cu(110) at 300 K. The multilayer spectra closely resemble the far-IR spectra obtained from crystalline L-methionine, suggesting that the thin layer consists of the zwitterionic species. These thin bio films are stable on the surface to >330 K. No growth of metal-ligand vibrations in the multilayer phase is observed, demonstrating that corrosive chemisorption processes that create Cu-methionine complexes in the multilayer by leaching of surface Cu atoms do not occur in these conditions

  19. Surface functionalization of a polymeric lipid bilayer for coupling a model biological membrane with molecules, cells, and microstructures.

    Science.gov (United States)

    Morigaki, Kenichi; Mizutani, Kazuyuki; Saito, Makoto; Okazaki, Takashi; Nakajima, Yoshihiro; Tatsu, Yoshiro; Imaishi, Hiromasa

    2013-02-26

    We describe a stable and functional model biological membrane based on a polymerized lipid bilayer with a chemically modified surface. A polymerized lipid bilayer was formed from a mixture of two diacetylene-containing phospholipids, 1,2-bis(10,12-tricosadiynoyl)-sn-glycero-3-phosphocholine (DiynePC) and 1,2-bis(10,12-tricosadiynoyl)-sn-glycero-3-phosphoethanolamine (DiynePE). DiynePC formed a stable bilayer structure, whereas the ethanolamine headgroup of DiynePE enabled functional molecules to be grafted onto the membrane surface. Copolymerization of DiynePC and DiynePE resulted in a robust bilayer. Functionalization of the polymeric bilayer provided a route to a robust and biomimetic surface that can be linked with biomolecules, cells, and three-dimensional (3D) microstructures. Biotin and peptides were grafted onto the polymeric bilayer for attaching streptavidin and cultured mammalian cells by molecular recognition, respectively. Nonspecific adsorption of proteins and cells on polymeric bilayers was minimum. DiynePE was also used to attach a microstructure made of an elastomer (polydimethylsiloxan: PDMS) onto the membrane, forming a confined aqueous solution between the two surfaces. The microcompartment enabled us to assay the activity of a membrane-bound enzyme (cyochrome P450). Natural (fluid) lipid bilayers were incorporated together with membrane-bound proteins by lithographically polymerizing DiynePC/DiynePE bilayers. The hybrid membrane of functionalized polymeric bilayers and fluid bilayers offers a novel platform for a wide range of biomedical applications including biosensor, bioassay, cell culture, and cell-based assay.

  20. Analytic Morse/long-range potential energy surfaces and "adiabatic-hindered-rotor" treatment for a symmetric top-linear molecule dimer: A case study of CH3F-H2

    Science.gov (United States)

    Zhang, Xiao-Long; Ma, Yong-Tao; Zhai, Yu; Li, Hui

    2018-03-01

    A first effective six-dimensional ab initio potential energy surface (PES) for CH3F-H2 which explicitly includes the intramolecular Q3 stretching normal mode of the CH3F monomer is presented. The electronic structure computations have been carried out at the explicitly correlated coupled cluster level of theory [CCSD(T)-F12a] with an augmented correlation-consistent triple zeta basis set. Five-dimensional analytical intermolecular PESs for ν3(CH3F) = 0 and 1 are then obtained by fitting the vibrationally averaged potentials to the Morse/Long-Range (MLR) potential function form. The MLR function form is applied to the nonlinear molecule-linear molecule case for the first time. These fits to 25 015 points have root-mean-square deviations of 0.74 cm-1 and 0.082 cm-1 for interaction energies less than 0.0 cm-1. Using the adiabatic hindered-rotor approximation, three-dimensional PESs for CH3F-paraH2 are generated from the 5D PESs over all possible orientations of the hydrogen monomer. The infrared and microwave spectra for CH3F-paraH2 dimer are predicted for the first time. These analytic PESs can be used for modeling the dynamical behavior in CH3F-(H2)N clusters, including the possible appearance of microscopic superfluidity.

  1. Phase properties of elastic waves in systems constituted of adsorbed diatomic molecules on the (001) surface of a simple cubic crystal

    Science.gov (United States)

    Deymier, P. A.; Runge, K.

    2018-03-01

    A Green's function-based numerical method is developed to calculate the phase of scattered elastic waves in a harmonic model of diatomic molecules adsorbed on the (001) surface of a simple cubic crystal. The phase properties of scattered waves depend on the configuration of the molecules. The configurations of adsorbed molecules on the crystal surface such as parallel chain-like arrays coupled via kinks are used to demonstrate not only linear but also non-linear dependency of the phase on the number of kinks along the chains. Non-linear behavior arises for scattered waves with frequencies in the vicinity of a diatomic molecule resonance. In the non-linear regime, the variation in phase with the number of kinks is formulated mathematically as unitary matrix operations leading to an analogy between phase-based elastic unitary operations and quantum gates. The advantage of elastic based unitary operations is that they are easily realizable physically and measurable.

  2. Low-energy irradiation effects of gas cluster ion beams

    International Nuclear Information System (INIS)

    Houzumi, Shingo; Takeshima, Keigo; Mochiji, Kozo; Toyoda, Noriaki; Yamada, Isao

    2007-01-01

    A cluster-ion irradiation system with cluster-size selection has been developed to study the effects of the cluster size for surface processes using cluster ions. A permanent magnet with a magnetic field of 1.2 T is installed for size separation of large cluster ions. Trace formations at HOPG surface by the irradiation with size-selected Ar-cluster ions under acceleration energy of 30 keV were investigated by a scanning tunneling microscopy. Generation behavior of the crater-like traces is strongly affected by the number of constituent atoms (cluster size) of the irradiating cluster ion. When the incident cluster ion is composed of 100-3000 atoms, crater-like traces are observed on the irradiated surfaces. In contrast, such traces are not observed at all with the irradiation of the cluster-ions composed of over 5000 atoms. Such the behavior is discussed on the basis of the kinetic energy per constituent atom of the cluster ion. To study GCIB irradiation effects against macromolecule, GCIB was irradiated on DNA molecules absorbed on graphite surface. By the GCIB irradiation, much more DNA molecules was sputtered away as compared with the monomer-ion irradiation. (author)

  3. In-situ Evaluation of Soil Organic Molecules: Functional Group Chemistry Aggregate Structures, Metal and Surface Complexation Using Soft X-Ray

    International Nuclear Information System (INIS)

    Myneni, Satish C.

    2008-01-01

    Organic molecules are common in all Earth surface environments, and their composition and chemistry play an important role in a variety of biogeochemical reactions, such as mineral weathering, nutrient cycling and the solubility and transport of contaminants. However, most of what we know about the chemistry of these molecules comes from spectroscopy and microscopy studies of organic molecules extracted from different natural systems using either inorganic or organic solvents. Although all these methods gave us clues about the composition of these molecules, their composition and structure change with the extraction and the type of ex-situ analysis, their true behavior is less well understood. The goal of this project is to develop synchrotron instrumentation for studying natural organics, and to apply these recently developed synchrotron X-ray spectroscopy and microscopy techniques for understanding the: (1) functional group composition of naturally occurring organic molecules; (2) macromolecular structures of organic molecules; and (3) the nature of interactions of organic molecules with mineral surfaces in different environmental conditions.

  4. Photoluminescence behaviors of single CdSe/ZnS/TOPO nanocrystals: Adsorption effects of water molecules onto nanocrystal surfaces

    International Nuclear Information System (INIS)

    Oda, Masaru; Hasegawa, Atsushi; Iwami, Noriya; Nishiura, Ken; Ando, Naohisa; Nishiyama, Akira; Horiuchi, Hiromi; Tani, Toshiro

    2007-01-01

    We report here the distinctive modifications of photoluminescence (PL) behaviors in single CdSe/ZnS/TOPO nanocrystals depending on their environments. Long-time traces of PL intensity from single nanocrystals have been obtained in both vacuum and a wet nitrogen atmosphere. While all of the nanocrystals in both environments exhibit PL blinking behaviors, i.e. on-off intermittency of PL intensity, as usual, some of the nanocrystals in the wet nitrogen atmosphere show significant increase in duration time of on-events. As for the duration time of blinking off-events, it is for the moment associated with the occasional events of carrier capturing at trap sites on or near the nanocrystal surfaces. We propose a model in which adsorbed water molecules at the trap sites on the nanocrystal surfaces transform them under light irradiation, which eventually decreases the occurrence of the trapping events due to their inactivation. It in turn increases the PL on-times. In addition to the drastic modification of the blinking profile, we also found that in the PL time traces some kinds of undulated behaviors, i.e. continuous and rather low frequency fluctuation of PL intensity, appear during each on-event in vacuum while they disappear totally in the wet nitrogen atmosphere. These results are also described on the basis of the inactivation model of the trap sites introduced above

  5. Direct Observation of Double Hydrogen Transfer via Quantum Tunneling in a Single Porphycene Molecule on a Ag(110) Surface.

    Science.gov (United States)

    Koch, Matthias; Pagan, Mark; Persson, Mats; Gawinkowski, Sylwester; Waluk, Jacek; Kumagai, Takashi

    2017-09-13

    Quantum tunneling of hydrogen atoms (or protons) plays a crucial role in many chemical and biological reactions. Although tunneling of a single particle has been examined extensively in various one-dimensional potentials, many-particle tunneling in high-dimensional potential energy surfaces remains poorly understood. Here we present a direct observation of a double hydrogen atom transfer (tautomerization) within a single porphycene molecule on a Ag(110) surface using a cryogenic scanning tunneling microscope (STM). The tautomerization rates are temperature independent below ∼10 K, and a large kinetic isotope effect (KIE) is observed upon substituting the transferred hydrogen atoms by deuterium, indicating that the process is governed by tunneling. The observed KIE for three isotopologues and density functional theory calculations reveal that a stepwise transfer mechanism is dominant in the tautomerization. It is also found that the tautomerization rate is increased by vibrational excitation via an inelastic electron tunneling process. Moreover, the STM tip can be used to manipulate the tunneling dynamics through modification of the potential landscape.

  6. Cell recognition molecule L1 promotes embryonic stem cell differentiation through the regulation of cell surface glycosylation

    Energy Technology Data Exchange (ETDEWEB)

    Li, Ying [Department of Biochemistry and Molecular Biology, Dalian Medical University, Dalian 116044 (China); Department of Clinical Laboratory, Second Affiliated Hospital of Dalian Medical University, Dalian 116023 (China); Huang, Xiaohua [Department of Biochemistry and Molecular Biology, Dalian Medical University, Dalian 116044 (China); Department of Clinical Biochemistry, College of Laboratory Medicine, Dalian Medical University, Dalian 116044 (China); An, Yue [Department of Clinical Laboratory, Second Affiliated Hospital of Dalian Medical University, Dalian 116023 (China); Ren, Feng [Department of Biochemistry and Molecular Biology, Dalian Medical University, Dalian 116044 (China); Yang, Zara Zhuyun; Zhu, Hongmei; Zhou, Lei [The Key Laboratory of Stem Cell and Regenerative Medicine, Institute of Molecular and Clinical Medicine, Kunming Medical University, Kunming 650228 (China); Department of Anatomy and Developmental Biology, Monash University, Clayton 3800 (Australia); He, Xiaowen; Schachner, Melitta [Keck Center for Collaborative Neuroscience and Department of Cell Biology and Neuroscience, Rutgers University, New Brunswick, NJ (United States); Xiao, Zhicheng, E-mail: zhicheng.xiao@monash.edu [The Key Laboratory of Stem Cell and Regenerative Medicine, Institute of Molecular and Clinical Medicine, Kunming Medical University, Kunming 650228 (China); Department of Anatomy and Developmental Biology, Monash University, Clayton 3800 (Australia); Ma, Keli, E-mail: makeli666@aliyun.com [Department of Biochemistry and Molecular Biology, Dalian Medical University, Dalian 116044 (China); Li, Yali, E-mail: yalilipaper@gmail.com [Department of Biochemistry and Molecular Biology, Dalian Medical University, Dalian 116044 (China); Department of Anatomy, National University of Singapore, Singapore 119078 (Singapore)

    2013-10-25

    Highlights: •Down-regulating FUT9 and ST3Gal4 expression blocks L1-induced neuronal differentiation of ESCs. •Up-regulating FUT9 and ST3Gal4 expression in L1-ESCs depends on the activation of PLCγ. •L1 promotes ESCs to differentiate into neuron through regulating cell surface glycosylation. -- Abstract: Cell recognition molecule L1 (CD171) plays an important role in neuronal survival, migration, differentiation, neurite outgrowth, myelination, synaptic plasticity and regeneration after injury. Our previous study has demonstrated that overexpressing L1 enhances cell survival and proliferation of mouse embryonic stem cells (ESCs) through promoting the expression of FUT9 and ST3Gal4, which upregulates cell surface sialylation and fucosylation. In the present study, we examined whether sialylation and fucosylation are involved in ESC differentiation through L1 signaling. RNA interference analysis showed that L1 enhanced differentiation of ESCs into neurons through the upregulation of FUT9 and ST3Gal4. Furthermore, blocking the phospholipase Cγ (PLCγ) signaling pathway with either a specific PLCγ inhibitor or knockdown PLCγ reduced the expression levels of both FUT9 and ST3Gal4 mRNAs and inhibited L1-mediated neuronal differentiation. These results demonstrate that L1 promotes neuronal differentiation from ESCs through the L1-mediated enhancement of FUT9 and ST3Gal4 expression.

  7. Atomic force microscopy imaging and single molecule recognition force spectroscopy of coat proteins on the surface of Bacillus subtilis spore.

    Science.gov (United States)

    Tang, Jilin; Krajcikova, Daniela; Zhu, Rong; Ebner, Andreas; Cutting, Simon; Gruber, Hermann J; Barak, Imrich; Hinterdorfer, Peter

    2007-01-01

    Coat assembly in Bacillus subtilis serves as a tractable model for the study of the self-assembly process of biological structures and has a significant potential for use in nano-biotechnological applications. In the present study, the morphology of B. subtilis spores was investigated by magnetically driven dynamic force microscopy (MAC mode atomic force microscopy) under physiological conditions. B. subtilis spores appeared as prolate structures, with a length of 0.6-3 microm and a width of about 0.5-2 microm. The spore surface was mainly covered with bump-like structures with diameters ranging from 8 to 70 nm. Besides topographical explorations, single molecule recognition force spectroscopy (SMRFS) was used to characterize the spore coat protein CotA. This protein was specifically recognized by a polyclonal antibody directed against CotA (anti-CotA), the antibody being covalently tethered to the AFM tip via a polyethylene glycol linker. The unbinding force between CotA and anti-CotA was determined as 55 +/- 2 pN. From the high-binding probability of more than 20% in force-distance cycles it is concluded that CotA locates in the outer surface of B. subtilis spores. Copyright (c) 2007 John Wiley & Sons, Ltd.

  8. Cell recognition molecule L1 promotes embryonic stem cell differentiation through the regulation of cell surface glycosylation

    International Nuclear Information System (INIS)

    Li, Ying; Huang, Xiaohua; An, Yue; Ren, Feng; Yang, Zara Zhuyun; Zhu, Hongmei; Zhou, Lei; He, Xiaowen; Schachner, Melitta; Xiao, Zhicheng; Ma, Keli; Li, Yali

    2013-01-01

    Highlights: •Down-regulating FUT9 and ST3Gal4 expression blocks L1-induced neuronal differentiation of ESCs. •Up-regulating FUT9 and ST3Gal4 expression in L1-ESCs depends on the activation of PLCγ. •L1 promotes ESCs to differentiate into neuron through regulating cell surface glycosylation. -- Abstract: Cell recognition molecule L1 (CD171) plays an important role in neuronal survival, migration, differentiation, neurite outgrowth, myelination, synaptic plasticity and regeneration after injury. Our previous study has demonstrated that overexpressing L1 enhances cell survival and proliferation of mouse embryonic stem cells (ESCs) through promoting the expression of FUT9 and ST3Gal4, which upregulates cell surface sialylation and fucosylation. In the present study, we examined whether sialylation and fucosylation are involved in ESC differentiation through L1 signaling. RNA interference analysis showed that L1 enhanced differentiation of ESCs into neurons through the upregulation of FUT9 and ST3Gal4. Furthermore, blocking the phospholipase Cγ (PLCγ) signaling pathway with either a specific PLCγ inhibitor or knockdown PLCγ reduced the expression levels of both FUT9 and ST3Gal4 mRNAs and inhibited L1-mediated neuronal differentiation. These results demonstrate that L1 promotes neuronal differentiation from ESCs through the L1-mediated enhancement of FUT9 and ST3Gal4 expression

  9. Phase transition temperatures of 405-725 K in superfluid ultra-dense hydrogen clusters on metal surfaces

    Energy Technology Data Exchange (ETDEWEB)

    Holmlid, Leif, E-mail: holmlid@chem.gu.se [Atmospheric Science, Department of Chemistry, University of Gothenburg, SE-412 96 Göteborg (Sweden); Kotzias, Bernhard [Airbus DS, Department Mechanical Engineering, D28199 Bremen (Germany)

    2016-04-15

    Ultra-dense hydrogen H(0) with its typical H-H bond distance of 2.3 pm is superfluid at room temperature as expected for quantum fluids. It also shows a Meissner effect at room temperature, which indicates that a transition point to a non-superfluid state should exist above room temperature. This transition point is given by a disappearance of the superfluid long-chain clusters H{sub 2N}(0). This transition point is now measured for several metal carrier surfaces at 405 - 725 K, using both ultra-dense protium p(0) and deuterium D(0). Clusters of ordinary Rydberg matter H(l) as well as small symmetric clusters H{sub 4}(0) and H{sub 3}(0) (which do not give a superfluid or superconductive phase) all still exist on the surface at high temperature. This shows directly that desorption or diffusion processes do not remove the long superfluid H{sub 2N}(0) clusters. The two ultra-dense forms p(0) and D(0) have different transition temperatures under otherwise identical conditions. The transition point for p(0) is higher in temperature, which is unexpected.

  10. Phase transition temperatures of 405-725 K in superfluid ultra-dense hydrogen clusters on metal surfaces

    International Nuclear Information System (INIS)

    Holmlid, Leif; Kotzias, Bernhard

    2016-01-01

    Ultra-dense hydrogen H(0) with its typical H-H bond distance of 2.3 pm is superfluid at room temperature as expected for quantum fluids. It also shows a Meissner effect at room temperature, which indicates that a transition point to a non-superfluid state should exist above room temperature. This transition point is given by a disappearance of the superfluid long-chain clusters H_2_N(0). This transition point is now measured for several metal carrier surfaces at 405 - 725 K, using both ultra-dense protium p(0) and deuterium D(0). Clusters of ordinary Rydberg matter H(l) as well as small symmetric clusters H_4(0) and H_3(0) (which do not give a superfluid or superconductive phase) all still exist on the surface at high temperature. This shows directly that desorption or diffusion processes do not remove the long superfluid H_2_N(0) clusters. The two ultra-dense forms p(0) and D(0) have different transition temperatures under otherwise identical conditions. The transition point for p(0) is higher in temperature, which is unexpected.

  11. USING Hα MORPHOLOGY AND SURFACE BRIGHTNESS FLUCTUATIONS TO AGE-DATE STAR CLUSTERS IN M83

    International Nuclear Information System (INIS)

    Whitmore, Bradley C.; Mutchler, Max; Stankiewicz, Matt; Bond, Howard E.; Chandar, Rupali; Kim, Hwihyun; Kaleida, Catherine; Calzetti, Daniela; Saha, Abhijit; O'Connell, Robert; Balick, Bruce; Carollo, Marcella; Disney, Michael J.; Dopita, Michael A.; Frogel, Jay A.; Hall, Donald N. B.; Holtzman, Jon A.; Kimble, Randy A.; McCarthy, Patrick J.; Paresce, Francesco

    2011-01-01

    We use new WFC3 observations of the nearby grand-design spiral galaxy M83 to develop two independent methods for estimating the ages of young star clusters. The first method uses the physical extent and morphology of Hα emission to estimate the ages of clusters younger than τ ∼ 10 Myr. It is based on the simple premise that the gas in very young (τ V 10 Myr) clusters. A by-product of this study is the identification of 22 'single-star' H II regions in M83, with central stars having ages ∼4 Myr.

  12. The effect of water molecules on the thiol collector interaction on the galena (PbS) and sphalerite (ZnS) surfaces: A DFT study

    Energy Technology Data Exchange (ETDEWEB)

    Long, Xianhao [School of Chemistry and Chemical Engineering, Guangxi University, Nanning 530004 (China); Chen, Ye, E-mail: fby18@126.com [College of Resources and Metallurgy, Guangxi University, Nanning 530004 (China); Chen, Jianhua, E-mail: jhchen@gxu.edu.cn [School of Chemistry and Chemical Engineering, Guangxi University, Nanning 530004 (China); College of Resources and Metallurgy, Guangxi University, Nanning 530004 (China); Xu, Zhenghe; Liu, Qingxia [Department of Chemical and Materials Engineering, University of Alberta, Edmonton, AB T6G 2V4 (Canada); Du, Zheng [National Supercomputing Center in Shenzhen, Shenzhen 518055 (China)

    2016-12-15

    Highlights: • Water adsorption has a greater effect on the electron distribution of ZnS surface than PbS surface. • Water adsorption decreases the reactivity of ZnS surface atoms but improves that of PbS. • Thiol collectors cannot interact with the hydrated ZnS surface. • The hydration has little influence on the interaction of thiol collectors with PbS surface. - Abstracts: In froth flotation the molecular interaction between reagents and mineral surfaces take place at the solid liquid interface. In this paper, the effect of water molecule on the three typical thiol collectors (xanthate, dithiocarbomate and dithiophosphate) interactions at the galena (PbS) and sphalerite (ZnS) surfaces has been studied adopting density functional theory (DFT). The results suggests that the presence of water molecule shows a greater influence on the electron distribution of ZnS surface than PbS surface, and reduce the reactivity of ZnS surface atoms but improves the reactivity of PbS surface atoms during the reaction with xanthate. Water adsorption could also reduce the covalent binding between Zn and S atoms but have little influence on Pb-S bond. In the presence of water, xanthate, dithiocarbomate (DTC) and dithiophosphate (DTP) could not adsorb on the sphalerite surface. And for galena (PbS) surface, the interaction of DTP is the strongest, then the DTC and the interaction of xanthate is the weakest. These results agree well with the flotation practice.

  13. Physisorption of helium on a TiO{sub 2}(110) surface: Periodic and finite cluster approaches

    Energy Technology Data Exchange (ETDEWEB)

    Lara-Castells, Maria Pilar de, E-mail: Pilar.deLara.Castells@csic.es [Instituto de Fisica Fundamental (C.S.I.C.), Serrano 123, E-28006 Madrid (Spain); Aguirre, Nestor F. [Instituto de Fisica Fundamental (C.S.I.C.), Serrano 123, E-28006 Madrid (Spain); Mitrushchenkov, Alexander O. [Universite Paris-Est, Laboratoire Modelisation et Simulation Multi Echelle, MSME UMR 8208 CNRS, 5 bd Descartes, 77454 Marne-la-Vallee (France)

    2012-05-03

    Graphical abstract: The physisorption of helium on the TiO{sub 2}(110) surface is explored by using finite cluster and periodic approaches (see left panel). Once the basis set is specifically tailored to minimize the BSSE (rigth panel), DFT periodic calculations using the PBE functional (left panel) yield interaction potentials in good agreement with those obtained using post-HF methods as the LMP2 treatment (see left panel). Highlights: Black-Right-Pointing-Pointer He/TiO{sub 2}(110) is a simplest example of physisorption on transition-metal oxide surfaces. Black-Right-Pointing-Pointer Optimized basis sets that minimize the BSSE are better suited for physisorption problems. Black-Right-Pointing-Pointer FCI benchmarks on the He{sub 2} bound-state assess the Counterpoise scheme reliability. Black-Right-Pointing-Pointer Periodic DFT-PBE and post-HF results on H-saturated clusters compare satisfactorily. Black-Right-Pointing-Pointer Correlation energies by using embedded and H-saturated clusters agree well. - Abstract: As a proto-typical case of physisorption on an extended transition-metal oxide surface, the interaction of a helium atom with a TiO{sub 2}(110) - (1 Multiplication-Sign 1) surface is studied here by using finite cluster and periodic approaches and both wave-function-based (post-Hartree-Fock) quantum chemistry methods and density functional theory. Both classical and advanced finite cluster approaches, based on localized Wannier orbitals combined with one-particle embedding potentials, are applied to provide (reference) coupled-cluster and second-order Moeller-Plesset interaction energies. It is shown that, once the basis set is specifically tailored to minimize the basis set superposition error, periodic calculations using the Perdew-Burke-Ernzerhof functional yield short and medium-range interaction potentials in very reasonable agreement with those obtained using the correlated wave-function-based methods, while small long-range dispersion corrections

  14. Discovery of megaparsec-scale, low surface brightness nonthermal emission in merging galaxy clusters using the green bank telescope

    Energy Technology Data Exchange (ETDEWEB)

    Farnsworth, Damon; Rudnick, Lawrence [Minnesota Institute for Astrophysics, University of Minnesota, 116 Church Street S.E., Minneapolis, MN 55455 (United States); Brown, Shea [Department of Physics and Astronomy, University of Iowa, 203 Van Allen Hall, Iowa City, IA 52242 (United States); Brunetti, Gianfranco [INAF/Istituto di Radioastronomia, via Gobetti 101, I-40129 Bologna (Italy)

    2013-12-20

    We present results from a study of 12 X-ray bright clusters at 1.4 GHz with the 100 m Green Bank Telescope. After subtraction of point sources using existing interferometer data, we reach a median (best) 1σ rms sensitivity level of 0.01 (0.006) μJy arcsec{sup –2}, and find a significant excess of diffuse, low surface brightness emission in 11 of 12 Abell clusters observed. We also present initial results at 1.4 GHz of A2319 from the Very Large Array. In particular, we find: (1) four new detections of diffuse structures tentatively classified as two halos (A2065, A2069) and two relics (A2067, A2073); (2) the first detection of the radio halo in A2061 at 1.4 GHz, which qualifies this as a possible ultra-steep spectrum halo source with a synchrotron spectral index of α ∼ 1.8 between 327 MHz and 1.4 GHz; (3) a ∼2 Mpc radio halo in the sloshing, minor-merger cluster A2142; (4) a >2× increase of the giant radio halo extent and luminosity in the merging cluster A2319; (5) a ∼7× increase to the integrated radio flux and >4× increase to the observed extent of the peripheral radio relic in A1367 to ∼600 kpc, which we also observe to be polarized on a similar scale; (6) significant excess emission of ambiguous nature in three clusters with embedded tailed radio galaxies (A119, A400, A3744). Our radio halo detections agree with the well-known X-ray/radio luminosity correlation, but they are larger and fainter than current radio power correlation studies would predict. The corresponding volume-averaged synchrotron emissivities are 1-2 orders of magnitude below the characteristic value found in previous studies. Some of the halo-like detections may be some type of previously unseen, low surface brightness radio halo or blend of unresolved shock structures and sub-Mpc-scale turbulent regions associated with their respective cluster merging activity. Four of the five tentative halos contain one or more X-ray cold fronts, suggesting a possible connection between gas

  15. Two-surface Monte Carlo with basin hopping: quantum mechanical trajectory and multiple stationary points of water cluster.

    Science.gov (United States)

    Bandyopadhyay, Pradipta

    2008-04-07

    The efficiency of the two-surface monte carlo (TSMC) method depends on the closeness of the actual potential and the biasing potential used to propagate the system of interest. In this work, it is shown that by combining the basin hopping method with TSMC, the efficiency of the method can be increased by several folds. TSMC with basin hopping is used to generate quantum mechanical trajectory and large number of stationary points of water clusters.

  16. Cluster beam injection

    International Nuclear Information System (INIS)

    Bottiglioni, F.; Coutant, J.; Fois, M.

    1978-01-01

    Areas of possible applications of cluster injection are discussed. The deposition inside the plasma of molecules, issued from the dissociation of the injected clusters, has been computed. Some empirical scaling laws for the penetration are given

  17. Quantum tunneling in real space: Tautomerization of single porphycene molecules on the (111) surface of Cu, Ag, and Au

    Science.gov (United States)

    Kumagai, Takashi; Ladenthin, Janina N.; Litman, Yair; Rossi, Mariana; Grill, Leonhard; Gawinkowski, Sylwester; Waluk, Jacek; Persson, Mats

    2018-03-01

    Tautomerization in single porphycene molecules is investigated on Cu(111), Ag(111), and Au(111) surfaces by a combination of low-temperature scanning tunneling microscopy (STM) experiments and density functional theory (DFT) calculations. It is revealed that the trans configuration is the thermodynamically stable form of porphycene on Cu(111) and Ag(111), whereas the cis configuration occurs as a meta-stable form. The trans → cis or cis → trans conversion on Cu(111) can be induced in an unidirectional fashion by injecting tunneling electrons from the STM tip or heating the surface, respectively. We find that the cis ↔ cis tautomerization on Cu(111) occurs spontaneously via tunneling, verified by the negligible temperature dependence of the tautomerization rate below ˜23 K. Van der Waals corrected DFT calculations are used to characterize the adsorption structures of porphycene and to map the potential energy surface of the tautomerization on Cu(111). The calculated barriers are too high to be thermally overcome at cryogenic temperatures used in the experiment and zero-point energy corrections do not change this picture, leaving tunneling as the most likely mechanism. On Ag(111), the reversible trans ↔ cis conversion occurs spontaneously at 5 K and the cis ↔ cis tautomerization rate is much higher than on Cu(111), indicating a significantly smaller tautomerization barrier on Ag(111) due to the weaker interaction between porphycene and the surface compared to Cu(111). Additionally, the STM experiments and DFT calculations reveal that tautomerization on Cu(111) and Ag(111) occurs with migration of porphycene along the surface; thus, the translational motion couples with the tautomerization coordinate. On the other hand, the trans and cis configurations are not discernible in the STM image and no tautomerization is observed for porphycene on Au(111). The weak interaction of porphycene with Au(111) is closest to the gas-phase limit and therefore the absence

  18. A classical trajectory study of the adatom -surface bond dissociation in the collision reaction between an adsorbed H atom and an N2 molecule

    International Nuclear Information System (INIS)

    Bayhan, U.

    2005-01-01

    The collisionnal dissociation of the Adatom-Surface bond in the diatomic molecule N2(gas)/H(ads) collision taking place on a W(100) bcc-structure surface have been studied by classical trajectory method over the collision energy ranges (0.1-2.0 eV ) and the attractive well depth (0.19-4.0 eV). of the N2 molecule (gas)/H(ads) interactions. When the energy accumulate into the adatom bond, thus leading to a a large dissociation probability

  19. Allelic imbalance modulates surface expression of the tolerance-inducing HLA-G molecule on primary trophoblast cells.

    Science.gov (United States)

    Djurisic, S; Teiblum, S; Tolstrup, C K; Christiansen, O B; Hviid, T V F

    2015-03-01

    The HLA-G molecule is expressed on trophoblast cells at the feto-maternal interface, where it interacts with local immune cells, and upholds tolerance against the semi-allogeneic fetus. Aberrant HLA-G expression in the placenta and reduced soluble HLA-G levels are observed in pregnancy complications, partly explained by HLA-G polymorphisms which are associated with differences in the alternative splicing pattern and of the stability of HLA-G mRNA. Of special importance is a 14 bp insertion/deletion polymorphism located in the 3'-untranslated region of the HLA-G gene. In the current study, we present novel evidence for allelic imbalance of the 14 bp insertion/deletion polymorphism, using a very accurate and sensitive Digital droplet PCR technique. Allelic imbalance in heterozygous samples was observed as differential expression levels of 14 bp insertion/deletion allele-specific mRNA transcripts, which was further associated with low levels of HLA-G surface expression on primary trophoblast cells. Full gene sequencing of HLA-G allowed us to study correlations between HLA-G extended haplotypes and single-nucleotide polymorphisms and HLA-G surface expression. We found that a 1:1 expression (allelic balance) of the 14 bp insertion/deletion mRNA alleles was associated with high surface expression of HLA-G and with a specific HLA-G extended haplotype. The 14 bp del/del genotype was associated with a significantly lower abundance of the G1 mRNA isoform, and a higher abundance of the G3 mRNA isoform. Overall, the present study provides original evidence for allelic imbalance of the 14 bp insertion/deletion polymorphism, which influences HLA-G surface expression on primary trophoblast cells, considered to be important in the pathogenesis of pre-eclampsia and other pregnancy complications. © The Author 2014. Published by Oxford University Press on behalf of the European Society of Human Reproduction and Embryology. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  20. Screening Mixtures of Small Molecules for Binding to Multiple Sites on the Surface Tetanus Toxin C Fragment by Bioaffinity NMR

    International Nuclear Information System (INIS)

    Cosman, M; Zeller, L; Lightstone, F C; Krishnan, V V; Balhorn, R

    2002-01-01

    The clostridial neurotoxins include the closely related tetanus (TeNT) and botulinum (BoNT) toxins. Botulinum toxin is used to treat severe muscle disorders and as a cosmetic wrinkle reducer. Large quantities of botulinum toxin have also been produced by terrorists for use as a biological weapon. Because there are no known antidotes for these toxins, they thus pose a potential threat to human health whether by an accidental overdose or by a hostile deployment. Thus, the discovery of high specificity and affinity compounds that can inhibit their binding to neural cells can be used as antidotes or in the design of chemical detectors. Using the crystal structure of the C fragment of the tetanus toxin (TetC), which is the cell recognition and cell surface binding domain, and the computational program DOCK, sets of small molecules have been predicted to bind to two different sites located on the surface of this protein. While Site-1 is common to the TeNT and BoNTs, Site-2 is unique to TeNT. Pairs of these molecules from each site can then be linked together synthetically to thereby increase the specificity and affinity for this toxin. Electrospray ionization mass spectroscopy was used to experimentally screen each compound for binding. Mixtures containing binders were further screened for activity under biologically relevant conditions using nuclear magnetic resonance (NMR) methods. The screening of mixtures of compounds offers increased efficiency and throughput as compared to testing single compounds and can also evaluate how possible structural changes induced by the binding of one ligand can influence the binding of the second ligand. In addition, competitive binding experiments with mixtures containing ligands predicted to bind the same site could identify the best binder for that site. NMR transfer nuclear Overhauser effect (trNOE) confirm that TetC binds doxorubicin but that this molecule is displaced by N-acetylneuraminic acid (sialic acid) in a mixture that

  1. Probing the rate-determining region of the potential energy surface for a prototypical ion-molecule reaction.

    Science.gov (United States)

    Xie, Changjian; Liu, Xinguo; Sweeny, Brendan C; Miller, Thomas M; Ard, Shaun G; Shuman, Nicholas S; Viggiano, Albert A; Guo, Hua

    2018-03-13

    We report a joint experimental-theoretical study of the F -  + HCl → HF + Cl - reaction kinetics. The experimental measurement of the rate coefficient at several temperatures was made using the selected ion flow tube method. Theoretical rate coefficients are calculated using the quasi-classical trajectory method on a newly developed global potential energy surface, obtained by fitting a large number of high-level ab initio points with augmentation of long-range electrostatic terms. In addition to good agreement between experiment and theory, analyses suggest that the ion-molecule reaction rate is significantly affected by shorter-range interactions, in addition to the traditionally recognized ion-dipole and ion-induced dipole terms. Furthermore, the statistical nature of the reaction is assessed by comparing the measured and calculated HF product vibrational state distributions to that predicted by the phase space theory.This article is part of the theme issue 'Modern theoretical chemistry'. © 2018 The Author(s).

  2. Versatile piezoelectric pulsed molecular beam source for gaseous compounds and organic molecules with femtomole accuracy for UHV and surface science applications

    International Nuclear Information System (INIS)

    Schiesser, Alexander; Schaefer, Rolf

    2009-01-01

    This note describes the construction of a piezoelectric pulsed molecular beam source based upon a design presented in an earlier work [D. Proch and T. Trickl, Rev. Sci. Instrum. 60, 713 (1988)]. The design features significant modifications that permit the determination of the number of molecules in a beam pulse with an accuracy of 1x10 11 molecules per pulse. The 21 cm long plunger-nozzle setup allows the molecules to be brought to any point of the UHV chamber with very high intensity. Furthermore, besides typical gaseous compounds, also smaller organic molecules with a vapor pressure higher than 0.1 mbar at room temperature may serve as feed material. This makes the new design suitable for various applications in chemical and surface science studies.

  3. GALAXY HALO TRUNCATION AND GIANT ARC SURFACE BRIGHTNESS RECONSTRUCTION IN THE CLUSTER MACSJ1206.2-0847

    Energy Technology Data Exchange (ETDEWEB)

    Eichner, Thomas; Seitz, Stella; Monna, Anna [Universitaets-Sternwarte Muenchen, Scheinerstr. 1, D-81679 Muenchen (Germany); Suyu, Sherry H. [Department of Physics, University of California, Santa Barbara, CA 93106 (United States); Halkola, Aleksi [Institute of Medical Engineering, University of Luebeck, Ratzeburger Allee 160 23562 Luebeck (Germany); Umetsu, Keiichi [Institute of Astronomy and Astrophysics, Academia Sinica, P.O. Box 23-141, Taipei 10617, Taiwan (China); Zitrin, Adi [Institut fuer Theoretische Astrophysik, ZAH, Albert-Ueberle-Strasse 2, D-69120 Heidelberg (Germany); Coe, Dan; Postman, Marc; Koekemoer, Anton; Bradley, Larry [Space Telescope Science Institute, 3700 San Martin Drive, Baltimore, MD 21208 (United States); Rosati, Piero [ESO-European Southern Observatory, D-85748 Garching bei Muenchen (Germany); Grillo, Claudio; Host, Ole [Dark Cosmology Centre, Niels Bohr Institute, University of Copenhagen, Juliane Maries Vej 30, DK-2100 Copenhagen (Denmark); Balestra, Italo [Max-Planck-Institut fuer Extraterrestrische Physik, Giessenbachstrasse, D-85748 Garching (Germany); Zheng, Wei; Lemze, Doron [Department of Physics and Astronomy, The Johns Hopkins University, 3400 North Charles Street, Baltimore, MD 21218 (United States); Broadhurst, Tom [Department of Theoretical Physics, University of the Basque Country, P.O. Box 644, E-48080 Bilbao (Spain); Moustakas, Leonidas [Jet Propulsion Laboratory, California Institute of Technology, MS 169-327, Pasadena, CA 91109 (United States); Molino, Alberto [Instituto de Astrofisica de Andalucia (CSIC), C/Camino Bajo de Huetor 24, Granada E-18008 (Spain); and others

    2013-09-10

    In this work, we analyze the mass distribution of MACSJ1206.2-0847, particularly focusing on the halo properties of its cluster members. The cluster appears relaxed in its X-ray emission, but has a significant amount of intracluster light that is not centrally concentrated, suggesting that galaxy-scale interactions are still ongoing despite the overall relaxed state. The cluster lenses 12 background galaxies into multiple images and one galaxy at z = 1.033 into a giant arc and its counterimage. The multiple image positions and the surface brightness (SFB) distribution of the arc, which is bent around several cluster members, are sensitive to the cluster galaxy halo properties. We model the cluster mass distribution with a Navarro-Frenk-White profile and the galaxy halos with two parameters for the mass normalization and the extent of a reference halo assuming scalings with their observed near-infrared light. We match the multiple image positions at an rms level of 0.''85 and can reconstruct the SFB distribution of the arc in several filters to a remarkable accuracy based on this cluster model. The length scale where the enclosed galaxy halo mass is best constrained is about 5 effective radii-a scale in between those accessible to dynamical and field strong-lensing mass estimates on the one hand and galaxy-galaxy weak-lensing results on the other hand. The velocity dispersion and halo size of a galaxy with m{sub 160W,AB} = 19.2 and M{sub B,Vega} = -20.7 are {sigma} = 150 km s{sup -1} and r Almost-Equal-To 26 {+-} 6 kpc, respectively, indicating that the halos of the cluster galaxies are tidally stripped. We also reconstruct the unlensed source, which is smaller by a factor of {approx}5.8 in area, demonstrating the increase in morphological information due to lensing. We conclude that this galaxy likely has star-forming spiral arms with a red (older) central component.

  4. GALAXY HALO TRUNCATION AND GIANT ARC SURFACE BRIGHTNESS RECONSTRUCTION IN THE CLUSTER MACSJ1206.2-0847

    International Nuclear Information System (INIS)

    Eichner, Thomas; Seitz, Stella; Monna, Anna; Suyu, Sherry H.; Halkola, Aleksi; Umetsu, Keiichi; Zitrin, Adi; Coe, Dan; Postman, Marc; Koekemoer, Anton; Bradley, Larry; Rosati, Piero; Grillo, Claudio; Høst, Ole; Balestra, Italo; Zheng, Wei; Lemze, Doron; Broadhurst, Tom; Moustakas, Leonidas; Molino, Alberto

    2013-01-01

    In this work, we analyze the mass distribution of MACSJ1206.2-0847, particularly focusing on the halo properties of its cluster members. The cluster appears relaxed in its X-ray emission, but has a significant amount of intracluster light that is not centrally concentrated, suggesting that galaxy-scale interactions are still ongoing despite the overall relaxed state. The cluster lenses 12 background galaxies into multiple images and one galaxy at z = 1.033 into a giant arc and its counterimage. The multiple image positions and the surface brightness (SFB) distribution of the arc, which is bent around several cluster members, are sensitive to the cluster galaxy halo properties. We model the cluster mass distribution with a Navarro-Frenk-White profile and the galaxy halos with two parameters for the mass normalization and the extent of a reference halo assuming scalings with their observed near-infrared light. We match the multiple image positions at an rms level of 0.''85 and can reconstruct the SFB distribution of the arc in several filters to a remarkable accuracy based on this cluster model. The length scale where the enclosed galaxy halo mass is best constrained is about 5 effective radii—a scale in between those accessible to dynamical and field strong-lensing mass estimates on the one hand and galaxy-galaxy weak-lensing results on the other hand. The velocity dispersion and halo size of a galaxy with m 160W,AB = 19.2 and M B,Vega = –20.7 are σ = 150 km s –1 and r ≈ 26 ± 6 kpc, respectively, indicating that the halos of the cluster galaxies are tidally stripped. We also reconstruct the unlensed source, which is smaller by a factor of ∼5.8 in area, demonstrating the increase in morphological information due to lensing. We conclude that this galaxy likely has star-forming spiral arms with a red (older) central component

  5. Quantum model of a solid-state spin qubit: Ni cluster on a silicon surface by the generalized spin Hamiltonian and X-ray absorption spectroscopy investigations

    Energy Technology Data Exchange (ETDEWEB)

    Farberovich, Oleg V. [School of Physics and Astronomy, Beverly and Raymond Sackler Faculty of Exact Sciences, Tel Aviv University, Tel Aviv 69978 (Israel); Research Center for Nanoscale Structure of Matter, Southern Federal University, Zorge 5, 344090 Rostov-on-Don (Russian Federation); Voronezh State University, Voronezh 394000 (Russian Federation); Mazalova, Victoria L., E-mail: mazalova@sfedu.ru [Research Center for Nanoscale Structure of Matter, Southern Federal University, Zorge 5, 344090 Rostov-on-Don (Russian Federation); Soldatov, Alexander V. [Research Center for Nanoscale Structure of Matter, Southern Federal University, Zorge 5, 344090 Rostov-on-Don (Russian Federation)

    2015-11-15

    We present here the quantum model of a Ni solid-state electron spin qubit on a silicon surface with the use of a density-functional scheme for the calculation of the exchange integrals in the non-collinear spin configurations in the generalized spin Hamiltonian (GSH) with the anisotropic exchange coupling parameters linking the nickel ions with a silicon substrate. In this model the interaction of a spin qubit with substrate is considered in GSH at the calculation of exchange integrals J{sub ij} of the nanosystem Ni{sub 7}–Si in the one-electron approach taking into account chemical bonds of all Si-atoms of a substrate (environment) with atoms of the Ni{sub 7}-cluster. The energy pattern was found from the effective GSH Hamiltonian acting in the restricted spin space of the Ni ions by the application of the irreducible tensor operators (ITO) technique. In this paper we offer the model of the quantum solid-state N-spin qubit based on the studying of the spin structure and the spin-dynamics simulations of the 3d-metal Ni clusters on the silicon surface. The solution of the problem of the entanglement between spin states in the N-spin systems is becoming more interesting when considering clusters or molecules with a spectral gap in their density of states. For quantifying the distribution of the entanglement between the individual spin eigenvalues (modes) in the spin structure of the N-spin system we use the density of entanglement (DOE). In this study we have developed and used the advanced high-precision numerical techniques to accurately assess the details of the decoherence process governing the dynamics of the N-spin qubits interacting with a silicon surface. We have studied the Rabi oscillations to evaluate the N-spin qubits system as a function of the time and the magnetic field. We have observed the stabilized Rabi oscillations and have stabilized the quantum dynamical qubit state and Rabi driving after a fixed time (0.327 μs). The comparison of the energy

  6. Quantum model of a solid-state spin qubit: Ni cluster on a silicon surface by the generalized spin Hamiltonian and X-ray absorption spectroscopy investigations

    International Nuclear Information System (INIS)

    Farberovich, Oleg V.; Mazalova, Victoria L.; Soldatov, Alexander V.

    2015-01-01

    We present here the quantum model of a Ni solid-state electron spin qubit on a silicon surface with the use of a density-functional scheme for the calculation of the exchange integrals in the non-collinear spin configurations in the generalized spin Hamiltonian (GSH) with the anisotropic exchange coupling parameters linking the nickel ions with a silicon substrate. In this model the interaction of a spin qubit with substrate is considered in GSH at the calculation of exchange integrals J ij of the nanosystem Ni 7 –Si in the one-electron approach taking into account chemical bonds of all Si-atoms of a substrate (environment) with atoms of the Ni 7 -cluster. The energy pattern was found from the effective GSH Hamiltonian acting in the restricted spin space of the Ni ions by the application of the irreducible tensor operators (ITO) technique. In this paper we offer the model of the quantum solid-state N-spin qubit based on the studying of the spin structure and the spin-dynamics simulations of the 3d-metal Ni clusters on the silicon surface. The solution of the problem of the entanglement between spin states in the N-spin systems is becoming more interesting when considering clusters or molecules with a spectral gap in their density of states. For quantifying the distribution of the entanglement between the individual spin eigenvalues (modes) in the spin structure of the N-spin system we use the density of entanglement (DOE). In this study we have developed and used the advanced high-precision numerical techniques to accurately assess the details of the decoherence process governing the dynamics of the N-spin qubits interacting with a silicon surface. We have studied the Rabi oscillations to evaluate the N-spin qubits system as a function of the time and the magnetic field. We have observed the stabilized Rabi oscillations and have stabilized the quantum dynamical qubit state and Rabi driving after a fixed time (0.327 μs). The comparison of the energy pattern with

  7. Inclusion of orbital relaxation and correlation through the unitary group adapted open shell coupled cluster theory using non-relativistic and scalar relativistic Hamiltonians to study the core ionization potential of molecules containing light to medium-heavy elements

    Science.gov (United States)

    Sen, Sangita; Shee, Avijit; Mukherjee, Debashis

    2018-02-01

    The orbital relaxation attendant on ionization is particularly important for the core electron ionization potential (core IP) of molecules. The Unitary Group Adapted State Universal Coupled Cluster (UGA-SUMRCC) theory, recently formulated and implemented by Sen et al. [J. Chem. Phys. 137, 074104 (2012)], is very effective in capturing orbital relaxation accompanying ionization or excitation of both the core and the valence electrons [S. Sen et al., Mol. Phys. 111, 2625 (2013); A. Shee et al., J. Chem. Theory Comput. 9, 2573 (2013)] while preserving the spin-symmetry of the target states and using the neutral closed-shell spatial orbitals of the ground state. Our Ansatz invokes a normal-ordered exponential representation of spin-free cluster-operators. The orbital relaxation induced by a specific set of cluster operators in our Ansatz is good enough to eliminate the need for different sets of orbitals for the ground and the core-ionized states. We call the single configuration state function (CSF) limit of this theory the Unitary Group Adapted Open-Shell Coupled Cluster (UGA-OSCC) theory. The aim of this paper is to comprehensively explore the efficacy of our Ansatz to describe orbital relaxation, using both theoretical analysis and numerical performance. Whenever warranted, we also make appropriate comparisons with other coupled-cluster theories. A physically motivated truncation of the chains of spin-free T-operators is also made possible by the normal-ordering, and the operational resemblance to single reference coupled-cluster theory allows easy implementation. Our test case is the prediction of the 1s core IP of molecules containing a single light- to medium-heavy nucleus and thus, in addition to demonstrating the orbital relaxation, we have addressed the scalar relativistic effects on the accuracy of the IPs by using a hierarchy of spin-free Hamiltonians in conjunction with our theory. Additionally, the contribution of the spin-free component of the two

  8. Inclusion of orbital relaxation and correlation through the unitary group adapted open shell coupled cluster theory using non-relativistic and scalar relativistic Hamiltonians to study the core ionization potential of molecules containing light to medium-heavy elements.

    Science.gov (United States)

    Sen, Sangita; Shee, Avijit; Mukherjee, Debashis

    2018-02-07

    The orbital relaxation attendant on ionization is particularly important for the core electron ionization potential (core IP) of molecules. The Unitary Group Adapted State Universal Coupled Cluster (UGA-SUMRCC) theory, recently formulated and implemented by Sen et al. [J. Chem. Phys. 137, 074104 (2012)], is very effective in capturing orbital relaxation accompanying ionization or excitation of both the core and the valence electrons [S. Sen et al., Mol. Phys. 111, 2625 (2013); A. Shee et al., J. Chem. Theory Comput. 9, 2573 (2013)] while preserving the spin-symmetry of the target states and using the neutral closed-shell spatial orbitals of the ground state. Our Ansatz invokes a normal-ordered exponential representation of spin-free cluster-operators. The orbital relaxation induced by a specific set of cluster operators in our Ansatz is good enough to eliminate the need for different sets of orbitals for the ground and the core-ionized states. We call the single configuration state function (CSF) limit of this theory the Unitary Group Adapted Open-Shell Coupled Cluster (UGA-OSCC) theory. The aim of this paper is to comprehensively explore the efficacy of our Ansatz to describe orbital relaxation, using both theoretical analysis and numerical performance. Whenever warranted, we also make appropriate comparisons with other coupled-cluster theories. A physically motivated truncation of the chains of spin-free T-operators is also made possible by the normal-ordering, and the operational resemblance to single reference coupled-cluster theory allows easy implementation. Our test case is the prediction of the 1s core IP of molecules containing a single light- to medium-heavy nucleus and thus, in addition to demonstrating the orbital relaxation, we have addressed the scalar relativistic effects on the accuracy of the IPs by using a hierarchy of spin-free Hamiltonians in conjunction with our theory. Additionally, the contribution of the spin-free component of the two

  9. First-principles analysis of C2H2 molecule diffusion and its dissociation process on the ferromagnetic bcc-Fe(110) surface

    International Nuclear Information System (INIS)

    Ikeda, Minoru; Yamasaki, Takahiro; Kaneta, Chioko

    2010-01-01

    Using the projector-augmented plane wave method, we study diffusion and dissociation processes of C 2 H 2 molecules on the ferromagnetic bcc-Fe(110) surface and investigate the formation process of graphene created by C 2 H 2 molecules. The most stable site for C 2 H 2 on the Fe surface is a hollow site and its adsorption energy is - 3.5 eV. In order to study the diffusion process of the C 2 H 2 molecule, the barrier height energies for the C atom, C 2 -dimer and CH as well as the C 2 H 2 molecule are estimated using the nudged elastic band method. The barrier height energy for C 2 H 2 is 0.71 eV and this indicates that the C 2 H 2 diffuses easily on this FM bcc-Fe(110) surface. We further investigate the two step dissociation process of C 2 H 2 on Fe. The first step is the dissociation of C 2 H 2 into C 2 H and H, and the second step is that of C 2 H into C 2 and H. Their dissociation energies are 0.9 and 1.2 eV, respectively. These energies are relatively small compared to the dissociation energy 7.5 eV of C 2 H 2 into C 2 H and H in the vacuum. Thus, the Fe surface shows catalytic effects. We further investigate the initial formation process of graphene by increasing the coverage of C 2 H 2 . The formation process of the benzene molecule on the FM bcc(110) surface is also discussed. We find that there exists a critical coverage of C 2 H 2 which characterizes the beginning of the formation of the graphene.

  10. First-principles analysis of C2H2 molecule diffusion and its dissociation process on the ferromagnetic bcc-Fe110 surface.

    Science.gov (United States)

    Ikeda, Minoru; Yamasaki, Takahiro; Kaneta, Chioko

    2010-09-29

    Using the projector-augmented plane wave method, we study diffusion and dissociation processes of C(2)H(2) molecules on the ferromagnetic bcc-Fe(110) surface and investigate the formation process of graphene created by C(2)H(2) molecules. The most stable site for C(2)H(2) on the Fe surface is a hollow site and its adsorption energy is - 3.5 eV. In order to study the diffusion process of the C(2)H(2) molecule, the barrier height energies for the C atom, C(2)-dimer and CH as well as the C(2)H(2) molecule are estimated using the nudged elastic band method. The barrier height energy for C(2)H(2) is 0.71 eV and this indicates that the C(2)H(2) diffuses easily on this FM bcc-Fe(110) surface. We further investigate the two step dissociation process of C(2)H(2) on Fe. The first step is the dissociation of C(2)H(2) into C(2)H and H, and the second step is that of C(2)H into C(2) and H. Their dissociation energies are 0.9 and 1.2 eV, respectively. These energies are relatively small compared to the dissociation energy 7.5 eV of C(2)H(2) into C(2)H and H in the vacuum. Thus, the Fe surface shows catalytic effects. We further investigate the initial formation process of graphene by increasing the coverage of C(2)H(2). The formation process of the benzene molecule on the FM bcc(110) surface is also discussed. We find that there exists a critical coverage of C(2)H(2) which characterizes the beginning of the formation of the graphene.

  11. A nonpolar, nonamphiphilic molecule can accelerate adsorption of phospholipids and lower their surface tension at the air/water interface.

    Science.gov (United States)

    Nguyen, Phuc Nghia; Trinh Dang, Thuan Thao; Waton, Gilles; Vandamme, Thierry; Krafft, Marie Pierre

    2011-10-04

    The adsorption dynamics of a series of phospholipids (PLs) at the interface between an aqueous solution or dispersion of the PL and a gas phase containing the nonpolar, nonamphiphilic linear perfluorocarbon perfluorohexane (PFH) was studied by bubble profile analysis tensiometry. The PLs investigated were dioctanoylphosphatidylcholine (DiC(8)-PC), dilaurylphosphatidylcholine, dimyristoylphosphatidylcholine, and dipalmitoylphosphatidylcholine. The gas phase consisted of air or air saturated with PFH. The perfluorocarbon gas was found to have an unexpected, strong effect on both the adsorption rate and the equilibrium interfacial tension (γ(eq)) of the PLs. First, for all of the PLs, and at all concentrations investigated, the γ(eq) values were significantly lower (by up to 10 mN m(-1)) when PFH was present in the gas phase. The efficacy of PFH in decreasing γ(eq) depends on the ability of PLs to form micelles or vesicles in water. For vesicles, it also depends on the gel or fluid state of the membranes. Second, the adsorption rates of all the PLs at the interface (as assessed by the time required for the initial interfacial tension to be reduced by 30%) are significantly accelerated (by up to fivefold) by the presence of PFH for the lower PL concentrations. Both the surface-tension reducing effect and the adsorption rate increasing effect establish that PFH has a strong interaction with the PL monolayer and acts as a cosurfactant at the interface, despite the absence of any amphiphilic character. Fitting the adsorption profiles of DiC(8)-PC at the PFH-saturated air/aqueous solution interface with the modified Frumkin model indicated that the PFH molecule lay horizontally at the interface. Copyright © 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  12. Key residues of a major cytochrome P4502D6 epitope are located on the surface of the molecule.

    Science.gov (United States)

    Ma, Yun; Thomas, Mark G; Okamoto, Manabu; Bogdanos, Dimitrios P; Nagl, Sylvia; Kerkar, Nanda; Lopes, Agnel R; Muratori, Luigi; Lenzi, Marco; Bianchi, Francesco B; Mieli-Vergani, Giorgina; Vergani, Diego

    2002-07-01

    Eukaryotically expressed CYP2D6 is the universal target of liver kidney microsomal Ab type 1 (LKM1) in both type 2 autoimmune hepatitis (AIH) and chronic hepatitis C virus (HCV) infection. In contrast, reactivity to prokaryotically expressed CYP2D6 protein and synthetic peptides is significantly lower in HCV infection than in AIH. The aim of the present study was to characterize LKM1 reactivity against a panel of eukaryotically expressed CYP2D6 constructs in the two conditions. LKM1-positive sera obtained from 16 patients with AIH and 16 with HCV infection were used as probes to perform a complete epitope mapping of CYP2D6. Reactivity to the full-length protein and 16 constructs thereof was determined by radioligand assay. We found that antigenicity is confined to the portion of the molecule C-terminal of aa 193, no reactivity being detectable against the aa sequence 1-193. Reactivity increases stepwise toward the C-terminal in both AIH and HCV, but the frequency of reactivity in the two conditions differs significantly between aa 267-337. To further characterize this region, we introduced a five and a three amino acid swap mutation selected from the homologous regions of CYP2C9 and HCV. This maneuver resulted in a substantial loss of LKM1 binding in both conditions, suggesting that this region contains a major epitope. Molecular modeling revealed that CYP2D6(316-327) is exposed on the surface of the protein, and may represent a key target for the autoantibody. These findings provide an initial characterization of the antigenic constitution of the target of LKM1 in AIH and HCV infection.

  13. Structure determination of disordered organic molecules on surfaces from the Bragg spots of low-energy electron diffraction and total energy calculations

    International Nuclear Information System (INIS)

    Poon, H.C.; Weinert, M.; Saldin, D.K.; Stacchiola, D.; Zheng, T.; Tysoe, W.T.

    2004-01-01

    We show that an analysis of the intensity versus energy variation of Bragg spots due to low-energy electron diffraction from a disordered overlayer of molecules on a crystal surface allows a much more convenient method of determining the local adsorption geometries of such molecules than previously analyzed weak diffuse diffraction patterns. For the case of methanol on Pd(111), we show that the geometry determined by this means from experimental diffraction data is in excellent agreement with the predictions of density functional total energy calculations

  14. Study of the influence of surface anisotropy and lattice structure on the behaviour of a small magnetic cluster

    International Nuclear Information System (INIS)

    Hernandez, Laura; Pinettes, Claire

    2005-01-01

    We have studied by Monte Carlo simulations the thermal behaviour of a small (N=13 particles) cluster described by a Heisenberg model, including nearest-neighbour ferromagnetic interactions and radial surface anisotropy, in an applied magnetic field. We have studied three different lattice structures: hexagonal close packed, face centered cubic and icosahedral. We show that the zero-field thermal behaviour depends not only on the value of the anisotropy constant but also on the lattice structure. The behaviour in an applied field, additionally depends, on the different orientations of the field with respect to the crystal axes. According to these relative orientations, hysteresis cycles show different step-like characteristics

  15. Study of the influence of surface anisotropy and lattice structure on the behaviour of a small magnetic cluster

    Energy Technology Data Exchange (ETDEWEB)

    Hernandez, Laura [Laboratoire de Physique Theorique et Modelisation, CNRS-UMR 8089, Universite de Cergy-Pontoise, 5 mail Gay Lussac, Neuville-sur-Oise, 95031 Cergy-Pontoise, Cedex (France)]. E-mail: Laura.Hernandez@ptm.u-cergy.fr; Pinettes, Claire [Laboratoire de Physique Theorique et Modelisation, CNRS-UMR 8089, Universite de Cergy-Pontoise, 5 mail Gay Lussac, Neuville-sur-Oise, 95031 Cergy-Pontoise, Cedex (France)

    2005-08-15

    We have studied by Monte Carlo simulations the thermal behaviour of a small (N=13 particles) cluster described by a Heisenberg model, including nearest-neighbour ferromagnetic interactions and radial surface anisotropy, in an applied magnetic field. We have studied three different lattice structures: hexagonal close packed, face centered cubic and icosahedral. We show that the zero-field thermal behaviour depends not only on the value of the anisotropy constant but also on the lattice structure. The behaviour in an applied field, additionally depends, on the different orientations of the field with respect to the crystal axes. According to these relative orientations, hysteresis cycles show different step-like characteristics.

  16. Corrosion resistance and durability of superhydrophobic surface formed on magnesium alloy coated with nanostructured cerium oxide film and fluoroalkylsilane molecules in corrosive NaCl aqueous solution.

    Science.gov (United States)

    Ishizaki, Takahiro; Masuda, Yoshitake; Sakamoto, Michiru

    2011-04-19

    The corrosion resistant performance and durability of the superhydrophobic surface on magnesium alloy coated with nanostructured cerium oxide film and fluoroalkylsilane molecules in corrosive NaCl aqueous solution were investigated using electrochemical and contact angle measurements. The durability of the superhydrophobic surface in corrosive 5 wt% NaCl aqueous solution was elucidated. The corrosion resistant performance of the superhydrophobic surface formed on magnesium alloy was estimated by electrochemical impedance spectroscopy (EIS) measurements. The EIS measurements and appropriate equivalent circuit models revealed that the superhydrophobic surface considerably improved the corrosion resistant performance of magnesium alloy AZ31. American Society for Testing and Materials (ASTM) standard D 3359-02 cross cut tape test was performed to investigate the adhesion of the superhydrophobic film to the magnesium alloy surface. The corrosion formation mechanism of the superhydrophobic surface formed on the magnesium alloy was also proposed. © 2011 American Chemical Society

  17. Correlation between catalytic activity and bonding and coordination number of atoms and molecules on transition metal surfaces: theory and experimental evidence

    International Nuclear Information System (INIS)

    Falicov, L.M.; Somorjai, G.A.

    1985-01-01

    Correlation between catalytic activity and low-energy local electronic fluctuation in transition metals is proposed. A theory and calculations are presented which indicate that maximum electronic fluctuants take place at high-coordination metal sites. Either (i) atomically rough surfaces that expose to the reactant molecules atoms with large numbers of nonmagnetic or weakly magnetic neighbors in the first or second layer at the surface or (ii) stepped and kinked surfaces are the most active in carrying out structure-sensitive catalytic reactions. The synthesis of ammonia from N 2 and H 2 over iron and rhenium surfaces, 1 H 2 / 2 H 2 exchange over stepped platinum crystal surfaces at low pressures, and the hydrogenolysis (C - C bond breaking) of isobutane at kinked platinum crystal surfaces are presented as experimental evidence in support of the theory

  18. Immunological network activation by low-dose rate irradiation. Analysis of cell populations and cell surface molecules in whole body irradiated mice

    International Nuclear Information System (INIS)

    Ina, Yasuhiro; Sakai, Kazuo

    2003-01-01

    The effects of low-dose rate whole body irradiation on biodefense and immunological systems were investigated using female C57BL/6 (B6) mice. These B6 mice were exposed continuously to γ-rays from a 137 Cs source in the long-term low-dose rate irradiation facility at CRIEPI for 0 - 12 weeks at a dose rate of 0.95 mGy/hr. In the bone marrow, thymus, spleen, lymph nodes, and peripheral blood of the irradiated mice, changes in cell populations and cell surface molecules were examined. The cell surface functional molecules (CD3, CD4, CD8, CD19, CD45R/B220, ICAM-1, Fas, NK-1.1, CXCR4, and CCR5), and activation molecules (THAM, CD28, CD40, CD44H, CD70, B7-1, B7-2, OX-40 antigen, CTLA-4, CD30 ligand, and CD40 ligand) were analyzed by flow cytometry. The percentage of CD4 + T cells and cell surface CD8 molecule expressions on the CD8 + T cells increased significantly to 120-130% after 3 weeks of the irradiation, compared to non-irradiated control mice. On the other hand, the percentage of CD45R/B220 + CD40 + B cells, which is one of the immunological markers of inflammation, infection, tumor, and autoimmune disease, decreased significantly to 80-90% between the 3rd to 5th week of irradiation. There was no significant difference in other cell population rates and cell surface molecule expression. Furthermore, abnormal T cells bearing mutated T cell receptors induced by high-dose rate irradiation were not observed throughout this study. These results suggest that low-dose rate irradiation activates the immunological status of the whole body. (author)

  19. Off-lattice self-learning kinetic Monte Carlo: application to 2D cluster diffusion on the fcc(111) surface

    International Nuclear Information System (INIS)

    Kara, Abdelkader; Yildirim, Handan; Rahman, Talat S; Trushin, Oleg

    2009-01-01

    We report developments of the kinetic Monte Carlo (KMC) method with improved accuracy and increased versatility for the description of atomic diffusivity on metal surfaces. The on-lattice constraint built into our recently proposed self-learning KMC (SLKMC) (Trushin et al 2005 Phys. Rev. B 72 115401) is released, leaving atoms free to occupy 'off-lattice' positions to accommodate several processes responsible for small-cluster diffusion, periphery atom motion and heteroepitaxial growth. This technique combines the ideas embedded in the SLKMC method with a new pattern-recognition scheme fitted to an off-lattice model in which relative atomic positions are used to characterize and store configurations. Application of a combination of the 'drag' and the repulsive bias potential (RBP) methods for saddle point searches allows the treatment of concerted cluster, and multiple- and single-atom, motions on an equal footing. This tandem approach has helped reveal several new atomic mechanisms which contribute to cluster migration. We present applications of this off-lattice SLKMC to the diffusion of 2D islands of Cu (containing 2-30 atoms) on Cu and Ag(111), using the interatomic potential from the embedded-atom method. For the hetero-system Cu/Ag(111), this technique has uncovered mechanisms involving concerted motions such as shear, breathing and commensurate-incommensurate occupancies. Although the technique introduces complexities in storage and retrieval, it does not introduce noticeable extra computational cost.

  20. Morphology and magnetism of Fe monolayers and small Fen clusters (n 2-19) supported on the Ni(111) surface

    International Nuclear Information System (INIS)

    Longo, R C; MartInez, E; Dieguez, O; Vega, A; Gallego, L J

    2007-01-01

    Using the modified embedded atom model in conjunction with a self-consistent tight-binding method, we investigated the lowest-energy structures of Fe monolayers and isolated Fe n clusters (n = 2-19) supported on the Ni(111) surface. In keeping with experimental findings, our calculations predict that the atoms of the monolayer occupy face-centred cubic (fcc) rather than hexagonal close-packed (hcp) sites. Likewise in agreement with experiment we found that Fe layers stack with a pseudomorphic fcc structure up to two monolayers, beyond which they stack as bcc(110). The structures of supported Fe clusters are predicted to be two-dimensional islands maximizing the number of nearest-neighbour bonds among the adsorbed Fe atoms, and their average magnetic moments per atom decrease towards that of the supported Fe monolayer almost monotonically as n increases. Finally, a pair of Fe 3 clusters on Ni(111) were found to exhibit virtually no interaction with each other even when separated by only one atomic row, i.e. so long as they do not coalesce they retain their individual magnetic properties

  1. Solid state {sup 1}H spin-lattice relaxation and isolated-molecule and cluster electronic structure calculations in organic molecular solids: The relationship between structure and methyl group and t-butyl group rotation

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Xianlong, E-mail: WangXianlong@uestc.edu.cn, E-mail: pbeckman@brynmawr.edu [Key Laboratory for NeuroInformation of Ministry of Education, School of Life Science and Technology, University of Electronic Science and Technology of China, 4 North Jianshe Rd., 2nd Section, Chengdu 610054 (China); Mallory, Frank B. [Department of Chemistry, Bryn Mawr College, 101 North Merion Ave., Bryn Mawr, Pennsylvania 19010-2899 (United States); Mallory, Clelia W. [Department of Chemistry, Bryn Mawr College, 101 North Merion Ave., Bryn Mawr, Pennsylvania 19010-2899 (United States); Department of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania 19104-6323 (United States); Odhner, Hosanna R.; Beckmann, Peter A., E-mail: WangXianlong@uestc.edu.cn, E-mail: pbeckman@brynmawr.edu [Department of Physics, Bryn Mawr College, 101 North Merion Ave., Bryn Mawr, Pennsylvania 19010-2899 (United States)

    2014-05-21

    We report ab initio density functional theory electronic structure calculations of rotational barriers for t-butyl groups and their constituent methyl groups both in the isolated molecules and in central molecules in clusters built from the X-ray structure in four t-butyl aromatic compounds. The X-ray structures have been reported previously. We also report and interpret the temperature dependence of the solid state {sup 1}H nuclear magnetic resonance spin-lattice relaxation rate at 8.50, 22.5, and 53.0 MHz in one of the four compounds. Such experiments for the other three have been reported previously. We compare the computed barriers for methyl group and t-butyl group rotation in a central target molecule in the cluster with the activation energies determined from fitting the {sup 1}H NMR spin-lattice relaxation data. We formulate a dynamical model for the superposition of t-butyl group rotation and the rotation of the t-butyl group's constituent methyl groups. The four compounds are 2,7-di-t-butylpyrene, 1,4-di-t-butylbenzene, 2,6-di-t-butylnaphthalene, and 3-t-butylchrysene. We comment on the unusual ground state orientation of the t-butyl groups in the crystal of the pyrene and we comment on the unusually high rotational barrier of these t-butyl groups.

  2. Cluster ion beam facilities

    International Nuclear Information System (INIS)

    Popok, V.N.; Prasalovich, S.V.; Odzhaev, V.B.; Campbell, E.E.B.

    2001-01-01

    A brief state-of-the-art review in the field of cluster-surface interactions is presented. Ionised cluster beams could become a powerful and versatile tool for the modification and processing of surfaces as an alternative to ion implantation and ion assisted deposition. The main effects of cluster-surface collisions and possible applications of cluster ion beams are discussed. The outlooks of the Cluster Implantation and Deposition Apparatus (CIDA) being developed in Guteborg University are shown

  3. Impact of 4 Lactobacillus plantarum capsular polysaccharide clusters on surface glycan composition and host cell signaling

    NARCIS (Netherlands)

    Remus, D.M.; Kranenburg, van R.; Swam, van I.I.; Taverne, N.; Bongers, R.S.; Wels, M.; Wells, J.; Bron, P.A.; Kleerebezem, M.

    2012-01-01

    Background - Bacterial cell surface-associated polysaccharides are involved in the interactions of bacteria with their environment and play an important role in the communication between pathogenic bacteria and their host organisms. Cell surface polysaccharides of probiotic species are far less well

  4. Surface-Enhanced Raman Spectroscopy of Dye and Thiol Molecules Adsorbed on Triangular Silver Nanostructures: A Study of Near-Field Enhancement, Localization of Hot-Spots, and Passivation of Adsorbed Carbonaceous Species

    Directory of Open Access Journals (Sweden)

    Manuel R. Gonçalves

    2012-01-01

    Full Text Available Surface-enhanced Raman spectroscopy (SERS of thiols and dye molecules adsorbed on triangular silver nanostructures was investigated. The SERS hot-spots are localized at the edges and corners of the silver triangular particles. AFM and SEM measurements permit to observe many small clusters formed at the edges of triangular particles fabricated by nanosphere lithography. Finite-element calculations show that near-field enhancements can reach values of more than 200 at visible wavelengths, in the gaps between small spherical particles and large triangular particles, although for the later no plasmon resonance was found at the wavelengths investigated. The regions near the particles showing strong near-field enhancement are well correlated with spatial localization of SERS hot-spots done by confocal microscopy. Silver nanostructures fabricated by thermal evaporation present strong and fast fluctuating SERS activity, due to amorphous carbon contamination. Thiols and dye molecules seem to be able to passivate the undesired SERS activity on fresh evaporated silver.

  5. Surface-Enhanced Raman Spectroscopy of Dye and Thiol Molecules Adsorbed on Triangular Silver Nano structures: A Study of Near-Field Enhancement, Localization of Hot-Spots, and Passivation of Adsorbed Carbonaceous Species

    International Nuclear Information System (INIS)

    Goncalves, M.R.; Marti, O.; Fabian Enderle, F.

    2012-01-01

    Surface-enhanced Raman spectroscopy (SERS) of thiols and dye molecules adsorbed on triangular silver nanostructures was investigated. The SERS hot-spots are localized at the edges and corners of the silver triangular particles. AFM and SEM measurements permit to observe many small clusters formed at the edges of triangular particles fabricated by nanosphere lithography. Finite-element calculations show that near-field enhancements can reach values of more than 200 at visible wavelengths, in the gaps between small spherical particles and large triangular particles, although for the later no plasmon resonance was found at the wavelengths investigated. The regions near the particles showing strong near-field enhancement are well correlated with spatial localization of SERS hot-spots done by confocal microscopy. Silver nanostructures fabricated by thermal evaporation present strong and fast fluctuating SERS activity, due to amorphous carbon contamination. Thiols and dye molecules seem to be able to passivate the undesired SERS activity on fresh evaporated silver. excitation: by far-field illumination of metal nanostructures or rough metal Raman scattering cross-section of gold-palladium target Temporal Fluctuation in SERS Temporal and spectral fluctuations.

  6. An accurate potential energy surface for the F + H2 → HF + H reaction by the coupled-cluster method

    International Nuclear Information System (INIS)

    Chen, Jun; Sun, Zhigang; Zhang, Dong H.

    2015-01-01

    A three dimensional potential energy surface for the F + H 2 → HF + H reaction has been computed by the spin unrestricted coupled cluster method with singles, doubles, triples, and perturbative quadruples [UCCSDT(2) Q ] using the augmented correlation-consistent polarised valence quadruple zeta basis set for the fluorine atom and the correlation-consistent polarised valence quadruple zeta basis set for the hydrogen atom. All the calculations are based on the restricted open-shell Hartree-Fock orbitals, together with the frozen core approximations, and the UCCSD(T)/complete basis set (CBS) correction term was included. The global potential energy surface was calculated by fitting the sampled ab initio points without any scaling factor for the correlation energy part using a neutral network function method. Extensive dynamics calculations have been carried out on the potential energy surface. The reaction rate constants, integral cross sections, product rotational states distribution, and forward and backward scattering as a function of collision energy of the F + HD → HF + D, F + HD → DF + H, and F + H 2 reaction, were calculated by the time-independent quantum dynamics scattering theory using the new surface. The satisfactory agreement with the reported experimental observations previously demonstrates the accuracy of the new potential energy surface

  7. Improvement of activity and stability of Chondroitinase ABC I by introducing an aromatic cluster at the surface of protein.

    Science.gov (United States)

    Shahaboddin, Mohammad Esmaeil; Khajeh, Khosro; Maleki, Monireh; Golestani, Abolfazl

    2017-10-01

    Chondroitinase ABC I (ChABC I) has been shown to depolymerize a variety of glycosaminoglycan substrates and promote regeneration of damaged spinal cord. However, to date, intrathecal delivery methods have been suboptimal largely due to enzyme instability which necessitates repeated administration to the injured loci. Among the aromatic amino acids, tyrosine has been shown to be more effective in creation of stable clusters and further stabilize of the proteins. Bioinformatics approaches have been used to examine the effect of an extra aromatic cluster at the surface of ChABC I. In this study two amino acids i.e., Asn 806 and Gln 810 were mutated to tyrosine and to alanine as negative control. In this way, four variants i.e., N806Y/Q810Y, N806A/Q810Y, N806Y/Q810A and N806A/Q810A were created. The results showed that N806Y/Q810Y mutation improved both activity and thermal stability of the enzyme while Ala substitution reduced the enzyme activity and destabilized it. Structural analysis of mutants showed an increase in intrinsic fluorescence intensity and secondary structure content of N806Y/Q810Y mutant when compared to the wild type enzyme indicating a more rigid structure of this variant. Moreover, the N806Y/Q810Y enzyme displayed a remarkable resistance against trypsin degradation with a half-life (t 1/2 ) of 45.0min versus 32.5min of wild-type. In conclusion, the data revealed that structural features and activity of ChABC I can be improved by introducing appropriate aromatic clusters at the surface of the enzyme. Copyright © 2017 Elsevier Inc. All rights reserved.

  8. Assessment of structures and stabilities of defect clusters and surface energies predicted by nine interatomic potentials for UO{sub 2}

    Energy Technology Data Exchange (ETDEWEB)

    Taller, Stephen A. [School of Nuclear Engineering, Purdue University, West Lafayette, IN 47907 (United States); Bai, Xian-Ming, E-mail: xianming.bai@inl.gov [Fuels Modeling and Simulation Department, Idaho National Laboratory, Idaho Falls, ID 83415 (United States)

    2013-11-15

    The irradiation in nuclear reactors creates many point defects and defect clusters in uranium dioxide (UO{sub 2}) and their evolution severely degrades the thermal and mechanical properties of the nuclear fuels. Previously many empirical interatomic potentials have been developed for modeling defect production and evolution in UO{sub 2}. However, the properties of defect clusters and extended defects are usually not fitted into these potentials. In this work nine interatomic potentials for UO{sub 2} are examined by using molecular statics and molecular dynamics to assess their applicability in predicting the properties of various types of defect clusters in UO{sub 2}. The binding energies and structures for these defect clusters have been evaluated for each potential. In addition, the surface energies of voids of different radii and (1 1 0) flat surfaces predicted by these potentials are also evaluated. It is found that both good agreement and significant discrepancies exist for these potentials in predicting these properties. For oxygen interstitial clusters, these potentials predict significantly different defect cluster structures and stabilities; For defect clusters consisting of both uranium and oxygen defects, the prediction is in better agreement; The surface energies predicted by these potentials have significant discrepancies, and some of them are much higher than the experimentally measured values. The results from this work can provide insight on interpreting the outcome of atomistic modeling of defect production using these potentials and may provide guidelines for choosing appropriate potential models to study problems of interest in UO{sub 2}.

  9. Electron Scattering From Atoms, Molecules, Nuclei, and Bulk Matter

    CERN Document Server

    Whelan, Colm T

    2005-01-01

    Topics that are covered include electron scattering in the scanning TEM; basic theory of inelastic electron imaging; study of confined atoms by electron excitation; helium bubbles created in extreme pressure with application to nuclear safety; lithium ion implantation; electron and positron scattering from clusters; electron scattering from physi- and chemi-absorbed molecules on surfaces; coincidence studies; electron scattering from biological molecules; electron spectroscopy as a tool for environmental science; electron scattering in the presence of intense fields; electron scattering from astrophysical molecules; electon interatctions an detection of x-ray radiation.

  10. Studying the ICM in clusters of galaxies via surface brightness fluctuations of the cosmic X-ray background

    Science.gov (United States)

    Kolodzig, Alexander; Gilfanov, Marat; Hütsi, Gert; Sunyaev, Rashid

    2018-02-01

    We study surface brightness fluctuations of the cosmic X-ray background (CXB) using Chandra data of XBOOTES. After masking out resolved sources we compute the power spectrum of fluctuations of the unresolved CXB for angular scales from {≈ } 2 arcsec to ≈3°. The non-trivial large-scale structure (LSS) signal dominates over the shot noise of unresolved point sources on angular scales above {˜ } 1 arcmin and is produced mainly by the intracluster medium (ICM) of unresolved clusters and groups of galaxies, as shown in our previous publication. The shot-noise-subtracted power spectrum of CXB fluctuations has a power-law shape with the slope of Γ = 0.96 ± 0.06. Their energy spectrum is well described by the redshifted emission spectrum of optically thin plasma with the best-fitting temperature of T ≈ 1.3 keV and the best-fitting redshift of z ≈ 0.40. These numbers are in good agreement with theoretical expectations based on the X-ray luminosity function and scaling relations of clusters. From these values we estimate the typical mass and luminosity of the objects responsible for CXB fluctuations, M500 ∼ 1013.6 M⊙ h-1 and L0.5-2.0 keV ∼ 1042.5 erg s-1. On the other hand, the flux-weighted mean temperature and redshift of resolved clusters are T ≈ 2.4 keV and z ≈ 0.23 confirming that fluctuations of unresolved CXB are caused by cooler (i.e. less massive) and more distant clusters, as expected. We show that the power spectrum shape is sensitive to the ICM structure all the way to the outskirts, out to ∼few × R500. We also searched for possible contribution of the warm-hot intergalactic medium (WHIM) to the observed CXB fluctuations. Our results underline the significant diagnostic potential of the CXB fluctuation analysis in studying the ICM structure in clusters.

  11. Interaction of VLA-5 Molecule With Rheumatoid Articular Cartilage Surface : An Electron Microscopic Evidence of Expression of VLA-5 on Pannus Invading Cells

    OpenAIRE

    Ishikawa, Hitoshi; Hirata, Souichirou; Saura, Ryuuichi; Andoh, Yoshihiro; Mizuno, Kosaku

    1998-01-01

    Pannus is made up mainly of fibroblasts, macrophages and lymphocytes. VLA-5 positive cells are present in the pannus in large numbers. It is likely that the tissue distribution of infiltrated cells derived from post-capillary venules is influenced by the ECM of the pannus and the ability of these cells to interact with the ECM through surface receptor expression. VLA-5 molecules are the predominant (31 integrins expressed by synovial pannus. Since the VLA integrins function as fibronectin rec...

  12. Molecules based on M(v) (M=Mo, W) and Ni(II) ions: a new class of trigonal bipyramidal cluster and confirmation of SMM behavior for the pentadecanuclear molecule {NiII[NiII(tmphen)(MeOH)]6[Ni(H2O)3]2[micro-CN]30[WV(CN)3]6}.

    Science.gov (United States)

    Hilfiger, Matthew G; Zhao, Hanhua; Prosvirin, Andrey; Wernsdorfer, Wolfgang; Dunbar, Kim R

    2009-07-14

    The preparation, single crystal X-ray crystallography, and magnetic properties are reported for four new clusters based on [M'V(CN)8]3- octacyanometallates (M'=Mo, W). Reactions of [M'V(CN)8]3- with mononuclear NiII ions in the presence of the tmphen blocking ligand (tmphen=3,4,7,8-tetramethyl-1,10-phenanthroline) in a 2:3:6 ratio, respectively, lead to the formation of the trigonal bipyramidal clusters [NiII(tmphen)2]3[M'V(CN)8]2. Analogous reactions with the same starting materials performed in a 2:3:2 ratio, respectively, produce pentadecanuclear clusters of the type {NiII[NiII(tmphen)(MeOH)]6[Ni(H2O)3]2[micro-CN]30[WV(CN)3]6}. The W2Ni3 (1) and Mo2Ni3(2) pentanuclear clusters and the W6Ni9 (3) and Mo6Ni9 (4) pentadecanuclear molecules are isostructural to each other and crystallize in the space groups P2(1)/c and R3 respectively. Magnetic measurements indicate that the ground states for the trigonal bipyamidal clusters are S=4 as a consequence of ferromagnetic coupling with JW-Ni=9.5 cm(-1), JMo-Ni=10 cm(-1). The pentadecanuclear clusters exhibit ferromagnetic coupling as well, which leads to S=12 ground states (JW-Ni=12 cm(-1), JMo-Ni=12.2 cm(-1)). Reduced magnetization studies on the W-Ni analogues support the conclusion that they exhibit a negative axial anisotropy term; the fits give D values of -0.24 cm(-1) for the W2Ni3 cluster and D=-0.04 cm(-1)for the W6Ni9 cluster. AC susceptibility measurements indicate the beginning of an out-of-phase signal for the W2Ni3 and the W6Ni9 compounds, but detailed low temperature studies on small crystals by the microSQUID technique indicate that only the pentadecanuclear cluster exhibits hysteresis in accord with SMM behavior. Neither Mo cluster reveals any evidence for slow paramagnetic relaxation at low temperatures.

  13. Covalent attachment of pyridine-type molecules to glassy carbon surfaces by electrochemical reduction of in situ generated diazonium salts. Formation of ruthenium complexes on ligand-modified surfaces

    International Nuclear Information System (INIS)

    Yesildag, Ali; Ekinci, Duygu

    2010-01-01

    In this study, pyridine, quinoline and phenanthroline molecules were covalently bonded to glassy carbon (GC) electrode surfaces for the first time using the diazonium modification method. Then, the complexation ability of the modified films with ruthenium metal cations was investigated. The derivatization of GC surfaces with heteroaromatic molecules was achieved by electrochemical reduction of the corresponding in situ generated diazonium salts. X-ray photoelectron spectroscopy (XPS) was used to confirm the attachment of heteroaromatic molecules to the GC surfaces and to determine the surface concentration of the films. The barrier properties of the modified GC electrodes were studied in the presence of redox probes such as Fe(CN) 6 3- and Ru(NH 3 ) 6 3+ by cyclic voltammetry. Additionally, the presence of the resulting organometallic films on the surfaces was verified by XPS after the chemical transformation of the characterized ligand films to the ruthenium complex films. The electrochemical behavior of these films in acetonitrile solution was investigated using voltammetric methods, and the surface coverage of the organometallic films was determined from the reversible metal-based Ru(II)/Ru(III) oxidation waves.

  14. Covalent attachment of pyridine-type molecules to glassy carbon surfaces by electrochemical reduction of in situ generated diazonium salts. Formation of ruthenium complexes on ligand-modified surfaces

    Energy Technology Data Exchange (ETDEWEB)

    Yesildag, Ali [Department of Chemistry, Faculty of Sciences, Atatuerk University, 25240 Erzurum (Turkey); Ekinci, Duygu, E-mail: dekin@atauni.edu.t [Department of Chemistry, Faculty of Sciences, Atatuerk University, 25240 Erzurum (Turkey)

    2010-09-30

    In this study, pyridine, quinoline and phenanthroline molecules were covalently bonded to glassy carbon (GC) electrode surfaces for the first time using the diazonium modification method. Then, the complexation ability of the modified films with ruthenium metal cations was investigated. The derivatization of GC surfaces with heteroaromatic molecules was achieved by electrochemical reduction of the corresponding in situ generated diazonium salts. X-ray photoelectron spectroscopy (XPS) was used to confirm the attachment of heteroaromatic molecules to the GC surfaces and to determine the surface concentration of the films. The barrier properties of the modified GC electrodes were studied in the presence of redox probes such as Fe(CN){sub 6}{sup 3-} and Ru(NH{sub 3}){sub 6}{sup 3+} by cyclic voltammetry. Additionally, the presence of the resulting organometallic films on the surfaces was verified by XPS after the chemical transformation of the characterized ligand films to the ruthenium complex films. The electrochemical behavior of these films in acetonitrile solution was investigated using voltammetric methods, and the surface coverage of the organometallic films was determined from the reversible metal-based Ru(II)/Ru(III) oxidation waves.

  15. Photoluminescence of CdSe/ZnS/TOPO nanocrystals expanded on silica glass substrates: Adsorption and desorption effects of polar molecules on nanocrystal surfaces

    International Nuclear Information System (INIS)

    Oda, Masaru; Tsukamoto, Junpei; Hasegawa, Atsushi; Iwami, Noriya; Nishiura, Ken; Hagiwara, Izumi; Ando, Naohisa; Horiuchi, Hiromi; Tani, Toshiro

    2006-01-01

    We have investigated photoluminescence (PL) properties of CdSe/ZnS/TOPO nanocrystals (NCs) in various kinds of gases at one atmospheric pressure. Increase of PL intensity with spectral shift is observed under 488 nm cw light irradiation in all cases. Especially, the PL intensity increases more than twice after 1200 s irradiation in nitrogen gases saturated with vapor of polar molecules, such as H 2 O and NH 3 . The increased PL intensity with the spectral shift mostly recovers to its previous values when the sample is evacuated under continuous light irradiation. These results indicate that photo-adsorption of the polar molecules onto NC surfaces provides some reversible restoring functions to the PL quenching defects or trap sites on or near the surfaces. The existence of the trap sites on NC surfaces is already widely introduced for describing e.g., blinking phenomena. Assuming part of these traps being charged, we propose the photo-induced effects can be understood as charge-compensated inactivation of the trap sites due to the adsorption of the polar molecules consistently

  16. Focused ion beam-fabricated Au micro/nanostructures used as a surface enhanced Raman scattering-active substrate for trace detection of molecules and influenza virus

    Energy Technology Data Exchange (ETDEWEB)

    Lin, Ying-Yi; Liao, Jiunn-Der; Ju, Yu-Hung; Chang, Chia-Wei [Department of Materials Science and Engineering, National Cheng Kung University, Tainan 701, Taiwan (China); Shiau, Ai-Li, E-mail: jdliao@mail.ncku.edu.tw [Department of Microbiology and Immunology, National Cheng Kung University, No 1, University Road, Tainan 70101, Taiwan (China)

    2011-05-06

    The focused ion beam (FIB) technique was used to precisely fabricate patterned Au micro/nanostructures (fibAu). The effects of surface enhanced Raman scattering (SERS) on the fibAu samples were investigated by adjusting the geometrical, dimensional, and spacing factors. The SERS mechanism was evaluated using low-concentration rhodamine 6G (R6G) molecules, physically adsorbed or suspended on/within the micro/nanostructures. The results indicated that for detecting R6G molecules, hexagon-like micro/nanostructures induced a higher electromagnetic mechanism (EM) due to the availability of multiple edges and small curvature. By decreasing the dimensions from 300 to 150 nm, the laser-focused area contained an increasing number of micro/nanostructures and therefore intensified the excitation of SERS signals. Moreover, with an optimized geometry and dimensions of the micro/nanostructures, the relative intensity/surface area value reached a maximum as the spacing was 22 nm. An exponential decrease was found as the spacing was increased, which most probably resulted from the loss of EM. The spacing between the micro/nanostructures upon the fibAu was consequently regarded as the dominant factor for the detection of R6G molecules. By taking an optimized fibAu to detect low-concentration influenza virus, the amino acids from the outermost surface of the virus can be well distinguished through the SERS mechanism.

  17. High-risk human papillomavirus E7 expression reduces cell-surface MHC class I molecules and increases susceptibility to natural killer cells

    DEFF Research Database (Denmark)

    Bottley, G; Watherston, O G; Hiew, Y-L

    2007-01-01

    a role for E7 in tumour immune evasion. We show that knockdown of E7 expression in HPV16- and HPV18-transformed cervical carcinoma cells by RNA interference increased expression of major histocompatibility complex (MHC) class I at the cell surface and reduced susceptibility of these cells to natural...... killer (NK) cells. Tetracycline-regulated induction of HPV16 E7 resulted in reduced expression of cell surface MHC class I molecules and increased NK cell killing. Our results suggest that, for HPV-associated malignancies, reduced MHC class I expression is the result of an active immune evasion strategy...

  18. Mass spectrometric studies of the cluster formation of radon progeny

    International Nuclear Information System (INIS)

    Gong, S.L.

    1993-01-01

    A new experimental system is developed to study the cluster formation of radon progeny with neutral molecules in the environment, which includes a modified mass spectrometer and a surface barrier detector. With the system, the cluster research is carried out at molecular level at which the mass of individual cluster formed is measured. A theory is also proposed to treat the cluster formation as a discrete process based on the ion-dipole and dipole-dipole interactions. Comparison between the theory and experiment is given. (author). 16 refs., 6 figs

  19. Mass spectrometric studies of the cluster formation of radon progeny

    Energy Technology Data Exchange (ETDEWEB)

    Gong, S L [Toronto Univ., ON (Canada). Dept. of Chemical Engineering and Applied Chemistry

    1994-12-31

    A new experimental system is developed to study the cluster formation of radon progeny with neutral molecules in the environment, which includes a modified mass spectrometer and a surface barrier detector. With the system, the cluster research is carried out at molecular level at which the mass of individual cluster formed is measured. A theory is also proposed to treat the cluster formation as a discrete process based on the ion-dipole and dipole-dipole interactions. Comparison between the theory and experiment is given. (author). 16 refs., 6 figs.

  20. Allelic imbalance modulates surface expression of the tolerance-inducing HLA-G molecule on primary trophoblast cells

    DEFF Research Database (Denmark)

    Djurisic, S; Teiblum, S; Tolstrup, C K

    2015-01-01

    The HLA-G molecule is expressed on trophoblast cells at the feto-maternal interface, where it interacts with local immune cells, and upholds tolerance against the semi-allogeneic fetus. Aberrant HLA-G expression in the placenta and reduced soluble HLA-G levels are observed in pregnancy complicati...

  1. Electrical properties of SAM-modified ITO surface using aromatic small molecules with double bond carboxylic acid groups for OLED applications

    International Nuclear Information System (INIS)

    Can, Mustafa; Havare, Ali Kemal; Aydın, Hasan; Yagmurcukardes, Nesli; Demic, Serafettin; Icli, Sıddık; Okur, Salih

    2014-01-01

    Graphical abstract: - Highlights: • We report that the performance of OLED consist of aromatic small molecules with double bond carboxylic acid groups on ITO surface. • The OLED devices were tested in terms of electrical and optical characteristics. • The I–V results show that OLEDs with SAM-modified ITO surface have lower turn on voltages than OLED configurations without SAMs. - Abstract: 5-[(3-Methylphenyl)(phenyl)amino]isophthalic acid (5-MePIFA) and 5-(diphenyl)amino]isophthalic acid (5-DPIFA) organic molecules were synthesized to form self-assembled monolayer on indium tin oxide (ITO) anode to enhance hole transport from ITO to organic hole transport layers such as TPD. The modified surface was characterized by scanning tunneling microscopy (STM). The change in the surface potential was measured by Kelvin probe force microscopy (KPFM). Our Kelvin probe force microscopy (KPFM) measurements showed that the surface potentials increased more than 100 mV with reference to bare indium tin-oxide. The results show that the threshold voltage on OLEDs with modified ITO is lowered significantly compared to OLEDs with unmodified ITO. The hole mobility of TPD has been estimated using space–charge-limited current measurements (SCLC)

  2. Electrical properties of SAM-modified ITO surface using aromatic small molecules with double bond carboxylic acid groups for OLED applications

    Energy Technology Data Exchange (ETDEWEB)

    Can, Mustafa [Izmir Katip Celebi University, Faculty of Engineering, Department of Engineering Sciences, Çiğli, Izmir (Turkey); Havare, Ali Kemal [Toros University, Faculty of Engineering, Electric and Electronic Department, Mersin (Turkey); Aydın, Hasan; Yagmurcukardes, Nesli [Izmir Institute of Technology, Material Science and Engineering, Izmir (Turkey); Demic, Serafettin [Izmir Katip Celebi University, Faculty of Engineering, Department of Material Science and Engineering, Çiğli, Izmir (Turkey); Icli, Sıddık [Ege University, Solar Energy Institute, Izmir (Turkey); Okur, Salih, E-mail: salih.okur@ikc.edu.tr [Izmir Katip Celebi University, Faculty of Engineering, Department of Material Science and Engineering, Çiğli, Izmir (Turkey)

    2014-09-30

    Graphical abstract: - Highlights: • We report that the performance of OLED consist of aromatic small molecules with double bond carboxylic acid groups on ITO surface. • The OLED devices were tested in terms of electrical and optical characteristics. • The I–V results show that OLEDs with SAM-modified ITO surface have lower turn on voltages than OLED configurations without SAMs. - Abstract: 5-[(3-Methylphenyl)(phenyl)amino]isophthalic acid (5-MePIFA) and 5-(diphenyl)amino]isophthalic acid (5-DPIFA) organic molecules were synthesized to form self-assembled monolayer on indium tin oxide (ITO) anode to enhance hole transport from ITO to organic hole transport layers such as TPD. The modified surface was characterized by scanning tunneling microscopy (STM). The change in the surface potential was measured by Kelvin probe force microscopy (KPFM). Our Kelvin probe force microscopy (KPFM) measurements showed that the surface potentials increased more than 100 mV with reference to bare indium tin-oxide. The results show that the threshold voltage on OLEDs with modified ITO is lowered significantly compared to OLEDs with unmodified ITO. The hole mobility of TPD has been estimated using space–charge-limited current measurements (SCLC)

  3. Galectin-3 Induces Clustering of CD147 and Integrin-β1 Transmembrane Glycoprotein Receptors on the RPE Cell Surface

    Science.gov (United States)

    Priglinger, Claudia S.; Szober, Christoph M.; Priglinger, Siegfried G.; Merl, Juliane; Euler, Kerstin N.; Kernt, Marcus; Gondi, Gabor; Behler, Jennifer; Geerlof, Arie; Kampik, Anselm; Ueffing, Marius; Hauck, Stefanie M.

    2013-01-01

    Proliferative vitreoretinopathy (PVR) is a blinding disease frequently occurring after retinal detachment surgery. Adhesion, migration and matrix remodeling of dedifferentiated retinal pigment epithelial (RPE) cells characterize the onset of the disease. Treatment options are still restrained and identification of factors responsible for the abnormal behavior of the RPE cells will facilitate the development of novel therapeutics. Galectin-3, a carbohydrate-binding protein, was previously found to inhibit attachment and spreading of retinal pigment epithelial cells, and thus bares the potential to counteract PVR-associated cellular events. However, the identities of the corresponding cell surface glycoprotein receptor proteins on RPE cells are not known. Here we characterize RPE-specific Gal-3 containing glycoprotein complexes using a proteomic approach. Integrin-β1, integrin-α3 and CD147/EMMPRIN, a transmembrane glycoprotein implicated in regulating matrix metalloproteinase induction, were identified as potential Gal-3 interactors on RPE cell surfaces. In reciprocal immunoprecipitation experiments we confirmed that Gal-3 associated with CD147 and integrin-β1, but not with integrin-α3. Additionally, association of Gal-3 with CD147 and integrin-β1 was observed in co-localization analyses, while integrin-α3 only partially co-localized with Gal-3. Blocking of CD147 and integrin-β1 on RPE cell surfaces inhibited binding of Gal-3, whereas blocking of integrin-α3 failed to do so, suggesting that integrin-α3 is rather an indirect interactor. Importantly, Gal-3 binding promoted pronounced clustering and co-localization of CD147 and integrin-β1, with only partial association of integrin-α3. Finally, we show that RPE derived CD147 and integrin-β1, but not integrin-α3, carry predominantly β-1,6-N-actyl-D-glucosamine-branched glycans, which are high-affinity ligands for Gal-3. We conclude from these data that extracellular Gal-3 triggers clustering of CD147 and

  4. Galectin-3 induces clustering of CD147 and integrin-β1 transmembrane glycoprotein receptors on the RPE cell surface.

    Directory of Open Access Journals (Sweden)

    Claudia S Priglinger

    Full Text Available Proliferative vitreoretinopathy (PVR is a blinding disease frequently occurring after retinal detachment surgery. Adhesion, migration and matrix remodeling of dedifferentiated retinal pigment epithelial (RPE cells characterize the onset of the disease. Treatment options are still restrained and identification of factors responsible for the abnormal behavior of the RPE cells will facilitate the development of novel therapeutics. Galectin-3, a carbohydrate-binding protein, was previously found to inhibit attachment and spreading of retinal pigment epithelial cells, and thus bares the potential to counteract PVR-associated cellular events. However, the identities of the corresponding cell surface glycoprotein receptor proteins on RPE cells are not known. Here we characterize RPE-specific Gal-3 containing glycoprotein complexes using a proteomic approach. Integrin-β1, integrin-α3 and CD147/EMMPRIN, a transmembrane glycoprotein implicated in regulating matrix metalloproteinase induction, were identified as potential Gal-3 interactors on RPE cell surfaces. In reciprocal immunoprecipitation experiments we confirmed that Gal-3 associated with CD147 and integrin-β1, but not with integrin-α3. Additionally, association of Gal-3 with CD147 and integrin-β1 was observed in co-localization analyses, while integrin-α3 only partially co-localized with Gal-3. Blocking of CD147 and integrin-β1 on RPE cell surfaces inhibited binding of Gal-3, whereas blocking of integrin-α3 failed to do so, suggesting that integrin-α3 is rather an indirect interactor. Importantly, Gal-3 binding promoted pronounced clustering and co-localization of CD147 and integrin-β1, with only partial association of integrin-α3. Finally, we show that RPE derived CD147 and integrin-β1, but not integrin-α3, carry predominantly β-1,6-N-actyl-D-glucosamine-branched glycans, which are high-affinity ligands for Gal-3. We conclude from these data that extracellular Gal-3 triggers

  5. Chemical reactions of water molecules on Ru(0001) induced by selective excitation of vibrational modes

    Energy Technology Data Exchange (ETDEWEB)

    Mugarza, Aitor; Shimizu, Tomoko K.; Ogletree, D. Frank; Salmeron, Miquel

    2009-05-07

    Tunneling electrons in a scanning tunneling microscope were used to excite specific vibrational quantum states of adsorbed water and hydroxyl molecules on a Ru(0 0 0 1) surface. The excited molecules relaxed by transfer of energy to lower energy modes, resulting in diffusion, dissociation, desorption, and surface-tip transfer processes. Diffusion of H{sub 2}O molecules could be induced by excitation of the O-H stretch vibration mode at 445 meV. Isolated molecules required excitation of one single quantum while molecules bonded to a C atom required at least two quanta. Dissociation of single H{sub 2}O molecules into H and OH required electron energies of 1 eV or higher while dissociation of OH required at least 2 eV electrons. In contrast, water molecules forming part of a cluster could be dissociated with electron energies of 0.5 eV.

  6. A Near-Infrared Surface Compositional Analysis of Blue Straggler Stars in Open Cluster M67

    Science.gov (United States)

    Seifert, Richard; Gosnell, Natalie M.; Sneden, Chris

    2017-06-01

    Blue straggler stars (BSSs) are stars whose evolutions have been directly impacted by binary system interactions. By obtaining additional mass from a companion, BSSs are able to live prolonged lives on the main sequence. BSSs bring confusions to studies that rely on a standard stellar evolutionary track when modeling stellar populations, since the presence of BSSs can make a population appear younger than it actually is. It is important to have a better understanding of the mechanisms that drive BSS formation so that BSSs may be correctly accounted for in future studies.Blue stagglers in clusters primarily form in one of two ways; either from a close binary system in which one star accretes mass from its companion star or from a hierarchical trinary system in which a close inner binary merges as a result of perturbations from a farther-orbiting third star. In order to investigate the nature of this mass transfer, We obtained IGRINS H-band high resolution spectra of 6 BSSs and 12 red giant stars in open cluster M67. Using a grid of synthetic spectra obtained from the line analysis code MOOG, we identified and fit abundances for absorption lines of iron, silicon, and carbon. Depending on the evolutionary stage of the donor star, the abundance of carbon in the resulting BSS can be affected by mixing during the mass transfer. By analyzing the abundance of carbon in our targets, we find that [Fe/H] ~= 0 and [C/H] ~= 0. We see no evidence of depletion of carbon from RGB-phase mass transfer or enhancement of carbon from AGB-phase mass transfer, implying that the mass transfer occured earlier in the donar star's evolution.Funding for this research comes from the John W. Cox endowment for the Advanced Studies in Astronomy. For support of this work we acknowledge NSF grants AST-1211585 and AST-1616040 to CS. The successful development of the IGRINS spectrograph has resulted from the combined efforts of teams at the University of Texas at Austin and the Korea Astronomy and

  7. 2012 Gordon Research Conference On Molecular And Ionic Clusters

    International Nuclear Information System (INIS)

    McCoy, Anne

    2012-01-01

    The Gordon Research Conference on 'Molecular and Ionic Clusters' focuses on clusters, which are the initial molecular species found in gases when condensation begins to occur. Condensation can take place solely from molecules interacting with each other, mostly at low temperatures, or when molecules condense around charged particles (electrons, protons, metal cations, molecular ions), producing ion molecule clusters. These clusters provide models for solvation, allow a pristine look at geometric as well as electronic structures of molecular complexes or matter in general, their interaction with radiation, their reactivity, their thermodynamic properties and, in particular, the related dynamics. This conference focuses on new ways to make clusters composed of different kinds of molecules, new experimental techniques to investigate the properties of the clusters and new theoretical methods with which to calculate the structures, dynamical motions and energetics of the clusters. Some of the main experimental methods employed include molecular beams, mass spectrometry, laser spectroscopy (from infrared to XUV; in the frequency as well as the time domain) and photoelectron spectroscopy. Techniques include laser absorption spectroscopy, laser induced fluorescence, resonance enhanced photoionization, mass-selected photodissociation, photofragment imaging, ZEKE photoelectron spectroscopy, etc. From the theoretical side, this conference highlights work on potential surfaces and measurable properties of the clusters. The close ties between experiment, theory and computation have been a hallmark of the Gordon Research Conference on Molecular and Ionic Clusters. In the 2012 meeting, we plan to have sessions that will focus on topics including: (1) The use of cluster studies to probe fundamental phenomena; (2) Finite size effects on structure and thermodynamics; (3) Intermolecular forces and cooperative effects; (4) Molecular clusters as models for solvation; and (5) Studies of

  8. Metals on graphene and carbon nanotube surfaces: From mobile atoms to atomtronics to bulk metals to clusters and catalysts

    KAUST Repository

    Sarkar, Santanu C.

    2014-01-14

    In this Perspective, we present an overview of recent fundamental studies on the nature of the interaction between individual metal atoms and metal clusters and the conjugated surfaces of graphene and carbon nanotube with a particular focus on the electronic structure and chemical bonding at the metal-graphene interface. We discuss the relevance of organometallic complexes of graphitic materials to the development of a fundamental understanding of these interactions and their application in atomtronics as atomic interconnects, high mobility organometallic transistor devices, high-frequency electronic devices, organometallic catalysis (hydrogen fuel generation by photocatalytic water splitting, fuel cells, hydrogenation), spintronics, memory devices, and the next generation energy devices. We touch on chemical vapor deposition (CVD) graphene grown on metals, the reactivity of its surface, and its use as a template for asymmetric graphene functionalization chemistry (ultrathin Janus discs). We highlight some of the latest advances in understanding the nature of interactions between metals and graphene surfaces from the standpoint of metal overlayers deposited on graphene and SWNT thin films. Finally, we comment on the major challenges facing the field and the opportunities for technological applications. © 2013 American Chemical Society.

  9. Systematic and efficient navigating potential energy surface: Data for silver doped gold clusters

    Directory of Open Access Journals (Sweden)

    Vitaly V. Chaban

    2016-06-01

    Full Text Available Locating global minimum of certain atomistic ensemble is known to be a highly challenging and resource consuming task. This dataset represents joint usage of the semi-empirical PM7 Hamiltonian, Broyden–Fletcher–Goldfarb–Shanno algorithm and basin hopping scheme to navigate a potential energy surface. The Au20 nanocluster was used for calibration as its global minimum structure is well-known. Furthermore, Au18Ag2 and Au15Ag5 were simulated for illustration of the algorithm performance. The work shows encouraging results and, particularly, underlines proper accuracy of PM7 as applied to this type of heavy metal systems. The reported dataset motivates to use the benchmarked method for studying potential energy surfaces of manifold systems and locate their global-minimum atomistic configurations.

  10. Systematic and efficient navigating potential energy surface: Data for silver doped gold clusters.

    Science.gov (United States)

    Chaban, Vitaly V

    2016-06-01

    Locating global minimum of certain atomistic ensemble is known to be a highly challenging and resource consuming task. This dataset represents joint usage of the semi-empirical PM7 Hamiltonian, Broyden-Fletcher-Goldfarb-Shanno algorithm and basin hopping scheme to navigate a potential energy surface. The Au20 nanocluster was used for calibration as its global minimum structure is well-known. Furthermore, Au18Ag2 and Au15Ag5 were simulated for illustration of the algorithm performance. The work shows encouraging results and, particularly, underlines proper accuracy of PM7 as applied to this type of heavy metal systems. The reported dataset motivates to use the benchmarked method for studying potential energy surfaces of manifold systems and locate their global-minimum atomistic configurations.

  11. State-specific Brillouin-Wigner Multireference Coupled Cluster Study of the F.sub.2./sub. Molecule: Assessment of the a Posteriori Size-extensivity Correction

    Czech Academy of Sciences Publication Activity Database

    Pittner, Jiří; Šmydke, Jan; Čársky, Petr; Hubač, I.

    2001-01-01

    Roč. 547, - (2001), s. 239-244 ISSN 0166-1280 R&D Projects: GA MŠk OC D9.10; GA ČR GA203/99/D009 Institutional research plan: CEZ:AV0Z4040901 Keywords : potential curve * spectroscopic constants of F2 * multireference coupled clusters Subject RIV: CF - Physical ; Theoretical Chemistry Impact factor: 0.919, year: 2001

  12. Surprising phenomena at the surface of solids: complex molecule emission after impact of ions or of energetic photons

    International Nuclear Information System (INIS)

    Le Beyec, Y.

    1990-01-01

    The vanishing of large mass molecules, by particle or photon impact is an unexpected behavior of the matter which allows to study the medium answer to the interaction. This phenomenon has several applications and gives rise development of analysis scientific instrumentation for non volatile compounds as the time of flight mass spectrometers. - In this report, the point is made about the induced desorption by rapid heavy ions [fr

  13. Photo fragmentation dynamics of small argon clusters and biological molecular: new tools by trapping and vectorial correlation; Dynamique de photofragmentation de petits agregats d'argon et de molecules biologiques: nouvel outil par piegeage et correlation vectorielle

    Energy Technology Data Exchange (ETDEWEB)

    Lepere, V

    2006-09-15

    The present work concerns the building up of a complex set-up whose aim being the investigation of the photo fragmentation of ionised clusters and biological molecules. This new tool is based on the association of several techniques. Two ion sources are available: clusters produced in a supersonic beam are ionised by 70 eV electrons while ions of biological interest are produced in an 'electro-spray'. Ro-vibrational cooling is achieved in a 'Zajfman' electrostatic ion trap. The lifetime of ions can also be measured using the trap. Two types of lasers are used to excite the ionised species: the femtosecond laser available at the ELYSE facilities and a nanosecond laser. Both lasers have a repetition rate of 1 kHz. The neutral and ionised fragments are detected in coincidence using a sophisticated detection system allowing time and localisation of the various fragments to be determined. With such a tool, I was able to investigate in details the fragmentation dynamics of ionised clusters and bio-molecules. The first experiments deal with the measurement of the lifetime of the Ar{sup 2+} dimer II(1/2)u metastable state. The relative population of this state was also determined. The Ar{sup 2+} and Ar{sup 3+} photo-fragmentation was then studied and electronic transitions responsible for their dissociation identified. The detailed analysis of our data allowed to distinguish the various fragmentation mechanisms. Finally, a preliminary investigation of the protonated tryptamine fragmentation is presented. (author)

  14. Muonic molecular formation under laser irradiation and in the clustered ion molecule (The effect of protonium additive on the muon catalyzed fusion cycle)

    International Nuclear Information System (INIS)

    Takahashi, Hiroshi.

    1988-01-01

    The formation rate of the dtμ molecule is very sensitive to the differences in the vibrational rotational level between D 2 and [(dtμ)-d-2e/] molecules. The density effect of the normalized reaction rate has been studied by the resonance broadening due to collisional quenching. The surrounding molecules of the molecule forming dt/mu/ act as the third body which takes out the excess energy forming dt/mu/ from t/mu/, and the formation reaction occurs with the excitation of the vibrational state just below the threshold energy. By using the laser as the third body, the rate of resonance formation can be increased. In my last paper, the formation rate was calculated under high-intensity laser irradiation, using Vinitsky's model assuming that the laser interacts directly with the deuteron and modulates the interaction between t/mu/ and d/sub 2/ nuclei. However, the laser interacts more strongly with the electrons, because the interaction energy of the laser and the charged particle is proportional to the velocity of the particle's motion, and the velocity of the electron is a few thousand times greater than the velocity of the nuclei. This interaction with electrons was neglected in my last paper. In the present paper, the enhancement of the dt/mu/ formation rates by the strong laser irradiation is studied, taking into account the laser electron interaction; It was shown that the enhancement can be achieved by an intensity lower than the one described previously. 29 refs., 5 figs., 3 tabs

  15. Theoretical Analysis of the Relative Significance of Thermodynamic and Kinetic Dispersion in the dc and ac Voltammetry of Surface-Confined Molecules

    KAUST Repository

    Morris, Graham P.; Baker, Ruth E.; Gillow, Kathryn; Davis, Jason J.; Gavaghan, David J.; Bond, Alan M.

    2015-01-01

    © 2015 American Chemical Society. Commonly, significant discrepancies are reported in theoretical and experimental comparisons of dc voltammograms derived from a monolayer or close to monolayer coverage of redox-active surface-confined molecules. For example, broader-than-predicted voltammetric wave shapes are attributed to the thermodynamic or kinetic dispersion derived from distributions in reversible potentials (E0) and electrode kinetics (k0), respectively. The recent availability of experimentally estimated distributions of E0 and k0 values derived from the analysis of data for small numbers of surface-confined modified azurin metalloprotein molecules now allows more realistic modeling to be undertaken, assuming the same distributions apply under conditions of high surface coverage relevant to voltammetric experiments. In this work, modeling based on conventional and stochastic kinetic theory is considered, and the computationally far more efficient conventional model is shown to be equivalent to the stochastic one when large numbers of molecules are present. Perhaps unexpectedly, when experimentally determined distributions of E0 and k0 are input into the model, thermodynamic dispersion is found to be unimportant and only kinetic dispersion contributes significantly to the broadening of dc voltammograms. Simulations of ac voltammetric experiments lead to the conclusion that the ac method, particularly when the analysis of kinetically very sensitive higher-order harmonics is undertaken, are far more sensitive to kinetic dispersion than the dc method. ac methods are therefore concluded to provide a potentially superior strategy for addressing the inverse problem of determining the k0 distribution that could give rise to the apparent anomalies in surface-confined voltammetry.

  16. Theoretical Analysis of the Relative Significance of Thermodynamic and Kinetic Dispersion in the dc and ac Voltammetry of Surface-Confined Molecules

    KAUST Repository

    Morris, Graham P.

    2015-05-05

    © 2015 American Chemical Society. Commonly, significant discrepancies are reported in theoretical and experimental comparisons of dc voltammograms derived from a monolayer or close to monolayer coverage of redox-active surface-confined molecules. For example, broader-than-predicted voltammetric wave shapes are attributed to the thermodynamic or kinetic dispersion derived from distributions in reversible potentials (E0) and electrode kinetics (k0), respectively. The recent availability of experimentally estimated distributions of E0 and k0 values derived from the analysis of data for small numbers of surface-confined modified azurin metalloprotein molecules now allows more realistic modeling to be undertaken, assuming the same distributions apply under conditions of high surface coverage relevant to voltammetric experiments. In this work, modeling based on conventional and stochastic kinetic theory is considered, and the computationally far more efficient conventional model is shown to be equivalent to the stochastic one when large numbers of molecules are present. Perhaps unexpectedly, when experimentally determined distributions of E0 and k0 are input into the model, thermodynamic dispersion is found to be unimportant and only kinetic dispersion contributes significantly to the broadening of dc voltammograms. Simulations of ac voltammetric experiments lead to the conclusion that the ac method, particularly when the analysis of kinetically very sensitive higher-order harmonics is undertaken, are far more sensitive to kinetic dispersion than the dc method. ac methods are therefore concluded to provide a potentially superior strategy for addressing the inverse problem of determining the k0 distribution that could give rise to the apparent anomalies in surface-confined voltammetry.

  17. Electronic energy transfer from molecules to metal and semiconductor surfaces, and chemisorption-induced changes in optical response of the nickel (111) surface

    International Nuclear Information System (INIS)

    Whitmore, P.M.

    1982-10-01

    The evolution of molecular excited states near solid surfaces is investigated. The mechanisms through which energy is transferred to the surface are described within a classical image dipole picture of the interaction. More sophisticated models for the dielectric response of the solid surface add important new decay channels for the energy dissipation. The predictions and applicability of three of these refined theories are discussed

  18. In Situ Mapping of the Molecular Arrangement of Amphiphilic Dye Molecules at the TiO 2 Surface of Dye-Sensitized Solar Cells

    KAUST Repository

    Voïtchovsky, Kislon

    2015-05-27

    © 2015 American Chemical Society. Amphiphilic sensitizers are central to the function of dye-sensitized solar cells. It is known that the cell\\'s performance depends on the molecular arrangement and the density of the dye on the semiconductor surface, but a molecular-level picture of the cell-electrolyte interface is still lacking. Here, we present subnanometer in situ atomic force microscopy images of the Z907 dye at the surface of TiO2 in a relevant liquid. Our results reveal changes in the conformation and the lateral arrangement of the dye molecules, depending on their average packing density on the surface. Complementary quantitative measurements on the ensemble of the film are obtained by the quartz-crystal microbalance with dissipation technique. An atomistic picture of the dye coverage-dependent packing, the effectiveness of the hydrophobic alkyl chains as blocking layer, and the solvent accessibility is obtained from molecular dynamics simulations. (Figure Presented).

  19. Simulated X-ray galaxy clusters at the virial radius: Slopes of the gas density, temperature and surface brightness profiles

    Science.gov (United States)

    Roncarelli, M.; Ettori, S.; Dolag, K.; Moscardini, L.; Borgani, S.; Murante, G.

    2006-12-01

    Using a set of hydrodynamical simulations of nine galaxy clusters with masses in the range 1.5 × 1014 matter of tension between simulated and observed properties, and up to the virial radius and beyond, where present observations are unable to provide any constraints. We have modelled the radial profiles between 0.3R200 and 3R200 with power laws with one index, two indexes and a rolling index. The simulated temperature and [0.5-2] keV surface brightness profiles well reproduce the observed behaviours outside the core. The shape of all these profiles in the radial range considered depends mainly on the activity of the gravitational collapse, with no significant difference among models including extraphysics. The profiles steepen in the outskirts, with the slope of the power-law fit that changes from -2.5 to -3.4 in the gas density, from -0.5 to -1.8 in the gas temperature and from -3.5 to -5.0 in the X-ray soft surface brightness. We predict that the gas density, temperature and [0.5-2] keV surface brightness values at R200 are, on average, 0.05, 0.60, 0.008 times the measured values at 0.3R200. At 2R200, these values decrease by an order of magnitude in the gas density and surface brightness, by a factor of 2 in the temperature, putting stringent limits on the detectable properties of the intracluster-medium (ICM) in the virial regions.

  20. A Method for Extracting the Free Energy Surface and Conformational Dynamics of Fast-Folding Proteins from Single Molecule Photon Trajectories

    Science.gov (United States)

    2015-01-01

    Single molecule fluorescence spectroscopy holds the promise of providing direct measurements of protein folding free energy landscapes and conformational motions. However, fulfilling this promise has been prevented by technical limitations, most notably, the difficulty in analyzing the small packets of photons per millisecond that are typically recorded from individual biomolecules. Such limitation impairs the ability to accurately determine conformational distributions and resolve sub-millisecond processes. Here we develop an analytical procedure for extracting the conformational distribution and dynamics of fast-folding proteins directly from time-stamped photon arrival trajectories produced by single molecule FRET experiments. Our procedure combines the maximum likelihood analysis originally developed by Gopich and Szabo with a statistical mechanical model that describes protein folding as diffusion on a one-dimensional free energy surface. Using stochastic kinetic simulations, we thoroughly tested the performance of the method in identifying diverse fast-folding scenarios, ranging from two-state to one-state downhill folding, as a function of relevant experimental variables such as photon count rate, amount of input data, and background noise. The tests demonstrate that the analysis can accurately retrieve the original one-dimensional free energy surface and microsecond folding dynamics in spite of the sub-megahertz photon count rates and significant background noise levels of current single molecule fluorescence experiments. Therefore, our approach provides a powerful tool for the quantitative analysis of single molecule FRET experiments of fast protein folding that is also potentially extensible to the analysis of any other biomolecular process governed by sub-millisecond conformational dynamics. PMID:25988351

  1. Structure and dynamics of molecular clusters. 2. Melting and freezing of CCl4 clusters

    International Nuclear Information System (INIS)

    Bartell, L.S.; Chen, Jian

    1992-01-01

    Phase transitions of a 225-molecule cluster of carbon tetrachloride have been studied by a molecular dynamics simulation. A five-site model potential function was developed to reproduce the density and heat of vaporization of the bulk liquid. Computations began with orientationally disordered molecules distributed in fcc lattice sites of a nearly spherical cluster. The cluster was heated from a low temperature to 200 K in 10-deg steps of 50 ps each and then cooled to 10 K. Translational and rotational transitions were monitored by following several indicators including the translational and rotational diffusion and rotational entropies of individual molecules. Melting began at the surface and propagated inward as the temperature increased. Solidification of the molten cluster proceeded from the center to the surface. At the high cooling rate of the simulation, however, molecules were unable to organize into a crystalline array and solidified into a glassy structure instead. Except for spatial order, the indicators of degree of liquefaction exhibited almost the same temperature dependence in the crystsl → liquid as in the liquid → glass transition, a behavior that could be rationalized on the basis of Lindemann's theory of melting. Results were compared with predictions of an illustrative model due to Reiss, Mirabel, and Whetten. Qualitatively, the model included all of the features of the simulation. Quantitatively, the model grossly underestimated the range over which the melting transition took place. 40 refs., 10 figs., 1 tab

  2. Interactions between protein molecules and the virus removal membrane surface: Effects of immunoglobulin G adsorption and conformational changes on filter performance.

    Science.gov (United States)

    Hamamoto, Ryo; Ito, Hidemi; Hirohara, Makoto; Chang, Ryongsok; Hongo-Hirasaki, Tomoko; Hayashi, Tomohiro

    2018-03-01

    Membrane fouling commonly occurs in all filter types during virus filtration in protein-based biopharmaceutical manufacturing. Mechanisms of decline in virus filter performance due to membrane fouling were investigated using a cellulose-based virus filter as a model membrane. Filter performance was critically dependent on solution conditions; specifically, ionic strength. To understand the interaction between immunoglobulin G (IgG) and cellulose, sensors coated with cellulose were fabricated for surface plasmon resonance and quartz crystal microbalance with energy dissipation measurements. The primary cause of flux decline appeared to be irreversible IgG adsorption on the surface of the virus filter membrane. In particular, post-adsorption conformational changes in the IgG molecules promoted further irreversible IgG adsorption, a finding that could not be adequately explained by DLVO theory. Analyses of adsorption and desorption and conformational changes in IgG molecules on cellulose surfaces mimicking cellulose-based virus removal membranes provide an effective approach for identifying ways of optimizing solution conditions to maximize virus filter performance. © 2017 American Institute of Chemical Engineers Biotechnol. Prog., 34:379-386, 2018. © 2017 American Institute of Chemical Engineers.

  3. Effect of physisorbed molecules and an external external fields on the metallic Shockley surface state of Cu(111): A density functional theory study

    Science.gov (United States)

    Berland, Kristian; Einstein, T. L.; Hyldgaard, Per

    2012-02-01

    To manipulate the Cu(111) partially-filled Shockley surface state, we study its response to an external fieldootnotetextKB, TLE, PH; arXiv 1109:6706 E and physisorbed PAHs and quinone molecules. We use density-functional theory calculations with periodic-boundary conditions. The van der Waals density functional version vdW-DF2 accounts for the molecular adsorption. The issue that the Kohn-Sham wave functions couple to both