WorldWideScience

Sample records for molecular genetic identification

  1. Molecular Genetic Identification Of Some Flax Mutants

    International Nuclear Information System (INIS)

    AMER, I.M.; MOUSTAFA, H.A.M.

    2009-01-01

    Five flax genotypes (Linum usitatissimum L.) i.e., commercial cultivar Sakha 2, the mother variety Giza 4 and three mutant types induced by gamma rays, were screened for their salinity tolerance in field experiments (salinity concentration was 8600 and 8300 ppm for soil and irrigation water, respectively). Mutation 6 was the most salt tolerant as compared to the other four genotypes.RAPD technique was used to detect some molecular markers associated with salt tolerance in flax (Mut 6), RAPD-PCR results using 12 random primers exhibited 149 amplified fragments; 91.9% of them were polymorphic and twelve molecular markers (8.1%) for salt tolerant (mutant 6) were identified with molecular size ranged from 191 to 4159 bp and only eight primers successes to amplify these specific markers. Concerning the other mutants, Mut 15 and Mut 25 exhibited 4.3% and 16.2% specific markers, respectively. The induced mutants exhibited genetic similarity to the parent variety were about 51%, 58.3% and 61.1% for Mut 25, Mut 6 and Mut 15, respectively. These specific markers (SM) are used for identification of the induced mutations and it is important for new variety registration.

  2. Advances in molecular identification, taxonomy, genetic variation and diagnosis of Toxocara spp.

    Science.gov (United States)

    Chen, Jia; Zhou, Dong-Hui; Nisbet, Alasdair J; Xu, Min-Jun; Huang, Si-Yang; Li, Ming-Wei; Wang, Chun-Ren; Zhu, Xing-Quan

    2012-10-01

    The genus Toxocara contains parasitic nematodes of human and animal health significance, such as Toxocara canis, Toxocara cati and Toxocara vitulorum. T. canis and T. cati are among the most prevalent parasites of dogs and cats with a worldwide distribution. Human infection with T. canis and T. cati, which can cause a number of clinical manifestations such as visceral larva migrans (VLMs), ocular larva migrans (OLMs), eosinophilic meningoencephalitis (EME), covert toxocariasis (CT) and neurotoxocariasis, is considered the most prevalent neglected helminthiasis in industrialized countries. The accurate identification Toxocara spp. and their unequivocal differentiation from each other and from other ascaridoid nematodes causing VLMs and OLMs has important implications for studying their taxonomy, epidemiology, population genetics, diagnosis and control. Due to the limitations of traditional (morphological) approaches for identification and diagnosis of Toxocara spp., PCR-based techniques utilizing a range of genetic markers in the nuclear and mitochondrial genomes have been developed as useful alternative approaches because of their high sensitivity, specificity, rapidity and utility. In this article, we summarize the current state of knowledge and advances in molecular identification, taxonomy, genetic variation and diagnosis of Toxocara spp. with prospects for further studies. Copyright © 2012 Elsevier B.V. All rights reserved.

  3. Genetic species identification in weatherfish and first molecular confirmation of Oriental Weatherfish Misgurnus anguillicaudatus (Cantor, 1842 in Central Europe

    Directory of Open Access Journals (Sweden)

    Belle Christina C.

    2017-01-01

    Full Text Available The Oriental Weatherfish is considered a globally invasive fish species. In Europe, several reported feral populations of Oriental Weatherfish display an overlapping distribution range with native weatherfish Misgurnus fossilis, a declining species of international conservation and aquatic management concern. Morphologically distinguishing the different weatherfish species can be difficult, as their coloration is highly variable, many species reveal high phenotypic plasticity, and morphological traits like coloration might be not obvious or might be degraded during field sampling and after preservation. Herein, we analysed suspicious weatherfish specimens from southern Germany, demonstrating the usefulness of molecular genetic species identifications in this genus. We present the first molecular genetic species record of Misgurnus anguillicaudatus in Central Europe, and confirm the range expansion of Oriental Weatherfish into the river Inn catchment in southern Germany. As accurate species identification is crucial both in the context of monitoring and conserving native endangered species, and in early detection and prevention of biological invasion, we suggest the standard use of genetic species identification if morphological traits are not obvious.

  4. Molecular DNA Analysis in Forensic Identification.

    Science.gov (United States)

    Dumache, Raluca; Ciocan, Veronica; Muresan, Camelia; Enache, Alexandra

    2016-01-01

    Serological and biochemical identification methods used in forensics have several major disadvantages, such as: long time in processing biological sample and lack of sensitivity and specificity. In the last 30 years, DNA molecular analysis has become an important tool in forensic investigations. DNA profiling is based on the short tandem repeats (STR) and aids in human identification from biological samples. Forensic genetics, can provide information on the events which occurred at the crime scene or to supplement other methods of forensic identification. Currently, the methods used in identification are based on polymerase chain reaction (PCR) analyses. This method analyses the autosomal STRs, the Y-chromosome, and the mitochondrial DNA. Correlation of biological samples present at the crime scene with identification, selection, and the probative value factor is therefore the first aspect to be taken into consideration in the forensic genetic analysis. In the last decade, because of the advances in the field of molecular biology, new biomarkers such as: microRNAs (miR), messenger RNA (mRNA), and DNA methylation have been studied and proposed to be used in the forensic identifications of body fluids.

  5. Molecular markers to assess genetic diversity and mutant identifications in Jatropha curcas

    International Nuclear Information System (INIS)

    Azhar Mohamad; Yie Min Kwan; Fatin Mastura Derani; Abdul Rahim Harun

    2010-01-01

    Jatropha curcas (Linnaeus) belongs to the Euphorbiaceae family, is a multipurpose use, drought resistant and perennial plant. It is an economic important crop, which generates wide interest in understanding the genetic diversity of the species towards selection and breeding of superior genotypes. Jatropha accessions are closely related family species. Thus, better understanding of the effectiveness of the different DNA-based markers is an important step towards plant germplasm characterization and evaluation. It is becoming a prerequisite for more effective application of marker techniques in breeding programs. Inter-simple sequence repeats (ISSRs) has shown rapid, simple, reproducible and inexpensive means in molecular taxonomy, conservation breeding and genetic diversity analysis. These markers were used to understand diversity and differentiate amongst accessions of Jatropha population and mutant lines generated by acute gamma radiation. The ISSR for marker applications are essential to facilitate management, conservation and genetic improvement programs towards improvement of bio-diesel production and medication substances. A total of 62 ISSR primers were optimized for polymorphism evaluations on five foreign accessions (Africa, India, Myanmar, Indonesia, Thailand), nine local accessions and two mutants of Jatropha. Optimization was resulted 54 ISSR primers affirmative for the polymorphism evaluation study, which encountered 12 ISSR primers, showed significance polymorphism amongst the accessions and mutants. Marker derived from ISSR profiling is a powerful method for identification and molecular classification of Jatropha from accession to generated mutant varieties. (author)

  6. Molecular species identification and population genetics of ...

    African Journals Online (AJOL)

    Molecular genetic techniques, such as DNA barcoding and genotyping, are increasingly being used to assist with the conservation and management of chondrichthyans worldwide. Southern Africa is a shark biodiversity hotspot, with a large number of endemic species. According to the IUCN Red List, a quarter of South ...

  7. MOLECULAR GENETIC MARKERS AND METHODS OF THEIR IDENTIFICATION IN MODERN FISH-FARMING

    Directory of Open Access Journals (Sweden)

    I. Hrytsyniak

    2014-03-01

    Full Text Available Purpose. The application of molecular genetic markers has been widely used in modern experimental fish-farming in recent years. This methodology is currently presented by a differentiated approach with individual mechanisms and clearly defined possibilities. Numerous publications in the scientific literature that are dedicated to molecular genetic markers for the most part offer purely practical data. Thus, the synthesis and analysis of existing information on the general principles of action and the limits of the main methods of using molecular genetic markers is an actual problem. In particular, such a description will make it possible to plan more effectively the experiment and to obtain the desired results with high reliability. Findings. The main types of variable parts of DNA that can be used as molecular genetic markers in determining the level of stock hybridization, conducting genetic inventory of population and solving other problems in modern fish-farming are described in this paper. Also, the article provides an overview of principal modern methods that can be used to identify molecular genetic markers. Originality. This work is a generalization of modern ideas about the mechanisms of experiments with molecular genetic markers in fish-farming. Information is provided in the form of consistent presentation of the principles and purpose of each method, as well as significant advances during their practical application. Practical value. The proposed review of classic and modern literature data on molecular genetic markers can be used for planning, modernization and correction of research activity in modern fish-farming.

  8. Relative profile analysis of molecular markers for identification and genetic discrimination of loaches (Pisces, Nemacheilidae).

    Science.gov (United States)

    Patil, Tejas Suresh; Tamboli, Asif Shabodin; Patil, Swapnil Mahadeo; Bhosale, Amrut Ravindra; Govindwar, Sanjay Prabhu; Muley, Dipak Vishwanathrao

    2016-01-01

    Genus Nemacheilus, Nemachilichthys and Schistura belong to the family Nemacheilidae of the order Cypriniformes. The present investigation was undertaken to observe genetic diversity, phylogenetic relationship and to develop a molecular-based tool for taxonomic identification. For this purpose, four different types of molecular markers were utilized in which 29 random amplified polymorphic DNA (RAPD), 25 inter-simple sequence repeat (ISSR) markers, and 10 amplified fragment length polymorphism (AFLP) marker sets were screened and mitochondrial COI gene was sequenced. This study added COI barcodes for the identification of Nemacheilus anguilla, Nemachilichthys rueppelli and Schistura denisoni. RAPD showed higher polymorphism (100%) than the ISSR (93.75-100%) and AFLP (93.86-98.96%). The polymorphic information content (PIC), heterozygosity, multiplex ratio, and gene diversity was observed highest for AFLP primers, whereas the major allele frequency was observed higher for RAPD (0.5556) and lowest for AFLP (0.1667). The COI region of all individuals was successfully amplified and sequenced, which gave a 100% species resolution. Copyright © 2016 Académie des sciences. Published by Elsevier SAS. All rights reserved.

  9. Rapid identification of Enterobacter hormaechei and Enterobacter cloacae genetic cluster III.

    Science.gov (United States)

    Ohad, S; Block, C; Kravitz, V; Farber, A; Pilo, S; Breuer, R; Rorman, E

    2014-05-01

    Enterobacter cloacae complex bacteria are of both clinical and environmental importance. Phenotypic methods are unable to distinguish between some of the species in this complex, which often renders their identification incomplete. The goal of this study was to develop molecular assays to identify Enterobacter hormaechei and Ent. cloacae genetic cluster III which are relatively frequently encountered in clinical material. The molecular assays developed in this study are qPCR technology based and served to identify both Ent. hormaechei and Ent. cloacae genetic cluster III. qPCR results were compared to hsp60 sequence analysis. Most clinical isolates were assigned to Ent. hormaechei subsp. steigerwaltii and Ent. cloacae genetic cluster III. The latter was proportionately more frequently isolated from bloodstream infections than from other material (P < 0·05). The qPCR assays detecting Ent. hormaechei and Ent. cloacae genetic cluster III demonstrated high sensitivity and specificity. The presented qPCR assays allow accurate and rapid identification of clinical isolates of the Ent. cloacae complex. The improved identifications obtained can specifically assist analysis of Ent. hormaechei and Ent. cloacae genetic cluster III in nosocomial outbreaks and can promote rapid environmental monitoring. An association was observed between Ent. cloacae cluster III and systemic infection that deserves further attention. © 2014 The Society for Applied Microbiology.

  10. Molecular Population Genetics.

    Science.gov (United States)

    Casillas, Sònia; Barbadilla, Antonio

    2017-03-01

    Molecular population genetics aims to explain genetic variation and molecular evolution from population genetics principles. The field was born 50 years ago with the first measures of genetic variation in allozyme loci, continued with the nucleotide sequencing era, and is currently in the era of population genomics. During this period, molecular population genetics has been revolutionized by progress in data acquisition and theoretical developments. The conceptual elegance of the neutral theory of molecular evolution or the footprint carved by natural selection on the patterns of genetic variation are two examples of the vast number of inspiring findings of population genetics research. Since the inception of the field, Drosophila has been the prominent model species: molecular variation in populations was first described in Drosophila and most of the population genetics hypotheses were tested in Drosophila species. In this review, we describe the main concepts, methods, and landmarks of molecular population genetics, using the Drosophila model as a reference. We describe the different genetic data sets made available by advances in molecular technologies, and the theoretical developments fostered by these data. Finally, we review the results and new insights provided by the population genomics approach, and conclude by enumerating challenges and new lines of inquiry posed by increasingly large population scale sequence data. Copyright © 2017 Casillas and Barbadilla.

  11. Molecular genetics of dyslexia: an overview.

    Science.gov (United States)

    Carrion-Castillo, Amaia; Franke, Barbara; Fisher, Simon E

    2013-11-01

    Dyslexia is a highly heritable learning disorder with a complex underlying genetic architecture. Over the past decade, researchers have pinpointed a number of candidate genes that may contribute to dyslexia susceptibility. Here, we provide an overview of the state of the art, describing how studies have moved from mapping potential risk loci, through identification of associated gene variants, to characterization of gene function in cellular and animal model systems. Work thus far has highlighted some intriguing mechanistic pathways, such as neuronal migration, axon guidance, and ciliary biology, but it is clear that we still have much to learn about the molecular networks that are involved. We end the review by highlighting the past, present, and future contributions of the Dutch Dyslexia Programme to studies of genetic factors. In particular, we emphasize the importance of relating genetic information to intermediate neurobiological measures, as well as the value of incorporating longitudinal and developmental data into molecular designs. Copyright © 2013 John Wiley & Sons, Ltd.

  12. Molecular identification and genotyping of Microsporidia in selected hosts

    Czech Academy of Sciences Publication Activity Database

    Valenčáková, A.; Balent, P.; Ravaszová, P.; Horák, Aleš; Oborník, Miroslav; Halanová, M.; Malčeková, B.; Novotný, F.; Goldová, M.

    2012-01-01

    Roč. 110, č. 2 (2012), s. 689-693 ISSN 0932-0113 Institutional research plan: CEZ:AV0Z60220518 Keywords : ENCEPHALITOZOON-CUNICULI * RIBOSOMAL-RNA * SPECIES IDENTIFICATION * AIDS PATIENTS * PET RABBITS Subject RIV: EB - Genetics ; Molecular Biology Impact factor: 2.852, year: 2012

  13. Advances in Dendrobium molecular research: Applications in genetic variation, identification and breeding.

    Science.gov (United States)

    Teixeira da Silva, Jaime A; Jin, Xiaohua; Dobránszki, Judit; Lu, Jiangjie; Wang, Huizhong; Zotz, Gerhard; Cardoso, Jean Carlos; Zeng, Songjun

    2016-02-01

    Orchids of the genus Dendrobium are of great economic importance in global horticultural trade and in Asian traditional medicine. For both areas, research yielding solid information on taxonomy, phylogeny, and breeding of this genus are essential. Traditional morphological and cytological characterization are used in combination with molecular results in classification and identification. Markers may be useful when used alone but are not always reliable in identification. The number of species studied and identified by molecular markers is small at present. Conventional breeding methods are time-consuming and laborious. In the past two decades, promising advances have been made in taxonomy, phylogeny and breeding of Dendrobium species due to the intensive use of molecular markers. In this review, we focus on the main molecular techniques used in 121 published studies and discuss their importance and possibilities in speeding up the breeding of new cultivars and hybrids. Copyright © 2015 Elsevier Inc. All rights reserved.

  14. Molecular marker studies in riverine buffaloes, for characterization and diagnosis of genetic defects

    International Nuclear Information System (INIS)

    Yadav, B.R.

    2005-01-01

    The buffalo is probably the last livestock species to have been domesticated, with many genetic, physiological and behavioural traits not yet well understood. Molecular markers have been used for characterizing animals and breeds, diagnosing diseases and identifying anatomical and physiological anomalies. RFLP studies showed low heterozygosity, but genomic and oligonucleotide probes showed species-specific bands useful for identification of carcass or other unknown samples. Use of RAPD revealed band frequencies, band sharing frequencies, genetic distances, and genetic and identity indexes in different breeds. Bovine microsatellite primers indicate that 70.9% of bovine loci were conserved in buffalo. Allele numbers, sizes, frequencies, heterozygosity and polymorphism information content showed breed-specific patterns. Different marker types - genomic and oligonucleotide probes, RAPD and microsatellites - are useful in parent identification. Individual specific DNA fingerprinting techniques were applied with twin-born animal (XX/XY) chimerism, sex identification, anatomically defective and XO individuals. Molecular markers are a potential tool for geneticists and breeders to evaluate existing germplasm and to manipulate it to develop character-specific strains and to provide the basis for effective genetic conservation. (author)

  15. Molecular genetic identification of some wheat cultivars in the sudan

    International Nuclear Information System (INIS)

    Mekki, I. I; El Amin, H. B.

    2002-01-01

    Four wheat (Triticum aestivum L.) cultivars, namely condor, El-Nellene, Wadi El Neil and Debeira were characterized on biochemical and molecular bases. The biochemical ones were protein-banding patterns, using sodium dodecylsulfate-polyacrylamide gel electrophoresis (SDS-PAGE), and isozymes to identify the biochemical genetic fingerprint of the four cultivars. Water-soluble protein-banding pattern showed no polymorphisms among the tested cultivars. The data from starch gel electrophoresis of enzymes, malate dehydrogenase (MDH), esterase (EST) and acid phosphate (ACPH) showed that the cultivars are monomorphic. Further trials to identify the molecular genetic fingerprints of the studied cultivars were carried out using RAPD-PCR twenty-five primers were tested to perform. RAPD-PCR analysis. From the PCR products, a phylogenetic map, i.e, dendrogram, was constructed for the studied cultivars which depicted tow groups. The first group contained Wadi El Neil and Deberia with 48.4% similarity, and the second group contained Condor and El Neileen with 100% similarity. There was no similarity between Condor and Debeira (100% dissimilarity). Therefor, these data can be used subsequently for genetic engineering research and for wheat breeding programmes in the Sudan.(Author)

  16. Cytogenetics and molecular genetics of Wilms' tumor of childhood

    NARCIS (Netherlands)

    Slater, R. M.; Mannens, M. M.

    1992-01-01

    We describe the way in which application of cytogenetic and molecular genetic techniques to the study of Wilms' tumor (WT) of the kidney and the associated congenital disorders, such as sporadic aniridia and the Beckwith-Wiedemann syndrome, has led to identification of two regions on the short arm

  17. Congenital heart disease and genetic syndromes: new insights into molecular mechanisms.

    Science.gov (United States)

    Calcagni, Giulio; Unolt, Marta; Digilio, Maria Cristina; Baban, Anwar; Versacci, Paolo; Tartaglia, Marco; Baldini, Antonio; Marino, Bruno

    2017-09-01

    Advances in genetics allowed a better definition of the role of specific genetic background in the etiology of syndromic congenital heart defects (CHDs). The identification of a number of disease genes responsible for different syndromes have led to the identification of several transcriptional regulators and signaling transducers and modulators that are critical for heart morphogenesis. Understanding the genetic background of syndromic CHDs allowed a better characterization of the genetic basis of non-syndromic CHDs. In this sense, the well-known association of typical CHDs in Down syndrome, 22q11.2 microdeletion and Noonan syndrome represent paradigms as chromosomal aneuploidy, chromosomal microdeletion and intragenic mutation, respectively. Area covered: For each syndrome the anatomical features, distinctive cardiac phenotype and molecular mechanisms are discussed. Moreover, the authors include recent genetic findings that may shed light on some aspects of still unclear molecular mechanisms of these syndromes. Expert commentary: Further investigations are needed to enhance the translational approach in the field of genetics of CHDs. When there is a well-established definition of genotype-phenotype (reverse medicine) and genotype-prognosis (predictive and personalized medicine) correlations, hopefully preventive medicine will make its way in this field. Subsequently a reduction will be achieved in the morbidity and mortality of children with CHDs.

  18. Molecular study for the sex identification in Japanese quails ...

    African Journals Online (AJOL)

    In many birds' species such as Japanese quail, sex determination in young and many adult birds is very difficult. Nowadays, sex identification of animals throughout their lives is possible by molecular genetic techniques such as polymerase chain reaction (PCR). The aim of this study was to determine the sex of Japanese ...

  19. Toward the identification of molecular cogs.

    Science.gov (United States)

    Dziubiński, Maciej; Lesyng, Bogdan

    2016-04-05

    Computer simulations of molecular systems allow determination of microscopic interactions between individual atoms or groups of atoms, as well as studies of intramolecular motions. Nevertheless, description of structural transformations at the mezoscopic level and identification of causal relations associated with these transformations is very difficult. Structural and functional properties are related to free energy changes. Therefore, to better understand structural and functional properties of molecular systems, it is required to deepen our knowledge of free energy contributions arising from molecular subsystems in the course of structural transformations. The method presented in this work quantifies the energetic contribution of each pair of atoms to the total free energy change along a given collective variable. Next, with the help of a genetic clustering algorithm, the method proposes a division of the system into two groups of atoms referred to as molecular cogs. Atoms which cooperate to push the system forward along a collective variable are referred to as forward cogs, and those which work in the opposite direction as reverse cogs. The procedure was tested on several small molecules for which the genetic clustering algorithm successfully found optimal partitionings into molecular cogs. The primary result of the method is a plot depicting the energetic contributions of the identified molecular cogs to the total Potential of Mean Force (PMF) change. Case-studies presented in this work should help better understand the implications of our approach, and were intended to pave the way to a future, publicly available implementation. © 2015 Wiley Periodicals, Inc.

  20. Molecular markers: a potential resource for ginger genetic diversity studies.

    Science.gov (United States)

    Ismail, Nor Asiah; Rafii, M Y; Mahmud, T M M; Hanafi, M M; Miah, Gous

    2016-12-01

    Ginger is an economically important and valuable plant around the world. Ginger is used as a food, spice, condiment, medicine and ornament. There is available information on biochemical aspects of ginger, but few studies have been reported on its molecular aspects. The main objective of this review is to accumulate the available molecular marker information and its application in diverse ginger studies. This review article was prepared by combing material from published articles and our own research. Molecular markers allow the identification and characterization of plant genotypes through direct access to hereditary material. In crop species, molecular markers are applied in different aspects and are useful in breeding programs. In ginger, molecular markers are commonly used to identify genetic variation and classify the relatedness among varieties, accessions, and species. Consequently, it provides important input in determining resourceful management strategies for ginger improvement programs. Alternatively, a molecular marker could function as a harmonizing tool for documenting species. This review highlights the application of molecular markers (isozyme, RAPD, AFLP, SSR, ISSR and others such as RFLP, SCAR, NBS and SNP) in genetic diversity studies of ginger species. Some insights on the advantages of the markers are discussed. The detection of genetic variation among promising cultivars of ginger has significance for ginger improvement programs. This update of recent literature will help researchers and students select the appropriate molecular markers for ginger-related research.

  1. Genetic variability of hull-less barley accessions based on molecular and quantitative data

    Directory of Open Access Journals (Sweden)

    Ricardo Meneses Sayd

    2015-02-01

    Full Text Available The objective of this work was to characterize and quantify the genetic, molecular, and agronomic variability of hull-less barley genotypes, for the selection of parents and identification of genotypes adapted to the irrigated production system in the Brazilian Cerrado. Eighteen hull-less barley accessions were evaluated, and three covered barley accessions served as reference. The characterization was based on 157 RAPD molecular markers and ten agronomic traits. Genetic distance matrices were obtained based on molecular markers and quantitative traits. Graphic grouping and dispersion analyses were performed. Genetic, molecular, and agronomic variability was high among genotypes. Ethiopian accessions were genetically more similar, and the Brazilian ones were genetically more distant. For agronomic traits, two more consistent groupings were obtained, one with the most two-rowed materials, and the other with six-rowed materials. The more diverging materials were the two-rowed CI 13453, CN Cerrado 5, CN Cerrado 1, and CN Cerrado 2. The PI 356466, CN Cerrado 1, PI 370799, and CI 13453 genotypes show agronomic traits of interest and, as genetically different genotypes, they are indicated for crossing, in breeding programs.

  2. Genetic diversity of popcorn genotypes using molecular analysis.

    Science.gov (United States)

    Resh, F S; Scapim, C A; Mangolin, C A; Machado, M F P S; do Amaral, A T; Ramos, H C C; Vivas, M

    2015-08-19

    In this study, we analyzed dominant molecular markers to estimate the genetic divergence of 26 popcorn genotypes and evaluate whether using various dissimilarity coefficients with these dominant markers influences the results of cluster analysis. Fifteen random amplification of polymorphic DNA primers produced 157 amplified fragments, of which 65 were monomorphic and 92 were polymorphic. To calculate the genetic distances among the 26 genotypes, the complements of the Jaccard, Dice, and Rogers and Tanimoto similarity coefficients were used. A matrix of Dij values (dissimilarity matrix) was constructed, from which the genetic distances among genotypes were represented in a more simplified manner as a dendrogram generated using the unweighted pair-group method with arithmetic average. Clusters determined by molecular analysis generally did not group material from the same parental origin together. The largest genetic distance was between varieties 17 (UNB-2) and 18 (PA-091). In the identification of genotypes with the smallest genetic distance, the 3 coefficients showed no agreement. The 3 dissimilarity coefficients showed no major differences among their grouping patterns because agreement in determining the genotypes with large, medium, and small genetic distances was high. The largest genetic distances were observed for the Rogers and Tanimoto dissimilarity coefficient (0.74), followed by the Jaccard coefficient (0.65) and the Dice coefficient (0.48). The 3 coefficients showed similar estimations for the cophenetic correlation coefficient. Correlations among the matrices generated using the 3 coefficients were positive and had high magnitudes, reflecting strong agreement among the results obtained using the 3 evaluated dissimilarity coefficients.

  3. Genetic variability and identification of the intermediate snail hosts of Schistosoma mansoni

    Directory of Open Access Journals (Sweden)

    Teofânia HDA Vidigal

    1998-01-01

    Full Text Available Studies based on shell or reproductive organ morphology and genetic considerations suggest extensive intraspecific variation in Biomphalaria snails. The high variability at the morphological and genetic levels, as well as the small size of some specimens and similarities between species complicate the correct identification of these snails. Here we review our work using methods based on polymerase chain reaction (PCR amplification for analysis of genetic variation and identification of Biomphalaria snails from Brazil, Argentina, Uruguay and Paraguay. Arbitrarily primed-PCR revealed that the genome of B. glabrata exihibits a remarkable degree of intraespecific polymorphism. Low stringency-PCR using primers for 18S rRNA permited the identification of B. glabrata, B. tenagophila and B. occidentalis. The study of individuals obtained from geographically distinct populations exhibits significant intraspecific DNA polymorphism, however specimens from the same species, exhibit some species specific LSPs. We also showed that PCR-restriction fragment of length polymorphism of the internal transcribed spacer region of Biomphalaria rDNA, using DdeI permits the differentiation of the three intermediate hosts of Schistosoma mansoni. The molecular biological techniques used in our studies are very useful for the generation of new knowledge concerning the systematics and population genetics of Biomphalaria snails.

  4. Molecular genetics

    International Nuclear Information System (INIS)

    Parkinson, D.R.; Krontiris, T.G.

    1986-01-01

    In this chapter the authors review new findings concerning the molecular genetics of malignant melanoma in the context of other information obtained from clinical, epidemiologic, and cytogenetic studies in this malignancy. These new molecular approaches promise to provide a more complete understanding of the mechanisms involved in the development of melanoma, thereby suggesting new methods for its treatment and prevention

  5. [Algorithm of toxigenic genetically altered Vibrio cholerae El Tor biovar strain identification].

    Science.gov (United States)

    Smirnova, N I; Agafonov, D A; Zadnova, S P; Cherkasov, A V; Kutyrev, V V

    2014-01-01

    Development of an algorithm of genetically altered Vibrio cholerae biovar El Tor strai identification that ensures determination of serogroup, serovar and biovar of the studied isolate based on pheno- and genotypic properties, detection of genetically altered cholera El Tor causative agents, their differentiation by epidemic potential as well as evaluation of variability of key pathogenicity genes. Complex analysis of 28 natural V. cholerae strains was carried out by using traditional microbiological methods, PCR and fragmentary sequencing. An algorithm of toxigenic genetically altered V. cholerae biovar El Tor strain identification was developed that includes 4 stages: determination of serogroup, serovar and biovar based on phenotypic properties, confirmation of serogroup and biovar based on molecular-genetic properties determination of strains as genetically altered, differentiation of genetically altered strains by their epidemic potential and detection of ctxB and tcpA key pathogenicity gene polymorphism. The algorithm is based on the use of traditional microbiological methods, PCR and sequencing of gene fragments. The use of the developed algorithm will increase the effectiveness of detection of genetically altered variants of the cholera El Tor causative agent, their differentiation by epidemic potential and will ensure establishment of polymorphism of genes that code key pathogenicity factors for determination of origins of the strains and possible routes of introduction of the infection.

  6. Pathogenesis of Gastric Cancer: Genetics and Molecular Classification.

    Science.gov (United States)

    Figueiredo, Ceu; Camargo, M C; Leite, Marina; Fuentes-Pananá, Ezequiel M; Rabkin, Charles S; Machado, José C

    Gastric cancer is the fifth most incident and the third most common cause of cancer-related death in the world. Infection with Helicobacter pylori is the major risk factor for this disease. Gastric cancer is the final outcome of a cascade of events that takes decades to occur and results from the accumulation of multiple genetic and epigenetic alterations. These changes are crucial for tumor cells to expedite and sustain the array of pathways involved in the cancer development, such as cell cycle, DNA repair, metabolism, cell-to-cell and cell-to-matrix interactions, apoptosis, angiogenesis, and immune surveillance. Comprehensive molecular analyses of gastric cancer have disclosed the complex heterogeneity of this disease. In particular, these analyses have confirmed that Epstein-Barr virus (EBV)-positive gastric cancer is a distinct entity. The identification of gastric cancer subtypes characterized by recognizable molecular profiles may pave the way for a more personalized clinical management and to the identification of novel therapeutic targets and biomarkers for screening, prognosis, prediction of response to treatment, and monitoring of gastric cancer progression.

  7. Time-Delay System Identification Using Genetic Algorithm

    DEFF Research Database (Denmark)

    Yang, Zhenyu; Seested, Glen Thane

    2013-01-01

    Due to the unknown dead-time coefficient, the time-delay system identification turns to be a non-convex optimization problem. This paper investigates the identification of a simple time-delay system, named First-Order-Plus-Dead-Time (FOPDT), by using the Genetic Algorithm (GA) technique. The qual......Due to the unknown dead-time coefficient, the time-delay system identification turns to be a non-convex optimization problem. This paper investigates the identification of a simple time-delay system, named First-Order-Plus-Dead-Time (FOPDT), by using the Genetic Algorithm (GA) technique...

  8. Molecular genetics of breast cancer

    International Nuclear Information System (INIS)

    Radice, P.; Pierotti, M. A.

    1997-01-01

    In the last two decades, molecular studies have enlightened the complexity of the genetic alterations that occur in breast cancer cells. To date, more than 40 different genes or loci have been found to be altered in breast carcinomas. Although some of these genes, as for example ERBB2, appear to be mutated in a high proportion of cases, their mechanism of action and their role in the different stages of cancer development are still poorly understood. More recently, two major determinants of the inherited predisposition to breast cancer, BRCA1 and BRCA2, have been isolated. As a consequence, it is now possible to screen families with a positive history of breast carcinomas for the identification of mutations carriers, in order to address these individuals into adequate programs of cancer surveillance and prevention

  9. Molecular phylogeny analysis and species identification of Dendrobium (Orchidaceae) in China.

    Science.gov (United States)

    Feng, Shang-Guo; Lu, Jiang-Jie; Gao, Ling; Liu, Jun-Jun; Wang, Hui-Zhong

    2014-04-01

    Dendrobium plants are important commercial herbs in China, widely used in traditional medicine and ornamental horticulture. In this study, sequence-related amplified polymorphism (SRAP) markers were applied to molecular phylogeny analysis and species identification of 31 Chinese Dendrobium species. Fourteen SRAP primer pairs produced 727 loci, 97% of which (706) showed polymorphism. Average polymorphism information content of the SRAP pairs was 0.987 (0.982-0.991), showing that plenty of genetic diversity exists at the interspecies level of Chinese Dendrobium. The molecular phylogeny analysis (UPGMA) grouped the 31 Dendrobium species into six clusters. We obtained 18 species-specific markers, which can be used to identify 10 of the 31 species. Our results indicate the SRAP marker system is informative and would facilitate further application in germplasm appraisal, evolution, and genetic diversity studies in the genus Dendrobium.

  10. [Molecular biology of renal cancer: bases for genetic directed therapy in advanced disease].

    Science.gov (United States)

    Maroto Rey, José Pablo; Cillán Narvaez, Elena

    2013-06-01

    There has been expansion of therapeutic options in the management of metastatic renal cell carcinoma due to a better knowledge of the molecular biology of kidney cancers. There are different tumors grouped under the term renal cell carcinoma, being clear cell cancer the most frequent and accounting for 80% of kidney tumors. Mutations in the Von Hippel-Lindau gene can be identified in up to 80% of sporadic clear cell cancer, linking a genetically inheritable disease where vascular tumors are frequent, with renal cell cancer. Other histologic types present specific alterations in molecular pathways, like c-MET in papillary type I tumors, and Fumarase Hydratase in papillary type II tumors. Identification of the molecular alteration for a specific tumor may offer an opportunity for treatment selection based on biomarkers, and, in the future, for developing an engineering designed genetic treatment.

  11. Teaching molecular genetics: Chapter 1--Background principles and methods of molecular biology.

    NARCIS (Netherlands)

    Knoers, N.V.A.M.; Monnens, L.A.H.

    2006-01-01

    In this first chapter of the series "Teaching molecular genetics," an introduction to molecular genetics is presented. We describe the structure of DNA and genes and explain in detail the central dogma of molecular biology, that is, the flow of genetic information from DNA via RNA to polypeptide

  12. Molecular identification of livestock breeds: a tool for modern conservation biology.

    Science.gov (United States)

    Yaro, Mohammed; Munyard, Kylie A; Stear, Michael J; Groth, David M

    2017-05-01

    Global livestock genetic diversity includes all of the species, breeds and strains of domestic animals, and their variations. Although a recent census indicated that there were 40 species and over 8000 breeds of domestic animals; for the purpose of conservation biology the diversity between and within breeds rather than species is regarded to be of crucial importance. This domestic animal genetic diversity has developed through three main evolutionary events, from speciation (about 3 million years ago) through domestication (about 12000 years ago) to specialised breeding (starting about 200 years ago). These events and their impacts on global animal genetic resources have been well documented in the literature. The key importance of global domestic animal resources in terms of economic, scientific and cultural heritage has also been addressed. In spite of their importance, there is a growing number of reports on the alarming erosion of domestic animal genetic resources. This erosion of is happening in spite of several global conservation initiatives designed to mitigate it. Herein we discuss these conservation interventions and highlight their strengths and weaknesses. However, pivotal to the success of these conservation initiatives is the reliability of the genetic assignment of individual members to a target breed. Finally, we discuss the prospect of using improved breed identification methodologies to develop a reliable breed-specific molecular identification tool that is easily applicable to populations of livestock breeds in various ecosystems. These identification tools, when developed, will not only facilitate the regular monitoring of threatened or endangered breed populations, but also enhance the development of more efficient and sustainable livestock production systems. © 2016 Cambridge Philosophical Society.

  13. Identification of management units using population genetic data

    NARCIS (Netherlands)

    Palsboll, Per J.; Berube, Martine; Allendorf, Fred W.

    The identification of management units (MUs) is central to the management of natural populations and is crucial for monitoring the effects of human activity upon species abundance. Here, we propose that the identification of MUs from population genetic data should be based upon the amount of genetic

  14. Plant genetic and molecular responses to water deficit

    Directory of Open Access Journals (Sweden)

    Silvio Salvi

    2011-02-01

    Full Text Available Plant productivity is severely affected by unfavourable environmental conditions (biotic and abiotic stresses. Among others, water deficit is the plant stress condition which mostly limits the quality and the quantity of plant products. Tolerance to water deficit is a polygenic trait strictly dependent on the coordinated expression of a large set of genes coding for proteins directly involved in stress-induced protection/repair mechanisms (dehydrins, chaperonins, enzymes for the synthesis of osmoprotectants and detoxifying compounds, and others as well as genes involved in transducing the stress signal and regulating gene expression (transcription factors, kinases, phosphatases. Recently, research activities in the field evolved from the study of single genes directly involved in cellular stress tolerance (functional genes to the identification and characterization of key regulatory genes involved in stress perception and transduction and able to rapidly and efficiently activate the complex gene network involved in the response to stress. The complexity of the events occurring in response to stress have been recently approached by genomics tools; in fact the analysis of transcriptome, proteome and metabolome of a plant tissue/cell in response to stress already allowed to have a global view of the cellular and molecular events occurring in response to water deficit, by the identification of genes activated and co-regulated by the stress conditions and the characterization of new signalling pathways. Moreover the recent application of forward and reverse genetic approaches, trough mutant collection development, screening and characterization, is giving a tremendous impulse to the identification of gene functions with key role in stress tolerance. The integration of data obtained by high-throughput genomic approaches, by means of powerful informatic tools, is allowing nowadays to rapidly identify of major genes/QTLs involved in stress tolerance

  15. Genetic diversity, identification, and certification of Chilean rice varieties using molecular markers

    Directory of Open Access Journals (Sweden)

    Viviana Becerra

    2015-09-01

    Full Text Available It takes approximately 14 yr to produce a new rice (Oryza sativa L. variety, that is, from initial hybridization to its commercial release. Currently, new varieties are identified based on morphological descriptors, which have been efficient over time. However, due to the main constraints on seed type impose to other breeding objectives and the pressure of continuous release of varieties, high degree of parentage, and genetic and morphological uniformity has been observed in the breeding populations. The objectives of this study were: to determine the genetic variability of Chilean and foreign commercial rice varieties, and determine, identify, and certify the genetic relationships among varieties, using simple sequence repeat (SSR markers. A total of 16 commercial varieties, some of them closely related, were included in the study, which were genétically analyzed using 54 microsatellites. The 54 microsatellite loci allowed the discrimination among the 16 varieties. The number of alleles ranged between 2 and 8 with a mean of 3.54 alleles per locus, while the polymorphism information content (PIC presented a mean of 0.44. The genetic distance and diversity parameters between pairs of varieties indicate a limited diversity among these genotypes. The cluster analysis indicated that varieties were grouped according to their grain type and pedigree. Results demonstrate that the identification and certification of varieties using microsatellite markers could be a good complement to existing agro-morphological data when varieties are closed related.

  16. Molecular genetic studies on obligate anaerobic bacteria

    International Nuclear Information System (INIS)

    Woods, D.R.

    1982-01-01

    Molecular genetic studies on obligate anaerobic bacteria have lagged behind similar studies in aerobes. However, the current interest in biotechnology, the involvement of anaerobes in disease and the emergence of antibioticresistant strains have focused attention on the genetics of anaerobes. This article reviews molecular genetic studies in Bacteroides spp., Clostridium spp. and methanogens. Certain genetic systems in some anaerobes differ from those in aerobes and illustrate the genetic diversity among bacteria

  17. Teaching molecular genetics: Chapter 1--Background principles and methods of molecular biology.

    Science.gov (United States)

    Knoers, Nine V A M; Monnens, Leo A H

    2006-02-01

    In this first chapter of the series "Teaching molecular genetics," an introduction to molecular genetics is presented. We describe the structure of DNA and genes and explain in detail the central dogma of molecular biology, that is, the flow of genetic information from DNA via RNA to polypeptide (protein). In addition, several basic and frequently used general molecular tools, such as restriction enzymes, Southern blotting, DNA amplification and sequencing are discussed, in order to lay the foundations for the forthcoming chapters.

  18. A molecular genetic approach to roebuck individual identification in the case of poaching in Serbia

    Directory of Open Access Journals (Sweden)

    Dimitrijević Vladimir

    2013-01-01

    Full Text Available Application of the molecular genetic methods in forensic cases dealing with wild animals has significantly increased recently. These techniques are practically used in order to help solving four key problems : determination of kind of the wild animal, geographic origin, kinship ties and individual identification. In this work the first case of introducing the examination of polimorphism of microsatelite genetic markers within forensic analysis in the cases of poaching in Serbia is presented. The objectives of this forensic analysis was to determine if the meat confiscated during house search of the suspect comes from roebuck origin (Capreolus capreolus, which remains had been found by a game warden in the field during closed season, where the suspect denied the offense, claiming that the meat comes from other roebuck that had been shot during the previous hunting season. DNK was isolated from the skin and fur samples taken from the roebuck corpse found in the woods, as well as from the frozen meat found in the suspect’s house. Both amplification and polimorphism examination of the eight microsatelite markers (ROE01, NVHRT21, NVHRT24, NVHRT48, NVHRT73, RT7 AND RT27 were carried out. In all the examined samples, the same pattern of variability of the tested microsatelites was determined, that is it was proved that DNK profiles of the samples taken from roebuck corpse were identical to DNK profile of the meat sample found in the suspect’s house. This result clearly indicates that all the examined biological samples originate from the same animal, and consequently represents forensically valid evidence in the case of roebuck poaching. [Projekat Ministarstva nauke Republike Srbije, br. III46002

  19. Molecular identification of hard ticks (Ixodes sp.) infesting rodents in Selangor, Malaysia

    Science.gov (United States)

    Ishak, Siti Nabilah; Shiang, Lim Fang; Taib, Farah Shafawati Mohd; Jing, Khoo Jing; Nor, Shukor Md; Yusof, Muhammad Afif; Sah, Shahrul Anuar Mohd; Sitam, Frankie Thomas; Japning, Jeffrine Rovie Ryan

    2018-04-01

    This study aims to identify hard ticks (Ixodes sp.) infesting rodents in three different sites in Selangor, Malaysia using a molecular approach. A total of 11 individual ticks infesting four different host species (Rattus tiomanicus, Rattus ratus, Maxomys surifer and Sundamys muelleri) were examined based on its morphological features, followed by molecular identification using mitochondrial 16S rDNA gene. Confirmation of the species identity was accomplished by using BLAST program. Clustering analysis based on 16S rDNA sequences was carried out by constructing Neighbour-joining (NJ) and Maximum parsimony (MP) tree using MEGA 7 to clarify the genetic identity of Ixodes sp. Based on morphological features, all individual ticks were only able to be identified up to genus level as most of the samples were fully engorged, damaged and lacked morphological characters. However, molecular analysis of samples revealed 99% similarity with Ixodes granulatus from the GenBank database. Thus, the result of this study showed that all these ticks (Ixodes granulatus) were genetically affiliated to a monophyletic group with highly homogenous sequences.

  20. Reno-endocrinal disorders: A basic understanding of the molecular genetics

    Directory of Open Access Journals (Sweden)

    Sukhminder Jit Singh Bajwa

    2012-01-01

    Full Text Available The successful management of endocrine diseases is greatly helped by the complete understanding of the underlying pathology. The knowledge about the molecular genetics contributes immensely in the appropriate identification of the causative factors of the diseases and their subsequent management. The fields of nephrology and endocrinology are also interrelated to a large extent. Besides performing the secretory functions, the renal tissue also acts as target organ for many hormones such as antidiuretic hormone (ADH, atrial natriuretic peptides (ANP, and aldosterone. Understanding the molecular genetics of these hormones is important because the therapeutic interventions in many of these conditions is related to shared renal and endocrine functions, including the anemia of renal disease, chronic kidney disease, mineral bone disorders, and hypertension related to chronic kidney disease. Their understanding and in-depth knowledge is very essential in designing and formulating the therapeutic plans and innovating new management strategies. However, we still have to go a long way in order to completely understand the various confounding causative relationships between the pathology and disease of these reno-endocrinal manifestations.

  1. [Clinical genealogical and molecular genetic study of patients with mental retardation].

    Science.gov (United States)

    Hryshchenko, N V; B'ichkova, A M; Lyvshyts, A B; Kravchenko, S A; Pampukha, V N; Solov'ev, A A; Kucherenko, A M; Tatarskiĭ, P F; Afanas'eva, N A; Dubrovskaia, E V; Patskun, Ie Y; Zymak-Zakutnaia, N O; Nykytchina, T V; Lohysh, S Iu; Lyvshyts, L A

    2012-01-01

    The results of clinical, genealogical, cytogenetic and molecular genetic studies of 113 patients from 96 families with different forms of mental retardation from Ukraine are presented. This study was held as part of the CHERISH project of the 7-th Framework Program. The aim of the project is to improve diagnostics of mental retardation in children in Eastern Europe and Central Asia through detailed analysis of known chromosomal and gene's aberrations and to find the new gene-candidates that cause mental retardation. All patients have normal chromosome number (46XY or 46XX). The cases with fragile-X syndrome were eliminated using molecular genetic methods. Genome rearrangements were found among 28 patients using cytogenetic analysis, multiplex ligation-dependent probe amplification (MLPA analysis) ofsubtelomeric regions and array-based comparative genomic hybridisation (array CGH screening). In 10 cases known pathogenic CNV's were identified, 11 cases are unknown aberrations; their pathogenicity is being determined. The rest cases are known nonpathogenic gene rearrangements. Obtained results show the strong genetic heterogeneity of hereditary forms of mental retardation. The further studies will allow to identificate genes candidates and certain mutations in these genes that may be associated with this pathology.

  2. Molecular identification of the Sporothrix schenckii complex.

    Science.gov (United States)

    Oliveira, Manoel Marques Evangelista; Almeida-Paes, Rodrigo; Gutierrez-Galhardo, Maria Clara; Zancope-Oliveira, Rosely M

    2014-01-01

    Sporothrix schenckii, an ascomycetous dimorphic organism that for over a century was recognized as the sole agent of sporotrichosis, a subcutaneous mycosis with a worldwide distribution. However, it has been proposed, based on physiologic and molecular aspects, that S. schenckii is a complex of distinct species: Sporothrix brasiliensis, Sporothrix mexicana, Sporothrix globosa, S. schenckii sensu strictu, Sporothrix luriei, and Sporothrix albicans (formerly Sporothrix pallida). Human disease has a broad range of clinical manifestations and can be classified into fixed cutaneous, lymphocutaneous, disseminated cutaneous, and extracutaneous sporotrichosis. The gold standard for the diagnosis of sporotrichosis is the culture; however, serologic, histopathologic and molecular approaches have been recently adopted for the diagnosis of this mycosis. Few molecular methods have been applied to the diagnosis of sporotrichosis to detect S. schenckii DNA from clinical specimens, and to identify Sporothrix spp. in culture. Until now, Sporothrix is the unique clinically relevant dimorphic fungus without an elucidated genome sequence, thus limiting molecular knowledge about the cryptic species of this complex, and the sexual form of all S. schenckii complex species. In this review we shall focus on the current diagnosis of the sporotrichosis, and discuss the current molecular tools applied to the diagnosis and identification of the Sporothrix complex species. This manuscript is part of the series of works presented at the "V International Workshop: Molecular genetic approaches to the study of human pathogenic fungi" (Oaxaca, Mexico, 2012). Copyright © 2013 Revista Iberoamericana de Micología. Published by Elsevier Espana. All rights reserved.

  3. A genetic ensemble approach for gene-gene interaction identification

    Directory of Open Access Journals (Sweden)

    Ho Joshua WK

    2010-10-01

    Full Text Available Abstract Background It has now become clear that gene-gene interactions and gene-environment interactions are ubiquitous and fundamental mechanisms for the development of complex diseases. Though a considerable effort has been put into developing statistical models and algorithmic strategies for identifying such interactions, the accurate identification of those genetic interactions has been proven to be very challenging. Methods In this paper, we propose a new approach for identifying such gene-gene and gene-environment interactions underlying complex diseases. This is a hybrid algorithm and it combines genetic algorithm (GA and an ensemble of classifiers (called genetic ensemble. Using this approach, the original problem of SNP interaction identification is converted into a data mining problem of combinatorial feature selection. By collecting various single nucleotide polymorphisms (SNP subsets as well as environmental factors generated in multiple GA runs, patterns of gene-gene and gene-environment interactions can be extracted using a simple combinatorial ranking method. Also considered in this study is the idea of combining identification results obtained from multiple algorithms. A novel formula based on pairwise double fault is designed to quantify the degree of complementarity. Conclusions Our simulation study demonstrates that the proposed genetic ensemble algorithm has comparable identification power to Multifactor Dimensionality Reduction (MDR and is slightly better than Polymorphism Interaction Analysis (PIA, which are the two most popular methods for gene-gene interaction identification. More importantly, the identification results generated by using our genetic ensemble algorithm are highly complementary to those obtained by PIA and MDR. Experimental results from our simulation studies and real world data application also confirm the effectiveness of the proposed genetic ensemble algorithm, as well as the potential benefits of

  4. Molecular and genetic insights into an infantile epileptic encephalopathy-CDKL5 disorder

    Institute of Scientific and Technical Information of China (English)

    Ailing Zhou; Song Han; Zhaolan Joe Zhou

    2017-01-01

    BACKGROUND:The discovery that mutations in cyclin-dependent kinase-like 5 (CDKL5) gene are associated with infantile epileptic encephalopathy has stimulated world-wide research effort to understand the molecular and genetic basis of CDKL5 disorder.Given the large number of literature published thus far,this review aims to summarize current genetic studies,draw a consensus on proposed molecular functions,and point to gaps of knowledge in CDKL5 research.METHODS:A systematic review process was conducted using the PubMed search engine focusing on CDKL5 studies in the recent ten years.We analyzed these publications and summarized the findings into four sections:genetic studies,CDKL5 expression pattems,molecular functions,and animal models.We also discussed challenges and future directions in each section.RESULTS:On the clinical side,CDKL5 disorder is characterized by early onset epileptic seizures,intellectual disability,and stereotypical behaviors.On the research side,a series of molecular and genetic studies in human patients,cell cultures and animal models have established the causality of CDKL5 to the infantile epileptic encephalopathy,and pointed to a key role for CDKL5 in regulating neuronal function in the brain.Mouse models of CDKL5 disorder have also been developed,and notably,manifest behavioral phenotypes,mimicking numerous clinical symptoms of CDKL5 disorder and advancing CDKL5 research to the preclinical stage.CONCLUSIONS:Given what we have leamed thus far,future identification of robust,quantitative,and sensitive outcome measures would be the key in animal model studies,particularly in heterozygous females.In the meantime,molecular and cellular studies of CDKL5 should focus on mechanism-based investigation and aim to uncover druggable targets that offer the potential to rescue or ameliorate CDKL5 disorder-related phenotypes.

  5. Molecular and genetic insights into an infantile epileptic encephalopathy - CDKL5 disorder.

    Science.gov (United States)

    Zhou, Ailing; Han, Song; Zhou, Zhaolan Joe

    2017-02-01

    The discovery that mutations in cyclin-dependent kinase-like 5 ( CDKL5 ) gene are associated with infantile epileptic encephalopathy has stimulated world-wide research effort to understand the molecular and genetic basis of CDKL5 disorder. Given the large number of literature published thus far, this review aims to summarize current genetic studies, draw a consensus on proposed molecular functions, and point to gaps of knowledge in CDKL5 research. A systematic review process was conducted using the PubMed search engine focusing on CDKL5 studies in the recent ten years. We analyzed these publications and summarized the findings into four sections: genetic studies, CDKL5 expression patterns, molecular functions, and animal models. We also discussed challenges and future directions in each section. On the clinical side, CDKL5 disorder is characterized by early onset epileptic seizures, intellectual disability, and stereotypical behaviors. On the research side, a series of molecular and genetic studies in human patients, cell cultures and animal models have established the causality of CDKL5 to the infantile epileptic encephalopathy, and pointed to a key role for CDKL5 in regulating neuronal function in the brain. Mouse models of CDKL5 disorder have also been developed, and notably, manifest behavioral phenotypes, mimicking numerous clinical symptoms of CDKL5 disorder and advancing CDKL5 research to the preclinical stage. Given what we have learned thus far, future identification of robust, quantitative, and sensitive outcome measures would be the key in animal model studies, particularly in heterozygous females. In the meantime, molecular and cellular studies of CDKL5 should focus on mechanism-based investigation and aim to uncover druggable targets that offer the potential to rescue or ameliorate CDKL5 disorder-related phenotypes.

  6. Molecular genetic researches on the radiation genetics of Drosophila in JINR

    International Nuclear Information System (INIS)

    Afanas'eva, K.P.; Aleksandrova, M.V.; Aleksandrov, I.D.

    2016-01-01

    Molecular genetic studies of radiation-induced heritable DNA lesions are carried out by the genetic group of Laboratory of nuclear problem in Joint Institute for Nuclear Research. The first results of molecular analysis of γ –ray- and neutron-induced vestigial mutations using PCR and sequencing will be presented. (authors)

  7. [Personal identification with biometric and genetic methods].

    Science.gov (United States)

    Cabanis, Emmanuel-Alain; Le Gall, Jean-Yves; Ardaillou, Raymond

    2007-11-01

    The need for personal identification is growing in many avenues of society. To "identify" a person is to establish a link between his or her observed characteristics and those previously stored in a database. To "authenticate" is to decide whether or not someone is the person he or she claims to be. These two objectives can now be achieved by analysing biometric data and genetic prints. All biometric techniques proceed in several stages: acquisition of an image or physical parameters, encoding them with a mathematical model, comparing the results of this model with those contained in the database, and calculating the error risk. These techniques must be usable worldwide and must examine specific and permanent personal data. The most widely used are facial recognition, digital prints (flexion folds and dermatoglyphs, that offer the advantage of leaving marks), and the surface and texture of the iris. Other biometric techniques analyse behaviours such as walking, signing, typing, or speaking. Implanted radio-transmitters are another means of identification. All these systems are evaluated on the basis of the same parameters, namely the false rejection rate, the false acceptance rate, and the failure-to-enrol rate. The uses of biometrics are increasing and diversifying, and now include national and international identification systems, control of access to protected sites, criminal and victim identification, and transaction security. Genetic methods can identify individuals almost infallibly, based on short tandem repeats of 2-5 nucleotides, or microsatellites. The most recent kits analyze 11-16 independent autosomal markers. Mitochondrial DNA and Y chromosome DNA can also be analyzed. These genetic tests are currently used to identify suspected criminals or their victims from biological samples, and to establish paternity. Personal identification raises many ethical questions, however, such as when to create and how to use a database while preserving personal freedom

  8. Genetic diversity analysis of Chrysopidae family (Insecta, Neuroptera) via molecular markers.

    Science.gov (United States)

    Yari, Kheirollah; Mirmoayedi, Alinaghi; Marami, Marzieh; Kazemi, Elham; Kahrizi, Danial

    2014-09-01

    In entomology, improvement of molecular methods would be beneficial tools for accurate identification and detecting the genetic diversity of insect species to discover a corroborative evidence for the traditional classification based on morphology. The aim of this study was focused on RAPD-PCR method for distinguishing the genetic diversity between eight species of Chrysopidae family. In current research, many specimens were collected in different locations of Tehran province (Iran), between them 24 specimens were identified. The wing venation, male genitalia and other morphological characters were used for identification and also the sexing of species was recognized with study of external genitalia. Then, the DNA was extracted with CTAB method. The RAPD-PCR method was carried out with twenty random primers. The agarose gel electrophoresis was used for separation of the PCR products. Based on electrophoresis results, 133 bands were amplified and between them, 126 bands were poly-morph and others were mono-morph. Also, among the applied primers, the primers OPA02 with 19 bands and OPA03 with 8 bands were amplified the maximum and minimum of bands, respectively. The results showed that 80.35 and 73.21 % of genetic similarity existed between Chrysopa pallens-Chrysopa dubitans, and between the Chrysoperla kolthoffi and Chrysoperla carnea, respectively. The minimum (45.53 %) of genetic similarity was observed between C. kolthoffi and C. dubitans, and the maximum (0.80 %) was seen between C. pallens and C. dubitans.

  9. New approaches to the treatment of orphan genetic disorders: Mitigating molecular pathologies using chemicals

    Directory of Open Access Journals (Sweden)

    RENATA V. VELHO

    2015-08-01

    Full Text Available With the advance and popularization of molecular techniques, the identification of genetic mutations that cause diseases has increased dramatically. Thus, the number of laboratories available to investigate a given disorder and the number of subsequent diagnosis have increased over time. Although it is necessary to identify mutations and provide diagnosis, it is also critical to develop specific therapeutic approaches based on this information. This review aims to highlight recent advances in mutation-targeted therapies with chemicals that mitigate mutational pathology at the molecular level, for disorders that, for the most part, have no effective treatment. Currently, there are several strategies being used to correct different types of mutations, including the following: the identification and characterization of translational readthrough compounds; antisense oligonucleotide-mediated splicing redirection; mismatch repair; and exon skipping. These therapies and other approaches are reviewed in this paper.

  10. New approaches to the treatment of orphan genetic disorders: Mitigating molecular pathologies using chemicals.

    Science.gov (United States)

    Velho, Renata V; Sperb-Ludwig, Fernanda; Schwartz, Ida V D

    2015-08-01

    With the advance and popularization of molecular techniques, the identification of genetic mutations that cause diseases has increased dramatically. Thus, the number of laboratories available to investigate a given disorder and the number of subsequent diagnosis have increased over time. Although it is necessary to identify mutations and provide diagnosis, it is also critical to develop specific therapeutic approaches based on this information. This review aims to highlight recent advances in mutation-targeted therapies with chemicals that mitigate mutational pathology at the molecular level, for disorders that, for the most part, have no effective treatment. Currently, there are several strategies being used to correct different types of mutations, including the following: the identification and characterization of translational readthrough compounds; antisense oligonucleotide-mediated splicing redirection; mismatch repair; and exon skipping. These therapies and other approaches are reviewed in this paper.

  11. Molecular genetics of follicular cell thyroid carcinoma

    Directory of Open Access Journals (Sweden)

    Valentina D. Yakushina

    2016-09-01

    Full Text Available Thyroid cancer is the most frequent endocrine malignancy. In the most cases thyroid cancer arises from follicular cells. Diagnosis of the cancer is based on the cytological analysis of fine needle aspiration biopsy of thyroid nodes. But the accuracy of the cytological diagnosis is about 80% that leads to the false positive and false negative cases and wrong strategy of treatment. Identification of genetic and epigenetic markers in the biopsies will allow to improve diagnostic accuracy. This article describes mutations, aberrant DNA methylation and abnormal microRNA expression constituting the core of molecular genetics of follicular cell thyroid cancer. The mutations given in the article includes point mutations, fusions and copy number variation. Besides frequent and well described driver mutations in genes of МАРK, PI3K/Akt and Wnt signaling pathways, as well as TP53 and TERT genes, we introduce here less frequent mutations appeared in the literature during the past two years. In addition the article contains examples of diagnostic panels applying these markers.

  12. Phenotypic and molecular identification of Fonsecaea pedrosoi strains isolated from chromoblastomycosis patients in Mexico and Venezuela.

    Science.gov (United States)

    Carolina Rojas, O; León-Cachón, Rafael B R; Pérez-Maya, Antonio Alí; Aguirre-Garza, Marcelino; Moreno-Treviño, María G; González, Gloria M

    2015-05-01

    Chromoblastomycosis is a chronic granulomatous disease caused frequently by fungi of the Fonsecaea genus. The objective of this study was the phenotypic and molecular identification of F. pedrosoi strains isolated from chromoblastomycosis patients in Mexico and Venezuela. Ten strains were included in this study. For phenotypic identification, we used macroscopic and microscopic morphologies, carbohydrate assimilation test, urea hydrolysis, cixcloheximide tolerance, proteolitic activity and the thermotolerance test. The antifungal activity of five drugs was evaluated against the isolates. Molecular identification was performed by sequencing the internal transcribed spacer (ITS) ribosomal DNA regions of the isolated strains. The physiological analysis and morphological features were variable and the precise identification was not possible. All isolates were susceptible to itraconazole, terbinafine, voriconazole and posaconazole. Amphotericin B was the least effective drug. The alignment of the 559-nucleotide ITS sequences from our strains compared with sequences of GenBank revealed high homology with F. pedrosoi (EU285266.1). In this study, all patients were from rural areas, six from Mexico and four from Venezuela. Ten isolates were identified by phenotypic and molecular analysis, using ITS sequence and demonstrated that nine isolates from Mexico and Venezuela were 100% homologous and one isolate showed a small genetic distance. © 2015 Blackwell Verlag GmbH.

  13. Molecular and genetic insights into an infantile epileptic encephalopathy – CDKL5 disorder

    Science.gov (United States)

    Zhou, Ailing; Han, Song

    2017-01-01

    Background The discovery that mutations in cyclin-dependent kinase-like 5 (CDKL5) gene are associated with infantile epileptic encephalopathy has stimulated world-wide research effort to understand the molecular and genetic basis of CDKL5 disorder. Given the large number of literature published thus far, this review aims to summarize current genetic studies, draw a consensus on proposed molecular functions, and point to gaps of knowledge in CDKL5 research. Methods A systematic review process was conducted using the PubMed search engine focusing on CDKL5 studies in the recent ten years. We analyzed these publications and summarized the findings into four sections: genetic studies, CDKL5 expression patterns, molecular functions, and animal models. We also discussed challenges and future directions in each section. Results On the clinical side, CDKL5 disorder is characterized by early onset epileptic seizures, intellectual disability, and stereotypical behaviors. On the research side, a series of molecular and genetic studies in human patients, cell cultures and animal models have established the causality of CDKL5 to the infantile epileptic encephalopathy, and pointed to a key role for CDKL5 in regulating neuronal function in the brain. Mouse models of CDKL5 disorder have also been developed, and notably, manifest behavioral phenotypes, mimicking numerous clinical symptoms of CDKL5 disorder and advancing CDKL5 research to the preclinical stage. Conclusions Given what we have learned thus far, future identification of robust, quantitative, and sensitive outcome measures would be the key in animal model studies, particularly in heterozygous females. In the meantime, molecular and cellular studies of CDKL5 should focus on mechanism-based investigation and aim to uncover druggable targets that offer the potential to rescue or ameliorate CDKL5 disorder-related phenotypes. PMID:28580010

  14. Identification of single-copy orthologous genes between Physalis and Solanum lycopersicum and analysis of genetic diversity in Physalis using molecular markers.

    Science.gov (United States)

    Wei, Jingli; Hu, Xiaorong; Yang, Jingjing; Yang, Wencai

    2012-01-01

    The genus Physalis includes a number of commercially important edible and ornamental species. Its high nutritional value and potential medicinal properties leads to the increased commercial interest in the products of this genus worldwide. However, lack of molecular markers prevents the detailed study of genetics and phylogeny in Physalis, which limits the progress of breeding. In the present study, we compared the DNA sequences between Physalis and tomato, and attempted to analyze genetic diversity in Physalis using tomato markers. Blasting 23180 DNA sequences derived from Physalis against the International Tomato Annotation Group (ITAG) Release2.3 Predicted CDS (SL2.40) discovered 3356 single-copy orthologous genes between them. A total of 38 accessions from at least six species of Physalis were subjected to genetic diversity analysis using 97 tomato markers and 25 SSR markers derived from P. peruviana. Majority (73.2%) of tomato markers could amplify DNA fragments from at least one accession of Physalis. Diversity in Physalis at molecular level was also detected. The average Nei's genetic distance between accessions was 0.3806 with a range of 0.2865 to 0.7091. These results indicated Physalis and tomato had similarity at both molecular marker and DNA sequence levels. Therefore, the molecular markers developed in tomato can be used in genetic study in Physalis.

  15. Molecular & Genetic Investigation of Tau in Chronic Traumatic Encephalopathy

    Science.gov (United States)

    2015-10-01

    AWARD NUMBER: W81XWH-14-1-0399 TITLE: Molecular & Genetic Investigation of Tau in Chronic Traumatic Encephalopathy PRINCIPAL INVESTIGATOR: John F...Include area code) October 2015 Annual Report 30 Sep 2014 - 29 Sep 2015 Molecular & Genetic Investigation of Tau in Chronic Traumatic Encephalopathy John... encephalopathy (CTE), but the underlying molecular changes remain unclear. Here, biochemical and genetic studies that deepen our understanding of the

  16. Genetic identification of bucktooth parrotfish Sparisoma radians (Valenciennes, 1840 (Labridae, Scarinae by chromosomal and molecular markers

    Directory of Open Access Journals (Sweden)

    Fabilene Gomes Paim

    2014-12-01

    Full Text Available Parrotfishes (Labridae, Scarinae comprise a large marine fish group of difficult identification, particularly during juvenile phase when the typical morphology and coloration of adults are absent. Therefore, the goal of this study was to test cytogenetic markers and DNA barcoding in the identification of bucktooth parrtotfish Sparisoma radians from the northeastern coast of Brazil. Sequencing of cytochrome c oxidase subunit I (COI confirmed all studied samples as S. radians, and all showed high similarity (99-100% with Caribbean populations. The karyotype of this species was divergent from most marine Perciformes, being composed of 2n = 46 chromosomes. These consisted of a large number of metacentric and submetacentric pairs with small amounts of heterochromatin and GC-rich single nucleolar organizer regions (NORs not syntenic to 5S rDNA clusters. These are the first data about DNA barcoding in parrotfish from the Brazilian province and the first refined chromosomal analysis in Scarinae, providing useful data to a reliable genetic identification of S. radians.

  17. Identification of single-copy orthologous genes between Physalis and Solanum lycopersicum and analysis of genetic diversity in Physalis using molecular markers.

    Directory of Open Access Journals (Sweden)

    Jingli Wei

    Full Text Available The genus Physalis includes a number of commercially important edible and ornamental species. Its high nutritional value and potential medicinal properties leads to the increased commercial interest in the products of this genus worldwide. However, lack of molecular markers prevents the detailed study of genetics and phylogeny in Physalis, which limits the progress of breeding. In the present study, we compared the DNA sequences between Physalis and tomato, and attempted to analyze genetic diversity in Physalis using tomato markers. Blasting 23180 DNA sequences derived from Physalis against the International Tomato Annotation Group (ITAG Release2.3 Predicted CDS (SL2.40 discovered 3356 single-copy orthologous genes between them. A total of 38 accessions from at least six species of Physalis were subjected to genetic diversity analysis using 97 tomato markers and 25 SSR markers derived from P. peruviana. Majority (73.2% of tomato markers could amplify DNA fragments from at least one accession of Physalis. Diversity in Physalis at molecular level was also detected. The average Nei's genetic distance between accessions was 0.3806 with a range of 0.2865 to 0.7091. These results indicated Physalis and tomato had similarity at both molecular marker and DNA sequence levels. Therefore, the molecular markers developed in tomato can be used in genetic study in Physalis.

  18. [The genetics of addictions].

    Science.gov (United States)

    Ibañez Cuadrado, Angela

    2008-01-01

    The addictions are common chronic psychiatric diseases which represent a serious worldwide public-health problem. They have a high prevalence and negative effects at individual, family and societal level, with a high sanitary cost. Epidemiological genetic research has revealed that addictions are moderately to highly heritable. Also the investigation has evidenced that environmental and genetic factors contribute to individual differences in vulnerability to addictions. Advances in the neurobiology of addiction joined to the development of new molecular genetic technologies, have led to the identification of a variety of underlying genes and pathways in addiction process, leading to the description of common molecular mechanisms in substance and behaviour dependencies. Identifying gene-environment interactions is a crucial issue in future research. Other major goal in genetic research is the identification of new therapeutic targets for treatment and prevention.

  19. Eggshell membranes as a noninvasive sampling for molecular ...

    African Journals Online (AJOL)

    Noninvasive sampling is of prime essential on conservation genetics and molecular ecology. It is particularly preferred to use in the genetic identification of individuals and genetic analysis. A simple and efficient sampling is described for molecular studies from eggshell membranes in an endemic population of Chinese ...

  20. Critical overview of applications of genetic testing in sport talent identification.

    Science.gov (United States)

    Roth, Stephen M

    2012-12-01

    Talent identification for future sport performance is of paramount interest for many groups given the challenges of finding and costs of training potential elite athletes. Because genetic factors have been implicated in many performance- related traits (strength, endurance, etc.), a natural inclination is to consider the addition of genetic testing to talent identification programs. While the importance of genetic factors to sport performance is generally not disputed, whether genetic testing can positively inform talent identification is less certain. The present paper addresses the science behind the genetic tests that are now commercially available (some under patent protection) and aimed at predicting future sport performance potential. Also discussed are the challenging ethical issues that emerge from the availability of these tests. The potential negative consequences associated with genetic testing of young athletes will very likely outweigh any positive benefit for sport performance prediction at least for the next several years. The paper ends by exploring the future possibilities for genetic testing as the science of genomics in sport matures over the coming decade(s).

  1. Guidelines on the use of molecular genetics in reintroduction programs

    Science.gov (United States)

    Michael K. Schwartz

    2005-01-01

    The use of molecular genetics can play a key role in reintroduction efforts. Prior to the introduction of any individuals, molecular genetics can be used to identify the most appropriate source population for the reintroduction, ensure that no relic populations exist in the reintroduction area, and guide captive breeding programs. The use of molecular genetics post-...

  2. Application of molecular genetic tools for forest pathology

    Science.gov (United States)

    Mee-Sook Kim; John Hanna; Amy Ross-Davis; Ned Klopfenstein

    2012-01-01

    In recent years, advances in molecular genetics have provided powerful tools to address critical issues in forest pathology to help promote resilient forests. Although molecular genetic tools are initially applied to understand individual components of forest pathosystems, forest pathosystems involve dynamic interactions among biotic and abiotic components of the...

  3. Molecular marker systems for Oenothera genetics.

    Science.gov (United States)

    Rauwolf, Uwe; Golczyk, Hieronim; Meurer, Jörg; Herrmann, Reinhold G; Greiner, Stephan

    2008-11-01

    The genus Oenothera has an outstanding scientific tradition. It has been a model for studying aspects of chromosome evolution and speciation, including the impact of plastid nuclear co-evolution. A large collection of strains analyzed during a century of experimental work and unique genetic possibilities allow the exchange of genetically definable plastids, individual or multiple chromosomes, and/or entire haploid genomes (Renner complexes) between species. However, molecular genetic approaches for the genus are largely lacking. In this study, we describe the development of efficient PCR-based marker systems for both the nuclear genome and the plastome. They allow distinguishing individual chromosomes, Renner complexes, plastomes, and subplastomes. We demonstrate their application by monitoring interspecific exchanges of genomes, chromosome pairs, and/or plastids during crossing programs, e.g., to produce plastome-genome incompatible hybrids. Using an appropriate partial permanent translocation heterozygous hybrid, linkage group 7 of the molecular map could be assigned to chromosome 9.8 of the classical Oenothera map. Finally, we provide the first direct molecular evidence that homologous recombination and free segregation of chromosomes in permanent translocation heterozygous strains is suppressed.

  4. Child Development and Molecular Genetics: 14 Years Later

    Science.gov (United States)

    Plomin, Robert

    2013-01-01

    Fourteen years ago, the first article on molecular genetics was published in this journal: "Child Development, Molecular Genetics, and What to Do With Genes Once They Are Found" (R. Plomin & M. Rutter, 1998). The goal of the article was to outline what developmentalists can do with genes once they are found. These new directions for developmental…

  5. Molecular genetics of aging in the fly: is this the end of the beginning?

    Science.gov (United States)

    Helfand, Stephen L; Rogina, Blanka

    2003-02-01

    How we age and what we can do about it have been uppermost in human thought since antiquity. The many false starts have frustrated experimentalists and theoretical arguments pronouncing the inevitability of the process have created a nihilistic climate among scientists and the public. The identification of single gene alterations that substantially extend life span in nematodes and flies however, have begun to reinvigorate the field. Drosophila's long history of contributions to aging research, rich storehouse of genetic information, and powerful molecular techniques make it an excellent system for studying the molecular mechanisms underlying the process of aging. In recent years, Drosophila has been used to test current theories on aging and explore new directions of potential importance to the biology of aging. One such example is the surprising finding that, as opposed to the commonly held assumption that adult life is a period of random passive decline in which all things are thought to fall apart, the molecular life of the adult fly appears to be a state of dynamic well-regulated change. In the fly, the level of expression of many different genes changes in an invariant, often age-dependent, manner. These as well as other molecular genetic studies and demographic analyses using the fly have begun to challenge widely held ideas about aging providing evidence that aging may be a much more dynamic and malleable process than anticipated. With the enormous success that Drosophila molecular genetics has demonstrated in helping understand complex biological phenomena such as development there is much optimism that similar approaches can be adapted to assist in understanding the process of aging. Copyright 2003 Wiley Periodicals, Inc.

  6. MOLECULAR GENETIC IDENTIFICATION OF THE SLOVENE HOME GUARDVICTIMS

    Directory of Open Access Journals (Sweden)

    Irena Zupanič Pajnič

    2008-11-01

    The research showed a high probability (from 99.9999 % to 99.999999 % that allthree victims of the killings under the Storžič Mountain are related to the living relatives,speaking in favour of the positive identification of the victims

  7. First molecular identification and characterization of classical swine fever virus isolates from Nepal.

    Science.gov (United States)

    Postel, Alexander; Jha, Vijay C; Schmeiser, Stefanie; Becher, Paul

    2013-01-01

    Classical swine fever (CSF) is a major constraint to pig production worldwide, and in many developing countries, the epidemiological status is unknown. Here, for the first time, molecular identification and characterization of CSFV isolates from two recent outbreaks in Nepal are presented. Analysis of full-length E2-encoding sequences revealed that these isolates belonged to CSFV subgenotype 2.2 and had highest genetic similarity to isolates from India. Hence, for CSFV, Nepal and India should be regarded as one epidemiological unit. Both Nepalese isolates exhibited significant sequence differences, excluding a direct epidemiological connection and suggesting that CSFV is endemic in that country.

  8. Advances in genetics. Volume 22: Molecular genetics of plants

    International Nuclear Information System (INIS)

    Scandalios, J.G.; Caspari, E.W.

    1984-01-01

    This book contains the following four chapters: Structural Variation in Mitochondrial DNA; The Structure and Expression of Nuclear Genes in Higher Plants; Chromatin Structure and Gene Regulation in Higher Plants; and The Molecular Genetics of Crown Gall Tumorigenesis

  9. The Molecular Genetics of von Willebrand Disease

    Directory of Open Access Journals (Sweden)

    Ergül Berber

    2012-12-01

    Full Text Available Quantitative and/or qualitative deficiency of von Willebrand factor (vWF is associated with the most common inherited bleeding disease von Willebrand disease (vWD. vWD is a complex disease with clinical and genetic heterogeneity. Incomplete penetrance and variable expression due to genetic and environmental factors contribute to its complexity. vWD also has a complex molecular pathogenesis. Some vWF gene mutations are associated with the affected vWF biosynthesis and multimerization, whereas others are associated with increased clearance and functional impairment. Moreover, in addition to a particular mutation, type O blood may result in the more severe phenotype. The present review aimed to provide a summary of the current literature on the molecular genetics of vWD.

  10. The molecular genetics of von Willebrand disease.

    Science.gov (United States)

    Berber, Ergül

    2012-12-01

    Quantitative and/or qualitative deficiency of von Willebrand factor (vWF) is associated with the most common inherited bleeding disease von Willebrand disease (vWD). vWD is a complex disease with clinical and genetic heterogeneity. Incomplete penetrance and variable expression due to genetic and environmental factors contribute to its complexity. vWD also has a complex molecular pathogenesis. Some vWF gene mutations are associated with the affected vWF biosynthesis and multimerization, whereas others are associated with increased clearance and functional impairment. Moreover, in addition to a particular mutation, type O blood may result in the more severe phenotype. The present review aimed to provide a summary of the current literature on the molecular genetics of vWD. None declared.

  11. Molecular Markers and Cotton Genetic Improvement: Current Status and Future Prospects

    Directory of Open Access Journals (Sweden)

    Waqas Malik

    2014-01-01

    Full Text Available Narrow genetic base and complex allotetraploid genome of cotton (Gossypium hirsutum L. is stimulating efforts to avail required polymorphism for marker based breeding. The availability of draft genome sequence of G. raimondii and G. arboreum and next generation sequencing (NGS technologies facilitated the development of high-throughput marker technologies in cotton. The concepts of genetic diversity, QTL mapping, and marker assisted selection (MAS are evolving into more efficient concepts of linkage disequilibrium, association mapping, and genomic selection, respectively. The objective of the current review is to analyze the pace of evolution in the molecular marker technologies in cotton during the last ten years into the following four areas: (i comparative analysis of low- and high-throughput marker technologies available in cotton, (ii genetic diversity in the available wild and improved gene pools of cotton, (iii identification of the genomic regions within cotton genome underlying economic traits, and (iv marker based selection methodologies. Moreover, the applications of marker technologies to enhance the breeding efficiency in cotton are also summarized. Aforementioned genomic technologies and the integration of several other omics resources are expected to enhance the cotton productivity and meet the global fiber quantity and quality demands.

  12. The Chiasmus of Mourning and Identification in Jean Genet

    Directory of Open Access Journals (Sweden)

    Peter Benson

    2000-06-01

    Full Text Available The theories of psychological identification proposed by Sigmund Freud and Kaja Silverman are explored in relation to Jean Genet's Funeral Rites and his later essay on Rembrandt. Genet can be seen to separate mourning (which for Freud lies at the basis of identification from a process of generalized identification in which his difference from other people dissolves. A narcissistic formation of personality, evident in the symbolism of mirrors in Funeral Rites , gives to this process an added impetus. But the fundamental condition of possibility for such generalized identification is the void it reveals at the center of all personality. This void not only makes possible the different kinds of identification (heteropathic and idiopathic described by Silverman, it also disturbs any clear distinction between them. It is for these reasons that the glamorization of Nazism in Funeral Rites is coextensive with a demystification of its power, and the often brutal eroticism of the book is suffused with an ineradicable dimension of tenderness. Taken further in the essay on Rembrandt, these themes lead to an ambiguous mysticism in which the source of creativity is revealed as inseparable from its ultimate obliteration.

  13. Molecular genetic studies in flax (Linum usitatissimum L.)

    NARCIS (Netherlands)

    Vromans, J.

    2006-01-01

    In this thesis five molecular genetic studies on flax ( Linum usitatissimum L.) are described, of which two chapters aim to characterize the genetic structure and the amount of genetic diversity in the primary and secondary gene pool of the crop species. Three chapters describe the development of

  14. Developing a Molecular Identification Assay of Old Landraces for the Genetic Authentication of Typical Agro-Food Products: The Case Study of the Barley ‘Agordino’

    Directory of Open Access Journals (Sweden)

    Gianni Barcaccia

    2017-01-01

    Full Text Available The orzo Agordino is a very old local variety of domesticated barley (Hordeum vulgare ssp. distichum L. that is native to the Agordo District, Province of Belluno, and is widespread in the Veneto Region, Italy. Seeds of this landrace are widely used for the preparation of very famous dishes of the dolomitic culinary tradition such as barley soup, bakery products and local beer. Understanding the genetic diversity and identity of the Agordino barley landrace is a key step to establish conservation and valorisation strategies of this local variety and also to provide molecular traceability tools useful to ascertain the authenticity of its derivatives. The gene pool of the Agordino barley landrace was reconstructed using 60 phenotypically representative individual plants and its genotypic relationships with commercial varieties were investigated using 21 pure lines widely cultivated in the Veneto Region. For genomic DNA analysis, following an initial screening of 14 mapped microsatellite (SSR loci, seven discriminant markers were selected on the basis of their genomic position across linkage groups and polymorphic marker alleles per locus. The genetic identity of the local barley landrace was determined by analysing all SSR markers in a single multi-locus PCR assay. Extent of genotypic variation within the Agordino barley landrace and the genotypic differentiation between the landrace individuals and the commercial varieties was determined. Then, as few as four highly informative SSR loci were selected and used to develop a molecular traceability system exploitable to verify the genetic authenticity of food products deriving from the Agordino landrace. This genetic authentication assay was validated using both DNA pools from individual Agordino barley plants and DNA samples from Agordino barley food products. On the whole, our data support the usefulness and robustness of this DNA-based diagnostic tool for the orzo Agordino identification, which

  15. Assessing Date Palm Genetic Diversity Using Different Molecular Markers.

    Science.gov (United States)

    Atia, Mohamed A M; Sakr, Mahmoud M; Adawy, Sami S

    2017-01-01

    Molecular marker technologies which rely on DNA analysis provide powerful tools to assess biodiversity at different levels, i.e., among and within species. A range of different molecular marker techniques have been developed and extensively applied for detecting variability in date palm at the DNA level. Recently, the employment of gene-targeting molecular marker approaches to study biodiversity and genetic variations in many plant species has increased the attention of researchers interested in date palm to carry out phylogenetic studies using these novel marker systems. Molecular markers are good indicators of genetic distances among accessions, because DNA-based markers are neutral in the face of selection. Here we describe the employment of multidisciplinary molecular marker approaches: amplified fragment length polymorphism (AFLP), start codon targeted (SCoT) polymorphism, conserved DNA-derived polymorphism (CDDP), intron-targeted amplified polymorphism (ITAP), simple sequence repeats (SSR), and random amplified polymorphic DNA (RAPD) to assess genetic diversity in date palm.

  16. Implication of Gastric Cancer Molecular Genetic Markers in Surgical Practice.

    Science.gov (United States)

    Nemtsova, Marina V; Strelnikov, Vladimir V; Tanas, Alexander S; Bykov, Igor I; Zaletaev, Dmitry V; Rudenko, Viktoria V; Glukhov, Alexander I; Kchorobrich, Tatiana V; Li, Yi; Tarasov, Vadim V; Barreto, George E; Aliev, Gjumrakch

    2017-10-01

    We have investigated aberrant methylation of genes CDH1, RASSF1A, MLH1, N33, DAPK, expression of genes hTERT, MMP7, MMP9, BIRC5 (survivin), PTGS2, and activity of telomerase of 106 gastric tumor samples obtained intra-operatively and 53 gastric tumor samples from the same group of patients obtained endoscopically before surgery. Biopsy specimens obtained from 50 patients with chronic calculous cholecystitis were used as a control group. Together with tissue samples obtained from different sites remote to tumors, a total of 727 samples have been studied. The selected parameters comprise a system of molecular markers that can be used in both diagnostics of gastric cancer and in dynamic monitoring of patients after surgery. Special attention was paid to the use of molecular markers for the diagnostics of malignant process in the material obtained endoscopically since the efficacy of morphological diagnostics in biopsies is compromised by intratumoral heterogeneity, which may prevent reliable identification of tumor cells in the sampling. Our data indicated that certain molecular genetic events provided more sensitive yet specific markers of the tumor. We demonstrated that molecular profiles detected in preoperative biopsies were confirmed by the material obtained intra-operatively. The use of endoscopic material facilitates gastric tumors pre-operative diagnostics, improving early detection of gastric cancer and potential effective treatment strategies.

  17. Molecular characterization and assessment of genetic diversity of ...

    African Journals Online (AJOL)

    R Madhusudhana

    genetic diversity available at molecular level among a set of phenotypically different ... allele matching and cluster analysis based on unweighted neighbor- joining (Gascuel, 1997) ..... on isozyme data-a simulation study. Theor. Appl. Genet.

  18. Improving Molecular Genetic Test Utilization through Order Restriction, Test Review, and Guidance.

    Science.gov (United States)

    Riley, Jacquelyn D; Procop, Gary W; Kottke-Marchant, Kandice; Wyllie, Robert; Lacbawan, Felicitas L

    2015-05-01

    The ordering of molecular genetic tests by health providers not well trained in genetics may have a variety of untoward effects. These include the selection of inappropriate tests, the ordering of panels when the assessment of individual or fewer genes would be more appropriate, inaccurate result interpretation and inappropriate patient guidance, and significant unwarranted cost expenditure. We sought to improve the utilization of molecular genetic tests by requiring providers without specialty training in genetics to use genetic counselors and molecular genetic pathologists to assist in test selection. We used a genetic and genomic test review process wherein the laboratory-based genetic counselor performed the preanalytic assessment of test orders and test triage. Test indication and clinical findings were evaluated against the test panel composition, methods, and test limitations under the supervision of the molecular genetic pathologist. These test utilization management efforts resulted in a decrease in genetic test ordering and a gross cost savings of $1,531,913 since the inception of these programs in September 2011 through December 2013. The combination of limiting the availability of complex genetic tests and providing guidance regarding appropriate test strategies is an effective way to improve genetic tests, contributing to judicious use of limited health care resources. Copyright © 2015 American Society for Investigative Pathology and the Association for Molecular Pathology. Published by Elsevier Inc. All rights reserved.

  19. Intelligent DNA-based molecular diagnostics using linked genetic markers

    Energy Technology Data Exchange (ETDEWEB)

    Pathak, D.K.; Perlin, M.W.; Hoffman, E.P.

    1994-12-31

    This paper describes a knowledge-based system for molecular diagnostics, and its application to fully automated diagnosis of X-linked genetic disorders. Molecular diagnostic information is used in clinical practice for determining genetic risks, such as carrier determination and prenatal diagnosis. Initially, blood samples are obtained from related individuals, and PCR amplification is performed. Linkage-based molecular diagnosis then entails three data analysis steps. First, for every individual, the alleles (i.e., DNA composition) are determined at specified chromosomal locations. Second, the flow of genetic material among the individuals is established. Third, the probability that a given individual is either a carrier of the disease or affected by the disease is determined. The current practice is to perform each of these three steps manually, which is costly, time consuming, labor-intensive, and error-prone. As such, the knowledge-intensive data analysis and interpretation supersede the actual experimentation effort as the major bottleneck in molecular diagnostics. By examining the human problem solving for the task, we have designed and implemented a prototype knowledge-based system capable of fully automating linkage-based molecular diagnostics in X-linked genetic disorders, including Duchenne Muscular Dystrophy (DMD). Our system uses knowledge-based interpretation of gel electrophoresis images to determine individual DNA marker labels, a constraint satisfaction search for consistent genetic flow among individuals, and a blackboard-style problem solver for risk assessment. We describe the system`s successful diagnosis of DMD carrier and affected individuals from raw clinical data.

  20. Molecular identification and cluster analysis of homofermentative thermophilic lactobacilli isolated from dairy products.

    Science.gov (United States)

    Andrighetto, C; De Dea, P; Lombardi, A; Neviani, E; Rossetti, L; Giraffa, G

    1998-10-01

    Twenty-five strains of thermophilic lactobacilli isolated from yoghurt and from semi-hard and hard cheeses (in parallel with nine type or reference strains) were identified and grouped according to their genetic relatedness. Strains were identified by sugar fermentation patterns using the "API 50 CHL" galleries, by species-specific DNA probes in dot-blot hybridization experiments, by amplification and restriction analysis of the 16S rRNA gene (ARDRA) and by polymerase chain reaction (PCR) using species-specific oligonucleotide primers. Strains were classified as Lactobacillus delbrueckii subsp. lactis and subsp. bulgaricus, L. helveticus, and L. acidophilus. Strains which were atypical by sugar fermentation patterns were also identified. Most of the strains could not be grouped using carbohydrate fermentation profiles. PCR fingerprinting was used to identify DNA profiles for the 25 lactobacilli. Experimentally obtained PCR profiles enabled discrimination of all strains, which were grouped according to the similarities in their combined patterns. In general, the clustering of the strains corresponded well with species delineation obtained by molecular identification. The dendrogram of genetic relatedness enabled the unambiguous identification of most of the strains which were shown to be atypical by the sugar fermentation profile, except for a discrepancy in one L. delbrueckii subsp. lactis strain and one atypical Lactobacillus sp. strain.

  1. Morphological and molecular identification of nasopharyngeal bot fly larvae infesting red deer (Cervus elaphus) in Austria.

    Science.gov (United States)

    Leitner, Natascha; Schwarzmann, Laurin; Zittra, Carina; Palmieri, Nicola; Eigner, Barbara; Otranto, Domenico; Glawischnig, Walter; Fuehrer, Hans-Peter

    2016-11-01

    Nasopharyngeal myiases are caused by larvae of bot flies (Diptera: Oestridae), which have evolved a high specificity for their hosts. Bot flies (n = 916) were collected from 137 (57.6 %) out of 238 red deer (Cervus elaphus) hunted in Vorarlberg and Tyrol (Western Austria). After being stored in 75 % ethanol, larvae were identified to species level and developmental stage using morphological and morphometric keys. Larvae were also molecularly characterized by polymerase chain reaction (PCR) amplification and partial sequencing of the mitochondrial cytochrome oxidase subunit I gene. Morphological and molecular analysis allowed identification of larvae as Cephenemyia auribarbis and Pharyngomyia picta. Genetic variations were also examined within the specimens collected in both geographical locations.

  2. Time-Delay System Identification Using Genetic Algorithm

    DEFF Research Database (Denmark)

    Yang, Zhenyu; Seested, Glen Thane

    2013-01-01

    problem through an identification approach using the real coded Genetic Algorithm (GA). The desired FOPDT/SOPDT model is directly identified based on the measured system's input and output data. In order to evaluate the quality and performance of this GA-based approach, the proposed method is compared...

  3. Molecular Genetic Methods Implementation for Phytopathogen Identification in Forest Stands and Nurseries of the Russian Federation

    Directory of Open Access Journals (Sweden)

    T. S. Alimova

    2014-08-01

    Full Text Available The results of the application of molecular genetics methods for the analysis of the plant pathogens present in forest plantations and nurseries of the Russian Federation, including doughnut fungus and annosum root rot are presented. The prospects and benefits of using DNA analysis for early diagnosis of plant diseases without isolation of the pathogen in pure culture, shortening time of analysis, and the possibility of mass screening are discussed.

  4. Species identification refined by molecular scatology in a community of sympatric carnivores in Xinjiang, China.

    Science.gov (United States)

    Laguardia, Alice; Wang, Jun; Shi, Fang-Lei; Shi, Kun; Riordan, Philip

    2015-03-18

    Many ecological studies and conservation management plans employ noninvasive scat sampling based on the assumption that species' scats can be correctly identified in the field. However, in habitats with sympatric similarly sized carnivores, misidentification of scats is frequent and can lead to bias in research results. To address the scat identification dilemma, molecular scatology techniques have been developed to extract DNA from the donor cells present on the outer lining of the scat samples. A total of 100 samples were collected in the winter of 2009 and 2011 in Taxkorgan region of Xinjiang, China. DNA was extracted successfully from 88% of samples and genetic species identification showed that more than half the scats identified in the field as snow leopard (Panthera uncia) actually belonged to fox (Vulpes vulpes). Correlation between scat characteristics and species were investigated, showing that diameter and dry weight of the scat were significantly different between the species. However it was not possible to define a precise range of values for each species because of extensive overlap between the morphological values. This preliminary study confirms that identification of snow leopard feces in the field is misleading. Research that relies upon scat samples to assess distribution or diet of the snow leopard should therefore employ molecular scatology techniques. These methods are financially accessible and employ relatively simple laboratory procedures that can give an indisputable response to species identification from scats.

  5. Identification of 64 Novel Genetic Loci Provides an Expanded View on the Genetic Architecture of Coronary Artery Disease

    NARCIS (Netherlands)

    van der Harst, Pim; Verweij, Niek

    2018-01-01

    Rationale: Coronary artery disease (CAD) is a complex phenotype driven by genetic and environmental factors. Ninety-seven genetic risk loci have been identified to date, but the identification of additional susceptibility loci might be important to enhance our understanding of the genetic

  6. Genetic Algorithm-Based Identification of Fractional-Order Systems

    Directory of Open Access Journals (Sweden)

    Shengxi Zhou

    2013-05-01

    Full Text Available Fractional calculus has become an increasingly popular tool for modeling the complex behaviors of physical systems from diverse domains. One of the key issues to apply fractional calculus to engineering problems is to achieve the parameter identification of fractional-order systems. A time-domain identification algorithm based on a genetic algorithm (GA is proposed in this paper. The multi-variable parameter identification is converted into a parameter optimization by applying GA to the identification of fractional-order systems. To evaluate the identification accuracy and stability, the time-domain output error considering the condition variation is designed as the fitness function for parameter optimization. The identification process is established under various noise levels and excitation levels. The effects of external excitation and the noise level on the identification accuracy are analyzed in detail. The simulation results show that the proposed method could identify the parameters of both commensurate rate and non-commensurate rate fractional-order systems from the data with noise. It is also observed that excitation signal is an important factor influencing the identification accuracy of fractional-order systems.

  7. Antifungal activity and molecular identification of endophytic fungi ...

    African Journals Online (AJOL)

    Antifungal activity and molecular identification of endophytic fungi from the angiosperm Rhodomyrtus tomentosa. Juthatip Jeenkeawpieam, Souwalak Phongpaichit, Vatcharin Rukachaisirikul, Jariya Sakayaroj ...

  8. NEW MOLECULAR TECHNOLOGIES IN GENETIC DIAGNOSIS OF MALE INFERTILITY

    Directory of Open Access Journals (Sweden)

    V. B. Chernykh

    2017-01-01

    Full Text Available In recent years, the accelerated development of technologies in the field of molecular genetics and cytogenetics has led to significant opportunities of the research and diagnosis of mutations and variations of the genome. This article provides a brief review of new molecular technology, also as the results of their use in reproductive medicine and their perspectives in the genetic diagnosis of male infertility. 

  9. Molecular diversity and genetic relationships in Secale

    Indian Academy of Sciences (India)

    Molecular diversity and genetic relationships in Secale. E. Santos, M. Matos, P. Silva, A. M. Figueiras, C. Benito and O. Pinto-Carnide. J. Genet. 95, 273–281. Table 1. RAPD and ISSR primers used in this study. Primer. 5 –3. Primer. 5 –3. RAPDs (Operon). A1. CAGGCCCTTC. C5. CATGACCGCC. A4. AATCGGGCTG. C6.

  10. Genetic and neural approaches to nuclear transient identification

    International Nuclear Information System (INIS)

    Almeida, Jose Carlos Soares de; Mol, Antonio Carlos de Abreu; Pereira, Claudio Marcio Nascimento Abreu; Lapa, Celso Marcelo Franklin

    2005-01-01

    This work presents two approaches for pattern recognition to the same set of reactor signals. The first one describes a possibilistic approach optimized by genetic algorithm. The use of a possibilistic classification provides a natural and consistent classification rules, leading naturally to a good heuristic to handle the 'don't know' response, in case of unrecognized transient, which is fairly desirable in transient classification systems where safety is critical, since wrong or not reliable classifications can be catastrophic. Application of the proposed approach to a nuclear transient identification problem reveals good capability of the genetic algorithm in learning optimized possibilistic classification rules for efficient diagnosis including 'don't know' response. The second one uses two multilayer neural networks (NN). The first NN is responsible for the dynamic identification. This NN uses, as input, a short set (in a moving time window) of recent measurements of each variable avoiding the necessity of using starting events. The second NN is used to validate the instantaneous identification (from the first net) through the validation of each variable. This net is responsible for allowing the system to provide a 'don't know' response. In order to validate both methods, a Nuclear Power Plant (NPP) transient identification problem comprising postulated accidents, simulated for a pressurized water reactor, was proposed in the validation process it has been considered noisy data in order to evaluate the method robustness. Obtained results reveal the ability of the methods in dealing with both dynamic identification of transients and correct 'don't know' response. (author)

  11. Molecular Identification of Atlantic Bluefin Tuna (Thunnus thynnus, Scombridae Larvae and Development of a DNA Character-Based Identification Key for Mediterranean Scombrids.

    Directory of Open Access Journals (Sweden)

    Gregory Neils Puncher

    Full Text Available The Atlantic bluefin tuna, Thunnus thynnus, is a commercially important species that has been severely over-exploited in the recent past. Although the eastern Atlantic and Mediterranean stock is now showing signs of recovery, its current status remains very uncertain and as a consequence their recovery is dependent upon severe management informed by rigorous scientific research. Monitoring of early life history stages can inform decision makers about the health of the species based upon recruitment and survival rates. Misidentification of fish larvae and eggs can lead to inaccurate estimates of stock biomass and productivity which can trigger demands for increased quotas and unsound management conclusions. Herein we used a molecular approach employing mitochondrial and nuclear genes (CO1 and ITS1, respectively to identify larvae (n = 188 collected from three spawning areas in the Mediterranean Sea by different institutions working with a regional fisheries management organization. Several techniques were used to analyze the genetic sequences (sequence alignments using search algorithms, neighbour joining trees, and a genetic character-based identification key and an extensive comparison of the results is presented. During this process various inaccuracies in related publications and online databases were uncovered. Our results reveal important differences in the accuracy of the taxonomic identifications carried out by different ichthyoplanktologists following morphology-based methods. While less than half of larvae provided were bluefin tuna, other dominant taxa were bullet tuna (Auxis rochei, albacore (Thunnus alalunga and little tunny (Euthynnus alletteratus. We advocate an expansion of expertise for a new generation of morphology-based taxonomists, increased dialogue between morphology-based and molecular taxonomists and increased scrutiny of public sequence databases.

  12. RESEARCH NOTE Molecular genetic analysis of consanguineous ...

    Indian Academy of Sciences (India)

    Navya

    Molecular genetic analysis of consanguineous families with primary microcephaly ... Translational Research Institute, Academic Health System, Hamad Medical ..... bridging the gap between homozygosity mapping and deep sequencing.

  13. Genetic dissimilarity among sweet potato genotypes using morphological and molecular descriptors

    Directory of Open Access Journals (Sweden)

    Elisângela Knoblauch Viega de Andrade

    2017-08-01

    Full Text Available This study aimed to evaluate the genetic dissimilarity among sweet potato genotypes using morphological and molecular descriptors. The experiment was conducted in the Olericulture Sector at Federal University of Jequitinhonha and Mucuri Valleys (UFVJM and evaluated 60 sweet potato genotypes. For morphological characterization, 24 descriptors were used. For molecular characterization, 11 microsatellite primers specific for sweet potatoes were used, obtaining 210 polymorphic bands. Morphological and molecular diversity was obtained by dissimilarity matrices based on the coefficient of simple matching and the Jaccard index for morphological and molecular data, respectively. From these matrices, dendrograms were built. There is a large amount of genetic variability among sweet potato genotypes of the germplasm bank at UFVJM based on morphological and molecular characterizations. There was no duplicate suspicion or strong association between morphological and molecular analyses. Divergent accessions have been identified by molecular and morphological analyses, which can be used as parents in breeding programmes to produce progenies with high genetic variability.

  14. A methodological overview on molecular preimplantation genetic diagnosis and screening: a genomic future?

    Science.gov (United States)

    Vendrell, Xavier; Bautista-Llácer, Rosa

    2012-12-01

    The genetic diagnosis and screening of preimplantation embryos generated by assisted reproduction technology has been consolidated in the prenatal care framework. The rapid evolution of DNA technologies is tending to molecular approaches. Our intention is to present a detailed methodological view, showing different diagnostic strategies based on molecular techniques that are currently applied in preimplantation genetic diagnosis. The amount of DNA from one single, or a few cells, obtained by embryo biopsy is a limiting factor for the molecular analysis. In this sense, genetic laboratories have developed molecular protocols considering this restrictive condition. Nevertheless, the development of whole-genome amplification methods has allowed preimplantation genetic diagnosis for two or more indications simultaneously, like the selection of histocompatible embryos plus detection of monogenic diseases or aneuploidies. Moreover, molecular techniques have permitted preimplantation genetic screening to progress, by implementing microarray-based comparative genome hybridization. Finally, a future view of the embryo-genetics field based on molecular advances is proposed. The normalization, cost-effectiveness analysis, and new technological tools are the next topics for preimplantation genetic diagnosis and screening. Concomitantly, these additions to assisted reproduction technologies could have a positive effect on the schedules of preimplantation studies.

  15. Genetic anaylsis of a disease resistance gene from loblolly pine

    Science.gov (United States)

    Yinghua Huang; Nili Jin; Alex Diner; Chuck Tauer; Yan Zhang; John Damicone

    2003-01-01

    Rapid advances in molecular genetics provide great opportunities for studies of host defense mechanisms. Examination of plant responses to disease at the cellular and molecular level permits both discovery of changes in gene expression in the tissues attacked by pathogens, and identification of genetic components involved in the interaction between host and pathogens....

  16. Molecular research and genetic engineering of resistance to ...

    African Journals Online (AJOL)

    This paper reviews the recent research progress on genetic methods of resistance, the status and existing problems, traditional breeding, the main resistance mechanism, molecular markers and genetic engineering of resistance genes. It is hoped that new breeding methods and new varieties resistant to Verticillium wilt will ...

  17. Molecular Genetic Studies of Some Eye Diseases Affecting the ...

    Indian Academy of Sciences (India)

    First page Back Continue Last page Overview Graphics. Molecular Genetic Studies of Some Eye Diseases Affecting the Indian Population. Single gene disorders. Complex eye diseases. Genotype-phenotype correlation. Molecular diagnostics.

  18. Molecular and Genetic Determinants of Glioma Cell Invasion

    Directory of Open Access Journals (Sweden)

    Kenta Masui

    2017-12-01

    Full Text Available A diffusely invasive nature is a major obstacle in treating a malignant brain tumor, “diffuse glioma”, which prevents neurooncologists from surgically removing the tumor cells even in combination with chemotherapy and radiation. Recently updated classification of diffuse gliomas based on distinct genetic and epigenetic features has culminated in a multilayered diagnostic approach to combine histologic phenotypes and molecular genotypes in an integrated diagnosis. However, it is still a work in progress to decipher how the genetic aberrations contribute to the aggressive nature of gliomas including their highly invasive capacity. Here we depict a set of recent discoveries involving molecular genetic determinants of the infiltrating nature of glioma cells, especially focusing on genetic mutations in receptor tyrosine kinase pathways and metabolic reprogramming downstream of common cancer mutations. The specific biology of glioma cell invasion provides an opportunity to explore the genotype-phenotype correlation in cancer and develop novel glioma-specific therapeutic strategies for this devastating disease.

  19. Molecular characterization of genetic diversity in some durum wheat ...

    African Journals Online (AJOL)

    Molecular characterization of genetic diversity in some durum wheat ... African Journal of Biotechnology ... Thus, RAPD offer a potentially simple, rapid and reliable method to evaluate genetic variation and relatedness among ten wheat ...

  20. Micropropagation, genetic engineering, and molecular biology of Populus

    Science.gov (United States)

    N. B. Klopfenstein; Y. W. Chun; M. -S. Kim; M. A. Ahuja; M. C. Dillon; R. C. Carman; L. G. Eskew

    1997-01-01

    Thirty-four Populus biotechnology chapters, written by 85 authors, are comprised in 5 sections: 1) in vitro culture (micropropagation, somatic embryogenesis, protoplasts, somaclonal variation, and germplasm preservation); 2) transformation and foreign gene expression; 3) molecular biology (molecular/genetic characterization); 4) biotic and abiotic resistance (disease,...

  1. [Advance in molecular biology of Dendrobium (Orchidaceae)].

    Science.gov (United States)

    Li, Qing; Li, Biao; Guo, Shun-Xing

    2016-08-01

    With the development of molecular biology, the process in molecular biology research of Dendrobium is going fast. Not only did it provide new ways to identify Dendrobium quickly, reveal the genetic diversity and relationship of Dendrobium, but also lay the vital foundation for explaining the mechanism of Dendrobium growth and metabolism. The present paper reviews the recent process in molecular biology research of Dendrobium from three aspects, including molecular identification, genetic diversity and functional genes. And this review will facilitate the development of this research area and Dendrobium. Copyright© by the Chinese Pharmaceutical Association.

  2. Molecular Darwinism: The Contingency of Spontaneous Genetic Variation

    OpenAIRE

    Arber, Werner

    2011-01-01

    The availability of spontaneously occurring genetic variants is an important driving force of biological evolution. Largely thanks to experimental investigations by microbial geneticists, we know today that several different molecular mechanisms contribute to the overall genetic variations. These mechanisms can be assigned to three natural strategies to generate genetic variants: 1) local sequence changes, 2) intragenomic reshuffling of DNA segments, and 3) acquisition of a segment of foreign...

  3. Genetic diversity and stock identification of small abalone (Haliotis diversicolor) in Taiwan and Japan.

    Science.gov (United States)

    Hsu, Te-Hua; Gwo, Jin-Chywan

    2017-01-01

    Small abalone (Haliotis diversicolor) is a commercially valuable species for both fisheries and aquaculture. The production of annual farmed small abalone in Taiwan, once the highest in the world, has dramatically decreased in the past 15 years, and currently, the industry is close to collapse. Understanding the genetic diversity of small abalone and developing stock identification methods will be useful for genetic breeding, restoring collapsed stocks, managing stocks, and preventing illegal trade. We investigated 307 cultured and wild individuals from Taiwan, Japan, and Bali Island (Indonesia) by using the mitochondrial cytochrome c oxidase subunit I (COI) gene. Network analysis of mtDNA COI gene sequences revealed that the individuals collected from Taiwan, Japan, and Indonesia could be identified, and showed significant genetic divergence. In addition, the Indonesian population (Haliotis diversicolor squamata) was significantly different from the other populations and might need to be considered a separate species. We discovered a single nucleotide polymorphism marker in the mtDNA COI gene that can be used to distinguish the Taiwan population from the Japan population. We also developed a polymerase chain reaction-restriction fragment length polymorphism method for rapid detection. Furthermore, we could identify the cultured stocks, wild population, and hybrid stocks by using 6 microsatellites and amplified fragment length polymorphism. This study contributes useful tools for stock identification and the production of high-disease resistant small abalone strains (Japan × Taiwan or Taiwan × Japan). Efforts should be made to avoid unintentional random genetic mixing of the Taiwan population with the Japan population and subsequent breakdown of population differentiation, which impair local adaptation of the Taiwan wild population. Molecular markers revealed a split between the Taiwan and Japan populations, and the existence of a possible barrier to the free

  4. Genetic Breeding and Diversity of the Genus Passiflora: Progress and Perspectives in Molecular and Genetic Studies

    Directory of Open Access Journals (Sweden)

    Carlos Bernard M. Cerqueira-Silva

    2014-08-01

    Full Text Available Despite the ecological and economic importance of passion fruit (Passiflora spp., molecular markers have only recently been utilized in genetic studies of this genus. In addition, both basic genetic researches related to population studies and pre-breeding programs of passion fruit remain scarce for most Passiflora species. Considering the number of Passiflora species and the increasing use of these species as a resource for ornamental, medicinal, and food purposes, the aims of this review are the following: (i to present the current condition of the passion fruit crop; (ii to quantify the applications and effects of using molecular markers in studies of Passiflora; (iii to present the contributions of genetic engineering for passion fruit culture; and (iv to discuss the progress and perspectives of this research. Thus, the present review aims to summarize and discuss the relationship between historical and current progress on the culture, breeding, and molecular genetics of passion fruit.

  5. DNA degradation and genetic analysis of empty puparia: genetic identification limits in forensic entomology.

    Science.gov (United States)

    Mazzanti, Morena; Alessandrini, Federica; Tagliabracci, Adriano; Wells, Jeffrey D; Campobasso, Carlo P

    2010-02-25

    Puparial cases are common remnants of necrophagous flies in crime investigations. They usually represent the longest developmental time and, therefore, they can be very useful for the estimation of the post-mortem interval (PMI). However, before any PMI estimate, it is crucial to identify the species of fly eclosed from each puparium associated with the corpse. Morphological characteristics of the puparium are often distinctive enough to permit a species identification. But, even an accurate morphological analysis of empty puparia cannot discriminate among different species of closely related flies. Furthermore, morphological identification may be impossible if the fly puparia are poorly preserved or in fragments. This study explores the applicability of biomolecular techniques on empty puparia and their fragments for identification purposes. A total of 63 empty puparia of necrophagous Diptera resulting from forensic casework were examined. Samples were divided into three groups according to size, type and time of eclosion in order to verify whether the physical characteristics and puparia weathering can influence the amount of DNA extraction. The results suggest that a reliable genetic identification of forensically important flies may also be performed from empty puparia and/or their fragments. However, DNA degradation can deeply compromise the genetic analysis since the older the fly puparia, the smaller are the amplified fragments. 2009 Elsevier Ireland Ltd. All rights reserved.

  6. Journal of Genetics | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Home; Journals; Journal of Genetics. YONGFANG JIA. Articles written in Journal of Genetics. Volume 97 Issue 1 March 2018 pp 157-172 RESEARCH ARTICLE. Identification, molecular characterization and analysis of the expression pattern of SoxF subgroup genes the Yellow River carp, Cyprinus carpio · TINGTING LIANG ...

  7. Genetics and molecular biology of breast cancer

    Energy Technology Data Exchange (ETDEWEB)

    King, M.C. [California Univ., Berkeley, CA (United States); Lippman, M. [Georgetown Univ. Medical Center, Washington, DC (United States)] [comps.

    1992-12-31

    This volume contains the abstracts of oral presentations and poster sessions presented at the Cold Springs Harbor Meeting on Cancer Cells, this meeting entitled Genetics and Molecular Biology of Breast Cancer.

  8. Supplementary data: Molecular assessment of genetic diversity in ...

    Indian Academy of Sciences (India)

    Molecular assessment of genetic diversity in cluster bean. (Cyamopsis tetragonoloba) genotypes. Rakesh Pathak, S. K. Singh, Manjit Singh and A. Henry. J. Genet. 89, 243–246. Figure 1. RAPD profile of 1–16 Cyamopsis tetragonoloba genotypes amplified with arbitrary primer OPA-16. Figure 2. RAPD profile of 17–32 ...

  9. Molecular genetic approach for screening of hereditary non-polyposis colorectal cancer

    Directory of Open Access Journals (Sweden)

    Metka Ravnik-Glavač

    2005-07-01

    Full Text Available Background: The main goal of knowledge concerning human diseases is to transfer as much as possible useful information into clinical applications. Hereditary non-polyposis colorectal cancer (HNPCC is the most common autosomal dominant inherited predisposition for colorectal cancer, accounting for 1–2% of all bowel cancer. The only way to diagnose HNPCC is by a family history consistent with the disease defined by International Collaborative Group on HNPCC (Amsterdam criteria I and II. The main molecular cause of HNPCC is a constitutional mutation in one of the mismatch repair (MMR genes. Since HNPCC mutations have been detected also in families that did not fulfil the Amsterdam criteria, molecular genetic characteristics of HNPCC cancers have been proposed as valuable first step in HNPCC identification. Microsatellite instability is present in about 90% of cancers of HNPCC patients. However, of all MSI colorectal cancers 80– 90% are sporadic. Several molecular mechanisms have been uncovered that enable distinguishing to some extent between sporadic and HNPCC cancers with MSI including hypermethylation of hMLH1 promoter and frequent mutations in BAX and TGFBR2 in sporadic CRC with MSI-H.Conclusions: The determination of MSI status and careful separation of MSI positive colorectal cancer into sporadic MSIL, sporadic MSI-H, and HNPCC MSI-H followed by mutation detection in MMR genes is important for prevention, screening and management of colorectal cancer. In some studies we and others have already shown that large-scale molecular genetic analysis for HNPCC can be done and is sensitive enough to approve population screening. Population screening includes also colonoscopy which is restricted only to the obligate carriers of the mutation. This enables that the disease is detected in earlier stages which would greatly decrease medical treatment costs and most importantly decrease mortality. In Slovenia we have started population screening based

  10. Molecular identification of Nocardia species using the sodA gene

    Directory of Open Access Journals (Sweden)

    K. Sánchez-Herrera

    2017-09-01

    Full Text Available Currently for bacterial identification and classification the rrs gene encoding 16S rRNA is used as a reference method for the analysis of strains of the genus Nocardia. However, it does not have enough polymorphism to differentiate them at the species level. This fact makes it necessary to search for molecular targets that can provide better identification. The sodA gene (encoding the enzyme superoxide dismutase has had good results in identifying species of other Actinomycetes. In this study the sodA gene is proposed for the identification and differentiation at the species level of the genus Nocardia. We used 41 type species of various collections; a 386 bp fragment of the sodA gene was amplified and sequenced, and a phylogenetic analysis was performed comparing the genes rrs (1171 bp, hsp65 (401 bp, secA1 (494 bp, gyrB (1195 bp and rpoB (401 bp. The sequences were aligned using the Clustal X program. Evolutionary trees according to the neighbour-joining method were created with the programs Phylo_win and MEGA 6. The specific variability of the sodA genus of the genus Nocardia was analysed. A high phylogenetic resolution, significant genetic variability, and specificity and reliability were observed for the differentiation of the isolates at the species level. The polymorphism observed in the sodA gene sequence contains variable regions that allow the discrimination of closely related Nocardia species. The clear specificity, despite its small size, proves to be of great advantage for use in taxonomic studies and clinical diagnosis of the genus Nocardia.

  11. A Genetic Algorithms Based Approach for Identification of Escherichia coli Fed-batch Fermentation

    Directory of Open Access Journals (Sweden)

    Olympia Roeva

    2004-10-01

    Full Text Available This paper presents the use of genetic algorithms for identification of Escherichia coli fed-batch fermentation process. Genetic algorithms are a directed random search technique, based on the mechanics of natural selection and natural genetics, which can find the global optimal solution in complex multidimensional search space. The dynamic behavior of considered process has known nonlinear structure, described with a system of deterministic nonlinear differential equations according to the mass balance. The parameters of the model are estimated using genetic algorithms. Simulation examples for demonstration of the effectiveness and robustness of the proposed identification scheme are included. As a result, the model accurately predicts the process of cultivation of E. coli.

  12. Molecular identification of Lodoicea maldivica (coco de mer seeds

    Directory of Open Access Journals (Sweden)

    Mok Chuen-shing

    2011-09-01

    Full Text Available Abstract Background The edible endosperm of Lodoicea maldivica with the common name of coco de mer is used in Chinese medicine for treating cough. Native to Seychelles, Lodoicea maldivica seeds have commanded high prices for centuries due to its scarcity. This study aims to develop a molecular identification method for the authentication of Lodoicea maldivica seeds. Methods DNA was extracted from the sample. Two polymerase chain reaction (PCR systems were developed to amplify a region of the chloroplast DNA and the nuclear phosphoribulokinase (PRK region specific to Lodoicea maldivica respectively. DNA sequence of a sample was determined and compared with that of the Lodoicea maldivica reference material. Results The PRK gene of Lodoicea maldivica was successfully amplified and sequenced for identification. Conclusion A new molecular method for the identification of Lodoicea maldivica seeds in fresh, frozen or dried forms was developed.

  13. The molecular genetic architecture of self-employment.

    Science.gov (United States)

    van der Loos, Matthijs J H M; Rietveld, Cornelius A; Eklund, Niina; Koellinger, Philipp D; Rivadeneira, Fernando; Abecasis, Gonçalo R; Ankra-Badu, Georgina A; Baumeister, Sebastian E; Benjamin, Daniel J; Biffar, Reiner; Blankenberg, Stefan; Boomsma, Dorret I; Cesarini, David; Cucca, Francesco; de Geus, Eco J C; Dedoussis, George; Deloukas, Panos; Dimitriou, Maria; Eiriksdottir, Guðny; Eriksson, Johan; Gieger, Christian; Gudnason, Vilmundur; Höhne, Birgit; Holle, Rolf; Hottenga, Jouke-Jan; Isaacs, Aaron; Järvelin, Marjo-Riitta; Johannesson, Magnus; Kaakinen, Marika; Kähönen, Mika; Kanoni, Stavroula; Laaksonen, Maarit A; Lahti, Jari; Launer, Lenore J; Lehtimäki, Terho; Loitfelder, Marisa; Magnusson, Patrik K E; Naitza, Silvia; Oostra, Ben A; Perola, Markus; Petrovic, Katja; Quaye, Lydia; Raitakari, Olli; Ripatti, Samuli; Scheet, Paul; Schlessinger, David; Schmidt, Carsten O; Schmidt, Helena; Schmidt, Reinhold; Senft, Andrea; Smith, Albert V; Spector, Timothy D; Surakka, Ida; Svento, Rauli; Terracciano, Antonio; Tikkanen, Emmi; van Duijn, Cornelia M; Viikari, Jorma; Völzke, Henry; Wichmann, H-Erich; Wild, Philipp S; Willems, Sara M; Willemsen, Gonneke; van Rooij, Frank J A; Groenen, Patrick J F; Uitterlinden, André G; Hofman, Albert; Thurik, A Roy

    2013-01-01

    Economic variables such as income, education, and occupation are known to affect mortality and morbidity, such as cardiovascular disease, and have also been shown to be partly heritable. However, very little is known about which genes influence economic variables, although these genes may have both a direct and an indirect effect on health. We report results from the first large-scale collaboration that studies the molecular genetic architecture of an economic variable-entrepreneurship-that was operationalized using self-employment, a widely-available proxy. Our results suggest that common SNPs when considered jointly explain about half of the narrow-sense heritability of self-employment estimated in twin data (σ(g)(2)/σ(P)(2) = 25%, h(2) = 55%). However, a meta-analysis of genome-wide association studies across sixteen studies comprising 50,627 participants did not identify genome-wide significant SNPs. 58 SNPs with pself-employment in an independent sample (p≥0.039). Our results are consistent with a highly polygenic molecular genetic architecture of self-employment, with many genetic variants of small effect. Although self-employment is a multi-faceted, heavily environmentally influenced, and biologically distal trait, our results are similar to those for other genetically complex and biologically more proximate outcomes, such as height, intelligence, personality, and several diseases.

  14. [Genetic diagnostics of cancer diseases].

    Science.gov (United States)

    Cobilanschi, Joana

    2013-11-27

    Cancer is caused by genetic alterations, but only 10% of the cancer diseases are inherited. The probability for an individual or a family of having inherited cancer, individual consequences of the respective results of genetic testing, as well as its costs and reimbursement by the health insurance must be addressed by expert genetic counseling which at-risk requires special expertise. Identification of a germline mutation which may predispose to a variety of different cancer types allows determination of an individual's specific life time risk in symptomatic as well as in a-symptomatic family members. Identification of the underlying defective gene in heritable cancer disorders also enables optimized preventive and novel therapeutic approaches specifically targeting the underlying molecular pathomechanisms.

  15. Advances in molecular genetic studies of primary dystonia

    Directory of Open Access Journals (Sweden)

    MA Ling-yan

    2013-07-01

    Full Text Available Dystonias are heterogeneous hyperkinetic movement disorders characterized by involuntary muscle contractions which result in twisting, repetitive movements and abnormal postures. In recent years, there was a great advance in molecular genetic studies of primary dystonia. This paper will review the clinical characteristics and molecular genetic studies of primary dystonia, including early-onset generalized torsion dystonia (DYT1, whispering dysphonia (DYT4, dopa-responsive dystonia (DYT5, mixed-type dystonia (DYT6, paroxysmal kinesigenic dyskinesia (DYT10, myoclonus-dystonia syndrome (DYT11, rapid-onset dystonia parkinsonism (DYT12, adult-onset cervical dystonia (DYT23, craniocervical dystonia (DYT24 and primary torsion dystonia (DYT25.

  16. The Molecular Genetic Architecture of Self-Employment

    Science.gov (United States)

    van der Loos, Matthijs J. H. M.; Rietveld, Cornelius A.; Eklund, Niina; Koellinger, Philipp D.; Rivadeneira, Fernando; Abecasis, Gonçalo R.; Ankra-Badu, Georgina A.; Baumeister, Sebastian E.; Benjamin, Daniel J.; Biffar, Reiner; Blankenberg, Stefan; Boomsma, Dorret I.; Cesarini, David; Cucca, Francesco; de Geus, Eco J. C.; Dedoussis, George; Deloukas, Panos; Dimitriou, Maria; Eiriksdottir, Guðny; Eriksson, Johan; Gieger, Christian; Gudnason, Vilmundur; Höhne, Birgit; Holle, Rolf; Hottenga, Jouke-Jan; Isaacs, Aaron; Järvelin, Marjo-Riitta; Johannesson, Magnus; Kaakinen, Marika; Kähönen, Mika; Kanoni, Stavroula; Laaksonen, Maarit A.; Lahti, Jari; Launer, Lenore J.; Lehtimäki, Terho; Loitfelder, Marisa; Magnusson, Patrik K. E.; Naitza, Silvia; Oostra, Ben A.; Perola, Markus; Petrovic, Katja; Quaye, Lydia; Raitakari, Olli; Ripatti, Samuli; Scheet, Paul; Schlessinger, David; Schmidt, Carsten O.; Schmidt, Helena; Schmidt, Reinhold; Senft, Andrea; Smith, Albert V.; Spector, Timothy D.; Surakka, Ida; Svento, Rauli; Terracciano, Antonio; Tikkanen, Emmi; van Duijn, Cornelia M.; Viikari, Jorma; Völzke, Henry; Wichmann, H. -Erich; Wild, Philipp S.; Willems, Sara M.; Willemsen, Gonneke; van Rooij, Frank J. A.; Groenen, Patrick J. F.; Uitterlinden, André G.; Hofman, Albert; Thurik, A. Roy

    2013-01-01

    Economic variables such as income, education, and occupation are known to affect mortality and morbidity, such as cardiovascular disease, and have also been shown to be partly heritable. However, very little is known about which genes influence economic variables, although these genes may have both a direct and an indirect effect on health. We report results from the first large-scale collaboration that studies the molecular genetic architecture of an economic variable–entrepreneurship–that was operationalized using self-employment, a widely-available proxy. Our results suggest that common SNPs when considered jointly explain about half of the narrow-sense heritability of self-employment estimated in twin data (σg 2/σP 2 = 25%, h 2 = 55%). However, a meta-analysis of genome-wide association studies across sixteen studies comprising 50,627 participants did not identify genome-wide significant SNPs. 58 SNPs with pentrepreneurship reveal significant associations. Finally, SNP-based genetic scores that use results from the meta-analysis capture less than 0.2% of the variance in self-employment in an independent sample (p≥0.039). Our results are consistent with a highly polygenic molecular genetic architecture of self-employment, with many genetic variants of small effect. Although self-employment is a multi-faceted, heavily environmentally influenced, and biologically distal trait, our results are similar to those for other genetically complex and biologically more proximate outcomes, such as height, intelligence, personality, and several diseases. PMID:23593239

  17. Rapid Molecular Identification of Human Taeniid Cestodes by Pyrosequencing Approach

    Science.gov (United States)

    Thanchomnang, Tongjit; Tantrawatpan, Chairat; Intapan, Pewpan M.; Sanpool, Oranuch; Janwan, Penchom; Lulitanond, Viraphong; Tourtip, Somjintana; Yamasaki, Hiroshi; Maleewong, Wanchai

    2014-01-01

    Taenia saginata, T. solium, and T. asiatica are causative agents of taeniasis in humans. The difficulty of morphological identification of human taeniids can lead to misdiagnosis or confusion. To overcome this problem, several molecular methods have been developed, but use of these tends to be time-consuming. Here, a rapid and high-throughput pyrosequencing approach was developed for the identification of three human taeniids originating from various countries. Primers targeting the mitochondrial cytochrome c oxidase subunit 1 (cox1) gene of the three Taenia species were designed. Variations in a 26-nucleotide target region were used for identification. The reproducibility and accuracy of the pyrosequencing technology was confirmed by Sanger sequencing. This technique will be a valuable tool to distinguish between sympatric human taeniids that occur in Thailand, Asia and Pacific countries. This method could potentially be used for the molecular identification of the taeniid species that might be associated with suspicious cysts and lesions, or cyst residues in humans or livestock at the slaughterhouse. PMID:24945530

  18. Molecular identification and characterization of Rhizoctonia solani AG-3 isolates causing black scurf of potato

    International Nuclear Information System (INIS)

    Zaidy, M.E.; Othman, M.R.; Mahmoud, M.

    2018-01-01

    Twenty-six isolates of Rhizoctonia solani AG-3 were collected from four potato growing area of Saudi Arabia. Yield damages due to this infection is reported to range from 7-64% (average of 35%), depending on many factors. Molecular identification of R. solani AG-3 isolates by ITS-regions and characterization was done by inter simple sequence repeat (ISSR) markers. Twenty-six isolates of R. solani used in the current study were isolated from potato fields in four major potato-producing regions of Saudi Arabia. All isolates were inoculated on potato and observations on the percentage of disease incidence were recorded. Genomic DNA extraction of R. solani AG-3 isolates was used by A specific and sensitive PCR and ISSR primers. A single splinter of nearly 500 bp was only amplified once genomic DNA from R. solani AG-3 isolates. Amplicon size of three ISSR primers ranged from 0.3 to 2.8 Kb in isolates. Using the three primers, the tested isolates were separated on the basis of genetic similarity coefficients (GSC). The range of the GSC was beginning at 0.62 and ending at 1.00. In unweighted pair-group method arithmetic averages (UPGMA) analysis, the R. solani isolates grouped into five clusters. The present method provided rapid and reliable detection of R. solani AG-3 isolates. Molecular characterization have great genetic variation in the R. solani AG-3 population, without any correlation between aggressiveness, geographical regions and genetic variation based on ISSR markers. (author)

  19. [Colorectal cancer (CCR): genetic and molecular alterations].

    Science.gov (United States)

    Juárez-Vázquez, Clara Ibet; Rosales-Reynoso, Mónica Alejandra

    2014-01-01

    The aim of this review is to present a genetic and molecular overview of colorectal carcinogenesis (sporadic and hereditary origin) as a multistage process, where there are a number of molecular mechanisms associated with the development of colorectal cancer and genomic instability that allows the accumulation of mutations in proto-oncogenes and tumor suppressor genes, chromosomal instability, and methylation and microsatellite instability, and the involvement of altered expression of microRNAs' prognosis factors.

  20. Molecular identification of tsetse fly ( Diptera: Glossinidae ) species ...

    African Journals Online (AJOL)

    Inspite of the few mixed clusters, the pattern produced in the phylogenetic trees can provide a good guide to support any other method of Glossina identification. It was recommended that evaluations be made to validate other genetic markers that can produce better resolutions to identify tsetse fly species using phylogenetic ...

  1. Genetic molecular analysis of Coffea arabica (Rubiaceae hybrids using SRAP markers

    Directory of Open Access Journals (Sweden)

    Manoj Kumar Mishra

    2011-06-01

    Full Text Available In Coffea arabica (arabica coffee, the phenotypic as well as genetic variability has been found low because of the narrow genetic basis and self fertile nature of the species. Because of high similarity in phenotypic appearance among the majority of arabica collections, selection of parental lines for inter-varietals hybridization and identification of resultant hybrids at an early stage of plant growth is difficult. DNA markers are known to be reliable in identifying closely related cultivars and hybrids. Sequence Related Amplified Polymorphism (SRAP is a new molecular marker technology developed based on PCR. In this paper, sixty arabica-hybrid progenies belonging to six crosses were analyzed using 31 highly polymorphic SRAP markers. The analysis revealed seven types of SRAP marker profiles which are useful in discriminating the parents and hybrids. The number of bands amplified per primer pair ranges from 6.13 to 8.58 with average number of seven bands. Among six hybrid combinations, percentage of bands shared between hybrids and their parents ranged from 66.29% to 85.71% with polymorphic bands varied from 27.64% to 60.0%. Percentage of hybrid specific fragments obtained in various hybrid combinations ranged from 0.71% to 10.86% and ascribed to the consequence of meiotic recombination. Based on the similarity index calculation, it was observed that F1 hybrids share maximum number of bands with the female parent compared to male parent. The results obtained in the present study revealed the effectiveness of SRAP technique in cultivar identification and hybrid analysis in this coffee species. Rev. Biol. Trop. 59 (2: 607-617. Epub 2011 June 01.

  2. The isolated Leptospira Spp. Identification by molecular biological techniques

    Directory of Open Access Journals (Sweden)

    Duangjai Suwancharoen

    2017-01-01

    Full Text Available Leptospirosis is a zoonotic disease caused by the bacteria of Leptospira spp. Identification of this bacterium relies on serotyping and genotyping. Data base for animal causative serovars in Thailand is limited. As the unknown serovars are found in the laboratory, they need to be sent overseas for referent identification. To reduce the cost, this research intended to develop a leptospiral identification method which is user–friendly and able to classify efficiently. Ten Leptospira isolations were cultured from urine samples. They were identified by three molecular biological techniques, including Pulsed-Field Gel Electrophoresis (PFGE, Variable Number Tandem Repeat (VNTR and Multilocus Sequence Typing (MLST. These methods were developed and compared to find the most suitable one for leptospiral identification. VNTR was found to be inappropriate since it could not identify the agents and it did not show the PCR product. PFGE and MLST gave the same results of the unknown 1 and 2 which were L.weilii sv Samin st Samin. Unknown 4 showed different results by each technique. Unknown 5 to 10 were likely to be L.meyeri sv Ranarum st ICF and Leptonema illini sv Illini st 3055 by PFGE but MLST could not identify the serovar. However, molecular biological technique for Leptospira identification should be done by several methods in order to confirm the result of each other.

  3. Molecular Diagnostics of ?-Thalassemia

    OpenAIRE

    Atanasovska, B; Bozhinovski, G; Chakalova, L; Kocheva, S; Karanfilski, O; Plaseska-Karanfiska, D

    2012-01-01

    A high-quality hemoglobinopathy diagnosis is based on the results of a number of tests including assays for molecular identification of causative mutations. We describe the current diagnostic strategy for the identification of ?-thalassemias and hemoglobin (Hb) variants at the International Reference Laboratory for Haemoglobinopathies, Research Centre for Genetic Engineering and Biotechnology (RCGEB) ?Georgi D. Efremov,? Skopje, Republic of Macedonia. Our overall approach and most of the meth...

  4. Review: Genetic diversity and population structure of cotton ...

    African Journals Online (AJOL)

    Cotton (Gossypium spp.) is the world's leading natural fiber crop and is cultivated in diverse temperate and tropical areas. In this sense, molecular markers are important tools for polymorphism identification in genetic diversity analyses. The objective of this study was to evaluate genetic diversity and population structure in ...

  5. Molecular evaluation of genetic diversity and association studies in ...

    Indian Academy of Sciences (India)

    Molecular evaluation of genetic diversity and association studies in rice. (Oryza sativa L.) C. Vanniarajan, K. K. Vinod and Andy Pereira. J. Genet. 91, 9–19. Table 1. Chromosome-wise distribution of SSR alleles and their number (k), polymorphic information content (PIC) and allele discrimination index (Dm). Chromosome.

  6. Empirical Refinements of a Molecular Genetics Learning Progression: The Molecular Constructs

    Science.gov (United States)

    Todd, Amber; Kenyon, Lisa

    2016-01-01

    This article describes revisions to four of the eight constructs of the Duncan molecular genetics learning progression [Duncan, Rogat, & Yarden, (2009)]. As learning progressions remain hypothetical models until validated by multiple rounds of empirical studies, these revisions are an important step toward validating the progression. Our…

  7. Primer on molecular genetics. DOE Human Genome Program

    Energy Technology Data Exchange (ETDEWEB)

    1992-04-01

    This report is taken from the April 1992 draft of the DOE Human Genome 1991--1992 Program Report, which is expected to be published in May 1992. The primer is intended to be an introduction to basic principles of molecular genetics pertaining to the genome project. The material contained herein is not final and may be incomplete. Techniques of genetic mapping and DNA sequencing are described.

  8. [Principles for molecular identification of traditional Chinese materia medica using DNA barcoding].

    Science.gov (United States)

    Chen, Shi-Lin; Yao, Hui; Han, Jian-Ping; Xin, Tian-Yi; Pang, Xiao-Hui; Shi, Lin-Chun; Luo, Kun; Song, Jing-Yuan; Hou, Dian-Yun; Shi, Shang-Mei; Qian, Zhong-Zhi

    2013-01-01

    Since the research of molecular identification of Chinese Materia Medica (CMM) using DNA barcode is rapidly developing and popularizing, the principle of this method is approved to be listed in the Supplement of the Pharmacopoeia of the People's Republic of China. Based on the study on comprehensive samples, the DNA barcoding systems have been established to identify CMM, i.e. ITS2 as a core barcode and psbA-trnH as a complementary locus for identification of planta medica, and COI as a core barcode and ITS2 as a complementary locus for identification of animal medica. This article introduced the principle of molecular identification of CMM using DNA barcoding and its drafting instructions. Furthermore, its application perspective was discussed.

  9. EMQN/CMGS best practice guidelines for the molecular genetic testing of Huntington disease.

    Science.gov (United States)

    Losekoot, Monique; van Belzen, Martine J; Seneca, Sara; Bauer, Peter; Stenhouse, Susan A R; Barton, David E

    2013-05-01

    Huntington disease (HD) is caused by the expansion of an unstable polymorphic trinucleotide (CAG)n repeat in exon 1 of the HTT gene, which translates into an extended polyglutamine tract in the protein. Laboratory diagnosis of HD involves estimation of the number of CAG repeats. Molecular genetic testing for HD is offered in a wide range of laboratories both within and outside the European community. In order to measure the quality and raise the standard of molecular genetic testing in these laboratories, the European Molecular Genetics Quality Network has organized a yearly external quality assessment (EQA) scheme for molecular genetic testing of HD for over 10 years. EQA compares a laboratory's output with a fixed standard both for genotyping and reporting of the results to the referring physicians. In general, the standard of genotyping is very high but the clarity of interpretation and reporting of the test result varies more widely. This emphasizes the need for best practice guidelines for this disorder. We have therefore developed these best practice guidelines for genetic testing for HD to assist in testing and reporting of results. The analytical methods and the potential pitfalls of molecular genetic testing are highlighted and the implications of the different test outcomes for the consultand and his or her family members are discussed.

  10. Identification and characterization of contrasting sunflower genotypes to early leaf senescence process combining molecular and physiological studies (Helianthus annuus L.).

    Science.gov (United States)

    López Gialdi, A I; Moschen, S; Villán, C S; López Fernández, M P; Maldonado, S; Paniego, N; Heinz, R A; Fernandez, P

    2016-09-01

    Leaf senescence is a complex mechanism ruled by multiple genetic and environmental variables that affect crop yields. It is the last stage in leaf development, is characterized by an active decline in photosynthetic rate, nutrients recycling and cell death. The aim of this work was to identify contrasting sunflower inbred lines differing in leaf senescence and to deepen the study of this process in sunflower. Ten sunflower genotypes, previously selected by physiological analysis from 150 inbred genotypes, were evaluated under field conditions through physiological, cytological and molecular analysis. The physiological measurement allowed the identification of two contrasting senescence inbred lines, R453 and B481-6, with an increase in yield in the senescence delayed genotype. These findings were confirmed by cytological and molecular analysis using TUNEL, genomic DNA gel electrophoresis, flow sorting and gene expression analysis by qPCR. These results allowed the selection of the two most promising contrasting genotypes, which enables future studies and the identification of new biomarkers associated to early senescence in sunflower. In addition, they allowed the tuning of cytological techniques for a non-model species and its integration with molecular variables. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  11. Rapid molecular identification of human taeniid cestodes by pyrosequencing approach.

    Directory of Open Access Journals (Sweden)

    Tongjit Thanchomnang

    Full Text Available Taenia saginata, T. solium, and T. asiatica are causative agents of taeniasis in humans. The difficulty of morphological identification of human taeniids can lead to misdiagnosis or confusion. To overcome this problem, several molecular methods have been developed, but use of these tends to be time-consuming. Here, a rapid and high-throughput pyrosequencing approach was developed for the identification of three human taeniids originating from various countries. Primers targeting the mitochondrial cytochrome c oxidase subunit 1 (cox1 gene of the three Taenia species were designed. Variations in a 26-nucleotide target region were used for identification. The reproducibility and accuracy of the pyrosequencing technology was confirmed by Sanger sequencing. This technique will be a valuable tool to distinguish between sympatric human taeniids that occur in Thailand, Asia and Pacific countries. This method could potentially be used for the molecular identification of the taeniid species that might be associated with suspicious cysts and lesions, or cyst residues in humans or livestock at the slaughterhouse.

  12. Medulloblastoma: Molecular Genetics and Animal Models

    Directory of Open Access Journals (Sweden)

    Corey Raffel

    2004-07-01

    Full Text Available Medulloblastoma is a primary brain tumor found in the cerebellum of children. The tumor occurs in association with two inherited cancer syndromes: Turcot syndrome and Gorlin syndrome. Insights into the molecular biology of the tumor have come from looking at alterations in the genes altered in these syndromes, PTC and APC, respectively. Murine models of medulloblastoma have been constructed based on these alterations. Additional murine models that, while mimicking the appearance of the human tumor, seem unrelated to the human tumor's molecular alterations have been made. In this review, the clinical picture, origin, molecular biology, murine models of medulloblastoma are discussed. Although a great deal has been discovered about this tumor, the genetic alterations responsible for tumor development in a majority of patients have yet to be described.

  13. Inherited Disease Genetics Improves the Identification of Cancer-Associated Genes.

    Directory of Open Access Journals (Sweden)

    Boyang Zhao

    2016-06-01

    Full Text Available The identification of biologically significant variants in cancer genomes is critical to therapeutic discovery, but it is limited by the statistical power needed to discern driver from passenger. Independent biological data can be used to filter cancer exomes and increase statistical power. Large genetic databases for inherited diseases are uniquely suited to this task because they contain specific amino acid alterations with known pathogenicity and molecular mechanisms. However, no rigorous method to overlay this information onto the cancer exome exists. Here, we present a computational methodology that overlays any variant database onto the somatic mutations in all cancer exomes. We validate the computation experimentally and identify novel associations in a re-analysis of 7362 cancer exomes. This analysis identified activating SOS1 mutations associated with Noonan syndrome as significantly altered in melanoma and the first kinase-activating mutations in ACVR1 associated with adult tumors. Beyond a filter, significant variants found in both rare cancers and rare inherited diseases increase the unmet medical need for therapeutics that target these variants and may bootstrap drug discovery efforts in orphan indications.

  14. Genetic identification of F1 and post-F1 serrasalmid juvenile hybrids in Brazilian aquaculture.

    Directory of Open Access Journals (Sweden)

    Diogo Teruo Hashimoto

    Full Text Available Juvenile fish trade monitoring is an important task on Brazilian fish farms. However, the identification of juvenile fish through morphological analysis is not feasible, particularly between interspecific hybrids and pure species individuals, making the monitoring of these individuals difficult. Hybrids can be erroneously identified as pure species in breeding facilities, which might reduce production on farms and negatively affect native populations due to escapes or stocking practices. In the present study, we used a multi-approach analysis (molecular and cytogenetic markers to identify juveniles of three serrasalmid species (Colossoma macropomum, Piaractus mesopotamicus and Piaractus brachypomus and their hybrids in different stocks purchased from three seed producers in Brazil. The main findings of this study were the detection of intergenus backcrossing between the hybrid ♀ patinga (P. mesopotamicus×P. brachypomus×♂ C. macropomum and the occurrence of one hybrid triploid individual. This atypical specimen might result from automixis, a mechanism that produces unreduced gametes in some organisms. Moreover, molecular identification indicated that hybrid individuals are traded as pure species or other types of interspecific hybrids, particularly post-F1 individuals. These results show that serrasalmid fish genomes exhibit high genetic heterogeneity, and multi-approach methods and regulators could improve the surveillance of the production and trade of fish species and their hybrids, thereby facilitating the sustainable development of fish farming.

  15. A molecular genetic toolbox for Yarrowia lipolytica

    DEFF Research Database (Denmark)

    Bredeweg, Erin L.; Pomraning, Kyle R.; Dai, Ziyu

    2017-01-01

    used these tools to build the "Yarrowia lipolytica Cell Atlas," a collection of strains with endogenous fluorescently tagged organelles in the same genetic background, in order to define organelle morphology in live cells. Conclusions: These molecular and isogenetic tools are useful for live assessment...

  16. DataGenno: building a new tool to bridge molecular and clinical genetics

    Directory of Open Access Journals (Sweden)

    Fabricio F Costa

    2011-03-01

    Full Text Available Fabricio F Costa1,2, Luciano S Foly1, Marcelo P Coutinho11DataGenno Interactive Research Ltd., Itaperuna, Rio de Janeiro, Brazil; 2Cancer Biology and Epigenomics Program, Children's Memorial Research Center, Northwestern University's Feinberg School of Medicine, Chicago, IL, USAAbstract: Clinical genetics is one of the most challenging fields in medicine, with thousands of children born every year with congenital defects that have no satisfactory diagnosis. There are more than 6,000 known single-gene disorders that can cause birth defects or diseases in approximately 1 in every 200 births. Clinical and molecular information on genetic diseases and syndromes are widespread in the literature, and there are few databases combining this information. Therefore, it is very challenging for health care professionals and researchers to translate the latest advances in science and medicine into effective clinical interventions and new treatments. In order to overcome this obstacle and promote networking, we are building DataGenno, an online medical and scientific portal. DataGenno has been developed to be a source of information on genetic diseases and syndromes for the needs of all heath care professionals and researchers. Our database will be able to integrate both clinical and molecular aspects of genetic diseases in a fully interactive environment. DataGenno’s system already contains clinical and molecular information for 300 diseases, with approximately 6,000 signs and symptoms of these diseases in a database combined with a search engine. Our main goal is to cover all genetic diseases described to date, providing not only clinical information such as morphological and anatomical features but also the most comprehensive molecular genetics/genomics features and available testing information. We are also developing ways to connect DataGenno’s portal with Electronic Health Records in order to improve the efficiency of patient care. Additionally

  17. Molecular and radiological diagnosis of sclerosing bone dysplasias

    International Nuclear Information System (INIS)

    Hul, Wim van; Vanhoenacker, Filip; Balemans, Wendy; Janssens, Katrien; Schepper, A.M. de

    2001-01-01

    Bone mineral density (BMD) is a quantitative trait for which the heritability of the variance is estimated to be up to 80%, based on epidemiological and twin studies. Further illustration of the involvement of genetic factors in bone homeostasis, is the existence of an extended group of genetic conditions associated with an abnormal bone density. The group of conditions with increased bone density has long been poorly studied and understood at the molecular genetic level but recently, thanks to recent developments in molecular genetics and genomics, for some of them major breakthroughs have been made. These findings will make the molecular analysis of such patients an additional tool in diagnostics and in genetic counseling. However, the initial identification of affected patients is still largely dependent upon recognition of clinical and radiological stigmata of the disease. Therefore, in this overview of sclerosing bone dysplasias, the classical clinical and radiological signs of this group of disorders will be discussed along with the new molecular insights

  18. Molecular and radiological diagnosis of sclerosing bone dysplasias

    Energy Technology Data Exchange (ETDEWEB)

    Hul, Wim van E-mail: vhul@uia.ac.be; Vanhoenacker, Filip; Balemans, Wendy; Janssens, Katrien; Schepper, A.M. de

    2001-12-01

    Bone mineral density (BMD) is a quantitative trait for which the heritability of the variance is estimated to be up to 80%, based on epidemiological and twin studies. Further illustration of the involvement of genetic factors in bone homeostasis, is the existence of an extended group of genetic conditions associated with an abnormal bone density. The group of conditions with increased bone density has long been poorly studied and understood at the molecular genetic level but recently, thanks to recent developments in molecular genetics and genomics, for some of them major breakthroughs have been made. These findings will make the molecular analysis of such patients an additional tool in diagnostics and in genetic counseling. However, the initial identification of affected patients is still largely dependent upon recognition of clinical and radiological stigmata of the disease. Therefore, in this overview of sclerosing bone dysplasias, the classical clinical and radiological signs of this group of disorders will be discussed along with the new molecular insights.

  19. Phenotypic and molecular genetic analysis of Pyruvate Kinase ...

    African Journals Online (AJOL)

    Phenotypic and molecular genetic analysis of Pyruvate Kinase deficiency in a Tunisian family. Jaouani Mouna, Hamdi Nadia, Chaouch Leila, Kalai Miniar, Mellouli Fethi, Darragi Imen, Boudriga Imen, Chaouachi Dorra, Bejaoui Mohamed, Abbes Salem ...

  20. Genetic identification of eggs from four species of Ophichthidae and Congridae (Anguilliformes) in the northern East China Sea

    Science.gov (United States)

    Choi, Hae-young; Oh, Jina

    2018-01-01

    We report the first genetic identification of eggs of four species of Anguilliformes caught in the northern East China Sea during August 2016, where leptocephali and adults have been collected. The species were Ophisurus macrorhynchos and Echelus uropterus belonging to the Ophichthidae, and Ariosoma majus and Gnathophis heterognathos belonging to the Congridae. The eggs were identified using three molecular genetic markers (mitochondrial 12S rRNA, 16S rRNA, and cytochrome c oxidase subunit 1), sequences obtained from local adult specimens, and geographical distribution data. All eggs were in the early or middle developmental stages. For all species except A. majus, the eggs were found near the range of small leptocephali in the East China Sea and the southern Korean Peninsula, which indicates these species had spawned along the continental near these areas during the summer. PMID:29621326

  1. Direct-to-consumer genetic testing for predicting sports performance and talent identification: Consensus statement

    Science.gov (United States)

    Webborn, Nick; Williams, Alun; McNamee, Mike; Bouchard, Claude; Pitsiladis, Yannis; Ahmetov, Ildus; Ashley, Euan; Byrne, Nuala; Camporesi, Silvia; Collins, Malcolm; Dijkstra, Paul; Eynon, Nir; Fuku, Noriyuki; Garton, Fleur C; Hoppe, Nils; Holm, Søren; Kaye, Jane; Klissouras, Vassilis; Lucia, Alejandro; Maase, Kamiel; Moran, Colin; North, Kathryn N; Pigozzi, Fabio; Wang, Guan

    2015-01-01

    The general consensus among sport and exercise genetics researchers is that genetic tests have no role to play in talent identification or the individualised prescription of training to maximise performance. Despite the lack of evidence, recent years have witnessed the rise of an emerging market of direct-to-consumer marketing (DTC) tests that claim to be able to identify children's athletic talents. Targeted consumers include mainly coaches and parents. There is concern among the scientific community that the current level of knowledge is being misrepresented for commercial purposes. There remains a lack of universally accepted guidelines and legislation for DTC testing in relation to all forms of genetic testing and not just for talent identification. There is concern over the lack of clarity of information over which specific genes or variants are being tested and the almost universal lack of appropriate genetic counselling for the interpretation of the genetic data to consumers. Furthermore independent studies have identified issues relating to quality control by DTC laboratories with different results being reported from samples from the same individual. Consequently, in the current state of knowledge, no child or young athlete should be exposed to DTC genetic testing to define or alter training or for talent identification aimed at selecting gifted children or adolescents. Large scale collaborative projects, may help to develop a stronger scientific foundation on these issues in the future. PMID:26582191

  2. Molecular characterization of olive cultivars grown in Iraq using ...

    African Journals Online (AJOL)

    The results of this research confirmed AFLP and SSR to be useful tools in genetic relationships among olive cultivars, in creating a molecular database for Iraqi olive cultivars, in breeding strategies and in correct cultivar identification. Keywords: Olea europaea, genetic diversity, amplified fragment length polymorphism ...

  3. Use of molecular genetics and historical records to reconstruct the ...

    African Journals Online (AJOL)

    Recent advances in molecular genetics made the inference of past demographic events through the analysis of gene pools from modern populations possible. The technology uses genetic markers to provide previously unavailable resolution into questions of human evolution, migration and the historical relationship of ...

  4. Genetic factors and molecular mechanisms in dry eye disease.

    Science.gov (United States)

    Lee, Ling; Garrett, Qian; Flanagan, Judith; Chakrabarti, Subhabrata; Papas, Eric

    2018-04-01

    Dry eye disease (DED) is a complex condition with a multifactorial etiology that can be difficult to manage successfully. While external factors are modifiable, treatment success is limited if genetic factors contribute to the disease. The purpose of this review is to compile research describing normal and abnormal ocular surface function on a molecular level, appraise genetic studies involving DED or DED-associated diseases, and introduce the basic methods used for conducting genetic epidemiology studies. Copyright © 2018 Elsevier Inc. All rights reserved.

  5. Molecular diversity and genetic relationships in Secale

    Indian Academy of Sciences (India)

    The objective of this study was to quantify the molecular diversity and to determine the genetic relationships amongSecalespp. and among cultivars ofSecale ... Faculty of Sciences, Campo Grande, Lisboa, Portugal; Departamento de Genética, Facultad de Biologia, Universidad Complutense, C/ José Antonio Novais, 12, ...

  6. [Towards a molecular psychiatry].

    Science.gov (United States)

    de la Fuente, J R

    1988-06-01

    Recent research data from psychopharmacology, brain imaging and molecular genetics support the notion of a new psychiatric frontier: that of molecular psychiatry. Identification of different subtypes of neurotransmitter receptors and their changes in density and sensitivity in response to endogenous ligands and/or psychotropic drugs may account for the clinical expression of various behavioral phenomena, including some psychiatric disorders. Brain imaging, in particular positron-emission tomographic evaluations, are likely to change psychiatric nosology. New diagnostic elements derived from these scanners will allow to associate psychotic states to neuroreceptor changes. Molecular genetics has shown that bipolar affective disorder can be caused by a single gene. A strong linkage seems to exist between a gene locus on chromosome 11 and bipolar illness. An amyloid gene located on chromosome 21 has also been shown to be strongly related to familial Alzheimer's disease. While genetic heterogeneity limits the screening value of these findings, the powerful techniques of molecular biology have entered the field of psychiatry. Ethical issues regarding DNA immortality, gene cloning and gene therapy will strengthen this relationship.

  7. Molecular Genetic of Atopic dermatitis: An Update

    Science.gov (United States)

    Al-Shobaili, Hani A.; Ahmed, Ahmed A.; Alnomair, Naief; Alobead, Zeiad Abdulaziz; Rasheed, Zafar

    2016-01-01

    Atopic dermatitis (AD) is a chronic multifactorial inflammatory skin disease. The pathogenesis of AD remains unclear, but the disease results from dysfunctions of skin barrier and immune response, where both genetic and environmental factors play a key role. Recent studies demonstrate the substantial evidences that show a strong genetic association with AD. As for example, AD patients have a positive family history and have a concordance rate in twins. Moreover, several candidate genes have now been suspected that play a central role in the genetic background of AD. In last decade advanced procedures similar to genome-wide association (GWA) and single nucleotide polymorphism (SNP) have been applied on different population and now it has been clarified that AD is significantly associated with genes of innate/adaptive immune systems, human leukocyte antigens (HLA), cytokines, chemokines, drug-metabolizing genes or various other genes. In this review, we will highlight the recent advancements in the molecular genetics of AD, especially on possible functional relevance of genetic variants discovered to date. PMID:27004062

  8. DNA-based species identification for faecal samples: An application ...

    African Journals Online (AJOL)

    ... An application on the mammalian survey in Mountain Huangshan Scenic Spot. ... Noninvasive methods using genetic markers have been suggested as ways to ... molecular identification are the useful supplements for traditional field survey.

  9. Molecular genetics of the Usher syndrome in Lebanon: identification of 11 novel protein truncating mutations by whole exome sequencing.

    Science.gov (United States)

    Reddy, Ramesh; Fahiminiya, Somayyeh; El Zir, Elie; Mansour, Ahmad; Megarbane, Andre; Majewski, Jacek; Slim, Rima

    2014-01-01

    Usher syndrome (USH) is a genetically heterogeneous condition with ten disease-causing genes. The spectrum of genes and mutations causing USH in the Lebanese and Middle Eastern populations has not been described. Consequently, diagnostic approaches designed to screen for previously reported mutations were unlikely to identify the mutations in 11 unrelated families, eight of Lebanese and three of Middle Eastern origins. In addition, six of the ten USH genes consist of more than 20 exons, each, which made mutational analysis by Sanger sequencing of PCR-amplified exons from genomic DNA tedious and costly. The study was aimed at the identification of USH causing genes and mutations in 11 unrelated families with USH type I or II. Whole exome sequencing followed by expanded familial validation by Sanger sequencing. We identified disease-causing mutations in all the analyzed patients in four USH genes, MYO7A, USH2A, GPR98 and CDH23. Eleven of the mutations were novel and protein truncating, including a complex rearrangement in GPR98. Our data highlight the genetic diversity of Usher syndrome in the Lebanese population and the time and cost-effectiveness of whole exome sequencing approach for mutation analysis of genetically heterogeneous conditions caused by large genes.

  10. Molecular genetics of the Usher syndrome in Lebanon: identification of 11 novel protein truncating mutations by whole exome sequencing.

    Directory of Open Access Journals (Sweden)

    Ramesh Reddy

    Full Text Available Usher syndrome (USH is a genetically heterogeneous condition with ten disease-causing genes. The spectrum of genes and mutations causing USH in the Lebanese and Middle Eastern populations has not been described. Consequently, diagnostic approaches designed to screen for previously reported mutations were unlikely to identify the mutations in 11 unrelated families, eight of Lebanese and three of Middle Eastern origins. In addition, six of the ten USH genes consist of more than 20 exons, each, which made mutational analysis by Sanger sequencing of PCR-amplified exons from genomic DNA tedious and costly. The study was aimed at the identification of USH causing genes and mutations in 11 unrelated families with USH type I or II.Whole exome sequencing followed by expanded familial validation by Sanger sequencing.We identified disease-causing mutations in all the analyzed patients in four USH genes, MYO7A, USH2A, GPR98 and CDH23. Eleven of the mutations were novel and protein truncating, including a complex rearrangement in GPR98.Our data highlight the genetic diversity of Usher syndrome in the Lebanese population and the time and cost-effectiveness of whole exome sequencing approach for mutation analysis of genetically heterogeneous conditions caused by large genes.

  11. Molecular Genetics of the Usher Syndrome in Lebanon: Identification of 11 Novel Protein Truncating Mutations by Whole Exome Sequencing

    Science.gov (United States)

    Reddy, Ramesh; Fahiminiya, Somayyeh; El Zir, Elie; Mansour, Ahmad; Megarbane, Andre; Majewski, Jacek; Slim, Rima

    2014-01-01

    Background Usher syndrome (USH) is a genetically heterogeneous condition with ten disease-causing genes. The spectrum of genes and mutations causing USH in the Lebanese and Middle Eastern populations has not been described. Consequently, diagnostic approaches designed to screen for previously reported mutations were unlikely to identify the mutations in 11 unrelated families, eight of Lebanese and three of Middle Eastern origins. In addition, six of the ten USH genes consist of more than 20 exons, each, which made mutational analysis by Sanger sequencing of PCR-amplified exons from genomic DNA tedious and costly. The study was aimed at the identification of USH causing genes and mutations in 11 unrelated families with USH type I or II. Methods Whole exome sequencing followed by expanded familial validation by Sanger sequencing. Results We identified disease-causing mutations in all the analyzed patients in four USH genes, MYO7A, USH2A, GPR98 and CDH23. Eleven of the mutations were novel and protein truncating, including a complex rearrangement in GPR98. Conclusion Our data highlight the genetic diversity of Usher syndrome in the Lebanese population and the time and cost-effectiveness of whole exome sequencing approach for mutation analysis of genetically heterogeneous conditions caused by large genes. PMID:25211151

  12. Mobile genetic elements in Methanobacterium thermoformicicum

    NARCIS (Netherlands)

    Noelling, J.

    1993-01-01

    The identification of the Archaea as a third primary lineage of life and their adaptation to extreme environmental conditions have generated considerable interest in the molecular biology of these organisms. Most progress in the investigation of archaeal mobile genetic

  13. COGENT (COlorectal cancer GENeTics) revisited

    Czech Academy of Sciences Publication Activity Database

    Aaltonen, L. A.; Brenner, H.; Buch, S.; Campbell, H.; Carracedo, A.; Carvajal-Carmona, L.; Castells, A.; Castellví-Bel, S.; Cheadle, J. P.; Devilee, P.; Dunlop, M.; Echeverry, M.; Gallinger, S.; Galvan, A.; Hampe, J.; Hemminki, K.; Ho, J. W. C.; Hofstra, R. M. W.; Hudson, T. J.; Kirac, I.; Lerch, M. M.; Li, L.; Lindblom, A.; Lipton, L.; Matsuda, K.; Maughan, T. S.; Moreno, V.; Morreau, H.; Naccarati, Alessio; Nakamura, Y.; Peterlongo, P.; Pharoah, P. D.; Sieber, O.; Radice, P.; Ruiz-Ponte, C.; Schafmayer, C.; Schmidt, C. A.; von Schönfels, W.; Schreiber, S.; Scott, R.; Sham, P.; Souček, P.; Tenesa, A.; Tomplinson, P. M.; Velez, A.; Villanueva, C. M.; Vodička, Pavel; Völzke, H.; van Wezel, T.; Wijnen, J.T.; Zanke, B.

    2012-01-01

    Roč. 27, č. 2 (2012), s. 143-151 ISSN 0267-8357 Institutional research plan: CEZ:AV0Z50390703 Keywords : identification of low-risk variants * disease causing variants * susceptibility alleles Subject RIV: EB - Genetics ; Molecular Biology Impact factor: 3.500, year: 2012

  14. Molecular markers unravel intraspecific and interspecific genetic ...

    Indian Academy of Sciences (India)

    [Kotwal S., Dhar M. K., Kour B., Raj K. and Kaul S. 2013 Molecular markers unravel intraspecific and interspecific genetic variability in ... of bowel problems including chronic constipation, amoebic ..... while to select parents from accessions, Pov80 and Pov79 ... nology (DBT), Govt. of India, for financial assistance in the form.

  15. [Genetic passportization and identification of Siberian cranes (Grus leucogeranus Pallas) in captivity].

    Science.gov (United States)

    Mudrik, E A; Kashentseva, T A; Gamburg, E A; Politov, D V

    2014-01-01

    The genetic diversity of the founders of an artificial population of the Siberian crane Grus leucogeranus Pallas (rare species of cranes) was characterized using 10 microsatellite loci. It was established that the allelic diversity (on average, 5.9 alleles per locus) and genic (H(o) = 0.739) diversity of the Siberian crane is rather high and comparable with the estimations for natural populations of different crane species. Genetic passportization of the birds (119 individuals) from the register of the Siberian crane International Studbook was carried out at the initial stage. The efficiency of genetic passportization for individual identification, identification of the origin, paternity analysis, and exclusion of inbreeding was demonstrated in Siberian cranes under natural mating and artificial insemination. Cases of natural reproduction in pairs of Siberian cranes imprinted to the human and continuous storage of spermatozoa in the female reproductive ducts were registered.

  16. Molecular Genetics of Beauveria bassiana Infection of Insects.

    Science.gov (United States)

    Ortiz-Urquiza, A; Keyhani, N O

    2016-01-01

    Research on the insect pathogenic filamentous fungus, Beauveria bassiana has witnessed significant growth in recent years from mainly physiological studies related to its insect biological control potential, to addressing fundamental questions regarding the underlying molecular mechanisms of fungal development and virulence. This has been in part due to a confluence of robust genetic tools and genomic resources for the fungus, and recognition of expanded ecological interactions with which the fungus engages. Beauveria bassiana is a broad host range insect pathogen that has the ability to form intimate symbiotic relationships with plants. Indeed, there is an increasing realization that the latter may be the predominant environmental interaction in which the fungus participates, and that insect parasitism may be an opportunist lifestyle evolved due to the carbon- and nitrogen-rich resources present in insect bodies. Here, we will review progress on the molecular genetics of B. bassiana, which has largely been directed toward identifying genetic pathways involved in stress response and virulence assumed to have practical applications in improving the insect control potential of the fungus. Important strides have also been made in understanding aspects of B. bassiana development. Finally, although increasingly apparent in a number of studies, there is a need for progressing beyond phenotypic mutant characterization to sufficiently investigate the molecular mechanisms underlying B. bassiana's unique and diverse lifestyles as saprophyte, insect pathogen, and plant mutualist. Copyright © 2016 Elsevier Inc. All rights reserved.

  17. Molecular and genetic mechanisms of environmental mutagens

    International Nuclear Information System (INIS)

    Kubitschek, H.E.; Derstine, P.L.; Griego, V.M.; Matsushita, T.; Peak, J.G.; Peak, M.J.; Reynolds, P.R.; Webb, R.B.; Williams-Hill, D.

    1981-01-01

    This program is primarily concerned with elucidation of the nature of DNA lesions produced by environmental and energy related mutagens, their mechanisms of action, and their repair. The main focus is on actions of chemical mutagens and electromagnetic radiations. Synergistic interactions between mutagens and the mutational processes that lead to synergism are being investigated. Mutagens are chosen for study on the basis of their potential for analysis of mutation (as genetic probes), for development of procedures for reducing mutational damage, for their potential importance to risk assessment, and for development of improved mutagen testing systems. Bacterial cells are used because of the rapidity and clarity of scientific results that can be obtained, the detailed genetic maps, and the many well-defined mutand strains available. The conventional tools of microbial and molecular genetics are used, along with intercomparison of genetically related strains. Advantage is taken of tcollective dose commitment will result in more attention being paid to potential releases of radionuclides at relatively short times after disposal

  18. Genetic characterization, species differentiation and detection of Fasciola spp. by molecular approaches.

    Science.gov (United States)

    Ai, Lin; Chen, Mu-Xin; Alasaad, Samer; Elsheikha, Hany M; Li, Juan; Li, Hai-Long; Lin, Rui-Qing; Zou, Feng-Cai; Zhu, Xing-Quan; Chen, Jia-Xu

    2011-06-10

    Liver flukes belonging to the genus Fasciola are among the causes of foodborne diseases of parasitic etiology. These parasites cause significant public health problems and substantial economic losses to the livestock industry. Therefore, it is important to definitively characterize the Fasciola species. Current phenotypic techniques fail to reflect the full extent of the diversity of Fasciola spp. In this respect, the use of molecular techniques to identify and differentiate Fasciola spp. offer considerable advantages. The advent of a variety of molecular genetic techniques also provides a powerful method to elucidate many aspects of Fasciola biology, epidemiology, and genetics. However, the discriminatory power of these molecular methods varies, as does the speed and ease of performance and cost. There is a need for the development of new methods to identify the mechanisms underpinning the origin and maintenance of genetic variation within and among Fasciola populations. The increasing application of the current and new methods will yield a much improved understanding of Fasciola epidemiology and evolution as well as more effective means of parasite control. Herein, we provide an overview of the molecular techniques that are being used for the genetic characterization, detection and genotyping of Fasciola spp..

  19. A grass molecular identification system for forensic botany: a critical evaluation of the strengths and limitations.

    Science.gov (United States)

    Ward, Jodie; Gilmore, Simon R; Robertson, James; Peakall, Rod

    2009-11-01

    Plant material is frequently encountered in criminal investigations but often overlooked as potential evidence. We designed a DNA-based molecular identification system for 100 Australian grasses that consisted of a series of polymerase chain reaction assays that enabled the progressive identification of grasses to different taxonomic levels. The identification system was based on DNA sequence variation at four chloroplast and two mitochondrial loci. Seventeen informative indels and 68 single-nucleotide polymorphisms were utilized as molecular markers for subfamily to species-level identification. To identify an unknown sample to subfamily level required a minimum of four markers or nine markers for species identification. The accuracy of the system was confirmed by blind tests. We have demonstrated "proof of concept" of a molecular identification system for trace botanical samples. Our evaluation suggests that the adoption of a system that combines this approach with DNA sequencing could assist the morphological identification of grasses found as forensic evidence.

  20. Genetic Diversity Analysis in 27 Tomato Accessions Using Morphological and Molecular Markers

    Directory of Open Access Journals (Sweden)

    Catur Herison

    2018-02-01

    Full Text Available Genetic diversity is the most important aspect in tomato breeding activities. Better assessment on the diversity of the collected accessions will come up with better result of the cultivar development. This study aimed at analyzing the genetic diversity of 27 tomato accessions by morphological and molecular markers. Twenty seven accessions collected from various regions of Indonesia were planted in the field and evaluated for their morphological traits, and RAPD analyzed for their molecular markers. The UPGMA clustering analyzes, elaborating the combination of morphological and molecular data, indicated that the tomato accessions could be grouped into 5 major groups with 70 % genetic similarity levels. Current study indicated that although many accessions came from different locations, they congregated into the same group. Cherry, Kudamati 1 and Lombok 3 were the farthest genetic distant accessions to the others. Those three genotypes will be the most valuable accessions, when they were crossed with other accessions, for designing a prospective breeding program in the future.

  1. Molecular genetic gene-environment studies using candidate genes in schizophrenia: a systematic review.

    Science.gov (United States)

    Modinos, Gemma; Iyegbe, Conrad; Prata, Diana; Rivera, Margarita; Kempton, Matthew J; Valmaggia, Lucia R; Sham, Pak C; van Os, Jim; McGuire, Philip

    2013-11-01

    The relatively high heritability of schizophrenia suggests that genetic factors play an important role in the etiology of the disorder. On the other hand, a number of environmental factors significantly influence its incidence. As few direct genetic effects have been demonstrated, and there is considerable inter-individual heterogeneity in the response to the known environmental factors, interactions between genetic and environmental factors may be important in determining whether an individual develops the disorder. To date, a considerable number of studies of gene-environment interactions (G×E) in schizophrenia have employed a hypothesis-based molecular genetic approach using candidate genes, which have led to a range of different findings. This systematic review aims to summarize the results from molecular genetic candidate studies and to review challenges and opportunities of this approach in psychosis research. Finally, we discuss the potential of future prospects, such as new studies that combine hypothesis-based molecular genetic candidate approaches with agnostic genome-wide association studies in determining schizophrenia risk. © 2013 Elsevier B.V. All rights reserved.

  2. Biotechnological approaches for the genetic improvement of Jatropha curcas L.: A biodiesel plant

    KAUST Repository

    Kumar, Nitish; Singh, Amritpal S.; Kumari, Swati; Reddy, Muppala P.

    2015-01-01

    . In this review, an effort is made to project the current biotechnology and molecular biology tools employed in the direction of, evaluating the genetic diversity and phylogeny revelation of Jatropha spp., identification of genetic markers for desirable traits

  3. A validated methodology for genetic identification of tuna species (genus Thunnus.

    Directory of Open Access Journals (Sweden)

    Jordi Viñas

    2009-10-01

    Full Text Available Tuna species of the genus Thunnus, such as the bluefin tunas, are some of the most important and yet most endangered trade fish in the world. Identification of these species in traded forms, however, may be difficult depending on the presentation of the products, which may hamper conservation efforts on trade control. In this paper, we validated a genetic methodology that can fully distinguish between the eight Thunnus species from any kind of processed tissue.After testing several genetic markers, a complete discrimination of the eight tuna species was achieved using Forensically Informative Nucleotide Sequencing based primarily on the sequence variability of the hypervariable genetic marker mitochondrial DNA control region (mtDNA CR, followed, in some specific cases, by a second validation by a nuclear marker rDNA first internal transcribed spacer (ITS1. This methodology was able to distinguish all tuna species, including those belonging to the subgenus Neothunnus that are very closely related, and in consequence can not be differentiated with other genetic markers of lower variability. This methodology also took into consideration the presence of introgression that has been reported in past studies between T. thynnus, T. orientalis and T. alalunga. Finally, we applied the methodology to cross-check the species identity of 26 processed tuna samples.Using the combination of two genetic markers, one mitochondrial and another nuclear, allows a full discrimination between all eight tuna species. Unexpectedly, the genetic marker traditionally used for DNA barcoding, cytochrome oxidase 1, could not differentiate all species, thus its use as a genetic marker for tuna species identification is questioned.

  4. Molecular genetics in neurology.

    Science.gov (United States)

    Martin, J B

    1993-12-01

    There has been remarkable progress in the identification of mutations in genes that cause inherited neurological disorders. Abnormalities in the genes for Huntington disease, neurofibromatosis types 1 and 2, one form of familial amyotrophic lateral sclerosis, fragile X syndrome, myotonic dystrophy, Kennedy syndrome, Menkes disease, and several forms of retinitis pigmentosa have been elucidated. Rare disorders of neuronal migration such as Kallmann syndrome, Miller-Dieker syndrome, and Norrie disease have been shown to be due to specific gene defects. Several muscle disorders characterized by abnormal membrane excitability have been defined as mutations of the muscle sodium or chloride channels. These advances provide opportunity for accurate molecular diagnosis of at-risk individuals and are the harbinger of new approaches to therapy of these diseases.

  5. Genetic diversity in cultivated carioca common beans based on molecular marker analysis

    Directory of Open Access Journals (Sweden)

    Juliana Morini Küpper Cardoso Perseguini

    2011-01-01

    Full Text Available A wide array of molecular markers has been used to investigate the genetic diversity among common bean species. However, the best combination of markers for studying such diversity among common bean cultivars has yet to be determined. Few reports have examined the genetic diversity of the carioca bean, commercially one of the most important common beans in Brazil. In this study, we examined the usefulness of two molecular marker systems (simple sequence repeats - SSRs and amplified fragment length polymorphisms - AFLPs for assessing the genetic diversity of carioca beans. The amount of information provided by Roger's modified genetic distance was used to analyze SSR data and Jaccards similarity coefficient was used for AFLP data. Seventy SSRs were polymorphic and 20 AFLP primer combinations produced 635 polymorphic bands. Molecular analysis showed that carioca genotypes were quite diverse. AFLPs revealed greater genetic differentiation and variation within the carioca genotypes (Gst = 98% and Fst = 0.83, respectively than SSRs and provided better resolution for clustering the carioca genotypes. SSRs and AFLPs were both suitable for assessing the genetic diversity of Brazilian carioca genotypes since the number of markers used in each system provided a low coefficient of variation. However, fingerprint profiles were generated faster with AFLPs, making them a better choice for assessing genetic diversity in the carioca germplasm.

  6. DNA barcode-based molecular identification system for fish species.

    Science.gov (United States)

    Kim, Sungmin; Eo, Hae-Seok; Koo, Hyeyoung; Choi, Jun-Kil; Kim, Won

    2010-12-01

    In this study, we applied DNA barcoding to identify species using short DNA sequence analysis. We examined the utility of DNA barcoding by identifying 53 Korean freshwater fish species, 233 other freshwater fish species, and 1339 saltwater fish species. We successfully developed a web-based molecular identification system for fish (MISF) using a profile hidden Markov model. MISF facilitates efficient and reliable species identification, overcoming the limitations of conventional taxonomic approaches. MISF is freely accessible at http://bioinfosys.snu.ac.kr:8080/MISF/misf.jsp .

  7. Genetics of gallstone disease.

    Directory of Open Access Journals (Sweden)

    Mittal B

    2002-04-01

    Full Text Available Gallstone disease is a complex disorder where both environmental and genetic factors contribute towards susceptibility to the disease. Epidemiological and family studies suggest a strong genetic component in the causation of this disease. Several genetically derived phenotypes in the population are responsible for variations in lipoprotein types, which in turn affect the amount of cholesterol available in the gall bladder. The genetic polymorphisms in various genes for apo E, apo B, apo A1, LDL receptor, cholesteryl ester transfer and LDL receptor-associated protein have been implicated in gallstone formation. However, presently available information on genetic differences is not able to account for a large number of gallstone patients. The molecular studies in the animal models have not only confirmed the present paradigm of gallstone formation but also helped in identification of novel genes in humans, which might play an important role in pathogenesis of the disease. Precise understanding of such genes and their molecular mechanisms may provide the basis of new targets for rational drug designs and dietary interventions.

  8. [The development of molecular human genetics and its significance for perspectives of modern medicine].

    Science.gov (United States)

    Coutelle, C; Speer, A; Grade, K; Rosenthal, A; Hunger, H D

    1989-01-01

    The introduction of molecular human genetics has become a paradigma for the application of genetic engineering in medicine. The main principles of this technology are the isolation of molecular probes, their application in hybridization reactions, specific gene-amplification by the polymerase chain reaction, and DNA sequencing reactions. These methods are used for the analysis of monogenic diseases by linkage studies and the elucidation of the molecular defect causing these conditions, respectively. They are also the basis for genomic diagnosis of monogenic diseases, introduced into the health care system of the GDR by a national project on Duchenne/Becker muscular dystrophy, Cystic Fibrosis and Phenylketonuria. The rapid development of basic research on the molecular analysis of the human genome and genomic diagnosis indicates, that human molecular genetics is becoming a decisive basic discipline of modern medicine.

  9. Molecular genetics and genomics generate new insights into invertebrate pest invasions.

    Science.gov (United States)

    Kirk, Heather; Dorn, Silvia; Mazzi, Dominique

    2013-07-01

    Invertebrate pest invasions and outbreaks are associated with high social, economic, and ecological costs, and their significance will intensify with an increasing pressure on agricultural productivity as a result of human population growth and climate change. New molecular genetic and genomic techniques are available and accessible, but have been grossly underutilized in studies of invertebrate pest invasions, despite that they are useful tools for applied pest management and for understanding fundamental features of pest invasions including pest population demographics and adaptation of pests to novel and/or changing environments. Here, we review current applications of molecular genetics and genomics in the study of invertebrate pest invasions and outbreaks, and we highlight shortcomings from the current body of research. We then discuss recent conceptual and methodological advances in the areas of molecular genetics/genomics and data analysis, and we highlight how these advances will further our understanding of the demographic, ecological, and evolutionary features of invertebrate pest invasions. We are now well equipped to use molecular data to understand invertebrate dispersal and adaptation, and this knowledge has valuable applications in agriculture at a time when these are critically required.

  10. Molecular Darwinism: the contingency of spontaneous genetic variation.

    Science.gov (United States)

    Arber, Werner

    2011-01-01

    The availability of spontaneously occurring genetic variants is an important driving force of biological evolution. Largely thanks to experimental investigations by microbial geneticists, we know today that several different molecular mechanisms contribute to the overall genetic variations. These mechanisms can be assigned to three natural strategies to generate genetic variants: 1) local sequence changes, 2) intragenomic reshuffling of DNA segments, and 3) acquisition of a segment of foreign DNA. In these processes, specific gene products are involved in cooperation with different nongenetic elements. Some genetic variations occur fully at random along the DNA filaments, others rather with a statistical reproducibility, although at many possible sites. We have to be aware that evolution in natural ecosystems is of higher complexity than under most laboratory conditions, not at least in view of symbiotic associations and the occurrence of horizontal gene transfer. The encountered contingency of genetic variation can possibly best ensure a long-term persistence of life under steadily changing living conditions.

  11. Genetic stock identification of Russian honey bees.

    Science.gov (United States)

    Bourgeois, Lelania; Sheppard, Walter S; Sylvester, H Allen; Rinderer, Thomas E

    2010-06-01

    A genetic stock certification assay was developed to distinguish Russian honey bees from other European (Apis mellifera L.) stocks that are commercially produced in the United States. In total, 11 microsatellite and five single-nucleotide polymorphism loci were used. Loci were selected for relatively high levels of homogeneity within each group and for differences in allele frequencies between groups. A baseline sample consisted of the 18 lines of Russian honey bees released to the Russian Bee Breeders Association and bees from 34 queen breeders representing commercially produced European honey bee stocks. Suitability tests of the baseline sample pool showed high levels of accuracy. The probability of correct assignment was 94.2% for non-Russian bees and 93.3% for Russian bees. A neighbor-joining phenogram representing genetic distance data showed clear distinction of Russian and non-Russian honey bee stocks. Furthermore, a test of appropriate sample size showed a sample of eight bees per colony maximizes accuracy and consistency of the results. An additional 34 samples were tested as blind samples (origin unknown to those collecting data) to determine accuracy of individual assignment tests. Only one of these samples was incorrectly assigned. The 18 current breeding lines were represented among the 2009 blind sampling, demonstrating temporal stability of the genetic stock identification assay. The certification assay will be used through services provided by a service laboratory, by the Russian Bee Breeders Association to genetically certify their stock. The genetic certification will be used in conjunction with continued selection for favorable traits, such as honey production and varroa and tracheal mite resistance.

  12. Genetic characterization, species differentiation and detection of Fasciola spp. by molecular approaches

    Directory of Open Access Journals (Sweden)

    Li Hai-Long

    2011-06-01

    Full Text Available Abstract Liver flukes belonging to the genus Fasciola are among the causes of foodborne diseases of parasitic etiology. These parasites cause significant public health problems and substantial economic losses to the livestock industry. Therefore, it is important to definitively characterize the Fasciola species. Current phenotypic techniques fail to reflect the full extent of the diversity of Fasciola spp. In this respect, the use of molecular techniques to identify and differentiate Fasciola spp. offer considerable advantages. The advent of a variety of molecular genetic techniques also provides a powerful method to elucidate many aspects of Fasciola biology, epidemiology, and genetics. However, the discriminatory power of these molecular methods varies, as does the speed and ease of performance and cost. There is a need for the development of new methods to identify the mechanisms underpinning the origin and maintenance of genetic variation within and among Fasciola populations. The increasing application of the current and new methods will yield a much improved understanding of Fasciola epidemiology and evolution as well as more effective means of parasite control. Herein, we provide an overview of the molecular techniques that are being used for the genetic characterization, detection and genotyping of Fasciola spp..

  13. MORPHOLOGICAL AND MOLECULAR IDENTIFICATION OF Fusarium SPECIES AND THEIR PATHOGENICITY FOR WHEAT

    Directory of Open Access Journals (Sweden)

    Jelena Poštić

    2012-12-01

    Full Text Available From the root and lower stem parts of weeds and plant debris of maize, wheat, oat and sunflower we isolated 300 isolates of Fusarium spp. and performed morphological and molecular identification. With molecular identification using AFLP method we determined 14 Fusarium species: F. acuminatum, F. avenaceum, F. concolor, F. crookwellense, F. equiseti, F. graminearum, F. oxysporum, F. proliferatum, F. semitectum, F. solani, F. sporotrichioides, F. subglutinans, F. venenatum and F. verticillioides.By comparing results of morphological and molecular identification we found out that determination of 16,7% isolates was incorrect. Out of 300 isolates identified with molecular methods, 50 did not belong to the species determined with morphological determination.With pathogenicity tests of 30 chosen Fusarium isolates we determined that many of them were pathogenic to wheat and maize seedlings and to wheat heads. The most pathogenic were isolates of F. graminearum from A. retroflexus, A. theophrasti and C. album, F. venenatum from maize debris and and A. theophrasti, F. crookwellense from A. lappa. Antifungal influence of 11 essential oils on mycelia growth and sporulation of chosen Fusarium isolates determined that essential oils of T. vulgaris, P. anisum and E. caryophyllus had the strongest effect on mycelial growth. Influence of essential oils on sporulation was not statistically significant.

  14. Migraine genetics : from monogenic to complex forms

    NARCIS (Netherlands)

    Vanmolkot, Kaate Raymond Josepha

    2008-01-01

    Migraine has a strong genetic component, but the identification of these factors has proven difficult mainly because of the complex interaction of multiple loci and environmental factors. Unraveling its molecular basis and deciphering pathways leading to migraine attacks will help identifying novel

  15. Direct-to-consumer genetic testing for predicting sports performance and talent identification: Consensus statement.

    Science.gov (United States)

    Webborn, Nick; Williams, Alun; McNamee, Mike; Bouchard, Claude; Pitsiladis, Yannis; Ahmetov, Ildus; Ashley, Euan; Byrne, Nuala; Camporesi, Silvia; Collins, Malcolm; Dijkstra, Paul; Eynon, Nir; Fuku, Noriyuki; Garton, Fleur C; Hoppe, Nils; Holm, Søren; Kaye, Jane; Klissouras, Vassilis; Lucia, Alejandro; Maase, Kamiel; Moran, Colin; North, Kathryn N; Pigozzi, Fabio; Wang, Guan

    2015-12-01

    The general consensus among sport and exercise genetics researchers is that genetic tests have no role to play in talent identification or the individualised prescription of training to maximise performance. Despite the lack of evidence, recent years have witnessed the rise of an emerging market of direct-to-consumer marketing (DTC) tests that claim to be able to identify children's athletic talents. Targeted consumers include mainly coaches and parents. There is concern among the scientific community that the current level of knowledge is being misrepresented for commercial purposes. There remains a lack of universally accepted guidelines and legislation for DTC testing in relation to all forms of genetic testing and not just for talent identification. There is concern over the lack of clarity of information over which specific genes or variants are being tested and the almost universal lack of appropriate genetic counselling for the interpretation of the genetic data to consumers. Furthermore independent studies have identified issues relating to quality control by DTC laboratories with different results being reported from samples from the same individual. Consequently, in the current state of knowledge, no child or young athlete should be exposed to DTC genetic testing to define or alter training or for talent identification aimed at selecting gifted children or adolescents. Large scale collaborative projects, may help to develop a stronger scientific foundation on these issues in the future. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://www.bmj.com/company/products-services/rights-and-licensing/

  16. Molecular Insights into the Genetic Diversity of Garcinia cambogia Germplasm Accessions

    Directory of Open Access Journals (Sweden)

    C Tharachand

    2015-10-01

    Full Text Available ABSTRACTIn this work, the genetic relationship among twelveGarcinia cambogia (Gaertn. Desr. accessions were evaluated using Random Amplified Polymorphic DNA markers. The samples were part of the germplasm collected and maintained at NBPGR Regional station, Thrissur, India. Out of thirty RAPD primers used for screening, seven primers produced a total of 128 polymorphic markers in twelve accessions. The Polymorphic Information Content (PIC ranged from 0.28 (OPA18 to 0.37 (OPA9 and Marker Index (MI ranged between 3.61 (OPA12 and 5.93 (OPA3 among the primers used. Jaccard's coefficient of genetic similarity ranged between 0.07 and 0.64. The dendrogram constructed based on the similarity matrix generated from the molecular and morphological data showed the genetic relationship among the sampled accessions. Mantel matrix test showed a positive correlation (r = 0.49 between the cluster analysis of RAPD data and morphological data. The clustering pattern in the molecular dendrogram and Principle Coordinate Analysis (PCoA showed that the genotypes were diverse, which was in congruence with the similarity index values and morphological dendrogram. High frequency of similarity values in the range of 0.11 to 0.17 suggested the existence of high genetic diversity among the accessions. The high level of genetic diversity among the studied accessions ofG.cambogia was also supported by the large variation in the morphological characters observed in the flowers, leaves, fruits and seeds of these sampled accessions. This is the first report for the molecular based genetic diversity studies for these accessions.

  17. Molecular identification of tick-borne hemoparasites in equines from Northwestern Colombia

    Directory of Open Access Journals (Sweden)

    Yeison Agudelo-Ruíz

    2017-05-01

    Full Text Available Objetive. To detect and identify Anaplasmataceae agents and piroplasms in equines from the slaughterhouse “La Rinconada” at Rionegro municipality in Antioquia. Materials and Methods. A descriptive cross-sectional study was carried out on equines selected by convenience during a period of 2015. Information about species, sex, age and origin of the animals. Whole blood was collected for DNA extraction procedure, and a PCR targeting a 360bp of Anaplasmataceae 16S ribosomal gene and 450bp of 18S ribosomal gene of Piroplasm were used for detection. PCR amplicons selected were submitted to direct sequencing for identification of hemoparasites through genetic analysis. Results. 135 equine samples from Antioquia, Cordoba y Sucre were analyzed. 78% were horses, 16% were donkeys and 6% were mules. Anaplasmataceae agents were not detected in any sample, meanwhile 13% were positive to piroplasm PCR. Sequence analysis reveals the circulation of Theileria equi in northwestern Colombia. Conclusion. This work presents the first molecular evidence of at least three genotypes of T. equi in equines of northwestern Colombia.

  18. Identification of Paramecium bursaria syngens through molecular markers--comparative analysis of three loci in the nuclear and mitochondrial DNA.

    Science.gov (United States)

    Greczek-Stachura, Magdalena; Potekhin, Alexey; Przyboś, Ewa; Rautian, Maria; Skoblo, Inna; Tarcz, Sebastian

    2012-09-01

    This is the first attempt to resolve the phylogenetic relationship between different syngens of Paramecium bursaria and to investigate at a molecular level the intraspecific differentiation of strains originating from very distant geographical locations. Herein we introduce a new collection of five P. bursaria syngens maintained at St Petersburg State University, as the international collection of syngens was lost in the 1960s. To analyze the degree of speciation within Paramecium bursaria, we examined 26 strains belonging to five different syngens from distant and geographically isolated localities using rDNA (ITS1-5.8S-ITS2-5'LSU) fragments, mitochondrial cytochrome c oxidase subunit I (COI), and H4 gene fragments. It was shown that P. bursaria strains of the same syngens cluster together in all three inferred molecular phylogenies. The genetic diversity among the studied P. bursaria strains based on rDNA sequences was rather low. The COI divergence of Paramecium bursaria was also definitely lower than that observed in the Paramecium aurelia complex. The nucleotide sequences of the H4 gene analyzed in the present study indicate the extent of genetic differences between the syngens of Paramecium bursaria. Our study demonstrates the diagnostic value of molecular markers, which are important tools in the identification of Paramecium bursaria syngens. Copyright © 2011 Elsevier GmbH. All rights reserved.

  19. Seasonal abundance and molecular identification of West Nile virus ...

    African Journals Online (AJOL)

    Seasonal abundance and molecular identification of West Nile virus vectors, Culex pipens and Culex ... Background: West Nile virus (WNV) infection, is an arbovirus infection with high morbidity and mortality, the vector respon- sible for both human ... Major diseases transmitted are known as Arboviral dis- eases because ...

  20. Genetic diversity analysis of common beans based on molecular markers

    Directory of Open Access Journals (Sweden)

    Homar R. Gill-Langarica

    2011-01-01

    Full Text Available A core collection of the common bean (Phaseolus vulgaris L., representing genetic diversity in the entire Mexican holding, is kept at the INIFAP (Instituto Nacional de Investigaciones Forestales, Agricolas y Pecuarias, Mexico Germplasm Bank. After evaluation, the genetic structure of this collection (200 accessions was compared with that of landraces from the states of Oaxaca, Chiapas and Veracruz (10 genotypes from each, as well as a further 10 cultivars, by means of four amplified fragment length polymorphisms (AFLP +3/+3 primer combinations and seven simple sequence repeats (SSR loci, in order to define genetic diversity, variability and mutual relationships. Data underwent cluster (UPGMA and molecular variance (AMOVA analyses. AFLP analysis produced 530 bands (88.5% polymorphic while SSR primers amplified 174 alleles, all polymorphic (8.2 alleles per locus. AFLP indicated that the highest genetic diversity was to be found in ten commercial-seed classes from two major groups of accessions from Central Mexico and Chiapas, which seems to be an important center of diversity in the south. A third group included genotypes from Nueva Granada, Mesoamerica, Jalisco and Durango races. Here, SSR analysis indicated a reduced number of shared haplotypes among accessions, whereas the highest genetic components of AMOVA variation were found within accessions. Genetic diversity observed in the common-bean core collection represents an important sample of the total Phaseolus genetic variability at the main Germplasm Bank of INIFAP. Molecular marker strategies could contribute to a better understanding of the genetic structure of the core collection as well as to its improvement and validation.

  1. Genetic diversity analysis of common beans based on molecular markers

    Directory of Open Access Journals (Sweden)

    Homar R. Gill-Langarica

    Full Text Available A core collection of the common bean (Phaseolus vulgaris L., representing genetic diversity in the entire Mexican holding, is kept at the INIFAP (Instituto Nacional de Investigaciones Forestales, Agricolas y Pecuarias, Mexico Germplasm Bank. After evaluation, the genetic structure of this collection (200 accessions was compared with that of landraces from the states of Oaxaca, Chiapas and Veracruz (10 genotypes from each, as well as a further 10 cultivars, by means of four amplified fragment length polymorphisms (AFLP +3/+3 primer combinations and seven simple sequence repeats (SSR loci, in order to define genetic diversity, variability and mutual relationships. Data underwent cluster (UPGMA and molecular variance (AMOVA analyses. AFLP analysis produced 530 bands (88.5% polymorphic while SSR primers amplified 174 alleles, all polymorphic (8.2 alleles per locus. AFLP indicated that the highest genetic diversity was to be found in ten commercial-seed classes from two major groups of accessions from Central Mexico and Chiapas, which seems to be an important center of diversity in the south. A third group included genotypes from Nueva Granada, Mesoamerica, Jalisco and Durango races. Here, SSR analysis indicated a reduced number of shared haplotypes among accessions, whereas the highest genetic components of AMOVA variation were found within accessions. Genetic diversity observed in the common-bean core collection represents an important sample of the total Phaseolus genetic variability at the main Germplasm Bank of INIFAP. Molecular marker strategies could contribute to a better understanding of the genetic structure of the core collection as well as to its improvement and validation.

  2. Genetic diversity analysis of common beans based on molecular markers.

    Science.gov (United States)

    Gill-Langarica, Homar R; Muruaga-Martínez, José S; Vargas-Vázquez, M L Patricia; Rosales-Serna, Rigoberto; Mayek-Pérez, Netzahualcoyotl

    2011-10-01

    A core collection of the common bean (Phaseolus vulgaris L.), representing genetic diversity in the entire Mexican holding, is kept at the INIFAP (Instituto Nacional de Investigaciones Forestales, Agricolas y Pecuarias, Mexico) Germplasm Bank. After evaluation, the genetic structure of this collection (200 accessions) was compared with that of landraces from the states of Oaxaca, Chiapas and Veracruz (10 genotypes from each), as well as a further 10 cultivars, by means of four amplified fragment length polymorphisms (AFLP) +3/+3 primer combinations and seven simple sequence repeats (SSR) loci, in order to define genetic diversity, variability and mutual relationships. Data underwent cluster (UPGMA) and molecular variance (AMOVA) analyses. AFLP analysis produced 530 bands (88.5% polymorphic) while SSR primers amplified 174 alleles, all polymorphic (8.2 alleles per locus). AFLP indicated that the highest genetic diversity was to be found in ten commercial-seed classes from two major groups of accessions from Central Mexico and Chiapas, which seems to be an important center of diversity in the south. A third group included genotypes from Nueva Granada, Mesoamerica, Jalisco and Durango races. Here, SSR analysis indicated a reduced number of shared haplotypes among accessions, whereas the highest genetic components of AMOVA variation were found within accessions. Genetic diversity observed in the common-bean core collection represents an important sample of the total Phaseolus genetic variability at the main Germplasm Bank of INIFAP. Molecular marker strategies could contribute to a better understanding of the genetic structure of the core collection as well as to its improvement and validation.

  3. Genetic identification of children of the disappeared in Argentina.

    Science.gov (United States)

    Penchaszadeh, V B

    1997-01-01

    During the military dictatorship that ruled Argentina between 1976 and 1983, the security forces engaged in well-planned repression that included the abduction, torture, and disappearance of thousands of dissidents. Repression spared neither children nor pregnant women. Approximately 220 babies and children of the disappeared victims were abducted and kept mostly by families with connections with the military. After the restoration of democracy, attempts to find and identify the missing children were made, with the goal of restoring their personal and familial identities and returning them to their surviving relatives. The Association of Grandmothers of Plaza de Mayo and a number of geneticists who developed and applied methods of genetic identification to this human rights cause were instrumental in this quest. Initial use of histocompatibility (HLA) typing for genetic identification was later followed by nuclear DNA typing and mitochondrial DNA sequencing. Of 56 children found and identified, 30 were returned to their legitimate families, 13 remained with the families who had adopted them in good faith, 6 are still the subject of custody litigation in the courts, and 7 were found dead. Psychological and ethical guidelines protecting the best interests of the children were followed in all proceedings.

  4. The molecular genetic basis of age-related macular degeneration ...

    Indian Academy of Sciences (India)

    2009-12-10

    Dec 10, 2009 ... this review, we have provided an overview on the underlying molecular genetic mechanisms in AMD worldwide and highlight ..... eases like diabetes (Scott et al. ...... 2006 Systematic review and meta-analysis of.

  5. A genetic analysis of segregation distortion revealed by molecular ...

    Indian Academy of Sciences (India)

    Journal of Genetics, Vol. 90, No. ... Segregation analysis was based on 64 molecular markers, including 26 .... FHB of RIL populations was controlled by quantitative trait ... The authors acknowledge financial support by the National Basic.

  6. Management of insect pests: Nuclear and related molecular and genetic techniques

    International Nuclear Information System (INIS)

    1993-01-01

    The conference was organized in eight sessions: opening, genetic engineering and molecular biology, genetics, operational programmes, F 1 sterility and insect behaviour, biocontrol, research and development on the tsetse fly, and quarantine. The 64 individual contributions have been indexed separately for INIS. Refs, figs and tabs

  7. The Molecular Epidemiology and Genetic Environment of Carbapenemases Detected in Africa.

    Science.gov (United States)

    Sekyere, John Osei; Govinden, Usha; Essack, Sabiha

    2016-01-01

    Research articles describing carbapenemases and their genetic environments in Gram-negative bacteria were reviewed to determine the molecular epidemiology of carbapenemases in Africa. The emergence of resistance to the carbapenems, the last resort antibiotic for difficult to treat bacterial infections, affords clinicians few therapeutic options, with a resulting increase in morbidities, mortalities, and healthcare costs. However, the molecular epidemiology of carbapenemases throughout Africa is less described. Research articles and conference proceedings describing the genetic environment and molecular epidemiology of carbapenemases in Africa were retrieved from Google Scholar, Scifinder, Pubmed, Web of Science, and Science Direct databases. Predominant carbapenemase genes so far described in Africa include the blaOXA-48 type, blaIMP, blaVIM, and blaNDM in Acinetobacter baumannii, Klebsiella pneumoniae, Enterobacter cloacae, Citrobacter spp., and Escherichia coli carried on various plasmid types and sizes, transposons, and integrons. Class D and class B carbapenemases, mainly prevalent in A. baumannii, K. pneumoniae, E. cloacae, Citrobacter spp., and E. coli were the commonest carbapenemases. Carbapenemases are mainly reported in North and South Africa as under-resourced laboratories, lack of awareness and funding preclude the detection and reporting of carbapenemase-mediated resistance. Consequently, the true molecular epidemiology of carbapenemases and their genetic environment in Africa is still unknown.

  8. Molecular genetic markers for thyroid FNAB. Established assays and future perspective.

    Science.gov (United States)

    Musholt, Thomas J; Musholt, P B

    2015-01-01

    Thyroid nodules > 1 cm are observed in about 12% of unselected adult employees aged 18-65 years screened by ultrasound scan (40). While intensive ultrasound screening leads to early detection of thyroid diseases, the determination of benign or malignant behaviour remains uncertain and may trigger anxieties in many patients and their physicians. A considerable number of thyroid resections are consecutively performed due to suspicion of malignancy in the detected nodes. Fine needle aspiration biopsy (FNAB) has been recommended for the assessment of thyroid nodules to facilitate detection of thyroid carcinomas but also to rule out malignancy and thereby avoid unnecessary thyroid resections. However, cytology results are dependent on experience of the respective cytologist and unfortunately inconclusive in many cases. Molecular genetic markers are already used nowadays to enhance sensitivity and specificity of FNAB cytology in some centers in Germany. The most clinically relevant molecular genetic markers as pre-operative diagnostic tools and the clinical implications for the intraoperative and postoperative management were reviewed. Molecular genetic markers predominantly focus on the preoperative detection of thyroid malignancies rather than the exclusion of thyroid carcinomas. While some centers routinely assess FNABs, other centers concentrate on FNABs with cytology results of follicular neoplasia or suspicion of thyroid carcinoma. Predominantly mutations of BRAF, RET/PTC, RAS, and PAX8/PPARγ or expression of miRNAs are analyzed. However, only the detection of BRAF mutations predicts the presence of (papillary) thyroid malignancy with almost 98% probability, indicating necessity of oncologic thyroid resections irrespective of the cytology result. Other genetic alterations are associated with thyroid malignancy with varying frequency and achieve less impact on the clinical management. Molecular genetic analysis of FNABs is increasingly performed in Germany

  9. 76 FR 18227 - Molecular and Clinical Genetics Panel of the Medical Devices Advisory Committee; Notice of...

    Science.gov (United States)

    2011-04-01

    ...] Molecular and Clinical Genetics Panel of the Medical Devices Advisory Committee; Notice of Meeting... comment period for the notice announcing a meeting of the Molecular and Clinical Genetics Panel (the panel... Clinical Genetics Panel of the Medical Devices Advisory Committee, and the opening of a public docket to...

  10. Molecular genetic studies of bacteroides fragilis

    International Nuclear Information System (INIS)

    Southern, J.A.

    1986-03-01

    This study aimed at providing a means for probing the molecular genetic organization of B.fragilis, particularly those strains where the DNA repair mechanisms had been described. The following routes of investigation were followed: the bacteriocin of B.fragilis BF-1; the investigation of any plasmids which might be discovered, with the aim of constructing a hybrid plasmid which might replicate in both E.coli and B.fragilis; and the preparation of a genetic library which could be screened for Bacteroides genes which might function in E.coli. Should any genes be isolated by screening the library they were to be studied with regard to their expression and regulation in E.coli. The above assays make use of radioactive markers such as 14 C, 35 S, 32 P, and 3 H in the labelling of RNA, plasmids and probes

  11. Molecular approaches for genetic improvement of seed quality and characterization of genetic diversity in soybean: a critical review.

    Science.gov (United States)

    Tripathi, Niraj; Khare, Dhirendra

    2016-10-01

    Soybean is an economically important leguminous crop. Genetic improvements of soybeans have focused on enhancement of seed and oil yield, development of varieties suited to different cropping systems, and breeding resistant/tolerant varieties for various biotic and abiotic stresses. Plant breeders have used conventional breeding techniques for the improvement of these traits in soybean. The conventional breeding process can be greatly accelerated through the application of molecular and genomic approaches. Molecular markers have proved to be a new tool in soybean breeding by enhancing selection efficiency in a rapid and time-bound manner. An overview of molecular approaches for the genetic improvement of soybean seed quality parameters, considering recent applications of marker-assisted selection and 'omics' research, is provided in this article.

  12. Panel 4: Recent Advances in Otitis Media in Molecular Biology, Biochemistry, Genetics, and Animal Models

    Science.gov (United States)

    Li, Jian-Dong; Hermansson, Ann; Ryan, Allen F.; Bakaletz, Lauren O.; Brown, Steve D.; Cheeseman, Michael T.; Juhn, Steven K.; Jung, Timothy T. K.; Lim, David J.; Lim, Jae Hyang; Lin, Jizhen; Moon, Sung-Kyun; Post, J. Christopher

    2014-01-01

    Background Otitis media (OM) is the most common childhood bacterial infection and also the leading cause of conductive hearing loss in children. Currently, there is an urgent need for developing novel therapeutic agents for treating OM based on full understanding of molecular pathogenesis in the areas of molecular biology, biochemistry, genetics, and animal model studies in OM. Objective To provide a state-of-the-art review concerning recent advances in OM in the areas of molecular biology, biochemistry, genetics, and animal model studies and to discuss the future directions of OM studies in these areas. Data Sources and Review Methods A structured search of the current literature (since June 2007). The authors searched PubMed for published literature in the areas of molecular biology, biochemistry, genetics, and animal model studies in OM. Results Over the past 4 years, significant progress has been made in the areas of molecular biology, biochemistry, genetics, and animal model studies in OM. These studies brought new insights into our understanding of the molecular and biochemical mechanisms underlying the molecular pathogenesis of OM and helped identify novel therapeutic targets for OM. Conclusions and Implications for Practice Our understanding of the molecular pathogenesis of OM has been significantly advanced, particularly in the areas of inflammation, innate immunity, mucus overproduction, mucosal hyperplasia, middle ear and inner ear interaction, genetics, genome sequencing, and animal model studies. Although these studies are still in their experimental stages, they help identify new potential therapeutic targets. Future preclinical and clinical studies will help to translate these exciting experimental research findings into clinical applications. PMID:23536532

  13. Molecular research on the genetic diversity of Tunisian date palm ...

    African Journals Online (AJOL)

    Molecular research on the genetic diversity of Tunisian date palm ( Phoenix dactylifera L.) using the random amplified microsatellite polymorphism (RAMPO) and amplified fragment length polymorphism (AFLP) methods.

  14. Sensor placement optimization for structural modal identification of flexible structures using genetic algorithm

    International Nuclear Information System (INIS)

    Jung, B. K.; Cho, J. R.; Jeong, W. B.

    2015-01-01

    The position of vibration sensors influences the modal identification quality of flexible structures for a given number of sensors, and the quality of modal identification is usually estimated in terms of correlation between the natural modes using the modal assurance criterion (MAC). The sensor placement optimization is characterized by the fact that the design variables are not continuous but discrete, implying that the conventional sensitivity-driven optimization methods are not applicable. In this context, this paper presents the application of genetic algorithm to the sensor placement optimization for improving the modal identification quality of flexible structures. A discrete-type optimization problem using genetic algorithm is formulated by defining the sensor positions and the MAC as the design variables and the objective function, respectively. The proposed GA-based evolutionary optimization method is validated through the numerical experiment with a rectangular plate, and its excellence is verified from the comparison with the cases using different modal correlation measures.

  15. Molecular genetic diversity in populations of the stingless bee Plebeia remota: A case study

    Directory of Open Access Journals (Sweden)

    Flávio de Oliveira Francisco

    2013-01-01

    Full Text Available Genetic diversity is a major component of the biological diversity of an ecosystem. The survival of a population may be seriously threatened if its genetic diversity values are low. In this work, we measured the genetic diversity of the stingless bee Plebeia remota based on molecular data obtained by analyzing 15 microsatellite loci and sequencing two mitochondrial genes. Population structure and genetic diversity differed depending on the molecular marker analyzed: microsatellites showed low population structure and moderate to high genetic diversity, while mitochondrial DNA (mtDNA showed high population structure and low diversity in three populations. Queen philopatry and male dispersal behavior are discussed as the main reasons for these findings.

  16. Enhancing genetic gain in the era of molecular breeding.

    Science.gov (United States)

    Xu, Yunbi; Li, Ping; Zou, Cheng; Lu, Yanli; Xie, Chuanxiao; Zhang, Xuecai; Prasanna, Boddupalli M; Olsen, Michael S

    2017-05-17

    As one of the important concepts in conventional quantitative genetics and breeding, genetic gain can be defined as the amount of increase in performance that is achieved annually through artificial selection. To develop pro ducts that meet the increasing demand of mankind, especially for food and feed, in addition to various industrial uses, breeders are challenged to enhance the potential of genetic gain continuously, at ever higher rates, while they close the gaps that remain between the yield potential in breeders' demonstration trials and the actual yield in farmers' fields. Factors affecting genetic gain include genetic variation available in breeding materials, heritability for traits of interest, selection intensity, and the time required to complete a breeding cycle. Genetic gain can be improved through enhancing the potential and closing the gaps, which has been evolving and complemented with modern breeding techniques and platforms, mainly driven by molecular and genomic tools, combined with improved agronomic practice. Several key strategies are reviewed in this article. Favorable genetic variation can be unlocked and created through molecular and genomic approaches including mutation, gene mapping and discovery, and transgene and genome editing. Estimation of heritability can be improved by refining field experiments through well-controlled and precisely assayed environmental factors or envirotyping, particularly for understanding and controlling spatial heterogeneity at the field level. Selection intensity can be significantly heightened through improvements in the scale and precision of genotyping and phenotyping. The breeding cycle time can be shortened by accelerating breeding procedures through integrated breeding approaches such as marker-assisted selection and doubled haploid development. All the strategies can be integrated with other widely used conventional approaches in breeding programs to enhance genetic gain. More transdisciplinary

  17. Update on the Cytogenetics and Molecular Genetics of Chordoma

    Directory of Open Access Journals (Sweden)

    Larizza Lidia

    2005-02-01

    Full Text Available Abstract Chordoma is a rare mesenchymal tumour of complex biology for which only histologic and immunohistochemical criteria have been defined, but no biomarkers predicting the clinical outcome and response to treatment have yet been recognised. We herein review the interdisciplinary information achieved by epidemiologists, neurosurgeons and basic scientists on chordoma, usually a sporadic tumour, which also includes a small fraction of familial cases. Main focus is on the current knowledge of the genetic alterations which might pinpoint candidate genes and molecular mechanisms shared by sporadic and familiar chordomas. Due to the scarcity of the investigated tumour specimens and the multiple chromosome abnormalities found in tumours with aberrant karyotypes, conventional cytogenetics and Fluorescence In Situ Hybridization failed to detect recurrent chordoma-specific chromosomal rearrangements. Genome-wide approaches such as Comparative Genomic Hybridization (CGH are yet at an initial stage of application and should be implemented using BAC arrays either genome-wide or targeting selected genomic regions, disclosed by Loss of Heterozygosity (LOH studies. An LOH region was shown by a systematic study on a consistent number of chordomas to encompass 1p36, a genomic interval where a candidate gene was suggested to reside. Despite the rarity of multiplex families with chordoma impaired linkage studies, a chordoma locus could be mapped to chromosome 7q33 by positive lod score in three independent families. The role in chordomagenesis of the Tuberous Sclerosis Complex (TSC genes has been proved, but the extent of involvement of TSC1 and TSC2 oncosuppressors in chordoma remains to be assessed. In spite of the scarce knowledge on the genetics and molecular biology of chordoma, recent initiation of clinical trials using molecular-targeted therapy, should validate new molecular targets and predict the efficacy of a given therapy. Comparative genetic and

  18. Molecular and clinical profile of von Willebrand disease in Spain (PCM-EVW-ES): comprehensive genetic analysis by next-generation sequencing of 480 patients.

    Science.gov (United States)

    Borràs, Nina; Batlle, Javier; Pérez-Rodríguez, Almudena; López-Fernández, María Fernanda; Rodríguez-Trillo, Ángela; Lourés, Esther; Cid, Ana Rosa; Bonanad, Santiago; Cabrera, Noelia; Moret, Andrés; Parra, Rafael; Mingot-Castellano, María Eva; Balda, Ignacia; Altisent, Carme; Pérez-Montes, Rocío; Fisac, Rosa María; Iruín, Gemma; Herrero, Sonia; Soto, Inmaculada; de Rueda, Beatriz; Jiménez-Yuste, Víctor; Alonso, Nieves; Vilariño, Dolores; Arija, Olga; Campos, Rosa; Paloma, María José; Bermejo, Nuria; Berrueco, Rubén; Mateo, José; Arribalzaga, Karmele; Marco, Pascual; Palomo, Ángeles; Sarmiento, Lizheidy; Iñigo, Belén; Nieto, María Del Mar; Vidal, Rosa; Martínez, María Paz; Aguinaco, Reyes; César, Jesús María; Ferreiro, María; García-Frade, Javier; Rodríguez-Huerta, Ana María; Cuesta, Jorge; Rodríguez-González, Ramón; García-Candel, Faustino; Cornudella, Rosa; Aguilar, Carlos; Vidal, Francisco; Corrales, Irene

    2017-12-01

    Molecular diagnosis of patients with von Willebrand disease is pending in most populations due to the complexity and high cost of conventional molecular analyses. The need for molecular and clinical characterization of von Willebrand disease in Spain prompted the creation of a multicenter project (PCM-EVW-ES) that resulted in the largest prospective cohort study of patients with all types of von Willebrand disease. Molecular analysis of relevant regions of the VWF , including intronic and promoter regions, was achieved in the 556 individuals recruited via the development of a simple, innovative, relatively low-cost protocol based on microfluidic technology and next-generation sequencing. A total of 704 variants (237 different) were identified along VWF , 155 of which had not been previously recorded in the international mutation database. The potential pathogenic effect of these variants was assessed by in silico analysis. Furthermore, four short tandem repeats were analyzed in order to evaluate the ancestral origin of recurrent mutations. The outcome of genetic analysis allowed for the reclassification of 110 patients, identification of 37 asymptomatic carriers (important for genetic counseling) and re-inclusion of 43 patients previously excluded by phenotyping results. In total, 480 patients were definitively diagnosed. Candidate mutations were identified in all patients except 13 type 1 von Willebrand disease, yielding a high genotype-phenotype correlation. Our data reinforce the capital importance and usefulness of genetics in von Willebrand disease diagnostics. The progressive implementation of molecular study as the first-line test for routine diagnosis of this condition will lead to increasingly more personalized and effective care for this patient population. Copyright© 2017 Ferrata Storti Foundation.

  19. Joint Identification of Genetic Variants for Physical Activity in Korean Population

    Directory of Open Access Journals (Sweden)

    Jayoun Kim

    2014-07-01

    Full Text Available There has been limited research on genome-wide association with physical activity (PA. This study ascertained genetic associations between PA and 344,893 single nucleotide polymorphism (SNP markers in 8842 Korean samples. PA data were obtained from a validated questionnaire that included information on PA intensity and duration. Metabolic equivalent of tasks were calculated to estimate the total daily PA level for each individual. In addition to single- and multiple-SNP association tests, a pathway enrichment analysis was performed to identify the biological significance of SNP markers. Although no significant SNP was found at genome-wide significance level via single-SNP association tests, 59 genetic variants mapped to 76 genes were identified via a multiple SNP approach using a bootstrap selection stability measure. Pathway analysis for these 59 variants showed that maturity onset diabetes of the young (MODY was enriched. Joint identification of SNPs could enable the identification of multiple SNPs with good predictive power for PA and a pathway enriched for PA.

  20. Molecular genetics of hemophilia A: Clinical perspectives | Tantawy ...

    African Journals Online (AJOL)

    Since the publication of the sequence of the factor VIII (F8) gene in 1984, a large number of mutations that cause hemophilia A have been identified and a significant progress has been made in translating this knowledge for clinical diagnostic and therapeutic purposes. Molecular genetic testing is used to determine the ...

  1. [Molecular genetics of pigmentary retinopathies: identification of mutations in CHM, RDS, RHO, RPE65, USH2A and XLRS1 genes].

    Science.gov (United States)

    Hamel, C P; Griffoin, J M; Bazalgette, C; Lasquellec, L; Duval, P A; Bareil, C; Beaufrère, L; Bonnet, S; Eliaou, C; Marlhens, F; Schmitt-Bernard, C F; Tuffery, S; Claustres, M; Arnaud, B

    2000-12-01

    To evaluate the occurrence and inheritance of various types of pigmentary retinopathy in patients followed at the outpatient clinic in the university hospital, Montpellier, France. To characterize genes and mutations causing these conditions. Ophthalmic examination and various visual tests were performed. Mutations were sought from genomic DNA by PCR amplification of exons associated with single-strand conformation analysis and/or direct sequencing. Among 315 patients over an 8-year period, cases of retinitis pigmentosa (63.2%), Usher's syndrome (10.2%), Stargardt's disease (5.4%), choroideremia (3.2%), Leber's congenital amaurosis (3.2%), congenital stationary night blindness (2.9%), cone dystrophy (2.5%), dominant optic atrophy (1.9%), X-linked juvenile retinoschisis (1.6%), Best's disease (1.6%), and others (4.3%) were diagnosed. In retinitis pigmentosa, inheritance could be determined in 54.2% of the cases including dominant autosomic (26.6%), recessive autosomic (22.6%), and X-linked cases (5%) while it could not be confirmed in 45.7% of the cases (simplex cases in the majority). For the 6 examined genes, mutations were found in 22 out of 182 propositus (12.1%). Analysis of phenotype-genotype correlations indicates that in retinitis pigmentosa, RDS is more frequently associated with macular involvement and retinal flecks, RHO with regional disease, and RPE65 with the great severity of the disease with some cases of Leber's congenital amaurosis. Identification of genes may help in diagnosis and in genetic counseling, especially in simplex cases with retinitis pigmentosa. In this latter condition, molecular diagnosis will be necessary to rationalize future treatments.

  2. Nasopharyngeal angiofibroma: review of the genetic and molecular aspects

    Directory of Open Access Journals (Sweden)

    Oliveira, Viviane Boaventura de

    2008-09-01

    Full Text Available Introduction: Juvenile nasopharyngeal angiofibroma (JNA is a rare fibrovascular tumor of unknown etiology, with few studies analyzing its pathogenesis. Objective: Reviewing JNA's pathogenesis, emphasizing genetic and molecular aspects. Method: All the relevant articles indexed in PUBMED and LILACS, besides reference book chapters, published between 1959 and 2007 were reviewed. Results: The sex selectivity seen in JNA may be explained by intranuclear accumulation of androgen receptor and beta-catenin, a co-activator which increases the tumor sensitivity to androgynous. The genetic alterations seen in JNA are most frequently located in sexual chromosomes. A number of growth factors seem to be related to the tumor pathogenesis. The insulin-like growth factor II is highly expressed while the vascular endothelial growth factor and the transforming growth factor beta are released by stromal cells and may influence the JNA's growth and vascularization. Conclusion: In spite of the scarce data describing the JNA etiology and pathogenesis, genetic and molecular factors seem to collaborate to the understanding of the disease's many clinical and morphological features. Knowledge regarding these specific issues could contribute for the establishment of potential therapeutic targets in the future.

  3. Theory and Practice in Quantitative Genetics

    DEFF Research Database (Denmark)

    Posthuma, Daniëlle; Beem, A Leo; de Geus, Eco J C

    2003-01-01

    With the rapid advances in molecular biology, the near completion of the human genome, the development of appropriate statistical genetic methods and the availability of the necessary computing power, the identification of quantitative trait loci has now become a realistic prospect for quantitative...... geneticists. We briefly describe the theoretical biometrical foundations underlying quantitative genetics. These theoretical underpinnings are translated into mathematical equations that allow the assessment of the contribution of observed (using DNA samples) and unobserved (using known genetic relationships......) genetic variation to population variance in quantitative traits. Several statistical models for quantitative genetic analyses are described, such as models for the classical twin design, multivariate and longitudinal genetic analyses, extended twin analyses, and linkage and association analyses. For each...

  4. Molecular Identification of Adult and Juvenile Linyphiid and Theridiid Spiders in Alpine Glacier Foreland Communities

    Science.gov (United States)

    Raso, Lorna; Sint, Daniela; Rief, Alexander; Kaufmann, Rüdiger; Traugott, Michael

    2014-01-01

    In glacier forelands spiders constitute a large proportion of the invertebrate community. Therefore, it is important to be able to determine the species that can be found in these areas. Linyphiid and theridiid spider identification is currently not possible in juvenile specimens using traditional morphological based methods, however, a large proportion of the population in these areas are usually juveniles. Molecular methods permit identification of species at different life stages, making juvenile identification possible. In this study we tested a molecular tool to identify the 10 most common species of Linyphiidae and Theridiidae found in three glacier foreland communities of the Austrian Alps. Two multiplex PCR systems were developed and over 90% of the 753 field-collected spiders were identified successfully. The species targeted were found to be common in all three valleys during the summer of 2010. A comparison between the molecular and morphological data showed that although there was a slight difference in the results, the overall outcome was the same independently of the identification method used. We believe the quick and reliable identification of the spiders via the multiplex PCR assays developed here will aid the study of these families in Alpine habitats. PMID:25050841

  5. The Use of DNA Barcoding in Identification of Genetic Diversity of ...

    African Journals Online (AJOL)

    Prof. Ogunji

    29 (2015) 27 – 33 ... Nwakanma C.1, Ude, G.2 and Unachukwu, M. N.3. 1Department of Environmental Management and Toxicology, ... Godfrey Okoye University, Enugu, Enugu State, Nigeria. ... against the barcode library for identification ..... Genetic diversity and Integrated Principles of ... McGraw-Hill Publishing Co. 23.

  6. Molecular Markers for Genetic Diversity Studies of European Hare (Lepus europaeus Pallas, 1778 Populations

    Directory of Open Access Journals (Sweden)

    Noémi Soós

    2015-05-01

    Full Text Available The purpose of this article is to give an overview of different molecular techniques which have been used in studies concerning population genetic issues of Lepus species and specifically of L. europaeus. The importance of these researches is ever-growing as the European populations of the brown hare have suffered several falloffs as a consequent upon both natural and anthropogenic effects. With developing tools and techniques molecular genetics have become the centrepiece of population genetics and conservation biology. Nucleic acid methods based on both bi- and uniparentally inherited DNA (allozymes, microsatellites, Y chromosome, mtDNA are often used to study genetic structure, diversity and phylogeography of different species’ populations due to their effectiveness in identifying genetic variability

  7. Construction of intergeneric conjugal transfer for molecular genetic ...

    African Journals Online (AJOL)

    SAM

    2014-03-26

    Mar 26, 2014 ... The attB integration site in the S. mobaraensis genome was detected as a single attB ... present study, to promote the molecular genetic study of. S. mobaraensis .... further increase in the number of E. coli donor cells. (≥1.25 × 108) (Choi et .... rational mutagenesis and random mutagenesis. Appl. Microbiol.

  8. Proportioning whole-genome single-nucleotide-polymorphism diversity for the identification of geographic population structure and genetic ancestry

    NARCIS (Netherlands)

    O. Lao Grueso (Oscar); K. van Duijn (Kate); P. Kersbergen (Paula); P. de Knijff (Peter); M.H. Kayser (Manfred)

    2006-01-01

    textabstractThe identification of geographic population structure and genetic ancestry on the basis of a minimal set of genetic markers is desirable for a wide range of applications in medical and forensic sciences. However, the absence of sharp discontinuities in the neutral genetic diversity among

  9. Hamartomatous polyps - a clinical and molecular genetic study

    DEFF Research Database (Denmark)

    Jelsig, Anne Marie

    2016-01-01

    the knowledge on clinical course and molecular genetics in patients with HPs and HPS, and to investigate research participants' attitude towards the results of extensive genetic testing. Paper I: In the first paper we investigated the occurrence, anatomic distribution, and other demographics of juvenile polyps...... appearance. Patients with one or a few juvenile polyps are usually not offered clinical follow-up as the polyp(s) are considered not to harbour any malignant potential. Nevertheless, it is important to note that juvenile polyps and HPs are also found in patients with hereditary hamartomatous polyposis......-Jeghers syndrome, and the PTEN hamartoma tumour syndrome. Currently, the HPS diagnoses are based on clinical criteria and are often assisted with genetic testing as candidate genes have been described for each syndrome. This thesis is based on six scientific papers. The overall aim of the studies was to expand...

  10. Implementation of molecular karyotyping in clinical genetics

    Directory of Open Access Journals (Sweden)

    Luca Lovrecic

    2013-11-01

    Full Text Available Rapid development of technologies for the study of the human genome is an expected step after the discovery and sequencing of the entire human genome. Chromosomal microarrays, which allow us to perform tens of thousands of previously individual experiments simultaneously, are being utilized in all areas of human genetics and genomics. Initially, this was applicable only for research purposes, but in the last few years their clinical diagnostic purposes are becoming more and more relevant. Using molecular karyotyping (also chromosomal microarray, comparative genomic hybridization with microarray, aCGH, one can analyze microdeletions / microduplications in the whole human genome at once. It is a first-tier cytogenetic diagnostic test instead of G-banded karyotyping in patients with developmental delay and/or congenital anomalies. Molecular karyotyping is used as a diagnostic test in patients with unexplained developmental delay and/or idiopathic intellectual disability and/or dysmorphic features and/or multiple congenital anomalies (DD/ID/DF/MCA. In addition, the method is used in prenatal diagnostics and in some centres also in preimplantation genetic diagnosis.The aim of this paper is to inform the professional community in the field about this new diagnostic method and its implementation in Slovenia, and to define the clinical situations where the method is appropriate.

  11. Molecular identification of Entamoeba species in savanna woodland chimpanzees (Pan troglodytes schweinfurthii)

    Czech Academy of Sciences Publication Activity Database

    Jirků-Pomajbíková, Kateřina; Čepička, I.; Kalousová, B.; Jirků, Milan; Stewart, F.; Levecke, B.; Modrý, David; Piel, A. K.; Petrželková, Klára Judita

    2016-01-01

    Roč. 143, č. 6 (2016), s. 741-748 ISSN 0031-1820 R&D Projects: GA ČR GA206/09/0927 Institutional support: RVO:60077344 Keywords : Entamoeba * molecular diversity * great apes * chimpanzee * savannah Subject RIV: EB - Genetics ; Molecular Biology Impact factor: 2.713, year: 2016

  12. Strengthening molecular genetics and training in craniosynostosis: The need of the hour

    Science.gov (United States)

    Barik, Mayadhar; Bajpai, Minu; Panda, Shasanka Shekhar; Malhotra, Arun; Samantaray, Jyotish Chandra; Dwivedi, Sada Nanda

    2014-01-01

    Craniosynostosis (CS) is premature fusion of skull. It is divided into two groups: Syndromic craniosynostosis (SCS) and non-syndromic craniosynostosis (NSC). Its incidence in Indian population is 1:1000 live births where as in the USA it is 1:2500 live births. Its incidence varies from country to country. Molecular genetics having great interest and relevance in medical students, faculty, scientist, pediatric neurosurgeon and staff nurses, our objective was to educate the medical students, residents, researchers, clinicians, pediatric neurosurgeon, anesthetists, pediatricians, staff nurses and paramedics. We summarized here including with diagnosis, investigations, surgical therapy, induction therapy, and molecular therapy. Molecular genetics training is needed to know the information regarding development of skull, cranial connective tissue, craniofacial dysplasia, frame work, network of receptors and its etiopathogenesis. The important part is clinically with molecular therapy (MT) how to manage CS in rural sector and metropolitan cities need a special attention. PMID:25288859

  13. Strengthening molecular genetics and training in craniosynostosis: The need of the hour

    Directory of Open Access Journals (Sweden)

    Mayadhar Barik

    2014-01-01

    Full Text Available Craniosynostosis (CS is premature fusion of skull. It is divided into two groups: Syndromic craniosynostosis (SCS and non-syndromic craniosynostosis (NSC. Its incidence in Indian population is 1:1000 live births where as in the USA it is 1:2500 live births. Its incidence varies from country to country. Molecular genetics having great interest and relevance in medical students, faculty, scientist, pediatric neurosurgeon and staff nurses, our objective was to educate the medical students, residents, researchers, clinicians, pediatric neurosurgeon, anesthetists, pediatricians, staff nurses and paramedics. We summarized here including with diagnosis, investigations, surgical therapy, induction therapy, and molecular therapy. Molecular genetics training is needed to know the information regarding development of skull, cranial connective tissue, craniofacial dysplasia, frame work, network of receptors and its etiopathogenesis. The important part is clinically with molecular therapy (MT how to manage CS in rural sector and metropolitan cities need a special attention.

  14. Molecular genetics and livestock selection. Approaches, opportunities and risks

    International Nuclear Information System (INIS)

    Williams, J.L.

    2005-01-01

    Following domestication, livestock were selected both naturally through adaptation to their environments and by man so that they would fulfil a particular use. As selection methods have become more sophisticated, rapid progress has been made in improving those traits that are easily measured. However, selection has also resulted in decreased diversity. In some cases, improved breeds have replaced local breeds, risking the loss of important survival traits. The advent of molecular genetics provides the opportunity to identify the genes that control particular traits by a gene mapping approach. However, as with selection, the early mapping studies focused on traits that are easy to measure. Where molecular genetics can play a valuable role in livestock production is by providing the means to select effectively for traits that are difficult to measure. Identifying the genes underpinning particular traits requires a population in which these traits are segregating. Fortunately, several experimental populations have been created that have allowed a wide range of traits to be studied. Gene mapping work in these populations has shown that the role of particular genes in controlling variation in a given trait can depend on the genetic background. A second finding is that the most favourable alleles for a trait may in fact. be present in animals that perform poorly for the trait. In the long term, knowledge of -the genes controlling particular traits, and the way they interact with the genetic background, will allow introgression between breeds and the assembly of genotypes that are best suited to particular environments, producing animals with the desired characteristics. If used wisely, this approach will maintain genetic diversity while improving performance over a wide range of desired traits. (author)

  15. Innovative molecular approach to the identification of Colossoma macropomum and its hybrids

    Directory of Open Access Journals (Sweden)

    Fátima Gomes

    2012-06-01

    Full Text Available Tambaqui (Colossoma macropomum is the fish species most commonly raised in the Brazilian fish farms. The species is highly adaptable to captive conditions, and is both fast-growing and relatively fecund. In recent years, artificial breeding has produced hybrids with Characiform species, known as "Tambacu" and "Tambatinga". Identifying hybrids is a difficult process, given their morphological similarities with the parent species. This study presents an innovative molecular approach to the identification of hybrids based primarily on Multiplex PCR of a nuclear gene (α-Tropomyosin, which was tested on 93 specimens obtained from fish farms in northern Brazil. The sequencing of a 505-bp fragment of the Control Region (CR permitted the identification of the maternal lineage of the specimen, all of which corresponded to C. macropomum. Unexpectedly, only two CR haplotype were found in 93 samples, a very low genetic diversity for the pisciculture of Tambaqui. Multiplex PCR identified 42 hybrids, in contrast with 23 identified by the supplier on the basis of external morphology. This innovative tool has considerable potential for the development of the Brazilian aquaculture, given the possibility of the systematic identification of the genetic traits of both fry-producing stocks, and the fry and juveniles raised in farms.O Tambaqui (Colossoma macropomum é a espécie de peixe mais comumente cultivada em pisciculturas no Brasil. A espécie é altamente adaptada às condições de cativeiro, apresentando rápido crescimento e alta fecundidade. Nos últimos anos tem ocorrido o cruzamento artificial entre espécies de Characiformes, produzindo os híbridos "Tambacu" e "Tambatinga". A identificação de híbridos é uma tarefa difícil, em virtude da grande similaridade morfológica entre as espécies parentais. O presente estudo apresenta uma abordagem molecular inovadora para identificação de híbridos com base em PCR Multiplex de um gene nuclear (

  16. Further studies on the molecular systematics of Biomphalaria snails from Brazil

    Directory of Open Access Journals (Sweden)

    Teofânia HDA Vidigal

    2000-01-01

    Full Text Available The polymerase chain reaction and restriction fragment length polymorphism (RFLP of the internal transcribed spacer (ITS region of the rRNA gene, using the enzyme DdeI were used for the molecular identification of ten species and one subspecies of Brazilian Biomphalaria. Emphasis is given to the analysis of B. oligoza, B. schrammi and B. amazonica. The RFLP profiles obtained using this enzyme were highly distinctive for the majority of the species and exhibited low levels of intraspecific polymorphism among specimens from different regions of Brazil. However, B. peregrina and B. oligoza presented very similar profiles that complicated their identification at the molecular level and suggested a very close genetic similarity between the two species. Others enzymes including HaeIII, HpaII, AluI and MnlI were tested for their ability to differentiate these species. For B. amazonica three variant profiles produced with DdeI were observed. The study demonstrated that the ITS contains useful genetic markers for the identification of these snails

  17. Genetics of ischemic stroke: future clinical applications.

    Science.gov (United States)

    Wang, Michael M

    2006-11-01

    Ischemic stroke has long been thought to have a genetic component that is independent of conventional vascular risk factors. It has been estimated that over one half of stroke risk is determined by inherited genes. However, until recently, strong evidence of genetic influence on ischemic stroke has been subject to criticism because the risk factors for stroke are also inherited and because previous studies suffered from limitations imposed by this highly heterogeneous neurological disorder. Recent advances in molecular genetics have led to the identification of specific genetic loci that impart susceptibility to ischemic stroke. We review the studies of these genes and discuss the future potential applications of genetic markers on the management of ischemic stroke patients.

  18. Best practice guidelines for the molecular genetic diagnosis of Type 1 (HFE-related hereditary haemochromatosis

    Directory of Open Access Journals (Sweden)

    Barton David E

    2006-11-01

    Full Text Available Abstract Background Hereditary haemochromatosis (HH is a recessively-inherited disorder of iron over-absorption prevalent in Caucasian populations. Affected individuals for Type 1 HH are usually either homozygous for a cysteine to tyrosine amino acid substitution at position 282 (C282Y of the HFE gene, or compound heterozygotes for C282Y and for a histidine to aspartic acid change at position 63 (H63D. Molecular genetic testing for these two mutations has become widespread in recent years. With diverse testing methods and reporting practices in use, there was a clear need for agreed guidelines for haemochromatosis genetic testing. The UK Clinical Molecular Genetics Society has elaborated a consensus process for the development of disease-specific best practice guidelines for genetic testing. Methods A survey of current practice in the molecular diagnosis of haemochromatosis was conducted. Based on the results of this survey, draft guidelines were prepared using the template developed by UK Clinical Molecular Genetics Society. A workshop was held to develop the draft into a consensus document. The consensus document was then posted on the Clinical Molecular Genetics Society website for broader consultation and amendment. Results Consensus or near-consensus was achieved on all points in the draft guidelines. The consensus and consultation processes worked well, and outstanding issues were documented in an appendix to the guidelines. Conclusion An agreed set of best practice guidelines were developed for diagnostic, predictive and carrier testing for hereditary haemochromatosis and for reporting the results of such testing.

  19. Molecular Genetic and Gene Therapy Studies of the Musculoskeletal System

    National Research Council Canada - National Science Library

    Baylink, David

    2004-01-01

    The primary goal of the proposed work is to apply several state of the art molecular genetic and gene therapy technologies to address fundamental questions in bone biology with a particular emphasis on attempting: l...

  20. EMQN/CMGS best practice guidelines for the molecular genetic testing of Huntington disease

    OpenAIRE

    Losekoot, Monique; van Belzen, Martine J; Seneca, Sara; Bauer, Peter; Stenhouse, Susan A R; Barton, David E

    2012-01-01

    Huntington disease (HD) is caused by the expansion of an unstable polymorphic trinucleotide (CAG)n repeat in exon 1 of the HTT gene, which translates into an extended polyglutamine tract in the protein. Laboratory diagnosis of HD involves estimation of the number of CAG repeats. Molecular genetic testing for HD is offered in a wide range of laboratories both within and outside the European community. In order to measure the quality and raise the standard of molecular genetic testing in these ...

  1. The Use of DNA Barcoding in Identification of Genetic Diversity of ...

    African Journals Online (AJOL)

    In this study, for the first time, the use of DNA barcoding was used in identification of the genetic diversity of fish in Ugwu-omu Nike River, Enugu State, Nigeria. The fish were collected and placed in an aquarium and later transported to the Biotechnology laboratory of Godfrey Okoye University. The fish collection was ...

  2. Molecular markers for genetic diversity and phylogeny research of ...

    African Journals Online (AJOL)

    Brazilian sheep descended from several breeds brought to the New World by Portuguese and Spanish colonists, and they have evolved and adapted to local climatic variations and acquired tolerance or resistance to many diseases. Molecular markers are widely used in analyzing genetic variability, and markers such as ...

  3. Parallelized Genetic Identification of the Thermal-Electrochemical Model for Lithium-Ion Battery

    Directory of Open Access Journals (Sweden)

    Liqiang Zhang

    2013-01-01

    Full Text Available The parameters of a well predicted model can be used as health characteristics for Lithium-ion battery. This article reports a parallelized parameter identification of the thermal-electrochemical model, which significantly reduces the time consumption of parameter identification. Since the P2D model has the most predictability, it is chosen for further research and expanded to the thermal-electrochemical model by coupling thermal effect and temperature-dependent parameters. Then Genetic Algorithm is used for parameter identification, but it takes too much time because of the long time simulation of model. For this reason, a computer cluster is built by surplus computing resource in our laboratory based on Parallel Computing Toolbox and Distributed Computing Server in MATLAB. The performance of two parallelized methods, namely Single Program Multiple Data (SPMD and parallel FOR loop (PARFOR, is investigated and then the parallelized GA identification is proposed. With this method, model simulations running parallelly and the parameter identification could be speeded up more than a dozen times, and the identification result is batter than that from serial GA. This conclusion is validated by model parameter identification of a real LiFePO4 battery.

  4. MEGA X: Molecular Evolutionary Genetics Analysis across Computing Platforms.

    Science.gov (United States)

    Kumar, Sudhir; Stecher, Glen; Li, Michael; Knyaz, Christina; Tamura, Koichiro

    2018-06-01

    The Molecular Evolutionary Genetics Analysis (Mega) software implements many analytical methods and tools for phylogenomics and phylomedicine. Here, we report a transformation of Mega to enable cross-platform use on Microsoft Windows and Linux operating systems. Mega X does not require virtualization or emulation software and provides a uniform user experience across platforms. Mega X has additionally been upgraded to use multiple computing cores for many molecular evolutionary analyses. Mega X is available in two interfaces (graphical and command line) and can be downloaded from www.megasoftware.net free of charge.

  5. Genética molecular: avanços e problemas Molecular genetics: advances and problems

    Directory of Open Access Journals (Sweden)

    Eloi S. Garcia

    1996-03-01

    Full Text Available Este artigo traz a discussão sobre genética molecular em saúde ao campo da saúde pública. Com a revolução produzida pela chegada da engenharia genética, é importante discutir alguns dos avanços e problemas desta tecnologia para a sociedade. Está na hora de se fazer uma avaliação clara e bem informada acerca do que já se conseguiu e do que ainda podemos conseguir através desta tecnologia. A sociedade precisa compreender as implicações éticas e práticas de uma tecnologia capaz de produzir drogas milagrosas, dagnósticos modernos e a cura de todas as doenças. Alguns pontos particularmente delicados pertinentes às questões sociais ligadas à biologia molecular e ao projeto genoma humano são discutidos.This article is an attempt to draw the discussion on molecular genetics in health into the public health domain. Now that the genetic engineering revolution has arrived, it is important to point out the advances and problems this technology poses for society. It is time for a clear, informed assessment of what we have already achieved and may soon achieve using this technology. Clearly, society needs to understand the ethical and practical implications of a technology which can produce miracle drugs and modern diagnoses and cure virtually every disease. Important points from sensitive social issues raised by molecular biology and the human genome project are discussed.

  6. A rapid, one step molecular identification of Trichoderma citrinoviride and Trichoderma reesei.

    Science.gov (United States)

    Saroj, Dina B; Dengeti, Shrinivas N; Aher, Supriya; Gupta, Anil K

    2015-06-01

    Trichoderma species are widely used as production hosts for industrial enzymes. Identification of Trichoderma species requires a complex molecular biology based identification involving amplification and sequencing of multiple genes. Industrial laboratories are required to run identification tests repeatedly in cell banking procedures and also to prove absence of production host in the product. Such demands can be fulfilled by a brief method which enables confirmation of strain identity. This communication describes one step identification method for two common Trichoderma species; T. citrinoviride and T. reesei, based on identification of polymorphic region in the nucleotide sequence of translation elongation factor 1 alpha. A unique forward primer and common reverse primer resulted in 153 and 139 bp amplicon for T. citrinoviride and T. reesei, respectively. Simplification was further introduced by using mycelium as template for PCR amplification. Method described in this communication allows rapid, one step identification of two Trichoderma species.

  7. Molecular identification of Taenia serialis coenurosis in a wild Ethiopian gelada (Theropithecus gelada).

    Science.gov (United States)

    Schneider-Crease, India A; Snyder-Mackler, Noah; Jarvey, Julie C; Bergman, Thore J

    2013-11-15

    Since morphological identification of a larval Taeniid in geladas (Theropithecus gelada) has produced inconsistent results, genetic information is pivotal for species identification. Nuclear and mitochondrial DNA from a coenurus in a wild gelada were compared to published sequences from multiple Taeniid species, confirming the identification of this parasite as Taenia serialis. A demographic analysis finds age to be a strong predictor of coenuri. Tapeworms rarely employ primates as intermediate hosts, and the presence of T. serialis in a wild gelada population may indicate a substantial ecological shift in this parasite's life cycle. Copyright © 2013 Elsevier B.V. All rights reserved.

  8. Isolation and molecular genetic characterization of a yeast strain ...

    African Journals Online (AJOL)

    The yeast was identified by molecular genetics technique based on sequence analysis of the variable D1/D2 domain of the large subunit (26S) ribosomal DNA. Subsequent 26S rRNA gene sequencing showed 100% base sequence homology and it was identified as Candida viswanathii. The degradation of PAHs

  9. Molecular identification and phylogenetic study of Demodex caprae.

    Science.gov (United States)

    Zhao, Ya-E; Cheng, Juan; Hu, Li; Ma, Jun-Xian

    2014-10-01

    The DNA barcode has been widely used in species identification and phylogenetic analysis since 2003, but there have been no reports in Demodex. In this study, to obtain an appropriate DNA barcode for Demodex, molecular identification of Demodex caprae based on mitochondrial cox1 was conducted. Firstly, individual adults and eggs of D. caprae were obtained for genomic DNA (gDNA) extraction; Secondly, mitochondrial cox1 fragment was amplified, cloned, and sequenced; Thirdly, cox1 fragments of D. caprae were aligned with those of other Demodex retrieved from GenBank; Finally, the intra- and inter-specific divergences were computed and the phylogenetic trees were reconstructed to analyze phylogenetic relationship in Demodex. Results obtained from seven 429-bp fragments of D. caprae showed that sequence identities were above 99.1% among three adults and four eggs. The intraspecific divergences in D. caprae, Demodex folliculorum, Demodex brevis, and Demodex canis were 0.0-0.9, 0.5-0.9, 0.0-0.2, and 0.0-0.5%, respectively, while the interspecific divergences between D. caprae and D. folliculorum, D. canis, and D. brevis were 20.3-20.9, 21.8-23.0, and 25.0-25.3, respectively. The interspecific divergences were 10 times higher than intraspecific ones, indicating considerable barcoding gap. Furthermore, the phylogenetic trees showed that four Demodex species gathered separately, representing independent species; and Demodex folliculorum gathered with canine Demodex, D. caprae, and D. brevis in sequence. In conclusion, the selected 429-bp mitochondrial cox1 gene is an appropriate DNA barcode for molecular classification, identification, and phylogenetic analysis of Demodex. D. caprae is an independent species and D. folliculorum is closer to D. canis than to D. caprae or D. brevis.

  10. Prediction of industrial tomato hybrids from agronomic traits and ISSR molecular markers.

    Science.gov (United States)

    Figueiredo, A S T; Resende, J T V; Faria, M V; Da-Silva, P R; Fagundes, B S; Morales, R G F

    2016-05-13

    Heterosis is a highly relevant phenomenon in plant breeding. This condition is usually established in hybrids derived from crosses of highly divergent parents. The success of a breeder in obtaining heterosis is directly related to the correct identification of genetically contrasting parents. Currently, the diallel cross is the most commonly used methodology to detect contrasting parents; however, it is a time- and cost-consuming procedure. Therefore, new tools capable of performing this task quickly and accurately are required. Thus, the purpose of this study was to estimate the genetic divergence in industrial tomato lines, based on agronomic traits, and to compare with estimates obtained using inter-simple sequence repeat (ISSR) molecular markers. The genetic divergence among 10 industrial tomato lines, based on nine morphological characters and 12 ISSR primers was analyzed. For data analysis, Pearson and Spearman correlation coefficients were calculated between the genetic dissimilarity measures estimated by Mahalanobis distance and Jaccard's coefficient of genetic dissimilarity from the heterosis estimates, combining ability, and means of important traits of industrial tomato. The ISSR markers efficiently detected contrasting parents for hybrid production in tomato. Parent RVTD-08 was indicated as the most divergent, both by molecular and morphological markers, that positively contributed to increased heterosis and by the specific combining ability in the crosses in which it participated. The genetic dissimilarity estimated by ISSR molecular markers aided the identification of the best hybrids of the experiment in terms of total fruit yield, pulp yield, and soluble solids content.

  11. Online Identification of Photovoltaic Source Parameters by Using a Genetic Algorithm

    Directory of Open Access Journals (Sweden)

    Giovanni Petrone

    2017-12-01

    Full Text Available In this paper, an efficient method for the online identification of the photovoltaic single-diode model parameters is proposed. The combination of a genetic algorithm with explicit equations allows obtaining precise results without the direct measurement of short circuit current and open circuit voltage that is typically used in offline identification methods. Since the proposed method requires only voltage and current values close to the maximum power point, it can be easily integrated into any photovoltaic system, and it operates online without compromising the power production. The proposed approach has been implemented and tested on an embedded system, and it exhibits a good performance for monitoring/diagnosis applications.

  12. The molecular genetics of inflammatory, autoimmune, and infectious diseases of the sinonasal tract: a review.

    Science.gov (United States)

    Montone, Kathleen T

    2014-06-01

    The sinonasal tract is frequently affected by a variety of nonneoplastic inflammatory disease processes that are often multifactorial in their etiology but commonly have a molecular genetic component. To review the molecular genetics of a variety of nonneoplastic inflammatory diseases of the sinonasal tract. Inflammatory lesions of the sinonasal tract can be divided into 3 main categories: (1) chronic rhinosinusitis, (2) infectious diseases, and (3) autoimmune diseases/vasculitides. The molecular diagnosis and pathways of a variety of these inflammatory lesions are currently being elucidated and will shed light on disease pathogenesis and treatment. The sinonasal tract is frequently affected by inflammatory lesions that arise through complex interactions of environmental, infectious, and genetic factors. Because these lesions are all inflammatory in nature, the molecular pathology surrounding them is most commonly due to upregulation and down-regulation of genes that affect inflammatory responses and immune regulation.

  13. Genetic Diversity Analysis of Tagetes Species Using PCR Based Molecular Markers

    International Nuclear Information System (INIS)

    Shahzadi, I.; Ahmad, R.; Waheed, U.; Shah, M. F.

    2016-01-01

    Tagetes is a genus of medicinally important wild and cultivated plants containing several chemical compounds. Lack of information on variation at molecular level present in Tagetes species is paramount to understand the genetic basis of medicinally important compounds. Current study aims at finding genetic variability in Tagetes species using random and specific molecular markers. Two primer systems including 25 RAPD and 3 STS (limonene gene) were used to ascertain genetic diversity of 15 Tagetes genotypes belonging to different species. We found that 20 of the 25 tested RAPD primers generated stable band patterns with 167 loci of amplification products. The proportion of polymorphic bands was 95.21 percent for RAPD primers. Three STS primers generated a total of 29 amplification products, of which 96.55 percent were polymorphic. Homology of genotypes was 53.18 percent and 51.11 percent with RAPD and STS primers respectively. The dendrogram obtained revealed that the range of overall genetic distances estimated was 22 percent to 100 percent through RAPD and 9 percent to 100 percent through STS markers. The findings help to establish that PCR-based assay such as RAPD and STS could be used successfully for estimation of genetic diversity of different genotypes of Tagetes that can be used for selection of parents for improvement of the species. (author)

  14. The Use of Fta Card on Dna Sample Preparation for Molecular of Plant Disease Identification

    OpenAIRE

    Sulistyawati, Purnamila; Rimbawanto, Anto

    2007-01-01

    Accurate and guick identification of pathogen is key to control the spread of plant disesases. Morphological identification is often ineffective because it requires fruit body which often are not presence, rely on characters which may be highly variable within and among species and can be slow and time consuming. Molecular identification of plant disease can overcome most of the shortcomings of morphological identification. Application of FTA Cardn for sample collection is crucial for the su...

  15. Network-based identification of biomarkers coexpressed with multiple pathways.

    Science.gov (United States)

    Guo, Nancy Lan; Wan, Ying-Wooi

    2014-01-01

    Unraveling complex molecular interactions and networks and incorporating clinical information in modeling will present a paradigm shift in molecular medicine. Embedding biological relevance via modeling molecular networks and pathways has become increasingly important for biomarker identification in cancer susceptibility and metastasis studies. Here, we give a comprehensive overview of computational methods used for biomarker identification, and provide a performance comparison of several network models used in studies of cancer susceptibility, disease progression, and prognostication. Specifically, we evaluated implication networks, Boolean networks, Bayesian networks, and Pearson's correlation networks in constructing gene coexpression networks for identifying lung cancer diagnostic and prognostic biomarkers. The results show that implication networks, implemented in Genet package, identified sets of biomarkers that generated an accurate prediction of lung cancer risk and metastases; meanwhile, implication networks revealed more biologically relevant molecular interactions than Boolean networks, Bayesian networks, and Pearson's correlation networks when evaluated with MSigDB database.

  16. Quality control in mutation analysis: the European Molecular Genetics Quality Network (EMQN).

    Science.gov (United States)

    Müller, C R

    2001-08-01

    The demand for clinical molecular genetics testing has steadily grown since its introduction in the 1980s. In order to reach and maintain the agreed quality standards of laboratory medicine, the same internal and external quality assurance (IQA/EQA) criteria have to be applied as for "conventional" clinical chemistry or pathology. In 1996 the European Molecular Genetics Quality Network (EMQN) was established in order to spread QA standards across Europe and to harmonise the existing national activities. EMQN is operated by a central co-ordinator and 17 national partners from 15 EU countries; since 1998 it is being funded by the EU commission for a 3-year period. EMQN promotes QA by two tools: by providing disease-specific best practice meetings (BPM) and EQA schemes. A typical BPM is focussed on one disease or group of related disorders. International experts report on the latest news of gene characterisation and function and the state-of-the-art techniques for mutation detection. Disease-specific EQA schemes are provided by experts in the field. DNA samples are sent out together with mock clinical referrals and a diagnostic question is asked. Written reports must be returned which are marked for genotyping and interpretation. So far, three BPMs have been held and six EQA schemes are in operation at various stages. Although mutation types and diagnostic techniques varied considerably between schemes, the overall technical performance showed a high diagnostic standard. Nevertheless, serious genotyping errors have been occurred in some schemes which underline the necessity of quality assurance efforts. The European Molecular Genetics Quality Network provides a necessary platform for the internal and external quality assurance of molecular genetic testing.

  17. Pythium insidiosum: morphological and molecular identification of Brazilian isolates

    Directory of Open Access Journals (Sweden)

    Maria Isabel de Azevedo

    2012-07-01

    Full Text Available Pythium insidiosum is an oomycete belonging to the kingdom Stramenipila and it is the etiologic agent of pythiosis. Pythiosis is a life-threatening infectious disease characterized by the development of chronic lesions on cutaneous and subcutaneous, intestinal, and bone tissues in humans and many species of animals. The identification of P. insidiosum is important in order to implement a rapid and definitive diagnosis and an effective treatment. This study reports the identification of 54 isolates of P. insidiosum of horses, dogs and sheep that presented suspicious clinical lesions of pythiosis from different regions in Brazil, by using morphological and molecular assays. Throughout the PCR it was possible to confirm the identity of all Brazilian isolates as being P. insidiosum.

  18. Reliable prediction of adsorption isotherms via genetic algorithm molecular simulation.

    Science.gov (United States)

    LoftiKatooli, L; Shahsavand, A

    2017-01-01

    Conventional molecular simulation techniques such as grand canonical Monte Carlo (GCMC) strictly rely on purely random search inside the simulation box for predicting the adsorption isotherms. This blind search is usually extremely time demanding for providing a faithful approximation of the real isotherm and in some cases may lead to non-optimal solutions. A novel approach is presented in this article which does not use any of the classical steps of the standard GCMC method, such as displacement, insertation, and removal. The new approach is based on the well-known genetic algorithm to find the optimal configuration for adsorption of any adsorbate on a structured adsorbent under prevailing pressure and temperature. The proposed approach considers the molecular simulation problem as a global optimization challenge. A detailed flow chart of our so-called genetic algorithm molecular simulation (GAMS) method is presented, which is entirely different from traditions molecular simulation approaches. Three real case studies (for adsorption of CO 2 and H 2 over various zeolites) are borrowed from literature to clearly illustrate the superior performances of the proposed method over the standard GCMC technique. For the present method, the average absolute values of percentage errors are around 11% (RHO-H 2 ), 5% (CHA-CO 2 ), and 16% (BEA-CO 2 ), while they were about 70%, 15%, and 40% for the standard GCMC technique, respectively.

  19. Molecular genetics: Step by step implementation in maize breeding

    Directory of Open Access Journals (Sweden)

    Konstantinov Kosana

    2007-01-01

    Full Text Available Efficiency in plant breeding is determined primarily by the ability to screen for genetic polymorphism, productivity and yield stability early in program. Dependent on the knowledge about the biochemical bases of the trait and nature of its genetic control, trait could be modified either through mutagenesis of genes controlling it or through the transfer of already existing mutant genes, controlling desired trait to different plant genotypes by classic crossing. Objective of this report is to present partly results on the investigation of the possibilities to apply ionizing radiations (fast neutrons, γ -rays and chemical mutagens (EI, iPMS, EMS, ENU to get maize and wheat mutants with increased amount and improved protein quality. Besides this approach in mutation breeding, results on the very early investigation of biochemical background of opaque -2 mutation including use of coupled cell - free RNA and protein synthesis containing components from both wild and opaque - 2 maize genotypes (chromatin, RNA polymerase, microsomall fraction, protein bodies will be presented. Partial results on opaque - 2 gene incorporation in different genetic background are reviewed. Part of report is dealing with different classes of molecular markers (proteins, RFLP, AFLP, RAPD, and SSR application in maize genome polymorphism investigation. Besides application of different molecular markers classes in the investigation of heterosis phenomena they are useful in biochemical pathway of important traits control determination as well. .

  20. Molecular identification of clinical Nocardia isolates from India.

    Science.gov (United States)

    Rudramurthy, Shivaprakash M; Honnavar, Prasanna; Kaur, Harsimran; Samanta, Palash; Ray, Pallab; Ghosh, Anup; Chakrabarti, Arunaloke

    2015-10-01

    The epidemiology of nocardiosis is evolving with increasing number of Nocardia spp. causing human infection. In recent years, molecular techniques have been used to identify Nocardia spp. There are limited data available on the spectrum of Nocardia spp. isolated from clinical samples in India. Here, a molecular study was carried on 30 clinical isolates maintained in our National Culture Collection to evaluate the techniques used for identifying the agents. The isolates were identified by sequencing two promising genes: the 16S rRNA gene and hsp65. Both hsp65 and the 16S rRNA gene could reliably identify 90 % of Nocardia isolates, i.e. N. farcinica, N. cyriacigeorgica, N. brasiliensis, N. otitidiscaviarum, N. amamiensis and N. pneumoniae. The mean percentage dissimilarity of sequence identification was higher using the hsp65 gene (4 %, range 0-7.9 %) compared with the 16S rRNA gene (2.3 %, range 0-8.9 %). Two isolates that showed ambiguous results in both the short segment of the 16S rRNA gene and hsp65 sequences could be resolved by sequencing a larger fragment (∼1000 bp) of the 16S rRNA gene. Both of these isolates were identified as N. beijingensis with similarities of 99.8 and 100 % compared with the standard strain. Genotyping of N. cyriacigeorgica strains was performed using hsp65 gene sequences and compared with previously described genotypes. Our N. cyriacigeorgica isolates belonged to genotype 1 (n = 4) and genotype 2 (n = 2). The present study highlights a wide spectrum of Nocardia spp. in India and emphasizes the need for molecular techniques for identification to the species level.

  1. The impact of advances in human molecular biology on radiation genetic risk estimation in man

    International Nuclear Information System (INIS)

    Sankaranarayanan, K.

    1996-01-01

    This paper provides an overview of the conceptual framework, the data base, methods and assumptions used thus far to assess the genetic risks of exposure of human populations to ionising radiation. These are then re-examined in the contemporary context of the rapidly expanding knowledge of the molecular biology of human mendelian diseases. This re-examination reveals that (i) many of the assumptions used thus far in radiation genetic risk estimation may not be fully valid and (ii) the current genetic risk estimates are probably conservative, but provide an adequate margin of safety for radiological protection. The view is expressed that further advances in the field of genetic risk estimation will be largely driven by advances in the molecular biology of human genetic diseases. (author). 37 refs., 5 tabs

  2. Molecular identification of Nocardia species using the sodA gene: Identificación molecular de especies de Nocardia utilizando el gen sodA.

    Science.gov (United States)

    Sánchez-Herrera, K; Sandoval, H; Mouniee, D; Ramírez-Durán, N; Bergeron, E; Boiron, P; Sánchez-Saucedo, N; Rodríguez-Nava, V

    2017-09-01

    Currently for bacterial identification and classification the rrs gene encoding 16S rRNA is used as a reference method for the analysis of strains of the genus Nocardia. However, it does not have enough polymorphism to differentiate them at the species level. This fact makes it necessary to search for molecular targets that can provide better identification. The sod A gene (encoding the enzyme superoxide dismutase) has had good results in identifying species of other Actinomycetes. In this study the sod A gene is proposed for the identification and differentiation at the species level of the genus Nocardia. We used 41 type species of various collections; a 386 bp fragment of the sod A gene was amplified and sequenced, and a phylogenetic analysis was performed comparing the genes rrs (1171 bp), hsp 65 (401 bp), sec A1 (494 bp), gyr B (1195 bp) and rpo B (401 bp). The sequences were aligned using the Clustal X program. Evolutionary trees according to the neighbour-joining method were created with the programs Phylo_win and MEGA 6. The specific variability of the sod A genus of the genus Nocardia was analysed. A high phylogenetic resolution, significant genetic variability, and specificity and reliability were observed for the differentiation of the isolates at the species level. The polymorphism observed in the sod A gene sequence contains variable regions that allow the discrimination of closely related Nocardia species. The clear specificity, despite its small size, proves to be of great advantage for use in taxonomic studies and clinical diagnosis of the genus Nocardia.

  3. Genetic Diversity and Identification of Chinese-Grown Pecan Using ISSR and SSR Markers

    Directory of Open Access Journals (Sweden)

    Zhong-Ren Guo

    2011-12-01

    Full Text Available Pecan is an important horticultural nut crop originally from North America and now widely cultivated in China for its high ecological, ornamental and economic value. Currently, there are over one hundred cultivars grown in China, including introduced American cultivars and Chinese seedling breeding cultivars. Molecular markers were used to assess the genetic diversity of these cultivars and to identify the pedigrees of fine pecan plants with good characteristics and no cultivar-related data. A total of 77 samples grown in China were studied, including 14 introduced cultivars, 12 domestic seedling breeding cultivars, and 49 fine pecan plants with no cultivar data, together with Carya cathayensis and Juglans nigra. A total of 77 ISSR and 19 SSR primers were prescreened; 10 ISSR and eight SSR primers were selected, yielding a total of 94 amplified bands (100% polymorphic in the range of 140–1,950 bp for the ISSR and 70 amplified bands (100% polymorphic in the range of 50–350 bp for SSR markers. Genetic diversity analyses indicated Chinese-grown pecan cultivars and fine plants had significant diversity at the DNA level. The dengrograms constructed with ISSR, SSR or combined data were very similar, but showed very weak grouping association with morphological characters. However, the progeny were always grouped with the parents. The great diversity found among the Chinese cultivars and the interesting germplasm of the fine pecan plants analyzed in this study are very useful for increasing the diversity of the pecan gene pool. All 77 accessions in this study could be separated based on the ISSR and SSR fingerprints produced by one or more primers. The results of our study also showed that ISSR and SSR techniques were both suitable for genetic diversity analyses and the identification of pecan resources.

  4. Genetic diversity and identification of Chinese-grown pecan using ISSR and SSR markers.

    Science.gov (United States)

    Jia, Xiao-Dong; Wang, Tao; Zhai, Min; Li, Yong-Rong; Guo, Zhong-Ren

    2011-12-06

    Pecan is an important horticultural nut crop originally from North America and now widely cultivated in China for its high ecological, ornamental and economic value. Currently, there are over one hundred cultivars grown in China, including introduced American cultivars and Chinese seedling breeding cultivars. Molecular markers were used to assess the genetic diversity of these cultivars and to identify the pedigrees of fine pecan plants with good characteristics and no cultivar-related data. A total of 77 samples grown in China were studied, including 14 introduced cultivars, 12 domestic seedling breeding cultivars, and 49 fine pecan plants with no cultivar data, together with Carya cathayensis and Juglans nigra. A total of 77 ISSR and 19 SSR primers were prescreened; 10 ISSR and eight SSR primers were selected, yielding a total of 94 amplified bands (100% polymorphic) in the range of 140-1,950 bp for the ISSR and 70 amplified bands (100% polymorphic) in the range of 50-350 bp for SSR markers. Genetic diversity analyses indicated Chinese-grown pecan cultivars and fine plants had significant diversity at the DNA level. The dengrograms constructed with ISSR, SSR or combined data were very similar, but showed very weak grouping association with morphological characters. However, the progeny were always grouped with the parents. The great diversity found among the Chinese cultivars and the interesting germplasm of the fine pecan plants analyzed in this study are very useful for increasing the diversity of the pecan gene pool. All 77 accessions in this study could be separated based on the ISSR and SSR fingerprints produced by one or more primers. The results of our study also showed that ISSR and SSR techniques were both suitable for genetic diversity analyses and the identification of pecan resources.

  5. Comparison of biochemical and molecular methods for the identification of bacterial isolates associated with failed loggerhead sea turtle eggs.

    Science.gov (United States)

    Awong-Taylor, J; Craven, K S; Griffiths, L; Bass, C; Muscarella, M

    2008-05-01

    Comparison of biochemical vs molecular methods for identification of microbial populations associated with failed loggerhead turtle eggs. Two biochemical (API and Microgen) and one molecular methods (16s rRNA analysis) were compared in the areas of cost, identification, corroboration of data with other methods, ease of use, resources and software. The molecular method was costly and identified only 66% of the isolates tested compared with 74% for API. A 74% discrepancy in identifications occurred between API and 16s rRNA analysis. The two biochemical methods were comparable in cost, but Microgen was easier to use and yielded the lowest discrepancy among identifications (29%) when compared with both API 20 enteric (API 20E) and API 20 nonenteric (API 20NE) combined. A comparison of API 20E and API 20NE indicated an 83% discrepancy between the two methods. The Microgen identification system appears to be better suited than API or 16s rRNA analysis for identification of environmental isolates associated with failed loggerhead eggs. Most identification methods are not intended for use with environmental isolates. A comparison of identification systems would provide better options for identifying environmental bacteria for ecological studies.

  6. Molecular cytogenetic identification of a novel dwarf wheat line with ...

    Indian Academy of Sciences (India)

    2012-01-08

    Jan 8, 2012 ... of a pAs1 hybridization band on 2DL chromosome of 31505-1. Two SSR ... [Chen G, Zheng Q, Bao Y, Liu S, Wang H and Li X 2012 Molecular cytogenetic identification of a novel dwarf wheat line with ..... translocations (Fedak and Han 2005; Li et al. ... growth (Cambridge, UK: Cambridge University Press).

  7. Molecular genetic analysis of the F11 gene in 14 Turkish patients with factor XI deficiency: identification of novel and recurrent mutations and their inheritance within families.

    Science.gov (United States)

    Colakoglu, Seyma; Bayhan, Turan; Tavil, Betül; Keskin, Ebru Yılmaz; Cakir, Volkan; Gümrük, Fatma; Çetin, Mualla; Aytaç, Selin; Berber, Ergul

    2018-01-01

    Factor XI (FXI) deficiency is an autosomal bleeding disease associated with genetic defects in the F11 gene which cause decreased FXI levels or impaired FXI function. An increasing number of mutations has been reported in the FXI mutation database, most of which affect the serine protease domain of the protein. FXI is a heterogeneous disorder associated with a variable bleeding tendency and a variety of causative F11 gene mutations. The molecular basis of FXI deficiency in 14 patients from ten unrelated families in Turkey was analysed to establish genotype-phenotype correlations and inheritance of the mutations in the patients' families. Fourteen index cases with a diagnosis of FXI deficiency and family members of these patients were enrolled into the study. The patients' F11 genes were amplified by polymerase chain reaction and subjected to direct DNA sequencing analysis. The findings were analysed statistically using bivariate correlations, Pearson's correlation coefficient and the nonparametric Mann-Whitney test. Direct DNA sequencing analysis of the F11 genes revealed that all of the 14 patients had a F11 gene mutation. Eight different mutations were identified in the apple 1, apple 2 or serine protease domains, except one which was a splice site mutation. Six of the mutations were recurrent. Two of the mutations were novel missense mutations, p.Val522Gly and p.Cys581Arg, within the catalytic domain. The p.Trp519Stop mutation was observed in two families whereas all the other mutations were specific to a single family. Identification of mutations confirmed the genetic heterogeneity of FXI deficiency. Most of the patients with mutations did not have any bleeding complications, whereas some had severe bleeding symptoms. Genetic screening for F11 gene mutations is important to decrease the mortality and morbidity rate associated with FXI deficiency, which can be life-threatening if bleeding occurs in tissues with high fibrinolytic activity.

  8. 76 FR 6623 - Molecular and Clinical Genetics Panel of the Medical Devices Advisory Committee; Notice of Meeting

    Science.gov (United States)

    2011-02-07

    ... DEPARTMENT OF HEALTH AND HUMAN SERVICES Food and Drug Administration [Docket No. FDA-2011-N-0066] Molecular and Clinical Genetics Panel of the Medical Devices Advisory Committee; Notice of Meeting AGENCY... public. Name of Committee: Molecular and Clinical Genetics Panel of the Medical Devices Advisory...

  9. Molecular Diversity Analysis and Genetic Mapping of Pod Shatter Resistance Loci in Brassica carinata L.

    Directory of Open Access Journals (Sweden)

    Rosy Raman

    2017-11-01

    Full Text Available Seed lost due to easy pod dehiscence at maturity (pod shatter is a major problem in several members of Brassicaceae family. We investigated the level of pod shatter resistance in Ethiopian mustard (Brassica carinata and identified quantitative trait loci (QTL for targeted introgression of this trait in Ethiopian mustard and its close relatives of the genus Brassica. A set of 83 accessions of B. carinata, collected from the Australian Grains Genebank, was evaluated for pod shatter resistance based on pod rupture energy (RE. In comparison to B. napus (RE = 2.16 mJ, B. carinata accessions had higher RE values (2.53 to 20.82 mJ. A genetic linkage map of an F2 population from two contrasting B. carinata selections, BC73526 (shatter resistant with high RE and BC73524 (shatter prone with low RE comprising 300 individuals, was constructed using a set of 6,464 high quality DArTseq markers and subsequently used for QTL analysis. Genetic analysis of the F2 and F2:3 derived lines revealed five statistically significant QTL (LOD ≥ 3 that are linked with pod shatter resistance on chromosomes B1, B3, B8, and C5. Herein, we report for the first time, identification of genetic loci associated with pod shatter resistance in B. carinata. These characterized accessions would be useful in Brassica breeding programs for introgression of pod shatter resistance alleles in to elite breeding lines. Molecular markers would assist marker-assisted selection for tracing the introgression of resistant alleles. Our results suggest that the value of the germplasm collections can be harnessed through genetic and genomics tools.

  10. Identification and Genetic Analysis of a Factor IX Gene Intron 3 Mutation in a Hemophilia B Pedigree in China

    Directory of Open Access Journals (Sweden)

    Dong Hua Cao

    2014-09-01

    Full Text Available OBJECTIVE: Hemophilia B is caused by coagulation defects in the factor IX gene located in Xq27.1 on the X chromosome. A wide range of mutations, showing extensive molecular heterogeneity, have been described in hemophilia B patients. Our study was aimed at genetic analysis and prenatal diagnosis of hemophilia B in order to further elucidate the pathogenesis of the hemophilia B pedigree in China. METHODS: Polymerase chain reaction amplification and direct sequencing of all the coding regions was conducted in hemophilia B patients and carriers. Prenatal diagnosis of the proband was conducted at 20 weeks. RESULTS: We identified the novel point mutation 10.389 A>G, located upstream of the intron 3 acceptor site in hemophilia B patients. The fetus of the proband’s cousin was identified as a carrier. CONCLUSION: Our identification of a novel mutation in the F9 gene associated with hemophilia B provides novel insight into the pathogenesis of this genetically inherited disorder and also represents the basis of prenatal diagnosis.

  11. Molecular and genetic epidemiology of cancer in low- and medium-income countries.

    Science.gov (United States)

    Malhotra, Jyoti

    2014-01-01

    Genetic and molecular factors can play an important role in an individual's cancer susceptibility and response to carcinogen exposure. Cancer susceptibility and response to carcinogen exposure can be either through inheritance of high penetrance but rare germline mutations that constitute heritable cancer syndromes, or it can be inherited as common genetic variations or polymorphisms that are associated with low to moderate risk for development of cancer. These polymorphisms can interact with environmental exposures and can influence an individual's cancer risk through multiple pathways, including affecting the rate of metabolism of carcinogens or the immune response to these toxins. Thus, these genetic polymorphisms can account for some of the geographical differences seen in cancer prevalence between different populations. This review explores the role of molecular epidemiology in the field of cancer prevention and control in low- and medium-income countries. Using data from Human Genome Project and HapMap Project, genome-wide association studies have been able to identify multiple susceptibility loci for different cancers. The field of genetic and molecular epidemiology has been further revolutionized by the discovery of newer, faster, and more efficient DNA-sequencing technologies including next-generation sequencing. The new DNA-sequencing technologies can play an important role in planning and implementation of cancer prevention and screening strategies. More research is needed in this area, especially in investigating new biomarkers and measuring gene-environment interactions. Copyright © 2014 Icahn School of Medicine at Mount Sinai. Published by Elsevier Inc. All rights reserved.

  12. Proportioning whole-genome single-nucleotide-polymorphism diversity for the identification of geographic population structure and genetic ancestry

    NARCIS (Netherlands)

    O. Lao Grueso (Oscar); K. van Duijn (Kate); P. Kersbergen; P. de Knijff (Peter); M.H. Kayser (Manfred)

    2006-01-01

    textabstractThe identification of geographic population structure and genetic ancestry on the basis of a minimal set of genetic markers is desirable for a wide range of applications in medical and forensic sciences. However, the absence of sharp discontinuities in the neutral

  13. Genetics and molecular biology of hypotension

    Science.gov (United States)

    Robertson, D.

    1994-01-01

    Major strides in the molecular biology of essential hypertension are currently underway. This has tended to obscure the fact that a number of inherited disorders associated with low blood pressure exist and that these diseases may have milder and underrecognized phenotypes that contribute importantly to blood pressure variation in the general population. This review highlights some of the gene products that, if abnormal, could cause hypotension in some individuals. Diseases due to abnormalities in the catecholamine enzymes are discussed in detail. It is likely that genetic abnormalities with hypotensive phenotypes will be as interesting and diverse as those that give rise to hypertensive disorders.

  14. Comparison of genetic and visual identification of cisco and lake whitefish larvae from Chaumont Bay, Lake Ontario

    Science.gov (United States)

    George, Ellen M.; Hare, Matthew P.; Crabtree, Darran L.; Lantry, Brian F.; Rudstam, Lars G.

    2017-01-01

    Cisco Coregonus artedi are an important component of native food webs in the Great Lakes, and their restoration is instrumental to the recovery of lake trout Salvelinus namaycush and Atlantic salmon Salmo salar. Difficulties with visual identification of larvae can confound early life history surveys, as cisco are often difficult to distinguish from lake whitefish C. clupeaformis. We compared traditional visual species identification methods to genetic identifications based on barcoding of the mitochondrial cytochrome C oxidase I gene for 726 coregonine larvae caught in Chaumont Bay, Lake Ontario. We found little agreement between the visual characteristics of cisco identified by genetic barcoding and the most widely used dichotomous key, and the considerable overlap in ranges of traditionally utilized metrics suggest that visual identification of coregonine larvae from Chaumont Bay is impractical. Coregonines are highly variable and plastic species, and often display wide variations in morphometric characteristics across their broad range. This study highlights the importance of developing accurate, geographically appropriate larval identification methods in order to best inform cisco restoration and management efforts.

  15. Molecular identification, phylogeny and geographic distribution of Brazilian mangrove oysters (Crassostrea

    Directory of Open Access Journals (Sweden)

    Aline Grasielle Costa de Melo

    2010-01-01

    Full Text Available Oysters (Ostreidae manifest a high degree of phenotypic plasticity, whereby morphology is of limited value for species identification and taxonomy. By using molecular data, the aim was to genetically characterize the species of Crassostrea occurring along the Brazilian coast, and phylogenetically relate these to other Crassostrea from different parts of the world. Sequencing of the partial cytochrome oxidase c subunit I gene (COI, revealed a total of three species of Crassostrea at 16 locations along the Brazilian coast. C. gasar was found from Curuçá (Pará state to Santos (São Paulo state, and C. rhizophorae from Fortim (Ceará state to Florianópolis (Santa Catarina state, although small individuals of the latter species were also found at Ajuruteua beach (municipality of Bragança, Pará state. An unidentified Crassostrea species was found only on Canela Island, Bragança. Crassostrea gasar and C. rhizophorae grouped with C. virginica, thereby forming a monophyletic Atlantic group, whereas Crassostrea sp. from Canela Island was shown to be more similar to Indo-Pacific oysters, and either arrived in the Atlantic Ocean before the convergence of the Isthmus of Panama or was accidentally brought to Brazil by ship.

  16. Molecular identification, phylogeny and geographic distribution of Brazilian mangrove oysters (Crassostrea)

    Science.gov (United States)

    2010-01-01

    Oysters (Ostreidae) manifest a high degree of phenotypic plasticity, whereby morphology is of limited value for species identification and taxonomy. By using molecular data, the aim was to genetically characterize the species of Crassostrea occurring along the Brazilian coast, and phylogenetically relate these to other Crassostrea from different parts of the world. Sequencing of the partial cytochrome oxidase c subunit I gene (COI), revealed a total of three species of Crassostrea at 16 locations along the Brazilian coast. C. gasar was found from Curuçá (Pará state) to Santos (São Paulo state), and C. rhizophorae from Fortim (Ceará state) to Florianópolis (Santa Catarina state), although small individuals of the latter species were also found at Ajuruteua beach (municipality of Bragança, Pará state). An unidentified Crassostrea species was found only on Canela Island, Bragança. Crassostrea gasar and C. rhizophorae grouped with C. virginica, thereby forming a monophyletic Atlantic group, whereas Crassostrea sp. from Canela Island was shown to be more similar to Indo-Pacific oysters, and either arrived in the Atlantic Ocean before the convergence of the Isthmus of Panama or was accidentally brought to Brazil by ship. PMID:21637433

  17. White piedra: molecular identification of Trichosporon inkin in members of the same family.

    Science.gov (United States)

    Richini-Pereira, Virgínia Bodelão; Camargo, Rosângela Maria Pires de; Bagagli, Eduardo; Marques, Silvio Alencar

    2012-06-01

    White piedra is a superficial mycosis caused by the genus Trichosporon and characterized by nodules on hair shaft. The authors report a family referred to as pediculosis. Mycological culture on Mycosel® plus molecular identification was performed to precisely identify the etiology. A Trichosporon spp. infection was revealed. The molecular procedure identified the agent as Trichosporon inkin. White piedra and infection caused by T. inkin are rarely reported in Southern Brazil. The molecular tools are essentials on identifying the Trichosporon species.

  18. Caenorhabditis elegans as a Model to Study the Molecular and Genetic Mechanisms of Drug Addiction

    Science.gov (United States)

    Engleman, Eric A.; Katner, Simon N.; Neal-Beliveau, Bethany S.

    2016-01-01

    Drug addiction takes a massive toll on society. Novel animal models are needed to test new treatments and understand the basic mechanisms underlying addiction. Rodent models have identified the neurocircuitry involved in addictive behavior and indicate that rodents possess some of the same neurobiologic mechanisms that mediate addiction in humans. Recent studies indicate that addiction is mechanistically and phylogenetically ancient and many mechanisms that underlie human addiction are also present in invertebrates. The nematode Caenorhabditis elegans has conserved neurobiologic systems with powerful molecular and genetic tools and a rapid rate of development that enables cost-effective translational discovery. Emerging evidence suggests that C. elegans is an excellent model to identify molecular mechanisms that mediate drug-induced behavior and potential targets for medications development for various addictive compounds. C. elegans emit many behaviors that can be easily quantitated including some that involve interactions with the environment. Ethanol (EtOH) is the best-studied drug-of-abuse in C. elegans and at least 50 different genes/targets have been identified as mediating EtOH’s effects and polymorphisms in some orthologs in humans are associated with alcohol use disorders. C. elegans has also been shown to display dopamine and cholinergic system–dependent attraction to nicotine and demonstrate preference for cues previously associated with nicotine. Cocaine and methamphetamine have been found to produce dopamine-dependent reward-like behaviors in C. elegans. These behavioral tests in combination with genetic/molecular manipulations have led to the identification of dozens of target genes/systems in C. elegans that mediate drug effects. The one target/gene identified as essential for drug-induced behavioral responses across all drugs of abuse was the cat-2 gene coding for tyrosine hydroxylase, which is consistent with the role of dopamine

  19. Caenorhabditis elegans as a Model to Study the Molecular and Genetic Mechanisms of Drug Addiction.

    Science.gov (United States)

    Engleman, Eric A; Katner, Simon N; Neal-Beliveau, Bethany S

    2016-01-01

    Drug addiction takes a massive toll on society. Novel animal models are needed to test new treatments and understand the basic mechanisms underlying addiction. Rodent models have identified the neurocircuitry involved in addictive behavior and indicate that rodents possess some of the same neurobiologic mechanisms that mediate addiction in humans. Recent studies indicate that addiction is mechanistically and phylogenetically ancient and many mechanisms that underlie human addiction are also present in invertebrates. The nematode Caenorhabditis elegans has conserved neurobiologic systems with powerful molecular and genetic tools and a rapid rate of development that enables cost-effective translational discovery. Emerging evidence suggests that C. elegans is an excellent model to identify molecular mechanisms that mediate drug-induced behavior and potential targets for medications development for various addictive compounds. C. elegans emit many behaviors that can be easily quantitated including some that involve interactions with the environment. Ethanol (EtOH) is the best-studied drug-of-abuse in C. elegans and at least 50 different genes/targets have been identified as mediating EtOH's effects and polymorphisms in some orthologs in humans are associated with alcohol use disorders. C. elegans has also been shown to display dopamine and cholinergic system-dependent attraction to nicotine and demonstrate preference for cues previously associated with nicotine. Cocaine and methamphetamine have been found to produce dopamine-dependent reward-like behaviors in C. elegans. These behavioral tests in combination with genetic/molecular manipulations have led to the identification of dozens of target genes/systems in C. elegans that mediate drug effects. The one target/gene identified as essential for drug-induced behavioral responses across all drugs of abuse was the cat-2 gene coding for tyrosine hydroxylase, which is consistent with the role of dopamine neurotransmission

  20. Molecular identification and genetic variation of varieties of Styphnolobium japonicum (Fabaceae) using SRAP markers.

    Science.gov (United States)

    Sun, R X; Zhang, C H; Zheng, Y Q; Zong, Y C; Yu, X D; Huang, P

    2016-05-06

    Thirty-four Styphnolobium japonicum varieties were analyzed using sequence-related amplified polymorphism (SRAP) markers, to investigate genetic variation and test the effectiveness of SRAP markers in DNA fingerprint establishment. Twelve primer pairs were selected from 120 primer combinations for their reproducibility and high polymorphism. We found a total of 430 amplified fragments, of which 415 fragments were considered polymorphic with an average of 34.58 polymorphic fragments for each primer combination. The percentage of polymorphic fragments was 96.60%, and four primer pairs showed 100% polymorphism. Moreover, simple matched coefficients ranged between 0.68 and 0.89, with an average of 0.785, indicating that the genetic variation among varieties was relatively low. This could be because of the narrow genetic basis of the selected breeding material. Based on the similarity coefficient value of 0.76, the varieties were divided into four major groups. In addition, abundant and clear SRAP fingerprints were obtained and could be used to establish DNA fingerprints. In the DNA fingerprints, each variety had its unique pattern that could be easily distinguished from others. The results demonstrated that 34 varieties of S. japonicum had a relatively narrow genetic variation. Hence, a broadening of the genetic basis of breeding material is necessary. We conclude that establishment of DNA fingerprint is feasible by means of SRAP markers.

  1. Genetic Diversity of Rose germplasm based on RAPD analysis

    African Journals Online (AJOL)

    AHSAN IQBAL

    2012-06-12

    Jun 12, 2012 ... identification and analysis of genetic variation within a collection of 4 species and 30 accessions of rose using RAPD analysis technique. The results showed the molecular distinctions among the ... that range in colour from white and yellow to many shades of pink and red have been developed. Since.

  2. Molecular analysis for diagnosis of Marfan syndrome and Marfan-associated disorders

    Institute of Scientific and Technical Information of China (English)

    GAO Ling-gen; YAO Xiu-ping; ZHANG Lin; HUI Ru-tai; ZHOU Xian-liang

    2011-01-01

    Marfan syndrome is a systemic disorder of connective tissue, caused by mutations in the FBN1, TGFBR1 or TGFBR2 genes. This syndrome is characterized by involvement of three major systems, skeletal, ocular, and cardiovascular. The continuing improvements in molecular biology and increasing availability of molecular diagnosis in clinical practice allow recognition of Marfan syndrome in patients with incomplete phenotypes. Additionally, molecular analyses could also be used for preimplantation genetic diagnosis. The identification of a mutation allows for early diagnosis, prognosis, genetic counseling, preventive management of carriers and reassurance for unaffected relatives. The importance of knowing in advance the location of the putative family mutation is highlighted by its straightforward application to prenatal and postnatal screening.

  3. Genetic influences on attention deficit hyperactivity disorder symptoms from age 2 to 3: A quantitative and molecular genetic investigation

    Directory of Open Access Journals (Sweden)

    Saudino Kimberly J

    2010-12-01

    Full Text Available Abstract Background A twin study design was used to assess the degree to which additive genetic variance influences ADHD symptom scores across two ages during infancy. A further objective in the study was to observe whether genetic association with a number of candidate markers reflects results from the quantitative genetic analysis. Method We have studied 312 twin pairs at two time-points, age 2 and age 3. A composite measure of ADHD symptoms from two parent-rating scales: The Child Behavior Checklist/1.5 - 5 years (CBCL hyperactivity scale and the Revised Rutter Parent Scale for Preschool Children (RRPSPC was used for both quantitative and molecular genetic analyses. Results At ages 2 and 3 ADHD symptoms are highly heritable (h2 = 0.79 and 0.78, respectively with a high level of genetic stability across these ages. However, we also observe a significant level of genetic change from age 2 to age 3. There are modest influences of non-shared environment at each age independently (e2 = 0.22 and 0.21, respectively, with these influences being largely age-specific. In addition, we find modest association signals in DAT1 and NET1 at both ages, along with suggestive specific effects of 5-HTT and DRD4 at age 3. Conclusions ADHD symptoms are heritable at ages 2 and 3. Additive genetic variance is largely shared across these ages, although there are significant new effects emerging at age 3. Results from our genetic association analysis reflect these levels of stability and change and, more generally, suggest a requirement for consideration of age-specific genotypic effects in future molecular studies.

  4. Genetic studies and a search for molecular markers that are linked ...

    African Journals Online (AJOL)

    SERVER

    Instead, linkage analysis resulted in the construction of a molecular marker linkage map consisting of 45 ..... This limits the application of this marker type, particularly in ... primer design when one uses RAPDs. .... Concepts of Genetics. Fourth.

  5. Genetic affinities within a large global collection of pathogenic Leptospira: implications for strain identification and molecular epidemiology.

    Directory of Open Access Journals (Sweden)

    Kishore Nalam

    Full Text Available Leptospirosis is an important zoonosis with widespread human health implications. The non-availability of accurate identification methods for the individualization of different Leptospira for outbreak investigations poses bountiful problems in the disease control arena. We harnessed fluorescent amplified fragment length polymorphism analysis (FAFLP for Leptospira and investigated its utility in establishing genetic relationships among 271 isolates in the context of species level assignments of our global collection of isolates and strains obtained from a diverse array of hosts. In addition, this method was compared to an in-house multilocus sequence typing (MLST method based on polymorphisms in three housekeeping genes, the rrs locus and two envelope proteins. Phylogenetic relationships were deduced based on bifurcating Neighbor-joining trees as well as median joining network analyses integrating both the FAFLP data and MLST based haplotypes. The phylogenetic relationships were also reproduced through Bayesian analysis of the multilocus sequence polymorphisms. We found FAFLP to be an important method for outbreak investigation and for clustering of isolates based on their geographical descent rather than by genome species types. The FAFLP method was, however, not able to convey much taxonomical utility sufficient to replace the highly tedious serotyping procedures in vogue. MLST, on the other hand, was found to be highly robust and efficient in identifying ancestral relationships and segregating the outbreak associated strains or otherwise according to their genome species status and, therefore, could unambiguously be applied for investigating phylogenetics of Leptospira in the context of taxonomy as well as gene flow. For instance, MLST was more efficient, as compared to FAFLP method, in clustering strains from the Andaman island of India, with their counterparts from mainland India and Sri Lanka, implying that such strains share genetic

  6. Reduced SNP panels for genetic identification and introgression analysis in the dark honey bee (Apis mellifera mellifera.

    Directory of Open Access Journals (Sweden)

    Irene Muñoz

    Full Text Available Beekeeping activities, especially queen trading, have shaped the distribution of honey bee (Apis mellifera subspecies in Europe, and have resulted in extensive introductions of two eastern European C-lineage subspecies (A. m. ligustica and A. m. carnica into the native range of the M-lineage A. m. mellifera subspecies in Western Europe. As a consequence, replacement and gene flow between native and commercial populations have occurred at varying levels across western European populations. Genetic identification and introgression analysis using molecular markers is an important tool for management and conservation of honey bee subspecies. Previous studies have monitored introgression by using microsatellite, PCR-RFLP markers and most recently, high density assays using single nucleotide polymorphism (SNP markers. While the latter are almost prohibitively expensive, the information gained to date can be exploited to create a reduced panel containing the most ancestry-informative markers (AIMs for those purposes with very little loss of information. The objective of this study was to design reduced panels of AIMs to verify the origin of A. m. mellifera individuals and to provide accurate estimates of the level of C-lineage introgression into their genome. The discriminant power of the SNPs using a variety of metrics and approaches including the Weir & Cockerham's FST, an FST-based outlier test, Delta, informativeness (In, and PCA was evaluated. This study shows that reduced AIMs panels assign individuals to the correct origin and calculates the admixture level with a high degree of accuracy. These panels provide an essential tool in Europe for genetic stock identification and estimation of admixture levels which can assist management strategies and monitor honey bee conservation programs.

  7. Targeted Cancer Therapy: Vital Oncogenes and a New Molecular Genetic Paradigm for Cancer Initiation Progression and Treatment

    Science.gov (United States)

    Willis, Rudolph E.

    2016-01-01

    It has been declared repeatedly that cancer is a result of molecular genetic abnormalities. However, there has been no working model describing the specific functional consequences of the deranged genomic processes that result in the initiation and propagation of the cancer process during carcinogenesis. We no longer need to question whether or not cancer arises as a result of a molecular genetic defect within the cancer cell. The legitimate questions are: how and why? This article reviews the preeminent data on cancer molecular genetics and subsequently proposes that the sentinel event in cancer initiation is the aberrant production of fused transcription activators with new molecular properties within normal tissue stem cells. This results in the production of vital oncogenes with dysfunctional gene activation transcription properties, which leads to dysfunctional gene regulation, the aberrant activation of transduction pathways, chromosomal breakage, activation of driver oncogenes, reactivation of stem cell transduction pathways and the activation of genes that result in the hallmarks of cancer. Furthermore, a novel holistic molecular genetic model of cancer initiation and progression is presented along with a new paradigm for the approach to personalized targeted cancer therapy, clinical monitoring and cancer diagnosis. PMID:27649156

  8. Race, Ethnicity and Ancestry in Unrelated Transplant Matching for the National Marrow Donor Program: A Comparison of Multiple Forms of Self-Identification with Genetics.

    Directory of Open Access Journals (Sweden)

    Jill A Hollenbach

    Full Text Available We conducted a nationwide study comparing self-identification to genetic ancestry classifications in a large cohort (n = 1752 from the National Marrow Donor Program. We sought to determine how various measures of self-identification intersect with genetic ancestry, with the aim of improving matching algorithms for unrelated bone marrow transplant. Multiple dimensions of self-identification, including race/ethnicity and geographic ancestry were compared to classifications based on ancestry informative markers (AIMs, and the human leukocyte antigen (HLA genes, which are required for transplant matching. Nearly 20% of responses were inconsistent between reporting race/ethnicity versus geographic ancestry. Despite strong concordance between AIMs and HLA, no measure of self-identification shows complete correspondence with genetic ancestry. In certain cases geographic ancestry reporting matches genetic ancestry not reflected in race/ethnicity identification, but in other cases geographic ancestries show little correspondence to genetic measures, with important differences by gender. However, when respondents assign ancestry to grandparents, we observe sub-groups of individuals with well- defined genetic ancestries, including important differences in HLA frequencies, with implications for transplant matching. While we advocate for tailored questioning to improve accuracy of ancestry ascertainment, collection of donor grandparents' information will improve the chances of finding matches for many patients, particularly for mixed-ancestry individuals.

  9. Race, Ethnicity and Ancestry in Unrelated Transplant Matching for the National Marrow Donor Program: A Comparison of Multiple Forms of Self-Identification with Genetics

    Science.gov (United States)

    Hollenbach, Jill A.; Saperstein, Aliya; Albrecht, Mark; Vierra-Green, Cynthia; Parham, Peter; Norman, Paul J.; Maiers, Martin

    2015-01-01

    We conducted a nationwide study comparing self-identification to genetic ancestry classifications in a large cohort (n = 1752) from the National Marrow Donor Program. We sought to determine how various measures of self-identification intersect with genetic ancestry, with the aim of improving matching algorithms for unrelated bone marrow transplant. Multiple dimensions of self-identification, including race/ethnicity and geographic ancestry were compared to classifications based on ancestry informative markers (AIMs), and the human leukocyte antigen (HLA) genes, which are required for transplant matching. Nearly 20% of responses were inconsistent between reporting race/ethnicity versus geographic ancestry. Despite strong concordance between AIMs and HLA, no measure of self-identification shows complete correspondence with genetic ancestry. In certain cases geographic ancestry reporting matches genetic ancestry not reflected in race/ethnicity identification, but in other cases geographic ancestries show little correspondence to genetic measures, with important differences by gender. However, when respondents assign ancestry to grandparents, we observe sub-groups of individuals with well- defined genetic ancestries, including important differences in HLA frequencies, with implications for transplant matching. While we advocate for tailored questioning to improve accuracy of ancestry ascertainment, collection of donor grandparents’ information will improve the chances of finding matches for many patients, particularly for mixed-ancestry individuals. PMID:26287376

  10. Isolation and molecular identification of yeast strains from “Rabilé” a ...

    African Journals Online (AJOL)

    Isolation and molecular identification of yeast strains from “Rabilé” a starter of local fermented drink. Ibrahim Keita, Marius K Somda, Aly Savadogo, Iliassou Mogmenga, Ousmane Koita, Alfred S Traore ...

  11. Genetic Mimetics of Mycobacterium tuberculosis and Methicillin-Resistant Staphylococcus aureus as Verification Standards for Molecular Diagnostics.

    Science.gov (United States)

    Machowski, Edith Erika; Kana, Bavesh Davandra

    2017-12-01

    Molecular diagnostics have revolutionized the management of health care through enhanced detection of disease or infection and effective enrollment into treatment. In recognition of this, the World Health Organization approved the rollout of nucleic acid amplification technologies for identification of Mycobacterium tuberculosis using platforms such as GeneXpert MTB/RIF, the GenoType MTBDR plus line probe assay, and, more recently, GeneXpert MTB/RIF Ultra. These assays can simultaneously detect tuberculosis infection and assess rifampin resistance. However, their widespread use in health systems requires verification and quality assurance programs. To enable development of these, we report the construction of genetically modified strains of Mycobacterium smegmatis that mimic the profile of Mycobacterium tuberculosis on both the GeneXpert MTB/RIF and the MTBDR plus line probe diagnostic tests. Using site-specific gene editing, we also created derivatives that faithfully mimic the diagnostic result of rifampin-resistant M. tuberculosis , with mutations at positions 513, 516, 526, 531, and 533 in the rifampin resistance-determining region of the rpoB gene. Next, we extended this approach to other diseases and demonstrated that a Staphylococcus aureus gene sequence can be introduced into M. smegmatis to generate a positive response for the SCC mec probe in the GeneXpert SA Nasal Complete molecular diagnostic cartridge, designed for identification of methicillin-resistant S. aureus These biomimetic strains are cost-effective, have low biohazard content, accurately mimic drug resistance, and can be produced with relative ease, thus illustrating their potential for widespread use as verification standards for diagnosis of a variety of diseases. Copyright © 2017 American Society for Microbiology.

  12. Identification of Pseudallescheria and Scedosporium Species by Three Molecular Methods▿

    Science.gov (United States)

    Lu, Qiaoyun; Gerrits van den Ende, A. H. G.; Bakkers, J. M. J. E.; Sun, Jiufeng; Lackner, M.; Najafzadeh, M. J.; Melchers, W. J. G.; Li, Ruoyu; de Hoog, G. S.

    2011-01-01

    The major clinically relevant species in Scedosporium (teleomorph Pseudallescheria) are Pseudallescheria boydii, Scedosporium aurantiacum, Scedosporium apiospermum, and Scedosporium prolificans, while Pseudallescheria minutispora, Petriellopsis desertorum, and Scedosporium dehoogii are exceptional agents of disease. Three molecular methods targeting the partial β-tubulin gene were developed and evaluated to identify six closely related species of the S. apiospermum complex using quantitative real-time PCR (qPCR), PCR-based reverse line blot (PCR-RLB), and loop-mediated isothermal amplification (LAMP). qPCR was not specific enough for the identification of all species but had the highest sensitivity. The PCR-RLB assay was efficient for the identification of five species. LAMP distinguished all six species unambiguously. The analytical sensitivities of qPCR, PCR-RLB, and LAMP combined with MagNAPure, CTAB (cetyltrimethylammonium bromide), and FTA filter (Whatman) extraction were 50, 5 × 103, and 5 × 102 cells/μl, respectively. When LAMP was combined with a simplified DNA extraction method using an FTA filter, identification to the species level was achieved within 2 h, including DNA extraction. The FTA-LAMP assay is therefore recommended as a cost-effective, simple, and rapid method for the identification of Scedosporium species. PMID:21177887

  13. Identification of some Rice Mutants using Morphological and Molecular Methods

    International Nuclear Information System (INIS)

    Sobieh, S.E.S.

    2006-01-01

    This investigation was conducted at the experimental farm of plant research department, nuclear research center, atomic energy authority, abu zaabal in order to verify four rice genotypes i.e sakha 102, giza 178, high yielding mutant (Ms 6) and high yielding mutant (MG 16). the (UPOV) rice descriptor was used to identify the germplasm morphologically .Molecular RAPD-PCR was used to identify genetic variability on the molecular level for the tested genotypes. 1- the results indicated that according to (UPOV) rice descriptor eight morphological traits were completely different between mutant Ms 6 in comparison with the parent sakha 102 and mut. MG 16 in comparison parent giza 178, the traits were ; stem thickness, stem length, panicle length, 1000-grain weight, grain length, grain width decorticated grain length and decorticated grain width. 2- using 10 arbitrary primers, through four rice genotypes on the molecular level using RAPD markers. the size of the amplified fragments were ranged from 0.201 to 2.036 k bp. two primers OPB-13 and OPB-16 showed no polymorphism among genotypes tested. 3- the total number of amplicons produced by the 8 polymorphic RAPD profiels was 66. the total number of monomorphic amplicons was 32. however, the total number of polymorphic amplicons was 34. 4- the percentage of polymorphism ranged from (22.22%) for primer OPA-18 to (90%) for primer OPB-11. 5-the highest genetic similarity (90.3%) was between sakha 102 and high yielding mut. (Ms 6). the genetic similarity (75.5%) was between giza 178 and high yielding mut.(MG 16). 6- one positive unique marker amplified by OPA-18 Primer identified the high yielding mutant Ms 6 but three positive unique markers amplified by OPB-17 primer and OPA-18 primer identified the high yielding mutant MG 16

  14. Permanent Genetic Resources added to Molecular Ecology Resources Database 1 December 2012 - 31 January 2013

    Czech Academy of Sciences Publication Activity Database

    Mendel, Jan; Urbánková, Soňa; Vyskočilová, M.

    2013-01-01

    Roč. 13, č. 3 (2013), s. 546-549 ISSN 1755-098X Institutional support: RVO:68081766 Keywords : genetic database * microsatellite marker loci Subject RIV: EB - Genetics ; Molecular Biology Impact factor: 5.626, year: 2013

  15. Toxocariasis in Carnivora from Argentinean Patagonia: Species molecular identification, hosts, and geographical distribution

    Directory of Open Access Journals (Sweden)

    R.M. Vega

    2018-04-01

    Full Text Available Twenty four specimens of seven species belonging to the families Felidae, Mustelidae, and Canidae were obtained in Lanín and Nahuel Huapi National Parks from March 1996 to April 2016. Specimens were processed by necropsy in order to contribute to the knowledge of toxocariasis in wild carnivores of Argentinean Patagonia. The only Puma concolor and the seven Leopardus geoffroyi were positive for Toxocara cati. Polymerase chain reaction-restriction fragment length polymorphism (PCR-RFLP of the ITS-1 region from larval and adult DNA was carried out to confirm parasite species identification. This is the first molecular determination of T. cati from wild felids in Argentina and the study also fill gaps about the spatial distribution and hosts for Toxocara cati. Keywords: Toxocara cati, Puma concolor, Leopardus geoffroyi, Molecular identification, Argentina

  16. Phenotypic and Molecular Identification of Bacteria Involved in Decubitus Ulcers

    Directory of Open Access Journals (Sweden)

    Mehran Dolati

    2017-07-01

    Full Text Available Background:    Bacterial secondary infection of pressure ulcers (bedsores, so called as decubitus ulcers, leads to ulcer development and it interferes with the healing process. Thus, such infections can be lethal due to the sepsis if no constructive medicinal measures regarded. Drug resistance of bacteria in pressure ulcers leads to healing inhibition. Molecular identification of bacteria involved in such infections seem necessary as culture and phenotypic approaches may result in misidentification. . The purpose of this study was to isolate and identify aerobic bacteria detected in bedsores in three Hospitals: Rasool-e-Akram, Imam Hossein and Tajrish Shohada Hospitals, Tehran, Iran.Methods:    To this end, decubitus ulcer samples of 49 patients were obtained using sterile swabs. After direct microscopic examination, the swabs were used to streak BHI agar plates supplemented with %5 defibrinated sheep blood for enrichment of probable aerobic cultures. Bacterial isolates diagnosed by biochemical tests. Antibiotic susceptibility of the isolates determined based on CLSI guideline. For molecular identification, PCR amplification of the 16S rRNA gene performed using Eubacterial universal primers. Then, the PCR products were sequenced and the nucleotide sequences of the PCR products were analyzed by BLASTN similarity search program available at NCBI. Results:   Among the isolates, Pseudomonas aeruginosa (36% had the highest frequency, followed by Staphylococcus aureus (32% and Escherichia coli (30%. The frequencies of Klebsiella pneumonia and Proteus spp. were 10% and 8%, respectively. Most of the isolated bacteria showed a widespread antibiotic resistance. Molecular identification of the bacterial isolates resulted in 6 isolates of Escherichia coli, two isolates of each of Proteus mirabilis and Shigella spp., 4 isolates of Enterobacter cloacae, and 1 isolate of each of Cronobacter sakazakii and Morganella morganii.Conclusion:

  17. Identification of genetic elements in metabolism by high-throughput mouse phenotyping

    Czech Academy of Sciences Publication Activity Database

    Sedláček, Radislav

    2018-01-01

    Roč. 9, zima (2018), č. článku 288. ISSN 2041-1723 Institutional support: RVO:68378050 Keywords : Insulin-resistance * Diabetes -mellitus * Glycemic traits * Variants * Architecture * Association * Consortiuj * Pathways * Disease * Biology Subject RIV: EB - Genetics ; Molecular Biology OBOR OECD: Other biological topics Impact factor: 12.124, year: 2016

  18. Molecular identification of three crested newt species (Triturus cristatus superspecies) by RAPD markers

    Czech Academy of Sciences Publication Activity Database

    Mikulíček, P.; Piálek, Jaroslav

    2003-01-01

    Roč. 24, č. 2 (2003), s. 201-207 ISSN 0173-5373 R&D Projects: GA ČR GA206/98/0115; GA ČR GA206/01/0695; GA AV ČR KSK6005114 Institutional research plan: CEZ:AV0Z6093917; CEZ:MSM 113100004 Keywords : Triturus cristatus * genetic variation Subject RIV: EB - Genetics ; Molecular Biology Impact factor: 0.417, year: 2003

  19. Impact of Professional Learning on Teachers' Representational Strategies and Students' Cognitive Engagement with Molecular Genetics Concepts

    Science.gov (United States)

    Nichols, Kim

    2018-01-01

    A variety of practices and specialised representational systems are required to understand, communicate and construct molecular genetics knowledge. This study describes teachers' use of multimodal representations of molecular genetics concepts and how their strategies and choice of resources were interpreted, understood and used by students to…

  20. Molecular identification and phylogenetic analysis of Wuchereria bancrofti from human blood samples in Egypt.

    Science.gov (United States)

    Abdel-Shafi, Iman R; Shoieb, Eman Y; Attia, Samar S; Rubio, José M; Ta-Tang, Thuy-Huong; El-Badry, Ayman A

    2017-03-01

    Lymphatic filariasis (LF) is a serious vector-borne health problem, and Wuchereria bancrofti (W.b) is the major cause of LF worldwide and is focally endemic in Egypt. Identification of filarial infection using traditional morphologic and immunological criteria can be difficult and lead to misdiagnosis. The aim of the present study was molecular detection of W.b in residents in endemic areas in Egypt, sequence variance analysis, and phylogenetic analysis of W.b DNA. Collected blood samples from residents in filariasis endemic areas in five governorates were subjected to semi-nested PCR targeting repeated DNA sequence, for detection of W.b DNA. PCR products were sequenced; subsequently, a phylogenetic analysis of the obtained sequences was performed. Out of 300 blood samples, W.b DNA was identified in 48 (16%). Sequencing analysis confirmed PCR results identifying only W.b species. Sequence alignment and phylogenetic analysis indicated genetically distinct clusters of W.b among the study population. Study results demonstrated that the semi-nested PCR proved to be an effective diagnostic tool for accurate and rapid detection of W.b infections in nano-epidemics and is applicable for samples collected in the daytime as well as the night time. PCR products sequencing and phylogenitic analysis revealed three different nucleotide sequences variants. Further genetic studies of W.b in Egypt and other endemic areas are needed to distinguish related strains and the various ecological as well as drug effects exerted on them to support W.b elimination.

  1. Molecular prey identification in Central European piscivores.

    Science.gov (United States)

    Thalinger, Bettina; Oehm, Johannes; Mayr, Hannes; Obwexer, Armin; Zeisler, Christiane; Traugott, Michael

    2016-01-01

    Diet analysis is an important aspect when investigating the ecology of fish-eating animals and essential for assessing their functional role in food webs across aquatic and terrestrial ecosystems. The identification of fish remains in dietary samples, however, can be time-consuming and unsatisfying using conventional morphological analysis of prey remains. Here, we present a two-step multiplex PCR system, comprised of six assays, allowing for rapid, sensitive and specific detection of fish DNA in dietary samples. This approach encompasses 78 fish and lamprey species native to Central European freshwaters and enables the identification of 31 species, six genera, two families, two orders and two fish family clusters. All targeted taxa were successfully amplified from 25 template molecules, and each assay was specific when tested against a wide range of invertebrates and vertebrates inhabiting aquatic environments. The applicability of the multiplex PCR system was evaluated in a feeding trial, wherein it outperformed morphological prey analysis regarding species-specific prey identification in faeces of Eurasian otters. Additionally, a wide spectrum of fish species was detected in field-collected faecal samples and regurgitated pellets of Common Kingfishers and Great Cormorants, demonstrating the broad applicability of the approach. In conclusion, this multiplex PCR system provides an efficient, easy to use and cost-effective tool for assessing the trophic ecology of piscivores in Central Europe. Furthermore, the multiplex PCRs and the primers described therein will be applicable wherever DNA of the targeted fish species needs to be detected at high sensitivity and specificity. © 2015 The Authors. Molecular Ecology Resources Published by John Wiley & Sons Ltd.

  2. Using Genetic Buffering Relationships Identified in Fission Yeast To Elucidate the Molecular Pathology of Tuberous Sclerosis

    Science.gov (United States)

    2016-07-01

    tsc1 and tsc2 loss of function mutations in Schizosaccharomyces pombe. Northeast Regional Yeast Meeting, June 16-17, University at Buffalo, The State...AWARD NUMBER: W81XWH-14-1-0169 TITLE: Using Genetic Buffering Relationships Identified in Fission Yeast To Elucidate the Molecular Pathology of...SUBTITLE Using Genetic Buffering Relationships Identified in Fission 5a. CONTRACT NUMBER W81XWH-14-1-0169 Yeast to Elucidate the Molecular Pathology

  3. Molecular Identification of Paramecium bursaria Syngens and Studies on Geographic Distribution using Mitochondrial Cytochrome C Oxidase Subunit I (COI).

    Science.gov (United States)

    Zagata, Patrycja; Greczek-Stachura, Magdalena; Tarcz, Sebastian; Rautian, Maria

    2015-01-01

    Paramecium bursaria is composed of five syngens that are morphologically indistinguishable but sexually isolated. The aim of the present study was to confirm by molecular methods (analyses of mitochondrial COI) the identification of P. bursaria syngens originating from different geographical locations. Phylograms constructed using both the neighbor-joining and maximum-likelihood methods based on a comparison of 34 sequences of P. bursaria strains and P. multimicronucleatum, P. caudatum and P.calkinsi strains used as outgroups revealed five clusters which correspond to results obtained previously by mating reaction. Our analysis shows the existence of 24 haplotypes for the COI gene sequence in the studied strains. The interspecies haplotype diversity was Hd = 0.967. We confirmed genetic differentiation between strains of P. bursaria and the occurrence of a correlation between geographical distribution and the correspondent syngen.

  4. Deciphering molecular circuits from genetic variation underlying transcriptional responsiveness to stimuli.

    Science.gov (United States)

    Gat-Viks, Irit; Chevrier, Nicolas; Wilentzik, Roni; Eisenhaure, Thomas; Raychowdhury, Raktima; Steuerman, Yael; Shalek, Alex K; Hacohen, Nir; Amit, Ido; Regev, Aviv

    2013-04-01

    Individual genetic variation affects gene responsiveness to stimuli, often by influencing complex molecular circuits. Here we combine genomic and intermediate-scale transcriptional profiling with computational methods to identify variants that affect the responsiveness of genes to stimuli (responsiveness quantitative trait loci or reQTLs) and to position these variants in molecular circuit diagrams. We apply this approach to study variation in transcriptional responsiveness to pathogen components in dendritic cells from recombinant inbred mouse strains. We identify reQTLs that correlate with particular stimuli and position them in known pathways. For example, in response to a virus-like stimulus, a trans-acting variant responds as an activator of the antiviral response; using RNA interference, we identify Rgs16 as the likely causal gene. Our approach charts an experimental and analytic path to decipher the mechanisms underlying genetic variation in circuits that control responses to stimuli.

  5. First identification of eggs of the Asian fish tapeworm Bothriocephalus acheilognathi (Cestoda: Bothriocephalidea) in human stool

    Czech Academy of Sciences Publication Activity Database

    Yera, H.; Kuchta, Roman; Brabec, Jan; Peyron, F.; Dupouy-Camet, J.

    2013-01-01

    Roč. 62, č. 3 (2013), s. 268-271 ISSN 1383-5769 R&D Projects: GA ČR GBP505/12/G112; GA ČR GAP506/12/1632 Institutional support: RVO:60077344 Keywords : COI * Diphyllobothrium * French Guiana * Man * Molecular identification * rDNA Subject RIV: EB - Genetics ; Molecular Biology Impact factor: 2.111, year: 2013

  6. Molecular profiling techniques as tools to detect potential unintended effects in genetically engineered maize

    CSIR Research Space (South Africa)

    Barros, E

    2010-05-01

    Full Text Available Molecular Profiling Techniques as Tools to Detect Potential Unintended Effects in Genetically Engineered Maize Eugenia Barros Introduction In the early stages of production and commercialization of foods derived from genetically engineered (GE) plants... systems. In a recent paper published in Plant Biotechnology Journal,4 we compared two transgenic white maize lines with the non-transgenic counterpart to investigate two possible sources of variation: genetic engineering and environmental variation...

  7. Genetic analysis of Penthorum chinense Pursh by improved RAPD and ISSR in China

    Directory of Open Access Journals (Sweden)

    Zhiqiang Mei

    2017-11-01

    Conclusions: This study indicated that improved RAPD and ISSR methods are useful tools for evaluating the genetic diversity and characterizing P. chinense. Our findings can provide the theoretical basis for cultivar identification, standardization, and molecular-assisted breeding of P. chinense for medicinal use.

  8. Establishing a diagnostic system for detecting Ralstonia solanacearum and genetic differentiation using RAPD molecular markers

    Directory of Open Access Journals (Sweden)

    Edisson Chavarro Mesa

    2006-01-01

    Full Text Available A polymerase chain reaction-based diagnostic test (PCR has been developed for amplifying a región and obtaining a 292 bp product by using specific 16S rDNA primers for the rapid and precise identification of the causative agent (Ralstonia solanacearum of bacterial withering of potato in asymptomatic tubers. The bacteria was isolated from potato tubers and banana fruit using culturing techniques and immunological and molecular ELISA-NCM and PCR tests, respectively. PCR detected the presence of R. solanacearum on asymptomatic tubers by contrast with ELISA-NCM which did not detect this pathogen. Analysing random amplified polymorphic DNA (RAPD led to differentiating and grouping R. solanacearum by geographical región and bacterial strain, suggesting that differences exist amongst existing collections according to their place of origin, presenting high genetic variability. The results showed that PCR is a sensitive and specific test for detecting R. solanacearum and can therefore be implemented as a method for controlling this pathogen in seed production and certification programmes in áreas free of the disease. The pathogen has been shown to be genetically heterogeneous according to the samples' geographical área thereby hampering control in áreas of Colombia experiencing phytosanitary problems with R. solanacearum in potato crops Key words: bacterial withered, moko, PCR-16S rADN, ELISA-NCM, PCR-RAPD.

  9. Incorporating personalized gene sequence variants, molecular genetics knowledge, and health knowledge into an EHR prototype based on the Continuity of Care Record standard

    Science.gov (United States)

    Jing, Xia; Kay, Stephen; Marley, Tom; Hardiker, Nicholas R.; Cimino, James J.

    2011-01-01

    Summary Objectives The current volume and complexity of genetic tests, and the molecular genetics knowledge and health knowledge related to interpretation of the results of those tests, are rapidly outstripping the ability of individual clinicians to recall, understand and convey to their patients information relevant to their care. The tailoring of molecular genetics knowledge and health knowledge in clinical settings is important both for the provision of personalized medicine and to reduce clinician information overload. In this paper we describe the incorporation, customization and demonstration of molecular genetic data (mainly sequence variants), molecular genetics knowledge and health knowledge into a standards-based electronic health record (EHR) prototype developed specifically for this study. Methods We extended the CCR (Continuity of Care Record), an existing EHR standard for representing clinical data, to include molecular genetic data. An EHR prototype was built based on the extended CCR and designed to display relevant molecular genetics knowledge and health knowledge from an existing knowledge base for cystic fibrosis (OntoKBCF). We reconstructed test records from published case reports and represented them in the CCR schema. We then used the EHR to dynamically filter molecular genetics knowledge and health knowledge from OntoKBCF using molecular genetic data and clinical data from the test cases. Results The molecular genetic data were successfully incorporated in the CCR by creating a category of laboratory results called “Molecular Genetics ” and specifying a particular class of test (“Gene Mutation Test”) in this category. Unlike other laboratory tests reported in the CCR, results of tests in this class required additional attributes (“Molecular Structure” and “Molecular Position”) to support interpretation by clinicians. These results, along with clinical data (age, sex, ethnicity, diagnostic procedures, and therapies) were used

  10. A microsatellite baseline for genetic stock identification of European Atlantic salmon (Salmo salar L.)

    DEFF Research Database (Denmark)

    Gilbey, John; Coughlan, Jamie; Wennevik, Vidar

    2018-01-01

    Atlantic salmon (Salmo salar L.) populations from different river origins mix in the North Atlantic during the marine life stage. To facilitate marine stock identification, we developed a genetic baseline covering the European component of the species' range excluding the Baltic Sea, from the Rus...

  11. Catecholaminergic systems in stress: structural and molecular genetic approaches.

    Science.gov (United States)

    Kvetnansky, Richard; Sabban, Esther L; Palkovits, Miklos

    2009-04-01

    Stressful stimuli evoke complex endocrine, autonomic, and behavioral responses that are extremely variable and specific depending on the type and nature of the stressors. We first provide a short overview of physiology, biochemistry, and molecular genetics of sympatho-adrenomedullary, sympatho-neural, and brain catecholaminergic systems. Important processes of catecholamine biosynthesis, storage, release, secretion, uptake, reuptake, degradation, and transporters in acutely or chronically stressed organisms are described. We emphasize the structural variability of catecholamine systems and the molecular genetics of enzymes involved in biosynthesis and degradation of catecholamines and transporters. Characterization of enzyme gene promoters, transcriptional and posttranscriptional mechanisms, transcription factors, gene expression and protein translation, as well as different phases of stress-activated transcription and quantitative determination of mRNA levels in stressed organisms are discussed. Data from catecholamine enzyme gene knockout mice are shown. Interaction of catecholaminergic systems with other neurotransmitter and hormonal systems are discussed. We describe the effects of homotypic and heterotypic stressors, adaptation and maladaptation of the organism, and the specificity of stressors (physical, emotional, metabolic, etc.) on activation of catecholaminergic systems at all levels from plasma catecholamines to gene expression of catecholamine enzymes. We also discuss cross-adaptation and the effect of novel heterotypic stressors on organisms adapted to long-term monotypic stressors. The extra-adrenal nonneuronal adrenergic system is described. Stress-related central neuronal regulatory circuits and central organization of responses to various stressors are presented with selected examples of regulatory molecular mechanisms. Data summarized here indicate that catecholaminergic systems are activated in different ways following exposure to distinct

  12. Classical and molecular genetics of malignant melanoma and dysplastic naevi

    International Nuclear Information System (INIS)

    Traupe, H.; Macher, E.

    1988-01-01

    The authors conclude that the prevailing concept of monogenic autosomaldominant inheritance of dysplastic naevi and familial melanoma is not compatible with the principles of formal (Mendelian) genetics. The concept of polygenic inheritance offers instead a sound basis to explain familial aggregation of dysplastic naevi and melanoma. The various genes involved have not yet been identified at the molecular level. The recent advances made possible by modern DNA technology have given us a new view of carcinogenesis. In human malignant melanoma, chromosomes 1, 6, 7 are of particular interest and oncogenes located on these chromosomes may be involved with the initiation, promotion and progression of melanoma. Carcinogenesis is viewed as a multistep process and even tumour initiation requires the input of at least two independent oncogenes. Molecular genetics thus adds an important argument for the existence of a polygenic predisposition to melanoma. The concept of polygenic inheritance is not restricted to familial melanoma, but implies that all melanomas basically share the same predisposition and are due to similar genetic mechanisms. In some patients an inherited genetic predisposition is of great importance, whereas in others (the majority) environmental factors (e.g. UV-light-induced mutations) will be the cause of initial steps in the malignant transformation. The concept of polygenic inheritance has consequences for the management of our patients. In contrast to simple Mendelian inheritance, the risk for dysplastic naevi and melanoma is not constantly 50%, but increases with the number of family members already affected. Persons belonging to families with more that 2 affected close relatives should be considered at high risk regardless of the dysplastic naevus status. Strict surveillance of this patient group is warranted for melanoma prevention

  13. Molecular identification of Giardia duodenalis isolates from domestic dogs and cats in Wroclaw, Poland.

    Science.gov (United States)

    Piekarska, Jolanta; Bajzert, Joanna; Gorczykowski, Michał; Kantyka, Magdalena; Podkowik, Magdalena

    2016-09-01

    Giardia duodenalis (G. intestinalis) is a common protozoan causing gastrointestinal disorders in many species of mammals. The genus of Giardia has high molecular diversity. Dogs and cats, in addition to their typical infection with assemblages C, D and F, may be a reservoir of zoonotic assemblages (A and B). The aim of this study was a genetic characteristic of Giardia isolates of dogs and cats from the area of Wroclaw (Poland). A total of 128 and 33 faecal samples from dogs and cats, respectively, were analyzed by routine coprological methods. The animals were diagnosed on the presence of G. duodenalis antigens in faeces soluble with the use of SNAP Giardia (IDEXX Laboratories) immunosorbent assay. 27 DNA isolates of Giardia were subjected to molecular identification (PCR-RFLP). The prevalence of G. duodenalis was 21.1% (27/128) in dogs and 15.1% (5/33) in cats. In dogs, C assemblage was present in 18 (81%) positive stool samples, D assemblage in 2 (9%) samples, B assemblage present in one (4.5%), and mixed assemblages (C and D) occurred in one (4.5%) sample. F assemblage was found in 4 (80%) cats' positive stool samples and A assemblage occurred in one case (20%). Confirmation of the presence of A and B zoonotic assemblages suggests that infected pets can be a threat to human health. This study describes for the first time the presence of mixed infections within host-specific C and D assemblages in dogs in Poland.

  14. Molecular genetics made simple

    Directory of Open Access Journals (Sweden)

    Heba Sh. Kassem

    2012-07-01

    Full Text Available Genetics have undoubtedly become an integral part of biomedical science and clinical practice, with important implications in deciphering disease pathogenesis and progression, identifying diagnostic and prognostic markers, as well as designing better targeted treatments. The exponential growth of our understanding of different genetic concepts is paralleled by a growing list of genetic terminology that can easily intimidate the unfamiliar reader. Rendering genetics incomprehensible to the clinician however, defeats the very essence of genetic research: its utilization for combating disease and improving quality of life. Herein we attempt to correct this notion by presenting the basic genetic concepts along with their usefulness in the cardiology clinic. Bringing genetics closer to the clinician will enable its harmonious incorporation into clinical care, thus not only restoring our perception of its simple and elegant nature, but importantly ensuring the maximal benefit for our patients.

  15. Molecular genetics made simple

    Science.gov (United States)

    Kassem, Heba Sh.; Girolami, Francesca; Sanoudou, Despina

    2012-01-01

    Abstract Genetics have undoubtedly become an integral part of biomedical science and clinical practice, with important implications in deciphering disease pathogenesis and progression, identifying diagnostic and prognostic markers, as well as designing better targeted treatments. The exponential growth of our understanding of different genetic concepts is paralleled by a growing list of genetic terminology that can easily intimidate the unfamiliar reader. Rendering genetics incomprehensible to the clinician however, defeats the very essence of genetic research: its utilization for combating disease and improving quality of life. Herein we attempt to correct this notion by presenting the basic genetic concepts along with their usefulness in the cardiology clinic. Bringing genetics closer to the clinician will enable its harmonious incorporation into clinical care, thus not only restoring our perception of its simple and elegant nature, but importantly ensuring the maximal benefit for our patients. PMID:25610837

  16. Progress in the molecular and genetic modification breeding of beef cattle in China.

    Science.gov (United States)

    Tong, Bin; Zhang, Li; Li, Guang-Peng

    2017-11-20

    The studies of beef cattle breeding in China have been greatly improved with the rapid development of the international beef cattle industrialization. The beef cattle breeding technologies have rapidly transformed from traditional breeding to molecular marker-assisted breeding, genomic selection and genetic modification breeding. Hundreds of candidate genes and molecular markers associated with growth, meat quality, reproduction performance and diseases resistance have been identified, and some of them have already been used in cattle breeding. Genes and molecular markers associated with growth and development are focused on the growth hormone, muscle regulatory factors, myostatin and insulin-like growth factors. Meat quality is mediated by fatty acid transport and deposition related signals, calpains and calpain system, muscle regulatory factors and muscle growth regulation pathways. Reproduction performance is regulated by GnRH-FSH-LH, growth differentiation factor 9, prolactin receptor and forkhead box protein O1. Disease resistance is modulated by the major histocompatibility complex gene family, toll-like receptors, mannose-binding lectin and interferon gene signals. In this review, we summarize the most recent progress in beef cattle breeding in marker-assisted selection, genome-wide selection and genetic modification breeding, aiming to provide a reference for further genetic breeding research of beef cattle in China.

  17. Tick-Pathogen Interactions and Vector Competence: Identification of Molecular Drivers for Tick-Borne Diseases

    Czech Academy of Sciences Publication Activity Database

    de la Fuente, J.; Antunes, S.; Bonnet, S.; Cabezas Cruz, Alejandro; Domingos, A.G.; Estrada-Peňa, A.; Johnson, N.; Kocan, K.M.; Mansfield, K. L.; Nijhof, A.M.; Papa, A.; Rudenko, Natalia; Villar, M.; Alberdi, P.; Torina, A.; Ayllón, N.; Vancová, Marie; Golovchenko, Maryna; Grubhoffer, Libor; Caracappa, S.; Fooks, A. R.; Gortazar, C.; Rego, Ryan O. M.

    2017-01-01

    Roč. 7, APR 7 (2017), č. článku 114. ISSN 2235-2988 EU Projects: European Commission(XE) 278976 - ANTIGONE Institutional support: RVO:60077344 Keywords : tick * Anaplasma * flavivirus * Babesia * Borrelia * Microbiome * immunology * vaccine Subject RIV: EB - Genetics ; Molecular Biology OBOR OECD: Biochemistry and molecular biology Impact factor: 4.300, year: 2016

  18. Improvement of molecular techniques: A multidisciplinar vision

    Directory of Open Access Journals (Sweden)

    Bruno do Amaral Crispim

    2016-08-01

    Full Text Available The advances in molecular technologies since the discovery of the PCR (Polymerase Chain Reaction and their association with the use of molecular markers, allowed a rapid progress in the development of technologies and equipment able to generate and analyze data on a large scale, revolutionizing research that until recently was only based on single marker, like the analysis of Single Nucleotide Polymorphism (SNP, and nowadays with the genomic era is already possible in a few hours genotyping millions or even thousands of SNPs. This evolution has allowed improvements in research to the knowledge of genomes creating expectations and real possibilities of application of these techniques in various fields, from medicine to animal production. These new technologies of molecular analysis of DNA variability determining points of interest in chromosomes, which are technically called as molecular markers. These markers can be used in various applications, including paternity test, construction of genetic maps, mapping of quantitative inheritance of characteristics, isolation of genes, marker-assisted selection and characterization of the genetic diversity of different species. The improvement of sequencing and bioinformatics technologies were crucial to studies with characteristics of interest using high-density genetic information. The SNP genotyping panels stimulated researches in the human area, especially in studies of cancer and exoma, and also in agribusiness, aiming the search for superior genotypes for domestic plants and animals. The differential use of the panels is the possibility to seek complex characteristics, once the wide distribution of markers favors through the linkage disequilibrium, the identification of genomic regions associated with expression phenotypes in study. Therefore, this advance has become essential for greater accuracy and speed in molecular diagnostics, increasing the accuracy in the selection of individuals with

  19. Accessible Morphological and Genetic Markers for Identification of Taioba and Taro, Two Forgotten Human Foods

    Directory of Open Access Journals (Sweden)

    María Del Pilar Sepúlveda-Nieto

    2017-10-01

    Full Text Available Some tropical species—such as the domesticated Xanthosoma sagittifolium (L. Schott (Taioba and Colocasia esculenta (L. Schott (Taro—have similar phenotypic characteristics, especially in the shape and color of the leaves and petioles which generate uncertainty in their identification for use in human food. This study aimed to analyze the morphological and molecular characteristics of X. sagittifolium and C. esculenta that may help in the popular and scientific identification of these species. The principal morphological characteristics of X. sagittifolium were as follows: leaves with subcoriaceous textures, basal insertion of the petiole, green pseudo-stem in the basal portion with exudate being white and the presence of two collector veins. Distinctive morphological characteristics of C. esculenta were as follows: leaves with velvety textures, peltate insertion of the petiole, pink pseudo-stem in the basal portion with pink exudate and presence of one collector vein. The morphological characteristics that can be used to distinguish Taioba from Taro are the basal petiole insertion of the first, against the petiole insertion near the center of the blade of the latter. Molecular analyses using eight Inter-Simple Sequence Repeat (ISSR molecular markers simultaneously showed distinctive fingerprints for each of the species. These results contribute to the proper identification of the species used as a food source.

  20. An Update on Genetic Resistance of Chickpea to Ascochyta Blight

    Directory of Open Access Journals (Sweden)

    Mamta Sharma

    2016-03-01

    Full Text Available Ascochyta blight (AB caused by Ascochyta rabiei (Pass. Labr. is an important and widespread disease of chickpea (Cicer arietinum L. worldwide. The disease is particularly severe under cool and humid weather conditions. Breeding for host resistance is an efficient means to combat this disease. In this paper, attempts have been made to summarize the progress made in identifying resistance sources, genetics and breeding for resistance, and genetic variation among the pathogen population. The search for resistance to AB in chickpea germplasm, breeding lines and land races using various screening methods has been updated. Importance of the genotype × environment (GE interaction in elucidating the aggressiveness among isolates from different locations and the identification of pathotypes and stable sources of resistance have also been discussed. Current and modern breeding programs for AB resistance based on crossing resistant/multiple resistant and high-yielding cultivars, stability of the breeding lines through multi-location testing and molecular marker-assisted selection method have been discussed. Gene pyramiding and the use of resistant genes present in wild relatives can be useful methods in the future. Identification of additional sources of resistance genes, good characterization of the host–pathogen system, and identification of molecular markers linked to resistance genes are suggested as the key areas for future study.

  1. Molecular identification of similar species of the genus Biomphalaria (Mollusca: Planorbidae determined by a polymerase chain reaction-restriction fragment length polymorphism

    Directory of Open Access Journals (Sweden)

    Caldeira Roberta Lima

    1998-01-01

    Full Text Available The freshwater snails Biomphalaria straminea, B. intermedia, B. kuhniana and B. peregrina, are morphologically similar; based on this similarity the first three species were therefore grouped in the complex B. straminea. The morphological identification of these species is based on characters such as vaginal wrinkling, relation between prepuce: penial sheath:deferens vas and number of muscle layers in the penis wall. In this study the polymerase chain reaction restriction fragment length polymorphism technique was used for molecular identification of these molluscs. This technique is based on the amplification of the internal transcribed spacer regions ITS1 e ITS2 of the ribosomal RNA gene and subsequent digestion of these fragments by restriction enzymes. Six enzymes were tested: Dde I, Mnl I, Hae III, Rsa I, Hpa II e Alu I. The restriction patterns obtained with DdeI presented the best profile for separation of the four species of Biomphalaria. The profiles obtained with all the enzymes were used to estimate the genetic distances among the species through analysis of common banding patterns.

  2. Genetic diversity and molecular characterization of Saccharomyces cerevisiae strains from winemaking environments

    OpenAIRE

    Schuller, Dorit Elisabeth

    2004-01-01

    Tese de doutoramento em Ciências The principal aim of the present work is to assess the genetic diversity of fermenting Saccharomyces cerevisiae strains found in vineyards belonging to the Vinho Verde Region in order to create a strain collection representing the region’s biodiversity wealth as a basis for future strain selection and improvement programs. Validation of molecular techniques for accurate genotyping is an indispensable prerequisite for biogeographical surveys. Molecular ty...

  3. Genetic and clinical characteristics of primary and secondary glioblastoma is associated with differential molecular subtype distribution

    OpenAIRE

    Li, Rui; Li, Hailin; Yan, Wei; Yang, Pei; Bao, Zhaoshi; Zhang, Chuanbao; Jiang, Tao; You, Yongping

    2015-01-01

    Glioblastoma multiforme (GBM) is classified into primary (pGBM) or secondary (sGBM) based on clinical progression. However, there are some limits to this classification for insight into genetically and clinically distinction between pGBM and sGBM. The aim of this study is to characterize pGBM and sGBM associating with differential molecular subtype distribution. Whole transcriptome sequencing data was used to assess the distribution of molecular subtypes and genetic alterations in 88 pGBM and...

  4. A Report on Molecular Diagnostic Testing for Inherited Retinal Dystrophies by Targeted Genetic Analyses.

    Science.gov (United States)

    Ramkumar, Hema L; Gudiseva, Harini V; Kishaba, Kameron T; Suk, John J; Verma, Rohan; Tadimeti, Keerti; Thorson, John A; Ayyagari, Radha

    2017-02-01

    To test the utility of targeted sequencing as a method of clinical molecular testing in patients diagnosed with inherited retinal degeneration (IRD). After genetic counseling, peripheral blood was drawn from 188 probands and 36 carriers of IRD. Single gene testing was performed on each patient in a Clinical Laboratory Improvement Amendment (CLIA) certified laboratory. DNA was isolated, and all exons in the gene of interest were analyzed along with 20 base pairs of flanking intronic sequence. Genetic testing was most often performed on ABCA4, CTRP5, ELOV4, BEST1, CRB1, and PRPH2. Pathogenicity of novel sequence changes was predicted by PolyPhen2 and sorting intolerant from tolerant (SIFT). Of the 225 genetic tests performed, 150 were for recessive IRD, and 75 were for dominant IRD. A positive molecular diagnosis was made in 70 (59%) of probands with recessive IRD and 19 (26%) probands with dominant IRD. Analysis confirmed 12 (34%) of individuals as carriers of familial mutations associated with IRD. Thirty-two novel variants were identified; among these, 17 sequence changes in four genes were predicted to be possibly or probably damaging including: ABCA4 (14), BEST1 (2), PRPH2 (1), and TIMP3 (1). Targeted analysis of clinically suspected genes in 225 subjects resulted in a positive molecular diagnosis in 26% of patients with dominant IRD and 59% of patients with recessive IRD. Novel damaging mutations were identified in four genes. Single gene screening is not an ideal method for diagnostic testing given the phenotypic and genetic heterogeneity among IRD cases. High-throughput sequencing of all genes associated with retinal degeneration may be more efficient for molecular diagnosis.

  5. Molecular Cytogenetic Mapping of Satellite DNA Sequences in Aegilops geniculata and Wheat

    Czech Academy of Sciences Publication Activity Database

    Koo, D.H.; Tiwari, V.K.; Hřibová, Eva; Doležel, Jaroslav; Friebe, B.; Gill, B.S.

    2016-01-01

    Roč. 148, č. 4 (2016), s. 314-321 ISSN 1424-8581 R&D Projects: GA MŠk(CZ) LO1204 Institutional support: RVO:61389030 Keywords : in-situ hybridization * chromosome addition lines * resistance genes lr57 * repetitive dna * triticum-ovatum * powdery mildew * plant genome * bread wheat * leaf rust * identification * Aegilops geniculata * Chromosome identification * Fluorescence in situ hybridization * Satellite DNA * Wheat Subject RIV: EB - Genetics ; Molecular Biology Impact factor: 1.354, year: 2016

  6. the genetic and molecular basis of bacterial invasion of epithelial cells

    African Journals Online (AJOL)

    DR. AMINU

    The pathogenic species of bacteria are of great medical importance as causative agents of infectious diseases. Moreover, as the condition of human existence have changed, so have the bacterial species that produce diseases. It is against this background that molecular genetics have now entered the field of microbial ...

  7. [Malignant Melanoma - from Classical Histology towards Molecular Genetic Testing].

    Science.gov (United States)

    Ryška, A; Horký, O; Berkovcová, J; Tichá, I; Kalinová, M; Matějčková, M; Bóday, Á; Drábek, J; Martínek, P; Šimová, J; Sieglová, K; Vošmiková, H

    Malignant melanoma is - in comparison with other skin tumors - a relatively rare malignant neoplasm with highly aggressive biologic behavior and variable prognosis. Recent data in pathology and molecular diagnostics indicate that malignant melanoma is in fact not a single entity but a group of different neoplasms with variable etiopathogenesis, biologic behavior and prognosis. New therapeutic options using targeted treatment blocking MAPK signaling pathway require testing of BRAF gene mutation status. This helps to select patients with highest probability of benefit from this treatment. This article summarizes information on the correlation of morphological findings with genetic changes, discusses the representation of individual genetic types in various morphological subgroups and deals with the newly proposed genetic classification of melanoma and the current possibilities, pitfalls and challenges in BRAF testing of malignant melanoma. It also describes the current testing situation in the Czech Republic - the methods used, the representation of BRAF mutations in the tested population and the future of testing. It also shows the limitations of the BRAF and MEK targeted treatment concept resulting from the heterogeneity of the tumor population. Mechanisms of acquired resistance to MAPK pathway inhibitors, possibilities of their detection, and issues of combination of targeted therapy and immunotherapy are discussed.Key words: malignant melanoma - BRAF - mutation - molecular targeted therapy - tumor microenvironment - tumor heterogeneity This work was supported by projects PROGRES Q40/11, BBMRICZ LM2015089, SVV 260398 and GACR 17-10331S. The authors declare they have no potential conflicts of interest concerning drugs, products, or services used in the study. The Editorial Board declares that the manuscript met the ICMJE recommendation for biomedical papers.Submitted: 28. 3. 2017Accepted: 16. 5. 2017.

  8. Permanent genetic resources added to molecular ecology resources database 1 February 2013-31 March 2013

    Czech Academy of Sciences Publication Activity Database

    Arias, M. C.; Atteke, C.; Augusto, S. C.; Bailey, J.; Bazaga, P.; Beheregaray, L. B.; Benoit, L.; Blatrix, R.; Born, C.; Brito, R. M.; Chen, H.-K.; Covarrubias, S.; de Vega, C.; Djiéto-Lordon, C.; Dubois, M.-P.; Francisco, F. O.; García, C.; Concalves, P. H. P.; González, C.; Gutiérrez-Rodríguez, C.; Hammer, M. P.; Herrera, C. M.; Itoh, H.; Kamimura, S.; Karaoglu, H.; Kojima, S.; Li, S.-L.; Ling, H. J.; Matos Maravi, Pavel F.; McKey, D.; Mezui-M’Eko, J.; Ornelas, J. F.; Park, R. F.; Pozo, M. I.; Ramula, S.; Rigueiro, C.; Sandoval-Castillo, J.; Santiago, L. R.; Seino, M. M.; Song, C.-B.; Takeshima, H.; Vasemägi, A.; Wellings, C. R.; Yan, J.; Du, Y.-Z.; Zhang, C.-R.; Zhang, T.-Y.

    2013-01-01

    Roč. 13, č. 4 (2013), s. 760-762 ISSN 1755-098X Institutional support: RVO:60077344 Keywords : molecular ecology Subject RIV: EB - Genetics ; Molecular Biology Impact factor: 5.626, year: 2013 http://onlinelibrary.wiley.com/doi/10.1111/1755-0998.12121/pdf

  9. Molecular evaluation of genetic variability of wheat elite breeding material

    Directory of Open Access Journals (Sweden)

    Brbaklić Ljiljana

    2009-01-01

    Full Text Available Estimation of genetic variability of breeding material is essential for yield improvement in wheat cultivars. Modern techniques based on molecular markers application are more efficient and precise in genetic variability evaluation then conventional methods. Variability of 96 wheat cultivars and lines was analyzed using four microsatellite markers (Gwm11, Gwm428, Psp3200, Psp3071. The markers were chosen according to their potential association with important agronomical traits indicated in the literature. Total of 31 alleles were detected with maximum number of alleles (11 in Xgwm11 locus. The highest polymorphism information content (PIC value (0,831 was found in the locus Xpsp3071. The genotypes were grouped into three subpopulations based on their similarity in the analyzed loci. The results have indicated wide genetic variability of the studied material and possibility of its application in further breeding process after validation of marker-trait association. .

  10. GENETICS AND MOLECULAR BIOLOGY AND PIG MEAT QUALITY IMPROVEMENT

    Directory of Open Access Journals (Sweden)

    J. BULLA

    2007-05-01

    Full Text Available The main goals in pig breeding have for many years been to improve growth rate, feedconversion and carcass composition. There have been less efforts to improve meat qualityparameters (WHC, pH, tenderness, colour etc. but the main contribution has been areduction of stress susceptibility and PSE meat. Unfortunately, the quantitative geneticapproach has yielded few clues regarding the fundamental genetic changes that accompaniedthe selection of animal for superior carcass attributes. While mapping efforts are makingsignificant major effects on carcass and his quality composition DNA test would be availableto detect some positive or negative alleles. There are clear breed effects on meat quality,which in some cases are fully related to the presence of a single gene with major effect (RYR1,MYF4, H-FABP, LEPR, IGF2. Molecular biology methods provides excellent opportunitiesto improve meat quality in selection schemes within breeds and lines. Selection on majorgenes will not only increase average levels of quality but also decrease variability (ei increaseuniformity. The aim of this paper is to discuss there genetic and non-genetic opportunities.

  11. GENETICS AND MOLECULAR BIOLOGY AND PIG MEAT QUALITY IMPROVEMENT

    Directory of Open Access Journals (Sweden)

    BULLA, J.

    2007-01-01

    Full Text Available The main goals in pig breeding have for many years been to improve growth rate, feedconversion and carcass composition. There have been less efforts to improve meat qualityparameters (WHC, pH, tenderness, colour etc. but the main contribution has been areduction of stress susceptibility and PSE meat. Unfortunately, the quantitative geneticapproach has yielded few clues regarding the fundamental genetic changes that accompaniedthe selection of animal for superior carcass attributes. While mapping efforts are makingsignificant major effects on carcass and his quality composition DNA test would be availableto detect some positive or negative alleles. There are clear breed effects on meat quality,which in some cases are fully related to the presence of a single gene with major effect (RYR1,MYF4, H-FABP, LEPR, IGF2. Molecular biology methods provides excellent opportunitiesto improve meat quality in selection schemes within breeds and lines. Selection on majorgenes will not only increase average levels of quality but also decrease variability (ei increaseuniformity. The aim of this paper is to discuss there genetic and non-genetic opportunities.

  12. Physiological, anatomical and genetic identification of CPG neurons in the developing mammalian spinal cord

    DEFF Research Database (Denmark)

    Kiehn, Ole; Butt, Simon J.B.

    2003-01-01

    . These latter experiments have defined EphA4 as a molecular marker for mammalian excitatory hindlimb CPG neurons. We also review genetic approaches that can be applied to the mouse spinal cord. These include methods for identifying sub-populations of neurons by genetically encoded reporters, techniques to trace...... network connectivity with cell-specific genetically encoded tracers, and ways to selectively ablate or eliminate neuron populations from the CPG. We propose that by applying a multidisciplinary approach it will be possible to understand the network structure of the mammalian locomotor CPG...

  13. A molecular, genetic and physiological analysis of plant aluminum tolerance (abstract)

    International Nuclear Information System (INIS)

    Pineros, M.

    2005-01-01

    Aluminum (Al) toxicity is an important agronomic trait, limiting crop production on acid soils that comprise up to 50% of the world's potentially arable lands. A significant genetic variation in Al tolerance exists in both crop plants and Arabidopsis. The exploitation of this genetic variation to breed crops with increased Al tolerance has been a productive and active area of research, however, the underlying molecular, genetic and physiological bases are still not well understood. Only very recently was the first Al tolerance gene, ALMT1, isolated in wheat and shown to be a novel Al-activated malate transporter. Work in our laboratory has focused on using integrated genomic (gene and protein expression profiling), molecular genetic and physiological approaches to identify novel Al tolerance genes and the physiological mechanisms they control in the cereal crops maize and sorghum, and also in arabidopsis. In sorghum we had previously shown that Al tolerance is the result of a single locus, Alt/sub SB/ which maps to the top of sorghum chromosome 3 in a region totally distinct from where the major Al tolerance maps in wheat and other related members of the Triticeae. Very recently, we have used map-based cloning techniques in sorghum to clone Alt/sub SB/ and have found it is a novel Al tolerance gene. Here we will present a molecular characterization of the Alt/sub SB/ gene and also the physiological mechanism of sorghum Al tolerance it controls. In arabidopsis, we have previously shown that Al tolerance is a quantitative trait and have identified two major Al tolerance QTL on chromosomes 1 and 5. These genes function to confer tolerance via Al via activated root malate release. We found that a member of the arabidopsis gene family that is a close homolog to wheat ALMT1 maps near the largest tolerance QTL on chromosome 1 and have also found this gene encodes the Al-activated malate transport involved in arabidopsis Al tolerance. However, we have clear molecular

  14. Molecular mechanisms of the genetic risk factors in pathogenesis of Alzheimer disease.

    Science.gov (United States)

    Kanatsu, Kunihiko; Tomita, Taisuke

    2017-01-01

    Alzheimer disease (AD) is a neurodegenerative disease characterized by the extensive deposition of senile plaques and neurofibrillary tangles. Until recently, only the APOE gene had been known as a genetic risk factor for late-onset AD (LOAD), which accounts for more than 95% of all AD cases. However, in addition to this well-established genetic risk factor, genome-wide association studies have identified several single nucleotide polymorphisms as genetic risk factors of LOAD, such as PICALM and BIN1 . In addition, whole genome sequencing and exome sequencing have identified rare variants associated with LOAD, including TREM2 . We review the recent findings related to the molecular mechanisms by which these genetic risk factors contribute to AD, and our perspectives regarding the etiology of AD for the development of therapeutic agents.

  15. Advances in the genetically complex autoinflammatory diseases.

    Science.gov (United States)

    Ombrello, Michael J

    2015-07-01

    Monogenic diseases usually demonstrate Mendelian inheritance and are caused by highly penetrant genetic variants of a single gene. In contrast, genetically complex diseases arise from a combination of multiple genetic and environmental factors. The concept of autoinflammation originally emerged from the identification of individual, activating lesions of the innate immune system as the molecular basis of the hereditary periodic fever syndromes. In addition to these rare, monogenic forms of autoinflammation, genetically complex autoinflammatory diseases like the periodic fever, aphthous stomatitis, pharyngitis, and cervical adenitis (PFAPA) syndrome, chronic recurrent multifocal osteomyelitis (CRMO), Behçet's disease, and systemic arthritis also fulfill the definition of autoinflammatory diseases-namely, the development of apparently unprovoked episodes of inflammation without identifiable exogenous triggers and in the absence of autoimmunity. Interestingly, investigations of these genetically complex autoinflammatory diseases have implicated both innate and adaptive immune abnormalities, blurring the line between autoinflammation and autoimmunity. This reinforces the paradigm of concerted innate and adaptive immune dysfunction leading to genetically complex autoinflammatory phenotypes.

  16. Molecular genetics of early-onset Alzheimer's disease revisited.

    Science.gov (United States)

    Cacace, Rita; Sleegers, Kristel; Van Broeckhoven, Christine

    2016-06-01

    As the discovery of the Alzheimer's disease (AD) genes, APP, PSEN1, and PSEN2, in families with autosomal dominant early-onset AD (EOAD), gene discovery in familial EOAD came more or less to a standstill. Only 5% of EOAD patients are carrying a pathogenic mutation in one of the AD genes or a apolipoprotein E (APOE) risk allele ε4, most of EOAD patients remain unexplained. Here, we aimed at summarizing the current knowledge of EOAD genetics and its role in ongoing approaches to understand the biology of AD and disease symptomatology as well as developing new therapeutics. Next, we explored the possible molecular mechanisms that might underlie the missing genetic etiology of EOAD and discussed how the use of massive parallel sequencing technologies triggered novel gene discoveries. To conclude, we commented on the relevance of reinvestigating EOAD patients as a means to explore potential new avenues for translational research and therapeutic discoveries. Copyright © 2016 The Authors. Published by Elsevier Inc. All rights reserved.

  17. Model-based evaluation of the use of polycyclic aromatic hydrocarbons molecular diagnostic ratios as a source identification tool

    International Nuclear Information System (INIS)

    Katsoyiannis, Athanasios; Breivik, Knut

    2014-01-01

    Polycyclic Aromatic Hydrocarbons (PAHs) molecular diagnostic ratios (MDRs) are unitless concentration ratios of pair-PAHs with the same molecular weight (MW); MDRs have long been used as a tool for PAHs source identification purposes. In the present paper, the efficiency of the MDR methodology is evaluated through the use of a multimedia fate model, the calculation of characteristic travel distances (CTD) and the estimation of air concentrations for individual PAHs as a function of distance from an initial point source. The results show that PAHs with the same MW are sometimes characterized by substantially different CTDs and therefore their air concentrations and hence MDRs are predicted to change as the distance from the original source increases. From the assessed pair-PAHs, the biggest CTD difference is seen for Fluoranthene (107 km) vs. Pyrene (26 km). This study provides a strong indication that MDRs are of limited use as a source identification tool. -- Highlights: • Model-based evaluation of the PAHs molecular diagnostic ratios efficiency. • Individual PAHs are characterized by different characteristic travel distances. • MDRs are proven to be a limited tool for source identification. • Use of MDRs for other environmental media is likely unfeasible. -- PAHs molecular diagnostic ratios which change greatly as a function of distance from the emitting source are improper for source identification purposes

  18. Identification of clinically relevant Corynebacterium strains by Api Coryne, MALDI-TOF-mass spectrometry and molecular approaches.

    Science.gov (United States)

    Alibi, S; Ferjani, A; Gaillot, O; Marzouk, M; Courcol, R; Boukadida, J

    2015-09-01

    We evaluated the Bruker Biotyper matrix-assisted laser desorption ionization-time of flight (MALDI-TOF) mass spectrometry (MS) for the identification of 97 Corynebacterium clinical in comparison to identification strains by Api Coryne and MALDI-TOF-MS using 16S rRNA gene and hypervariable region of rpoB genes sequencing as a reference method. C. striatum was the predominant species isolated followed by C. amycolatum. There was an agreement between Api Coryne strips and MALDI-TOF-MS identification in 88.65% of cases. MALDI-TOF-MS was unable to differentiate C. aurimucosum from C. minutissimum and C. minutissimum from C. singulare but reliably identify 92 of 97 (94.84%) strains. Two strains remained incompletely identified to the species level by MALDI-TOF-MS and molecular approaches. They belonged to Cellulomonas and Pseudoclavibacter genus. In conclusion, MALDI-TOF-MS is a rapid and reliable method for the identification of Corynebacterium species. However, some limits have been noted and have to be resolved by the application of molecular methods. Copyright © 2015. Published by Elsevier SAS.

  19. RAPD-SCAR marker and genetic relationship analysis of three Demodex species (Acari: Demodicidae).

    Science.gov (United States)

    Zhao, Ya-E; Wu, Li-Ping

    2012-06-01

    For a long time, classification of Demodex mites has been mainly based on their hosts and phenotype characteristics. The study was the first to conduct molecular identification and genetic relationship analysis for six isolates of three Demodex species by random amplified polymorphic DNA (RAPD) and sequence-characterized amplified region (SCAR) marker. Totally, 239 DNA fragments were amplified from six Demodex isolates with 10 random primers in RAPD, of which 165 were polymorphic. Using a single primer, at least five fragments and at most 40 in the six isolates were amplified, whereas within a single isolate, a range of 35-49 fragments were amplified. DNA fingerprints of primers CZ 1-9 revealed intra- and interspecies difference in six Demodex isolates, whereas primer CZ 10 only revealed interspecies difference. The genetic distance and dendrogram showed the intraspecific genetic distances were closer than the interspecific genetic distances. The interspecific genetic distances of Demodex folliculorum and Demodex canis (0.7931-0.8140) were shorter than that of Demodex brevis and D. canis (0.8182-0.8987). The RAPD-SCAR marker displayed primer CZ 10 could be applied to identify the three Demodex species. The 479-bp fragment was specific for D. brevis, and the 261-bp fragment was specific for D. canis. The conclusion was that the RAPD-SCAR multi-marker was effective in molecular identification of three Demodex species. The genetic relationship between D. folliculorum and D. canis was nearer than that between D. folliculorum and D. brevis.

  20. Molecular Identification and Genetic Diversity of Acropora hyacinthus from Boo and Deer Island, Raja Ampat, West Papua

    Science.gov (United States)

    Wijayanti, DP; Indrayanti, E.; Nuryadi, H.; Dewi, RA; Sabdono, A.

    2018-02-01

    Indonesia lies at the centre of biodiversity for corals. However, the reefs suffered from extensive human exploitation. Marine Protected Areas is thought to be best solution to protect coral reefs ecosystem. Understanding genetic diversity is crucial for effective management of the MPAs, however genetic diversity is rarely been corporate in designing an MPA. Moreover, many MPAs are uneffectively manage due to poor designated and demarcated.Raja Ampat which is located in western tip of West Papua, was designated as a park to mitigatethreatsand protect the valuable marine resources.Scleractinian corals in the genus Acropora are among the most dominant distributed in Raja Ampat waters, including the species of Acroporahyacinthus. The research aimed to analyze genetic diversity and to describe the kinship relationship of Acroporahyacinthus between 2 populations: Boo Island and Deer Island, Raja Ampat. Genetic marker Cytochrome Oxidase I (CO I) of the mitochondrial genome DNA (mtDNA) was used to analyze genetic diversity. Reconstruction of phylogenetic tree and genetic diversity were made by usingsoftware MEGA 5.05 (Moleculer Evolutionary Genetics Analysis). The results of this research indicatecorals A. hyacinthus from Boo Island and Deer Island Raja Ampat are in the low category of genetic diversity and overall had a close genetic relationship of kinship. This is likely due to the small size of the population and few numbers of samples that may not represent the population.

  1. Molecular characterization of PCN populations from Serbia

    Directory of Open Access Journals (Sweden)

    Oro Violeta

    2012-01-01

    Full Text Available The morphology of potato cyst nematodes (PCN was until recently almost the only way to identify these quarantine organisms. In the last two decades, molecular analyses contributed to faster and more efficient identification of two Globodera species (Globodera pallida and G. rostochiensis and allowed insight into the genetic structure of those parts that were practically inaccessible by morphological studies. Molecular characterization was performed in ITS1-5.8S-ITS2 region. The comparison was made with sequences of different foreign PCN populations via NCBI GenBank database. The results of molecular studies showed similarities and differences between local and foreign PCN populations in the part of genome that was studied.

  2. A molecular study of genetic diversity in shisham (Dalbergia Sissoo) plantation of NWFP, Pakistan

    Energy Technology Data Exchange (ETDEWEB)

    Ashraf, M; Tabassum, S [Nation al Univ. of Science and Technology, Islamabad (Pakistan). Dept. of Plant Sciences; Mumtaz, S; Riasat, R [Quaid-i-Azam Univ., Islamabad (Pakistan)

    2010-02-15

    Genetic diversity of 22 accessions of Dalbergia sissoo that were collected from the canal, road and farmer's field and forest sites of N.W.F.P, Pakistan has been studied, by using a finger printing technique 'RAPD' (Random Amplified Polymorphism DNA). Out of 20 primers OPA-2 was the primer that allows distinguishing the diseased and healthy accessions. The selected primer was used for identification and for establishing a profiling system to estimate genetic relationships and to evaluate the genetic variability among the accessions. A total of 126 DNA bands or fragments were amplified by using the primers. The UPGMA cluster analysis revealed 2 main clusters among 22 accessions of Dalbergia sissoo based on coefficient of similarity and dissimilarity. Overall 72% similarity and 98% dissimilarity were observed. Low level of genetic variation and high level of genetic relatedness occurred among the canal, road, farmer's field and forest sites. The accessions were closely related with each other and showed mix pattern of genetic diversity. Thus RAPD markers have the potential to characterize and establish genetic relationships among the accessions of Dalbergia sissoo. (author)

  3. A molecular study of genetic diversity in shisham (Dalbergia Sissoo) plantation of NWFP, Pakistan

    International Nuclear Information System (INIS)

    Ashraf, M.; Tabassum, S.

    2010-01-01

    Genetic diversity of 22 accessions of Dalbergia sissoo that were collected from the canal, road and farmer's field and forest sites of N.W.F.P, Pakistan has been studied, by using a finger printing technique 'RAPD' (Random Amplified Polymorphism DNA). Out of 20 primers OPA-2 was the primer that allows distinguishing the diseased and healthy accessions. The selected primer was used for identification and for establishing a profiling system to estimate genetic relationships and to evaluate the genetic variability among the accessions. A total of 126 DNA bands or fragments were amplified by using the primers. The UPGMA cluster analysis revealed 2 main clusters among 22 accessions of Dalbergia sissoo based on coefficient of similarity and dissimilarity. Overall 72% similarity and 98% dissimilarity were observed. Low level of genetic variation and high level of genetic relatedness occurred among the canal, road, farmer's field and forest sites. The accessions were closely related with each other and showed mix pattern of genetic diversity. Thus RAPD markers have the potential to characterize and establish genetic relationships among the accessions of Dalbergia sissoo. (author)

  4. Molecular profiling of intrahepatic cholangiocarcinoma

    DEFF Research Database (Denmark)

    Oliveira, Douglas V N P; Zhang, Shanshan; Chen, Xin

    2017-01-01

    . Areas covered: The present review article outlines the main studies and resulting discoveries on the molecular profiling of iCCA, with a special emphasis on the different techniques used for this purpose, the diagnostic and prognostic markers identified, as well as the genes and pathways that could......INTRODUCTION: Intrahepatic cholangiocarcinoma (iCCA) is the second most frequent primary tumor of the liver and a highly lethal disease. Therapeutic options for advanced iCCA are limited and ineffective due to the largely incomplete understanding of the molecular pathogenesis of this deadly tumor...... be potentially targeted with innovative therapies. Expert commentary: Molecular profiling has led to the identification of distinct iCCA subtypes, characterized by peculiar genetic alterations and transcriptomic features. Targeted therapies against some of the identified genes are ongoing and hold great promise...

  5. Clinical, Endocrine, and Molecular Genetic Analysis of a Large Cohort of Saudi Arabian Patients with Laron Syndrome.

    Science.gov (United States)

    Al-Ashwal, Abdullah A; Al-Sagheir, Afaf; Ramzan, Khushnooda; Al-Owain, Mohammed; Allam, Rabab; Qari, Alya; Al-Numair, Nouf S; Imtiaz, Faiqa

    2017-01-01

    Laron syndrome (LS) is an autosomal recessive disease characterized by marked short stature and very low serum IGF-1 and IGFBP-3 levels. This study assessed the clinical and endocrine features alongside determining the growth hormone receptor gene (GHR) mutation in Saudi Arabian patients with LS in order to establish whether or not a genotype/phenotype correlation is evident in this large cohort. A total of 40 Saudi Arabian patients with a suspected diagnosis of LS were recruited and subjected to a full clinical and endocrine investigation together with direct sequencing of the coding regions of the GHR gene. GHR mutations were identified in 34 patients from 22 separate nuclear families. All 34 molecularly confirmed patients had the typical clinical and endocrinological manifestations of LS. Eleven different mutations (9 previously unreported) were detected in this cohort of patients, all inherited in an autosomal recessive homozygous form. No genotype/phenotype correlation was apparent. The identification of pathogenic mutations causing LS will be of tremendous use for the molecular diagnosis of patients in Saudi Arabia and the region in general, with respect to prevention of this disease in the forms of future carrier testing, prenatal testing, premarital screening and preimplantation genetic diagnosis. © 2017 S. Karger AG, Basel.

  6. Clinical and Laboratory Features of the Nocardia spp. Based on Current Molecular Taxonomy

    Science.gov (United States)

    Brown-Elliott, Barbara A.; Brown, June M.; Conville, Patricia S.; Wallace, Richard J.

    2006-01-01

    The recent explosion of newly described species of Nocardia results from the impact in the last decade of newer molecular technology, including PCR restriction enzyme analysis and 16S rRNA sequencing. These molecular techniques have revolutionized the identification of the nocardiae by providing rapid and accurate identification of recognized nocardiae and, at the same time, revealing new species and a number of yet-to-be-described species. There are currently more than 30 species of nocardiae of human clinical significance, with the majority of isolates being N. nova complex, N. abscessus, N. transvalensis complex, N. farcinica, N. asteroides type VI (N. cyriacigeorgica), and N. brasiliensis. These species cause a wide variety of diseases and have variable drug susceptibilities. Accurate identification often requires referral to a reference laboratory with molecular capabilities, as many newer species are genetically distinct from established species yet have few or no distinguishing phenotypic characteristics. Correct identification is important in deciding the clinical relevance of a species and in the clinical management and treatment of patients with nocardial disease. This review characterizes the currently known pathogenic species of Nocardia, including clinical disease, drug susceptibility, and methods of identification. PMID:16614249

  7. Molecular characterization and genetic diversity of different genotypes of Oryza sativa and Oryza glaberrima

    Directory of Open Access Journals (Sweden)

    Caijin Chen

    2017-11-01

    Conclusions: Genetic diversity studies revealed that 50 rice types were clustered into different subpopulations whereas three genotypes were admixtures. Molecular fingerprinting and 10 specific markers were obtained to identify the 53 rice genotypes. These results can facilitate the potential utilization of sibling species in rice breeding and molecular classification of O. sativa and O. glaberrima germplasms.

  8. Genetic diversity analysis of nine chewing cane varieties (lines) and construction of their DNA fingerprints

    Science.gov (United States)

    In order to provide theoretical basis for variety identification and parental selection during sugarcane breeding process, the present study was conducted to analyze genetic diversity of nine chewing cane varieties (lines) and construct their DNA fingerprints. Combining twenty-one SSR molecular mark...

  9. Identification of HNPCC by Molecular Analysis of Colorectal and Endometrial Tumors

    Directory of Open Access Journals (Sweden)

    H. F. A. Vasen

    2004-01-01

    Full Text Available Hereditary nonpolyposis colorectal cancer (HNPCC, Lynch syndrome is a dominantly inherited syndrome characterized by the development of colorectal cancer, endometrial cancer and other cancers and the presence of microsatellite instability (MSI in tumors. The Bethesda guidelines have been proposed for the identification of families suspected of HNPCC that require further molecular analysis. We have evaluated the yield of MSI-analysis in a large series of Dutch families suspected of HNPCC. We also analysed whether the loss of mismatch repair (MMR protein detected by immunohistochemistry (IHC of colorectal cancer (CRC and endometrial cancer correlated with the presence of MSI and/or a MMR gene mutation. The results showed that the Bethesda criteria with a few modifications are appropriate to identify families eligible for genetic testing. In addition, we found that MSI and IHC-analysis of CRC using antibodies against MLH1, MSH2, MSH6 and PMS2 proteins are equally effective for identifying carriers of the known MMR gene defects. However, as long as the role of other putative MMR genes in hereditary CRC has not been elucidated, IHC-analysis cannot completely replace MSI. For this reason, we prefer MSI-analysis as first step in families suspected of HNPCC. On the other hand, in families fulfilling the revised Amsterdam criteria in which the probability of detecting a mutation is relatively high, we would recommend IHC as first diagnostic step because the result might predict the specific underlying MMR gene mutation. MSI or IHC-analysis of endometrial cancer alone was found to be less sensitive compared with these tests performed in colorectal cancer. Therefore, probably the best approach in the analysis of this cancer is to perform both techniques. The identification of HNPCC is important as it makes it possible to target effective preventative measures. Our studies showed that MSI and IHC analysis of colorectal and endometrial cancer, are reliable

  10. [Molecular techniques applied in species identification of Toxocara].

    Science.gov (United States)

    Fogt, Renata

    2006-01-01

    Toxocarosis is still an important and actual problem in human medicine. It can manifest as visceral (VLM), ocular (OLM) or covert (CT) larva migrans syndroms. Complicated life cycle of Toxocara, lack of easy and practical methods of species differentiation of the adult nematode and embarrassing in recognition of the infection in definitive hosts create difficulties in fighting with the infection. Although studies on human toxocarosis have been continued for over 50 years there is no conclusive answer, which of species--T. canis or T. cati constitutes a greater risk of transmission of the nematode to man. Neither blood serological examinations nor microscopic observations of the morphological features of the nematode give the satisfied answer on the question. Since the 90-ths molecular methods were developed for species identification and became useful tools being widely applied in parasitological diagnosis. This paper cover the survey of methods of DNA analyses used for identification of Toxocara species. The review may be helpful for researchers focused on Toxocara and toxocarosis as well as on detection of new species. The following techniques are described: PCR (Polymerase Chain Reaction), RFLP (Restriction Fragment Length Polymorphism), RAPD (Random Amplified Polymorphic DNA) and SSCP (Single Strand Conformation Polymorphism).

  11. Use of molecular markers in identification and characterization of resistance to rice blast in India.

    Directory of Open Access Journals (Sweden)

    Manoj Kumar Yadav

    Full Text Available Rice blast disease caused by Magnaporthe oryzae is one of the most destructive disease causing huge losses to rice yield in different parts of the world. Therefore, an attempt has been made to find out the resistance by screening and studying the genetic diversity of eighty released rice varieties by National Rice Research Institute, Cuttack (NRVs using molecular markers linked to twelve major blast resistance (R genes viz Pib, Piz, Piz-t, Pik, Pik-p, Pikm Pik-h, Pita/Pita-2, Pi2, Pi9, Pi1 and Pi5. Out of which, nineteen varieties (23.75% showed resistance, twenty one were moderately resistant (26.25% while remaining forty varieties (50% showed susceptible in uniform blast nursery. Rice varieties possessing blast resistance genes varied from four to twelve and the frequencies of the resistance genes ranged from 0 to 100%. The cluster analysis grouped the eighty NRVs into two major clusters at 63% level of genetic similarity coefficient. The PIC value for seventeen markers varied from 0 to 0.37 at an average of 0.20. Out of seventeen markers, only five markers, 195R-1, Pi9-i, Pita3, YL155/YL87 and 40N23r corresponded to three broad spectrum R genes viz. Pi9, Pita/Pita2 and Pi5 were found to be significantly associated with the blast disease with explaining phenotypic variance from 3.5% to 7.7%. The population structure analysis and PCoA divided the entire 80 NRVs into two sub-groups. The outcome of this study would help to formulate strategies for improving rice blast resistance through genetic studies, plant-pathogen interaction, identification of novel R genes, development of new resistant varieties through marker-assisted breeding for improving rice blast resistance in India and worldwide.

  12. Use of molecular markers in identification and characterization of resistance to rice blast in India.

    Science.gov (United States)

    Yadav, Manoj Kumar; S, Aravindan; Ngangkham, Umakanta; Shubudhi, H N; Bag, Manas Kumar; Adak, Totan; Munda, Sushmita; Samantaray, Sanghamitra; Jena, Mayabini

    2017-01-01

    Rice blast disease caused by Magnaporthe oryzae is one of the most destructive disease causing huge losses to rice yield in different parts of the world. Therefore, an attempt has been made to find out the resistance by screening and studying the genetic diversity of eighty released rice varieties by National Rice Research Institute, Cuttack (NRVs) using molecular markers linked to twelve major blast resistance (R) genes viz Pib, Piz, Piz-t, Pik, Pik-p, Pikm Pik-h, Pita/Pita-2, Pi2, Pi9, Pi1 and Pi5. Out of which, nineteen varieties (23.75%) showed resistance, twenty one were moderately resistant (26.25%) while remaining forty varieties (50%) showed susceptible in uniform blast nursery. Rice varieties possessing blast resistance genes varied from four to twelve and the frequencies of the resistance genes ranged from 0 to 100%. The cluster analysis grouped the eighty NRVs into two major clusters at 63% level of genetic similarity coefficient. The PIC value for seventeen markers varied from 0 to 0.37 at an average of 0.20. Out of seventeen markers, only five markers, 195R-1, Pi9-i, Pita3, YL155/YL87 and 40N23r corresponded to three broad spectrum R genes viz. Pi9, Pita/Pita2 and Pi5 were found to be significantly associated with the blast disease with explaining phenotypic variance from 3.5% to 7.7%. The population structure analysis and PCoA divided the entire 80 NRVs into two sub-groups. The outcome of this study would help to formulate strategies for improving rice blast resistance through genetic studies, plant-pathogen interaction, identification of novel R genes, development of new resistant varieties through marker-assisted breeding for improving rice blast resistance in India and worldwide.

  13. Genetic variations in marine natural population - Measurement and utility in resource management and conservation: A review

    Digital Repository Service at National Institute of Oceanography (India)

    Menezes, M.R.; Parulekar, A.H.

    A number of molecular and biochemical tools which can be applied to the identification of species and the detection of genetic variation within species have been developed in recent years. All these methods rely on the ability to distinguish between...

  14. Phylogenetic analysis, genetic diversity and relationships between the recently segregated species of Corynandra and Cleoserrata from the genus Cleome using DNA barcoding and molecular markers.

    Science.gov (United States)

    Tamboli, Asif Shabodin; Patil, Swapnil Mahadeo; Gholave, Avinash Ramchandra; Kadam, Suhas Kishor; Kotibhaskar, Shreya Vijaykumar; Yadav, Shrirang Ramchandra; Govindwar, Sanjay Prabhu

    2016-01-01

    Cleome is the largest genus in the family Cleomaceae and it is known for its various medicinal properties. Recently, some species from the Cleome genus (Cleome viscosa, Cleome chelidonii, Cleome felina and Cleome speciosa) are split into genera Corynandra (Corynandra viscosa, Corynandra chelidonii, Corynandra felina), and Cleoserrata (Cleoserrata speciosa). The objective of this study was to obtain DNA barcodes for these species for their accurate identification and determining phylogenetic relationships. Out of 10 screened barcoding regions, rbcL, matK and ITS1 regions showed higher PCR efficiency and sequencing success. This study added matK, rbcL and ITS1 barcodes for the identification of Corynandra chelidonii, Corynandra felina, Cleome simplicifolia and Cleome aspera species in existing barcode data. Corynandra chelidonii and Corynandra felina species belong to the Corynandra genus, but they are not grouped with the Corynandra viscosa species, however clustered with the Cleome species. Molecular marker analysis showed 100% polymorphism among the studied plant samples. Diversity indices for molecular markers were ranged from He=0.1115-0.1714 and I=0.2268-0.2700, which indicates a significant amount of genetic diversity among studied species. Discrimination of the Cleome and Corynandra species from Cleoserrata speciosa was obtained by two RAPD primers (OPA-4 and RAPD-17) and two ISSR primers (ISSR-1 and ISSR-2). RAPD and ISSR markers are useful for the genetic characterization of these studied species. The present investigation will be helpful to understand the relationships of Cleome lineages with Corynandra and Cleoserrata species. Copyright © 2016 Académie des sciences. Published by Elsevier SAS. All rights reserved.

  15. Human fertility, molecular genetics, and natural selection in modern societies.

    Directory of Open Access Journals (Sweden)

    Felix C Tropf

    Full Text Available Research on genetic influences on human fertility outcomes such as number of children ever born (NEB or the age at first childbirth (AFB has been solely based on twin and family-designs that suffer from problematic assumptions and practical limitations. The current study exploits recent advances in the field of molecular genetics by applying the genomic-relationship-matrix based restricted maximum likelihood (GREML methods to quantify for the first time the extent to which common genetic variants influence the NEB and the AFB of women. Using data from the UK and the Netherlands (N = 6,758, results show significant additive genetic effects on both traits explaining 10% (SE = 5 of the variance in the NEB and 15% (SE = 4 in the AFB. We further find a significant negative genetic correlation between AFB and NEB in the pooled sample of -0.62 (SE = 0.27, p-value = 0.02. This finding implies that individuals with genetic predispositions for an earlier AFB had a reproductive advantage and that natural selection operated not only in historical, but also in contemporary populations. The observed postponement in the AFB across the past century in Europe contrasts with these findings, suggesting an evolutionary override by environmental effects and underscoring that evolutionary predictions in modern human societies are not straight forward. It emphasizes the necessity for an integrative research design from the fields of genetics and social sciences in order to understand and predict fertility outcomes. Finally, our results suggest that we may be able to find genetic variants associated with human fertility when conducting GWAS-meta analyses with sufficient sample size.

  16. Molecular approaches to improvement of Jatropha curcas Linn. as a sustainable energy crop.

    Science.gov (United States)

    Sudhakar Johnson, T; Eswaran, Nalini; Sujatha, M

    2011-09-01

    With the increase in crude oil prices, climate change concerns and limited reserves of fossil fuel, attention has been diverted to alternate renewable energy sources such as biofuel and biomass. Among the potential biofuel crops, Jatropha curcas L, a non-domesticated shrub, has been gaining importance as the most promising oilseed, as it does not compete with the edible oil supplies. Economic relevance of J. curcas for biodiesel production has promoted world-wide prospecting of its germplasm for crop improvement and breeding. However, lack of adequate genetic variation and non-availability of improved varieties limited its prospects of being a successful energy crop. In this review, we present the progress made in molecular breeding approaches with particular reference to tissue culture and genetic transformation, genetic diversity assessment using molecular markers, large-scale transcriptome and proteome studies, identification of candidate genes for trait improvement, whole genome sequencing and the current interest by various public and private sector companies in commercial-scale cultivation, which highlights the revival of Jatropha as a sustainable energy crop. The information generated from molecular markers, transcriptome profiling and whole genome sequencing could accelerate the genetic upgradation of J. curcas through molecular breeding.

  17. Molecular markers in the epidemiology and diagnosis of coccidioidomycosis.

    Science.gov (United States)

    Duarte-Escalante, Esperanza; Frías-De-León, María Guadalupe; Zúñiga, Gerardo; Martínez-Herrera, Erick; Acosta-Altamirano, Gustavo; Reyes-Montes, María Del Rocío

    2014-01-01

    The prevalence of coccidioidomycosis in endemic areas has been observed to increase daily. To understand the causes of the spread of the disease and design strategies for fungal detection in clinical and environmental samples, scientists have resorted to molecular tools that allow fungal detection in a natural environment, reliable identification in clinical cases and the study of biological characteristics, such as reproductive and genetic structure, demographic history and diversification. We conducted a review of the most important molecular markers in the epidemiology of Coccidioides spp. and the diagnosis of coccidioidomycosis. A literature search was performed for scientific publications concerning the application of molecular tools for the epidemiology and diagnosis of coccidioidomycosis. The use of molecular markers in the epidemiological study and diagnosis of coccidioidomycosis has allowed for the typing of Coccidioides spp. isolates, improved understanding of their mode of reproduction, genetic variation and speciation and resulted in the development specific, rapid and sensitive strategies for detecting the fungus in environmental and clinical samples. Molecular markers have revealed genetic variability in Coccidioides spp. This finding influences changes in the epidemiology of coccidioidomycosis, such as the emergence of more virulent or antifungal resistant genotypes. Furthermore, the molecular markers currently used to identify Coccidioides immitis and Coccidioides posadasii are specific and sensitive. However, they must be validated to determine their application in diagnosis. This manuscript is part of the series of works presented at the "V International Workshop: Molecular genetic approaches to the study of human pathogenic fungi" (Oaxaca, Mexico, 2012). Copyright © 2013 Revista Iberoamericana de Micología. Published by Elsevier Espana. All rights reserved.

  18. [Research progress on the cloning of Mendel's gene in pea (Pisum sativum L.) and its application in genetics teaching].

    Science.gov (United States)

    He, Feng-Hua; Zhu, Bi-Yan; Gao, Feng; Li, Shao-Shan; Li, Niang-Hui

    2013-07-01

    One hundred and fifty years ago, Gregor Mendel investigated the segregation of seven traits in pea (Pisum sativum) and established the law of segregation and the law of independent assortment in genetics. After the two laws of genetics were rediscovered in 1900, the seven traits have been extensively investigated in the fields of plant physiology and biochemistry as well as in the cell and molecular levels. Recently, with the development of molecular technology in genetics, four genes for seed shape (R), stem length (Le), cotyledon colour (I), and flower colour (A) have been cloned and sequenced; and another three genes for immature pod colour (Gp), fasciation (Fa) and pod form (V) have been located in the linkage groups, respectively. The identification and cloning of the four Mendel's genes will help deeply understand the basic concept of gene in many respects: like the diversity of gene function, the different origins for gene mutation in molecular level, and the molecular nature of a dominant gene or a recessive gene. In teaching of genetics, the introduction of most recent research advancements of cloning of Mendel's genes to the students and the interpretation of the Mendel's laws in molecular level will help students promote their learning interests in genetics and help students grasp the whole content from classical genetics to molecular genetics and the developmental direction of this subject.

  19. Food control and a citizen science approach for improving teaching of Genetics in universities.

    Science.gov (United States)

    Borrell, Y J; Muñoz-Colmenero, A M; Dopico, E; Miralles, L; Garcia-Vazquez, E

    2016-09-10

    A Citizen Science approach was implemented in the laboratory practices of Genetics at the University of Oviedo, related with the engaging topic of Food Control. Real samples of food products consumed by students at home (students as samplers) were employed as teaching material in three different courses of Genetics during the academic year 2014-2015: Experimental Methods in Food Production (MBTA) (Master level), and Applied Molecular Biology (BMA) and Conservation Genetics and Breeding (COMGE) (Bachelor/Degree level). Molecular genetics based on PCR amplification of DNA markers was employed for species identification of 22 seafood products in COMGE and MBTA, and for detection of genetically modified (GM) maize from nine products in BMA. In total six seafood products incorrectly labeled (27%), and two undeclared GM maize (22%) were found. A post-Laboratory survey was applied for assessing the efficacy of the approach for improving motivation in the Laboratory Practices of Genetics. Results confirmed that students that worked on their own samples from local markets were significantly more motivated and better evaluated their Genetic laboratory practices than control students (χ(2)  = 12.11 p = 0.033). Our results suggest that citizen science approaches could not be only useful for improving teaching of Genetics in universities but also to incorporate students and citizens as active agents in food control. © 2016 by The International Union of Biochemistry and Molecular Biology, 44(5):450-462, 2016. © 2016 The International Union of Biochemistry and Molecular Biology.

  20. Genetic diversity assessment of sesame core collection in China by phenotype and molecular markers and extraction of a mini-core collection

    Directory of Open Access Journals (Sweden)

    Zhang Yanxin

    2012-11-01

    Full Text Available Abstract Background Sesame (Sesamum indicum L. is one of the four major oil crops in China. A sesame core collection (CC was established in China in 2000, but no complete study on its genetic diversity has been carried out at either the phenotypic or molecular level. To provide technical guidance, a theoretical basis for further collection, effective protection, reasonable application, and a complete analysis of sesame genetic resources, a genetic diversity assessment of the sesame CC in China was conducted using phenotypic and molecular data and by extracting a sesame mini-core collection (MC. Results Results from a genetic diversity assessment of sesame CC in China were significantly inconsistent at the phenotypic and molecular levels. A Mantel test revealed the insignificant correlation between phenotype and molecular marker information (r = 0.0043, t = 0.1320, P = 0.5525. The Shannon-Weaver diversity index (I and Nei genetic diversity index (h were higher (I = 0.9537, h = 0.5490 when calculated using phenotypic data from the CC than when using molecular data (I = 0.3467, h = 0.2218. A mini-core collection (MC containing 184 accessions was extracted based on both phenotypic and molecular data, with a low mean difference percentage (MD, 1.64%, low variance difference percentage (VD, 22.58%, large variable rate of coefficient of variance (VR, 114.86%, and large coincidence rate of range (CR, 95.76%. For molecular data, the diversity indices and the polymorphism information content (PIC for the MC were significantly higher than for the CC. Compared to an alternative random sampling strategy, the advantages of capturing genetic diversity and validation by extracting a MC using an advanced maximization strategy were proven. Conclusions This study provides a comprehensive characterization of the phenotypic and molecular genetic diversities of the sesame CC in China. A MC was extracted using both phenotypic and molecular data. Low MD% and VD%, and

  1. Genetic diversity assessment of sesame core collection in China by phenotype and molecular markers and extraction of a mini-core collection

    Science.gov (United States)

    2012-01-01

    Background Sesame (Sesamum indicum L.) is one of the four major oil crops in China. A sesame core collection (CC) was established in China in 2000, but no complete study on its genetic diversity has been carried out at either the phenotypic or molecular level. To provide technical guidance, a theoretical basis for further collection, effective protection, reasonable application, and a complete analysis of sesame genetic resources, a genetic diversity assessment of the sesame CC in China was conducted using phenotypic and molecular data and by extracting a sesame mini-core collection (MC). Results Results from a genetic diversity assessment of sesame CC in China were significantly inconsistent at the phenotypic and molecular levels. A Mantel test revealed the insignificant correlation between phenotype and molecular marker information (r = 0.0043, t = 0.1320, P = 0.5525). The Shannon-Weaver diversity index (I) and Nei genetic diversity index (h) were higher (I = 0.9537, h = 0.5490) when calculated using phenotypic data from the CC than when using molecular data (I = 0.3467, h = 0.2218). A mini-core collection (MC) containing 184 accessions was extracted based on both phenotypic and molecular data, with a low mean difference percentage (MD, 1.64%), low variance difference percentage (VD, 22.58%), large variable rate of coefficient of variance (VR, 114.86%), and large coincidence rate of range (CR, 95.76%). For molecular data, the diversity indices and the polymorphism information content (PIC) for the MC were significantly higher than for the CC. Compared to an alternative random sampling strategy, the advantages of capturing genetic diversity and validation by extracting a MC using an advanced maximization strategy were proven. Conclusions This study provides a comprehensive characterization of the phenotypic and molecular genetic diversities of the sesame CC in China. A MC was extracted using both phenotypic and molecular data. Low MD% and VD%, and large VR% and CR

  2. Chondrosarcoma: With Updates on Molecular Genetics

    Directory of Open Access Journals (Sweden)

    Mi-Jung Kim

    2011-01-01

    Full Text Available Chondrosarcoma (CHS is a malignant cartilage-forming tumor and usually occurs within the medullary canal of long bones and pelvic bones. Based on the morphologic feature alone, a correct diangosis of CHS may be difficult, Therefore, correlation of radiological and clinicopathological features is mandatory in the diagnosis of CHS. The prognosis of CHS is closely related to histologic grading, however, histologic grading may be subjective with high inter-observer variability. In this paper, we present histologic grading system and clinicopathological and radiological findings of conventional CHS. Subtypes of CHSs, such as dedifferentiated, mesenchymal, and clear cell CHSs are also presented. In addition, we introduce updated cytogenetic and molecular genetic findings to expand our understanding of CHS biology. New markers of cell differentiation, proliferation, and cell signaling might offer important therapeutic and prognostic information in near future.

  3. Identification of genetic factors in the etiology of schizophrenia

    International Nuclear Information System (INIS)

    Aguilar Valles, Argel

    2011-01-01

    Schizophrenia is a mental disorder that affects approximately 1% of the worldwide population. It is characterized by psychotic episodes in which individuals have hallucinations or delusions. This disorder also involves a strong element of social dysfunction, lack of motivation and profound cognitive deficits. The causes of this disorder remain largely unknown, but evidence indicates that arises from changes in the development of the central nervous system. Among the identified risk factors for this disorder are several environmental events, including prenatal infections and malnutrition, and complications during childbirth. However, the most important factor seems to be genetics. Despite this, the identification of genes involved in the development of this disorder has emerged as one of the most difficult tasks facing modern genetics and genomics. The development of techniques for studying the human genome has allowed a more systematic approach to determine variations in the genome sequence and structure that area casually involved in schizophrenia. These studies suggest the participation of hundreds of genes in schizophrenia development. In addition, it has been suggested that many of these genes are involved in various mental illnesses that today are diagnosed as separate entities, but whose biological substrate may be shared.

  4. Molecular profiling of cancer--the future of personalized cancer medicine: a primer on cancer biology and the tools necessary to bring molecular testing to the clinic.

    Science.gov (United States)

    Stricker, Thomas; Catenacci, Daniel V T; Seiwert, Tanguy Y

    2011-04-01

    Cancers arise as a result of an accumulation of genetic aberrations that are either acquired or inborn. Virtually every cancer has its unique set of molecular changes. Technologies have been developed to study cancers and derive molecular characteristics that increasingly have implications for clinical care. Indeed, the identification of key genetic aberrations (molecular drivers) may ultimately translate into dramatic benefit for patients through the development of highly targeted therapies. With the increasing availability of newer, more powerful, and cheaper technologies such as multiplex mutational screening, next generation sequencing, array-based approaches that can determine gene copy numbers, methylation, expression, and others, as well as more sophisticated interpretation of high-throughput molecular information using bioinformatics tools like signatures and predictive algorithms, cancers will routinely be characterized in the near future. This review examines the background information and technologies that clinicians and physician-scientists will need to interpret in order to develop better, personalized treatment strategies. Copyright © 2011 Elsevier Inc. All rights reserved.

  5. Isolation and Molecular Identification of Some Blue-Green Algae (Cyanobacteria from Freshwater Sites in Tokat Province of Turkey

    Directory of Open Access Journals (Sweden)

    Tunay Karan

    2017-11-01

    Full Text Available Collected blue-green algae (cyanobacteria from freshwater sites throughout Tokat province and its outlying areas were isolated in laboratory environment and their morphological systematics were determined and also their species identifications were studied by molecular methods. Seven different species of blue-green algae collected from seven different sites were isolated by purifying in cultures in laboratory environment. DNA extractions were made from isolated cells and extracted DNAs were amplified by using PCR. Cyanobacteria specific primers were used to amplify 16S rRNA and phycocyanine gene regions using PCR. Phylogenetic identification of species were conducted by evaluation of obtained sequence analysis data by using computer software. According to species identification by sequence analysis, it was seen that molecular data supports morphological systematics.

  6. Biochemical and Molecular Characterization of Plant-Parasitic Nematodes

    Directory of Open Access Journals (Sweden)

    I.M. de O. Abrantes

    2004-08-01

    Full Text Available Nematologists need correct species identification to carry out research, teaching, extension and other activities. Therefore, nematode taxonomy must be pursued diligently at all levels. The identification of plant-parasitic nematodes is not always easy and that of some species is especially difficult. Most of the information that nematologists use when characterizing and identifying specimens is based on morphological and morphometrical characters. Although these characters are of primary importance, in the last three decades they have been supplemented by biochemical/ molecular characters. Biochemical approaches include the separation of proteins (general proteins and isozymes by one-dimensional gel electrophoresis, isoelectric focusing, two-dimensional gel electrophoresis, and sodium dodecyl sulphate-capillary gel electrophoresis. Serology has also been found effective in the identification and quantification of nematodes, monoclonal antibodies being a more useful immunological tool than polyclonal antibodies. Identification based on the direct examination of DNA is potentially a more powerful method to characterize inter- and intra-specific variability. The development of techniques such as the polymerase chain reaction, restriction fragment length polymorphism, randomly amplified polymorphic DNA, and amplified fragment length polymorphism has increased the accuracy and speed of nematode characterization/identification. Progress continues to be made and more and more nematologists are using molecular techniques for diagnostic purposes and to assess genetic variation.

  7. [Genetic polymorphism of flax Linum usitatissimum based on use of molecular cytogenetic markers].

    Science.gov (United States)

    Rachinskaia, O A; Lemesh, V A; Muravenko, O V; Iurkevich, O Iu; Guzenko, E V; Bol'sheva, N L; Bogdanova, M V; Samatadze, T E; Popov, K V; Malyshev, S V; Shostak, N G; Heller, K; Khotyleva, L V; Zelenin, A V

    2011-01-01

    Using a set of approaches based on the use of molecular cytogenetic markers (DAPI/C-banding, estimation of the total area of DAPI-positive regions in prophase nuclei, FISH with 26S and 5S rDNA probes) and the microsatellite (SSR-PCR) assay, we studied genomic polymorphism in 15 flax (Linum usitatissimum L.) varieties from different geographic regions belonging to three directions of selection (oil, fiber, and intermediate flaxes) and in the k-37 x Viking hybrid. All individual chromosomes have been identified in the karyotypes of these varieties on the basis of the patterns of differential DAPI/C-banding and the distribution of 26S and 5S rDNA, and idiograms of the chromosomes have been generated. Unlike the oil flax varieties, the chromosomes in the karyotypes of the fiber flax varieties have, as a rule, pericentromeric and telomeric DAPI-positive bands of smaller size, but contain larger intercalary regions. Two chromosomal rearrangements (chromosome 3 inversions) were discovered in the variety Luna and in the k-37 x Viking hybrid. In both these forms, no colocalization of 26S rDNA and 5S rDNA on the satellite chromosome was detected. The SSR assay with the use of 20 polymorphic pairs of primers revealed 22 polymorphic loci. Based on the SSR data, we analyzed genetic similarity of the flax forms studied and constructed a genetic similarity dendrogram. The genotypes studied here form three clusters. The oil varieties comprise an independent cluster. The genetically related fiber flax varieties Vita and Luna, as well as the landrace Lipinska XIII belonging to the intermediate type, proved to be closer to the oil varieties than the remaining fiber flax varieties. The results of the molecular chromosomal analysis in the fiber and oil flaxes confirm their very close genetic similarity. In spite of this, the combined use of the chromosomal and molecular markers has opened up unique possibilities for describing the genotypes of flax varieties and creating their genetic

  8. Molecular genetic analysis of a cattle population to reconstitute the extinct Algarvia breed

    Directory of Open Access Journals (Sweden)

    Rangel-Figueiredo Teresa

    2010-06-01

    Full Text Available Abstract Background Decisions to initiate conservation programmes need to account for extant variability, diversity loss and cultural and economic aspects. Molecular markers were used to investigate if putative Algarvia animals could be identified for use as progenitors in a breeding programme to recover this nearly extinct breed. Methods 46 individuals phenotypically representative of Algarvia cattle were genotyped for 27 microsatellite loci and compared with 11 Portuguese autochthonous and three imported breeds. Genetic distances and factorial correspondence analyses (FCA were performed to investigate the relationship among Algarvia and related breeds. Assignment tests were done to identify representative individuals of the breed. Y chromosome and mtDNA analyses were used to further characterize Algarvia animals. Gene- and allelic-based conservation analyses were used to determine breed contributions to overall genetic diversity. Results Genetic distance and FCA results confirmed the close relationship between Algarvia and southern Portuguese breeds. Assignment tests without breed information classified 17 Algarvia animals in this cluster with a high probability (q > 0.95. With breed information, 30 cows and three bulls were identified (q > 0.95 that could be used to reconstitute the Algarvia breed. Molecular and morphological results were concordant. These animals showed intermediate levels of genetic diversity (MNA = 6.0 ± 1.6, Rt = 5.7 ± 1.4, Ho = 0.63 ± 0.19 and He = 0.69 ± 0.10 relative to other Portuguese breeds. Evidence of inbreeding was also detected (Fis = 0.083, P st = 0.028, P > 0.05. Algarvia cattle provide an intermediate contribution (CB = 6.18, CW = -0.06 and D1 = 0.50 to the overall gene diversity of Portuguese cattle. Algarvia and seven other autochthonous breeds made no contribution to the overall allelic diversity. Conclusions Molecular analyses complemented previous morphological findings to identify 33 animals that

  9. A Molecular Genetic Lab to Generate Inclusive and Exclusive Forensic Evidence: Two Suspects, a Victim, and a Bloodstained T-Shirt

    Science.gov (United States)

    Smit, Julie; Heath, Daniel D.; Walter, Ryan P.

    2014-01-01

    Molecular genetic laboratory exercises can be ineffective due the student's lack of connection to the complex and sequential protocols. In this inquiry-based molecular genetic laboratory exercise, we harness students' fascination with human forensics and provide a real-life scenario using biomolecular techniques to identify "whose…

  10. Studying Human Disease Genes in "Caenorhabditis Elegans": A Molecular Genetics Laboratory Project

    Science.gov (United States)

    Cox-Paulson, Elisabeth A.; Grana, Theresa M.; Harris, Michelle A.; Batzli, Janet M.

    2012-01-01

    Scientists routinely integrate information from various channels to explore topics under study. We designed a 4-wk undergraduate laboratory module that used a multifaceted approach to study a question in molecular genetics. Specifically, students investigated whether "Caenorhabditis elegans" can be a useful model system for studying genes…

  11. Strategy for identification & characterization of Bartonella henselae with conventional & molecular methods

    Directory of Open Access Journals (Sweden)

    Kavita Diddi

    2013-01-01

    Full Text Available Background & objectives: Bartonella henselae is a fastidious gram-negative bacterium usually causing self limiting infections in immunocompetent individuals but often causes potentially life threatening infection, such as bacillary angiomatosis in immunocompromised patients. Both diagnosis of infections and research into molecular mechanisms of pathogenesis have been hindered by lack of appropriate and reliable diagnostic techniques. We undertook this study to standardize methods to characterize B. henselae in clinical samples to diagnose Bartonella infection correctly. Methods: B. henselae ATCC 49882 strain was procured from American type culture collection, USA. This strain was revived and maintained in the laboratory, and identification and characterization of this strain was done by conventional and molecular techniques, which included culture on various media, staining by different methods including electron microscopy, biochemical analysis by conventional methods and API, polymerase chain reaction (PCR for amplification of citrate synthase gene followed by restriction fragment length polymorphism (RFLP. Results: This organism was biochemically inert due to slow growth and generated unique identification code with API. The amplification of the citrate-synthase gene with primers yielded a 381 bp product followed by specific RFLP profile for B. henselae. Interpretation & conclusions: Bartonella is fastidious and fragile organism and should be handled carefully. Extra effort and careful observation are required to isolate and characterize this organism.

  12. Genetic basis of arrhythmogenic cardiomyopathy.

    Science.gov (United States)

    Karmouch, Jennifer; Protonotarios, Alexandros; Syrris, Petros

    2018-05-01

    To date 16 genes have been associated with arrhythmogenic cardiomyopathy (ACM). Mutations in these genes can lead to a broad spectrum of phenotypic expression ranging from disease affecting predominantly the right or left ventricle, to biventricular subtypes. Understanding the genetic causes of ACM is important in diagnosis and management of the disorder. This review summarizes recent advances in molecular genetics and discusses the application of next-generation sequencing technology in genetic testing in ACM. Use of next-generation sequencing methods has resulted in the identification of novel causative variants and genes for ACM. The involvement of filamin C in ACM demonstrates the genetic overlap between ACM and other types of cardiomyopathy. Putative pathogenic variants have been detected in cadherin 2 gene, a protein involved in cell adhesion. Large genomic rearrangements in desmosome genes have been systematically investigated in a cohort of ACM patients. Recent studies have identified novel causes of ACM providing new insights into the genetic spectrum of the disease and highlighting an overlapping phenotype between ACM and dilated cardiomyopathy. Next-generation sequencing is a useful tool for research and genetic diagnostic screening but interpretation of identified sequence variants requires caution and should be performed in specialized centres.

  13. Molecular and genetic aspects of odontogenic tumors: a review.

    Science.gov (United States)

    Garg, Kavita; Chandra, Shaleen; Raj, Vineet; Fareed, Wamiq; Zafar, Muhammad

    2015-06-01

    Odontogenic tumors contain a heterogeneous collection of lesions that are categorized from hamartomas to benign and malignant neoplasms of inconstant aggressiveness. Odontogenic tumors are usually extraordinary with assessed frequency of short of 0.5 cases/100,000 population for every year. The lesions such as odontogenic tumors are inferred from the components of the tooth-structuring contraption. They are discovered solely inside the maxillary and mandibular bones. This audit speaks to experiences and cooperation of the molecular and genetic variations connected to the development and movement of odontogenic tumors which incorporate oncogenes, tumor-silencer genes, APC gene, retinoblastoma genes, DNA repair genes, onco-viruses, development components, telomerase, cell cycle controllers, apoptosis-related elements, and regulators/conttrollers of tooth development. The reasonable and better understanding of the molecular components may prompt new ideas for their detection and administrating a better prognosis of odontogenic tumors.

  14. Testicular germ cell tumors: Molecular genetic and clinicomorphological aspects

    Directory of Open Access Journals (Sweden)

    M. V. Nemtsova

    2015-03-01

    Full Text Available Testicular tumors are the most common form of solid cancer in young men. According to the 2004 WHO classification, testicular germ cell tumors (TGCT may present with different histological types. Embryonic cells of varying grade may be a source of TGCT and the occurrence of this type of tumors is directly related to the formation of a pool of male sex cells and gametogenesis. The paper gives information on mo- lecular stages for the process of formation of male sex cells in health, as well as ways of their impairments leading to TGCT. An investigation of the profiles of gene expression and the spectrum of molecular damages revealed genes responsible for a predisposition to the sporadic and hereditary forms of TGCT. The paper presents the current molecular genetic and clinicomorphological characteristics of TGCT. 

  15. Candidate gene molecular markers as tools for analyzing genetic susceptibility to morbillivirus infection in stranded Cetaceans

    Czech Academy of Sciences Publication Activity Database

    Stejskalová, K.; Bayerova, Z.; Futas, J.; Hrazdilová, K.; Klumplerova, M.; Oppelt, J.; Šplíchalová, P.; Di Guardo, G.; Mazzariol, S.; Di Francesco, C. E.; Di Francesco, G.; Terracciano, G.; Paiu, R.M.; Ursache, T. D.; Modrý, David; Horin, P.

    2017-01-01

    Roč. 90, č. 6 (2017), s. 343-353 ISSN 2059-2302 Institutional support: RVO:60077344 Keywords : Cetacea * haplotype * immunity * innate * mhc-dqb * Phocoena phocoena * polymorphism * single nucleotide * Stenella coeruleoalba Subject RIV: EB - Genetics ; Molecular Biology OBOR OECD: Biochemistry and molecular biology

  16. Researcher responsibilities and genetic counseling for pure-bred dog populations.

    Science.gov (United States)

    Bell, Jerold S

    2011-08-01

    Breeders of dogs have ethical responsibilities regarding the testing and management of genetic disease. Molecular genetics researchers have their own responsibilities, highlighted in this article. Laboratories offering commercial genetic testing should have proper sample identification and quality control, official test result certificates, clear explanations of test results and reasonably priced testing fees. Providing test results to a publicly-accessible genetic health registry allows breeders and the public to search for health-tested parents to reduce the risk of producing or purchasing affected offspring. Counseling on the testing and elimination of defective genes must consider the effects of genetic selection on the population. Recommendations to breed quality carriers to normal-testing dogs and replacing them with quality normal-testing offspring will help to preserve breeding lines and breed genetic diversity. Copyright © 2011 Elsevier Ltd. All rights reserved.

  17. Identification of control targets in Boolean molecular network models via computational algebra.

    Science.gov (United States)

    Murrugarra, David; Veliz-Cuba, Alan; Aguilar, Boris; Laubenbacher, Reinhard

    2016-09-23

    Many problems in biomedicine and other areas of the life sciences can be characterized as control problems, with the goal of finding strategies to change a disease or otherwise undesirable state of a biological system into another, more desirable, state through an intervention, such as a drug or other therapeutic treatment. The identification of such strategies is typically based on a mathematical model of the process to be altered through targeted control inputs. This paper focuses on processes at the molecular level that determine the state of an individual cell, involving signaling or gene regulation. The mathematical model type considered is that of Boolean networks. The potential control targets can be represented by a set of nodes and edges that can be manipulated to produce a desired effect on the system. This paper presents a method for the identification of potential intervention targets in Boolean molecular network models using algebraic techniques. The approach exploits an algebraic representation of Boolean networks to encode the control candidates in the network wiring diagram as the solutions of a system of polynomials equations, and then uses computational algebra techniques to find such controllers. The control methods in this paper are validated through the identification of combinatorial interventions in the signaling pathways of previously reported control targets in two well studied systems, a p53-mdm2 network and a blood T cell lymphocyte granular leukemia survival signaling network. Supplementary data is available online and our code in Macaulay2 and Matlab are available via http://www.ms.uky.edu/~dmu228/ControlAlg . This paper presents a novel method for the identification of intervention targets in Boolean network models. The results in this paper show that the proposed methods are useful and efficient for moderately large networks.

  18. Genetic diversity analyses of Lasiodiplodia theobromae on Morus alba and Agave sisalana based on RAPD and ISSR molecular markers

    Directory of Open Access Journals (Sweden)

    Hong-hui Xie

    2016-10-01

    Full Text Available Genetic diversity of 23 Lasiodiplodia theobromae isolates on Morus alba and 6 isolates on Agave sisalana in Guangxi province, China, was studied by using random amplified polymorphic DNA and inter-simple sequence repeat molecular markers. Results of two molecular markers showed that the average percentage of polymorphic loci of all isolates was more than 93%. Both dendrograms of two molecular markers showed obvious relationship between groups and the geographical locations where those strains were collected, among which, the 23 isolates on M. alba were divided into 4 populations and the 6 isolates on A. sisalana were separated as a independent population. The average genetic identity and genetic distance of 5 populations were 0.7215, 0.3284 and 0.7915, 0.2347, respectively, which indicated that the genetic identity was high and the genetic distance was short in the 5 populations. Average value of the gene diversity index (H and the Shannon’s information index (I of 29 isolates were significantly higher than 5 populations which showed that genetic diversity of those isolates was richer than the populations and the degree of genetic differentiation of the isolates was higher. The Gst and Nm of 29 isolates were 0.4411, 0.6335 and 0.4756, 0.5513, respectively, which showed that the genetic diversity was rich in those isolates.

  19. DNA Re-EvolutioN: a game for learning molecular genetics and evolution.

    Science.gov (United States)

    Miralles, Laura; Moran, Paloma; Dopico, Eduardo; Garcia-Vazquez, Eva

    2013-01-01

    Evolution is a main concept in biology, but not many students understand how it works. In this article we introduce the game DNA Re-EvolutioN as an active learning tool that uses genetic concepts (DNA structure, transcription and translation, mutations, natural selection, etc.) as playing rules. Students will learn about molecular evolution while playing a game that mixes up theory and entertainment. The game can be easily adapted to different educational levels. The main goal of this play is to arrive at the end of the game with the longest protein. Students play with pawns and dices, a board containing hypothetical events (mutations, selection) that happen to molecules, "Evolution cards" with indications for DNA mutations, prototypes of a DNA and a mRNA chain with colored "nucleotides" (plasticine balls), and small pieces simulating t-RNA with aminoacids that will serve to construct a "protein" based on the DNA chain. Students will understand how changes in DNA affect the final protein product and may be subjected to positive or negative selection, using a didactic tool funnier than classical theory lectures and easier than molecular laboratory experiments: a flexible and feasible game to learn and enjoy molecular evolution at no-cost. The game was tested by majors and non-majors in genetics from 13 different countries and evaluated with pre- and post-tests obtaining very positive results. © 2013 by The International Union of Biochemistry and Molecular Biology.

  20. Gender identification of Grasshopper Sparrows comparing behavioral, morphological, and molecular techniques

    Science.gov (United States)

    Ammer, F.K.; Wood, P.B.; McPherson, R.J.

    2008-01-01

    Correct gender identification in monomorphic species is often difficult especially if males and females do not display obvious behavioral and breeding differences. We compared gender specific morphology and behavior with recently developed DNA techniques for gender identification in the monomorphic Grasshopper Sparrow (Ammodramus savannarum). Gender was ascertained with DNA in 213 individuals using the 2550F/2718R primer set and 3% agarose gel electrophoresis. Field observations using behavior and breeding characteristics to identify gender matched DNA analyses with 100% accuracy for adult males and females. Gender was identified with DNA for all captured juveniles that did not display gender specific traits or behaviors in the field. The molecular techniques used offered a high level of accuracy and may be useful in studies of dispersal mechanisms and winter assemblage composition in monomorphic species.

  1. Applications of molecular markers in the discrimination of Panax species and Korean ginseng cultivars (Panax ginseng

    Directory of Open Access Journals (Sweden)

    Ick Hyun Jo

    2017-10-01

    Full Text Available The development of molecular markers is one of the most useful methods for molecular breeding and marker-based molecular associated selections. Even though there is less information on the reference genome, molecular markers are indispensable tools for determination of genetic variation and identification of species with high levels of accuracy and reproducibility. The demand for molecular approaches for marker-based breeding and genetic discriminations in Panax species has greatly increased in recent times and has been successfully applied for various purposes. However, owing to the existence of diverse molecular techniques and differences in their principles and applications, there should be careful consideration while selecting appropriate marker types. In this review, we outline the recent status of different molecular marker applications in ginseng research and industrial fields. In addition, we discuss the basic principles, requirements, and advantages and disadvantages of the most widely used molecular markers, including restriction fragment length polymorphism, random amplified polymorphic DNA, sequence tag sites, simple sequence repeats, and single nucleotide polymorphisms.

  2. Applications of molecular markers in the discrimination of Panax species and Korean ginseng cultivars (Panax ginseng).

    Science.gov (United States)

    Jo, Ick Hyun; Kim, Young Chang; Kim, Dong Hwi; Kim, Kee Hong; Hyun, Tae Kyung; Ryu, Hojin; Bang, Kyong Hwan

    2017-10-01

    The development of molecular markers is one of the most useful methods for molecular breeding and marker-based molecular associated selections. Even though there is less information on the reference genome, molecular markers are indispensable tools for determination of genetic variation and identification of species with high levels of accuracy and reproducibility. The demand for molecular approaches for marker-based breeding and genetic discriminations in Panax species has greatly increased in recent times and has been successfully applied for various purposes. However, owing to the existence of diverse molecular techniques and differences in their principles and applications, there should be careful consideration while selecting appropriate marker types. In this review, we outline the recent status of different molecular marker applications in ginseng research and industrial fields. In addition, we discuss the basic principles, requirements, and advantages and disadvantages of the most widely used molecular markers, including restriction fragment length polymorphism, random amplified polymorphic DNA, sequence tag sites, simple sequence repeats, and single nucleotide polymorphisms.

  3. Variações genéticas em populações de Eucalyptus spp. detectadas por meio de marcadores moleculares Genetic variations in Eucalyptus spp. genotypes detected by means of molecular markers

    Directory of Open Access Journals (Sweden)

    Ronaldo Pereira Caixeta

    2003-06-01

    can contribute significantly to a basic understanding of the crop and character investigated and help generate and develop improved products. The objective of this work is to utilize RAPD markers to detect and maximize the genetic variability in eucalyptus genotypes, identifying crossings favorable to a forest breeding program, aiming at multiple use. A total of 44 natural hybrid genotypes of the Eucalyptus genus, planted in northwestern Minas Gerais was analyzed. The RAPD molecular markers presented efficient discriminating power among the 44 evaluated genotypes, determining an average genetic distance among them of 54% and genetic divergence ranging from 24 to 73%. This shows that there is a wide genetic basis among the individuals analyzed, allowing a manipulation of this material in breeding programs. The genetic distance among the genotypes 5 and 9; 9 and 10; 9 and 19; 9 and 25; 9 and 33; 9 and 35; 9 and 36; 9 and 44; 10 and 33; 12 and 19; 12 and 33; 12 and 39 proved to be either greater or equal to 70%. Grouping analysis established by the UPGMA method, and the cut of 80% of the total genetic distance as a criterion allowed the formation of nine distinct groups. These groups presented an average genetic divergence superior to 60%. The highest mean of distance occurred between group I and the remaining groups, with 67%. The evaluation by RAPD molecular markers provided an indirect identification of the genetic variation of the genotypes and, in this sense, new crosses for the production of specific hybrids can be generated, increasing the genetic divergence and yield of wood products of superior quality for multiple uses in forest breeding programs.

  4. Naturally occurring genetic variability in expression of Gsta4 is associated with differential survival of axotomized rat motoneurons

    DEFF Research Database (Denmark)

    Mikael, Ström; Al Nimer, Faiez; Lindblom, Rickard

    2012-01-01

    A large number of molecular pathways have been implicated in the degeneration of axotomized motoneurons. We previously have demonstrated substantial differences in the survival rate of axotomized motoneurons across different rat strains. Identification of genetic differences underlying such natur...

  5. Methods in Molecular Biology: Germline Stem Cells | Center for Cancer Research

    Science.gov (United States)

    The protocols in Germline Stem Cells are intended to present selected genetic, molecular, and cellular techniques used in germline stem cell research. The book is divided into two parts. Part I covers germline stem cell identification and regulation in model organisms. Part II covers current techniques used in in vitro culture and applications of germline stem cells.

  6. Conventional and genetic talent identification in sports: will recent developments trace talent?

    Science.gov (United States)

    Breitbach, Sarah; Tug, Suzan; Simon, Perikles

    2014-11-01

    The purpose of talent identification (TI) is the earliest possible selection of auspicious athletes with the goal of systematically maximizing their potential. The literature proposes excellent reviews on various facets of talent research on different scientific issues such as sports sciences or genetics. However, the approaches of conventional and genetic testing have only been discussed separately by and for the respective groups of interest. In this article, we combine the discoveries of these disciplines into a single review to provide a comprehensive overview and elucidate the prevailing limitations. Fundamental problems in TI reside in the difficulties of defining the construct ‘talent’ or groups of different performance levels that represent the target variable of testing. Conventional and genetic testing reveal a number of methodological and technical limitations, and parallels are summarised in terms of the test designs, the point in time of testing, psychological skills or traits and unknown interactions between different variables. In conclusion, many deficiencies in the current talent research have gained attention. Alternative solutions include the talent development approach, while genetic testing is re-emphasised as a tool for risk stratification in sport participation. Future research needs to clearly define the group of interest and comprehensively implement all methodological improvement suggestions.

  7. Molecular techniques for the identification and detection of microorganisms relevant for the food industry

    NARCIS (Netherlands)

    Klijn, N.

    1996-01-01

    The research described in this thesis concerns the development and application in food microbiology of molecular identification and detection techniques based on 16S rRNA sequences. The technologies developed were applied to study the microbial ecology of two groups of bacteria, namely

  8. Identification of genetically diverse genotypes for photoperiod insensitivity in soybean using RAPD markers.

    Science.gov (United States)

    Singh, R K; Bhatia, V S; Yadav, Sanjeev; Athale, Rashmi; Lakshmi, N; Guruprasad, K N; Chauhan, G S

    2008-10-01

    Most of the Indian soybean varieties were found to be highly sensitive to photoperiod, which limits their cultivation in only localized area. Identification of genetically diverse source of photoperiod insensitive would help to broaden the genetic base for this trait. Present study was undertaken with RAPD markers for genetic diversity estimation in 44 accessions of soybean differing in response to photoperiod sensitivity. The selected twenty-five RAPD primers produced a total of 199 amplicons, which generated 89.9 % polymorphism. The number of amplification products ranged from 2 to 13 for different primers. The polymorphism information content ranged from 0.0 for monomorphic loci to 0.5 with an average of 0.289. Genetic diversity between pairs of genotypes was 37.7% with a range of 3.9 to 71.6%. UPGMA cluster analysis placed all the accessions of soybean into four major clusters. No discernable geographical patterns were observed in clustering however; the smaller groups corresponded well with pedigree. Mantel's test (r = 0.915) indicates very good fit for clustering pattern. Two genotypes, MACS 330 and 111/2/1939 made a very divergent group from other accessions of soybean and highly photoperiod insensitive that may be potential source for broadening the genetic base of soybean for this trait.

  9. Autism spectrum disorders: an updated guide for genetic counseling.

    Science.gov (United States)

    Griesi-Oliveira, Karina; Sertié, Andréa Laurato

    2017-01-01

    Autism spectrum disorder is a complex and genetically heterogeneous disorder, which has hampered the identification of the etiological factors in each patient and, consequently, the genetic counseling for families at risk. However, in the last decades, the remarkable advances in the knowledge of genetic aspects of autism based on genetic and molecular research, as well as the development of new molecular diagnostic tools, have substantially changed this scenario. Nowadays, it is estimated that using the currently available molecular tests, a potential underlying genetic cause can be identified in nearly 25% of cases. Combined with clinical assessment, prenatal history evaluation and investigation of other physiological aspects, an etiological explanation for the disease can be found for approximately 30 to 40% of patients. Therefore, in view of the current knowledge about the genetic architecture of autism spectrum disorder, which has contributed for a more precise genetic counseling, and of the potential benefits that an etiological investigation can bring to patients and families, molecular genetic investigation has become increasingly important. Here, we discuss the current view of the genetic architecture of autism spectrum disorder, and list the main associated genetic alterations, the available molecular tests and the key aspects for the genetic counseling of these families. RESUMO O transtorno do espectro autista é um distúrbio complexo e geneticamente heterogêneo, o que sempre dificultou a identificação de sua etiologia em cada paciente em particular e, por consequência, o aconselhamento genético das famílias. Porém, nas últimas décadas, o acúmulo crescente de conhecimento oriundo das pesquisas sobre os aspectos genéticos e moleculares desta doença, assim como o desenvolvimento de novas ferramentas de diagnóstico molecular, tem mudado este cenário de forma substancial. Atualmente, estima-se que, por meio de testes moleculares, é poss

  10. Molecular analysis of single oocyst of Eimeria by whole genome amplification (WGA) based nested PCR.

    Science.gov (United States)

    Wang, Yunzhou; Tao, Geru; Cui, Yujuan; Lv, Qiyao; Xie, Li; Li, Yuan; Suo, Xun; Qin, Yinghe; Xiao, Lihua; Liu, Xianyong

    2014-09-01

    PCR-based molecular tools are widely used for the identification and characterization of protozoa. Here we report the molecular analysis of Eimeria species using combined methods of whole genome amplification (WGA) and nested PCR. Single oocyst of Eimeria stiedai or Eimeriamedia was directly used for random amplification of the genomic DNA with either primer extension preamplification (PEP) or multiple displacement amplification (MDA), and then the WGA product was used as template in nested PCR with species-specific primers for ITS-1, 18S rDNA and 23S rDNA of E. stiedai and E. media. WGA-based PCR was successful for the amplification of these genes from single oocyst. For the species identification of single oocyst isolated from mixed E. stiedai or E. media, the results from WGA-based PCR were exactly in accordance with those from morphological identification, suggesting the availability of this method in molecular analysis of eimerian parasites at the single oocyst level. WGA-based PCR method can also be applied for the identification and genetic characterization of other protists. Copyright © 2014 Elsevier Inc. All rights reserved.

  11. MALDI-TOF MS enables the rapid identification of the major molecular types within the Cryptococcus neoformans/C. gattii species complex.

    Directory of Open Access Journals (Sweden)

    Carolina Firacative

    Full Text Available BACKGROUND: The Cryptococcus neoformans/C. gattii species complex comprises two sibling species that are divided into eight major molecular types, C. neoformans VNI to VNIV and C. gattii VGI to VGIV. These genotypes differ in host range, epidemiology, virulence, antifungal susceptibility and geographic distribution. The currently used phenotypic and molecular identification methods for the species/molecular types are time consuming and expensive. As Matrix-Assisted Laser Desorption Ionization-Time-of-Flight Mass Spectrometry (MALDI-TOF MS offers an effective alternative for the rapid identification of microorganisms, the objective of this study was to examine its potential for the identification of C. neoformans and C. gattii strains at the intra- and inter-species level. METHODOLOGY: Protein extracts obtained via the formic acid extraction method of 164 C. neoformans/C. gattii isolates, including four inter-species hybrids, were studied. RESULTS: The obtained mass spectra correctly identified 100% of all studied isolates, grouped each isolate according to the currently recognized species, C. neoformans and C. gattii, and detected potential hybrids. In addition, all isolates were clearly separated according to their major molecular type, generating greater spectral differences among the C. neoformans molecular types than the C. gattii molecular types, most likely reflecting a closer phylogenetic relationship between the latter. The number of colonies used and the incubation length did not affect the results. No spectra were obtained from intact yeast cells. An extended validated spectral library containing spectra of all eight major molecular types was established. CONCLUSIONS: MALDI-TOF MS is a rapid identification tool for the correct recognition of the two currently recognized human pathogenic Cryptococcus species and offers a simple method for the separation of the eight major molecular types and the detection of hybrid strains within this

  12. Joint analysis of phenotypic and molecular diversity provides new insights on the genetic variability of the Brazilian physic nut germplasm bank.

    Science.gov (United States)

    Alves, Alexandre Alonso; Bhering, Leonardo Lopes; Rosado, Tatiana Barbosa; Laviola, Bruno Galvêas; Formighieri, Eduardo Fernandes; Cruz, Cosme Damião

    2013-09-01

    The genetic variability of the Brazilian physic nut (Jatropha curcas) germplasm bank (117 accessions) was assessed using a combination of phenotypic and molecular data. The joint dissimilarity matrix showed moderate correlation with the original matrices of phenotypic and molecular data. However, the correlation between the phenotypic dissimilarity matrix and the genotypic dissimilarity matrix was low. This finding indicated that molecular markers (RAPD and SSR) did not adequately sample the genomic regions that were relevant for phenotypic differentiation of the accessions. The dissimilarity values of the joint dissimilarity matrix were used to measure phenotypic + molecular diversity. This diversity varied from 0 to 1.29 among the 117 accessions, with an average dissimilarity among genotypes of 0.51. Joint analysis of phenotypic and molecular diversity indicated that the genetic diversity of the physic nut germplasm was 156% and 64% higher than the diversity estimated from phenotypic and molecular data, respectively. These results show that Jatropha genetic variability in Brazil is not as limited as previously thought.

  13. The Molecular Basis of Evolution and Disease: A Cold War Alliance.

    Science.gov (United States)

    Suárez-Díaz, Edna

    2017-03-28

    This paper extends previous arguments against the assumption that the study of variation at the molecular level was instigated with a view to solving an internal conflict between the balance and classical schools of population genetics. It does so by focusing on the intersection of basic research in protein chemistry and the molecular approach to disease with the enactment of global health campaigns during the Cold War period. The paper connects advances in research on protein structure and function as reflected in Christian Anfinsen's The molecular basis of evolution, with a political reading of Emilé Zuckerkandl and Linus Pauling's identification of molecular disease and evolution. Beyond atomic fallout, these advances constituted a rationale for the promotion of genetic surveys of human populations in the Third World, in connection with international health programs. Light is shed not only on the experimental roots of the molecular challenge but on the broader geopolitical context where the rising role of biomedicine and public health (particularly the malaria eradication campaigns) had an impact on evolutionary biology.

  14. Early Prediction of Sepsis Incidence in Critically Ill Patients Using Specific Genetic Polymorphisms.

    Science.gov (United States)

    David, Vlad Laurentiu; Ercisli, Muhammed Furkan; Rogobete, Alexandru Florin; Boia, Eugen S; Horhat, Razvan; Nitu, Razvan; Diaconu, Mircea M; Pirtea, Laurentiu; Ciuca, Ioana; Horhat, Delia; Horhat, Florin George; Licker, Monica; Popovici, Sonia Elena; Tanasescu, Sonia; Tataru, Calin

    2017-06-01

    Several diagnostic methods for the evaluation and monitoring were used to find out the pro-inflammatory status, as well as incidence of sepsis in critically ill patients. One such recent method is based on investigating the genetic polymorphisms and determining the molecular and genetic links between them, as well as other sepsis-associated pathophysiologies. Identification of genetic polymorphisms in critical patients with sepsis can become a revolutionary method for evaluating and monitoring these patients. Similarly, the complications, as well as the high costs associated with the management of patients with sepsis, can be significantly reduced by early initiation of intensive care.

  15. Molecular identification of Malaysian Chrysomya megacephala (Fabricius) and Chrysomya rufifacies (Macquart) using life stage specific mitochondrial DNA.

    Science.gov (United States)

    Kavitha, R; Tan, T C; Lee, H L; Nazni, W A; Sofian, A M

    2013-06-01

    DNA identification of blow fly species can be a very useful tool in forensic entomology. One of the potential benefits that mitochondrial DNA (mtDNA) has offered in the field of forensic entomology is species determination. Conventional identification methods have limitations for sibling and closely related species of blow fly and stage and quality of the specimen used. This could be overcome by DNA-based identification methods using mitochondrial DNA which does not demand intact or undamaged specimens. Mitochondrial DNA is usually isolated from whole blow fly and legs. Alternate sources for mitochondrial DNA isolation namely, egg, larva, puparium and empty puparium were explored in this study. The sequence of DNA obtained for each sample for every life cycle stage was 100% identical for a particular species, indicating that the egg, 1st instar, 2nd instar, 3rd instar, pupa, empty puparium and adult from the same species and obtained from same generation will exhibit similar DNA sequences. The present study also highlighted the usefulness of collecting all life cycle stages of blow fly during crime scene investigation with proper preservation and subsequent molecular analysis. Molecular identification provides a strong basis for species identification and will prove an invaluable contribution to forensic entomology as an investigative tool in Malaysia.

  16. Molecular and genetic aspects of odontogenic tumors: a review

    Directory of Open Access Journals (Sweden)

    Kavita Garg

    2015-06-01

    Full Text Available Odontogenic tumors contain a heterogeneous collection of lesions that are categorized from hamartomas to benign and malignant neoplasms of inconstant aggressiveness. Odontogenic tumors are usually extraordinary with assessed frequency of short of 0.5 cases/100,000 population for every year. The lesions such as odontogenic tumors are inferred from the components of the tooth-structuring contraption. They are discovered solely inside the maxillary and mandibular bones. This audit speaks to experiences and cooperation of the molecular and genetic variations connected to the development and movement of odontogenic tumors which incorporate oncogenes, tumor-silencer genes, APC gene, retinoblastoma genes, DNA repair genes, onco-viruses, development components, telomerase, cell cycle controllers, apoptosis-related elements, and regulators/controllers of tooth development. The reasonable and better understanding of the molecular components may prompt new ideas for their detection and administrating a better prognosis of odontogenic tumors.

  17. 2D random walk representation of Begonia x tuberhybrida multiallelic loci used for germplasm identification

    Czech Academy of Sciences Publication Activity Database

    Wiesner, Ivo; Wiesnerová, Dana

    2010-01-01

    Roč. 54, č. 2 (2010), s. 353-356 ISSN 0006-3134 R&D Projects: GA AV ČR 1QS500510566 Institutional research plan: CEZ:AV0Z50510513 Keywords : begonia germplasm identification * random walk * primary sequence analysis Subject RIV: EB - Genetics ; Molecular Biology Impact factor: 1.582, year: 2010

  18. Application of molecular biology of differentiated thyroid cancer for clinical prognostication.

    Science.gov (United States)

    Marotta, Vincenzo; Sciammarella, Concetta; Colao, Annamaria; Faggiano, Antongiulio

    2016-11-01

    Although cancer outcome results from the interplay between genetics and environment, researchers are making a great effort for applying molecular biology in the prognostication of differentiated thyroid cancer (DTC). Nevertheless, role of molecular characterisation in the prognostic setting of DTC is still nebulous. Among the most common and well-characterised genetic alterations related to DTC, including mutations of BRAF and RAS and RET rearrangements, BRAF V600E is the only mutation showing unequivocal association with clinical outcome. Unfortunately, its accuracy is strongly limited by low specificity. Recently, the introduction of next-generation sequencing techniques led to the identification of TERT promoter and TP53 mutations in DTC. These genetic abnormalities may identify a small subgroup of tumours with highly aggressive behaviour, thus improving specificity of molecular prognostication. Although knowledge of prognostic significance of TP53 mutations is still anecdotal, mutations of the TERT promoter have showed clear association with clinical outcome. Nevertheless, this genetic marker needs to be analysed according to a multigenetic model, as its prognostic effect becomes negligible when present in isolation. Given that any genetic alteration has demonstrated, taken alone, enough specificity, the co-occurrence of driving mutations is emerging as an independent genetic signature of aggressiveness, with possible future application in clinical practice. DTC prognostication may be empowered in the near future by non-tissue molecular prognosticators, including circulating BRAF V600E and miRNAs. Although promising, use of these markers needs to be refined by the technical sight, and the actual prognostic value is still yet to be validated. © 2016 Society for Endocrinology.

  19. An investigation on non-invasive fungal sinusitis; Molecular identification of etiologic agents

    Directory of Open Access Journals (Sweden)

    Abdolrasoul Mohammadi

    2017-01-01

    Full Text Available Background: Fungal sinusitis is increasing worldwide in the past two decades. It is divided into two types including invasive and noninvasive. Noninvasive types contain allergic fungal sinusitis (AFS and fungus ball. AFS is a hypersensitivity reaction to fungal allergens in the mucosa of the sinonasal tract in atopic individuals. The fungus ball is a different type of noninvasive fungal rhinosinusitis which is delineated as an accumulation of debris and fungal elements inside a paranasal sinus. Fungal sinusitis caused by various fungi such as Aspergillus species, Penicillium, Mucor, Rhizopus, and phaeohyphomycetes. The aim of the present study is to identify fungal species isolated from noninvasive fungal sinusitis by molecular methods. Materials and Methods: During 2015–2016, a total of 100 suspected patients were examined for fungal sinusitis. Functional endoscopic sinus surgery was performed using the Messerklinger technique. Clinical samples were identified by phenotypic and molecular methods. Polymerase chain reaction (PCR sequencing of ITS1-5.8S-ITS2 region and PCR-restriction fragment length polymorphism with Msp I restriction enzyme was performed for molecular identification of molds and yeasts, respectively. Results: Twenty-seven out of 100 suspected cases (27% had fungal sinusitis. Nasal congestion (59% and headache (19% were the most common clinical signs among patients. Fifteen patients (55.5% were male and 12 patients (44.5% were female. Aspergillus flavus was the most prevalent fungal species (26%, followed by Penicillium chrysogenum (18.5% and Candida glabrata species complex (15%. Conclusion: Since clinical manifestations, computed tomography scan, endoscopy, and histopathological findings are very nonspecific in AFS and fungus ball; therefore, molecular investigations are compulsory for precise identification of etiologic agents and appropriate management of these fungal infections.

  20. Horror Autoinflammaticus: The Molecular Pathophysiology of Autoinflammatory Disease*

    Science.gov (United States)

    Masters, Seth L.; Simon, Anna; Aksentijevich, Ivona; Kastner, Daniel L.

    2010-01-01

    The autoinflammatory diseases are characterized by seemingly unprovoked episodes of inflammation, without high-titer autoantibodies or antigen-specific T cells. The concept was proposed ten years ago with the identification of the genes underlying hereditary periodic fever syndromes. This nosology has taken root because of the dramatic advances in our knowledge of the genetic basis of both mendelian and complex autoinflammatory diseases, and with the recognition that these illnesses derive from genetic variants of the innate immune system. Herein we propose an updated classification scheme based on the molecular insights garnered over the past decade, supplanting a clinical classification that has served well but is opaque to the genetic, immunologic, and therapeutic interrelationships now before us. We define six categories of autoinflammatory disease: IL-1β activation disorders (inflammasomopathies), NF-κB activation syndromes, protein misfolding disorders, complement regulatory diseases, disturbances in cytokine signaling, and macrophage activation syndromes. A system based on molecular pathophysiology will bring greater clarity to our discourse while catalyzing new hypotheses both at the bench and at the bedside. PMID:19302049

  1. Identification of genetic modifiers of behavioral phenotypes in serotonin transporter knockout rats

    Directory of Open Access Journals (Sweden)

    Nijman Isaäc J

    2010-05-01

    Full Text Available Abstract Background Genetic variation in the regulatory region of the human serotonin transporter gene (SLC6A4 has been shown to affect brain functionality and personality. However, large heterogeneity in its biological effects is observed, which is at least partially due to genetic modifiers. To gain insight into serotonin transporter (SERT-specific genetic modifiers, we studied an intercross between the Wistar SERT-/- rat and the behaviorally and genetically divergent Brown Norway rat, and performed a QTL analysis. Results In a cohort of >150 intercross SERT-/- and control (SERT+/+ rats we characterized 12 traits that were previously associated with SERT deficiency, including activity, exploratory pattern, cocaine-induced locomotor activity, and abdominal and subcutaneous fat. Using 325 genetic markers, 10 SERT-/--specific quantitative trait loci (QTLs for parameters related to activity and exploratory pattern (Chr.1,9,11,14, and cocaine-induced anxiety and locomotor activity (Chr.5,8 were identified. No significant QTLs were found for fat parameters. Using in silico approaches we explored potential causal genes within modifier QTL regions and found interesting candidates, amongst others, the 5-HT1D receptor (Chr. 5, dopamine D2 receptor (Chr. 8, cannabinoid receptor 2 (Chr. 5, and genes involved in fetal development and plasticity (across chromosomes. Conclusions We anticipate that the SERT-/--specific QTLs may lead to the identification of new modulators of serotonergic signaling, which may be targets for pharmacogenetic and therapeutic approaches.

  2. Identification of Genetic Factors in the Etiology of Schizophrenia

    Directory of Open Access Journals (Sweden)

    Argel Aguilar Valles

    2011-09-01

    Full Text Available ABSTRACT Schizophrenia is a mental disorder that affects approximately 1% of the worldwide population. It is characterized by psychotic episodes in which individuals have hallucinations or delusions. This disorder also involves a strong element of social dysfunction, lack of motivation and profound cognitive deficits. The causes of this disorder remain largely unknown, but evidence indicates that arises from changes in the development of the central nervous system. Among the identified risk factors for this disorder are several environmental events, including prenatal infections and malnutrition, and complications during childbirth. However, the most important factor seems to be genetics. Despite this, the identification of genes involved in the development of this disorder has emerged as one of the most difficult tasks facing modern genetics and genomics. The development of techniques for studying the human genome has allowed a more systematic approach to determine variations in the genome sequence and structure that area casually involved in schizophrenia. These studies suggest the participation hundreds of genes in schizophrenia development. In addition, it has been suggested that many of these genes are involved in various mental illnesses that today are diagnosed as separate entities, but whose biological substrate may be shared. Key words: schizophrenia, deletions, development, duplications, polymorphisms.

  3. Identification of morphological and molecular Aspergillus species isolated from patients based on beta-tubulin gene sequencing

    Directory of Open Access Journals (Sweden)

    Mahnaz Kheirkhah

    2017-06-01

    Full Text Available Background: Aspergillus species are opportunistic pathogens among immunocompromised patients. In terms of pathogenesis and mycotoxin production, they are in great value. The aim of the this study was to evaluate of beta-tubulin gene for identification of clinical Aspergillus species by PCR-sequencing method compared to morphological features of clinical isolates (such as conidial shape in direct microscopic examination, colony shape in culture, and physiological tests. Materials and Methods: In this study, 465 patients referred to the Shefa laboratory of Isfahan were evaluated. Morphological and molecular identification of clinical samples were performed using culture on sabouraud agar, malt extract agar, czapekdox agar, direct microscopy, and PCR-sequencing of beta tubulin gene, respectively. Sequences were analyzed in comparison with gene bank data. Results: Thirty nine out of 465 suspected cases (8.4% had aspergillosis. The most prevalent species were Aspergillus flavus (56.4%, A. oryzae (20.5%, and A. fumigatus (10.2%, respectively. Fifty nine percent of patients were females and 49% were males. Conclusion: In comparison with phenotypic tests, sequencing of beta-tubulin gene for identification of Aspergillus species is at great value. Replacement of molecular techniques with conventional tests is recommended for precise identification of microorganism for better management of infection.

  4. PhenomeCentral: An Integrated Portal for Sharing and Searching Patient Phenotype Data for Rare Genetic Disorders.

    OpenAIRE

    Brudno, Michael; Girdea, Marta; Dumitriu, Sergiu; Buske, Orion; Köhler, Sebastian; Robinson, Peter N.; Brookes, Andrew J.; Boycott, Kym; Boerkoel, Cornelius F.; Gahl, William A.; CARE RARE, Canadian for Consortium; NIH, Undiagnosed Diseases Program

    2014-01-01

    The availability of low-cost genome sequencing has allowed for the identification of the molecular cause of hundreds of rare genetic disorders. Solved disorders, however, only represent the “tip of the iceberg”. Because the discovery of disease-causing variants typically requires confirmation of the mutation or gene in multiple unrelated individuals, an even larger number of genetic disorders remain unsolved due to difficulty identifying second families. With many groups now tackling these re...

  5. Identification of genetic components involved in Lotus-endophyte interactions

    DEFF Research Database (Denmark)

    Zgadzaj, Rafal Lukasz

    of growth hormones or nitrogen fixation. However, the genes involved in plant-endophyte interactions and bacterial accomodation within plant tissues are not known. In order to shed some light on such processes, an approach “one host-one endophyte” was chosen. The focus on a single plant species and a single......Endophytes are microorganisms capable of colonising plant tissues without inducing host defense responses. They have a large impact on plants, since they can modulate plant responses to pathogens, herbivores and environmental stress. They can also induce plant growth promotion through synthesis...... bacterial strain aimed at obtaining a reliable and easy to handle system for plant-microsymbiont interaction research. Two different methods were tested for their usefulness in identification of genetic components involved in plant-endophyte interactions. The first method was based on measuring growth...

  6. Genetic characterization, molecular epidemiology, and phylogenetic relationships of insect-specific viruses in the taxon Negevirus.

    Science.gov (United States)

    Nunes, Marcio R T; Contreras-Gutierrez, María Angélica; Guzman, Hilda; Martins, Livia C; Barbirato, Mayla Feitoza; Savit, Chelsea; Balta, Victoria; Uribe, Sandra; Vivero, Rafael; Suaza, Juan David; Oliveira, Hamilton; Nunes Neto, Joaquin P; Carvalho, Valeria L; da Silva, Sandro Patroca; Cardoso, Jedson F; de Oliveira, Rodrigo Santo; da Silva Lemos, Poliana; Wood, Thomas G; Widen, Steven G; Vasconcelos, Pedro F C; Fish, Durland; Vasilakis, Nikos; Tesh, Robert B

    2017-04-01

    The recently described taxon Negevirus is comprised of a diverse group of insect-specific viruses isolated from mosquitoes and phlebotomine sandflies. In this study, a comprehensive genetic characterization, molecular, epidemiological and evolutionary analyses were conducted on nearly full-length sequences of 91 new negevirus isolates obtained in Brazil, Colombia, Peru, Panama, USA and Nepal. We demonstrated that these arthropod restricted viruses are clustered in two major phylogenetic groups with origins related to three plant virus genera (Cilevirus, Higrevirus and Blunevirus). Molecular analyses demonstrated that specific host correlations are not present with most negeviruses; instead, high genetic variability, wide host-range, and cross-species transmission were noted. The data presented here also revealed the existence of five novel insect-specific viruses falling into two arthropod-restrictive virus taxa, previously proposed as distinct genera, designated Nelorpivirus and Sandewavirus. Our results provide a better understanding of the molecular epidemiology, evolution, taxonomy and stability of this group of insect-restricted viruses. Copyright © 2017 Elsevier Inc. All rights reserved.

  7. Genetic Confirmation of Mungbean (Vigna radiata) and Mashbean (Vigna mungo) Interspecific Recombinants using Molecular Markers.

    Science.gov (United States)

    Abbas, Ghulam; Hameed, Amjad; Rizwan, Muhammad; Ahsan, Muhammad; Asghar, Muhammad J; Iqbal, Nayyer

    2015-01-01

    Molecular confirmation of interspecific recombinants is essential to overcome the issues like self-pollination, environmental influence, and inadequacy of morphological characteristics during interspecific hybridization. The present study was conducted for genetic confirmation of mungbean (female) and mashbean (male) interspecific crosses using molecular markers. Initially, polymorphic random amplified polymorphic DNA (RAPD), universal rice primers (URP), and simple sequence repeats (SSR) markers differentiating parent genotypes were identified. Recombination in hybrids was confirmed using these polymorphic DNA markers. The NM 2006 × Mash 88 was most successful interspecific cross. Most of true recombinants confirmed by molecular markers were from this cross combination. SSR markers were efficient in detecting genetic variability and recombination with reference to specific chromosomes and particular loci. SSR (RIS) and RAPD identified variability dispersed throughout the genome. In conclusion, DNA based marker assisted selection (MAS) efficiently confirmed the interspecific recombinants. The results provided evidence that MAS can enhance the authenticity of selection in mungbean improvement program.

  8. Fluorescent Molecular Rotor-in-Paraffin Waxes for Thermometry and Biometric Identification.

    Science.gov (United States)

    Jin, Young-Jae; Dogra, Rubal; Cheong, In Woo; Kwak, Giseop

    2015-07-08

    Novel thermoresponsive sensor systems consisting of a molecular rotor (MR) and paraffin wax (PW) were developed for various thermometric and biometric identification applications. Polydiphenylacetylenes (PDPAs) coupled with long alkyl chains were used as MRs, and PWs of hydrocarbons having 16-20 carbons were utilized as phase-change materials. The PDPAs were successfully dissolved in the molten PWs and did not act as an impurity that prevents phase transition of the PWs. These PDPA-in-PW hybrids had almost the same enthalpies and phase-transition temperatures as the corresponding pure PWs. The hybrids exhibited highly reversible fluorescence (FL) changes at the critical temperatures during phase transition of the PWs. These hybrids were impregnated into common filter paper in the molten state by absorption or were encapsulated into urea resin to enhance their mechanical integrity and cyclic stability during repeated use. The wax papers could be utilized in highly advanced applications including FL image writing/erasing, an array-type thermo-indicator, and fingerprint/palmprint identification. The present findings should facilitate the development of novel fluorescent sensor systems for biometric identification and are potentially applicable for biological and biomedical thermometry.

  9. ISSR markers for gender identification and genetic diagnosis of Hippophae rhamnoides ssp. turkestanica growing at high altitudes in Ladakh region (Jammu and Kashmir).

    Science.gov (United States)

    Das, Kamal; Ganie, Showkat Hussain; Mangla, Yash; Dar, Tanvir-Ul-Hassan; Chaudhary, Manju; Thakur, Rakesh Kumar; Tandon, Rajesh; Raina, S N; Goel, Shailendra

    2017-03-01

    Hippophae rhamnoides L. ssp. turkestanica (Elaeagnaceae) is a predominantly dioecious and wind-pollinated medicinal plant species. The mature fruits of the species possess antioxidative, anti-inflammatory, antimicrobial, anticancerous, and antistimulatory properties that are believed to improve the immune system. The identification of male and female plants in H. rhamnoides ssp. turkestanica is quite difficult until flowering which usually takes 3-4 years or more. A sex-linked marker can be helpful in establishing the orchards through identification of genders at an early stage of development. Therefore, we studied the genetic diversity of populations in Ladakh with the aim to identify a gender-specific marker using ISSR markers. Fifty-eight ISSR primers were used to characterize the genome of H. rhamnoides ssp. turkestanica, of which eight primers generated 12 sex-specific fragments specific to one or more populations. The ISSR primer (P-45) produced a fragment which faithfully segregates all the males from the female plants across all the three valleys surveyed. This male-specific locus was converted into a SCAR. Forward and reverse primers designed from this fragment amplified a 750-bp sequence in males only, thus specifying it as an informative male-specific sex-linked marker. This SCAR marker was further validated for its capability to differentiate gender on an additional collection of plants, representing three geographically isolated valleys (Nubra, Suru, and Indus) from Ladakh region of India. The results confirmed sex-linked specificity of the marker suggesting that this conserved sequence at the Y chromosome is well preserved through the populations in Ladakh region. At present, there are no reliable markers which can differentiate male from female plants across all the three valleys of Ladakh region at an early stage of plant development. It is therefore envisaged that the developed SCAR marker shall provide a reliable molecular tool for early

  10. Genetic and molecular analysis of radon-induced rat lung tumours

    International Nuclear Information System (INIS)

    Guilly, M.N.; Joubert, Ch.; Levalois, C.; Dano, L.; Chevillard, S.

    2002-01-01

    We have a model of radon-induced rat lung tumours, which allow us to analyse the cytogenetic and molecular alterations of the tumours. The aim is to better understand the mechanisms of radio-induced carcinogenesis and to define if it exists a specificity of radio-induced genetic alterations as compared to the genetic alterations found in the sporadic tumours. We have started our analysis by developing global cytogenetic and molecular approaches. We have shown that some alterations are recurrent. The genes that are potentially involved are the oncogene MET and the tumour suppressor Bene p16, which are also frequently altered in human lung tumours. Simultaneously, we have focussed our analysis by targeting the search of mutation in the tumour suppressor gene TP3. We have found that 8 of 39 tumours were mutated by deletion in the coding sequence of TP53. This high frequency of deletion, which is not observed in the human p53 mutation database could constitute a signature of radio-induced alterations. On this assumption, this type of alteration should not be only found on TP53 Bene but also in other suppressor genes which are inactivated by a mutation such as p16 for example. The work we are carrying out on radio-induced tumours among humans and animals is directed to this end. (author)

  11. Fanconi anaemia: genetics, molecular biology, and cancer – implications for clinical management in children and adults.

    Science.gov (United States)

    Schneider, M; Chandler, K; Tischkowitz, M; Meyer, S

    2015-07-01

    Fanconi anaemia (FA) is an inherited disease with congenital and developmental abnormalities, cross-linker hypersensitivity and extreme cancer predisposition. With better understanding of the genetic and molecular basis of the disease, and improved clinical management, FA has been transformed from a life-limiting paediatric disease to an uncommon chronic condition that needs lifelong multidisciplinary management, and a paradigm condition for the understanding of the gene-environment interaction in the aetiology of congenital anomalies, haematopoiesis and cancer development. Here we review genetic, molecular and clinical aspects of FA, and discuss current controversies and future prospects. © 2014 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  12. Synovial sarcoma with radiological appearances of primitive neuroectodermal tumour/Ewing sarcoma: differentiation by molecular genetic studies

    International Nuclear Information System (INIS)

    O'Donnell, P.; Diss, T.C.; Whelan, J.; Flanagan, A.M.

    2006-01-01

    Synovial sarcoma (SS) arises in soft tissues but may invade adjacent bone. We describe a case of SS presenting as aggressive lysis of the proximal ulna, the imaging of which suggested a primary bone lesion. Needle biopsy showed a 'small round blue cell tumour', and a primitive neuroectodermal tumour (PNET)/Ewing sarcoma was suggested on the basis of the imaging appearances. The definitive diagnosis of synovial sarcoma was made following molecular genetic studies, which demonstrated a fusion product incorporating the genes SYT and SSX1. The importance of correct diagnosis to guide appropriate management, and, therefore, the necessity for molecular genetic studies, is discussed. (orig.)

  13. Bayesian network model for identification of pathways by integrating protein interaction with genetic interaction data.

    Science.gov (United States)

    Fu, Changhe; Deng, Su; Jin, Guangxu; Wang, Xinxin; Yu, Zu-Guo

    2017-09-21

    Molecular interaction data at proteomic and genetic levels provide physical and functional insights into a molecular biosystem and are helpful for the construction of pathway structures complementarily. Despite advances in inferring biological pathways using genetic interaction data, there still exists weakness in developed models, such as, activity pathway networks (APN), when integrating the data from proteomic and genetic levels. It is necessary to develop new methods to infer pathway structure by both of interaction data. We utilized probabilistic graphical model to develop a new method that integrates genetic interaction and protein interaction data and infers exquisitely detailed pathway structure. We modeled the pathway network as Bayesian network and applied this model to infer pathways for the coherent subsets of the global genetic interaction profiles, and the available data set of endoplasmic reticulum genes. The protein interaction data were derived from the BioGRID database. Our method can accurately reconstruct known cellular pathway structures, including SWR complex, ER-Associated Degradation (ERAD) pathway, N-Glycan biosynthesis pathway, Elongator complex, Retromer complex, and Urmylation pathway. By comparing N-Glycan biosynthesis pathway and Urmylation pathway identified from our approach with that from APN, we found that our method is able to overcome its weakness (certain edges are inexplicable). According to underlying protein interaction network, we defined a simple scoring function that only adopts genetic interaction information to avoid the balance difficulty in the APN. Using the effective stochastic simulation algorithm, the performance of our proposed method is significantly high. We developed a new method based on Bayesian network to infer detailed pathway structures from interaction data at proteomic and genetic levels. The results indicate that the developed method performs better in predicting signaling pathways than previously

  14. Discovering Unique, Low-Energy Transition States Using Evolutionary Molecular Memetic Computing

    DEFF Research Database (Denmark)

    Ellabaan, Mostafa M Hashim; Ong, Y.S.; Handoko, S.D.

    2013-01-01

    In the last few decades, identification of transition states has experienced significant growth in research interests from various scientific communities. As per the transition states theory, reaction paths and landscape analysis as well as many thermodynamic properties of biochemical systems can...... be accurately identified through the transition states. Transition states describe the paths of molecular systems in transiting across stable states. In this article, we present the discovery of unique, low-energy transition states and showcase the efficacy of their identification using the memetic computing...... paradigm under a Molecular Memetic Computing (MMC) framework. In essence, the MMC is equipped with the tree-based representation of non-cyclic molecules and the covalent-bond-driven evolutionary operators, in addition to the typical backbone of memetic algorithms. Herein, we employ genetic algorithm...

  15. Identification method of gas-liquid two-phase flow regime based on image wavelet packet information entropy and genetic neural network

    International Nuclear Information System (INIS)

    Zhou Yunlong; Chen Fei; Sun Bin

    2008-01-01

    Based on the characteristic that wavelet packet transform image can be decomposed by different scales, a flow regime identification method based on image wavelet packet information entropy feature and genetic neural network was proposed. Gas-liquid two-phase flow images were captured by digital high speed video systems in horizontal pipe. The information entropy feature from transformation coefficients were extracted using image processing techniques and multi-resolution analysis. The genetic neural network was trained using those eigenvectors, which was reduced by the principal component analysis, as flow regime samples, and the flow regime intelligent identification was realized. The test result showed that image wavelet packet information entropy feature could excellently reflect the difference between seven typical flow regimes, and the genetic neural network with genetic algorithm and BP algorithm merits were with the characteristics of fast convergence for simulation and avoidance of local minimum. The recognition possibility of the network could reach up to about 100%, and a new and effective method was presented for on-line flow regime. (authors)

  16. Molecular identification of Coccidioides spp. in soil samples from Brazil.

    Science.gov (United States)

    de Macêdo, Regina C L; Rosado, Alexandre S; da Mota, Fabio F; Cavalcante, Maria A S; Eulálio, Kelsen D; Filho, Antônio D; Martins, Liline M S; Lazéra, Márcia S; Wanke, Bodo

    2011-05-16

    Since 1991 several outbreaks of acute coccidioidomycosis (CM) were diagnosed in the semi-arid Northeast of Brazil, mainly related to disturbance of armadillo burrows caused by hunters while digging them for the capture of these animals. This activity causes dust contaminated with arthroconidia of Coccidioides posadasii, which, once inhaled, cause the mycosis. We report on the identification of C. posadasii in soil samples related to outbreaks of CM. Twenty four soil samples had their DNA extracted and subsequently submitted to a semi-nested PCR technique using specific primers. While only 6 (25%) soil samples were positive for C. posadasii by mice inoculation, all (100%) were positive by the molecular tool. This methodology represents a simple, sensitive and specific molecular technique to determine the environmental distribution of Coccidioides spp. in endemic areas, but cannot distinguish the species. Moreover, it may be useful to identify culture isolates. Key-words: 1. Coccidioidomycosis. 2. Coccidioides spp. 3. C. posadasii. 4. Semi-arid. 5. Semi-nested PCR.

  17. MODY in Siberia – molecular genetics and clinical characteristics

    Directory of Open Access Journals (Sweden)

    Alla Konstantinovna Ovsyannikova

    2017-05-01

    Full Text Available The diagnosis of maturity onset diabetes of the young (MODY has high clinical significance in young patients (no absolute need for exogenous insulin; normoglycaemia in most patients achieved by dieting or taking oral hypoglycaemic agents and their relatives (high probability of first-degree relatives being carriers of mutations, which requires a thorough collection of family history and determination of the parameters of carbohydrate metabolism. Aim. This study aimed was to determine the clinical characteristics of different subtypes of MODY in a Siberian region. Materials and Methods. We performed an examination, biochemical and hormonal blood tests, ultrasound and molecular genetic testing of 20 patients with a clinical diagnosis of MODY. Results. Four subtypes of MODY were verified: MODY2 in 11 patients, MODY3 in two, MODY8 in one and MODY12 in two. Eleven patients (69% exhibited no clinical manifestations of carbohydrate metabolism disorders, and one patient showed weight loss during early stage of the disease. Comorbidities included dyslipidemia, thyroid gland disorders and arterial hypertension. One patient (6% exhibited diabetic nephropathy; two (13%, diabetic retinopathy and three (19%, peripheral neuropathy of lower legs. All patients achieved the target carbohydrate metabolism; the level of C-peptide was within the reference range. Conclusion. Four different subtypes of MODY (2, 3, 8, 12 were diagnosed in the present study, which differed in their clinical characteristics, presence of complications and treatment strategies. Our knowledge of monogenic forms of diabetes is expanding with the development in molecular genetics, but several aspects related to them require further study.

  18. Molecular genetic analysis of activation-tagged transcription factors thought to be involved in photomorphogenesis

    Energy Technology Data Exchange (ETDEWEB)

    Neff, Michael M.

    2011-06-23

    This is a final report for Department of Energy Grant No. DE-FG02-08ER15927 entitled “Molecular Genetic Analysis of Activation-Tagged Transcription Factors Thought to be Involved in Photomorphogenesis”. Based on our preliminary photobiological and genetic analysis of the sob1-D mutant, we hypothesized that OBP3 is a transcription factor involved in both phytochrome and cryptochrome-mediated signal transduction. In addition, we hypothesized that OBP3 is involved in auxin signaling and root development. Based on our preliminary photobiological and genetic analysis of the sob2-D mutant, we also hypothesized that a related gene, LEP, is involved in hormone signaling and seedling development.

  19. Molecular diagnostics in genodermatoses - simplified

    Directory of Open Access Journals (Sweden)

    Hiremagalore Ravi

    2008-01-01

    Full Text Available The field of genetics in dermatology has progressed at an astonishing rate. Most of the known single gene disorders have at least been mapped to a particular chromosomal region and the causative genes have been identified and studied in many of them. However, most research work in genetics relating to genodermatoses has been confined to the western population. Very few reports, if any, have been published from Indian studies. A first step may be to develop a registry to link most of these cases providing a full description of the clinical phenotype. We would next need to attempt genetic analysis of these conditions thereby detecting any novel mutations in known and unknown genes different from the western population. This would help in designing indigenous assays appropriate to the Indian population. The review describes various techniques used in a molecular biology/ genetics laboratory with special focus on polymerase chain reaction (PCR, gene sequencing, genotyping and DNA micro arrays. Gene identification strategies have also been described with appropriate examples in dermatology.

  20. Calling genotypes from public RNA-sequencing data enables identification of genetic variants that affect gene-expression levels

    NARCIS (Netherlands)

    Deelen, Patrick; Zhernakova, Daria V.; de Haan, Mark; van der Sijde, Marijke; Bonder, Marc Jan; Karjalainen, Juha; van der Velde, K. Joeri; Abbott, Kristin M.; Fu, Jingyuan; Wijmenga, Cisca; Sinke, Richard J.; Swertz, Morris A.; Franke, Lude

    2015-01-01

    Background: RNA-sequencing (RNA-seq) is a powerful technique for the identification of genetic variants that affect gene-expression levels, either through expression quantitative trait locus (eQTL) mapping or through allele-specific expression (ASE) analysis. Given increasing numbers of RNA-seq

  1. Molecular diagnosis of maturity onset diabetes of the young in India

    Directory of Open Access Journals (Sweden)

    Veena V Nair

    2013-01-01

    Full Text Available Diabetes is highly prevalent in India and the proportion of younger patients developing diabetes is on the increase. Apart from the more universally known type 1 diabetes and obesity related type 2 diabetes, monogenic forms of diabetes are also suspected to be prevalent in many young diabetic patients. The identification of the genetic basis of the disease not only guides in therapeutic decision making, but also aids in genetic counselling and prognostication. Genetic testing may establish the occurrence and frequency of early diabetes in our population. This review attempts to explore the utilities and horizons of molecular genetics in the field of maturity onset diabetes of the young (MODY, which include the commoner forms of monogenic diabetes.

  2. Molecular identification of blow flies recovered from human cadavers during crime scene investigations in Malaysia.

    Science.gov (United States)

    Kavitha, Rajagopal; Nazni, Wasi Ahmad; Tan, Tian Chye; Lee, Han Lim; Isa, Mohd Noor Mat; Azirun, Mohd Sofian

    2012-12-01

    Forensic entomology applies knowledge about insects associated with decedent in crime scene investigation. It is possible to calculate a minimum postmortem interval (PMI) by determining the age and species of the oldest blow fly larvae feeding on decedent. This study was conducted in Malaysia to identify maggot specimens collected during crime scene investigations. The usefulness of the molecular and morphological approach in species identifications was evaluated in 10 morphologically identified blow fly larvae sampled from 10 different crime scenes in Malaysia. The molecular identification method involved the sequencing of a total length of 2.2 kilo base pairs encompassing the 'barcode' fragments of the mitochondrial cytochrome oxidase I (COI), cytochrome oxidase II (COII) and t-RNA leucine genes. Phylogenetic analyses confirmed the presence of Chrysomya megacephala, Chrysomya rufifacies and Chrysomya nigripes. In addition, one unidentified blow fly species was found based on phylogenetic tree analysis.

  3. Genotyping and Molecular Identification of Date Palm Cultivars Using Inter-Simple Sequence Repeat (ISSR) Markers.

    Science.gov (United States)

    Ayesh, Basim M

    2017-01-01

    Molecular markers are credible for the discrimination of genotypes and estimation of the extent of genetic diversity and relatedness in a set of genotypes. Inter-simple sequence repeat (ISSR) markers rapidly reveal high polymorphic fingerprints and have been used frequently to determine the genetic diversity among date palm cultivars. This chapter describes the application of ISSR markers for genotyping of date palm cultivars. The application involves extraction of genomic DNA from the target cultivars with reliable quality and quantity. Subsequently the extracted DNA serves as a template for amplification of genomic regions flanked by inverted simple sequence repeats using a single primer. The similarity of each pair of samples is measured by calculating the number of mono- and polymorphic bands revealed by gel electrophoresis. Matrices constructed for similarity and genetic distance are used to build a phylogenetic tree and cluster analysis, to determine the molecular relatedness of cultivars. The protocol describes 3 out of 9 tested primers consistently amplified 31 loci in 6 date palm cultivars, with 28 polymorphic loci.

  4. ["A decision meaning a new foundation...": from the Kaiser Wilhelm Institute for Anthropology, Human Genetics and Eugenics to the Max Planck Institute for Molecular Genetics].

    Science.gov (United States)

    Sachse, Carola

    2011-01-01

    The Max Planck Institute for Molecular Genetics (MPIMG) in Berlin-Dahlem dates its establishment to 1964. Its homepage makes no mention of its predecessor institutes, the Kaiser Wilhelm Institute for Anthropology, Human Genetics and Eugenics (KWIA) and the subsequent MPI for Comparative Genetics and Hereditary Pathology (MPIVEE). This article traces the two critical phases of transition regarding the constellations of academic staff, institutional and epistemic ruptures and continuities specific to the era. Only one of the five department heads from the final war years, Hans Nachtsheim, remained a researcher within the Max Planck Society (MPG); he nevertheless continued to advocate the pre-war and wartime eugenic agenda in the life sciences and social policy. The generational change of 1959/60 became a massive struggle within the institute, in which microbial genetics (with Fritz Kaudewitz) was pitted against human genetics (with Friedrich Vogel) and managed to establish itself after a fresh change in personnel in 1964/65. For the Dahlem institute, this involved a far-reaching reorientation of its research, but for the genetically oriented life sciences in the Max Planck Society as a whole it only meant that molecular biology, which was already being pursued in the West German institutes, gained an additional facility. With this realignment of research traditions, the Society was able to draw a line under the Nazi past without having to address it head-on.

  5. New STS molecular markers for assessment of genetic diversity and DNA fingerprinting in hop (Humulus lupulus L.)

    Czech Academy of Sciences Publication Activity Database

    Patzak, J.; Vrba, Lukáš; Matoušek, Jaroslav

    2007-01-01

    Roč. 50, č. 1 (2007), s. 15-25 ISSN 0831-2796 R&D Projects: GA ČR GA521/03/0072 Institutional research plan: CEZ:AV0Z50510513 Keywords : hop (Humulus lupulus L.) * genetic diversity Subject RIV: EB - Genetics ; Molecular Biology Impact factor: 1.785, year: 2007

  6. Morphological and molecular identification of ticks infesting Boa constrictor (Squamata, Boidae in Manaus (Central Brazilian Amazon

    Directory of Open Access Journals (Sweden)

    Leonardo Costa Fiorini

    2014-12-01

    Full Text Available The Boa constrictor is one of the world's largest vertebrate carnivores and is often found in urban areas in the city of Manaus, Brazil. The morphological identification of ticks collected from 27 snakes indicated the occurrence of Amblyomma dissimile Koch 1844 on all individuals sampled. In contrast, Amblyomma rotundatum Koch was found on only two snakes. An analysis of the 16S rRNA molecular marker confirmed the morphological identification of these ectoparasites.

  7. Nasopharyngeal Carcinoma Signaling Pathway: An Update on Molecular Biomarkers

    Directory of Open Access Journals (Sweden)

    Warut Tulalamba

    2012-01-01

    Full Text Available Nasopharyngeal carcinoma (NPC is an uncommon cancer, which has a distinctive ethnic and geographic distribution. Etiology of NPC is considered to be related with a complex interaction of environmental and genetic factors as well as Epstein-Barr virus infection. Since NPC is located in the silent painless area, the disease is usually therefore diagnosed at the advanced stages; hence early detection of NPC is difficult. Furthermore, understanding in molecular pathogenesis is still lacking, pondering the identification of effective prognostic and diagnostic biomarkers. Dysregulation of signaling molecules in intracellular signal transduction, which regulate cell proliferation, apoptosis, and adhesion, underlines the basis of NPC pathogenesis. In this paper, the molecular signaling pathways in the NPC are discussed for the holistic view of NPC development and progression. The important insights toward NPC pathogenesis may offer strategies for identification of novel biomarkers for diagnosis and prognosis.

  8. What’s new in genetics of congenital heart defects

    Directory of Open Access Journals (Sweden)

    Maria Cristina Digilio

    2016-12-01

    Full Text Available Epidemiological studies, clinical observations and advances in molecular genetics are contributing to the understanding of the etiology of congenital heart defects (CHDs. Several phenotype-genotype correlation studies have suggested that specific morphogenetic mechanisms put in motion by genes can result in a specific cardiac phenotype. The use of new technologies has increased the possibility of identification of new genes and chromosomal loci in syndromic and non-syndromic CHDs. There are a number of methods available for genetic research studies of CHDs, including cytogenetic analysis, linkage and association studies, copy number variation (CNV and DNA micro-array analysis, and whole exome sequencing. The altered dosage of contigous genes included inside CNVs can produce new syndromic CHDs, so that several different new genomic conditions have been identified. These include duplication 22q11.2 syndrome, distal 22q11.2 deletion syndrome, deletion and duplication 1q21.1, deletion 1p36 syndrome. Molecular techniques as whole exome sequancing has lead to the identification of new genes for monogenic syndromes with CHD, as for example in Adams-Oliver, Noonan and Kabuki syndrome. The variable expressivity and reduced penetrance of CHDs in genetic syndromes is likely influenced by genetic factors, and several studies have been performed showing the involvement of modifier genes. It is not easy to define precisely the genetic defects underlying non-syndromic CHDs, due to the genetic and clinical heterogeneity of these malformations. Recent experimental studies have identified multiple CNVs contributing to non-syndromic CHD. The number of identified genes for non-syndromic CHDs is at this time limited and each of the identified gene has been shown to be implicated only in a small proportion of CHD. The application of new technologies to specific cases of CHD and pedigrees with familial recurrence and filtering genes mapping in CNV regions can probably

  9. Prostate cancer molecular profiling: the Achilles heel for the implementation of precision medicine.

    Science.gov (United States)

    Oliveira-Barros, Eliane Gouvêa; Nicolau-Neto, Pedro; Da Costa, Nathalia Meireles; Pinto, Luís Felipe Ribeiro; Palumbo, Antonio; Nasciutti, Luiz Eurico

    2017-11-01

    Cancer has been mainly treated by traditional therapeutic approaches which do not consider the human genetic diversity and present limitations, probably as a consequence of a poor knowledge of both patient's genetic background and tumor biology. Due to genome project conclusion and large-scale gene analyses emergence, the therapeutic management of several prevalent and aggressive tumors has dramatically improved and represents the closest examples of a precision medicine intervention in this field. Nonetheless, prostate cancer (PCa) remains as a challenge to personalized medicine implementation, probably due to its notorious heterogeneous molecular profile. Cancer treatment personalized approaches rely on the premise that a well-defined panorama of tumor molecular alterations can help selecting new and specific therapeutic targets for its treatment and potentially discriminate tumors which behave differentially. Lately, molecular and genetic studies have been investigating PCa basis, revealing multiple recurrent genomic alterations that include mutations, DNA copy-number variations, rearrangements, and gene fusions, among others. In addition to the increment on PCa molecular biology knowledge, mapping the molecular alterations pattern of this neoplasia, especially the differences existent between tumors displaying distinct behaviors, could represent a great improvement concerning the identification of new targets, personalized medicine, and patients' management and prognosis. © 2017 International Federation for Cell Biology.

  10. Population genetic structure of rare and endangered plants using molecular markers

    Science.gov (United States)

    Raji, Jennifer; Atkinson, Carter T.

    2013-01-01

    This study was initiated to assess the levels of genetic diversity and differentiation in the remaining populations of Phyllostegia stachyoides and Melicope zahlbruckneri in Hawai`i Volcanoes National Park and determine the extent of gene flow to identify genetically distinct individuals or groups for conservation purposes. Thirty-six Amplified Fragment Length Polymorphic (AFLP) primer combinations generated a total of 3,242 polymorphic deoxyribonucleic acid (DNA) fragments in the P. stachyoides population with a percentage of polymorphic bands (PPB) ranging from 39.3 to 65.7% and 2,780 for the M. zahlbruckneri population with a PPB of 18.8 to 64.6%. Population differentiation (Fst) of AFLP loci between subpopulations of P. stachyoides was low (0.043) across populations. Analysis of molecular variance of P. stachyoides showed that 4% of the observed genetic differentiation occurred between populations in different kīpuka and 96% when individuals were pooled from all kīpuka. Moderate genetic diversity was detected within the M. zahlbruckneri population. Bayesian and multivariate analyses both classified the P. stachyoides and M. zahlbruckneri populations into genetic groups with considerable sub-structuring detected in the P. stachyoides population. The proportion of genetic differentiation among populations explained by geographical distance was estimated by Mantel tests. No spatial correlation was found between genetic and geographic distances in both populations. Finally, a moderate but significant gene flow that could be attributed to insect or bird-mediated dispersal of pollen across the different kīpuka was observed. The results of this study highlight the utility of a multi-allelic DNA-based marker in screening a large number of polymorphic loci in small and closely related endangered populations and revealed the presence of genetically unique groups of individuals in both M. zahlbruckneri and P. stachyoides populations. Based on these findings

  11. Molecular Identification and Genetic Characterization of Macrophomina phaseolina Strains Causing Pathogenicity on Sunflower and Chickpea

    Directory of Open Access Journals (Sweden)

    Ali N. Khan

    2017-07-01

    Full Text Available Macrophomina phaseolina is the most devastating pathogen which causes charcoal rot and root rot diseases in various economically important crops. Three strains M. phaseolina 1156, M. phaseolina 1160, and M. phaseolina PCMC/F1 were tested for their virulence on sunflower (Helianthus annuus L. and chickpea (Cicer arietinum L.. The strains showed high virulence on both hosts with a disease score of 2 on chickpea and sunflower. The strains also increased the hydrogen per oxide (H2O2 content by 1.4- to 1.6-fold in root as well as shoot of chickpea and sunflower. A significant increase in antioxidant enzymes was observed in fungal infected plants which indicated prevalence of oxidative stress during pathogen propagation. The M. phaseolina strains also produced hydrolytic enzymes such as lipase, amylase, and protease with solubilization zone of 5–43 mm, 5–45 mm, and 12–35 mm, respectively. The M. phaseolina strains were identified by 18S rRNA and analyzed for genetic diversity by using random amplified polymorphic DNA (RAPD markers. The findings based on RAPD markers and 18S rRNA sequence analysis clearly indicate genetic variation among the strains collected from different hosts. The genetically diverse strains were found to be pathogenic to sunflower and chickpea.

  12. Molecular Identification of Date Palm Cultivars Using Random Amplified Polymorphic DNA (RAPD) Markers.

    Science.gov (United States)

    Al-Khalifah, Nasser S; Shanavaskhan, A E

    2017-01-01

    Ambiguity in the total number of date palm cultivars across the world is pointing toward the necessity for an enumerative study using standard morphological and molecular markers. Among molecular markers, DNA markers are more suitable and ubiquitous to most applications. They are highly polymorphic in nature, frequently occurring in genomes, easy to access, and highly reproducible. Various molecular markers such as restriction fragment length polymorphism (RFLP), amplified fragment length polymorphism (AFLP), simple sequence repeats (SSR), inter-simple sequence repeats (ISSR), and random amplified polymorphic DNA (RAPD) markers have been successfully used as efficient tools for analysis of genetic variation in date palm. This chapter explains a stepwise protocol for extracting total genomic DNA from date palm leaves. A user-friendly protocol for RAPD analysis and a table showing the primers used in different molecular techniques that produce polymorphisms in date palm are also provided.

  13. Identification of chemosensory receptor genes in Manduca sexta and knockdown by RNA interference

    Directory of Open Access Journals (Sweden)

    Howlett Natalie

    2012-05-01

    Full Text Available Abstract Background Insects detect environmental chemicals via a large and rapidly evolving family of chemosensory receptor proteins. Although our understanding of the molecular genetic basis for Drosophila chemoreception has increased enormously in the last decade, similar understanding in other insects remains limited. The tobacco hornworm, Manduca sexta, has long been an important model for insect chemosensation, particularly from ecological, behavioral, and physiological standpoints. It is also a major agricultural pest on solanaceous crops. However, little sequence information and lack of genetic tools has prevented molecular genetic analysis in this species. The ability to connect molecular genetic mechanisms, including potential lineage-specific changes in chemosensory genes, to ecologically relevant behaviors and specializations in M. sexta would be greatly beneficial. Results Here, we sequenced transcriptomes from adult and larval chemosensory tissues and identified chemosensory genes based on sequence homology. We also used dsRNA feeding as a method to induce RNA interference in larval chemosensory tissues. Conclusions We report identification of new chemosensory receptor genes including 17 novel odorant receptors and one novel gustatory receptor. Further, we demonstrate that systemic RNA interference can be used in larval olfactory neurons to reduce expression of chemosensory receptor transcripts. Together, our results further the development of M. sexta as a model for functional analysis of insect chemosensation.

  14. Introductory guide to the statistics of molecular genetics.

    Science.gov (United States)

    Eley, Thalia C; Rijsdijk, Frühling

    2005-10-01

    This introductory guide presents the main two analytical approaches used by molecular geneticists: linkage and association. Traditional linkage and association methods are described, along with more recent advances in methodologies such as those using a variance components approach. New methods are being developed all the time but the core principles of linkage and association remain the same. The basis of linkage is the transmission of a marker along with a disease within families, whereas association is based on the comparison of marker frequencies in case and control groups. It is becoming increasingly clear that effect sizes of individual markers on diseases and traits are likely to be very small. As such, much greater power is needed, and correspondingly greater sample sizes. Although non-replication is still a problem, molecular genetic studies in some areas such as attention deficit/hyperactivity disorder (ADHD) are starting to show greater convergence. Epidemiologists and other researchers with large well-characterized samples will be well placed to use these methods. Inter-disciplinary studies can then ask far more interesting questions such as those relating to developmental, multivariate and gene-environment interaction hypotheses.

  15. Molecular genetics of pancreatic neoplasms and their morphologic correlates: an update on recent advances and potential diagnostic applications.

    Science.gov (United States)

    Reid, Michelle D; Saka, Burcu; Balci, Serdar; Goldblum, Andrew S; Adsay, N Volkan

    2014-02-01

    To summarize the most clinically and biologically relevant advances in molecular/genetic characteristics of various pancreatic neoplasms, with morphologic correlation. Whole-exome sequencing of numerous benign and malignant pancreatic tumors, along with the plethora of highly sensitive molecular studies now available for analyzing these tumors, provide mounting evidence to support the long-held belief that cancer is essentially a genetic disease. These genetic discoveries have not only helped to confirm the age-old, morphology-based classifications of pancreatic neoplasia but have shed new light on their mechanisms. Many of these molecular discoveries are currently being used in preoperative diagnosis. Mutations in KRAS, P16/CDKN2A, TP53, and SMAD4/DPC4 are commonly seen in ductal neoplasia but not in nonductal tumors; ductal adenocarcinomas with SMAD4/DPC4 loss are associated with widespread metastasis and poor prognosis. GNAS and RNF43 mutations have been discovered in most intraductal pancreatic mucinous neoplasms, providing critical molecular fingerprints for their diagnosis. Mutation in DAXX/ATRX is only seen in pancreatic neuroendocrine tumors, making it a useful potential marker in distinguishing these tumors from mimics. When combined with morphologic observations, molecular studies will increase our understanding of the pathogenesis and morphomolecular signatures associated with specific neoplasms and provide new horizons for precision medicine and targeted therapies.

  16. A universal and reliable assay for molecular sex identification of three-spined sticklebacks (Gasterosteus aculeatus).

    Science.gov (United States)

    Toli, E-A; Calboli, F C F; Shikano, T; Merilä, J

    2016-11-01

    In heterogametic species, biological differences between the two sexes are ubiquitous, and hence, errors in sex identification can be a significant source of noise and bias in studies where sex-related sources of variation are of interest or need to be controlled for. We developed and validated a universal multimarker assay for reliable sex identification of three-spined sticklebacks (Gasterosteus aculeatus). The assay makes use of genotype scores from three sex-linked loci and utilizes Bayesian probabilistic inference to identify sex of the genotyped individuals. The results, validated with 286 phenotypically sexed individuals from six populations of sticklebacks representing all major genetic lineages (cf. Pacific, Atlantic and Japan Sea), indicate that in contrast to commonly used single-marker-based sex identification assays, the developed multimarker assay should be 100% accurate. As the markers in the assay can be scored from agarose gels, it provides a quick and cost-efficient tool for universal sex identification of three-spined sticklebacks. The general principle of combining information from multiple markers to improve the reliability of sex identification is transferable and can be utilized to develop and validate similar assays for other species. © 2016 John Wiley & Sons Ltd.

  17. Molecular identification of Mucorales in human tissues: contribution of PCR electrospray-ionization mass spectrometry.

    Science.gov (United States)

    Alanio, A; Garcia-Hermoso, D; Mercier-Delarue, S; Lanternier, F; Gits-Muselli, M; Menotti, J; Denis, B; Bergeron, A; Legrand, M; Lortholary, O; Bretagne, S

    2015-06-01

    Molecular methods are crucial for mucormycosis diagnosis because cultures are frequently negative, even if microscopy suggests the presence of hyphae in tissues. We assessed PCR/electrospray-ionization mass spectrometry (PCR/ESI-MS) for Mucorales identification in 19 unfixed tissue samples from 13 patients with proven or probable mucormycosis and compared the results with culture, quantitative real-time PCR, 16S-23S rRNA gene internal transcribed spacer region (ITS PCR) and 18S PCR sequencing. Concordance with culture identification to both genus and species levels was higher for PCR/ESI-MS than for the other techniques. Thus, PCR/ESI-MS is suitable for Mucorales identification, within 6 hours, for tissue samples for which microscopy results suggest the presence of hyphae. Copyright © 2015 European Society of Clinical Microbiology and Infectious Diseases. Published by Elsevier Ltd. All rights reserved.

  18. Molecular epidemiology and evolutionary genetics of Mycobacterium tuberculosis in Taipei

    OpenAIRE

    Su Ih-Jen; Lee Shi-Yi; Tsai Wen-Shing; Sun Jun-Ren; Chang Jia-Ru; Lin Chih-Wei; Tseng Fan-Chen; Dou Horng-Yunn; Lu Jang-Jih

    2008-01-01

    Abstract Background The control of tuberculosis in densely populated cities is complicated by close human-to-human contacts and potential transmission of pathogens from multiple sources. We conducted a molecular epidemiologic analysis of 356 Mycobacterium tuberculosis (MTB) isolates from patients presenting pulmonary tuberculosis in metropolitan Taipei. Classical antibiogram studies and genetic characterization, using mycobacterial interspersed repetitive-unit-variable-number tandem-repeat (M...

  19. Development and use of molecular markers: past and present.

    Science.gov (United States)

    Grover, Atul; Sharma, P C

    2016-01-01

    Molecular markers, due to their stability, cost-effectiveness and ease of use provide an immensely popular tool for a variety of applications including genome mapping, gene tagging, genetic diversity diversity, phylogenetic analysis and forensic investigations. In the last three decades, a number of molecular marker techniques have been developed and exploited worldwide in different systems. However, only a handful of these techniques, namely RFLPs, RAPDs, AFLPs, ISSRs, SSRs and SNPs have received global acceptance. A recent revolution in DNA sequencing techniques has taken the discovery and application of molecular markers to high-throughput and ultrahigh-throughput levels. Although, the choice of marker will obviously depend on the targeted use, microsatellites, SNPs and genotyping by sequencing (GBS) largely fulfill most of the user requirements. Further, modern transcriptomic and functional markers will lead the ventures onto high-density genetic map construction, identification of QTLs, breeding and conservation strategies in times to come in combination with other high throughput techniques. This review presents an overview of different marker technologies and their variants with a comparative account of their characteristic features and applications.

  20. Digging up the recent Spanish memory: genetic identification of human remains from mass graves of the Spanish Civil War and posterior dictatorship.

    Science.gov (United States)

    Baeta, Miriam; Núñez, Carolina; Cardoso, Sergio; Palencia-Madrid, Leire; Herrasti, Lourdes; Etxeberria, Francisco; de Pancorbo, Marian M

    2015-11-01

    The Spanish Civil War (1936-1939) and posterior dictatorship (until 1970s) stands as one of the major conflicts in the recent history of Spain. It led to nearly two hundred thousand men and women executed or murdered extra-judicially or after dubious legal procedures. Nowadays, most of them remain unidentified or even buried in irretraceable mass graves across Spain. Here, we present the genetic identification of human remains found in 26 mass graves located in Northern Spain. A total of 252 post-mortem remains were analyzed and compared to 186 relatives, allowing the identification of 87 victims. Overall, a significant success of DNA profiling was reached, since informative profiles (≥ 12 STRs and/or mitochondrial DNA profile) were obtained in 85.71% of the remains. This high performance in DNA profiling from challenging samples demonstrated the efficacy of DNA extraction and amplification methods used herein, given that only around 14.29% of the samples did not provide an informative genetic profile for the analysis performed, probably due to the presence of degraded and/or limited DNA in these remains. However, this study shows a partial identification success rate, which is clearly a consequence of the lack of both appropriate family members for genetic comparisons and accurate information about the victims' location. Hence, further perseverance in the exhumation of other intact graves as well as in the search of more alleged relatives is crucial in order to facilitate and increase the number of genetic identifications. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  1. Avoiding pitfalls in molecular genetic testing: case studies of high-resolution array comparative genomic hybridization testing in the definitive diagnosis of Mowat-Wilson syndrome.

    Science.gov (United States)

    Kluk, Michael Joseph; An, Yu; James, Philip; Coulter, David; Harris, David; Wu, Bai-Lin; Shen, Yiping

    2011-05-01

    The molecular testing options available for the diagnosis of genetic disorders are numerous and include a variety of different assay platforms. The consultative input of molecular pathologists and cytogeneticists, working closely with the ordering clinicians, is often important for definitive diagnosis. Herein, we describe two patients who had long histories of unexplained signs and symptoms with a high clinical suspicion of an underlying genetic etiology. Initial molecular testing in both cases was negative, but the application of high-resolution array comparative genomic hybridization technology lead to definitive diagnosis in both cases. We summarize the clinical findings and molecular testing in each case, discuss the differential diagnoses, and review the clinical and pathological findings of Mowat-Wilson syndrome. This report highlights the importance for those involved in molecular testing to know the nature of the underlying genetic abnormalities associated with the suspected diagnosis, to recognize the limitations of each testing platform, and to persistently pursue repeat testing using high-resolution technologies when indicated. This concept is applicable to both germline and somatic molecular genetic testing. Copyright © 2011 American Society for Investigative Pathology and the Association for Molecular Pathology. Published by Elsevier Inc. All rights reserved.

  2. Challenges to a molecular approach to prey identification in the Burmese python, Python molurus bivittatus

    Science.gov (United States)

    Falk, Bryan; Reed, Robert N.

    2015-01-01

    Molecular approaches to prey identification are increasingly useful in elucidating predator–prey relationships, and we aimed to investigate the feasibility of these methods to document the species identities of prey consumed by invasive Burmese pythons in Florida. We were particularly interested in the diet of young snakes, because visual identification of prey from this size class has proven difficult. We successfully extracted DNA from the gastrointestinal contents of 43 young pythons, as well as from several control samples, and attempted amplification of DNA mini-barcodes, a 130-bp region of COX1. Using a PNA clamp to exclude python DNA, we found that prey DNA was not present in sufficient quality for amplification of this locus in 86% of our samples. All samples from the GI tracts of young pythons contained only hair, and the six samples we were able to identify to species were hispid cotton rats. This suggests that young Burmese pythons prey predominantly on small mammals and that prey diversity among snakes of this size class is low. We discuss prolonged gastrointestinal transit times and extreme gastric breakdown as possible causes of DNA degradation that limit the success of a molecular approach to prey identification in Burmese pythons

  3. [Noonan syndrome can be diagnosed clinically and through molecular genetic analyses].

    Science.gov (United States)

    Henningsen, Marie Krab; Jelsig, Anne Marie; Andersen, Helle; Brusgaard, Klaus; Ousager, Lilian Bomme; Hertz, Jens Michael

    2015-08-03

    Noonan syndrome is part of the group of RASopathies caused by germ line mutations in genes involved in the RAS/MAPK pathway. There is substantial phenotypic overlap among the RASopathies. Diagnosis of Noonan syndrome is often based on clinical features including dysmorphic facial features, short stature and congenital heart disease. Rapid advances in sequencing technology have made molecular genetic analyses a helpful tool in diagnosing and distinguishing Noonan syndrome from other RASopathies.

  4. Molecular identification of Cryptosporidium spp. in seagulls, pigeons, dogs, and cats in Thailand

    OpenAIRE

    Koompapong Khuanchai; Mori Hirotake; Thammasonthijarern Nipa; Prasertbun Rapeepun; Pintong Ai-rada; Popruk Supaluk; Rojekittikhun Wichit; Chaisiri Kittipong; Sukthana Yaowalark; Mahittikorn Aongart

    2014-01-01

    Zoonotic Cryptosporidium spp., particularly C. meleagridis, C. canis, and C. felis, are enteric protozoa responsible for major public health concerns around the world. To determine the spread of this parasite in Thailand, we conducted molecular identification of Cryptosporidium spp. from animal samples around the country, by collecting and investigating the feces of seagulls (Chroicocephalus brunnicephalus and Chroicocephalus ridibundus), domestic pigeons (Columba livia domestica), dogs, and ...

  5. Molecular genetic diversity of Punica granatum L. (pomegranate) as revealed by microsatellite DNA markers

    Science.gov (United States)

    Pomegranate (Punica granatum L.) is one of the oldest known edible fruits and more and more it arouse interest of scientific community given its numerous biological activities. However, information about its genetic resources and characterization using reliable molecular markers are still scarce. In...

  6. Study of inter species diversity and population structure by molecular genetic method in Iranian Artemia

    OpenAIRE

    Hajirostamloo, Mahbobeh

    2005-01-01

    Artemia is a small crustacean that adapted to live in brine water and has been seen in different brine water sources in Iran. Considering the importance of genetic studies manifest inter population differences in species, to estimate genetic structure, detect difference at molecular level and separate different Artemia populations of Iran, also study of phylogenic relationships among them, samples of Artemia were collected from nine region: Urmia lake in West Azerbaijan, Sh...

  7. A Baseline Algorithm for Molecular Diagnosis of Genetic Eye Diseases: Ophthalmologist’s Perspective

    Directory of Open Access Journals (Sweden)

    Hande Taylan Şekeroğlu

    2016-12-01

    Full Text Available To the Editor: Genetic eye diseases constitute a large and heterogeneous group. Individual diseases may cause multiple structural/functional anomalies and developmental features. Family history may be suggestive; however, it may also be challenging, particularly in late-onset conditions or in cases of variable expression. In the current era of genetic advances, diagnosis of a genetic eye disease is facilitated by well-established collaboration between ophthalmologists and geneticists, as increasingly more patients will be asking for genetic counseling and prenatal diagnosis in addition to ophthalmologic management. Molecular investigation of a genetic eye disease requires customized analysis and advanced technology in addition to the requisite detailed family history and accurate ophthalmological diagnosis. A common indication for genetic testing is the validation of a preliminary diagnosis made in clinical practice. The need to determine the prognostic implications of the genotype, assessment of the recurrence risk and in particular, the possibility of specific gene therapy in the near future encourages clinicians to pursue genetic research. We present here a baseline algorithm covering common genetic mechanisms in order to outline a basic molecular approach for ophthalmologists. The first step of the flow chart, a prudent clinical examination with complete description of the phenotype, is indispensible for making a precise and accurate preliminary diagnosis (Figure 1. If the phenotype is pathognomonic, Sanger sequencing is preferred for confirmation.1 A previously established genotype-phenotype correlation may add to the value, either by providing accurate prognostic information or by indicating which particular mutation to look for. One such example may be electroretinographic supranormal rod response, indicating KCNV2 mutation type cone dystrophy, which can be precisely detected by Sanger sequencing or qPCR.2 Conventional karyotyping reveals

  8. Molecular analysis of echinostome metacercariae from their second intermediate host found in a localised geographic region reveals genetic heterogeneity and possible cryptic speciation.

    Directory of Open Access Journals (Sweden)

    Waraporn Noikong

    2014-04-01

    Full Text Available Echinostome metacercariae are the infective stage for humans and animals. The identification of echinostomes has been based until recently on morphology but molecular techniques using sequences of ribosomal RNA and mitochondrial DNA have indicated major clades within the group. In this study we have used the ITS2 region of ribosomal RNA and the ND1 region of mitochondrial DNA to identify metacercariae from snails collected from eight well-separated sites from an area of 4000 km2 in Lamphun Province, Thailand. The derived sequences have been compared to those collected from elsewhere and have been deposited in the nucleotide databases. There were two aims of this study; firstly, to determine the species of echinostome present in an endemic area, and secondly, to assess the intra-specific genetic diversity, as this may be informative with regard to the potential for the development of anthelmintic resistance and with regard to the spread of infection by the definitive hosts. Our results indicate that the most prevalent species are most closely related to E. revolutum, E. trivolvis, E. robustum, E. malayanum and Euparyphium albuferensis. Some sites harbour several species and within a site there could be considerable intra-species genetic diversity. There is no significant geographical structuring within this area. Although the molecular techniques used in this study allowed the assignment of the samples to clades within defined species, however, within these groupings there were significant differences indicating that cryptic speciation may have occurred. The degree of genetic diversity present would suggest the use of targeted regimes designed to minimise the selection of anthelmintic resistance. The apparent lack of geographic structuring is consistent with the transmission of the parasites by the avian hosts.

  9. Breeding in peach, cherry and plum: from a tissue culture, genetic, transcriptomic and genomic perspective

    Directory of Open Access Journals (Sweden)

    Basilio Carrasco

    2013-01-01

    Full Text Available This review is an overview of traditional and modern breeding methodologies being used to develop new Prunus cultivars (stone fruits with major emphasis on peach, sweet cherry and Japanese plum. To this end, common breeding tools used to produce seedlings, including in vitro culture tools, are discussed. Additionally, the mechanisms of inheritance of many important agronomical traits are described. Recent advances in stone fruit transcriptomics and genomic resources are providing an understanding of the molecular basis of phenotypic variability as well as the identification of allelic variants and molecular markers. These have potential applications for understanding the genetic diversity of the Prunus species, molecular marker-assisted selection and transgenesis. Simple Sequence Repeat (SSR and Single Nucleotide Polymorphism (SNPs molecular markers are described as useful tools to describe genetic diversity in peach, sweet cherry and Japanese plum. Additionally, the recently sequenced peach genome and the public release of the sweet cherry genome are discussed in terms of their applicability to breeding programs

  10. Molecular identification of Cryptosporidium spp. in animal and human hosts from the Czech Republic

    Czech Academy of Sciences Publication Activity Database

    Hajdušek, Ondřej; Ditrich, Oleg; Šlapeta, J.

    2004-01-01

    Roč. 122, č. 3 (2004), s. 183-192 ISSN 0304-4017 R&D Projects: GA AV ČR IBS6022006 Grant - others:GA MŠk1(CZ) 1260/2001 Institutional research plan: CEZ:AV0Z6022909 Keywords : Cryptosporidium * molecular identification * SSU rRNA Subject RIV: EE - Microbiology, Virology Impact factor: 1.445, year: 2004

  11. Next-generation mammalian genetics toward organism-level systems biology.

    Science.gov (United States)

    Susaki, Etsuo A; Ukai, Hideki; Ueda, Hiroki R

    2017-01-01

    Organism-level systems biology in mammals aims to identify, analyze, control, and design molecular and cellular networks executing various biological functions in mammals. In particular, system-level identification and analysis of molecular and cellular networks can be accelerated by next-generation mammalian genetics. Mammalian genetics without crossing, where all production and phenotyping studies of genome-edited animals are completed within a single generation drastically reduce the time, space, and effort of conducting the systems research. Next-generation mammalian genetics is based on recent technological advancements in genome editing and developmental engineering. The process begins with introduction of double-strand breaks into genomic DNA by using site-specific endonucleases, which results in highly efficient genome editing in mammalian zygotes or embryonic stem cells. By using nuclease-mediated genome editing in zygotes, or ~100% embryonic stem cell-derived mouse technology, whole-body knock-out and knock-in mice can be produced within a single generation. These emerging technologies allow us to produce multiple knock-out or knock-in strains in high-throughput manner. In this review, we discuss the basic concepts and related technologies as well as current challenges and future opportunities for next-generation mammalian genetics in organism-level systems biology.

  12. Host-range phylogenetic grouping of capripoxviruses. Genetic typing of CaPVs

    International Nuclear Information System (INIS)

    Le Goff, C.; Chadeyras, A.; Libeau, G.; Albina, E.; Fakhfakh, E.; Hammami, S.; Elexpeter Aba Adulugba; Diallo, A.

    2005-01-01

    Because of their close relationship, specific identification of the CaPVs genus inside the Poxviridae family relies mainly on molecular tools rather than on classical serology. We describe the suitability of the G protein-coupled chemokine receptor (GPCR), for host range phylogenetic grouping. The analysis of 26 CaPVs shows 3 tight genetic clusters consisting of goatpox virus (GPV), lumpy skin disease virus (LSDV), and sheeppox virus (SPV). (author)

  13. Molecular mechanisms of drug resistance in natural Leishmania populations vary with genetic background.

    Directory of Open Access Journals (Sweden)

    Saskia Decuypere

    Full Text Available The evolution of drug-resistance in pathogens is a major global health threat. Elucidating the molecular basis of pathogen drug-resistance has been the focus of many studies but rarely is it known whether a drug-resistance mechanism identified is universal for the studied pathogen; it has seldom been clarified whether drug-resistance mechanisms vary with the pathogen's genotype. Nevertheless this is of critical importance in gaining an understanding of the complexity of this global threat and in underpinning epidemiological surveillance of pathogen drug resistance in the field. This study aimed to assess the molecular and phenotypic heterogeneity that emerges in natural parasite populations under drug treatment pressure. We studied lines of the protozoan parasite Leishmania (L. donovani with differential susceptibility to antimonial drugs; the lines being derived from clinical isolates belonging to two distinct genetic populations that circulate in the leishmaniasis endemic region of Nepal. Parasite pathways known to be affected by antimonial drugs were characterised on five experimental levels in the lines of the two populations. Characterisation of DNA sequence, gene expression, protein expression and thiol levels revealed a number of molecular features that mark antimonial-resistant parasites in only one of the two populations studied. A final series of in vitro stress phenotyping experiments confirmed this heterogeneity amongst drug-resistant parasites from the two populations. These data provide evidence that the molecular changes associated with antimonial-resistance in natural Leishmania populations depend on the genetic background of the Leishmania population, which has resulted in a divergent set of resistance markers in the Leishmania populations. This heterogeneity of parasite adaptations provides severe challenges for the control of drug resistance in the field and the design of molecular surveillance tools for widespread

  14. Identification and molecular characterization of a naturally occurring RNA virus mutant defective in the initiation of host recovery

    International Nuclear Information System (INIS)

    Xin Hongwu; Ding Shouwei

    2003-01-01

    The host recovery response is characterized by the disappearance of disease symptoms and activation of the RNA silencing virus resistance in the new growth following an initial symptomatic infection. However, it is not clear what triggers the initiation of recovery, which occurs naturally only in some virus-host interactions. Here we report the identification and characterization of a spontaneous mutant of Tobacco streak virus (TSV) that became defective in triggering recovery in tobacco plants. Infectious full-length cDNA clones corresponding to the tripartite RNA genome were constructed from both the wild-type and the nonrecovery mutant of TSV (TSVnr), the first sets of infectious cDNA clones from an Ilarvirus. Genetic and molecular analyses identified an A → G mutation in the TSVnr genome that was sufficient to confer nonrecovery when introduced into TSV. The mutation was located in the intergenic region of RNA 3 upstream of the mapped transcriptional start site of the coat protein mRNA. Intriguingly, induction of recovery by TSV was not accompanied by virus clearance and TSV consistently accumulated to significantly higher levels than TSVnr did even though TSVnr-infected plants displayed severe symptoms throughout the course of infection. Thus, our findings indicate that recovery of host can be initiated by minimal genetic changes in a viral genome and may occur in the absence of virus clearance. Mechanisms possibly involved in the initiation of host recovery are discussed

  15. Pollutant source identification model for water pollution incidents in small straight rivers based on genetic algorithm

    Science.gov (United States)

    Zhang, Shou-ping; Xin, Xiao-kang

    2017-07-01

    Identification of pollutant sources for river pollution incidents is an important and difficult task in the emergency rescue, and an intelligent optimization method can effectively compensate for the weakness of traditional methods. An intelligent model for pollutant source identification has been established using the basic genetic algorithm (BGA) as an optimization search tool and applying an analytic solution formula of one-dimensional unsteady water quality equation to construct the objective function. Experimental tests show that the identification model is effective and efficient: the model can accurately figure out the pollutant amounts or positions no matter single pollution source or multiple sources. Especially when the population size of BGA is set as 10, the computing results are sound agree with analytic results for a single source amount and position identification, the relative errors are no more than 5 %. For cases of multi-point sources and multi-variable, there are some errors in computing results for the reasons that there exist many possible combinations of the pollution sources. But, with the help of previous experience to narrow the search scope, the relative errors of the identification results are less than 5 %, which proves the established source identification model can be used to direct emergency responses.

  16. Searching for non-genetic molecular and imaging PTSD risk and resilience markers: Systematic review of literature and design of the German Armed Forces PTSD biomarker study.

    Science.gov (United States)

    Schmidt, Ulrike; Willmund, Gerd-Dieter; Holsboer, Florian; Wotjak, Carsten T; Gallinat, Jürgen; Kowalski, Jens T; Zimmermann, Peter

    2015-01-01

    Biomarkers allowing the identification of individuals with an above average vulnerability or resilience for posttraumatic stress disorder (PTSD) would especially serve populations at high risk for trauma exposure like firefighters, police officers and combat soldiers. Aiming to identify the most promising putative PTSD vulnerability markers, we conducted the first systematic review on potential imaging and non-genetic molecular markers for PTSD risk and resilience. Following the PRISMA guidelines, we systematically screened the PubMed database for prospective longitudinal clinical studies and twin studies reporting on pre-trauma and post-trauma PTSD risk and resilience biomarkers. Using 25 different combinations of search terms, we retrieved 8151 articles of which we finally included and evaluated 9 imaging and 27 molecular studies. In addition, we briefly illustrate the design of the ongoing prospective German Armed Forces (Bundeswehr) PTSD biomarker study (Bw-BioPTSD) which not only aims to validate these previous findings but also to identify novel and clinically applicable molecular, psychological and imaging risk, resilience and disease markers for deployment-related psychopathology in a cohort of German soldiers who served in Afghanistan. Copyright © 2014 Elsevier Ltd. All rights reserved.

  17. Biochemical and molecular genetic studies on some cyanobacterial isolates

    International Nuclear Information System (INIS)

    Kamal, E.A.R.; Ebrahim, S.A.A.

    2011-01-01

    In the present study, the isolation and purification of a set of Cyanobacteria strains belonging to genus Oscillatoria was undertaken, followed by the analyses of phylogenetic relationships using different biochemical and molecular genetic techniques (SOS-PAGE and RAPO-PCR). A total of 45 protein bands were observed within the studied Osci/latoria isolates by SOS-PAGE (only three unique bands, eight monomorphic bands and 37 polymorphic bands). On the other hand, extracted ONA from isolates was used to identify the molecular fingerprints. A sum of 94 polymorphic bands was generated by these primers in the Ocsi/laloria genotypes under study. A total of 20 unique bands were identified out of the polymorphic ones. These unique bands were used to discriminate among the studied Ocsi/latoria isolates. Most isolates of Ocsi/latoria genotypes were discriminated by one or more unique bands. Numerical taxonomic using 45 protein attributes of 19 isolates and RAPO markers on five isolates. Two methods -Clustering (UPGMA) and Principal Component Analysis (PCA) were used for these analyses. The similarities and clusters produced between the studied isolates were discussed.

  18. Biochemical and molecular genetic studies on some cyanobacterial isolates

    Energy Technology Data Exchange (ETDEWEB)

    Kamal, E A.R. [Umm Al-Qura University, Makkah (Saudi Arabia). Dept. of Biology; Ebrahim, S A.A. [Ain Sham University, Cairo (Egypt). Dept. of Cytogenetic

    2011-11-15

    In the present study, the isolation and purification of a set of Cyanobacteria strains belonging to genus Oscillatoria was undertaken, followed by the analyses of phylogenetic relationships using different biochemical and molecular genetic techniques (SOS-PAGE and RAPO-PCR). A total of 45 protein bands were observed within the studied Osci/latoria isolates by SOS-PAGE (only three unique bands, eight monomorphic bands and 37 polymorphic bands). On the other hand, extracted ONA from isolates was used to identify the molecular fingerprints. A sum of 94 polymorphic bands was generated by these primers in the Ocsi/laloria genotypes under study. A total of 20 unique bands were identified out of the polymorphic ones. These unique bands were used to discriminate among the studied Ocsi/latoria isolates. Most isolates of Ocsi/latoria genotypes were discriminated by one or more unique bands. Numerical taxonomic using 45 protein attributes of 19 isolates and RAPO markers on five isolates. Two methods -Clustering (UPGMA) and Principal Component Analysis (PCA) were used for these analyses. The similarities and clusters produced between the studied isolates were discussed.

  19. Primordial dwarfism: overview of clinical and genetic aspects.

    Science.gov (United States)

    Khetarpal, Preeti; Das, Satrupa; Panigrahi, Inusha; Munshi, Anjana

    2016-02-01

    Primordial dwarfism is a group of genetic disorders which include Seckel Syndrome, Silver-Russell Syndrome, Microcephalic Osteodysplastic Primordial Dwarfism types I/III, II and Meier-Gorlin Syndrome. This genetic disorder group is characterized by intra-uterine growth retardation and post-natal growth abnormalities which occur as a result of disorganized molecular and genomic changes in embryonic stage and, thus, it represents a unique area to study growth and developmental abnormalities. Lot of research has been carried out on different aspects; however, a consolidated review that discusses an overall spectrum of this disorder is not accessible. Recent research in this area points toward important molecular and cellular mechanisms in human body that regulate the complexity of growth process. Studies have emerged that have clearly associated with a number of abnormal chromosomal, genetic and epigenetic alterations that can predispose an embryo to develop PD-associated developmental defects. Finding and associating such fundamental changes to its subtypes will help in re-examination of alleged functions at both cellular and developmental levels and thus reveal the intrinsic mechanism that leads to a balanced growth. Although such findings have unraveled a subtle understanding of growth process, we further require active research in terms of identification of reliable biomarkers for different subtypes as an immediate requirement for clinical utilization. It is hoped that further study will advance the understanding of basic mechanisms regulating growth relevant to human health. Therefore, this review has been written with an aim to present an overview of chromosomal, molecular and epigenetic modifications reported to be associated with different subtypes of this heterogenous disorder. Further, latest findings with respect to clinical and molecular genetics research have been summarized to aid the medical fraternity in their clinical utility, for diagnosing disorders

  20. Determination of genetic diversity among some almond accessions

    Directory of Open Access Journals (Sweden)

    Pinar Hasan

    2015-01-01

    Full Text Available More recently the use of different molecular markers in fruit species to determine particularly genetic diversity, genetic relationships and cultivar identification has been gained more importance. In the study, 13 randomly amplified polimorfic DNA (RAPD and 4 inter-simple sequence repeat (ISSR markers were used to evaluate genetic relationships among 95 almong accessions (26 foreign cultivars and 69 national cultivars and selections. The all plant material found in Almond Germplasm Repository in Gaziantep, Turkey. Both RAPD and ISSR markers distinguished the almond cultivars and selections in various levels. 17 RAPD and ISSR markers yielded a total of 73 scorable bands, which 51 are polymorphic. The two marker system exhibited variation with regard to average band sizes and polymorphism ratio. The average polymorphism was higher in ISSR (88% compared to RAPD (74%. RAPD and ISSR marker systems were found to be useful for determining genetic diversity among almong genotypes and cultivars. Combining of two dendrograms obtained through these markers show different clustering of 96 almond specimens without geographical isolation. These results supported that almonds in Turkey indicated considerable genetic diversity.

  1. Automated identification and quantification of glycerophospholipid molecular species by multiple precursor ion scanning

    DEFF Research Database (Denmark)

    Ejsing, Christer S.; Duchoslav, Eva; Sampaio, Julio

    2006-01-01

    We report a method for the identification and quantification of glycerophospholipid molecular species that is based on the simultaneous automated acquisition and processing of 41 precursor ion spectra, specific for acyl anions of common fatty acids moieties and several lipid class-specific fragment...... of glycerophospholipids. The automated analysis of total lipid extracts was powered by a robotic nanoflow ion source and produced currently the most detailed description of the glycerophospholipidome....

  2. Molecular identification of Coccidioides spp. in soil samples from Brazil

    Directory of Open Access Journals (Sweden)

    Filho Antônio D

    2011-05-01

    Full Text Available Abstract Background Since 1991 several outbreaks of acute coccidioidomycosis (CM were diagnosed in the semi-arid Northeast of Brazil, mainly related to disturbance of armadillo burrows caused by hunters while digging them for the capture of these animals. This activity causes dust contaminated with arthroconidia of Coccidioides posadasii, which, once inhaled, cause the mycosis. We report on the identification of C. posadasii in soil samples related to outbreaks of CM. Results Twenty four soil samples had their DNA extracted and subsequently submitted to a semi-nested PCR technique using specific primers. While only 6 (25% soil samples were positive for C. posadasii by mice inoculation, all (100% were positive by the molecular tool. Conclusion This methodology represents a simple, sensitive and specific molecular technique to determine the environmental distribution of Coccidioides spp. in endemic areas, but cannot distinguish the species. Moreover, it may be useful to identify culture isolates. Key-words: 1. Coccidioidomycosis. 2. Coccidioides spp. 3. C. posadasii. 4. Semi-arid. 5. Semi-nested PCR

  3. SSR marker development and intraspecific genetic divergence exploration of Chrysanthemum indicum based on transcriptome analysis.

    Science.gov (United States)

    Han, Zhengzhou; Ma, Xinye; Wei, Min; Zhao, Tong; Zhan, Ruoting; Chen, Weiwen

    2018-04-25

    Chrysanthemum indicum L., an important ancestral species of the flowering plant chrysanthemum, can be used as medicine and for functional food development. Due to the lack of hereditary information for this species and the difficulty of germplasm identification, we herein provide new genetic insight from the perspective of intraspecific transcriptome comparison and present single sequence repeat (SSR) molecular marker recognition technology. Through the study of a diploid germplasm (DIWNT) and a tetraploid germplasm (DIWT), the following outcome were obtained. (1) A significant difference in Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) annotations for specific homologous genes was observed using the OrthoMCL method for the identification of homologous gene families between the two cytotypes. Ka/Ks analysis of common, single-copy homologous family members also revealed a greater difference among genes that experienced positive selection than among those experiencing positive selection. (2) Of more practical value, 2575 SSR markers were predicted and partly verified. We used TaxonGap as a visual tool to inspect genotype uniqueness and screen for high-performance molecular loci; we recommend four primers of 65 randomly selected primers with a combined identification success rate of 88.6% as priorities for further development of DNA fingerprinting of C. indicum germplasm. The SSR technology based on next-generation sequencing was proved to be successful in the identification of C. indicum germplasms. And the information on the intraspecfic genetic divergence generated by transcriptome comparison deepened the understanding of this complex species' nature.

  4. Scarlet Fever Upsurge in England and Molecular-Genetic Analysis in North-West London, 2014

    Centers for Disease Control (CDC) Podcasts

    2016-08-16

    Sarah Gregory reads an abridged version of the article, Scarlet Fever Upsurge in England and Molecular-Genetic Analysis in North-West London, 2014.  Created: 8/16/2016 by National Center for Emerging and Zoonotic Infectious Diseases (NCEZID).   Date Released: 8/16/2016.

  5. Genética, biologia molecular e ética: as relações trabalho e saúde Genetics, molecular biology and ethics: work and health connections

    Directory of Open Access Journals (Sweden)

    Gilka Jorge Figaro Gattás

    2002-01-01

    Full Text Available O artigo discute o impacto dos avanços da genética e da biologia molecular sobre a prática em saúde ocupacional. O conhecimento atual sobre o genoma humano permite, em certas circunstâncias, identificar fatores individuais de suscetibilidade a doenças em situações de exposição a substâncias químicas ou físicas, ou ainda, a doenças genéticas de manifestação tardia. Estudos epidemiológicos incorporando elementos da genética e da biologia molecular têm sido desenhados para avaliar a interação de variantes metabólicas e exposições ambientais no risco de ocorrência de diferentes doenças. Apesar desta perspectiva, considera-se que as pesquisas nesta área são ainda incipientes. A estratégia para a redução dos danos causados à saúde do trabalhador deve continuar a ter como base, prioritariamente, a modificação e a adequação dos ambientes de trabalho e não a especificação genética da força de trabalho. Introduzir a discussão sobre a necessidade de definir princípios de responsabilidade social no uso de informações genéticas e que possam reger ações éticas em saúde do trabalhador é uma das propostas principais deste artigo.This paper provides a discussion about the increasing development of genetics and molecular biomarkers technologies and consequent impact on practices of occupational health. Genetic analysis could be in specific populations at occupational, pharmacological or environmental exposures. Current knowledge of human genome open up the possibility of individual genetic screening of disease susceptibility among those exposed in workplaces to chemical or physical hazards, or for late onset hereditary disease. Epidemiological studies including genetic and molecular biology approaches have been designed to evaluate the interaction of genetically determined metabolic variants with different environmental exposures on the risk of diseases. The strategy for worker's health promotion must be

  6. Quality assurance practices in Europe: a survey of molecular genetic testing laboratories

    Science.gov (United States)

    Berwouts, Sarah; Fanning, Katrina; Morris, Michael A; Barton, David E; Dequeker, Elisabeth

    2012-01-01

    In the 2000s, a number of initiatives were taken internationally to improve quality in genetic testing services. To contribute to and update the limited literature available related to this topic, we surveyed 910 human molecular genetic testing laboratories, of which 291 (32%) from 29 European countries responded. The majority of laboratories were in the public sector (81%), affiliated with a university hospital (60%). Only a minority of laboratories was accredited (23%), and 26% was certified. A total of 22% of laboratories did not participate in external quality assessment (EQA) and 28% did not use reference materials (RMs). The main motivations given for accreditation were to improve laboratory profile (85%) and national recognition (84%). Nearly all respondents (95%) would prefer working in an accredited laboratory. In accredited laboratories, participation in EQA (Pquality assurance (Pquality implementation score (QIS), we showed that accredited laboratories (average score 92) comply better than certified laboratories (average score 69, Pquality indicators. We conclude that quality practices vary widely in European genetic testing laboratories. This leads to a potentially dangerous situation in which the quality of genetic testing is not consistently assured. PMID:22739339

  7. Synthetic biology and molecular genetics in non-conventional yeasts: Current tools and future advances.

    Science.gov (United States)

    Wagner, James M; Alper, Hal S

    2016-04-01

    Coupling the tools of synthetic biology with traditional molecular genetic techniques can enable the rapid prototyping and optimization of yeast strains. While the era of yeast synthetic biology began in the well-characterized model organism Saccharomyces cerevisiae, it is swiftly expanding to include non-conventional yeast production systems such as Hansenula polymorpha, Kluyveromyces lactis, Pichia pastoris, and Yarrowia lipolytica. These yeasts already have roles in the manufacture of vaccines, therapeutic proteins, food additives, and biorenewable chemicals, but recent synthetic biology advances have the potential to greatly expand and diversify their impact on biotechnology. In this review, we summarize the development of synthetic biological tools (including promoters and terminators) and enabling molecular genetics approaches that have been applied in these four promising alternative biomanufacturing platforms. An emphasis is placed on synthetic parts and genome editing tools. Finally, we discuss examples of synthetic tools developed in other organisms that can be adapted or optimized for these hosts in the near future. Copyright © 2015 Elsevier Inc. All rights reserved.

  8. Cystic fibrosis, molecular genetics for all life

    Directory of Open Access Journals (Sweden)

    Ausilia Elce

    2015-10-01

    Full Text Available Cystic fibrosis (CF is the most frequent lethal autosomal recessive disorder among Caucasians (incidence: 1:2,500 newborn. In the last two decades CF prognosis considerably improved and many patients well survive into their adulthood. Furthermore, milder CF with a late onset was described. CF is a challenge for laboratory of molecular genetics that greatly contributes to the natural history of the disease since fetal age. Carrier screening and prenatal diagnosis, also by non-invasive analysis of maternal blood fetal DNA, are now available, and many labs offer preimplantation diagnosis. The major criticism in prenatal medicine is the lack of an effective multidisciplinary counseling that helps the couples to plan their reasoned reproductive choice. Most countries offer newborn screening that significantly reduce CF morbidity but different protocols based on blood trypsin, molecular analysis and sweat chloride cause a variable efficiency of the screening programs. Again, laboratory is crucial for CF diagnosis in symptomatic patients: sweat chloride is the diagnostic golden standard, but different methodologies and the lack of quality control in most labs reduce its effectiveness. Molecular analysis contributes to confirm diagnosis in symptomatic subjects; furthermore, it helps to predict the disease outcome on the basis of the mutation (genotype-phenotype correlation and mutations in a myriad of genes, inherited independently by CF transmembrane conductance regulator (CFTR, which may modulate the clinical expression of the disease in each single patient (modifier genes. More recently, the search of the CFTR mutations gained a role in selecting CF patients that may benefit from biological therapy based on correctors and potentiators that are effective in patients bearing specific mutations (personalized therapy. All such applications of molecular diagnostics confirm the “uniqueness” of each CF patient, offering to laboratory medicine the

  9. Use of EST-SSR Markers for Evaluating Genetic Diversity and Fingerprinting Celery (Apium graveolens L. Cultivars

    Directory of Open Access Journals (Sweden)

    Nan Fu

    2014-02-01

    Full Text Available Celery (Apium graveolens L. is one of the most economically important vegetables worldwide, but genetic and genomic resources supporting celery molecular breeding are quite limited, thus few studies on celery have been conducted so far. In this study we made use of simple sequence repeat (SSR markers generated from previous celery transcriptome sequencing and attempted to detect the genetic diversity and relationships of commonly used celery accessions and explore the efficiency of the primers used for cultivars identification. Analysis of molecular variance (AMOVA of Apium graveolens L. var. dulce showed that approximately 43% of genetic diversity was within accessions, 45% among accessions, and 22% among horticultural types. The neighbor-joining tree generated by unweighted pair group method with arithmetic mean (UPGMA, and population structure analysis, as well as principal components analysis (PCA, separated the cultivars into clusters corresponding to the geographical areas where they originated. Genetic distance analysis suggested that genetic variation within Apium graveolens was quite limited. Genotypic diversity showed any combinations of 55 genic SSRs were able to distinguish the genotypes of all 30 accessions.

  10. [Molecular genetic analysis and clinical aspects of patients with hereditary hemochromatosis].

    Science.gov (United States)

    Lange, U; Teichmann, J; Dischereit, G

    2014-08-01

    The purpose of the study was to perform a molecular genetic analysis and to document clinical aspects in patients with hereditary hemochromatosis. The study included 33 outpatients (23 males average age 50.6 years and 10 females average age 60.6 years) with a disorder of iron metabolism (transferrin saturation > 75 %) as confirmation of hemochromatosis who were subjected to molecular genetic and clinical analyses. A homozygous mutation of the hemochromatosis (HFE) gene (C282YY) was detected in 63.6 %, a compound heterozygous mutation (C282Y/H63D) in 30.3% and no mutation of the HFE gene was detected in 6.1 %. The following organ manifestations could be objectified: arthralgia (78.8 %), liver disease (39.9 %), skin hyperpigmentation (30.3 %), osteoporosis (24.2 %), diabetes mellitus (24.2 %) and cardiomyopathy (12.1 %). Comparison between patients with heterozygous and homozygous hemochromatosis revealed the following differences: compound heterozygote patients presented less frequently with osteoarthritis of the metacarpophalangeal (MCP) joints and hands (85.7 %/71.4 % homozygotes vs. 60 %/60 % heterozygotes). Osteoarthritis of the shoulder joints and osteoporosis as well as hypothyroidism were more frequent in compound heterozygote patients, whereas osteoarthritis of the knee and hip joints as well as liver disease were more common in homozygote patients. No differences between both groups were seen with respect to the clinical manifestations of cardiomyopathy and diabetes mellitus. Prevalent causes of death in hereditary hemochromatosis are heart failure, liver disease (cirrhosis and hepatocellular carcinoma) and portal hypertension. Therefore, an early diagnosis, adequate therapy and genetic screening of family members are of great importance. Medicinal treatment will only effectively prevent deleterious organ involvement and subsequent complications if initiated at an early stage. Furthermore, an overview of the current data is given.

  11. Variabilidade genética de acessos de maracujá-suspiro com base em marcadores moleculares Genetic variability of wild passion fruit determined by molecular markers

    Directory of Open Access Journals (Sweden)

    Keize Pereira Junqueira

    2007-01-01

    Full Text Available Passiflora nitida é uma espécie silvestre amplamente distribuída pelo território brasileiro, constituindo-se em fonte de resistência a doenças foliares e de raízes. O objetivo deste trabalho foi avaliar a variabilidade genética entre acessos de P. nitida procedentes de diferentes tipos fitofisionômicos de Cerrado e estados brasileiros (Goiás, Distrito Federal, Tocantins, Mato Grosso e Amazonas, usando marcadores moleculares RAPD. O DNA genômico de cada acesso foi extraído, e doze iniciadores decâmeros foram utilizados para a obtenção de marcadores moleculares RAPD, que foram convertidos em matriz de dados binários, a partir da qual foram estimadas as distâncias genéticas entre os acessos e realizadas análises de agrupamento e de dispersão gráfica. Foram obtidos 196 marcadores para P. nitida, dos quais 63,81% foram polimórficos. As distâncias genéticas entre os acessos de maracujá variaram de 0,031 a 0,614 e, considerando apenas P. nitida, de 0,031 a 0,417. Os marcadores moleculares demonstraram alta variabilidade genética dos acessos de P. nitida. Menores distâncias genéticas foram verificadas entre os acessos originados do mesmo estado. Considerando-se os acessos de um mesmo estado, menores distâncias genéticas foram verificadas entre os acessos provenientes de tipos fitofisionômicos próximos. O acesso "Manaus 2" apresentou o maior distanciamento genético em relação aos demais acessos.Passiflora nitida is a wild species widely distributed in Brazilian territory. It is a source of resistance to foliar and soil borne diseases. The objective of this work was to evaluate the genetic variability among accessions of P. nitida proceeding from different types of Cerrado (Brazilian savannah vegetation and brazilian states (Goiás, Distrito Federal, Tocantins, Mato Grosso and Amazonas using RAPD molecular markers. The genomic DNA of each origin was extracted and amplified using 12 decamer primers to obtain RAPD

  12. Mutation scanning analysis of genetic variation within and among Echinococcus species: implications and future prospects.

    Science.gov (United States)

    Jabbar, Abdul; Gasser, Robin B

    2013-07-01

    Adult tapeworms of the genus Echinococcus (family Taeniidae) occur in the small intestines of carnivorous definitive hosts and are transmitted to particular intermediate mammalian hosts, in which they develop as fluid-filled larvae (cysts) in internal organs (usually lung and liver), causing the disease echinococcosis. Echinococcus species are of major medical importance and also cause losses to the meat and livestock industries, mainly due to the condemnation of infected offal. Decisions regarding the treatment and control of echinococcosis rely on the accurate identification of species and population variants (strains). Conventional, phenetic methods for specific identification have some significant limitations. Despite advances in the development of molecular tools, there has been limited application of mutation scanning methods to species of Echinococcus. Here, we briefly review key genetic markers used for the identification of Echinococcus species and techniques for the analysis of genetic variation within and among populations, and the diagnosis of echinococcosis. We also discuss the benefits of utilizing mutation scanning approaches to elucidate the population genetics and epidemiology of Echinococcus species. These benefits are likely to become more evident following the complete characterization of the genomes of E. granulosus and E. multilocularis.

  13. Recent advances in high-throughput molecular marker identification for superficial and invasive bladder cancers

    DEFF Research Database (Denmark)

    Andersen, Lars Dyrskjøt; Zieger, Karsten; Ørntoft, Torben Falck

    2007-01-01

    individually contributed to the management of the disease. However, the development of high-throughput techniques for simultaneous assessment of a large number of markers has allowed classification of tumors into clinically relevant molecular subgroups beyond those possible by pathological classification. Here......Bladder cancer is the fifth most common neoplasm in industrialized countries. Due to frequent recurrences of the superficial form of this disease, bladder cancer ranks as one of the most common cancers. Despite the description of a large number of tumor markers for bladder cancers, none have......, we review the recent advances in high-throughput molecular marker identification for superficial and invasive bladder cancers....

  14. A case report of Fanconi anemia diagnosed by genetic testing followed by prenatal diagnosis.

    Science.gov (United States)

    Lee, Hwa Jeen; Park, Seungman; Kang, Hyoung Jin; Jun, Jong Kwan; Lee, Jung Ae; Lee, Dong Soon; Park, Sung Sup; Seong, Moon-Woo

    2012-09-01

    Fanconi anemia (FA) is a rare genetic disorder affecting multiple body systems. Genetic testing, including prenatal testing, is a prerequisite for the diagnosis of many clinical conditions. However, genetic testing is complicated for FA because there are often many genes that are associated with its development, and large deletions, duplications, or sequence variations are frequently found in some of these genes. This study describes successful genetic testing for molecular diagnosis, and subsequent prenatal diagnosis, of FA in a patient and his family in Korea. We analyzed all exons and flanking regions of the FANCA, FANCC, and FANCG genes for mutation identification and subsequent prenatal diagnosis. Multiplex ligation-dependent probe amplification analysis was performed to detect large deletions or duplications in the FANCA gene. Molecular analysis revealed two mutations in the FANCA gene: a frameshift mutation c.2546delC and a novel splice-site mutation c.3627-1G>A. The FANCA mutations were separately inherited from each parent, c.2546delC was derived from the father, whereas c.3627-1G>A originated from the mother. The amniotic fluid cells were c.3627-1G>A heterozygotes, suggesting that the fetus was unaffected. This is the first report of genetic testing that was successfully applied to molecular diagnosis of a patient and subsequent prenatal diagnosis of FA in a family in Korea.

  15. Congruence between morphological and molecular markers inferred from the analysis of the intra-morphotype genetic diversity and the spatial structure of Oxalis tuberosa Mol.

    Science.gov (United States)

    Pissard, Audrey; Arbizu, Carlos; Ghislain, Marc; Faux, Anne-Michèle; Paulet, Sébastien; Bertin, Pierre

    2008-01-01

    Oxalis tuberosa is an important crop cultivated in the highest Andean zones. A germplasm collection is maintained ex situ by CIP, which has developed a morphological markers system to classify the accessions into morphotypes, i.e. groups of morphologically identical accessions. However, their genetic uniformity is currently unknown. The ISSR technique was used in two experiments to determine the relationships between both morphological and molecular markers systems. The intra-morphotype genetic diversity, the spatial structures of the diversity and the congruence between both markers systems were determined. In the first experience, 44 accessions representing five morphotypes, clearly distinct from each other, were analyzed. At the molecular level, the accessions exactly clustered according to their morphotypes. However, a genetic variability was observed inside each morphotype. In the second experiment, 34 accessions gradually differing from each other on morphological base were analyzed. The morphological clustering showed no geographical structure. On the opposite, the molecular analysis showed that the genetic structure was slightly related to the collection site. The correlation between both markers systems was weak but significant. The lack of perfect congruence between morphological and molecular data suggests that the morphological system may be useful for the morphotypes management but is not appropriate to study the genetic structure of the oca. The spatial structure of the genetic diversity can be related to the evolution of the species and the discordance between the morphological and molecular structures may result from similar selection pressures at different places leading to similar forms with a different genetic background.

  16. [Molecular biology for sarcoma: useful or necessary?].

    Science.gov (United States)

    Neuville, Agnès; Coindre, Jean-Michel; Chibon, Frédéric

    2015-01-01

    Sarcomas are a heterogeneous group of tumors. Their diagnosis is based on morphology and immunohistochemical profile, with categories of tumors according to the type of tissue that they resemble. Nevertheless, for several tumors, cellular origin is unknown. Molecular analysis performed in recent years allowed, combining histophenotype and genomics, better classifying such sarcomas, individualizing new entities and grouping some tumors. Simple and recurrent genetic alterations, such as translocation, mutation, amplification, can be identified in one of two sarcomas and appear as new diagnostic markers. Their identification in specialized laboratories in molecular pathology of sarcomas is often useful and sometimes necessary for a good diagnosis, leading to a heavy and multidisciplinary multi-step treatment. Copyright © 2014 Elsevier Masson SAS. All rights reserved.

  17. Molecular Genetic Insights on Cheetah (Acinonyx jubatus) Ecology and Conservation in Namibia

    OpenAIRE

    Marker, Laurie L.; Wilkerson, Alison J. Pearks; Sarno, Ronald J.; Martenson, Janice; Breitenmoser-Würsten, Christian; O'Brien, Stephen J.; Johnson, Warren E.

    2017-01-01

    The extent and geographic patterns of molecular genetic diversity of the largest remaining free-ranging cheetah population were described in a survey of 313 individuals from throughout Namibia. Levels of relatedness, including paternity/maternity (parentage), were assessed across all individuals using 19 polymorphic microsatellite loci, and unrelated cheetahs (n = 89) from 7 regions were genotyped at 38 loci to document broad geographical patterns. There was limited differentiation among regi...

  18. Molecular identification of bacteria in tracheal aspirate fluid from mechanically ventilated preterm infants.

    Directory of Open Access Journals (Sweden)

    Peter M Mourani

    Full Text Available BACKGROUND: Despite strong evidence linking infections to the pathogenesis of bronchopulmonary dysplasia (BPD, limitations of bacterial culture methods have precluded systematic studies of airway organisms relative to disease outcomes. Application of molecular bacterial identification strategies may provide new insight into the role of bacterial acquisition in the airways of preterm infants at risk for BPD. METHODS: Serial (within 72 hours, 7, 14, and 21 days of life tracheal aspirate samples were collected from 10 preterm infants with gestational age ≤34 weeks at birth, and birth weight of 500-1250 g who required mechanical ventilation for at least 21 days. Samples were analyzed by quantitative real time PCR assays for total bacterial load and by pyrosequencing for bacterial identification. RESULTS: Subjects were diagnosed with mild (1, moderate (3, or severe (5 BPD. One patient died prior to determination of disease severity. 107,487 sequences were analyzed, with mean of 3,359 (range 1,724-4,915 per sample. 2 of 10 samples collected 70copies/reaction. 72 organisms were observed in total. Seven organisms represented the dominant organism (>50% of total sequences in 31/32 samples with positive sequences. A dominant organism represented>90% of total sequences in 13 samples. Staphylococcus, Ureaplasmaparvum, and Ureaplasmaurealyticum were the most frequently identified dominant organisms, but Pseudomonas, Enterococcus, and Escherichia were also identified. CONCLUSIONS: Early bacterial colonization with diverse species occursafter the first 3 days of life in the airways of intubated preterm infants, and can be characterized by bacterial load and marked species diversity. Molecular identification of bacteria in the lower airways of preterm infants has the potential to yield further insight into the pathogenesis of BPD.

  19. MutAid: Sanger and NGS Based Integrated Pipeline for Mutation Identification, Validation and Annotation in Human Molecular Genetics.

    Directory of Open Access Journals (Sweden)

    Ram Vinay Pandey

    Full Text Available Traditional Sanger sequencing as well as Next-Generation Sequencing have been used for the identification of disease causing mutations in human molecular research. The majority of currently available tools are developed for research and explorative purposes and often do not provide a complete, efficient, one-stop solution. As the focus of currently developed tools is mainly on NGS data analysis, no integrative solution for the analysis of Sanger data is provided and consequently a one-stop solution to analyze reads from both sequencing platforms is not available. We have therefore developed a new pipeline called MutAid to analyze and interpret raw sequencing data produced by Sanger or several NGS sequencing platforms. It performs format conversion, base calling, quality trimming, filtering, read mapping, variant calling, variant annotation and analysis of Sanger and NGS data under a single platform. It is capable of analyzing reads from multiple patients in a single run to create a list of potential disease causing base substitutions as well as insertions and deletions. MutAid has been developed for expert and non-expert users and supports four sequencing platforms including Sanger, Illumina, 454 and Ion Torrent. Furthermore, for NGS data analysis, five read mappers including BWA, TMAP, Bowtie, Bowtie2 and GSNAP and four variant callers including GATK-HaplotypeCaller, SAMTOOLS, Freebayes and VarScan2 pipelines are supported. MutAid is freely available at https://sourceforge.net/projects/mutaid.

  20. MutAid: Sanger and NGS Based Integrated Pipeline for Mutation Identification, Validation and Annotation in Human Molecular Genetics.

    Science.gov (United States)

    Pandey, Ram Vinay; Pabinger, Stephan; Kriegner, Albert; Weinhäusel, Andreas

    2016-01-01

    Traditional Sanger sequencing as well as Next-Generation Sequencing have been used for the identification of disease causing mutations in human molecular research. The majority of currently available tools are developed for research and explorative purposes and often do not provide a complete, efficient, one-stop solution. As the focus of currently developed tools is mainly on NGS data analysis, no integrative solution for the analysis of Sanger data is provided and consequently a one-stop solution to analyze reads from both sequencing platforms is not available. We have therefore developed a new pipeline called MutAid to analyze and interpret raw sequencing data produced by Sanger or several NGS sequencing platforms. It performs format conversion, base calling, quality trimming, filtering, read mapping, variant calling, variant annotation and analysis of Sanger and NGS data under a single platform. It is capable of analyzing reads from multiple patients in a single run to create a list of potential disease causing base substitutions as well as insertions and deletions. MutAid has been developed for expert and non-expert users and supports four sequencing platforms including Sanger, Illumina, 454 and Ion Torrent. Furthermore, for NGS data analysis, five read mappers including BWA, TMAP, Bowtie, Bowtie2 and GSNAP and four variant callers including GATK-HaplotypeCaller, SAMTOOLS, Freebayes and VarScan2 pipelines are supported. MutAid is freely available at https://sourceforge.net/projects/mutaid.

  1. Molecular analyses reveal two geographic and genetic lineages for tapeworms, Taenia solium and Taenia saginata, from Ecuador using mitochondrial DNA.

    Science.gov (United States)

    Solano, Danilo; Navarro, Juan Carlos; León-Reyes, Antonio; Benítez-Ortiz, Washington; Rodríguez-Hidalgo, Richar

    2016-12-01

    Tapeworms Taenia solium and Taenia saginata are the causative agents of taeniasis/cysticercosis. These are diseases with high medical and veterinary importance due to their impact on public health and rural economy in tropical countries. The re-emergence of T. solium as a result of human migration, the economic burden affecting livestock industry, and the large variability of symptoms in several human cysticercosis, encourage studies on genetic diversity, and the identification of these parasites with molecular phylogenetic tools. Samples collected from the Ecuadorian provinces: Loja, Guayas, Manabí, Tungurahua (South), and Imbabura, Pichincha (North) from 2000 to 2012 were performed under Maximum Parsimony analyses and haplotype networks using partial sequences of mitochondrial DNA, cytochrome oxidase subunit I (COI) and NADH subunit I (NDI), from Genbank and own sequences of Taenia solium and Taenia saginata from Ecuador. Both species have shown reciprocal monophyly, which confirms its molecular taxonomic identity. The COI and NDI genes results suggest phylogenetic structure for both parasite species from south and north of Ecuador. In T. solium, both genes gene revealed greater geographic structure, whereas in T. saginata, the variability for both genes was low. In conclusion, COI haplotype networks of T. solium suggest two geographical events in the introduction of this species in Ecuador (African and Asian lineages) and occurring sympatric, probably through the most common routes of maritime trade between the XV-XIX centuries. Moreover, the evidence of two NDI geographical lineages in T. solium from the north (province of Imbabura) and the south (province of Loja) of Ecuador derivate from a common Indian ancestor open new approaches for studies on genetic populations and eco-epidemiology. Copyright © 2016 Elsevier Inc. All rights reserved.

  2. Molecular Identification of Unusual Pathogenic Yeast Isolates by Large Ribosomal Subunit Gene Sequencing: 2 Years of Experience at the United Kingdom Mycology Reference Laboratory▿

    Science.gov (United States)

    Linton, Christopher J.; Borman, Andrew M.; Cheung, Grace; Holmes, Ann D.; Szekely, Adrien; Palmer, Michael D.; Bridge, Paul D.; Campbell, Colin K.; Johnson, Elizabeth M.

    2007-01-01

    Rapid identification of yeast isolates from clinical samples is particularly important given their innately variable antifungal susceptibility profiles. We present here an analysis of the utility of PCR amplification and sequence analysis of the hypervariable D1/D2 region of the 26S rRNA gene for the identification of yeast species submitted to the United Kingdom Mycology Reference Laboratory over a 2-year period. A total of 3,033 clinical isolates were received from 2004 to 2006 encompassing 50 different yeast species. While more than 90% of the isolates, corresponding to the most common Candida species, could be identified by using the AUXACOLOR2 yeast identification kit, 153 isolates (5%), comprised of 47 species, could not be identified by using this system and were subjected to molecular identification via 26S rRNA gene sequencing. These isolates included some common species that exhibited atypical biochemical and phenotypic profiles and also many rarer yeast species that are infrequently encountered in the clinical setting. All 47 species requiring molecular identification were unambiguously identified on the basis of D1/D2 sequences, and the molecular identities correlated well with the observed biochemical profiles of the various organisms. Together, our data underscore the utility of molecular techniques as a reference adjunct to conventional methods of yeast identification. Further, we show that PCR amplification and sequencing of the D1/D2 region reliably identifies more than 45 species of clinically significant yeasts and can also potentially identify new pathogenic yeast species. PMID:17251397

  3. Avoiding Pitfalls in Molecular Genetic Testing: Case Studies of High-Resolution Array Comparative Genomic Hybridization Testing in the Definitive Diagnosis of Mowat-Wilson Syndrome

    OpenAIRE

    Kluk, Michael Joseph; An, Yu; James, Philip; Coulter, David; Harris, David; Wu, Bai-Lin; Shen, Yiping

    2011-01-01

    The molecular testing options available for the diagnosis of genetic disorders are numerous and include a variety of different assay platforms. The consultative input of molecular pathologists and cytogeneticists, working closely with the ordering clinicians, is often important for definitive diagnosis. Herein, we describe two patients who had long histories of unexplained signs and symptoms with a high clinical suspicion of an underlying genetic etiology. Initial molecular testing in both ca...

  4. Identification and characterization of tebuconazole transformation products in soil by combining suspect screening and molecular typology

    International Nuclear Information System (INIS)

    Storck, Veronika; Lucini, Luigi; Mamy, Laure; Ferrari, Federico; Papadopoulou, Evangelia S.; Nikolaki, Sofia; Karas, Panagiotis A.; Servien, Remi; Karpouzas, Dimitrios G.; Trevisan, Marco; Benoit, Pierre; Martin-Laurent, Fabrice

    2016-01-01

    Pesticides generate transformation products (TPs) when they are released into the environment. These TPs may be of ecotoxicological importance. Past studies have demonstrated how difficult it is to predict the occurrence of pesticide TPs and their environmental risk. The monitoring approaches mostly used in current regulatory frameworks target only known ecotoxicologically relevant TPs. Here, we present a novel combined approach which identifies and categorizes known and unknown pesticide TPs in soil by combining suspect screening time-of-flight mass spectrometry with in silico molecular typology. We used an empirical and theoretical pesticide TP library for compound identification by both non-target and target time-of-flight (tandem) mass spectrometry, followed by structural proposition through a molecular structure correlation program. In silico molecular typology was then used to group TPs according to common molecular descriptors and to indirectly elucidate their environmental parameters by analogy to known pesticide compounds with similar molecular descriptors. This approach was evaluated via the identification of TPs of the triazole fungicide tebuconazole occurring in soil during a field dissipation study. Overall, 22 empirical and 12 yet unknown TPs were detected, and categorized into three groups with defined environmental properties. This approach combining suspect screening time-of-flight mass spectrometry with molecular typology could be extended to other organic pollutants and used to rationalize the choice of TPs to be investigated towards a more comprehensive environmental risk assessment scheme. - Highlights: • Combined method to detect and categorize pesticide transformation products in soil. • Detection by QTOF-MS of new tebuconazole transformation products without standards. • Estimation by in silico molecular typology of their environmental parameters. • Method to rationally choose relevant transformation products to be studied. • The

  5. Genetic identification of Iberian rodent species using both mitochondrial and nuclear loci: application to noninvasive sampling.

    Science.gov (United States)

    Barbosa, S; Pauperio, J; Searle, J B; Alves, P C

    2013-01-01

    Species identification through noninvasive sampling is increasingly used in animal conservation genetics, given that it obviates the need to handle free-living individuals. Noninvasive sampling is particularly valuable for elusive and small species such as rodents. Although rodents are not usually assumed to be the most obvious target for conservation, of the 21 species or near-species present in Iberia, three are considered endangered and declining, while several others are poorly studied. Here, we develop a genetic tool for identifying all rodent species in Iberia by noninvasive genetic sampling. To achieve this purpose, we selected one mitochondrial gene [cytochrome b (cyt-b)] and one nuclear gene [interphotoreceptor retinoid-binding protein (IRBP)], which we first sequenced using tissue samples. Both genes allow for the phylogenetic distinction of all species except the sibling species Microtus lusitanicus and Microtus duodecimcostatus. Overall, cyt-b showed higher resolution than IRBP, revealing a clear barcoding gap. To allow these markers to be applied to noninvasive samples, we selected a short highly diagnostic fragment from each gene, which we used to obtain sequences from faeces and bones from owl pellets. Amplification success for the cyt-b and IRBP fragment was 85% and 43% in faecal and 88% and 64% in owl-pellet DNA extractions, respectively. The method allows the unambiguous identification of the great majority of Iberian rodent species from noninvasive samples, with application in studies of distribution, spatial ecology and population dynamics, and for conservation. © 2012 Blackwell Publishing Ltd.

  6. Molecular species identification with rich floristic sampling: DNA barcoding the pteridophyte flora of Japan.

    Directory of Open Access Journals (Sweden)

    Atsushi Ebihara

    Full Text Available BACKGROUND: DNA barcoding is expected to be an effective identification tool for organisms with heteromorphic generations such as pteridophytes, which possess a morphologically simple gametophyte generation. Although a reference data set including complete coverage of the target local flora/fauna is necessary for accurate identification, DNA barcode studies including such rich taxonomic sampling on a countrywide scale are lacking. METHODOLOGY/PRINCIPAL FINDINGS: The Japanese pteridophyte flora (733 taxa including subspecies and varieties was used to test the utility of two plastid DNA barcode regions (rbcL and trnH-psbA with the intention of developing an identification system for native gametophytes. DNA sequences were obtained from each of 689 (94.0% taxa for rbcL and 617 (84.2% taxa for trnH-psbA. Mean interspecific divergence values across all taxon pairs (K2P genetic distances did not reveal a significant difference in rate between trnH-psbA and rbcL, but mean K2P distances of each genus showed significant heterogeneity according to systematic position. The minimum fail rate of taxon discrimination in an identification test using BLAST (12.52% was obtained when rbcL and trnH-psbA were combined, and became lower in datasets excluding infraspecific taxa or apogamous taxa, or including sexual diploids only. CONCLUSIONS/SIGNIFICANCE: This study demonstrates the overall effectiveness of DNA barcodes for species identification in the Japanese pteridophyte flora. Although this flora is characterized by a high occurrence of apogamous taxa that pose a serious challenge to identification using DNA barcodes, such taxa are limited to a small number of genera, and only minimally detract from the overall success rate. In the case that a query sequence is matched to a known apogamous genus, routine species identification may not be possible. Otherwise, DNA barcoding is a practical tool for identification of most Japanese pteridophytes, and is especially

  7. Molecular and Genetic Analysis of Hormone-Regulated Differential Cell Elongation in Arabidopsis

    Energy Technology Data Exchange (ETDEWEB)

    Ecker, Joseph R.

    2005-09-15

    We have utilized the response of Arabidopsis seedlings to the plant hormone ethylene to identify new genes involved in the regulation of ethylene biosynthesis, perception, signal transduction and differential cell growth. In building a genetic framework for the action of these genes, we have developed a molecular model that has facilitated our understanding of the molecular requirements of ethylene for cell elongation processes. The ethylene response pathway in Arabidopsis appears to be primarily linear and is defined by the genes: ETR1, ETR2, ERS1, ERS2, EIN4, CTR1, EIN2, EIN3, EIN5, EIN6, and EIN. Downstream branches identified by the HLS1, EIR1, and AUX1 genes involve interactions with other hormonal (auxin) signals in the process of differential cell elongation in the hypocotyl hook. Cloning and characterization of HLS1 (and three HLL genes) and ETO1 (and ETOL genes) in my laboratory has been supported under this award. HLS1 is required for differential elongation of cells in the hypocotyl and may act in the establishment of hormone gradients. Also during the previous period, we have identified and characterized a gene that genetically acts upstream of the ethylene receptors. ETO1 encodes negative regulators of ethylene biosynthesis.

  8. Molecular and Genetic Investigation of Tau in Chronic Traumatic Encephalopathy (Log No. 13267017)

    Science.gov (United States)

    2017-10-01

    AWARD NUMBER: W81XWH-14-1-0399 TITLE: Molecular & Genetic Investigation of Tau in Chronic Traumatic Encephalopathy (Log No. 13267017) PRINCIPAL...this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data ...sources, gathering and maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden

  9. Biochemical and molecular study of genetic stability in tomatoes plants rom seeds treated with low doses of X-ray

    International Nuclear Information System (INIS)

    Ramirez, R; Gonzalez, LM; Chavez, Licet; Camejo, Yanelis; Gonzalez, Maria C; Fernandez, Arais

    2008-01-01

    For the extensive agricultural exploitation of vegetable radio stimulation, it is indispensable to study the genetic stability of treated varieties, having in mind X ray potentialities of inducing not only physiological but genetic changes as well. Therefore, biochemical and molecular markers were employed in tomato plants derived from irradiated seeds at low doses of X rays. For the biochemical analysis, peroxidases, polyphenoloxidases and dismutase superoxide isoenzymes were determined whereas the Random Amplification of Polymorphic DNA (RAPD) method based on Polymerase Chain Reaction (PCR) was used for the molecular analysis. When comparing the electrophoretic patterns from the control and irradiated treatments applied to the three enzymatic systems, there were not appreciable variations on the number of bands and their intensities, indicating the little variability induced in these systems by the low X ray doses. Also, from the molecular viewpoint, electrophoretic patterns showed a clear amplification of DNA by generating a total of 155 bands in all varieties studied. This molecular marker showed a high monomorphism independently of the treatments applied, with values ranging between 86 and 97 %, indicating that irradiation at low doses did not induce an important genetic variability and confirming its possible practical usefulness for stimulating some physiological processes without causing. (Author)

  10. Molecular assay to fraud identification of meat products.

    Science.gov (United States)

    Doosti, Abbas; Ghasemi Dehkordi, Payam; Rahimi, Ebrahim

    2014-01-01

    Detection of species fraud in meat products is important for consumer protection and food industries. A molecular technique such as PCR method for detection of beef, sheep, pork, chicken, donkey, and horse meats in food products was established. The purpose of this study was to identification of fraud and adulteration in industrial meat products by PCR-RFLP assay in Iran. In present study, 224 meat products include 68 sausages, 48 frankfurters, 55 hamburgers, 33 hams and 20 cold cut meats were collected from different companies and food markets in Iran. Genomic DNA was extracted and PCR was performed for gene amplification of meat species using specific oligonucleotid primers. Raw meat samples are served as the positive control. For differentiation between donkey's and horse's meat, the mitochondrial DNA segment (cytochrome-b gene) was amplified and products were digested with AluI restriction enzyme. Results showed that 6 of 68 fermented sausages (8.82%), 4 of 48 frankfurters (8.33%), 4 of 55 hamburgers (7.27%), 2 of 33 hams (6.6%), and 1 of 20 cold cut meat (5%) were found to contain Haram (unlawful or prohibited) meat. These results indicate that 7.58% of the total samples were not containing Halal (lawful or permitted) meat and have another meat. These findings showed that molecular methods such as PCR and PCR-RFLP are potentially reliable techniques for detection of meat type in meat products for Halal authentication.

  11. HNPCC (Lynch Syndrome): Differential Diagnosis, Molecular Genetics and Management - a Review

    Science.gov (United States)

    2003-01-01

    HNPCC (Lynch syndrome) is the most common form of hereditary colorectal cancer (CRC), wherein it accounts for between 2-7 percent of the total CRC burden. When considering the large number of extracolonic cancers integral to the syndrome, namely carcinoma of the endometrium, ovary, stomach, hepatobiliary system, pancreas, small bowel, brain tumors, and upper uroepithelial tract, these estimates of its frequency are likely to be conservative. The diagnosis is based upon its natural history in concert with a comprehensive cancer family history inclusive of all anatomic sites. In order for surveillance and management to be effective and, indeed, lifesaving, among these high-risk patients, the linchpin to cancer control would be the physician, who must be knowledgeable about hereditary cancer syndromes, their molecular and medical genetics, genetic counseling, and, most importantly, the natural history of the disorders, so that the entirety of this knowledge can be melded to highly-targeted management.

  12. Genetic divergence through joint analysis of morphoagronomic and molecular characters in accessions of Jatropha curcas.

    Science.gov (United States)

    Pestana-Caldas, C N; Silva, S A; Machado, E L; de Souza, D R; Cerqueira-Pereira, E C; Silva, M S

    2016-10-05

    The aim of this study was to investigate the genetic divergence between accessions of Jatropha curcas through joint analysis of morphoagronomic and molecular characters. To this end, we investigated 11 morphoagronomic characters and performed molecular genotyping, using 23 inter-simple sequence repeat (ISSR) primers in 46 accessions of J. curcas. We calculated the contribution of each character on divergence using analysis of variance. The grouping among accessions was performed using the Ward-MLM (modified location model) method, using morphoagronomic and molecular data, whereas the cophenetic correlation was obtained based on Gower's algorithm. There were significant differences in all growth-related characteristics: number of primary and secondary branches per plant, plant height, and stem diameter. For characters related to grain production, differences were found for number of fruit clusters per plant and number of inflorescence clusters per plant and average number of seeds per fruit. The greatest phenotypic variation was found in plant height (59.67- 222.33 cm), whereas the smallest variation was found in average number of seeds per fruit (0-2.90), followed by the number of fruit clusters per plant (0-8.67). In total, 94 polymorphic ISSR fragments were obtained. The genotypic grouping identified six groups, indicating that there is genetic divergence among the accessions. The most promising crossings for future hybridization were identified among accessions UFRB60 and UFVJC45, and UFRB61 and UFVJC18. In conclusion, the joint analysis of morphoagronomic characters and ISSR markers is an efficient method to assess the genetic divergence in J. curcas.

  13. Molecular biological enhancement of coal biodesulfurization. [Rhodococcus rhodochrous

    Energy Technology Data Exchange (ETDEWEB)

    Kilbane, J.J.; Bielaga, B.A.

    1990-07-01

    The overall objective of this project is to sue molecular genetics to develop strains of bacteria with enhanced ability to remove sulfur from coal and to obtain data that will allow the performance and economics of a coal biodesulfurization process to be predicted. The work planned for the current quarter (May 1990 to July 1990) includes the following activities: (1) Construct a cloning vector that can be used in Rhodococcus rhodochrous IGTS8 from the small cryptic plasmid found in Rhodococcus rhodochrous ATCC 190607; (2) Develop techniques for the genetic analysis of IGTS8; (3) Continue biochemical experiments, particularly those that may allow the identification of desulfurization-related enzymes; (4) Continue experiments with coal to determine the kinetics of organic sulfur removal.

  14. Genetic identification of the main opportunistic Mucorales by PCR-restriction fragment length polymorphism.

    Science.gov (United States)

    Machouart, M; Larché, J; Burton, K; Collomb, J; Maurer, P; Cintrat, A; Biava, M F; Greciano, S; Kuijpers, A F A; Contet-Audonneau, N; de Hoog, G S; Gérard, A; Fortier, B

    2006-03-01

    Mucormycosis is a rare and opportunistic infection caused by fungi belonging to the order Mucorales. Recent reports have demonstrated an increasing incidence of mucormycosis, which is frequently lethal, especially in patients suffering from severe underlying conditions such as immunodeficiency. In addition, even though conventional mycology and histopathology assays allow for the identification of Mucorales, they often fail in offering a species-specific diagnosis. Due to the lack of other laboratory tests, a precise identification of these molds is thus notoriously difficult. In this study we aimed to develop a molecular biology tool to identify the main Mucorales involved in human pathology. A PCR strategy selectively amplifies genomic DNA from molds belonging to the genera Absidia, Mucor, Rhizopus, and Rhizomucor, excluding human DNA and DNA from other filamentous fungi and yeasts. A subsequent digestion step identified the Mucorales at genus and species level. This technique was validated using both fungal cultures and retrospective analyses of clinical samples. By enabling a rapid and precise identification of Mucorales strains in infected patients, this PCR-restriction fragment length polymorphism-based method should help clinicians to decide on the appropriate treatment, consequently decreasing the mortality of mucormycosis.

  15. The rapid evolution of molecular genetic diagnostics in neuromuscular diseases.

    Science.gov (United States)

    Volk, Alexander E; Kubisch, Christian

    2017-10-01

    The development of massively parallel sequencing (MPS) has revolutionized molecular genetic diagnostics in monogenic disorders. The present review gives a brief overview of different MPS-based approaches used in clinical diagnostics of neuromuscular disorders (NMDs) and highlights their advantages and limitations. MPS-based approaches like gene panel sequencing, (whole) exome sequencing, (whole) genome sequencing, and RNA sequencing have been used to identify the genetic cause in NMDs. Although gene panel sequencing has evolved as a standard test for heterogeneous diseases, it is still debated, mainly because of financial issues and unsolved problems of variant interpretation, whether genome sequencing (and to a lesser extent also exome sequencing) of single patients can already be regarded as routine diagnostics. However, it has been shown that the inclusion of parents and additional family members often leads to a substantial increase in the diagnostic yield in exome-wide/genome-wide MPS approaches. In addition, MPS-based RNA sequencing just enters the research and diagnostic scene. Next-generation sequencing increasingly enables the detection of the genetic cause in highly heterogeneous diseases like NMDs in an efficient and affordable way. Gene panel sequencing and family-based exome sequencing have been proven as potent and cost-efficient diagnostic tools. Although clinical validation and interpretation of genome sequencing is still challenging, diagnostic RNA sequencing represents a promising tool to bypass some hurdles of diagnostics using genomic DNA.

  16. IDENTIFICATION OF PARAMECIUM BURSARIA SYNGENS THROUGH MOLECULAR MARKERS – COMPARATIVE ANALYSIS OF MITOCHONDRIAL CYTOCHROME C OXIDASE SUBUNIT I (COI

    Directory of Open Access Journals (Sweden)

    Patrycja Zagata

    2014-08-01

    Full Text Available The aim of this study is an identification of Paramecium bursaria syngens originating from different geographical locations and proving the correlation between distributions and belonging to any of five syngens. Ten strains of Paramecium bursaria belonging to five different syngens and strain of Paramecium multimicronucleatum were investigated using molecular marker — mitochondrial cytochrome c oxidase subunit I (COI. According to results, obtained in this study, using phylogenetic methods like Neighbor Joining (NJ and Maximum Likelihood (ML, relationship between analyzing strains through their clustering in clusters and correlation between strains belonging to any syngen and syngen’s distribution was confirmed. Phylograms constructed using NJ and ML methods revealed strains’ grouping in five clusters. Results which were obtained revealed usefulness of COI as a biomarker, which is important in identification of Paramecium bursaria syngens. This reports to a great potential of COI as a molecular marker and obtaining dependable results through combination of molecular methods with classical ones.

  17. Molecular characterization and genetic diversity of Jatropha curcas L. in Costa Rica

    Science.gov (United States)

    Vásquez-Mayorga, Marcela; Fuchs, Eric J.; Hernández, Eduardo J.; Herrera, Franklin; Hernández, Jesús; Moreira, Ileana; Arnáez, Elizabeth

    2017-01-01

    We estimated the genetic diversity of 50 Jatropha curcas samples from the Costa Rican germplasm bank using 18 EST-SSR, one G-SSR and nrDNA-ITS markers. We also evaluated the phylogenetic relationships among samples using nuclear ribosomal ITS markers. Non-toxicity was evaluated using G-SSRs and SCARs markers. A Neighbor-Joining (NJ) tree and a Maximum Likelihood (ML) tree were constructed using SSR markers and ITS sequences, respectively. Heterozygosity was moderate (He = 0.346), but considerable compared to worldwide values for J. curcas. The PIC (PIC = 0.274) and inbreeding coefficient (f =  − 0.102) were both low. Clustering was not related to the geographical origin of accessions. International accessions clustered independently of collection sites, suggesting a lack of genetic structure, probably due to the wide distribution of this crop and ample gene flow. Molecular markers identified only one non-toxic accession (JCCR-24) from Mexico. This work is part of a countrywide effort to characterize the genetic diversity of the Jatropha curcas germplasm bank in Costa Rica. PMID:28289556

  18. Genetic and Molecular Mechanisms of Quantitative Trait Loci Controlling Maize Inflorescence Architecture.

    Science.gov (United States)

    Li, Manfei; Zhong, Wanshun; Yang, Fang; Zhang, Zuxin

    2018-03-01

    The establishment of inflorescence architecture is critical for the reproduction of flowering plant species. The maize plant generates two types of inflorescences, the tassel and the ear, and their architectures have a large effect on grain yield and yield-related traits that are genetically controlled by quantitative trait loci (QTLs). Since ear and tassel architecture are deeply affected by the activity of inflorescence meristems, key QTLs and genes regulating meristematic activity have important impacts on inflorescence development and show great potential for optimizing grain yield. Isolation of yield trait-related QTLs is challenging, but these QTLs have direct application in maize breeding. Additionally, characterization and functional dissection of QTLs can provide genetic and molecular knowledge of quantitative variation in inflorescence architecture. In this review, we summarize currently identified QTLs responsible for the establishment of ear and tassel architecture and discuss the potential genetic control of four ear-related and four tassel-related traits. In recent years, several inflorescence architecture-related QTLs have been characterized at the gene level. We review the mechanisms of these characterized QTLs.

  19. Molecular characterization and genetic diversity of Jatropha curcas L. in Costa Rica

    Directory of Open Access Journals (Sweden)

    Marcela Vásquez-Mayorga

    2017-02-01

    Full Text Available We estimated the genetic diversity of 50 Jatropha curcas samples from the Costa Rican germplasm bank using 18 EST-SSR, one G-SSR and nrDNA-ITS markers. We also evaluated the phylogenetic relationships among samples using nuclear ribosomal ITS markers. Non-toxicity was evaluated using G-SSRs and SCARs markers. A Neighbor-Joining (NJ tree and a Maximum Likelihood (ML tree were constructed using SSR markers and ITS sequences, respectively. Heterozygosity was moderate (He = 0.346, but considerable compared to worldwide values for J. curcas. The PIC (PIC = 0.274 and inbreeding coefficient (f =  − 0.102 were both low. Clustering was not related to the geographical origin of accessions. International accessions clustered independently of collection sites, suggesting a lack of genetic structure, probably due to the wide distribution of this crop and ample gene flow. Molecular markers identified only one non-toxic accession (JCCR-24 from Mexico. This work is part of a countrywide effort to characterize the genetic diversity of the Jatropha curcas germplasm bank in Costa Rica.

  20. Molecular identification of polydorid polychaetes (Annelida ...

    African Journals Online (AJOL)

    The early detection and correct identification of polydorid polychaete species is essential as they are often encountered as invasive alien pests in aquaculture facilities or the intertidal where they may modify the ecosystem. Accurate identification is, however, often hampered by high levels of morphological similarity among ...

  1. Recent Advances in the Molecular Characterization of Circulating Tumor Cells

    Energy Technology Data Exchange (ETDEWEB)

    Lowes, Lori E. [London Regional Cancer Program, London Health Sciences Centre, London, ON N6A 4L6 (Canada); Department of Anatomy and Cell Biology, Schulich School of Medicine and Dentistry, Western University, London, ON N6A 5C1 (Canada); Department of Oncology, Schulich School of Medicine and Dentistry, Western University, London, ON N6A 4L6 (Canada); Allan, Alison L., E-mail: alison.allan@lhsc.on.ca [London Regional Cancer Program, London Health Sciences Centre, London, ON N6A 4L6 (Canada); Department of Anatomy and Cell Biology, Schulich School of Medicine and Dentistry, Western University, London, ON N6A 5C1 (Canada); Department of Oncology, Schulich School of Medicine and Dentistry, Western University, London, ON N6A 4L6 (Canada); Lawson Health Research Institute, London, ON N6C 2R5 (Canada)

    2014-03-13

    Although circulating tumor cells (CTCs) were first observed over a century ago, lack of sensitive methodology precluded detailed study of these cells until recently. However, technological advances have now facilitated the identification, enumeration, and characterization of CTCs using a variety of methods. The majority of evidence supporting the use of CTCs in clinical decision-making has been related to enumeration using the CellSearch{sup ®} system and correlation with prognosis. Growing evidence also suggests that CTC monitoring can provide an early indication of patient treatment response based on comparison of CTC levels before and after therapy. However, perhaps the greatest potential that CTCs hold for oncology lies at the level of molecular characterization. Clinical treatment decisions may be more effective if they are based on molecular characteristics of metastatic cells rather than on those of the primary tumor alone. Molecular characterization of CTCs (which can be repeatedly isolated in a minimally invasive fashion) provides the opportunity for a “real-time liquid biopsy” that allows assessment of genetic drift, investigation of molecular disease evolution, and identification of actionable genomic characteristics. This review focuses on recent advances in this area, including approaches involving immunophenotyping, fluorescence in situ hybridization (FISH), multiplex RT-PCR, microarray, and genomic sequencing.

  2. Recent Advances in the Molecular Characterization of Circulating Tumor Cells

    International Nuclear Information System (INIS)

    Lowes, Lori E.; Allan, Alison L.

    2014-01-01

    Although circulating tumor cells (CTCs) were first observed over a century ago, lack of sensitive methodology precluded detailed study of these cells until recently. However, technological advances have now facilitated the identification, enumeration, and characterization of CTCs using a variety of methods. The majority of evidence supporting the use of CTCs in clinical decision-making has been related to enumeration using the CellSearch ® system and correlation with prognosis. Growing evidence also suggests that CTC monitoring can provide an early indication of patient treatment response based on comparison of CTC levels before and after therapy. However, perhaps the greatest potential that CTCs hold for oncology lies at the level of molecular characterization. Clinical treatment decisions may be more effective if they are based on molecular characteristics of metastatic cells rather than on those of the primary tumor alone. Molecular characterization of CTCs (which can be repeatedly isolated in a minimally invasive fashion) provides the opportunity for a “real-time liquid biopsy” that allows assessment of genetic drift, investigation of molecular disease evolution, and identification of actionable genomic characteristics. This review focuses on recent advances in this area, including approaches involving immunophenotyping, fluorescence in situ hybridization (FISH), multiplex RT-PCR, microarray, and genomic sequencing

  3. Species identification and molecular typing of human Brucella isolates from Kuwait.

    Science.gov (United States)

    Mustafa, Abu S; Habibi, Nazima; Osman, Amr; Shaheed, Faraz; Khan, Mohd W

    2017-01-01

    Brucellosis is a zoonotic disease of major concern in Kuwait and the Middle East. Human brucellosis can be caused by several Brucella species with varying degree of pathogenesis, and relapses are common after apparently successful therapy. The classical biochemical methods for identification of Brucella are time-consuming, cumbersome, and provide information limited to the species level only. In contrast, molecular methods are rapid and provide differentiation at intra-species level. In this study, four molecular methods [16S rRNA gene sequencing, real-time PCR, enterobacterial repetitive intergenic consensus (ERIC)-PCR and multilocus variable-number tandem-repeat analysis (MLVA)-8, MLVA-11 and MLVA-16 were evaluated for the identification and typing of 75 strains of Brucella isolated in Kuwait. 16S rRNA gene sequencing of all isolates showed 90-99% sequence identity with B. melitensis and real-time PCR with genus- and species- specific primers identified all isolates as B. melitensis. The results of ERIC-PCR suggested the existence of 75 ERIC genotypes of B. melitensis with a discriminatory index of 0.997. Cluster classification of these genotypes divided them into two clusters, A and B, diverging at ~25%. The maximum number of genotypes (n = 51) were found in cluster B5. MLVA-8 analysis identified all isolates as B. melitensis, and MLVA-8, MLVA-11 and MLVA-16 typing divided the isolates into 10, 32 and 71 MLVA types, respectively. Furthermore, the combined minimum spanning tree analysis demonstrated that, compared to MLVA types discovered all over the world, the Kuwaiti isolates were a distinct group of MLVA-11 and MLVA-16 types in the East Mediterranean Region.

  4. First occurrence of thinlip grey mullet, Liza ramada (Risso, 1827 in the Odra River estuary (NW Poland: genetic identification

    Directory of Open Access Journals (Sweden)

    Remigiusz Panicz

    2016-07-01

    Full Text Available The presence of exotic fish species in the Baltic Sea and its tributaries poses a serious threat for native ichthyofauna, mainly due to the spread of new pathogens. As the accurate identification of species is essential for an effective assessment of changes related to the appearance of non-native species in an aquatic environment, in this paper we tested the usefulness of biometrics and molecular markers in identifying a specimen from the Mugilidae family found in the Odra estuary. The results demonstrated that unambiguous identification of the specimen using biometric features was impossible due to high morphological similarities shared by grey mullets. Unambiguous identification was possible only due to molecular markers, e.g. rhodopsin gene, which helped to identify the collected fish specimen as Liza ramada (Risso, 1827, the first specimen of this species found in the Odra River estuary. The presence of an L. ramada specimen in the Odra River – which could signal the expansion of non-native species into wider ranges – may be linked to climate change or human activity.

  5. Identification and molecular analysis of infectious bursal disease in broiler farms in the Kurdistan Regional Government of Iraq.

    Science.gov (United States)

    Amin, Oumed Gerjis M; Jackwood, Daral J

    2014-10-01

    The present study was undertaken to characterize field isolates of infectious bursal disease virus (IBDV). The identification was done using reverse transcription-polymerase chain reaction (RT-PCR) and partial sequencing of the VP2 gene. Pooled bursal samples were collected from commercial broiler farms located in the Kurdistan Regional Government (KRG) of Iraq. The genetic material of the IBDV was detected in 10 out of 29 field samples. Sequences of the hypervariable VP2 region were determined for 10 of these viruses. Molecular analysis of the VP2 gene of five IBDVs showed amino acid sequences consistent with the very virulent (vv) IBDV. Two samples were identified as classic vaccine viruses, and three samples were classic vaccine viruses that appear to have mutated during replication in the field. Phylogenetic analysis showed that all five field IBDV strains of the present study were closely related to each other. On the basis of nucleotide sequencing and phylogenetic analysis, it is very likely that IBD-causing viruses in this part of Iraq are of the very virulent type. These IBDVs appear to be evolving relative to their type strains.

  6. Identification of a novel large intragenic deletion in a family with Fanconi anemia: first molecular report from India and review of literature.

    Science.gov (United States)

    Shukla, Pallavi; Rao, Anita; Ghosh, Kanjaksha; Vundinti, Babu Rao

    2013-04-15

    We report here an Indian case with Fanconi anemia (FA) presented with fever, pallor, short stature, hyperpigmentation and upper limb anomaly. Chromosome breakage analysis together with FANCD2 Western blot monoubiquitination assay confirmed the diagnosis as FA. Multiplex ligation-dependent probe amplification (MLPA) revealed a novel homozygous large intragenic deletion (exons 8-27 del) in the FANCA gene in the proband. His sib and parents were also analyzed and found to be heterozygous for the same mutation. We also reviewed the literature of FANCA large intragenic deletions found in FA patients from different countries and the mechanism involved in the formation of these deletions. To the best of our knowledge, this is the first molecular report from India on FA. The finding expands the mutation spectrum of the FANCA gene. Identification of the mutation confirms the diagnosis of FA at DNA level and helps in providing proper genetic counseling to the family. Copyright © 2013 Elsevier B.V. All rights reserved.

  7. Diabetes Mellitus in Neonates and Infants: Genetic Heterogeneity, Clinical Approach to Diagnosis, and Therapeutic Options

    Science.gov (United States)

    Rubio-Cabezas, Oscar; Ellard, Sian

    2013-01-01

    Over the last decade, we have witnessed major advances in the understanding of the molecular basis of neonatal and infancy-onset diabetes. It is now widely accepted that diabetes presenting before 6 months of age is unlikely to be autoimmune type 1 diabetes. The vast majority of such patients will have a monogenic disorder responsible for the disease and, in some of them, also for a number of other associated extrapancreatic clinical features. Reaching a molecular diagnosis will have immediate clinical consequences for about half of affected patients, as identification of a mutation in either of the two genes encoding the ATP-sensitive potassium channel allows switching from insulin injections to oral sulphonylureas. It also facilitates genetic counselling within the affected families and predicts clinical prognosis. Importantly, monogenic diabetes seems not to be limited to the first 6 months but extends to some extent into the second half of the first year of life, when type 1 diabetes is the more common cause of diabetes. From a scientific perspective, the identification of novel genetic aetiologies has provided important new knowledge regarding the development and function of the human pancreas. PMID:24051999

  8. Molecular phylogeny of Toxoplasmatinae: comparison between inferences based on mitochondrial and apicoplast genetic sequences

    Directory of Open Access Journals (Sweden)

    Michelle Klein Sercundes

    2016-03-01

    Full Text Available Abstract Phylogenies within Toxoplasmatinae have been widely investigated with different molecular markers. Here, we studied molecular phylogenies of the Toxoplasmatinae subfamily based on apicoplast and mitochondrial genes. Partial sequences of apicoplast genes coding for caseinolytic protease (clpC and beta subunit of RNA polymerase (rpoB, and mitochondrial gene coding for cytochrome B (cytB were analyzed. Laboratory-adapted strains of the closely related parasites Sarcocystis falcatula and Sarcocystis neurona were investigated, along with Neospora caninum, Neospora hughesi, Toxoplasma gondii (strains RH, CTG and PTG, Besnoitia akodoni, Hammondia hammondiand two genetically divergent lineages of Hammondia heydorni. The molecular analysis based on organellar genes did not clearly differentiate between N. caninum and N. hughesi, but the two lineages of H. heydorni were confirmed. Slight differences between the strains of S. falcatula and S. neurona were encountered in all markers. In conclusion, congruent phylogenies were inferred from the three different genes and they might be used for screening undescribed sarcocystid parasites in order to ascertain their phylogenetic relationships with organisms of the family Sarcocystidae. The evolutionary studies based on organelar genes confirm that the genusHammondia is paraphyletic. The primers used for amplification of clpC and rpoB were able to amplify genetic sequences of organisms of the genus Sarcocystisand organisms of the subfamily Toxoplasmatinae as well.

  9. PopSc: Computing Toolkit for Basic Statistics of Molecular Population Genetics Simultaneously Implemented in Web-Based Calculator, Python and R.

    Science.gov (United States)

    Chen, Shi-Yi; Deng, Feilong; Huang, Ying; Li, Cao; Liu, Linhai; Jia, Xianbo; Lai, Song-Jia

    2016-01-01

    Although various computer tools have been elaborately developed to calculate a series of statistics in molecular population genetics for both small- and large-scale DNA data, there is no efficient and easy-to-use toolkit available yet for exclusively focusing on the steps of mathematical calculation. Here, we present PopSc, a bioinformatic toolkit for calculating 45 basic statistics in molecular population genetics, which could be categorized into three classes, including (i) genetic diversity of DNA sequences, (ii) statistical tests for neutral evolution, and (iii) measures of genetic differentiation among populations. In contrast to the existing computer tools, PopSc was designed to directly accept the intermediate metadata, such as allele frequencies, rather than the raw DNA sequences or genotyping results. PopSc is first implemented as the web-based calculator with user-friendly interface, which greatly facilitates the teaching of population genetics in class and also promotes the convenient and straightforward calculation of statistics in research. Additionally, we also provide the Python library and R package of PopSc, which can be flexibly integrated into other advanced bioinformatic packages of population genetics analysis.

  10. PopSc: Computing Toolkit for Basic Statistics of Molecular Population Genetics Simultaneously Implemented in Web-Based Calculator, Python and R.

    Directory of Open Access Journals (Sweden)

    Shi-Yi Chen

    Full Text Available Although various computer tools have been elaborately developed to calculate a series of statistics in molecular population genetics for both small- and large-scale DNA data, there is no efficient and easy-to-use toolkit available yet for exclusively focusing on the steps of mathematical calculation. Here, we present PopSc, a bioinformatic toolkit for calculating 45 basic statistics in molecular population genetics, which could be categorized into three classes, including (i genetic diversity of DNA sequences, (ii statistical tests for neutral evolution, and (iii measures of genetic differentiation among populations. In contrast to the existing computer tools, PopSc was designed to directly accept the intermediate metadata, such as allele frequencies, rather than the raw DNA sequences or genotyping results. PopSc is first implemented as the web-based calculator with user-friendly interface, which greatly facilitates the teaching of population genetics in class and also promotes the convenient and straightforward calculation of statistics in research. Additionally, we also provide the Python library and R package of PopSc, which can be flexibly integrated into other advanced bioinformatic packages of population genetics analysis.

  11. Computer-aided identification of polymorphism sets diagnostic for groups of bacterial and viral genetic variants

    Directory of Open Access Journals (Sweden)

    Huygens Flavia

    2007-08-01

    Full Text Available Abstract Background Single nucleotide polymorphisms (SNPs and genes that exhibit presence/absence variation have provided informative marker sets for bacterial and viral genotyping. Identification of marker sets optimised for these purposes has been based on maximal generalized discriminatory power as measured by Simpson's Index of Diversity, or on the ability to identify specific variants. Here we describe the Not-N algorithm, which is designed to identify small sets of genetic markers diagnostic for user-specified subsets of known genetic variants. The algorithm does not treat the user-specified subset and the remaining genetic variants equally. Rather Not-N analysis is designed to underpin assays that provide 0% false negatives, which is very important for e.g. diagnostic procedures for clinically significant subgroups within microbial species. Results The Not-N algorithm has been incorporated into the "Minimum SNPs" computer program and used to derive genetic markers diagnostic for multilocus sequence typing-defined clonal complexes, hepatitis C virus (HCV subtypes, and phylogenetic clades defined by comparative genome hybridization (CGH data for Campylobacter jejuni, Yersinia enterocolitica and Clostridium difficile. Conclusion Not-N analysis is effective for identifying small sets of genetic markers diagnostic for microbial sub-groups. The best results to date have been obtained with CGH data from several bacterial species, and HCV sequence data.

  12. Quantitative Seq-LGS: Genome-Wide Identification of Genetic Drivers of Multiple Phenotypes in Malaria Parasites

    KAUST Repository

    Abkallo, Hussein M.

    2016-10-01

    Identifying the genetic determinants of phenotypes that impact on disease severity is of fundamental importance for the design of new interventions against malaria. Traditionally, such discovery has relied on labor-intensive approaches that require significant investments of time and resources. By combining Linkage Group Selection (LGS), quantitative whole genome population sequencing and a novel mathematical modeling approach (qSeq-LGS), we simultaneously identified multiple genes underlying two distinct phenotypes, identifying novel alleles for growth rate and strain specific immunity (SSI), while removing the need for traditionally required steps such as cloning, individual progeny phenotyping and marker generation. The detection of novel variants, verified by experimental phenotyping methods, demonstrates the remarkable potential of this approach for the identification of genes controlling selectable phenotypes in malaria and other apicomplexan parasites for which experimental genetic crosses are amenable.

  13. Identification and preclinical testing of novel antiepileptic compounds.

    Science.gov (United States)

    Meldrum, B S

    1997-01-01

    Procedures for identifying novel antiepileptic drugs (AEDs) are changing and need to change more. Widespread reliance on two primary screens has led to the identification of novel compounds that resemble either phenytoin (suppressing high-frequency repetitive firing in cultured neurons and prolonging inactivation of voltage-dependent sodium channels identified by the maximal electroshock test) or benzodiazepines (potentiating the inhibitory effect of gamma-aminobutyric acid (GABA), identified by the threshold pentylenetetrazol test). Advances in molecular neurobiology have identified specific molecular targets (subunits of ion channels, neurotransmitter receptors, and transporters) and have made them available in a form permitting high-throughput screening. AEDs can be designed to interact with specific sites on the target molecules. Alternatively, the molecular screens can be used to identify active components in natural products, including folk remedies. Preclinical in vivo screens can be improved by using animals with genetic or acquired epilepsies that have similar modifications in the properties of the target molecules as do human epilepsy syndromes. Future work is likely to define molecular targets for AEDs that will block or reverse chronic epileptogenesis.

  14. HNPCC (Lynch Syndrome: Differential Diagnosis, Molecular Genetics and Management - a Review

    Directory of Open Access Journals (Sweden)

    Lynch Henry T

    2003-12-01

    Full Text Available Abstract HNPCC (Lynch syndrome is the most common form of hereditary colorectal cancer (CRC, wherein it accounts for between 2-7 percent of the total CRC burden. When considering the large number of extracolonic cancers integral to the syndrome, namely carcinoma of the endometrium, ovary, stomach, hepatobiliary system, pancreas, small bowel, brain tumors, and upper uroepithelial tract, these estimates of its frequency are likely to be conservative. The diagnosis is based upon its natural history in concert with a comprehensive cancer family history inclusive of all anatomic sites. In order for surveillance and management to be effective and, indeed, lifesaving, among these high-risk patients, the linchpin to cancer control would be the physician, who must be knowledgeable about hereditary cancer syndromes, their molecular and medical genetics, genetic counseling, and, most importantly, the natural history of the disorders, so that the entirety of this knowledge can be melded to highly-targeted management.

  15. Molecular Cloning Designer Simulator (MCDS: All-in-one molecular cloning and genetic engineering design, simulation and management software for complex synthetic biology and metabolic engineering projects

    Directory of Open Access Journals (Sweden)

    Zhenyu Shi

    2016-12-01

    Full Text Available Molecular Cloning Designer Simulator (MCDS is a powerful new all-in-one cloning and genetic engineering design, simulation and management software platform developed for complex synthetic biology and metabolic engineering projects. In addition to standard functions, it has a number of features that are either unique, or are not found in combination in any one software package: (1 it has a novel interactive flow-chart user interface for complex multi-step processes, allowing an integrated overview of the whole project; (2 it can perform a user-defined workflow of cloning steps in a single execution of the software; (3 it can handle multiple types of genetic recombineering, a technique that is rapidly replacing classical cloning for many applications; (4 it includes experimental information to conveniently guide wet lab work; and (5 it can store results and comments to allow the tracking and management of the whole project in one platform. MCDS is freely available from https://mcds.codeplex.com. Keywords: BioCAD, Genetic engineering software, Molecular cloning software, Synthetic biology, Workflow simulation and management

  16. Molecular genetics of glioblastomas: defining subtypes and understanding the biology.

    Science.gov (United States)

    Renault, Ilana Zalcberg; Golgher, Denise

    2015-02-01

    Despite comprehensive therapy, which includes surgery, radiotherapy, and chemotherapy, the prognosis of glioblastoma multiforme is very poor. Diagnosed individuals present an average of 12 to 18 months of life. This article provides an overview of the molecular genetics of these tumors. Despite the overwhelming amount of data available, so far little has been translated into real benefits for the patient. Because this is such a complex topic, the goal is to point out the main alterations in the biological pathways that lead to tumor formation, and how this can contribute to the development of better therapies and clinical care. Copyright © 2015 Elsevier Inc. All rights reserved.

  17. The role of Molecular Markers in Improvement of Fruit Crops

    Directory of Open Access Journals (Sweden)

    Zahoor Ahmad BHAT

    2010-06-01

    Full Text Available Markers have been used over the years for the classification of plants. Markers are any trait of an organism that can be identified with confidence and relative easy, and can be followed in a mapping population on another hand markers be defined as heritable entities associated with the economically important trait under the control of polygenes. Morphological markers can be detected with naked eye (naked eye polymorphism or as difference in physical or chemical properties of the macromolecules. In other words, there are two types of genetic markers viz. morphological markers or naked eye polymorphism and non-morphological markers or molecular markers. Morphological markers include traits such as plant height, disease response, photoperiod, sensitivity, shape or colour of flowers, fruits or seeds etc. Molecular markers include biochemical constituents. Morphological markers have many limitations for being used as markers particularly in fruit crops because of long generation time and large size of fruit trees besides being influenced by environment. Consequently, molecular markers could be appropriate choice to study and preserve the diversity in any germplasm. Molecular markers have diverse applications in fruit crop improvement, particularly in the areas of genetic diversity and varietal identification studies, gene tagging, disease diagnostics, pedigree analysis, hybrid detection, sex differentiation and marker assisted selection.

  18. Update on Anaplastic Thyroid Carcinoma: Morphological, Molecular, and Genetic Features of the Most Aggressive Thyroid Cancer

    Directory of Open Access Journals (Sweden)

    Moira Ragazzi

    2014-01-01

    Full Text Available Anaplastic thyroid carcinoma (ATC is the most aggressive form of thyroid cancer. It shows a wide spectrum of morphological presentations and the diagnosis could be challenging due to its high degree of dedifferentiation. Molecular and genetic features of ATC are widely heterogeneous as well and many efforts have been made to find a common profile in order to clarify its cancerogenetic process. A comprehensive review of the current literature is here performed, focusing on histopathological and genetic features.

  19. Analyses of Dynamics in Dairy Products and Identification of Lactic Acid Bacteria Population by Molecular Methods

    Directory of Open Access Journals (Sweden)

    Aytül Sofu

    2017-01-01

    Full Text Available Lactic acid bacteria (LAB with different ecological niches are widely seen in fermented meat, vegetables, dairy products and cereals as well as in fermented beverages. Lactic acid bacteria are the most important group of bacteria in dairy industry due to their probiotic characteristics and fermentation agents as starter culture. In the taxonomy of the lactic acid bacteria; by means of rep-PCR, which is the analysis of repetitive sequences that are based on 16S ribosomal RNA (rRNA gene sequence, it is possible to conduct structural microbial community analyses such as Restriction Fragment Length Polymorphism (RFLP analysis of DNA fragments of different sizes cut with enzymes, Random Amplified Polymorphic DNA (RAPD polymorphic DNA amplified randomly at low temperatures and Amplified Fragment-Length Polymorphism (AFLP-PCR of cut genomic DNA. Besides, in the recent years, non-culture-based molecular methods such as Pulse Field Gel Electrophoresis (PFGE, Denaturing Gradient Gel Electrophoresis (DGGE, Thermal Gradient Gel Electrophoresis (TGGE, and Fluorescence In-situ Hybridization (FISH have replaced classical methods once used for the identification of LAB. Identification of lactic acid bacteria culture independent regardless of the method will be one of the most important methods used in the future pyrosequencing as a Next Generation Sequencing (NGS techniques. This paper reviews molecular-method based studies conducted on the identification of LAB species in dairy products.

  20. Targeted association mapping demonstrating the complex molecular genetics of fatty acid formation in soybean.

    Science.gov (United States)

    Li, Ying-hui; Reif, Jochen C; Ma, Yan-song; Hong, Hui-long; Liu, Zhang-xiong; Chang, Ru-zhen; Qiu, Li-juan

    2015-10-23

    The relative abundance of five dominant fatty acids (FAs) (palmitic, stearic, oleic, linoleic and linolenic acids) is a major factor determining seed quality in soybean. To clarify the currently poorly understood genetic architecture of FAs in soybean, targeted association analysis was conducted in 421 diverse accessions phenotyped in three environments and genotyped using 1536 pre-selected SNPs. The population of 421 soybean accessions displayed significant genetic variation for each FA. Analysis of the molecular data revealed three subpopulations, which reflected a trend depending on latitude of cultivation. A total of 37 significant (p seed quality of soybean with benefits for human health and for food processing.