WorldWideScience

Sample records for molecular size fractions

  1. Molecular diversity patterns among various phytoplankton size-fractions in West Greenland in late summer

    Science.gov (United States)

    Elferink, Stephanie; Neuhaus, Stefan; Wohlrab, Sylke; Toebe, Kerstin; Voß, Daniela; Gottschling, Marc; Lundholm, Nina; Krock, Bernd; Koch, Boris P.; Zielinski, Oliver; Cembella, Allan; John, Uwe

    2017-03-01

    Arctic regions have experienced pronounced biological and biophysical transformations as a result of global change processes over the last several decades. Current hypotheses propose an elevated impact of those environmental changes on the biodiversity, community composition and metabolic processes of species. The effects on ecosystem function and services, particularly when invasive or toxigenic harmful species become dominant, can be expressed over a wide range of temporal and spatial scales in plankton communities. Our study focused on the comparison of molecular biodiversity of three size-fractions (micro-, nano-, picoplankton) in the coastal pelagic zone of West Greenland and their association with environmental parameters. Molecular diversity was assessed via parallel amplicon sequencing the 28S rRNA hypervariable D1/D2 region. We showed that biodiversity distribution within the area of Uummannaq Fjord, Vaigat Strait and Disko Bay differed markedly within and among size-fractions. In general, we observed a higher diversity within the picoplankton size fraction compared to the nano- and microplankton. In multidimensional scaling analysis, community composition of all three size fractions correlated with cell size, silicate and phosphate, chlorophyll a (chl a) and dinophysistoxin (DTX). Individually, each size fraction community composition also correlated with other different environmental parameters, i.e. temperature and nitrate. We observed a more homogeneous community of the picoplankton across all stations compared to the larger size classes, despite different prevailing environmental conditions of the sampling areas. This suggests that habitat niche occupation for larger-celled species may lead to higher functional trait plasticity expressed as an enhanced range of phenotypes, whereas smaller organisms may compensate for lower potential plasticity with higher diversity. The presence of recently identified toxigenic harmful algal bloom (HAB) species (such

  2. DISSOLVED ORGANIC-MATTER, CADMIUM, COPPER AND ZINC IN PIG SLURRY-SIZE AND SOIL SOLUTION-SIZE EXCLUSION CHROMATOGRAPHY FRACTIONS

    NARCIS (Netherlands)

    DELCASTILHO, P; DALENBERG, JW; BRUNT, K; BRUINS, AP

    1993-01-01

    Sephadex size exclusion chromatography was used to prepare molecular size fractions from liquid pig slurry, before and after aerobic interaction with a loamy-sand soil. In the liquid fractions organic matter was characterized and some components were identified. The distribution of zinc and copper

  3. Association of radionuclides with different molecular size fractions in soil solution: implications for plant uptake

    International Nuclear Information System (INIS)

    Nisbet, A.F.; Shaw, S.; Salbu, B.

    1993-01-01

    The feasibility of using hollow fibre ultrafiltration to determine the molecular size distribution of radionuclides in soil solution was investigated. The physical and chemical composition of soil plays a vital role in determining radionuclide uptake by plant roots. Soil solution samples were extracted from loam, peat and sand soils that had been artificially contaminated with 137 Cs, 90 Sr, 239 Pu and 241 Am six years previously as part of a five-year lysimeter study on radionuclide uptake to crops. Ultrafiltration of soil solution was performed using hollow fibre cartridges with a nominal molecular weight cut off of 3 and 10 kD. The association of 137 Cs, 90 Sr, 239 Pu and 241 Am with different molecular size fractions of the soil solution is discussed in terms of radionuclide bioavailability to cabbage grown in the same three soils. 137 Cs and 90 Sr were present in low molecular weight forms and as such were mobile in soil and potentially available for uptake by the cabbage. In contrast, a large proportion (61-87%) of the 239 Pu and 241 Am were associated with colloidal and high molecular weight material and therefore less available for uptake by plant roots. The contribution from low molecular weight species of 239 Pu and 241 Am to the total activity in soil solution decreased in the order loam ≥ peat ≥ sand. Association of radionuclides with low molecular weight species of less than 3 kD did not, however, automatically imply availability to plants. (author)

  4. Fluorescence of soil humic acids and their fractions obtained by tandem size exclusion chromatography-polyacrylamide gel electrophoresis

    Energy Technology Data Exchange (ETDEWEB)

    Trubetskaya, O. [Russian Academy of Sciences, Moscow Region (Russian Federation). Shemyakin and Ovchinnikov Inst. of Bioorganic Chemistry; Trubetskoj, O. [Russian Academy of Sciences, Moscow Region (Russian Federation). Inst. of Basic Biological Problems; Guyot, G.; Richard, C. [UMR CNRS 6505, Aubiere (France). Lab. de Photochimie Moleculaire et Macromoleculaire; Andreux, F. [Centre des Sciences de la Terre, Dijon (France)

    2002-07-01

    Humic acids (HAs) extracted from soils of different origin (chernozem, ferralsol and ranker) and their fractions (A, B and C+D) obtained by tandem size exclusion chromatography-polyacrylamide gel electrophoresis were investigated by steady-state fluorescence spectroscopy in the emission mode. Independently of HA source, high molecular size fractions A and B are shown to be weakly fluorescent. The main fluorophores, especially those emitting at long wavelength (around 500-510 nm), are contained in the polar and low molecular size fractions C+D. As indicated by the observed pH effect, aromatic structures bearing carboxylate and OH substituents may be involved in these longer wavelength emissions. [author].

  5. Extraction Kinetics and Molecular Size Fractionation of Humic Substances From Two Brazilian Soils

    Directory of Open Access Journals (Sweden)

    Dick Deborah Pinheiro

    1999-01-01

    Full Text Available In the present study, the extraction behaviour of humic substances (HS from an Oxisol and a Mollisol from South Brazil, by using 0.1 and 0.5 mol L-1 NaOH and 0.15 mol L-1 neutral pyrophosphate solutions, respectively, was systematically studied. The kinetics and efficiency of HS extraction were evaluated by means of UV/Vis spectroscopy. The isolated humic acids (HA and fulvic acids (FA were size-classified by multistage ultrafiltration (six fractions in the molecular weight range of 1 to 100 kDa. The obtained data show that the HS extraction yield depended not only on the extractant, but also on the soil type. Within 3 h approximately 90% of the soluble HS could be extracted following complex extraction kinetics by both methods and none or little structural modification was verified as observed from their stable extinction ratio E350/E550. In the Mollisol the pyrophosphate extraction was more effective, suggesting that a great part of HS occurred as macromolecules bonded to clay minerals and aggregated between themselves through cationic bridges. In the Oxisol a higher HS yield was verified with the alkaline method, presumably due to HS fixation onto the oxide surface by H-bonds and/or surface complexation reactions. In general, HS extracted by the pyrophosphate procedure showed higher molecular weights than those extracted by NaOH.

  6. Molecular size distribution of Np(V)-humate

    International Nuclear Information System (INIS)

    Sakamoto, Yoshiaki; Nagao, Seiya; Tanaka, Tadao

    1996-10-01

    Molecular size distributions of humic acid and Np(V)-humate were studied as a function of pH and an ionic strength by an ultrafiltration method. Small particle (10,000-30,000 daltons) of humic acid increased slightly with increases in solution pH. The ion strength dependence of the molecular size distribution was clearly observed for humic acid. The abundance ratio of humic acid in the range from 10,000 to 30,000 daltons increased with the ionic strength from 0.015 M to 0.105 M, in place of the decreasing of that in range from 30,000 to 100,000 daltons. Most of neptunium(V) in the 200 mg/l of the humic acid solution was fractionated into 10,000-30,000 daltons. The abundance ratio of neptunium(V) in the 10,000-30,000 daltons was not clearly dependent on pH and the ionic strength of the solution, in spite of the changing in the molecular size distribution of humic acid by the ionic strength. These results imply that the molecular size distribution of Np(V)-humate does not simply obey by that of the humic acid. Stability constant of Np(V)-humate was measured as a function of the molecular size of the humic acid. The stability constant of Np(V)-humate in the range from 10,000 to 30,000 daltons was highest value comparing with the constants in the molecular size ranges of 100,000 daltons-0.45μm, 30,000-100,000, 5,000-10,000 daltons and under 5,000 daltons. These results may indicate that the Np(V) complexation with humic acid is dominated by the interaction of neptunyl ion with the humic acid in the specific molecular size range. (author)

  7. Table-sized matrix model in fractional learning

    Science.gov (United States)

    Soebagyo, J.; Wahyudin; Mulyaning, E. C.

    2018-05-01

    This article provides an explanation of the fractional learning model i.e. a Table-Sized Matrix model in which fractional representation and its operations are symbolized by the matrix. The Table-Sized Matrix are employed to develop problem solving capabilities as well as the area model. The Table-Sized Matrix model referred to in this article is used to develop an understanding of the fractional concept to elementary school students which can then be generalized into procedural fluency (algorithm) in solving the fractional problem and its operation.

  8. Size exclusion chromatography with online ICP-MS enables molecular weight fractionation of dissolved phosphorus species in water samples.

    Science.gov (United States)

    Venkatesan, Arjun K; Gan, Wenhui; Ashani, Harsh; Herckes, Pierre; Westerhoff, Paul

    2018-04-15

    Phosphorus (P) is an important and often limiting element in terrestrial and aquatic ecosystem. A lack of understanding of its distribution and structures in the environment limits the design of effective P mitigation and recovery approaches. Here we developed a robust method employing size exclusion chromatography (SEC) coupled to an ICP-MS to determine the molecular weight (MW) distribution of P in environmental samples. The most abundant fraction of P varied widely in different environmental samples: (i) orthophosphate was the dominant fraction (93-100%) in one lake, two aerosols and DOC isolate samples, (ii) species of 400-600 Da range were abundant (74-100%) in two surface waters, and (iii) species of 150-350 Da range were abundant in wastewater effluents. SEC-DOC of the aqueous samples using a similar SEC column showed overlapping peaks for the 400-600 Da species in two surface waters, and for >20 kDa species in the effluents, suggesting that these fractions are likely associated with organic matter. The MW resolution and performance of SEC-ICP-MS agreed well with the time integrated results obtained using conventional ultrafiltration method. Results show that SEC in combination with ICP-MS and DOC has the potential to be a powerful and easy-to-use method in identifying unknown fractions of P in the environment. Copyright © 2018 Elsevier Ltd. All rights reserved.

  9. Density fractions versus size separates: does physical fractionation isolate functional soil compartments?

    Directory of Open Access Journals (Sweden)

    C. Moni

    2012-12-01

    Full Text Available Physical fractionation is a widely used methodology to study soil organic matter (SOM dynamics, but concerns have been raised that the available fractionation methods do not well describe functional SOM pools. In this study we explore whether physical fractionation techniques isolate soil compartments in a meaningful and functionally relevant way for the investigation of litter-derived nitrogen dynamics at the decadal timescale. We do so by performing aggregate density fractionation (ADF and particle size-density fractionation (PSDF on mineral soil samples from two European beech forests a decade after application of 15N labelled litter.

    Both density and size-based fractionation methods suggested that litter-derived nitrogen became increasingly associated with the mineral phase as decomposition progressed, within aggregates and onto mineral surfaces. However, scientists investigating specific aspects of litter-derived nitrogen dynamics are pointed towards ADF when adsorption and aggregation processes are of interest, whereas PSDF is the superior tool to research the fate of particulate organic matter (POM.

    Some methodological caveats were observed mainly for the PSDF procedure, the most important one being that fine fractions isolated after sonication can not be linked to any defined decomposition pathway or protective mechanism. This also implies that historical assumptions about the "adsorbed" state of carbon associated with fine fractions need to be re-evaluated. Finally, this work demonstrates that establishing a comprehensive picture of whole soil OM dynamics requires a combination of both methodologies and we offer a suggestion for an efficient combination of the density and size-based approaches.

  10. Determination of reactivity rates of silicate particle-size fractions

    Directory of Open Access Journals (Sweden)

    Angélica Cristina Fernandes Deus

    2014-04-01

    Full Text Available The efficiency of sources used for soil acidity correction depends on reactivity rate (RR and neutralization power (NP, indicated by effective calcium carbonate (ECC. Few studies establish relative efficiency of reactivity (RER for silicate particle-size fractions, therefore, the RER applied for lime are used. This study aimed to evaluate the reactivity of silicate materials affected by particle size throughout incubation periods in comparison to lime, and to calculate the RER for silicate particle-size fractions. Six correction sources were evaluated: three slags from distinct origins, dolomitic and calcitic lime separated into four particle-size fractions (2, 0.84, 0.30 and <0.30-mm sieves, and wollastonite, as an additional treatment. The treatments were applied to three soils with different texture classes. The dose of neutralizing material (calcium and magnesium oxides was applied at equal quantities, and the only variation was the particle-size material. After a 90-day incubation period, the RER was calculated for each particle-size fraction, as well as the RR and ECC of each source. The neutralization of soil acidity of the same particle-size fraction for different sources showed distinct solubility and a distinct reaction between silicates and lime. The RER for slag were higher than the limits established by Brazilian legislation, indicating that the method used for limes should not be used for the slags studied here.

  11. Size and shape of soil humic acids estimated by viscosity and molecular weight.

    Science.gov (United States)

    Kawahigashi, Masayuki; Sumida, Hiroaki; Yamamoto, Kazuhiko

    2005-04-15

    Ultrafiltration fractions of three soil humic acids were characterized by viscometry and high performance size-exclusion chromatography (HPSEC) in order to estimate shapes and hydrodynamic sizes. Intrinsic viscosities under given solute/solvent/temperature conditions were obtained by extrapolating the concentration dependence of reduced viscosities to zero concentration. Molecular mass (weight average molecular weight (M (w)) and number average molecular weight (M (n))) and hydrodynamic radius (R(H)) were determined by HPSEC using pullulan as calibrant. Values of M (w) and M (n) ranged from 15 to 118 x 10(3) and from 9 to 50 x 10(3) (g mol(-1)), respectively. Polydispersity, as indicated by M (w)/M (n), increased with increasing filter size from 1.5 to 2.4. The hydrodynamic radii (R(H)) ranged between 2.2 and 6.4 nm. For each humic acid, M (w) and [eta] were related. Mark-Houwink coefficients calculated on the basis of the M (w)-[eta] relationships suggested restricted flexible chains for two of the humic acids and a branched structure for the third humic acid. Those structures probably behave as hydrated sphere colloids in a good solvent. Hydrodynamic radii of fractions calculated from [eta] using Einstein's equation, which is applicable to hydrated sphere colloids, ranged from 2.2 to 7.1 nm. These dimensions are fit to the size of nanospaces on and between clay minerals and micropores in soil particle aggregates. On the other hand, the good agreement of R(H) values obtained by applying Einstein's equation with those directly determined by HPSEC suggests that pullulan is a suitable calibrant for estimation of molecular mass and size of humic acids by HPSEC.

  12. Functional groups and reactivity of size-fractionated Aldrich humic acid

    Energy Technology Data Exchange (ETDEWEB)

    Tanaka, Tadao, E-mail: tanaka.tadao26@jaea.go.jp [Nuclear Safety Research Center, Japan Atomic Energy Agency, Shirakata 2-4, Tokai, Naka, Ibaraki, 319-1195 (Japan)

    2012-03-20

    The complexation affinity of the Aldrich Chemicals humic acid with {sup 60}Co was examined with respect to molecular size of humic acid. Correlations between the affinity and the structures of humic acid were studied. At low humic acid concentration range, {sup 60}Co was interacted with the humic acid of size fraction over 100k Da (HA(100<)). With increasing humic acid concentration, the {sup 60}Co was preferentially interacted with the 30k-100k Da of humic acid (HA(30-100)). Fractionated HA(100<) and HA(30-100) were characterized from their FTIR (Fourier Transform Infra-Red), {sup 13}C NMR spectral analyses and acid-base titration curves. The HA(10<) having aliphatic branched structure, smaller amount of COOH group and large proton exchangeable capacity, seem to show low covalent bonding nature and high ion exchangeability in the complexation. In addition, steric hindrance may affect on the complexation, by winding up like random coils from the branched structure. The HA(30-100) is dominated with the aromatic COOH group and OH group and it may preferentially coordinate to {sup 60}Co by covalent binding. These presumptions were supported by XPS analysis, in which the biding energy of cobalt-humates was discussed.

  13. Absorption spectroscopy of colored dissolved organic carbon in Georgia (USA rivers: the impact of molecular size distribution

    Directory of Open Access Journals (Sweden)

    Michelle McELVAINE

    2003-02-01

    Full Text Available Dissolved organic carbon (DOC was collected in six rivers that transect the coastal plain of Georgia in July 1999 and February 2000. DOC concentrations ranged from 4.9 to 40.7 g m-3 and from 7.1 to 40.5 g m-3, respectively. The absorption coefficient at 440 nm was highly correlated with DOC concentration, suggesting that the optical parameter may be utilized for rapid estimation of DOC in these waters. The isolated DOC was separated into fractions of operationally defined molecular size, using an ultrafiltration technique that yielded three fractions: 50 ("large" kilodalton. The smallest fraction was the most abundant (>50% in 4 rivers in July and in all rivers in February, and considerably more abundant than in previous years. The wavelength-dependent absorption of the total DOC and its fractions showed approximately uniform shape of a curve declining exponentially with the increase of wavelength. The average slope of logarithmically transformed curves was 0.0151 and 0.0159 nm-1, for the material collected in July and February, respectively and showed a dependence on DOC molecular size. In unfractionated DOC samples, the mass-specific light absorption determined at 440 nm was on average 0.33 m2 g-1 in July, and 0.26 m2 g-1 in February. The mass-specific absorption coefficient in all fractions ranged between 0.085 and 1.347 m2 g-1 in July and between 0.085 and 1.877 m2 g-1 in February, and was positively correlated with the molecular size of the measured samples. The results of the reported study clearly suggest that the specific absorption coefficient of the yellow substance is an outcome of the relative contribution of its different size fractions.

  14. Surface-enhanced Raman spectroscopy of chernozem humic acid and their fractions obtained by coupled size exclusion chromatography-polyacrylamide gel electrophoresis (SEC-PAGE).

    Science.gov (United States)

    Sanchez-Cortes, S; Corrado, G; Trubetskaya, O E; Trubetskoj, O A; Hermosin, B; Saiz-Jimenez, C

    2006-01-01

    A humic acid extracted from a chernozem soil was fractionated combining size exclusion chromatography and polyacrylamide electrophoresis (SEC-PAGE). Three fractions named A, B, and C+D, with different electrophoretic mobilities and molecular sizes (MS), were obtained and subsequently characterized by thermochemolysis and surface-enhanced Raman spectroscopy (SERS). The data confirmed that fraction A, with the higher MS, was more aliphatic than fractions B and C+D and, in turn, fractions with lower MS (B and C+D) denoted an enrichment in lignin residues. These structural features explain conformational changes when varying the pH in the humic fraction A and indicated that combination of the two techniques is a good approach for characterizing humic substances.

  15. Diverging effects of isotopic fractionation upon molecular diffusion of noble gases in water: mechanistic insights through ab initio molecular dynamics simulations.

    Science.gov (United States)

    Pinto de Magalhães, Halua; Brennwald, Matthias S; Kipfer, Rolf

    2017-03-22

    Atmospheric noble gases are routinely used as natural tracers to analyze gas transfer processes in aquatic systems. Their isotopic ratios can be employed to discriminate between different physical transport mechanisms by comparison to the unfractionated atmospheric isotope composition. In many applications of aquatic systems molecular diffusion was thought to cause a mass dependent fractionation of noble gases and their isotopes according to the square root ratio of their masses. However, recent experiments focusing on isotopic fractionation within a single element challenged this broadly accepted assumption. The determined fractionation factors of Ne, Ar, Kr and Xe isotopes revealed that only Ar follows the prediction of the so-called square root relation, whereas within the Ne, Kr and Xe elements no mass-dependence was found. The reason for this unexpected divergence of Ar is not yet understood. The aim of our computational exercise is to establish the molecular-resolved mechanisms behind molecular diffusion of noble gases in water. We make the hypothesis that weak intermolecular interactions are relevant for the dynamical properties of noble gases dissolved in water. Therefore, we used ab initio molecular dynamics to explicitly account for the electronic degrees of freedom. Depending on the size and polarizability of the hydrophobic particles such as noble gases, their motion in dense and polar liquids like water is subject to different diffusive regimes: the inter-cavity hopping mechanism of small particles (He, Ne) breaks down if a critical particle size achieved. For the case of large particles (Kr, Xe), the motion through the water solvent is governed by mass-independent viscous friction leading to hydrodynamical diffusion. Finally, Ar falls in between the two diffusive regimes, where particle dispersion is propagated at the molecular collision time scale of the surrounding water molecules.

  16. Heavy metals in the finest size fractions of road-deposited sediments.

    Science.gov (United States)

    Lanzerstorfer, Christof

    2018-08-01

    The concentration of heavy metals in urban road-deposited sediments (RDS) can be used as an indicator for environmental pollution. Thus, their occurrence has been studied in whole road dust samples as well as in size fractions obtained by sieving. Because of the limitations of size separation by sieving little information is available about heavy metal concentrations in the road dust size fractions heavy metals concentrations and size distribution. According to the Geoaccumulation Index the pollution of the road dust samples deceased in the following order: Sb » As > Cu ≈ Zn > Cr > Cd ≈ Pb ≈ Mn > Ni > Co ≈ V. For all heavy metals the concentration was higher in the fine size fractions compared to the coarse size fractions, while the concentration of Sr was size-independent. The enrichment of the heavy metals in the finest size fraction compared to the whole RDS  Sb > (Cu) ≈ Zn ≈ Pb > As ≈ V » Mn. The approximation of the size dependence of the concentration as a function of the particle size by power functions worked very well. The correlation between particle size and concentration was high for all heavy metals. The increased heavy metals concentrations in the finest size fractions should be considered in the evaluation of the contribution of road dust re-suspension to the heavy metal contamination of atmospheric dust. Thereby, power functions can be used to describe the size dependence of the concentration. Copyright © 2018 Elsevier Ltd. All rights reserved.

  17. The one-sample PARAFAC approach reveals molecular size distributions of fluorescent components in dissolved organic matter

    DEFF Research Database (Denmark)

    Wünsch, Urban; Murphy, Kathleen R.; Stedmon, Colin

    2017-01-01

    Molecular size plays an important role in dissolved organic matter (DOM) biogeochemistry, but its relationship with the fluorescent fraction of DOM (FDOM) remains poorly resolved. Here high-performance size exclusion chromatography (HPSEC) was coupled to fluorescence emission-excitation (EEM...... but not their spectral properties. Thus, in contrast to absorption measurements, bulk fluorescence is unlikely to reliably indicate the average molecular size of DOM. The one-sample approach enables robust and independent cross-site comparisons without large-scale sampling efforts and introduces new analytical...... opportunities for elucidating the origins and biogeochemical properties of FDOM...

  18. Size fractionation of waste-to-energy boiler ash enables separation of a coarse fraction with low dioxin concentrations.

    Science.gov (United States)

    Weidemann, E; Allegrini, E; Fruergaard Astrup, T; Hulgaard, T; Riber, C; Jansson, S

    2016-03-01

    Polychlorinated dibenzo-p-dioxins and dibenzofurans (PCDD/F) formed in modern Waste-to-Energy plants are primarily found in the generated ashes and air pollution control residues, which are usually disposed of as hazardous waste. The objective of this study was to explore the occurrence of PCDD/F in different grain size fractions in the boiler ash, i.e. ash originating from the convection pass of the boiler. If a correlation between particle size and dioxin concentrations could be found, size fractionation of the ashes could reduce the total amount of hazardous waste. Boiler ash samples from ten sections of a boiler's convective part were collected over three sampling days, sieved into three different size fractions - 0.355 mm - and analysed for PCDD/F. The coarse fraction (>0.355 mm) in the first sections of the horizontal convection pass appeared to be of low toxicity with respect to dioxin content. While the total mass of the coarse fraction in this boiler was relatively small, sieving could reduce the amount of ash containing toxic PCDD/F by around 0.5 kg per tonne input waste or around 15% of the collected boiler ash from the convection pass. The mid-size fraction in this study covered a wide size range (0.09-0.355 mm) and possibly a low toxicity fraction could be identified by splitting this fraction into more narrow size ranges. The ashes exhibited uniform PCDD/F homologue patterns which suggests a stable and continuous generation of PCDD/F. Copyright © 2016 Elsevier Ltd. All rights reserved.

  19. The pentane- and toluene-soluble fractions of a petroleum residue and three coal tars by size exclusion chromatography and UV-fluorescence spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Karaca, F.; Millan-Agorio, M.; Morgan, T.J.; Bull, I.D.; Herod, A.A.; Kandiyoti, R. [University of London Imperial College Science Technology & Medicine, London (United Kingdom). Dept. of Chemical Engineering

    2008-01-15

    A petroleum atmospheric pressure distillate residue and three tars derived from different coals using different severities of thermal treatment were separated into seven fractions using column chromatography on silica and sequential elution by the solvent sequence pentane, toluene, acetonitrile, pyridine, 1-methyl-2-pyrrolidinone (NMP) and water. The fractions from the four extractions have been compared using size exclusion chromatography (SEC) in NMP as eluent and by synchronous ultra-violet-fluorescence (UV-F). This paper concerns the pentane and toluene soluble fractions only since these are the least polar fractions. By SEC, the size of the aromatic molecules increased from the first pentane soluble fractions to the toluene-soluble fractions, with the petroleum residue fractions of larger size than the equivalent fractions from coal liquids. The three coal tars showed significant differences, indicating that temperature of pyrolysis had a significant effect on the molecular size. Synchronous UV-F spectra of the four sets of fractions, in solution in NMP, again showed significant differences between the petroleum residue and the coal tars, as well as amongst the three coal tars. In general, the petroleum residue fractions contained smaller aromatic clusters than the coal liquid fractions. These low-polarity fractions contained material excluded from the column porosity in SEC that was unlikely to consist of aggregates of polar molecules.

  20. Analysis of hard coal quality for narrow size fraction under 20 mm

    Science.gov (United States)

    Niedoba, Tomasz; Pięta, Paulina

    2018-01-01

    The paper presents the results of an analysis of hard coal quality diversion in narrow size fraction by using taxonomic methods. Raw material samples were collected in selected mines of Upper Silesian Industrial Region and they were classified according to the Polish classification as types 31, 34.2 and 35. Then, each size fraction was characterized in terms of the following properties: density, ash content, calorific content, volatile content, total sulfur content and analytical moisture. As a result of the analysis it can be stated that the best quality in the entire range of the tested size fractions was the 34.2 coking coal type. At the same time, in terms of price parameters, high quality of raw material characterised the following size fractions: 0-6.3 mm of 31 energetic coal type and 0-3.15 mm of 35 coking coal type. The methods of grouping (Ward's method) and agglomeration (k-means method) have shown that the size fraction below 10 mm was characterized by higher quality in all the analyzed hard coal types. However, the selected taxonomic methods do not make it possible to identify individual size fraction or hard coal types based on chosen parameters.

  1. Size fractionation and characterization of natural aquatic colloids and nanoparticles

    International Nuclear Information System (INIS)

    Baalousha, M.; Lead, J.R.

    2007-01-01

    Atomic force microscopy (AFM) was used to image and quantify natural nanoparticles (prefiltered < 25 nm) from three different freshwater sites (Vale Lake, Bailey Brook and Tern Rivers). Four fractions were analysed by AFM; the prefiltered fraction (< 25 nm) and three fractions collected after separation of this prefiltered sample by flow field-flow fractionation (FlFFF) which corresponds to material which has size ranges of < 4.2 nm, 4.2-15.8 nm and 15.8-32.4 nm, as determined by FlFFF theory. The large majority of materials in all samples appeared as < 3 nm nanoparticles, nearly spherical and rich in chromophores active at 254 nm UV, which thus correspond to natural organic matter. However, nanoparticles were also imaged up to slightly more than 25 nm in size, indicating a slight disagreement in sizing between filtration and FlFFF. In addition, some particles in certain fractions were found to be covered with a thin film of less than 0.5-1.0 nm. Substantial differences between sites were observed

  2. Modelling size-fractionated primary production in the Atlantic Ocean from remote sensing

    Science.gov (United States)

    Brewin, Robert J. W.; Tilstone, Gavin H.; Jackson, Thomas; Cain, Terry; Miller, Peter I.; Lange, Priscila K.; Misra, Ankita; Airs, Ruth L.

    2017-11-01

    Marine primary production influences the transfer of carbon dioxide between the ocean and atmosphere, and the availability of energy for the pelagic food web. Both the rate and the fate of organic carbon from primary production are dependent on phytoplankton size. A key aim of the Atlantic Meridional Transect (AMT) programme has been to quantify biological carbon cycling in the Atlantic Ocean and measurements of total primary production have been routinely made on AMT cruises, as well as additional measurements of size-fractionated primary production on some cruises. Measurements of total primary production collected on the AMT have been used to evaluate remote-sensing techniques capable of producing basin-scale estimates of primary production. Though models exist to estimate size-fractionated primary production from satellite data, these have not been well validated in the Atlantic Ocean, and have been parameterised using measurements of phytoplankton pigments rather than direct measurements of phytoplankton size structure. Here, we re-tune a remote-sensing primary production model to estimate production in three size fractions of phytoplankton (10 μm) in the Atlantic Ocean, using measurements of size-fractionated chlorophyll and size-fractionated photosynthesis-irradiance experiments conducted on AMT 22 and 23 using sequential filtration-based methods. The performance of the remote-sensing technique was evaluated using: (i) independent estimates of size-fractionated primary production collected on a number of AMT cruises using 14C on-deck incubation experiments and (ii) Monte Carlo simulations. Considering uncertainty in the satellite inputs and model parameters, we estimate an average model error of between 0.27 and 0.63 for log10-transformed size-fractionated production, with lower errors for the small size class (10 μm), and errors generally higher in oligotrophic waters. Application to satellite data in 2007 suggests the contribution of cells 2 μm to total

  3. Size fractionation of waste-to-energy boiler ash enables separation of a coarse fraction with low dioxin concentrations

    DEFF Research Database (Denmark)

    Weidemann, E.; Allegrini, Elisa; Astrup, Thomas Fruergaard

    2016-01-01

    Polychlorinated dibenzo-p-dioxins and dibenzofurans (PCDD/F) formed in modern Waste-to-Energy plants are primarily found in the generated ashes and air pollution control residues, which are usually disposed of as hazardous waste. The objective of this study was to explore the occurrence of PCDD....../F in different grain size fractions in the boiler ash, i.e. ash originating from the convection pass of the boiler. If a correlation between particle size and dioxin concentrations could be found, size fractionation of the ashes could reduce the total amount of hazardous waste. Boiler ash samples from ten...... sections of a boiler's convective part were collected over three sampling days, sieved into three different size fractions - 0.355. mm - and analysed for PCDD/F. The coarse fraction (>0.355. mm) in the first sections of the horizontal convection pass appeared to be of low toxicity with respect to dioxin...

  4. Metagenomic analysis of size-fractionated picoplankton in a marine oxygen minimum zone.

    Science.gov (United States)

    Ganesh, Sangita; Parris, Darren J; DeLong, Edward F; Stewart, Frank J

    2014-01-01

    Marine oxygen minimum zones (OMZs) support diverse microbial communities with roles in major elemental cycles. It is unclear how the taxonomic composition and metabolism of OMZ microorganisms vary between particle-associated and free-living size fractions. We used amplicon (16S rRNA gene) and shotgun metagenome sequencing to compare microbial communities from large (>1.6 μm) and small (0.2-1.6 μm) filter size fractions along a depth gradient in the OMZ off Chile. Despite steep vertical redox gradients, size fraction was a significantly stronger predictor of community composition compared to depth. Phylogenetic diversity showed contrasting patterns, decreasing towards the anoxic OMZ core in the small size fraction, but exhibiting maximal values at these depths within the larger size fraction. Fraction-specific distributions were evident for key OMZ taxa, including anammox planctomycetes, whose coding sequences were enriched up to threefold in the 0.2-1.6 μm community. Functional gene composition also differed between fractions, with the >1.6 μm community significantly enriched in genes mediating social interactions, including motility, adhesion, cell-to-cell transfer, antibiotic resistance and mobile element activity. Prokaryotic transposase genes were three to six fold more abundant in this fraction, comprising up to 2% of protein-coding sequences, suggesting that particle surfaces may act as hotbeds for transposition-based genome changes in marine microbes. Genes for nitric and nitrous oxide reduction were also more abundant (three to seven fold) in the larger size fraction, suggesting microniche partitioning of key denitrification steps. These results highlight an important role for surface attachment in shaping community metabolic potential and genome content in OMZ microorganisms.

  5. Growth response of microorganisms to different molecular fractions of lignite

    Energy Technology Data Exchange (ETDEWEB)

    Polman, J.K.; Breckenridge, C.R.; Dugan, P.R.; Quigley, D.R.

    1990-01-01

    Our research is primarily concerned with isolating and characterizing microbes which are able to dissimilate coal and convert it to other useful chemicals. This quarter, general growth responses of microorganisms cultivated in the presence of different molecular weight fractions of lignite coal were examined. Aerobic and anaerobic environmental samples from a variety of ecological niches were used as inocula. Growth of the microorganisms in these samples on the following types of media was tested: COAL medium, containing alkali-solubilized whole coal; THFI medium, containing the alkali-solubilized, tetrahydrofuran-insoluble, macromolecular portion of whole coal; THFS medium, containing the THF-soluble, low molecular weight portion of whole coal; and CON medium, void of any coal constituent. Overall results indicated that the presence of the THF-soluble, low molecular weight coal fraction enhanced the growth yield and the variety of aerobic microorganisms compared to the other coal fractions or the control medium. Conversely, anaerobic microbes grew best on media which contained the macromolecular fraction. 12 refs., 5 tabs.

  6. Antioxidant activity of cod (Gadus morhua) protein hydrolysates: Fractionation and characterisation of peptide fractions

    DEFF Research Database (Denmark)

    Farvin Habebullah, Sabeena; Andersen, Lisa Lystbæk; Otte, Jeanette

    2016-01-01

    This study aimed to characterise peptide fractions (>5 kDa, 3–5 kDa and fractions were dominated by Ala, Gly, Glu and Ser. The total amino acid composition had high proportions of Lys, Ala...... and Glu. The 3–5 kDa and fractions were further fractionated by size exclusion chromatography. All sub-fractions showed high Fe2+ chelating activity. The DPPH radical-scavenging activity of the 3–5 kDa fraction was exerted mainly by one sub-fraction dominated by peptides with masses below 600 Da....... The DPPH radical-scavenging activity of the fraction was exerted by sub-fractions with low molecular weight. The highest reducing power was found in a sub-fraction containing peptides rich in Arg, Tyr and Phe. Both free amino acids and low molecular weight peptides thus seemed to contribute...

  7. Molecular size evolution of oligomers in organic aerosols collected in urban atmospheres and generated in a smog chamber.

    Science.gov (United States)

    Kalberer, Markus; Sax, Mirjam; Samburova, Vera

    2006-10-01

    Only a minor fraction of the total organic aerosol mass can be resolved on a molecular level. High molecular weight compounds in organic aerosols have recently gained much attention because this class of compound potentially explains a major fraction of the unexplained organic aerosol mass. These compounds have been identified with different mass spectrometric methods, and compounds with molecular masses up to 1000 Da are found in secondary organic aerosols (SOA) generated from aromatic and terpene precursors in smog chamber experiments. Here, we apply matrix-assisted laser desorption/ionization mass spectrometry (MALDI-MS) to SOA particles from two biogenic precursors, alpha-pinene and isoprene. Similar oligomer patterns are found in these two SOA systems, but also in SOA from trimethylbenzene, an anthropogenic SOA precursor. However, different maxima molecular sizes were measured for these three SOA systems. While oligomers in alpha-pinene and isoprene have sizes mostly below 600-700 Da, they grow up to about 1000 Da in trimethylbenzene-SOA. The final molecular size of the oligomers is reached early during the particle aging process, whereas other particle properties related to aging, such as the overall acid concentration or the oligomer concentration, increase continuously over a much longer time scale. This kinetic behavior of the oligomer molecular size growth can be explained by a chain growth kinetic regime. Similar oligomer mass patterns were measured in aqueous extracts of ambient aerosol samples (measured with the same technique). Distinct differences between summer and winter were observed. In summer a few single mass peaks were measured with much higher intensity than in winter, pointing to a possible difference in the formation processes of these compounds in winter and summer.

  8. Micro nutrient status and their distribution in aggregate-size fractions ...

    African Journals Online (AJOL)

    Micro nutrients are particularly sensitive to changes in land use and their availability in soil is influenced by their distribution and storage in stable aggregate fractions. Micro nutrient, (Fe, Mn and Zn) status and their storage in stable aggregate-size fractions in forested, rubber plantation, oil palm plantation, plantain plantation ...

  9. Metals in particle-size fractions of the soils of five European cities

    International Nuclear Information System (INIS)

    Ajmone-Marsan, F.; Biasioli, M.; Kralj, T.; Grcman, H.; Davidson, C.M.; Hursthouse, A.S.; Madrid, L.; Rodrigues, S.

    2008-01-01

    Soils from Aveiro, Glasgow, Ljubljana, Sevilla and Torino have been investigated in view of their potential for translocation of potentially toxic elements (PTE) to the atmosphere. Soils were partitioned into five size fractions and Cr, Cu, Ni, Pb and Zn were measured in the fractions and the whole soil. All PTE concentrated in the <10 μm fraction. Cr and Ni concentrated also in the coarse fraction, indicating a lithogenic contribution. An accumulation factor (AF) was calculated for the <2 and <10 μm fraction. The AF values indicate that the accumulation in the finer fractions is higher where the overall contamination is lower. AF for Cr and Ni are particularly low in Glasgow and Torino. An inverse relationship was found between the AF of some metals and the percentage of <10 μm particles that could be of use in risk assessment or remediation practices. - Metals in size fractions of urban soils

  10. Bacterial density and community structure associated with aggregate size fractions of soil-feeding termite mounds.

    Science.gov (United States)

    Fall, S; Nazaret, S; Chotte, J L; Brauman, A

    2004-08-01

    The building and foraging activities of termites are known to modify soil characteristics such as the heterogeneity. In tropical savannas the impact of the activity of soil-feeding termites ( Cubitermes niokoloensis) has been shown to affect the properties of the soil at the aggregate level by creating new soil microenvironments (aggregate size fractions) [13]. These changes were investigated in greater depth by looking at the microbial density (AODC) and the genetic structure (automated rRNA intergenic spacer analysis: ARISA) of the communities in the different aggregate size fractions (i.e., coarse sand, fine sand, coarse silt, fine silt, and dispersible clays) separated from compartments (internal and external wall) of three Cubitermes niokoloensis mounds. The bacterial density of the mounds was significantly higher (1.5 to 3 times) than that of the surrounding soil. Within the aggregate size fractions, the termite building activity resulted in a significant increase in bacterial density within the coarser fractions (>20 mum). Multivariate analysis of the ARISA profiles revealed that the bacterial genetic structures of unfractionated soil and soil aggregate size fractions of the three mounds was noticeably different from the savanna soil used as a reference. Moreover, the microbial community associated with the different microenvironments in the three termite mounds revealed three distinct clusters formed by the aggregate size fractions of each mound. Except for the 2-20 mum fraction, these results suggest that the mound microbial genetic structure is more dependent upon microbial pool affiliation (the termite mound) than on the soil location (aggregate size fraction). The causes of the specificity of the microbial community structure of termite mound aggregate size fractions are discussed.

  11. Uranium release from different size fractions of sediments in Hanford 300 area, Washington, USA

    International Nuclear Information System (INIS)

    Du Jiangkun; Bao Jianguo; Hu Qinhong; Ewing, Robert P.

    2012-01-01

    Stirred-flow cell tests were carried out to investigate uranium (U) release from different size fractions of sediments from the U.S. Department of Energy’s Hanford 300 Area in Washington, USA. Results show that the measured concentration of U release varies with different size fractions, with the fine-grained mass fractions (<75 μm, 75–500 μm, and 500–2000 μm) being the main U carriers. However, because the sediment is mainly composed of gravel (2000–8000 μm) materials, the gravel fraction is a non-negligible U pool. Our elution experiments give a value of 8.7% of the total U being in the gravel fraction, significantly reducing the current uncertainty in evaluating U inventory. A log–log plot of released U concentration vs. elution volume (i.e., elution time) shows a power-law relationship for all size fractions, with identical exponents for the three fine size fractions (−0.875). For the <2000 μm mass fraction, comparing our eluted U values with reported total U concentrations, we estimate that a lower bound value 8.6% of the total uranium is labile. This compares well with the previously published value of 11.8% labile U after extraction with a dilute extractant for three weeks. - Highlights: ► Stirred-flow cells were used to study U release in Hanford 300 Area sediment. ► Fine-grained size fractions have higher U concentrations. ► U in coarse fraction is less studied, but its 8.7–9.3% of total U is non-negligible. ► A power-law relationship is observed between released U and elution volume. ► About 8.6% of U in the <2 mm sediment is labile.

  12. Amino Acid Composition, Molecular Weight Distribution and Gel Electrophoresis of Walnut (Juglans regia L. Proteins and Protein Fractionations

    Directory of Open Access Journals (Sweden)

    Xiaoying Mao

    2014-01-01

    Full Text Available As a by-product of oil production, walnut proteins are considered as an additional source of plant protein for human food. To make full use of the protein resource, a comprehensive understanding of composition and characteristics of walnut proteins are required. Walnut proteins have been fractionated and characterized in this study. Amino acid composition, molecular weight distribution and gel electrophoresis of walnut proteins and protein fractionations were analyzed. The proteins were sequentially separated into four fractions according to their solubility. Glutelin was the main component of the protein extract. The content of glutelin, albumin, globulin and prolamin was about 72.06%, 7.54%, 15.67% and 4.73% respectively. Glutelin, albumin and globulin have a balanced content of essential amino acids, except for methionine, with respect to the FAO pattern recommended for adults. SDS-PAGE patterns of albumin, globulin and glutelin showed several polypeptides with molecular weights 14.4 to 66.2 kDa. The pattern of walnut proteins in two-dimension electrophoresis (2-DE showed that the isoelectric point was mainly in the range of 4.8–6.8. The results of size exclusion chromatogram indicated molecular weight of the major components of walnut proteins were between 3.54 and 81.76 kDa.

  13. Serum protein fractionation using supported molecular matrix electrophoresis.

    Science.gov (United States)

    Dong, Weijie; Matsuno, Yu-ki; Kameyama, Akihiko

    2013-08-01

    Supported molecular matrix electrophoresis (SMME), in which a hydrophilic polymer such as PVA serves as a support within a porous PVDF membrane, was recently developed. This method is similar to cellulose acetate membrane electrophoresis but differs in the compatibility to glycan analysis of the separated bands. In this report, we describe the first instance of the application of SMME to human serum fractionation, and demonstrate the differences with serum fractionation by cellulose acetate membrane electrophoresis. The SMME membrane exhibited almost no EOF during electrophoresis, unlike the cellulose acetate membrane, but afforded comparative results for serum fractionation. The visualization of each fraction was achieved by conventional staining with dye such as Direct Blue-71, and objective quantification was obtained by densitometry after inducing membrane transparency with 1-nonene. Immunostaining was also achieved. Moreover, mass spectrometric analysis of both N-linked and O-linked glycans from the separated bands was demonstrated. Serum fractionation and glycan profiling of each fraction using SMME will enable novel insights into the relationships between various glycosylation profiles and disease states. © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  14. Mineralogical variation in the size fractions of a Ranong kaolin, southern Thailand

    Science.gov (United States)

    Pisutha-Arnond, Visut; Phuvichit, Suraphol; Leepowpanth, Quanchai

    A representative crude Ranong kaolin from the Thungkla-Ranong mine was separated into > 2 mm (granule), 2-1 mm (very coarse sand), 1-0.5 mm (coarse sand), 0.5-0.25 mm (medium sand), 0.25-0.125 mm (fine sand), 0.125-0.062 mm (very fine sand) and 62-28, 28-14, 17-7, 7-4, 4-2, 2-1 and dispersive X-ray spectrometer (EDX). Kaolin group minerals were differentiated by using XRD in combination with various chemical and heat treatments together with TEM, SEM and DTA. The Ranong kaolin consists predominantly of tubular halloysite, poorly crystallized kaolinite and quartz with minor amounts of mica and K-feldspars. Other trace constituents include gibbsite, tourmaline, zircon and colored impurities (i.e. extractable iron hydroxide coating on clay mineral surface). The kaolin minerals are found in all size fractions by which their contents and halloysite/kaolinite ratios increase as the particle sizes become finer. Quartz and mica are also detected in almost all size fractions. They are, however, more abundant with coarsening particle size. Gibbsite, K-feldspar and tourmaline are mainly concentrated in the fine sand to silt size fractions. Crystallinity of kaolin minerals as measured by XRD varied moderately with size. Relatively pure kaolin minerals, predominantly halloysite and kaolinite, can be obtained in the particle size below 1 or 2 μm.

  15. Impact of radiation therapy fraction size on local control of early glottic carcinoma

    International Nuclear Information System (INIS)

    Yu, Edward; Shenouda, George; Beaudet, Marie P.; Black, Martin J.

    1997-01-01

    Purpose: Different radiotherapy fractionation schedules were used over a 10-year period to treat patients with early squamous cell carcinoma of the vocal cords at McGill University. A retrospective analysis was performed to study the effect of fraction size on local control in this group of patients. Methods and Materials: A total of 126 previously untreated patients with T1 invasive squamous cell carcinoma of the true vocal cords were irradiated between January 1978 and December 1988 in the Department of Radiation Oncology at McGill University. All patients received megavoltage irradiation, 94 patients received daily fractions > 2 Gy (64 patients received 50 Gy with once-daily 2.5-Gy fractions, and 30 received 65.25 Gy in 29 fractions of 2.25 Gy each), and 32 patients were treated to a dose of 66 Gy in 33 fractions with 2 Gy/fraction. Patients' characteristics of prognostic importance were equally distributed between the two fractionation groups. Results: At a median follow-up of 84 months, the 10-year disease-free survival and overall survival were 76% and 93%, respectively. Local control for patients treated with > 2 Gy fraction was 84%, compared to 65.6% for those treated with 2-Gy fractions (p = 0.026). Among the prognostic factors tested, such as gender, age, stage, anterior and posterior commissure involvement, smoking history, and fraction size, the latter was the only significant predictor of local control for the whole group of patients in univariate (p = 0.041) and multivariate (p = 0.023) analysis. There was no observed difference in the incidence of complications between the two fraction groups. Conclusions: From the results of this retrospective review of patients treated with radiotherapy for T1 true vocal cord cancer, and within the range of total doses and overall treatment times used in our patients, it was found that fractionation schedules using daily fraction size > 2 Gy are associated with a better local control than schedules delivering 2 Gy/fraction

  16. Measurement of void fraction and bubble size distribution in two-phase flow system

    International Nuclear Information System (INIS)

    Huahun, G.

    1987-01-01

    The importance of study two phase flow parameter and microstructure has appeared increasingly, with the development of two-phase flow discipline. In the paper, the measurement methods of several important microstructure parameter in a two phase flow vertical channel have been studied. Using conductance probe the two phase flow pattern and the average void fraction have been measured previously by the authors. This paper concerns microstructure of the bubble size distribution and local void fraction. The authors studied the methods of measuring bubble velocity, size distribution and local void fraction using double conductance probes and a set of apparatus. Based on our experiments and Yoshihiro work, a formula of calculated local void fraction has been deduced by using the statistical characteristics of bubbles in two phase flow and the relation between calculated bubble size and voltage has been determined. Finally the authors checked by using photograph and fast valve, which is classical but reliable. The results are the same with what has been studied before

  17. The role of particle-size soil fractions in the adsorption of heavy metals

    Science.gov (United States)

    Mandzhieva, Saglara; Minkina, Tatiana; Pinsky, David; Batukaev, Abdulmalik; Kalinitchenko, Valeriy; Sushkova, Svetlana; Chaplygin, Viktor; Dikaev, Zaurbek; Startsev, Viktor; Bakoev, Serojdin

    2014-05-01

    Ion-exchange adsorption phenomena are important in the immobilization of heavy metals (HMs) by soils. Numerous works are devoted to the study of this problem. However, the interaction features of different particle-size soil fractions and their role in the immobilization of HMs studied insufficiently. Therefore, the assessment of the effect of the particle-size distribution on the adsorption properties of soils is a vital task. The parameters of Cu2+, Pb2+ and Zn2+ adsorption by chernozems of the south of Russia and their particle-size fractions were studied. In the particle-size fractions separated from the soils, the concentrations of Cu2+, Pb2+, and Zn2 decreased with the decreasing particle size. The parameters of the adsorption values of k (the constant of the affinity)and Cmax.(the maximum adsorption of the HMs) characterizing the adsorption of HMs by the southern chernozem and its particle-size fractions formed the following sequence: silt > clay > entire soil. The adsorption capacity of chernozems for Cu2+, Pb2+, and Zn2+ depending on the particle-size distribution decreased in the following sequence: clay loamy ordinary chernozem clay loamy southern chernozem> loamy southern chernozem> loamy sandy southern chernozem. According to the parameters of the adsorption by the different particle-size fractions, the heavy metal cations form a sequence analogous to that obtained for the entire soils: Cu2+ ≥ Pb2+ > Zn2+. The parameters of the heavy metal adsorption by similar particle-size fractions separated from different soils decreased in the following order: clay loamy chernozem> loamy chernozem> loamy sandy chernozem. The analysis of the changes in the parameters of the Cu2+, Pb2+, and Zn2+ adsorption by the studied soils and their particle-size fractions showed that the extensive adsorption characteristic - the maximum adsorption (Cmax.) - is a less sensitive parameter characterizing the adsorption capacity of the soils than the intensive characteristic of

  18. Isotopic and molecular fractionation in combustion; three routes to molecular marker validation, including direct molecular 'dating' (GC/AMS)

    Science.gov (United States)

    Currie, L. A.; Klouda, G. A.; Benner, B. A.; Garrity, K.; Eglinton, T. I.

    The identification of unique isotopic, elemental, and molecular markers for sources of combustion aerosol has growing practical importance because of the potential effects of fine particle aerosol on health, visibility and global climate. It is urgent, therefore, that substantial efforts be directed toward the validation of assumptions involving the use of such tracers for source apportionment. We describe here three independent routes toward carbonaceous aerosol molecular marker identification and validation: (1) tracer regression and multivariate statistical techniques applied to field measurements of mixed source, carbonaceous aerosols; (2) a new development in aerosol 14C metrology: direct, pure compound accelerator mass spectrometry (AMS) by off-line GC/AMS ('molecular dating'); and (3) direct observation of isotopic and molecular source emissions during controlled laboratory combustion of specific fuels. Findings from the combined studies include: independent support for benzo( ghi)perylene as a motor vehicle tracer from the first (statistical) and second (direct 'dating') studies; a new indication, from the third (controlled combustion) study, of a relation between 13C isotopic fractionation and PAH molecular fractionation, also linked with fuel and stage of combustion; and quantitative data showing the influence of both fuel type and combustion conditions on the yields of such species as elemental carbon and PAH, reinforcing the importance of exercising caution when applying presumed conservative elemental or organic tracers to fossil or biomass burning field data as in the first study.

  19. Investigation of magnetic active core sizes and hydrodynamic diameters of a magnetically fractionated ferrofluid

    International Nuclear Information System (INIS)

    Büttner, Markus; Weber, Peter; Schmidl, Frank; Seidel, Paul; Röder, Michael; Schnabelrauch, Matthias; Wagner, Kerstin; Görnert, Peter; Glöckl, Gunnar; Weitschies, Werner

    2011-01-01

    In this work we address the question which relates between the size of the magnetically active core of magnetic nanoparticles (MNPs) and the size of the overall particle in the solution (the so-called hydrodynamic diameter d hyd ) exists. For this purpose we use two methods of examination that can deliver conclusions about the properties of MNP which are not accessible with normal microscopy. On the one hand, we use temperature dependent magnetorelaxation (TMRX) method, which enables direct access to the energy barrier distribution and by using additional hysteresis loop measurements can provide details about the size of the magnetically active cores. On the other hand, to determine the size of the overall particle in the solution, we use the magnetooptical relaxation of ferrofluids (MORFF) method, where the stimulation is done magnetically while the reading of the relaxation signal, however, is done optically. As a basis for the examinations in this work we use a ferrofluid that was developed for medicinal purposes and which has been fractioned magnetically to obtain differently sized fractions of MNPs. The two values obtained through these methods for each fraction shows the success in fractioning the original solution. Therefore, one can conclude a direct correlation between the size of the magnetically active core and the size of the complete particle in the solution from the experimental results. To calculate the size of the magnetically active core we found a temperature dependent anisotropy constant which was taken into account for the calculations. Furthermore, we found relaxation signals at 18 K for all fractions in these TMRX measurements, which have their origin in other magnetic effects than the Néel relaxation.

  20. Metagenomic analysis of size-fractionated picoplankton in a marine oxygen minimum zone

    OpenAIRE

    Ganesh, Sangita; Parris, Darren J; DeLong, Edward F; Stewart, Frank J

    2013-01-01

    Marine oxygen minimum zones (OMZs) support diverse microbial communities with roles in major elemental cycles. It is unclear how the taxonomic composition and metabolism of OMZ microorganisms vary between particle-associated and free-living size fractions. We used amplicon (16S rRNA gene) and shotgun metagenome sequencing to compare microbial communities from large (>1.6 μm) and small (0.2–1.6 μm) filter size fractions along a depth gradient in the OMZ off Chile. Despite steep vertical redox ...

  1. DISTRIBUTION OF METALS IN PARTICLE SIZE FRACTIONS IN SOILS OF TWO FORESTED CATENAS (SMOLENSK-MOSCOW UPLAND

    Directory of Open Access Journals (Sweden)

    Olga Samonova

    2013-01-01

    Full Text Available The concentrations and distribution of Fe, Ti, Zr, Mn, Cu. Ni, Co, Cr, Pb, and Zn associated with various particle size fractions have been analyzed in soils of two forested catenas located in the middle Protva River basin on the Smolensk-Moscow Upland. The results showed that concentration of metals in a particular size fraction was defined by a complex of factors: element chemical properties, soil type, genesis of a soil horizon, and position in the catena. A clearly defined relationship between the fraction size and metal concentrations was found for Ti and Zr. The highest levels of Ti were found in coarse and medium silt, while Zr had its highest values only in coarse silt and, in some cases, in fine sand. Such metals as Fe, Mn, Co, Cu and Pb had high concentrations in sand, fine silt, and clay fractions depending on a soil type and a genetic horizon. The maximum load of Cr, Zn, and Ni (in the majority of cases was found in clay fraction. The minimum loads of Fe, Mn, Co, Cu, and Ni were found in the coarse silt fraction. Variation in concentrations of heavy metals differed depending on particle size. For most metals, the variations were decreasing from coarser to finer fractions.Key words: soils, heavy metals, grain-size fractionation, vertical and lateral distribution patterns

  2. Carbon storage in soil size fractions under two cacao agroforestry systems in Bahia, Brazil.

    Science.gov (United States)

    Gama-Rodrigues, Emanuela F; Ramachandran Nair, P K; Nair, Vimala D; Gama-Rodrigues, Antonio C; Baligar, Virupax C; Machado, Regina C R

    2010-02-01

    Shaded perennial agroforestry systems contain relatively high quantities of soil carbon (C) resulting from continuous deposition of plant residues; however, the extent to which the C is sequestered in soil will depend on the extent of physical protection of soil organic C (SOC). The main objective of this study was to characterize SOC storage in relation to soil fraction-size classes in cacao (Theobroma cacao L.) agroforestry systems (AFSs). Two shaded cacao systems and an adjacent natural forest in reddish-yellow Oxisols in Bahia, Brazil were selected. Soil samples were collected from four depth classes to 1 m depth and separated by wet-sieving into three fraction-size classes (>250 microm, 250-53 microm, and <53 microm)-corresponding to macroaggregate, microaggregate, and silt-and-clay size fractions-and analyzed for C content. The total SOC stock did not vary among systems (mean: 302 Mg/ha). On average, 72% of SOC was in macroaggregate-size, 20% in microaggregate-size, and 8% in silt-and-clay size fractions in soil. Sonication of aggregates showed that occlusion of C in soil aggregates could be a major mechanism of C protection in these soils. Considering the low level of soil disturbances in cacao AFSs, the C contained in the macroaggregate fraction might become stabilized in the soil. The study shows the role of cacao AFSs in mitigating greenhouse gas (GHG) emission through accumulation and retention of high amounts of organic C in the soils and suggests the potential benefit of this environmental service to the nearly 6 million cacao farmers worldwide.

  3. Changes in carbon stability and microbial activity in size fractions of micro-aggregates in a rice soil chronosequence under long term rice cultivation

    Science.gov (United States)

    Pan, Genxing; Liu, Yalong; Wang, Ping; Li, Lianqinfg; Cheng, Kun; Zheng, Jufeng; Zhang, Xuhui; Zheng, Jinwei; Bian, Rongjun; Ding, Yuanjun; Ma, Chong

    2016-04-01

    Recent studies have shown soil carbon sequestration through physical protection of relative labile carbon intra micro-aggregates with formation of large sized macro-aggregates under good management of soil and agricultural systems. While carbon stabilization had been increasingly concerned as ecosystem properties, the mechanisms underspin bioactivity of soil carbon with increased carbon stability has been still poorly understood. In this study, topsoil samples were collected from rice soils derived from salt marsh under different length of rice cultivation up to 700 years from eastern China. Particle size fractions (PSF) of soil aggregates were separated using a low energy dispersion protocol. Carbon fractions in the PSFs were analyzed either with FTIR spectroscopy. Soil microbial community of bacterial, fungal and archaeal were analyzed with molecular fingerprinting using specific gene primers. Soil respiration and carbon gain from amended maize as well as enzyme activities were measured using lab incubation protocols. While the PSFs were dominated by the fine sand (200-20μm) and silt fraction (20-2μm), the mass proportion both of sand (2000-200μm) and clay (soil aggregates (also referred to aggregate stability). Soil organic carbon was found most enriched in coarse sand fraction (40-60g/kg), followed by the clay fraction (20-24.5g/kg), but depleted in the silt fraction (~10g/kg). Phenolic and aromatic carbon as recalcitrant pool were high (33-40% of total SOC) in both coarse sand and clay fractions than in both fine sand and silt fractions (20-29% of total SOC). However, the ratio of LOC/total SOC showed a weak decreasing trend with decreasing size of the aggregate fractions. Total gene content in the size fractions followed a similar trend to that of SOC. Bacterial and archaeal gene abundance was concentrated in both sand and clay fractions but that of fungi in sand fraction, and sharply decreased with the decreasing size of aggregate fraction. Gene abundance

  4. Antiaggregation potential of berry fractions against pairs of Streptococcus mutans with Fusobacterium nucleatum or Actinomyces naeslundii.

    Science.gov (United States)

    Riihinen, Kaisu; Ryynänen, Anu; Toivanen, Marko; Könönen, Eija; Törrönen, Riitta; Tikkanen-Kaukanen, Carina

    2011-01-01

    Coaggregation is an interspecies adhesion process, which is essential to the development of dental plaque. This is an in vitro study of the composition of the soluble solids in the berry juice molecular size fractions (100 kDa, FIII) derived from apple, bilberry, blackcurrant, cloudberry, crowberry and lingonberry and their ability to inhibit and reverse coaggregation of the pairs of common species in dental plaque: Streptococcus mutans with Fusobacterium nucleatum or Actinomyces naeslundii. Inhibitory and reversal activity was found in the molecular size fractions FII and FIII of bilberry, blackcurrant, crowberry and lingonberry. The active fractions contained higher amounts of polyphenols (5-12% of soluble solids) than those without activity (juice fractions FII and FIII and also small amounts of anthocyanins were detected. Anthocyanins, proanthocyanidins and flavonol glycosides were prevalent in FII and FIII fractions of bilberry, blackcurrant and crowberry juices. Comparable amounts of sugars and titratable acids were present in the latter three berry juice fractions of different size. The results indicate that the high molecular size fractions of lingonberry, bilberry, blackcurrant and crowberry juices have antiaggregation potential on common oral bacteria, the potential being associated with their polyphenolic content. Copyright © 2010 John Wiley & Sons, Ltd.

  5. X-ray diffraction and thermal analysis of kaolins particle size fractions

    Directory of Open Access Journals (Sweden)

    Patricia dos Santos

    2013-09-01

    Full Text Available Kaolins are common geological materials and have high concentrations of kaolinite as well as the clay fraction of tropical and subtropical soils of Brazil. The characterization of kaolin is a proxy of assessing the contribution of kaolinite to important soil chemical and mineralogical attributes. This study evaluated four kaolins (commercial kaolin A (CCA, commercial kaolin B (CCB, pink sandy kaolin A (CRA and green sandy kaolin A (CVA in the original form and after particle size separation into: sand (200-53 mm, coarse silt (53-20 m, fine silt (20-2 m, large clay (2-1m, medium clay (1-0.5 m and fine clay (<0.5m fractions. The minerals were identified by X-ray diffraction (XRD and evaluated for crystallinity (kaolinite and halloysite through indexes Hughes and Brown, Amigó, Bramão and the dehydroxylation temperature. The physical fractionation was efficient to concentrate minerals in specific size fractions which were not identified in the original material. In CCA kaolin was concentrated one mineral which remains unidentified in fine fractions, in kaolin CRA, zircon was concentrated in the coarse silt and different silicates in the fine fractions, in kaolin CCB were concentrated kaolinite and a silicate in the medium and coarse clay fractions. The estimate by X-ray diffraction overestimated the amount of kaolinite and halloysite underestimated when compared to quantification by thermal gravimetric analysis The crystallinity index exhibit different behaviors depending on the mineralogy of each material, thus the correlation between the crystallinity of kaolinite and / or halloysite and other variables, may be compromised, especially in materials with distinct geological origins.

  6. Stable Carbon Fractionation In Size Segregated Aerosol Particles Produced By Controlled Biomass Burning

    Science.gov (United States)

    Masalaite, Agne; Garbaras, Andrius; Garbariene, Inga; Ceburnis, Darius; Martuzevicius, Dainius; Puida, Egidijus; Kvietkus, Kestutis; Remeikis, Vidmantas

    2014-05-01

    Biomass burning is the largest source of primary fine fraction carbonaceous particles and the second largest source of trace gases in the global atmosphere with a strong effect not only on the regional scale but also in areas distant from the source . Many studies have often assumed no significant carbon isotope fractionation occurring between black carbon and the original vegetation during combustion. However, other studies suggested that stable carbon isotope ratios of char or BC may not reliably reflect carbon isotopic signatures of the source vegetation. Overall, the apparently conflicting results throughout the literature regarding the observed fractionation suggest that combustion conditions may be responsible for the observed effects. The purpose of the present study was to gather more quantitative information on carbonaceous aerosols produced in controlled biomass burning, thereby having a potential impact on interpreting ambient atmospheric observations. Seven different biomass fuel types were burned under controlled conditions to determine the effect of the biomass type on the emitted particulate matter mass and stable carbon isotope composition of bulk and size segregated particles. Size segregated aerosol particles were collected using the total suspended particle (TSP) sampler and a micro-orifice uniform deposit impactor (MOUDI). The results demonstrated that particle emissions were dominated by the submicron particles in all biomass types. However, significant differences in emissions of submicron particles and their dominant sizes were found between different biomass fuels. The largest negative fractionation was obtained for the wood pellet fuel type while the largest positive isotopic fractionation was observed during the buckwheat shells combustion. The carbon isotope composition of MOUDI samples compared very well with isotope composition of TSP samples indicating consistency of the results. The measurements of the stable carbon isotope ratio in

  7. Predicting Soil-Water Characteristics from Volumetric Contents of Pore-Size Analogue Particle Fractions

    DEFF Research Database (Denmark)

    Naveed, Muhammad; Møldrup, Per; Tuller, Markus

    *-model) for the SWC, derived from readily available soil properties such as texture and bulk density. A total of 46 soils from different horizons at 15 locations across Denmark were used for models evaluation. The Xw-model predicts the volumetric water content as a function of volumetric fines content (organic matter...... and clay). It performed reasonably well for the dry-end (above a pF value of 2.0; pF = log(|Ψ|), where Ψ is the matric potential in cm), but did not do as well closer to saturated conditions. The Xw*-model gives the volumetric water content as a function of volumetric content of particle size fractions...... (organic matter, clay, silt, fine and coarse sand), variably included in the model depending on the pF value. The volumetric content of a particular soil particle size fraction was included in the model if it was assumed to contribute to the pore size fraction still occupied with water at the given p...

  8. Dynamics of size-fractionated phytoplankton biomass in a monsoonal estuary: Patterns and drivers for seasonal and spatial variability

    Science.gov (United States)

    Rajaneesh, K. M.; Mitbavkar, Smita; Anil, Arga Chandrashekar

    2018-07-01

    Phytoplankton size-fractionated biomass is an important determinant of the type of food web functioning in aquatic ecosystems. Knowledge about the effect of seasonal salinity gradient on the size-fractionated biomass dynamics is still lacking, especially in tropical estuaries experiencing monsoon. The phytoplankton size-fractionated chlorophyll a biomass (>3 μm and 3 μm size-fraction was the major contributor to the total phytoplankton chlorophyll a biomass with the ephemeral dominance of biomass concentration of both size-fractions showed signs of recovery with increasing salinity downstream towards the end of the monsoon season. In contrast, the chlorophyll a biomass response was size-dependent during the non-monsoon seasons with the sporadic dominance (>50%) of biomass during high water temperature episodes from downstream to middle estuary during pre-monsoon and at low salinity and high nutrient conditions upstream during post-monsoon. These conditions also influenced the picophytoplankton community structure with picoeukaryotes dominating during the pre-monsoon, phycoerythrin containing Synechococcus during the monsoon and phycocyanin containing Synechococcus during the post-monsoon. This study highlights switching over of dominance in size-fractionated phytoplankton chlorophyll a biomass at intra, inter-seasonal and spatial scales which will likely govern the estuarine trophodynamics.

  9. Determination of degradation rates of organic substances in the unsaturated soil zone depending on the grain size fractions of various soil types

    Science.gov (United States)

    Fichtner, Thomas; Stefan, Catalin; Goersmeyer, Nora

    2015-04-01

    Rate and extent of the biological degradation of organic substances during transport through the unsaturated soil zone is decisively influenced by the chemical and physical properties of the pollutants such as water solubility, toxicity and molecular structure. Furthermore microbial degradation processes are also influenced by soil-specific properties. An important parameter is the soil grain size distribution on which the pore volume and the pore size depends. Changes lead to changes in air and water circulation as well as preferred flow paths. Transport capacity of water inclusive nutrients is lower in existing bad-drainable fine pores in soils with small grain size fractions than in well-drainable coarse pores in a soil with bigger grain size fractions. Because fine pores are saturated with water for a longer time than the coarse pores and oxygen diffusion in water is ten thousand times slower than in air, oxygen is replenished much slower in soils with small grain size fractions. As a result life and growth conditions of the microorganisms are negatively affected. This leads to less biological activity, restricted degradation/mineralization of pollutants or altered microbial processes. The aim of conducted laboratory column experiments was to study the correlation between the grain size fractions respectively pore sizes, the oxygen content and the biodegradation rate of infiltrated organic substances. Therefore two columns (active + sterile control) were filled with different grain size fractions (0,063-0,125 mm, 0,2-0,63 mm and 1-2 mm) of soils. The sterile soil was inoculated with a defined amount of a special bacteria culture (sphingobium yanoikuae). A solution with organic substances glucose, oxalic acid, sinaphylic alcohol and nutrients was infiltrated from the top in intervals. The degradation of organic substances was controlled by the measurement of dissolved organic carbon in the in- and outflow of the column. The control of different pore volumes

  10. Oxygen isotopic fractionation of O₂ during adsorption and desorption processes using molecular sieve at low temperatures.

    Science.gov (United States)

    Ahn, Insu; Kusakabe, Minoru; Lee, Jong Ik

    2014-06-15

    Cryogenic trapping using molecular sieves is commonly used to collect O2 extracted from silicates for (17)O/(16)O and (18)O/(16)O analyses. However, gases which interfere with (17)O/(16)O analysis, notably NF3, are also trapped and their removal is essential for accurate direct measurement of the (17)O/(16)O ratio. It is also necessary to identify and quantify any isotopic fractionation associated with the use of cryogenic trapping using molecular sieves. The oxygen isotopic compositions of O2 before and after desorption from, and adsorption onto, 13X and 5A molecular sieves (MS13X and MS5A) at 0°C, -78°C, -114°C, and -130°C were measured in order to determine the oxygen isotopic fractionation at these temperatures. We also investigated whether isotopic fractionation occurred when O2 gas was transferred sequentially into a second cold finger, also containing molecular sieve. It was confirmed that significant oxygen isotopic fractionation occurs between the gaseous O2 and that adsorbed onto molecular sieve, if desorption and adsorption are incomplete. As the fraction of released or untrapped O2 becomes smaller with decreasing trapping temperature (from 0 to -130°C), the isotopic fractionation becomes larger. Approximately half of the total adsorbed O2 is released from the molecular sieve during desorption at -114°C, which is the temperature recommended for separation from NF3 (retained on the molecular sieve), and this will interfere with (17)O/(16)O measurements. The use of a single cold finger should be avoided, because partial desorption is accompanied by oxygen isotopic fractionation, thereby resulting in inaccurate isotopic data. The use of a dual cold finger arrangement is recommended because, as we have confirmed, the transfer of O2 from the first trap to the second is almost 100%. However, even under these conditions, a small isotopic fractionation (0.18 ± 0.05‰ in δ(17)O values and 0.26 ± 0.06‰ in δ(18)O values) occurred, with O2 in

  11. Negligible fractionation of Kr and Xe isotopes by molecular diffusion in water

    Science.gov (United States)

    Tyroller, Lina; Brennwald, Matthias S.; Busemann, Henner; Maden, Colin; Baur, Heinrich; Kipfer, Rolf

    2018-06-01

    Molecular diffusion is a key transport process for noble gases in water. Such diffusive transport is often thought to cause a mass-dependent fractionation of noble gas isotopes that is inversely proportional to the square root of the ratio of their atomic mass, referred to as the square root relation. Previous studies, challenged the commonly held assumption that the square root relation adequately describes the behaviour of noble gas isotopes diffusing through water. However, the effect of diffusion on noble gas isotopes has only been determined experimentally for He, Ne and Ar to date, whereas the extent of fractionation of Kr and Xe has not been measured. In the present study the fractionation of Kr and Xe isotopes diffusing through water immobilised by adding agar was quantified through measuring the respective isotope ratio after diffusing through the immobilised water. No fractionation of Kr and Xe isotopes was observed, even using high-precision noble gas analytics. These results complement our current understanding on isotopic fractionation of noble gases diffusing through water. Therefore this complete data set builds a robust basis to describe molecular diffusion of noble gases in water in a physical sound manner which is fundamental to assess the physical aspects of gas dynamics in aquatic systems.

  12. Collection of size fractionated particulate matter sample for neutron activation analysis in Japan

    International Nuclear Information System (INIS)

    Otoshi, Tsunehiko; Nakamatsu, Hiroaki; Oura, Yasuji; Ebihara, Mitsuru

    2004-01-01

    According to the decision of the 2001 Workshop on Utilization of Research Reactor (Neutron Activation Analysis (NAA) Section), size fractionated particulate matter collection for NAA was started from 2002 at two sites in Japan. The two monitoring sites, ''Tokyo'' and ''Sakata'', were classified into ''urban'' and ''rural''. In each site, two size fractions, namely PM 2-10 '' and PM 2 '' particles (aerodynamic particle size between 2 to 10 micrometer and less than 2 micrometer, respectively) were collected every month on polycarbonate membrane filters. Average concentrations of PM 10 (sum of PM 2-10 and PM 2 samples) during the common sampling period of August to November 2002 in each site were 0.031mg/m 3 in Tokyo, and 0.022mg/m 3 in Sakata. (author)

  13. Diel feeding rhythm of copepod size-fractions from Coliumo Bay, Central Chile

    Directory of Open Access Journals (Sweden)

    Danilo Calliari

    2001-12-01

    Full Text Available The feeding behaviour of the size fractionated copepod assemblage was studied over a diel cycle in Coliumo Bay. In this shallow environment the photic layer reached the bottom and salinity, temperature, and food availability were fairly homogeneous throughout the water column. All four size-fractions (250-500 ?m, 500-1000 ?m, 1000-2000 ?m, >2000 ?m showed a period of high feeding activity during the night and low feeding activity during the day. The persistence of nocturnal feeding in the presence of high food concentration over the 24-h cycle is interpreted as a predator avoidance strategy: empty guts by day make copepods less conspicuous to their visual daytime predators.

  14. Radiocesium distribution in aggregate-size fractions of cropland and forest soils affected by the Fukushima nuclear accident.

    Science.gov (United States)

    Koarashi, Jun; Nishimura, Syusaku; Atarashi-Andoh, Mariko; Matsunaga, Takeshi; Sato, Tsutomu; Nagao, Seiya

    2018-08-01

    The Fukushima Daiichi nuclear power plant accident caused serious radiocesium ( 137 Cs) contamination in soils in a range of terrestrial ecosystems. It is well documented that the interaction of 137 Cs with soil constituents, particularly clay minerals, in surface soil layers exerts strong control on the behavior of this radionuclide in the environment; however, there is little understanding of how soil aggregation-the binding of soil particles together into aggregates-can affect the mobility and bioavailability of 137 Cs in soils. To explore this, soil samples were collected at seven sites under different land-use conditions in Fukushima and were separated into four aggregate-size fractions: clay-sized (fractions were then analyzed for 137 Cs content and extractability and mineral composition. In forest soils, aggregate formation was significant, and 69%-83% of 137 Cs was associated with macroaggregates and sand-sized aggregates. In contrast, there was less aggregation in agricultural field soils, and approximately 80% of 137 Cs was in the clay- and silt-sized fractions. Across all sites, the 137 Cs extractability was higher in the sand-sized aggregate fractions than in the clay-sized fractions. Mineralogical analysis showed that, in most soils, clay minerals (vermiculite and kaolinite) were present even in the larger-sized aggregate fractions. These results demonstrate that larger-sized aggregates are a significant reservoir of potentially mobile and bioavailable 137 Cs in organic-rich (forest and orchard) soils. Our study suggests that soil aggregation reduces the mobility of particle-associated 137 Cs through erosion and resuspension and also enhances the bioavailability of 137 Cs in soils. Copyright © 2018 Elsevier Ltd. All rights reserved.

  15. Colloidal transport of uranium in soil: Size fractionation and characterization by field-flow fractionation-multi-detection

    International Nuclear Information System (INIS)

    Claveranne-Lamolere, C.; Lespes, G.; Dubascoux, St.; Potin-Gautier, M.; Claveranne-Lamolere, C.; Aupiais, J.; Pointurier, F.

    2009-01-01

    The aim of this study was to characterize colloids associated with uranium by using an on-line fractionation/multi-detection technique based on asymmetrical flow field-flow fractionation (As-Fl-FFF) hyphenated with UV detector, multi angle laser light scattering (MALLS) and inductively coupling plasma-mass spectrometry (ICP-MS). Moreover, thanks to the As-Fl-FFF, the different colloidal fractions were collected and characterized by a total organic carbon analyzer (TOC). Thus it is possible to determine the nature (organic or inorganic colloids), molar mass, size (gyration and hydrodynamic radii) and quantitative uranium distribution over the whole colloidal phase. In the case of the site studied, two populations are highlighted. The first population corresponds to humic-like substances with a molar mass of (1500 ± 300) g mol -1 and a hydrodynamic diameter of (2. 0 ± 0. 2) nm. The second one has been identified as a mix of carbonated nano-particles or clays with organic particles (aggregates and/or coating of the inorganic particles) with a size range hydrodynamic diameter between 30 and 450 nm. Each population is implied in the colloidal transport of uranium: maximum 1% of the uranium content in soil leachate is transported by the colloids in the site studied, according to the depth in the soil. Indeed, humic substances are the main responsible of this transport in sub-surface conditions whereas nano-particles drive the phenomenon in depth conditions. (authors)

  16. Mineralization of organic phosphorus in soil size fractions under different vegetation covers in the north of Rio de Janeiro

    Directory of Open Access Journals (Sweden)

    Joice Cleide de Oliveira Rita

    2013-10-01

    Full Text Available In unfertilized, highly weathered tropical soils, phosphorus (P availability to plants is dependent on the mineralization of organic P (Po compounds. The objective of this study was to estimate the mineralization of total and labile Po in soil size fractions of > 2.0, 2.0-0.25 and 2.0 and 2.0-0.25 mm fractions, respectively. In contrast, there was an average increase of 90 % of total Po in microaggregates of 2.0 (-50 % and < 0.25 mm (-76 % fractions, but labile Po increased by 35 % in the 2.0-0.25 mm fraction. The Po fraction relative to total extracted P and total labile P within the soil size fractions varied with the vegetation cover and incubation time. Therefore, the distribution of P fractions (Pi and Po in the soil size fraction revealed the distinctive ability of the cover species to recycle soil P. Consequently, the potential of Po mineralization varied with the size fraction and vegetation cover. Because Po accounted for most of the total labile P, the P availability to plants was closely related to the mineralization of this P fraction.

  17. Effect of low molecular fraction of thymus humoral factor on blood formation processes of irradiated mice

    International Nuclear Information System (INIS)

    Stolyarova, T.V.; Skobel'tsyna, E.S.; Grinberg, S.M.; Kruglikov, I.L.; Korotaev, G.K.; Tepelina, O.M.; Il'ina, T.I.

    1982-01-01

    The effect of low-molecular fraction of thymus humoral factor on blood formation in mice irradiated at 4 Gy was studied. It is shown that injection of low-molecular fraction of thymus hymoral factor to irradiated animals affects proliferative processes in spleen and bone marrow, however the degree of the effect depends on the injection scheme of the preparation. Application of mathematical planning methods of the experiment enables to analyze various injection schemes of low-molecular fraction of thymus humoral factor on the investigated indices. The optimal scheme of preparation injection is determined: 1st injection with the dose of 10 mkg/kg following 4 hour after irradiation, 2d injection - with the same dose in 7-21 days

  18. Effect of particle size on the glass transition.

    Science.gov (United States)

    Larsen, Ryan J; Zukoski, Charles F

    2011-05-01

    The glass transition temperature of a broad class of molecules is shown to depend on molecular size. This dependency results from the size dependence of the pair potential. A generalized equation of state is used to estimate how the volume fraction at the glass transition depends on the size of the molecule, for rigid molecule glass-formers. The model shows that at a given pressure and temperature there is a size-induced glass transition: For molecules larger than a critical size, the volume fraction required to support the effective pressure due to particle attractions is above that which characterizes the glassy state. This observation establishes the boundary between nanoparticles, which exist in liquid form only as dispersions in low molecular weight solvents and large molecules which form liquids that have viscosities below those characterized by the glassy state.

  19. Determination of concentration levels of arsenic, gold and antimony in particle-size fractions of gold ore using Neutron Activation Analysis

    International Nuclear Information System (INIS)

    Nyarku, M.

    2009-02-01

    Instrumental Neutron Activation Analysis (INAA) has been used to quantify the concentrations of arsenic, gold and antimony in particle-size fractions of a gold ore. The ore, which was taken from the Ahafo project site of Newmont Ghana Gold Ltd, was first fractionated into fourteen (14) particle-size fractions using state-of-the-art analytical sieve machine. The minimum sieve mesh size used was 36 microns and grains >2000 microns were not considered for analysis. Results of the sieving were analysed with easysieve software. The < 36 microns sub fraction was found to be the optimum, hosting bulk of all three elements. For arsenic, the element was found to be highly concentrated in < 36 to +100 microns size fractions and erratically distributed from +150 microns fraction and above. For gold, in exception of the sub fraction <36 which had exceptionally high concentration, the element is distributed in all the size fractions but slightly 'plays out' in the +150 to +400 microns fractions. Antimony occurrence in the sample was relatively high in <36 microns size fraction followed by 600 - 800, 800 - 1000, 400 - 600 and 36 - 40 microns size fractions in that order. Gold content in the sample was far higher than that of arsenic and antimony. Gold concentration in the composite sample was in the range 564 - 8420 ppm. Arsenic levels were higher as compared to antimony. The range of arsenic concentration in the composite sample was 14.33 - 186.92 ppm. Antimony concentration was in the range 1.09 - 9.48 ppm. (au)

  20. Investigating concentration distributions of arsenic, gold and antimony in grain-size fractions of gold ore using instrumental neutron activation analysis

    International Nuclear Information System (INIS)

    Nyarku, M.; Nyarko, B.J.B.; Serfor-Armah, Y.; Osae, S.

    2010-01-01

    Instrumental neutron activation analysis (INAA) has been used to quantify concentrations of arsenic (As), gold (Au) and antimony (Sb) in grain-size fractions of a gold ore. The ore, which was taken from the Ahafo project site of Newmont Ghana Gold Ltd., was fractionated into 14 grain-size fractions using state-of-the-art analytical sieve machine. The minimum sieve mesh size used was 36 μm and grains >2000 μm were not considered for analysis. Result of the sieving was analysed with easysieve (registered) software. The<36 μm subfraction was found to be the optimum, hosting bulk of all three elements. Arsenic was found to be highly concentrated in<36-100 μm size fractions and erratically distributed in from 150 μm fraction and above. For gold, with the exception of the subfraction <36 μm which had exceptionally high concentration, the element was found to be approximately equally distributed in all the size fractions but slightly 'played out' in 150-400 μm size fractions. Antimony occurrence in the sample was relatively high in <36 μm size fraction followed by 600, 800, 400 and 36 μm size fractions in that order. Gold content in the sample was comparatively far greater than arsenic and antimony; this is indicative of level of gold mineralization in the concession where the sample ore was taken. The concentration of gold in the composite sample was in the range 564-8420 ppm as compared to 14.33-186.92 ppm for arsenic and 1.09-9.48 ppm for antimony. Elemental concentrations were correlated with each other and with grain-size fractions and the relationships between these descriptive parameters were established.

  1. Tribological Characteristics of Tungsten Carbide Reinforced Arc Sprayed Coatings using Different Carbide Grain Size Fractions

    Directory of Open Access Journals (Sweden)

    W. Tillmann

    2017-06-01

    Full Text Available Tungsten carbide reinforced coatings play an important role in the field of surface engineering to protect stressed surfaces against wear. For thermally sprayed coatings, it is already shown that the tribological properties get mainly determined by the carbide grain size fraction. Within the scope of this study, the tribological characteristics of iron based WC-W2C reinforced arc sprayed coatings deposited using cored wires consisting of different carbide grain size fractions were examined. Microstructural characteristics of the produced coatings were scrutinized using electron microscopy and x-ray diffraction analyses. Ball-on-disk test as well as Taber Abraser and dry sand rubber wheel test were employed to analyze both the dry sliding and the abrasive wear behavior. It was shown that a reduced carbide grain size fraction as filling leads to an enhanced wear resistance against sliding. In terms of the Taber Abraser test, it is also demonstrated that a fine carbide grain size fraction results in an improved wear resistant against abrasion. As opposed to that, a poorer wear resistance was found within the dry sand rubber wheel tests. The findings show that the operating mechanisms for both abrasion tests affect the stressed surface in a different way, leading either to microcutting or microploughing.

  2. Contrasting responses of bacterial and fungal communities to aggregate-size fractions and long-term fertilizations in soils of northeastern China.

    Science.gov (United States)

    Liao, Hao; Zhang, Yuchen; Zuo, Qinyan; Du, Binbin; Chen, Wenli; Wei, Dan; Huang, Qiaoyun

    2018-04-20

    Soils, with non-uniform distribution of nutrients across different aggregate-size fractions, provide spatially heterogeneous microhabitats for microorganisms. However, very limited information is available on microbial distributions and their response to fertilizations across aggregate-size fractions in agricultural soils. Here, we examined the structures of bacterial and fungal communities across different aggregate-size fractions (2000-250 μm, 250-53 μm and fractions (>53 μm), especially 250-53 μm aggregates, which contain more soil C and N, are associated with greater microbial biomass and higher fungi/bacteria ratio. We firstly reported the fungal community composition in different aggregate-size fractions by HTS technology and found more Ascomycota but less Zygomycota in larger fractions with higher C content across all fertilization regimes. Fertilization and aggregate-size fractions significantly affect the compositions of bacterial and fungal communities although their effects are different. The bacterial community is mainly driven by fertilization, especially chemical fertilizers, and is closely related to the shifts of soil P (phosphorus). The fungal community is preferentially impacted by different aggregate-size fractions and is more associated with the changes of soil C and N. The distinct responses of microbial communities suggest different mechanisms controlling the assembly of soil bacterial and fungal communities at aggregate scale. The investigations of both bacterial and fungal communities could provide a better understanding on nutrient cycling across aggregate-size fractions. Copyright © 2018. Published by Elsevier B.V.

  3. C and N content in density fractions of whole soil and soil size fraction under cacao agroforestry systems and natural forest in Bahia, Brazil.

    Science.gov (United States)

    Rita, Joice Cleide O; Gama-Rodrigues, Emanuela Forestieri; Gama-Rodrigues, Antonio Carlos; Polidoro, Jose Carlos; Machado, Regina Cele R; Baligar, Virupax C

    2011-07-01

    Agroforestry systems (AFSs) have an important role in capturing above and below ground soil carbon and play a dominant role in mitigation of atmospheric CO(2). Attempts has been made here to identify soil organic matter fractions in the cacao-AFSs that have different susceptibility to microbial decomposition and further represent the basis of understanding soil C dynamics. The objective of this study was to characterize the organic matter density fractions and soil size fractions in soils of two types of cacao agroforestry systems and to compare with an adjacent natural forest in Bahia, Brazil. The land-use systems studied were: (1) a 30-year-old stand of natural forest with cacao (cacao cabruca), (2) a 30-year-old stand of cacao with Erythrina glauca as shade trees (cacao + erythrina), and (3) an adjacent natural forest without cacao. Soil samples were collected from 0-10 cm depth layer in reddish-yellow Oxisols. Soil samples was separated by wet sieving into five fraction-size classes (>2000 μm, 1000-2000 μm, 250-1000 μm, 53-250 μm, and 2000 μm) mixed with macroaggregates (32-34%), and microaggregates (1-1.3%). Soil organic carbon (SOC) and total N content increased with increasing soil size fraction in all land-use systems. Organic C-to-total N ratio was higher in the macroaggregate than in the microaggregate. In general, in natural forest and cacao cabruca the contribution of C and N in the light and heavy fractions was similar. However, in cacao + erythrina the heavy fraction was the most common and contributed 67% of C and 63% of N. Finding of this study shows that the majority of C and N in all three systems studied are found in macroaggregates, particularly in the 250-1000 μm size aggregate class. The heavy fraction was the most common organic matter fraction in these soils. Thus, in mature cacao AFS on highly weathered soils the main mechanisms of C stabilization could be the physical protection within macroaggregate structures thereby

  4. C and N Content in Density Fractions of Whole Soil and Soil Size Fraction Under Cacao Agroforestry Systems and Natural Forest in Bahia, Brazil

    Science.gov (United States)

    Rita, Joice Cleide O.; Gama-Rodrigues, Emanuela Forestieri; Gama-Rodrigues, Antonio Carlos; Polidoro, Jose Carlos; Machado, Regina Cele R.; Baligar, Virupax C.

    2011-07-01

    Agroforestry systems (AFSs) have an important role in capturing above and below ground soil carbon and play a dominant role in mitigation of atmospheric CO2. Attempts has been made here to identify soil organic matter fractions in the cacao-AFSs that have different susceptibility to microbial decomposition and further represent the basis of understanding soil C dynamics. The objective of this study was to characterize the organic matter density fractions and soil size fractions in soils of two types of cacao agroforestry systems and to compare with an adjacent natural forest in Bahia, Brazil. The land-use systems studied were: (1) a 30-year-old stand of natural forest with cacao (cacao cabruca), (2) a 30-year-old stand of cacao with Erythrina glauca as shade trees (cacao + erythrina), and (3) an adjacent natural forest without cacao. Soil samples were collected from 0-10 cm depth layer in reddish-yellow Oxisols. Soil samples was separated by wet sieving into five fraction-size classes (>2000 μm, 1000-2000 μm, 250-1000 μm, 53-250 μm, and cacao AFS soils consisted mainly (65 %) of mega-aggregates (>2000 μm) mixed with macroaggregates (32-34%), and microaggregates (1-1.3%). Soil organic carbon (SOC) and total N content increased with increasing soil size fraction in all land-use systems. Organic C-to-total N ratio was higher in the macroaggregate than in the microaggregate. In general, in natural forest and cacao cabruca the contribution of C and N in the light and heavy fractions was similar. However, in cacao + erythrina the heavy fraction was the most common and contributed 67% of C and 63% of N. Finding of this study shows that the majority of C and N in all three systems studied are found in macroaggregates, particularly in the 250-1000 μm size aggregate class. The heavy fraction was the most common organic matter fraction in these soils. Thus, in mature cacao AFS on highly weathered soils the main mechanisms of C stabilization could be the physical

  5. High-order fractional partial differential equation transform for molecular surface construction.

    Science.gov (United States)

    Hu, Langhua; Chen, Duan; Wei, Guo-Wei

    2013-01-01

    Fractional derivative or fractional calculus plays a significant role in theoretical modeling of scientific and engineering problems. However, only relatively low order fractional derivatives are used at present. In general, it is not obvious what role a high fractional derivative can play and how to make use of arbitrarily high-order fractional derivatives. This work introduces arbitrarily high-order fractional partial differential equations (PDEs) to describe fractional hyperdiffusions. The fractional PDEs are constructed via fractional variational principle. A fast fractional Fourier transform (FFFT) is proposed to numerically integrate the high-order fractional PDEs so as to avoid stringent stability constraints in solving high-order evolution PDEs. The proposed high-order fractional PDEs are applied to the surface generation of proteins. We first validate the proposed method with a variety of test examples in two and three-dimensional settings. The impact of high-order fractional derivatives to surface analysis is examined. We also construct fractional PDE transform based on arbitrarily high-order fractional PDEs. We demonstrate that the use of arbitrarily high-order derivatives gives rise to time-frequency localization, the control of the spectral distribution, and the regulation of the spatial resolution in the fractional PDE transform. Consequently, the fractional PDE transform enables the mode decomposition of images, signals, and surfaces. The effect of the propagation time on the quality of resulting molecular surfaces is also studied. Computational efficiency of the present surface generation method is compared with the MSMS approach in Cartesian representation. We further validate the present method by examining some benchmark indicators of macromolecular surfaces, i.e., surface area, surface enclosed volume, surface electrostatic potential and solvation free energy. Extensive numerical experiments and comparison with an established surface model

  6. Using vibrational molecular spectroscopy to reveal association of steam-flaking induced carbohydrates molecular structural changes with grain fractionation, biodigestion and biodegradation

    Science.gov (United States)

    Xu, Ningning; Liu, Jianxin; Yu, Peiqiang

    2018-04-01

    Advanced vibrational molecular spectroscopy has been developed as a rapid and non-destructive tool to reveal intrinsic molecular structure conformation of biological tissues. However, this technique has not been used to systematically study flaking induced structure changes at a molecular level. The objective of this study was to use vibrational molecular spectroscopy to reveal association between steam flaking induced CHO molecular structural changes in relation to grain CHO fractionation, predicted CHO biodegradation and biodigestion in ruminant system. The Attenuate Total Reflectance Fourier-transform Vibrational Molecular Spectroscopy (ATR-Ft/VMS) at SRP Key Lab of Molecular Structure and Molecular Nutrition, Ministry of Agriculture Strategic Research Chair Program (SRP, University of Saskatchewan) was applied in this study. The fractionation, predicted biodegradation and biodigestion were evaluated using the Cornell Net Carbohydrate Protein System. The results show that: (1) The steam flaking induced significant changes in CHO subfractions, CHO biodegradation and biodigestion in ruminant system. There were significant differences between non-processed (raw) and steam flaked grain corn (P R2 = 0.87, RSD = 0.74, P R2 = 0.87, RSD = 0.24, P < .01). In summary, the processing induced molecular CHO structure changes in grain corn could be revealed by the ATR-Ft/VMS vibrational molecular spectroscopy. These molecular structure changes in grain were potentially associated with CHO biodegradation and biodigestion.

  7. Relationship between processing score and kernel-fraction particle size in whole-plant corn silage.

    Science.gov (United States)

    Dias Junior, G S; Ferraretto, L F; Salvati, G G S; de Resende, L C; Hoffman, P C; Pereira, M N; Shaver, R D

    2016-04-01

    Kernel processing increases starch digestibility in whole-plant corn silage (WPCS). Corn silage processing score (CSPS), the percentage of starch passing through a 4.75-mm sieve, is widely used to assess degree of kernel breakage in WPCS. However, the geometric mean particle size (GMPS) of the kernel-fraction that passes through the 4.75-mm sieve has not been well described. Therefore, the objectives of this study were (1) to evaluate particle size distribution and digestibility of kernels cut in varied particle sizes; (2) to propose a method to measure GMPS in WPCS kernels; and (3) to evaluate the relationship between CSPS and GMPS of the kernel fraction in WPCS. Composite samples of unfermented, dried kernels from 110 corn hybrids commonly used for silage production were kept whole (WH) or manually cut in 2, 4, 8, 16, 32 or 64 pieces (2P, 4P, 8P, 16P, 32P, and 64P, respectively). Dry sieving to determine GMPS, surface area, and particle size distribution using 9 sieves with nominal square apertures of 9.50, 6.70, 4.75, 3.35, 2.36, 1.70, 1.18, and 0.59 mm and pan, as well as ruminal in situ dry matter (DM) digestibilities were performed for each kernel particle number treatment. Incubation times were 0, 3, 6, 12, and 24 h. The ruminal in situ DM disappearance of unfermented kernels increased with the reduction in particle size of corn kernels. Kernels kept whole had the lowest ruminal DM disappearance for all time points with maximum DM disappearance of 6.9% at 24 h and the greatest disappearance was observed for 64P, followed by 32P and 16P. Samples of WPCS (n=80) from 3 studies representing varied theoretical length of cut settings and processor types and settings were also evaluated. Each WPCS sample was divided in 2 and then dried at 60 °C for 48 h. The CSPS was determined in duplicate on 1 of the split samples, whereas on the other split sample the kernel and stover fractions were separated using a hydrodynamic separation procedure. After separation, the

  8. Compact and tunable size-based dielectrophoretic flow fractionation

    International Nuclear Information System (INIS)

    Chuang, Han-Sheng; Chung, Tien-Yu; Li, Yun

    2014-01-01

    A compact and tunable size-based flow fractionation microchip using negative dielectrophoresis (DEP) is presented in this paper. In the microchip, a sample containing a mixture of particles is hydrodynamically focused in a contraction section and then sorted by size after flowing over planar interdigitated electrodes. The electrodes and flow chamber were aligned at an angle of 45° to produce effective sorting. 1, 2.5 and 4.8 µm polystyrene (PS) particles were successfully separated into three distinct streams in a short distance (1 mm) and collected in different outlet channels. The sorting was subjected to flow rates and electric potential. The experimental sorting efficiencies of 1, 2.5 and 4.8 µm particles reached 97.2%, 79.6% and 99.8%, respectively. With the same device, lipid vesicle sorting was demonstrated. 86.9% of vesicles larger than 10 µm were effectively extracted from the sample stream. Likewise, sorting of other biological particles can be achieved in the same fashion. (paper)

  9. Radiation degradation of molasses pigment. 2. Molecular weight fraction

    International Nuclear Information System (INIS)

    Sawai, Teruko; Sekiguchi, Masayuki; Tanabe, Hiroko

    1996-01-01

    Water demand in Tokyo has increased rapidly. Because of the scarcity of water sources within the city, Tokyo is dependent on water from other prefectures. Recycling of municipal effluent is an effective means of coping with water shortage in Tokyo. We have studied the radiation treatment of waste water for recycling. The degradation of molasses pigments in waste water from yeast factory by radiation was investigated. The dialyzed molasses pigments and non-dialyzed samples in waste waters were compared in chromaticity, UV absorption, color different and COD. The dialysis and fractionation by permeable membrane were carried out with Seamless Cellulose tubing (Union Carbide Corporation) and spectra/Por membrane (Spectrum Medical Industries INC.) The TOC values decreased and the dark brown color faded with increasing dose. The high molecular weight components of molasses pigment were degraded to lower molecular weight substances and decomposed to carbon dioxide. The relationships between the value of chromaticity/TOC and molecular weight of molasses pigments were obtained by radiation. (author)

  10. Tunable solvation effects on the size-selective fractionation of metal nanoparticles in CO2 gas-expanded solvents.

    Science.gov (United States)

    Anand, Madhu; McLeod, M Chandler; Bell, Philip W; Roberts, Christopher B

    2005-12-08

    This paper presents an environmentally friendly, inexpensive, rapid, and efficient process for size-selective fractionation of polydisperse metal nanoparticle dispersions into multiple narrow size populations. The dispersibility of ligand-stabilized silver and gold nanoparticles is controlled by altering the ligand tails-solvent interaction (solvation) by the addition of carbon dioxide (CO2) gas as an antisolvent, thereby tailoring the bulk solvent strength. This is accomplished by adjusting the CO2 pressure over the liquid, resulting in a simple means to tune the nanoparticle precipitation by size. This study also details the influence of various factors on the size-separation process, such as the types of metal, ligand, and solvent, as well as the use of recursive fractionation and the time allowed for settling during each fractionation step. The pressure range required for the precipitation process is the same for both the silver and gold particles capped with dodecanethiol ligands. A change in ligand or solvent length has an effect on the interaction between the solvent and the ligand tails and therefore the pressure range required for precipitation. Stronger interactions between solvent and ligand tails require greater CO2 pressure to precipitate the particles. Temperature is another variable that impacts the dispersibility of the nanoparticles through changes in the density and the mole fraction of CO2 in the gas-expanded liquids. Recursive fractionation for a given system within a particular pressure range (solvent strength) further reduces the polydispersity of the fraction obtained within that pressure range. Specifically, this work utilizes the highly tunable solvent properties of organic/CO2 solvent mixtures to selectively size-separate dispersions of polydisperse nanoparticles (2 to 12 nm) into more monodisperse fractions (+/-2 nm). In addition to providing efficient separation of the particles, this process also allows all of the solvent and

  11. Determination of the Molecular Weight of Low-Molecular-Weight Heparins by Using High-Pressure Size Exclusion Chromatography on Line with a Triple Detector Array and Conventional Methods

    Directory of Open Access Journals (Sweden)

    Antonella Bisio

    2015-03-01

    Full Text Available The evaluation of weight average molecular weight (Mw and molecular weight distribution represents one of the most controversial aspects concerning the characterization of low molecular weight heparins (LMWHs. As the most commonly used method for the measurement of such parameters is high performance size exclusion chromatography (HP-SEC, the soundness of results mainly depends on the appropriate calibration of the chromatographic columns used. With the aim of meeting the requirement of proper Mw standards for LMWHs, in the present work the determination of molecular weight parameters (Mw and Mn by HP-SEC combined with a triple detector array (TDA was performed. The HP-SEC/TDA technique permits the evaluation of polymeric samples by exploiting the combined and simultaneous action of three on-line detectors: light scattering detectors (LALLS/RALLS; refractometer and viscometer. Three commercial LMWH samples, enoxaparin, tinzaparin and dalteparin, a γ-ray depolymerized heparin (γ-Hep and its chromatographic fractions, and a synthetic pentasaccharide were analysed by HP-SEC/TDA. The same samples were analysed also with a conventional HP-SEC method employing refractive index (RI and UV detectors and two different chromatographic column set, silica gel and polymeric gel columns. In both chromatographic systems, two different calibration curves were built up by using (i γ-Hep chromatographic fractions and the corresponding Mw parameters obtained via HP-SEC/TDA; (ii the whole γ-Hep preparation with broad Mw dispersion and the corresponding cumulative distribution function calculated via HP-SEC/TDA. In addition, also a chromatographic column calibration according to European Pharmacopoeia indication was built up. By comparing all the obtained results, some important differences among Mw and size distribution values of the three LMWHs were found with the five different calibration methods and with HP-SEC/TDA method. In particular, the detection of

  12. Molecular dynamics study on microstructure of near grain boundary distortion region in small grain size nano- NiAl alloy

    International Nuclear Information System (INIS)

    Wang, J.Y.; Wang, X.W.; Rifkin, J.; Li, D.X.

    2001-12-01

    Using the molecular dynamics simulation method, the microstructure of distortion region near curved amorphous-like grain boundary in nano-NiAl alloy is studied. The results showed that due to the internal elastic force of high energy grain boundary, distortion layer exists between grain and grain boundary. The lattice expansion and structure factor decreasing are observed in this region. Stacking fault in sample with grain size 3.8nm is clearly observed across the distortion region at the site very close to grain. The influences of different grain sizes on average distortion degree and volume fractions of distortion region, grain and grain boundary are also discussed. (author)

  13. The molecular mechanism of Mo isotope fractionation during adsorption to birnessite

    Science.gov (United States)

    Wasylenki, L.E.; Weeks, C.L.; Bargar, J.R.; Spiro, T.G.; Hein, J.R.; Anbar, A.D.

    2011-01-01

    Fractionation of Mo isotopes during adsorption to manganese oxides is a primary control on the global ocean Mo isotope budget. Previous attempts to explain what drives the surprisingly large isotope effect ??97/95Modissolved-??97/95Moadsorbed=1.8??? have not successfully resolved the fractionation mechanism. New evidence from extended X-ray absorption fine structure analysis and density functional theory suggests that Mo forms a polymolybdate complex on the surfaces of experimental and natural samples. Mo in this polynuclear structure is in distorted octahedral coordination, while Mo remaining in solution is predominantly in tetrahedral coordination as MoO42- Our results indicate that the difference in coordination environment between dissolved Mo and adsorbed Mo is the cause of isotope fractionation. The molecular mechanism of metal isotope fractionation in this system should enable us to explain and possibly predict metal isotope effects in other systems where transition metals adsorb to mineral surfaces. ?? 2011 Elsevier Ltd.

  14. ULTRAVIOLET ESCAPE FRACTIONS FROM GIANT MOLECULAR CLOUDS DURING EARLY CLUSTER FORMATION

    Energy Technology Data Exchange (ETDEWEB)

    Howard, Corey; Pudritz, Ralph [Department of Physics and Astronomy, McMaster University, 1280 Main St. W, Hamilton, ON L8S 4M1 (Canada); Klessen, Ralf [Zentrum für Astronomie der Universität Heidelberg, Institut für Theoretische Astrophysik Albert-Ueberle-Str. 2, D-69120 Heidelberg (Germany)

    2017-01-01

    The UV photon escape fraction from molecular clouds is a key parameter for understanding the ionization of the interstellar medium and extragalactic processes such as cosmic reionization. We present the ionizing photon flux and the corresponding photon escape fraction ( f {sub esc}) arising as a consequence of star cluster formation in a turbulent, 10{sup 6} M {sub ⊙} giant molecular cloud, simulated using the code FLASH. We make use of sink particles to represent young, star-forming clusters coupled with a radiative transfer scheme to calculate the emergent UV flux. We find that the ionizing photon flux across the cloud boundary is highly variable in time and space due to the turbulent nature of the intervening gas. The escaping photon fraction remains at ∼5% for the first 2.5 Myr, followed by two pronounced peaks at 3.25 and 3.8 Myr with a maximum f {sub esc} of 30% and 37%, respectively. These peaks are due to the formation of large H ii regions that expand into regions of lower density, some of which reaching the cloud surface. However, these phases are short-lived, and f {sub esc} drops sharply as the H ii regions are quenched by the central cluster passing through high-density material due to the turbulent nature of the cloud. We find an average f {sub esc} of 15% with factor of two variations over 1 Myr timescales. Our results suggest that assuming a single value for f {sub esc} from a molecular cloud is in general a poor approximation, and that the dynamical evolution of the system leads to large temporal variation.

  15. Bacterial Preferences for Specific Soil Particle Size Fractions Revealed by Community Analyses

    DEFF Research Database (Denmark)

    Hemkemeyer, Michael; Dohrmann, Anja B.; Christensen, Bent Tolstrup

    2018-01-01

    , while Gemmatimonadales preferred coarse silt, Actinobacteria and Nitrosospira fine silt, and Planctomycetales clay. Firmicutes were depleted in the sand-sized fraction. In contrast, archaea, which represented 0.8% of all 16S rRNA gene sequences, showed only little preference for specific PSFs. We...

  16. Influence of the apparent molecular size of humic substances on the efficiency of coagulation using Fenton's reagent

    Directory of Open Access Journals (Sweden)

    MARCELO DE JULIO

    2013-06-01

    Full Text Available This work used Fenton's reagent as a coagulating agent in the treatment of water samples with high true colour caused by humic substances (HS extracted from peat. In addition, the effects of the apparent molecular size of HS on coagulation, flocculation and flotation were studied. To that end, four distinct water samples having the same true colour were prepared using HS with different molecular sizes, which were obtained by ultrafiltration fractioning. Through optimisation of coagulant dosage and coagulation pH, as well as posterior construction of coagulation diagrams for each water sample, it was verified that the sample prepared with the smallest apparent molecular size of HS was the most difficult to treat, requiring higher coagulant (Fenton's reagent dosages than samples prepared with larger HS molecular sizes. Furthermore, filtration experiments after dissolved air flotation (DAF were carried out in an attempt to simulate conventional treatment. The most representative results in filtered water were: apparent colour ≤ 3 HU; turbidity Este trabalho empregou o reagente de Fenton como agente coagulante no tratamento de águas contendo cor elevada causada pela introdução de substâncias húmicas extraídas de turfa. Além disto, foi estudado o efeito do tamanho molecular aparente das substâncias húmicas na eficiência da coagulação, floculação e flotação de águas; para isto foram preparadas quatro águas distintas apresentado a mesma cor verdadeira, mas com substâncias húmicas de diferentes tamanhos moleculares, obtidas por fracionamento por ultrafiltração. Por meio da otimização da dosagem de coagulante e respectivo pH de coagulação e posterior construção dos diagramas de coagulação para cada água de estudo, verificou-se que a água preparada com as substâncias húmicas de menor tamanho molecular aparente apresentou maior grau de dificuldade para tratamento, requerendo dosagens de coagulante (reagente de Fenton bem

  17. Antioxidant activities of bambara groundnut (Vigna subterranea) protein hydrolysates and their membrane ultrafiltration fractions.

    Science.gov (United States)

    Arise, Abimbola K; Alashi, Adeola M; Nwachukwu, Ifeanyi D; Ijabadeniyi, Oluwatosin A; Aluko, Rotimi E; Amonsou, Eric O

    2016-05-18

    In this study, the bambara protein isolate (BPI) was digested with three proteases (alcalase, trypsin and pepsin), to produce bambara protein hydrolysates (BPHs). These hydrolysates were passed through ultrafiltration membranes to obtain peptide fractions of different sizes (fractions were investigated for antioxidant activities. The membrane fractions showed that peptides with sizes 3 kDa. This is in agreement with the result obtained for the ferric reducing power, metal chelating and hydroxyl radical scavenging activities where higher molecular weight peptides exhibited better activity (p fractions. However, for all the hydrolysates, the low molecular weight peptides were more effective diphenyl-1-picrylhydrazyl (DPPH) radical scavengers but not superoxide radicals when compared to the bigger peptides. In comparison with glutathione (GSH), BPHs and their membrane fractions had better (p fractions that did not show any metal chelating activity. However, the 5-10 kDa pepsin hydrolysate peptide fractions had greater (88%) hydroxyl scavenging activity than GSH, alcalase and trypsin hydrolysates (82%). These findings show the potential use of BPHs and their peptide fraction as antioxidants in reducing food spoilage or management of oxidative stress-related metabolic disorders.

  18. Particle size fractionation of paralytic shellfish toxins (PSTs): seasonal distribution and bacterial production in the St Lawrence estuary, Canada.

    Science.gov (United States)

    Michaud, S; Levasseur, M; Doucette, G; Cantin, G

    2002-10-01

    We determined the seasonal distribution of paralytic shellfish toxins (PSTs) and PST producing bacteria in > 15, 5-15, and 0.22-5 microm size fractions in the St Lawrence. We also measured PSTs in a local population of Mytilus edulis. PST concentrations were determined in each size fraction and in laboratory incubations of sub-samples by high performance liquid chromatography (HPLC), including the rigorous elimination of suspected toxin 'imposter' peaks. Mussel toxin levels were determined by mouse bioassay and HPLC. PSTs were detected in all size fractions during the summer sampling season, with 47% of the water column toxin levels associated with particles smaller than Alexandrium tamarense ( 15 microm size fraction, we estimated that as much as 92% of PSTs could be associated with particles other than A. tamarense. Our results stress the importance of taking into account the potential presence of PSTs in size fractions other than that containing the known algal producer when attempting to model shellfish intoxication, especially during years of low cell abundance. Finally, our HPLC results confirmed the presence of bacteria capable of autonomous PST production in the St Lawrence as well as demonstrating their regular presence and apparent diversity in the plankton. Copyright 2002 Elsevier Science Ltd.

  19. The optimal fraction size in high-dose-rate brachytherapy: dependency on tissue repair kinetics and low-dose rate

    International Nuclear Information System (INIS)

    Sminia, Peter; Schneider, Christoph J.; Fowler, Jack F.

    2002-01-01

    Background and Purpose: Indications of the existence of long repair half-times on the order of 2-4 h for late-responding human normal tissues have been obtained from continuous hyperfractionated accelerated radiotherapy (CHART). Recently, these data were used to explain, on the basis of the biologically effective dose (BED), the potential superiority of fractionated high-dose rate (HDR) with large fraction sizes of 5-7 Gy over continuous low-dose rate (LDR) irradiation at 0.5 Gy/h in cervical carcinoma. We investigated the optimal fraction size in HDR brachytherapy and its dependency on treatment choices (overall treatment time, number of HDR fractions, and time interval between fractions) and treatment conditions (reference low-dose rate, tissue repair characteristics). Methods and Materials: Radiobiologic model calculations were performed using the linear-quadratic model for incomplete mono-exponential repair. An irradiation dose of 20 Gy was assumed to be applied either with HDR in 2-12 fractions or continuously with LDR for a range of dose rates. HDR and LDR treatment regimens were compared on the basis of the BED and BED ratio of normal tissue and tumor, assuming repair half-times between 1 h and 4 h. Results: With the assumption that the repair half-time of normal tissue was three times longer than that of the tumor, hypofractionation in HDR relative to LDR could result in relative normal tissue sparing if the optimum fraction size is selected. By dose reduction while keeping the tumor BED constant, absolute normal tissue sparing might therefore be achieved. This optimum HDR fraction size was found to be largely dependent on the LDR dose rate. On the basis of the BED NT/TUM ratio of HDR over LDR, 3 x 6.7 Gy would be the optimal HDR fractionation scheme for replacement of an LDR scheme of 20 Gy in 10-30 h (dose rate 2-0.67 Gy/h), while at a lower dose rate of 0.5 Gy/h, four fractions of 5 Gy would be preferential, still assuming large differences between tumor

  20. Carbon storage of different soil-size fractions in Florida silvopastoral systems.

    Science.gov (United States)

    Haile, Solomon G; Nair, P K Ramachandran; Nair, Vimala D

    2008-01-01

    Compared with open (treeless) pasture systems, silvopastoral agroforestry systems that integrate trees into pasture production systems are likely to enhance soil carbon (C) sequestration in deeper soil layers. To test this hypothesis, total soil C contents at six soil depths (0-5, 5-15, 15-30, 30-50, 50-75, and 75-125 cm) were determined in silvopastoral systems with slash pine (Pinus elliottii) + bahiagrass (Paspalum notatum) and an adjacent open pasture (OP) with bahiagrass at four sites, representing Spodosols and Ultisols, in Florida. Soil samples from each layer were fractionated into three classes (250-2000, 53-250, and <53 microm), and the C contents in each were determined. Averaged across four sites and all depths, the total soil organic carbon (SOC) content was higher by 33% in silvopastures near trees (SP-T) and by 28% in the alleys between tree rows (SP-A) than in adjacent open pastures. It was higher by 39% in SP-A and 20% in SP-T than in open pastures in the largest fraction size (250-2000 microm) and by 12.3 and 18.8%, respectively, in the intermediate size fraction (53-250 microm). The highest SOC increase (up to 45 kg m(-2)) in whole soil of silvopasture compared with OP was at the 75- to 125-cm depth at the Spodosol sites. The results support the hypothesis that, compared with open pastures, silvopastures contain more C in deeper soil layers under similar ecological settings, possibly as a consequence of a major input to soil organic matter from decomposition of dead tree-roots.

  1. Comparative characterization of humic substances extracted from freshwater and peat of different apparent molecular sizes

    Directory of Open Access Journals (Sweden)

    Eliane Sloboda Rigobello

    2017-09-01

    Full Text Available This paper compares the structural characteristics of aquatic humic substances (AHS with humic substances from peat (HSP through different analytical techniques, including elemental analysis, solid state 13C cross polarization/magic-angle-spinning nuclear magnetic resonance spectroscopy (13C CP-MAS NMR, ultraviolet/visible (UV/Vis spectroscopy and Fourier transform infrared (FTIR spectroscopy and total organic carbon (TOC. The AHS were extracted from water collected in a tributary of the Itapanhaú River (Bertioga/SP using XAD 8 resin, and the HSP were extracted from peat collected in the Mogi Guaçu River bank (Luis Antonio/SP with a KOH solution. After dialysis, both AHS and HSP extracts were filtered in membrane of 0.45 µm pore size (Fraction F1: < 0.45 µm and fractioned by ultrafiltration in different apparent molecular sizes (AMS (F2: 100 kDa-0.45 μm; F3: 30 kDa-100 kDa and F4: < 30 kDa. The extracts with the lowest AMS (F3 and F4 showed a higher number of aliphatic carbons than aromatic carbons, a higher concentration of groups containing oxygen and a higher percentage of fulvic acids (FA than humic acids (HA for both AHS and HSP. However, the AHS presented higher FA than HA content in relation to the HSP and distinct structural properties.

  2. Distribution, diversity and abundance of bacterial laccase-like genes in different particle size fractions of sediments in a subtropical mangrove ecosystem.

    Science.gov (United States)

    Luo, Ling; Zhou, Zhi-Chao; Gu, Ji-Dong

    2015-10-01

    This study investigated the diversity and abundance of bacterial lacasse-like genes in different particle size fractions, namely sand, silt, and clay of sediments in a subtropical mangrove ecosystem. Moreover, the effects of nutrient conditions on bacterial laccase-like communities as well as the correlation between nutrients and, both the abundance and diversity indices of laccase-like bacteria in particle size fractions were also studied. Compared to bulk sediments, Bacteroidetes, Caldithrix, Cyanobacteria and Chloroflexi were dominated in all 3 particle-size fractions of intertidal sediment (IZ), but Actinobacteria and Firmicutes were lost after the fractionation procedures used. The diversity index of IZ fractions decreased in the order of bulk > clay > silt > sand. In fractions of mangrove forest sediment (MG), Verrucomicrobia was found in silt, and both Actinobacteria and Bacteroidetes appeared in clay, but no new species were found in sand. The declining order of diversity index in MG fractions was clay > silt > sand > bulk. Furthermore, the abundance of lacasse-like bacteria varied with different particle-size fractions significantly (p clay > silt in both IZ and MG fractions. Additionally, nutrient availability was found to significantly affect the diversity and community structure of laccase-like bacteria (p fractions (p < 0.05). Therefore, this study further provides evidence that bacterial laccase plays a vital role in turnover of sediment organic matter and cycling of nutrients.

  3. ANALYSIS OF RESPIRATORY DESPOSITION DOSE OF INHALED AMBIENT AEROSOLS FOR DIFFERENT SIZE FRACTIONS

    Science.gov (United States)

    ANALYSIS OF RESPIRATORY DEPOSITION DOSE OF INHALED AMBIENT AEROSOLS FOR DIFFERENT SIZE FRACTIONS. Chong S. Kim, SC. Hu**, PA Jaques*, US EPA, National Health and Environmental Effects Research Laboratory, Research Triangle Park, NC 27711; **IIT Research Institute, Chicago, IL; *S...

  4. Carbon Storage in Soil Size Fractions Under Two Cacao Agroforestry Systems in Bahia, Brazil

    Science.gov (United States)

    Gama-Rodrigues, Emanuela F.; Ramachandran Nair, P. K.; Nair, Vimala D.; Gama-Rodrigues, Antonio C.; Baligar, Virupax C.; Machado, Regina C. R.

    2010-02-01

    Shaded perennial agroforestry systems contain relatively high quantities of soil carbon (C) resulting from continuous deposition of plant residues; however, the extent to which the C is sequestered in soil will depend on the extent of physical protection of soil organic C (SOC). The main objective of this study was to characterize SOC storage in relation to soil fraction-size classes in cacao ( Theobroma cacao L.) agroforestry systems (AFSs). Two shaded cacao systems and an adjacent natural forest in reddish-yellow Oxisols in Bahia, Brazil were selected. Soil samples were collected from four depth classes to 1 m depth and separated by wet-sieving into three fraction-size classes (>250 μm, 250-53 μm, and cacao AFSs, the C contained in the macroaggregate fraction might become stabilized in the soil. The study shows the role of cacao AFSs in mitigating greenhouse gas (GHG) emission through accumulation and retention of high amounts of organic C in the soils and suggests the potential benefit of this environmental service to the nearly 6 million cacao farmers worldwide.

  5. The role of soil's particle-size fractions in the adsorption of heavy metals

    Directory of Open Access Journals (Sweden)

    Saglara Mandzhieva

    2014-08-01

    Full Text Available The parameters of adsorption of Cu2+, Pb2+, and Zn2+ cations by southern chernozem and their particle-size fractions were studied. The adsorption of metals by soils and the strength of their fixation on the surface of soil particles under both mono- and poly-element contamination decreased with the decreasing proportion of fine fractions in the soil. The aim of this work was to study the effect of the particle-size distribution and the silt and physical clay fractions on the adsorption of copper, lead, and zinc by chernozems. The objects of study included the upper humus horizons of different southern chernozems of the Rostov oblast. To study the ion-exchange adsorption of the Cu2+, Pb2+, and Zn2+ cations, the soil in the natural ionic form was disaggregated using a pestle with a rubber head and sieved through a 1mm sieve. The soil samples were treated with solutions of Cu2+, Pb2+, and Zn2+ nitrates and acetates at the separate and simultaneous presence of heavy metals (HMs. In the solutions with the simultaneous presence of HMs, their molar concentrations were similar. The concentrations of the initial solutions varied in the range from 0.05 to 1 mM/l. The soil: solution ratio was 1:10. The contents of HMs in the filtrates were determined by atomic absorption spectrophotometry. The contents of adsorbed HM cations were calculated from the difference between the metal concentrations in the initial and equilibrium solutions. The increase in the degree of dispersion of the particle-size fractions in similar soils resulted not only in an increase in the content of adsorbed HMs but also in an enhancement of their fixation on the surface of the fine particles. Therefore, the adsorption capacity of the Lower Don soils for Cu2+, Pb2+, and Zn2+ decreased in the following sequence: clay loamy southern chernozem > loamy southern chernozem > loamy sandy southern chernozem. This was related to the qualitative differences in the mineralogy and chemistry of

  6. Fractal aspects of the flow and shear behaviour of free-flowable particle size fractions of pharmaceutical directly compressible excipient sorbitol.

    Science.gov (United States)

    Hurychová, Hana; Lebedová, Václava; Šklubalová, Zdenka; Dzámová, Pavlína; Svěrák, Tomáš; Stoniš, Jan

    Flowability of powder excipients is directly influenced by their size and shape although the granulometric influence of the flow and shear behaviour of particulate matter is not studied frequently. In this work, the influence of particle size on the mass flow rate through the orifice of a conical hopper, and the cohesion and flow function was studied for four free-flowable size fractions of sorbitol for direct compression in the range of 0.080-0.400 mm. The particles were granulometricaly characterized using an optical microscopy; a boundary fractal dimension of 1.066 was estimated for regular sorbitol particles. In the particle size range studied, a non-linear relationship between the mean particle size and the mass flow rate Q10 (g/s) was detected having amaximum at the 0.245mm fraction. The best flow properties of this fraction were verified with aJenike shear tester due to the highest value of flow function and the lowest value of the cohesion. The results of this work show the importance of the right choice of the excipient particle size to achieve the best flow behaviour of particulate material.Key words: flowability size fraction sorbitol for direct compaction Jenike shear tester fractal dimension.

  7. Relation between PAH and black carbon contents in size fractions of Norwegian harbor sediments

    International Nuclear Information System (INIS)

    Oen, Amy M.P.; Cornelissen, Gerard; Breedveld, Gijs D.

    2006-01-01

    Distributions of total organic carbon (TOC), black carbon (BC), and polycyclic aromatic hydrocarbons (PAH) were investigated in different particle size fractions for four Norwegian harbor sediments. The total PAH (16-EPA) concentrations ranged from 2 to 113 mg/kg dry weight with the greatest fraction of PAH mass in the sand fraction for three of the four sediments. TOC contents ranged from 0.84% to 14.2% and BC contents from 0.085% to 1.7%. This corresponds to organic carbon (OC = TOC - BC) contents in the range of 0.81-14% and BC:TOC ratios of 1.3-18.1%. PAH isomer ratios suggested that the PAH in all four sediments were of pyrogenic origin. Furthermore, stronger correlations between PAH versus BC (r 2 = 0.85) than versus OC (r 2 = 0.15) were found. For all size fractions and bulk sediments, the PAH-to-BC ratios for the total PAHs were on average 6 ± 3 mg PAH/g BC. These results suggest that PAH distributions were dominated by the presence of BC, rather than OC. As sorption to BC is much stronger than sorption to OC, this may result in significantly lower dissolved concentrations of PAH than expected on the basis of organic carbon partitioning alone. - PAH contents correlated better with black carbon than organic carbon for four Norwegian harbor sediments

  8. Comparison of layer grain size analysis with pipette and sieve analysis: a solution for the underestimation of the clay fraction

    NARCIS (Netherlands)

    Konert, M.; Vandenberghe, J.F.

    1997-01-01

    Classically, the grain size of soil and sediment samples is determined by the sieve method for the coarse fractions and by the pipette method, based on the 'Stokes' sedimentation rates, for the fine fractions. Results from the two methods are compared with results from laser diffraction size

  9. Effect of Al mole fraction on structural and electrical properties of AlxGa1-xN/GaN heterostructures grown by plasma-assisted molecular beam epitaxy

    International Nuclear Information System (INIS)

    Hussein, A. SH.; Hassan, Z.; Thahab, S.M.; Ng, S.S.; Hassan, H. Abu; Chin, C.W.

    2011-01-01

    The effect of Al mole fractions on the structural and electrical properties of Al x Ga 1-x N/GaN thin films grown by plasma-assisted molecular beam epitaxy (PA-MBE) on Si (1 1 1) substrates has been investigated by X-ray diffraction (XRD), scanning electron microscopy (SEM), atomic force microscopy (AFM), and current-voltage (I-V) measurements. X-ray results revealed that the AlGaN/GaN/AlN was epitaxially grown on Si substrate. By applying Vegard's law, the Al mole fractions of Al x Ga 1-x N samples were found to be 0.11, 0.24, 0.30 and 0.43, respectively. The structural and morphology results indicated that there is a relatively larger tensile strain for the sample with the smallest Al mole fraction; while a smaller compressive strain and larger grain size appear with Al mole fraction equal to 0.30. The strain gets relaxed with the highest Al mole fraction sample. Finally, the linear relationship between the barrier height and Al mole fraction was obtained.

  10. Efficacy of soluble glycoprotein fraction from Allium sativum purified by size exclusion chromatography on murine Schistosomiasis mansoni.

    Science.gov (United States)

    Aly, Ibrahim; Taher, Eman E; El-Sayed, Hoda; Mohammed, Faten A; ELnain, Gehan; Hamad, Rabab S; Bayoumy, Elsayed M

    2017-06-01

    In this work, the efficiency of crude MeOH extracts and soluble glycoprotein fraction of Allium sativum purified by size-exclusion chromatography (SEC) on parasitological, histopathological and some biochemical parameters in Schistosoma mansoni infected mice were investigated. Animals were infected by tail immersion with 100 cercariae/each mouse and divided into five groups in addition to the normal control. The results revealed a significant decrease in mean worm burden in all treated mice especially in the group treated with soluble glycoprotein fraction of A. sativum as compared to infected non-treated control with the disappearance of female worms. Administration of the studied extracts revealed remarkable amelioration in the levels of all the measured parameters in S. mansoni infected mice. In addition, treatment of mice with crude A. sativum MeOH extract and soluble glycoprotein fraction of A. sativum decreased significantly the activities of studied enzymes as compared to the infected untreated group. The highest degrees of enhancement in pathological changes was observed in the treated one with soluble glycoprotein fraction of A. sativum compared to the infected group represented by small sized, late fibro-cellular granuloma, the decrease in cellular constituents and degenerative changes in eggs. In conclusion, A. sativum treatment had effective schistosomicidal activities, through reduction of worm burden and tissue eggs, especially when it was given in purified glycoprotein fraction. Moreover, the soluble glycoprotein fraction of A. sativum largely modulates both the size and the number of granulomas. Copyright © 2017 Elsevier Ltd. All rights reserved.

  11. Direct quantitative comparison of molecular responses in photodamaged human skin to fractionated and fully ablative carbon dioxide laser resurfacing.

    Science.gov (United States)

    Orringer, Jeffrey S; Sachs, Dana L; Shao, Yuan; Hammerberg, Craig; Cui, Yilei; Voorhees, John J; Fisher, Gary J

    2012-10-01

    Fractionated ablative laser resurfacing has become a widely used treatment modality. Its clinical results are often found to approach those of traditional fully ablative laser resurfacing. To directly compare the molecular changes that result from fractionated and fully ablative carbon dioxide (CO(2)) laser resurfacing in photodamaged human skin. Photodamaged skin of 34 adult volunteers was focally treated at distinct sites with a fully ablative CO(2) laser and a fractionated CO(2) laser. Serial skin samples were obtained at baseline and several time points after treatment. Real-time reverse transcriptase polymerase chain reaction technology and immunohistochemistry were used to quantify molecular responses to each type of laser treatment. Fully ablative and fractionated CO(2) laser resurfacing induced significant dermal remodeling and collagen induction. After a single treatment, fractionated ablative laser resurfacing resulted in collagen induction that was approximately 40% to 50% as pronounced as that induced by fully ablative laser resurfacing. The fundamental cutaneous responses that result from fully ablative and fractionated carbon dioxide laser resurfacing are similar but differ in magnitude and duration, with the fully ablative procedure inducing relatively greater changes including more pronounced collagen induction. However, the molecular data reported here provide substantial support for fractionated ablative resurfacing as an effective treatment modality for improving skin texture. © 2012 by the American Society for Dermatologic Surgery, Inc. Published by Wiley Periodicals, Inc.

  12. Improvement of Gold Leaching from a Refractory Gold Concentrate Calcine by Separate Pretreatment of Coarse and Fine Size Fractions

    Directory of Open Access Journals (Sweden)

    Qian Li

    2017-05-01

    Full Text Available A total gold extraction of 70.2% could only be reached via direct cyanidation from a refractory As-, S- and C-bearing gold concentrate calcine, and the gold extraction varied noticeably with different size fractions. The reasons for unsatisfactory gold extraction from the calcine were studied through analyses of chemical composition, chemical phase and SEM-EDS of different sizes of particles. It was found that a significant segregation of compositions occurred during the grinding of gold ore before flotation. As a result, for the calcine obtained after oxidative roasting, the encapsulation of gold by iron oxides was easily engendered in finer particles, whilst in coarser particles the gold encapsulation by silicates was inclined to occur likely due to melted silicates blocking the porosity of particles. The improvement of gold leaching from different size fractions was further investigated through pretreatments with alkali washing, acid pickling or sulfuric acid curing-water leaching. Finally, a novel process was recommended and the total gold extraction from the calcine could be increased substantially to 93.6% by the purposeful pretreatment with alkali washing for the relatively coarse size fraction (+37 μm and sulfuric acid curing–water leaching for the fine size fraction (−37 μm.

  13. Speciation of organic matter in sandy soil size fractions as revealed by analytical pyrolysis (Py-GC/MS) and FT-IR spectroscopy

    Science.gov (United States)

    Jiménez-Morillo, Nicasio T.; González-Vila, Francisco J.; Jordán, Antonio; Zavala, Lorena M.; de la Rosa, José M.; González-Pérez, José A.

    2015-04-01

    This research deals with the assessment of organic matter structural differences in soil physical fractions before and after lipid extractions. Soil samples were collected in sandy soils, Arenosols (WRB 2006) from the Doñana National Park (SW Spain) under different vegetation cover: cork oak (Quercus suber, QS), eagle fern (Pteridium aquilinum, PA), pine (Pinus pinea, PP) and rockrose (Halimium halimifolium, HH). Two size fractions; coarse (C: 1-2 mm) and fine (F: 0.05-0.25 mm) were studied from each soil. . In addition, the two fractions from each soil were exhaustively Soxhlet extracted with a Dichlorometane-Methanol (3:1) mixture to obtain the lipid-free fractions (LF) from each size fraction (LFC and LFF). The composition of the organic matter at a molecular level in the different soil fractions was approached by analytical pyrolysis (Py-GC/MS) and FT-IR spectroscopy. These techniques are complementary and have been found suitable for the structural characterization of complex organic matrices (Moldoveanu, 1998; Piccolo and Stevenson, 1982); whereas Py-GC/MS provides detailed structural information of individual compounds present and a finger-printing of soil organic matter, FT-IR is informative about major functional groups present. The advantages of these techniques are well known: no need for pretreatment are fast to perform, highly reproducible and only small amount of samples are needed. Soil size fractions show contrasting differences in organic matter content (C 4-7 % and F > 40 %) and conspicuous differences were found in the pyrolysis products released by the fractions studied. The main families of pyrolysis compounds have well defined macromolecular precursors, such as lignin, polypeptides, polysaccharides and lipids (González-Vila et al., 2001). The C fractions yield higher relative abundance of lignin and polysaccharide derived pyrolysis compounds. Regarding the differences in the soil organic matter as affected by the different vegetation covers

  14. Ball mill tool for crushing coffee and cocoa beans base on fraction size sieving results

    Science.gov (United States)

    Haryanto, B.; Sirait, M.; Azalea, M.; Alvin; Cahyani, S. E.

    2018-02-01

    Crushing is one of the operation units that aimed to convert the size of solid material to be smoother particle’s size. The operation unit that can be used in this crushing is ball mill. The purpose of this study is to foresee the effect of raw material mass, grinding time, and the number of balls that are used in the ball mill tool related to the amount of raw material of coffee and cocoa beans. Solid material that has become smooth is then sieved with sieve mesh with size number: 50, 70, 100, and 140. It is in order to obtain the mass fraction that escaped from each sieve mesh. From the experiment, it can be concluded that mass percentage fraction of coffee powder is bigger than cocoa powder that escaped from the mesh. Hardness and humidity of coffee beans and cocoa beans have been the important factors that made coffee beans is easier to be crushed than cocoa beans.

  15. Heavy metal pollution decreases microbial abundance, diversity and activity within particle-size fractions of a paddy soil.

    Science.gov (United States)

    Chen, Junhui; He, Feng; Zhang, Xuhui; Sun, Xuan; Zheng, Jufeng; Zheng, Jinwei

    2014-01-01

    Chemical and microbial characterisations of particle-size fractions (PSFs) from a rice paddy soil subjected to long-term heavy metal pollution (P) and nonpolluted (NP) soil were performed to investigate whether the distribution of heavy metals (Cd, Cu, Pb and Zn) regulates microbial community activity, abundance and diversity at the microenvironment scale. The soils were physically fractionated into coarse sand, fine sand, silt and clay fractions. Long-term heavy metal pollution notably decreased soil basal respiration (a measurement of the total activity of the soil microbial community) and microbial biomass carbon (MBC) across the fractions by 3-45% and 21-53%, respectively. The coarse sand fraction was more affected by pollution than the clay fraction and displayed a significantly lower MBC content and respiration and dehydrogenase activity compared with the nonpolluted soils. The abundances and diversities of bacteria were less affected within the PSFs under pollution. However, significant decreases in the abundances and diversities of fungi were noted, which may have strongly contributed to the decrease in MBC. Sequencing of denaturing gradient gel electrophoresis bands revealed that the groups Acidobacteria, Ascomycota and Chytridiomycota were clearly inhibited under pollution. Our findings suggest that long-term heavy metal pollution decreased the microbial biomass, activity and diversity in PSFs, particularly in the large-size fractions. © 2013 Federation of European Microbiological Societies. Published by John Wiley & Sons Ltd. All rights reserved.

  16. Distribution of artificial radionuclides in particle-size fractions of soil on fallout plumes of nuclear explosions.

    Science.gov (United States)

    Kabdyrakova, A M; Lukashenko, S N; Mendubaev, A T; Kunduzbayeva, A Ye; Panitskiy, A V; Larionova, N V

    2018-06-01

    In this paper are analyzed the artificial radionuclide distributions ( 137 Cs, 90 Sr, 241 Am, 239+240 Pu) in particle-size fractions of soils from two radioactive fallout plumes at the Semipalatinsk Test Site. These plumes were generated by a low-yield surface nuclear test and a surface non-nuclear experiment with insignificant nuclear energy release, respectively, and their lengths are approximately 3 and 0,65 km. In contrast with the great majority of similar studies performed in areas affected mainly by global fallout where adsorbing radionuclides such as Pu are mainly associated with the finest soil fractions, in this study it was observed that along both analyzed plumes the highest activity concentrations are concentrated in the coarse soil fractions. At the plume generated by the surface nuclear test, the radionuclides are concentrated mainly in the 1000-500 μm soil fraction (enrichment factor values ranging from 1.2 to 3.8), while at the plume corresponding to the surface non-nuclear test is the 500-250 μm soil fraction the enriched one by technogenic radionuclides (enrichment factor values ranging from 1.1 to 5.1). In addition, the activity concentration distributions among the different soil size fractions are similar for all radionuclides in both plumes. All the obtained data are in agreement with the hypothesis indicating that enrichment observed in the coarse fractions is caused by the presence of radioactive particles resulted from the indicated nuclear tests. Copyright © 2017 Elsevier Ltd. All rights reserved.

  17. Microbial communities in litter and soil - particles size fractionation, C- and N-pools and soil enzymes

    International Nuclear Information System (INIS)

    Stemmer, M.; Gerzabek, M.H.; Pichlmayer, F.; Kandeler, E.

    1995-08-01

    In this study we try to correlate C and N pool investigations to enzyme activities in particle size fractions of soils. Soil incubations in the lab (for one year) simulate two different conventional tillage treatments : (i) soil mixed with maize straw (GSF-mixed) and (ii) soil with maize straw lying on the top (home-mixed). The control soil is incubated without any amendment. The separation of the particle size fractions (2000 - 200 μm, 200 - 63 μm, 63 - 2 μm, 2 - 0.1 μm and 0.1 - 0 μm) is realized by a combination of wet-sieving and centrifugation. To disrupt aggregates we use a defined low-energy ultrasonication, which partly preserves microaggregates. The decomposition of organic C during the incubation can be observed clearly, the small amount of N in the added maize straw complicates the analysis. The isotopic measurements of δ13C and δ15N provide valuable additional informations in this context. Both enzymes, saccharase and xylanase, seem to react in a more sensitive way on the incorporation of the maize litter, than the chemical analysis of the pools. The saccharase activity, which seems to be a sensitive indicator for microbial biomass, shows different behaviour between the mix- and top-treatment. The xylanase activity is mainly located in the coarse sand fraction, this extracellular enzyme might be adsorbed by the particulate organic matter. The transfer of adhering coatings and small particles of the added maize to small sized particles during the fractionation procedure and the 'passive role' of the silt fraction, which could be due to the used method, are nonexpected results. (author)

  18. PLS models for determination of SARA analysis of Colombian vacuum residues and molecular distillation fractions using MIR-ATR

    Directory of Open Access Journals (Sweden)

    Jorge A. Orrego-Ruiz

    2014-06-01

    Full Text Available In this work, prediction models of Saturates, Aromatics, Resins and Asphaltenes fractions (SARA from thirty-seven vacuum residues of representative Colombian crudes and eighteen fractions of molecular distillation process were obtained. Mid-Infrared (MIR Attenuated Total Reflection (ATR spectroscopy in combination with partial least squares (PLS regression analysis was used to estimate accurately SARA analysis in these kind of samples. Calibration coefficients of prediction models were for saturates, aromatics, resins and asphaltenes fractions, 0.99, 0.96, 0.97 and 0.99, respectively. This methodology permits to control the molecular distillation process since small differences in chemical composition can be detected. Total time elapsed to give the SARA analysis per sample is 10 minutes.

  19. Characterization of Time-Dependent Contact Angles for Oleic Acid Mixed Sands with Different Particle Size Fractions

    DEFF Research Database (Denmark)

    Wijewardana, Y. N. S.; Kawamoto, Ken; Komatsu, Toshiko

    2014-01-01

    ) mixed sands representing four different particle size fractions ranging from 0.105 to 0.84 mm. Initial soil-water contact angle (αi), and the time dependence of contact angle were measured by the sessile drop method. Results showed that the αi value for fine and middle sand fractions increased rapidly...... in contact angle (α), well captured the time dependence of α....

  20. Oxidative potential of size-fractionated atmospheric aerosol in urban and rural sites across Europe.

    Science.gov (United States)

    Shafer, Martin M; Hemming, Jocelyn D C; Antkiewicz, Dagmara S; Schauer, James J

    2016-07-18

    In this study we applied several assays, an in vitro rat alveolar macrophage model, a chemical ROS probe (DTT, dithiothreitol), and cytokine induction (TNFα) to examine relationships between PM-induced generation of reactive oxygen species (ROS) and PM composition, using a unique set of size-resolved PM samples obtained from urban and rural environments across Europe. From April-July 2012, we collected PM from roadside canyon, roadside motorway, and background urban sites in each of six European cities and from three rural sites spanning the continent. A Hi-Vol sampler was used to collect PM in three size classes (PM>7, PM7-3, PM3) and PM was characterized for total elements, and oxidative activity quantified in unfiltered and filtered PM extracts. We measured a remarkable uniformity in air concentrations of ROS and especially DTT activity across the continent. Only a 4-fold difference was documented for DTT across the urban sites and a similar variance was documented for ROS, implying that chemical drivers of oxidative activity are relatively similar between sites. The ROS and DTT specific activity was greater at urban background sites (and also rural sites) than at urban canyon locations. PM3 dominated the size distribution of both ROS activity (86% of total) and DTT activity (76% of total), reflecting both the large contribution of PM3 to total PM mass levels and importantly the higher specific oxidative activity of the PM3 in comparison with the larger particles. The soluble fraction of total activity was very high for DTT (94%) as well as for ROS (64%) in the PM3. However in the larger PM size fractions the contributions of the insoluble components became increasingly significant. The dominance of the insoluble PM drivers of activity was particularly evident in the TNFα data, where the insoluble contribution to cytokine production could be 100-fold greater than that from soluble components. ROS and DTT activity were strongly correlated in the PM3 (r = 0

  1. A method for detecting the presence of organic fraction in nucleation mode sized particles

    Directory of Open Access Journals (Sweden)

    P. Vaattovaara

    2005-01-01

    Full Text Available New particle formation and growth has a very important role in many climate processes. However, the overall knowlegde of the chemical composition of atmospheric nucleation mode (particle diameter, d<20 nm and the lower end of Aitken mode particles (d≤50 nm is still insufficient. In this work, we have applied the UFO-TDMA (ultrafine organic tandem differential mobility analyzer method to shed light on the presence of an organic fraction in the nucleation mode size class in different atmospheric environments. The basic principle of the organic fraction detection is based on our laboratory UFO-TDMA measurements with organic and inorganic compounds. Our laboratory measurements indicate that the usefulness of the UFO-TDMA in the field experiments would arise especially from the fact that atmospherically the most relevant inorganic compounds do not grow in subsaturated ethanol vapor, when particle size is 10 nm in diameter and saturation ratio is about 86% or below it. Furthermore, internally mixed particles composed of ammonium bisulfate and sulfuric acid with sulfuric acid mass fraction ≤33% show no growth at 85% saturation ratio. In contrast, 10 nm particles composed of various oxidized organic compounds of atmospheric relevance are able to grow in those conditions. These discoveries indicate that it is possible to detect the presence of organics in atmospheric nucleation mode sized particles using the UFO-TDMA method. In the future, the UFO-TDMA is expected to be an important aid to describe the composition of atmospheric newly-formed particles.

  2. Structural composition of organic matter in particle-size fractions of soils along a climo-biosequence in the main range of Peninsular Malaysia

    Science.gov (United States)

    Jafarzadeh-Haghighi, Amir Hossein; Shamshuddin, Jusop; Hamdan, Jol; Zainuddin, Norhazlin

    2016-09-01

    Information on structural composition of organic matter (OM) in particle-size fractions of soils along a climo-biosequence is sparse. The objective of this study was to examine structural composition and morphological characteristics of OM in particle-size fractions of soils along a climo-biosequence in order to better understand the factors and processes affecting structural composition of soil organic matter. To explore changes in structural composition of OM in soils with different pedogenesis, the A-horizon was considered for further analyses including particle-size fractionation, solid-state 13C nuclear magnetic resonance (NMR) spectroscopy and scanning electron microscopy (SEM). Due to the increase in the thickness of organic layer with increasing elevation, the A-horizon was situated at greater depth in soils of higher elevation. The relationship between relative abundances of carbon (C) structures and particle-size fractions was examined using principal component analysis (PCA). It was found that alkyl C (20.1-73.4%) and O-alkyl C (16.8-67.7%) dominated particle-size fractions. The proportion of alkyl C increased with increasing elevation, while O-alkyl C showed an opposite trend. Results of PCA confirmed this finding and showed the relative enrichment of alkyl C in soils of higher elevation. Increase in the proportion of alkyl C in 250-2000 μm fraction is linked to selective preservation of aliphatic compounds derived from root litter. SEM results showed an increase in root contribution to the 250-2000 μm fraction with increasing elevation. For the changes in structural composition of OM in particle-size fractions of soils along the studied climo-biosequence are attributed to site-specific differences in pedogenesis as a function of climate and vegetation.

  3. AN ANALYSIS OF THE DEUTERIUM FRACTIONATION OF STAR-FORMING CORES IN THE PERSEUS MOLECULAR CLOUD

    Energy Technology Data Exchange (ETDEWEB)

    Friesen, R. K. [National Radio Astronomy Observatory, 520 Edgemont Rd., Charlottesville, VA 22903 (United States); Kirk, H. M. [Origins Institute, McMaster University, 1280 Main Street West, Hamilton, ON L8S 4M1 (Canada); Shirley, Y. L., E-mail: friesen@di.utoronto.ca [Steward Observatory, University of Arizona, 933 N. Cherry Ave., Tucson, AZ 85721 (United States)

    2013-03-01

    We have performed a pointed survey of N{sub 2}D{sup +} 2-1 and N{sub 2}D{sup +} 3-2 emission toward 64 N{sub 2}H{sup +}-bright starless and protostellar cores in the Perseus molecular cloud using the Arizona Radio Observatory Submillimeter Telescope and Kitt Peak 12 m telescope. We find a mean deuterium fractionation in N{sub 2}H{sup +}, R{sub D} = N(N{sub 2}D{sup +})/N(N{sub 2}H{sup +}), of 0.08, with a maximum R{sub D} = 0.2. In detected sources, we find no significant difference in the deuterium fractionation between starless and protostellar cores, nor between cores in clustered or isolated environments. We compare the deuterium fraction in N{sub 2}H{sup +} with parameters linked to advanced core evolution. We only find significant correlations between the deuterium fraction and increased H{sub 2} column density, as well as with increased central core density, for all cores. Toward protostellar sources, we additionally find a significant anticorrelation between R{sub D} and bolometric temperature. We show that the Perseus cores are characterized by low CO depletion values relative to previous studies of star-forming cores, similar to recent results in the Ophiuchus molecular cloud. We suggest that the low average CO depletion is the dominant mechanism that constrains the average deuterium fractionation in the Perseus cores to small values. While current equilibrium and dynamic chemical models are able to reproduce the range of deuterium fractionation values we find in Perseus, reproducing the scatter across the cores requires variation in parameters such as the ionization fraction or the ortho-to-para-H{sub 2} ratio across the cloud, or a range in core evolution timescales.

  4. Effects of anion size and concentration on electrolyte invasion into molecular-sized nanopores

    International Nuclear Information System (INIS)

    Liu Ling; Chen Xi; Kim, Taewan; Han Aijie; Qiao Yu

    2010-01-01

    When an electrolyte solution is pressurized into a molecular-sized nanopore, oppositely charged ions are strongly inclined to aggregate, which effectively reduces the ion solubility to zero. Inside the restrictive confinement, a unique quasi-periodic structure is formed where the paired ion couples are periodically separated by a number of water molecules. As the anion size or ion concentration varies, the geometrical characteristics of the confined ion structure would change considerably, leading to a significant variation in the transport pressure. Both experimental and simulation results indicate that, contradictory to the prediction of conventional theory, infiltration pressure decreases as the anions become larger.

  5. Characterization of the size-fractionated biomacromolecules: Tracking their role and fate in a membrane bioreactor

    DEFF Research Database (Denmark)

    Meng, Fangang; Zhou, Zhongbo; Ni, Bing-Jie

    2011-01-01

    and nuclear magnetic resonance (NMR) measurements were used to characterize BMM in a membrane bioreactor (MBR) from a chemical perspective. Overall, the BMM in sludge supernatant were mainly present in three fractions: colloidal BMM (BMMc, >0.45 μm), biopolymeric BMM (BMMb, 0.45 μm–100 kDa) and low molecular...

  6. Arsenic partitioning among particle-size fractions of mine wastes and stream sediments from cinnabar mining districts.

    Science.gov (United States)

    Silva, Veronica; Loredo, Jorge; Fernández-Martínez, Rodolfo; Larios, Raquel; Ordóñez, Almudena; Gómez, Belén; Rucandio, Isabel

    2014-10-01

    Tailings from abandoned mercury mines represent an important pollution source by metals and metalloids. Mercury mining in Asturias (north-western Spain) has been carried out since Roman times until the 1970s. Specific and non-specific arsenic minerals are present in the paragenesis of the Hg ore deposit. As a result of intensive mining operations, waste materials contain high concentrations of As, which can be geochemically dispersed throughout surrounding areas. Arsenic accumulation, mobility and availability in soils and sediments are strongly affected by the association of As with solid phases and granular size composition. The objective of this study was to examine phase associations of As in the fine grain size subsamples of mine wastes (La Soterraña mine site) and stream sediments heavily affected by acid mine drainage (Los Rueldos mine site). An arsenic-selective sequential procedure, which categorizes As content into seven phase associations, was applied. In spite of a higher As accumulation in the finest particle-size subsamples, As fractionation did not seem to depend on grain size since similar distribution profiles were obtained for the studied granulometric fractions. The presence of As was relatively low in the most mobile forms in both sites. As was predominantly linked to short-range ordered Fe oxyhydroxides, coprecipitated with Fe and partially with Al oxyhydroxides and associated with structural material in mine waste samples. As incorporated into short-range ordered Fe oxyhydroxides was the predominant fraction at sediment samples, representing more than 80% of total As.

  7. The impact of treatment density and molecular weight for fractional laser-assisted drug delivery

    DEFF Research Database (Denmark)

    Haak, Christina S; Bhayana, Brijesh; Farinelli, William A

    2012-01-01

    Ablative fractional lasers (AFXL) facilitate uptake of topically applied drugs by creating narrow open micro-channels into the skin, but there is limited information on optimal laser settings for delivery of specific molecules. The objective of this study was to investigate the impact of laser...... treatment density (% of skin occupied by channels) and molecular weight (MW) for fractional CO(2) laser-assisted drug delivery. AFXL substantially increased intra- and transcutaneous delivery of polyethylene glycols (PEGs) in a MW range from 240 to 4300 Da (Nuclear Magnetic Resonance, p...

  8. Asymptotic behaviour of optimal fraction-rational series of the perturbation theory at description of molecular rotational spectra

    International Nuclear Information System (INIS)

    Burenin, A.V.

    1994-01-01

    A possibility is shown of substantial expansion of the choice of asymptotic behaviour of optimal fraction-rational series of the perturbation theory on description of molecular rotational spectra. The expansion permits to hope for substantial improvement of results of using the conception of effective rotational hamiltonian in a fraction-rational form on the description of highly perturbed vibrational states

  9. Biomimetic supercontainers for size-selective electrochemical sensing of molecular ions

    Science.gov (United States)

    Netzer, Nathan L.; Must, Indrek; Qiao, Yupu; Zhang, Shi-Li; Wang, Zhenqiang; Zhang, Zhen

    2017-04-01

    New ionophores are essential for advancing the art of selective ion sensing. Metal-organic supercontainers (MOSCs), a new family of biomimetic coordination capsules designed using sulfonylcalix[4]arenes as container precursors, are known for their tunable molecular recognition capabilities towards an array of guests. Herein, we demonstrate the use of MOSCs as a new class of size-selective ionophores dedicated to electrochemical sensing of molecular ions. Specifically, a MOSC molecule with its cavities matching the size of methylene blue (MB+), a versatile organic molecule used for bio-recognition, was incorporated into a polymeric mixed-matrix membrane and used as an ion-selective electrode. This MOSC-incorporated electrode showed a near-Nernstian potentiometric response to MB+ in the nano- to micro-molar range. The exceptional size-selectivity was also evident through contrast studies. To demonstrate the practical utility of our approach, a simulated wastewater experiment was conducted using water from the Fyris River (Sweden). It not only showed a near-Nernstian response to MB+ but also revealed a possible method for potentiometric titration of the redox indicator. Our study thus represents a new paradigm for the rational design of ionophores that can rapidly and precisely monitor molecular ions relevant to environmental, biomedical, and other related areas.

  10. Short-term bioavailability of carbon in soil organic matter fractions of different particle sizes and densities in grassland ecosystems.

    Science.gov (United States)

    Breulmann, Marc; Masyutenko, Nina Petrovna; Kogut, Boris Maratovich; Schroll, Reiner; Dörfler, Ulrike; Buscot, François; Schulz, Elke

    2014-11-01

    The quality, stability and availability of organic carbon (OC) in soil organic matter (SOM) can vary widely between differently managed ecosystems. Several approaches have been developed for isolating SOM fractions to examine their ecological roles, but links between the bioavailability of the OC of size-density fractions and soil microbial communities have not been previously explored. Thus, in the presented laboratory study we investigated the potential bioavailability of OC and the structure of associated microbial communities in different particle-size and density fractions of SOM. For this we used samples from four grassland ecosystems with contrasting management intensity regimes and two soil types: a Haplic Cambisol and a typical Chernozem. A combined size-density fractionation protocol was applied to separate clay-associated SOM fractions (CF1, <1 μm; CF2, 1-2 μm) from light SOM fractions (LF1, <1.8 g cm(-3); LF2, 1.8-2.0 g cm(-3)). These fractions were used as carbon sources in a respiration experiment to determine their potential bioavailability. Measured CO2-release was used as an index of substrate accessibility and linked to the soil microbial community structure, as determined by phospholipid fatty acids (PLFA) analysis. Several key factors controlling decomposition processes, and thus the potential bioavailability of OC, were identified: management intensity and the plant community composition of the grasslands (both of which affect the chemical composition and turnover of OC) and specific properties of individual SOM fractions. The PLFA patterns highlighted differences in the composition of microbial communities associated with the examined grasslands, and SOM fractions, providing the first broad insights into their active microbial communities. From observed interactions between abiotic and biotic factors affecting the decomposition of SOM fractions we demonstrate that increasing management intensity could enhance the potential bioavailability of

  11. Treatment of acne scarring using a dual-spot-size ablative fractionated carbon dioxide laser: review of the literature.

    Science.gov (United States)

    Tierney, Emily P

    2011-07-01

    Fractional photothermolysis has been reported in the literature to improve pigmentary and textural changes associated with acne scarring. To review the literature for the treatment of acne scarring using nonablative fractional laser (NAFL) and ablative fractional laser (AFL) resurfacing. Review of the Medline literature evaluating NAFL and AFL for acne scarring. NAFL and AFL are safe and effective treatments for acne scarring. It is likely that the controlled, limited dermal heating of fractional resurfacing initiates a cascade of events in which normalization of the collagenesis-collagenolysis cycle occurs. We present the results of a patient treated using a novel dual-spot-size AFL device. Three months after the final treatment, the patient reported 75% improvement in acne scarring and 63% overall improvement in photoaging. Fractionated resurfacing for the treatment of acne scarring is associated with lesser risks of side effects of prolonged erythema and risks of delayed-onset dyspigmentation and scarring which complicate traditional ablative laser resurfacing approaches. We present herein preliminary data suggesting that a dual-spot-size AFL device presents novel advantages of improving texture and pigmentation in acne scarring and photoaging. © 2011 by the American Society for Dermatologic Surgery, Inc.

  12. Characterization of the Particle Size Fraction associated with Heavy Metals in Suspended Sediments of the Yellow River

    Directory of Open Access Journals (Sweden)

    Qingzhen Yao

    2015-06-01

    Full Text Available Variations in the concentrations of particulate heavy metals and fluxes into the sea in the Yellow River were examined based on observational and measured data from January 2009 to December 2010. A custom-built water elutriation apparatus was used to separate suspended sediments into five size fractions. Clay and very fine silt is the dominant fraction in most of the suspended sediments, accounting for >40% of the samples. Cu, Pb, Zn, Cr, Fe and Mn are slightly affected by anthropogenic activities, while Cd is moderate affected. The concentrations of heavy metals increased with decrease in particle size. For suspended sediments in the Yellow River, on average 78%–82% of the total heavy metal loading accumulated in the <16 μm fraction. About 43% and 53% of heavy metal in 2009 and 2010 respectively, were readily transported to the Bohai Sea with “truly suspended” particles, which have potentially harmful effects on marine organisms.

  13. Particle-size fractionation and stable carbon isotope distribution applied to the study of soil organic matter dynamics

    International Nuclear Information System (INIS)

    Cerri, C.; Feller, C.; Balesdent, J.; Victoria, R.; Plenecassagne, A.

    1985-01-01

    The present Note concerns the dynamics of organic matter in soils under forest (C 3 -type vegetation) and 12 and 50 years old sugar-cane (C 4 -type vegetation) cultivation. The decomposition rate of ‘forest organic matter” and the accumulation rate of “sugar-cane organic matter” are estimated through 13 C measurements of total soil and different organic fractions (particle-size, fractionation) [fr

  14. Comparative Mineralogy, Microstructure and Compositional Trends in the Sub-Micron Size Fractions of Mare and Highland Lunar Soils

    Science.gov (United States)

    Thompson, M. S.; Christoffersen, R.; Noble, S. K.; Keller, L. P.

    2012-01-01

    The morphology, mineralogy, chemical composition and optical properties of lunar soils show distinct correlations as a function of grain size and origin [1,2,3]. In the fraction, there is an increased correlation between lunar surface properties observed through remote sensing techniques and those attributed to space weathering phenomenae [1,2]. Despite the establishment of recognizable trends in lunar grains fraction fraction for both highland and mare derived soils. The properties of these materials provide the focus for many aspects of lunar research including the nature of space weathering on surface properties, electrostatic grain transport [4,5] and dusty plasmas [5]. In this study, we have used analytical transmission and scanning transmission electron microscopy (S/TEM) to characterize the mineralogy type, microstructure and major element compositions of grains in this important size range in lunar soils.

  15. Bacterial Preferences for Specific Soil Particle Size Fractions Revealed by Community Analyses

    DEFF Research Database (Denmark)

    Hemkemeyer, Michael; Dohrmann, Anja B.; Christensen, Bent Tolstrup

    2018-01-01

    Genetic fingerprinting demonstrated in previous studies that differently sized soil particle fractions (PSFs; clay, silt, and sand with particulate organic matter (POM)) harbor microbial communities that differ in structure, functional potentials and sensitivity to environmental conditions....... To elucidate whether specific bacterial or archaeal taxa exhibit preference for specific PSFs, we examined the diversity of PCR-amplified 16S rRNA genes by high-throughput sequencing using total DNA extracted from three long-term fertilization variants (unfertilized, fertilized with minerals, and fertilized...

  16. Concentration and fractionation of hydrophobic organic acid constituents from natural waters by liquid chromatography

    Science.gov (United States)

    Thurman, E.M.; Malcolm, R.L.

    1979-01-01

    A scheme is presented which used adsorption chromatography with pH gradient elution and size-exclusion chromatography to concentrate and separate hydrophobic organic acids from water. A review of chromatographic processes involved in the flow scheme is also presented. Organic analytes which appear in each aqueous fraction are quantified by dissolved organic carbon analysis. Hydrophobic organic acids in a water sample are concentrated on a porous acrylic resin. These acids usually constitute approximately 30-50 percent of the dissolved organic carbon in an unpolluted water sample and are eluted with an aqueous eluent (dilute base). The concentrate is then passed through a column of polyacryloylmorpholine gel, which separates the acids into high- and low-molecular-weight fractions. The high- and low-molecular-weight eluates are reconcentrated by adsorption chromatography, then are eluted with a pH gradient into strong acids (predominately carboxylic acids) and weak acids (predominately phenolic compounds). For standard compounds and samples of unpolluted waters, the scheme fractionates humic substances into strong and weak acid fractions that are separated from the low molecular weight acids. A new method utilizing conductivity is also presented to estimate the acidic components in the methanol fraction.

  17. Investigation of the Physical and Molecular Properties of Asphalt Binders Processed with Used Motor Oils

    Directory of Open Access Journals (Sweden)

    Mohyeldin Ragab

    2015-01-01

    Full Text Available In this work we investigated the performance aspects of addition of used motor oils (UMO to neat and crumb rubber modified asphalts (CRMA and related that to the change of molecular size distribution of modified asphalt’s fractions; asphaltenes, saturates, naphthene aromatics, and polar aromatics. Based on the results of temperature sweep viscoelastic tests, addition of crumb rubber modifier (CRM alone or with UMO results in the formation of internal network within the modified asphalt. Based on the results of short and long term aged asphalts, the utilization of combination of UMO and CRM enhanced the aging behavior of asphalt. Bending beam rheometer was utilized to investigate the low temperature behavior of UMO modified asphalts. Based on those tests, the utilization of the UMO and CRM enhanced the low temperature properties of asphalts. Based on the results of the asphalt separation tests and the Gel Permeation Chromatography (GPC analysis, it was found that saturates and naphthene aromatics are the two asphalt fractions that have similar molecular size fractions as those of UMO. However, UMO only shifts the molecular sizes of saturates after interaction with asphalt. Results also show that polar aromatics pose higher molecular size structures than UMO.

  18. A procedure for partitioning bulk sediments into distinct grain-size fractions for geochemical analysis

    Science.gov (United States)

    Barbanti, A.; Bothner, Michael H.

    1993-01-01

    A method to separate sediments into discrete size fractions for geochemical analysis has been tested. The procedures were chosen to minimize the destruction or formation of aggregates and involved gentle sieving and settling of wet samples. Freeze-drying and sonication pretreatments, known to influence aggregates, were used for comparison. Freeze-drying was found to increase the silt/clay ratio by an average of 180 percent compared to analysis of a wet sample that had been wet sieved only. Sonication of a wet sample decreased the silt/clay ratio by 51 percent. The concentrations of metals and organic carbon in the separated fractions changed depending on the pretreatment procedures in a manner consistent with the hypothesis that aggregates consist of fine-grained organic- and metal-rich particles. The coarse silt fraction of a freeze-dried sample contained 20–44 percent higher concentrations of Zn, Cu, and organic carbon than the coarse silt fraction of the wet sample. Sonication resulted in concentrations of these analytes that were 18–33 percent lower in the coarse silt fraction than found in the wet sample. Sonication increased the concentration of lead in the clay fraction by an average of 40 percent compared to an unsonicated sample. Understanding the magnitude of change caused by different analysis protocols is an aid in designing future studies that seek to interpret the spatial distribution of contaminated sediments and their transport mechanisms.

  19. The Effect of Aggregate-Size Fractions on the Availability of Cu in Some Contaminated Soils with Heavy Metals

    Directory of Open Access Journals (Sweden)

    Akram Farshadirad

    2017-06-01

    Full Text Available Introduction: In recent years, because of the presence of industrial factories around the Isfahan province of Iran and high concentrations of heavy metals in the vicinity of them, and the gradual accumulation of heavy metals from various sources of pollution in urban areas over time, including gasoline combustion, and use of urban waste compost and sewage sludge as fertilizer, there has been widespread concerned regarding the human health problems with increasing heavy metals in soils around the Isfahan city. The variation of composition in the soil matrix may lead to variation of composition and behavior of soil heavy metals. Soil is a heterogeneous body of materials and soil components are obviously in interaction. Studies tacking this complexity often use aggregate measurements as surrogates of the complex soil matrix. So, it is important the understanding soil particle-size distribution of aggregates and its effects on heavy metal partitioning among the size fractions, the fate of metals and their toxicity potential in the soil environment. Therefore, the present study aimed to determine the Cu release potential from different size fractions of different polluted soils by different extractants and their availability for corn plant. Materials and Methods: Five soil samples were collected from the surface soils (0–15 cm of Isfahan province, in central of Iran. The soil samples were air-dried and ground to pass a 2-mm sieve for laboratory analysis. Air dried samples fractionated into four different aggregate size fractions 2.0–4.0 (large macro-aggregate, 0.25–2 (small macro-aggregate, 0.05–0.25 (micro-aggregate, and

  20. High-pressure size exclusion chromatography analysis of dissolved organic matter isolated by tangential-flow ultra filtration

    Science.gov (United States)

    Everett, C.R.; Chin, Y.-P.; Aiken, G.R.

    1999-01-01

    A 1,000-Dalton tangential-flow ultrafiltration (TFUF) membrane was used to isolate dissolved organic matter (DOM) from several freshwater environments. The TFUF unit used in this study was able to completely retain a polystyrene sulfonate 1,800-Dalton standard. Unaltered and TFUF-fractionated DOM molecular weights were assayed by high-pressure size exclusion chromatography (HPSEC). The weight-averaged molecular weights of the retentates were larger than those of the raw water samples, whereas the filtrates were all significantly smaller and approximately the same size or smaller than the manufacturer-specified pore size of the membrane. Moreover, at 280 nm the molar absorptivity of the DOM retained by the ultrafilter is significantly larger than the material in the filtrate. This observation suggests that most of the chromophoric components are associated with the higher molecular weight fraction of the DOM pool. Multivalent metals in the aqueous matrix also affected the molecular weights of the DOM molecules. Typically, proton-exchanged DOM retentates were smaller than untreated samples. This TFUF system appears to be an effective means of isolating aquatic DOM by size, but the ultimate size of the retentates may be affected by the presence of metals and by configurational properties unique to the DOM phase.

  1. Effects of condensed tannin fractions of different molecular weights from a Leucaena leucocephala hybrid on in vitro methane production and rumen fermentation.

    Science.gov (United States)

    Saminathan, Mookiah; Sieo, Chin Chin; Abdullah, Norhani; Wong, Clemente Michael Vui Ling; Ho, Yin Wan

    2015-10-01

    Molecular weights (MWs) and their chemical structures are the primary factors determining the influence of condensed tannins (CTs) on animal nutrition and methane (CH4 ) production in ruminants. In this study the MWs of five CT fractions from Leucaena leucocephala hybrid-Rendang (LLR) were determined and the CT fractions were investigated for their effects on CH4 production and rumen fermentation. The number-average molecular weight (Mn ) of fraction F1 (1265.8 Da), which was eluted first, was the highest, followed by those of fractions F2 (1028.6 Da), F3 (652.2 Da), F4 (562.2 Da) and F5 (469.6 Da). The total gas (mL g(-1) dry matter (DM)) and CH4 production decreased significantly (P fractions, but there were no significant (P > 0.05) differences between the CT fractions and control on DM degradation. However, the in vitro N disappearance decreased significantly (P fraction F1 (highest MW) compared with the control and other fractions (F2-F5). The inclusion of CT fraction F1 also significantly decreased (P fraction F1 but not by the control and other fractions (F2-F5). The CT fractions of different MWs from LLR could affect rumen fermentation and CH4 production, and the impact was more pronounced for the CT fraction with a higher MW. © 2014 Society of Chemical Industry.

  2. The comparison of naturally weathered oil and artificially photo-degraded oil at the molecular level by a combination of SARA fractionation and FT-ICR MS

    International Nuclear Information System (INIS)

    Islam, Ananna; Cho, Yunju; Yim, Un Hyuk; Shim, Won Joon; Kim, Young Hwan; Kim, Sunghwan

    2013-01-01

    Highlights: • Weathered oils from the Hebei Spirit oil spill and photo degraded oils are compared. • We investigate changes of polar species at the molecular level by 15T FT-ICR MS. • Significant reduction of sulfur class compounds in saturates fraction is observed. • The relative abundance of protonated compounds (presumably basic nitrogen compounds) increase after degradation. • Changes of polar compounds occurred by natural and photo degradation are similar. -- Abstract: Two sets of oil samples, one obtained from different weathering stages of the M/V Hebei Spirit oil spill site and the other prepared by an in vitro photo-degradation experiment, were analyzed and compared at the molecular level by atmospheric pressure photo-ionization coupled with Fourier transform ion cyclotron resonance mass spectrometry (FT-ICR MS). For a more detailed comparison at the molecular level, the oil samples were separated into saturate, aromatic, resin, and asphaltene (SARA) fractions before MS analysis. Gravimetric analysis of the SARA fractions revealed a decreased weight percentage of the aromatic fraction and an increased resin fraction in both sets of samples. Molecular-level investigations of the SARA fractions showed a significant reduction in the S 1 class in the saturate fraction and increase of S 1 O 1 class compounds with high DBE values in resin fraction. Levels of N 1 and N 1 O 1 class compounds resulting in protonated ions (presumably basic nitrogen compounds) increased after degradation compared to compounds generating molecular ions (presumably non-basic nitrogen compounds). This study revealed changes occurring in heteroatom polar species of crude oils such as sulfur and nitrogen containing compounds that have not been easily detected with conventional GC based techniques

  3. Molecular characterization of whey protein hydrolysate fractions with ferrous chelating and enhanced iron solubility capabilities.

    Science.gov (United States)

    O'Loughlin, Ian B; Kelly, Phil M; Murray, Brian A; FitzGerald, Richard J; Brodkorb, Andre

    2015-03-18

    The ferrous (Fe2+) chelating capabilities of WPI hydrolysate fractions produced via cascade membrane filtration were investigated, specifically 1 kDa permeate (P) and 30 kDa retentate (R) fractions. The 1 kDa-P possessed a Fe2+ chelating capability at 1 g L(-1) equivalent to 84.4 μM EDTA (for 30 kDa-R the value was 8.7 μM EDTA). Fourier transformed infrared (FTIR) spectroscopy was utilized to investigate the structural characteristics of hydrolysates and molecular interactions with Fe2+. Solid-phase extraction was employed to enrich for chelating activity; the most potent chelating fraction was enriched in histidine and lysine. The solubility of ferrous sulfate solutions (10 mM) over a range of pH values was significantly (Piron solubility was improved by 72% in the presence of the 1 kDa-P fraction following simulated gastrointestinal digestion (SGID) compared to control FeSO4·7H2O solutions.

  4. 14C-labeled organic amendments: Characterization in different particle size fractions and humic acids in a long-term field experiment.

    Science.gov (United States)

    Tatzber, Michael; Stemmer, Michael; Spiegel, Heide; Katzlberger, Christian; Landstetter, Claudia; Haberhauer, Georg; Gerzabek, Martin H

    2012-05-01

    Knowledge about the stabilization of organic matter input to soil is essential for understanding the influence of different agricultural practices on turnover characteristics in agricultural soil systems. In this study, soil samples from a long-term field experiment were separated into silt- and clay-sized particles. In 1967, 14 C labeled farmyard manure was applied to three different cropping systems: crop rotation, monoculture and permanent bare fallow. Humic acids (HAs) were extracted from silt- and clay-sized fractions and characterized using photometry, mid-infrared and fluorescence spectroscopy. Remaining 14 C was determined in size fractions as well as in their extracted HAs. Yields of carbon and remaining 14 C in HAs from silt-sized particles and C org in clay-sized particles decreased significantly in the order: crop rotation > monoculture ≫ bare fallow. Thus, crop rotation not only had the largest overall C-pool in the experiment, but it also best stabilized the added manure. Mid-infrared spectroscopy could distinguish between HAs from different particle size soil fractions. With spectroscopic methods significant differences between the cropping systems were detectable in fewer cases compared to quantitative results of HAs (yields, 14 C, C org and N t ). The trends, however, pointed towards increased humification of HAs from bare fallow systems compared to crop rotation and monoculture as well as of HAs from clay-sized particles compared to silt-sized particles. Our study clearly shows that the largest differences were observed between bare fallow on one hand and monoculture and crop rotation on the other.

  5. Comparing the Spectroscopic and Molecular Characteristics of Different Dissolved Organic Matter Fractions Isolated by Hydrophobic and Anionic Exchange Resins Using Fluorescence Spectroscopy and FT-ICR-MS

    Directory of Open Access Journals (Sweden)

    Morgane Derrien

    2017-07-01

    Full Text Available Despite the environmental significance of dissolved organic matter (DOM, characterizing DOM is still challenging due to its structural complexity and heterogeneity. In this study, three different chemical fractions, including hydrophobic acid (HPOA, transphilic acid (TPIA, and hydrophilic neutral and base (HPIN/B fractions, were separated from bulk aquatic DOM samples, and their spectral features and the chemical composition at the molecular level were compared using both fluorescence excitation emission matrix-parallel factor analysis (EEM-PARAFAC and Fourier transform ion cyclotron resonance mass spectrometry (FT-ICR MS. The HPIN/B fraction was distinguished from the two acidic fractions (i.e., HPOA and TPIA by the EEM-PARAFAC, while the TPIA fraction was discriminated by using the molecular parameters derived from the FT-ICR MS analyses. Statistical comparison suggests that the spectral dissimilarity among the three chemical fractions might result from the acido-basic properties of DOM samples, while the differences in molecular composition were more likely to be affected by the hydrophobicity of the DOM fractions. The non-metric multidimensional scaling map further revealed that the HPOA was the most heterogeneous among the three fractions. The number of overlapping formulas among the three chemical fractions constituted only <5% of all identified formulas, and those between two different fractions ranged from 2.0% to 24.1%, implying relatively homogeneous properties of the individual chemical fractions with respect to molecular composition. Although employing chemical fractionation achieved a lowering of the DOM heterogeneity, prevalent signatures of either acido-basic property or the hydrophobic nature of DOM on the characteristics of three chemical isolated fractions were not found for this study.

  6. Inflammation response and cytotoxic effects in human THP-1 cells of size-fractionated PM10 extracts in a polluted urban site.

    Science.gov (United States)

    Schilirò, T; Alessandria, L; Bonetta, S; Carraro, E; Gilli, G

    2016-02-01

    To contribute to a greater characterization of the airborne particulate matter's toxicity, size-fractionated PM10 was sampled during different seasons in a polluted urban site in Torino, a northern Italian city. Three main size fractions (PM10 - 3 μm; PM3 - 0.95 μm; PM THP-1 cells to evaluate their effects on cell proliferation, LDH activity, TNFα, IL-8 and CYP1A1 expression. The mean PM10 concentrations were statistically different in summer and in winter and the finest fraction PMtest) that could be used in the context of the different monitoring programs. Copyright © 2015 Elsevier Ltd. All rights reserved.

  7. Prediction of size-fractionated airborne particle-bound metals using MLR, BP-ANN and SVM analyses.

    Science.gov (United States)

    Leng, Xiang'zi; Wang, Jinhua; Ji, Haibo; Wang, Qin'geng; Li, Huiming; Qian, Xin; Li, Fengying; Yang, Meng

    2017-08-01

    Size-fractionated heavy metal concentrations were observed in airborne particulate matter (PM) samples collected from 2014 to 2015 (spanning all four seasons) from suburban (Xianlin) and industrial (Pukou) areas in Nanjing, a megacity of southeast China. Rapid prediction models of size-fractionated metals were established based on multiple linear regression (MLR), back propagation artificial neural network (BP-ANN) and support vector machine (SVM) by using meteorological factors and PM concentrations as input parameters. About 38% and 77% of PM 2.5 concentrations in Xianlin and Pukou, respectively, were beyond the Chinese National Ambient Air Quality Standard limit of 75 μg/m 3 . Nearly all elements had higher concentrations in industrial areas, and in winter among the four seasons. Anthropogenic elements such as Pb, Zn, Cd and Cu showed larger percentages in the fine fraction (ø≤2.5 μm), whereas the crustal elements including Al, Ba, Fe, Ni, Sr and Ti showed larger percentages in the coarse fraction (ø > 2.5 μm). SVM showed a higher training correlation coefficient (R), and lower mean absolute error (MAE) as well as lower root mean square error (RMSE), than MLR and BP-ANN for most metals. All the three methods showed better prediction results for Ni, Al, V, Cd and As, whereas relatively poor for Cr and Fe. The daily airborne metal concentrations in 2015 were then predicted by the fully trained SVM models and the results showed the heaviest pollution of airborne heavy metals occurred in December and January, whereas the lightest pollution occurred in June and July. Copyright © 2017 Elsevier Ltd. All rights reserved.

  8. Effects of molecular size and chemical factor on plasma gene transfection

    Science.gov (United States)

    Ikeda, Yoshihisa; Motomura, Hideki; Kido, Yugo; Satoh, Susumu; Jinno, Masafumi

    2016-07-01

    In order to clarify the mechanism of plasma gene transfection, the relationship between transfection efficiency and transferred molecular size was investigated. Molecules with low molecular mass (less than 50 kDa; dye or dye-labeled oligonucleotide) and high molecular mass (more than 1 MDa; plasmid DNA or fragment of plasmid DNA) were transferred to L-929 cells. It was found that the transfection efficiency decreases with increasing in transferred molecular size and also depends on the tertiary structure of transferred molecules. Moreover, it was suggested the transfection mechanism is different between the molecules with low (less than 50 kDa) and high molecular mass (higher than 1 MDa). For the amount of gene transfection after plasma irradiation, which is comparable to that during plasma irradiation, it is shown that H2O2 molecules are the main contributor. The transfection efficiency decreased to 0.40 ± 0.22 upon scavenging the H2O2 generated by plasma irradiation using the catalase. On the other hand, when the H2O2 solution is dropped into the cell suspension without plasma irradiation, the transfection efficiency is almost 0%. In these results, it is also suggested that there is a synergetic effect of H2O2 with electrical factors or other reactive species generated by plasma irradiation.

  9. [Carbon sequestration in soil particle-sized fractions during reversion of desertification at Mu Us Sand land.

    Science.gov (United States)

    Ma, Jian Ye; Tong, Xiao Gang; Li, Zhan Bin; Fu, Guang Jun; Li, Jiao; Hasier

    2016-11-18

    The aim of this study was to investigate the effects of carbon sequestration in soil particle-sized fractions during reversion of desertification at Mu Us Sand Land, soil samples were collected from quicksand land, semifixed sand and fixed sand lands that were established by the shrub for 20-55 year-old and the arbor for 20-50 year-old at sand control region of Yulin in Northern Shaanxi Province. The dynamics and sequestration rate of soil organic carbon (SOC) associated with sand, silt and clay were measured by physical fractionation method. The results indicated that, compared with quicksand area, the carbon content in total SOC and all soil particle-sized fractions at bothsand-fixing sand forest lands showed a significant increasing trend, and the maximum carbon content was observed in the top layer of soils. From quicksand to fixed sand land with 55-year-old shrub and 50-year-old arbor, the annual sequestration rate of carbon stock in 0-5 cm soil depth was same in silt by 0.05 Mg·hm -2 ·a -1 . The increase rate of carbon sequestration in sand was 0.05 and 0.08 Mg·hm -2 ·a -1 , and in clay was 0.02 and 0.03 Mg·hm -2 ·a -1 at shrubs and arbors land, respectively. The increase rate of carbon sequestration in 0-20 cm soil layer for all the soil particles was averagely 2.1 times as that of 0-5 cm. At the annual increase rate of carbon, the stock of carbon in sand, silt and clay at the two fixed sand lands were increased by 6.7, 18.1 and 4.4 times after 50-55 year-old reversion of quicksand land to fixed sand. In addition, the average percentages that contributed to accumulation of total SOC by different particles in 0-20 cm soil were in the order of silt carbon (39.7%)≈sand carbon (34.6%) > clay carbon (25.6%). Generally, the soil particle-sized fractions had great carbon sequestration potential during reversion of desertification in Mu Us Sand Land, and the slit and sand were the main fractions for carbon sequestration at both fixed sand lands.

  10. Size characterization by Sedimentation Field Flow Fractionation of silica particles used as food additives.

    Science.gov (United States)

    Contado, Catia; Ravani, Laura; Passarella, Martina

    2013-07-25

    Four types of SiO2, available on the market as additives in food and personal care products, were size characterized using Sedimentation Field Flow Fractionation (SdFFF), SEM, TEM and Photon Correlation Spectroscopy (PCS). The synergic use of the different analytical techniques made it possible, for some samples, to confirm the presence of primary nanoparticles (10 nm) organized in clusters or aggregates of different dimension and, for others, to discover that the available information is incomplete, particularly that regarding the presence of small particles. A protocol to extract the silica particles from a simple food matrix was set up, enriching (0.25%, w w(-1)) a nearly silica-free instant barley coffee powder with a known SiO2 sample. The SdFFF technique, in conjunction with SEM observations, made it possible to identify the added SiO2 particles and verify the new particle size distribution. The SiO2 content of different powdered foodstuffs was determined by graphite furnace atomic absorption spectroscopy (GFAAS); the concentrations ranged between 0.006 and 0.35% (w w(-1)). The protocol to isolate the silica particles was so applied to the most SiO2-rich commercial products and the derived suspensions were separated by SdFFF; SEM and TEM observations supported the size analyses while GFAAS determinations on collected fractions permitted element identification. Copyright © 2013 Elsevier B.V. All rights reserved.

  11. Particle size fractionation of high-amylose rice (Goami 2) flour as an oil barrier in a batter-coated fried system

    Science.gov (United States)

    The particle size effects of high-amylose rice (Goami 2) flour on quality attributes of frying batters were characterized in terms of physicochemical, rheological, and oil-resisting properties. High-amylose rice flours were fractionated into four fractions (70, 198, 256, and 415 µm) of which morpho...

  12. Ferric reductase activity of low molecular weight human milk fraction is associated with enhanced iron solubility and uptake in Caco-2 cells.

    Science.gov (United States)

    Pullakhandam, Raghu; Nair, Madhavan Krishnapillai; Kasula, Sunanda; Kilari, Sreenivasulu; Thippande, Tippeswamy Gowda

    2008-09-19

    It is known that the fractional absorption of extrinsic iron from human milk is higher in infants and adults. A low molecular weight milk fraction has been proposed to increase the bioavailability of iron from human milk. Nevertheless, the mechanisms remained elusive. Here in we demonstrate ferric reductase activity (Km7.73x10(-6)M) in low molecular weight human milk fraction (10kF, filtrate derived from ultra filtration of milk whey through 10kDa cutoff membrane), which increased ferric iron solubility and iron uptake in Caco-2 cells. The 10kF fraction was as effective as ascorbic acid (1:20 iron to ascorbic acid) in increasing the ferric iron solubility and uptake in Caco-2 cells. Further, gel filtration chromatography on peptide column led to co-elution of ferric reductase and iron solubilization activities at an apparent molecular mass of iron in Caco-2 cells. Thus, it is concluded that human milk possesses ferric reductase activity and is associated with ferric iron solubilization and enhanced absorption.

  13. Low-molecular weight fractions of Japanese soy sauce act as a RAGE antagonist via inhibition of RAGE trafficking to lipid rafts.

    Science.gov (United States)

    Munesue, Seiichi; Yamamoto, Yasuhiko; Urushihara, Ryouta; Inomata, Kouhei; Saito, Hidehito; Motoyoshi, So; Watanabe, Takuo; Yonekura, Hideto; Yamamoto, Hiroshi

    2013-12-01

    Advanced glycation end-products (AGE) have been implicated in aging and the pathogenesis of diabetic complications, inflammation, Alzheimer's disease, and cancer. AGE engage the cell surface receptor for AGE (RAGE), which in turn elicits intracellular signaling, leading to activation of NF-κB to cause deterioration of tissue homeostasis. AGE are not only formed within our bodies but are also derived from foods, endowing them with flavor. In the present study, we assessed the agonistic/antagonistic effects of food-derived AGE on RAGE signaling in a reporter assay system and found that low-molecular weight AGE can antagonize the action of AGE-BSA. Foods tested were Japanese soy sauce, coffee, cola, and red wine, all of which showed fluorescence characteristics of AGE. Soy sauce and coffee contained N(ε)-carboxymethyl-lysine (CML). Soy sauce, coffee, and red wine inhibited the RAGE ligand-induced activation of NF-κB, whereas cola had no effect on the ligand induction of NF-κB. The liquids were then fractionated into high-molecular weight (HMW) fractions and low-molecular weight (LMW) fractions. Soy sauce-, coffee-, and red wine-derived LMW fractions consistently inhibited the RAGE ligand induction of NF-κB, whereas the HMW fractions of these foods activated RAGE signaling. Using the LMW fraction of soy sauce as a model food-derived RAGE antagonist, we performed a plate-binding assay and found that the soy sauce LMW fractions competitively inhibited AGE-RAGE association. Further, this fraction significantly reduced AGE-dependent monocyte chemoattractant protein-1 (MCP-1) secretion from murine peritoneal macrophages. The LMF from soy sauce suppressed the AGE-induced RAGE trafficking to lipid rafts. These results indicate that small components in some, if not all, foods antagonize RAGE signaling and could exhibit beneficial effects on RAGE-related diseases.

  14. Attached and Unattached Activity Size Distribution of Short-Lived Radon Progeny (214Pb) and Evaluation of Deposition Fraction

    International Nuclear Information System (INIS)

    Mohamed, A.; Ahmed, A.A.; Ali, A.E.; Yuness, M.

    2009-01-01

    Inhalation of 2 '2 2 Rn progeny in the domestic environment contributes the greatest fraction of the natural radiation exposure to the public. Dosimetric models are most often used in the assessment of human lung doses due to inhaled radioactivity because of the difficulty in making direct measurements. These models require information about the parameters of activity size distributions of radon progeny. The current study presents measured data on the attached and unattached activity size distributions of radon progeny in indoor air in El-Minia, Egypt. The attached fraction was collected using a low pressure Berner cascade impactor technique. A screen diffusion battery was used for collecting the unattached fraction. Most of the attached activities for 222 Rn progeny were associated with aerosol particles of the accumulation mode. The mean activity median aerodynamic diameter (AMAD) of this mode for 21 4 P b was determined to be 401 nm with relative mean geometric standard deviation of 2.96. The mean value of specific air activity concentration of 214 Pb associated with that mode was determined to be 4.74 %0.44 Bq m -3 . The relative mean geometric standard deviations of unattached 214 Pb was determined to be 1.21 with the mean activity thermodynamic diameter (AMTD) of 1.2 nm. The mean unattached activity concentration of 214 Pb was found to be 0.44%0.14 Bq m-3. Based on the obtained results of radon progeny size distributions (unattached and attached), the deposition fractions in each airway generation of the human lung were evaluated by using a lung deposition model

  15. Three-dimensional fluorescence analysis of chernozem humic acids and their electrophoretic fractions

    Science.gov (United States)

    Trubetskoi, O. A.; Trubetskaya, O. E.

    2017-09-01

    Polyacrylamide gel electrophoresis in combination with size-exclusion chromatography (SEC-PAGE) has been used to obtain stable electrophoretic fractions of different molecular size (MS) from chernozem humic acids (HAs). Three-dimensional fluorescence charts of chernozem HAs and their fractions have been obtained for the first time, and all fluorescence excitation-emission maxima have been identified in the excitation wavelength range of 250-500 nm. It has been found that fractionation by the SEC-PAGE method results in a nonuniform distribution of protein- and humin-like fluorescence of the original HA preparation among the electrophoretic fractions. The electrophoretic fractions of the highest and medium MSs have only the main protein-like fluorescence maximum and traces of humin-like fluorescence. In the electrophoretic fraction of the lowest MS, the intensity of protein-like fluorescence is low, but the major part of humin-like fluorescence is localized there. Relationships between the intensity of protein-like fluorescence and the weight distribution of amino acids have been revealed, as well as between the degree of aromaticity and the intensity of humin-like fluorescence in electrophoretic fractions of different MSs. The obtained relationships can be useful in the interpretation of the spatial structural organization and ecological functions of soil HAs.

  16. Isolation of low-molecular albumins of 2S fraction from soybean (Glycine max (L.) Merrill).

    Science.gov (United States)

    Galbas, Mariola; Porzucek, Filip; Woźniak, Anna; Słomski, Ryszard; Selwet, Marek

    2013-01-01

    Numerous studies have shown that consumption of soybean products decrease the risk of cancers in humans. Experiments at the molecular level have demonstrated that in most cases proteins and peptides are responsible for the anticancer properties of soybeen. Special attention should be paid to lunasin - a peptide described for the first time 16 years ago. Due to its structure it causes i.a., inhibition of cancer cell proliferation. A novel procedure for the isolation and purification of low-molecular-mass 2S soybean albumin protein is described in the present paper. A fraction of four peptides one of them corresponding to molecular mass and isoelectric point characteristic for lunasin. The obtained peptides decreased on the rate of HeLa cell proliferation.

  17. Affinity flow fractionation of cells via transient interactions with asymmetric molecular patterns

    Science.gov (United States)

    Bose, Suman; Singh, Rishi; Hanewich-Hollatz, Mikhail; Shen, Chong; Lee, Chia-Hua; Dorfman, David M.; Karp, Jeffrey M.; Karnik, Rohit

    2013-07-01

    Flow fractionation of cells using physical fields to achieve lateral displacement finds wide applications, but its extension to surface molecule-specific separation requires labeling. Here we demonstrate affinity flow fractionation (AFF) where weak, short-range interactions with asymmetric molecular patterns laterally displace cells in a continuous, label-free process. We show that AFF can directly draw neutrophils out of a continuously flowing stream of blood with an unprecedented 400,000-fold depletion of red blood cells, with the sorted cells being highly viable, unactivated, and functionally intact. The lack of background erythrocytes enabled the use of AFF for direct enumeration of neutrophils by a downstream detector, which could distinguish the activation state of neutrophils in blood. The compatibility of AFF with capillary microfluidics and its ability to directly separate cells with high purity and minimal sample preparation will facilitate the design of simple and portable devices for point-of-care diagnostics and quick, cost-effective laboratory analysis.

  18. Study of Bubble Size, Void Fraction, and Mass Transport in a Bubble Column under High Amplitude Vibration

    Directory of Open Access Journals (Sweden)

    Shahrouz Mohagheghian

    2018-04-01

    Full Text Available Vertical vibration is known to cause bubble breakup, clustering and retardation in gas-liquid systems. In a bubble column, vibration increases the mass transfer ratio by increasing the residence time and phase interfacial area through introducing kinetic buoyancy force (Bjerknes effect and bubble breakup. Previous studies have explored the effect of vibration frequency (f, but minimal effort has focused on the effect of amplitude (A on mass transfer intensification. Thus, the current work experimentally examines bubble size, void fraction, and mass transfer in a bubble column under relatively high amplitude vibration (1.5 mm < A <9.5 mm over a frequency range of 7.5–22.5 Hz. Results of the present work were compared with past studies. The maximum stable bubble size under vibration was scaled using Hinze theory for breakage. Results of this work indicate that vibration frequency exhibits local maxima in both mass transfer and void fraction. Moreover, an optimum amplitude that is independent of vibration frequency was found for mass transfer enhancements. Finally, this work suggests physics-based models to predict void fraction and mass transfer in a vibrating bubble column.

  19. Size characterization by Sedimentation Field Flow Fractionation of silica particles used as food additives

    International Nuclear Information System (INIS)

    Contado, Catia; Ravani, Laura; Passarella, Martina

    2013-01-01

    Graphical abstract: -- Highlights: •Four types of SiO 2 particles were characterized by SdFFF, PCS and EM techniques. •Clusters of 10 nm nanoparticles were found in some SiO 2 samples. •A method was set up to extract SiO 2 particles from food matrices. •The effects of the carrier solution composition on SdFFF separations were evaluated. •Particle size distributions were obtained from SiO 2 particles extracted from foodstuffs. -- Abstract: Four types of SiO 2 , available on the market as additives in food and personal care products, were size characterized using Sedimentation Field Flow Fractionation (SdFFF), SEM, TEM and Photon Correlation Spectroscopy (PCS). The synergic use of the different analytical techniques made it possible, for some samples, to confirm the presence of primary nanoparticles (10 nm) organized in clusters or aggregates of different dimension and, for others, to discover that the available information is incomplete, particularly that regarding the presence of small particles. A protocol to extract the silica particles from a simple food matrix was set up, enriching (0.25%, w w −1 ) a nearly silica-free instant barley coffee powder with a known SiO 2 sample. The SdFFF technique, in conjunction with SEM observations, made it possible to identify the added SiO 2 particles and verify the new particle size distribution. The SiO 2 content of different powdered foodstuffs was determined by graphite furnace atomic absorption spectroscopy (GFAAS); the concentrations ranged between 0.006 and 0.35% (w w −1 ). The protocol to isolate the silica particles was so applied to the most SiO 2 -rich commercial products and the derived suspensions were separated by SdFFF; SEM and TEM observations supported the size analyses while GFAAS determinations on collected fractions permitted element identification

  20. Influence of the molecular structure on indentation size effect in polymers

    International Nuclear Information System (INIS)

    Han, Chung-Souk

    2010-01-01

    Size dependent deformation of polymers has been observed by various researchers in various experimental settings including micro beam bending, foams and indentation testing. Here in this article the indentation size effect in polymers is examined which manifests itself in increased hardness at decreasing indentation depths. Based on previously suggested rationale of size dependent deformation and depth dependent hardness model the depth dependent hardness of various polymers are analyzed. It is found that polymers containing aromatic rings in their molecular structure exhibit depth dependent hardness above the micron length scale. For polymers not containing aromatic rings polymers the indentation size effect starts at smaller indentation depths if they are present at all.

  1. Assessing SOC labile fractions through respiration test, density-size fractionation and thermal analysis - A comparison of methods

    Science.gov (United States)

    Soucemarianadin, Laure; Cécillon, Lauric; Chenu, Claire; Baudin, François; Nicolas, Manuel; Savignac, Florence; Barré, Pierre

    2017-04-01

    Soil organic matter (SOM) is the biggest terrestrial carbon reservoir, storing 3 to 4 times more carbon than the atmosphere. However, despite its major importance for climate regulation SOM dynamics remains insufficiently understood. For instance, there is still no widely accepted method to assess SOM lability. Soil respiration tests and particulate organic matter (POM) obtained by different fractionation schemes have been used for decades and are now considered as classical estimates of very labile and labile soil organic carbon (SOC), respectively. But the pertinence of these methods to characterize SOM turnover can be questioned. Moreover, they are very time-consuming and their reproducibility might be an issue. Alternate ways of determining the labile SOC component are thus well-needed. Thermal analyses have been used to characterize SOM among which Rock-Eval 6 (RE6) analysis of soil has shown promising results in the determination of SOM biogeochemical stability (Gregorich et al., 2015; Barré et al., 2016). Using a large set of samples of French forest soils representing contrasted pedoclimatic conditions, including deep samples (up to 1 m depth), we compared different techniques used for SOM lability assessment. We explored whether results from soil respiration test (10-week laboratory incubations), SOM size-density fractionation and RE6 thermal analysis were comparable and how they were correlated. A set of 222 (respiration test and RE6), 103 (SOM fractionation and RE6) and 93 (respiration test, SOM fractionation and RE6) forest soils samples were respectively analyzed and compared. The comparison of the three methods (n = 93) using a principal component analysis separated samples from the surface (0-10 cm) and deep (40-80 cm) layers, highlighting a clear effect of depth on the short-term persistence of SOC. A correlation analysis demonstrated that, for these samples, the two classical methods of labile SOC determination (respiration and SOM fractionation

  2. The mean-size dependence of the exchange narrowing in molecular J-aggregates

    International Nuclear Information System (INIS)

    Chen Yulu; Zhao Jijun

    2011-01-01

    The effect of segment-size fluctuations on exchange narrowing in a molecular J-aggregate of site-energy disordered distributions is studied using a one-dimensional Frenkel-exciton model. It is found that the segment-size disorder leads to the width of the absorption spectra deviating from the scaling law, σ 4/3 of the site-energy disordered standard deviation σ, being suitable for the system only with the site-energy disorder. In larger σ, the segment-size disorder has little influence on the linear absorption spectra. With increasing segment mean-length, the absorption line width monotonically increases, and then approaches a saturated value. By comparing a system of larger mean-length segment with a smaller one, both with the same segment-size disorder, it is found that the absorption line width of the former is broadened, and the exchange narrowing effect is reduced. The present result shows that the correlation effect can be partially maintained for the system with larger mean-length segment. -- Research Highlights: → Segment fluctuations affect the exchange narrowing of molecular J-aggregates. → The width of the absorption spectra is found to deviate from the scaling law. → Increase in segment size causes increase in the width and then saturates. → Exchange narrowing is reduced for larger mean-size segment. → Correlation can be kept partly in the larger size segment.

  3. Unattached fraction and the size distribution of the radon progeny in indoor air

    International Nuclear Information System (INIS)

    Yamasaki, K.; Shimo, M.

    1992-01-01

    The size-distribution of the aerosol-attached radon progeny and the unattached (cluster) fraction were measured by using a low pressure cascade impactor and a single wire screen in a building of the nuclear facility. The radon concentration at the condition of ventilation 'ON' was about 50 Bq m -3 , but it increased exponentially after ventilation 'OFF' and reached to the saturated concentration of about 600 Bq m -3 . At the condition of low aerosol concentration without additional aerosol, the activity median aerodynamic diameter, the geometric standard deviation and the unattached fraction were, respectively, 0.4 μm, 2.7-2.9 and 0.3-0.5. On the other hand, at the condition of high aerosol concentration with burning a mosquito coil, these were, 0.4 μm, 2.1 and 0.02-0.03. These yield 2.5 times higher radiation dose conversion factors at the low aerosol condition than the high aerosol condition. (author)

  4. Molecular sizes of lichen ice nucleation sites determined by gamma radiation inactivation analysis

    International Nuclear Information System (INIS)

    Kieft, T.L.; Ruscetti, T.

    1992-01-01

    It has previously been shown that some species of lichen fungi contain proteinaceous ice nuclei which are active at temperatures as warm as −2 °C. This experiment was undertaken to determine the molecular sizes of ice nuclei in the lichen fungus Rhizoplaca chrysoleuca and to compare them to bacterial ice nuclei from Pseudomonas syringae. Gamma radiation inactivation analysis was used to determine molecular weights. Radiation inactivation analysis is based on target theory, which states that the likelihood of a molecule being inactivated by gamma rays increases as its size increases. Three different sources of ice nuclei from the lichen R. chrysoleuca were tested: field-collected lichens, extract of lichen fungus, and a pure culture of the fungus R. chrysoleuca. P. syringae strain Cit7 was used as a source of bacterial ice nuclei. Samples were lyophilized, irradiated with gamma doses ranging from 0 to 10.4 Mrads, and then tested for ice nucleation activity using a droplet-freezing assay. Data for all four types of samples were in rough agreement; sizes of nucleation sites increased logarithmically with increasing temperatures of ice nucleation activity. Molecular weights of nucleation sites active between −3 and −4 °C from the bacteria and from the field-collected lichens were approximately 1.0 × 10 6 Da. Nuclei from the lichen fungus and in the lichen extract appeared to be slightly smaller but followed the same log-normal pattern with temperature of ice nucleation activity. The data for both the bacterial and lichen ice nuclei are in agreement with ice nucleation theory which states that the size of ice nucleation sites increases logarithmically as the temperature of nucleation increases linearly. This suggests that although some differences exist between bacterial and lichen ice nucleation sites, their molecular sizes are quite similar

  5. Speciation of copper and zinc in size-fractionated atmospheric particulate matter using total reflection mode X-ray absorption near-edge structure spectrometry

    International Nuclear Information System (INIS)

    Osan, Janos; Meirer, Florian; Groma, Veronika; Toeroek, Szabina; Ingerle, Dieter; Streli, Christina; Pepponi, Giancarlo

    2010-01-01

    The health effects of aerosol depend on the size distribution and the chemical composition of the particles. Heavy metals of anthropogenic origin are bound to the fine aerosol fraction (PM 2.5 ). The composition and speciation of aerosol particles can be variable in time, due to the time-dependence of anthropogenic sources as well as meteorological conditions. Synchrotron-radiation total reflection X-ray fluorescence (SR-TXRF) provides very high sensitivity for characterization of atmospheric particulate matter. X-ray absorption near-edge structure (XANES) spectrometry in conjunction with TXRF detection can deliver speciation information on heavy metals in aerosol particles collected directly on the reflector surface. The suitability of TXRF-XANES for copper and zinc speciation in size-fractionated atmospheric particulate matter from a short sampling period is presented. For high size resolution analysis, atmospheric aerosol particles were collected at different urban and rural locations using a 7-stage May cascade impactor having adapted for sampling on Si wafers. The thin stripe geometry formed by the particulate matter deposited on the May-impactor plates is ideally suited to SR-TXRF. Capabilities of the combination of the May-impactor sampling and TXRF-XANES measurements at HASYLAB Beamline L to Cu and Zn speciation in size-fractionated atmospheric particulate matter are demonstrated. Information on Cu and Zn speciation could be performed for elemental concentrations as low as 140 pg/m 3 . The Cu and Zn speciation in the different size fraction was found to be very distinctive for samples of different origin. Zn and Cu chemical state typical for soils was detected only in the largest particles studied (2-4 μm fraction). The fine particles, however, contained the metals of interest in the sulfate and nitrate forms.

  6. Impact of Fraction Size on Cardiac Mortality in Women Treated With Tangential Radiotherapy for Localized Breast Cancer

    International Nuclear Information System (INIS)

    Marhin, Wilson; Wai, Elaine; Tyldesley, Scott

    2007-01-01

    Purpose: To determine whether fraction size affects the risk of cardiac mortality in women treated with adjuvant radiotherapy (RT) for left-sided breast cancer. Methods and Materials: A population-based retrospective study of women with a diagnosis of localized breast cancer treated with adjuvant RT in British Columbia from 1984 to 2000. Cases were identified from the British Columbia Cancer Agency database. Overall and cardiac-specific survival were compared for women treated with RT for left- vs. right-sided breast cancer. We analyzed the impact of age (≤60 vs. >60 years) at diagnosis and RT fraction size (≤2 vs. >2 Gy) on risk of fatal cardiac events. Results: We identified 3,781 women with left-sided and 3,666 women with right-sided breast cancer who received adjuvant RT. Median follow-up was 7.9 years. There were 52 vs. 47 breast cancer deaths in women treated for left- and right-sided breast cancer, respectively. There was no significant difference in cardiac mortality for women ≤60 or >60 years of age who received adjuvant RT for left-sided vs. right-sided cancer. There was no difference in cardiac mortality for women who received adjuvant RT with fraction sizes ≤2 vs. >2 Gy for left- or right-sided cancer. Conclusions: There was no evidence for increased risk of cardiac mortality in women treated with adjuvant RT after a median follow-up of 7.9 years in our cohort. Hypofractionated adjuvant RT regimens did not significantly increase the risk of cardiac mortality

  7. The heavy metal partition in size-fractions of the fine particles in agricultural soils contaminated by waste water and smelter dust

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Haibo, E-mail: hbzhang@yic.ac.cn [Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003 (China); Luo, Yongming, E-mail: ymluo@yic.ac.cn [Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003 (China); Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008 (China); Makino, Tomoyuki [National Institute for Agro-Environmental Sciences, Tsukuba 3058604 (Japan); Wu, Longhua [Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008 (China); Nanzyo, Masami [Tohoku University, Sendai 9808576 (Japan)

    2013-03-15

    Highlights: ► A continuous flow ultra-centrifugation method has been developed to obtain fine particles from polluted agricultural soil. ► Pollution source affected the heavy metal fractionation in size-fractions by changing soil particle properties. ► The iron oxides affected the distribution of lead species more than other metals in the smelter dust polluted particles. -- Abstract: The partitioning of pollutant in the size-fractions of fine particles is particularly important to its migration and bioavailability in soil environment. However, the impact of pollution sources on the partitioning was seldom addressed in the previous studies. In this study, the method of continuous flow ultra-centrifugation was developed to separate three size fractions (<1 μm, <0.6 μm and <0.2 μm) of the submicron particles from the soil polluted by wastewater and smelter dust respectively. The mineralogy and physicochemical properties of each size-fraction were characterized by X-ray diffraction, transmission electron microscope etc. Total content of the polluted metals and their chemical speciation were measured. A higher enrichment factor of the metals in the fractions of <1 μm or less were observed in the soil contaminated by wastewater than by smelter dust. The organic substance in the wastewater and calcite from lime application were assumed to play an important role in the metal accumulation in the fine particles of the wastewater polluted soil. While the metal accumulation in the fine particles of the smelter dust polluted soil is mainly associated with Mn oxides. Cadmium speciation in both soils is dominated by dilute acid soluble form and lead speciation in the smelter dust polluted soil is dominated by reducible form in all particles. This implied that the polluted soils might be a high risk to human health and ecosystem due to the high bioaccessblity of the metals as well as the mobility of the fine particles in soil.

  8. The heavy metal partition in size-fractions of the fine particles in agricultural soils contaminated by waste water and smelter dust

    International Nuclear Information System (INIS)

    Zhang, Haibo; Luo, Yongming; Makino, Tomoyuki; Wu, Longhua; Nanzyo, Masami

    2013-01-01

    Highlights: ► A continuous flow ultra-centrifugation method has been developed to obtain fine particles from polluted agricultural soil. ► Pollution source affected the heavy metal fractionation in size-fractions by changing soil particle properties. ► The iron oxides affected the distribution of lead species more than other metals in the smelter dust polluted particles. -- Abstract: The partitioning of pollutant in the size-fractions of fine particles is particularly important to its migration and bioavailability in soil environment. However, the impact of pollution sources on the partitioning was seldom addressed in the previous studies. In this study, the method of continuous flow ultra-centrifugation was developed to separate three size fractions (<1 μm, <0.6 μm and <0.2 μm) of the submicron particles from the soil polluted by wastewater and smelter dust respectively. The mineralogy and physicochemical properties of each size-fraction were characterized by X-ray diffraction, transmission electron microscope etc. Total content of the polluted metals and their chemical speciation were measured. A higher enrichment factor of the metals in the fractions of <1 μm or less were observed in the soil contaminated by wastewater than by smelter dust. The organic substance in the wastewater and calcite from lime application were assumed to play an important role in the metal accumulation in the fine particles of the wastewater polluted soil. While the metal accumulation in the fine particles of the smelter dust polluted soil is mainly associated with Mn oxides. Cadmium speciation in both soils is dominated by dilute acid soluble form and lead speciation in the smelter dust polluted soil is dominated by reducible form in all particles. This implied that the polluted soils might be a high risk to human health and ecosystem due to the high bioaccessblity of the metals as well as the mobility of the fine particles in soil

  9. Rare-earths in size fractions and sedimentary rocks of Pennsylvanian-Permian age from the mid-continent of the U.S.A

    International Nuclear Information System (INIS)

    Cullers, R.; Chaudhuri, S.; Kilbane, N.; Koch, R.

    1979-01-01

    The REE (rare-earth) contents of sixty-three <2μ fractions of Pennsylvanian and Permian platform sediment from the mid-continent of the U.S.A. vary considerably (ΣREE = 46 to 439 ppm: La/Lu = 5.2 to 15.7; correlation coefficient of REE with La Lu = 0.89), but the Eu/Sm ratios are nearly constant even in reducing environments that concentrate U (0.16 to 0.22). There is no correlation of REE content to clay mineralogy. Lower Permian <2μ fractions from continental to nearshore marine sediment in Oklahoma have higher REE content (244 to 261 ppm) than marine facies in Kansas (46 to 140 ppm) but <2μ Upper Permian fractions in an evaporite basin have constant but high REE content (288 to 281 ppm; one = 153 ppm). All Pennsylvanian <2μ fractions from Oklahoma have high REE content (209 to 439 ppm), and fractions from Kansas cyclothems have variable REE content (86 to 438 ppm). REE content in the <2μ fractions is inherited from the provenance, but is modified by ion exchange during weathering, transportation or deposition. Exchangable REE tend to be concentrated in clay minerals in basic environments, but removed in acid environments. Sand and gravel-size fractions consist mostly of quartz or chert so their REE content is low (7.9 to 40.6 ppm) although heavy minerals may contribute a large fraction of the REE content. Unexpectedly silt-size fractions have REE contents (74 to 355 ppm) that are usually lower but similar to their <2μ fractions, and the REE contents do not correlate to clay mineral/quartz ratios. (author)

  10. Coupling effects of abiotic and biotic factors on molecular composition of dissolved organic matter in a freshwater wetland

    Energy Technology Data Exchange (ETDEWEB)

    He, Wei [Department of Environment and Energy, Sejong University, Seoul 143-747 (Korea, Republic of); Choi, Ilhwan [Water Analysis and Research Center, K-water, 560 Sintanjin-ro, Daedeok-gu, Daejeon 307-711 (Korea, Republic of); Lee, Jung-Joon [Department of Biological Education, Daegu University, Gyungbuk 712-714 (Korea, Republic of); Hur, Jin, E-mail: jinhur@sejong.ac.kr [Department of Environment and Energy, Sejong University, Seoul 143-747 (Korea, Republic of)

    2016-02-15

    In this study, temporal and spatial variations in five defined molecular size fractions of dissolved organic matter (DOM) were examined for a well preserved wetland (Upo Wetland) and its surrounding areas, and the influencing factors were explored with many biotic and abioic parameters. For each DOM sample, the five size fractions were determined by size-exclusion chromatography coupled with organic carbon detector (SEC-OCD). For 2-year long monthly monitoring, bio-polymers (BP), humic substances (HS), building blocks (BB), low molecular-weight (LMW) neutrals, and LMW acids displayed the median values of 264, 1884, 1070, 1090, and 11 μg-C L{sup −1}, respectively, accounting for 6.2%, 41.7%, 24.5%, 26.4%, and 0.4% of dissolved organic carbon (DOC). The dominant presence of HS indicated that terrestrial input played important roles in DOM composition of the freshwater ecosystem, which contrasted with coastal wetlands in other reports. Both seasonal and periodic patterns in the variations were found only for HS and BB among the size fractions. It was also notable that the sources of HS were seasonally shifted from aquagenic origin in winter to pedogenic origin in summer. The correlations among the size fractions revealed that BB and LMW neutrals might be degradation products from HS and humic-like substances (HS + BB), respectively, while LMW acids, from LMW neutrals. Principle component analysis revealed that the humic-like substances and the aromaticity of DOM were associated with temperature, chlorophyll a, phosphorous, and rainfall, whereas the other fractions and the molecular weight of HS were primarily affected by solar irradiation. Significant correlations between DOM composition and some biotic factors further suggested that DOM may even affect the biological communities, which provides an insight into the potential coupling effects of biotic and abiotic factors on DOM molecular composition in freshwater wetlands. - Highlights: • Humic fractions varied

  11. Coupling effects of abiotic and biotic factors on molecular composition of dissolved organic matter in a freshwater wetland

    International Nuclear Information System (INIS)

    He, Wei; Choi, Ilhwan; Lee, Jung-Joon; Hur, Jin

    2016-01-01

    In this study, temporal and spatial variations in five defined molecular size fractions of dissolved organic matter (DOM) were examined for a well preserved wetland (Upo Wetland) and its surrounding areas, and the influencing factors were explored with many biotic and abioic parameters. For each DOM sample, the five size fractions were determined by size-exclusion chromatography coupled with organic carbon detector (SEC-OCD). For 2-year long monthly monitoring, bio-polymers (BP), humic substances (HS), building blocks (BB), low molecular-weight (LMW) neutrals, and LMW acids displayed the median values of 264, 1884, 1070, 1090, and 11 μg-C L"−"1, respectively, accounting for 6.2%, 41.7%, 24.5%, 26.4%, and 0.4% of dissolved organic carbon (DOC). The dominant presence of HS indicated that terrestrial input played important roles in DOM composition of the freshwater ecosystem, which contrasted with coastal wetlands in other reports. Both seasonal and periodic patterns in the variations were found only for HS and BB among the size fractions. It was also notable that the sources of HS were seasonally shifted from aquagenic origin in winter to pedogenic origin in summer. The correlations among the size fractions revealed that BB and LMW neutrals might be degradation products from HS and humic-like substances (HS + BB), respectively, while LMW acids, from LMW neutrals. Principle component analysis revealed that the humic-like substances and the aromaticity of DOM were associated with temperature, chlorophyll a, phosphorous, and rainfall, whereas the other fractions and the molecular weight of HS were primarily affected by solar irradiation. Significant correlations between DOM composition and some biotic factors further suggested that DOM may even affect the biological communities, which provides an insight into the potential coupling effects of biotic and abiotic factors on DOM molecular composition in freshwater wetlands. - Highlights: • Humic fractions varied

  12. Experimental determination of the unattached radon daughter fraction and dust size distribution in some Canadian uranium mines

    International Nuclear Information System (INIS)

    Bigu, J.; Kirk, J.

    1982-01-01

    The unattached radon daughter fraction has been experimentally determined in some Canadian uranium mines. Two experimental methods have been used, the wire screen method and a diffusion sampler based on Mercer's theory of diffusional deposition on parallel circular plates. Experiments were conducted in 'non-diesel' and 'diesel' areas of the mines, i.e. locations where mining was done with diesel machinery. Unattached fractions ranged from about 2-8 per cent for non-diesel area. For diesel areas the unattached fraction was substantially lower, less than about one per cent. The aerosol concentration in the range 0.0015 - 0.13 μm was measured with a condensation nuclei counter. Dust concentration was determined with conventional samplers. Particle size distribution in the respirable range was determined with a fine particle spectrometer in conjunction with eriometric techniques

  13. Effect of linear alcohol molecular size on the self-assembly of fullerene whiskers

    International Nuclear Information System (INIS)

    Amer, Maher S.; Todd, T. Kyle; Busbee, John D.

    2011-01-01

    Highlights: → The longer the alcohol molecule, the shorter the length of the assembled whisker. → Interaction between alcohol and fullerene solvent is the key factor. → The stronger the alcohol/solvent interaction, the longer the whisker. - Abstract: The recent development of self-assembled fullerene whiskers and wires has created an enormous potential and resolved a serious challenge for utilizing such unique class of carbon material in advanced nano-scale, molecular-based electronic, optical, and thermal devices. In this paper we investigate, the self-assembly of C 60 molecules into one-dimensional whiskers using a series of linear alcohols H(CH 2 ) n OH, with n changing from 1 (methanol) to 3 (isopropyl alcohol), to elucidate the effect of alcohol molecular size on the size distribution of the self-assemble fullerene whiskers. Our results show that the length of the produced fullerene whiskers is affected by the molecular size of the alcohol used in the process. The crucial role played by solvent/alcohol interaction in the assembly process is discussed. In addition, Raman spectroscopy measurements support the notion that the self-assembled whiskers are primarily held by depletion forces and no evidence of fullerene polymerization was observed.

  14. Distribution of volatile and non volatile elements in grain-size fractions of Apollo 17 drive tube 74001/2

    International Nuclear Information System (INIS)

    Kraehenbuehl, U.

    1980-01-01

    A study of four samples of double drive tube 74001/2 originating from 12, 25, 38, and 58 cm depths indicates that the concentrations of major and nonvolatile elements are fairly uniform for the four layers and the individual size fractions, while volatile elements as well as Au and Ir are enriched in the smaller grain-size fractions. It is concluded from the measured Au/Ir ratios and from the absence of a surface enrichment of Co that the material in the drive tube 74001/2 is not the result of an impact of an iron meteorite into a lava lake, but originated in at least three volcanic eruptions. No indication of a later disturbance of the stratigraphy of the layers is observed. Exposure ages of 345,000 and 225,000 years result from Ir deposits for the two layers of 74002

  15. Input related microbial carbon dynamic of soil organic matter in particle size fractions

    Science.gov (United States)

    Gude, A.; Kandeler, E.; Gleixner, G.

    2012-04-01

    This paper investigated the flow of carbon into different groups of soil microorganisms isolated from different particle size fractions. Two agricultural sites of contrasting organic matter input were compared. Both soils had been submitted to vegetation change from C3 (Rye/Wheat) to C4 (Maize) plants, 25 and 45 years ago. Soil carbon was separated into one fast-degrading particulate organic matter fraction (POM) and one slow-degrading organo-mineral fraction (OMF). The structure of the soil microbial community were investigated using phospholipid fatty acids (PLFA), and turnover of single PLFAs was calculated from the changes in their 13C content. Soil enzyme activities involved in the degradation of carbohydrates was determined using fluorogenic MUF (methyl-umbelliferryl phosphate) substrates. We found that fresh organic matter input drives soil organic matter dynamic. Higher annual input of fresh organic matter resulted in a higher amount of fungal biomass in the POM-fraction and shorter mean residence times. Fungal activity therefore seems essential for the decomposition and incorporation of organic matter input into the soil. As a consequence, limited litter input changed especially the fungal community favouring arbuscular mycorrhizal fungi. Altogether, supply and availability of fresh plant carbon changed the distribution of microbial biomass, the microbial community structure and enzyme activities and resulted in different priming of soil organic matter. Most interestingly we found that only at low input the OMF fraction had significantly higher calculated MRT for Gram-positive and Gram-negative bacteria suggesting high recycling of soil carbon or the use of other carbon sources. But on average all microbial groups had nearly similar carbon uptake rates in all fractions and both soils, which contrasted the turnover times of bulk carbon. Hereby the microbial carbon turnover was always faster than the soil organic carbon turnover and higher carbon input

  16. Size characterization by Sedimentation Field Flow Fractionation of silica particles used as food additives

    Energy Technology Data Exchange (ETDEWEB)

    Contado, Catia, E-mail: Catia.Contado@unife.it [University of Ferrara, Department of Chemical and Pharmaceutical Sciences, via L. Borsari, 46, 44121 Ferrara (Italy); Ravani, Laura [University of Ferrara, Department of Life Sciences and Biotechnologies, via L. Borsari, 46, 44121 Ferrara (Italy); Passarella, Martina [University of Ferrara, Department of Chemical and Pharmaceutical Sciences, via L. Borsari, 46, 44121 Ferrara (Italy)

    2013-07-25

    Graphical abstract: -- Highlights: •Four types of SiO{sub 2} particles were characterized by SdFFF, PCS and EM techniques. •Clusters of 10 nm nanoparticles were found in some SiO{sub 2} samples. •A method was set up to extract SiO{sub 2} particles from food matrices. •The effects of the carrier solution composition on SdFFF separations were evaluated. •Particle size distributions were obtained from SiO{sub 2} particles extracted from foodstuffs. -- Abstract: Four types of SiO{sub 2}, available on the market as additives in food and personal care products, were size characterized using Sedimentation Field Flow Fractionation (SdFFF), SEM, TEM and Photon Correlation Spectroscopy (PCS). The synergic use of the different analytical techniques made it possible, for some samples, to confirm the presence of primary nanoparticles (10 nm) organized in clusters or aggregates of different dimension and, for others, to discover that the available information is incomplete, particularly that regarding the presence of small particles. A protocol to extract the silica particles from a simple food matrix was set up, enriching (0.25%, w w{sup −1}) a nearly silica-free instant barley coffee powder with a known SiO{sub 2} sample. The SdFFF technique, in conjunction with SEM observations, made it possible to identify the added SiO{sub 2} particles and verify the new particle size distribution. The SiO{sub 2} content of different powdered foodstuffs was determined by graphite furnace atomic absorption spectroscopy (GFAAS); the concentrations ranged between 0.006 and 0.35% (w w{sup −1}). The protocol to isolate the silica particles was so applied to the most SiO{sub 2}-rich commercial products and the derived suspensions were separated by SdFFF; SEM and TEM observations supported the size analyses while GFAAS determinations on collected fractions permitted element identification.

  17. Effect of the growth temperature and the AlN mole fraction on In incorporation and properties of quaternary III-nitride layers grown by molecular beam epitaxy

    International Nuclear Information System (INIS)

    Fernandez-Garrido, S.; Pereiro, J.; Munoz, E.; Calleja, E.; Redondo-Cubero, A.; Gago, R.; Bertram, F.; Christen, J.; Luna, E.; Trampert, A.

    2008-01-01

    Indium incorporation into wurtzite (0001)-oriented In x Al y Ga 1-x-y N layers grown by plasma-assisted molecular beam epitaxy was studied as a function of the growth temperature (565-635 deg. C) and the AlN mole fraction (0.01< y<0.27). The layer stoichiometry was determined by Rutherford backscattering spectrometry (RBS). RBS shows that indium incorporation decreased continuously with increasing growth temperature due to thermally enhanced dissociation of In-N bonds and for increasing AlN mole fractions. High resolution x-ray diffraction and transmission electron microscopy (TEM) measurements did not show evidence of phase separation. The mosaicity of the quaternary layers was found to be mainly determined by the growth temperature and independent on alloy composition within the range studied. However, depending on the AlN mole fraction, nanometer-sized composition fluctuations were detected by TEM. Photoluminescence spectra showed a single broad emission at room temperature, with energy and bandwidth S- and W-shaped temperature dependences typical of exciton localization by alloy inhomogeneities. Cathodoluminescence measurements demonstrated that the alloy inhomogeneities, responsible of exciton localization, occur on a lateral length scale below 150 nm, which is corroborated by TEM

  18. Size distributions of hydrophilic and hydrophobic fractions of water-soluble organic carbon in an urban atmosphere in Hong Kong

    Science.gov (United States)

    Wang, Nijing; Yu, Jian Zhen

    2017-10-01

    Water-soluble organic carbon (WSOC) is a significant part of ambient aerosol and plays an active role in contributing to aerosol's effect on visibility degradation and radiation budget through its interactions with atmospheric water. Size-segregated aerosol samples in the range of 0.056-18 μm were collected using a ten-stage impactor sampler at an urban site in Hong Kong over one-year period. The WSOC samples were separated into hydrophilic (termed WSOC_h) and hydrophobic fractions (i.e., the humic-like substances (HULIS) fraction) through solid-phase extraction procedure. Carbon in HULIS accounted for 40 ± 14% of WSOC. The size distribution of HULIS was consistently characterized in all seasons with a dominant droplet mode (46-71%) and minor condensation (9.0-18%) and coarse modes (20-35%). The droplet mode had a mass median aerodynamic diameter in the range of 0.7-0.8 μm. This size mode showed the largest seasonal variation in abundance, lowest in the summer (0.41 μg/m3) and highest in the winter (3.3 μg/m3). WSOC_h also had a dominant droplet mode, but was more evenly distributed among different size modes. Inter-species correlations within the same size mode suggest that the condensation-mode HULIS was partly associated with combustion sources and the droplet-mode was strongly associated with secondary sulfate formation and biomass burning particle aging processes. There is evidence to suggest that the coarse-mode HULIS largely originated from coagulation of condensation-mode HULIS with coarse soil/sea salt particles. The formation process and possible sources of WSOC_h was more complicated and multiple than HULIS and need further investigation. Our measurements indicate that WSOC components contributed a dominant fraction of water-soluble aerosol mass in particles smaller than 0.32 μm while roughly 20-30% in the larger particles.

  19. Molecular-Sized DNA or RNA Sequencing Machine | NCI Technology Transfer Center | TTC

    Science.gov (United States)

    The National Cancer Institute's Gene Regulation and Chromosome Biology Laboratory is seeking statements of capability or interest from parties interested in collaborative research to co-develop a molecular-sized DNA or RNA sequencing machine.

  20. Fractionation and immunochemical characterization of Prosopis juliflora pollen allergen.

    Science.gov (United States)

    Thakur, I S

    1986-12-01

    Prosopis juliflora pollen grain crude extract gave six different molecular weight fractions varied from 81,000 to 13,000 dalton on Sephadex G-100 gel filtration. The purity of fractions of Prosopis juliflora pollen extract were checked by polyacrylamide gel electrophoresis. The fraction had an molecular weight 20,000 dalton showed four absorption maxima whereas other fractions had single absorption maxima. Allergenic activity and nature of allergens were evaluated by in vitro Radioallergosorbent test and in vivo Passive Cutaneous Anaphylaxis test. All these tests indicated that most allergenic fractions were in the 20,000 molecular weight.

  1. Magnetic diffusion and ionization fractions in dense molecular clouds: The role of charged grains

    International Nuclear Information System (INIS)

    Elmegreen, B.G.

    1979-01-01

    The ionization fraction is determined for dense molecular clouds by considering charge exchange, dissociative recombination, radiative recombination, and collisions between grains and charged species. The inclusion of grains tends to lower the ionization fraction for a given cosmic-ray ionization rate zeta and metal depletion delta. The observed values of the ionization fractions in dense cloud cores (i.e., -8 ) are obtained for reasonable values of zeta=10 -17 s -1 and delta=0.1.For temperatures less than 30 K, each grain alternates in charge between -e and 0. The resulting motion of the grains in a self-graviting cloud that contains a magnetic field will be periodic; their response to electromagnetic forces will depend on their instantaneous charge. This complex motion is calculated in order to determine the average viscous force between the grains and the neutral molecules in the cloud. The grain-neutral viscous force combines with the ion-neutral viscous force to regulate the motion of the neutral molecules relative to the magnetic field. The resultant The result neutral drift leads to a diffusion of the magnetic field out of the cloud. The time scale for this diffusion is calculated. Grain-related viscous forces dominate ion-related forces for ionization fractions less than 5 x 10 -8 . The magnetic diffusion time in a self-gravitating cloud that is supported by an internal magnetic field is shown to be at least 10 times larger thanthe free-fall time even when the ionization fraction is much less than 10 -8

  2. Investigation of adsorptive fractionation of humic acid on graphene oxide using fluorescence EEM-PARAFAC.

    Science.gov (United States)

    Lee, Bo-Mi; Seo, Young-Soo; Hur, Jin

    2015-04-15

    In this study, the adsorptive fractionation of a humic acid (HA, Elliott soil humic acid) on graphene oxide (GO) was examined at pH 4 and 6 using absorption spectroscopy and fluorescence excitation-emission matrix (EEM)-parallel factor analysis (PARAFAC). The extent of the adsorption was greater at pH 4.0 than at pH 6.0. Aromatic molecules within the HA were preferentially adsorbed onto the GO surface, and the preferential adsorption was more pronounced at pH 6, which is above the zero point of charge of GO. A relative ratio of two PARAFAC humic-like components (ex/em maxima at 270/510 nm and at (250, 265)/440 nm) presented an increasing trend with larger sizes of ultrafiltered humic acid fractions, suggesting the potential for using fluorescence EEM-PARAFAC for tracking the changes in molecular sizes of aromatic HA molecules. The individual adsorption behaviors of the two humic-like components revealed that larger sized aromatic components within HA had a higher adsorption affinity and more nonlinear isotherms compared to smaller sized fractions. Our results demonstrated that adsorptive fractionation of HA occurred on the GO surface with respect to their aromaticity and the sizes, but the degree was highly dependent on solution pH as well as the amount of adsorbed HS (or available surface sites). The observed adsorption behaviors were reasonably explained by a combination of different mechanisms previously suggested. Copyright © 2015 Elsevier Ltd. All rights reserved.

  3. Molecular fingerprinting of complex grass allergoids: size assessments reveal new insights in epitope repertoires and functional capacities.

    Science.gov (United States)

    Starchenka, S; Bell, A J; Mwange, J; Skinner, M A; Heath, M D

    2017-01-01

    Subcutaneous allergen immunotherapy (SCIT) is a well-documented treatment for allergic disease which involves injections of native allergen or modified (allergoid) extracts. The use of allergoid vaccines is a growing sector of the allergy immunotherapy market, associated with shorter-course therapy. The aim of this study was the structural and immunological characterisation of group 1 (Lol p 1) IgG-binding epitopes within a complex mix grass allergoid formulation containing rye grass. HP-SEC was used to resolve a mix grass allergoid preparation of high molecular weight into several distinct fractions with defined molecular weight and elution profiles. Allergen verification of the HP-SEC allergoid fractions was confirmed by mass spectrometry analysis. IgE and IgG immunoreactivity of the allergoid preparations was explored and Lol p 1 specific IgG-binding epitopes mapped by SPOT synthesis technology (PepSpot™) with structural analysis based on a Lol p 1 homology model. Grass specific IgE reactivity of the mix grass modified extract (allergoid) was diminished in comparison with the mix grass native extract. A difference in IgG profiles was observed between an intact mix grass allergoid preparation and HP-SEC allergoid fractions, which indicated enhancement of accessible reactive IgG epitopes across size distribution profiles of the mix grass allergoid formulation. Detailed analysis of the epitope specificity showed retention of six Lol p 1 IgG-binding epitopes in the mix grass modified extract. The structural and immunological changes which take place following the grass allergen modification process was further unravelled revealing distinct IgG immunological profiles. All epitopes were mapped on the solvent exposed area of Lol p 1 homology model accessible for IgG binding. One of the epitopes was identified as an 'immunodominant' Lol p 1 IgG-binding epitope (62-IFKDGRGCGSCFEIK-76) and classified as a novel epitope. The results from this study support the concept

  4. PHIBSS: Unified Scaling Relations of Gas Depletion Time and Molecular Gas Fractions

    Science.gov (United States)

    Tacconi, L. J.; Genzel, R.; Saintonge, A.; Combes, F.; García-Burillo, S.; Neri, R.; Bolatto, A.; Contini, T.; Förster Schreiber, N. M.; Lilly, S.; Lutz, D.; Wuyts, S.; Accurso, G.; Boissier, J.; Boone, F.; Bouché, N.; Bournaud, F.; Burkert, A.; Carollo, M.; Cooper, M.; Cox, P.; Feruglio, C.; Freundlich, J.; Herrera-Camus, R.; Juneau, S.; Lippa, M.; Naab, T.; Renzini, A.; Salome, P.; Sternberg, A.; Tadaki, K.; Übler, H.; Walter, F.; Weiner, B.; Weiss, A.

    2018-02-01

    This paper provides an update of our previous scaling relations between galaxy-integrated molecular gas masses, stellar masses, and star formation rates (SFRs), in the framework of the star formation main sequence (MS), with the main goal of testing for possible systematic effects. For this purpose our new study combines three independent methods of determining molecular gas masses from CO line fluxes, far-infrared dust spectral energy distributions, and ∼1 mm dust photometry, in a large sample of 1444 star-forming galaxies between z = 0 and 4. The sample covers the stellar mass range log(M */M ⊙) = 9.0–11.8, and SFRs relative to that on the MS, δMS = SFR/SFR(MS), from 10‑1.3 to 102.2. Our most important finding is that all data sets, despite the different techniques and analysis methods used, follow the same scaling trends, once method-to-method zero-point offsets are minimized and uncertainties are properly taken into account. The molecular gas depletion time t depl, defined as the ratio of molecular gas mass to SFR, scales as (1 + z)‑0.6 × (δMS)‑0.44 and is only weakly dependent on stellar mass. The ratio of molecular to stellar mass μ gas depends on (1+z{)}2.5× {(δ {MS})}0.52× {({M}* )}-0.36, which tracks the evolution of the specific SFR. The redshift dependence of μ gas requires a curvature term, as may the mass dependences of t depl and μ gas. We find no or only weak correlations of t depl and μ gas with optical size R or surface density once one removes the above scalings, but we caution that optical sizes may not be appropriate for the high gas and dust columns at high z. Based on observations of an IRAM Legacy Program carried out with the NOEMA, operated by the Institute for Radio Astronomy in the Millimetre Range (IRAM), which is funded by a partnership of INSU/CNRS (France), MPG (Germany), and IGN (Spain).

  5. CONSOLIDATION AND COMPACTION OF POWDER MIXTURES .2. BINARY-MIXTURES OF DIFFERENT PARTICLE-SIZE FRACTIONS OF ALPHA-LACTOSE MONOHYDRATE

    NARCIS (Netherlands)

    RIEPMA, KA; VEENSTRA, J; DEBOER, AH; BOLHUIS, GK; ZUURMAN, K; LERK, CF; VROMANS, H

    1991-01-01

    Binary mixtures of different particle size fractions of alpha-lactose monohydrate were compacted into tablets. The results showed decreased crushing strengths and decreased internal specific surface areas of the tablets as compared with the values calculated by linear interpolation of the data

  6. Molecular characterization and bio-functional property determination using SDS-PAGE and RP-HPLC of protein fractions from two Nigella species.

    Science.gov (United States)

    Alu'datt, Muhammad H; Rababah, Taha; Alhamad, Mohammad N; Alodat, Moh'd; Al-Mahasneh, Majdi A; Gammoh, Sana; Ereifej, Khalil; Almajwal, Ali; Kubow, Stan

    2017-09-01

    This study aimed to investigate the molecular and bio-functional properties of protein fractions from Nigella damascena and Nigella arvensis, including the albumin, globulin, glutein-1, glutein-2 and prolamin fractions. Protein subunits were not observed in globulin and prolamin fractions. No peaks appeared in RP-HPLC chromatograms of globulin for either species. Two predominant peaks were observed in the RP-HPLC profiles of all protein fractions. Proteins separated by RP-HPLC have potential inhibitory and antioxidant activities in all fractions. Optimum ACE-inhibitory and antioxidant activities of proteins separated by RP-HPLC were observed in glutein-2 and albumin, respectively, for both species. For pepsin and combined pepsin-trypsin hydrolyses, the highest degree of hydrolysis (DH) was obtained in glutein-2 fraction of Nigella arvensis. Highest ACE-inhibitory activity of hydrolyzed protein fractions was found at 4h via pepsin hydrolysis in globulin fraction of Nigella damascena. Highest antioxidant activities of hydrolyzed protein fractions were found in glutelin-2 for both species. Copyright © 2017 Elsevier Ltd. All rights reserved.

  7. Structural origin of fractional Stokes-Einstein relation in glass-forming liquids.

    Science.gov (United States)

    Pan, Shaopeng; Wu, Z W; Wang, W H; Li, M Z; Xu, Limei

    2017-01-06

    In many glass-forming liquids, fractional Stokes-Einstein relation (SER) is observed above the glass transition temperature. However, the origin of such phenomenon remains elusive. Using molecular dynamics simulations, we investigate the break- down of SER and the onset of fractional SER in a model of metallic glass-forming liquid. We find that SER breaks down when the size of the largest cluster consisting of trapped atoms starts to increase sharply at which the largest cluster spans half of the simulations box along one direction, and the fractional SER starts to follows when the largest cluster percolates the entire system and forms 3-dimentional network structures. Further analysis based on the percolation theory also confirms that percolation occurs at the onset of the fractional SER. Our results directly link the breakdown of the SER with structure inhomogeneity and onset of the fraction SER with percolation of largest clusters, thus provide a possible picture for the break- down of SER and onset of fractional SER in glass-forming liquids, which is is important for the understanding of the dynamic properties in glass-forming liquids.

  8. Investigation of size-fractionated urban aerosol and trace gases in Budapest by nuclear-related and other analytical techniques

    International Nuclear Information System (INIS)

    Salma, I.; Maenhaut, W.; Zemplen-Papp, E.; Bobvos, J.

    1998-01-01

    An air pollution study was conducted at two urban residential sites in Budapest (one representing the downtown, the other representing a wooded suburb) from 9 April till 17 May 1996. Size-fractionated aerosol samples were simultaneously collected on a daily basis, and meteorological conditions were recorded at both sampling sites. Stacked filter units (SFUs) with an upper size inlet cut-off were used as sampling device separating the urban aerosol into a coarse (about 10-2 μm equivalent aerodynamic diameter, EAD) and a fine ( 2 , SO 2 , CO and the total mass of the suspended particulate matter were measured every half hour at one of the sampling sites by commercial equipment. The SFU filters were analyzed by gravimetry for the total particle mass, by a light reflectance technique for black carbon, by particle-induced X-ray emission analysis and instrumental neutron activation analysis for elemental composition (in combination for up to 40-45 elements). The analytical results were used for characterizing the levels and the multi-elemental composition of the urban aerosol at both sampling sites and for both size fractions, for investigating the atmospheric concentrations and diurnal variation of some criteria pollutants, and for comparing the time-trends of aerosols and trace gases. Identification of the major source types of the aerosol fractions and trace gases, and assessment of the relative contribution from these sources are to be accomplished by multivariate receptor modeling. The present paper reports on the status of the air pollution study, and gives a discussion of the results

  9. Detecting very low allele fraction variants using targeted DNA sequencing and a novel molecular barcode-aware variant caller.

    Science.gov (United States)

    Xu, Chang; Nezami Ranjbar, Mohammad R; Wu, Zhong; DiCarlo, John; Wang, Yexun

    2017-01-03

    Detection of DNA mutations at very low allele fractions with high accuracy will significantly improve the effectiveness of precision medicine for cancer patients. To achieve this goal through next generation sequencing, researchers need a detection method that 1) captures rare mutation-containing DNA fragments efficiently in the mix of abundant wild-type DNA; 2) sequences the DNA library extensively to deep coverage; and 3) distinguishes low level true variants from amplification and sequencing errors with high accuracy. Targeted enrichment using PCR primers provides researchers with a convenient way to achieve deep sequencing for a small, yet most relevant region using benchtop sequencers. Molecular barcoding (or indexing) provides a unique solution for reducing sequencing artifacts analytically. Although different molecular barcoding schemes have been reported in recent literature, most variant calling has been done on limited targets, using simple custom scripts. The analytical performance of barcode-aware variant calling can be significantly improved by incorporating advanced statistical models. We present here a highly efficient, simple and scalable enrichment protocol that integrates molecular barcodes in multiplex PCR amplification. In addition, we developed smCounter, an open source, generic, barcode-aware variant caller based on a Bayesian probabilistic model. smCounter was optimized and benchmarked on two independent read sets with SNVs and indels at 5 and 1% allele fractions. Variants were called with very good sensitivity and specificity within coding regions. We demonstrated that we can accurately detect somatic mutations with allele fractions as low as 1% in coding regions using our enrichment protocol and variant caller.

  10. Newer methods for the characterization of higher molecular mass coal derivatives

    International Nuclear Information System (INIS)

    Bartle, K.D.

    1983-01-01

    Recent developments in a number of areas in the analytical chemistry of higher molecular mass coal derivatives are critically reviewed, viz. supercritical fluid chromatography, size-exclusion chromatography, charge-transfer fractionation, nmr spectroscopy, mass spectrometry and electrochemical analysis. (orig.) [de

  11. Radiation-induced rib fracture after stereotactic body radiotherapy with a total dose of 54-56 Gy given in 9-7 fractions for patients with peripheral lung tumor: impact of maximum dose and fraction size.

    Science.gov (United States)

    Aoki, Masahiko; Sato, Mariko; Hirose, Katsumi; Akimoto, Hiroyoshi; Kawaguchi, Hideo; Hatayama, Yoshiomi; Ono, Shuichi; Takai, Yoshihiro

    2015-04-22

    Radiation-induced rib fracture after stereotactic body radiotherapy (SBRT) for lung cancer has been recently reported. However, incidence of radiation-induced rib fracture after SBRT using moderate fraction sizes with a long-term follow-up time are not clarified. We examined incidence and risk factors of radiation-induced rib fracture after SBRT using moderate fraction sizes for the patients with peripherally located lung tumor. During 2003-2008, 41 patients with 42 lung tumors were treated with SBRT to 54-56 Gy in 9-7 fractions. The endpoint in the study was radiation-induced rib fracture detected by CT scan after the treatment. All ribs where the irradiated doses were more than 80% of prescribed dose were selected and contoured to build the dose-volume histograms (DVHs). Comparisons of the several factors obtained from the DVHs and the probabilities of rib fracture calculated by Kaplan-Meier method were performed in the study. Median follow-up time was 68 months. Among 75 contoured ribs, 23 rib fractures were observed in 34% of the patients during 16-48 months after SBRT, however, no patients complained of chest wall pain. The 4-year probabilities of rib fracture for maximum dose of ribs (Dmax) more than and less than 54 Gy were 47.7% and 12.9% (p = 0.0184), and for fraction size of 6, 7 and 8 Gy were 19.5%, 31.2% and 55.7% (p = 0.0458), respectively. Other factors, such as D2cc, mean dose of ribs, V10-55, age, sex, and planning target volume were not significantly different. The doses and fractionations used in this study resulted in no clinically significant rib fractures for this population, but that higher Dmax and dose per fraction treatments resulted in an increase in asymptomatic grade 1 rib fractures.

  12. The size distribution of dissolved uranium in natural waters

    International Nuclear Information System (INIS)

    Mann, D.K.; Wong, G.T.F.

    1987-01-01

    The size distribution of dissolved uranium in natural waters is poorly known. Some fraction of dissolved uranium is known to associate with organic matter which had a wide range of molecular weights. The presence of inorganic colloidal uranium has not been reported. Ultrafiltration has been used to quantify the size distribution of a number of elements, such as dissolved organic carbon, selenium, and some trace metals, in both the organic and/or the inorganic forms. The authors have applied this technique to dissolved uranium and the data are reported here

  13. Adaptive fractionation therapy: I. Basic concept and strategy

    International Nuclear Information System (INIS)

    Lu Weiguo; Chen Mingli; Chen Quan; Ruchala, Kenneth; Olivera, Gustavo

    2008-01-01

    Radiotherapy is fractionized to increase the therapeutic ratio. Fractionation in conventional treatment is determined as part of the prescription, and a fixed fraction size is used for the whole course of treatment. Due to patients' day-to-day variations on the relative distance between the tumor and the organs at risk (OAR), a better therapeutic ratio may be attained by using an adaptive fraction size. Intuitively, we want to use a larger fraction size when OAR and the tumor are far apart and a smaller fraction size when OAR and the tumor are close to each other. The concept and strategies of adaptive fractionation therapy (AFT) are introduced in this paper. AFT is an on-line adaptive technique that utilizes the variations of internal structures to get optimal OAR sparing. Changes of internal structures are classified as different configurations according to their feasibility to the radiation delivery. A priori knowledge is used to describe the probability distribution of these configurations. On-line processes include identifying the configuration via daily image guidance and optimizing the current fraction size. The optimization is modeled as a dynamic linear programming problem so that at the end of the treatment course, the tumor receives the same planned dose while OAR receives less dose than the regular fractionation delivery. Extensive simulations, which include thousands of treatment courses with each course consisting of 40 fractions, are used to test the efficiency and robustness of the presented technique. The gains of OAR sparing depend on the variations on configurations and the bounds of the fraction size. The larger the variations and the looser the bounds are, the larger the gains will be. Compared to the conventional fractionation technique with 2 Gy/fraction in 40 fractions, for a 20% variation on tumor-OAR configurations and [1 Gy, 3 Gy] fraction size bounds, the cumulative OAR dose with adaptive fractionation is 3-8 Gy, or 7-20% less than that

  14. Leaching behavior of U, Mn, Sr, and Pb from different particle-size fractions of uranium mill tailings.

    Science.gov (United States)

    Liu, Bo; Peng, Tongjiang; Sun, Hongjuan

    2017-06-01

    Pollution by the release of heavy metals from tailings constitutes a potential threat to the environment. To characterize the processes governing the release of Mn, Sr, Pb, and U from the uranium mill tailings, a dynamic leaching test was applied for different size of uranium mill tailings samples. Inductively coupled plasma atomic emission spectroscopy (ICP-AES) and inductively coupled plasma mass spectrometry (ICP-MS) were performed to determine the content of Mn, Sr, Pb, and U in the leachates. The release of mobile Mn, Sr, Pb, and U fraction was slow, being faster in the initial stage and then attained a near steady-state condition. The experimental results demonstrate that the release of Mn, Sr, Pb, and U from uranium mill tailings with different size fractions is controlled by a variety of mechanisms. Surface wash-off is the release mechanism for Mn. The main release mechanism of Sr and Pb is the dissolution in the initial leaching stage. For U, a mixed process of wash-off and diffusion is the controlling mechanism.

  15. Low-molecular-weight color pI markers to monitor on-line the peptide focusing process in OFFGEL fractionation

    Czech Academy of Sciences Publication Activity Database

    Michelland, S.; Bourgoin-Voillard, S.; Cunin, V.; Tollance, A.; Bertolino, P.; Šlais, Karel; Seve, M.

    2017-01-01

    Roč. 38, č. 16 (2017), s. 2034-2041 ISSN 0173-0835 Institutional support: RVO:68081715 Keywords : iTRAQ labeling * low- molecular -weight color pI markers * peptides OFFGEL fractionation Subject RIV: CB - Analytical Chemistry, Separation OBOR OECD: Analytical chemistry Impact factor: 2.744, year: 2016

  16. Low-molecular-weight color pI markers to monitor on-line the peptide focusing process in OFFGEL fractionation

    Czech Academy of Sciences Publication Activity Database

    Michelland, S.; Bourgoin-Voillard, S.; Cunin, V.; Tollance, A.; Bertolino, P.; Šlais, Karel; Seve, M.

    2017-01-01

    Roč. 38, č. 16 (2017), s. 2034-2041 ISSN 0173-0835 Institutional support: RVO:68081715 Keywords : iTRAQ labeling * low-molecular-weight color pI markers * peptides OFFGEL fractionation Subject RIV: CB - Analytical Chemistry, Separation OBOR OECD: Analytical chemistry Impact factor: 2.744, year: 2016

  17. Maximizing Tumor Immunity With Fractionated Radiation

    International Nuclear Information System (INIS)

    Schaue, Dörthe; Ratikan, Josephine A.; Iwamoto, Keisuke S.; McBride, William H.

    2012-01-01

    Purpose: Technologic advances have led to increased clinical use of higher-sized fractions of radiation dose and higher total doses. How these modify the pathways involved in tumor cell death, normal tissue response, and signaling to the immune system has been inadequately explored. Here we ask how radiation dose and fraction size affect antitumor immunity, the suppression thereof, and how this might relate to tumor control. Methods and Materials: Mice bearing B16-OVA murine melanoma were treated with up to 15 Gy radiation given in various-size fractions, and tumor growth followed. The tumor-specific immune response in the spleen was assessed by interferon-γ enzyme-linked immunospot (ELISPOT) assay with ovalbumin (OVA) as the surrogate tumor antigen and the contribution of regulatory T cells (Tregs) determined by the proportion of CD4 + CD25 hi Foxp3 + T cells. Results: After single doses, tumor control increased with the size of radiation dose, as did the number of tumor-reactive T cells. This was offset at the highest dose by an increase in Treg representation. Fractionated treatment with medium-size radiation doses of 7.5 Gy/fraction gave the best tumor control and tumor immunity while maintaining low Treg numbers. Conclusions: Radiation can be an immune adjuvant, but the response varies with the size of dose per fraction. The ultimate challenge is to optimally integrate cancer immunotherapy into radiation therapy.

  18. Molecular effects of fractional carbon dioxide laser resurfacing on photodamaged human skin.

    Science.gov (United States)

    Reilly, Michael J; Cohen, Marc; Hokugo, Akishige; Keller, Gregory S

    2010-01-01

    Objective To elucidate the sequential changes in protein expression that play a role in the clinically beneficial results seen with fractional carbon dioxide (CO(2)) laser resurfacing of the face and neck. Methods Nine healthy volunteers were recruited for participation from the senior author's facial plastic surgery practice. After informed consent was obtained, each volunteer underwent a 2-mm punch biopsy from a discrete area of infra-auricular neck skin prior to laser treatment. Patients then immediately underwent laser resurfacing of photodamaged face and neck skin at a minimal dose (30 W for 0.1 second) with the Pixel Perfect fractional CO(2) laser. On completion of the treatment, another biopsy specimen was taken adjacent to the first site. Additional biopsy specimens were subsequently taken from adjacent skin at 2 of 3 time points (day 7, day 14, or day 21). RNA was extracted from the specimens, and reverse transcriptase-polymerase chain reaction and protein microarray analysis were performed. Comparisons were then made between time points using pairwise comparison testing. Results We found statistically significant changes in the gene expression of several matrix metalloproteinases (MMPs). The data demonstrate a consistent up-regulation of MMPs 1, 3, 9, and 13, all of which have been previously reported for fully ablative CO(2) laser resurfacing. There was also a statistically significant increase in MMP-10 and MMP-11 levels in this data set. Conclusion This study suggests that the molecular mechanisms of action are similar for both fractional and fully ablative CO(2) laser resurfacing.

  19. The effect of grain size and surface area on organic matter, lignin and carbohydrate concentration, and molecular compositions in Peru Margin sediments

    Science.gov (United States)

    Bergamaschi, Brian A.; Tsamakis, Elizabeth; Keil, Richard G.; Eglinton, Timothy I.; Montluçon, Daniel B.; Hedges, John I.

    1997-03-01

    A C-rich sediment sample from the Peru Margin was sorted into nine hydrodynamically-determined grain size fractions to explore the effect of grain size distribution and sediment surface area on organic matter content and composition. The neutral monomeric carbohydrate composition, lignin oxidation product yields, total organic carbon, and total nitrogen contents were determined independently for each size fraction, in addition to sediment surface area and abundance of biogenic opal. The percent organic carbon and percent total nitrogen were strongly related to surface area in these sediments. In turn, the distribution of surface area closely followed mass distribution among the textural size classes, suggesting hydrodynamic controls on grain size also control organic carbon content. Nevertheless, organic compositional distinctions were observed between textural size classes. Total neutral carbohydrate yields in the Peru Margin sediments were found to closely parallel trends in total organic carbon, increasing in abundance among grain size fractions in proportion to sediment surface area. Coincident with the increases in absolute abundance, rhamnose and mannose increased as a fraction of the total carbohydrate yield in concert with surface area, indicating these monomers were preferentially represented in carbohydrates associated with surfaces. Lignin oxidation product yields varied with surface area when normalized to organic carbon, suggesting that the terrestrially-derived component may be diluted by sorption of marine derived material. Lignin-based parameters suggest a separate source for terrestrially derived material associated with sand-size material as opposed to that associated with silts and clays.

  20. Analysis of humic colloid borne trace elements by flow field-flow fractionation, gel permeation chromatography and icp-mass spectrometry

    International Nuclear Information System (INIS)

    Ngo, Manh Thang; Beck, H.P; Geckeis, H.; Kim, J.I.

    1999-01-01

    Groundwater samples containing aquatic humic substances are analyzed by flow field- flow fractionation (FFFF) and gel permeation chromatography (GPC). Natural concentrations of U, Th and rare earth elements (REE) in a size-fractionated groundwater sample are analyzed by on-line coupling of inductively coupled plasma-mass spectrometry (ICP-MS) to either FFFF or GPC. The uranium, thorium, and REE are found to be quantitatively attached to colloidal species in the investigated groundwater sample. Their distribution in different colloid size fractions, however, is quite heterogeneous. Both, FFFF and GPC reveal that Th and REE are preferentially located in the size fraction > 50 kDalton. U is also attached to low molecular weight humic acid, similar to Fe and Al. This finding could be qualitatively reproduced by sequential ultrafiltration. The results are interpreted in terms of different binding mechanisms for the individual elements in the heterogeneous humic macromolecules. The inclusion of actinides into larger aggregates of aquatic humic acid might explain the considerable kinetic hindrance of actinide-humic acid dissociation reactions described in the literature. (authors)

  1. Antioxidant activity of rosemary essential oil fractions obtained by molecular distillation and their effect on oxidative stability of sunflower oil.

    Science.gov (United States)

    Mezza, Gabriela N; Borgarello, Ana V; Grosso, Nelson R; Fernandez, Héctor; Pramparo, María C; Gayol, María F

    2018-03-01

    The objective of this study was to evaluate the antioxidant activity of rosemary essential oil fractions obtained by molecular distillation (MD) and investigate their effect on the oxidative stability of sunflower oil. MD fractions were prepared in a series of low-pressure stages where rosemary essential oil was the first feed. Subsequently, a distillate (D1) and residue (R1) were obtained and the residue fraction from the previous stage used as the feed for the next. The residue fractions had the largest capacity to capture free radicals, and the lowest peroxide values, conjugated dienes and conjugated trienes. The antioxidant activity of the fractions was due to oxygenated monoterpenes, specifically α-terpineol and cis-sabinene hydrate. Oxidative stability results showed the residues (R1 and R4) and butylated hydroxytoluene had greater antioxidant activity than either the distillate fractions or original rosemary essential oil. The residue fractions obtained by short path MD of rosemary essential oil could be used as a natural antioxidants by the food industry. Copyright © 2017. Published by Elsevier Ltd.

  2. Influence of different nominal molecular weight fractions of humic acids on phenol oxidation by permanganate.

    Science.gov (United States)

    He, Di; Guan, Xiaohong; Ma, Jun; Yu, Min

    2009-11-01

    The effects of humic acid (HA) and its different nominal molecular weight (NMW) fractions on the phenol oxidation by permanganate were studied. Phenol oxidation by permanganate was enhanced by the presence of HA at pH 4-8, while slightly inhibited at pH 9-10. The effects of HA on phenol oxidation by permanganate were dependent on HA concentration and permanganate/phenol molar ratios. The high NMW fractions of HA enhanced phenol oxidation by permanganate at pH 7 more significantly than the low fractions of HA. The apparent second-order rate constants of phenol oxidation by permanganate in the presence of HA correlated well with their specific ultraviolet absorption (SUVA) at 254 nm and specific violet absorption (SVA) at 465 or 665 nm. High positive correlation coefficients (R(2) > 0.72) implied that pi-electrons of HA strongly influenced the reactivity of phenol towards permanganate oxidation which agreed well with the information provided by fluorescence spectroscopy. The FTIR analysis indicated that the HA fractions rich in aliphatic character, polysaccharide-like substances, and the amount of carboxylate groups had less effect on phenol oxidation by permanganate. The negative correlation between the rate constants of phenol oxidation by permanganate and O/C ratios suggested that the oxidation of phenol increased with a decrease in the content of oxygen-containing functional groups.

  3. Maximizing Tumor Immunity With Fractionated Radiation

    Energy Technology Data Exchange (ETDEWEB)

    Schaue, Doerthe, E-mail: dschaue@mednet.ucla.edu [Department of Radiation Oncology, David Geffen School of Medicine at UCLA, Los Angeles, CA (United States); Ratikan, Josephine A.; Iwamoto, Keisuke S.; McBride, William H. [Department of Radiation Oncology, David Geffen School of Medicine at UCLA, Los Angeles, CA (United States)

    2012-07-15

    Purpose: Technologic advances have led to increased clinical use of higher-sized fractions of radiation dose and higher total doses. How these modify the pathways involved in tumor cell death, normal tissue response, and signaling to the immune system has been inadequately explored. Here we ask how radiation dose and fraction size affect antitumor immunity, the suppression thereof, and how this might relate to tumor control. Methods and Materials: Mice bearing B16-OVA murine melanoma were treated with up to 15 Gy radiation given in various-size fractions, and tumor growth followed. The tumor-specific immune response in the spleen was assessed by interferon-{gamma} enzyme-linked immunospot (ELISPOT) assay with ovalbumin (OVA) as the surrogate tumor antigen and the contribution of regulatory T cells (Tregs) determined by the proportion of CD4{sup +}CD25{sup hi}Foxp3{sup +} T cells. Results: After single doses, tumor control increased with the size of radiation dose, as did the number of tumor-reactive T cells. This was offset at the highest dose by an increase in Treg representation. Fractionated treatment with medium-size radiation doses of 7.5 Gy/fraction gave the best tumor control and tumor immunity while maintaining low Treg numbers. Conclusions: Radiation can be an immune adjuvant, but the response varies with the size of dose per fraction. The ultimate challenge is to optimally integrate cancer immunotherapy into radiation therapy.

  4. Size-fractionated dissolved primary production and carbohydrate composition of the coccolithophore Emiliania huxleyi

    Science.gov (United States)

    Borchard, C.; Engel, A.

    2015-02-01

    Extracellular release (ER) by phytoplankton is the major source of fresh dissolved organic carbon (DOC) in marine ecosystems and accompanies primary production during all growth phases. Little is known, so far, on size and composition of released molecules, and to which extent ER occurs passively, by leakage, or actively, by exudation. Here, we report on ER by the widespread and bloom-forming coccolithophore Emiliania huxleyi grown under steady-state conditions in phosphorus-controlled chemostats (N:P = 29, growth rate of μ = 0.2 d-1) at present-day and high-CO2 concentrations. 14C incubations were performed to determine primary production (PP), comprised of particulate (PO14C) and dissolved organic carbon (DO14C). Concentration and composition of particulate combined carbohydrates (pCCHO) and high-molecular-weight (>1 kDa, HMW) dissolved combined carbohydrates (dCCHO) were determined by ion chromatography. Information on size distribution of ER products was obtained by investigating distinct size classes (10 kDa was significantly different, with a higher mol% of arabinose. The mol% of acidic sugars increased and that of glucose decreased with increasing size of HMW-dCCHO. We conclude that larger polysaccharides follow different production and release pathways than smaller molecules, potentially serving distinct ecological and biogeochemical functions.

  5. Radiation-induced rib fracture after stereotactic body radiotherapy with a total dose of 54–56 Gy given in 9–7 fractions for patients with peripheral lung tumor: impact of maximum dose and fraction size

    International Nuclear Information System (INIS)

    Aoki, Masahiko; Sato, Mariko; Hirose, Katsumi; Akimoto, Hiroyoshi; Kawaguchi, Hideo; Hatayama, Yoshiomi; Ono, Shuichi; Takai, Yoshihiro

    2015-01-01

    Radiation-induced rib fracture after stereotactic body radiotherapy (SBRT) for lung cancer has been recently reported. However, incidence of radiation-induced rib fracture after SBRT using moderate fraction sizes with a long-term follow-up time are not clarified. We examined incidence and risk factors of radiation-induced rib fracture after SBRT using moderate fraction sizes for the patients with peripherally located lung tumor. During 2003–2008, 41 patients with 42 lung tumors were treated with SBRT to 54–56 Gy in 9–7 fractions. The endpoint in the study was radiation-induced rib fracture detected by CT scan after the treatment. All ribs where the irradiated doses were more than 80% of prescribed dose were selected and contoured to build the dose-volume histograms (DVHs). Comparisons of the several factors obtained from the DVHs and the probabilities of rib fracture calculated by Kaplan-Meier method were performed in the study. Median follow-up time was 68 months. Among 75 contoured ribs, 23 rib fractures were observed in 34% of the patients during 16–48 months after SBRT, however, no patients complained of chest wall pain. The 4-year probabilities of rib fracture for maximum dose of ribs (Dmax) more than and less than 54 Gy were 47.7% and 12.9% (p = 0.0184), and for fraction size of 6, 7 and 8 Gy were 19.5%, 31.2% and 55.7% (p = 0.0458), respectively. Other factors, such as D2cc, mean dose of ribs, V10–55, age, sex, and planning target volume were not significantly different. The doses and fractionations used in this study resulted in no clinically significant rib fractures for this population, but that higher Dmax and dose per fraction treatments resulted in an increase in asymptomatic grade 1 rib fractures

  6. Determination of trace elements in GPC fractions of oil-sand asphaltenes by INAA

    International Nuclear Information System (INIS)

    Jacobs, F.S.; Bachelor, F.W.; Filby, R.H.

    1984-01-01

    Asphaltene samples precipitated from Athabasca and Cold Lake oil-sand bitumens were separated into 12 fractions of varying molecular weight by preparative gel permeation chromatography (GPC). Each fraction was then analyzed by analytical GPC and visible spectrometry. Concentrations of As, Ce, Co, Cr, Eu, Ga, Hf, Hg, La, Ni, Sb, Sc, Se, Sm, Tb, Th, U, V, Zn, and Zr in the fractions were determined by neutron activation analysis. Molecular weights of the Athabasca fractions are generally higher than the corresponding Cold Lake fractions. Between 58% and 90% of the metal contents occur in the high molecular weight fractions of both asphaltenes. Except for V and Cr, which show biomodel distributions, all the elements have decreasing concentrations as the molecular weight of the fraction decreases. High molecular weight fractions, constituting about 55% of the whole asphaltenes, contain nonporphyrin bound vanadium compounds. It is estimated that 27% and 31% of V present in Athabasca and Cold Lake asphaltenes respectively occur as porphyrin type compounds, including vanadyl prophyrins released from the asphaltene micelle during the separation and vanadyl porphyrins bearing high-molecular-weight substituents

  7. Inert gases in a terra sample - Measurements in six grain-size fractions and two single particles from Lunar 20.

    Science.gov (United States)

    Heymann, D.; Lakatos, S.; Walton, J. R.

    1973-01-01

    Review of the results of inert gas measurements performed on six grain-size fractions and two single particles from four samples of Luna 20 material. Presented and discussed data include the inert gas contents, element and isotope systematics, radiation ages, and Ar-36/Ar-40 systematics.

  8. Experiments for the Undergraduate Laboratory that Illustrate the Size-Exclusion Properties of Zeolite Molecular Sieves

    Science.gov (United States)

    Cooke, Jason; Henderson, Eric J.

    2009-01-01

    Experiments are presented that demonstrate the size-exclusion properties of zeolites and reveal the reason for naming zeolites "molecular sieves". If an IR spectrometer is available, the adsorption or exclusion of alcohols of varying sizes from dichloromethane or chloroform solutions can be readily demonstrated by monitoring changes in the…

  9. An Upper Limit on the Functional Fraction of the Human Genome.

    Science.gov (United States)

    Graur, Dan

    2017-07-01

    For the human population to maintain a constant size from generation to generation, an increase in fertility must compensate for the reduction in the mean fitness of the population caused, among others, by deleterious mutations. The required increase in fertility due to this mutational load depends on the number of sites in the genome that are functional, the mutation rate, and the fraction of deleterious mutations among all mutations in functional regions. These dependencies and the fact that there exists a maximum tolerable replacement level fertility can be used to put an upper limit on the fraction of the human genome that can be functional. Mutational load considerations lead to the conclusion that the functional fraction within the human genome cannot exceed 25%, and is probably considerably lower. © The Author 2017. Published by Oxford University Press on behalf of the Society for Molecular Biology and Evolution.

  10. Pyrogenic organic matter accumulation after density and particle size fractionation of burnt Cambisol using solid-state nuclear magnetic resonance spectroscopy

    Science.gov (United States)

    López-Martín, María; Knicker, Heike

    2017-04-01

    Fires lead to formation of the pyrogenic organic matter (PyOM) which is quickly incorporated into the soil. The charring process involves chemical alterations of the litter material, where biologically available structures are transferred into aromatic polymers, such as black carbon (BC) and black nitrogen (BN). In order to reveal the medium term fate of BC and BN in soils, the top 5 cm of A horizons from unburnt, single and double burnt Cambisols of the Sierra de Aznalcóllar (Southern Spain) were collected 7 year after an intense fire and separated according to their density and their size (Golchin et al., 1994; Sohi et al., 2001). The density fractionation yielded in the free (fPOM), occluded particulate organic matter (oPOM) and the mineral-association organic fraction (MAF) and was performed using a sodium polytungstate solution with a density of 1.8 g cm-3. The MAF was further separated into the sand (2 mm to 63 μm) and coarse silt (63 to 20 μm) and fine fraction (solid-state 13C and 15N NMR spectroscopy. The 13C and 15N NMR spectra of all fPOM and oPOM fractions are dominated by signals assignable to O-alkyl C followed by resonance lines of alkyl C. The spectra indicate that fPOM is mainly composed of undecomposed plant debris whereas oPOM is rich in unsubstituted-aliphatic material. The lack of intensity in the chemical shift region from 160 to140 ppm in the spectra of the small size fractions reveals the absence of lignin residues. This, their low C/N ratios and the clear 13C-signal attributed to carboxylic C allows the conclusion that this fraction mainly composed of microbial residues. Former studies evidenced that aromaticity of the burnt bulk soil decreased with elapsing time after the fire. The present investigation revealed that most of the remaining aromatic C accumulated in the POM fractions, which is in contrast to other studies showing a preferential recovery of BC in the fine particle size fractions. Possibly, the poor interaction between Py

  11. The molecular physics of photolytic fractionation of sulfur and oxygen isotopes in planetary atmospheres (Invited)

    Science.gov (United States)

    Johnson, M. S.; Schmidt, J. A.; Hattori, S.; Danielache, S.; Meusinger, C.; Schinke, R.; Ueno, Y.; Nanbu, S.; Kjaergaard, H. G.; Yoshida, N.

    2013-12-01

    Atmospheric photochemistry is able to produce large mass independent anomalies in atmospheric trace gases that can be found in geological and cryospheric records. This talk will present theoretical and experimental investigations of the molecular mechanisms producing photolytic fractionation of isotopes with special attention to sulfur and oxygen. The zero point vibrational energy (ZPE) shift and reflection principle theories are starting points for estimating isotopic fractionation, but these models ignore effects arising from isotope-dependent changes in couplings between surfaces, excited state dynamics, line densities and hot band populations. The isotope-dependent absorption spectra of the isotopologues of HCl, N2O, OCS, CO2 and SO2 have been examined in a series of papers and these results are compared with experiment and ZPE/reflection principle models. Isotopic fractionation in planetary atmospheres has many interesting applications. The UV absorption of CO2 is the basis of photochemistry in the CO2-rich atmospheres of the ancient Earth, and of Mars and Venus. For the first time we present accurate temperature and isotope dependent CO2 absorption cross sections with important implications for photolysis rates of SO2 and H2O, and the production of a mass independent anomaly in the Ox reservoir. Experimental and theoretical results for OCS have implications for the modern stratospheric sulfur budget. The absorption bands of SO2 are complex with rich structure producing isotopic fractionation in photolysis and photoexcitation.

  12. In situ acidity and pH of size-fractionated aerosols during a recent smoke-haze episode in Southeast Asia.

    Science.gov (United States)

    Behera, Sailesh N; Cheng, Jinping; Balasubramanian, Rajasekhar

    2015-10-01

    The characterization of aerosol acidity has received increased attention in recent years due to its influence on atmospheric visibility, climate change and human health. Distribution of water soluble inorganic (WSI) ions in 12 different size fractions of aerosols was investigated under two different atmospheric conditions (smoke-haze and non-haze periods) in 2012 using the Micro-Orifice Uniform Deposit Impactor (MOUDI) and nano-MOUDI for the first time in Singapore. To estimate the in situ acidity ([H(+)]Ins) and in situ aerosol pH (pHIS), the Aerosol Inorganic Model version-IV under deliquescent mode of airborne particles was used at prevailing ambient temperature and relative humidity. The study revealed an increase in the levels of airborne particulate matter (PM) mass and concentrations of WSI ions for all size fractions during the smoke-haze period, which was caused by the trans-boundary transport of biomass burning-impacted air masses from Indonesia. A bimodal distribution was observed for concentrations of SO4(2-), NO3(-), Cl(-), K(+) and Na(+), whereas concentrations of NH4(+), Ca(2+) and Mg(2+) showed a single mode distribution. The concentration of WSI ions in PM1.8 during the smoke-haze period increased by 3.8 (for SO4(2-)) to 10.5 (for K(+)) times more than those observed during the non-haze period. The pHIS were observed to be lower during the smoke-haze period than that during the non-haze period for all size fractions of PM, indicating that atmospheric aerosols were more acidic due to the influence of biomass burning emissions. The particles in the accumulation mode were more acidic than those in the coarse mode.

  13. Tunable separations based on a molecular size effect for biomolecules by poly(ethylene glycol) gel-based capillary electrophoresis.

    Science.gov (United States)

    Kubo, Takuya; Nishimura, Naoki; Furuta, Hayato; Kubota, Kei; Naito, Toyohiro; Otsuka, Koji

    2017-11-10

    We report novel capillary gel electrophoresis (CGE) with poly(ethylene glycol) (PEG)-based hydrogels for the effective separations of biomolecules containing sugars and DNAs based on a molecular size effect. The gel capillaries were prepared in a fused silica capillary modified with 3-(trimethoxysilyl)propylmethacrylate using a variety of the PEG-based hydrogels. After the fundamental evaluations in CGE regarding the separation based on the molecular size effect depending on the crosslinking density, the optimized capillary provided the efficient separation of glucose ladder (G1 to G20). In addition, another capillary showed the successful separation of DNA ladder in the range of 10-1100 base pair, which is superior to an authentic acrylamide-based gel capillary. For both glucose and DNA ladders, the separation ranges against the molecular size were simply controllable by alteration of the concentration and/or units of ethylene oxide in the PEG-based crosslinker. Finally, we demonstrated the separations of real samples, which included sugars carved out from monoclonal antibodies, mAbs, and then the efficient separations based on the molecular size effect were achieved. Copyright © 2017 Elsevier B.V. All rights reserved.

  14. Characterization of federated oil fractions used for the PTAC project to study the petroleum fraction-specific toxicity to soils

    International Nuclear Information System (INIS)

    Wang, Z.; Jokuty, P.; Fingas, M.; Sigouin, L.

    2001-01-01

    and molecular size), each fraction showed unique fingerprinting and chemical features. The quantitative characterization of the crude oil and fractions was necessary for the fraction-specific toxicity study of this project. 25 refs., 4 tabs., 8 figs

  15. Neutral hydrolysable sugars, OC and N content across soil aggregate size fractions, as an effect of two different crop rotations

    Science.gov (United States)

    Angeletti, Carlo; Giannetta, Beatrice; Kölbl, Angelika; Monaci, Elga; Kögel-Knabner, Ingrid; Vischetti, Costantino

    2016-04-01

    This paper presents the results regarding the effects of two 13 years long crop rotations, on the composition of mineral associated neutral sugars, organic carbon (OC) and N concentration, across different aggregate size fractions. The two cropping sequences were characterized by different levels of N input from plant residues and tillage frequency. We also analysed the changes that occurred in soil organic matter (SOM) chemical composition following the cultivation in the two soils of winter wheat and chickpea on the same soils. The analysis of OC and N content across soil aggregate fractions allowed getting an insight into the role played by SOM chemical composition in the formation of organo-mineral associations, while neutral sugars composition provided information on mineral associated SOM origin and decomposition processes, as pentoses derive mostly from plant tissues and hexoses are prevalently of microbial origin. Soil samples were collected from two adjacent fields, from the 0-10 cm layer, in November 2011 (T0). For 13 years before the beginning of the experiment, one soil was cultivated mostly with alfalfa (ALF), while a conventional cereal-sunflower-legume rotation (CON) was carried out on the other. Winter wheat and chickpea were sown on the two soils during the following 2 growing seasons and the sampling was repeated after 18 months (T1). A combination of aggregates size and density fractionation was used to isolate OM associated with mineral particles in: macro-aggregates (>212 μm), micro-aggregates ( 63 μm) and silt and clay size particles (carbohydrates contributions in every other fraction. GM/AX varied slightly between the soils. In conclusion, the crop rotation determined the accumulation of different levels of SOM in the two soils. The 18-months cultivation experiment determined an increase in the tillage intensity in ALF, and the introduction of N rich chickpea residues in CON. Consequently SOM chemical composition responded divergently in

  16. High molecular gas fractions in normal massive star-forming galaxies in the young Universe.

    Science.gov (United States)

    Tacconi, L J; Genzel, R; Neri, R; Cox, P; Cooper, M C; Shapiro, K; Bolatto, A; Bouché, N; Bournaud, F; Burkert, A; Combes, F; Comerford, J; Davis, M; Schreiber, N M Förster; Garcia-Burillo, S; Gracia-Carpio, J; Lutz, D; Naab, T; Omont, A; Shapley, A; Sternberg, A; Weiner, B

    2010-02-11

    Stars form from cold molecular interstellar gas. As this is relatively rare in the local Universe, galaxies like the Milky Way form only a few new stars per year. Typical massive galaxies in the distant Universe formed stars an order of magnitude more rapidly. Unless star formation was significantly more efficient, this difference suggests that young galaxies were much more molecular-gas rich. Molecular gas observations in the distant Universe have so far largely been restricted to very luminous, rare objects, including mergers and quasars, and accordingly we do not yet have a clear idea about the gas content of more normal (albeit massive) galaxies. Here we report the results of a survey of molecular gas in samples of typical massive-star-forming galaxies at mean redshifts of about 1.2 and 2.3, when the Universe was respectively 40% and 24% of its current age. Our measurements reveal that distant star forming galaxies were indeed gas rich, and that the star formation efficiency is not strongly dependent on cosmic epoch. The average fraction of cold gas relative to total galaxy baryonic mass at z = 2.3 and z = 1.2 is respectively about 44% and 34%, three to ten times higher than in today's massive spiral galaxies. The slow decrease between z approximately 2 and z approximately 1 probably requires a mechanism of semi-continuous replenishment of fresh gas to the young galaxies.

  17. An approach for characterization and lumping of plus fractions of heavy oil

    Energy Technology Data Exchange (ETDEWEB)

    Rodriguez, I.; Hamouda, A.A. [Stavanger Univ., Stavanger (Norway)

    2008-10-15

    The constituents of hydrocarbons can be classified as either well-defined components or undefined petroleum fractions. This paper presented a newly developed method for characterizing plus fractions of heavy oil, which is particularly important for fluids with high molecular weight and high density. Characterization of plus fractions typically consists of 3 parts, notably splitting the fraction into a certain number of components groups called single carbon number (SCN); estimating the physico-chemical properties of the SCN; and lumping the generated SCN. SCN groups contain hundreds of isomers/components with the same number of carbon atoms. A unique molecular weight cannot be assigned for each SCN group because of the uncertainty of the isomers/components present. Therefore, this work focused on finding a new approach to characterize the undetermined fraction by first splitting the carbon number fraction into a representative number of SCN and then calculating their mole fraction and molecular weight. The method was based on the relationships between three parameter gamma distribution (TPG), experimental mole fraction, molecular weight and SCN data obtained from literature and industry. The method was applied to 5 different heavy oil sample fluids which all showed a left skewed distribution of the mole fraction as a function of carbon number. The predicted molecular weight was found to be close to the generalized molecular weight associated with carbon number, but it differed from one sample to another. 19 refs., 11 tabs., 15 figs.

  18. Rates of molecular evolution in tree ferns are associated with body size, environmental temperature, and biological productivity.

    Science.gov (United States)

    Barrera-Redondo, Josué; Ramírez-Barahona, Santiago; Eguiarte, Luis E

    2018-05-01

    Variation in rates of molecular evolution (heterotachy) is a common phenomenon among plants. Although multiple theoretical models have been proposed, fundamental questions remain regarding the combined effects of ecological and morphological traits on rate heterogeneity. Here, we used tree ferns to explore the correlation between rates of molecular evolution in chloroplast DNA sequences and several morphological and environmental factors within a Bayesian framework. We revealed direct and indirect effects of body size, biological productivity, and temperature on substitution rates, where smaller tree ferns living in warmer and less productive environments tend to have faster rates of molecular evolution. In addition, we found that variation in the ratio of nonsynonymous to synonymous substitution rates (dN/dS) in the chloroplast rbcL gene was significantly correlated with ecological and morphological variables. Heterotachy in tree ferns may be influenced by effective population size associated with variation in body size and productivity. Macroevolutionary hypotheses should go beyond explaining heterotachy in terms of mutation rates and instead, should integrate population-level factors to better understand the processes affecting the tempo of evolution at the molecular level. © 2018 The Author(s). Evolution © 2018 The Society for the Study of Evolution.

  19. Impact of Fraction Size on Lung Radiation Toxicity: Hypofractionation may be Beneficial in Dose Escalation of Radiotherapy for Lung Cancers

    International Nuclear Information System (INIS)

    Jin Jinyue; Kong Fengming; Chetty, Indrin J.; Ajlouni, Munther; Ryu, Samuel; Ten Haken, Randall; Movsas, Benjamin

    2010-01-01

    Purpose: To assess how fraction size impacts lung radiation toxicity and therapeutic ratio in treatment of lung cancers. Methods and Materials: The relative damaged volume (RDV) of lung was used as the endpoint in the comparison of various fractionation schemes with the same normalized total dose (NTD) to the tumor. The RDV was computed from the biologically corrected lung dose-volume histogram (DVH), with an α/β ratio of 3 and 10 for lung and tumor, respectively. Two different (linear and S-shaped) local dose-effect models that incorporated the concept of a threshold dose effect with a single parameter D L50 (dose at 50% local dose effect) were used to convert the DVH into the RDV. The comparison was conducted using four representative DVHs at different NTD and D L50 values. Results: The RDV decreased with increasing dose/fraction when the NTD was larger than a critical dose (D CR ) and increased when the NTD was less than D CR . The D CR was 32-50 Gy and 58-87 Gy for a small tumor (11 cm 3 ) for the linear and S-shaped local dose-effect models, respectively, when D L50 was 20-30 Gy. The D CR was 66-97 Gy and 66-99 Gy, respectively, for a large tumor (266 cm 3 ). Hypofractionation was preferred for small tumors and higher NTDs, and conventional fractionation was better for large tumors and lower NTDs. Hypofractionation might be beneficial for intermediate-sized tumors when NTD = 80-90 Gy, especially if the D L50 is small (20 Gy). Conclusion: This computational study demonstrated that hypofractionated stereotactic body radiotherapy is a better regimen than conventional fractionation in lung cancer patients with small tumors and high doses, because it generates lower RDV when the tumor NTD is kept unchanged.

  20. [Determination of the distribution of relative molecular mass of organic matter by high pressure size exclusion chromatography with UV and TOC detectors].

    Science.gov (United States)

    Zhang, Han; Dong, Bing-Zhi

    2012-09-01

    An on-line high pressure size exclusion chromatography (HPSEC) with UV and TOC detectors was adapted to examine the distribution of relative molecular mass of natural organic matter (NOM). Through synchronous determination of UV254 and TOC responses in a wide range of relative molecular mass, it was possible to accurately characterize the structure of NOM, especially for some non-aromatic and non-conjugated double bond organics which have low response to UV. It was found that, TOC detector was capable of detecting all kinds of organic matters, including sucrose, sodium alginate and other hydrophilic organic compounds. The sample volume had a positively linear correlation with the TOC response, indicating that the larger volume would produce stronger responses. The effect of ion strength was relatively low, shown by the small decrease of peak area (1.2% ) from none to 0.2 mol x L(-1) NaCl. The pH value of tested samples should be adjusted to neutral or acidic because when the samples were alkaline, the results might be inaccurate. Compared to the sample solvents adopted as ultrapure water, the samples prepared by mobile phase solvents had less interference to salt boundary peak. The on-line HPSEC-UV-TOC can be used accurately to characterize the distribution of relative molecular mass and its four fractions in River Xiang.

  1. Fractionation and immunological characterization of allergens and allergoids of Prosopis juliflora pollen.

    Science.gov (United States)

    Thakur, I S; Kamal; Mishra, S

    1991-06-01

    Allergoids of Prosopis juliflora pollen were prepared by formalinization of crude allergen and glycoprotein. Fractionation of crude allergen and allergoids on Sephadex G-100 resulted in separation of proteins of varying molecular size and a glycoprotein of 81 to 13 KD. Allergoids prepared from the glycoprotein fractionated into two proteins of approximately 200 KD and more than 200 KD. Crossed immunoelectrophoresis indicated 12 and gel diffusion test 3 precipitating antigens incrude allergen extract; by these tests allergoids depicted 8 and 3 precipitin bands, respectively. The precipitin analysis showed heterogeneity of allergenic determinants and also variation in cross-immunogenicity of the formalinized derivatives. The skin prick and radioallergosorbent tests depicted greater activity of fractionated crude allergens than the allergoids. The above tests suggest altered and concealed antigenic determinants as result of formalinization of P. juliflora pollen which, however, showed reduced allergenic activity relative to the native allergen.

  2. Elucidating Adsorptive Fractions of Natural Organic Matter on Carbon Nanotubes.

    Science.gov (United States)

    Ateia, Mohamed; Apul, Onur G; Shimizu, Yuta; Muflihah, Astri; Yoshimura, Chihiro; Karanfil, Tanju

    2017-06-20

    Natural organic matter (NOM) is a heterogeneous mixture of organic compounds that is omnipresent in natural waters. To date, the understanding of the adsorption of NOM components by carbon nanotubes (CNTs) is limited because of the limited number of comprehensive studies in the literature examining the adsorption of NOM by CNTs. In this study, 11 standard NOM samples from various sources were characterized, and their adsorption behaviors on four different CNTs were examined side-by-side using total organic carbon, fluorescence, UV-visible spectroscopy, and high-performance size-exclusion chromatography (HPSEC) analysis. Adsorption was influenced by the chemical properties of the NOM, including aromaticity, degree of oxidation, and carboxylic acidity. Fluorescence excitation-emission matrix (EEM) analysis showed preferential adsorption of decomposed and terrestrial-derived NOM compared to freshly produced and microbial-derived NOM. HPSEC analysis revealed preferential adsorption of fractions in the molecular weight range of 0.5-2 kDa for humic acids but in the molecular weight range of 1-3 kDa for all fulvic acids and reverse-osmosis isolates. However, the smallest characterized fraction (MW < 0.4 kDa) in all samples did not adsorb on the CNTs.

  3. Low-molecular-weight color pI markers to monitor on-line the peptide focusing process in OFFGEL fractionation.

    Science.gov (United States)

    Michelland, Sylvie; Bourgoin-Voillard, Sandrine; Cunin, Valérie; Tollance, Axel; Bertolino, Pascal; Slais, Karel; Seve, Michel

    2017-08-01

    High-throughput mass spectrometry-based proteomic analysis requires peptide fractionation to simplify complex biological samples and increase proteome coverage. OFFGEL fractionation technology became a common method to separate peptides or proteins using isoelectric focusing in an immobilized pH gradient. However, the OFFGEL focusing process may be further optimized and controlled in terms of separation time and pI resolution. Here we evaluated OFFGEL technology to separate peptides from different samples in the presence of low-molecular-weight (LMW) color pI markers to visualize the focusing process. LMW color pI markers covering a large pH range were added to the peptide mixture before OFFGEL fractionation using a 24-wells device encompassing the pH range 3-10. We also explored the impact of LMW color pI markers on peptide fractionation labeled previously for iTRAQ. Then, fractionated peptides were separated by RP_HPLC prior to MS analysis using MALDI-TOF/TOF mass spectrometry in MS and MS/MS modes. Here we report the performance of the peptide focusing process in the presence of LMW color pI markers as on-line trackers during the OFFGEL process and the possibility to use them as pI controls for peptide focusing. This method improves the workflow for peptide fractionation in a bottom-up proteomic approach with or without iTRAQ labeling. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  4. Transition from fractional to classical Stokes-Einstein behaviour in simple fluids.

    Science.gov (United States)

    Coglitore, Diego; Edwardson, Stuart P; Macko, Peter; Patterson, Eann A; Whelan, Maurice

    2017-12-01

    An optical technique for tracking single particles has been used to evaluate the particle diameter at which diffusion transitions from molecular behaviour described by the fractional Stokes-Einstein relationship to particle behaviour described by the classical Stokes-Einstein relationship. The results confirm a prior prediction from molecular dynamic simulations that there is a particle size at which transition occurs and show it is inversely dependent on concentration and viscosity but independent of particle density. For concentrations in the range 5 × 10 -3 to 5 × 10 -6  mg ml -1 and viscosities from 0.8 to 150 mPa s, the transition was found to occur in the diameter range 150-300 nm.

  5. Particle size fractionation and human exposure of polybrominated diphenyl ethers in indoor dust from Chicago.

    Science.gov (United States)

    Wei, Hua; Turyk, Mary; Cali, Salvatore; Dorevitch, Samuel; Erdal, Serap; Li, An

    2009-11-01

    The objective of this study was to investigate the concentration level, the mass distribution based on dust particle size, and the associated human exposure of polybrominated diphenyl ethers (PBDEs) in indoor dust. The total concentration of 13 PBDEs Sigma(13)(BDEs) was found to be 500-6,944 ng/g in indoor dusts, 4,000 ng/g in car interior dust, 260-300 ng/g in outdoor ambient air particles, 30 ng/g in carpet fibers, and as high as 0.5% in carpet padding. Selected dust samples were fractionated based on particle size, and over 80% of the Sigma(13)BDEs were associated with particles exposure of Americans to PBDEs via hand-to-mouth transfer of house dust was estimated under the central tendency exposure and reasonable maximum exposure scenarios. The results suggest that ingestion of PBDE-laden house dust via hand-to-mouth contact is likely a significant exposure pathway, especially for children.

  6. Application of molecular sieves in the fractionation of lemongrass oil from high-pressure carbon dioxide extraction

    Directory of Open Access Journals (Sweden)

    L. Paviani

    2006-06-01

    Full Text Available The aim of this work was to study the feasibility of simultaneous process of high-pressure extraction and fractionation of lemongrass essential oil using molecular sieves. For this purpose, a high-pressure laboratory-scale extraction unit coupled with a column with four different stationary phases for fractionation: ZSM5 zeolite, MCM-41 mesoporous material, alumina and silica was employed. Additionally, the effect of carbon dioxide extraction variables on the global yield and chemical composition of the essential oil was also studied in a temperature range of 293 to 313 K and a pressure range of 100 to 200 bar. The volatile organic compounds of the extracts were identified by a gas chromatograph coupled with a mass spectrometer detector (GC/MS. The results indicated that the extraction process variables and the stationary phase exerted an effect on both the extraction yield and the chemical composition of the extracts.

  7. Comparable investigation of the molecular size distribution and the amount of humic substances isolated from ONKALO, Olkiluoto, 2011

    International Nuclear Information System (INIS)

    Luste, S.; Maekelae, J.; Manninen, P.

    2012-06-01

    The humic substances (HS) at groundwater from ONKALO, Olkiluoto were studied in order to determine the apparent molecular size distribution and the amount of humic substances. Humic substances were isolated from the water sample using DAX-8 resin and eluted with 0.1 M NaOH. The molecular size distribution was defined using high performance size exclusion chromatography (HPSEC) and ultraviolet (UV) and refractive index (RI) detector. In the SEC calibration (polystyrene sulfonate) sodium salts (PSS) were employed. Different eluents (NaNO 3 , Na-acetate and asetonitrile) with phosphate buffer and distinct ionic strengths were studied in order to optimize the determination method. The amount of humic substances was determined using total organic carbon (TOC) measurements. The results were compared with the previous ones in order to find out the variation of different methods (HPSEC) and to follow up the HS quantity (TOC). The method developed during the study is considered to be suitable for the HS molecular size distribution follow up, although the method development is suggested to be continued. (orig.)

  8. Comparable investigation of the molecular size distribution and the amount of humic substances isolated from ONKALO, Olkiluoto, 2011

    Energy Technology Data Exchange (ETDEWEB)

    Luste, S.; Maekelae, J.; Manninen, P. [Ramboll Finland Oy, Espoo (Finland)

    2012-06-15

    The humic substances (HS) at groundwater from ONKALO, Olkiluoto were studied in order to determine the apparent molecular size distribution and the amount of humic substances. Humic substances were isolated from the water sample using DAX-8 resin and eluted with 0.1 M NaOH. The molecular size distribution was defined using high performance size exclusion chromatography (HPSEC) and ultraviolet (UV) and refractive index (RI) detector. In the SEC calibration (polystyrene sulfonate) sodium salts (PSS) were employed. Different eluents (NaNO{sub 3}, Na-acetate and asetonitrile) with phosphate buffer and distinct ionic strengths were studied in order to optimize the determination method. The amount of humic substances was determined using total organic carbon (TOC) measurements. The results were compared with the previous ones in order to find out the variation of different methods (HPSEC) and to follow up the HS quantity (TOC). The method developed during the study is considered to be suitable for the HS molecular size distribution follow up, although the method development is suggested to be continued. (orig.)

  9. Selective Dissolution Techniques, X-Ray Diffraction and Moessbauer Spectroscopy Studies of Forms of Fe in Particle-Size Fractions of an Entic Haplustoll

    International Nuclear Information System (INIS)

    Acebal, S. G.; Aguirre, M. E.; Santamaria, R. M.; Mijovilovich, A.; Petrick, S.; Saragovi, C.

    2003-01-01

    Particle-size fractions (o = mean diameter, 5-2 μm, 2-1 μm, and 57 Fe Moessbauer spectroscopy (MS). Quartz, feldspar, smectite, illite and interstratified illite-smectite are the dominant minerals whereas Fe oxides and oxy-hydroxides are present in low concentration but increase as particle size decreases. Poorly crystallized oxides (highly Al-substituted hematite and goethite) amounts are lower, comparable to or slightly higher than the hematite amounts in the o 5-2 μm, 2-1 μm and 3+ and Fe 2+ are associated to the clay minerals and/or hydroxyl-interlayered 2:1 type material present; part of this Fe 3+ is located in the hydroxy-interlayers its amount being higher in the smallest fraction. Any possible changes after the PY and NaOH treatments were not detected by MS.

  10. Relative age and age sequence of fractions of soil organic matter

    International Nuclear Information System (INIS)

    Scharpenseel, H.W.

    1975-01-01

    Natural radiocarbon measurements on soil fractions provide information regarding the chances of separating the ''old biologically inert carbon'' out of samples of recent soil material. Beyond this, the relative fraction ages are scrutinized for the sequential order of the origin of the fractions within the biosynthetic reaction chain of soil humic matter. Among all fractions compared (classic humic matter fractionation by alkali and acid treatment; successive extraction with organic solvents of increasing polarity; separation according to particle size by Sephadex gel filtration; hydrolysis residue) the 6 n HCl hydrolysis residue shows the most consistent significant age increment. Repeated exhaustive hydrolysis treatment of the same sample material is still pending. All other fraction types indicate an age pattern under strong predetermination by method of origin, e.g., existence or lack of hydromorphy, without an evident enrichment of the ''old biologically inert carbon''. Among the organic extracts, no persistent age hierarchy is noticeable, whereas the classical fractions follow an age sequence mainly parallel to an increase of the molecular weight. Hymatomelanic acids appear rejuvenated by relics of recent carbon derived from the extractant ethanol. Grey humic acids are older than the brown humic acids, humines from fully terrestrial soil environment are older than humic acids, while in hydromorphic soils, cold alkali insoluble young C-compounds seem to be conserved which are liable to falsify rejuvenation of the humines

  11. Transmission and fractionation of micro-sized particle suspensions

    NARCIS (Netherlands)

    Brans, G.B.P.W.; Dinther, van A.M.C.; Odum, B.; Schroën, C.G.P.H.; Boom, R.M.

    2007-01-01

    In processes aimed at the fractionation of a multi-component feed stream, transmission of particles through the membrane is at least as important as retention of larger particles. In this paper, we describe the mechanisms of transmission of mono-disperse latex particles through a polymer membrane.

  12. Size-dependent single electron transfer and semi-metal-to-insulator transitions in molecular metal oxide electronics

    Science.gov (United States)

    Balliou, Angelika; Bouroushian, Mirtat; Douvas, Antonios M.; Skoulatakis, George; Kennou, Stella; Glezos, Nikos

    2018-07-01

    All-inorganic self-arranged molecular transition metal oxide hyperstructures based on polyoxometalate molecules (POMs) are fabricated and tested as electronically tunable components in emerging electronic devices. POM hyperstructures reveal great potential as charging nodes of tunable charging level for molecular memories and as enhancers of interfacial electron/hole injection for photovoltaic stacks. STM, UPS, UV–vis spectroscopy and AFM measurements show that this functionality stems from the films’ ability to structurally tune their HOMO–LUMO levels and electron localization length at room temperature. By adapting POM nanocluster size in solution, self-doping and current modulation of four orders of magnitude is monitored on a single nanocluster on SiO2 at voltages as low as 3 Volt. Structurally driven insulator-to-semi-metal transitions and size-dependent current regulation through single electron tunneling are demonstrated and examined with respect to the stereochemical and electronic structure of the molecular entities. This extends the value of self-assembly as a tool for correlation length and electronic properties tuning and demonstrate POM hyperstructures’ plausibility for on-chip molecular electronics operative at room temperature.

  13. Size-dependent single electron transfer and semi-metal-to-insulator transitions in molecular metal oxide electronics.

    Science.gov (United States)

    Balliou, Angelika; Bouroushian, Mirtat; Douvas, Antonios M; Skoulatakis, George; Kennou, Stella; Glezos, Nikos

    2018-07-06

    All-inorganic self-arranged molecular transition metal oxide hyperstructures based on polyoxometalate molecules (POMs) are fabricated and tested as electronically tunable components in emerging electronic devices. POM hyperstructures reveal great potential as charging nodes of tunable charging level for molecular memories and as enhancers of interfacial electron/hole injection for photovoltaic stacks. STM, UPS, UV-vis spectroscopy and AFM measurements show that this functionality stems from the films' ability to structurally tune their HOMO-LUMO levels and electron localization length at room temperature. By adapting POM nanocluster size in solution, self-doping and current modulation of four orders of magnitude is monitored on a single nanocluster on SiO 2 at voltages as low as 3 Volt. Structurally driven insulator-to-semi-metal transitions and size-dependent current regulation through single electron tunneling are demonstrated and examined with respect to the stereochemical and electronic structure of the molecular entities. This extends the value of self-assembly as a tool for correlation length and electronic properties tuning and demonstrate POM hyperstructures' plausibility for on-chip molecular electronics operative at room temperature.

  14. Nature, distribution and origin of clay minerals in grain size fractions of sediments from manganese nodule field, Central Indian Ocean Basin

    Digital Repository Service at National Institute of Oceanography (India)

    Rao, V.P.; Nath, B.N.

    DT, IR and X-ray diffraction analyses have been carried out on 3 grain size fractions (1, 1-2 and 2-4 mu m) of sediments from the Central Indian Ocean Basin. Results indicate that there are 2 smectite minerals (montmorillonite and Fe...

  15. Iron Mineralogy and Speciation in Clay-Sized Fractions of Chinese Desert Sediments

    Science.gov (United States)

    Lu, Wanyi; Zhao, Wancang; Balsam, William; Lu, Huayu; Liu, Pan; Lu, Zunli; Ji, Junfeng

    2017-12-01

    Iron released from Asian desert dust may be an important source of bioavailable iron for the North Pacific Ocean and thereby may stimulate primary productivity. However, the Fe species of the fine dusts from this source region are poorly characterized. Here we investigate iron species and mineralogy in the clay-sized fractions (iron phases (ferrihydrite and lepidocrocite) and reducible iron oxides (dominated by goethite) are 0.81 wt % and 2.39 wt %, respectively, and Fe dissolved from phyllosilicates extracted by boiling HCl (dominated by chlorite) is 3.15 wt %. Dusts originating from deserts in northwestern China, particularly the Taklimakan desert, are relatively enriched in easily reducible Fe phases, probably due to abundant Fe contained in fresh weathering products resulting from the rapid erosion associated with active uplift of mountains to the west. Data about Fe speciation and mineralogy in Asian dust sources will be useful for improving the quantification of soluble Fe supplied to the oceans, especially in dust models.

  16. Evaluation of Kirkwood-Buff integrals via finite size scaling: a large scale molecular dynamics study

    Science.gov (United States)

    Dednam, W.; Botha, A. E.

    2015-01-01

    Solvation of bio-molecules in water is severely affected by the presence of co-solvent within the hydration shell of the solute structure. Furthermore, since solute molecules can range from small molecules, such as methane, to very large protein structures, it is imperative to understand the detailed structure-function relationship on the microscopic level. For example, it is useful know the conformational transitions that occur in protein structures. Although such an understanding can be obtained through large-scale molecular dynamic simulations, it is often the case that such simulations would require excessively large simulation times. In this context, Kirkwood-Buff theory, which connects the microscopic pair-wise molecular distributions to global thermodynamic properties, together with the recently developed technique, called finite size scaling, may provide a better method to reduce system sizes, and hence also the computational times. In this paper, we present molecular dynamics trial simulations of biologically relevant low-concentration solvents, solvated by aqueous co-solvent solutions. In particular we compare two different methods of calculating the relevant Kirkwood-Buff integrals. The first (traditional) method computes running integrals over the radial distribution functions, which must be obtained from large system-size NVT or NpT simulations. The second, newer method, employs finite size scaling to obtain the Kirkwood-Buff integrals directly by counting the particle number fluctuations in small, open sub-volumes embedded within a larger reservoir that can be well approximated by a much smaller simulation cell. In agreement with previous studies, which made a similar comparison for aqueous co-solvent solutions, without the additional solvent, we conclude that the finite size scaling method is also applicable to the present case, since it can produce computationally more efficient results which are equivalent to the more costly radial distribution

  17. Evaluation of Kirkwood-Buff integrals via finite size scaling: a large scale molecular dynamics study

    International Nuclear Information System (INIS)

    Dednam, W; Botha, A E

    2015-01-01

    Solvation of bio-molecules in water is severely affected by the presence of co-solvent within the hydration shell of the solute structure. Furthermore, since solute molecules can range from small molecules, such as methane, to very large protein structures, it is imperative to understand the detailed structure-function relationship on the microscopic level. For example, it is useful know the conformational transitions that occur in protein structures. Although such an understanding can be obtained through large-scale molecular dynamic simulations, it is often the case that such simulations would require excessively large simulation times. In this context, Kirkwood-Buff theory, which connects the microscopic pair-wise molecular distributions to global thermodynamic properties, together with the recently developed technique, called finite size scaling, may provide a better method to reduce system sizes, and hence also the computational times. In this paper, we present molecular dynamics trial simulations of biologically relevant low-concentration solvents, solvated by aqueous co-solvent solutions. In particular we compare two different methods of calculating the relevant Kirkwood-Buff integrals. The first (traditional) method computes running integrals over the radial distribution functions, which must be obtained from large system-size NVT or NpT simulations. The second, newer method, employs finite size scaling to obtain the Kirkwood-Buff integrals directly by counting the particle number fluctuations in small, open sub-volumes embedded within a larger reservoir that can be well approximated by a much smaller simulation cell. In agreement with previous studies, which made a similar comparison for aqueous co-solvent solutions, without the additional solvent, we conclude that the finite size scaling method is also applicable to the present case, since it can produce computationally more efficient results which are equivalent to the more costly radial distribution

  18. Functional and physical molecular size of the chicken hepatic lectin determined by radiation inactivation and sedimentation equilibrium analysis

    International Nuclear Information System (INIS)

    Steer, C.J.; Osborne, J.C. Jr.; Kempner, E.S.

    1990-01-01

    Radiation inactivation and sedimentation equilibrium analysis were used to determine the functional and physical size of the chicken hepatic membrane receptor that binds N-acetylglucosamine-terminated glycoproteins. Purified plasma membranes from chicken liver were irradiated with high energy electrons and assayed for 125I-agalactoorosomucoid binding. Increasing the dose of ionizing radiation resulted in a monoexponential decay in binding activity due to a progressive loss of binding sites. The molecular mass of the chicken lectin, determined in situ by target analysis, was 69,000 +/- 9,000 Da. When the same irradiated membranes were solubilized in Brij 58 and assayed, the binding protein exhibited a target size of 62,000 +/- 4,000 Da; in Triton X-100, the functional size of the receptor was 85,000 +/- 10,000 Da. Sedimentation equilibrium measurements of the purified binding protein yielded a lower limit molecular weight of 79,000 +/- 7,000. However, the solubilized lectin was detected as a heterogeneous population of oligomers with molecular weights as high as 450,000. Addition of calcium or calcium plus N-acetylglucosamine decreased the higher molecular weight species, but the lower limit molecular weights remained invariant. Similar results were determined when the chicken lectin was solubilized in Brij 58, C12E9, or 3-[(3-cholamidopropyl)dimethylammonio]-1-propane-sulfonic acid (CHAPS). Results from the present study suggest that in the plasma membrane, the functional species of the chicken hepatic lectin exists as a trimer. However, in detergent solution, the purified receptor forms a heterogeneous population of irreversible oligomers that exhibit binding activity proportional to size

  19. Quantitative structure-activity relationship (QSAR) models for polycyclic aromatic hydrocarbons (PAHs) dissipation in rhizosphere based on molecular structure and effect size

    International Nuclear Information System (INIS)

    Ma Bin; Chen Huaihai; Xu Minmin; Hayat, Tahir; He Yan; Xu Jianming

    2010-01-01

    Rhizoremediation is a significant form of bioremediation for polycyclic aromatic hydrocarbons (PAHs). This study examined the role of molecular structure in determining the rhizosphere effect on PAHs dissipation. Effect size in meta-analysis was employed as activity dataset for building quantitative structure-activity relationship (QSAR) models and accumulative effect sizes of 16 PAHs were used for validation of these models. Based on the genetic algorithm combined with partial least square regression, models for comprehensive dataset, Poaceae dataset, and Fabaceae dataset were built. The results showed that information indices, calculated as information content of molecules based on the calculation of equivalence classes from the molecular graph, were the most important molecular structural indices for QSAR models of rhizosphere effect on PAHs dissipation. The QSAR model, based on the molecular structure indices and effect size, has potential to be used in studying and predicting the rhizosphere effect of PAHs dissipation. - Effect size based on meta-analysis was used for building PAHs dissipation quantitative structure-activity relationship (QSAR) models.

  20. Quantitative structure-activity relationship (QSAR) models for polycyclic aromatic hydrocarbons (PAHs) dissipation in rhizosphere based on molecular structure and effect size

    Energy Technology Data Exchange (ETDEWEB)

    Ma Bin; Chen Huaihai; Xu Minmin; Hayat, Tahir [Zhejiang Provincial Key Laboratory of Subtropical Soil and Plant Nutrition, College of Environmental and Natural Resource Sciences, Zhejiang University, Hangzhou 310029 (China); He Yan, E-mail: yhe2006@zju.edu.c [Zhejiang Provincial Key Laboratory of Subtropical Soil and Plant Nutrition, College of Environmental and Natural Resource Sciences, Zhejiang University, Hangzhou 310029 (China); Xu Jianming, E-mail: jmxu@zju.edu.c [Zhejiang Provincial Key Laboratory of Subtropical Soil and Plant Nutrition, College of Environmental and Natural Resource Sciences, Zhejiang University, Hangzhou 310029 (China)

    2010-08-15

    Rhizoremediation is a significant form of bioremediation for polycyclic aromatic hydrocarbons (PAHs). This study examined the role of molecular structure in determining the rhizosphere effect on PAHs dissipation. Effect size in meta-analysis was employed as activity dataset for building quantitative structure-activity relationship (QSAR) models and accumulative effect sizes of 16 PAHs were used for validation of these models. Based on the genetic algorithm combined with partial least square regression, models for comprehensive dataset, Poaceae dataset, and Fabaceae dataset were built. The results showed that information indices, calculated as information content of molecules based on the calculation of equivalence classes from the molecular graph, were the most important molecular structural indices for QSAR models of rhizosphere effect on PAHs dissipation. The QSAR model, based on the molecular structure indices and effect size, has potential to be used in studying and predicting the rhizosphere effect of PAHs dissipation. - Effect size based on meta-analysis was used for building PAHs dissipation quantitative structure-activity relationship (QSAR) models.

  1. Density-functional errors in ionization potential with increasing system size

    Energy Technology Data Exchange (ETDEWEB)

    Whittleton, Sarah R.; Sosa Vazquez, Xochitl A.; Isborn, Christine M., E-mail: cisborn@ucmerced.edu [Chemistry and Chemical Biology, School of Natural Sciences, University of California, Merced, 5200 North Lake Road, Merced, California 95343 (United States); Johnson, Erin R., E-mail: erin.johnson@dal.ca [Chemistry and Chemical Biology, School of Natural Sciences, University of California, Merced, 5200 North Lake Road, Merced, California 95343 (United States); Department of Chemistry, Dalhousie University, 6274 Coburg Road, Halifax, Nova Scotia B3H 4R2 (Canada)

    2015-05-14

    This work investigates the effects of molecular size on the accuracy of density-functional ionization potentials for a set of 28 hydrocarbons, including series of alkanes, alkenes, and oligoacenes. As the system size increases, delocalization error introduces a systematic underestimation of the ionization potential, which is rationalized by considering the fractional-charge behavior of the electronic energies. The computation of the ionization potential with many density-functional approximations is not size-extensive due to excessive delocalization of the incipient positive charge. While inclusion of exact exchange reduces the observed errors, system-specific tuning of long-range corrected functionals does not generally improve accuracy. These results emphasize that good performance of a functional for small molecules is not necessarily transferable to larger systems.

  2. Fractionating power and outlet stream polydispersity in asymmetrical flow field-flow fractionation. Part I: isocratic operation.

    Science.gov (United States)

    Williams, P Stephen

    2016-05-01

    Asymmetrical flow field-flow fractionation (As-FlFFF) has become the most commonly used of the field-flow fractionation techniques. However, because of the interdependence of the channel flow and the cross flow through the accumulation wall, it is the most difficult of the techniques to optimize, particularly for programmed cross flow operation. For the analysis of polydisperse samples, the optimization should ideally be guided by the predicted fractionating power. Many experimentalists, however, neglect fractionating power and rely on light scattering detection simply to confirm apparent selectivity across the breadth of the eluted peak. The size information returned by the light scattering software is assumed to dispense with any reliance on theory to predict retention, and any departure of theoretical predictions from experimental observations is therefore considered of no importance. Separation depends on efficiency as well as selectivity, however, and efficiency can be a strong function of retention. The fractionation of a polydisperse sample by field-flow fractionation never provides a perfectly separated series of monodisperse fractions at the channel outlet. The outlet stream has some residual polydispersity, and it will be shown in this manuscript that the residual polydispersity is inversely related to the fractionating power. Due to the strong dependence of light scattering intensity and its angular distribution on the size of the scattering species, the outlet polydispersity must be minimized if reliable size data are to be obtained from the light scattering detector signal. It is shown that light scattering detection should be used with careful control of fractionating power to obtain optimized analysis of polydisperse samples. Part I is concerned with isocratic operation of As-FlFFF, and part II with programmed operation.

  3. Optimization of protein fractionation by skim milk microfiltration: Choice of ceramic membrane pore size and filtration temperature.

    Science.gov (United States)

    Jørgensen, Camilla Elise; Abrahamsen, Roger K; Rukke, Elling-Olav; Johansen, Anne-Grethe; Schüller, Reidar B; Skeie, Siv B

    2016-08-01

    The objective of this study was to investigate how ceramic membrane pore size and filtration temperature influence the protein fractionation of skim milk by cross flow microfiltration (MF). Microfiltration was performed at a uniform transmembrane pressure with constant permeate flux to a volume concentration factor of 2.5. Three different membrane pore sizes, 0.05, 0.10, and 0.20µm, were used at a filtration temperature of 50°C. Furthermore, at pore size 0.10µm, 2 different filtration temperatures were investigated: 50 and 60°C. The transmission of proteins increased with increasing pore size, giving the permeate from MF with the 0.20-µm membrane a significantly higher concentration of native whey proteins compared with the permeates from the 0.05- and 0.10-µm membranes (0.50, 0.24, and 0.39%, respectively). Significant amounts of caseins permeated the 0.20-µm membrane (1.4%), giving a permeate with a whitish appearance and a casein distribution (αS2-CN: αS1-CN: κ-CN: β-CN) similar to that of skim milk. The 0.05- and 0.10-µm membranes were able to retain all caseins (only negligible amounts were detected). A permeate free from casein is beneficial in the production of native whey protein concentrates and in applications where transparency is an important functional characteristic. Microfiltration of skim milk at 50°C with the 0.10-µm membrane resulted in a permeate containing significantly more native whey proteins than the permeate from MF at 60°C. The more rapid increase in transmembrane pressure and the significantly lower concentration of caseins in the retentate at 60°C indicated that a higher concentration of caseins deposited on the membrane, and consequently reduced the native whey protein transmission. Optimal protein fractionation of skim milk into a casein-rich retentate and a permeate with native whey proteins were obtained by 0.10-µm MF at 50°C. Copyright © 2016 American Dairy Science Association. Published by Elsevier Inc. All

  4. Testing a low molecular mass fraction of a mushroom (Lentinus edodes) extract formulated as an oral rinse in a cohort of volunteers

    NARCIS (Netherlands)

    Signoretto, C.; Burlacchini, G.; Marchi, A.; Grillenzoni, M.; Cavalleri, G.; Ciric, L.; Lingström, P.; Pezzati, E.; Daglia, M.; Zaura, E.; Pratten, J.; Spratt, D.A.; Wilson, M.; Canepari, P.

    2011-01-01

    Although foods are considered enhancing factors for dental caries and periodontitis, laboratory researches indicate that several foods and beverages contain components endowed with antimicrobial and antiplaque activities. A low molecular mass (LMM) fraction of an aqueous mushroom extract has been

  5. Supporting Students to Reason about the Relative Size of Proper and Improper Fractions

    Science.gov (United States)

    Cortina, Jose Luis; Visnovska, Jana

    2015-01-01

    Fractions are a well-researched area; yet, student learning of fractions remains problematic. We outline a novel path to initial fraction learning and document its promise. Building on Freudenthal's analysis of the fraction concept, we regard "comparing," rather than "fracturing," as the primary activity from which students are…

  6. Gram-scale fractionation of nanodiamonds by density gradient ultracentrifugation

    KAUST Repository

    Peng, Wei

    2013-01-01

    Size is a defining characteristic of nanoparticles; it influences their optical and electronic properties as well as their interactions with molecules and macromolecules. Producing nanoparticles with narrow size distributions remains one of the main challenges to their utilization. At this time, the number of practical approaches to optimize the size distribution of nanoparticles in many interesting materials systems, including diamond nanocrystals, remains limited. Diamond nanocrystals synthesized by detonation protocols-so-called detonation nanodiamonds (DNDs)-are promising systems for drug delivery, photonics, and composites. DNDs are composed of primary particles with diameters mainly <10 nm and their aggregates (ca. 10-500 nm). Here, we introduce a large-scale approach to rate-zonal density gradient ultracentrifugation to obtain monodispersed fractions of nanoparticles in high yields. We use this method to fractionate a highly concentrated and stable aqueous solution of DNDs and to investigate the size distribution of various fractions by dynamic light scattering, analytical ultracentrifugation, transmission electron microscopy and powder X-ray diffraction. This fractionation method enabled us to separate gram-scale amounts of DNDs into several size ranges within a relatively short period of time. In addition, the high product yields obtained for each fraction allowed us to apply the fractionation method iteratively to a particular size range of particles and to collect various fractions of highly monodispersed primary particles. Our method paves the way for in-depth studies of the physical and optical properties, growth, and aggregation mechanism of DNDs. Applications requiring DNDs with specific particle or aggregate sizes are now within reach. © 2013 The Royal Society of Chemistry.

  7. Characterization of isolated fractions of dissolved organic matter derived from municipal solid waste compost.

    Science.gov (United States)

    Yu, Minda; He, Xiaosong; Liu, Jiaomei; Wang, Yuefeng; Xi, Beidou; Li, Dan; Zhang, Hui; Yang, Chao

    2018-04-14

    Understanding the heterogeneous evolution characteristics of dissolved organic matter fractions derived from compost is crucial to exploring the composting biodegradation process and the possible applications of compost products. Herein, two-dimensional correlation spectroscopy integrated with reversed-phase high performance liquid chromatography and size exclusion chromatography were utilized to obtain the molecular weight (MW) and polarity evolution characteristics of humic acid (HA), fulvic acid (FA), and the hydrophilic (HyI) fractions during composting. The high-MW humic substances and building blocks in the HA fraction degraded faster during composting than polymers, proteins, and organic colloids. Similarly, the low MW acid FA factions transformed faster than the low weight neutral fractions, followed by building blocks, and finally polymers, proteins, and organic colloids. The evolutions of HyI fractions during composting occurred first for building blocks, followed by low MW acids, and finally low weight neutrals. With the progress of composting, the hydrophobic properties of the HA and FA fractions were enhanced. The degradation/humification process of the hydrophilic and transphilic components was faster than that of the hydrophobic component. Compared with the FA and HyI fractions, the HA fraction exhibited a higher MW and increased hydrophobicity. Copyright © 2018 Elsevier B.V. All rights reserved.

  8. Characterization of carbonaceous materials in PM2.5 and PM10 size fractions in Morogoro, Tanzania, during 2006 wet season campaign

    International Nuclear Information System (INIS)

    Mkoma, Stelyus L.; Chi Xuguang; Maenhaut, Willy

    2010-01-01

    Atmospheric aerosol samples in PM10 and PM2.5 size fractions were collected in parallel at a rural site in Morogoro during wet season in March and April 2006. All samples were analysed for the particulate matter mass, for organic, elemental, and total carbon (OC, EC, and TC), and for water-soluble OC (WSOC). The average PM10 and PM2.5 mass concentrations and associated standard deviations were 14 ± 13 μg/m 3 and 7.3 ± 4 μg/m 3 respectively. On average, TC accounted for 33% of the PM10 mass and 44% of the PM2.5 mass for the campaign. The average OC/PM percentage ratios were 27% and 33% in PM10 and PM2.5 size fractions respectively and a larger fraction of the OC was water-soluble. The observed low EC/TC mean percentage ratios of 10-14% respectively for PM10 and PM2.5 fractions indicate that the carbonaceous aerosol originates mainly from biogenic aerosols and/or biomass burning. A simple source apportionment approach was used to apportion the OC to biofuel and charcoal burning. On average, 93% of the PM10 OC was attributed to biofuel and 7% to charcoal burning in the 2006 wet season campaign. However, it is suggested that a contribution to the OC at Morogoro could also come from other natural biogenic matter, and/or biomass burning aerosols. The results for the sources of OC at Morogoro should therefore be considered with great caution.

  9. Nanometer size wear debris generated from ultra high molecular weight polyethylene in vivo

    Czech Academy of Sciences Publication Activity Database

    Lapčíková, Monika; Šlouf, Miroslav; Dybal, Jiří; Zolotarevova, E.; Entlicher, G.; Pokorný, D.; Gallo, J.; Sosna, A.

    2009-01-01

    Roč. 266, 1-2 (2009), s. 349-355 ISSN 0043-1648 R&D Projects: GA MŠk 2B06096 Institutional research plan: CEZ:AV0Z40500505 Keywords : ultra high molecular weight polyethylene * nanometer size wear debris * morphology of wear particles Subject RIV: CD - Macromolecular Chemistry Impact factor: 1.771, year: 2009

  10. Cs adsorption on the clay-sized fraction of various soils: effect of organic matter destruction and charge compensating cation

    International Nuclear Information System (INIS)

    Staunton, S.; Levacic, P.

    1999-01-01

    The association of organic matter with clay minerals may decrease their affinity for Cs and thus enhance its bioavailability. We have investigated this hypothesis by comparing Cs adsorption on several soils, both topsoils and the corresponding subsoils, before and after organic matter destruction with H 2 O 2 . The clay-sized fractions were homoionic in either K, Na or Ca, to avoid artefacts due to variable composition of the exchange complex. All experiments were carried out in dilute suspension under controlled conditions. The affinity of the clay-sized fractions for Cs and the value of the Freundlich b parameter are typical of illites. This supports the hypothesis that the adsorption properties of soils are dominated by small amounts of illite. However, if this is the case, the affinity of soil illites is higher than that of reference illites. The destruction of organic matter has a variable effect. In some cases, a marked enhancement is observed, in others there is no significant effect, or a small decrease. There is no clear pattern relating the effect of organic matter destruction and either dominant clay mineralogy or organic matter content. (Copyright (c) 1999 Elsevier Science B.V., Amsterdam. All rights reserved.)

  11. Molecular finite-size effects in stochastic models of equilibrium chemical systems.

    Science.gov (United States)

    Cianci, Claudia; Smith, Stephen; Grima, Ramon

    2016-02-28

    The reaction-diffusion master equation (RDME) is a standard modelling approach for understanding stochastic and spatial chemical kinetics. An inherent assumption is that molecules are point-like. Here, we introduce the excluded volume reaction-diffusion master equation (vRDME) which takes into account volume exclusion effects on stochastic kinetics due to a finite molecular radius. We obtain an exact closed form solution of the RDME and of the vRDME for a general chemical system in equilibrium conditions. The difference between the two solutions increases with the ratio of molecular diameter to the compartment length scale. We show that an increase in the fraction of excluded space can (i) lead to deviations from the classical inverse square root law for the noise-strength, (ii) flip the skewness of the probability distribution from right to left-skewed, (iii) shift the equilibrium of bimolecular reactions so that more product molecules are formed, and (iv) strongly modulate the Fano factors and coefficients of variation. These volume exclusion effects are found to be particularly pronounced for chemical species not involved in chemical conservation laws. Finally, we show that statistics obtained using the vRDME are in good agreement with those obtained from Brownian dynamics with excluded volume interactions.

  12. Particle size dependence of biogenic secondary organic aerosol molecular composition

    Science.gov (United States)

    Tu, Peijun; Johnston, Murray V.

    2017-06-01

    Formation of secondary organic aerosol (SOA) is initiated by the oxidation of volatile organic compounds (VOCs) in the gas phase whose products subsequently partition to the particle phase. Non-volatile molecules have a negligible evaporation rate and grow particles at their condensation rate. Semi-volatile molecules have a significant evaporation rate and grow particles at a much slower rate than their condensation rate. Particle phase chemistry may enhance particle growth if it transforms partitioned semi-volatile molecules into non-volatile products. In principle, changes in molecular composition as a function of particle size allow non-volatile molecules that have condensed from the gas phase (a surface-limited process) to be distinguished from those produced by particle phase reaction (a volume-limited process). In this work, SOA was produced by β-pinene ozonolysis in a flow tube reactor. Aerosol exiting the reactor was size-selected with a differential mobility analyzer, and individual particle sizes between 35 and 110 nm in diameter were characterized by on- and offline mass spectrometry. Both the average oxygen-to-carbon (O / C) ratio and carbon oxidation state (OSc) were found to decrease with increasing particle size, while the relative signal intensity of oligomers increased with increasing particle size. These results are consistent with oligomer formation primarily in the particle phase (accretion reactions, which become more favored as the volume-to-surface-area ratio of the particle increases). Analysis of a series of polydisperse SOA samples showed similar dependencies: as the mass loading increased (and average volume-to-surface-area ratio increased), the average O / C ratio and OSc decreased, while the relative intensity of oligomer ions increased. The results illustrate the potential impact that particle phase chemistry can have on biogenic SOA formation and the particle size range where this chemistry becomes important.

  13. Particle size dependence of biogenic secondary organic aerosol molecular composition

    Directory of Open Access Journals (Sweden)

    P. Tu

    2017-06-01

    Full Text Available Formation of secondary organic aerosol (SOA is initiated by the oxidation of volatile organic compounds (VOCs in the gas phase whose products subsequently partition to the particle phase. Non-volatile molecules have a negligible evaporation rate and grow particles at their condensation rate. Semi-volatile molecules have a significant evaporation rate and grow particles at a much slower rate than their condensation rate. Particle phase chemistry may enhance particle growth if it transforms partitioned semi-volatile molecules into non-volatile products. In principle, changes in molecular composition as a function of particle size allow non-volatile molecules that have condensed from the gas phase (a surface-limited process to be distinguished from those produced by particle phase reaction (a volume-limited process. In this work, SOA was produced by β-pinene ozonolysis in a flow tube reactor. Aerosol exiting the reactor was size-selected with a differential mobility analyzer, and individual particle sizes between 35 and 110 nm in diameter were characterized by on- and offline mass spectrometry. Both the average oxygen-to-carbon (O ∕ C ratio and carbon oxidation state (OSc were found to decrease with increasing particle size, while the relative signal intensity of oligomers increased with increasing particle size. These results are consistent with oligomer formation primarily in the particle phase (accretion reactions, which become more favored as the volume-to-surface-area ratio of the particle increases. Analysis of a series of polydisperse SOA samples showed similar dependencies: as the mass loading increased (and average volume-to-surface-area ratio increased, the average O ∕ C ratio and OSc decreased, while the relative intensity of oligomer ions increased. The results illustrate the potential impact that particle phase chemistry can have on biogenic SOA formation and the particle size range where this chemistry becomes

  14. Concept of fractional parentage for arbitrary molecular point groups

    International Nuclear Information System (INIS)

    Koenig, E.; Kremer, S.

    1977-01-01

    The method of fractional parentage is extended to the general case of mixed configurations in arbitrary nonsimply reducible groups, G is contained in SO(3). Particular attention is devoted to the calculation of coefficients of fractional parentage (CFP) and expressions are provided for the matrix elements of F and G type operators between N electron functions. 29 references

  15. Toxicologically important trace elements and organic compounds investigated in size-fractionated urban particulate matter collected near the Prague highway

    International Nuclear Information System (INIS)

    Sysalová, Jiřina; Sýkorová, Ivana; Havelcová, Martina; Száková, Jiřina; Trejtnarová, Hana; Kotlík, Bohumil

    2012-01-01

    Urban particulate matter was collected in the most exposed area of Prague, near a busy highway, in order to provide petrographic and chemical characterization useful for health impact assessment in that locality or other applications. Samples were collected from filters of the air conditioning system in two years, 2009 and 2010, and sieved into four grain-size fractions: 0.507–0.119 mm, 0.119–0.063 mm, 3 extracted solutions. A composition of inorganic and carbonaceous particles of natural and anthropogenic origin and their morphology were studied by optical and electron microscopy. Organic solvent extracts of the samples were analyzed using gas chromatography to compare the organic compound distribution in fractions. Only slight differences between 2009 and 2010 years are visible. The relatively high extractable part of most investigated elements confirms mobility and potential availability to organisms. The changes can be recognized in the petrographic and organic composition in samples from both years, which were likely the result of various inputs of source materials. Specific organic marker compounds indicate contribution from fossil fuels, plant materials and bacteria. -- Highlights: ► Uncommon urban particulate matter collected near the highway in years 2009 and 2010 was deeply characterized. ► Harmful organic compounds and toxic analytes were tested in grain-size fractions and completed with electron microscopy studies. ► Very similar concentration levels were found in elemental composition in samples from two years. ► Petrographic and organic compositions were different in both samples. ► Relatively high mobility of selected analytes was found in 2M HNO 3 extracted solutions.

  16. Size and molecular weight determination of polysaccharides by means of nano electrospray gas-phase electrophoretic mobility molecular analysis (nES GEMMA).

    Science.gov (United States)

    Weiss, Victor U; Golesne, Monika; Friedbacher, Gernot; Alban, Susanne; Szymanski, Wladyslaw W; Marchetti-Deschmann, Martina; Allmaier, Günter

    2018-02-21

    Size, size distribution and molecular weight (MW) determination of nanoparticles and that are for example large polymers, are of great interest and pose an analytical challenge. In this context, nano electrospray gas-phase electrophoretic mobility molecular analysis (nES GEMMA) is a valuable tool with growing impact. Separation of single-charged analytes according to their electrophoretic mobility diameter (EMD) starting from single-digit EMDs up to several hundred nm diameters is possible. In case of spherical analytes, the EMD corresponds to the dry nanoparticle size. Additionally, the instrument is capable of number-based, single-particle detection following the recommendation of the European Commission for nanoparticle characterization (2011/696/EU). In case an EMD/MW correlation for a particular compound class (based on availability of well-defined standards) exists, a nanoparticle's MW can be determined from its EMD. In the present study, we focused on nES GEMMA of linear and branched, water-soluble polysaccharides forming nanoparticles and were able to obtain spectra for both analyte classes regarding single-charged species. Based on EMDs for corresponding analytes, an excellent EMD/MW correlation could be obtained in case of the branched natural polymer (dextran). This enables the determination of dextran MWs from nES GEMMA spectra despite high analyte polydispersity and in a size/MW range, where classical mass spectrometry is limited. EMD/MW correlations based on linear (pullulans, oat-ß-glucans) polymers were significantly different, possibly indicating challenges in the exact MW determination of these compounds by, for example, chromatographic and light scattering means. Despite these observations, nES GEMMA of linear, monosaccharide-based polymers enabled the determination of size and size-distribution of such dry bionanoparticles. © 2018 The Authors. Electrophoresis published by Wiley-VCH Verlag GmbH & Co. KGaA.

  17. Molecular size-dependent abundance and composition of dissolved organic matter in river, lake and sea waters.

    Science.gov (United States)

    Xu, Huacheng; Guo, Laodong

    2017-06-15

    Dissolved organic matter (DOM) is ubiquitous in natural waters. The ecological role and environmental fate of DOM are highly related to the chemical composition and size distribution. To evaluate size-dependent DOM quantity and quality, water samples were collected from river, lake, and coastal marine environments and size fractionated through a series of micro- and ultra-filtrations with different membranes having different pore-sizes/cutoffs, including 0.7, 0.4, and 0.2 μm and 100, 10, 3, and 1 kDa. Abundance of dissolved organic carbon, total carbohydrates, chromophoric and fluorescent components in the filtrates decreased consistently with decreasing filter/membrane cutoffs, but with a rapid decline when the filter cutoff reached 3 kDa, showing an evident size-dependent DOM abundance and composition. About 70% of carbohydrates and 90% of humic- and protein-like components were measured in the definition of DOM and its size continuum in quantity and quality in aquatic environments. Copyright © 2017 Elsevier Ltd. All rights reserved.

  18. Design and performance of large-pixel-size high-fill-fraction TES arrays for future X-ray astrophysics missions

    International Nuclear Information System (INIS)

    Figueroa-Feliciano, E.; Bandler, S.R.; Chervenak, J.; Finkbeiner, F.; Iyomoto, N.; Kelley, R.L.; Kilbourne, C.A.; Porter, F.S.; Saab, T.; Sadleir, J.; White, J.

    2006-01-01

    We have designed, modeled, fabricated and tested a 600μm high-fill-fraction microcalorimeter array that will be a good match to the requirements of future X-ray missions. Our devices use transition-edge sensors coupled to overhanging bismuth/copper absorbers to produce arrays with 97% or higher fill fraction. An extensive modeling effort was undertaken in order to accommodate large pixel sizes (500-1000μm) and maintain the best energy resolution possible. The finite thermalization time of the large absorber and the associated position dependence of the pulse shape on absorption position constrain the time constants of the system given a desired energy-resolution performance. We show the results of our analysis and our new pixel design, consisting of a novel TES-on-the-side architecture which creates a controllable TES-absorber conductance

  19. Optical properties of size fractions of suspended particulate matter in littoral waters of Québec

    Science.gov (United States)

    Mohammadpour, Gholamreza; Gagné, Jean-Pierre; Larouche, Pierre; Montes-Hugo, Martin A.

    2017-11-01

    Mass-specific absorption (ai∗(λ)) and scattering (bi∗(λ)) coefficients were derived for four size fractions (i = 0.2-0.4, 0.4-0.7, 0.7-10, and > 10 µm, λ = wavelength in nm) of suspended particulate matter (SPM) and with samples obtained from surface waters (i.e., 0-2 m depth) of the Saint Lawrence Estuary and Saguenay Fjord (SLE-SF) during June of 2013. For the visible-near-infrared spectral range (i.e., λ = 400-710 nm), mass-specific absorption coefficients of total SPM (i.e., particulates > 0.2 µm) (hereafter aSPM∗) had low values (e.g., 0.05 m2 g-1 at λ = 440 nm) corresponded with locations of the upper estuary and SF where particulates were mineral-rich and/or their mean diameter was relatively small. The variability of two optical proxies (the spectral slope of particulate beam attenuation coefficient and the mass-specific particulate absorption coefficient, hereafter γ and Svis, respectively) with respect to changes in particle size distribution (PSD) and chemical composition was also examined. The slope of the PSD was correlated with bi∗(550) (Spearman rank correlation coefficient ρs up to 0.37) and ai∗(440) estimates (ρs up to 0.32) in a comparable way. Conversely, the contribution of particulate inorganic matter to total mass of SPM (FSPMPIM) had a stronger correlation with ai∗ coefficients at a wavelength of 440 nm (ρs up to 0.50). The magnitude of γ was positively related to FSPMi or the contribution of size fraction i to the total mass of SPM (ρs up to 0.53 for i = 0.2-0.4 µm). Also, the relation between γ and FSPMPIM variability was secondary (ρs = -0.34, P > 0.05). Lastly, the magnitude of Svis was inversely correlated with aSPM∗(440) (ρs = -0.55, P = 0.04) and FSPMPIM (ρs = -0.62, P = 0.018) in sampling locations with a larger marine influence (i.e., lower estuary).

  20. Effects of fruit and vegetable low molecular mass fractions on gene expression in gingival cells challenged with Prevotella intermedia and Actinomyces naeslundii

    NARCIS (Netherlands)

    Canesi, L.; Borghi, C.; Stauder, M.; Lingström, P.; Papetti, A.; Pratten, J.; Signoretto, C.; Spratt, D.A.; Wilson, M.; Zaura, E.; Pruzzo, C.

    2011-01-01

    Low molecular mass (LMM) fractions obtained from extracts of raspberry, red chicory, and Shiitake mushrooms have been shown to be an useful source of specific antibacterial, antiadhesion/coaggregation, and antibiofilm agent(s) that might be used for protection towards caries and gingivitis. In this

  1. Fractionation of elements by particle size of ashes ejected from Copahue Volcano, Argentina.

    Science.gov (United States)

    Gómez, Dario; Smichowski, Patricia; Polla, Griselda; Ledesma, Ariel; Resnizky, Sara; Rosa, Susana

    2002-12-01

    The volcano Copahue, Neuquén province, Argentina has shown infrequent explosive eruptions since the 18th century. Recently, eruptive activity and seismicity were registered in the period July-October, 2000. As a consequence, ash clouds were dispersed by winds and affected Caviahue village located at about 9 km east of the volcano. Samples of deposited particles from this area were collected during this episode for their chemical analysis to determine elements of concern with respect to the health of the local population and its environment. Different techniques were used to evaluate the distribution of elements in four particle size ranges from 36 to 300 microm. X-ray powder diffraction (XRD) was selected to detect major components namely, minerals, silicate glass, fragments of rocks and sulfurs. Major and minor elements (Al, Ca, Cl, Fe, K, Mg, Mn, Na, S, Si and Ti), were detected by energy dispersive X ray analysis (EDAX). Trace element (As, Cd, Cr, Cu, Hg, Ni, Pb, Sb, U, V and Zn) content was quantified by inductively coupled plasma-mass spectrometry (ICP-MS). Nuclear activation analysis (NAA) was employed for the determination of Ce, Co, Cs, Eu, Hf, La, Lu, Rb, Sc, Sm, Ta and Yb. An enrichment was observed in the smallest size fraction of volcanic ashes for four elements (As, Cd, Cu and Sb) of particular interest from the environmental and human health point of view.

  2. Monitoring of DSP toxins in small-sized plankton fraction of seawater collected in Mutsu Bay, Japan, by ELISA method: relation with toxin contamination of scallop.

    Science.gov (United States)

    Imai, Ichiro; Sugioka, Hikaru; Nishitani, Goh; Mitsuya, Tadashi; Hamano, Yonekazu

    2003-01-01

    Monitorings were conducted on DSP toxins in mid-gut gland of scallop (mouse assay), cell numbers of toxic dinoflagellate species of Dinophysis, and diarrhetic shellfish poisoning (DSP) toxins in small-sized (0.7-5 microm) plankton fraction of seawater collected from surface (0 m) and 20 m depth at a station in Mutsu Bay, Aomori Prefecture, Japan, in 2000. A specific enzyme-linked immunosorbent assay (ELISA) was employed for the analysis of DSP toxins in small-sized plankton fraction using a mouse monoclonal anti-okadaic acid antibody which recognizes okadaic acid, dinophysistoxin-1, and dinophysistoxin-3. DSP toxins were detected twice in the mid-gut gland of scallops at 1.1-2.3 MU (mouse units) g(-1) on 26 June and at 0.6-1.2 MU g(-1) on 3 July, respectively. Relatively high cell densities of D. fortii were observed on 26 June and 11 September, and may only contribute to the bivalve toxicity during late June to early July. D. acuminata did not appear to be responsible for the toxicity of scallops in Mutsu Bay in 2000. ELISA monitoring of small-sized plankton fraction in seawater could detect DSP toxins two weeks before the detection of the toxin in scallops, and could do so two weeks after the loss of the bivalve toxicity by mouse assay. On 17 July, toxic D. fortii was detected at only small number, <10 cells l(-1), but DSP toxins were detected by the ELISA assay, suggesting a presence of other toxic small-sized plankton in seawater. For the purpose of reducing negative impacts of DSP occurrences, monitorings have been carried out hitherto on DSP toxins of bivalve tissues by mouse assay and on cell densities of "toxic" species of Dinophysis. Here we propose a usefulness of ELISA monitoring of plankton toxicity, especially in small-sized fraction, which are possible foods of mixotrophic Dinophysis, as a practical tool for detecting and predicting DSPs in coastal areas of fisheries grounds of bivalve aquaculture.

  3. Effect of e-beam dose on the fractional density of Au-catalyzed GaAs nanowire growth

    Energy Technology Data Exchange (ETDEWEB)

    Park, Jeung Hun, E-mail: jeunghunpark@gmail.com [Department of Materials Science and Engineering, University of California Los Angeles, Los Angeles, CA 90095 (United States); Gambin, Vincent [Northrop Grumman Aerospace Systems, Redondo Beach, CA 90278 (United States); Kodambaka, Suneel, E-mail: kodambaka@ucla.edu [Department of Materials Science and Engineering, University of California Los Angeles, Los Angeles, CA 90095 (United States)

    2016-05-31

    Using Au/GaAs as a model system, the effect of initial catalyst patterning conditions on the growth of nanowire was studied. Resulting morphologies and fractional surface densities are determined as a function of e-beam dose, dot size, and inter-dot spacing using scanning and transmission electron microscopies. The majority of resulting nanowires grow randomly oriented with respect to the substrate. The nanowires are tapered with narrow tops, wider bases, and catalysts at the wire tips — characteristics of vapor–liquid–solid process. The base diameters of the wires are larger than the dot size, which is likely due to the non-catalyzed vapor–solid deposition along the sidewalls. The higher dose rate used in pattering leads to the formation of higher aspect ratio nanowires with narrower bases. The fractional surface density is found to increase linearly with the clearing dose and the critical dose for nanowire growth increases with decreasing catalyst pattern size and spacing. At a given dose, the fractional density increases with increasing Au dot size and with decreasing inter-dot spacing. Our results may provide new insights into the role of catalyst preparing conditions on the high density, wafer-scale growth of nanowires. - Highlights: • Initial Au catalyst layers are prepared using electron beam lithography. • GaAs nanowires are grown on GaAs(111)B using molecular beam epitaxy. • Effect of dose, size and spacing of Au dots on morphology and density is studied. • Density of nanowires is controlled by changing exposed dose on Au catalyst.

  4. Nanoparticle amount, and not size, determines chain alignment and nonlinear hardening in polymer nanocomposites

    Science.gov (United States)

    Varol, H. Samet; Meng, Fanlong; Hosseinkhani, Babak; Malm, Christian; Bonn, Daniel; Bonn, Mischa; Zaccone, Alessio

    2017-01-01

    Polymer nanocomposites—materials in which a polymer matrix is blended with nanoparticles (or fillers)—strengthen under sufficiently large strains. Such strain hardening is critical to their function, especially for materials that bear large cyclic loads such as car tires or bearing sealants. Although the reinforcement (i.e., the increase in the linear elasticity) by the addition of filler particles is phenomenologically understood, considerably less is known about strain hardening (the nonlinear elasticity). Here, we elucidate the molecular origin of strain hardening using uniaxial tensile loading, microspectroscopy of polymer chain alignment, and theory. The strain-hardening behavior and chain alignment are found to depend on the volume fraction, but not on the size of nanofillers. This contrasts with reinforcement, which depends on both volume fraction and size of nanofillers, potentially allowing linear and nonlinear elasticity of nanocomposites to be tuned independently. PMID:28377517

  5. A Splash to Nano-Sized Inorganic Energy-Materials by the Low-Temperature Molecular Precursor Approach.

    Science.gov (United States)

    Driess, Matthias; Panda, Chakadola; Menezes, Prashanth Wilfried

    2018-05-07

    The low-temperature synthesis of inorganic materials and their interfaces at the atomic and molecular level provides numerous opportunities for the design and improvement of inorganic materials in heterogeneous catalysis for sustainable chemical energy conversion or other energy-saving areas. Using suitable molecular precursors for functional inorganic nanomaterial synthesis allows for facile control over uniform particle size distribution, stoichiometry, and leads to desired chemical and physical properties. This minireview outlines some advantages of the molecular precursor approach in light of selected recent developments of molecule-to-nanomaterials synthesis for renewable energy applications, relevant for the oxygen evolution reaction (OER), hydrogen evolution reaction (HER) and overall water-splitting. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  6. Effect of a dam on the optical properties of different-sized fractions of dissolved organic matter in a mid-subtropical drinking water source reservoir.

    Science.gov (United States)

    Sun, Qiyuan; Jiang, Juan; Zheng, Yuyi; Wang, Feifeng; Wu, Chunshan; Xie, Rong-Rong

    2017-11-15

    The presence of a dam on a river is believed to have a key role in affecting changes in the components of the chromophoric dissolved organic matter (CDOM) in reservoirs. However, questions remain about the mechanisms that control these changes. In this study, we used tangential ultrafiltration, fluorescence spectrum and phytoplankton cell density detection to explore the impacts of a dam on the CDOM components in the Shanzai Reservoir, a source of drinking water. The results demonstrated each CDOM size fraction comprised two main components, namely C1 (protein-like substance) and C2 (humic-like substance). The C1 content had a higher value in areas with slow flow than in the normal river channel, while the C2 contents were generally stable in the flow direction. The topography of the reservoir site affected the structure of the CDOM components based on changes in the hydraulic conditions caused by the dam. The variations in the CDOM components, hydraulic parameters and fluorescence indices in the river flow direction indicated that the contribution of the phytoplankton to the CDOM content increased as the distance to the dam decreased, phytoplankton metabolism enhanced C1 content of the 1-10kDa molecular weights range fraction. Further, the contributions of different phytoplankton biomass to C1 proved that the dam changed the hydraulic conditions, had secondary effects on the metabolism of the phytoplankton, and resulted in changes in the structure of the CDOM components. Copyright © 2017 Elsevier B.V. All rights reserved.

  7. Fate of lignin, cutin and suberin in soil organic matter fractions - an incubation experiment

    Science.gov (United States)

    Mueller, Carsten W.; Mueller, Kevin E.; Freeman, Katherine H.; Ingrid, Kögel-Knabner

    2010-05-01

    The turnover of soil organic matter (SOM) is controlled by its chemical composition, its spatial accessibility and the association with the mineral phase. Separation of bulk soils by physical fractionation and subsequent chemical analysis of these fractions should give insights to how compositional differences in SOM drive turnover rates of different size-defined carbon pools. The main objective of this study was to elucidate the relative abundance and recalcitrance of lignin, cutin and suberin in aggregated bulk soils and SOM fractions in the course of SOM decomposition. Bulk soils and physically-separated size fractions (sand, silt and clay) of the Ah horizon of a forest soil (under Picea abies L.Karst) were parallel incubated over a period of one year. In order to differentiate between particulate OM (POM) and mineral-associated SOM the particle size fractions were additionally separated by density after the incubation experiment. We used solid-state 13C-CPMAS NMR spectroscopy and GC-MS (after copper oxide oxidation and solvent extraction) to analyze the composition of the incubated samples. The abundance and isotopic composition (including 13C and 14C) of the respired CO2 further enabled us to monitor the dynamics of SOM mineralization. This approach allowed for differentiating between C stabilization of soil fractions due to accessibility/aggregation and to biochemical recalcitrance at different scales of resolution (GC-MS, NMR). We found a relative enrichment of alkyl C and decreasing lignin contents in the order of sand particulate OM (POM). For the fresh particulate OM (POM) of the sand fraction a clear decay of lignin was observed in the course of the incubation experiment, indicated by decreasing C/V and increasing ac/alV ratios. A relative decrease of aliphatic C in the incubated fractions compared to the incubated bulk soils showed the preferential mineralization of less recalcitrant C compounds that were spatially inaccessible in aggregates of the bulk

  8. Lactone size dependent reactivity in Candida antarctica lipase B: A molecular dynamics and docking study

    NARCIS (Netherlands)

    Veld, M.A.J.; Fransson, L.; Palmans, A.R.A.; Meijer, E.W.; Hult, K.

    2009-01-01

    Size matters: Lactones have extensively been studied as monomers in enzymatic polymerization reactions. Large lactones showed an unexpectedly high reactivity in these reactions. A combination of docking and molecular dynamics studies have been used to explain this high reactivity in terms of

  9. Distribution of Artificial Radioisotopes in Granulometric and Organic Fractions of Alluvial Soils Downstream the Krasnoyarsk Mining and Chemical Combine

    Energy Technology Data Exchange (ETDEWEB)

    Korobova, Elena M.; Linnik, Vitaly G. [Vernadsky Institute of Geochemistry and Analytical Chemistry, 117991, Moscow (Russian Federation); Brown, Justin E. [Norwegian Radiation Protection Authority P.O. Box 55, N-1332 Oesteraas (Norway)

    2014-07-01

    A study of some artificial radionuclides discharged by the Krasnoyarsk Mining and Chemical Combine (KMCC) in different granulometric and organic fractions of alluvial soils was performed in the near and remote impact zones of the enterprise. Radionuclides were shown to concentrate in fine fractions enriched in hydro-mica and smectites. However in natural conditions the dominating size fraction associated with radionuclide accumulation at the study sites appeared to be made up of silt (0.010 mm) to clay (0.001 mm) sizes. Therefore due to radionuclide sorption and natural aggregation the peaks of a relatively high radionuclide mass accumulation were associated with three granulometric fractions: <0.001 mm, 0.063-0.010 mm and 0.25-0.125 mm. Soil granulometry was shown to reflect specificity of sedimentation at different landscape positions downstream from the KMCC. At the Balchug site a coarser fraction was accumulated close to the channel while finer fractions are deposited at a higher level. The portion of the clay fraction corresponded to the elevation level increasing from the river bank to the terrace. At the Mikhin Island the tendency was different. A coarser fraction was deposited on higher levels while the portion of clay fraction was at a minimum compared to the lower levels. To study the relationship between radionuclide activity concentrations and organic matter content, selected soil samples were subjected to extraction of the humic and fulvic acid fractions with a subsequent determination of radionuclides in the separated phases and the residue component. The air-dry sample was saturated with 0.1 M NaOH, humic acid was precipitated by 1 M HCl at pH=1. The separation resulted in three fractions of the fulvic acids, humic acids, and the residue containing the denuded mineral phase and the refractory organic residue. Radionuclides measured in the first fraction were believed to be the most mobile, those in the second fraction - subjected to the complexation

  10. Size-exclusion chromatography for the determination of the boiling point distribution of high-boiling petroleum fractions.

    Science.gov (United States)

    Boczkaj, Grzegorz; Przyjazny, Andrzej; Kamiński, Marian

    2015-03-01

    The paper describes a new procedure for the determination of boiling point distribution of high-boiling petroleum fractions using size-exclusion chromatography with refractive index detection. Thus far, the determination of boiling range distribution by chromatography has been accomplished using simulated distillation with gas chromatography with flame ionization detection. This study revealed that in spite of substantial differences in the separation mechanism and the detection mode, the size-exclusion chromatography technique yields similar results for the determination of boiling point distribution compared with simulated distillation and novel empty column gas chromatography. The developed procedure using size-exclusion chromatography has a substantial applicability, especially for the determination of exact final boiling point values for high-boiling mixtures, for which a standard high-temperature simulated distillation would have to be used. In this case, the precision of final boiling point determination is low due to the high final temperatures of the gas chromatograph oven and an insufficient thermal stability of both the gas chromatography stationary phase and the sample. Additionally, the use of high-performance liquid chromatography detectors more sensitive than refractive index detection allows a lower detection limit for high-molar-mass aromatic compounds, and thus increases the sensitivity of final boiling point determination. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  11. Nanoparticle fractionation using an aligned carbon nanotube array

    Energy Technology Data Exchange (ETDEWEB)

    Lim Xiaodai [NUS Graduate School for Integrative Sciences and Engineering (NGS), Centre for Life Sciences (CeLS), 05-01, 28 Medical Drive, 117456 (Singapore); Xu Hairuo; Chin, Wee Shong [Department of Chemistry, Faculty of Science, National University of Singapore, 3 Science Drive 3, 117543 (Singapore); Nicole Chew, Yi Hui; Phua, Yi Hui [Dunman High School, 10 Tanjong Rhu Road, 436895 (Singapore); Sie, Edbert Jarvis; Sum, Tze Chien [Division of Physics and Applied Physics, School of Physical and Mathematical Sciences, Nanyang Technological University, 637371 (Singapore); Chia, Guo Hao; Sow, Chorng-Haur, E-mail: chmcws@nus.edu.sg, E-mail: physowch@nus.edu.sg [Department of Physics, Blk S12, Faculty of Science, National University of Singapore, 2 Science Drive 3, 117542 (Singapore)

    2010-07-23

    A technique utilizing the capillary assisted sieving capability of carbon nanotubes (CNTs) to achieve fractionation of nanoparticles of small size distribution is presented. By dipping aligned CNT arrays into a solution comprising different sized quantum dots (QDs), size-selective gradient decoration of QDs onto CNTs is achieved. The fractionating capability of CNTs is also demonstrated for poly-dispersed manganese doped zinc sulfide nanoparticles and QDs of varying sizes and chemical compositions, which we attribute to the size-selective sieving effect of CNTs. By controlling the terminating point for the flow of QDs across the CNT array, a QD size specific CNT/QD hybrid structure is achieved.

  12. Contribution of different effluent organic matter fractions to membrane fouling in ultrafiltration of treated domestic wastewater

    KAUST Repository

    Zheng, Xing; Croue, Jean-Philippe

    2012-01-01

    In the present work, effluent organic matter (EfOM) in treated domestic wastewater was separated into hydrophobic neutrals, colloids, hydrophobic acids, transphilic acids and neutrals and hydrophilic compounds. Their contribution to dissolved organic carbon (DOC) was identified. Further characterization was conducted with respect to molecular size and hydrophobicity. Each isolated fraction was dosed into salt solution to identify its fouling potential in ultrafiltration (UF) using a hydrophilized polyethersulfone membrane. The results show that each kind of EfOM leads to irreversible fouling. At similar delivered DOC load to the membrane, colloids present the highest fouling effect in terms of both reversible and irreversible fouling. The hydrophobic organics show much lower reversibility than the biopolymers present. However, as they are of much smaller size than the membrane pore opening, they cannot lead to such severe fouling as biopolymers do. In all of the isolated fractions, hydrophilics show the lowest fouling potential. For either colloids or hydrophobic substances, increasing their content in feedwater leads to worse fouling. The co-effect between biopolymers and other EfOM fractions has also been identified as one of the mechanisms contributing to UF fouling in filtering EfOM-containing waters. © IWA Publishing 2012.

  13. Contribution of different effluent organic matter fractions to membrane fouling in ultrafiltration of treated domestic wastewater

    KAUST Repository

    Zheng, Xing

    2012-12-01

    In the present work, effluent organic matter (EfOM) in treated domestic wastewater was separated into hydrophobic neutrals, colloids, hydrophobic acids, transphilic acids and neutrals and hydrophilic compounds. Their contribution to dissolved organic carbon (DOC) was identified. Further characterization was conducted with respect to molecular size and hydrophobicity. Each isolated fraction was dosed into salt solution to identify its fouling potential in ultrafiltration (UF) using a hydrophilized polyethersulfone membrane. The results show that each kind of EfOM leads to irreversible fouling. At similar delivered DOC load to the membrane, colloids present the highest fouling effect in terms of both reversible and irreversible fouling. The hydrophobic organics show much lower reversibility than the biopolymers present. However, as they are of much smaller size than the membrane pore opening, they cannot lead to such severe fouling as biopolymers do. In all of the isolated fractions, hydrophilics show the lowest fouling potential. For either colloids or hydrophobic substances, increasing their content in feedwater leads to worse fouling. The co-effect between biopolymers and other EfOM fractions has also been identified as one of the mechanisms contributing to UF fouling in filtering EfOM-containing waters. © IWA Publishing 2012.

  14. Size and number of DNA molecules from Chinese hamster ovary cells determined by molecular autoradiography

    International Nuclear Information System (INIS)

    Todd, M.B.

    1980-06-01

    A new method for visualization of separable subunits of DNA is described. Autoradiography of tritium-labeled DNA from one or a few nuclei, lysed with detergent, moderate salt, and proteases, and gently deposited on a filter, allows determination of subunit molecular weight, size distribution, number per nucleus, and organization. The shape of the size distribution of CHO subunit images is similar to that of CHO mitotic chromosomes, and the numbers of subunits per nucleus supports a model of eight subunits per chromosome

  15. Equilibrium partitioning of macromolecules in confining geometries: Improved universality with a new molecular size parameter

    DEFF Research Database (Denmark)

    Wang, Yanwei; Peters, Günther H.J.; Hansen, Flemming Yssing

    2008-01-01

    structures (CABS), allows the computation of equilibrium partition coefficients as a function of confinement size solely based on a single sampling of the configuration space of a macromolecule in bulk. Superior in computational speed to previous computational methods, CABS is capable of handling slits...... parameter for characterization of spatial confinement effects on macromolecules. Results for the equilibrium partition coefficient in the weak confinement regime depend only on the ratio ofR-s to the confinement size regardless of molecular details....

  16. Sensory and chromatographic evaluations of water soluble fractions from air-dried sausages

    DEFF Research Database (Denmark)

    Henriksen, Anders Peter; Stahnke, Marie Louise Heller

    1997-01-01

    Low molecular weight water soluble compounds were extracted from Danish salami, Italian sausage, and Spanish Chorizo. The extracts were fractionated by gel filtration chromatography revealing peptides with a molecular weight less than 4200 Dalton. Fractions consisting of smaller peptides and free...... amino acids had enhanced savory taste impressions described as mainly bouillon, bitter, sour, salty and plastic with odor notes of boiled potato. Determination of amino acids in the fractions before and after hydrolysis revealed the presence of mainly hydrophilic peptides in all fractions. Partial least...

  17. Wildfire effects on lipid composition and hydrophobicity of bulk soil and soil size fractions under Quercus suber cover (SW-Spain).

    Science.gov (United States)

    Jiménez-Morillo, Nicasio T; Spangenberg, Jorge E; Miller, Ana Z; Jordán, Antonio; Zavala, Lorena M; González-Vila, Francisco J; González-Pérez, José A

    2017-11-01

    Soil water repellency (hydrophobicity) prevents water from wetting or infiltrating soils, triggering changes in the ecosystems. Fire may develop, enhance or destroy hydrophobicity in previously wettable or water-repellent soils. Soil water repellency is mostly influenced by the quality and quantity of soil organic matter, particularly the lipid fraction. Here we report the results of a study on the effect of fire on the distribution of soil lipids and their role in the hydrophobicity grade of six particle size fractions (2-1, 1-0.5, 0.5-0.25, 0.25-0.1, 0.1-0.05 and fractions. Soil lipids were Soxhlet extracted with a dichloromethane-methanol mixture. Fatty acids (FAs) and neutral lipids were separated, derivatized, identified and quantified by gas chromatography/mass spectrometry and gas chromatography/flame ionization detection. The hydrophobicity values of soil samples and fractions were statistically different (P fractions. All samples displayed a similar distribution of FAs, straight-chain saturated acids in the C 14 -C 32 range, and neutral lipids (n-alkan-1-ols, n-alkanes), only differing in their relative abundances. Among possible biogeochemical mechanisms responsible for the changes in soil lipids, the observed depletion of long chain FAs (C ≥24 ) in the coarse fraction is best explained by thermal cracking caused by the heat of the fire. The enrichment of long chain FAs observed in other fractions suggests possible exogenous additions of charred, lipid-rich, material, like cork suberin or other plant-derived macromolecules (cutins). Principal component analysis was used to study the relationships between hydrophobicity with soil organic matter and its different components. Extractable organic matter (EOM) and specifically long chain FAs content were positively correlated to soil hydrophobicity. Therefore, the latter could be used as biomarkers surrogated to hydrophobicity in sandy soils. Copyright © 2017 Elsevier Inc. All rights reserved.

  18. Radiation therapy of malignant melanomas: an evaluation of clinically used fractionation schemes

    International Nuclear Information System (INIS)

    Strauss, A.; Dritschilo, A.; Nathanson, L.; Piro, A.J.

    1981-01-01

    To assess the importance of radiation dose fraction size in the treatment of malignant melanomas, the records of 48 patients (83 sites) treated at Tufts-New England Medical Center from 1971 to 1979 have been retrospectively reviewed. During this period, the dose fractionation schemes evolved from standard fraction size to large-dose techniques. Radiation fraction size was observed to be the major factor in the clinical response of melanoma. Fractions of 600-800 rad resulted in the best overall response (80%). The rapid fractionation scheme of 800-400-400 rad on successive days resulted in intermediate response (58%) and may be useful for the palliative treatment of selected patients

  19. Influence of ST-segment recovery on infarct size and ejection fraction in patients with ST-segment elevation myocardial infarction receiving primary percutaneous coronary intervention

    DEFF Research Database (Denmark)

    Hallén, Jonas; Ripa, Maria Sejersten; Johanson, Per

    2010-01-01

    percutaneous coronary intervention. Three methods for calculating and categorizing ST-segment recovery were used: (1) summed ST-segment deviation (STD) resolution analyzed in 3 categories (> or = 70%, > or = 30% to or = 2 mm). Infarct size and ejection fraction were assessed at 4 months by cardiac magnetic...... resonance imaging. All 3 ST-segment recovery algorithms predicted the final infarct size and cardiac function. Worst-lead residual STD performed the same as, or better than, the more complex methods and identified large subgroups at either end of the risk spectrum (median infarct size from the lowest...

  20. Optimizing mesoscopic two-band superconductors for observation of fractional vortex states

    Energy Technology Data Exchange (ETDEWEB)

    Piña, Juan C. [Departamento de Física, Universidade Federal de Pernambuco, Cidade Universitária, 50670-901 Recife, PE (Brazil); Núcleo de Tecnologia, CAA, Universidade Federal de Pernambuco, 55002-970 Caruaru, PE (Brazil); Souza Silva, Clécio C. de, E-mail: clecio@df.ufpe [Departamento de Física, Universidade Federal de Pernambuco, Cidade Universitária, 50670-901 Recife, PE (Brazil); Milošević, Milorad V. [Departamento de Física, Universidade Federal do Ceará, 60455-900 Fortaleza, Ceará (Brazil); Departement Fysica, Universiteit Antwerpen, Groenenborgerlaan 171, B-2020 Antwerpen (Belgium)

    2014-08-15

    Highlights: • Observation of fractional vortices in two-band superconductors of broad size range. • There is a minimal sample size for observing each particular fractional state. • Optimal value for stability of each fractional state is determined. • A suitable magnetic dot enhances stability even further. - Abstract: Using the two-component Ginzburg–Landau model, we investigate the effect of sample size and magnitude and homogeneity of external magnetic field on the stability of fractional vortex states in a mesoscopic two-band superconducting disk. We found that each fractional state has a preferable sample size, for which the range of applied field in which the state is stable is pronouncedly large. Vice versa, there exists an optimal magnitude of applied field for which a large range of possible sample radii will support the considered fractional state. Finally, we show that the stability of fractional states can be enhanced even further by magnetic nanostructuring of the sample, i.e. by suitably chosen geometrical parameters and magnetic moment of a ferromagnetic dot placed on top of the superconducting disk.

  1. The use of neutron activation analysis for particle size fractionation and chemical characterization of trace elements in urban air particulate matter

    International Nuclear Information System (INIS)

    Rizzio, E.; Bergamaschi, G.; Profumo, A.; Gallorini, M.

    2001-01-01

    The concentration of more than 25 trace elements have been determined in total air particulate matter and in the size segregated fractions from the urban area of Pavia (North Italy). The PM10 fraction was also collected and analyzed. A study of the solubility in water and in physiological solution of the trace elements contained in the PM10 was also carried out. The resulting solutions were further submitted to column chromatography using Chelex 100 to perform a preliminary chemical characterization. INAA was used as the main analytical technique. ET-AAS was used for all Pb and Cd measurements and, in some cases, for the analysis of V, Mn, Cu and Ni. (author)

  2. Extraction and characterization of crude oil asphaltenes sub fractions

    International Nuclear Information System (INIS)

    Ferreira, Silas R.; Calado, Lucas S.; Honse, Siller O.; Mansur, Claudia R.E.; Lucas, Elizabete F.

    2011-01-01

    Asphaltenes from crude oil have been studied for a long time. However, until today their chemical structures and physical-chemical properties are not well established. Nowadays, it is accepted that asphaltenes are dispersed in the crude oil as macro structures, which are mainly constituted of some condensed aromatic rings (about 6-20), containing aliphatic or naphthenic groups. The asphaltenes are also defined as the crude oil fraction that is insoluble in low molar mass n-alkanes and soluble in aromatic solvents, like benzene and toluene In order to investigate the molecular structure, in this work the asphaltenes were separated by using a different procedure as that normally described in the literature and characterized by infrared spectrometry, nuclear magnetic resonance, x-ray fluorescence, elemental analyses and particle size and size distribution. The difference in subfractions polarity can be attributed not only to the aromaticity changes but also to the content of elements, such as N, O, Fe, V, Si e Ni. (author)

  3. Granule fraction inhomogeneity of calcium carbonate/sorbitol in roller compacted granules

    DEFF Research Database (Denmark)

    Bacher, Charlotte; Olsen, P.M.; Bertelsen, P.

    2008-01-01

    The granule fraction inhomogeneity of roller compacted granules was examined on mixtures of three different morphologic forms of calcium carbonate and three particle sizes of sorbitol. The granule fraction inhomogeneity was determined by the distribution of the calcium carbonate in each of the 10...... size fractions between 0 and 2000 µm and by calculating the demixing potential. Significant inhomogeneous occurrence of calcium carbonate in the size fractions was demonstrated, depending mostly on the particles sizes of sorbitol but also on the morphological forms of calcium carbonate......, the ability of the powder to agglomerate in the roller compactor was demonstrated to be related to the ability of the powder to be compacted into a tablet, thus the most compactable calcium carbonate and the smallest sized sorbitol improved the homogeneity by decreasing the demixing potential....

  4. Comparable investigation of the molecular size distribution and the amount of humic substances isolated from ONKALO, Olkiluoto, 2010

    International Nuclear Information System (INIS)

    Vilhunen, S.; Manninen, P.

    2010-11-01

    The humic substances at groundwater from Onkalo, Olkiluoto were studied in order to determine the molecular size distribution and the amount of humic substances. Humic substances were isolated from the water sample using DAX-8 resin and eluted with 0.1 M NaOH. The molecular size distribution was defined using high performance size exclusion chromatography (HPSEC) and ultraviolet (UV) or reflactive index (RI) detector. Two calibration standard sets (poly(styrene sulfonate) sodium salt (PSS) or polyethylene glycol (PEG) standards) with distinct structures as well as two eluents (0.05 M NaNO3 or 0.01 M Na-acetate) were studied and the results were compared with the previous ones. The calibration standards and eluents were found to have major effect on the measured parameters. The amount of humic substances was determined using total organic carbon (TOC) measurements. (orig.)

  5. Possible hypoglycemic effect of Aloe vera L. high molecular weight fractions on type 2 diabetic patients

    Science.gov (United States)

    Yagi, Akira; Hegazy, Sahar; Kabbash, Amal; Wahab, Engy Abd-El

    2009-01-01

    Aloe vera L. high molecular weight fractions (AHM) containing less than 10 ppm of barbaloin and polysaccharide (MW: 1000 kDa) with glycoprotein, verectin (MW: 29 kDa), were prepared by patented hyper-dry system in combination of freeze–dry technique with microwave and far infrared radiation. AHM produced significant decrease in blood glucose level sustained for 6 weeks of the start of the study. Significant decrease in triglycerides was only observed 4 weeks after treatment and continued thereafter. No deterious effects on kidney and liver functions were apparent. Treatment of diabetic patients with AHM may relief vascular complications probably via activation of immunosystem. PMID:23964163

  6. Binding of inorganic mercury by subcellular fractions and proteins of rat kidneys

    Energy Technology Data Exchange (ETDEWEB)

    Komsta-Szumska, E; Chmielnicka, J; Piotrowski, J K

    1976-01-01

    Inorganic mercury, administered to rats in a single dose of 0.5 mg Hg/kg is accumulated in the kidneys mainly in the soluble (54 percent) and nuclear (30 percent) fractions, showing decreasing tendency with time. Mitochondrial and microsomal fractions, initially accumulating approximately 11 and 6 percent of total Hg, show a tendency to increase the absolute level of Hg for the first week after administration. In the soluble fraction low-molecular weight, metallothioneinlike proteins are mainly responsible for the accumulation of mercury; in other fractions proteins of higher molecular weight prevail.

  7. Bacterial community composition of size-fractioned aggregates within the phycosphere of cyanobacterial blooms in a eutrophic freshwater lake.

    Directory of Open Access Journals (Sweden)

    Haiyuan Cai

    Full Text Available Bacterial community composition of different sized aggregates within the Microcystis cyanobacterial phycosphere were determined during summer and fall in Lake Taihu, a eutrophic lake in eastern China. Bloom samples taken in August and September represent healthy bloom biomass, whereas samples from October represent decomposing bloom biomass. To improve our understanding of the complex interior structure in the phycosphere, bloom samples were separated into large (>100 µm, medium (10-100 µm and small (0.2-10 µm size aggregates. Species richness and library coverage indicated that pyrosequencing recovered a large bacterial diversity. The community of each size aggregate was highly organized, indicating highly specific conditions within the Microcystis phycosphere. While the communities of medium and small-size aggregates clustered together in August and September samples, large- and medium-size aggregate communities in the October sample were grouped together and distinct from small-size aggregate community. Pronounced changes in the absolute and relative percentages of the dominant genus from the two most important phyla Proteobacteria and Bacteroidetes were observed among the various size aggregates. Bacterial species on large and small-size aggregates likely have the ability to degrade high and low molecular weight compounds, respectively. Thus, there exists a spatial differentiation of bacterial taxa within the phycosphere, possibly operating in sequence and synergy to catalyze the turnover of complex organic matters.

  8. Radiation therapy of malignant melanomas: an evaluation of clinically used fractionation schemes

    International Nuclear Information System (INIS)

    Strauss, A.; Dritschilo, A.; Nathanson, L.; Piro, A.J.

    1981-01-01

    To assess the importance of radiation dose fraction size in the treatment of malignant melanomas, the records of 48 patients (83 sites) treated at Tufts-New England Medical Center from 1971 to 1979 have been retrospectively reviewed. During this period, the dose fractionation schemes evolved from standard fraction size to large-dose techniques. Radiation fraction size was observed to be the major factor in the clinical response of melanoma. Fractions of 600 to 800 rad resulted in the best overall response (80%). The rapid fractionation scheme of 800 to 400 to 400 rad on successive days resulted in intermediate response (58%) and may be useful for the palliative treatment of selected patients

  9. Acoustic pressure in cavity of variously sized two-dimensional sonic crystals with various filling fractions

    International Nuclear Information System (INIS)

    Wu Liangyu; Chen Lienwen; Liu Chiaming

    2009-01-01

    This study theoretically and experimentally investigates the acoustic pressure in the cavity of a 2D sonic crystal. Such crystals are composed of polymethyl methacrylate cylinders with a square array embedded in air background. The plane wave expansion method and the supercell calculation are employed to calculate the band structure and obtain the defect band. The finite element method is adopted to simulate the pressure field in the sonic crystal and calculate the pressure in the middle of the cavity as a function of frequency. The effects of sizes and filling fractions are investigated, and the quality factor of the cavity is discussed. The measured spectra and pressures in the defect of the sonic crystal demonstrate that the acoustic waves can be localized in the defect at the resonant frequency

  10. The use of ultraviolet light in the fractionation of chromatin containing unsubstituted and bromodeoxyuridine-substituted DNA

    International Nuclear Information System (INIS)

    Taichman, L.B.

    1979-01-01

    Two procedures are described for the fractionation of chromatin containing unsubstituted (LL) DNA and DNA unifilarly substituted with bromodeoxyuridine (HL). The two procedures rely upon the sensitivity of bromodeoxyuridine-containing DNA to UV light to induce either strand breakage or protein crosslinking. When a mixture of LL and HL chromatin is irradiated with UV light, the HL DNA fragments into molecules of smaller molecular weight than the LL DNA and crosslinks more chromosomal protein than the LL DNA. LL and HL chromatin can be fractionated on the basis of size by centrifuging through a neutral sucrose gradient. The HL DNA-protein adducts that are generated by the UV light have a unique buoyant density and may be isolated by isopycnic centrifugation in Cs 2 S0 4 . The ability to fractionate LL and HL chromatin permits certain studies on the structure of replicating chromatin. (author)

  11. Separation of both fibrous and globular proteins on the basis of molecular weight using high-performance size exclusion chromatography.

    Science.gov (United States)

    Barden, J A

    1983-11-01

    A high-performance size exclusion liquid chromatographic system has been used to separate proteins with different shapes solely on the basis of their molecular weights. After the effects of ionic and hydrophobic interactions with the stationary phase have been overcome, protein elution is normally governed by their effective size in solution. Conditions are described under which proteins, with isoelectric points within the normal operating pH range of the columns, are eluted independent of their Stokes' radii. Even fibrous proteins with axial ratios of 50 elute according to their known molecular weights over the range 2000-2,000,000.

  12. Optical properties of size fractions of suspended particulate matter in littoral waters of Québec

    Directory of Open Access Journals (Sweden)

    G. Mohammadpour

    2017-11-01

    Full Text Available Mass-specific absorption (ai∗(λ and scattering (bi∗(λ coefficients were derived for four size fractions (i =  0.2–0.4, 0.4–0.7, 0.7–10, and > 10 µm, λ = wavelength in nm of suspended particulate matter (SPM and with samples obtained from surface waters (i.e., 0–2 m depth of the Saint Lawrence Estuary and Saguenay Fjord (SLE-SF during June of 2013. For the visible–near-infrared spectral range (i.e., λ = 400–710 nm, mass-specific absorption coefficients of total SPM (i.e., particulates > 0.2 µm (hereafter aSPM∗ had low values (e.g., < 0.01 m2 g−1 at λ = 440 nm in areas of the lower estuary dominated by particle assemblages with relatively large mean grain size and high particulate organic carbon and chlorophyll a per unit of mass of SPM. Conversely, largest aSPM∗ values (i.e., > 0.05 m2 g−1 at λ = 440 nm corresponded with locations of the upper estuary and SF where particulates were mineral-rich and/or their mean diameter was relatively small. The variability of two optical proxies (the spectral slope of particulate beam attenuation coefficient and the mass-specific particulate absorption coefficient, hereafter γ and Svis, respectively with respect to changes in particle size distribution (PSD and chemical composition was also examined. The slope of the PSD was correlated with bi∗(550 (Spearman rank correlation coefficient ρs up to 0.37 and ai∗(440 estimates (ρs up to 0.32 in a comparable way. Conversely, the contribution of particulate inorganic matter to total mass of SPM (FSPMPIM had a stronger correlation with ai∗ coefficients at a wavelength of 440 nm (ρs up to 0.50. The magnitude of γ was positively related to FSPMi or the contribution of size fraction i to the total mass of SPM (ρs up to 0.53 for i = 0.2–0.4 µm. Also, the relation between γ and FSPMPIM variability was secondary (ρs = −0.34, P > 0.05. Lastly, the magnitude

  13. On the Da Vinci size effect in tensile strengths of nanowires: A molecular dynamics study

    Science.gov (United States)

    Zhao, Ziyu; Liu, Jinxing; Soh, Ai Kah

    2018-01-01

    In recent decades, size effects caused by grain size, strain gradient, typical defects etc., have been widely investigated. Nevertheless, the dependence of tensile strength on the specimen length, addressed by Da Vinci around 500 hundred years ago, has received rather limited attention, even though it is one unavoidable question to answer if people attempt to bring materials' amazing nano-scale strengths up to macro-level. Therefore, we make efforts to study tensile behaviors of copper nanowires with a common cross-section and various lengths by employing the molecular dynamics simulations. Surprisingly, a strong size effect of Da Vinci type indeed arises. We have shown the influences of lattice orientation, temperature and prescribed notch on such a Da Vinci size effect. Two different theoretical explanations are briefly proposed for a qualitative understanding. Finally, a simple scaling rule is summarized to cover the tendencies observed.

  14. Unattached fraction and the aerosol size distribution of the radon progeny in a natural cave and mine atmospheres

    International Nuclear Information System (INIS)

    Butterweck, G.; Porstendoerfer, J.; Reineking, A.; Kesten, J.

    1992-01-01

    Measurements of the activity size distribution of aerosol-attached radon progeny and the amount of unattached radon daughters have been performed in mine atmospheres and a tourist cave. During working hours a large number (10 5 -10 6 cm -3 ) of aerosol particles is generated in mines, mainly by diesel engines. The activity size distribution of these aerosol particles has smaller median diameters (AMAD about 200 nm) than the aged aerosol existing in the mine during non-working hours (AMAD about 350 nm). Strictly correlated to the aerosol concentration, the unattached fraction of the radon progeny, f p , in the tourist cave (3000 particles per cm 3 ) is higher (f p = 0.1) than in mines (f p 0.01) during working hours. This yields 1.4-2.5 times higher radiation dose conversion factors in the natural cave than in mines under working conditions. (author)

  15. THE MASS-SIZE RELATION FROM CLOUDS TO CORES. I. A NEW PROBE OF STRUCTURE IN MOLECULAR CLOUDS

    International Nuclear Information System (INIS)

    Kauffmann, J.; Shetty, R.; Goodman, A. A.; Pillai, T.; Myers, P. C.

    2010-01-01

    We use a new contour-based map analysis technique to measure the mass and size of molecular cloud fragments continuously over a wide range of spatial scales (0.05 ≤ r/pc ≤ 10), i.e., from the scale of dense cores to those of entire clouds. The present paper presents the method via a detailed exploration of the Perseus molecular cloud. Dust extinction and emission data are combined to yield reliable scale-dependent measurements of mass. This scale-independent analysis approach is useful for several reasons. First, it provides a more comprehensive characterization of a map (i.e., not biased toward a particular spatial scale). Such a lack of bias is extremely useful for the joint analysis of many data sets taken with different spatial resolution. This includes comparisons between different cloud complexes. Second, the multi-scale mass-size data constitute a unique resource to derive slopes of mass-size laws (via power-law fits). Such slopes provide singular constraints on large-scale density gradients in clouds.

  16. Influence of left ventricular hypertrophy on infarct size and left ventricular ejection fraction in ST-elevation myocardial infarction

    International Nuclear Information System (INIS)

    Małek, Łukasz A.; Śpiewak, Mateusz; Kłopotowski, Mariusz; Petryka, Joanna; Mazurkiewicz, Łukasz; Kruk, Mariusz; Kępka, Cezary; Miśko, Jolanta; Rużyłło, Witold; Witkowski, Adam

    2012-01-01

    Background: Left ventricular hypertrophy (LVH) predisposes to larger infarct size, which may be underestimated by the left ventricular ejection fraction (LVEF) due to supranormal systolic performance often present in patients with LVH. The aim of the study was to compare infarct size and LVEF in patients with ST-segment elevation myocardial infarction (STEMI) and increased left ventricular mass on cardiac magnetic resonance (CMR). Methods: The study included unselected group of 52 patients (61 ± 11 years, 69% male) with first STEMI who had CMR after median 5 days from the onset of the event. Left ventricular hypertrophy (LVH) was defined as left ventricular mass index exceeding 95th percentile of references values for age and gender. Infarct size was assessed with means of late gadolinium enhancement (LGE). Results: LVH was found in 16 patients (31%). In comparison to the rest of the group, patients with LVH had higher absolute and relative infarct mass (p = 0.002 and p = 0.02, respectively). LVH was related to higher prevalence of microvascular obstruction and myocardial haemorrhage and higher number of LV segments with transmural necrosis (p = 0.02, p = 0.01 and p = 0.01, respectively). Despite marked difference in the infarct size between both studied subgroups there was no difference in LVEF and mean number of dysfunctional LV segments. Conclusions: Patients with LVH undergoing STEMI have larger infarct size underestimated by the LV systolic performance in comparison to patients without LVH.

  17. General physical characteristics of the interstellar molecular gas

    International Nuclear Information System (INIS)

    Turner, B.E.

    1979-01-01

    The interstellar medium may be characterized by several physically rather distinct regimes: coronal gas, intercloud gas, diffuse clouds, isolated dark clouds and globules (of small to modest mass), more massive molecular clouds containing OB (and later) stars, and giant molecular clouds. Values of temperature, density, ionization fraction, mass, size, and velocity field are discussed for each regime. Heating and cooling mechanisms are reviewed. Nearly all molecular clouds exceed the Jeans criteria for gravitational instability, yet detailed models reveal no cases where observations can be interpreted unambiguously in terms of rapid collapse. The possibility that clouds are supported by turbulence, rotation, or magnetic fields is discussed, and it is concluded that none of these agencies suffice. Comments are made about fragmentation and star formation in molecular clouds, with possible explanations for why only low mass stars form in low mass clouds, why early-type stars form only in clouds with masses > approximately 10 3 M solar masses, and why O-stars seem to form near edges of clouds. Finally, large-scale interactions between molecular clouds and the galactic disk stellar population are discussed. (Auth.)

  18. On the Da Vinci size effect in tensile strengths of nanowires: A molecular dynamics study

    Directory of Open Access Journals (Sweden)

    Ziyu Zhao

    2018-01-01

    Full Text Available In recent decades, size effects caused by grain size, strain gradient, typical defects etc., have been widely investigated. Nevertheless, the dependence of tensile strength on the specimen length, addressed by Da Vinci around 500 hundred years ago, has received rather limited attention, even though it is one unavoidable question to answer if people attempt to bring materials’ amazing nano-scale strengths up to macro-level. Therefore, we make efforts to study tensile behaviors of copper nanowires with a common cross-section and various lengths by employing the molecular dynamics simulations. Surprisingly, a strong size effect of Da Vinci type indeed arises. We have shown the influences of lattice orientation, temperature and prescribed notch on such a Da Vinci size effect. Two different theoretical explanations are briefly proposed for a qualitative understanding. Finally, a simple scaling rule is summarized to cover the tendencies observed.

  19. Evolution of the two-phase flow in a vertical tube-decomposition of gas fraction profiles according to bubble size classes using wire-mesh sensors

    Energy Technology Data Exchange (ETDEWEB)

    Prasser, H.M.; Krepper, E.; Lucas, D. [Forschungszentrum Rossendorf e.V., Dresden (Germany)

    2002-01-01

    The wire-mesh sensor developed by the Forschungszentrum Rossendorf produces sequences of instantaneous gas fraction distributions in a cross section with a time resolution of 1200 frames per second and a spatial resolution of about 2-3 mm. At moderate flow velocities (up to 1-2 m.s{sup -1}), bubble size distributions can be obtained, since each individual bubble is mapped in several successive distributions. The method was used to study the evolution of the bubble size distribution in a vertical two-phase flow. For this purpose, the sensor was placed downstream of an air injector, the distance between air injection and sensor was varied. The bubble identification algorithm allows to select bubbles of a given range of the effective diameter and to calculate partial gas fraction profiles for this diameter range. In this way, the different behaviour of small and large bubbles in respect to the action of the lift force was observed in a mixture of small and large bubbles. (authors)

  20. Comb polymer architecture and particle size effects on the behavior of biphasic nanoparticle inks for direct-write assembly

    Science.gov (United States)

    Yoshikawa, Jun

    Biphasic nanoparticle mixtures composed of attractive and repulsive colloidal species enable the direct-write assembly of 3D structures with much finer features than those produced by pure colloidal gels. These mixtures rely on the use of comb polymer dispersants to render one particle population stable, while the other population is attractive. In this thesis, we systematically investigate the effects of comb polymer architecture and particle size ratio on the behavior of biphasic nanoparticle inks with the overarching aim of further advancing the direct-write assembly of 3D colloidal structures. We first investigated the effects of both pure polyelectrolytes, poly(acrylic acid) (PAA) and poly(methacrylic acid) (PMAA), and comb polymer dispersants composed of a PMAA backbone with methoxy-poly(ethylene oxide) (mPEO) teeth of varying molecular weights on the stability of barium titanate (BaTiO 3) suspensions. While each dispersant imparts stability to BaTiO 3 nanoparticles at low ionic strength (teeth (MWteeth = 2000) provides stability at higher ionic strengths over a broad range of particle sizes and counterion valencies. These results provide guidelines for tailoring the molecular architecture and functionality of comb polymer dispersants for optimal stabilization of the repulsive particle population within the biphasic inks. Next, particle size effects on the rheological properties of biphasic nanoparticle suspensions are studied. Shear elastic modulus, shear yield stress, and compressive yield stress are measured for mixtures of varying total volume fraction, attractive-to-repulsive volume fraction, and particle size ratio between attractive and repulsive species. Our observations indicate that the repulsive particles hinder the formation of the attractive gel network. The time required for shear elastic modulus to approach a steady-state value increases with the fraction of repulsive species. Furthermore, this behavior becomes more significant with increasing

  1. Elemental analysis of size-fractionated particulate matter sampled in Goeteborg, Sweden

    Energy Technology Data Exchange (ETDEWEB)

    Wagner, Annemarie [Department of Chemistry, Atmospheric Science, Goeteborg University, SE-412 96 Goeteborg (Sweden)], E-mail: wagnera@chalmers.se; Boman, Johan [Department of Chemistry, Atmospheric Science, Goeteborg University, SE-412 96 Goeteborg (Sweden); Gatari, Michael J. [Institute of Nuclear Science and Technology, University of Nairobi, P.O. Box 30197-00100, Nairobi (Kenya)

    2008-12-15

    The aim of the study was to investigate the mass distribution of trace elements in aerosol samples collected in the urban area of Goeteborg, Sweden, with special focus on the impact of different air masses and anthropogenic activities. Three measurement campaigns were conducted during December 2006 and January 2007. A PIXE cascade impactor was used to collect particulate matter in 9 size fractions ranging from 16 to 0.06 {mu}m aerodynamic diameter. Polished quartz carriers were chosen as collection substrates for the subsequent direct analysis by TXRF. To investigate the sources of the analyzed air masses, backward trajectories were calculated. Our results showed that diurnal sampling was sufficient to investigate the mass distribution for Br, Ca, Cl, Cu, Fe, K, Sr and Zn, whereas a 5-day sampling period resulted in additional information on mass distribution for Cr and S. Unimodal mass distributions were found in the study area for the elements Ca, Cl, Fe and Zn, whereas the distributions for Br, Cu, Cr, K, Ni and S were bimodal, indicating high temperature processes as source of the submicron particle components. The measurement period including the New Year firework activities showed both an extensive increase in concentrations as well as a shift to the submicron range for K and Sr, elements that are typically found in fireworks. Further research is required to validate the quantification of trace elements directly collected on sample carriers.

  2. Elemental analysis of size-fractionated particulate matter sampled in Goeteborg, Sweden

    International Nuclear Information System (INIS)

    Wagner, Annemarie; Boman, Johan; Gatari, Michael J.

    2008-01-01

    The aim of the study was to investigate the mass distribution of trace elements in aerosol samples collected in the urban area of Goeteborg, Sweden, with special focus on the impact of different air masses and anthropogenic activities. Three measurement campaigns were conducted during December 2006 and January 2007. A PIXE cascade impactor was used to collect particulate matter in 9 size fractions ranging from 16 to 0.06 μm aerodynamic diameter. Polished quartz carriers were chosen as collection substrates for the subsequent direct analysis by TXRF. To investigate the sources of the analyzed air masses, backward trajectories were calculated. Our results showed that diurnal sampling was sufficient to investigate the mass distribution for Br, Ca, Cl, Cu, Fe, K, Sr and Zn, whereas a 5-day sampling period resulted in additional information on mass distribution for Cr and S. Unimodal mass distributions were found in the study area for the elements Ca, Cl, Fe and Zn, whereas the distributions for Br, Cu, Cr, K, Ni and S were bimodal, indicating high temperature processes as source of the submicron particle components. The measurement period including the New Year firework activities showed both an extensive increase in concentrations as well as a shift to the submicron range for K and Sr, elements that are typically found in fireworks. Further research is required to validate the quantification of trace elements directly collected on sample carriers

  3. Levels and Speciation of Platinum in Size-Fractionated Atmospheric Aerosol in Urban and Rural Sites across Europe

    Science.gov (United States)

    Shafer, Martin; Antkiewicz, Dagmara; Overdier, Joel; Schauer, James

    2016-04-01

    In this study we characterized the levels and speciation of platinum in a unique set of size-resolved atmospheric aerosol (PM) samples obtained from urban environments across Europe. From April-July 2012 we collected PM from roadside canyon, roadside motorway, and background urban sites in each of six European cities (Amsterdam, Frankfurt, London, Milan, Stockholm, and Thessaloniki). A Hi-Vol sampler was used to collect PM in three size classes (>PM7, PM7-PM3, PM3) and characterized for total platinum, soluble platinum (in a suite of physiologically relevant fluids - lung fluid (ALF), Gambles saline, 0.07M HCl, and MQ) and speciated forms (colloidal and anionic) within the soluble fractions. In addition we measured 50 other elements by SF-ICPMS, soluble ions by IC, and soluble organic carbon in the PM. Order-of-magnitude differences in air concentrations of total platinum were observed between urban sites, ranging from 4 to over 45 pg/m3; with a median level of 6 pg/m3. When platinum concentrations are normalized to PM mass the cross Europe and site-to-site variability was substantially reduced - a 3-fold variation from 200 to 600 ng/g was observed. Roadside canyon sites in London, Stockholm and Thessaloniki exhibited the highest concentrations; however levels at urban background sites were remarkably similar across the cities. Relatively consistent and low concentrations (1 to 2 pg/m3) of total platinum were observed at rural background sites across Europe. The contribution of coarse particles (>7 micron and 7-3 micron) to air concentrations of total platinum was very significant (>35% at nearly all sites). Soluble platinum fractions ranged from 2 to 6% (MQ to HCl) in rural background sites to 5 to 20% (MQ to HCl) in roadway canyon sites in London and Thessaloniki; with the extractable platinum fractions a strong function of pH. With the exception of urban canyon sites in London and Thessaloniki, soluble platinum concentrations in the fine aerosol (PM3) were all

  4. The effect of Fe, Mn, Ni and Pb Load on Soil and its enrichment factor ratios in different soil grain size fractions as an Indicator for soil pollution

    International Nuclear Information System (INIS)

    Rabie, F.H.; Abdel-Sabour, M.F.

    2000-01-01

    An industrial area north of greater Cairo was selected to investigate the impact of intensive industrial activities on soil characteristics and Fe, Mn, Ni and Pb total content. The studied area was divided to six sectors according to its source of irrigation water and/or probability of pollution. Sixteen soil profiles were dug and soil samples were taken, air dried, fractionated to different grain size fractions, then total heavy metals (Fe, Mn, Ni and Pb) were determined using ICP technique. The enrichment factor for each metal for each soil fraction/soil layer was estimated and discussed. The highest EF ratios in the clay fraction was mainly with Pb which indicated the industrial impact on the soil. In case of sand fraction, Mn was the highest always compared to other studied metals. Concerning silt fraction, a varied accumulation of Fe, Mn, and Pb was observed with soil depth and different soil profiles

  5. Chemical structure investigation on SFEF fractions of Dagang vacuum residue

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Z.; Yan, G.; Zhao, S.; Guo, S. [China Univ. of Petroleum, Beijing (China). State Key Laboratory of Heavy Oil Processing; Zhang, Z. [Beijing Aeronautical Technology Research Center, Beijing (China)

    2006-07-01

    One of the most important problems in petroleum chemistry is the molecular structure and composition of heavy oil fractions and its importance in applications pertaining to the recovery, refining, and upgrading of petroleum. This paper presented an investigation into the chemical structure on supercritical fluid extraction and fraction (SFEF) factions of Dagang vacuum residue. Dagang vacuum residue was cut into sixteen fractions and a tailing with SFEF instrument. Then, using a chromatography, all SFEF fractions were further separated into four group compositions, notably saturated hydrocarbons, aromatic hydrocarbons, resins and asphaltenes (SARA). Last, the chemical structure was explored through a thorough analysis of the products from the ruthenium ions-catalyzed oxidation (RICO) reaction of those aromatics, resins and asphaltenes. The paper discussed the experiment in terms of samples and chemicals; supercritical fluid extraction and fraction; SARA separation; and RICO. The results and discussions focused on alkyl side chains attached to aromatic carbon; polymethylene bridges connecting two aromatic units; benzenecarboxylic acids an aromatic units; and others. The study has brought to light useful characterization on covalent molecular structure of two typical SFEF fractions, notably the tenth and fifteen fraction. 17 refs., 6 tabs., 16 figs., 1 appendix.

  6. Physicochemical characterization of titanium dioxide pigments using various techniques for size determination and asymmetric flow field flow fractionation hyphenated with inductively coupled plasma mass spectrometry

    NARCIS (Netherlands)

    Helsper, J.P.F.G.; Peters, R.J.B.; Bemmel, M.E.M. van; Rivera, Z.E.H.; Wagner, S.; Kammer, F. von der; Tromp, P.C.; Hofmann, T.; Weigel, S.

    2016-01-01

    Seven commercial titanium dioxide pigments and two other well-defined TiO2 materials (TiMs) were physicochemically characterised using asymmetric flow field flow fractionation (aF4) for separation, various techniques to determine size distribution and inductively coupled plasma mass spectrometry

  7. Seasonal variations in size distribution, water-soluble ions, and carbon content of size-segregated aerosols over New Delhi.

    Science.gov (United States)

    Kumar, Pawan; Kumar, Sushil; Yadav, Sudesh

    2018-02-01

    Size distribution, water-soluble inorganic ions (WSII), and organic carbon (OC) and elemental carbon (EC) in size-segregated aerosols were investigated during a year-long sampling in 2010 over New Delhi. Among different size fractions of PM 10 , PM 0.95 was the dominant fraction (45%) followed by PM 3-7.2 (20%), PM 7.2-10 (15%), PM 0.95-1.5 (10%), and PM 1.5-3 (10%). All size fractions exceeded the ambient air quality standards of India for PM 2.5 . Annual average mass size distributions of ions were specific to size and ion(s); Ca 2+ , Mg 2+ , K + , NO 3 - , and Cl - followed bimodal distribution while SO 4 2- and NH 4 + ions showed one mode in PM 0.95 . The concentrations of secondary WSII (NO 3 - , SO 4 2- , and NH 4 + ) increased in winters due to closed and moist atmosphere whereas open atmospheric conditions in summers lead to dispersal of pollutants. NH 4 + and Ca 2+ were dominant neutralization ions but in different size fractions. The summer-time dust transport from upwind region by S SW winds resulted in significantly high concentrations of PM 0.95 and PM 3-7.2 and PM 7.2-10 . This indicted influence of dust generation in Thar Desert and its transport is size selective in nature in downwind direction. The mixing of different sources (geogenic, coal combustions, biomass burning, plastic burning, incinerators, and vehicular emissions sources) for soluble ions in different size fractions was noticed in principle component analysis. Total carbon (TC = EC + OC) constituted 8-31% of the total PM 0.95 mass, and OC dominated over EC. Among EC, char (EC1) dominated over soot (EC2 + EC3). High SOC contribution (82%) to OC and OC/EC ratio of 2.7 suggested possible role of mineral dust and high photochemical activity in SOC production. Mass concentrations of aerosols and WSII and their contributions to each size fraction of PM 10 are governed by nature of sources, emission strength of source(s), and seasonality in meteorological parameters.

  8. Hollow-fiber flow field-flow fractionation and multi-angle light scattering investigation of the size, shape and metal-release of silver nanoparticles in aqueous medium for nano-risk assessment.

    Science.gov (United States)

    Marassi, Valentina; Casolari, Sonia; Roda, Barbara; Zattoni, Andrea; Reschiglian, Pierluigi; Panzavolta, Silvia; Tofail, Syed A M; Ortelli, Simona; Delpivo, Camilla; Blosi, Magda; Costa, Anna Luisa

    2015-03-15

    Due to the increased use of silver nanoparticles in industrial scale manufacturing, consumer products and nanomedicine reliable measurements of properties such as the size, shape and distribution of these nano particles in aqueous medium is critical. These properties indeed affect both functional properties and biological impacts especially in quantifying associated risks and identifying suitable risk-mediation strategies. The feasibility of on-line coupling of a fractionation technique such as hollow-fiber flow field flow fractionation (HF5) with a light scattering technique such as MALS (multi-angle light scattering) is investigated here for this purpose. Data obtained from such a fractionation technique and its combination thereof with MALS have been compared with those from more conventional but often complementary techniques e.g. transmission electron microscopy, dynamic light scattering, atomic absorption spectroscopy, and X-ray fluorescence. The combination of fractionation and multi angle light scattering techniques have been found to offer an ideal, hyphenated methodology for a simultaneous size-separation and characterization of silver nanoparticles. The hydrodynamic radii determined by fractionation techniques can be conveniently correlated to the mean average diameters determined by multi angle light scattering and reliable information on particle morphology in aqueous dispersion has been obtained. The ability to separate silver (Ag(+)) ions from silver nanoparticles (AgNPs) via membrane filtration during size analysis is an added advantage in obtaining quantitative insights to its risk potential. Most importantly, the methodology developed in this article can potentially be extended to similar characterization of metal-based nanoparticles when studying their functional effectiveness and hazard potential. Copyright © 2014 Elsevier B.V. All rights reserved.

  9. Synthesis of silica nanoparticles for the manufacture of porous carbon membrane and particle size analysis by sedimentation field-flow fractionation

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Seung Ho; Eum, Chul; Hun; Choi, Seong Ho; Kim, Woon Jung [Dept. of Chemistry, Hannam University, Daejeon (Korea, Republic of)

    2016-11-15

    Silica nanoparticles were synthesized by emulsion polymerization by mixing ethanol, ammonium hydroxide, water, and tetraethyl orthosilicate. An apparatus was designed and assembled for a large-scale synthesis of silica nanospheres, which was aimed for uniform mixing of the reactants. Then sedimentation field-flow fractionation (SdFFF) was used to determine the size distribution of the silica nanoparticles. SdFFF provided mass-based separation where the retention time increased with the particle size, thus the size distribution of silica nanoparticles obtained from SdFFF appeared more accurate than that from dynamic light scattering, particularly for those having broad and multimodal size distributions. A disk-shaped porous carbon membrane (PCM) was manufactured for application as an adsorbent by pressurizing the silica particles, followed by calcination. Results showed that PCM manufactured in this study has relatively high surface area and temperature stability. The PCM surface was modified by attaching a carboxyl group (PCM-COOH) and then by incorporating silver (PCM-COOH-Ag). The amount of COOH group on PCM was measured electrochemically by cyclic voltammetry, and the surface area, pore size, pore volume of PCM-COOH-Ag by Brunauer–Emmet–Teller measurement. The surface area was 40.65 and reduced to 13.02 after loading a COOH group then increased up to 30.37 after incorporating Ag.

  10. Spectroscopy of fractional Josephson vortex molecules

    Energy Technology Data Exchange (ETDEWEB)

    Goldobin, Edward; Gaber, Tobias; Buckenmaier, Kai; Kienzle, Uta; Sickinger, Hanna; Koelle, Dieter; Kleiner, Reinhold [Physikalisches Institut - Experimentalphysik II, Center for Collective Quantum Phenomena, Universitaet Tuebingen, Auf der Morgenstelle 14, D-72076 Tuebingen (Germany)

    2010-07-01

    Using tiny current injectors we create {kappa} discontinuities of the Josephson phase in a long Josephson junction. The junction reacts at the discontinuities by creating fractional Josephson vortices of size {lambda}{sub J} pinned at them. Such vortices carry the flux {phi}, which is a fraction of the magnetic flux quantum {phi}{sub 0}{approx}2.07 x 10{sup -15} Wb. Being pinned, a fractional vortex has an eigenfrequency (localized mode), which depends on {kappa} and applied bias current, and which lays within the plasma gap. If one considers a molecule consisting of several coupled fractional vortices, the eigenfrequency will split into several modes. We report on spectroscopy of a fractional vortex molecule performed in the thermal regime.

  11. The biological and immunological properties of fractionated atrial extracts from young and old rats

    International Nuclear Information System (INIS)

    Wilfinger, W.W.; Banks, R.O.; Inscho, E.W.

    1989-01-01

    The present study was undertaken to further evaluate the natriuretic, hypotensive and immunological properties of fractionated and HPLC purified atrial extracts prepared from young and old rats. Acetic acid extracts were prepared and subsequently fractionated by gel permeation chromatography. The high and low molecular weight fractions were collected, lyophilized and assayed. Radioimmunoassay competitive binding curves of the initial and fractionated extracts were parallel to the synthetic ANP 101-126 standard. No differences in parallelism were observed in the natriuretic activity of the initial extracts, the low molecular weight (LMW) fractions from both age groups, the 290 day high molecular weight (HMW) fraction or the synthetic ANP standard. However, the natriuretic activity of the 15 day HMW fraction was significantly attenuated compared to the other treatment groups. The initial 15 day extract was also significantly more hypotensive than the 290 day extract. HMW extracts were subjected to HPLC and the resulting immunoreactive ANP peak was reassayed. Based on SDS-PAGE and immuno blot analysis, the HPLC purified fraction was found to contain only immunoreactive proANP. Subsequent bioassay revealed greater hypotension and reduced natriuretic activity in the 15 day proANP fraction in comparison to a similarly prepared extract from older animals

  12. Final Report for Fractionation and Separation of Polydisperse Nanoparticles into Distinct Monodisperse Fractions Using CO2 Expanded Liquids

    Energy Technology Data Exchange (ETDEWEB)

    Chistopher Roberts

    2007-08-31

    The overall objective of this project was to facilitate efficient fractionation and separation of polydisperse metal nanoparticle populations into distinct monodisperse fractions using the tunable solvent properties of gas expanded liquids. Specifically, the dispersibility of ligand-stabilized nanoparticles in an organic solution was controlled by altering the ligand-solvent interaction (solvation) by the addition of carbon dioxide (CO{sub 2}) gas as an antisolvent (thereby tailoring the bulk solvent strength) in a custom high pressure apparatus developed in our lab. This was accomplished by adjusting the CO{sub 2} pressure over the liquid dispersion, resulting in a simple means of tuning the nanoparticle precipitation by size. Overall, this work utilized the highly tunable solvent properties of organic/CO{sub 2} solvent mixtures to selectively size-separate dispersions of polydisperse nanoparticles (ranging from 1 to 20 nm in size) into monodisperse fractions ({+-}1nm). Specifically, three primary tasks were performed to meet the overall objective. Task 1 involved the investigation of the effects of various operating parameters (such as temperature, pressure, ligand length and ligand type) on the efficiency of separation and fractionation of Ag nanoparticles. In addition, a thermodynamic interaction energy model was developed to predict the dispersibility of different sized nanoparticles in the gas expanded liquids at various conditions. Task 2 involved the extension of the experimental procedures identified in task 1 to the separation of other metal particles used in catalysis such as Au as well as other materials such as semiconductor particles (e.g. CdSe). Task 3 involved using the optimal conditions identified in tasks 1 and 2 to scale up the process to handle sample sizes of greater than 1 g. An experimental system was designed to allow nanoparticles of increasingly smaller sizes to be precipitated sequentially in a vertical series of high pressure vessels by

  13. Multielemental fractionation in human peripheral blood mononuclear cells by size exclusion liquid chromatography coupled to UV and ICP-MS detection.

    Science.gov (United States)

    Alvarado, Gladys; Murillo, Miguel

    2010-10-01

    An analytical methodology is presented in this work to determine metal-biomolecule complexes size distribution patterns of several elements, among different compounds present in human peripheral blood mononuclear cells (PBMC). A hyphenated technique based on size exclusion chromatography (SEC) coupled online to UV and inductively coupled plasma mass spectrometry (ICP-MS) detection is used. Two different SEC columns with separation ranges between 1,500-1,000,000 relative molecular mass (M(r)) (Nanofilm SEC-250) and 5,000 and 100,000 relative molecular mass (M(r)) (TSK-Gel G2000 SW) are used with 10 mmol/L tris-HCl at pH 7.3 as mobile phase. Retention behavior (retention time and peak-area ratios) remained unchanged for several successive separations. Metal-containing compounds are found to a wide range of M(r). Copper-zinc superoxide dismutase, copper and zinc metallothionein, and copper and zinc transferrin are identified in PBMC samples. A high M(r) (147,000) metal-binding protein containing copper and zinc and a high M(r) (107,000) manganese-binding protein were also found; however, these remained unknown.

  14. Eutrophication effects on phytoplankton size-fractioned biomass and production at a tropical estuary.

    Science.gov (United States)

    Guenther, Mariana; Araújo, Moacyr; Flores-Montes, Manuel; Gonzalez-Rodriguez, Eliane; Neumann-Leitão, Sigrid

    2015-02-28

    Size-fractioned phytoplankton (pico, nano and microplankton) biomass and production were estimated throughout a year at Recife harbor (NE Brazil), a shallow well mixed tropical hypereutrophic estuary with short residence times but restricted water renewal. Intense loads of P-PO4 (maximum 14 μM) resulted in low N:P ratios (around 2:1), high phytoplankton biomass (B=7.1-72 μg chl-a L(-1)), production (PP=10-2657 μg C L(-1) h(-1)) and photosynthetic efficiency (P(B)=0.5-45 μg C μg chl-a(-1)), but no oxygen depletion (average O2 saturation: 109.6%). Nanoplankton dominated phytoplankton biomass (66%) but micro- and nanoplankton performed equivalent primary production rates (47% each). Production-biomass models indicate an export of the exceeding microplankton biomass during most of the year, possibly through grazing. The intense and constant nutrient and organic matter loading at Recife harbor is thus supporting the high microplankton productivity that is not accumulating on the system nor contributing to oxygen depletion, but supporting the whole system's trophic web. Copyright © 2014 Elsevier Ltd. All rights reserved.

  15. Physicochemical characterization of titanium dioxide pigments using various techniques for size determination and asymmetric flow field flow fractionation hyphenated with inductively coupled plasma mass spectrometry

    NARCIS (Netherlands)

    Helsper, Hans; Peters, Ruud J.B.; Bemmel, van Greet; Herrera Rivera, Zahira; Wagner, Stephan; Kammer, von der Frank; Tromp, Peter C.; Hofmann, Thilo; Weigel, Stefan

    2016-01-01

    Seven commercial titanium dioxide pigments and two other well-defined TiO2 materials (TiMs) were physicochemically characterised using asymmetric flow field flow fractionation (aF4) for separation, various techniques to determine size distribution and inductively coupled plasma mass

  16. Comparative evaluation of multiple fractions per day radiotherapy and conventional fractionated radiotherapy in squamous cell carcinoma of esophagus

    International Nuclear Information System (INIS)

    Andrabi, W.H.; Akhtar, S.; Kharadi, M.Y.; Mushtaq, G.; Zargar, S.A.

    1999-01-01

    Dose fractionated is important in radiotherapy in order to achieve the desired results. There are regimes which are accepted and followed worldwide. Five fractions per week for a full course of treatment is regarded as standard fractionation regimen. Interest has lately been developed to alter this and try regimes like hyper and accelerated fractionations. In the former, smaller doses per fraction than usual are given in several fractions on each treating day, with no change in overall time. In the latter, conventionally sized fractions are given as two or three per day with a shortening of overall time. As the dose fraction in our case is high, we spilt the full course of treatment introducing a gap of one week between the treatment schedules. The results obtained are fairly good in comparison with conventional radiotherapy regimes. (author)

  17. Theoretical study on recoilless fractions of simple cubic monatomic nanocrystalline particles

    International Nuclear Information System (INIS)

    Huang Jianping; Wang Luya

    2002-01-01

    Recoilless fractions of simple cubic monatomic nanocrystalline particles are calculated by using displacement-displacement Green's function. The numerical results show that the recoilless fractions on the surface of monatomic nanocrystalline particles are smaller than those in the inner, and they decrease when the particle size increase, the recoilless fractions of whole monatomic nanocrystalline particles increase when the particle size increase. These effects are more evident when the temperature is higher

  18. Molecular C dynamics downstream: the biochemical decomposition sequence and its impact on soil organic matter structure and function.

    Science.gov (United States)

    Grandy, A Stuart; Neff, Jason C

    2008-10-15

    Advances in spectroscopic and other chemical methods have greatly enhanced our ability to characterize soil organic matter chemistry. As a result, the molecular characteristics of soil C are now known for a range of ecosystems, soil types, and management intensities. Placing this knowledge into a broader ecological and management context is difficult, however, and remains one of the fundamental challenges of soil organic matter research. Here we present a conceptual model of molecular soil C dynamics to stimulate inter-disciplinary research into the ecological implications of molecular C turnover and its management- and process-level controls. Our model describes three properties of soil C dynamics: 1) soil size fractions have unique molecular patterns that reflect varying degrees of biological and physical control over decomposition; 2) there is a common decomposition sequence independent of plant inputs or other ecosystem properties; and 3) molecular decomposition sequences, although consistent, are not uniform and can be altered by processes that accelerate or slow the microbial transformation of specific molecules. The consequences of this model include several key points. First, lignin presents a constraint to decomposition of plant litter and particulate C (>53 microm) but exerts little influence on more stable mineral-associated soil fractions stabilized onto mineral fractions has a distinct composition related more to microbially processed organic matter than to plant-related compounds. Third, disturbances, such as N fertilization and tillage, which alter decomposition rates, can have "downstream effects"; that is, a disturbance that directly alters the molecular dynamics of particulate C may have a series of indirect effects on C stabilization in silt and clay fractions.

  19. Contribution of effluent organic matter (EfOM) to ultrafiltration (UF) membrane fouling: Isolation, characterization, and fouling effect of EfOM fractions

    KAUST Repository

    Zheng, Xing

    2014-11-01

    EfOM has been regarded as a major organic foulant resulting in UF membrane fouling in wastewater reclamation. To investigate fouling potential of different EfOM fractions, the present study isolated EfOM into hydrophobic neutrals (HPO-N), colloids, hydrophobic acids (HPO-A), transphilic neutrals and acids (TPI), and hydrophilics (HPI), and tested their fouling effect in both salt solution and pure water during ultrafiltration (UF). Major functional groups and chemical structure of the isolates were identified using Fourier transform infrared spectroscopy (FT-IR) and solid-state carbon nuclear magnetic resonance (13C NMR) analysis. The influence of the isolation process on the properties of EfOM fractions was minor because the raw and reconstituted secondary effluents were found similar with respect to UV absorbance, molecular size distribution, and fluorescence character. In membrane filtration tests, unified membrane fouling index (UMFI) and hydraulic resistance were used to quantify irreversible fouling potential of different water samples. Results show that under similar DOC level in feed water, colloids present much more irreversible fouling than other fractions. The fouling effect of the isolates is related to their size, chemical properties, and solution chemistry. Further investigations have identified that the interaction between colloids and other fractions also influences the performance of colloids in fouling phenomena. © 2014 Elsevier Ltd.

  20. Quantification of fat fraction in lumbar vertebrae: correlation with age and implications for bone marrow dosimetry in molecular radiotherapy

    Science.gov (United States)

    Salas-Ramirez, Maikol; Tran-Gia, Johannes; Kesenheimer, Christian; Weng, Andreas Max; Kosmala, Aleksander; Heidemeier, Anke; Köstler, Herbert; Lassmann, Michael

    2018-01-01

    Absorbed dose to active bone marrow is a predictor of hematological toxicity in molecular radiotherapy. Due to the complex composition of bone marrow tissue, the necessity to improve the personalized dosimetry has led to the application of non-conventional imaging methods in nuclear medicine. The aim of this study is to apply magnetic resonance imaging (MRI) for quantification of the fat fraction in lumbar vertebrae and to analyze its implications for bone marrow dosimetry. First, a highly accelerated two-point Dixon MRI sequence for fat-water separation was validated in a 3T system against the magnetic resonance spectroscopy (MRS) gold standard. The validation was performed in a fat-water phantom composed of 11 vials with different fat fractions between 0% and 100%, and subsequently repeated in the lumbar vertebrae of three healthy volunteers. Finally, a retrospective study was performed by analyzing the fat fraction in five lumbar vertebrae of 44 patients scanned with the two-point Dixon sequence. The two-point Dixon phantom acquisition showed a good agreement (maximum difference  =  2.9%) between the nominal fat fraction and MRS. In the volunteers, a statistical analysis showed a non-significant difference (p  =  0.19) between MRI and MRS. In the patients, gender-specific linear fits for female and male data indicated that the age-dependent marrow conversion (red  →  yellow marrow) is slower in males (0.3% per year) than in females (0.5% per year). Lastly, the fat fraction values showed a considerable variability in patients of similar ages and the same gender. Two-point Dixon MRI enables a non-invasive and spatially resolved quantification of the fat fraction in bone marrow. Our study provides important evidence on the differences in marrow conversion between females and males. In addition, differences were observed in the cellularity values of the International Commission on Radiological Protection (ICRP) reference man (0.7) and the

  1. Influence of template/functional monomer/cross‐linking monomer ratio on particle size and binding properties of molecularly imprinted nanoparticles

    DEFF Research Database (Denmark)

    Yoshimatsu, Keiichi; Yamazaki, Tomohiko; Chronakis, Ioannis S.

    2012-01-01

    A series of molecularly imprinted polymer nanoparticles have been synthesized employing various template/functional monomer/crosslinking monomer ratio and characterized in detail to elucidate the correlation between the synthetic conditions used and the properties (e.g., particle size and templat...... tuning of particle size and binding properties are required to fit practical applications. © 2011 Wiley Periodicals, Inc. J Appl Polym Sci, 2012...

  2. The nearly neutral and selection theories of molecular evolution under the fisher geometrical framework: substitution rate, population size, and complexity.

    Science.gov (United States)

    Razeto-Barry, Pablo; Díaz, Javier; Vásquez, Rodrigo A

    2012-06-01

    The general theories of molecular evolution depend on relatively arbitrary assumptions about the relative distribution and rate of advantageous, deleterious, neutral, and nearly neutral mutations. The Fisher geometrical model (FGM) has been used to make distributions of mutations biologically interpretable. We explored an FGM-based molecular model to represent molecular evolutionary processes typically studied by nearly neutral and selection models, but in which distributions and relative rates of mutations with different selection coefficients are a consequence of biologically interpretable parameters, such as the average size of the phenotypic effect of mutations and the number of traits (complexity) of organisms. A variant of the FGM-based model that we called the static regime (SR) represents evolution as a nearly neutral process in which substitution rates are determined by a dynamic substitution process in which the population's phenotype remains around a suboptimum equilibrium fitness produced by a balance between slightly deleterious and slightly advantageous compensatory substitutions. As in previous nearly neutral models, the SR predicts a negative relationship between molecular evolutionary rate and population size; however, SR does not have the unrealistic properties of previous nearly neutral models such as the narrow window of selection strengths in which they work. In addition, the SR suggests that compensatory mutations cannot explain the high rate of fixations driven by positive selection currently found in DNA sequences, contrary to what has been previously suggested. We also developed a generalization of SR in which the optimum phenotype can change stochastically due to environmental or physiological shifts, which we called the variable regime (VR). VR models evolution as an interplay between adaptive processes and nearly neutral steady-state processes. When strong environmental fluctuations are incorporated, the process becomes a selection model

  3. Multistage-multiorifice flow fractionation (MS-MOFF): continuous size-based separation of microspheres using multiple series of contraction/expansion microchannels.

    Science.gov (United States)

    Sim, Tae Seok; Kwon, Kiho; Park, Jae Chan; Lee, Jeong-Gun; Jung, Hyo-Il

    2011-01-07

    Previously we introduced a novel hydrodynamic method using a multi-orifice microchannel for size-based particle separation, which is called a multi-orifice flow fractionation (MOFF). The MOFF has several advantages such as continuous, non-intrusive, and minimal power consumption. However, it has a limitation that the recovery yield is relatively low. Although the recovery may be increased by adjusting parameters such as the Reynolds number and central collecting region, poor purity inevitably followed. We newly designed and fabricated a microfluidic channel for multi-stage multi-orifice flow fractionation (MS-MOFF), which is made by combining three multi-orifice segments, and consists of 3 inlets, 3 filters, 3 multi-orifice segments and 5 outlets. The structure and dimensions of the MS-MOFF were determined by the hydrodynamic principles to have constant Reynolds numbers at each multi-orifice segment. Polystyrene microspheres of two different sizes (7 μm and 15 μm) were tested. With this device, we made an attempt to improve recovery and minimize loss of purity by collecting and re-separating non-selected particles of the first separation. The final recovery successfully increased from 73.2% to 88.7% while the final purity slightly decreased from 91.4% to 89.1% (for 15 μm). These values were never achievable with the single-stage MOFF (SS-MOFF) having only one multi-orifice segment in our previous work. The MS-MOFF channel will be useful for clinical applications, such as separation of circulating tumor cells (CTC) or rare cells from human blood samples.

  4. Toxicologically important trace elements and organic compounds investigated in size-fractionated urban particulate matter collected near the Prague highway.

    Science.gov (United States)

    Sysalová, Jiřina; Sýkorová, Ivana; Havelcová, Martina; Száková, Jiřina; Trejtnarová, Hana; Kotlík, Bohumil

    2012-10-15

    Urban particulate matter was collected in the most exposed area of Prague, near a busy highway, in order to provide petrographic and chemical characterization useful for health impact assessment in that locality or other applications. Samples were collected from filters of the air conditioning system in two years, 2009 and 2010, and sieved into four grain-size fractions: 0.507-0.119 mm, 0.119-0.063 mm, origin and their morphology were studied by optical and electron microscopy. Organic solvent extracts of the samples were analyzed using gas chromatography to compare the organic compound distribution in fractions. Only slight differences between 2009 and 2010 years are visible. The relatively high extractable part of most investigated elements confirms mobility and potential availability to organisms. The changes can be recognized in the petrographic and organic composition in samples from both years, which were likely the result of various inputs of source materials. Specific organic marker compounds indicate contribution from fossil fuels, plant materials and bacteria. Copyright © 2012 Elsevier B.V. All rights reserved.

  5. T-cell recognition of Mycobacterium tuberculosis culture filtrate fractions in tuberculosis patients and their household contacts

    DEFF Research Database (Denmark)

    Demissie, A; Ravn, P; Olobo, J

    1999-01-01

    We examined the immune responses of patients with active pulmonary tuberculosis (TB) and their healthy household contacts to short-term culture filtrate (ST-CF) of Mycobacterium tuberculosis or molecular mass fractions derived from it. Our goal was to identify fractions strongly recognized...... antigens and immune responses were determined. Household contacts produced significantly higher levels of gamma interferon (IFN-gamma) than the TB patients in response to antigens present in ST-CF and the 10 narrow-molecular-mass fractions. A similar difference in leukocyte proliferative responses...... to the antigens between the two groups was also found. In general, while all fractions stimulated immune responses, the highest activity was seen with the low-molecular-mass fractions, which include well-defined TB antigens such as ESAT-6. Leukocytes from contacts of TB patients with severe disease produced...

  6. The variability in iron speciation in size fractionated residual oil fly ash particulate matter (ROFA PM).

    Science.gov (United States)

    Pattanaik, Sidhartha; Huggins, Frank E; Huffman, Gerald P

    2016-08-15

    Ambient particulate matter (PM) containing iron can catalyze Fenton reaction leading to the production of reactive oxygen species in cells. It can also catalyze atmospheric redox reaction. These reactions are governed by the physicochemical characteristics of iron in ambient PM. As a surrogate for ambient PM, we prepared residual oil fly ash PM (ROFA PM) in a practical fire tube boiler firing residual oils with varying sulfur and ash contents. The ROFA particles were resolved into fine PM or PM2.5 (aerodynamic diameter (AD)iron speciation in PM2.5+ was ascertained using X-ray absorption spectroscopy and leaching method while that in PM2.5 was reported earlier. The results of both studies are compared to get an insight into the variability in the iron speciation in different size fractions. The results show the predominance of ferric sulfate, with a minor spinal ferrite in both PM (i.e. ZnxNi1-xFe2O4 in PM2.5, ZnFe2O4 in PM2.5+). The iron solubility in ROFA PM depends on its speciation, mode of incorporation of iron into particle's carbonaceous matrix, the grade and composition of oils, and pH of the medium. The soluble fraction of iron in PM is critical in assessing its interaction with the biological systems and its toxic potential. Copyright © 2016 Elsevier B.V. All rights reserved.

  7. The prognostic role of tumor size in early breast cancer in the era of molecular biology.

    Directory of Open Access Journals (Sweden)

    Anaid Anna Kasangian

    Full Text Available The prognosis of early breast cancer (EBC depends on patient and tumor characteristics. The association between tumor size, the largest diameter in TNM staging, and prognosis is well recognized. According to TNM, tumors classified as T2, could have very different volumes; e.g. a tumor of 2.1 cm has a volume of 4500 mm3, while a tumor of 4.9 cm has a volume of 60.000 mm3 even belonging to the same class. The aim of the study is to establish if the prognostic role of tumor size, expressed as diameter and volume, has been overshadowed by other factors.The primary objective is to evaluate the association between tumor dimensions and overall survival (OS / disease free survival (DFS, in our institution from January 1st 2005 to September 30th 2013 in a surgical T1-T2 population. Volume was evaluated with the measurement of three half-diameters of the tumor (a, b and c, and calculated using the following formula: 4/3π x a x b x c.341 patients with T1-T2 EBC were included. 86.5% were treated with conservative surgery. 85.1% had a Luminal subtype, 9.1% were Triple negative and 7.4% were HER2 positive. Median volume was 942 mm3 (range 0.52-31.651.2. 44 patients (12.9% relapsed and 23 patients died. With a median follow-up of 6.5 years, the univariate analysis for DFS showed an association between age, tumor size, volume, histological grading and molecular subtype. The multivariate analysis confirmed the statistically significant association only for molecular subtype (p 0.005, with a worse prognosis for Triple negative and HER2 positive subtypes compared with Luminal (HR: 2.65; 95%CI: 1.34-5.22. Likewise for OS, an association was shown by the multivariate analysis solely for molecular subtype (HER2 and Triple negative vs. Luminal. HR: 2.83; 95% CI:1.46-5.49; p 0.002.In our study, the only parameter that strongly influences survival is molecular subtype. These findings encourage clinicians to choose adjuvant treatment not based on dimensional criteria

  8. The prognostic role of tumor size in early breast cancer in the era of molecular biology.

    Science.gov (United States)

    Kasangian, Anaid Anna; Gherardi, Giorgio; Biagioli, Elena; Torri, Valter; Moretti, Anna; Bernardin, Elena; Cordovana, Andrea; Farina, Gabriella; Bramati, Annalisa; Piva, Sheila; Dazzani, Maria Chiara; Paternò, Emanuela; La Verde, Nicla Maria

    2017-01-01

    The prognosis of early breast cancer (EBC) depends on patient and tumor characteristics. The association between tumor size, the largest diameter in TNM staging, and prognosis is well recognized. According to TNM, tumors classified as T2, could have very different volumes; e.g. a tumor of 2.1 cm has a volume of 4500 mm3, while a tumor of 4.9 cm has a volume of 60.000 mm3 even belonging to the same class. The aim of the study is to establish if the prognostic role of tumor size, expressed as diameter and volume, has been overshadowed by other factors. The primary objective is to evaluate the association between tumor dimensions and overall survival (OS) / disease free survival (DFS), in our institution from January 1st 2005 to September 30th 2013 in a surgical T1-T2 population. Volume was evaluated with the measurement of three half-diameters of the tumor (a, b and c), and calculated using the following formula: 4/3π x a x b x c. 341 patients with T1-T2 EBC were included. 86.5% were treated with conservative surgery. 85.1% had a Luminal subtype, 9.1% were Triple negative and 7.4% were HER2 positive. Median volume was 942 mm3 (range 0.52-31.651.2). 44 patients (12.9%) relapsed and 23 patients died. With a median follow-up of 6.5 years, the univariate analysis for DFS showed an association between age, tumor size, volume, histological grading and molecular subtype. The multivariate analysis confirmed the statistically significant association only for molecular subtype (p 0.005), with a worse prognosis for Triple negative and HER2 positive subtypes compared with Luminal (HR: 2.65; 95%CI: 1.34-5.22). Likewise for OS, an association was shown by the multivariate analysis solely for molecular subtype (HER2 and Triple negative vs. Luminal. HR: 2.83; 95% CI:1.46-5.49; p 0.002). In our study, the only parameter that strongly influences survival is molecular subtype. These findings encourage clinicians to choose adjuvant treatment not based on dimensional criteria but on

  9. Calibration of denaturing agarose gels for molecular weight estimation of DNA: size determination of the single-stranded genomes of parvoviruses

    Energy Technology Data Exchange (ETDEWEB)

    Snyder, C.E. (Oak Ridge National Lab., TN); Schmoyer, R.L.; Bates, R.C.; Mitra, S.

    1982-01-01

    Vertical slab gel electrophoresis of DNA with CH/sub 3/HgOH-containing agarose produces sharp bands whose mobilities are suitable for size estimation of single-stranded DNA containing 600 to 20,000 bases. The relationship of electrophoretic mobility to size of DNA over this range is a smooth, S-shaped function, and an empirical model was developed to express the relationship. The model involves terms in squared and reciprocal mobilities, and produced excellent fit of known standard markers to measured mobilities. It was used to estimate the sizes of six parvovirus DNAs: Kilham rat virus (KRV), H-1, LuIII, and minute virus of mice (MVM) DNAs had molecular weights of 1.66 to 1.70 x 10/sup 6/, while the molecular weight of bovine parvovirus (BPV) DNA was 1.84 x 10/sup 6/ and that of adenoassociated virus (AAV) DNA was 1.52 x 10/sup 6/.

  10. [Black carbon content and distribution in different particle size fractions of forest soils in the middle part of Great Xing'an Mountains, China.

    Science.gov (United States)

    Xu, Jia Hui; Gao, Lei; Cui, Xiao Yang

    2017-10-01

    Soil black carbon (BC) is considered to be the main component of passive C pool because of its inherent biochemical recalcitrance. In this paper, soil BC in the middle part of Great Xing'an Mountains was quantified, the distribution of BC in different particle size fractions was analyzed, and BC stabilization mechanism and its important role in soil C pool were discussed. The results showed that BC expressed obvious accumulation in surface soil, accounting for about 68.7% in the whole horizon (64 cm), and then decreased with the increasing soil depth, however, BC/OC showed an opposite pattern. Climate conditions redistributed BC in study area, and the soil under cooler and moister conditions would sequester more BC. BC proportion in different particle size fractions was in the order of clay>silt>fine sand>coarse sand. Although BC content in clay was the highest and was enhanced with increasing soil depth, BC/OC in clay did not show a marked change. Thus, the rise of BC/OC was attributed to the preservation of BC particles in the fine sand and silt fractions. Biochemical recalcitrance was the main stabilization mechanism for surface BC, and with the increasing soil depth, the chemical protection from clay mineral gradually played a predominant role. BC not only was the essential component of soil stable carbon pool, but also took up a sizable proportion in particulate organic carbon pool. Therefore, the storage of soil stable carbon and the potential of soil carbon sequestration would be enhanced owing to the existence of BC.

  11. Effect of soil sieving on respiration induced by low-molecular-weight substrates

    Science.gov (United States)

    Datta, Rahul; Vranová, Valerie; Pavelka, Marian; Rejšek, Klement; Formánek, Pavel

    2014-03-01

    The mesh size of sieves has a significant impact upon soil disturbance, affecting pore structure, fungal hyphae, proportion of fungi to bacteria, and organic matter fractions. The effects are dependent upon soil type and plant coverage. Sieving through a 2 mm mesh increases mineralization of exogenously supplied carbohydrates and phenolics compared to a 5 mm mesh and the effect is significant (p<0.05), especially in organic horizons, due to increased microbial metabolism and alteration of other soil properties. Finer mesh size particularly increases arabinose, mannose, galactose, ferulic and pthalic acid metabolism, whereas maltose mineralization is less affected. Sieving through a 5 mm mesh size is suggested for all type of experiments where enhanced mineralization of low-molecular-weight organic compounds needs to be minimalized.

  12. Fractional diffusion models of nonlocal transport

    International Nuclear Information System (INIS)

    Castillo-Negrete, D. del

    2006-01-01

    A class of nonlocal models based on the use of fractional derivatives (FDs) is proposed to describe nondiffusive transport in magnetically confined plasmas. FDs are integro-differential operators that incorporate in a unified framework asymmetric non-Fickian transport, non-Markovian ('memory') effects, and nondiffusive scaling. To overcome the limitations of fractional models in unbounded domains, we use regularized FDs that allow the incorporation of finite-size domain effects, boundary conditions, and variable diffusivities. We present an α-weighted explicit/implicit numerical integration scheme based on the Grunwald-Letnikov representation of the regularized fractional diffusion operator in flux conserving form. In sharp contrast with the standard diffusive model, the strong nonlocality of fractional diffusion leads to a linear in time response for a decaying pulse at short times. In addition, an anomalous fractional pinch is observed, accompanied by the development of an uphill transport region where the 'effective' diffusivity becomes negative. The fractional flux is in general asymmetric and, for steady states, it has a negative (toward the core) component that enhances confinement and a positive component that increases toward the edge and leads to poor confinement. The model exhibits the characteristic anomalous scaling of the confinement time, τ, with the system's size, L, τ∼L α , of low-confinement mode plasma where 1<α<2 is the order of the FD operator. Numerical solutions of the model with an off-axis source show that the fractional inward transport gives rise to profile peaking reminiscent of what is observed in tokamak discharges with auxiliary off-axis heating. Also, cold-pulse perturbations to steady sates in the model exhibit fast, nondiffusive propagation phenomena that resemble perturbative experiments

  13. Analytical scale purification of zirconia colloidal suspension using field programmed sedimentation field flow fractionation.

    Science.gov (United States)

    Van-Quynh, Alexandra; Blanchart, Philippe; Battu, Serge; Clédat, Dominique; Cardot, Philippe

    2006-03-03

    Sedimentation field flow fractionation was used to obtain purified fractions from a polydispersed zirconia colloidal suspension in the potential purpose of optical material hybrid coating. The zirconia particle size ranged from 50/70 nm to 1000 nm. It exhibited a log-Gaussian particle size distribution (in mass or volume) and a 115% polydispersity index (P.I.). Time dependent eluted fractions of the original zirconia colloidal suspension were collected. The particle size distribution of each fraction was determined with scanning electron microscopy and Coulter sub-micron particle sizer (CSPS). These orthogonal techniques generated similar data. From fraction average elution times and granulometry measurements, it was shown that zirconia colloids are eluted according to the Brownian elution mode. The four collected fractions have a Gaussian like distribution and respective average size and polydispersity index of 153 nm (P.I. = 34.7%); 188 nm (P.I. = 27.9%); 228 nm (P.I. = 22.6%), and 276 nm (P.I. = 22.3%). These data demonstrate the strong size selectivity of SdFFF operated with programmed field of exponential profile for sorting particles in the sub-micron range. Using this technique, the analytical production of zirconia of given average size and reduced polydispersity is possible.

  14. Late toxicity of radiotherapy in Hodgkin's disease. The role of fraction size

    Energy Technology Data Exchange (ETDEWEB)

    Cosset, J.M.; Henry-Amar, M.; Girinski, T.; Malaise, E.; Dupouy, N.; Dutreix, J.

    1988-01-01

    From 1972 to 1976 patients were irradiated for Hodgkin's disease using a modified fractionation schedule (3 fractions of 3.3 Gy per week) for operational reasons. From 1964 to 1971 and from 1977 to 1981, a more conventional regimen (4 fractions of 2.5 Gy per week) was used. The rates of the late complications in these two subsets of patients treated with different fractionation schedules at the same total dose of 40 Gy during the same overall time were compared. Mediastinitis was observed in 19% of of the '4x2.5 Gy/week' group versus 56% in the '3x3.3 Gy/week' group. Pericarditis in 0% versus 9%, gastroduodenal ulceration and severe gastritis in 10 versus 21% and small bowel obstruction in 5 versus 8%. When using the linear quadratic model with an ..cap alpha../..beta.. of 2.5 Gy to evaluate the equivalent dose of 40 Gy given in 12 fractions of 3.3 Gy when delivered by fractions of 2.5 Gy, a value of 46.6 Gy is found. This difference of 6.6 Gy in the equivalent doses (for late toxicity) is likely to account for the significant increase of late radiation injuries, such as mediastinitis and pericarditis, in the present study. The local relapse rate was found to be slightly lower in the 3x3.3 Gy group. However, this possible benefit cannot offset the considerable increase of late complications.

  15. Fractionation And Distribution Of Heavy Metals In street Dust In Amman, Jordan

    International Nuclear Information System (INIS)

    Jaradat, Q.

    2002-01-01

    Different types of street dust: major streets, minor streets, gas stations, traffic lights and car parks in Amman were subjected to size-fractionation into three sizes: 500-125μm , 125-53μm, and <53μm. Sequential extraction was also performed on the non-fractionated samples using Tessier procedure. The sequentially extracted and the fractionated samples were analyzed for Pb, Cd, Zn and Mn using flame atomic absorption. The silt fraction ( <53μm particles ) contains the highest concentrations of all elements in most types of street dust samples followed by the fine fraction ( 125-53μm particles). From the sequential extraction data, the highest concentrations of heavy metals were : Pb, Cd, Zn and in Fe-Mn oxide fraction, and Cu in the organic fraction. (author). 29 refs., 2 figs., 4 tabs

  16. Pyrolysis compound specific isotopic analysis (δ13C and δD Py-CSIA) of soil organic matter size fractions under four vegetation covers.

    Science.gov (United States)

    Jiménez-Morillo, Nicasio T.; González-Vila, Francisco J.; Almendros, Gonzalo; De la Rosa, José M.; González-Pérez, José A.

    2015-04-01

    A chemical characterization of soil organic matter (SOM) under different ground cover from a Mediterranean climate (Doñana National Park, Andalusia, Spain) is approached using bulk δ15N, δ13C, δ18O and δD isotopic analysis (C/TC-IRMS) and δ13C and δD pyrolysis compound specific isotopic analysis (Py-CSIA: Py-GC-C/TC-IRMS). Soil samples were collected in sandy soils, Arenosols (WRB 2006) from the Doñana National Park (SW Spain) under different vegetation cover: cork oak (Quercus suber, QS), eagle fern (Pteridium aquilinum, PA), pine (Pinus pinea, PP) and rockrose (Halimium halimifolium, HH). Two size fractions; coarse (C: 1-2 mm) and fine (F: studied from each soil. A complete conventional analytical pyrolysis (Py-GC/MS) of these samples have been studied in detail (Jiménez-Morillo et al., 2015). Bulk isotopic analysis of stable light elements (δ15N, δ13C, δ18O and δD) revealed particular isotopic signatures showing differences related with the main vegetation cover and the different soil size fraction. All samples had a carbon isotopic signature between -26 and -29 ‰, which indicated that the organic matter in the two fractions of each soil sample derived from C3-type plants. The bulk δD isotopic signature in whole soil sample indicate a lower deuterium fractionation occurs in SOM under arboreal than under no-arboreal vegetation, this can be caused by the occurrence of a higher water evaporation rate under bush vegetation and/or to differences due to leaf morphology as previously described (Leaney et al., 1985). A δ15N vs. δ18O chart may provide some clues about N origin in the soil and particularly about the original source of nitrates (Kendall et al., 1996). In in all sample and size fractions our values are in the chart area corresponding to NO3 in precipitation, with lighter δ18O (c. 20 ‰) values compatible with fertilizers may be from adjacent crops. In addition we were able to assign δ13C and δD values for a number of specific SOM

  17. Ultrasonically enhanced fractionation of milk fat in a litre-scale prototype vessel.

    Science.gov (United States)

    Leong, Thomas; Johansson, Linda; Mawson, Raymond; McArthur, Sally L; Manasseh, Richard; Juliano, Pablo

    2016-01-01

    The ultrasonic fractionation of milk fat in whole milk to fractions with distinct particle size distributions was demonstrated using a stage-based ultrasound-enhanced gravity separation protocol. Firstly, a single stage ultrasound gravity separation was characterised after various sonication durations (5-20 min) with a mass balance, where defined volume partitions were removed across the height of the separation vessel to determine the fat content and size distribution of fat droplets. Subsequent trials using ultrasound-enhanced gravity separation were carried out in three consecutive stages. Each stage consisted of 5 min sonication, with single and dual transducer configurations at 1 MHz and 2 MHz, followed by aliquot collection for particle size characterisation of the formed layers located at the bottom and top of the vessel. After each sonication stage, gentle removal of the separated fat layer located at the top was performed. Results indicated that ultrasound promoted the formation of a gradient of vertically increasing fat concentration and particle size across the height of the separation vessel, which became more pronounced with extended sonication time. Ultrasound-enhanced fractionation provided fat enriched fractions located at the top of the vessel of up to 13 ± 1% (w/v) with larger globules present in the particle size distributions. In contrast, semi-skim milk fractions located at the bottom of the vessel as low as 1.2 ± 0.01% (w/v) could be produced, containing proportionally smaller sized fat globules. Particle size differentiation was enhanced at higher ultrasound energy input (up to 347 W/L). In particular, dual transducer after three-stage operation at maximum energy input provided highest mean particle size differentiation with up to 0.9 μm reduction in the semi-skim fractions. Higher frequency ultrasound at 2 MHz was more effective in manipulating smaller sized fat globules retained in the later stages of skimming than 1 MHz. While 2 MHz

  18. The ATLAS3D project - XX. Mass-size and mass-σ distributions of early-type galaxies: bulge fraction drives kinematics, mass-to-light ratio, molecular gas fraction and stellar initial mass function

    Science.gov (United States)

    Cappellari, Michele; McDermid, Richard M.; Alatalo, Katherine; Blitz, Leo; Bois, Maxime; Bournaud, Frédéric; Bureau, M.; Crocker, Alison F.; Davies, Roger L.; Davis, Timothy A.; de Zeeuw, P. T.; Duc, Pierre-Alain; Emsellem, Eric; Khochfar, Sadegh; Krajnović, Davor; Kuntschner, Harald; Morganti, Raffaella; Naab, Thorsten; Oosterloo, Tom; Sarzi, Marc; Scott, Nicholas; Serra, Paolo; Weijmans, Anne-Marie; Young, Lisa M.

    2013-07-01

    ) and dwarf irregulars (Im), respectively. We use dynamical models to analyse our kinematic maps. We show that σe traces the bulge fraction, which appears to be the main driver for the observed trends in the dynamical (M/L)JAM and in indicators of the (M/L)pop of the stellar population like Hβ and colour, as well as in the molecular gas fraction. A similar variation along contours of σe is also observed for the mass normalization of the stellar initial mass function (IMF), which was recently shown to vary systematically within the ETGs' population. Our preferred relation has the form log _{10} [(M/L)_stars/(M/L)_Salp]=a+b× log _{10}({σ _e}/130 {km s^{-1}}) with a = -0.12 ± 0.01 and b = 0.35 ± 0.06. Unless there are major flaws in all stellar population models, this trend implies a transition of the mean IMF from Kroupa to Salpeter in the interval log _{10}({σ _e}/{km s}^{-1})≈ 1.9-2.5 (or {σ _e}≈ 90-290 km s-1), with a smooth variation in between, consistently with what was shown in Cappellari et al. The observed distribution of galaxy properties on the MP provides a clean and novel view for a number of previously reported trends, which constitute special two-dimensional projections of the more general four-dimensional parameters trends on the MP. We interpret it as due to a combination of two main effects: (i) an increase of the bulge fraction, which increases σe, decreases Re, and greatly enhance the likelihood for a galaxy to have its star formation quenched, and (ii) dry merging, increasing galaxy mass and Re by moving galaxies along lines of roughly constant σe (or steeper), while leaving the population nearly unchanged.

  19. Phosphorus fractions, microbial biomass and enzyme activities in ...

    African Journals Online (AJOL)

    Potohar, northern Punjab, Pakistan in September, 2008 and analysed for P fractions and microbial parameters including microbial biomass C, microbial biomass N, microbial biomass P, and activities of dehydrogenase and alkaline phosphatase enzymes. The average size of different P fractions (% of total P) in the soils ...

  20. Enzymatic and acidic degradation of high molecular weight dextran into low molecular weight and its characterizations using novel Diffusion-ordered NMR spectroscopy.

    Science.gov (United States)

    Iqbal, Samina; Marchetti, Roberta; Aman, Afsheen; Silipo, Alba; Qader, Shah Ali Ul; Molinaro, Antonio

    2017-10-01

    Low molecular weight fractions were derived from native high molecular weight dextran produced by Leuconostoc mesenteroides KIBGE-IB26. Structural characterization of native and low molecular weight fractions obtained after acidic and enzymatic hydrolysis was done using FTIR and NMR spectroscopy. The molecular weight was estimated using Diffusion Ordered NMR spectroscopy. Native dextran (892kDa) is composed of α-(1→6) glycosidic linkage along with α-(1→3) branching. Major proportion of 528kDa dextran was obtained after prolong enzymatic hydrolysis however, an effective acidic treatment at pH-1.4 up to 02 and 04h of exposure resulted in the formation of 77kDa and 57kDa, respectively. The increment in pH from 1.4 to 1.8 lowered the hydrolysis efficiency and resulted in the formation of 270kDa dextran fraction. The results suggest that derived low molecular weight water soluble fractions can be utilized as a drug delivery carrier along with multiple application relating pharmaceutical industries. Copyright © 2017 Elsevier B.V. All rights reserved.

  1. Scalable fractionation of iron oxide nanoparticles using a CO2 gas-expanded liquid system

    International Nuclear Information System (INIS)

    Vengsarkar, Pranav S.; Xu, Rui; Roberts, Christopher B.

    2015-01-01

    Iron oxide nanoparticles exhibit highly size-dependent physicochemical properties that are important in applications such as catalysis and environmental remediation. In order for these size-dependent properties to be effectively harnessed for industrial applications scalable and cost-effective techniques for size-controlled synthesis or size separation must be developed. The synthesis of monodisperse iron oxide nanoparticles can be a prohibitively expensive process on a large scale. An alternative involves the use of inexpensive synthesis procedures followed by a size-selective processing technique. While there are many techniques available to fractionate nanoparticles, many of the techniques are unable to efficiently fractionate iron oxide nanoparticles in a scalable and inexpensive manner. A scalable apparatus capable of fractionating large quantities of iron oxide nanoparticles into distinct fractions of different sizes and size distributions has been developed. Polydisperse iron oxide nanoparticles (2–20 nm) coated with oleic acid used in this study were synthesized using a simple and inexpensive version of the popular coprecipitation technique. This apparatus uses hexane as a CO 2 gas-expanded liquid to controllably precipitate nanoparticles inside a 1L high-pressure reactor. This paper demonstrates the operation of this new apparatus and for the first time shows the successful fractionation results on a system of metal oxide nanoparticles, with initial nanoparticle concentrations in the gram-scale. The analysis of the obtained fractions was performed using transmission electron microscopy and dynamic light scattering. The use of this simple apparatus provides a pathway to separate large quantities of iron oxide nanoparticles based upon their size for use in various industrial applications.

  2. Re-examination of cellular cyclic beta-1,2-glucans of Rhizobiaceae: distribution of ring sizes and degrees of glycerol-1-phosphate substitution.

    Science.gov (United States)

    Zevenhuizen, L P; van Veldhuizen, A; Fokkens, R H

    1990-04-01

    Gel-filtration and thin layer chromatography of low molecular weight carbohydrates from culture filtrates of Agrobacterium radiobacter, Isolate II, have shown, that next to the neutral beta-1,2-glucan fraction a major acidic fraction was present which was found to be glycerophosphorylated cyclic beta-1,2-glucans. Re-examination of cyclic beta-1,2-glucan preparations which had been obtained by extraction of Rhizobium cells with hot phenol-water also showed these acidic modified beta-1,2-glucans to be present. Cyclic beta-1,2-glucans from R. leguminosarum (9 strains) and of R. phaseoli (1 strain) had ring size distribution with degrees of polymerisation (DPs) of 19 and 20 as major ring sizes of which a minor part was glycerophosphorylated; beta-1,2-glucans of R. trifolii (3 strains) had ring sizes with DPs measuring 19-22 as prominent components which were largely unsubstituted, and R. meliloti (7 strains) had beta-1,2-glucans with ring size distributions extending to still higher DPs of 19-25 of which the major part appeared to be glycerophosphorylated.

  3. [Effect of Long-term Fertilizer Application on the Stability of Organic Carbon in Particle Size Fractions of a Paddy Soil in Zhejiang Province, China].

    Science.gov (United States)

    Mao, Xia-li; Lu, Kou-ping; Sun, Tao; Zhang, Xiao-kai; He, Li-zhi; Wang, Hai-long

    2015-05-01

    Effects of chemical fertilizers and organic manure on the soil organic carbon (SOC) content in particle size fractions of paddy soil were investigated in a 17-year long-term fertilization field experiment in Zhejiang Province, China. The inherent chemical composition of silt- and clay-associated SOC was evaluated with solid-state 13C-NMR spectroscopy. Compared to CK (no fertilizer treatment), NPKRS (NPK fertilizers plus rice straw) , NPKOM (NPK fertilizers plus organic manure) , NPK (NPK fertilizers) and OM (organic manure alone) treatments significantly (P fertilizers alone, combined application of organic amendments and NPK fertilizers facilitated the storage of newly sequestered SOC in silt- and clay-sized fractions, which could be more conducive to the stability of SOC. Based on 13C-NMR spectra, both silt and clay fractions were composed of Alkyl-C, O-alkyl-C, Aromatic-C and carbonyl-C. Changes in the relative proportion of different C species were observed between silt and clay fractions: the clay fraction had relatively more Alkyl-C, carbonyl-C and less O-alkyl-C, Aromatic-C than those in the silt fraction. This might be ascribed to the fact that the organic matter complexed with clay was dominated by microbial products, whereas the silt appeared to be rich in aromatic residues derived from plants. The spectra also showed that the relative proportion of different C species was modified by fertilization practices. In comparison with organic amendments alone, the relative proportion of Alkyl-C was decreased by 9.1%-11.9% and 13.7%-19.9% under combined application of organic amendments and chemical fertilizers, for silt and clay, respectively, and that of O-alkyl-C was increased by 2.9%-6.3% and 13.4%-22.1%, respectively. These results indicated that NPKOM and NPKRS treatments reduced the decomposition rate of SOC. The aromaticity, hydrophobicity and, hence, chemical recalcitrance of silt- and clay-associated SOC in the NPK fertilizer treatments were lower than

  4. Influence of fractionation and time on local control of T1 and T2 glottic carcinoma

    International Nuclear Information System (INIS)

    Le, Quynh-Thu; Krieg, Richard M.; Quivey, Jeanne M.; Fu, Karen K.; Meyler, Thomas S.; Stuart, Alex A.; Phillips, Theodore L.

    1996-01-01

    Purpose: To evaluate the influence of fraction size and overall time on local control of T1 and T2 glottic carcinoma Methods and Materials: Between 1956 and 1995, 318 consecutive patients with early glottic carcinoma (250 T1, 68 T2) were treated with definitive megavoltage radiotherapy at UCSF. Treatment was delivered using conventional fractionation at one fraction/day, 5 days/week. Minimum tumor dose ranged from 50 to 81Gy (median: 61Gy). The fraction size was 200cGy. Conclusions: Risk of tumor recurrence increased with higher T-stage, smaller fraction size, and longer overall time. Our results suggest that for optimal local control, radiotherapy for early glottic carcinoma should be completed as soon as possible, preferably within 6 weeks, using a fraction size ≥ 225cGy. Our current policy is to treat T1 and T2 vocal cord carcinomas with 225cGy/fraction/day, 5 days/week to a total dose of 63-65Gy

  5. Polysaccharide fraction from higher plants which strongly interacts with the cytosolic phosphorylase isozyme. I. Isolation and characterization

    International Nuclear Information System (INIS)

    Yang, Yi; Steup, M.

    1990-01-01

    From leaves of Spinacia oleracea L. or from Pisum sativum L. and from cotyledons of germinating pea seeds a high molecular weight polysaccharide fraction was isolated. The apparent size of the fraction, as determined by gel filtration, was similar to that of dextran blue. Following acid hydrolysis the monomer content of the polysaccharide preparation was studied using high pressure liquid and thin layer chromatography. Glucose, galactose, arabinose, and ribose were the main monosaccharide compounds. The native polysaccharide preparation interacted strongly with the cytosolic isozyme of phosphorylase (EC 2.4.1.1). Interaction with the plastidic phosphorylase isozyme(s) was by far weaker. Interaction with the cytosolic isozyme was demonstrated by affinity electrophoresis, kinetic measurements, and by 14 C-labeling experiments in which the glucosyl transfer from [ 14 C]glucose 1-phosphate to the polysaccharide preparation was monitored

  6. New technology for recovering residual metals from nonmetallic fractions of waste printed circuit boards.

    Science.gov (United States)

    Zhang, Guangwen; He, Yaqun; Wang, Haifeng; Zhang, Tao; Wang, Shuai; Yang, Xing; Xia, Wencheng

    2017-06-01

    Recycling of waste printed circuit boards is important for environmental protection and sustainable resource utilization. Corona electrostatic separation has been widely used to recycle metals from waste printed circuit boards, but it has poor separation efficiency for finer sized fractions. In this study, a new process of vibrated gas-solid fluidized bed was used to recycle residual metals from nonmetallic fractions, which were treated using the corona electrostatic separation technology. The effects of three main parameters, i.e., vibration frequency, superficial air flow velocity, and fluidizing time on gravity segregation, were investigated using a vibrating gas-solid fluidized bed. Each size fraction had its own optimum parameters. Corresponding to their optimal segregation performance, the products from each experiment were analyzed using an X-ray fluorescence (XRF) and a scanning electron microscope (SEM) equipped with an energy dispersive spectrometer (EDS). From the results, it can be seen that the metal recoveries of -1+0.5mm, -0.5+0.25mm, and -0.25mm size fractions were 86.39%, 82.22% and 76.63%, respectively. After separation, each metal content in the -1+0.5 or -0.5+0.25mm size fraction reduced to 1% or less, while the Fe and Cu contents are up to 2.57% and 1.50%, respectively, in the -0.25mm size fraction. Images of the nonmetallic fractions with a size of -0.25mm indicated that a considerable amount of clavate glass fibers existed in these nonmetallic fractions, which may explain why fine particles had the poorest segregation performance. Copyright © 2017 Elsevier Ltd. All rights reserved.

  7. Ultraviolet (UV) disinfection of grey water: particle size effects.

    Science.gov (United States)

    Winward, G P; Avery, L M; Stephenson, T; Jefferson, B

    2008-02-01

    The impact of water quality on the ultraviolet (UV) disinfection of grey water was investigated with reference to urban water reuse. Direct UV disinfection of grey water did not meet the stringent California State Title 22 criteria for unrestricted urban water reuse due to the presence of particulate material ranging from or = 2000 microm in size. Grey water was manipulated by settling to produce fractions of varying particle size distributions and blending was employed post-disinfection to extract particle-associated coliforms (PACs). The efficacy of UV disinfection was found to be linked to the particle size of the grey water fractions. The larger particle size fractions with a mean particle size of 262 microm and above were observed to shield more coliforms from UV light than did the smaller particles with a mean particle size below 119 microm. Up to 70% of total coliforms in the larger particle size fractions were particle-associated following a UV dose (fluence) of 260 mJ.cm(-2) and would remain undetected by standard coliform enumeration techniques. Implications for urban water reuse are discussed and recommendations made for grey water treatment to ensure removal of particle-associated indicator bacteria and pathogens prior to UV disinfection.

  8. New insights into the molecular mechanism of Boletus edulis ribonucleic acid fraction (BE3) concerning antiproliferative activity on human colon cancer cells.

    Science.gov (United States)

    Lemieszek, Marta Kinga; Ribeiro, Miguel; Marques, Guilhermina; Nunes, Fernando Milheiro; Pożarowski, Piotr; Rzeski, Wojciech

    2017-05-24

    One of the relatively new and promising strategies of cancer treatment is chemoprevention, which involves the use of natural or synthetic compounds to block, inhibit or reverse carcinogenesis. A valuable and still untapped source of chemopreventive compounds seems to be edible mushrooms belonging to higher Basidiomycetes. Boletus edulis biopolymers extracted with hot water and purified by anion-exchange chromatography showed antiproliferative activity in colon cancer cells, but only fraction BE3, mostly composed of ribonucleic acids, was able to inhibit DNA synthesis in HT-29 cells. The present work aims to elucidate the molecular mechanism of this Boletus edulis ribonucleic acid fraction and in this sense flow cytometry and western blotting were applied to cell cycle analysis in HT-29 cells. We found that the antiproliferative ability of fraction BE3 observed in HT-29 cells was associated with the modulation of expression of cell cycle regulatory proteins (Cyclin D1, Cyclin A, p21 and p27) leading to cell accumulation in the S phase of the cell cycle. Furthermore, the BE3 fraction showed effective silencing of the signal transduction in an MAPK/Erk pathway in HT-29 and LS180 colon cancer cell lines. Thus, the previously and currently obtained results indicate that the BE3 fraction from Boletus edulis has great potential and needs to be further exploited through animal and clinical studies in order to develop a new efficient and safe therapeutic strategy for people who have been threatened by or suffered from colon cancer.

  9. Fractional Brownian motion and motion governed by the fractional Langevin equation in confined geometries.

    Science.gov (United States)

    Jeon, Jae-Hyung; Metzler, Ralf

    2010-02-01

    Motivated by subdiffusive motion of biomolecules observed in living cells, we study the stochastic properties of a non-Brownian particle whose motion is governed by either fractional Brownian motion or the fractional Langevin equation and restricted to a finite domain. We investigate by analytic calculations and simulations how time-averaged observables (e.g., the time-averaged mean-squared displacement and displacement correlation) are affected by spatial confinement and dimensionality. In particular, we study the degree of weak ergodicity breaking and scatter between different single trajectories for this confined motion in the subdiffusive domain. The general trend is that deviations from ergodicity are decreased with decreasing size of the movement volume and with increasing dimensionality. We define the displacement correlation function and find that this quantity shows distinct features for fractional Brownian motion, fractional Langevin equation, and continuous time subdiffusion, such that it appears an efficient measure to distinguish these different processes based on single-particle trajectory data.

  10. Carbon and Nitrogen Mineralization in Relation to Soil Particle-Size Fractions after 32 Years of Chemical and Manure Application in a Continuous Maize Cropping System

    Science.gov (United States)

    Shao, Xingfang; Zhu, Ping; Zhang, Wenju; Xu, Minggang; Murphy, Daniel V.

    2016-01-01

    Long-term manure application is recognized as an efficient management practice to enhance soil organic carbon (SOC) accumulation and nitrogen (N) mineralization capacity. A field study was established in 1979 to understand the impact of long-term manure and/or chemical fertilizer application on soil fertility in a continuous maize cropping system. Soil samples were collected from field plots in 2012 from 9 fertilization treatments (M0CK, M0N, M0NPK, M30CK, M30N, M30NPK, M60CK, M60N, and M60NPK) where M0, M30, and M60 refer to manure applied at rates of 0, 30, and 60 t ha−1 yr−1, respectively; CK indicates no fertilizer; N and NPK refer to chemical fertilizer in the forms of either N or N plus phosphorus (P) and potassium (K). Soils were separated into three particle-size fractions (2000–250, 250–53, and fertilization application, on the accumulation and mineralization of SOC and total N in each fraction. Results showed that long-term manure application significantly increased SOC and total N content and enhanced C and N mineralization in the three particle-size fractions. The content of SOC and total N followed the order 2000–250 μm > 250–53μm > 53 μm fraction, whereas the amount of C and N mineralization followed the reverse order. In the fertilizers, resulted in increased soil microbial biomass C and N, and a decreased microbial metabolic quotient. Consequently, long-term manure fertilization was beneficial to both soil C and N turnover and microbial activity, and had significant effect on the microbial metabolic quotient. PMID:27031697

  11. A structured understanding of cellobiohydrolase I binding to poplar lignin fractions after dilute acid pretreatment.

    Science.gov (United States)

    Yao, Lan; Yoo, Chang Geun; Meng, Xianzhi; Li, Mi; Pu, Yunqiao; Ragauskas, Arthur J; Yang, Haitao

    2018-01-01

    Cellulase adsorption to lignin is considered a cost barrier for bioethanol production; however, its detailed association mechanism is still not fully understood. In this study, two natural poplar variants with high and low sugar release performance were selected as the low and high recalcitrant raw materials (named L and H , respectively). Three different lignin fractions were extracted using ethanol, followed by p -dioxane and then cellulase treatment from the dilute acid pretreated poplar solids (fraction 1, 2, and 3, respectively). Each lignin fraction had different physicochemical properties. Ethanol-extracted lignin had the lowest weight average molecular weight, while the molecular weights for the other two lignin fractions were similar. 31 P NMR analysis revealed that lignin fraction with higher molecular weight contained more aliphatic hydroxyl groups and less phenolic hydroxyl groups. Semi-quantitative analysis by 2D HSQC NMR indicated that the lignin fractions isolated from the natural variants had different contents of syringyl (S), guaiacyl (G) and interunit linkages. Lignin extracted by ethanol contained the largest amount of S units, the smallest amounts of G and p -hydroxybenzoate (PB) subunits, while the contents of these lignin subunits in the other two lignin fractions were similar. The lignin fraction obtained after cellulase treatment was primarily comprised of β- O -4 linkages with small amounts of β-5 and β-β linkages. The binding strength of these three lignin fractions obtained by Langmuir equations were in the order of L 1  >  L 3  >  L 2 for the low recalcitrance poplar and H 1  >  H 2  >  H 3 for the high recalcitrance poplar. Overall, adsorption ability of lignin was correlated with the sugar release of poplar. Structural features of lignin were associated with its binding to CBH. For natural poplar variants, lignin fractions with lower molecular weight and polydispersity index (PDI) exhibited more CBH adsorption

  12. Molecular size estimation of plasma membrane β-glucan synthase from red beet root

    International Nuclear Information System (INIS)

    Sloan, M.E.; Eiberger, L.L.; Wasserman, B.P.

    1986-01-01

    Cellulose and cell wall β-D-glucans in higher plants are thought to be synthesized by the plasma membrane enzyme, β-glucan synthase. This enzyme has never been purified to homogeneity, hence its subunit composition is unknown. Partial purification of red beet root glucan synthase by glycerol density gradient centrifugation followed by SDS-PAGE yielded a highly enriched subunit of 68 kDa. Radiation inactivation of plasma membranes gave a molecular size the 450 kDa for the holoenzyme complex. This suggests that glucan synthase consists of 6 to 7 subunits and confirms electron microscope studies showing that glucan synthases exist as multi-subunit complexes embedded within the membrane

  13. Molecularly imprinted macroporous monoliths for solid-phase extraction: Effect of pore size and column length on recognition properties.

    Science.gov (United States)

    Vlakh, E G; Stepanova, M A; Korneeva, Yu M; Tennikova, T B

    2016-09-01

    The series of macroporous monolithic molecularly imprinted monoliths differed by pore size, column length (volume) and amount of template used for imprinting was synthesized using methacrylic acid and glycerol dimethacrylate as co-monomers and antibiotic ciprofloxacin as a template. The prepared monoliths were characterized regarding to their permeability, pore size, porosity, and resistance to the flow of a mobile phase. The surface morphology was also analyzed. The slight dependence of imprinting factor on flow rate, as well as its independence on pore size of macroporous molecularly imprinted monolithic media was observed. The column obtained at different conditions exhibited different affinity of ciprofloxacin to the imprinted sites that was characterized with Kdiss values in the range of 10(-5)-10(-4)M. The solid-phase extraction of ciprofloxacin from such biological liquids as human blood serum, human urine and cow milk serum was performed using the developed monolithic columns. In all cases, the extraction was found to be 95.0-98.6%. Additionally, the comparison of extraction of three fluoroqinolone analogues, e.g. ciprofloxacin, levofloxacin and moxifloxacin, from human blood plasma was carried out. Contrary to ciprofloxacin extracted with more than 95%, this parameter did not exceed 40% for its analogues. Copyright © 2016 Elsevier B.V. All rights reserved.

  14. Assessment of pesticide availability in soil fractions after the incorporation of winery-distillery vermicomposts.

    Science.gov (United States)

    Fernández-Bayo, J D; Romero, E; Schnitzler, F; Burauel, P

    2008-07-01

    The influence of two vermicomposts from winery and distillery wastes on the distribution of diuron in agricultural soil was studied. Physical soil fractionations at 0, 9, 27, 49 and 77 days, allowed the quantification of pesticide residues in different particle-size fractions, coarse waste (WF), sand-sized (SF), silt-sized (SiF), clay-sized (CF) and dissolved organic matter-sized fraction (DOM). The SiF made a greater contribution to the formation of non-extractable residues in unamended soil, but when vermicomposts were added, new sorption sites in WF appeared, being higher for the more humified vermicompost V2. The dissolved organic carbon (DOC) increased with the addition of vermicompost, but the concentration of the desorbed 14C-radiochemical did not increase. Non-significant increment was observed with time for the non-extractable fraction with amendments. Diuron was transformed in all samples, although less than 0.5% was mineralized. The main effect caused by vermicomposts was a reduction in the availability of diuron in soil.

  15. Taste and chemical characteristics of low molecular weight fractions from tofuyo - Japanese fermented soybean curd.

    Science.gov (United States)

    Lioe, Hanifah Nuryani; Kinjo, Ayano; Yasuda, Shin; Kuba-Miyara, Megumi; Tachibana, Shinjiro; Yasuda, Masaaki

    2018-06-30

    Tofuyo, a Japanese traditional food, is a fermented soybean curd manufactured in Okinawa region. Due to its original cheese-like flavor, the current study was designed to evaluate the sensory and chemical characteristics of three stepwise ultrafiltration fractions, using 10,000, 3000 and 500 Da membranes and further chromatographic fractions from tofuyo. The results showed that umami, sweet and salty were the characteristic tastes of all fractions, with umami intensity evaluated for the fraction with MW less than 500 Da (F-500) as the most prominent among the three fractions. Subsequent Sephadex G-25 SF fractions and RP-HPLC fractions were subjected to sensory and chemical analyses. The tastiest fraction contained sodium chloride, sugars, organic acids, umami and sweet free amino acids, at concentrations above their thresholds. The abundant presence of umami and sweet free amino acids with certain concentrations of sodium chloride and glucose might provide the typical savory taste of tofuyo. Copyright © 2018 Elsevier Ltd. All rights reserved.

  16. Bidisperse and polydisperse suspension rheology at large solid fraction

    Energy Technology Data Exchange (ETDEWEB)

    Pednekar, Sidhant [Benjamin Levich Institute and Department of Chemical Engineering, The City College of New York, New York, New York 10031; Chun, Jaehun [Pacific Northwest National Laboratory, Richland, Washington 99352; Morris, Jeffrey F. [Benjamin Levich Institute and Department of Chemical Engineering, The City College of New York, New York, New York 10031

    2018-03-01

    At the same solid volume fraction, bidisperse and polydisperse suspensions display lower viscosities, and weaker normal stress response, compared to monodisperse suspensions. The reduction of viscosity associated with size distribution can be explained by an increase of the maximum flowable, or jamming, solid fraction. In this work, concentrated or "dense" suspensions are simulated under strong shearing, where thermal motion and repulsive forces are negligible, but we allow for particle contact with a mild frictional interaction with interparticle friction coefficient of 0.2. Aspects of bidisperse suspension rheology are first revisited to establish that the approach reproduces established trends; the study of bidisperse suspensions at size ratios of large to small particle radii (2 to 4) shows that a minimum in the viscosity occurs for zeta slightly above 0.5, where zeta=phi_{large}/phi is the fraction of the total solid volume occupied by the large particles. The simple shear flows of polydisperse suspensions with truncated normal and log normal size distributions, and bidisperse suspensions which are statistically equivalent with these polydisperse cases up to third moment of the size distribution, are simulated and the rheologies are extracted. Prior work shows that such distributions with equivalent low-order moments have similar phi_{m}, and the rheological behaviors of normal, log normal and bidisperse cases are shown to be in close agreement for a wide range of standard deviation in particle size, with standard correlations which are functionally dependent on phi/phi_{m} providing excellent agreement with the rheology found in simulation. The close agreement of both viscosity and normal stress response between bi- and polydisperse suspensions demonstrates the controlling in influence of the maximum packing fraction in noncolloidal suspensions. Microstructural investigations and the stress distribution according to particle size are also presented.

  17. Size effect on local magnetic moments in ferrimagnetic molecular complexes: an XMCD investigation

    International Nuclear Information System (INIS)

    Champion, G.; Villain, F.; Cartier dit Moulin, C.; Arrio, M.-A.; Sainctavit, P.; Zacchigna, M.; Zangrando, M.; Finazzi, M.; Parmigiani, F.; Mathoniere, C.

    2003-01-01

    Molecular chemistry allows to synthesize new magnetic systems with controlled properties such as size, magnetization or anisotropy. The theoretical study of the magnetic properties of small molecules (from 2 to 10 metallic cations per molecule) predicts that the magnetization at saturation of each ion does not reach the expected value for uncoupled ions when the magnetic interaction is antiferromagnetic. The quantum origin of this effect is due to the linear combination of several spin states building the wave function of the ground state and clusters of finite size and of finite spin value exhibit this property. When single crystals are available, spin densities on each atom can be experimentally given by polarized neutron diffraction (PND) experiments. In the case of bimetallic MnCu powdered samples, we will show that x-ray magnetic circular dichroism (XMCD) spectroscopy can be used to follow the evolution of the spin distribution on the Mn II and Cu II sites when passing from a dinuclear MnCu unit to a one dimensional (MnCu) n compound. (author)

  18. Scalable fractionation of iron oxide nanoparticles using a CO{sub 2} gas-expanded liquid system

    Energy Technology Data Exchange (ETDEWEB)

    Vengsarkar, Pranav S.; Xu, Rui; Roberts, Christopher B., E-mail: croberts@eng.auburn.edu [Auburn University, Department of Chemical Engineering (United States)

    2015-10-15

    Iron oxide nanoparticles exhibit highly size-dependent physicochemical properties that are important in applications such as catalysis and environmental remediation. In order for these size-dependent properties to be effectively harnessed for industrial applications scalable and cost-effective techniques for size-controlled synthesis or size separation must be developed. The synthesis of monodisperse iron oxide nanoparticles can be a prohibitively expensive process on a large scale. An alternative involves the use of inexpensive synthesis procedures followed by a size-selective processing technique. While there are many techniques available to fractionate nanoparticles, many of the techniques are unable to efficiently fractionate iron oxide nanoparticles in a scalable and inexpensive manner. A scalable apparatus capable of fractionating large quantities of iron oxide nanoparticles into distinct fractions of different sizes and size distributions has been developed. Polydisperse iron oxide nanoparticles (2–20 nm) coated with oleic acid used in this study were synthesized using a simple and inexpensive version of the popular coprecipitation technique. This apparatus uses hexane as a CO{sub 2} gas-expanded liquid to controllably precipitate nanoparticles inside a 1L high-pressure reactor. This paper demonstrates the operation of this new apparatus and for the first time shows the successful fractionation results on a system of metal oxide nanoparticles, with initial nanoparticle concentrations in the gram-scale. The analysis of the obtained fractions was performed using transmission electron microscopy and dynamic light scattering. The use of this simple apparatus provides a pathway to separate large quantities of iron oxide nanoparticles based upon their size for use in various industrial applications.

  19. TECHNOLOGICAL FEATURES OF MILLING AND FRACTIONATION OF FLAXSEEDS

    Directory of Open Access Journals (Sweden)

    A. Feskova

    2015-01-01

    Full Text Available Summary. The optimal parameters of milling and fractionation of flaxseeds were substantiated. It was found that the hull fraction with the highest content of lignan secoisolariciresinol diglucoside SDG was obtained when flaxseeds were grinded using a rotatory impact continuous operation mill at the rotation 1380-1640 rpm. Studies have shown that with the increasing of the rotor speed the number of unbriken seeds decreased. However, due to the fact that the shells are crushed more, they become more difficult to separate from the cotyledons. For identification and quantification of SDG the HPLC-MS method was used. It is found that the optimum separation membranes and cotyledon fraction occurs at sifting milled seeds sequentially through the sieves having meshes of 1 and 0.5 mm. The technology of industrial production of lignans-containing fraction and flour on the basis of flaxseeds processing were proposed. This technology includes milling flaxseeds at the rotation 1380-1640 rpm, with subsequent 2% silicon dioxide addition and stepwise sieving using sieves with the mesh size 2 mm. To use a fraction membranes high in lignans as raw material for biologically active additives to food it needed additional enforcement-ground to a size not more than 0.4 mm (technological features of capsulation. The developed technology allowed getting with maximum yields of lignans-containing fraction (10% yield and flaxseed flour (80% yield.

  20. The separation of ore from cooke into high- and low-grade fractions

    International Nuclear Information System (INIS)

    Guest, R.N.

    1984-01-01

    The separation of the ore by sizing alone was not very successful, and the recovery of uranium to the high-grade fraction did not exceed 73 per cent. The use of a combination of size and gravity separation was attempted, and the tailing from the gravity circuit contained 33,9 per cent of the uranium at a grade of 60g/t. The circuit recommended includes autogenous grinding to liberate part of the ore matrix containing the values into the fine fraction. This should be followed by heavy-medium separation for the recovery of the high-grade portion of the coarse fraction. The size at which this heavy-medium separation is carried out should be determined

  1. Revised models of interstellar nitrogen isotopic fractionation

    Science.gov (United States)

    Wirström, E. S.; Charnley, S. B.

    2018-03-01

    Nitrogen-bearing molecules in cold molecular clouds exhibit a range of isotopic fractionation ratios and these molecules may be the precursors of 15N enrichments found in comets and meteorites. Chemical model calculations indicate that atom-molecular ion and ion-molecule reactions could account for most of the fractionation patterns observed. However, recent quantum-chemical computations demonstrate that several of the key processes are unlikely to occur in dense clouds. Related model calculations of dense cloud chemistry show that the revised 15N enrichments fail to match observed values. We have investigated the effects of these reaction rate modifications on the chemical model of Wirström et al. (2012) for which there are significant physical and chemical differences with respect to other models. We have included 15N fractionation of CN in neutral-neutral reactions and also updated rate coefficients for key reactions in the nitrogen chemistry. We find that the revised fractionation rates have the effect of suppressing 15N enrichment in ammonia at all times, while the depletion is even more pronounced, reaching 14N/15N ratios of >2000. Taking the updated nitrogen chemistry into account, no significant enrichment occurs in HCN or HNC, contrary to observational evidence in dark clouds and comets, although the 14N/15N ratio can still be below 100 in CN itself. However, such low CN abundances are predicted that the updated model falls short of explaining the bulk 15N enhancements observed in primitive materials. It is clear that alternative fractionating reactions are necessary to reproduce observations, so further laboratory and theoretical studies are urgently needed.

  2. Molecular weight distribution of Athabasca bitumen

    Energy Technology Data Exchange (ETDEWEB)

    Champagne, P J; Manolakis, E; Ternan, M

    1985-03-01

    A sample of whole Athabasca bitumen has been fractionated by preparative g.p.c. The weights of the fractions have been determined and their molecular weights measured by several methods. In contras to previously published data, consistent results were obtained using different solvents (THF, benzene/water) and using different techniques (v.p.o., f.p.d. and g.c.-m.s.). This has resulted in a accurate definition of the molecular weight distribution of Athabasca bitumen.

  3. Film self-assembly properties of vacuum residua from crude oil and correlation to the stability of water/crude oil emulsions[Supercritical fluid extraction and fractional technology (SFEF)

    Energy Technology Data Exchange (ETDEWEB)

    Peng, Bo

    2005-07-01

    In this thesis, SFEF technology has been used to obtain a fine separation of vacuum residua. Three kinds of vacuum residua from Iranian Heavy Crude Oil, Iranian Light Crude Oil and Daqing Crude Oil have been separated respectively into three series narrow cut fractions as a function of the average molecular weight. And their molecular parameters have been characterized by Vapour Pressure Osmometry(VPO) system, Ultraviolet(UV) spectroscopy, Infrared(IR) spectroscopy as well as by elemental analysis. The various fractions of vacuum residua have been added to an oil/water model system. The oil phase used was pure heptane, pure toluene, a mixture of heptane and toluene etc. Various properties of the interfacial film have been studied such as the self-assembly properties, interfacial tension and interfacial viscosity, etc. The self-assembly procedure of interfacial film of vacuum residua fractions were focused by means of the Wilhelmy plate method (Paper 1). The self-assembly states of interfacial film of vacuum residua fraction from Iranian Heavy and Daqing crude oil have been revealed by using Langmuir-Blodgett technology respectively (Paper II and Paper III). From measurement of the interfacial shear viscosity, the mechanical strength of the interfacial film formed by the vacuum residua fraction has been described (Paper IV) and the roles of the surfactants added in the interfacial film have been confirmed (Paper V). At the same time, the oil/water interfacial tensions of vacuum residua fractions from the three kinds of crude oil have been studied and compared (Paper VI and Paper VII). Characteristic properties of emulsions stabilized by the vacuum residua, such as Zeta potential (Paper VIII) and particle size distribution (Paper IX), have also been studied. An attempt has been made to explain the variations of emulsion properties in terms of the interfacial self-assembly of vacuum residua fractions. Finally, based up the above research and using chemometric methods

  4. prediction of bread-making quality using size exclusion high

    African Journals Online (AJOL)

    ACSS

    Variation in the distribution of protein molecular weight in wheat (Triticum aestivum), influences ... with high G/G ratios in SDS-insoluble protein fraction were Sceptre x Nata and Kariega x Sceptre. ...... Molecular characterisation and dynamic.

  5. Enhanced characterization of oil sands acid-extractable organics fractions using electrospray ionization-high-resolution mass spectrometry and synchronous fluorescence spectroscopy.

    Science.gov (United States)

    Bauer, Anthony E; Frank, Richard A; Headley, John V; Peru, Kerry M; Hewitt, L Mark; Dixon, D George

    2015-05-01

    The open pit oil sands mining operations north of Fort McMurray, Alberta, Canada, are accumulating tailings waste at a rate approximately equal to 4.9 million m(3) /d. Naphthenic acids are among the most toxic components within tailings to aquatic life, but structural components have largely remained unidentified. In the present study, electrospray ionization high-resolution mass spectrometry (ESI-HRMS) and synchronous fluorescence spectroscopy (SFS) were used to characterize fractions derived from the distillation of an acid-extractable organics (AEO) mixture isolated from oil sands process-affected water (OSPW). Mean molecular weights of each fraction, and their relative proportions to the whole AEO extract, were as follows: fraction 1: 237 Da, 8.3%; fraction 2: 240 Da, 23.8%; fraction 3: 257 Da, 26.7%; fraction 4: 308 Da, 18.9%; fraction 5: 355 Da, 10.0%. With increasing mean molecular weight of the AEO fractions, a concurrent increase occurred in the relative abundance of nitrogen-, sulfur-, and oxygen-containing ions, double-bond equivalents, and degree of aromaticity. Structures present in the higher-molecular-weight fractions (fraction 4 and fraction 5) suggested the presence of heteroatoms, dicarboxyl and dihydroxy groups, and organic acid compounds with the potential to function as estrogens. Because organic acid compositions become dominated by more recalcitrant, higher-molecular-weight acids during natural degradation, these findings are important in the context of oil sands tailings pond water remediation. © 2015 SETAC.

  6. Membrane Assisted Enzyme Fractionation

    DEFF Research Database (Denmark)

    Yuan, Linfeng

    to the variation in size of the proteins and a reasonable separation factor can be observed only when the size difference is in the order of 10 or more. This is partly caused by concentration polarization and membrane fouling which hinders an effective separation of the proteins. Application of an electric field...... across the porous membrane has been demonstrated to be an effective way to reduce concentration polarization and membrane fouling. In addition, this technique can also be used to separate the proteins based on difference in charge, which to some extent overcome the limitations of size difference...... of proteins on the basis of their charge, degree of hydrophobicity, affinity or size. Adequate purity is often not achieved unless several purification steps are combined thereby increasing cost and reducing product yield. Conventional fractionation of proteins using ultrafiltration membranes is limited...

  7. Effect of gamma-irradiation on rice seed DNA. Pt. 1. Yield and molecular size of DNA extracted from irradiated rice seeds

    International Nuclear Information System (INIS)

    Kawamura, Yoko; Konishi, Akihiro; Yamada, Takashi; Saito, Yukio

    1995-01-01

    The effect of gamma-irradiation on the DNA of hulled rice seeds was investigated. The cetyltrimethylammonium bromide (CTAB) method was preferred for the extraction of DNA from rice seeds because of its high quality and good yield. The yield of DNA that was determined by gel electrophoresis, decreased as the irradiation dose increased from 1 kGy. DNA extracted from rice seeds irradiated with a 30 kGy dose showed a molecular size of less than 20 kb, while that from unirradiated rice showed more than 100 kb in electrophoretic profiles. It can be assumed that the decrease in yield was mainly induced by the crosslinking between protein and DNA, and the reduction in molecular size was induced by double-strand breaks. (J.P.N.)

  8. Ultrasonographic ejection fraction of normal gallbladder

    Energy Technology Data Exchange (ETDEWEB)

    Park, Jin Hun; Kim, Seung Yup; Park, Yaung Hee; Kang, Ik Won; Yoon, Jong Sup [Hangang Sacred Heart Hospital, Halym College, Chuncheon (Korea, Republic of)

    1984-06-15

    Real-time ultrasonography is a simple, accurate, noninvasive and potentially valuable means of studying gallbladder size and emptying. The authors calculated ultrasonographically the ejection fraction of 80 cases of normally functioning gallbladder on oral cholecystography, from June 1983 to April 1984, at the department of radiology, Hangang Sacred Heart Hospital. The results were obtained as follows; 1. Ultrasonographic Ejection Fraction at 30 minutes after the fatty meal was 73.1{+-}16.85. 2. There was no significant difference in age and sex, statistically.

  9. Influence of grain size on the mechanical properties of nano-crystalline copper; insights from molecular dynamics simulation

    Science.gov (United States)

    Rida, A.; Makke, A.; Rouhaud, E.; Micoulaut, M.

    2017-10-01

    We use molecular dynamics simulations to study the mechanical properties of a columnar nanocrystalline copper with a mean grain size between 8.91 nm and 24 nm. The used samples were generated by using a melting cooling method. These samples were submitted to uniaxial tensile test. The results reveal the presence of a critical mean grain size between 16 and 20 nm, where there is an inversion in the conventional Hall-Petch tendency. This inversion is illustrated by the increase of flow stress with the increase of the mean grain size. This transition is caused by shifting of the deformation mechanism from dislocations to a combination of grain boundaries sliding and dislocations. Moreover, the effect of temperature on the mechanical properties of nanocrystalline copper has been investigated. The results show a decrease of the flow stress and Young's modulus when the temperature increases.

  10. Platelet size does not correlate with platelet age.

    Science.gov (United States)

    Thompson, C B; Love, D G; Quinn, P G; Valeri, C R

    1983-08-01

    The relationship between platelet size and in vivo aging was investigated in the baboon using size-dependent platelet subpopulations separated by counterflow centrifugation. The separation characteristics, size, lactate dehydrogenase (LDH) activity, and dense-body content of the baboon platelet subpopulations were similar to those previously observed in studies of human platelets. Three independent labeling techniques were used: (1) in vivo labeling with 75Se-methionine, (2) in vitro labeling with 51Cr, and (3) in vivo labeling with 14C-serotonin. Maximal incorporation of all three labels showed a close correlation between the mean platelet volume (MPV) of each fraction and the platelet radioactivity. The onset of incorporation and rate of accumulation of 75Se-methionine were comparable in all fractions when corrected for differences in volume, suggesting that platelet size heterogeneity was present from the time of release of the platelets from the bone marrow. Survival studies using 51Cr and 14C-serotonin showed no translocation of the label from one fraction to another in the circulation over time. In vivo survival values for the three radionuclides showed a slight but significant correlation between the lifespan and the MPV of the fractions. The data suggest that large platelets were not younger platelets, but rather platelets with a longer life-span. Platelet size heterogeneity is the result of production factors in the bone marrow and not maturation in the circulation.

  11. Platelet size does not correlate with platelet age

    International Nuclear Information System (INIS)

    Thompson, C.B.; Love, D.G.; Quinn, P.G.; Valeri, C.R.

    1983-01-01

    The relationship between platelet size and in vivo aging was investigated in the baboon using size-dependent platelet subpopulations separated by counterflow centrifugation. The separation characteristics, size, lactate dehydrogenase (LDH) activity, and dense-body content of the baboon platelet subpopulations were similar to those previously observed in studies of human platelets. Three independent labeling techniques were used: (1) in vivo labeling with 75 Se-methionine, (2) in vitro labeling with 51 Cr, and (3) in vivo labeling with 14C-serotonin. Maximal incorporation of all three labels showed a close correlation between the mean platelet volume (MPV) of each fraction and the platelet radioactivity. The onset of incorporation and rate of accumulation of 75 Se-methionine were comparable in all fractions when corrected for differences in volume, suggesting that platelet size heterogeneity was present from the time of release of the platelets from the bone marrow. Survival studies using 51 Cr and 14 C-serotonin showed no translocation of the label from one fraction to another in the circulation over time. In vivo survival values for the three radionuclides showed a slight but significant correlation between the lifespan and the MPV of the fractions. The data suggest that large platelets were not younger platelets, but rather platelets with a longer life-span. Platelet size heterogeneity is the result of production factors in the bone marrow and not maturation in the circulation

  12. NMR studies of organic liquids confined in mesoporous materials: (1) Pore size distribution and (2) Phase behaviour and dynamic studies in restricted geometry

    International Nuclear Information System (INIS)

    Foerland, Kjersti

    2005-01-01

    In the thesis NMR spectroscopy is used for studying liquids confined in various porous materials. In the first part, pore size distributions of mesoporous silicas and controlled pore glasses were determined by measuring the 1H NMR signal from the non-frozen fraction of the confined liquid as a function of temperature, using benzene, acetonitrile and HMDS as probe molecules. In the second part, the molecular dynamics of acetonitrile, hexamethyldisilane, cyclohexane and cyclopentane confined in mesoporous materials were studied as a function of temperature. 6 papers are included with titles: 1) Pore-size determination of mesoporous materials by 1H NMR spectroscopy. 2) Pore-size distribution in mesoporous materials as studied by 1H NMR. 3) Dynamic 1H and 2H NMR investigations of acetonitrile confined in porous silica. 4) NMR investigations of hexamethyldisilane confined in controlled pore glasses: Pore size distribution and molecular dynamics studies. 5) 1H and 2H NMR studies of cyclohexane nano crystals in controlled pore glasses. 6) 1H NMR relaxation and diffusion studies of cyclohexane and cyclopentane confined in MCM-41

  13. NMR studies of organic liquids confined in mesoporous materials: (1) Pore size distribution and (2) Phase behaviour and dynamic studies in restricted geometry

    Energy Technology Data Exchange (ETDEWEB)

    Foerland, Kjersti

    2005-07-01

    In the thesis NMR spectroscopy is used for studying liquids confined in various porous materials. In the first part, pore size distributions of mesoporous silicas and controlled pore glasses were determined by measuring the 1H NMR signal from the non-frozen fraction of the confined liquid as a function of temperature, using benzene, acetonitrile and HMDS as probe molecules. In the second part, the molecular dynamics of acetonitrile, hexamethyldisilane, cyclohexane and cyclopentane confined in mesoporous materials were studied as a function of temperature. 6 papers are included with titles: 1) Pore-size determination of mesoporous materials by 1H NMR spectroscopy. 2) Pore-size distribution in mesoporous materials as studied by 1H NMR. 3) Dynamic 1H and 2H NMR investigations of acetonitrile confined in porous silica. 4) NMR investigations of hexamethyldisilane confined in controlled pore glasses: Pore size distribution and molecular dynamics studies. 5) 1H and 2H NMR studies of cyclohexane nano crystals in controlled pore glasses. 6) 1H NMR relaxation and diffusion studies of cyclohexane and cyclopentane confined in MCM-41.

  14. Assessment of pesticide availability in soil fractions after the incorporation of winery-distillery vermicomposts

    Energy Technology Data Exchange (ETDEWEB)

    Fernandez-Bayo, J.D. [Department of Environmental Protection, Estacion Experimental del Zaidin (CSIC), C/Profesor Albareda 1, 18008 Granada (Spain)], E-mail: jesus.bayo@eez.csic.es; Romero, E. [Department of Environmental Protection, Estacion Experimental del Zaidin (CSIC), C/Profesor Albareda 1, 18008 Granada (Spain); Schnitzler, F.; Burauel, P. [Agrosphere Institute, ICG 4, Forschungszentrum Juelich, Juelich (Germany)

    2008-07-15

    The influence of two vermicomposts from winery and distillery wastes on the distribution of diuron in agricultural soil was studied. Physical soil fractionations at 0, 9, 27, 49 and 77 days, allowed the quantification of pesticide residues in different particle-size fractions, coarse waste (WF), sand-sized (SF), silt-sized (SiF), clay-sized (CF) and dissolved organic matter-sized fraction (DOM). The SiF made a greater contribution to the formation of non-extractable residues in unamended soil, but when vermicomposts were added, new sorption sites in WF appeared, being higher for the more humified vermicompost V2. The dissolved organic carbon (DOC) increased with the addition of vermicompost, but the concentration of the desorbed {sup 14}C-radiochemical did not increase. Non-significant increment was observed with time for the non-extractable fraction with amendments. Diuron was transformed in all samples, although less than 0.5% was mineralized. The main effect caused by vermicomposts was a reduction in the availability of diuron in soil. - Winery vermicomposts as organic amendments to reduce pesticide pollution.

  15. Assessment of pesticide availability in soil fractions after the incorporation of winery-distillery vermicomposts

    International Nuclear Information System (INIS)

    Fernandez-Bayo, J.D.; Romero, E.; Schnitzler, F.; Burauel, P.

    2008-01-01

    The influence of two vermicomposts from winery and distillery wastes on the distribution of diuron in agricultural soil was studied. Physical soil fractionations at 0, 9, 27, 49 and 77 days, allowed the quantification of pesticide residues in different particle-size fractions, coarse waste (WF), sand-sized (SF), silt-sized (SiF), clay-sized (CF) and dissolved organic matter-sized fraction (DOM). The SiF made a greater contribution to the formation of non-extractable residues in unamended soil, but when vermicomposts were added, new sorption sites in WF appeared, being higher for the more humified vermicompost V2. The dissolved organic carbon (DOC) increased with the addition of vermicompost, but the concentration of the desorbed 14 C-radiochemical did not increase. Non-significant increment was observed with time for the non-extractable fraction with amendments. Diuron was transformed in all samples, although less than 0.5% was mineralized. The main effect caused by vermicomposts was a reduction in the availability of diuron in soil. - Winery vermicomposts as organic amendments to reduce pesticide pollution

  16. Detection of infarct size safety threshold for left ventricular ejection fraction impairment in acute myocardial infarction successfully treated with primary percutaneous coronary intervention.

    Science.gov (United States)

    Sciagrà, Roberto; Cipollini, Fabrizio; Berti, Valentina; Migliorini, Angela; Antoniucci, David; Pupi, Alberto

    2013-04-01

    In acute myocardial infarction (AMI) treated by primary percutaneous coronary intervention (PCI), there is a direct relationship between myocardial damage and consequent left ventricular (LV) functional impairment. It is however unclear whether there is a safety threshold below which infarct size does not significantly affect LV ejection fraction (EF). The aim of this study was to evaluate the relationship between infarct size and LVEF in AMI patients treated by successful PCI using a specific statistical approach to identify a possible safety threshold. Among patients with recent AMI submitted to perfusion gated single photon emission computed tomography (SPECT) to define the infarct size, the data of 427 subjects with sizable infarct size were considered. The relationship between infarct size and LVEF was analysed using a simple segmented regression (SSR) model and an iterative algorithm based on robust least squares (RLS) for parameter estimation. The RLS algorithm detected two break points in the SSR model, set at infarct size values of 11.0 and 51.5 %. Because the slope coefficients of the two extreme segments of the regression line were not significant, by constraining such segments to zero slope in the SSR model, the lower break point was identified at infarct size = 8 % and the upper one at 45 %. Using a rigorous statistical approach, it is possible to demonstrate that below a threshold of 8 % the infarct size apparently does not affect the LVEF and therefore a safety threshold could be set at this value. Furthermore, the same analysis suggests that the relationship between infarct size and LVEF impairment is lost for an infarct size > 45 %.

  17. Deuterium fractionation in dense interstellar clouds

    International Nuclear Information System (INIS)

    Millar, T.J.; Bennett, A.; Herbst, E.

    1989-01-01

    The time-dependent gas-phase chemistry of deuterium fractionation in dense interstellar clouds ranging in temperature between 10 and 70 K was investigated using a pseudo-time-dependent model similar to that of Brown and Rice (1986). The present approach, however, considers much more complex species, uses more deuterium fractionation reactions, and includes the use of new branching ratios for dissociative recombinations reactions. Results indicate that, in cold clouds, the major and most global source of deuterium fractionation is H2D(+) and ions derived from it, such as DCO(+) and H2DO(+). In warmer clouds, reactions of CH2D(+), C2HD(+), and associated species lead to significant fractionation even at 70 K, which is the assumed Orion temperature. The deuterium abundance ratios calculated at 10 K are consistent with those observed in TMC-1 for most species. However, a comparison between theory and observatiom for Orion, indicates that, for species in the ambient molecular cloud, the early-time results obtained with the old dissociative recombination branching ratios are superior if a temperature of 70 K is utilized. 60 refs

  18. Deuterium fractionation in dense interstellar clouds

    Science.gov (United States)

    Millar, T. J.; Bennett, A.; Herbst, Eric

    1989-05-01

    The time-dependent gas-phase chemistry of deuterium fractionation in dense interstellar clouds ranging in temperature between 10 and 70 K was investigated using a pseudo-time-dependent model similar to that of Brown and Rice (1986). The present approach, however, considers much more complex species, uses more deuterium fractionation reactions, and includes the use of new branching ratios for dissociative recombinations reactions. Results indicate that, in cold clouds, the major and most global source of deuterium fractionation is H2D(+) and ions derived from it, such as DCO(+) and H2DO(+). In warmer clouds, reactions of CH2D(+), C2HD(+), and associated species lead to significant fractionation even at 70 K, which is the assumed Orion temperature. The deuterium abundance ratios calculated at 10 K are consistent with those observed in TMC-1 for most species. However, a comparison between theory and observatiom for Orion, indicates that, for species in the ambient molecular cloud, the early-time results obtained with the old dissociative recombination branching ratios are superior if a temperature of 70 K is utilized.

  19. Antibacterial activity of papain hydrolysed camel whey and its fractions

    DEFF Research Database (Denmark)

    Abdel-Hamid, Mahmoud; Goda, Hanan A.; De Gobba, Cristian

    2016-01-01

    Camel whey (ON) was hydrolysed with papain from Carica papaya and fractionated by size exclusion chromatography (SEC). The antibacterial activity of the CW, camel whey hydrolysate (CWH) and the obtained SEC-fractions was assessed using the disc-diffusion method. The CWH exhibited significantly...

  20. Asymmetric flow field-flow fractionation of superferrimagnetic iron oxide multicore nanoparticles

    DEFF Research Database (Denmark)

    Dutz, Silvio; Kuntsche, Judith; Eberbeck, Dietmar

    2012-01-01

    Magnetic nanoparticles are very useful for various medical applications where each application requires particles with specific magnetic properties. In this paper we describe the modification of the magnetic properties of magnetic multicore nanoparticles (MCNPs) by size dependent fractionation....... The hysteresis curves were measured by vibrating sample magnetometry. Starting from a coercivity of 1.41 kA m(-1) for the original MCNPs the coercivity of the particles in the different fractions varied from 0.41 to 3.83 kA m(-1). In our paper it is shown for the first time that fractions obtained from a broad...... size distributed MCNP fluid classified by AF4 show a strong correlation between hydrodynamic diameter and magnetic properties. Thus we state that AF4 is a suitable technology for reproducible size dependent classification of magnetic multicore nanoparticles suspended as ferrofluids....

  1. Proteomic analysis of albumin and globulin fractions of pea (Pisum sativum L.) seeds.

    Science.gov (United States)

    Dziuba, Jerzy; Szerszunowicz, Iwona; Nałęcz, Dorota; Dziuba, Marta

    2014-01-01

    Proteomic analysis is emerging as a highly useful tool in food research, including studies of food allergies. Two-dimensional gel electrophoresis involving isoelectric focusing and sodium dodecyl sulfate polyacrylamide gel electrophoresis is the most effective method of separating hundreds or even thousands of proteins. In this study, albumin and globulin tractions of pea seeds cv. Ramrod were subjected to proteomic analysis. Selected potentially alergenic proteins were identified based on their molecular weights and isoelectric points. Pea seeds (Pisum sativum L.) cv. Ramrod harvested over a period of two years (Plant Breeding Station in Piaski-Szelejewo) were used in the experiment. The isolated albumins, globulins and legumin and vicilin fractions of globulins were separated by two-dimensional gel electrophoresis. Proteomic images were analysed in the ImageMaster 2D Platinum program with the use of algorithms from the Melanie application. The relative content, isoelectric points and molecular weights were computed for all identified proteins. Electrophoregrams were analysed by matching spot positions from three independent replications. The proteomes of albumins, globulins and legumin and vicilin fractions of globulins produced up to several hundred spots (proteins). Spots most characteristic of a given fraction were identified by computer analysis and spot matching. The albumin proteome accumulated spots of relatively high intensity over a broad range of pi values of ~4.2-8.1 in 3 molecular weight (MW) ranges: I - high molecular-weight albumins with MW of ~50-110 kDa, II - average molecular-weight albumins with MW of ~20-35 kDa, and III - low molecular-weight albumins with MW of ~13-17 kDa. 2D gel electrophoregrams revealed the presence of 81 characteristic spots, including 24 characteristic of legumin and 14 - of vicilin. Two-dimensional gel electrophoresis proved to be a useful tool for identifying pea proteins. Patterns of spots with similar isoelectric

  2. Asymmetric Flow Field Flow Fractionation of Aqueous C60 Nanoparticles with Size Determination by Dynamic Light Scattering and Quantification by Liquid Chromatography Atmospheric Pressure Photo-Ionization Mass Spectrometry

    Science.gov (United States)

    A size separation method was developed for aqueous C60 fullerene aggregates (aqu/C60) using asymmetric flow field flow fractionation (AF4) coupled to a dynamic light scattering detector in flow through mode. Surfactants, which are commonly used in AF4, were avoided as they may al...

  3. Constant size descriptors for accurate machine learning models of molecular properties

    Science.gov (United States)

    Collins, Christopher R.; Gordon, Geoffrey J.; von Lilienfeld, O. Anatole; Yaron, David J.

    2018-06-01

    Two different classes of molecular representations for use in machine learning of thermodynamic and electronic properties are studied. The representations are evaluated by monitoring the performance of linear and kernel ridge regression models on well-studied data sets of small organic molecules. One class of representations studied here counts the occurrence of bonding patterns in the molecule. These require only the connectivity of atoms in the molecule as may be obtained from a line diagram or a SMILES string. The second class utilizes the three-dimensional structure of the molecule. These include the Coulomb matrix and Bag of Bonds, which list the inter-atomic distances present in the molecule, and Encoded Bonds, which encode such lists into a feature vector whose length is independent of molecular size. Encoded Bonds' features introduced here have the advantage of leading to models that may be trained on smaller molecules and then used successfully on larger molecules. A wide range of feature sets are constructed by selecting, at each rank, either a graph or geometry-based feature. Here, rank refers to the number of atoms involved in the feature, e.g., atom counts are rank 1, while Encoded Bonds are rank 2. For atomization energies in the QM7 data set, the best graph-based feature set gives a mean absolute error of 3.4 kcal/mol. Inclusion of 3D geometry substantially enhances the performance, with Encoded Bonds giving 2.4 kcal/mol, when used alone, and 1.19 kcal/mol, when combined with graph features.

  4. Lack of evidence for increased tolerance of rat spinal cord with decreasing fraction doses below 2 Gy

    International Nuclear Information System (INIS)

    Ang, K.K.; van der Kogel, A.J.; van der Schueren, E.

    1985-01-01

    The radiation tolerance of the spinal cord, both in man and in rats, has been shown to depend strongly on the size of the dose per fraction. With fraction doses down to about 2 Gy, the spinal cord tolerance can be predicted by a modified Ellis formula. More recently alternative isoeffect formulas were based on the linear-quadratic (LQ) model of cell survival where the effect of dose fractionation is characterized by the ratio α/β which varies from tissue to tissue. For the spinal cord, as well as for other late responding tissues, the ratio α/β is small, in contrast to most acutely responding tissues. Both the Ellis-type formula, and to a lesser extent the LQ-model, predict a continuously increasing tolerance dose with decreasing fraction size. From previous experiments on the rat cervical spinal cord with doses per fraction down to about 2 Gy, the ratio α/β was determined to be 1.7 Gy, and the LQ-model would predict a rise in tolerance with a reduction in fraction size to far below 2 Gy. Based on these predictions clinical studies have been initiated assuming a significantly increased tolerance by reduction of fraction size to about 1 Gy. However, in the present experiments no evidence was found for such an increase in tolerance with fraction sizes below 2 Gy

  5. Accurate alpha sticking fractions from improved calculations relevant for muon catalyzed fusion

    International Nuclear Information System (INIS)

    Szalewicz, K.

    1990-05-01

    Recent experiments have shown that under proper conditions a single muon may catalyze almost two hundred fusions in its lifetime. This process proceeds through formation of muonic molecular ions. Properties of these ions are central to the understanding of the phenomenon. Our work included the most accurate calculations of the energy levels and Coulombic sticking fractions for tdμ and other muonic molecular ions, calculations of Auger transition rates, calculations of corrections to the energy levels due to interactions with the most molecule, and calculation of the reactivation of muons from α particles. The majority of our effort has been devoted to the theory and computation of the influence of the strong nuclear forces on fusion rates and sticking fractions. We have calculated fusion rates for tdμ including the effects of nuclear forces on the molecular wave functions. We have also shown that these results can be reproduced to almost four digit accuracy by using a very simple quasifactorizable expression which does not require modifications of the molecular wave functions. Our sticking fractions are more accurate than any other theoretical values. We have used a more sophisticated theory than any other work and our numerical calculations have converged to at least three significant digits

  6. Machine learning of accurate energy-conserving molecular force fields

    Science.gov (United States)

    Chmiela, Stefan; Tkatchenko, Alexandre; Sauceda, Huziel E.; Poltavsky, Igor; Schütt, Kristof T.; Müller, Klaus-Robert

    2017-01-01

    Using conservation of energy—a fundamental property of closed classical and quantum mechanical systems—we develop an efficient gradient-domain machine learning (GDML) approach to construct accurate molecular force fields using a restricted number of samples from ab initio molecular dynamics (AIMD) trajectories. The GDML implementation is able to reproduce global potential energy surfaces of intermediate-sized molecules with an accuracy of 0.3 kcal mol−1 for energies and 1 kcal mol−1 Å̊−1 for atomic forces using only 1000 conformational geometries for training. We demonstrate this accuracy for AIMD trajectories of molecules, including benzene, toluene, naphthalene, ethanol, uracil, and aspirin. The challenge of constructing conservative force fields is accomplished in our work by learning in a Hilbert space of vector-valued functions that obey the law of energy conservation. The GDML approach enables quantitative molecular dynamics simulations for molecules at a fraction of cost of explicit AIMD calculations, thereby allowing the construction of efficient force fields with the accuracy and transferability of high-level ab initio methods. PMID:28508076

  7. 2-Nitrophenol reduction promoted by S. putrefaciens 200 and biogenic ferrous iron: The role of different size-fractions of dissolved organic matter

    Energy Technology Data Exchange (ETDEWEB)

    Zhu, Zhenke [Guangdong Key Laboratory of Agricultural Environment Pollution Integrated Control, Guangdong Institute of Eco-Environmental and Soil Sciences, Guangzhou 510650 (China); Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640 (China); Graduate University of Chinese Academy of Sciences, Beijing 100049 (China); Tao, Liang, E-mail: taoliang@soil.gd.cn [Guangdong Key Laboratory of Agricultural Environment Pollution Integrated Control, Guangdong Institute of Eco-Environmental and Soil Sciences, Guangzhou 510650 (China); Li, Fangbai, E-mail: cefbli@soil.gd.cn [Guangdong Key Laboratory of Agricultural Environment Pollution Integrated Control, Guangdong Institute of Eco-Environmental and Soil Sciences, Guangzhou 510650 (China)

    2014-08-30

    Graphical abstract: - Highlights: • Dissolved organic matter (DOM) act as electron shuttle in redox reactions. • Different molecular weight DOM fractions have different electron transfer capacity. • A higher electron transfer capacities value indicates a higher reduction rate. • DOM transfer electron from S. putrefaciens 200 to 2-nitrophenol (2-NP) and Fe(III). • DOM and biogenic Fe(II) synergistically enhanced the 2-NP reductive transformation. - Abstract: The reduction of nitroaromatic compounds (listed as a priority pollutant) in natural subsurface environments typically coexists with dissimilatory reduction of iron oxides effected by dissolved organic matter (DOM). Investigating the impact of the DOM that influences those reduction processes is crucial for understanding and predicting the geochemical fate of these environmental species. This study investigated the impact of different molecular weight DOM fractions (DMWDs) on the 2-nitrophenol (2-NP) reduction by S. putrefaciens 200 (SP200) and α-Fe{sub 2}O{sub 3} with lactate (excluding electron donor interference). Kinetic measurements demonstrated that 2-NP reduction rates were affected by the redox reactivity of active species under DMWDs (denoted as L-DOM, M-DOM, and H-DOM). The enhanced reduction rates are consistent with the negative shifts in peak oxidation potential values, the increases in HA-like/FA-like values, aromaticity index values and electron transfer capacity values. L-DOM acted mainly as ligands to complex Fe(II), whereas the significant role of H-DOM in reductive reactions should be acting as an electron shuttle, transferring electrons from SP200 to Fe(III) and 2-NP and from biogenic Fe(II) to 2-NP, further accelerating the 2-NP reductions. Those observations provide valuable insights into the role of DOM in the biogeochemical redox processes and the remediation of contaminated soil in a natural environment.

  8. CHEMICAL ANALYSIS OF A DIFFUSE CLOUD ALONG A LINE OF SIGHT TOWARD W51: MOLECULAR FRACTION AND COSMIC-RAY IONIZATION RATE

    Energy Technology Data Exchange (ETDEWEB)

    Indriolo, Nick; Neufeld, D. A. [Department of Physics and Astronomy, Johns Hopkins University, Baltimore, MD 21218 (United States); Gerin, M. [LERMA, CNRS, Observatoire de Paris and ENS, F-75231 Paris Cedex 05 (France); Geballe, T. R. [Gemini Observatory, Hilo, HI 96720 (United States); Black, J. H. [Department of Earth and Space Sciences, Chalmers University of Technology, Onsala Space Observatory, SE-43992 Onsala (Sweden); Menten, K. M. [MPI fuer Radioastronomie, D-53121 Bonn (Germany); Goicoechea, J. R. [Departamento de Astrofisica, Centro de Astrobiologia (CSIC-INTA), E-28850 Madrid (Spain)

    2012-10-20

    Absorption lines from the molecules OH{sup +}, H{sub 2}O{sup +}, and H{sup +} {sub 3} have been observed in a diffuse molecular cloud along a line of sight near W51 IRS2. We present the first chemical analysis that combines the information provided by all three of these species. Together, OH{sup +} and H{sub 2}O{sup +} are used to determine the molecular hydrogen fraction in the outskirts of the observed cloud, as well as the cosmic-ray ionization rate of atomic hydrogen. H{sup +} {sub 3} is used to infer the cosmic-ray ionization rate of H{sub 2} in the molecular interior of the cloud, which we find to be {zeta}{sub 2} = (4.8 {+-} 3.4) Multiplication-Sign 10{sup -16} s{sup -1}. Combining the results from all three species we find an efficiency factor-defined as the ratio of the formation rate of OH{sup +} to the cosmic-ray ionization rate of H-of {epsilon} = 0.07 {+-} 0.04, much lower than predicted by chemical models. This is an important step in the future use of OH{sup +} and H{sub 2}O{sup +} on their own as tracers of the cosmic-ray ionization rate.

  9. Properties of wine polymeric pigments formed from anthocyanin and tannins differing in size distribution and subunit composition.

    Science.gov (United States)

    Bindon, Keren; Kassara, Stella; Hayasaka, Yoji; Schulkin, Alex; Smith, Paul

    2014-11-26

    To explore the effect of tannin composition on pigment formation, model ferments of purified 3-O-monoglucoside anthocyanins (ACN) were conducted either alone or in the presence of two different tannins. Tannins were isolated from grape seeds (Sd) or skins (Sk) following exhaustive extraction in 70% v/v acetone. The Sd and Sk tannin fractions had a mean degree of polymerization of 5.2 and 25.6, respectively. The Sd fraction was highly galloylated, at 22%, but galloylation was Wine color and polymeric pigment were highest in the treatment containing ACN+Sd and similar in the ACN+Sk and ACN treatments. The same trend between treatments was observed for total and polymeric nonbleachable pigments. Only minor changes in tannin subunit composition were found following ACN incorporation, but the size distribution of polymeric pigments determined by gel permeation chromatography decreased, in particular for the ACN+Sk treatment. Color incorporation in the higher molecular mass range was lower for ACN+Sk wines than for ACN+Sd wines. Compositional differences between the two tannin fractions may therefore limit the incorporation of ACNs in the colored form. The results suggest that in the ACN+Sk and ACN treatments, the formation of lower molecular mass oligomeric pigments was favored. In polymeric pigments derived from ACNs, the presence of ethyl- and vinyl-linked ACNs to the level of trimers was identified using mass spectrometry.

  10. Radiation-induced lung damage in rats: The influence of fraction spacing on effect per fraction

    International Nuclear Information System (INIS)

    Haston, C.K.; Hill, R.P.; Newcomb, C.H.; Van Dyk, J.

    1994-01-01

    When the linear-quadratic model is used to predict fractionated treatments which are isoeffective, it is usually assumed that each (equal size) treatment fraction has an equal effect, independent of the time at which it was delivered during a course of treatment. Previous work has indicated that this assumption may not be valid in the context of radiation-induced lung damage in rats. Consequently the authors tested directly the validity of the assumption that each fraction has an equal effect, independent of the time it is delivered. An experiment was completed in which fractionated irradiation was given to whole thoraces of Sprague-Dawley rats. All treatment schedules consisted of eleven equal dose fractions in 36 days given as a split course, with some groups receiving the bulk of the doses early in the treatment schedule, before a 27-day gap, and others receiving most of the dose toward the end of the treatment schedule, after the time gap. To monitor the incidence of radiation-induced damage, breathing rate and lethality assays were used. The maximum differences in the LD 50 s and breathing rate ED 50 s for the different fractionation schedules were 4.0% and 7.7% respectively. The lethality data and breathing rate data were consistent with results expected from modelling using the linear-quadratic model with the inclusion of an overall time factor, but not the generalized linear-quadratic model which accounted for fraction spacing. For conventional daily fractionation, and within the range of experimental uncertainties, the results indicate that the effect of a treatment fraction does not depend on the time at which it is given (its position) in the treatment. The results indicate no need to extend isoeffect formulae to consider the effect of each fraction separately for radiation-induced lung damage. 21 refs., 6 figs., 3 tabs

  11. Next generation extended Lagrangian first principles molecular dynamics.

    Science.gov (United States)

    Niklasson, Anders M N

    2017-08-07

    Extended Lagrangian Born-Oppenheimer molecular dynamics [A. M. N. Niklasson, Phys. Rev. Lett. 100, 123004 (2008)] is formulated for general Hohenberg-Kohn density-functional theory and compared with the extended Lagrangian framework of first principles molecular dynamics by Car and Parrinello [Phys. Rev. Lett. 55, 2471 (1985)]. It is shown how extended Lagrangian Born-Oppenheimer molecular dynamics overcomes several shortcomings of regular, direct Born-Oppenheimer molecular dynamics, while improving or maintaining important features of Car-Parrinello simulations. The accuracy of the electronic degrees of freedom in extended Lagrangian Born-Oppenheimer molecular dynamics, with respect to the exact Born-Oppenheimer solution, is of second-order in the size of the integration time step and of fourth order in the potential energy surface. Improved stability over recent formulations of extended Lagrangian Born-Oppenheimer molecular dynamics is achieved by generalizing the theory to finite temperature ensembles, using fractional occupation numbers in the calculation of the inner-product kernel of the extended harmonic oscillator that appears as a preconditioner in the electronic equations of motion. Material systems that normally exhibit slow self-consistent field convergence can be simulated using integration time steps of the same order as in direct Born-Oppenheimer molecular dynamics, but without the requirement of an iterative, non-linear electronic ground-state optimization prior to the force evaluations and without a systematic drift in the total energy. In combination with proposed low-rank and on the fly updates of the kernel, this formulation provides an efficient and general framework for quantum-based Born-Oppenheimer molecular dynamics simulations.

  12. Size-exclusion chromatography (HPLC-SEC) technique optimization by simplex method to estimate molecular weight distribution of agave fructans.

    Science.gov (United States)

    Moreno-Vilet, Lorena; Bostyn, Stéphane; Flores-Montaño, Jose-Luis; Camacho-Ruiz, Rosa-María

    2017-12-15

    Agave fructans are increasingly important in food industry and nutrition sciences as a potential ingredient of functional food, thus practical analysis tools to characterize them are needed. In view of the importance of the molecular weight on the functional properties of agave fructans, this study has the purpose to optimize a method to determine their molecular weight distribution by HPLC-SEC for industrial application. The optimization was carried out using a simplex method. The optimum conditions obtained were at column temperature of 61.7°C using tri-distilled water without salt, adjusted pH of 5.4 and a flow rate of 0.36mL/min. The exclusion range is from 1 to 49 of polymerization degree (180-7966Da). This proposed method represents an accurate and fast alternative to standard methods involving multiple-detection or hydrolysis of fructans. The industrial applications of this technique might be for quality control, study of fractionation processes and determination of purity. Copyright © 2017 Elsevier Ltd. All rights reserved.

  13. The influence of size on the toxicity of an encapsulated pesticide: a comparison of micron- and nano-sized capsules.

    Science.gov (United States)

    Meredith, Alicea N; Harper, Bryan; Harper, Stacey L

    2016-01-01

    Encapsulation technology involves entrapping a chemical active ingredient (a.i.) inside a hollow polymeric shell and has been applied to commercial pesticide manufacturing for years to produce capsule suspension (CS) formulations with average particle sizes in the micron-scale. The few literature sources that investigate the environmental fate and toxicity to non-target organisms of encapsulated commercially available pesticide products with regard to capsule size report on average sizes between 20 and 50 μm. Here, we have identified a CS formulation with an average capsule size of approximately 2 μm with some capsules extending into the nanometer scale (~200 nm). Determining how carrier size influences toxicity is important to understanding if current pesticide risk assessments are sufficient to protect against products that incorporate encapsulation technology. Here, a commercial pyrethroid CS pesticide with lambda-cyhalothrin (λ-Cy) as the a.i. was separated into two suspensions, a fraction consisting of nano-sized capsules (~250 nm) and a fraction of micron-sized capsules (~2200 nm) in order to investigate the influence of capsule size on toxicity to embryonic zebrafish, Danio rerio. Toxicity was evaluated 24h after exposure to equivalent amounts of a.i. by the presence and severity of pyrethroid-specific tremors, 14 sublethal developmental impacts and mortality. Fish exposed to greater than 20 μg a.i. L(-1) technical λ-Cy or formulated product experienced curvature of the body axis, pericardial edema, craniofacial malformations, and mortality. Exposure to the unfractionated formulation, micro fraction, nano fraction and technical a.i. resulted in no significant differences in the occurrence of sublethal impacts or mortality; however, the technical a.i. exposure resulted in significantly less fish experiencing tremors and shorter tremors compared to any of the formulated product exposures. This suggests that the capsule size does not influence the toxic

  14. A molecular-sized optical logic circuit for digital modulation of a fluorescence signal

    Science.gov (United States)

    Nishimura, Takahiro; Tsuchida, Karin; Ogura, Yusuke; Tanida, Jun

    2018-03-01

    Fluorescence measurement allows simultaneous detection of multiple molecular species by using spectrally distinct fluorescence probes. However, due to the broad spectra of fluorescence emission, the multiplicity of fluorescence measurement is generally limited. To overcome this limitation, we propose a method to digitally modulate fluorescence output signals with a molecular-sized optical logic circuit by using optical control of fluorescence resonance energy transfer (FRET). The circuit receives a set of optical inputs represented with different light wavelengths, and then it switches high and low fluorescence intensity from a reporting molecule according to the result of the logic operation. By using combinational optical inputs in readout of fluorescence signals, the number of biomolecular species that can be identified is increased. To implement the FRET-based circuits, we designed two types of basic elements, YES and NOT switches. An YES switch produces a high-level output intensity when receiving a designated light wavelength input and a low-level intensity without the light irradiation. A NOT switch operates inversely to the YES switch. In experiments, we investigated the operation of the YES and NOT switches that receive a 532-nm light input and modulate the fluorescence intensity of Alexa Fluor 488. The experimental result demonstrates that the switches can modulate fluorescence signals according to the optical input.

  15. Isolation and Characterization of Chinese Standard Fulvic Acid Sub-fractions Separated from Forest Soil by Stepwise Elution with Pyrophosphate Buffer

    Science.gov (United States)

    Bai, Yingchen; Wu, Fengchang; Xing, Baoshan; Meng, Wei; Shi, Guolan; Ma, Yan; Giesy, John P.

    2015-01-01

    XAD-8 adsorption technique coupled with stepwise elution using pyrophosphate buffers with initial pH values of 3, 5, 7, 9, and 13 was developed to isolate Chinese standard fulvic acid (FA) and then separated the FA into five sub-fractions: FApH3, FApH5, FApH7, FApH9 and FApH13, respectively. Mass percentages of FApH3-FApH13 decreased from 42% to 2.5%, and the recovery ratios ranged from 99.0% to 99.5%. Earlier eluting sub-fractions contained greater proportions of carboxylic groups with greater polarity and molecular mass, and later eluting sub-fractions had greater phenolic and aliphatic content. Protein-like components, as well as amorphous and crystalline poly(methylene)-containing components were enriched using neutral and basic buffers. Three main mechanisms likely affect stepwise elution of humic components from XAD-8 resin with pyrophosphate buffers including: 1) the carboxylic-rich sub-fractions are deprotonated at lower pH values and eluted earlier, while phenolic-rich sub-fractions are deprotonated at greater pH values and eluted later. 2) protein or protein-like components can be desorbed and eluted by use of stepwise elution as progressively greater pH values exceed their isoelectric points. 3) size exclusion affects elution of FA sub-fractions. Successful isolation of FA sub-fractions will benefit exploration of the origin, structure, evolution and the investigation of interactions with environmental contaminants. PMID:25735451

  16. A comparison of analytic procedures for measurement of fractional dextran clearances

    NARCIS (Netherlands)

    Hemmelder, MH; de Jong, PE; de Zeeuw, D

    Fractional dextran clearances have been extensively used to study glomerular size selectivity. We report on an analysis of different laboratory procedures involved in measuring fractional dextran clearances. The deproteinization of plasma samples by 20% trichloroacetic acid (TCA) revealed a protein

  17. Simulating the UV escape fractions from molecular cloud populations in star-forming dwarf and spiral galaxies

    Science.gov (United States)

    Howard, Corey S.; Pudritz, Ralph E.; Harris, William E.; Klessen, Ralf S.

    2018-04-01

    The escape of ultraviolet photons from the densest regions of the interstellar medium (ISM) - giant molecular clouds (GMCs) - is a poorly constrained parameter which is vital to understanding the ionization of the ISM and the intergalactic medium. We characterize the escape fraction, fesc,GMC, from a suite of individual GMC simulations with masses in the range 104-6 M⊙ using the adaptive-mesh refinement code FLASH. We find significantly different fesc,GMC depending on the GMC mass that can reach >90 per cent in the evolution of 5 × 104 and 105 M⊙ clouds or remain low at ˜5 per cent for most of the lifetime of more massive GMCs. All clouds show fluctuations over short, sub-Myr time-scales produced by flickering H II regions. We combine our results to calculate the total escape fraction (fesc,tot) from GMC populations in dwarf starburst and spiral galaxies by randomly drawing clouds from a GMC mass distribution (dN/dM ∝ Mα, where α is either -1.5 or -2.5) over fixed time intervals. We find typical fesc,tot values of 8 per cent for both the dwarf and spiral models. The fluctuations of fesc,tot, however, are much larger for the dwarf models with values as high as 90 per cent. The photons escaping from the 5 × 104 and 105 M⊙ GMCs are the dominant contributors to fesc,tot in all cases. We also show that the accompanying star formation rates (SFRs) of our model (˜2 × 10-2 and 0.73 M⊙yr-1) are consistent with observations of SFRs in dwarf starburst and spiral galaxies, respectively.

  18. Intervals between multiple fractions per day

    International Nuclear Information System (INIS)

    Fowler, J.F.

    1988-01-01

    Assuming the linear quadratic model for dose-response curves enables the proportion of repairable damage to be calculated for any size of dose per fraction. It is given by the beta (dose squared) term, and represents a larger proportion of the total damage for larger doses per fraction, but also for late-reacting than for early-reacting tissues. For example at 2 Gy per fraction, repairable damage could represent nearly half the total damage in late-reacting tissues but only one fifth in early-reacting tissues. Even if repair occurs at the same rate in both tissues, it will obviously take longer for 50% of the damage to fade to an undetectable level (3 or 5%) than for 20% to do so. This means that late reactions require longer intervals than early reactions when multiple fraction per day radiotherapy is planned, even if the half-lives of repair are not different. (orig.)

  19. Radiobiological aspects of continuous low dose-rate irradiation and fractionated high dose-rate irradiation

    International Nuclear Information System (INIS)

    Turesson, I.

    1990-01-01

    The biological effects of continuous low dose-rate irradiation and fractionated high dose-rate irradiation in interstitial and intracavitary radiotherapy and total body irradiation are discussed in terms of dose-rate fractionation sensitivity for various tissues. A scaling between dose-rate and fraction size was established for acute and late normal-tissue effects which can serve as a guideline for local treatment in the range of dose rates between 0.02 and 0.005 Gy/min and fraction sizes between 8.5 and 2.5 Gy. This is valid provided cell-cycle progression and proliferation can be ignored. Assuming that the acute and late tissue responses are characterized by α/β values of about 10 and 3 Gy and a mono-exponential repair half-time of about 3 h, the same total doses given with either of the two methods are approximately equivalent. The equivalence for acute and late non-hemopoietic normal tissue damage is 0.02 Gy/min and 8.5 Gy per fraction; 0.01 Gy/min and 5.5 Gy per fraction; and 0.005 Gy/min and 2.5Gy per fraction. A very low dose rate, below 0.005 Gy/min, is thus necessary to simulate high dose-rate radiotherapy with fraction sizes of about 2Gy. The scaling factor is, however, dependent on the repair half-time of the tissue. A review of published data on dose-rate effects for normal tissue response showed a significantly stronger dose-rate dependence for late than for acute effects below 0.02 Gy/min. There was no significant difference in dose-rate dependence between various acute non-hemopoietic effects or between various late effects. The consistent dose-rate dependence, which justifies the use of a general scaling factor between fraction size and dose rate, contrasts with the wide range of values for repair half-time calculated for various normal-tissue effects. This indicates that the model currently used for repair kinetics is not satisfactory. There are also few experimental data in the clinical dose-rate range, below 0.02 Gy/min. It is therefore

  20. Potential Therapeutic Applications of Mucuna pruriens Peptide Fractions Purified by High-Performance Liquid Chromatography as Angiotensin-Converting Enzyme Inhibitors, Antioxidants, Antithrombotic and Hypocholesterolemic Agents.

    Science.gov (United States)

    Herrera-Chalé, Francisco; Ruiz-Ruiz, Jorge Carlos; Betancur-Ancona, David; Segura-Campos, Maira Rubi

    2016-02-01

    A Mucuna pruriens protein concentrate was hydrolyzed with a digestive (pepsin-pancreatin) enzymatic system. The soluble portion of the hydrolysate was fractionated by ultrafiltration and the ultrafiltered peptide fraction (PF) with lower molecular weight was purified by reversed-phase high-performance liquid chromatography. The PF obtained were evaluated by testing the biological activity in vitro. Fractions showed that the ability to inhibit the angiotensin-converting enzyme had IC50 values that ranged from 2.7 to 6.2 μg/mL. Trolox equivalent antioxidant capacity values ranged from 132.20 to 507.43 mM/mg. The inhibition of human platelet aggregation ranged from 1.59% to 11.11%, and the inhibition of cholesterol micellar solubility ranged from 0.24% to 0.47%. Hydrophobicity, size, and amino acid sequence could be factors in determining the biological activity of peptides contained in fractions. This is the first report that M. pruriens peptides act as antihypertensives, antioxidants, and inhibitors for human platelet aggregation and cholesterol micellar solubility in vitro.

  1. Impact of early, late, and no ST-segment resolution measured by continuous ST Holter monitoring on left ventricular ejection fraction and infarct size as determined by cardiovascular magnetic resonance imaging

    NARCIS (Netherlands)

    Haeck, Joost D. E.; Verouden, Niels J. W.; Kuijt, Wichert J.; Koch, Karel T.; Majidi, Mohamed; Hirsch, Alexander; Tijssen, Jan G. P.; Krucoff, Mitchell W.; de Winter, Robbert J.

    2011-01-01

    Background: The goal of this study is to determine the predictive value of ST-segment resolution (STR) early after percutaneous coronary intervention (PCI), late STR, and no STR for left ventricular ejection fraction (LVEF) and infarct size (IS) by cardiovascular magnetic resonance (CMR) at

  2. Effect of flour particle size and damaged starch on the quality of cookies.

    Science.gov (United States)

    Barak, Sheweta; Mudgil, Deepak; Khatkar, B S

    2014-07-01

    Two wheat varieties 'C 306' and 'WH 542' were milled to obtain flour fractions of different particle sizes. Various physicochemical parameters such as wet and dry gluten, falling number, solvent retention capacity (SRC), alkaline water retention capacity (AWRC) and damaged starch content of the flour fractions were analyzed. The damaged starch values ranged from 5.14% to 14.79% for different flour fractions and increased significantly with decrease in particle size. AWRC and SRC of the flour fractions also increased with decrease in particle size. AWRC(r = 0.659) showed positive correlation and cookie spread ratio (r = -0.826) was strongly negatively correlated with the damaged starch levels. Hardness of the cookies in term of compression force showed increasing trend as damaged starch of the flour fractions increased. Spread ratio of the cookies ranged from 6.72 to 10.12. Wheat flour of particle size greater than 150 μm produced cookies with best quality.

  3. Surface properties of heat-induced soluble soy protein aggregates of different molecular masses.

    Science.gov (United States)

    Guo, Fengxian; Xiong, Youling L; Qin, Fang; Jian, Huajun; Huang, Xiaolin; Chen, Jie

    2015-02-01

    Suspensions (2% and 5%, w/v) of soy protein isolate (SPI) were heated at 80, 90, or 100 °C for different time periods to produce soluble aggregates of different molecular sizes to investigate the relationship between particle size and surface properties (emulsions and foams). Soluble aggregates generated in these model systems were characterized by gel permeation chromatography and sodium dodecyl sulfate-polyacrylamide gel electrophoresis. Heat treatment increased surface hydrophobicity, induced SPI aggregation via hydrophobic interaction and disulfide bonds, and formed soluble aggregates of different sizes. Heating of 5% SPI always promoted large-size aggregate (LA; >1000 kDa) formation irrespective of temperature, whereas the aggregate size distribution in 2% SPI was temperature dependent: the LA fraction progressively rose with temperature (80→90→100 °C), corresponding to the attenuation of medium-size aggregates (MA; 670 to 1000 kDa) initially abundant at 80 °C. Heated SPI with abundant LA (>50%) promoted foam stability. LA also exhibited excellent emulsifying activity and stabilized emulsions by promoting the formation of small oil droplets covered with a thick interfacial protein layer. However, despite a similar influence on emulsion stability, MA enhanced foaming capacity but were less capable of stabilizing emulsions than LA. The functionality variation between heated SPI samples is clearly related to the distribution of aggregates that differ in molecular size and surface activity. The findings may encourage further research to develop functional SPI aggregates for various commercial applications. © 2015 Institute of Food Technologists®

  4. A simple method for purification of lipopolysaccharides from E. coli 55:B5 using size exclusion chromatography

    International Nuclear Information System (INIS)

    Perdomo, Rolando; Montero, Vivian

    2006-01-01

    Several methods for the extraction of endotoxin or lipopolysaccharide from Gram negative bacteria have been described. However, the product is often contaminated with nucleic acids or proteins in a proportion depending on the extraction method used. Molecular and immunological studies require further purification of the raw LPS. We present here, a simple method for the purification of raw LPS obtained by the standard hot phenol-water procedure using size exclusion chromatography in Sepharose CL-6B. We demonstrated that the using of DNAse and RNAse treatment of the sample before the chromatographic step is necessary to abrogate the nucleic acid contamination in the LPS fraction. The spectrophotometric properties of the pure LPS were verified, supporting the immediate online detection of the LPS and oligonucleotides fractions spectrophotometrically at 206 nm. The mobile phase used (NaCl 0.2 M) do not absorb at 206 nm while maintains the LPS aggregates and therefore, allows the separation of the LPS fraction from the oligoribonucleotide and desoxioligoribonucleotide fractions. The yield of pure LPS was around 98%. Chemical and biological characterizations were conducted in order to assess the feasibility of the procedure developed. (Author)

  5. An investigation of the alternating fractionation formula of the Cumulative Radiation Effect

    International Nuclear Information System (INIS)

    Hamlet, R.; Kirk, J.; Perry, A.M.

    1980-01-01

    The alternating fractionation formula of the Cumulative Radiation Effect (CRE) system was investigated using the mouse intestinal crypt system as a method of assessment of the amount of radiation damage in a normal tissue. The experimental results revealed that the formula is correct in predicting an increased effect with alternating large and small sized fractions, when compared with a standard schedule where the fraction size was kept constant but achieved the same total dose. However, the results also demonstrated that the order in which the alternate fractions were administered affected the amount of radiation damage produced in the tissue. This observation is in contradiction to another prediction of the formula, that the order in which equal numbers of fractions of different magnitudes are administered, will have no effect on the biological end point. The formula, therefore, is only an approximate model of radiation damage in normal tissue and much more information is required before it can be improved upon. (author)

  6. ALMA REVEALS THE ANATOMY OF THE mm-SIZED DUST AND MOLECULAR GAS IN THE HD 97048 DISK

    Energy Technology Data Exchange (ETDEWEB)

    Walsh, Catherine; Maud, Luke T. [Leiden Observatory, Leiden University, P.O. Box 9531, 2300 RA Leiden (Netherlands); Juhász, Attila [Institute of Astronomy, University of Cambridge, Madingley Road, Cambridge CB3 0HA (United Kingdom); Meeus, Gwendolyn [Departamento de Física Teórica, Universidad Autonoma de Madrid, Campus Cantoblanco, E-28049 Madrid (Spain); Dent, William R. F. [Joint ALMA Observatory (JAO), Alonso de Córdova 3107, Vitacura, Santiago (Chile); Aikawa, Yuri [Center for Computer Sciences, University of Tsukuba, 305-8577 Tsukuba (Japan); Millar, Tom J. [School of Mathematics and Physics, Queen’s University Belfast, University Road, Belfast BT7 1NN (United Kingdom); Nomura, Hideko, E-mail: cwalsh@strw.leidenuniv.nl, E-mail: c.walsh1@leeds.ac.uk [Department of Earth and Planetary Science, Tokyo Institute of Technology, 2-12-1 Ookayama, Meguro-ku, 152-8551 Tokyo (Japan)

    2016-11-10

    Transitional disks show a lack of excess emission at infrared wavelengths due to a large dust cavity, that is often corroborated by spatially resolved observations at ∼ mm wavelengths. We present the first spatially resolved ∼ mm-wavelength images of the disk around the Herbig Ae/Be star, HD 97048. Scattered light images show that the disk extends to ≈640 au. ALMA data reveal a circular-symmetric dusty disk extending to ≈350 au, and a molecular disk traced in CO J = 3-2 emission, extending to ≈750 au. The CO emission arises from a flared layer with an opening angle ≈30°–40°. HD 97048 is another source for which the large (∼ mm-sized) dust grains are more centrally concentrated than the small (∼ μ m-sized) grains and molecular gas, likely due to radial drift. The images and visibility data modeling suggest a decrement in continuum emission within ≈50 au, consistent with the cavity size determined from mid-infrared imaging (34 ± 4 au). The extracted continuum intensity profiles show ring-like structures with peaks at ≈50, 150, and 300 au, with associated gaps at ≈100 and 250 au. This structure should be confirmed in higher-resolution images (FWHM ≈ 10–20 au). These data confirm the classification of HD 97048 as a transitional disk that also possesses multiple ring-like structures in the dust continuum emission. Additional data are required at multiple and well-separated frequencies to fully characterize the disk structure, and thereby constrain the mechanism(s) responsible for sculpting the HD 97048 disk.

  7. ALMA Reveals the Anatomy of the mm-sized Dust and Molecular Gas in the HD 97048 Disk

    Science.gov (United States)

    Walsh, Catherine; Juhász, Attila; Meeus, Gwendolyn; Dent, William R. F.; Maud, Luke T.; Aikawa, Yuri; Millar, Tom J.; Nomura, Hideko

    2016-11-01

    Transitional disks show a lack of excess emission at infrared wavelengths due to a large dust cavity, that is often corroborated by spatially resolved observations at ˜ mm wavelengths. We present the first spatially resolved ˜ mm-wavelength images of the disk around the Herbig Ae/Be star, HD 97048. Scattered light images show that the disk extends to ≈640 au. ALMA data reveal a circular-symmetric dusty disk extending to ≈350 au, and a molecular disk traced in CO J = 3-2 emission, extending to ≈750 au. The CO emission arises from a flared layer with an opening angle ≈30°-40°. HD 97048 is another source for which the large (˜ mm-sized) dust grains are more centrally concentrated than the small (˜μm-sized) grains and molecular gas, likely due to radial drift. The images and visibility data modeling suggest a decrement in continuum emission within ≈50 au, consistent with the cavity size determined from mid-infrared imaging (34 ± 4 au). The extracted continuum intensity profiles show ring-like structures with peaks at ≈50, 150, and 300 au, with associated gaps at ≈100 and 250 au. This structure should be confirmed in higher-resolution images (FWHM ≈ 10-20 au). These data confirm the classification of HD 97048 as a transitional disk that also possesses multiple ring-like structures in the dust continuum emission. Additional data are required at multiple and well-separated frequencies to fully characterize the disk structure, and thereby constrain the mechanism(s) responsible for sculpting the HD 97048 disk.

  8. ALMA REVEALS THE ANATOMY OF THE mm-SIZED DUST AND MOLECULAR GAS IN THE HD 97048 DISK

    International Nuclear Information System (INIS)

    Walsh, Catherine; Maud, Luke T.; Juhász, Attila; Meeus, Gwendolyn; Dent, William R. F.; Aikawa, Yuri; Millar, Tom J.; Nomura, Hideko

    2016-01-01

    Transitional disks show a lack of excess emission at infrared wavelengths due to a large dust cavity, that is often corroborated by spatially resolved observations at ∼ mm wavelengths. We present the first spatially resolved ∼ mm-wavelength images of the disk around the Herbig Ae/Be star, HD 97048. Scattered light images show that the disk extends to ≈640 au. ALMA data reveal a circular-symmetric dusty disk extending to ≈350 au, and a molecular disk traced in CO J = 3-2 emission, extending to ≈750 au. The CO emission arises from a flared layer with an opening angle ≈30°–40°. HD 97048 is another source for which the large (∼ mm-sized) dust grains are more centrally concentrated than the small (∼ μ m-sized) grains and molecular gas, likely due to radial drift. The images and visibility data modeling suggest a decrement in continuum emission within ≈50 au, consistent with the cavity size determined from mid-infrared imaging (34 ± 4 au). The extracted continuum intensity profiles show ring-like structures with peaks at ≈50, 150, and 300 au, with associated gaps at ≈100 and 250 au. This structure should be confirmed in higher-resolution images (FWHM ≈ 10–20 au). These data confirm the classification of HD 97048 as a transitional disk that also possesses multiple ring-like structures in the dust continuum emission. Additional data are required at multiple and well-separated frequencies to fully characterize the disk structure, and thereby constrain the mechanism(s) responsible for sculpting the HD 97048 disk.

  9. Ultraviolet-B radiation mobilizes uranium from uranium-dissolved organic carbon complexes in aquatic systems, demonstrated by asymmetrical flow field-flow fractionation.

    Science.gov (United States)

    Nehete, Sachin Vilas; Christensen, Terje; Salbu, Brit; Teien, Hans-Christian

    2017-05-05

    Humic substances have a tendency to form complexes with metal ions in aquatic medium, impacting the metal mobility, decreasing bioavailability and toxicity. Ultraviolet-B (UV-B) radiation exposure degrades the humic substance, changes their molecular weight distribution and their metal binding capacity in aquatic medium. In this study, we experimented the effect of UV-B radiation on the uranium complexed with fulvic acids and humic acids in a soft water system at different pH, uranium concentrations and radiant exposure. The concentration and distribution of uranium in a complexed form were investigated by asymmetrical flow field-flow fractionation coupled to multi detection technique (AsFlFFF-UV-ICP-MS). The major concentration of uranium present in complexes was primarily associated with average and higher molecular weight fulvic and humic acids components. The concentration of uranium in a complexed form increased with increasing fulvic and humic acid concentrations as well as pH of the solution. The higher molecular weight fraction of uranium was degraded due to the UV-B exposure, transforming about 50% of the uranium-dissolved organic carbon complexes into low molecular weight uranium species in complex form with organic ligands and/or free form. The result also suggests AsFlFFF-UV-ICP-MS to be an important separation and detection technique for understanding the interaction of radionuclides with dissolved organic matter, tracking size distribution changes during degradation of organic complexes for understanding mobility, bioavailability and ecosystem transfer of radionuclides as well as metals. Copyright © 2017 Elsevier B.V. All rights reserved.

  10. Assessing the stability of soil organic matter by fractionation and 13C isotope techniques

    Science.gov (United States)

    Larionova, A. A.; Zolotareva, B. N.; Kvitkina, A. K.; Evdokimov, I. V.; Bykhovets, S. S.; Stulin, A. F.; Kuzyakov, Ya. V.; Kudeyarov, V. N.

    2015-02-01

    Carbon pools of different stabilities have been separated from the soil organic matter of agrochernozem and agrogray soil samples. The work has been based on the studies of the natural abundance of the carbon isotope composition by C3-C4 transition using the biokinetic, size-density, and chemical fractionation (6 M HCl hydrolysis) methods. The most stable pools with the minimum content of new carbon have been identified by particle-size and chemical fractionation. The content of carbon in the fine fractions has been found to be close to that in the nonhydrolyzable residue. This pool makes up 65 and 48% of Corg in the agrochernozems and agrogray soils, respectively. The combination of the biokinetic approach with particle-size fractionation or 6 M HCl hydrolysis has allowed assessing the size of the medium-stable organic carbon pool with a turnover time of several years to several decades. The organic matter pool with this turnover rate is usually identified from the variation in the 13C abundance by C3-C4 transition. In the agrochernozems and agrogray soils, the medium-stable carbon pool makes up 35 and 46% of Corg, respectively. The isotope indication may be replaced by a nonisotope method to significantly expand the study of the inert and mediumstable organic matter pools in the geographical aspect, but this requires a comparative analysis of particle-size and chemical fractionation data for all Russian soils.

  11. Studies of murine tumor control using x-ray fractionation schedules alone or in combination with hyperthermia

    International Nuclear Information System (INIS)

    Imbra, R.J.

    1981-01-01

    The effectiveness of an experimental radiation fractionation schedule of decreasing-sized dose fractions administered at optimal time intervals was compared with a conventional fractionation schedule of constant-sized dose fractions administered five times per week. Also, the effect of the addition of hyperthermia (42.5 0 C) to radiation therapy was investigated. For some experiments, Ehrlich mammary tumors were growth in the right thighs of Swiss mice. The tumor response was determined by measuring the tumor-bearing leg diameter and converting this value to volume. The time for the treated tumor to regrow to its pre-tratment volume was used as an endpoint in Swiss mice. The maximum total treatment dose is limited by the amount of normal tissue damage. A total treatment dose of six thousand rads was most suitable for the further investigations. Definitive investigations were performed using the RIF-1 tumor grown in the right thigh of C3H mice. The length of mitotic delay of RIF-1 cells, in vivo, was determined after various single doses of x radiation. A direct (exponential) relationship betwen x-ray dose and mitotic delay time was observed. Times of release of the RIF-1 cells from radiation-induced mitotic delay were used to determine the optimum time intervals to deliver the decreasing-sized dose fractions. Six thousand rads administered as decreasing-sized dose fractions resulted in significantly greater RIF-1 tumor control, as compared to conventional radiation therapy. The best treatment schedule, overall, was decreasing-sized dose fractions plus hyperthermia

  12. The influence of molecular architecture and solvent type on the size and structure of poly(benzyl ether) dendrimers by SANS

    NARCIS (Netherlands)

    Evmenenko, G.; Bauer, B.J.; Kleppinger, R.; Forier, B.; Dehaen, W.; Amis, E.J.; Mischenko, N.; Reynaers, H.

    2001-01-01

    The size of poly(benzyl ether) dendrimers with different molecular architectures was measured by small angle neutron scattering (SANS). Both polar and non-polar solvents were used to measure the effect of solvent type. The radius of gyration (Rg) of all of the dendrimers follows a scaling law of Rg

  13. Fractionation and Characterization of High Aspect Ratio Gold Nanorods Using Asymmetric-Flow Field Flow Fractionation and Single Particle Inductively Coupled Plasma Mass Spectrometry

    Directory of Open Access Journals (Sweden)

    Thao M. Nguyen

    2015-07-01

    Full Text Available Gold nanorods (GNRs are of particular interest for biomedical applications due to their unique size-dependent longitudinal surface plasmon resonance band in the visible to near-infrared. Purified GNRs are essential for the advancement of technologies based on these materials. Used in concert, asymmetric-flow field flow fractionation (A4F and single particle inductively coupled mass spectrometry (spICP-MS provide unique advantages for fractionating and analyzing the typically complex mixtures produced by common synthetic procedures. A4F fractions collected at specific elution times were analyzed off-line by spICP-MS. The individual particle masses were obtained by conversion of the ICP-MS pulse intensity for each detected particle event, using a defined calibration procedure. Size distributions were then derived by transforming particle mass to length assuming a fixed diameter. The resulting particle lengths correlated closely with ex situ transmission electron microscopy. In contrast to our previously reported observations on the fractionation of low-aspect ratio (AR GNRs (AR < 4, under optimal A4F separation conditions the results for high-AR GNRs of fixed diameter (≈20 nm suggest normal, rather than steric, mode elution (i.e., shorter rods with lower AR generally elute first. The relatively narrow populations in late eluting fractions suggest the method can be used to collect and analyze specific length fractions; it is feasible that A4F could be appropriately modified for industrial scale purification of GNRs.

  14. What next in fractionated radiotherapy

    International Nuclear Information System (INIS)

    Fowler, J.F.

    1984-01-01

    Trends in models for predicting the total dose required to produce tolerable normal-tissue injury can be seen by the progression from the ''cube root law'', through Strandqvist's slope of 0.22, to NSD, TDF and CRE which have separate time and fraction number exponents, to even better approximations now available. The dose-response formulae that can be used to define the effect of fraction size (and number) include (1) the linear quadratic (LQ) model (2) the two-component (TC) multi-target model and (3) repair-misrepair models. The LQ model offers considerable convenience, requires only two parameters to be determined, and emphasizes the difference between late and early normal-tissue dependence on dose per fraction first shown by exponents greater than the NSD slope of 0.24. Exponents of overall time, e.g. Tsup(0.11), yield the wrong shape of time curve, suggesting that most proliferating occurs early, although it really occurs after a delay depending on the turnover time of the tissue. Improved clinical results are being sought by hyperfractionation, accelerated fractionation, or continuous low dose rate irradiation as in interstitial implants. (U.K.)

  15. Fractionation of human serum lipoproteins and simultaneous enzymatic determination of cholesterol and triglycerides

    International Nuclear Information System (INIS)

    Qureshi, Rashid Nazir; Kok, Wim Th.; Schoenmakers, Peter J.

    2009-01-01

    A method based on Asymmetric Flow Field-Flow Fractionation (AF4) was developed to separate different types of lipoproteins from human serum. The emphasis in the method optimization was on the possibilities to characterize the largest lipoprotein fractions (LDL and VLDL), which is usually not possible with the size-exclusion chromatography methods applied in routine analysis. Different channel geometries and flow programs were tested and compared. The use of a short fractionation channel was shown to give less sample dilution at the same fractionation power compared to a conventional, long channel. Different size selectivities were obtained with an exponential decay and a linear cross flow program. The ratio of the UV absorption signal to the light scattering signal was used to validate the relation between retention time and size of the fractionated particles. An experimental setup was developed for the simultaneous determination of the cholesterol and triglycerides distribution over the lipoprotein fractions, based on enzymatic reactions followed by UV detection at 500 nm. Coiled and knitted PTFE tubing reactors were compared. An improved peak sharpness and sensitivity were observed with the knitted tubing reactor. After optimization of the experimental conditions a satisfactory linearity and precision (2-3% rsd for cholesterol and 5-6% rsd for triglycerides) were obtained. Finally, serum samples, a pooled sample from healthy volunteers and samples of sepsis patients, were analyzed with the method developed. Lipoprotein fractionation and cholesterol and triglyceride distributions could be correlated with the clinical background of the samples.

  16. Fractionation of human serum lipoproteins and simultaneous enzymatic determination of cholesterol and triglycerides

    Energy Technology Data Exchange (ETDEWEB)

    Qureshi, Rashid Nazir [Polymer-Analysis Group, van' t Hoff Institute for Molecular Sciences, University of Amsterdam, Nieuwe Achtergracht 166, 1018WV Amsterdam (Netherlands); Kok, Wim Th., E-mail: W.Th.Kok@uva.nl [Polymer-Analysis Group, van' t Hoff Institute for Molecular Sciences, University of Amsterdam, Nieuwe Achtergracht 166, 1018WV Amsterdam (Netherlands); Schoenmakers, Peter J. [Polymer-Analysis Group, van' t Hoff Institute for Molecular Sciences, University of Amsterdam, Nieuwe Achtergracht 166, 1018WV Amsterdam (Netherlands)

    2009-11-03

    A method based on Asymmetric Flow Field-Flow Fractionation (AF4) was developed to separate different types of lipoproteins from human serum. The emphasis in the method optimization was on the possibilities to characterize the largest lipoprotein fractions (LDL and VLDL), which is usually not possible with the size-exclusion chromatography methods applied in routine analysis. Different channel geometries and flow programs were tested and compared. The use of a short fractionation channel was shown to give less sample dilution at the same fractionation power compared to a conventional, long channel. Different size selectivities were obtained with an exponential decay and a linear cross flow program. The ratio of the UV absorption signal to the light scattering signal was used to validate the relation between retention time and size of the fractionated particles. An experimental setup was developed for the simultaneous determination of the cholesterol and triglycerides distribution over the lipoprotein fractions, based on enzymatic reactions followed by UV detection at 500 nm. Coiled and knitted PTFE tubing reactors were compared. An improved peak sharpness and sensitivity were observed with the knitted tubing reactor. After optimization of the experimental conditions a satisfactory linearity and precision (2-3% rsd for cholesterol and 5-6% rsd for triglycerides) were obtained. Finally, serum samples, a pooled sample from healthy volunteers and samples of sepsis patients, were analyzed with the method developed. Lipoprotein fractionation and cholesterol and triglyceride distributions could be correlated with the clinical background of the samples.

  17. Physical aging and structural recovery in a colloidal glass subjected to volume-fraction jump conditions

    Science.gov (United States)

    Peng, Xiaoguang; McKenna, Gregory B.

    2016-04-01

    Three important kinetic phenomena have been cataloged by Kovacs in the investigation of molecular glasses during structural recovery or physical aging. These are responses to temperature-jump histories referred to as intrinsic isotherms, asymmetry of approach, and memory effect. Here we use a thermosensitive polystyrene-poly (N -isopropylacrylamide)-poly (acrylic acid) core-shell particle-based dispersion as a colloidal model and by working at a constant number concentration of particles we use temperature changes to create volume-fraction changes. This imposes conditions similar to those defined by Kovacs on the colloidal system. We use creep experiments to probe the physical aging and structural recovery behavior of colloidal glasses in the Kovacs-type histories and compare the results with those seen in molecular glasses. We find that there are similarities in aging dynamics between molecular glasses and colloidal glasses, but differences also persist. For the intrinsic isotherms, the times teq needed for relaxing or evolving into the equilibrium (or stationary) state are relatively insensitive to the volume fraction and the values of teq are longer than the α -relaxation time τα at the same volume fraction. On the other hand, both of these times grow at least exponentially with decreasing temperature in molecular glasses. For the asymmetry of approach, similar nonlinear behavior is observed for both colloidal and molecular glasses. However, the equilibration time teq is the same for both volume-fraction up-jump and down-jump experiments, different from the finding in molecular glasses that it takes longer for the structure to evolve into equilibrium for the temperature up-jump condition than for the temperature down-jump condition. For the two-step volume-fraction jumps, a memory response is observed that is different from observations of structural recovery in two-step temperature histories in molecular glasses. The concentration dependence of the dynamics

  18. Release fraction of PWR after severe accidents. Vol. 4

    Energy Technology Data Exchange (ETDEWEB)

    Aziz, M; El-Messeiry, A M [National Center for Nuclear Safety and Radiation Control, Atomic Energy Authority, Cairo (Egypt)

    1996-03-01

    Fission fragments and gases are emitted after accidents as a result of core meltdown and core concrete interactions. These aerosols are transported and fill the reactor containment. With increasing the pressure above pressure design bases, a failure of containment may occur and subsequently these aerosols will release into the external environment leading to a source term of radioactivity that affects the safety of workers and public. The amount of aerosol which escapes to the environment can be described by the release fraction which is defined as the total accumulated aerosol which initially enters the containment. The factors that affect the release fraction is studied, and the aerosol dynamics equation is used to model the release of aerosol to the outside atmosphere. These factors are containment pressure, failure time,break area, the size of aerosol particle. It found that early failure time and higher pressure increase the release fraction, also the release faction is affected by the area and the aerosol particle size. 7 figs., 2 tabs.

  19. Release fraction of PWR after severe accidents. Vol. 4

    International Nuclear Information System (INIS)

    Aziz, M.; El-Messeiry, A.M.

    1996-01-01

    Fission fragments and gases are emitted after accidents as a result of core meltdown and core concrete interactions. These aerosols are transported and fill the reactor containment. With increasing the pressure above pressure design bases, a failure of containment may occur and subsequently these aerosols will release into the external environment leading to a source term of radioactivity that affects the safety of workers and public. The amount of aerosol which escapes to the environment can be described by the release fraction which is defined as the total accumulated aerosol which initially enters the containment. The factors that affect the release fraction is studied, and the aerosol dynamics equation is used to model the release of aerosol to the outside atmosphere. These factors are containment pressure, failure time,break area, the size of aerosol particle. It found that early failure time and higher pressure increase the release fraction, also the release faction is affected by the area and the aerosol particle size. 7 figs., 2 tabs

  20. T-cell recognition of Mycobacterium tuberculosis culture filtrate fractions in tuberculosis patients and their household contacts

    DEFF Research Database (Denmark)

    Demissie, A; Ravn, P; Olobo, J

    1999-01-01

    We examined the immune responses of patients with active pulmonary tuberculosis (TB) and their healthy household contacts to short-term culture filtrate (ST-CF) of Mycobacterium tuberculosis or molecular mass fractions derived from it. Our goal was to identify fractions strongly recognized...... to the antigens between the two groups was also found. In general, while all fractions stimulated immune responses, the highest activity was seen with the low-molecular-mass fractions, which include well-defined TB antigens such as ESAT-6. Leukocytes from contacts of TB patients with severe disease produced...... higher levels of antigen-specific IFN-gamma than those from contacts of patients with minimal disease. Both groups of contacts exhibited higher cell-mediated responses than the patients themselves. The enhanced immune response of healthy contacts, especially those of patients with severe disease...

  1. The influence of dose per fraction on repair kinetics

    International Nuclear Information System (INIS)

    Rojas, A.; Joiner, M.C.

    1989-01-01

    The use of multiple fractions per day (MFD) in radiotherapy requires information about the rate of repair of radiation injury. It is important to know the minimum interval between fractions necessary for maximum sparing of normal tissue damage, whether rate of repair is dependent on the size of dose per fraction and if it is different in early and late responding tissues and in tumours. To address these questions, the rate of repair between radiation dose fractions was measured in mouse skin (acute damage), mouse kidney (late damage) and a mouse tumour (carcinoma NT). Skin and kidney measurements were made using multiple split doses of X-rays, followed by a neutron top-up. For skin, faster recovery was obtained with 4.4 Gy fractions (t1/2 = 3.46 ± 0.88 h). In contrast kidney showed slower recovery at a low dose per fraction of 2 Gy (t1/2 = 1.69 ± 0.39 h) than at a higher dose of 7 Gy per fraction (t1/2 = 0.92 ± 0.1h). These data show that repair rate is dependent on the size of dose per fraction, but not in a simple way. T1/2 values now available for many different tissues generally lie in the range of 1-2h, and are not correlated with proliferation status or early versus late response to treatment. At the doses used currently in clinical MFD treatments, these data indicate that damage in almost all normal tissues would increase if interfraction intervals less than 6 h were used. The t1/2 for CaNT (0.31 ± 0.15 h) is less than for any normal tissue. This underlines that the excess morbidity resulting from interfraction intervals < 6 h will not be paralleled by an increased effect in tumours. (author). 25 refs.; 7 figs

  2. Molecular components and toxicity of the venom of the solitary wasp, Anoplius samariensis

    International Nuclear Information System (INIS)

    Hisada, Miki; Satake, Honoo; Masuda, Katsuyoshi; Aoyama, Masato; Murata, Kazuya; Shinada, Testuro; Iwashita, Takashi; Ohfune, Yasufumi; Nakajima, Terumi

    2005-01-01

    The solitary spider wasp, Anoplius samariensis, is known to exhibit a unique long-term, non-lethal paralysis in spiders that it uses as a food source for its larvae. However, neither detailed venom components nor paralytic compounds have ever been characterized. In this study, we examined the components in the low molecular weight fraction of the venom and the paralytic activity of the high molecular weight fraction. The major low molecular weight components of the venom were identified as γ-aminobutyric acid and glutamic acid by micro-liquid chromatography/electrospray ionization mass spectrometry and nuclear magnetic resonance spectrometry analysis. The sodium dodecyl sulfate-polyacrylamide gel electrophoresis and mass analysis revealed that the A. samariensis venom contained the various proteins with weights of 4-100 kDa. A biological assay using Joro spiders (Nephila clavata) clearly showed that the high molecular weight fraction of the venom prepared by ultrafiltration exerted as potent non-lethal long-term paralysis as the whole venom, whereas the low molecular weight fraction was devoid of any paralytic activity. These results indicated that several venomous proteins in the high molecular weight fraction are responsible for the paralytic activity. Furthermore, we determined the primary structure of one component designated As-fr-19, which was a novel multiple-cysteine peptide with high sequence similarity to several sea anemone and snake toxins including dendrotoxins, rather than any insect toxic peptides identified so far. Taken together, our data showed the unprecedented molecular and toxicological profiles of wasp venoms

  3. Evaluation of uneven fractionation radiotherapy of cervical lymph node-metastases by linear quadratic model

    International Nuclear Information System (INIS)

    Sasaki, Takehito; Kamata, Rikisaburo; Urahashi, Shingo; Yamaguchi, Tetsuji.

    1993-01-01

    One hundred and sixty-nine cervical lymph node-metastases from head and neck squamous cell carcinomas treated with either even fractionation or uneven fractionation regimens were analyzed in the present investigation. Logistic multivariate regression analysis indicated that: type of fractionation (even vs uneven), size of metastases, T value of primary tumors, and total dose are independent variables out of 18 variables that significantly influenced the rate of tumor clearance. The data, with statistical bias corrected by the regression equation, indicated that the uneven fractionation scheme significantly improved the rate of tumor clearance for the same size of metastases, total dose, and overall time compared to the even fractionation scheme. Further analysis by a linear-quadratic cell survival model indicated that the clinical improvement by uneven fractionation might not be explained entirely by a larger dose per fraction. It is suggested that tumor cells irradiated with an uneven fractionation regimen might repopulate more slowly, or they might be either less hypoxic or redistributed in a more radiosensitive phase in the cell cycle than those irradiated with even fractionation. This conclusion is clearly not definite, but it is suitable, pending the results of further investigation. (author)

  4. Molecular dynamics simulations of shock compressed heterogeneous materials. II. The graphite/diamond transition case for astrophysics applications

    Science.gov (United States)

    Pineau, N.; Soulard, L.; Colombet, L.; Carrard, T.; Pellé, A.; Gillet, Ph.; Clérouin, J.

    2015-03-01

    We present a series of molecular dynamics simulations of the shock compression of copper matrices containing a single graphite inclusion: these model systems can be related to some specific carbon-rich rocks which, after a meteoritic impact, are found to contain small fractions of nanodiamonds embedded in graphite in the vicinity of high impedance minerals. We show that the graphite to diamond transformation occurs readily for nanometer-sized graphite inclusions, via a shock accumulation process, provided the pressure threshold of the bulk graphite/diamond transition is overcome, independently of the shape or size of the inclusion. Although high diamond yields (˜80%) are found after a few picoseconds in all cases, the transition is non-isotropic and depends substantially on the relative orientation of the graphite stack with respect to the shock propagation, leading to distinct nucleation processes and size-distributions of the diamond grains. A substantial regraphitization process occurs upon release and only inclusions with favorable orientations likely lead to the preservation of a fraction of this diamond phase. These results agree qualitatively well with the recent experimental observations of meteoritic impact samples.

  5. H-binding of size- and polarity-fractionated soil and lignite humic acids after removal of metal and ash components

    Science.gov (United States)

    Drosos, Marios; Leenheer, Jerry A.; Avgeropoulos, Apostolos; Deligiannakis, Yiannis

    2014-01-01

    A fractionation technique, combining dialysis removal of metal and ash components with hydrofluoric acid and pH 10 citrate buffer followed by chromatography of dialysis permeate on XAD-8 resin at decreasing pH values, has been applied to lignite humic acid (lignite-HA) and soil humic acid (soil-HA). H-binding data and non ideal competitive adsorption-Donnan model parameters were obtained for the HA fractions by theoretical analysis of H-binding data which reveal a significant increase of the carboxyl and the phenolic charge for the lignite-HA fractions vs. the parental lignite humic acid (LParentalHA). The fractionated lignite-HA material consisted mainly of permeate fractions, some of which were fulvic acid-like. The fractionated soil-HA material consisted mainly of large macromolecular structures that did not permeate the dialysis membrane during deashing. Chargeable groups had comparable concentrations in soil-HA fractions and parental soil humic acid (SParentalHA), indicating minimal interference of ash components with carboxyl and phenolic (and/or enolic) groups. Fractionation of HA, combined with theoretical analysis of H-binding, can distinguish the supramolecular vs. macromolecular nature of fractions within the same parental HA.

  6. Neutron depolarisation study of the austenite grain size in TRIP steels

    International Nuclear Information System (INIS)

    Dijk, N.H. van; Zhao, L.; Rekveldt, M.Th.; Fredrikze, H.; Tegus, O.; Brueck, E.; Sietsma, J.; Zwaag, S. van der

    2004-01-01

    We have performed combined neutron depolarisation and magnetisation measurements in order to obtain an in situ determination of the average grain size and volume fraction of the retained austenite phase in TRIP steels. The average grain size of the retained austenite was found to decrease for an increase in austenite volume fraction at two different annealing temperatures

  7. Evaporation of liquid droplets of nano- and micro-meter size as a function of molecular mass and intermolecular interactions: experiments and molecular dynamics simulations.

    Science.gov (United States)

    Hołyst, Robert; Litniewski, Marek; Jakubczyk, Daniel

    2017-09-13

    Transport of heat to the surface of a liquid is a limiting step in the evaporation of liquids into an inert gas. Molecular dynamics (MD) simulations of a two component Lennard-Jones (LJ) fluid revealed two modes of energy transport from a vapour to an interface of an evaporating droplet of liquid. Heat is transported according to the equation of temperature diffusion, far from the droplet of radius R. The heat flux, in this region, is proportional to temperature gradient and heat conductivity in the vapour. However at some distance from the interface, Aλ, (where λ is the mean free path in the gas), the temperature has a discontinuity and heat is transported ballistically i.e. by direct individual collisions of gas molecules with the interface. This ballistic transport reduces the heat flux (and consequently the mass flux) by the factor R/(R + Aλ) in comparison to the flux obtained from temperature diffusion. Thus it slows down the evaporation of droplets of sizes R ∼ Aλ and smaller (practically for sizes from 10 3 nm down to 1 nm). We analyzed parameter A as a function of interactions between molecules and their masses. The rescaled parameter, A(k B T b /ε 11 ) 1/2 , is a linear function of the ratio of the molecular mass of the liquid molecules to the molecular mass of the gas molecules, m 1 /m 2 (for a series of chemically similar compounds). Here ε 11 is the interaction parameter between molecules in the liquid (proportional to the enthalpy of evaporation) and T b is the temperature of the gas in the bulk. We tested the predictions of MD simulations in experiments performed on droplets of ethylene glycol, diethylene glycol, triethylene glycol and tetraethylene glycol. They were suspended in an electrodynamic trap and evaporated into dry nitrogen gas. A changes from ∼1 (for ethylene glycol) to approximately 10 (for tetraethylene glycol) and has the same dependence on molecular parameters as obtained for the LJ fluid in MD simulations. The value of x = A

  8. Preparation of the low molecular weight serum proteome for mass spectrometry analysis.

    Science.gov (United States)

    Waybright, Timothy J; Chan, King C; Veenstra, Timothy D; Xiao, Zhen

    2013-01-01

    The discovery of viable biomarkers or indicators of disease states is complicated by the inherent complexity of the chosen biological specimen. Every sample, whether it is serum, plasma, urine, tissue, cells, or a host of others, contains thousands of large and small components, each interacting in multiple ways. The need to concentrate on a group of these components to narrow the focus on a potential biomarker candidate becomes, out of necessity, a priority, especially in the search for immune-related low molecular weight serum biomarkers. One such method in the field of proteomics is to divide the sample proteome into groups based on the size of the protein, analyze each group, and mine the data for statistically significant items. This chapter details a portion of this method, concentrating on a method for fractionating and analyzing the low molecular weight proteome of human serum.

  9. Acoustic bubble enhanced pinched flow fractionation for microparticle separation

    International Nuclear Information System (INIS)

    Zhou, Ran; Wang, Cheng

    2015-01-01

    Pinched flow fractionation is a simple method for separating micron-sized particles by size, but has certain intrinsic limitations, e.g. requirement of a pinched segment similar to particle size and limited separation distance. In this paper, we developed an acoustic bubble enhanced pinched flow fractionation (PFF) method for microparticle separation. The proposed technique utilized microbubble streaming flows to overcome the limitations of conventional PFF. Our device has demonstrated separation of different sized microparticles (diameters 10 and 2 μm) with a larger pinched segment (60 μm) and at different buffer/particle solution flow rate ratios (5–25). The separation distances between particles are larger (as much as twice as large) than those achieved with conventional PFF. In addition, the separation position and distance can be adjusted by changing the driving voltage. The robust performance is due to the unique features of the flow field inside the pinched segment. We investigated several factors, including flow rate ratio, total flow rate and driving voltage, that affect the separation performance. (paper)

  10. On the Peculiar Molecular Shape and Size Dependence of the Dynamics of Fluids confined in a Small-Pore Metal-Organic Framework

    KAUST Repository

    Skarmoutsos, Ioannis

    2018-05-15

    Force field based-Molecular dynamics simulations were deployed to systematically explore the dynamics of confined molecules of different shapes and sizes, i.e. linear (CO2 and N2) and spherical (CH4) fluids, in a model small pore system, i.e. the Metal-Organic Framework SIFSIX-2-Cu-i. These computations unveil an unprecedented molecular symmetry dependence of the translational and rotational dynamics of fluids confined in channel-like nanoporous materials. In particular this peculiar behaviour is reflected by the extremely slow decay of the Legendre reorientational correlation functions of even-parity order for the linear fluids which is associated to jump-like orientation flips, while the spherical fluid shows a very fast decay taking place in a sub-picosecond time scale. Such a fundamental understanding is relevant to diverse disciplines such as in chemistry, physics, biology and materials science where diatomic or polyatomic molecules of different shapes/sizes diffuse through nanopores.

  11. Surface engineering on mesoporous silica chips for enriching low molecular weight phosphorylated proteins

    Science.gov (United States)

    Hu, Ye; Peng, Yang; Lin, Kevin; Shen, Haifa; Brousseau, Louis C., III; Sakamoto, Jason; Sun, Tong; Ferrari, Mauro

    2011-02-01

    Phosphorylated peptides and proteins play an important role in normal cellular activities, e.g., gene expression, mitosis, differentiation, proliferation, and apoptosis, as well as tumor initiation, progression and metastasis. However, technical hurdles hinder the use of common fractionation methods to capture phosphopeptides from complex biological fluids such as human sera. Herein, we present the development of a dual strategy material that offers enhanced capture of low molecular weight phosphoproteins: mesoporous silica thin films with precisely engineered pore sizes that sterically select for molecular size combined with chemically selective surface modifications (i.e. Ga3+, Ti4+ and Zr4+) that target phosphoroproteins. These materials provide high reproducibility (CV = 18%) and increase the stability of the captured proteins by excluding degrading enzymes, such as trypsin. The chemical and physical properties of the composite mesoporous thin films were characterized by X-ray diffraction, transmission electron microscopy, X-ray photoelectron spectroscopy, energy dispersive X-ray spectroscopy and ellipsometry. Using mass spectroscopy and biostatistics analysis, the enrichment efficiency of different metal ions immobilized on mesoporous silica chips was investigated. The novel technology reported provides a platform capable of efficiently profiling the serum proteome for biomarker discovery, forensic sampling, and routine diagnostic applications.Phosphorylated peptides and proteins play an important role in normal cellular activities, e.g., gene expression, mitosis, differentiation, proliferation, and apoptosis, as well as tumor initiation, progression and metastasis. However, technical hurdles hinder the use of common fractionation methods to capture phosphopeptides from complex biological fluids such as human sera. Herein, we present the development of a dual strategy material that offers enhanced capture of low molecular weight phosphoproteins: mesoporous

  12. Magnetic high throughput screening system for the development of nano-sized molecularly imprinted polymers for controlled delivery of curcumin.

    Science.gov (United States)

    Piletska, Elena V; Abd, Bashar H; Krakowiak, Agata S; Parmar, Anitha; Pink, Demi L; Wall, Katie S; Wharton, Luke; Moczko, Ewa; Whitcombe, Michael J; Karim, Kal; Piletsky, Sergey A

    2015-05-07

    Curcumin is a versatile anti-inflammatory and anti-cancer agent known for its low bioavailability, which could be improved by developing materials capable of binding and releasing drug in a controlled fashion. The present study describes the preparation of magnetic nano-sized Molecularly Imprinted Polymers (nanoMIPs) for the controlled delivery of curcumin and their high throughput characterisation using microtitre plates modified with magnetic inserts. NanoMIPs were synthesised using functional monomers chosen with the aid of molecular modelling. The rate of release of curcumin from five polymers was studied under aqueous conditions and was found to correlate well with the binding energies obtained computationally. The presence of specific monomers was shown to be significant in ensuring effective binding of curcumin and to the rate of release obtained. Characterisation of the polymer particles was carried out using dynamic light scattering (DLS) technique and scanning electron microscopy (SEM) in order to establish the relationship between irradiation time and particle size. The protocols optimised during this study could be used as a blueprint for the development of nanoMIPs capable of the controlled release of potentially any compound of interest.

  13. Geochemical fractionation of 210Pb in oxic estuarine sediments of Coatzacoalcos River, Gulf of Mexico

    International Nuclear Information System (INIS)

    Ontiveros-Cuadras, J.F.; Ruiz-Fernandez, A.C.; Perez-Bernal, L.H.; Sanchez-Cabeza, J.A.; Universitat Autonoma de Barcelona; Wee-Kwong, L.L.

    2012-01-01

    210 Pb activities were analyzed in surface sediments from the Coatzacoalcos River (Gulf of Mexico) to evaluate its distribution according to sediment grain size and in different geochemical compartments by using sequential extraction techniques. The geochemical fractionation experiments provided compatible results: by using the Tessier's method more than 90% of the 210 Pb activity in the samples was found the residual fraction (primary and secondary minerals) and the remaining ( 210 Pb content was found in comparative amounts in the reactive, the silicate, and the pyrite fractions (accounting together for >80%), and the rest was found in the residual fraction. The grain size fractionation analyses showed that the 210 Pb activities were mostly retained in the clay fraction, accounting up to 60-70% of the 210 Pb total activity in the sediment sample and therefore, it is concluded that the separation of the clay fraction can be useful to improve the analysis of low 210 Pb content sediments for dating purposes. (author)

  14. Separation of the metallic and non-metallic fraction from printed circuit boards employing green technology

    Energy Technology Data Exchange (ETDEWEB)

    Estrada-Ruiz, R.H., E-mail: rhestrada@itsaltillo.edu.mx; Flores-Campos, R., E-mail: rcampos@itsaltillo.edu.mx; Gámez-Altamirano, H.A., E-mail: hgamez@itsaltillo.edu.mx; Velarde-Sánchez, E.J., E-mail: ejvelarde@itsaltillo.edu.mx

    2016-07-05

    Highlights: • Small sizes of particles are required in order to separate the different fractions. • Inverse flotation process is an efficient green technology to separate fractions. • Superficial air velocity is the main variable in the inverse flotation process. • Inverse flotation is a green process because the pulṕs pH is 7.0 during the test. - Abstract: The generation of electrical and electronic waste is increasing day by day; recycling is attractive because of the metallic fraction containing these. Nevertheless, conventional techniques are highly polluting. The comminution of the printed circuit boards followed by an inverse flotation process is a clean technique that allows one to separate the metallic fraction from the non-metallic fraction. It was found that particle size and superficial air velocity are the main variables in the separation of the different fractions. In this way an efficient separation is achieved by avoiding the environmental contamination coupled with the possible utilization of the different fractions obtained.

  15. Thermal stability of the aromatic fraction of Safaniya crude oil (Middle East): experimental study, kinetic scheme by molecular classes and geochemical implications; Stabilite thermique de la fraction aromatique de l'huile brute safaniya (Moyen-Orient): etude experimentale, schema cinetique par classes moleculaires et implications geochimiques

    Energy Technology Data Exchange (ETDEWEB)

    Al Darouich, T.

    2005-07-15

    The thermal evolution of reservoir oils is controlled by the kinetics of cracking reactions. The present work is concerned with the study of the thermal stability of the light aromatic components (C{sub 6}-C{sub 14}) of crude oils under geological conditions. The aim is to predict this stability through a mode l derived from laboratory pyrolyses. The light cut < 250 deg. C of Safaniya crude oil, corresponding to the C{sub 15} components, was obtained by fractionated distillation; pure aromatic fraction was then separated by liquid chromatography. Detailed molecular characterisation of the aromatic fraction was acquired using HPLC, GC and GC/MS. Then, quantified individual aromatic compounds were lumped into six molecular classes: BTXN, methyl-aromatics, alkyl-aromatics, naphthenic-aromatics, indene and sulphur - containing aromatics. Pyrolyses of the aromatic fraction were performed in gold tubes at 100 bars and different temperature/time conditions in a wide range (1 to 93%) of global conversion. Pyrolysis effluents were analysed and lumped into classes. The pyrolysis data were used to elaborate a semi - empirical kinetic scheme of 13 stoichiometric reactions for the primary and secondary cracking of the unstable classes. The scheme kinetic parameters were first estimated, and then numerically optimised, with the constraints of mass balance and hydrogen conservation. A set of pyrolysis experiments was performed at 375 deg.C under high pressures: 400, 800 and 1200 bars. Increasing slowing down in conversion rate with increasing pressure was thus observed compared to experiments at 100 bars. A slight selective effect of pressure on the different aromatic classes of the charge and on the product distribution was evidenced. The extrapolation of the kinetic model to the conditions of Elgin Field (North Sea) showed that pressure effect should shift the thermal cracking of light aromatics to higher temperatures by almost 8 deg. C. (author)

  16. Fraction of a dose absorbed estimation for structurally diverse low solubility compounds.

    Science.gov (United States)

    Sugano, Kiyohiko

    2011-02-28

    The purpose of the present study was to investigate the prediction accuracy of the fully mechanistic gastrointestinal unified theoretical (GUT) framework for in vivo oral absorption of low solubility drugs. Solubility in biorelevant media, molecular weight, logP(oct), pK(a), Caco-2 permeability, dose and particle size were used as the input parameters. To neglect the effect of the low stomach pH on dissolution of a drug, the fraction of a dose absorbed (Fa%) of undissociable and free acids were used. In addition, Fa% of free base drugs with the high pH stomach was also included to increase the number of model drugs. In total twenty nine structurally diverse compounds were used as the model drugs. Fa% data at several doses and particle sizes in humans and dogs were collated from the literature (total 110 Fa% data). In approximately 80% cases, the prediction error was within 2 fold, suggesting that the GUT framework has practical predictability for drug discovery, but not for drug development. The GUT framework appropriately captured the dose and particle size dependency of Fa% as the particle drifting effect was taken into account. It should be noted that the present validation results cannot be applied for salt form cases and other special formulations such as solid dispersions and emulsion formulations. Copyright © 2010 Elsevier B.V. All rights reserved.

  17. Angular Momentum Transfer and Fractional Moment of Inertia in Pulsar Glitches

    International Nuclear Information System (INIS)

    Eya, I. O.; Urama, J. O.; Chukwude, A. E.

    2017-01-01

    We use the Jodrell Bank Observatory glitch database containing 472 glitches from 165 pulsars to investigate the angular momentum transfer during rotational glitches in pulsars. Our emphasis is on pulsars with at least five glitches, of which there are 26 that exhibit 261 glitches in total. This paper identifies four pulsars in which the angular momentum transfer, after many glitches, is almost linear with time. The Lilliefore test on the cumulative distribution of glitch spin-up sizes in these glitching pulsars shows that glitch sizes in 12 pulsars are normally distributed, suggesting that their glitches originate from the same momentum reservoir. In addition, the distribution of the fractional moment of inertia (i.e., the ratio of the moment of inertia of neutron star components that are involved in the glitch process) have a single mode, unlike the distribution of fractional glitch size (Δ ν / ν ), which is usually bimodal. The mean fractional moment of inertia in the glitching pulsars we sampled has a very weak correlation with the pulsar spin properties, thereby supporting a neutron star interior mechanism for the glitch phenomenon.

  18. Angular Momentum Transfer and Fractional Moment of Inertia in Pulsar Glitches

    Energy Technology Data Exchange (ETDEWEB)

    Eya, I. O.; Urama, J. O.; Chukwude, A. E., E-mail: innocent.eya@unn.edu.ng, E-mail: innocent.eya@gmail.com [Department of Physics and Astronomy, University of Nigeria, Nsukka, Enugu State (Nigeria)

    2017-05-01

    We use the Jodrell Bank Observatory glitch database containing 472 glitches from 165 pulsars to investigate the angular momentum transfer during rotational glitches in pulsars. Our emphasis is on pulsars with at least five glitches, of which there are 26 that exhibit 261 glitches in total. This paper identifies four pulsars in which the angular momentum transfer, after many glitches, is almost linear with time. The Lilliefore test on the cumulative distribution of glitch spin-up sizes in these glitching pulsars shows that glitch sizes in 12 pulsars are normally distributed, suggesting that their glitches originate from the same momentum reservoir. In addition, the distribution of the fractional moment of inertia (i.e., the ratio of the moment of inertia of neutron star components that are involved in the glitch process) have a single mode, unlike the distribution of fractional glitch size (Δ ν / ν ), which is usually bimodal. The mean fractional moment of inertia in the glitching pulsars we sampled has a very weak correlation with the pulsar spin properties, thereby supporting a neutron star interior mechanism for the glitch phenomenon.

  19. UTILIZATION OF ACTIVATED ZEOLITE AS MOLECULAR SIEVE IN CHROMATOGRAPHIC COLUMN FOR SEPARATION OF COAL TAR COMPOUNDS

    Directory of Open Access Journals (Sweden)

    Dwi Retno Nurotul Wahidiyah

    2010-06-01

    Full Text Available Application of activated zeolite (ZAA as molecular sieve to separate compounds of coal tar from vaccum fractional distillation, have been done. The size of zeolite was 10-20 mesh and used as solid phase in column chromatography with length of 30 cm. The first step of the research was coal pyrolisis and the product (tar was distillated by fractional column and vaccum system at reduced pressure 44 cmHg and maximum temperature at 200 oC. The distillate from this procedure was flowed to the column chromatography of zeolite (ZAA. The compound absorbed by zeolite was eluted with varying solvents, i.e: CCl4, acetone and ethanol. Each fraction was then analyzed by gas chromatography. The results showed, zeolite have a capability to separate the compounds of tar and it tends to absorb medium hydrocarbon. The nonpolar eluent [CCl4] gives the better result in eluting tar compound than polar (ethanol or medium polar eluents (acetone.   Keywords: zeolite, coal tar, column chromatography

  20. Molecular characterization of multivalent bioconjugates by size-exclusion chromatography (SEC) with multi-angle laser light scattering (MALS)

    Science.gov (United States)

    Pollock, Jacob F.; Ashton, Randolph S.; Rode, Nikhil A.; Schaffer, David V.; Healy, Kevin E.

    2013-01-01

    The degree of substitution and valency of bioconjugate reaction products are often poorly judged or require multiple time- and product- consuming chemical characterization methods. These aspects become critical when analyzing and optimizing the potency of costly polyvalent bioactive conjugates. In this study, size-exclusion chromatography with multi-angle laser light scattering was paired with refractive index detection and ultraviolet spectroscopy (SEC-MALS-RI-UV) to characterize the reaction efficiency, degree of substitution, and valency of the products of conjugation of either peptides or proteins to a biopolymer scaffold, i.e., hyaluronic acid (HyA). Molecular characterization was more complete compared to estimates from a protein quantification assay, and exploitation of this method led to more accurate deduction of the molecular structures of polymer bioconjugates. Information obtained using this technique can improve macromolecular engineering design principles and better understand multivalent macromolecular interactions in biological systems. PMID:22794081

  1. Characterisation of uremic "Middle molecular"fractions by gas chromatography mass spectrometry, isotachophoresis, and liquid chromatography

    NARCIS (Netherlands)

    Schoots, A.C.; Mikkers, F.E.P.; Claessens, H.A.; Smet, de R.; Landschoot, van N.; Ringoir, S.M.G.

    1982-01-01

    Uremic ultrafiltrates (and normal serum, for comparison) were fractionated by means of gel filtration. The collected fractions were further investigated by combined analytical techniques: "high- performance" liquid chromatography, gas chromatography, mass spectrometry, and isotachophoresis.

  2. The fractionation and geochemical characteristics of rare earth elements measured in ambient size-resolved PM in an integrated iron and steelmaking industry zone.

    Science.gov (United States)

    Dai, Qili; Li, Liwei; Yang, Jiamei; Liu, Baoshuang; Bi, Xiaohui; Wu, Jianhui; Zhang, YuFen; Yao, Lin; Feng, Yinchang

    2016-09-01

    Improved understanding of the fractionation and geochemical characteristic of rare earth elements (REEs) from steel plant emissions is important due to the unclear atmospheric signature of these elements and their adverse impact on human health and the environment. In this study, ambient particulate matter of different sizes was collected from one site in an integrated iron and steelmaking industrial zone (HG) and one urban background site with no direct industrial emissions (ZWY) during a 1-year sampling campaign in China. The total concentrations of REEs for TSP, PM10, and PM2.5 were 27.248, 14.989, 3.542 ng/m(3) in HG and 6.326, 5.274, 1.731 ng/m(3), respectively, in ZWY, which revealed the local influence of the steelmaking activities to the air quality. With respect to ZWY, the REEs in HG site are obviously fractionated in the coarser fraction, and LREEs account for more than 80 % of the total REE burden in all of the samples. Additionally, the REEs in HG and ZWY show a homogeneous trend with successively increased LREE/HREE ratios from the coarse particles to the fine particles. In our samples, La, Ce, Nd, and Sm are the most enriched rare earth elements, especially in the HG site. Moreover, ternary diagrams of LaCeSm indicate that the REEs in HG are potentially contributed by steelworks, carrier vehicles, coal combustion, and road dust re-suspension.

  3. Determination of nanoparticle size distribution together with density or molecular weight by 2D analytical ultracentrifugation

    KAUST Repository

    Carney, Randy P.; Kim, Jin Young; Qian, Huifeng; Jin, Rongchao; Mehenni, Hakim; Stellacci, Francesco; Bakr, Osman

    2011-01-01

    Nanoparticles are finding many research and industrial applications, yet their characterization remains a challenge. Their cores are often polydisperse and coated by a stabilizing shell that varies in size and composition. No single technique can characterize both the size distribution and the nature of the shell. Advances in analytical ultracentrifugation allow for the extraction of the sedimentation (s) and diffusion coefficients (D). Here we report an approach to transform the s and D distributions of nanoparticles in solution into precise molecular weight (M), density (?P) and particle diameter (dp) distributions. M for mixtures of discrete nanocrystals is found within 4% of the known quantities. The accuracy and the density information we achieve on nanoparticles are unparalleled. A single experimental run is sufficient for full nanoparticle characterization, without the need for standards or other auxiliary measurements. We believe that our method is of general applicability and we discuss its limitations. 2011 Macmillan Publishers Limited. All rights reserved.

  4. Determination of nanoparticle size distribution together with density or molecular weight by 2D analytical ultracentrifugation

    KAUST Repository

    Carney, Randy P.

    2011-06-07

    Nanoparticles are finding many research and industrial applications, yet their characterization remains a challenge. Their cores are often polydisperse and coated by a stabilizing shell that varies in size and composition. No single technique can characterize both the size distribution and the nature of the shell. Advances in analytical ultracentrifugation allow for the extraction of the sedimentation (s) and diffusion coefficients (D). Here we report an approach to transform the s and D distributions of nanoparticles in solution into precise molecular weight (M), density (?P) and particle diameter (dp) distributions. M for mixtures of discrete nanocrystals is found within 4% of the known quantities. The accuracy and the density information we achieve on nanoparticles are unparalleled. A single experimental run is sufficient for full nanoparticle characterization, without the need for standards or other auxiliary measurements. We believe that our method is of general applicability and we discuss its limitations. 2011 Macmillan Publishers Limited. All rights reserved.

  5. Synergetic cloud fraction determination for SCIAMACHY using MERIS

    Directory of Open Access Journals (Sweden)

    C. Schlundt

    2011-02-01

    Full Text Available Since clouds play an essential role in the Earth's climate system, it is important to understand the cloud characteristics as well as their distribution on a global scale using satellite observations. The main scientific objective of SCIAMACHY (SCanning Imaging Absorption spectroMeter for Atmospheric CHartographY onboard the ENVISAT satellite is the retrieval of vertical columns of trace gases.

    On the one hand, SCIAMACHY has to be sensitive to low variations in trace gas concentrations which means the ground pixel size has to be large enough. On the other hand, such a large pixel size leads to the problem that SCIAMACHY spectra are often contaminated by clouds. SCIAMACHY spectral measurements are not well suitable to derive a reliable sub-pixel cloud fraction that can be used as input parameter for subsequent retrievals of cloud properties or vertical trace gas columns. Therefore, we use MERIS/ENVISAT spectral measurements with its high spatial resolution as sub-pixel information for the determination of MerIs Cloud fRation fOr Sciamachy (MICROS. Since MERIS covers an even broader swath width than SCIAMACHY, no problems in spatial and temporal collocation of measurements occur. This enables the derivation of a SCIAMACHY cloud fraction with an accuracy much higher as compared with other current cloud fractions that are based on SCIAMACHY's PMD (Polarization Measurement Device data.

    We present our new developed MICROS algorithm, based on the threshold approach, as well as a qualitative validation of our results with MERIS satellite images for different locations, especially with respect to bright surfaces such as snow/ice and sands. In addition, the SCIAMACHY cloud fractions derived from MICROS are intercompared with other current SCIAMACHY cloud fractions based on different approaches demonstrating a considerable improvement regarding geometric cloud fraction determination using the MICROS algorithm.

  6. Radiation-included brachial plexus injury; Follow-up of two different fractionation schedules

    Energy Technology Data Exchange (ETDEWEB)

    Powell, S.; Cooke, J.; Parsons, C. (Royal Marsden Hospital, London (UK))

    1990-07-01

    All 449 breast cancer patients treated with post-operative radiotherapy to the breast and lymph nodes between 1982 and 1984 have been followed for 3-5.5 years. In this group two different fractionation schedules were used, one five times a fortnight and one daily, both over 6 weeks. The calculated dose to the brachial plexus was 45 Gy in 15 fractions or 5e Gy in 30 fractions. These schedules are equivalent doses using the standard NSD formula. The diagnosis of a brachial plexus injury was made clinically and computed tomography from recurrent disease. The actuarial incidence of a radiation-induced brachial plexus injury for the whole group was 4.9% at 5.5 years. No cases were seen in the first 10 months following radiotherapy. The incidence rises between 1 and 4 years and then starts to plateau. When the large fraction size group is compared with the small fraction size group the incidence at 5.5 years is 5.9% and 1.0%, respectively (p 0.09). Two different treatment techniques were used in this group but were not found to contribute to the probability of developing a brachial plexud injury. It is suggested that radiation using large doses per fraction are less well tolerated by the brachial plexus than small doses per fraction; a commonly used fractionation schedule such as 45 Gy in 15 fractions may give unacceptably high brachial plexus morbidity; and the of small doses per fraction or avoiding lymphatic irradiation is advocated. (author). 13 refs.; 6 figs.; 1 tab.

  7. Relationship of molecular weight distribution profile of unreduced gluten protein extracts with quality characteristics of bread.

    Science.gov (United States)

    Chaudhary, Nisha; Dangi, Priya; Khatkar, B S

    2016-11-01

    A statistical correlation was established among the molecular weight distribution patterns of unreduced gluten proteins and physicochemical, rheological and bread-making quality characteristics of wheat varieties. Size exclusion chromatography fractionated the gluten proteins apparently into five peaks. Peak I signified glutenins (30-130kDa), peak II as gliadins (20-55kDa), peak III as very low molecular weight monomeric gliadins (10-28kDa), peak IV and V, collectively, as albumins and globulins (bread loaf volume (r=0.848(∗∗)); however, peak II had negative (r=-0.818(∗∗)) impact. Bread firmness increased with increment in peak II (r=0.625(∗∗)), and decreased with accretion in peak I (r=-0.623(∗∗)). Copyright © 2016 Elsevier Ltd. All rights reserved.

  8. PS-HEMA latex fractionation by sedimentation and colloidal crystallization

    Directory of Open Access Journals (Sweden)

    Cardoso André H.

    1999-01-01

    Full Text Available A poly(styrene-co-hydroxyethylmethacrylate latex underwent sedimentation under gravity followed by an spontaneous and extensive colloidal crystallization. It was then fractionated in three visually distinguishable layers. Latex aliquots layers were sampled at different heigths and the particles were characterized by PCS, microelectrophoresis, infrared spectra and analytical electron microscopy. The major fraction was opalescent and contained the colloidal crystals settled in the bottom of the liquid. Two other latex fractions were obtained, which differed in their chemical compositions, particle sizes and topochemical features from the self-arraying particles. Macrocrystallization of the fractionated latex yielded high quality crystals with a low frequency of defects, which confirms that particle chemical homogeneity is an important factor for particle self-arraying.

  9. Substâncias húmicas: sistema de fracionamento sequencial por ultrafiltração com base no tamanho molecular

    Directory of Open Access Journals (Sweden)

    Rocha Julio Cesar

    2000-01-01

    Full Text Available A sequential system for fractionation by ultrafiltration (SSFU equipped with advanced membranes filters (molecular size cut-off: 5, 10, 30, 50 and 100 kDalton of the polyethersulfone type was developed for analytical fractionation of humic substances (HS extracted from aquatic systems or soils. The device consists of five membrane filters (Sartocon® Micro operated by a multi-channel peristaltic pump, enabling an easy handling, working in a closed system and with simple collection of the six obtained fractions (F1>100; F2: 100-50; F3: 50-30; F4:30-10; F5: 10-5 and F6 <5 kDalton. Then, the HS sample (250 mL solution 1.0 mg/mL, pH 5.0 to 6.0 to be fractionated is pumped by pump through the series of membrane filters with a tangential flow of 85 mL/min, initial pressure 0.2 to 0.3 bar and permeation flux through the membranes of 0.8 to 1.4 mL/min. The overall time for fractionation and cleaning of the device is about 10 h and 25 mL of each fraction is obtained.

  10. Water dynamics in different biochar fractions.

    Science.gov (United States)

    Conte, Pellegrino; Nestle, Nikolaus

    2015-09-01

    Biochar is a carbonaceous porous material deliberately applied to soil to improve its fertility. The mechanisms through which biochar acts on fertility are still poorly understood. The effect of biochar texture size on water dynamics was investigated here in order to provide information to address future research on nutrient mobility towards plant roots as biochar is applied as soil amendment. A poplar biochar has been stainless steel fractionated in three different textured fractions (1.0-2.0 mm, 0.3-1.0 mm and <0.3 mm, respectively). Water-saturated fractions were analyzed by fast field cycling (FFC) NMR relaxometry. Results proved that 3D exchange between bound and bulk water predominantly occurred in the coarsest fraction. However, as porosity decreased, water motion was mainly associated to a restricted 2D diffusion among the surface-site pores and the bulk-site ones. The X-ray μ-CT imaging analyses on the dry fractions revealed the lowest surface/volume ratio for the coarsest fraction, thereby corroborating the 3D water exchange mechanism hypothesized by FFC NMR relaxometry. However, multi-micrometer porosity was evidenced in all the samples. The latter finding suggested that the 3D exchange mechanism cannot even be neglected in the finest fraction as previously excluded only on the basis of NMR relaxometry results. X-ray μ-CT imaging showed heterogeneous distribution of inorganic materials inside all the fractions. The mineral components may contribute to the water relaxation mechanisms by FFC NMR relaxometry. Further studies are needed to understand the role of the inorganic particles on water dynamics. Copyright © 2015 John Wiley & Sons, Ltd.

  11. Characterization of immunogenic Clonorchis sinensis protein fractions by gel fitration chromatography

    Directory of Open Access Journals (Sweden)

    Duan Pham Ngoc

    2015-04-01

    Full Text Available Objective: To characterize immunogenic protein fraction of Clonorchis sinensis (C. sinensis by partial purification. Methods: A total of 30 hamsters were infected with 50 C. sinensis metacercariae, and then C. sinensis protein was purified by gel filtration chromatography. Indirect ELISA and immunoblot were used to detect the antibody in sera of hamsters infected with C. sinensis. Results: The gel filtration showed 2 peaks at high (fraction No. 10 to 14 and low (fraction No. 21 to 26 molecular weight proteins. Indirect ELISA showed that both antibodies of clonorchiasis and opisthorchiasis reacted strongly with early fractions (6 to 14 and the reaction was gradually reduced at middle and late fractions (15 to 50. Both antibodies showed different individual fraction of C. sinensis by immunoblot. It showed several protein bands that the 34 and 37 kDa were major proteins. The 53 kDa protein which was only found in the clonorchiasis reacted with fraction 20. Conclusions: The purified antigen of C. sinensis reacted similarly with both antibodies of clonorchiasis and opisthorchiasis where strong reaction was seen with early fractions. The C. sinensis protein fraction No. 20 may be useful for immunodiagnosis of clonorchiasis.

  12. PSP toxin levels and plankton community composition and abundance in size-fractionated vertical profiles during spring/summer blooms of the toxic dinoflagellate Alexandrium fundyense in the Gulf of Maine and on Georges Bank, 2007, 2008, and 2010: 2. Plankton community composition and abundance.

    Science.gov (United States)

    Petitpas, Christian M; Turner, Jefferson T; Deeds, Jonathan R; Keafer, Bruce A; McGillicuddy, Dennis J; Milligan, Peter J; Shue, Vangie; White, Kevin D; Anderson, Donald M

    2014-05-01

    As part of the Gulf of Maine Toxicity (GOMTOX) project, we determined Alexandrium fundyense abundance, paralytic shellfish poisoning (PSP) toxin levels in various plankton size fractions, and the community composition of potential grazers of A. fundyense in plankton size fractions during blooms of this toxic dinoflagellate in the coastal Gulf of Maine and on Georges Bank in spring and summer of 2007, 2008, and 2010. PSP toxins and A. fundyense cells were found throughout the sampled water column (down to 50 m) in the 20-64 μm size fractions. While PSP toxins were widespread throughout all size classes of the zooplankton grazing community, the majority of the toxin was measured in the 20-64 μm size fraction. A. fundyense cellular toxin content estimated from field samples was significantly higher in the coastal Gulf of Maine than on Georges Bank. Most samples containing PSP toxins in the present study had diverse assemblages of grazers. However, some samples clearly suggested PSP toxin accumulation in several different grazer taxa including tintinnids, heterotrophic dinoflagellates of the genus Protoperidinium , barnacle nauplii, the harpacticoid copepod Microsetella norvegica , the calanoid copepods Calanus finmarchicus and Pseudocalanus spp., the marine cladoceran Evadne nordmanni , and hydroids of the genus Clytia . Thus, a diverse assemblage of zooplankton grazers accumulated PSP toxins through food-web interactions. This raises the question of whether PSP toxins pose a potential human health risk not only from nearshore bivalve shellfish, but also potentially from fish and other upper-level consumers in zooplankton-based pelagic food webs.

  13. Contribution of particle-size-fractionated airborne lead to blood lead during the National Health and Nutrition Examination Survey, 1999-2008.

    Science.gov (United States)

    Meng, Qingyu; Richmond-Bryant, Jennifer; Davis, J Allen; Cohen, Jonathan; Svendsgaard, David; Brown, James S; Tuttle, Lauren; Hubbard, Heidi; Rice, Joann; Vinikoor-Imler, Lisa; Sacks, Jason D; Kirrane, Ellen; Kotchmar, Dennis; Hines, Erin; Ross, Mary

    2014-01-21

    The objective of this work is to examine associations between blood lead (PbB) and air lead (PbA) in particulate matter measured at different size cuts by use of PbB concentrations from the National Health and Nutrition Examination Survey and PbA concentrations from the U.S. Environmental Protection Agency for 1999-2008. Three size fractions of particle-bound PbA (TSP, PM10, and PM2.5) data with different averaging times (current and past 90-day average) were utilized. A multilevel linear mixed effect model was used to characterize the PbB-PbA relationship. At 0.15 μg/m(3), a unit decrease in PbA in PM10 was significantly associated with a decrease in PbB of 0.3-2.2 μg/dL across age groups and averaging times. For PbA in PM2.5 and TSP, slopes were generally positive but not significant. PbB levels were more sensitive to the change in PbA concentrations for children (1-5 and 6-11 years) and older adults (≥ 60 years) than teenagers (12-19 years) and adults (20-59 years). For the years following the phase-out of Pb in gasoline and a resulting upward shift in the PbA particle size distribution, PbA in PM10 was a statistically significant predictor of PbB. The results also suggest that age could affect the PbB-PbA association, with children having higher sensitivity than adults.

  14. Fractionation parameters for human tissues and tumors

    International Nuclear Information System (INIS)

    Thames, H.D.; Turesson, I.; Bogaert, W. van den

    1989-01-01

    Time-dose factors such as fractionation sensitivity (α/β) can sometimes be estimated from clinical data, when there is a wide variation in dose, fraction size, treatment time, etc. This report summarizes estimates of fractionation parameters derived from clinical results. Consistent with the animal data, α/β is higher for acutely responding than for late-responding normal tissues. While many human tumors seem to be characterized by high α/β values, there are exceptions (e.g. melanomas). Repair kinetics may be slower in human than in rodent skin and mucosa, but there are no hard and fast estimates of the repair halftime. Regeneration in head and neck tumors is equivalent to a daily dose of 1 Gy or less, while in the mucosa it is equivalent to approximately 1.8 Gy/day. (author)

  15. Molecular dynamics of nanodroplet impact: The effect of the projectile’s molecular mass on sputtering

    Energy Technology Data Exchange (ETDEWEB)

    Saiz, Fernan [Department of Chemistry, Imperial College of Science, Technology and Medicine, South Kensington, London, SW7 2A7 (United Kingdom); Gamero-Castaño, Manuel, E-mail: mgameroc@uci.edu [Department of Mechanical and Aerospace Engineering, University of California, Irvine, California, 92697 (United States)

    2016-06-15

    The impact of electrosprayed nanodroplets on ceramics at several km/s alters the atomic order of the target, causing sputtering, surface amorphization and cratering. The molecular mass of the projectile is known to have a strong effect on the impact phenomenology, and this article aims to rationalize this dependency using molecular dynamics. To achieve this goal, the article models the impact of four projectiles with molecular masses between 45 and 391 amu, and identical diameters and kinetic energies, 10 nm and 63 keV, striking a silicon target. In agreement with experiments, the simulations show that the number of sputtered atoms strongly increases with molecular mass. This is due to the increasing intensity of collision cascades with molecular mass: when the fixed kinetic energy of the projectile is distributed among fewer, more massive molecules, their collisions with the target produce knock-on atoms with higher energies, which in turn generate more energetic and larger numbers of secondary and tertiary knock-on atoms. The more energetic collision cascades intensify both knock-on sputtering and, upon thermalization, thermal sputtering. Besides enhancing sputtering, heavier molecules also increase the fraction of the projectile’s energy that is transferred to the target, as well as the fraction of this energy that is dissipated.

  16. Molecular dynamics of nanodroplet impact: The effect of the projectile’s molecular mass on sputtering

    International Nuclear Information System (INIS)

    Saiz, Fernan; Gamero-Castaño, Manuel

    2016-01-01

    The impact of electrosprayed nanodroplets on ceramics at several km/s alters the atomic order of the target, causing sputtering, surface amorphization and cratering. The molecular mass of the projectile is known to have a strong effect on the impact phenomenology, and this article aims to rationalize this dependency using molecular dynamics. To achieve this goal, the article models the impact of four projectiles with molecular masses between 45 and 391 amu, and identical diameters and kinetic energies, 10 nm and 63 keV, striking a silicon target. In agreement with experiments, the simulations show that the number of sputtered atoms strongly increases with molecular mass. This is due to the increasing intensity of collision cascades with molecular mass: when the fixed kinetic energy of the projectile is distributed among fewer, more massive molecules, their collisions with the target produce knock-on atoms with higher energies, which in turn generate more energetic and larger numbers of secondary and tertiary knock-on atoms. The more energetic collision cascades intensify both knock-on sputtering and, upon thermalization, thermal sputtering. Besides enhancing sputtering, heavier molecules also increase the fraction of the projectile’s energy that is transferred to the target, as well as the fraction of this energy that is dissipated.

  17. Size distribution of rare earth elements in coal ash

    Science.gov (United States)

    Scott, Clinton T.; Deonarine, Amrika; Kolker, Allan; Adams, Monique; Holland, James F.

    2015-01-01

    Rare earth elements (REEs) are utilized in various applications that are vital to the automotive, petrochemical, medical, and information technology industries. As world demand for REEs increases, critical shortages are expected. Due to the retention of REEs during coal combustion, coal fly ash is increasingly considered a potential resource. Previous studies have demonstrated that coal fly ash is variably enriched in REEs relative to feed coal (e.g, Seredin and Dai, 2012) and that enrichment increases with decreasing size fractions (Blissett et al., 2014). In order to further explore the REE resource potential of coal ash, and determine the partitioning behavior of REE as a function of grain size, we studied whole coal and fly ash size-fractions collected from three U.S commercial-scale coal-fired generating stations burning Appalachian or Powder River Basin coal. Whole fly ash was separated into , 5 um, to 5 to 10 um and 10 to 100 um particle size fractions by mechanical shaking using trace-metal clean procedures. In these samples REE enrichments in whole fly ash ranges 5.6 to 18.5 times that of feedcoals. Partitioning results for size separates relative to whole coal and whole fly ash will also be reported. 

  18. Effect-independent measures of tissue response to fractionated radiation

    International Nuclear Information System (INIS)

    Thames, H.D.

    1984-01-01

    Tissue repair factors are measures of sparing from dose fractionation, in the absence of proliferation. A desirable feature of any repair factor is that it be independent of the level of injury induced in the tissue, since otherwise the comparison of tissues on the basis of the factor would not be meaningful. The repair factors F/sub R/ and F/sub rec/ are increasing functions of D/sub 1/, and depend on level of skin reaction after fractionated radiation. By contrast, β/α is effect-independent as a measure of repair capacity in skin, gut, and bone marrow. For late fibrotic reactions in the kidney, there was an increase in β/α with increased levels of injury that was statistically insignificant. The halftime, T/sub 1/2/, for intracellular repair processes in tissues is a measure of repair kinetics. Effect-independence is defend for T/sub 1/2/ as independence from size of dose per fraction. T/sub 1/2/ is independent of fraction size in skin, gut, and spinal cord, and is longer (1.5 hours) in the late-reacting tissues (lung and spinal cord) than in those that react acutely (less than 1 hour), with skin as the exception (1.3 hours). Therefore, early and late-responding normal tissues may be distinguished in terms of both repair capacity and repair kinetics: repair is slower in late-responding tissues, which are also more sensitive to changes in dose fractionation

  19. Mapping soil particle-size fractions: A comparison of compositional kriging and log-ratio kriging

    Science.gov (United States)

    Wang, Zong; Shi, Wenjiao

    2017-03-01

    Soil particle-size fractions (psf) as basic physical variables need to be accurately predicted for regional hydrological, ecological, geological, agricultural and environmental studies frequently. Some methods had been proposed to interpolate the spatial distributions of soil psf, but the performance of compositional kriging and different log-ratio kriging methods is still unclear. Four log-ratio transformations, including additive log-ratio (alr), centered log-ratio (clr), isometric log-ratio (ilr), and symmetry log-ratio (slr), combined with ordinary kriging (log-ratio kriging: alr_OK, clr_OK, ilr_OK and slr_OK) were selected to be compared with compositional kriging (CK) for the spatial prediction of soil psf in Tianlaochi of Heihe River Basin, China. Root mean squared error (RMSE), Aitchison's distance (AD), standardized residual sum of squares (STRESS) and right ratio of the predicted soil texture types (RR) were chosen to evaluate the accuracy for different interpolators. The results showed that CK had a better accuracy than the four log-ratio kriging methods. The RMSE (sand, 9.27%; silt, 7.67%; clay, 4.17%), AD (0.45), STRESS (0.60) of CK were the lowest and the RR (58.65%) was the highest in the five interpolators. The clr_OK achieved relatively better performance than the other log-ratio kriging methods. In addition, CK presented reasonable and smooth transition on mapping soil psf according to the environmental factors. The study gives insights for mapping soil psf accurately by comparing different methods for compositional data interpolation. Further researches of methods combined with ancillary variables are needed to be implemented to improve the interpolation performance.

  20. Isotope Fractionation of Water During Evaporation Without Condensation

    International Nuclear Information System (INIS)

    Cappa, Christopher D.; Drisdell, Walter S.; Smith, Jared D.; Saykally, Richard J.; Cohen, Ronald C.

    2005-01-01

    The microscopic events engendering liquid water evaporation have received much attention over the last century, but remain incompletely understood. We present measurements of isotope fractionation occurring during free molecular evaporation from liquid microjets and show that the isotope ratios of evaporating molecules exhibit dramatic differences from equilibrium vapor values, strong variations with the solution deuterium mole fraction, and a clear temperature dependence. These results indicate the existence of an energetic barrier to evaporation and that the evaporation coefficient of water is less than unity. These new insights into water evaporation promise to advance our understanding of the processes that control the formation and lifetime of clouds in the atmosphere.

  1. Molecular and genetic approach to understanding the mechanisms by which fractionated X-irradiation induces leukemia in mice

    Energy Technology Data Exchange (ETDEWEB)

    Meruelo, D; Rossomando, A

    1986-01-01

    The authors laboratory's approach to try to shed light on the question of a viral etiology for radiation-induced leukemia has focused on defining, localizing and understanding the mode of action of genes involved in susceptibility to fractionated x-irradiation-(FXI) induced disease. These studies have indicated that multiple genes control the process of leukemogenesis. Not every mouse strain which shows some susceptibility to FXI-induced leukemia carries the susceptible gene at each of the multiple loci involved in the disease process. It is plausible to conclude that more than one mechanism of leukemogenesis can be triggered by FXI. Studies have focused on the mode of action of one such locus Ril-1. Several reagents have been developed to help clone and characterize this locus. Currently chromosomal ''walking'' and ''hopping'' techniques are being used in conjunction with an RFLP molecular probe which is adjacent to Ril-1. In addition a cDNA library has been prepared from a radiation-induced thymoma and substraction hybridization analysis is being used in the search for Ril-1.

  2. Size exclusion and anion exchange high performance liquid chromatography for characterizing metals bound to marine dissolved organic matter

    International Nuclear Information System (INIS)

    García-Otero, Natalia; Bermejo-Barrera, Pilar; Moreda-Piñeiro, Antonio

    2013-01-01

    Highlights: ► Fractionation methods for assessing metals bound to marine DOM were developed. ► SEC and AEC with UV detection and hyphenated with inductively coupled plasma-mass spectrometry were used. ► SEC-UV showed marine DOM of molecular weights from 16 to 1 kDa. ► Cobalt, manganese, strontium and zinc are bound to marine DOM. - Abstract: Size exclusion chromatography (SEC) followed by anion exchange chromatography (AEC) hyphenated with inductively coupled plasma-mass spectrometry (ICP-MS) was applied for fractionating metals bound to marine dissolved organic matter (DOM). Surface seawater samples (100 L) were subjected to tangential flow ultrafiltration (10,000 Da cut off) for isolating and pre-concentrating dissolved large molecules. The isolated fraction (retentate) consisted of 1 L, which was further freeze-dried and re-dissolved to 250 mL with ultrapure water. After HI Trap desalting of the re-dissolved retentate, SEC with UV detection showed marine DOM ranging from 6.5 kDa (lower than the permeable volume of the SEC column) to 16 kDa. A further characterization of this fraction by AEC with UV detection revealed the existence of four groups of macromolecules exhibiting retention times of 2.3, 2.8, 4.5 and 14.0 min. AEC hyphenated with ICP-MS showed the presence of strontium and zinc in the first AE fraction isolated from the SEC fraction; while manganese was found to be bound to the second AE fraction. Cobalt was found to be bound to molecules comprising the third AE fraction.

  3. ISOLATION, MOLECULAR AND BIOCHEMICAL CHARACTERIZATION OF GOAT MILK CASEIN AND ITS FRACTIONS

    Directory of Open Access Journals (Sweden)

    Samir Ahmed Salem

    2009-06-01

    Full Text Available The SDS-PAGE electrophoretic pattern of goats´ milk has a unique pattern compared to those of cow and human milk. β-casein is the major fraction and comprises 70.2% of total goat-milk caseins, while αs- is a minor fraction (29.85 %. This pattern is similar to that of human casein but different to that of cow casein. Purified casein fractions of goat milk showed different electrophoretic migration compared to those of bovine milk. The corresponding Mr(s of goat αs- and β-casein were estimated at 30.2 for αs and 26.6 & 23.9 for β1 and β2 versus 32.6 and 26.6 for bovine αs- and β-casein, respectively. The amino acid composition of goat-milk whole casein appeared to be similar to those of cow, sheep and camel caseins. Meanwhile, goat casein has the satisfactory balance of essential amino acids equal to or exceeding the FAO/ WHO/ UNU requirements for each amino acid. Goat αs-casein was characterized by the presence of higher contents of both acidic and basic amino acids than β-casein. Peptide mapping profiles of goat, cow and human caseins were completely different. This means that each protein has its own unique peptide mapping.

  4. OH+ IN DIFFUSE MOLECULAR CLOUDS

    International Nuclear Information System (INIS)

    Porras, A. J.; Federman, S. R.; Welty, D. E.; Ritchey, A. M.

    2014-01-01

    Near ultraviolet observations of OH + and OH in diffuse molecular clouds reveal a preference for different environments. The dominant absorption feature in OH + arises from a main component seen in CH + (that with the highest CH + /CH column density ratio), while OH follows CN absorption. This distinction provides new constraints on OH chemistry in these clouds. Since CH + detections favor low-density gas with small fractions of molecular hydrogen, this must be true for OH + as well, confirming OH + and H 2 O + observations with the Herschel Space Telescope. Our observed correspondence indicates that the cosmic ray ionization rate derived from these measurements pertains to mainly atomic gas. The association of OH absorption with gas rich in CN is attributed to the need for a high enough density and molecular fraction before detectable amounts are seen. Thus, while OH + leads to OH production, chemical arguments suggest that their abundances are controlled by different sets of conditions and that they coexist with different sets of observed species. Of particular note is that non-thermal chemistry appears to play a limited role in the synthesis of OH in diffuse molecular clouds

  5. Sampling and chemical analysis by TXRF of size-fractionated ambient aerosols and emissions

    International Nuclear Information System (INIS)

    John, A.C.; Kuhlbusch, T.A.J.; Fissan, H.; Schmidt, K.-G-; Schmidt, F.; Pfeffer, H.-U.; Gladtke, D.

    2000-01-01

    Results of recent epidemiological studies led to new European air quality standards which require the monitoring of particles with aerodynamic diameters ≤ 10 μm (PM 10) and ≤ 2.5 μm (PM 2.5) instead of TSP (total suspended particulate matter). As these ambient air limit values will be exceeded most likely at several locations in Europe, so-called 'action plans' have to be set up to reduce particle concentrations, which requires information about sources and processes of PMx aerosols. For chemical characterization of the aerosols, different samplers were used and total reflection x-ray fluorescence analysis (TXRF) was applied beside other methods (elemental and organic carbon analysis, ion chromatography, atomic absorption spectrometry). For TXRF analysis, a specially designed sampling unit was built where the particle size classes 10-2.5 μm and 2.5-1.0 μm were directly impacted on TXRF sample carriers. An electrostatic precipitator (ESP) was used as a back-up filter to collect particles <1 μm directly on a TXRF sample carrier. The sampling unit was calibrated in the laboratory and then used for field measurements to determine the elemental composition of the mentioned particle size fractions. One of the field campaigns was carried out at a measurement site in Duesseldorf, Germany, in November 1999. As the composition of the ambient aerosols may have been influenced by a large construction site directly in the vicinity of the station during the field campaign, not only the aerosol particles, but also construction material was sampled and analyzed by TXRF. As air quality is affected by natural and anthropogenic sources, the emissions of particles ≤ 10 μm and ≤ 2.5 μm, respectively, have to be determined to estimate their contributions to the so called coarse and fine particle modes of ambient air. Therefore, an in-stack particle sampling system was developed according to the new ambient air quality standards. This PM 10/PM 2.5 cascade impactor was

  6. An Efficient Implicit FEM Scheme for Fractional-in-Space Reaction-Diffusion Equations

    KAUST Repository

    Burrage, Kevin

    2012-01-01

    Fractional differential equations are becoming increasingly used as a modelling tool for processes associated with anomalous diffusion or spatial heterogeneity. However, the presence of a fractional differential operator causes memory (time fractional) or nonlocality (space fractional) issues that impose a number of computational constraints. In this paper we develop efficient, scalable techniques for solving fractional-in-space reaction diffusion equations using the finite element method on both structured and unstructured grids via robust techniques for computing the fractional power of a matrix times a vector. Our approach is show-cased by solving the fractional Fisher and fractional Allen-Cahn reaction-diffusion equations in two and three spatial dimensions, and analyzing the speed of the traveling wave and size of the interface in terms of the fractional power of the underlying Laplacian operator. © 2012 Society for Industrial and Applied Mathematics.

  7. Method for rapid particle size analysis by hydrosizing and nuclear sensing

    International Nuclear Information System (INIS)

    Daellenbach, C.B.; Mahan, W.M.

    1977-01-01

    A method and apparatus to practice the method for rapidly determining the size and mass distribution of a sample of randomly sized particles of a known total mass are described. A series of substantially identical hydrocyclones are connected by conduits to each other and to a temperature controlled water feed. By restricting the cross-sectional areas of these conduits to progressively smaller values, the slurry containing the sample particles is caused to increase its velocity as it moves from hydrocyclone to hydrocyclone. As described by the Stokesian theory which relates particle diameter and settling velocity, the largest sized particles are suspended in the closed apex of the first hydrocyclone with smaller sized particles, in given size ranges, being suspended in the next succeeding hydrocyclone's apexes. In this manner, the particles are separated into discrete fractional sizes with a residual slurry of the very smallest particles being discharged. Before the discrete fractions of particles are suspended in their hydrocyclone apexes, a combined photon source, like a gamma ray source, and detector are calibrated with the water temperature kept constant. When the suspension of particles takes place, an attenuation of the radiation from the source is observed at the detector. This attenuation can be related to the mass or weight of the discrete fractions of suspended particles. Electronic circuitry is used to indicate what this fractional mass or weight is as it relates to the total weight of the sample. 6 claims, 4 figs

  8. Acoustic programming in step-split-flow lateral-transport thin fractionation.

    Science.gov (United States)

    Ratier, Claire; Hoyos, Mauricio

    2010-02-15

    We propose a new separation scheme for micrometer-sized particles combining acoustic forces and gravitational field in split-flow lateral-transport thin (SPLITT)-like fractionation channels. Acoustic forces are generated by ultrasonic standing waves set up in the channel thickness. We