WorldWideScience

Sample records for moessbauer spectroscopic investigation

  1. Moessbauer spectroscopic investigation of low rank coal lithotypes

    Energy Technology Data Exchange (ETDEWEB)

    Kostova, I.; Markova, K.; Kuntchev, K. [Bulgarian Academy of Sciences, Sofia (Bulgaria). Inst. of Applied Mineralogy

    1997-12-31

    Low rank coal lithotypes - xylain, humovitrain, semifusain, fusain and liptain sampled from the Maritsa Iztok coal basin (Bulgaria) have been examined by Moessbauer spectroscopy with no pre-concentration procedures. The results are used to identify three iron species in coal lithotypes and show that covalent iron (Fe{sup II}) related to pyrite, is the main iron species in xylain, while in humovitrain ferric iron is dominant. The total quantity of iron species in semifusain, fusain and liptain is about the same but their distribution is different. Ferric iron dominates in all the three lithotypes. Ferrous iron, although present in smaller quantities, has a higher content in fusain than in semifusain. The results illustrate the type of oxidation processes which formed the coal lithotypes. A transformation of Fe{sup 2+} to Fe{sup 3+} has occurred as a result of differing oxidation processes. The intensity of that transformation increases during the destructive microbial oxidation and decreases during thermal oxidation and direct oxidation processes. The opposite transformation of ferric to ferrous iron has been achieved during both thermal oxidation and direct oxidation processes. 9 refs., 2 figs., 2 tabs.

  2. Moessbauer and EXAFS spectroscopy investigation of iron and arsenic adsorption to lettuce leaves

    Energy Technology Data Exchange (ETDEWEB)

    Vasconcelos, Igor F., E-mail: ifvasco@ufc.br [Universidade Federal do Ceara, Dep. Eng. Metalurgica e de Materiais (Brazil); Silva, Gabriela C.; Carvalho, Regina P.; Dantas, Maria Sylvia S.; Ciminelli, Virginia S. T. [Universidade Federal de Minas Gerais, Dep. Eng. Metalurgica e de Materiais (Brazil)

    2010-01-15

    The accumulation of iron and arsenic from aqueous solution by lettuce leaves biomass was investigated using Moessbauer and EXAFS spectroscopic techniques. Moessbauer spectroscopy results show that iron is oxidized during sorption while EXAFS results indicate that iron is coordinated by approximately 6 oxygen and 2 carbon atoms while arsenic is coordinated by approximately 4 oxygen atoms with iron as a second neighbor.

  3. Crystal structure, magnetism, {sup 89}Y solid state NMR, and {sup 121}Sb Moessbauer spectroscopic investigations of YIrSb

    Energy Technology Data Exchange (ETDEWEB)

    Benndorf, Christopher [Institut fuer Physikalische Chemie, Universitaet Muenster (Germany); Institut fuer Anorganische und Analytische Chemie, Universitaet Muenster (Germany); Heletta, Lukas; Block, Theresa; Poettgen, Rainer [Institut fuer Anorganische und Analytische Chemie, Universitaet Muenster (Germany); Eckert, Hellmut [Institut fuer Physikalische Chemie, Universitaet Muenster (Germany); Institute of Physics in Sao Carlos, University of Sao Paulo, Sao Carlos (Brazil)

    2017-02-15

    The ternary antimonide YIrSb was synthesized from the binary precursor YIr and elemental antimony by a diffusion controlled solid-state reaction. Single crystals were obtained by a flux technique with elemental bismuth as an inert solvent. The YIrSb structure (TiNiSi type, space group Pnma) was refined from single-crystal X-ray diffractometer data: a = 711.06(9), b = 447.74(5), c = 784.20(8) pm, wR{sub 2} = 0.0455, 535 F{sup 2} values, 20 variables. {sup 89}Y solid state MAS NMR and {sup 121}Sb Moessbauer spectra show single resonance lines in agreement with single-crystal X-ray data. YIrSb is a Pauli paramagnet. (copyright 2017 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  4. Moessbauer-spectroscopic studies on unordered oxidic solids; Moessbauer-Spektrokopische Untersuchungen ungeordneter oxidischer Festkoerper

    Energy Technology Data Exchange (ETDEWEB)

    Menzel, M.

    2004-07-01

    In this work he have performed Moessbauer spectroscopy measurements of unordered oxidic solids. Two different system have been investigated, mechanically activated Fe{sup 2+} containing spinels and glass systems. The Fe{sup 2+} containing spinels have been characterized before and after the mechanical treatment and the observed changes of the properties have been interpreted. Our special attention was focused on the changes of the magnetic properties and the mechanically induced redox processes of Fe{sub 2}GeO{sub 4}, FeV{sub 2}O{sub 4} and FeAl2O{sub 4}. The {sup 119}Sn containing glasses (similar to floatglasses) have been investigated in respect to different sodium and aluminium concentrations. In order to interprete the obtained spectra of Sn{sup 2+} a local bonding model has been suggested. The model allows statements about the local electron distribution of the investigated ions. Debye temperatures of different Sn-ions have been determined from temperature dependend measurements. These values have been compared with literature data from various Sn-Oxides. A temperature dependent extension of the local bonding modell shows an increasing roundness of the ion in respect to the electron distribution of the Sn{sup 2+} ion with increasing temperature.

  5. Moessbauer spectroscopic study of meteorites recovered on Antarctica

    Energy Technology Data Exchange (ETDEWEB)

    Endo, K. [Showa Coll. of Pharmaceutical Sci., Tokyo (Japan); Hirunuma, R. [Showa Coll. of Pharmaceutical Sci., Tokyo (Japan); Shinonaga, T. [Dept. of Chemistry, Tokyo Metropolitan Univ. (Japan); Ebihara, M. [Dept. of Chemistry, Tokyo Metropolitan Univ. (Japan); Nakahara, H. [Dept. of Chemistry, Tokyo Metropolitan Univ. (Japan)

    1994-11-01

    The chemical states of iron in sixteen Antarctic meteorites belonging to H-group chondrites were studied by means of Moessbauer spectroscopy. An Fe-Ni alloy, troilite, paramagnetic Fe(III), and two kinds of paramagnetic Fe(II) were observed in each meteorite. The Moessbauer parameters indicated that the Fe(II) components can be assigned to olivine and some pyroxenes. The relative area intensities of Fe(III) in the chondrites correlated positively with iodine content, which was determined by radiochemical neutron activation analysis, and those of two Fe(II)-species correlated negatively with the content. On the basis of the data on the halogen and the Moessbauer spectrocopy, the terrestrial contamination on Antarctic meteorites is discussed. (orig.)

  6. Moessbauer spectroscopic study on inorganic compounds. Pt. 2

    Energy Technology Data Exchange (ETDEWEB)

    Takahashi, Masashi; Kitazawa, Takafumi; Nanba, Hiroshi; Yoshinaga, Tomohiro; Nakajima, Norio; Sumisawa, Yasuhiro; Takeda, Masuo [Toho Univ., Funabashi, Chiba (Japan). Faculty of Science; Sawahata, Hiroyuki; Ito, Yasuo

    1998-01-01

    {sup 166}Er and {sup 127}I Moessbauer spectra were observed. {sup 166}Er Moessbauer spectrum of Er metal and 9 compounds were measured by {sup 166}Ho/Y{sub 0.6}Ho{sub 0.4}H{sub 2} source at 12K and the parameters such as e{sup 2}qQ(mm s{sup -1}), Heff(T) and {tau}(ns) were determined. The relaxation time of ErCl{sub 3}{center_dot}6H{sub 2}O was 0.7ns, long, but that of ErCl{sub 3} was 10 ps, short time. {sup 127}I Moessbauer spectrum of PhI(O{sub 2}CR){sub 2} (R=CH{sub 3}, CHF{sub 2}, CH{sub 2}Cl, CHCl{sub 2}, CCl{sub 3}, CH{sub 2}Br, CHBr{sub 2} and CBr{sub 3}) were observed and compared with that of R`{sub 3}Sb(O{sub 2}CR){sub 2} was similar to that of PhI(O{sub 2}CR){sub 2}. The correlation coefficient between e{sup 2}qQ({sup 127}I) and Mulliken population of carboxylic hydrogen atom of R{sub 2}CO{sub 2}H was -0.87. The relation between the hypervalent bond of O-I-O and that of O-Sb-0 was shown by the equation: e{sup 2}qQ({sup 121}Sb)/mm s{sup -1} = -47.2 + 1.32 e{sup 2}qQ({sup 127}I)/mm s{sup -1}. Hypervalent iodine complex such as (PhI(py){sub 2}){sup 2+} salt and E-Sb-I (E=O, I, N and C) were studied, too. (S.Y.)

  7. Moessbauer spectroscopic analysis of the BaNbFe based compound; Analise por espectroscopia Moessbauer do composto a base de BaNbFe

    Energy Technology Data Exchange (ETDEWEB)

    Silva, Manoel Ribeiro da; Araujo, Fabiana F. de; Gontijo, Marcelo R.F.; Polegato, Paulo H. [Universidade Federal de Itajuba (UNIFEI), MG (Brazil). Dept. de Fisica e Quimica], e-mail: mrsilva@unifei.edu.br

    2008-07-01

    This work presents the synthesis and the results resulting from the application of Moessbauer spectroscopy for the investigation of the compound containing BaNb{sub x}Fe{sub 2-x}O{sub 4}. The synthesis used the chemical compounds Fe{sub 2}, Nb{sub 2}O{sub 3} and BaCO{sub 3}. The Moessbauer spectroscopy shows that the central doublets are characteristically of Fe{sup 3+} in the paramagnetic mineral structures or Fe{sup 2+} oxides in the superparamagnetic state. The studied material is a strong candidate for the application studies of superparamagnetic materials.

  8. {sup 57}Fe Moessbauer Spectroscopic Study on the Assembled Iron Complexes

    Energy Technology Data Exchange (ETDEWEB)

    Nakashima, S. [Hiroshima University, Natural Science Center for Basic Research and Development (N-BARD) (Japan); Asada, Y.; Okuda, T. [Hiroshima University, Department of Chemistry, Graduate School of Science (Japan)

    2004-12-15

    {sup 57}Fe Moessbauer spectroscopy was carried out to know the electronic states of the assembled iron complexes. The IS value revealed a high-spin Fe{sup II} state in the bipyridine and pyrazine iron complexes with NCS or NCSe. The dissociation behavior of ligand was investigated by TG, and the resultant change in the coordination sphere around iron atom was reflected in the change in QS value.

  9. Co{sup 2 + } interaction with Azospirillum brasilense Sp7 cells: a {sup 57}Co emission Moessbauer spectroscopic study

    Energy Technology Data Exchange (ETDEWEB)

    Kamnev, Alexander A.; Tugarova, Anna V. [Russian Academy of Sciences, Institute of Biochemistry and Physiology of Plants and Microorganisms (Russian Federation); Biro, Borbala [Hungarian Academy of Sciences, Research Institute for Soil Science and Agricultural Chemistry (Hungary); Kovacs, Krisztina, E-mail: kkriszti@chem.elte.hu; Homonnay, Zoltan; Kuzmann, Erno; Vertes, Attila [Eoetvoes Lorand University, Institute of Chemistry (Hungary)

    2012-03-15

    Preliminary {sup 57}Co emission Moessbauer spectroscopic data were obtained for the soil bacterium Azospirillum brasilense Sp7 (T = 80 K) in frozen {sup 57}Co{sup 2 + }-containing suspensions and in their dried residues. The Moessbauer parameters were compared with those for A. brasilense strain Sp245 differing from strain Sp7 by ecological behaviour. Live cells of both strains showed metabolic transformations of {sup 57}Co{sup 2 + } within an hour. Differences in the parameters observed for the two strains under similar conditions suggest dissimilarities in their metabolic response to Co{sup 2 + }.

  10. Moessbauer investigation of Au/Fe alloys with giant magnetoresistence properties

    Energy Technology Data Exchange (ETDEWEB)

    Albanese, G.; Deriu, A. E-mail: antonio.deriu@fis.unipr.it; Moya, J.; Angeli, E.; Bisero, D.; Da Re, A.; Ronconi, F.; Spizzo, F.; Vavassori, P.; Baricco, M.; Bosco, E

    2004-05-01

    Rapidly quenched ribbon samples and sputtered granular films of AuFe alloys with giant magnetoresistance behaviour were investigated by Moessbauer spectroscopy. The structural and magnetic characteristics of the two kinds of samples are discussed and compared.

  11. Magnetic frustration in ferric fluorides investigated by Moessbauer spectrometry

    Energy Technology Data Exchange (ETDEWEB)

    Greneche, J.-M. [UPRESA CNRS 6087, Faculte des Sciences, Universite du Maine, Laboratoire de Physique de l' Etat Condense (France)

    1999-11-15

    The origin of magnetic frustration in antiferromagnetic ionic systems is discussed in terms first of cationic topology and then of competing superexchange and supersuperexchange interactions. Some selected examples based on ferric fluorides and oxyfluorides are presented to illustrate both the origins of magnetic frustration and the contribution of zero-field and in-field Moessbauer experiments.

  12. Using Moessbauer spectroscopy as key technique in the investigation of nanosized magnetic particles for drug delivery

    Energy Technology Data Exchange (ETDEWEB)

    Morais, P. C., E-mail: pcmor@unb.br [Universidade de Brasilia, Nucleo de Fisica Aplicada, Instituto de Fisica (Brazil)

    2008-01-15

    This paper describes how cobalt ferrite nanoparticles, suspended as ionic or biocompatible magnetic fluids, can be used as a platform to built complex nanosized magnetic materials, more specifically magnetic drug delivery systems. In particular, the paper is addressed to the discussion of the use of the Moessbauer spectroscopy as an extremely useful technique in supporting the investigation of key aspects related to the properties of the hosted magnetic nanosized particle. Example of the use of the Moessbauer spectroscopy in accessing information regarding the nanoparticle modification due to the empirical process which provides long term chemical stability is included in the paper.

  13. Instrumental analysis of bacterial cells using vibrational and emission Moessbauer spectroscopic techniques

    Energy Technology Data Exchange (ETDEWEB)

    Kamnev, Alexander A. [Laboratory of Biochemistry of Plant-Bacterial Symbioses, Institute of Biochemistry and Physiology of Plants and Microorganisms, Russian Academy of Sciences, 410049 Saratov (Russian Federation)]. E-mail: aakamnev@ibppm.sgu.ru; Tugarova, Anna V. [Laboratory of Biochemistry of Plant-Bacterial Symbioses, Institute of Biochemistry and Physiology of Plants and Microorganisms, Russian Academy of Sciences, 410049 Saratov (Russian Federation); Antonyuk, Lyudmila P. [Laboratory of Biochemistry of Plant-Bacterial Symbioses, Institute of Biochemistry and Physiology of Plants and Microorganisms, Russian Academy of Sciences, 410049 Saratov (Russian Federation); Tarantilis, Petros A. [Laboratory of Chemistry, Department of Science, Agricultural University of Athens, 11855 Athens (Greece); Kulikov, Leonid A. [Laboratory of Nuclear Chemistry Techniques, Department of Radiochemistry, Faculty of Chemistry, M.V. Lomonosov Moscow State University, 119992 Moscow (Russian Federation); Perfiliev, Yurii D. [Laboratory of Nuclear Chemistry Techniques, Department of Radiochemistry, Faculty of Chemistry, M.V. Lomonosov Moscow State University, 119992 Moscow (Russian Federation); Polissiou, Moschos G. [Laboratory of Chemistry, Department of Science, Agricultural University of Athens, 11855 Athens (Greece); Gardiner, Philip H.E. [Division of Chemistry, School of Science and Mathematics, Sheffield Hallam University, Sheffield S1 1WB (United Kingdom)

    2006-07-28

    In biosciences and biotechnology, the expanding application of physicochemical approaches using modern instrumental techniques is an efficient strategy to obtain valuable and often unique information at the molecular level. In this work, we applied a combination of vibrational (Fourier transform infrared (FTIR), FT-Raman) spectroscopic techniques, useful in overall structural and compositional analysis of bacterial cells of the rhizobacterium Azospirillum brasilense, with {sup 57}Co emission Moessbauer spectroscopy (EMS) used for sensitive monitoring of metal binding and further transformations in live bacterial cells. The information obtained, together with ICP-MS analyses for metals taken up by the bacteria, is useful in analysing the impact of the environmental conditions (heavy metal stress) on the bacterial metabolism and some differences in the heavy metal stress-induced behaviour of non-endophytic (Sp7) and facultatively endophytic (Sp245) strains. The results show that, while both strains Sp7 and Sp245 take up noticeable and comparable amounts of heavy metals from the medium (0.12 and 0.13 mg Co, 0.48 and 0.44 mg Cu or 4.2 and 2.1 mg Zn per gram of dry biomass, respectively, at a metal concentration of 0.2 mM in the medium), their metabolic responses differ essentially. Whereas for strain Sp7 the FTIR measurements showed significant accumulation of polyhydroxyalkanoates as storage materials involved in stress endurance, strain Sp245 did not show any major changes in cellular composition. Nevertheless, EMS measurements showed rapid binding of cobalt(II) by live bacterial cells (chemically similar to metal binding by dead bacteria) and its further transformation in the live cells within an hour.

  14. Uses and perspectives of Moessbauer spectroscopic studies of iron minerals in coal

    Energy Technology Data Exchange (ETDEWEB)

    Gracia, M.; Marco, J.F.; Gancedo, J.R. [Instituto de Quimica Fisica ' Rocasolano' (Spain)

    1999-11-15

    The processes involved in the utilization of coal are affected by the minerals contained in it. Due to the presence of iron as a major constituent of coal mineral matter, and to the fact that the iron minerals, especially pyrite, and their transformation products play an important role in coal uses, {sup 57}Fe-Moessbauer spectroscopy appears as an attractive tool in coal research. Moessbauer studies related to the characterization of iron phases, coal oxidation and quantitative determination of pyritic sulphur are discussed in this work.

  15. Moessbauer Spectroscopic Study of a Mural Painting from Morgadal Grande, Mexico

    Energy Technology Data Exchange (ETDEWEB)

    Kuno, A.; Matsuo, M. [University of Tokyo, Graduate School of Arts and Sciences (Japan); Soto, A. Pascual [Universidad Nacional Autonoma de Mexico, Instituto de Investigaciones Esteticas (Mexico); Tsukamoto, K. [Escuela Nacional de Antropologia e Historia (Mexico)

    2004-12-15

    In this study, {sup 57}Fe Moessbauer spectroscopy has been applied to fragments of a mural painting excavated at Morgadal Grande, Mexico, to characterize the pigments used. A sextet attributable to hematite ({alpha}-Fe{sub 2}O{sub 3}) was clearly detected in the red fragments. The spectra of orange fragments showed a doublet attributable to paramagnetic high-spin Fe{sup 3+}, which presumably originates from goethite ({alpha}-FeOOH) exhibiting superparamagnetic relaxation due to its small particle size. The blue fragments contained little iron. The scattered X-ray Moessbauer spectra revealed that the thickness of the pigments was larger than 20 {mu}m.

  16. Moessbauer Spectroscopic Studies of {sup 237}Np in frozen nitric acid solution

    Energy Technology Data Exchange (ETDEWEB)

    Nakada, M; Wang, J; Kitazawa, T; Takahashi, M; Takeda, M; Masaki, N M; Yamashita, T [Department of Materials Science, Japan Atomic Energy Research Institute (JAERI, present JAEA: Japan Atomic Energy Agency), Tokai, Naka, Ibaraki 319-1195 (Japan); Tsutsui, S, E-mail: wangjh@dicp.ac.c [Advanced Science Research Center, JAERI, Tokai, Naka, Ibaraki 319-1195 (Japan)

    2010-03-01

    We applied Moessbauer spectroscopy to {sup 237}Np in nitric acid solutions to study chemical states. Sample solutions were adjusted to 50 mg/ml of Np(V) and Np(VI) concentration in 0.6 M nitric acid solutions. These solutions were put into original designed containers for samples and mounted to sample holders. The values of isomer shift (IS, relative to NpAl{sub 2}) of Np(V) and Np(VI) in 0.6 M nitric acid were -17.4(1) and -37.2(3) mm/s at about 10 K, respectively. It was found that Np(V) had 7 coordination number and Np(VI) had 8 in nitric acid solutions from values of IS.

  17. Iron-57 Moessbauer spectroscopic studies of the weathering of L-chondrite meteorites

    Energy Technology Data Exchange (ETDEWEB)

    Berry, F.J. [Open Univ., Milton Keynes (United Kingdom). Dept. of Chem.; Bland, P.A. [Open Univ., Milton Keynes (United Kingdom). Dept. of Earth Sciences; Oates, G. [Open Univ., Milton Keynes (United Kingdom). Dept. of Chem.; Pillinger, C.T. [Open Univ., Milton Keynes (United Kingdom). Dept. of Earth Sciences

    1994-11-01

    Some L-chondrite meteorites found in the arid desert region of Roosevelt County in New Mexico, USA, and {sup 14}C dated to determine the terrestrial age have been examined by {sup 57}Fe Moessbauer spectroscopy. The preliminary results reported here suggest that the initial weathering processes involve oxidation of iron in the iron-nickel alloy. After prolonged exposure to terrestrial weathering for approximately 36 000 years, the iron(II)-sulphide and -silicate phases are also oxidised. The corrosion products are complex and include paramagnetic Fe{sup 3+} species and macroscopic iron(III) oxide and/or oxyhydroxide phases. A meteorite which fell approximately 16 500 years ago at the end of the last glaciation showed extensive corrosion despite its relatively short terrestrial age. The result is associated with climatic changes which occurred at that time. (orig.)

  18. Investigation by sup 5 sup 7 Fe- Moessbauer spectroscopy of some pyrite samples of different Romanian natural deposits

    CERN Document Server

    Constantinescu, S; Calogero, S

    2002-01-01

    Extracted pyrites from four Romanian geological deposits have been investigated by Moessbauer spectroscopy. The room temperature results of this investigation have been correlated with the data of sulfur isotope ratio and minor elements analysis of pyrite samples. The presence of three signals is identified in the Moessbauer spectra. They correspond to the two crystalline structure of FeS sub 2 while the third is suggested to be assigned to one of the components of the iron-sulfur-arsenic series of investigated minerals. (authors)

  19. A Moessbauer spectroscopic study on the action of Ce in the catalyst for dehydrogenation of etylbenzene to styrene

    Energy Technology Data Exchange (ETDEWEB)

    Jiang Keyu, E-mail: keyujiang@126.com [East China Normal University, Department of Physics (China); Fan Qin; Chen Tong; Miao Changxi [Shanghai Research Institute of Petrochemical Technology, SINOPEC (China); Zhao Zhenji; Yang Xielong [East China Normal University, Department of Physics (China)

    2012-03-15

    Two series of Fe-K catalysts for dehydrogenation of ethylbenzene to styrene were prepared with different amounts and different compounds of the additional element Ce. Moessbauer spectroscopy has been used to determine the Fe compound in the catalyst and to investigate the effect of Ce. The catalytic properties of the catalysts have also been measured. The results show that the element Ce in the catalyst is favorable to form the predecessor of the catalytic active phase, the compound KFe{sub 11}O{sub 17} and that the optimal percentage of CeO{sub 2} is 8%{approx}15% in the catalyst which is favorable to the formation of KFe{sub 11}O{sub 17} and to get better catalytic properties.

  20. Aspartic acid interaction with cobalt(II) in dilute aqueous solution: A {sup 57}Co emission Moessbauer spectroscopic study

    Energy Technology Data Exchange (ETDEWEB)

    Kamnev, Alexander A.; Tugarova, Anna V. [Institute of Biochemistry and Physiology of Plants and Microorganisms, Russian Academy of Sciences (Russian Federation); Kovacs, Krisztina; Homonnay, Zoltan, E-mail: homonnay@ludens.elte.hu; Kuzmann, Erno; Vertes, Attila [Eoetvoes Lorand University, Institute of Chemistry (Hungary)

    2012-03-15

    Emission ({sup 57}Co) Moessbauer spectra of the aspartic acid-{sup 57}CoCl{sub 2} system were measured at T = 80 K in frozen aqueous solution and in the form of a dried residue of this solution. The Moessbauer spectra, besides a weak contribution from after-effects, showed two Fe{sup 2 + }/Co{sup 2 + } components which were ascribed to octahedrally and tetrahedrally coordinated {sup 57}Co{sup II} microenvironments in the Asp-cobalt(II) complex. This dual coordination mode may be due to the involvement of the second terminal carboxylic group of aspartic acid in the coordination sphere of Co.

  1. Moessbauer optics of synchrotron radiation at an isotope interface

    CERN Document Server

    Belyakov, V A

    2000-01-01

    Coherent inelastic Moessbauer scattering (CIMS) of synchrotron radiation (SR) at an isotope interface (plane interface between two regions differing only in the concentration of the Moessbauer isotope) is investigated theoretically. Main attention is paid to the CIMS component resulting from SR quanta absorption by Moessbauer nuclei accompanied by creation or annihilation of the phonons in sample and following recoilless reemission of Moessbauer quanta.

  2. Moessbauer spectroscopic evidence on the heme binding to the proximal histidine in unfolded carbonmonoxy myoglobin by guanidine hydrochloride

    Energy Technology Data Exchange (ETDEWEB)

    Harami, Taikan, E-mail: harami.taikan@jaea.go.jp [Japan Atomic Energy Agency (Japan); Kitao, Shinji; Kobayashi, Yasuhiro [Kyoto University, Research Reactor Institute (Japan); Mitsui, Takaya [Japan Atomic Energy Agency (Japan)

    2008-01-15

    The unfolded heme structure in myoglobin is controversial because of no chance of direct X-ray structure analyses. The unfolding of carbonmonoxy myoglobin (MbCO) by guanidine hydrochloride (GdnHCl) was studied by the Moessbauer spectroscopy. The spectra show the presence of a sort of spectrum in the unfolded MbCO, independent on the concentration of GdnHCl from 1 to 6 M and the increase of the fraction of unfolded MbCO, depending on the GdnHCl concentration. The isomer shift of the iron of heme in the unfolded MbCO was identified to be different from that of the native MbCO as the globin structure in Mb collapses under the unfolded conditions. This result and the existing related Moessbauer data proved that the heme in the unfolded MbCO may remain coordinated to the proximal histidine.

  3. Application of Moessbauer Spectroscopy to the Study of Corrosion

    Energy Technology Data Exchange (ETDEWEB)

    Cook, Desmond C. [Old Dominion University, Department of Physics (United States)

    2004-03-15

    Corrosion research, and the need to fully understand the effects that environmental conditions have on the performance of structural steels, is one area in which Moessbauer spectroscopy has become a required analytical technique. This is in part due to the need to identify and quantify the nanophase iron oxides that form on and protect certain structural steels, and that are nearly transparent to most other spectroscopic techniques. A review is given of the most recent Moessbauer characterization of rusts that have formed on structural steels exposed to different environments. Moessbauer spectroscopy is playing an important role in a new corrosion program in the United States in which steel bridges, old and new, are being evaluated for corrosion problems that may reduce their serviceable lifetimes. Moessbauer spectroscopy has been used to characterize the corrosion products that form the protective patina on weathering steel, as well those that form in adverse environments in which the oxide coating is not adherent or protective to the steel. Moessbauer spectroscopy has also become an important analytical technique for investigating the corrosion products that have formed on archeological artifacts, and it is providing guidance to aid in the removal of the oxides necessary for their preservation.

  4. sup 119 Sn-Moessbauer spectroscopic study of the single phase of Bi(Pb)-Sr-Ca-Cu(Sn)-O

    Energy Technology Data Exchange (ETDEWEB)

    Matsumoto, Y. (Dept. of Electrical Engineering, Fukuoka Univ. (Japan)); Nishida, T. (Dept. of Chemistry, Kyushu Univ., Fukuoka (Japan)); Katada, M. (Dept. of Chemistry, Tokyo Metropolitan Univ. (Japan)); Deshimaru, Y.; Miura, N.; Yamazoe, N. (Dept. of Materials Science and Tech., Graduate School of Engineering Sciences, Kyushu Univ., Fukuoka (Japan))

    1991-12-01

    Tin-doped samples of the high-Tc (2223) phase of Bi-Pb-Sr-Ca-Cu-O superconductor have been prepared by a conventional sintering method. Sintering conditions were carefully selected to obtain the single high-Tc phase. {sup 119}Sn-Moessbauer spectra have been measured in the temperature range from 4.2 to 300 K. The temperature dependence of the recoilless fraction (f) is well understood by the temperature dependence of the normal phonon. (orig.).

  5. Iron-Sulfur Proteins Investigated by EPR-, Moessbauer- and EXAFS-Spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Wegner, P.; Bever, M.; Schuenemann, V.; Trautwein, A. X. [University of Luebeck, Institute of Physics (Germany); Schmidt, C. [University of Luebeck, Institute of Biochemistry (Germany); Boenisch, H. [Center for Structural Biochemistry, Karolinska Institutet, Dept. of Biosciences at NOVUM (Sweden); Gnida, M.; Meyer-Klaucke, W. [DESY, EMBL Outstation Hamburg (Germany)

    2004-12-15

    The structural and spectroscopic properties of the biologically active [Fe-4S] site of three different mutants of the wild-type rubredoxin from the archaeon Pyrococcus abyssi were investigated and compared with each other and additionally with those of the rubredoxin from the bacterium Clostridium pasteurianum.

  6. Microstructure, magnetic properties and TMR effect of Fe-SiO{sub 2} granular films investigated by Moessbauer spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Ge Shihui E-mail: gesh@lzu.edu.cn; Xi Li; Zhang Zongzhi E-mail: zhangzz@lzu.edu.cn; Liu Yapi; Li Chengxian

    2001-05-01

    Fe-SiO{sub 2} granular films with various metal volume fractions ( f{sub v}) were fabricated by RF co-sputtering. The microstructure and magnetic properties as well as the tunneling magnetoresistance (TMR) were systematically investigated. The TMR exists in the samples with f{sub v}<0.5, and the Fe{sub 0.33}(SiO{sub 2}){sub 0.67} film exhibits the largest TMR value of -3.3% at room temperature under 1.3 T magnetic field. The transmission electron microscopy images indicate that these samples consist of small Fe particles with the size range from 1.0 to 15.0 nm separated by insulating SiO{sub 2} matrix and exhibit TMR effect. Moessbauer measurement reveals that more superparamagnetic Fe component and less paramagnetic Fe{sub 2}SiO{sub 4} are in favor of the higher probability of spin-dependent tunneling, thus larger TMR value. For the samples with f{sub v}{>=}0.43, Moessbauer study shows the existence of perpendicular magnetic anisotropy, and the strongest perpendicular magnetic anisotropy was observed in the sample of Fe{sub 0.47}(SiO{sub 2}){sub 0.53}. This phenomenon may be ascribed to the stress anisotropy in this film.

  7. Moessbauer study of the Jilin and Xinyang meteorites

    Energy Technology Data Exchange (ETDEWEB)

    Zhang Yuchang [North Carolina Univ., Asheville, NC (United States). Moessbauer Effect Data Center; Stevens, J.G. [North Carolina Univ., Asheville, NC (United States). Moessbauer Effect Data Center; Li Yushu [FEA Management, Inc., Grand Blanc, MI (United States); Li Zhaolin [Dept. of Geology, Zhongshan Univ., Guanzhou (China)

    1994-11-01

    The Xinyang and Jilin meteorites were investigated using Moessbauer spectroscopy. In addition to troilites and silicates, the Jilin meteorite contains taenite and kamacite, while the Xinyang meteorite contains kamacite only. The Moessbauer data of these two meteorites confirm them as ordinary H chondrites. The Moessbauer parameters can be interpreted by a model based on the cooling history of these meteorites. (orig.)

  8. Moessbauer studies of ternary superconductors

    Energy Technology Data Exchange (ETDEWEB)

    Kimball, C.W.; Van Landuyt, G.L.; Barnet, C.D.; Shenoy, G.K.; Dunlap, B.D.; Fradin, F.Y.

    1978-01-01

    Moessbauer studies of the ternary Chevrel phase and rare earth rhodium boride superconductors have been made. Anomalous phonon properties at the Sn site in SnMo/sub 6/S/sub 8/, SnMo/sub 6/Se/sub 8/, and La/sub 0/ /sub 98/Sn/sub 0/ /sub 02/Mo/sub 6/Se/sub 8/ have been investigated. Studies of polarization of conduction electrons at the site of the magnetic ion have been made by means of the /sup 151/Eu Moessbauer effect in Eu/sub x/Sn/sub 1-x/Mo/sub 6/S/sub 8/ and the effects of such polarization on superconducting properties discussed. The Moessbauer effect in /sup 166/Er has been used to investigate the electronic ground state in the ternary compound ErRh/sub 4/B/sub 4/ both in the superconducting and magnetically ordered states.

  9. Recent results of EPR and Moessbauer investigations on lattice dynamics in ammonium sulphate

    CERN Document Server

    Grecu, M N; Grecu, V V

    2003-01-01

    Recent results of the lattice dynamics investigation on ammonium sulfate are reported based on recent experiments carried out using using the non-destructive experimental technique of EPR and NGR. The main results confirm the presence and the contribution of a soft mode, which accompanied the paraferroelectric phase transition in the investigated crystal. (authors)

  10. A Moessbauer investigation of complexes of tin tetrahalides with ambidentate Lewis bases containing nitrogen, sulphur and oxygen

    Energy Technology Data Exchange (ETDEWEB)

    Teles, W.M. (Dept. de Quimica, ICEx, Univ. Federal de Minas Gerais, Belo Horizonte (Brazil)); Allain, L.R. (Dept. de Quimica, ICEx, Univ. Federal de Minas Gerais, Belo Horizonte (Brazil)); Filgueiras, C.A.L. (Dept. de Quimica, ICEx, Univ. Federal de Minas Gerais, Belo Horizonte (Brazil)); Abras, A. (Dept. de Fisica, ICEx, Univ. Federal de Minas Gerais, Belo Horizonte (Brazil))

    1994-02-01

    A series of 1 : 1 complexes was prepared with SnX[sub 4] (X = Cl, Br, I) and the Lewis bases 2-mercaptobenzothiazole, 2-mercapto-1-methylimidazole, 2-aminothiazole, 2-acetylpyridine, and 2,2'-bis(pyridyl)ketone. The latter two ligands yielded bidentate, N, O-bonded hexacoordinate complexes, whereas the other ligands produced monodentate, N-bonded pentacoordinate species, as suggested by Moessbauer parameters, which correlate quite well with the IR spectroscopy data. (orig.)

  11. Spectroscopic Investigation of the Mechanism of Photocatalysis

    Directory of Open Access Journals (Sweden)

    Yoshio Nosaka

    2014-11-01

    Full Text Available Reaction mechanisms of various kinds of photocatalysts have been reviewed based on the recent reports, in which various spectroscopic techniques including luminol chemiluminescence photometry, fluorescence probe method, electron spin resonance (ESR, and nuclear magnetic resonance (NMR spectroscopy were applied. The reaction mechanisms elucidated for bare and modified TiO2 were described individually. The modified visible light responsive TiO2 photocatalysts, i.e., Fe(III-deposited metal-doped TiO2 and platinum complex-deposited TiO2, were studied by detecting paramagnetic species with ESR, •O2− (or H2O2 with chemiluminescence photometry, and OH radicals with a fluorescence probe method. For bare TiO2, the difference in the oxidation mechanism for the different crystalline form was investigated by the fluorescence probe method, while the adsorption and decomposition behaviors of several amino acids and peptides were investigated by 1H-NMR spectroscopy.

  12. Moessbauer backscatter spectrometer with full data processing capability

    Energy Technology Data Exchange (ETDEWEB)

    O' Connell, T.; Hartzell, R.; Liebermann, M.

    1976-01-01

    The design and operation of a Moessbauer backscatter spectrometer with full data processing capability is described, and the investigation of the applicability of this technique to a variety of practical metallurgical problems is discussed. (WHK)

  13. Moessbauer spectroscopy in neptunium compounds

    Energy Technology Data Exchange (ETDEWEB)

    Nakamoto, Tadahiro; Nakada, Masami; Masaki, Nobuyuki; Saeki, Masakatsu [Japan Atomic Energy Research Inst., Tokyo (Japan)

    1997-03-01

    Moessbauer effects are observable in seven elements of actinides from {sup 232}Th to {sup 247}Cm and Moesbauer spectra have been investigated mainly with {sup 237}Np and {sup 238}U for the reasons of availability and cost of materials. This report describes the fundamental characteristics of Moessbauer spectra of {sup 237}Np and the correlation between the isomer shift and the coordination number of Np(V) compounds. The isomer shifts of Np(V) compounds had a tendency to increase as an increase of coordination number and the isomer shifts of Np(V) compounds showed broad distribution as well as those of Np(VI) but {delta} values of the compounds with the same coordination number were distributed in a narrow range. The {delta} values of Np(VI) complexes with O{sub x} donor set suggest that the Np atom in its hydroxide (NpO{sub 2}(OH){center_dot}4H{sub 2}O)might have pentagonal bipyramidal structure and at least, pentagonal and hexagonal bipyramidal structures might coexist in its acetate and benzoate. Really, such coexistence has been demonstrated in its nitrate, (NpO{sub 2}){sub 2}(NO{sub 3}){sub 2}{center_dot}5H{sub 2}O. (M.N.)

  14. Moessbauer study of Slovak meteorites

    Energy Technology Data Exchange (ETDEWEB)

    Lipka, J.; Sitek, J.; Dekan, J., E-mail: julius.dekan@stuba.sk; Degmova, J. [Slovak University of Technology, Institute of Nuclear and Physical Engineering, Faculty of Electrical Engineering and Information Technology (Slovakia); Porubcan, V. [Comenius University, Faculty of Mathematics and Physics (Slovakia)

    2013-04-15

    {sup 57}Fe Moessbauer spectroscopy was used as an analytical tool in the investigation of iron containing compounds of two meteorites (Rumanova and Kosice) out of total of six which had fallen on Slovak territory. In the magnetic fraction of the iron bearing compounds in the Rumanova meteorite, maghemite, troilite and Fe-Ni alloy were identified. In the non-magnetic fraction silicate phases were found, such as olivine and pyroxene. The paramagnetic component containing Fe{sup 3 + } ions corresponds probably to small superparamagnetic particles. The Kosice meteorite was found near the town of Kosice in February 2010. Its magnetic fraction consists of a Fe-Ni alloy with the Moessbauer parameters of the magnetic field corresponding to kamacite {alpha}-Fe(Ni, Co) and troilite. The non-magnetic part consists of Fe{sup 2 + } phases such as olivine and pyroxene and traces of a Fe{sup 3 + } phase. The main difference between these meteorites is their iron oxide content. These kinds of analyses can bring important knowledge about phases and compounds formed in extraterrestrial conditions, which have other features than their terrestrial analogues.

  15. Characterization of magnetic nano materials by Moessbauer spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Thakur, Sangeeta; Katyal, S C [Jaypee University of information technology, Waknaghat, Solan 173215 (India); Gupta, A; Reddy, V R [UGC-DAE Consortium for scientific research, Khandwa Road, Indore 452017 (India); Singh, M, E-mail: megha2k6@gmail.co [Department of physics, Himachal Pradesh University, Shimla 171005 (India)

    2010-03-01

    The use of a non-destructive nuclear-physical method, namely {sup 57}Fe Moessbauer spectroscopy, is discussed for the investigation of magnetic and structural arrangement of Fe-based nano-crystalline nickel-zinc-indium ferrites (NZIFO). Nano NZIFO particles (Ni{sub 0.58}Zn{sub 0.42}In{sub x}Fe{sub 2-x}O{sub 4}) with varied quantities of indium (x = 0, 0.1, 0.2) have been chemically synthesized through a reverse micelle reaction and investigated by X-ray diffraction, transmission electron microscopy and by magnetic and Moessbauer spectral studies. Here a comparison between low-temperature and room temperature Moessbauer spectra is presented. Well defined sextets at 5 K provide information about the structure and magnetic states of atoms located in different structural positions. The dependence of Moessbauer parameters, viz, isomer shift, quadrupole splitting, linewidth and hyperfine magnetic field on In{sup 3+} concentration have been discussed. Detailed Moessbauer results, as well as the interest of these materials both for applied science perspectives are presented. Moessbauer results are also supported by magnetization data. With these interesting ferromagnetic properties Indium substituted nano nickel-zinc ferrites have potential applications in magnetic storage data.

  16. Synthesis and Spectroscopic Investigation of Azoporphyrins

    Institute of Scientific and Technical Information of China (English)

    2005-01-01

    The synthesis of a series of new covalently-connected azoporphyrin derivatives is described and the photochemical properties of the new compounds are discussed. The two chromophores of these derivatives exhibit their absorption spectroscopic properties respectively.In the fluorescence emission spectra, intermolecular fluorescence quenching is detected.

  17. Moessbauer Studies of Implanted Impurities in Solids

    CERN Multimedia

    2002-01-01

    Moessbauer studies were performed on implanted radioactive impurities in semiconductors and metals. Radioactive isotopes (from the ISOLDE facility) decaying to a Moessbauer isotope were utilized to investigate electronic and vibrational properties of impurities and impurity-defect structures. This information is inferred from the measured impurity hyperfine interactions and Debye-Waller factor. In semiconductors isoelectronic, shallow and deep level impurities have been implanted. Complex impurity defects have been produced by the implantation process (correlated damage) or by recoil effects from the nuclear decay in both semiconductors and metals. Annealing mechanisms of the defects have been studied. \\\\ \\\\ In silicon amorphised implanted layers have been recrystallized epitaxially by rapid-thermal-annealing techniques yielding highly supersaturated, electrically-active donor concentrations. Their dissolution and migration mechanisms have been investigated in detail. The electronic configuration of Sb donors...

  18. Moessbauer spectroscopy study of interfaces for spintronics

    Energy Technology Data Exchange (ETDEWEB)

    Mantovan, R., E-mail: roberto.mantovan@mdm.infm.it; Wiemer, C.; Lamperti, A.; Georgieva, M.; Fanciulli, M. [Laboratorio Nazionale MDM CNR-INFM (Italy); Goikhman, A.; Barantsev, N.; Lebedinskii, Yu.; Zenkevich, A. [Moscow Engineering Physics Institute (Russian Federation)

    2009-06-15

    The submonolayer sensitivity and element-specificity of conversion electron Moessbauer spectroscopy, combined with the use of {sup 57}Fe enriched tracer layers, enable to carefully investigate thin films and interfaces at the atomic-scale. This paper reports on the main achievements we obtained so far in the study of structural, chemical, and magnetic properties of a variety of interfaces between oxides and Fe-based films having potential interest in the field of spintronics.

  19. Moessbauer spectroscopy as a tool in astrobiology

    Energy Technology Data Exchange (ETDEWEB)

    Schroeder, Christian, E-mail: schroedc@uni-mainz.de; Klingelhoefer, Goestar, E-mail: klingel@mail.uni-mainz.de [Johannes Gutenberg-Universitaet, Institut fuer Anorganische Chemie und Analytische Chemie (Germany); Bailey, Brad E., E-mail: bebailey@ucsd.edu; Staudigel, Hubert, E-mail: hstaudigel@ucsd.edu [University of California San Diego, Institute of Geophysics and Planetary Physics, Scripps Institution of Oceanography (United States)

    2005-11-15

    Two miniaturized Moessbauer spectrometers are part of the Athena instrument package of the NASA Mars Exploration Rovers, Spirit and Opportunity. The primary objectives of their science investigation are to explore two sites on the surface of Mars where water may once have been present, and to assess past environmental conditions at those sites and their suitability for life. Aqueous minerals - jarosite at Meridiani Planum, Opportunity's landing site, and goethite in the Columbia Hills in Gusev Crater, Spirit's landing site - were identified by Moessbauer spectroscopy, thus providing in situ proof of water being present at those sites in the past. The formation of jarosite in particular puts strong constraints on environmental conditions during the time of formation and hence on the evaluation of potential habitability. On Earth Moessbauer spectroscopy was used to investigate microbially induced changes in Fe oxidation states and mineralogy at the Loihi deep sea mount, a hydrothermal vent system, which might serve as an analogue for potential habitats in the Martian subsurface and the sub-ice ocean of Jupiter's icy moon Europa.

  20. Moessbauer spectroscopy with actinide elements

    Energy Technology Data Exchange (ETDEWEB)

    Potzel, W.; Moser, J.; Asch, L.; Kalvius, G.M. (Technische Univ. Muenchen, Garching (Germany, F.R.)

    1983-01-01

    Although formally equivalent to the lanthanide (4f) elements, the light actinides show a much more varied behaviour due to the larger spatial extent and ionizability of the 5f electrons. The application of Moessbauer spectroscopy for the determination of electronic properties of the actinides is outlined. Emphasis is put on high pressure Moessbauer experiments using the 60 keV transition in /sup 237/Np to study questions of delocalization of 5f electrons.

  1. Spectroscopic investigations of carious tooth decay.

    Science.gov (United States)

    Thareja, R K; Sharma, A K; Shukla, Shobha

    2008-11-01

    We report on the elemental composition of healthy and infected part of human tooth using laser induced breakdown spectroscopy (LIBS). We have used prominent constituent transitions in laser-excited tooth to diagnose the state of the tooth. A nanosecond laser pulse (355nm, 5ns) was used as an ablating pulse and the sodium (3s2S-3p2P) at 588.99 and (3s2S-3p2P) at 589.99nm, strontium (5s21S-1s5P) at 460.55nm, and calcium (3d3D-4f 3F0) at 452.55nm transitions for spectroscopic analysis. The spectroscopic observations in conjunction with discriminate analysis showed that calcium attached to the hydroxyapatite structure of the tooth was affected severely at the infected part of the tooth. The position-time plots generated from two-dimensional (2D) images conclusively showed a decrease in calcium concentration in the infected region of the irradiated tooth. Using the technique, we could distinguish between the healthy and carious parts of the tooth with significant accuracy.

  2. Moessbauer and magnetoelastic investigations of the surface effects in Fe{sub 72}Cu{sub 1.5}Nb{sub 4}Si{sub 13.5}B{sub 9} nanocrystalline alloy

    Energy Technology Data Exchange (ETDEWEB)

    Szumiata, T. E-mail: szumiatt@inetia.plszumiatt@kiux.man.radom.pl; Brzozka, K.; Gawronski, M.; Gorka, B.; Blazquez-Gamez, J.S.; Kulik, T.; Zuberek, R.; Slawska-Waniewska, A

    2004-05-01

    An existence of effects connected with the surface of grains in nanocrystalline FINEMET-like Fe{sub 72}Cu{sub 1.5}Nb{sub 4}Si{sub 13.5}B{sub 9} alloy was verified by investigation of hyperfine and magnetoelastic properties. In the Moessbauer spectra (collected both at room temperature and close to T{sub c} of amorphous matrix) a broad, high field component was found, which could be attributed to the grains surface and interface region. Such interpretation is confirmed in magnetostrictive experiment pointing to a high value of surface magnetostriction constant.

  3. The history of the Moessbauer effect

    CERN Document Server

    Miglierini, M

    2003-01-01

    The background of the discovery of the Moessbauer effect and the development of Moessbauer spectrometry as an analytical technique are highlighted. The basic principles and instrumentation, application fields, and trends of future progress and outlined and discussed

  4. Moessbauer Spectra of Clays and Ceramics

    Energy Technology Data Exchange (ETDEWEB)

    Wagner, F. E.; Wagner, U. [Technische Universitaet Muenchen (Germany)

    2004-06-15

    The physical, chemical and mineralogical aspects of the use of Moessbauer spectroscopy in studies of clay-based ceramics are described. Moessbauer spectra of pottery clays fired under oxidising, reducing and changing conditions are explained, and the possibilities of using Moessbauer spectra to derive information on the firing temperatures and the kiln atmosphere during firing in antiquity are discussed and illustrated by examples.

  5. Moessbauer Investigation of Electrodeposited Sn-Zn, Sn-Cr, Sn-Cr-Zn and Fe-Ni-Cr Coatings

    Energy Technology Data Exchange (ETDEWEB)

    Kuzmann, E.; Stichleutner, S. [Eoetvoes University, Department of Nuclear Chemistry and Research Group of Nuclear Methods in Structural Chemistry HAS (Hungary); El-Sharif, M.; Chisholm, C. U. [Glasgow Caledonian University (United Kingdom); Sziraki, L.; Homonnay, Z.; Vertes, A. [Eoetvoes University, Department of Nuclear Chemistry and Research Group of Nuclear Methods in Structural Chemistry HAS (Hungary)

    2002-06-15

    {sup 57}Fe and {sup 119}Sn CEMS, XRD and electrochemical measurements were used to investigate the effect of the preparation parameters and the components on the structure and phase composition of electrodeposited Fe-Ni-Cr alloys in connection with their corrosion behavior. XRD of the electrodeposits reflect an amorphous-like character. {sup 57}Fe CEM spectra of Fe-Ni-Cr electrodeposited samples, prepared in a continuous flow plating plastic circulation cell with variation of current density, electrolyte velocity and temperature, can be evaluated as a doublet associated with a highly disordered paramagnetic solid solution phase. This phase was identified earlier in Fe-Ni-Cr electrodeposits that were prepared by another plating method and contained both ferromagnetic and paramagnetic metastable phases. This is the first time that we have succeeded to prepare Fe-Ni-Cr alloys containing only the metastable paramagnetic phase. The effect of the plating parameters on the structure is also analysed by the quadrupole splitting distribution method. {sup 119}Sn CEM spectra of all Sn-containing plated alloys show a broad line envelop which can be decomposed at least into two components. One can be associated with {beta}-tin. The other one can be assigned to an alloy phase. The structure and distribution of microenvironments of these phases depends on the plating parameters especially on the parameters of the reverse pulse applied.

  6. Terahertz spectroscopic investigation of methylenedioxy amphetamine

    Science.gov (United States)

    Wang, Guangqin; Shen, Jingling

    2008-03-01

    Experimental measurement and theoretical analysis of THz spectrum for methylenedioxy amphetamine are introduced. The refractive index and absorption coefficient of the sample were observed by terahertz time-domain spectroscopy (THz-TDS) technique in the range of 0.2~2.6 THz. It exhibits obvious absorption feature at 1.40 THz and weak THz absorption at around 1.68 and 2.21 THz. The spectral absorption characteristic in THz band was useful for the inspection and identification of drugs using THz-TDS. The theoretical calculation was performed using Density functional theory (DFT) with the GAUSSIAN 03 software package. Fully geometry optimization and frequency analysis of the optimized structure were performed at the B3LYP/6-21G levels. The simulated absorption spectrum was in agreement with the experimental data, and can hence be used for the assignment of observed THz spectrum. The theoretical simulation result showed that absorption peaks mainly result from intra-molecule and inter-molecule vibrations, different absorption peaks are corresponding to different vibrational modes and intensity. So the combination of the THz-TDS and DFT is an effective way to investigate characteristic spectra of illicit drugs.

  7. Moessbauer study of synthetic jarosites

    Energy Technology Data Exchange (ETDEWEB)

    Kovacs, K., E-mail: kkriszti@bolyai.elte.hu [Eoetvoes Lorand University, Laboratory of Nuclear Chemistry, Institute of Chemistry (Hungary); Kuzmann, E. [Hungarian Academy of Sciences, Laboratory of Nuclear Chemistry, Chemical Research Center (Hungary); Homonnay, Z.; Vertes, A. [Eoetvoes Lorand University, Laboratory of Nuclear Chemistry, Institute of Chemistry (Hungary); Gunneriusson, L. [Lulea University of Technology, Division of Chemistry (Sweden); Sandstroem, A. [Lulea University of Technology, Division of Process Metallurgy (Sweden)

    2008-09-15

    {sup 57}Fe Moessbauer spectroscopy and PXRD were used to study artificially prepared jarosites with the compositions of KFe{sub 3}(SO{sub 4}){sub 2}(OH){sub 6-x}F{sub x}x 0 - 1.6 PXRD measurements revealed single phase jarosite samples. All Moessbauer spectra taken at room temperature exhibit a quadrupole doublet corresponding to mineral jarosite. However, at low temperature where the mineral jarosite has a well resolved sextet, the synthetic jarosite even with x = 0 F{sup -} content shows a relaxation transition. The spectra indicate that with increasing F{sup -} concentration, the paramagnetic-antiferromagnetic transition temperature is decreasing. The results can be used in the analysis of artificial jarosites or those formed during biomineralization processes.

  8. Spectroscopic investigation of local mechanical impedance of living cells

    CERN Document Server

    Costa, Luca; Benseny-Cases, Núria; Mayeaux, Véronique; Chevrier, Joël; Comin, Fabio

    2013-01-01

    The mechanical properties of PC12 living cells have been studied at the nanoscale with a Force Feedback Microscope using two experimental approaches. Firstly, the local mechanical impedance of the cell membrane has been mapped simultaneously to the cell morphology at constant force. As the force of the interaction is gradually increased, we observed the appearance of the sub-membrane cytoskeleton. We shall compare the results obtained with this method with the measurement of other existing techniques. Secondly, a spectroscopic investigation has been performed varying the indentation of the tip in the cell membrane and consequently the force applied on it. In contrast with conventional dynamic atomic force microscopy techniques, here the small oscillation amplitude of the tip is not necessarily imposed at the cantilever first eigenmode. This allows the user to arbitrarily choose the excitation frequency in developing spectroscopic AFM techniques. The mechanical response of the PC12 cell membrane is found to be...

  9. Spectroscopic identification of protective and non-protective corrosion coatings on steel structures in marine environments

    Energy Technology Data Exchange (ETDEWEB)

    Cook, Desmond C. [Department of Physics, Old Dominion University, Norfolk, VA 23529 (United States)]. E-mail: dcook@physics.odu.edu

    2005-10-01

    Corrosion research, and the need to fully understand the effects that environmental conditions have on the performance of structural steels, is one area in which Moessbauer spectroscopy has become a required analytical technique. This is in part due to the need to identify and quantify the nanophase iron oxides that form on and protect certain structural steels, and that are nearly transparent to most other spectroscopic techniques. In conjunction with X-ray diffraction and micro-Raman analyses, the iron oxides that form the rusts on steels corroded in different marine and other environments can be completely identified and mapped within the rust coating. The spectroscopic analyses can be used to determine the nature of the environment in which structural steels have been, and these act as a monitor of the corrosion itself. Moessbauer spectroscopy is playing an important role in a new corrosion program in the United States and Japan in which steel bridges, old and new, are being evaluated for corrosion problems that may reduce their serviceable lifetimes. Moessbauer spectroscopy has been used to characterize the corrosion products that form the protective patina on weathering steel, as well those that form in adverse environments in which the oxide coating is not adherent or protective to the steel. Moessbauer spectroscopy has also become an important analytical technique for investigating the corrosion products that have formed on archaeological artifacts, and it is providing guidance to aid in the removal of the oxides necessary for their conservation.

  10. ESR spectroscopic investigations of the radiation-grafting of fluoropolymers

    Energy Technology Data Exchange (ETDEWEB)

    Huebner, G.; Roduner, E. [University of Stuttgart (Germany); Brack, H.P.; Scherer, G.G. [Paul Scherrer Inst. (PSI), Villigen (Switzerland)

    1999-08-01

    ESR spectroscopic investigations have clarified the influence of several preparative parameters on the reaction rates and yields obtained in the radiation-grafting method used at PSI to prepare proton-conducting polymer membranes. At a given irradiation dose, a higher concentration of reactive radical sites was detected in ETFE films than in FEP films. This higher concentration explains the higher grafting levels and rates of the ETFE films found in our previous grafting experiments. Taken together, the in-situ ESR experiments and grafting experiments show that the rates of disappearance of radical species and grafting rates and final grafting levels depend strongly on the reaction temperature and the oxygen content of the system. Average grafted chain lengths were calculated to contain about 1,000 monomer units. (author) 2 figs., 4 refs.

  11. X-ray photoelectron spectroscopic investigation of conducting polymer blends.

    Science.gov (United States)

    Süzer, S; Toppare, L; Hallam, K R; Allen, G C

    1996-06-01

    Electrochemically prepared films of conducting polymers of polypyrrole and polythiophene and their blends with polyamide have been investigated by X-ray photoelectron spectroscopy. In the N1s region of the spectra of films containing polypyrrole the peak corresponding to N(+) at 402.0 eV is separated from that of neutral N. The intensity of the N(+) peak can be correlated with the electrical conductivity of the films and the spectroscopically derived ratio of F/N(+) is close to 4 indicating that one BF(-)(4) dopant ion is incorporated for every oxidized nitrogen center. In the spectra of films of polythiophene and its blends peaks corresponding to S and S(+) can not be resolved but again the F/C ratio correlates with the electrical conductivity.

  12. Spectroscopic investigation on porphyrins nano-assemblies onto gold nanorods

    Science.gov (United States)

    Trapani, Mariachiara; De Luca, Giovanna; Romeo, Andrea; Castriciano, Maria Angela; Scolaro, Luigi Monsù

    2017-02-01

    The interaction between gold nanorods (Au NRs), synthesized by a conventional seeded growth protocol, and the anionic tetrakis-(4-sulfonatophenyl)porphyrin (TPPS4) has been investigated through various spectroscopic techniques. At neutral pH, the formation of H-aggregates and the inclusion of porphyrin monomers in CTAB micelles covering the nanorods have been evidenced. Under mild acidic conditions (pH = 3) a nano-hybrid assembly of porphyrin J-aggregates and Au NRs has been revealed. For the sake of comparison, Cu(II) and Zn(II) metal porphyrin derivatives as well as a cationic porphyrin have been studied in the same experimental conditions, showing that: i) CuTPPS4 forms porphyrin H-dimers onto the Au NRs; ii) ZnTPPS4 undergoes to demetallation, followed by acidification of the central core and eventually aggregation onto Au NRs; iii) cationic porphyrin does not interact with Au NRs.

  13. Spectroscopic Investigations of the Photophysics of Cryptophyte Light-Harvesting

    Science.gov (United States)

    Dinshaw, Rayomond

    The biological significance of photosynthesis is indisputable as it is necessary for nearly all life on earth. Photosynthesis provides chemical energy for plants, algae, and bacteria, while heterotrophic organisms rely on these species as their ultimate food source. The initial step in photosynthesis requires the absorption of sunlight to create electronic excitations. Light-harvesting proteins play the functional role of capturing solar radiation and transferring the resulting excitation to the reaction centers where it is used to carry out the chemical reactions of photosynthesis. Despite the wide variety of light-harvesting protein structures and arrangements, most light-harvesting proteins are able to utilize the captured solar energy for charge separation with near perfect quantum efficiency.1 This thesis will focus on understanding the energy transfer dynamics and photophysics of a specific subset of light-harvesting antennae known as phycobiliproteins. These proteins are extracted from cryptophyte algae and are investigated using steady-state and ultrafast spectroscopic techniques.

  14. Moessbauer study of thermal metamorphosed Antarctic meteorites

    Energy Technology Data Exchange (ETDEWEB)

    Scorzelli, R.B. (Centro Brasileiro de Pesquisas Fisicas, Rio de Janeiro, RJ (Brazil)); Galvao da Silva, E. (Centro Brasileiro de Pesquisas Fisicas, Rio de Janeiro, RJ (Brazil) Dept. de Fisica, Univ. Federal de Minas Gerais, Belo Horizonte (Brazil)); Souza Azevedo, I. (Centro Brasileiro de Pesquisas Fisicas, Rio de Janeiro, RJ (Brazil))

    1994-02-01

    In this paper we report on variable temperature Moessbauer spectroscopy measurements on Yamato-82162 and Yamato-86720. These Antarctic carbonaceous chondrites contrast with other non-Antarctic carbonaceous chondrites in which no evidences of thermal metamorphism have been found. (orig.)

  15. Automation of the Analysis of Moessbauer Spectra

    Energy Technology Data Exchange (ETDEWEB)

    Souza, Paulo A. de Jr.; Garg, R.; Garg, V. K. [Universidade Federal do Espirito Santo, Departamento de Fisica (Brazil)

    1998-12-15

    In the present report we propose the automation of least square fitting of Moessbauer spectra, the identification of the substance, its crystal structure and the access to the references with the help of a genetic algorith, Fuzzy logic, and the artificial neural network associated with a databank of Moessbauer parameters and references. This system could be useful for specialists and non-specialists, in industry as well as in research laboratories.

  16. Moessbauer spectroscopy of actinide intermetallics

    Energy Technology Data Exchange (ETDEWEB)

    Kalvius, G.M.; Potzel, W.; Moser, J.; Litterst, F.J.; Asch, L.; Zaenkert, J.; Potzel, U.; Kratzer, A.; Wunsch, M. (Technische Univ. Muenchen, Garching (Germany, F.R.). Fakultaet fuer Physik); Gal, J.

    1985-04-01

    Due to their wider radical extent the 5f electrons may form bands of different width and hybridization in metallic compounds of the light actinides. This leads to a broad spectrum of magnetic properties ranging from the localized magnetism of the lanthanides to the itinerant electron magnetism often found in transition metal compounds. Also, the influence of the crystalline electric field tends to be more pronounced than in rare earth compounds, but is usually not as dominant as in the 3d series. Magnetic structures and the question of 5f electron delocalization will be reviewed with respect to actinide Moessbauer data and new results will be presented. In particular the influence of applying external pressure will be discussed.

  17. Lattice dynamic studies from {sup 151}Eu-Moessbauer spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Katada, Motomi [Tokyo Metropolitan Univ., Hachioji (Japan). Faculty of Science

    1997-03-01

    New complexes {l_brace}(Eu(napy){sub 2}(H{sub 2}O){sub 3})(Fe(CN){sub 6})4H{sub 2}O{r_brace}{sub x}, bpy({l_brace}(Eu(bpy)(H{sub 2}O){sub 4})(Fe(CN){sub 6})1.5bpy4H{sub 2}O{r_brace}{sub x}) and ({l_brace}(Eu(phen){sub 2}(H{sub 2}O){sub 2})(Fe(CN){sub 6})2phen{r_brace}{sub x}) etc were synthesized using phenanthroline and bipyridine. Lattice dynamic behaviors of Eu and Fe atom in the complexes were investigated by Moessbauer spectroscopy. By {sup 151}Eu-Moessbauer spectrum and parameters of new complexes, bpy complex showed the largest quadrupole splitting value, indicating bad symmetry of Eu ligand in the environment. Molecular structure of napy, bpy and phen complex were shown. These complexes are consisted of Eu atom coordinated with ligand and water molecule, of which (Fe(CN){sub 6}){sup 3-} ion formed one dimentional polymer chain and naphthyridines formed stacking structure. New complexes were observed by {sup 57}Fe-Moessbauer spectroscopy, too. The quadrupole splitting values were very different each other, indicating change of symmetry of Fe atom in the environment and three valence low spin state of Fe in the complex. (S.Y.)

  18. Microscopic and spectroscopic investigation of an explanted opacified intraocular lens

    Energy Technology Data Exchange (ETDEWEB)

    Simon, V., E-mail: viosimon@phys.ubbcluj.ro [Babeş-Bolyai University, Faculty of Physics and Interdisciplinary Research Institute on Bio-Nano-Sciences, 400084 Cluj-Napoca (Romania); Radu, T.; Vulpoi, A. [Babeş-Bolyai University, Faculty of Physics and Interdisciplinary Research Institute on Bio-Nano-Sciences, 400084 Cluj-Napoca (Romania); Rosca, C. [Optilens Clinic of Ophthalmology, 400604 Cluj-Napoca (Romania); Eniu, D. [Iuliu Haţieganu University of Medicine and Pharmacy, Department of Molecular Sciences, 400349 Cluj-Napoca (Romania)

    2015-01-15

    Highlights: • Changes on intraocular lens (IOL) surface after implantation. • Partial opacification of IOL central area. • Elemental composition on IOL surface prior to and after implantation. • First XPS depth profiling examination of the opacifying deposits. • Cell-mediated hydroxyapatite structuring. - Abstract: The investigated polymethylmethacrylate intraocular lens explanted an year after implantation presented a fine granularity consisting of ring-like grains of about 15 μm in diameter. In order to evidence the changes occurred on intraocular lens relative to morphology, elemental composition and atomic environments, microscopic and spectroscopic analyses were carried out using scanning electron microscopy (SEM), Fourier transform infrared (FTIR), energy-dispersive X-ray (EDS), and X-ray photoelectron (XPS) spectroscopies. The results revealed that the grains contain hydroxyapatite mineral phase. A protein layer covers the lens both in opacified and transparent zones. The amide II band is like in basal epithelial cells. The shape and size of the grains, and the XPS depth profiling results indicate the possibility of a cell-mediated process involving lens epithelial cells which fagocitated apoptotic epithelial cells, and in which the debris derived from cell necrosis were calcified. To the best of our knowledge, this is the first investigation on explanted intraocular lenses using XPS depth profiling in order to examine the inside of the opacifying deposits.

  19. Microscopic and spectroscopic investigation of an explanted opacified intraocular lens

    Science.gov (United States)

    Simon, V.; Radu, T.; Vulpoi, A.; Rosca, C.; Eniu, D.

    2015-01-01

    The investigated polymethylmethacrylate intraocular lens explanted an year after implantation presented a fine granularity consisting of ring-like grains of about 15 μm in diameter. In order to evidence the changes occurred on intraocular lens relative to morphology, elemental composition and atomic environments, microscopic and spectroscopic analyses were carried out using scanning electron microscopy (SEM), Fourier transform infrared (FTIR), energy-dispersive X-ray (EDS), and X-ray photoelectron (XPS) spectroscopies. The results revealed that the grains contain hydroxyapatite mineral phase. A protein layer covers the lens both in opacified and transparent zones. The amide II band is like in basal epithelial cells. The shape and size of the grains, and the XPS depth profiling results indicate the possibility of a cell-mediated process involving lens epithelial cells which fagocitated apoptotic epithelial cells, and in which the debris derived from cell necrosis were calcified. To the best of our knowledge, this is the first investigation on explanted intraocular lenses using XPS depth profiling in order to examine the inside of the opacifying deposits.

  20. High Energy Solar Spectroscopic Imager (HESSI) Team Investigations

    Science.gov (United States)

    Emslie, A. Gordon

    1998-01-01

    This report covers activities on the above grant for the period through the end of September 1997. The work originally proposed to be performed under a three-year award was converted at that time to a two-year award for the remainder of the period, and is now funded under award NAGS-4027 through Goddard Space Flight Center. The P.I. is a co-investigator on the High Energy Solar Spectroscopic Imager (HESSI) team, selected as a Small-Class Explorer (SNMX) mission in 1997. He has also been a participant in the Space Physics Roadmap Planning Group. Our research has been strongly influenced by the NASA mission opportunities related to these activities. The report is subdivided into four sections, each dealing with a different aspect of our research within this guiding theme. Personnel involved in this research at UAH include the P.I. and graduate students Michele Montgomery and Amy Winebarger. Much of the work has been carried out in collaboration with investigators at other institutions, as detailed below. Attachment: Laser wakefield acceleration and astrophysical applications.

  1. Spectroscopic Investigation of Ce(3+) Doped Fluoride Crystals

    Science.gov (United States)

    Reinhart, Donald H.; Armagan, Guzin; Marsh, Waverly; Barnes, James; Chai, B. H. T.

    1995-01-01

    Doping of the trivalent rare-earth cerium ion into fluoride crystals is of interest in producing turnable ultra-violet solid state lasers. These lasers are desirable for many applications in medicine, industry, and scientific research, including remote sensing. High absorption and stimulated emission cross sections of the dipole allowed 4f-5d transitions show promise in cerium as a laser ion in crystals. Several research groups have already reported the observation of stimulated emission of cerium in LiYF4, LiSrAlF6, and LiCaAlF6. However, the color center formation in the crystals due to the excited state absorption of ultra-violet pump light adds difficulty to achieving laser action. We have investigated the spectroscopic properties of cerium such as absorption and emission spectra, and lifetimes in four different fluoride crystals, including LiCaAlF6, LiSrAlF6, KyF4 and LiYF4. We have derived the polarized absorption and stimulated emission cross sections from transmission and fluorescence emission measurements for each of the host crystals. we have measured the lifetime of the lowest 5d level; moreover, investigated the temperature dependence of this lifetime and color center formation. Our results on absorption and stimulated emission cross sections for LiCaAlF6 and LiSrAlF6 are similar to the results already published.

  2. Evidence of Impact at the Permian/Triassic Boundary from Moessbauer Spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Verma, H. C.; Upadhyay, C. [Indian Institute of Technology, Department of Physics (India); Tripathi, R. P. [Jai Narain Vyas University, Department of Physics (India); Shukla, A. D.; Bhandari, N. [Physical Research Laboratory, Navrangpura (India)

    2002-06-15

    Sediment samples from Spiti valley, India, deposited about 250 Million years ago during the Permian-Triassic transition, have been analysed. {sup 57}Fe Moessbauer spectroscopic studies show that iron occurs mainly as nanoparticles of hematite and goethite with a broad size distribution. The results show a high degree of resemblance with the Cretaceous-Tertiary boundary (65 My) samples where an asteroidal impact is believed to have caused mass extinction.

  3. Spectroscopic and magnetic investigation of NiCo nanoferrites

    Energy Technology Data Exchange (ETDEWEB)

    Maqsood, Asghari, E-mail: tpl.qau@usa.net [Thermal Transport Laboratory, School of Chemical and Materials Engineering (SCME), National University of Sciences and Technology (NUST), H-12, Islamabad (Pakistan); Khan, Kishwar, E-mail: kishwar.nust@gmail.com [Thermal Transport Laboratory, School of Chemical and Materials Engineering (SCME), National University of Sciences and Technology (NUST), H-12, Islamabad (Pakistan); Anis-ur-Rehman, M.; Malik, M.A. [Applied Thermal Physics Laboratory, COMSATS Institute of Information Technology, Islamabad (Pakistan)

    2011-07-07

    Highlights: > Spinel ferrite is a special kind of cubic structure. > These ferrites are of great importance in electronics and communication industry. > These should be useful for high frequency applications. - Abstract: Spectroscopic and magnetic characterization of Ni{sub 1-x}Co{sub x}Fe{sub 2}O{sub 4} (0.0 {<=} x {<=} 0.5) nanoparticles is presented. The infrared spectra are measured in the frequency range 700-350 cm{sup -1}. Two prominent bands are observed, low frequency band at about 400 cm{sup -1} and high frequency band at about 600 cm{sup -1} assigned to octahedral and tetrahedral sites, respectively. The force constants K{sub o} and K{sub t} corresponding to octahedral and tetrahedral sites, respectively are also calculated from FTIR spectra. The effect of co-concentration on the magnetic properties has been investigated using a vibrating sample magnetometer (VSM). After appropriate treatments, it is found that both magnetic saturation (M{sub s}) and coercivities (H{sub c}) increase with co-concentration.

  4. Radiation Effects on Polypropylene Carbon Nanofibers Composites: Spectroscopic Investigations

    Science.gov (United States)

    Hamilton, John; Mion, Thomas; Cristian Chipara, Alin; Ibrahim, Elamin I.; Lozano, Karen; Tidrow, Steven; Magdalena Chipara, Dorina; Chipara, Mircea

    2010-03-01

    Dispersion of carbon nanostructures within polymeric matrices affects their physical and chemical properties (increased Young modulus, improved thermal stability, faster crystallization rates, higher equilibrium degree of crystallinity, modified glass, melting, and crystallization temperatures, enhanced thermal and electrical conductivity). Nevertheless, little is known about the radiation stability of such nanocomposites. The research is focused on spectroscopic investigations of radiation-induced modifications in isotactic polypropylene (iPP)-vapor grown nanofiber (VGCNF) composites. VGCNF were dispersed within iPP by extrusion at 180^oC. Composites containing various amounts of VGCNFs ranging from 0 to 20 % wt. were prepared and subjected to gamma irradiation, at room temperature, at various integral doses (10 MGy, 20 MGy, and 30 MGy). Raman spectroscopy, ATR, and WAXS were used to assess the radiation-induced modifications in these nanocomposites. Acknowledgements: This research was supported by the Welch Foundation (Department of Chemistry at UTPA), by Air Force Research Laboratory (FA8650-07-2-5061) and by US Army Research Laboratory/Office (W911NF-08-1-0353).

  5. Transmission Moessbauer Analysis of Nanophased Oxides Formed on High Strength Steels

    Energy Technology Data Exchange (ETDEWEB)

    Balasubramanian, R. [James Madison University, Department of Physics (United States); Cook, D. C. [Old Dominion University, Department of Physics (United States); Townsend, H. [Homer Research Lab, Bethlehem Steel Corporation (United States)

    2002-06-15

    Nanophased oxides found in the corrosion coatings of atmospherically weathered steels have properties that are scientifically significant and industrially important. Moessbauer spectroscopy proves to be a very useful tool to accurately characterize the corrosion coatings. Samples of carbon steel were exposed in Campeche, along the Gulf of Mexico for up to one year and the development of corrosion products as a function of steel type and exposure time were studied using Moessbauer spectroscopy, micro-Raman spectrometry and X-ray diffraction. Both X-ray diffraction and transmission Moessbauer spectroscopic results indicated that lepidocrocite, maghemite and goethite were the dominant oxides. Transmission Moessbauer analysis at 77 K indicated that for up to three months of exposure, lepidocrocite and maghemite accounted for nearly 80% of the relative amount, with goethite contributing only 20% to the mixture. However, as the exposure time increased to 6 months, the relative contribution of goethite increased at the expense of decreasing amounts of maghemite. Monitoring the environment during the exposure time indicated that the average time of wetness decreased. The decrease in the relative contribution of maghemite to the total oxide concentration is related to the decreasing time of wetness, with increasing exposure time.

  6. Hyperfine Interactions in Iron Meteorites: Comparative Study by Moessbauer Spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Oshtrakh, M. I., E-mail: oshtrakh@mail.utnet.ru [Ural State Technical University - UPI, Faculty of Physical Techniques and Devices for Quality Control (Russian Federation); Milder, O. B. [Ural State Technical University - UPI, Faculty of Experimental Physics (Russian Federation); Grokhovsky, V. I. [Ural State Technical University - UPI, Faculty of Physical Techniques and Devices for Quality Control (Russian Federation); Semionkin, V. A. [Ural State Technical University - UPI, Faculty of Experimental Physics (Russian Federation)

    2004-11-15

    The iron meteorites Sikhote-Alin, Bilibino, Chinga and Dronino with different Ni concentration and terrestrial age were studied by Moessbauer spectroscopy. Different Moessbauer hyperfine parameters were determined for studied meteorites and possible Fe-Ni phases were supposed.

  7. Early Pottery Making in Northern Coastal Peru. Part I: Moessbauer Study of Clays

    Energy Technology Data Exchange (ETDEWEB)

    Shimada, I. [Southern Illinois University (United States); Haeusler, W.; Hutzelmann, T.; Wagner, U. [Technische Universitaet Muenchen, Physik-Department E15 (Germany)

    2003-09-15

    We report on an investigation of several ancient clays which were used for pottery making in northern coastal Peru at a kiln site from the Formative period (ca. 2000-800 BC) in the Poma Canal and at a Middle Sican pottery workshop in use between ca. AD 950 and 1050 at Huaca Sialupe in the lower La Leche valley. Neutron activation analysis, {sup 57}Fe Moessbauer spectroscopy and X-ray diffraction were used for the characterisation of the clays. The changes that occur in iron-bearing compounds in the clays depending on the kiln atmosphere and on the maximum firing temperature were studied by Moessbauer spectroscopy and X-ray diffraction. Laboratory firing series under varying controlled conditions were performed to obtain a basic understanding of the different reactions taking place in the clays during firing. The results can be used as models in the interpretation of the Moessbauer spectra observed in ancient ceramics from the same context.

  8. Moessbauer spectra of iron--chromium sulphospinals with varying metal ratio

    Energy Technology Data Exchange (ETDEWEB)

    Lotgering, F.K.; van Diepen, A.M.; Olijhoek, J.F.

    1975-11-01

    Samples of the sulfospinel FeCr/sub 2/S/sub 4/ with varying Fe/Cr ratio around the nominal composition have been investigated by Moessbauer spectroscopy. The spectra with the narrowest lines, as well as a lambda-type peak in the specific heat-temperature curve at the low temperature transition previously described, were obtained for an overall composition with a small Fe deficit. The broadening often observed in Moessbauer spectra of FeCr/sub 2/S/sub 4/ samples is attributed to Fe/sup 2 +/ on octahedral sites in the spinel phase, resulting in an electric field gradient at the Fe/sup 2 +/ ions on the tetrahedral sites. The paramagnetic Moessbauer spectrum of Fe/sub 1.06/Cr/sub 1.94/S/sub 4/ is in accordance with this interpretation. (auth)

  9. Moessbauer study of Celtic pottery from Bopfingen, Baden-Wuerttemberg, Germany

    Energy Technology Data Exchange (ETDEWEB)

    Friederich, J; Gebhard, R [Archaeologische Staatssammlung Muenchen, 80538 Muenchen (Germany); Riederer, J [Rathgen-Forschungslabor, Schlossstrasse la, 14059 Berlin (Germany); Wagner, F E; Wagner, U [Physik-Department E15, Technische Universitaet Muenchen, 85747 Garching (Germany); Krause, R, E-mail: uwagner@ph.tum.d

    2010-03-01

    In the course of a study of pottery from Celtic Central Europe, we report on an investigation of pottery found in the context of a Celtic ditched square enclosure near the modern town of Bopfingen in Baden-Wurttemberg, Germany. The studied pottery may be visually subdivided into wheel-turned ware, graphite ware, and coarse ware. The Moessbauer spectra are surprisingly uniform, indicating that all types of pottery were fired in a similar manner. Firing in a reducing environment at 800 {sup 0}C was usually followed by re-oxidation during cooling, which leads to unique features in the low temperature Moessbauer patterns.

  10. Moessbauer Studies in Chinese Archaeology: A Review

    Energy Technology Data Exchange (ETDEWEB)

    Hsia Yuanfu; Huang Hongbo [Nanjing University, Department of Physics (China)

    2003-09-15

    The Moessbauer effect has been applied to a wide variety of objects related to Chinese archaeology. Besides ceramic artifacts, materials like porcelain, glazes, bronzes, ancient coins, ancient mineral drugs, and even fossils were studied. This article reviews these applications with particular emphasis on the study of the famous terracotta warriors and horses of the Qin Dynasty.

  11. Confinement in single walled carbon nanotubes investigated by spectroscopic ellipsometry

    Energy Technology Data Exchange (ETDEWEB)

    Battie, Y., E-mail: yann.battie@univ-lorraine.fr [LCP-A2MC, Institut Jean Barriol, Université de Lorraine, 1 Bd Arago, 57070 Metz (France); Jamon, D. [Université de Lyon, Université Jean Monnet, EA 3523, Laboratoire Télécom Claude Chappe, 25 rue du Dr Rémy Annino, 42000 Saint Etienne (France); Lauret, J.S. [Laboratoire Aimé Cotton, UPR 3321, ENS Cachan, 94245 Cachan (France); Gu, Q.; Gicquel-Guézo, M. [FOTON, UMR 6082, INSA, Avenue des Buttes de Coësmes, 35043 Rennes (France); En Naciri, A. [LCP-A2MC, Institut Jean Barriol, Université de Lorraine, 1 Bd Arago, 57070 Metz (France); Loiseau, A. [Laboratoire d' étude des microstructures, ONERA-CNRS UMR 104, 29 Av. de la Division Leclerc, 92322 Chatillon (France)

    2014-11-28

    Thick films of single walled carbon nanotubes (SWCNTs) with different diameter and chirality distributions are characterized by combining transmission electron microscopy and spectroscopic ellipsometry. The dependence of the dielectric function with the increase of the SWCNT diameter occurs with a drastic redshift of the S{sub 11}, S{sub 22} and M{sub 11} transition energies. The transfer integral parameter γ{sub 0} of SWCNT is also evaluated and analyzed. We demonstrate that parts of the optical properties of SWCNTs are attributed to a one dimensional confinement effect. - Highlights: • Ellipsometric measurements are performed on carbon nanotube thick films. • The complex dielectric functions of conventional carbon nanotubes are given. • Confinement effects explain the variations of dielectric function of nanotubes.

  12. Spectroscopic ellipsometric and Raman spectroscopic investigations of pulsed laser treated glassy carbon surfaces

    Energy Technology Data Exchange (ETDEWEB)

    Csontos, J., E-mail: jcsontos@titan.physx.u-szeged.hu [University of Szeged, Department of Optics and Quantum Electronics, Dóm tér 9, H-6720 Szeged (Hungary); Pápa, Z.; Gárdián, A. [University of Szeged, Department of Optics and Quantum Electronics, Dóm tér 9, H-6720 Szeged (Hungary); Füle, M. [University of Szeged, Department of Experimental Physics, Dóm tér 9, H-6720 Szeged (Hungary); Budai, J. [University of Szeged, Department of Optics and Quantum Electronics, Dóm tér 9, H-6720 Szeged (Hungary); Toth, Z. [University of Szeged, Department of Optics and Quantum Electronics, Dóm tér 9, H-6720 Szeged (Hungary); University of Szeged, Department of Oral Biology and Experimental Dental Research, Tisza Lajos krt. 64, H-6720 Szeged (Hungary)

    2015-05-01

    Highlights: • Laser treatment modifies the top layer of glassy carbon as shown by ellipsometry. • Raman signal is composed from signals of the layer and the glassy carbon substrate. • Using volumetric fluence allows to compare the effects of different lasers. • Melting effects of glassy carbon was observed in case of Nd:YAG laser treatment. - Abstract: In this study spectroscopic ellipsometry (SE) and Raman spectroscopy are applied to study structural modification of glassy carbon, due to high intensity laser ablation. Two KrF lasers with different pulse durations (480 fs and 18 ns), an ArF (20 ns), and a frequency doubled Nd:YAG laser (8 ns) were applied to irradiate the surface of glassy carbon targets. The main characteristics of the different laser treatments are compared by introducing the volumetric fluence which takes into account the different absorption values at different wavelengths. SE showed the appearance of a modified layer on the ablated surfaces. In the case of the ns lasers the thickness of this layer was in the range of 10–60 nm, while in the case of fs laser it was less than 20 nm. In all cases the average refractive index (n) of the modified layers slightly decreased compared to the refractive index of glassy carbon. Increase in extinction coefficient (k) was observed in the cases of ArF and fs KrF laser treatment, while the k values decreased significantly in the cases of nanosecond pulse duration KrF and Nd:YAG laser treatments. In the Raman spectra of the ablated areas the characteristic D and G peaks were widened due to appearance of an amorphous phase. Both Raman spectroscopy and SE indicate that the irradiated areas show carbon nanoparticle formation in all cases.

  13. Magnetic and Moessbauer Studies of Quaternary Argentine Loessic Soils and Paleosols

    Energy Technology Data Exchange (ETDEWEB)

    Mercader, R. C., E-mail: mercader@fisica.unlp.edu.ar; Sives, F. R. [Universidad Nacional de La Plata, Departamento de Fisica, IFLP, Facultad de Ciencias Exactas (Argentina); Imbellone, P. A. [Universidad Nacional de La Plata, Instituto de Geomorfologia y Suelos (Argentina); Vandenberghe, R. E. [Ghent University, NUMAT, Department of Subatomic and Radiation Physics (Belgium)

    2005-02-15

    This paper is a review of the current status about the remaining problems that are found in the investigation of the Quaternary Argentine soils and loessic sediments, and the way that Moessbauer studies can assist in solving them. There are two main types of investigations that make use of the magnetic response of the samples to correlate them with information gathered by other methods. On the one hand, there is the stratigraphic and chronological research, which is of importance from the geological and paleontological points of view. On the other hand, the paleoclimatic records, of significance toward a possible model of the past climate, are also studied because of their close relation to the sediments history. However, there is not yet a model that can tell the difference between the modifications due to the climatic conditions at the time when the soils were buried from processes that occurred after burial. Some examples are given that show that Moessbauer studies can be applied with a certain degree of success when cross-checked with magnetic measurements toward understanding the processes that occurred in alluvial B (paleosols) and C horizons (loess) from the eastern part of Buenos Aires Province. Although the application of Moessbauer studies to hydromorphic processes in soils is not straightforward, there are cases in which Moessbauer spectroscopy, if applied properly and correlated with other techniques, is able to characterize the type of iron oxides existing in the materials and thus assist theories about its origin and history.

  14. In-situ Moessbauer spectroscopy with MIMOS II

    Energy Technology Data Exchange (ETDEWEB)

    Fleischer, Iris, E-mail: fleischi@uni-mainz.de; Klingelhoefer, Goestar [Institute of Inorganic and Analytical Chemistry, Johannes Gutenberg University of Mainz (Germany); Morris, Richard V. [NASA Johnson Space Center (United States); Schroeder, Christian [University of Bayreuth and University of Tuebingen (Germany); Rodionov, Daniel [Institute of Inorganic and Analytical Chemistry, Johannes Gutenberg University of Mainz (Germany); Souza, Paulo A. de [Tasmanian ICT Centre (Australia); Collaboration: MIMOS II Team

    2012-03-15

    The miniaturized Moessbauer spectrometer MIMOS II was developed for the exploration of planetary surfaces. Two MIMOS II instruments were successfully deployed on the martian surface as payload elements of the NASA Mars Exploration Rover (MER) mission and have returned data since landing in January 2004. Moessbauer spectroscopy has made significant contributions to the success of the MER mission, in particular identification of iron-bearing minerals formed through aqueous weathering processes. As a field-portable instrument and with backscattering geometry, MIMOS II provides an opportunity for non-destructive in-situ investigations for a range of applications. For example, the instrument has been used for analyses of archaeological artifacts, for air pollution studies and for in-field monitoring of green rust formation. A MER-type MIMOS II instrument is part of the payload of the Russian Phobos-Grunt mission, scheduled for launch in November 2011, with the aim of exploring the composition of the martian moon Phobos. An advanced version of the instrument, MIMOS IIA, that incorporates capability for elemental analyses, is currently under development.

  15. Synthesis of Co Diffused Cu matrix for Applying Moessbauer Source

    Energy Technology Data Exchange (ETDEWEB)

    Choi, Sang Mu; Uhm, Young Rang; Kim, Jong Bum; Son, Kwang Jae [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2015-10-15

    To establish the coating conditions for {sup 57}Co, nonradioactive Co ions are dissolved in an acid solution and electroplated on to a copper plate. Then, the thermal diffusion of electroplated Co into a copper matrix was studied to apply a {sup 57}Co Moessbauer source. Nanocrystalline Co particles were coated on a Cu substrate using DC electro-deposition at a pH of 1.89 to 5 and 20-30 mA/cm{sup 2}. The average grain size was up to 54 nm as the pH increased to 5. The second phase of Co-oxide was formatted as the pH was increased above 4. The influence of different annealing conditions was investigated. The diffusion depth of Co depends on the annealing temperature and time. Charged Co ions are formed by sulfate, sulfamate, chloride, and a Watts bath. However, charged {sup 57}Co ions are formed by dissolving metal {sup 57}Co. To establish the coating conditions for {sup 57}Co, non-radioactive Co ions are dissolved in an acid solution and electroplated on to a copper plate. Then, the thermal diffusion of electroplated Co into a copper matrix was studied to apply a {sup 57}Co Moessbauer source.

  16. Moessbauer In Situ Studies of the Surface of Mars

    Energy Technology Data Exchange (ETDEWEB)

    Klingelhoefer, G., E-mail: klingel@mail.uni-mainz.de [Johannes Gutenberg Universitaet, Inst. Anorganische and Analytische Chemie (Germany)

    2004-11-15

    For the first time in history, a Moessbauer spectrometer was placed on the surface of another planet. Our miniaturized Moessbauer spectrometer MIMOS II is part of the instrument payload of NASA's twin Mars Exploration Rovers (MER) 'Spirit' and 'Opportunity', which in January 2004 successfully landed at the Gusev crater and the Meridiani Planum landing sites, respectively. MIMOS II determines the Fe-bearing mineralogy of Martian soils and rocks at the Rovers' respective landing sites. The main goals of this planetary twin mission are to: (1) identify hydrologic, hydrothermal, and other processes that have operated and affected materials at the landing sites; (2) identify and investigate the rocks and soils at both landing sites, as there is a possible chance that they may preserve evidence of ancient environmental conditions and possible prebiotic or biotic activities. With MIMOS II, besides other minerals the Fe silicate olivine has been identified in both soil and rocks at both landing sites. At the Meridiani site the Fe sulfate jarosite has been identified by MIMOS II which is definitive mineralogical proof of the presence of water at this site in the past.

  17. Spectroscopic investigations on oxidized multi-walled carbon nanotubes

    Energy Technology Data Exchange (ETDEWEB)

    Anandhi, C. M. S.; Premkumar, S.; Asath, R. Mohamed; Mathavan, T.; Benial, A. Milton Franklin, E-mail: miltonfranklin@yahoo.com [Department of Physics, N.M.S.S.V.N. College, Madurai-625 019, Tamil Nadu (India)

    2016-05-06

    The pristine multi-walled carbon nanotubes (MWCNTs) were oxidized by the ultrasonication process. The oxidized MWCNTs were characterized by the X-ray diffraction (XRD), ultraviolet–visible (UV-Vis) and Fourier transform -Raman (FT-Raman) spectroscopic techniques. The XRD analysis confirms that the oxidized MWCNTs exist in a hexagonal structure and the sharp XRD peak corresponds to the (002) Bragg’s reflection plane, which indicates that the MWCNTs have higher crystalline nature. The UV-Vis analysis confirms that the MWCNTs functionalized with the carboxylic acid. The red shift was observed corresponds to the D band in the Raman spectrum, which reveals that the reduced disordered graphitic structure of oxidized MWCNTs. The strong Raman peak was observed at 2563 cm{sup -1} corresponds to the overtone of the D band, which is the characteristic vibrational mode of oxidized MWCNTs. The carboxylic acid functionalization of MWCNTs enhances the dispersibility, which paves the way for potential applications in the field of biosensors and targeted drug delivery.

  18. Spectroscopic investigations on oxidized multi-walled carbon nanotubes

    Science.gov (United States)

    Anandhi, C. M. S.; Premkumar, S.; Asath, R. Mohamed; Mathavan, T.; Benial, A. Milton Franklin

    2016-05-01

    The pristine multi-walled carbon nanotubes (MWCNTs) were oxidized by the ultrasonication process. The oxidized MWCNTs were characterized by the X-ray diffraction (XRD), ultraviolet-visible (UV-Vis) and Fourier transform -Raman (FT-Raman) spectroscopic techniques. The XRD analysis confirms that the oxidized MWCNTs exist in a hexagonal structure and the sharp XRD peak corresponds to the (002) Bragg's reflection plane, which indicates that the MWCNTs have higher crystalline nature. The UV-Vis analysis confirms that the MWCNTs functionalized with the carboxylic acid. The red shift was observed corresponds to the D band in the Raman spectrum, which reveals that the reduced disordered graphitic structure of oxidized MWCNTs. The strong Raman peak was observed at 2563 cm-1 corresponds to the overtone of the D band, which is the characteristic vibrational mode of oxidized MWCNTs. The carboxylic acid functionalization of MWCNTs enhances the dispersibility, which paves the way for potential applications in the field of biosensors and targeted drug delivery.

  19. Fast data acquisition in Moessbauer spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Kalvius, G.M. (Technische Universitaet Muenchen, Garching, Ger.); Potzel, W.; Koch, W.; Forster, A.; Asch, L.; Wagner, F.E.; Halder, N.

    1977-01-01

    Three different gamma-ray detection systems for Moessbauer measurements at count rates above 10/sup 5/ s/sup -1/ are described. The first uses the fast output of an uncooled NaI(Tl) scintillation counter and will still provide energy discrimination at total pulse rates up to 10/sup 6/ s/sup -1/. Count rates up to some 10/sup 7/ s/sup -1/ can be handled by a tin-loaded plastic scintillation detector, but only with very limited energy resolution. For even higher photon intensities, the method of current integration is available. The various techniques are illustrated and compared on the basis of measurements with the Moessbauer resonances in /sup 170/Yb (84 keV), /sup 199/Hg (158 keV) and /sup 237/Np (60 keV).

  20. Moessbauer Spectroscopy in South American Archaeology

    Energy Technology Data Exchange (ETDEWEB)

    Wagner, U.; Haeusler, W.; Wagner, F. E. [Technische Universitaet Muenchen, Physik-Department E15 (Germany); Shimada, I. [Southern Illinois University, Institute of Anthropology (United States)

    2003-06-15

    We report on an interdisciplinary approach to the study of early pottery finds from the Poma Archaeological Reserve, North Coast of Peru. The material is from a Formative kiln site at Batan Grande (1000-800 BC) and a ceramics workshop at Huaca Sialupe pertaining to the Middle Sican period (900-1100 AD). Moessbauer spectroscopy, neutron activation analysis, optical thin-section microscopy and X-ray diffraction were used to characterize the material. Numerous sherds of Sican black- and redware, bricks, moulds and kiln linings were studied. Local clay from the kiln site at Batan Grande, lumps of clay, and unfired sherds from Huaca Sialupe were used as model material for firing experiments under controlled conditions. By comparing the Moessbauer spectra from laboratory and field firings with the ancient materials, methods of early pottery making can be assessed.

  1. Anelastic Relaxation Mechanisms Characterization by Moessbauer Spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Soberon Mobarak, Martin Jesus, E-mail: msoberon@sep.gob.mx [Secretaria de Educacion Publica (Mexico)

    2005-02-15

    Anelastic behavior of crystalline solids is generated by several microstructural processes. Its experimental study yields valuable information about materials, namely: modulus, dissipation mechanisms and activation enthalpies. However, conventional techniques to evaluate it are complicated, expensive, time consuming and not easily replicated. As a new approach, in this work a Moessbauer spectrum of an iron specimen is obtained with the specimen at repose being its parameters the 'base parameters'. After that, the same specimen is subjected to an alternated stress-relaxation cycle at frequency {omega}{sub 1} and a new Moessbauer spectrum is obtained under this excited condition; doing the same at several increasing frequencies {omega}{sub n} in order to scan a wide frequencies spectrum. The differences between the Moessbauer parameters obtained at each excitation frequency and the base parameters are plotted against frequency, yielding an 'anelastic spectrum' that reveals the different dissipation mechanisms involved, its characteristic frequency and activation energy. Results are in good agreement with the obtained with other techniques

  2. Moessbauer spectroscopic, chemical and mineralogical characterization of Iberian Pottery

    OpenAIRE

    Ruíz García, Casilda

    1985-01-01

    Characterization of andent pottery is threefold: the provenance of the clay, non-plastics added and firing technology (kiln atmosphere and associated thermal cycle). Very often sherds of different provenance have similar appearance although, conversely, different manufacturing techniques can produce a wide variety of pottery from the sanle clay. Therefore a classification of the sherds based solely upan macroscopic and stylistic grounds could lead to serious mistakes. Physicoch...

  3. Raman and surface enhanced Raman spectroscopic investigation on Lamiaceae plants

    Science.gov (United States)

    Rösch, P.; Popp, J.; Kiefer, W.

    1999-05-01

    The essential oils of Thymus vulgaris and Origanum vulgaris are studied by means of micro-Raman spectroscopy. The containing monoterpenes can be identified by their Raman spectra. Further the essential oils are investigated in their natural environment, the so-called oil cells of these Lamiaceae plants, with surface enhanced Raman spectroscopy (SERS). This method has the advantage to enhance Raman signals and furthermore the SERS effect leads to fluorescence quenching.

  4. Electrical resistivity and Moessbauer effect investigations on Tb{sub 0.27}Dy{sub 0.73}(Mn{sub 1-x}Fe{sub x}){sub 2} intermetallics

    Energy Technology Data Exchange (ETDEWEB)

    Bodnar, W. [Faculty of Physics and Applied Computer Science, AGH, Al. Mickiewicza 30, 30-059 Krakow (Poland); Stoch, P. [Institute of Atomic Energy, 05-400 Swierk-Otwock (Poland); Faculty of Materials Science and Ceramics, AGH, Al. Mickiewicza 30, 30-059 Krakow (Poland); Chmist, J. [Faculty of Physics and Applied Computer Science, AGH, Al. Mickiewicza 30, 30-059 Krakow (Poland); Pszczola, J., E-mail: pszczola@agh.edu.p [Faculty of Physics and Applied Computer Science, AGH, Al. Mickiewicza 30, 30-059 Krakow (Poland); Zachariasz, P.; Suwalski, J. [Institute of Atomic Energy, 05-400 Swierk-Otwock (Poland)

    2010-09-03

    This paper concerns synthesis, X-ray analysis (300 K), electrical resistivity and {sup 57}Fe Moessbauer effect studies (4.2 K) of complete Tb{sub 0.27}Dy{sub 0.73}(Mn{sub 1-x}Fe{sub x}){sub 2} intermetallic series, with a borderline compound Tb{sub 0.27}Dy{sub 0.73}Fe{sub 2} known as Terfenol-D. A cubic Laves phase Fd3m of the MgCu{sub 2}-type is observed across the series. The lattice parameter decreases parabolically with x. Electrical resistivity was measured in a wide temperature region across the Tb{sub 0.27}Dy{sub 0.73}(Mn{sub 1-x}Fe{sub x}){sub 2} series and the parameters which characterize resistivity dependence on temperature, including Debye temperature, were determined. Residual, phonon and magnetic contributions were separated from electrical resistivity. The magnetic contribution to electrical resistivity was applied to estimate Curie temperatures. The Curie temperature increases significantly with x. {sup 57}Fe Moessbauer effect measurements for the Tb{sub 0.27}Dy{sub 0.73}(Mn{sub 1-x}Fe{sub x}){sub 2} intermetallic system evidence an [1 0 0] easy axis of magnetization. Mn/Fe substitution introduces a local area, at sub-nanoscale, with different Mn/Fe neighbourhoods of the tested {sup 57}Fe atoms. Hyperfine interaction parameters, an isomer shift, a magnetic hyperfine field and a quadrupole interaction parameter were determined from the spectra both for the local neighbourhood area and, as averaged values, for the sample as bulk. The average magnetic hyperfine field increases parabolically with x. The correlation between Curie temperatures and magnetic hyperfine fields is discussed.

  5. Characterization of GaSb-based heterostructures by spectroscopic investigations

    Energy Technology Data Exchange (ETDEWEB)

    Imhof, Sebastian; Bueckers, Christina; Metzger, Bjoern; Thraenhardt, Angela; Chatterjee, Sangam; Koch, Stephan W. [Fachbereich Physik, Wissenschaftliches Zentrum fuer Materialwissenschaften, Philipps Universitaet Marburg, Renthof 5, 35032 Marburg (Germany)

    2008-07-01

    The material system (AlGaIn)(AsSb) is suitable for laser emission at 2 {mu}m or longer wavelength, which is interesting for various applications, e.g. material processing, gas detection, medical diagnostic and laser surgery. A wide range of material combinations is being considered for application, but there are still uncertainties with regards to their structural properties, such as band alignment, strain and general bandstructure parameters. In order to gain information on these structural properties, we investigate GaSb-based heterostructures by modulation spectroscopy using e.g. photomodulated reflection. The experimental data are compared to simulations based on a microscopic theory.

  6. Raman spectroscopic investigation of blood and related materials

    Science.gov (United States)

    Gnyba, M.; Jedrzejewska-Szczerska, M.; Wróbel, M. S.

    2015-03-01

    This paper reports preliminary studies on use of Raman spectroscopy for investigation of blood. High quality blood spectra were recorded in-vitro with excitation wavelengths of 830 nm. Because of complex composition of the blood as well as by light attenuation and scattering in the tissues, spectra set up from wide, low-intensive Raman bands and intensive optical background. To get information about origin of bands in Raman spectra it is necessary to create phantom, which would show influence of this parameter and can be used to calibrate the Raman measurement system. Spectra of phantoms of selected blood components were acquired and discussed.

  7. Vibrational Spectroscopic and Thermodynamic Investigation of Poly (vinyl butyral

    Directory of Open Access Journals (Sweden)

    Saiful Islam Ansari

    2016-03-01

    Full Text Available A detailed study was performed to investigate the normal modes of vibration and their dispersions in poly (vinyl butyral by using Urey-Bradley force field and Wilson’s GF matrix method as modified by Higgs. It provides detailed interpretation of FTIR. Characteristic feature of dispersion curves such as regions of high density–of–states, repulsion and character mixing of dispersion modes are discussed. Predictive values of heat capacity as a function of temperature between 0-350 K have been evaluated.

  8. In-vivo morphologic and spectroscopic investigation of Psoriasis

    Science.gov (United States)

    Kapsokalyvas, Dimitrios; Cicchi, Riccardo; Bruscino, Nicola; Alfieri, Domenico; Massi, Daniela; Lotti, Torello; Pavone, Francesco S.

    2011-07-01

    Psoriasis is an autoimmune disease of the skin characterized by hyperkeratosis, hyperproliferation of the epidermis, inflammatory cell accumulation and increased dilatation of dermal papillary blood vessels. Cases of psoriasis were investigated in vivo with optical means in order to evaluate the potential of in vivo optical biopsy. A Polarization Multispectral Dermoscope was employed for the macroscopic observation. Features such as the 'dotted' blood vessels pattern was observed with high contrast. High resolution image sections of the epidermis and the dermis were produced with a custom made Multiphoton Microscope. Imaging extended from the surface of the lesion down to the papillary dermis, at a depth of 200 μm. In the epidermis, a characteristic morphology of the stratum corneum found only in Psoriasis was revealed. Additionally, the cytoplasmic area of the cells in the stratum spinosum layer was found to be smaller than normal. In the dermis the morphological features were more pronounced, where the elongated dermal papillae dominated the papillary layer. Their length exceeds 100μm, which is a far greater value compared to that of healthy skin. These in vivo observations are consistent with the ex vivo histopathological observations, supporting both the applicability and potentiality of multispectral dermoscopy and multiphoton microscopy in the field of in vivo optical investigation and biopsy of skin.

  9. Low-Spin Ferriheme Models of the Cytochromes: Correlation of Molecular Structure with EPR and Moessbauer Spectral Parameters

    Energy Technology Data Exchange (ETDEWEB)

    Teschner, T.; Trautwein, A. X.; Schuenemann, V. [University of Luebeck, Institute of Physics (Germany); Yatsunyk, L. A.; Walker, F. A. [University of Arizona, Department of Chemistry (United States)

    2004-12-15

    The magnetic Moessbauer spectra of a series of low-spin ferriheme complexes have been investigated and compared with their EPR spectral parameters and molecular structures. To date there has been little systematic analysis of either estimated or fitted values of the hyperfine coupling constants for low-spin ferriheme centers and no meaningful correlation has been established between the Moessbauer parameters and the axial ligands of such species. With the results of the present study, we have been able to find correlations of molecular structures with iron-orbital splittings, g-tensor values derived from EPR signals and magnetic hyperfine interaction components A{sub zz} obtained from magnetic Moessbauer spectra. These correlations should be useful to future workers in the field of heme-containing enzymes.

  10. Spectroscopic investigation of interaction between mangiferin and bovine serum albumin

    Science.gov (United States)

    Lin, Hui; Lan, Jingfeng; Guan, Min; Sheng, Fenling; Zhang, Haixia

    2009-09-01

    The mechanism of interaction between mangiferin (MA) and bovine serum albumin (BSA) in aqueous solution was investigated by fluorescence spectra, synchronous fluorescence spectra, absorbance spectra and Fourier transform infrared (FT-IR) spectroscopy. The binding constants and binding sites of MA to BSA at different reaction times were calculated. And the distance between MA and BSA was estimated to be 5.20 nm based on Föster's theory. In addition, synchronous fluorescence and FT-IR measurements revealed that the secondary structures of the protein changed after the interaction of MA with BSA. As a conclusion, the interaction between the anti-diabetes Chinese medicine MA and BSA may provide some significant information for the mechanism of the traditional chinese medicine MA on the protein level to cure diabetes or other diseases.

  11. Infrared Spectroscopic Investigation on CH Bond Acidity in Cationic Alkanes

    Science.gov (United States)

    Matsuda, Yoshiyuki; Xie, Min; Fujii, Asuka

    2016-06-01

    We have demonstrated large enhancements of CH bond acidities in alcohol, ether, and amine cations through infrared predissociation spectroscopy based on the vacuum ultraviolet photoionization detection. In this study, we investigate for the cationic alkanes (pentane, hexane, and heptane) with different alkyl chain lengths. The σ electrons are ejected in the ionization of alkanes, while nonbonding electrons are ejected in ionization of alcohols, ethers, and amines. Nevertheless, the acidity enhancements of CH in these cationic alkanes have also been demonstrated by infrared spectroscopy. The correlations of their CH bond acidities with the alkyl chain lengths as well as the mechanisms of their acidity enhancements will be discussed by comparison of infrared spectra and theoretical calculations.

  12. Moessbauer studies of hemoglobin in erythrocytes exposed to neutron radiation

    Energy Technology Data Exchange (ETDEWEB)

    Niemiec, Katarzyna; Kaczmarska, Magdalena; Buczkowski, Mateusz [AGH University, Faculty of Physics and Computer Science, Department of Medical Physics and Biophysics (Poland); Fornal, Maria [Collegium Medicum, Jagiellonian University, Department of Internal Medicine and Gerontology (Poland); Pohorecki, Wladyslaw [AGH University, Faculty of Energy and Fuels (Poland); Matlak, Krzysztof; Korecki, Jozef [AGH University, Faculty of Physics and Computer Science, Department of Solid State Physics (Poland); Grodzicki, Tomasz [Collegium Medicum, Jagiellonian University, Department of Internal Medicine and Gerontology (Poland); Burda, Kvetoslava, E-mail: kvetoslava.burda@fis.agh.edu.pl [AGH University, Faculty of Physics and Computer Science, Department of Medical Physics and Biophysics (Poland)

    2012-03-15

    We studied radiation effects on the stability of various states of hemoglobin (Hb) in red blood cells (RBC) irradiated with a very low dose of neutron rays, 50 {mu}Gy. We investigated RBCs isolated from blood of healthy donors. Moessbauer spectroscopy was applied to monitor different forms of Hb. Our results show, for the first time, that oxyhemoglobin (OxyHb) and deoxyhemoglobin (DeoxyHb) are two Hb forms sensitive to such a low neutron radiation. Both Hbs change into a new Hb form (Hb{sub irr}). Additionally, OxyHb transfers into HbOH/H{sub 2}O, which under our experimental conditions is resistant to the action of neutron rays.

  13. Spectroscopic investigation of thermal conductivity in few-layer graphene

    Science.gov (United States)

    Denison, Joseph C., Jr.

    Carbon is an extremely versatile element due to the ability of its electronic structure to allow strong bonds with many elements including other carbon atoms. This allows for the formation of many types of large and complex architectures, such as fullerenes and carbon nanotubes, at the nanoscale. One of the most fascinating allotropes of carbon is graphene, a two-dimensional honeycomb lattice with carbon in sp2 hybridization, which building block for layered graphite and other nanocarbons.[1] Because of its unique structure, graphene displays several interesting properties including high thermal[2-4] and electrical mobility and conductivity[1,5]. The initial studies on graphene were performed on mechanically exfoliated samples, which were limited to few microns in size. In the recent years, large areas of single- and few-layer graphene (˜few cm x cm) are being produced by chemical vapor deposition technique for practical applications. However, chemical vapor deposition grown graphene is highly polycrystalline with interfaces such as edges, grain boundaries, dislocations, and point defects. This inevitable presence of defects in graphene influences its electrical and thermal transport. While many studies have previously focused on the influence of defects on electrical mobility and conductivity, there is little information on the influence of defects on the thermal properties of graphene. This study specifically investigates the effect of both intrinsic and extrinsic defects on the in-plane thermal properties of graphene using micro-Raman spectroscopy. The in-plane thermal conductivity of few-layered graphene (FLG) was measured using Raman spectroscopy, following the work of Balandin et al. [4]The thermal conductivity was estimated from a shift of the characteristic G-band of graphene as a function of the excitation laser power. The graphene samples were synthesized on nickel substrates using chemical vapor deposition, and transferred to copper TEM grids and

  14. Spectroscopic Investigation of a Repetitively-Pulsed Nanosecond Discharge

    Science.gov (United States)

    Yee, Benjamin T.

    This work reports on an investigation of a repetitively-pulsed nanosecond discharge (RPND) in helium over a range of 0.3-16.0 Torr. The discharge was studied experimentally via laser-absorption spectroscopy and opticals emission spectroscopy measurements. In concert with the experimental campaign, a global model of a helium plasma was developed with the aid of particle-in-cell simulations. The global model was then used to predict the population kinetics and emissions of the RPND. Synthesis of the results provided new data and insights on the development of the RPND. Among the results were direct measurements of the triplet metastable states during the excitation period. This period was found to be unexpectedly long at low pressures (less than or equal to 1.0 Torr), suggesting an excess in high-energy electrons as compared to an equilibrium distribution. Other phenomena such as a prominent return stroke and additional energy deposition by reflections in the transmission line were also identified. Estimates of the electric field and electron temperatures were obtained for several conditions. Furthermore, several optical methods for electron temperature measurement were evaluated for application to the discharge. Based on the global model simulations, the coronal model was found to apply to the line ratio of the 33S-23Po and 31S-2 1Po transitions, however further work is needed to ascertain its applicability to experimental discharges. These results provide new insight on the development of the repetitively-pulsed nanosecond discharge. Specifically, they reveal new information about the excited state dynamics within the discharge, the non-equilibrium nature of its electrons, and several avenues for future studies. This study extends the present understanding of repetitively-pulsed discharges, and advances the knowledge of energy coupling between electric fields and plasmas.

  15. Thermal diffusion of {sup 57}Co into rhodium matrix as a second step in preparing Moessbauer sources

    Energy Technology Data Exchange (ETDEWEB)

    Cieszykowska, Izabela; ZoLtowska, MaLgorzata [Institute of Atomic Energy Polatom, Radioisotope Centre, 05-400 Otwock-Swierk (Poland); Zachariasz, Piotr [Institute of Atomic Energy Polatom, Moessbauer Spectroscopy Lab, 05-400 Otwock-Swierk (Poland); Piasecki, Andrzej; Janiak, Tomasz [Institute of Atomic Energy Polatom, Radioisotope Centre, 05-400 Otwock-Swierk (Poland); Mielcarski, MieczysLaw, E-mail: m.mielcarski@polatom.pl [Institute of Atomic Energy Polatom, Radioisotope Centre, 05-400 Otwock-Swierk (Poland)

    2011-09-15

    Thermal diffusion of {sup 57}Co into rhodium matrix was studied. The diffusion degree was evaluated by Moessbauer spectroscopy with the use of {alpha}-Fe absorber. The influence of different annealing conditions was investigated. For a set of sources examined, smooth and rounded Lorentzian lines were observed. The main spectra parameters are fairly acceptable with respect to the typical obtainable values for {alpha}-Fe absorbers in Moessbauer spectroscopy. The results obtained confirm that the deposited {sup 57}Co diffused almost completely into rhodium matrix without substantial loss of the activity deposited.

  16. Moessbauer study of C18N/Fe Langmuir-Blodgett layers

    Energy Technology Data Exchange (ETDEWEB)

    Kuzmann, Erno [Institute of Chemistry, Eoetvoes Lorand University (Hungary); Telegdi, Judit [Institute of Nanochemistry and Catalysis, Chemical Research Center, HAS (Hungary); Nemeth, Zoltan, E-mail: hentes@chem.elte.hu; Vertes, Attila [Institute of Chemistry, Eoetvoes Lorand University (Hungary); Nyikos, Lajos [Institute of Nanochemistry and Catalysis, Chemical Research Center, HAS (Hungary)

    2012-03-15

    Langmuir-Blodgett (LB) films of octadecanoyl hydroxamic acid (C18N) complexed with Fe{sup 3 + } ions have been prepared at various subphase pH values. The LB films consisting of different number of layers were investigated by {sup 57}Fe conversion electron Moessbauer spectroscopy (CEM) at room temperature. The CEM detector contained a piece of {alpha}-iron, enriched with {sup 57}Fe, using as an internal standard. The Moessbauer pattern of the C18N/Fe LB films is a doublet with parameters {delta} = 0.35 mm/s and {Delta} = 0.74 mm/s. A gradual increase of the relative occurrence of the doublet compared to the sextet of the internal standard was observed with the increasing number of layers, indicating the nearly uniform distribution of Fe among the LB layers.

  17. Moessbauer effect study of fly and bottom ashes from an electric generating plant

    Energy Technology Data Exchange (ETDEWEB)

    Vandenberghe, R. E., E-mail: Robert.Vandenberghe@UGent.be; Resende, V. G. de; De Grave, E. [Ghent University, Department of Subatomic and Radiation Physics (Belgium)

    2009-06-15

    Samples of a fly ash and a bottom ash, each before and after ignition, have been investigated by X-ray diffraction and Moessbauer spectroscopy in order to explain the observed negative loss of ignition (LOI). It is shown that the ashes after ignition contain more maghemite resulting from newly formed magnetite. Moreover, the fly ash which contained already magnetite exhibited an increase of hematite after ignition. Both oxidation processes can be responsible for a weight gain which compensates the loss due to the burning of the remaining carbon. The magnetite and the alpha-iron formed after ignition is originated by an unidentified compound represented by a Fe{sup 2+} doublet in the Moessbauer spectrum.

  18. Moessbauer study of FINEMET type nanocrystalline ribbons irradiated with swift heavy ions

    Energy Technology Data Exchange (ETDEWEB)

    Kuzmann, Erno, E-mail: kuzmann@ludens.elte.hu; Stichleutner, Sandor; Sapi, Andras [Institute of Chemistry, Eoetvoes University (Hungary); Varga, Lajos Karoly [Research Institute for Solid State Physics and Optics, HAS (Hungary); Havancsak, Karoly [Eoetvoes University, Department of Materials Physics (Hungary); Skuratov, Vlamidir [Joint Institute for Nuclear Research (Russian Federation); Homonnay, Zoltan; Vertes, Attila [Institute of Chemistry, Eoetvoes University (Hungary)

    2012-03-15

    As-quenched and stress field annealed FINEMET ribbons were irradiated with 246 MeV energy Kr, 470 MeV energy Xe and 720 MeV energy Bi ions and investigated by {sup 57}Fe Moessbauer spectroscopy and XRD methods. The change in relative areas of the 2nd and 5th lines in the Moessbauer spectra indicated significant changes in the magnetic anisotropy of both as-quenched and stress annealed FINEMET due to irradiation with swift heavy ions. Differences were observed between the effect of irradiations with various ions having different energy and fluence. The effect of irradiation on the magnetic orientation in FINEMET was explained in terms of radiation induced defects. The swift heavy ion irradiation can be applied to produce FINEMET ribbons with more favorable soft magnetic properties for technological applications.

  19. Moessbauer Study of Sphero-Conical Vessels from Bolgar

    Science.gov (United States)

    Ivanova, A. G.; Nuretdinova, A. R.; Pyataev, A. V.; Valiulina, S. I.; Voronina, E. V.

    2017-05-01

    Samples of sphero-conical vessels found in mass quantities in the ancient settlement Bolgar were analyzed by Moessbauer spectroscopy. Wares with relatively low annealing temperatures medieval handicraft center.

  20. Specific binding of a dihydropyrimidinone derivative with DNA: Spectroscopic, calorimetric and modeling investigations

    Energy Technology Data Exchange (ETDEWEB)

    Wang Gongke, E-mail: wanggongke@126.com [School of Chemistry and Environmental Science, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, Henan Normal University, Xinxiang, Henan 453007 (China); Yan Changling; Wang Dongchao; Li Dan [School of Chemistry and Environmental Science, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, Henan Normal University, Xinxiang, Henan 453007 (China); Lu Yan, E-mail: yanlu2001@sohu.com [School of Chemistry and Environmental Science, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, Henan Normal University, Xinxiang, Henan 453007 (China)

    2012-07-15

    One of the dihydropyrimidinone derivative 5-(ethoxycarbonyl)-6-methyl-4-(4-methoxyphenyl) -3,4-dihydropyrimidin-2(1H)-one (EMMD) was synthesized, and its binding properties with calf-thymus DNA (ctDNA) were investigated using spectroscopic, viscometric, isothermal titration calorimetric (ITC) and molecular modeling techniques. Fluorescence spectra suggested that the fluorescence enhancement of the binding interaction of EMMD to ctDNA was a static process with ground state complex formation. The binding constant determined with spectroscopic titration and ITC was found to be in the same order of 10{sup 4} M{sup -1}. According to the results of the viscosity analysis, fluorescence competitive binding experiment, fluorescence quenching studies, absorption spectral and ITC investigations, it can be concluded that EMMD is intercalative binding to ctDNA. Furthermore, the results of molecular modeling confirmed those obtained from spectroscopic, viscosimetric and ITC investigations. Additionally, ITC studies also indicated that the binding interaction is predominantly enthalpy driven. - Highlights: Black-Right-Pointing-Pointer Medically important dihydropyrimidinones derivative EMMD is synthesized. Black-Right-Pointing-Pointer EMMD is intercalative binding into ctDNA helix. Black-Right-Pointing-Pointer Hydrogen bonding may play an essential role in the binding of EMCD with ctDNA. Black-Right-Pointing-Pointer This binding interaction is predominantly enthalpy driven.

  1. Moessbauer and mineral magnetic studies on archaeological potteries from Adhichanallur, Tamilnadu, India

    Energy Technology Data Exchange (ETDEWEB)

    Venkatachalapathy, R., E-mail: venkatr5@rediffmail.com [Annamalai University, C.A.S in Marine Biology (India); Bakas, T. [University of Ioannina, Department of Physics (Greece); Basavaiah, N.; Deenadayalan, K. [New Panvel, Indian Institute of Geomagnetism (India)

    2008-09-15

    Megalithic potteries collected from Adhichanallur, Tamilnadu, India (Lat. 8{sup o}44' N; Long. 77{sup o}42' E) have been subjected to various spectroscopic and rock magnetic studies. The type of clay, their origin, level of structural deformation due to firing, firing temperature and atmospheric condition followed during making the potteries are analyzed. The potteries were subjected to Moessbauer and X-ray diffraction studies to analyze the iron phases in them. It is found that the samples were made of local clay (red clay), fired above 600{sup o}C under open atmospheric and/or reduced atmospheric conditions and air has been allowed during cooling. The Moessbauer spectra reveal the presence of Fe{sup 3+}, Fe{sup 2+} and iron oxides of hematite and magnetite. The firing temperature and firing conditions established from Moessbauer studies are similar to the observation made from FT-IR studies. The magnetic mineral types, the mass fractions and the domain states of the constituent magnetic grains were elucidated from a range of rock magnetic measurements including variation of susceptibility with low field, frequency and temperature, hysteresis parameters and isothermal remanence acquisition data. The magnetic mineralogy of most pottery samples was dominated by magnetite/(titano) magnetite, while magnetic grain size spectrum varies from very fine (super paramagnetic) to fine (stable single domain, pseudo single domain). The reversible thermo magnetic behavior reflects no mineralogical transformations during reheating and all the samples show same Curie temperature 580{sup o}C due to magnetite. From the above information it is demonstrated that these samples are suitable for determining the reliable ancient geomagnetic field intensity values existed during that period.

  2. Microscopic and Spectroscopic Investigation of Poly(3-hexylthiophene Interaction with Carbon Nanotubes

    Directory of Open Access Journals (Sweden)

    Maurizio De Crescenzi

    2011-08-01

    Full Text Available The inclusion of carbon nanotubes in polymer matrix has been proposed to enhance the polymer’s physical and electrical properties. In this study, microscopic and spectroscopic techniques are used to investigate the interaction between poly(3-hexylthiophene (P3HT and nanotubes and the reciprocal modification of physical properties. The presence of P3HT-covered nanotubes dispersed in the polymer matrix has been observed by atomic force microscopy and transmission electron microscopy. Then, the modification of P3HT optical properties due to nanotube inclusion has been evidenced with spectroscopic techniques like absorption and Raman spectroscopy. The study is completed with detailed nanoscale analysis by scanning probe techniques. The ordered self assembly of polymer adhering on the nanotube is unveiled by showing an example of helical wrapping of P3HT. Scanning tunneling spectroscopy study provides information on the electronic structure of nanotube-polymer assembly, revealing the charge transfer from P3HT to the nanotube.

  3. Raman spectroscopic investigation of thorium dioxide-uranium dioxide (ThO₂-UO₂) fuel materials.

    Science.gov (United States)

    Rao, Rekha; Bhagat, R K; Salke, Nilesh P; Kumar, Arun

    2014-01-01

    Raman spectroscopic investigations were carried out on proposed nuclear fuel thorium dioxide-uranium dioxide (ThO2-UO2) solid solutions and simulated fuels based on ThO2-UO2. Raman spectra of ThO2-UO2 solid solutions exhibited two-mode behavior in the entire composition range. Variations in mode frequencies and relative intensities of Raman modes enabled estimation of composition, defects, and oxygen stoichiometry in these compounds that are essential for their application. The present study shows that Raman spectroscopy is a simple, promising analytical tool for nondestructive characterization of this important class of nuclear fuel materials.

  4. Electron spectroscopic investigation of metal-insulator transition in Ce1-SrTiO3

    Indian Academy of Sciences (India)

    U Manju; S R Krishnakumar; Sugata Ray; S Raj; M Onoda; C Carbone; D D Sarma

    2003-10-01

    We have carried out detailed electron spectroscopic investigation of Ce1-SrTiO3 exhibiting insulator-metal transition with . Core level X-ray photoelectron spectra of Ce 3 as well as resonant photoemission spectra obtained at the Ce 4 → 4 resonant absorption threshold establish Ce as being in the trivalent state throughout the series. Using the `off-resonance’ condition for Ce 4 states, we obtain the Ti 3 dominated spectral features close to , exhibiting clear signatures of coherent and incoherent peaks. We discuss the implications of our findings in relation to the metal-insulator transition observed in this series of compounds.

  5. Moessbauer spectra of tin in float glass

    Energy Technology Data Exchange (ETDEWEB)

    Johnson, J.A. [Liverpool John Moores Univ. (United Kingdom). Sch. of the Built Environ.; Johnson, C.E. [Liverpool Univ. (United Kingdom). Dept. of Physics; Williams, K.F.E. [Liverpool Univ. (United Kingdom). Dept. of Physics; Holland, D. [Warwick Univ., Coventry (United Kingdom). Dept. of Physics; Karim, M.M. [Warwick Univ., Coventry (United Kingdom). Dept. of Physics

    1995-03-01

    Tin is not a major constituent of window glass, but is found at high concentrations in the lower surface of float glass which has been in contact with the molten tin bath. It does not extend far into the surface, but causes the physical and chemical behaviour to differ from that of the upper surface. It is important, therefore, to understand the structural role of tin in silicate glasses and thus its effect on various properties. Moessbauer spectra were taken of three series of glassy materials, namely binary glasses (SnO and SiO{sub 2}) in varying proportions, re-melted float glass containing tin, and float glass from a production plant. The binary glasses contained between 20 and 70% tin which was found to be mainly Sn{sup 2+}, with very small amounts of Sn{sup 4+} in some of them. The spectra showed a small decrease in isomer shift with increase in tine content, which is ascribed to the change in molar volume. The re-melted samples were float glass which was mixed with stannous oxalate in appropriate conditions to try and maintain tin in the 2+ state, and contained up to 15% tin by weight. The spectra show both Sn{sup 4+} and Sn{sup 2+} with rather more in the 4+ oxidation state. The change in the spectra as a function of temperature revealed a large difference in the f-factor (and hence the chemical binding) of the two states. A series of spectra was taken between 17.5 and 900 K for the sample containing 15% tin. From the absorption as a function of temperature the f-factor was determined for both oxidation states, and hence enabled the relative amounts of Sn{sup 4+} and Sn{sup 2+} present in each sample to be estimated. Measurements of the shift as a function of temperature were also made. The float samples were surface material produced by grinding away all but 0.1 mm of the lower surface of industrially produced float glass. The Moessbauer spectra showed them to be predominantly Sn{sup 2+}, as expected from the reducing atmosphere in the float plant.

  6. Chromate adsorption on selected soil minerals: Surface complexation modeling coupled with spectroscopic investigation

    Energy Technology Data Exchange (ETDEWEB)

    Veselská, Veronika, E-mail: veselskav@fzp.czu.cz [Department of Environmental Geosciences, Faculty of Environmental Sciences, Czech University of Life Sciences Prague, Kamýcka 129, CZ-16521, Prague (Czech Republic); Fajgar, Radek [Department of Analytical and Material Chemistry, Institute of Chemical Process Fundamentals of the CAS, v.v.i., Rozvojová 135/1, CZ-16502, Prague (Czech Republic); Číhalová, Sylva [Department of Environmental Geosciences, Faculty of Environmental Sciences, Czech University of Life Sciences Prague, Kamýcka 129, CZ-16521, Prague (Czech Republic); Bolanz, Ralph M. [Institute of Geosciences, Friedrich-Schiller-University Jena, Carl-Zeiss-Promenade 10, DE-07745, Jena (Germany); Göttlicher, Jörg; Steininger, Ralph [ANKA Synchrotron Radiation Facility, Karlsruhe Institute of Technology, Hermann-von-Helmholtz-Platz 1, DE-76344, Eggenstein-Leopoldshafen (Germany); Siddique, Jamal A.; Komárek, Michael [Department of Environmental Geosciences, Faculty of Environmental Sciences, Czech University of Life Sciences Prague, Kamýcka 129, CZ-16521, Prague (Czech Republic)

    2016-11-15

    Highlights: • Study of Cr(VI) adsorption on soil minerals over a large range of conditions. • Combined surface complexation modeling and spectroscopic techniques. • Diffuse-layer and triple-layer models used to obtain fits to experimental data. • Speciation of Cr(VI) and Cr(III) was assessed. - Abstract: This study investigates the mechanisms of Cr(VI) adsorption on natural clay (illite and kaolinite) and synthetic (birnessite and ferrihydrite) minerals, including its speciation changes, and combining quantitative thermodynamically based mechanistic surface complexation models (SCMs) with spectroscopic measurements. Series of adsorption experiments have been performed at different pH values (3–10), ionic strengths (0.001–0.1 M KNO{sub 3}), sorbate concentrations (10{sup −4}, 10{sup −5}, and 10{sup −6} M Cr(VI)), and sorbate/sorbent ratios (50–500). Fourier transform infrared spectroscopy, X-ray photoelectron spectroscopy, and X-ray absorption spectroscopy were used to determine the surface complexes, including surface reactions. Adsorption of Cr(VI) is strongly ionic strength dependent. For ferrihydrite at pH <7, a simple diffuse-layer model provides a reasonable prediction of adsorption. For birnessite, bidentate inner-sphere complexes of chromate and dichromate resulted in a better diffuse-layer model fit. For kaolinite, outer-sphere complexation prevails mainly at lower Cr(VI) loadings. Dissolution of solid phases needs to be considered for better SCMs fits. The coupled SCM and spectroscopic approach is thus useful for investigating individual minerals responsible for Cr(VI) retention in soils, and improving the handling and remediation processes.

  7. Pr(Ⅲ) and Nd(Ⅲ) Absorption Spectroscopic Probe to Investigate Interaction with Lysozyme (HEW)

    Institute of Scientific and Technical Information of China (English)

    2006-01-01

    Pr(Ⅲ) and Nd(Ⅲ) can be utilized as absorption spectroscopic probes to investigate the interaction of biomolecules like Lysozyme (HEW) with Ca(Ⅱ) in-vitro; the most abundant metal ion in the human body system. The spectroscopic techniques involving comparative absorption, absorption difference, and quantitative intensity analysis using 4f-4f transitions are utilized for changes in the inner sphere coordination pattern of Pr(Ⅲ) and Nd(Ⅲ) in solution as well as in solid state. The present study deals with an important biomolecule in human metabolism, that is, Lysozyme (HEW). The absorption spectral parameters such as the oscillator strength (P), the Judd-Ofelt (Tλ) intensity parameters, and the Slater-Condon inter electronic parameters are calculated using chi square methods. The obtained results are used to determine the probable geometry of the complex in the solution, the nature of the bond between Pr(Ⅲ)/Nd(Ⅲ) with lysozyme, and the inner sphere coordination environment of f-f transitions. The results obtained from various experimental conditions are utilized to investigate the coordination changes in the Pr(Ⅲ)/Nd(Ⅲ) complexes caused by different coordinating sites of lysozyme, normalized bite, denticity, the solvent nature, the coordination number, the nature of bond and other parameters to mimic the interaction of the Ca(Ⅱ) ion with such biomolecule.

  8. Spectroscopic investigations on thin adhesive layers in multi-material laminates.

    Science.gov (United States)

    Voronko, Yuliya; Chernev, Boril S; Eder, Gabriele C

    2014-01-01

    Three different spectroscopic approaches, Raman linescans, Raman imaging, and attenuated total reflection Fourier transform infrared spectroscopy (ATR FT-IR) imaging were evaluated for the visualization of the thin adhesive layers (3-6 μm) present in polymeric photovoltaic backsheets. The cross-sections of the multilayer laminates in the original, weathered, and artificially aged samples were investigated spectroscopically in order to describe the impact of the environmental factors on the evenness and thickness of the adhesive layers. All three methods were found to be suitable tools to detect and visualize these thin layers within the original and aged polymeric laminates. However, as the adhesive layer is not very uniform in thickness and partly disintegrates upon weathering and/or artificial aging, Raman linescans yield only qualitative information and do not allow for an estimation of the layer thickness. Upon increasing the measuring area by moving from one-dimensional linescans to two-dimensional Raman images, a much better result could be achieved. Even though a longer measuring time has to be taken into account, the information on the uniformity and evenness of the adhesive layer obtainable using the imaging technique is much more comprehensive. Although Raman spectroscopy is known to have the superior lateral resolution as compared with ATR FT-IR spectroscopy, the adhesive layers of the samples used within this study (layer thickness 3-6 μm) could also be detected and visualized by applying the ATR FT-IR spectroscopic imaging method. However, the analysis of the images was quite a demanding task, as the thickness of the adhesive layer was in the region of the resolution limit of this method. The information obtained for the impact of artificial aging and weathering on the adhesive layer obtained using Raman imaging and ATR FT-IR imaging was in good accordance.

  9. High-pressure Moessbauer study of perovskite iron oxides

    CERN Document Server

    Kawakami, T; Sasaki, T; Kuzushita, K; Morimoto, S; Endo, S; Kawasaki, S; Takano, M

    2002-01-01

    The perovskite oxides CaFeO sub 3 and La sub 1 sub / sub 3 Sr sub 2 sub / sub 3 FeO sub 3 have been investigated by high-pressure sup 5 sup 7 Fe Moessbauer spectroscopy. The critical temperatures of the charge disproportionation (CD) and the magnetic order (MO) have been determined as a function of pressure. In CaFeO sub 3 the CD (2Fe sup 4 sup + -> Fe sup 3 sup + + Fe sup 5 sup +) occurs at an almost constant temperature of 290 K in the pressure range of 0-17 GPa. Above 20 GPa, the CD is suppressed. The MO temperature of 125 K at an ambient pressure rises to 300 K at 34 GPa. In La sub 1 sub / sub 3 Sr sub 2 sub / sub 3 FeO sub 3 the CD (3Fe sup 1 sup 1 sup / sup 3 sup + -> 2Fe sup 3 sup + + Fe sup 5 sup +) and the MO occur at the same temperature up to 21 GPa, which decreases from 207 to 165 K with increasing pressure. Above 25 GPa, however, the MO temperature rises above 400 K.

  10. High pressure Moessbauer spectroscopy of perovskite iron oxide

    CERN Document Server

    Nasu, S; Morimoto, S; Kawakami, T; Kuzushita, K; Takano, M

    2003-01-01

    High-pressure sup 5 sup 7 Fe Moessbauer spectroscopy using a diamond anvil cell has been performed for perovskite iron oxides SrFeO sub 3 , CaFeO sub 3 and La sub 1 sub / sub 3 Sr sub 2 sub / sub 3 O sub 3. The charge states and the magnetic dependency to pressure were determined. Pressure magnetic phase diagrams of these perovskite iron oxides are determined up to about 70 GPa. To be clear the magnetic ordered state, they are measured up to 7.8 T external magnetic fields at 4.5K. The phase transition of these perovskite oxides to ferromagnetisms with high magnetic ordered temperature is observed. In higher pressure, high spin-low spin transition of oxides besides CaFeO sub 3 is generated. The feature of Moessbauer spectroscopy, perovskite iron oxide and Moessbauer spectroscopy under high pressure are explained. (S.Y.)

  11. Spectroscopic investigation of the vibrational quasi-continuum arising from internal rotation of a methyl group

    Energy Technology Data Exchange (ETDEWEB)

    Hougen, J.T. [NIST, Gaithersburg, MD (United States)

    1993-12-01

    The goal of this project is to use spectroscopic techniques to investigate in detail phenomena involving the vibrational quasi-continuum in a simple physical system. Acetaldehyde was chosen for the study because: (i) methyl groups have been suggested to be important promotors of intramolecular vibrational relaxation, (ii) the internal rotation of a methyl group is an easily describle large-amplitude motion, which should retain its simple character even at high levels of excitation, and (iii) the aldehyde carbonyl group offers the possibility of both vibrational and electronic probing. The present investigation of the ground electronic state has three parts: (1) understanding the {open_quotes}isolated{close_quotes} internal-rotation motion below, at, and above the top of the torsional barrier, (2) understanding in detail traditional (bond stretching and bending) vibrational fundamental and overtone states, and (3) understanding interactions involving states with multiquantum excitations of at least one of these two kinds of motion.

  12. Structural and mechanical properties of cellulose acetate/graphene hybrid nanofibers: Spectroscopic investigations

    Directory of Open Access Journals (Sweden)

    B. S. Kim

    2013-06-01

    Full Text Available Cellulose acetate/graphene (CA/graphene and cellulose acetate/graphene-COOH (CA/graphene-COOH hybrid nanofibers were fabricated via electrospinning technique, and their morphologies, crystallinity and mechanical properties were investigated. The added amounts of graphene and graphene-COOH were varied from 0.5 to 5.0 wt%. The crystal structures and morphologies of the resultant hybrid nanofibers were investigated by wide angle X-ray diffraction (WAXD, scanning electron microscopy (SEM and transmission electron microscopy (TEM, respectively. Graphene-COOH incorporated CA nanofiber mats showed higher Young’s modulus of about 910 MPa among than those of CA/graphene nanofibers, which is due to molecular interactions between –COOH groups in acid-treated graphene and C=O groups in CA via hydrogen bonding. This specific interaction was demonstrated by spectroscopic studies (Raman and Fourier transform infrared (FT-IR spectroscopies.

  13. Synthesis, structure, spectroscopic investigations, and computational studies of optically pure β-ketoamide

    Science.gov (United States)

    Mtat, D.; Touati, R.; Guerfel, T.; Walha, K.; Ben Hassine, B.

    2016-12-01

    Chemical preparation, X-ray single crystal diffraction, IR and NMR spectroscopic investigations of a novel nonlinear optical organic compound (C17H22NO2Cl) are described. The compound crystallizes in the orthorhombic system with the non-centrosymmetric sp. gr. P212121. In the crystal structure, molecules are interconnected by N-H…O hydrogen bonds forming infinite chains along a axis. The Hirshfeld surface and associated fingerprint plots of the compound are presented to explore the nature of intermolecular interactions and their relative contributions in building the solid-state architecture. The molecular HOMO-LUMO compositions and their respective energy gaps are also drawn to explain the activity of the compound. The first hyperpolarizability βtot of the title compound is determined using DFT calculations. The optical properties are also investigated by UV-Vis absorption spectrum.

  14. Moessbauer effect and magnetization studies of Nd{sub 16}Fe{sub 76-x}Ru {sub x}B{sub 8} alloys

    Energy Technology Data Exchange (ETDEWEB)

    Valcanover, J.A. [DF-UFSC, Florianopolis, CEP 88040-900, SC (Brazil); Paduani, C. [DF-UFSC, Florianopolis, CEP 88040-900, SC (Brazil)]. E-mail: paduani@fisica.ufsc.br; Ardisson, J.D. [CDTN, Belo Horizonte, CEP 30123-970, MG (Brazil); Samudio Perez, C.A. [FEA-UPF, Passo Fundo, CEP 99001-970, RS (Brazil); Yoshida, M.I. [DQ-UFMG, Belo Horizonte, CEP 31270-901, MG (Brazil)

    2005-05-15

    The intrinsic magnetic properties of Nd{sub 16}Fe{sub 76-x}Ru {sub x}B{sub 8} alloys are investigated by means of Moessbauer spectroscopy and magnetization measurements. The Moessbauer parameters derived from fitting the six sextets assigned to the six different iron sites provide information about preferential site occupation of solute atoms. The cell volume decreases with the Ru substitution for Fe and the shrinkage of the lattice is greater in the c direction than in the a direction of the tetragonal unit cell. The decrease of the spectral area for the subpatterns corresponding to k{sub 1} and k{sub 2} sites with the substitution indicates that the ruthenium atoms enter preferentially in these sites, whereas the Fe atoms prefer the j-sites. The behavior of the Moessbauer parameters with changes in composition indicates that the ruthenium interactions have long range order character in this compound.

  15. Synthesis and spectroscopic investigation of nanostructured europium oxalate: A potential red emitting phosphor

    Science.gov (United States)

    Vimal, G.; Mani, K. P.; Biju, P. R.; Joseph, C.; Unnikrishnan, N. V.; Ittyachen, M. A.

    2015-10-01

    Nanostructured europium oxalate was successfully synthesized for the first time by microwave assisted co-precipitation method. Structure and nanocrystalline nature of the synthesized europium oxalate was analyzed using X-ray diffraction and the results were confirmed by transmission electron microscopy. Fourier transform infrared spectroscopy was employed to identify the different functional groups present in the nanostructured europium oxalate. Detailed spectroscopic investigations were carried out using Judd-Ofelt theory to find out the spectroscopic parameters of europium oxalate. Nature of the metal-ligand bond and symmetry of the environment around Eu3+ ions, which strongly influences the luminescence characteristics of the material, were analyzed. Photoluminescence emission spectrum of the material confirmed the strong red emission predicted by the JO theoretical analysis which is further ascertained by CIE chromaticity diagram. Further analysis on the luminescence parameters such as life time, quantum efficiency and color purity of nanostructured europium oxalate revealed the suitability of this material as a potential phosphor for red emission.

  16. Spectroscopic Parameter and Molecular Constant Investigations on Low-Lying States of BeF Radical

    Directory of Open Access Journals (Sweden)

    Jin Feng Sun

    2012-02-01

    Full Text Available The potential energy curves (PECs of X2Σ+, A2Πr and B2Σ+ states of BeF radical have been investigated using the complete active space self-consistent-field (CASSCF method, followed by the highly accurate valence internally contracted multireference configuration interaction (MRCI approach at the correlation-consistent basis sets, cc-pV5Z for Be and aug-cc-pV6Z for F. Based on the PECs of X2Σ+, A2Πr and B2Σ+ states, the spectroscopic parameters (De, Re, ωe, ωeχe, αe and Be have also been determined in the present work. With the PECs determined at the present level of theory, vibrational states have been predicted for each state when the rotational quantum number J equals zero (J = 0. The vibrational levels, inertial rotation and centrifugal distortion constants are determined for the three states, and the classical turning points are also calculated for the X2Σ+ state. Compared with the available experiments and other theories, it can be seen that the present spectroscopic parameter and molecular constant results are more fully in agreement with the experimental findings.

  17. Moessbauer study of EUROFER and VVER steel reactor materials

    Energy Technology Data Exchange (ETDEWEB)

    Kuzmann, E., E-mail: kuzmann@ludens.elte.hu [Eoetvoes University, Laboratory of Nuclear Chemistry, Institute of Chemistry (Hungary); Horvath, A. [Hungarian Academy of Sciences, Centre for Energy Research (Hungary); Alves, L.; Silva, J. F.; Gomes, U.; Souza, C. [Universidade Federal do Rio Grande do Norte (University) (Brazil); Homonnay, Z. [Eoetvoes University, Laboratory of Nuclear Chemistry, Institute of Chemistry (Hungary)

    2013-04-15

    {sup 57}Fe Moessbauer spectroscopy and X-ray diffractometry were used to study EUROFER or VVER ferritic reactor steels mechanically alloyed with TaC or NbC. Significant changes were found in the Moessbauer spectra and in the corresponding hyperfine field distributions between the ball milled pure steel and that alloyed with TaC or NbC. Spectral differences were also found in the case of use of same carbides with different origin, too. The observed spectral changes as an effect of ball milling of the reactor material steels with carbides can be associated with change in short range order of the constituents of steel.

  18. Soils from the Jabal Al-Akhdar region of North East Libya: Characterisation of the iron using chemical methods and Moessbauer spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Younis, A.M.; Kilcoyne, S.H. [School of Physics and Astronomy, University of St Andrews, Scotland (United Kingdom); Yacob, M. [Omar of Elmukhtar University, Soil and Water Department (Libyan Arab Jamahiriya); Goodman, B.A. [Scottish Crop Research Institute, Invergowrie, Dundee (United Kingdom)

    1999-11-15

    Soils from North East Libya have been investigated by X-ray diffraction, chemical analysis and Moessbauer spectroscopy. Quartz, kaolinite and illite were the main components identified by XRD in all specimens. Total and poorly ordered iron oxides were estimated using dithionite-citrate-bicarbonate (DCB) and oxalate extraction methods, respectively; in all cases, the oxalate-extractable iron represents a relatively minor fraction. Moessbauer spectroscopy showed the presence of substantial quantities of haematite and goethite, both in microcrystalline forms, but there was no systematic relationship between the relative proportions of these phases and the geographical origins of the soils.

  19. Moessbauer of phase separation in FeNi multilayers under ion bombardment

    Energy Technology Data Exchange (ETDEWEB)

    Amaral, L.; Paesano, A.; Brueckman, M.E. [Rio Grande do Sul Univ., Porto Alegre, RS (Brazil). Inst. de Fisica; Scorzelli, R.B.; Dominguez, A.B. [Centro Brasileiro de Pesquisas Fisicas (CBPF), Rio de Janeiro, RJ (Brazil); Shinjo, T.; Ono, T.; Hosoito, N. [Kyoto Univ. (Japan). Inst. for Chemical Research

    1997-01-01

    We investigated the effect of noble gas irradiation (He, Ne, Ar and Xe) on the Fe-Ni multilayers with a very thin modulation and nominal composition in the invar region Fe{sub 0.63} Ni{sub 0.37}. The evaluation of the formation/stability of the Fe-Ni phases formed under irradiation with different ions and doses was followed by conversion electron Moessbauer spectroscopy (CEMS). (author). 21 refs., 4 figs., 2 tabs.; e-mail: scorza at novell.cat.cbpf.br.

  20. Interactions between {beta}-carboline alkaloids and bovine serum albumin: Investigation by spectroscopic approach

    Energy Technology Data Exchange (ETDEWEB)

    Nafisi, Shohreh, E-mail: drshnafisi@gmail.com [Department of Chemistry, Islamic Azad University, Central Tehran Branch (IAUCTB), Tehran (Iran, Islamic Republic of); Panahyab, Ataollah [Department of Chemistry, Islamic Azad University, Central Tehran Branch (IAUCTB), Tehran (Iran, Islamic Republic of); Bagheri Sadeghi, Golshan [Department of Biology, Islamic Azad University, Science and Research Branch, Tehran (Iran, Islamic Republic of)

    2012-09-15

    {beta}-Carboline alkaloids are present in medicinal plants such as Peganum harmala L. that have been used as folk medicine in anticancer therapy. BSA is the major soluble protein constituent of the circulatory system, and has many physiological functions including the transport of a variety of compounds. This study is the first attempt to investigate the binding of {beta}-carboline alkaloids to BSA by using a constant protein concentration and varying drug concentrations at pH 7.2. FTIR and UV-Vis spectroscopic methods were used to analyze the binding modes of {beta}-carboline alkaloids, the binding constants and the effects of drug complexation on BSA stability and conformation. Spectroscopic evidence showed that {beta}-carboline alkaloids bind BSA via hydrophobic interaction and van der Waals contacts along with H-bonding with the -NH groups, with overall binding constants of K{sub harmine-BSA}=2.04 Multiplication-Sign 10{sup 4} M{sup -1}, K{sub tryptoline-BSA}=1.2 Multiplication-Sign 10{sup 4} M{sup -1}, K{sub harmaline-BSA}=5.04 Multiplication-Sign 10{sup 3} M{sup -1}, K{sub harmane-BSA}=1.41 Multiplication-Sign 10{sup 3} M{sup -1} and K{sub harmalol-BSA}=1.01 Multiplication-Sign 10{sup 3} M{sup -1}, assuming that there is one drug molecule per protein. The BSA secondary structure was altered with a major decrease of {alpha}-helix from 64% (free protein) to 59% (BSA-harmane), 56% (BSA-harmaline and BSA-harmine), 55% (BSA-tryptoline), 54% (BSA-harmalol) and {beta}-sheet from 15% (free protein) to 6-8% upon {beta}-carboline alkaloids complexation, inducing a partial protein destabilization. - Highlights: Black-Right-Pointing-Pointer We model the binding of {beta}-carboline alkaloids to BSA by using the spectroscopic methods. Black-Right-Pointing-Pointer We investigate the effects of drug complexation on BSA stability and conformation. Black-Right-Pointing-Pointer A partial protein destabilization occurred at high alkaloids concentration. Black

  1. Spectroscopic investigations on glasses, glass-ceramics and ceramics developed for nuclear waste immobilization

    Science.gov (United States)

    Caurant, D.

    2014-05-01

    Highly radioactive nuclear waste must be immobilized in very durable matrices such as glasses, glass-ceramics and ceramics in order to avoid their dispersion in the biosphere during their radioactivity decay. In this paper, we present various examples of spectroscopic investigations (optical absorption, Raman, NMR, EPR) performed to study the local structure of different kinds of such matrices used or envisaged to immobilize different kinds of radioactive wastes. A particular attention has been paid on the incorporation and the structural role of rare earths—both as fission products and actinide surrogates—in silicate glasses and glass-ceramics. An example of structural study by EPR of a ceramic (hollandite) irradiated by electrons (to simulate the effect of the β-irradiation of radioactive cesium) is also presented.

  2. Spectroscopic investigation of asteroids belonging to the Themis and Beagle families

    Science.gov (United States)

    Fornasier, S.; Perna, D.; Barucci, M. A.; Merlin, F.; Dotto, E.

    2012-09-01

    24 Themis is the largest body of the Themis family. Within this big family a cluster of very young asteroids (age Beagle sub-family, has been identified. Recently water ice and organics were detected on 24 Themis indicating that the Themis family may be an important reservoir of ice. Moreover, the main belt comets 133P, 238P, and 176P may be related with the Themis family because of orbital proximities and spectral properties analogies. The aim of this work is to spectroscopically investigate some asteroids belonging to the Themis family and to the young Beagle sub-family in order to look for absorption bands related to water ice, hydrated silicates and organics.

  3. SEM, optical, and Moessbauer studies of submicrometer chromite in Allende

    Science.gov (United States)

    Housley, R. M.

    1982-01-01

    New scanning electron and optical microscope results are presented showing that sub-micrometer chromite is abundant along healed cracks and grain boundaries in Allende chondrule olivine. Some wider healed cracks also contain pentlandite and euhedral Ni3Fe grains. Also reported are Moessbauer measurements on Allende HF-HCl residues confirming a high Fe(+++)/Fe(++) ratio.

  4. Molecular dynamics in cytochrome c oxidase Moessbauer spectra deconvolution

    Energy Technology Data Exchange (ETDEWEB)

    Bossis, Fabrizio [Department of Medical Biochemistry, Medical Biology and Medical Physics (DIBIFIM), University of Bari ' Aldo Moro' , Bari (Italy); Palese, Luigi L., E-mail: palese@biochem.uniba.it [Department of Medical Biochemistry, Medical Biology and Medical Physics (DIBIFIM), University of Bari ' Aldo Moro' , Bari (Italy)

    2011-01-07

    Research highlights: {yields} Cytochrome c oxidase molecular dynamics serve to predict Moessbauer lineshape widths. {yields} Half height widths are used in modeling of Lorentzian doublets. {yields} Such spectral deconvolutions are useful in detecting the enzyme intermediates. -- Abstract: In this work low temperature molecular dynamics simulations of cytochrome c oxidase are used to predict an experimentally observable, namely Moessbauer spectra width. Predicted lineshapes are used to model Lorentzian doublets, with which published cytochrome c oxidase Moessbauer spectra were simulated. Molecular dynamics imposed constraints to spectral lineshapes permit to obtain useful information, like the presence of multiple chemical species in the binuclear center of cytochrome c oxidase. Moreover, a benchmark of quality for molecular dynamic simulations can be obtained. Despite the overwhelming importance of dynamics in electron-proton transfer systems, limited work has been devoted to unravel how much realistic are molecular dynamics simulations results. In this work, molecular dynamics based predictions are found to be in good agreement with published experimental spectra, showing that we can confidently rely on actual simulations. Molecular dynamics based deconvolution of Moessbauer spectra will lead to a renewed interest for application of this approach in bioenergetics.

  5. Moessbauer study of function of magnesium in iron oxide catalysts

    Institute of Scientific and Technical Information of China (English)

    YangJie-Xin; MaoLian-Sheng; 等

    1997-01-01

    Moessbauer spectroscopy has been utilized for studying the action of Mg element in iron oxide catalysts used for the dehydrogenation of ethylbenzene to sytrene.The experimental results show that the presence of opportune amount of Mg can enhance the stability and dispersion of catalysts,i.e.Mg is an sueful structure promoter in this kind of catalysts.

  6. Moessbauer thermal scan study of a spin crossover system

    Energy Technology Data Exchange (ETDEWEB)

    Zelis, P Mendoza; Pasquevich, G A; Sanchez, F H; Veiga, A; Cabrera, A F [Departamento de Fisica, FCE-UNLP, La Plata (Argentina); Ceolin, M [Instituto de Investigaciones FIsico-Quimicas Teoricas y Aplicadas (UNLP-CONICET), La Plata (Argentina); Coronado-Miralles, E; Monrabal-Capilla, M; Galan-Mascaros, J R, E-mail: pmendoza@fisica.unlp.edu.a [Instituto de Ciencias Moleculares, Universidad de Valencia, Valencia (Spain)

    2010-03-01

    Programmable Velocity equipment was used to perform a Moessbauer Thermal Scans to allow a quasi-continuous temperature study of the magnetic transition between the low-spin and a high-spin configurations in [Fe(Htrz){sub 2}(trz)](BF4) system. The material was studied both in bulk as in nanoparticles sample forms.

  7. Accurate molecular structure and spectroscopic properties for nucleobases: A combined computational - microwave investigation of 2-thiouracil as a case study

    Science.gov (United States)

    Puzzarini, Cristina; Biczysko, Malgorzata; Barone, Vincenzo; Peña, Isabel; Cabezas, Carlos; Alonso, José L.

    2015-01-01

    The computational composite scheme purposely set up for accurately describing the electronic structure and spectroscopic properties of small biomolecules has been applied to the first study of the rotational spectrum of 2-thiouracil. The experimental investigation was made possible thanks to the combination of the laser ablation technique with Fourier Transform Microwave spectrometers. The joint experimental – computational study allowed us to determine accurate molecular structure and spectroscopic properties for the title molecule, but more important, it demonstrates a reliable approach for the accurate investigation of isolated small biomolecules. PMID:24002739

  8. Spectroscopic investigation of the interactions of carbofuran and amitrol herbicides with human serum albumin

    Energy Technology Data Exchange (ETDEWEB)

    Tunç, Sibel, E-mail: stunc@akdeniz.edu.tr; Duman, Osman, E-mail: osmanduman@akdeniz.edu.tr; Soylu, İnanç; Kancı Bozoğlan, Bahar

    2014-07-01

    In this study, various spectroscopic techniques including UV absorption, fluorescence and synchronous fluorescence spectroscopy were used to examine the interactions of carbofuran (CF) and amitrol (AMT) herbicides with human serum albumin (HSA). The results of spectroscopic experiments illustrated that CF was bound by HSA, on the other hand there was no interaction between HSA and AMT molecules. In HSA–CF system, static quenching mechanism was responsible for the fluorescence quenching of HSA. The Stern–Volmer constant and binding constant decreased with increasing temperature. This means that an increase in temperature reduces the stability of HSA–CF complex. In HSA–CF system, the number of binding site on protein was found to be one. From the thermodynamic parameters, enthalpy change (ΔH) and entropy change (ΔS) were calculated as −22.30 kJ mol{sup −1} and −10.70 J mol{sup −1} K{sup −1}, respectively, which indicated that the interaction forces between HSA and CF molecules were mainly hydrogen bonding and van der Waals forces. The conformational change in the protein structure was investigated by synchronous fluorescence spectroscopy. According to the results of synchronous fluorescence analysis, there was a change in the protein structure owing to the interaction of CF with HSA. - Highlights: • UV absorption, fluorescence and synchronous fluorescence measurements confirm the formation of HSA–CF complex. • The formation of HSA–CF complex involves both hydrogen bonding and van der Waals forces. • There is no interaction between HSA and AMT molecules. • Binding constants, numbers of binding sites and thermodynamic parameters have been calculated. • The binding of CF to HSA changes the conformational structure of protein.

  9. Investigation of neohesperidin dihydrochalcone binding to human serum albumin by spectroscopic methods

    Energy Technology Data Exchange (ETDEWEB)

    Bozoğlan, Bahar Kancı; Tunç, Sibel, E-mail: stunc@akdeniz.edu.tr; Duman, Osman, E-mail: osmanduman@akdeniz.edu.tr

    2014-11-15

    In this study, the interaction of human serum albumin (HSA) with neohesperidin dihydrochalcone (NHD) was investigated by UV, fluorescence, synchronous fluorescence and circular dichroism spectroscopic methods. Experimental results confirmed the complex formation between HSA and NHD molecules under physiological conditions. NHD quenched the intrinsic fluorescence spectrum of HSA by static quenching mechanism. The binding constant of this system was calculated as 2.79×10{sup 4} M{sup −1} at 298.15 K. The stability of HSA–NHD complex illustrated a decrease with increasing temperature. The number of binding sites was found to be 1. Thermodynamic parameter values were calculated by using van’t Hoff equation. According to sign and magnitude of thermodynamic parameters (ΔH=−29.22 kJ mol{sup −1} and ΔS=−12.91 J mol{sup −1} K{sup −1}), hydrogen bonding and van der Waals forces were found as the effective interaction forces between HSA and NHD molecules. Synchronous fluorescence and circular dichroism spectroscopic methods proved the alteration of secondary structure of HSA in the presence of NHD. Site marker competitive experiments indicated that the binding of NHD to HSA took place in subdomain IIA region of protein. - Highlights: • Static quenching mechanism is effective in the interaction of HSA with NHD. • Hydrogen bonding and van der Waals forces play an important role in the binding process. • NHD causes a slight change in the conformational structure of HSA. • The binding site of NHD takes place in subdomain IIA region of HSA.

  10. Spectroscopic and structural investigation of undoped and Er{sup 3+} doped hafnium silicate layers

    Energy Technology Data Exchange (ETDEWEB)

    Khomenkova, L., E-mail: khomen@ukr.net [CIMAP CEA/CNRS/ENSICAEN/UCBN, 6 Blvd. Maréchal Juin, 14050 Caen Cedex 4 (France); V. Lashkaryov Institute of Semiconductor Physics at NASU, 41 Pr. Nauky, Kyiv 03028 (Ukraine); An, Y.-T. [CIMAP CEA/CNRS/ENSICAEN/UCBN, 6 Blvd. Maréchal Juin, 14050 Caen Cedex 4 (France); Khomenkov, D. [Taras Shevchenko National University of Kyiv, Faculty of Physics, 4 Pr. Hlushkov, Kyiv 03022 (Ukraine); Portier, X.; Labbé, C.; Gourbilleau, F. [CIMAP CEA/CNRS/ENSICAEN/UCBN, 6 Blvd. Maréchal Juin, 14050 Caen Cedex 4 (France)

    2014-11-15

    This paper demonstrates the functionality of radio-frequency magnetron sputtering for the fabrication of undoped and Er-doped Si-rich-HfO{sub 2} films with specific structural and spectroscopic properties. The effect of post-deposition treatment on film properties was investigated by means of Fourier-transform infrared spectroscopy, Raman scattering and photoluminescence methods, as well as Transmission Electron microscopy. It was observed that annealing treatment at 850–1000 °C causes phase separation process and the formation of HfO{sub 2}, SiO{sub 2} and pure Si phases. This process stimulates also an intense light emission in the 700–950-nm spectral range under broad band excitation. The phase separation mechanism as well as the nature of radiative transitions were discussed. Photoluminescence was ascribed to carrier recombination in silicon clusters and host defects. The appearance of silicon clusters was also confirmed by the comparison of luminescent properties of pure HfO{sub 2}, SiO{sub 2}, Si-rich-HfO{sub 2} and Si-rich-SiO{sub 2} films. Additional argument for Si clusters’ formation was obtained under investigation of Er-doped Si-rich HfO{sub 2} films. These latter demonstrated 1.54-µm Er{sup 3+} luminescence under non-resonant excitation originating from an energy transfer from Si clusters towards Er{sup 3+} ions.

  11. Spectroscopic investigation of zinc tellurite glasses doped with Yb3 + and Er3 + ions

    Science.gov (United States)

    Bilir, Gökhan; Kaya, Ayfer; Cinkaya, Hatun; Eryürek, Gönül

    2016-08-01

    This paper presents a detailed spectroscopic investigation of zinc tellurite glasses with the compositions (0.80 - x - y) TeO2 + (0.20) ZnO + xEr2O3 + yYb2O3 (x = 0, y = 0; x = 0.004, y = 0; x = 0, y = 0.05 and x = 0.004, y = 0.05 per moles). The samples were synthesized by the conventional melt quenching method. The optical absorption and emission measurements were conducted at room temperature to determine the spectral properties of lanthanides doped zinc tellurite glasses and, to study the energy transfer processes between dopant lanthanide ions. The band gap energies for both direct and indirect possible transitions and the Urbach energies were measured from the absorption spectra. The absorption spectra of the samples were analyzed by using the Judd-Ofelt approach. The effect of the ytterbium ions on the emission properties of erbium ions was investigated and the energy transfer processes between dopant ions were studied by measuring the up-conversion emission properties of the materials. The color quality parameters of obtained visible up-conversion emission were also determined as well as possibility of using the Er3 + glasses as erbium doped fiber amplifiers at 1.55 μm in infrared emission region.

  12. In situ spectroscopic investigation of the cobalt-catalyzed oxidation of lignin model compounds in ionic liquids

    NARCIS (Netherlands)

    Zakzeski, J.; Bruijnincx, P.C.A.; Weckhuysen, B.M.

    2011-01-01

    The cobalt-catalyzed oxidation of lignin and lignin model compounds using molecular oxygen in ionic liquids proceeds readily under mild conditions, but mechanistic insight and evidence for the species involved in the catalytic cycle is lacking. In this study, a spectroscopic investigation of the com

  13. Effect of titanium ion substitution in the barium hexaferrite studied by Moessbauer spectroscopy and X-ray diffraction

    Energy Technology Data Exchange (ETDEWEB)

    Quiroz, Pamela, E-mail: pamela.quiroz-penaranda@tu-ilmenau.de; Halbedel, Bernd [Ilmenau University of Technology, Department of Inorganic-Nonmetallic Materials, Institute of Materials Engineering (Germany); Bustamante, Angel, E-mail: angelbd1@gmail.com [San Marcos National University, Laboratory of Ceramics and Nanomaterials, Faculty of Physical Sciences (Peru); Gonzalez, Juan C. [Materials Science Institute of Sevilla - CSIC, Surfaces Research Group-Interfaces and Thin Films (Spain)

    2011-11-15

    A series of M-type barium hexaferrite has been synthesized in a glass melt by partially substituting the Fe{sub 2}O{sub 3} with TiO{sub 2} for investigation of their structure. The glass melt has the basic composition (mol%): 40 BaO + 33 B{sub 2}O{sub 3} + (27-x) Fe{sub 2}O{sub 3} + x TiO{sub 2} with x = 0, 3.6, 5.4 and 7.2 mol% TiO{sub 2}. The substituted ferrites were studied by means of X-ray diffraction, Moessbauer spectroscopy and vibration sample magnetometer. X-ray diffraction studies revealed that not all samples have a single ferritic phase, a small second phase corresponding to BaTi{sub 6}O{sub 13} was also observed to form. The Moessbauer spectra changed from magnetically ordered (x = 0) to magnetically ordered with strong line broadening. Moreover, the broadening increases with TiO{sub 2} content. The Moessbauer parameters suggested that Ti{sup 4 + } occupies the 2a and 12k crystal sites, and the Ti{sup 4 + } substitution on the 2b and 4f{sub 2} site also occurs at high melt dopings. Therefore, coercivity and saturation magnetization decreased.

  14. Multi-spectroscopic investigation of the binding interaction of fosfomycin with bovine serum albumin☆

    Institute of Scientific and Technical Information of China (English)

    Manjunath D. Meti; Sharanappa T. Nandibewoor; Shrinivas D. Joshi; Uttam A. More; Shivamurti A. Chimatadar

    2015-01-01

    The interaction between fosfomycin (FOS) and bovine serum albumin (BSA) has been investigated effectively by multi-spectroscopic techniques under physiological pH 7.4. FOS quenched the intrinsic fluorescence of BSA via static quenching. The number of binding sites n and observed binding constant KA were measured by the fluorescence quenching method. The thermodynamic parameters △G0, △H0 and △S0 were calculated at different temperatures according to the van't Hoff equation. The site of binding of FOS in the protein was proposed to be Sudlow's site I based on displacement experiments using site markers viz. warfarin, ibuprofen and digitoxin. The distance r between the donor (BSA) and acceptor (FOS) molecules was obtained according to the F?rster theory. The effect of FOS on the conformation of BSA was analyzed using synchronous fluorescence spectra (SFS), circular dichroism (CD) and 3D fluorescence spectra. A molecular modeling study further confirmed the binding mode obtained by the experimental studies.

  15. Electrochemical and Spectroscopic Study of Mononuclear Ruthenium Water Oxidation Catalysts: A Combined Experimental and Theoretical Investigation

    KAUST Repository

    de Ruiter, J. M.

    2016-09-20

    One of the key challenges in designing light-driven artificial photosynthesis devices is the optimization of the catalytic water oxidation process. For this optimization it is crucial to establish the catalytic mechanism and the intermediates of the catalytic cycle, yet a full description is often difficult to obtain using only experimental data. Here we consider a series of mononuclear ruthenium water oxidation catalysts of the form [Ru(cy)(L)(H2O)](2+) (cy = p-cymene, L = 2,2\\'-bipyridine and its derivatives). The proposed catalytic cycle and intermediates are examined using density functional theory (DFT), radiation chemistry, spectroscopic techniques, and electrochemistry to establish the water oxidation mechanism. The stability of the catalyst is investigated using online electrochemical mass spectrometry (OLEMS). The comparison between the calculated absorption spectra of the proposed intermediates with experimental spectra, as well as free energy calculations with electrochemical data, provides strong evidence for the proposed pathway: a water oxidation catalytic cycle involving four proton-coupled electron transfer (PCET) steps. The thermodynamic bottleneck is identified as the third PCET step, which involves O-O bond formation. The good agreement between the optical and thermodynamic data and DFT predictions further confirms the general applicability of this methodology as a powerful tool in the characterization of water oxidation catalysts and for the interpretation of experimental observables.

  16. Corrosion investigation of fire-gilded bronze involving high surface resolution spectroscopic imaging

    Science.gov (United States)

    Masi, G.; Chiavari, C.; Avila, J.; Esvan, J.; Raffo, S.; Bignozzi, M. C.; Asensio, M. C.; Robbiola, L.; Martini, C.

    2016-03-01

    Gilded bronzes are often affected by severe corrosion, due to defects in the Au layer and Au/Cu alloy galvanic coupling, stimulated by large cathodic area of the gilded layer. Galvanic corrosion, triggered by gilding defects, leads to products growth at the Au/bronze interface, inducing blistering or break-up of the Au layer. In this context, fire-gilded bronze replicas prepared by ancient methods (use of spreadable Au-Hg paste) was specifically characterised by compiling complementary spectroscopic and imaging information before/after accelerated ageing with synthetic rain. Fire-gilded bronze samples were chemically imaged in cross-section at nano-metric scale (XPS). We have found a net surface enrichment in Zn and Sn after fire-gilding and presence of metallic Hg, Pb and Cu within the Au layer. Moreover, the composition distribution of the elements together with their oxidation has been determined. It was also revealed that metallic phases including Hg and Pb remain in the gilding after corrosion. Moreover, selective dissolution of Zn and Cu occurs in the crater due to galvanic coupling, which locally induces relative Sn species enrichment (decuprification). The feasibility advantages and disadvantages of chemical imaging using HR-SRPES to study artworks have been investigated on representative replicas.

  17. A spectroscopic investigation into the reaction of sodium tetrathionate with cysteine

    Science.gov (United States)

    Church, J. S.; Evans, D. J.

    2008-01-01

    A spectroscopic investigation into the reaction of sodium tetrathionate with cysteine at pH 5 both at the boil and at room temperature has been carried out. The Raman and infrared spectra of the model compounds cysteine, cysteine- S-sulfonate, cysteine- S-thiosulfonate, sodium thiosulfate and sodium sulfite were also obtained and vibrations involving the sulfur atoms were analyzed in detail. These results were utilized in the interpretation of the spectra obtained from tetrathionate-cysteine reaction mixtures. The reaction supernatants were analyzed by high performance thin layer chromatography while the precipitates were analyzed gravimetrically. It was found that during the reaction, the thiol groups of cysteine are oxidised to give predominantly cysteine- S-sulfonate. Cystine was also detected but was determined gravimetrically to be a minor reaction product. No significant amounts of cysteine- S-thiosulfonate were detected. The reaction is accompanied by the formation of elemental sulfur and a small amount of sulfite. Major reaction pathways are put forth that are consistent with the experimental data.

  18. Investigation of laser-tissue interaction in medicine by means of laser spectroscopic measurements

    Science.gov (United States)

    Lademann, Juergen; Weigmann, Hans-Juergen

    1995-01-01

    Toxic and carcinogenic substances were produced during laser application in medicine for the cutting and evaporation of tissue. The laser smoke presents a danger potential for the medical staff and the patients. The laser tissue interaction process was investigated by means of laser spectroscopic measurements which give the possibility of measuring metastable molecular states directly as a prerequisite to understand and to influence fundamental laser tissue interaction processes in order to reduce the amount of harmful chemicals. Highly excited atomic and molecular states and free radicals (CN, OH, C2, CH, CH2) have been detected applying spontaneous and laser induced fluorescence methods. It was found that the formation of harmful substances in the laser plumes can be reduced significantly by optimization of the surrounding gas atmosphere. A high content of oxygen or water in the interaction zone has been found, in agreement with the results of classical and analytical methods, as a suitable way to decrease pollutant emission. The experimental methods and the principal results are applicable not only in laser medicine but in laser material treatment generally.

  19. Spectroscopic investigation on the interaction of salidroside with bovine serum albumin

    Science.gov (United States)

    Cheng, Zhengjun; Zhang, Yuntao

    2008-10-01

    This study is designed to examine the interaction of salidroside with bovine serum albumin (BSA) under physiological conditions with drug concentrations in the range of 1.67-20.0 μM. Spectroscopic analysis of the emission quenching at different temperatures has revealed that the quenching mechanism of salidroside with BSA is static quenching mechanism. The calculated distance r between salidroside and the protein is evaluated according to the theory of Forster energy transfer. The results of FTIR, CD, synchronous fluorescence spectra and UV-vis absorption spectra experiment show that the secondary structures of the protein has been changed in the presence of salidroside. The thermodynamic parameters, enthalpy change (Δ H0) and entropy change (Δ S0) are calculated to be -50.50 kJ mol -1 and -59.13 J mol -1 K -1according to van't Hoff equation, which indicate that the hydrogen bonds and van der Waals forces are the intermolecular force stabilizing the complex. The effects of common ions on the binding constants of BSA-salidroside complexes were also investigated.

  20. Anomaly observed in Moessbauer spectra near the neel temperature of FeBr sub 2

    CERN Document Server

    Naili Di

    2003-01-01

    In several decades, iron(II) bromide (FeBr sub 2) has been investigated as a typical Ising-type antiferromagnet by several kinds of experimental techniques. By the Moessbauer measurements, it was normally observed that only the magnetic spectrum appeared just below Neel temperature in FeBr sub 2. However, we found the anomalous spectra, in which paramagnetic component coexisted with magnetic one near Neel temperature. For two kinds of single crystal FeBr sub 2 samples, IM and IIM, we determined the Moessbauer parameters of the observed spectra by the computer analyses: the relative absorption intensity I sub p of the paramagnetic component to the total absorption area of the best fitting spectrum and the value of the hyperfine field H sub h sub f of the magnetic component and values of the quadrupole splitting 1/2 centre dot e sup 2 qQ of the magnetic and the paramagnetic components. The temperature variation of H sub h sub f is unique and the same as that observed for the sample in which the anomaly was not ...

  1. A Moessbauer effect study of the Soledade meteorite

    Energy Technology Data Exchange (ETDEWEB)

    Paduani, C. [Santa Catarina Univ., Florianopolis, SC (Brazil). Dept. de Fisica; Samudio Perez, C.A. [Universidade de Passo Fundo, RS (Brazil). Inst. de Ciencias Exatas; Ardisson, J.D. [Centro de Desenvolvimento da Tecnologia Nuclear (CDTN), Belo Horizonte, MG (Brazil)

    2005-09-15

    We performed a Moessbauer spectroscopy study of the iron meteorite Soledade. This meteorite, which consists of a metallic matrix, is an octahedrite with polycrystalline troilite, cohenite, schreibersite and rhabdites as major constituents. A chemical analysis indicates 6.78 % Ni, 0.46% Co, besides traces of Cu, Cr, Ga, Ge, As, Sb, W, Re, Ir and Au. No traces of silicates have been found and no oxygen was detected. Iron is appearing in the austenitic phase and alloyed with nickel. An analysis of the Moessbauer spectra at room temperature indicates that the Fe-Ni phase is homogeneously distributed in the matrix, although variations in the composition between different regions are observed. (author)

  2. Moessbauer studies of impactites from Huamalies province in Huanuco Region

    Energy Technology Data Exchange (ETDEWEB)

    Bustamante, A., E-mail: abustamanted@unmsm.edu.pe; Espinoza, S. [San Marcos University, Faculty of Physical Sciences (Peru); Morales, G. [Museo de Historia Natural(Museum of Natural History) (Peru); Scorzelli, R. B. [Centro Brasileiro de Pesquisas Fisicas (Brazilian Center for Research in Physics) (Brazil)

    2005-11-15

    This report is about the X-ray diffraction and Moessbauer studies of three impactite samples denominated PMe-8, PMe-9 and PMe-11 from Huamalies Province in Huanuco Region, Peru. When terrestrial rocks are submitted to pressures higher than 60 GP, the majority is completely melted, forming a kind of glass called impactites. X-ray diffraction indicates the presence of quartz as the principal mineralogical phase in all samples. The {sup 57}Fe Moessbauer spectra at room temperature of samples PMe-8 and PMe-9 show broadened spectra that were fitted using a distribution model. The most probable field of the magnetic component is 34 T, corresponding to the presence of small particles of goethite, confirmed by the 4.2 K spectrum. For the sample PMe-11, the MS showed the presence of well crystallized hematite.

  3. Spectroscopic investigations of novel pharmaceuticals: Stability and resonant interaction with laser beam

    Science.gov (United States)

    Smarandache, Adriana; Boni, Mihai; Andrei, Ionut Relu; Handzlik, Jadwiga; Kiec-Kononowicz, Katarzyna; Staicu, Angela; Pascu, Mihail-Lucian

    2017-09-01

    This paper presents data about photophysics of two novel thio-hydantoins that exhibit promising pharmaceutical properties in multidrug resistance control. Time stability studies are necessary to establish the proper use of these compounds in different applications. As for their administration as drugs, it is imperative to know their shelf life, as well as storage conditions. At the same time, laser induced modified properties of the two new compounds are valuable to further investigate their specific interactions with other materials, including biological targets. The two new thio-hydantoins under generic names SZ-2 and SZ-7 were prepared as solutions in dimethyl sulfoxide at different concentrations, as well as in deionised water. For the stability assay they were kept in various light/temperature conditions up to 60 days. The stability was estimates based on UV-vis absorption measurements. The samples in bulk shape were exposed different time intervals to laser radiation emitted at 266 nm as the fourth harmonic of a Nd:YAG laser. The resonant interaction of the studied compounds with laser beams was analysed through spectroscopic methods UV-vis and FTIR absorption, as well as laser induced fluorescence spectroscopy. As for stability assay, only solutions kept in dark at 4 °C have preserved the absorption characteristics, considering the cumulated measuring errors, less than one week. The vibrational changes that occur in their FTIR and modified fluorescence spectra upon laser beam exposure are also discussed. A result of the experimental analysis is that modifications are induced in molecular structures of the investigated compounds by resonant interaction with laser radiation. This fact evidences that the molecules are photoreactive and their characteristics might be shaped through controlled laser radiation exposure using appropriate protocols. This conclusion opens many opportunities both in the biomedical field, but also in other industrial activities

  4. Raman and photoelectron spectroscopic investigation of high-purity niobium materials: Oxides, hydrides, and hydrocarbons

    Science.gov (United States)

    Singh, Nageshwar; Deo, M. N.; Nand, Mangla; Jha, S. N.; Roy, S. B.

    2016-09-01

    We present investigations of the presence of oxides, hydrides, and hydrocarbons in high-purity (residual resistivity ratio, ˜300) niobium (Nb) materials used in fabrication of superconducting radio frequency (SRF) cavities for particle accelerators. Raman spectroscopy of Nb materials (as-received from the vendor as well as after surface chemical- and thermal processing) revealed numerous peaks, which evidently show the presence of oxides (550 cm-1), hydrides (1277 and 1385 cm-1: ˜80 K temperature), and groups of hydrocarbons (1096, 2330, 2710, 2830, 2868, and 3080 cm-1). The present work provides direct spectroscopic evidence of hydrides in the electropolished Nb materials typically used in SRF cavities. Raman spectroscopy thus can provide vital information about the near-surface chemical species in niobium materials and will help in identifying the cause for the performance degradation of SRF cavities. Furthermore, photoelectron spectroscopy was performed on the Nb samples to complement the Raman spectroscopy study. This study reveals the presence of C and O in the Nb samples. Core level spectra of Nb (doublet 3d5/2 and 3d3/2) show peaks near 206.6 and 209.4 eV, which can be attributed to the Nb5+ oxidation state. The core level spectra of C 1 s of the samples are dominated by graphitic carbon (binding energy, 284.6 eV), while the spectra of O 1 s are asymmetrically peaked near binding energy of ˜529 eV, and that indicates the presence of metal-oxide Nb2O5. The valence-band spectra of the Nb samples are dominated by a broad peak similar to O 2p states, but after sputtering (for 10 min) a peak appears at ˜1 eV, which is a feature of the elemental Nb atom.

  5. Spectroscopic investigation on europium doped heavy metal borate glasses for red luminescent application

    Energy Technology Data Exchange (ETDEWEB)

    Hegde, Vinod; Wagh, Akshatha; Kamath, Sudha D. [Manipal University, Department of Physics, Manipal Institute of Technology, Manipal (India); Hegde, Hemanth [Manipal University, Department of Chemistry, Manipal Institute of Technology, Manipal (India); Vishwanath, C.S.D. [Sri Venkateswara University, Department of Physics, Tirupati (India)

    2017-05-15

    The present study explores a new borate family glasses based on 10ZnO-5Na{sub 2}O-10Bi{sub 2}O{sub 3}-(75 - x) B{sub 2}O{sub 3}-xEu{sub 2}O{sub 3} (x = 0, 0.1, 0.5, 1, 1.5, 2, 3 mol%) composition, synthesized by rapid melt quench technique. Prepared glasses were subjected to the density and refractive index measurements and their values were used to calculate other physical properties of the glass matrix as a function of Eu{sup 3+} concentration. XRD confirmed amorphous nature of the glasses. FTIR spectra in the absorption mode were recorded in the 400-4000 cm{sup -1} region to identify different functional groups in the glass matrix. Deconvoluted FTIR spectra showed increase in BO{sub 4} units with rise in europium content which confirmed the 'network strengthener' role of europium ions by creating bridging oxygens (BOs). Optical properties were investigated for their luminescence behavior through various spectroscopic techniques such as UV-Vis-NIR absorption, excitation, emission, decay profiles, and color measurements at room temperature. Lasing properties of the glasses like total radiative life time, branching ratio, emission cross section, and optical gain were obtained from the calculated Judd-Ofelt (Ω{sub 2},Ω{sub 4}) intensity parameters. From the measured values of emission, cross sections, branching ratios, life times, strong photoluminescence features, and CIE chromaticity coordinates, 0.5 mol% of Eu{sup 3+} ions doped ZnNaBiB glasses showed optimum performance and are potential candidate for red light generation at 613 nm. (orig.)

  6. Effect of paramagnetic doping on an inorganic polymer triaquadipotassiumbis(malonato)zincate: spectroscopic investigation

    Science.gov (United States)

    Boobalan, S.; Sambasiva Rao, P.

    2011-01-01

    Spectroscopic investigations on Mn(II)-doped triaquadipotassiumbis(malonato)zincate [K2(H2O)3] [Zn(mal)2], an inorganic polymer, have been carried out at room temperature using single crystal electron paramagnetic resonance (EPR), ultraviolet-visible, FT-IR and powder XRD techniques. Single crystal rotations along the three orthogonal axes show more than 30 lines of patterns in EPR spectra, indicating the presence of two sites, one with a large D value and the other with a smaller D value. The calculated spin-Hamiltonian parameters are as follows. Site 1: g xx =2.099, g yy =2.092, g zz =1.988, A xx =9.77, A yy =9.71, A zz =8.96 mT, D xx =-29.09, D yy =-11.90, D zz =40.99 mT; Site 2: g xx =2.040, g yy =1.995, g zz =1.924, A xx =9.51, A yy =9.09, A zz =8.80 mT, D xx =-11.94, D yy =-7.51 and D zz =19.45 mT. The direction cosines of g/A/D do not match with the direction cosines of Zn-O bonds in the host lattice for either site, suggesting that both the Mn(II) sites entered the lattice interstitially. Optical results indicate a strong covalent bonding between the metal ion and ligands, with site symmetry being primarily octahedral. The FT-IR and powder XRD data confirm the retention of the crystal structure, even after incorporating a paramagnetic probe. Various admixture coefficients, bonding and optical parameters have also been calculated.

  7. Spectroscopic investigation on europium doped heavy metal borate glasses for red luminescent application

    Science.gov (United States)

    Hegde, Vinod; Wagh, Akshatha; Hegde, Hemanth; Vishwanath, C. S. Dwaraka; Kamath, Sudha D.

    2017-05-01

    The present study explores a new borate family glasses based on 10ZnO-5Na2O-10Bi2O3-(75 - x) B2O3- xEu2O3 ( x = 0, 0.1, 0.5, 1, 1.5, 2, 3 mol%) composition, synthesized by rapid melt quench technique. Prepared glasses were subjected to the density and refractive index measurements and their values were used to calculate other physical properties of the glass matrix as a function of Eu3+ concentration. XRD confirmed amorphous nature of the glasses. FTIR spectra in the absorption mode were recorded in the 400-4000 cm-1 region to identify different functional groups in the glass matrix. Deconvoluted FTIR spectra showed increase in BO4 units with rise in europium content which confirmed the `network strengthener' role of europium ions by creating bridging oxygens (BOs). Optical properties were investigated for their luminescence behavior through various spectroscopic techniques such as UV-Vis-NIR absorption, excitation, emission, decay profiles, and color measurements at room temperature. Lasing properties of the glasses like total radiative life time, branching ratio, emission cross section, and optical gain were obtained from the calculated Judd-Ofelt (Ω2,Ω4) intensity parameters. From the measured values of emission, cross sections, branching ratios, life times, strong photoluminescence features, and CIE chromaticity coordinates, 0.5 mol% of Eu3+ ions doped ZnNaBiB glasses showed optimum performance and are potential candidate for red light generation at 613 nm.

  8. Spectroscopic Investigations of Highly Charged Tungsten Ions - Atomic Spectroscopy and Fusion Plasma Diagnostics

    Energy Technology Data Exchange (ETDEWEB)

    Clementson, Joel [Lund Univ. (Sweden)

    2010-05-01

    The spectra of highly charged tungsten ions have been investigated using x-ray and extreme ultraviolet spectroscopy. These heavy ions are of interest in relativistic atomic structure theory, where high-precision wavelength measurements benchmark theoretical approaches, and in magnetic fusion research, where the ions may serve to diagnose high-temperature plasmas. The work details spectroscopic investigations of highly charged tungsten ions measured at the Livermore electron beam ion trap (EBIT) facility. Here, the EBIT-I and SuperEBIT electron beam ion traps have been employed to create, trap, and excite tungsten ions of M- and L-shell charge states. The emitted spectra have been studied in high resolution using crystal, grating, and x-ray calorimeter spectrometers. In particular, wavelengths of n = 0 M-shell transitions in K-like W55+ through Ne-like W64+, and intershell transitions in Zn-like W44+ through Co-like W47+ have been measured. Special attention is given to the Ni-like W46+ ion, which has two strong electric-dipole forbidden transitions that are of interest for plasma diagnostics. The EBIT measurements are complemented by spectral modeling using the Flexible Atomic Code (FAC), and predictions for tokamak spectra are presented. The L-shell tungsten ions have been studied at electron-beam energies of up to 122 keV and transition energies measured in Ne-like W64+ through Li-like W71+. These spectra constitute the physics basis in the design of the ion-temperature crystal spectrometer for the ITER tokamak. Tungsten particles have furthermore been introduced into the Sustained Spheromak Physics Experiment (SSPX) spheromak in Livermore in order to investigate diagnostic possibilities of extreme ultraviolet tungsten spectra for the ITER divertor. The spheromak measurement and spectral modeling using FAC suggest that tungsten ions in charge states around Er-like W6+ could be useful for

  9. Comparative Study of Human Liver Ferritin and Chicken Liver by Moessbauer Spectroscopy. Preliminary Results

    Energy Technology Data Exchange (ETDEWEB)

    Oshtrakh, M. I. [Ural State Technical University - UPI, Division of Applied Biophysics, Faculty of Physical Techniques and Devices for Quality Control (Russian Federation); Milder, O. B.; Semionkin, V. A. [Ural State Technical University - UPI, Faculty of Experimental Physics (Russian Federation); Prokopenko, P. G. [Russian State Medical University, Faculty of Biochemistry (Russian Federation); Malakheeva, L. I. [Simbio Holding, Science Consultation Department (Russian Federation)

    2004-12-15

    A comparative study of normal human liver ferritin and livers from normal chicken and chicken with Marek disease was made by Moessbauer spectroscopy. Small differences of quadrupole splitting and isomer shift were found for human liver ferritin and chicken liver. Moessbauer parameters for liver from normal chicken and chicken with Marek disease were the same.

  10. Investigation of the interaction of naringin palmitate with bovine serum albumin: spectroscopic analysis and molecular docking.

    Directory of Open Access Journals (Sweden)

    Xia Zhang

    Full Text Available BACKGROUND: Bovine serum albumin (BSA contains high affinity binding sites for several endogenous and exogenous compounds and has been used to replace human serum albumin (HSA, as these two compounds share a similar structure. Naringin palmitate is a modified product of naringin that is produced by an acylation reaction with palmitic acid, which is considered to be an effective substance for enhancing naringin lipophilicity. In this study, the interaction of naringin palmitate with BSA was characterised by spectroscopic and molecular docking techniques. METHODOLOGY/PRINCIPAL FINDINGS: The goal of this study was to investigate the interactions between naringin palmitate and BSA under physiological conditions, and differences in naringin and naringin palmitate affinities for BSA were further compared and analysed. The formation of naringin palmitate-BSA was revealed by fluorescence quenching, and the Stern-Volmer quenching constant (KSV was found to decrease with increasing temperature, suggesting that a static quenching mechanism was involved. The changes in enthalpy (ΔH and entropy (ΔS for the interaction were detected at -4.11 ± 0.18 kJ·mol(-1 and -76.59 ± 0.32 J·mol(-1·K(-1, respectively, which indicated that the naringin palmitate-BSA interaction occurred mainly through van der Waals forces and hydrogen bond formation. The negative free energy change (ΔG values of naringin palmitate at different temperatures suggested a spontaneous interaction. Circular dichroism studies revealed that the α-helical content of BSA decreased after interacting with naringin palmitate. Displacement studies suggested that naringin palmitate was partially bound to site I (subdomain IIA of the BSA, which was also substantiated by the molecular docking studies. CONCLUSIONS/SIGNIFICANCE: In conclusion, naringin palmitate was transported by BSA and was easily removed afterwards. As a consequence, an extension of naringin applications for use in food, cosmetic

  11. Corrosion investigation of fire-gilded bronze involving high surface resolution spectroscopic imaging

    Energy Technology Data Exchange (ETDEWEB)

    Masi, G., E-mail: giulia.masi5@unibo.it [Dipartimento di Ingegneria Civile, Chimica, Ambientale e dei Materiali, Università di Bologna, via Terracini 28, 40131 Bologna (Italy); Chiavari, C., E-mail: cristina.chiavari@unibo.it [Dipartimento di Ingegneria Civile, Chimica, Ambientale e dei Materiali, Università di Bologna, via Terracini 28, 40131 Bologna (Italy); C.I.R.I. (Centro Interdipartimentale Ricerca Industriale) Meccanica Avanzata e Materiali, Università di Bologna, Bologna, via Terracini 28, 40131 Bologna (Italy); Avila, J., E-mail: jose.avila@synchrotron-soleil.fr [Synchrotron SOLEIL, L’Orme des Merisiers, 91190 Saint-Aubin (France); Esvan, J., E-mail: jerome.esvan@ensiacet.fr [Centre Interuniversitaire de Recherche et d’Ingénierie des Matériaux, Université de Toulouse, 4 allée Emile Monso, 31030 Toulouse (France); Raffo, S., E-mail: simona.raffo2@unibo.it [Dipartimento di Chimica Industriale “Toso Montanari”, Università di Bologna, viale Risorgimento 4, 40136 Bologna (Italy); Bignozzi, M.C., E-mail: maria.bignozzi@unibo.it [Dipartimento di Ingegneria Civile, Chimica, Ambientale e dei Materiali, Università di Bologna, via Terracini 28, 40131 Bologna (Italy); Asensio, M.C., E-mail: maria-carmen.asensio@synchrotron-soleil.fr [Synchrotron SOLEIL, L’Orme des Merisiers, 91190 Saint-Aubin (France); Robbiola, L., E-mail: robbiola@univ-tlse2.fr [TRACES Lab (CNRS UMR5608), Université Toulouse Jean-Jaurès, 5, allées Antonio-Machado, 31058 Toulouse (France); and others

    2016-03-15

    Graphical abstract: - Highlights: • Fire-gilded bronze prepared by ancient methods (Au–Hg layer on Cu–Sn–Zn–Pb–Sb). • Heating during gilding induces Sn and Znenrichment in the top part of the gilded layer. • SR-HRPES mapping of corrosion craters (cross-section) after accelerated ageing. • Selective dissolution of Cu and Zn in the craters induces Sn species enrichment. • The main species in the craters are related to hydroxi-oxide compounds. - Abstract: Gilded bronzes are often affected by severe corrosion, due to defects in the Au layer and Au/Cu alloy galvanic coupling, stimulated by large cathodic area of the gilded layer. Galvanic corrosion, triggered by gilding defects, leads to products growth at the Au/bronze interface, inducing blistering or break-up of the Au layer. In this context, fire-gilded bronze replicas prepared by ancient methods (use of spreadable Au–Hg paste) was specifically characterised by compiling complementary spectroscopic and imaging information before/after accelerated ageing with synthetic rain. Fire-gilded bronze samples were chemically imaged in cross-section at nano-metric scale (<200 nm) using high energy and lateral resolution synchrotron radiation photoemission (HR-SRPES) of core levels and valence band after conventional characterisation of the samples by Glow Discharge optical Emission Spectroscopy (GD-OES) and conventional X-ray photoelectron spectroscopy (XPS). We have found a net surface enrichment in Zn and Sn after fire-gilding and presence of metallic Hg, Pb and Cu within the Au layer. Moreover, the composition distribution of the elements together with their oxidation has been determined. It was also revealed that metallic phases including Hg and Pb remain in the gilding after corrosion. Moreover, selective dissolution of Zn and Cu occurs in the crater due to galvanic coupling, which locally induces relative Sn species enrichment (decuprification). The feasibility advantages and disadvantages of

  12. Investigating Functional Extension of Optical Coherence Tomography for Spectroscopic Analysis of Blood Oxygen Saturation

    Science.gov (United States)

    Chen, Siyu

    Over the past two decades, optical coherence tomography (OCT) has been successfully applied to various fields of biomedical researching and clinical studies, including cardiology, urology, dermatology, dentistry, oncology, and most successfully, ophthalmology. This dissertation seeks to extend the current OCT practice, which is still largely morphology-based, into a new dimension, functional analysis of metabolic activities in vivo. More specifically, the investigation is focused on retrieving blood oxygen saturation (sO2) using intrinsic hemoglobin optical absorption contrast. Most mammalian cells rely on aerobic respiration to support cellular function, which means they consume oxygen to create adenosine triphosphate (ATP). Metabolic rate of oxygen (MRO2), a key hemodynamic parameter, characterizes how much oxygen is consumed during a given period of time, reflecting the metabolic activity of the target tissue. For example, retinal neurons are highly active and almost entirely rely on the moment-to-moment oxygen supply from retinal circulations. Thus, variation in MRO2 reveals the instantaneous activity of these neurons, shedding light on the physiological and pathophysiological change of cellular functions. Eventually, measuring MRO2 can potentially provide a biomarker for early-stage disease diagnosis, and serve as one benchmark for evaluating effectiveness of medical intervention during disease management. Essential in calculating MRO2, blood sO2 measurements using spectroscopic OCT analysis has been attempted as early as 2003. OCT is intrinsically sensitive to the blood optical absorption spectrum due to its wide-band illumination and detection scheme relying on back-scattered photon. However, accurate retrieval of blood sO2 using conventional near infrared (NIR) OCT systems in vivo has remained challenging. It was not until the development of OCT systems using visible light illumination (vis-OCT) when accurate measurement of blood sO2 was reported in live

  13. Employment of different spectroscopic tools for the investigation of chromium(VI) oxidation of acetaldehyde in aqueous micellar medium

    Indian Academy of Sciences (India)

    SUSANTA MALIK; ANIRUDDHA GHOSH; PINTU SAR; MONOHAR HOSSAIN MONDAL; KALACHAND MAHALI; BIDYUT SAHA

    2017-05-01

    Different spectroscopic methods have been applied to investigate the chromic acid oxidation of acetaldehyde in aqueous media, catalysed by surfactants. Three representative heteroaromatic nitrogen base promoters, 2-picolinic acid (PA), 2,2’-bipyridine (bpy) and 1,10-phenanthroline (phen), have been associated along with surfactants as promoters to the kinetic study. Comparative studies of unpromoted and promoted reactions invoked that 2,2’-bipyridine produced maximum rate enhancement. The mechanism of the reaction path has been proposed with the help of kinetic results and spectroscopic studies. The observed net enhancementof rate effects has been explained with scientific manipulations and data obtained. The combination of TX-100 and1,10-phenanthroline is found to be most effective for acetaldehyde oxidation.

  14. Spectroscopic investigation of native defect induced electron-phonon coupling in GaN nanowires

    Science.gov (United States)

    Parida, Santanu; Patsha, Avinash; Bera, Santanu; Dhara, Sandip

    2017-07-01

    The integration of advanced optoelectronic properties in nanoscale devices of group III nitride can be realized by understanding the coupling of charge carriers with optical excitations in these nanostructures. The native defect induced electron-phonon coupling in GaN nanowires are reported using various spectroscopic studies. The GaN nanowires having different native defects are grown in an atmospheric pressure chemical vapor deposition technique. X-ray photoelectron spectroscopic analysis revealed the variation of Ga/N ratios in nanowires having possible native defects, with respect to their growth parameters. The analysis of the characteristic features of electron-phonon coupling in the Raman spectra show the variations in carrier density and mobility, with respect to the native defects in unintentionally doped GaN nanowires. The radiative recombination of donor acceptor pair transitions and the corresponding LO phonon replicas observed in photoluminescence studies further emphasize the role of native defects in electron-phonon coupling.

  15. Moessbauer-spectroscopic study of structure and magnetism of the exchange-coupled layer systems Fe/FeSn{sub 2}, and Fe/FeSi/Si and the ion-implanted diluted magnetic semiconductor SiC(Fe); Moessbauerspektroskopische Untersuchung von Struktur und Magnetismus der austauschgekoppelten Schichtsysteme Fe/FeSn{sub 2} und Fe/FeSi/Si und des ionenimplantierten verduennten magnetischen Halbleiters SiC(Fe)

    Energy Technology Data Exchange (ETDEWEB)

    Stromberg, Frank

    2009-07-07

    In line with this work the structural and magnetic properties of the exchange coupled layered systems Fe/FeSn{sub 2} and Fe/FeSi/Si and of the Fe ion implanted diluted magnetic semiconductor (DMS) SiC(Fe) were investigated. The main measuring method was the isotope selective {sup 57}Fe conversion electron Moessbauer spectroscopy (CEMS), mostly in connection with the {sup 57}Fe tracer layer technique, in a temperature range from 4.2 K to 340 K. Further measurement techniques were X-ray diffraction (XRD), electron diffraction (LEED, RHEED), SQUID magnetometry and FMR (Ferromagnetic Resonance). In the first part of this work the properties of thin AF FeSn{sub 2}(001) films and of the exchange-bias system Fe/FeSn{sub 2}(001) on InSb(001) were investigated. With the application of {sup 57}Fe-tracer layers and CEMS both the Fe-spin structure and the temperature dependence of the magnetic hyperfine field (B{sub hf}) of FeSn{sub 2} could be examined. The evaporation of Fe films on the FeSn{sub 2} films produced in the latter ones a high perpendicular spin component at the Fe/FeSn{sub 2} interface. In some distance from the interface the Fe spins rotate back into the sample plane. Furthermore {sup 57}Fe-CEMS provided a correlation between the absolute value of the exchange field vertical stroke He vertical stroke and the amount of magnetic defects within the FeSn{sub 2}. Temperature dependent CEMS-measurements yielded informations about the spin dynamics within the AF. The transition temperatures T{sub B}{sup *}, which were interpreted as superparamagnetic blocking temperatures, obtain higher values compared to the temperatures T{sub B} of the exchange-bias effect, obtained with magnetometry measurements. The second part of this work deals with the indirect exchange coupling within Fe/FeSi/Si/FeSi/Fe multilayers and FeSi diffusion barriers. The goal was to achieve Fe free Si interlayers. The CEMS results show that starting from a thickness of t{sub FeSi}=10-12 A of the

  16. X-ray quantum optics with Moessbauer nuclei in thin-film cavities

    Energy Technology Data Exchange (ETDEWEB)

    Heeg, Kilian Peter

    2014-12-09

    In this thesis thin-film cavities with embedded Moessbauer nuclei probed by near-resonant X-ray light are studied from a quantum optical perspective. A theoretical framework is developed and compact expressions for the observables are derived for the linear excitation regime, which is encountered in current experiments. Even advanced cavity layouts can be modeled in excellent agreement with the results of previous experiments and semi-classical approaches. In the absence of magnetic hyperfine splitting, the spectral response of the system is found to be formed by tunable Fano profiles. An experimental implementation of this line shape control allows to extract spectroscopic signatures with high precision and to reconstruct the phase of the nuclear transition in good agreement with the theoretical predictions. The alignment of medium magnetization and polarization control of the X-rays enable to engineer advanced quantum optical level schemes, in which vacuum induced coherence effects are predicted and successfully demonstrated in an experiment. Furthermore, it is shown that group velocity control for x-ray pulses can be achieved in the cavity. A scheme for its observation is proposed and then employed to experimentally confirm sub-luminal X-ray propagation. Finally, non-linear effects, which could become accessible with future light sources, are explored and a non-linear line shape control mechanism is discussed.

  17. Inelastic scattering in condensed matter with high intensity Moessbauer radiation

    Energy Technology Data Exchange (ETDEWEB)

    Yelon, W.B.; Schupp, G.

    1990-10-01

    We give a progress report for the work which has been carried out in the last three years with DOE support. A facility for high-intensity Moessbauer scattering is now fully operational at the University of Missouri Research Reactor (MURR) as well as facility at Purdue, using special isotopes produced at MURR. High precision, fundamental Moessbauer effect studies have been carried out using scattering to filter the unwanted radiation. These have led to a new Fourier transform method for describing Moessbauer effect (ME) lineshape and a direct method of fitting ME data to the convolution integral. These methods allow complete correction for source resonance self absorption (SRSA) and the accurate representation of interference effects that add an asymmetric component to the ME lines. We have begun applying these techniques to attenuated ME sources whose central peak has been attenuated by stationary resonant absorbers, to more precisely determine interference parameters and line-shape behavior in the resonance asymptotic region. This analysis is important to both the fundamental ME studies and to scattering studies for which a deconvolution is essential for extracting the correct recoilless fractions and interference parameters. A number of scattering studies have been successfully carried out including a study of the thermal diffuse scattering in Si, which led to an analysis of the resolution function for gamma-ray scattering. Also studied was the anharmonic motion in Na and the satellite reflection Debye-Waller factor in TaS{sub 2}, which indicate phason rather than phonon behavior. We have begun quasielastic diffusion studies in viscous liquids and current results are summarized. These advances, coupled to our improvements in MIcrofoil Conversion Electron spectroscopy lay the foundation for the proposed research outlined in this request for a three-year renewal of DOE support.

  18. Gamma scattering in condensed matter with high intensity Moessbauer radiation

    Energy Technology Data Exchange (ETDEWEB)

    1990-01-01

    We give a progress report for the work which has been carried out in the last three years with DOE support. A facility for high-intensity Moessbauer scattering is now fully operational at the University of Missouri Research Reactor (MURR) as well as a facility at Purdue, using special isotopes produced at MURR. High precision, fundamental Moessbauer effect studies have been carried out using scattering to filter the unwanted radiation. These have led to a new Fourier transform method for describing Moessbauer effect (ME) lineshape and a direct method of fitting ME data to the convolution integral. These methods allow complete correction for source resonance self absorption (SRSA) and the accurate representation of interference effects that add an asymmetric component to the ME lines. We have begun applying these techniques to attenuated ME sources whose central peak has been attenuated by stationary resonant absorbers, to more precisely determine interference parameters and line-shape behavior in the resonance asymptotic region. This analysis is important to both the fundamental ME studies and to scattering studies for which a deconvolution is essential for extracting the correct recoilless fractions and interference parameters. A number of scattering studies have been successfully carried out including a study of the thermal diffuse scattering in Si, which led to an analysis of the resolution function for gamma-ray scattering. Also studied was the anharmonic motion in Na and the satellite reflection Debye-Waller factor in TaS{sub 2}, which indicate phason rather than phonon behavior. We have begun quasielastic diffusion studies in viscous liquids and current results are summarized. These advances, coupled to our improvements in MIcrofoil Conversion Electron spectroscopy lay the foundation for the proposed research outlined in this request for a three-year renewal of DOE support.

  19. [Application of Raman spectroscopic technique to the identification and investigation of Chinese ancient jades and jade artifacts].

    Science.gov (United States)

    Zhao, Hong-Xia; Gan, Fu-Xi

    2009-11-01

    Laser Raman spectroscopic technique is one of the essential methods in scientific archaeological research, which belongs to the nondestructive analysis. As a very good nondestructive analysis approach, it has not been widely applied in the research of the Chinese ancient jade artifacts. First of all in the present paper the fundamentals of laser Raman spectroscopic technique and the new research progress in this field were reviewed. Secondly, the Raman spectra of five familiar jades including nephrite (mainly composed of tremolite), Xiuyan Jade (mainly composed of serpentine), Dushan Jade (mainly composed of anorthite and Zoisite), turquoise and lapis lazuli were summarized respectively. As for an example, the Raman spectra of the four Chinese ancient jade artifacts excavated from Liangzhu Site of Zhejiang Province and Yinxu Site of Anyang in Henan Province were compared with that of the nephrite sample in Hetian of Xinjiang Province. It was shown that the Raman spectroscopic technique is a good nondestructive approach to the identification and investigation of the structures and mineral composition of Chinese ancient jade artifacts. Finally, the limitations and the foreground of this technique were discussed.

  20. Moessbauer and magnetic studies of the system Li{sub 0.35+0.5t} Zn{sub 03}Ti{sub t}Fe{sub 2.35-1.5t}O{sub 4}

    Energy Technology Data Exchange (ETDEWEB)

    Phanjoubam, Sumitra, E-mail: sumitra4@rediffmail.com [Manipur University, Department of Physics (India); Prakash, Chandra [DRDO Bhawan, Directorate of ER and IPR (India)

    2009-01-15

    Moessbauer and magnetic investigations were carried out on a series of Li-Zn-Ti ferrites with compositional formula Li{sub 035+0.5t} Zn{sub 03}Ti{sub t}Fe{sub 2.35-1.5t}O{sub 4}. Moessbauer spectra were taken at room temperature and analysed to yield information on hyperfine properties like isomer shift, quadrupole splitting and nuclear magnetic fields. Magnetic properties like Curie temperature and saturation magnetization have also been studied. The magnetic properties were observed to fall with increased values of 't'. The results obtained and the mechanisms involved are discussed.

  1. Temperature dependence of the Moessbauer effect on the semiconductors Pb{sub 0.78}Sn{sub 0.22}Te and Pb{sub 0.80}Sn{sub 0.20}Te:In

    Energy Technology Data Exchange (ETDEWEB)

    Ragimova, T. [Universidad de Antioquia, A.A, Departamento de Fisica (Colombia); Pacheco Serrano, W.A. [Universidad Pedagogica y Tecnologica, A.A. 1094, Departamento de Fisica (Colombia); Abras, A. [Universidade Federal de Minas Gerais, Departamento de Fisica, ICEx (Brazil)

    1999-11-15

    Crystals of the semiconductors Pb{sub 0.78}Sn{sub 0.22}Te and Pb{sub 0.80}Sn{sub 0.20}Te:In were grown by Bridgman method, and investigated by Moessbauer spectroscopy and X-ray diffraction. Moessbauer spectra were taken at temperatures between 80 and 300 K. The absence of the quadrupole splitting shows a cubic symmetry of the environment for the tin atom, which is in accordance with X-ray data. The temperature dependence of the spectral area is discussed and the Debye temperature is estimated.

  2. DNA induced sequestration of a bioactive cationic fluorophore from the lipid environment: A spectroscopic investigation.

    Science.gov (United States)

    Ghosh, Saptarshi; Kundu, Pronab; Chattopadhyay, Nitin

    2016-01-01

    The effect of calf-thymus DNA (ctDNA) on the lipid bound probe, formed by the cationic phenazinium dye phenosafranin (PSF) and the anionic lipid dimyristoyl-L-α-phosphatidylglycerol (DMPG), has been unearthed exploiting various spectroscopic techniques. Steady state and time-resolved fluorometric studies and measurements of circular dichroism and DNA helix melting temperature reveal that in the presence of DNA the probe is dislodged from the lipid environment and gets intercalated within the DNA helix. The work qualitatively illustrates that the anionic lipid can be used as a potential nanocarrier for delivering the cationic drugs to the most relevant biomacromolecular target, DNA.

  3. Spectroscopic ellipsometry investigations of the optical properties of manganese doped bismuth vanadate thin films

    Energy Technology Data Exchange (ETDEWEB)

    Kumari, Neelam; Krupanidhi, S.B. [Materials Research Center, Indian Institute of Science, Bangalore 560012 (India); Varma, K.B.R., E-mail: kbrvarma@mrc.iisc.ernet.in [Materials Research Center, Indian Institute of Science, Bangalore 560012 (India)

    2010-04-15

    The optical properties of Bi{sub 2}V{sub 1-x}Mn{sub x}O{sub 5.5-x} {l_brace}x = 0.05, 0.1, 0.15 and 0.2 at.%{r_brace} thin films fabricated by pulsed laser deposition on platinized silicon substrates were studied in UV-visible spectral region (1.51-4.17 eV) using spectroscopic ellipsometry. The optical constants and thicknesses of these films have been obtained by fitting the ellipsometric data ({Psi} and {Delta}) using a multilayer four-phase model system and a relaxed Lorentz oscillator dispersion relation. The surface roughness and film thickness obtained by spectroscopic ellipsometry were found to be consistent with the results obtained by atomic force and scanning electron microscopy. The refractive index measured at 650 nm does not show any marginal increase with Mn content. Further, the extinction coefficient does not show much decrease with increasing Mn content. An increase in optical band gap energy from 2.52 to 2.77 eV with increasing Mn content from x = 0.05 to 0.15 was attributed to the increase in oxygen ion vacancy disorder.

  4. Application of Moessbauer spectroscopy to the study of tannins inhibition of iron and steel corrosion

    Energy Technology Data Exchange (ETDEWEB)

    Jaen, Juan A., E-mail: jjaen@ancon.up.ac.pa [Universidad de Panama, CITEN, Depto. de Quimica Fisica (Panama); Obaldia, J. De; Rodriguez, M. V. [Universidad de Panama, Escuela de Quimica, Facultad de Ciencias Naturales, Exactas y Tecnologia (Panama)

    2011-11-15

    The inhibitory effect of tannins was investigated using, among others, potentiodynamic polarizations and Moessbauer spectroscopy. These techniques confirmed that the nature, pH and concentration of tannic solution are of upmost importance in the inhibitory properties of the solutions. It is observed that at low tannin concentration or pH, both, hydrolizable and condensed tannins, effectively inhibit iron corrosion, due to the redox properties of tannins. At pH Almost-Equal-To 0, Moessbauer spectra of the frozen aqueous solutions of iron(III) with the tannin solutions showed that iron is in the form of a monomeric species [Fe(H{sub 2}O){sub 6}]{sup 3 + }, without coordination with the functional hydroxyl groups of the tannins. The suspended material consisted of amorphous ferric oxide and oxyhydroxides, though with quebracho tannin partly resulted in complex formation and in an iron (II) species from a redox process. Other tannins, such as chestnut hydrolysable tannins, do not complex iron at this low pH. Tannins react at high concentrations or pH (3 and 5) to form insoluble blue-black amorphous complexes of mono-and bis-type tannate complexes, with a relative amount of the bis-ferric tannate generally increasing with pH. Some Fe{sup 2 + } in the form of hydrated polymeric ferrous tannate could be obtained. At pH 7, a partially hydrolyzed ferric tannate complex was also formed. The latter two phases do not provide corrosion protection. Tannin solutions at natural pH react with electrodeposited iron films (approx. 6 {mu}m) to obtain products consisting only on the catecholate mono-complex of ferric tannate. Some aspects of the mechanism of tannins protection against corrosion are discussed.

  5. Preparation of the electroplated Ni and Co films for applying betavoltaic battery and Moessbauer source

    Energy Technology Data Exchange (ETDEWEB)

    Uhm, Young Rang; Choi, Sang Mu; Kim, Jin Joo; Kim, Jong Bum; Son, Kwang Jae; Hong, Jintae [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2016-10-15

    The reverse occurs at the anode where metallic nickel is dissolved to form divalent positively charged ions that enter the solution. The nickel ions discharged at the cathode are replenished by those formed at the anode. In this study, a Co-and Ni- plating solution is prepared using two different baths. One is the acid-based buffer (pH 3-4) containing boric acid, sodium chloride, and saccharin. The rest is the base-based buffer (pH 10) containing hydrazine hydrate and ammonium citrate. The optimization of the electroplating parameters for the deposition of Co on plate was considered as indispensable. A betavoltaic battery was fabricated using Ni-63 attached on a P-N junction semiconductor, and the I-V characteristics were measured using a probe station. The thickness-dependent self-shielding effect of the radioisotope layer was investigated. Also, the aim of this work was determination of the optimal parameters for thermal diffusion of the electroplated Co into the Rh structure. To establish preparation of betavoltaic battery, and Moessbauer source, natural Ni and Co were electroplated on the Rh plate. Both the acid-based buffer (pH 3) and the alkarine-based buffer (pH 10) are used for plating bath. The deposition yield of the alkarine electrolyte is relatively higher than those of the acidic bath. optimum conditions for the homogeneous diffusion is determined at annealing temperatures of 1100 .deg. C for 3h under the high vacuum atmosphere (10{sup -5} hPa). The proposed condition in this study should be applied to prepare 57Co/Rh Moessbauer source at near future.

  6. Moessbauer studies on impactites from Lonar impact crater

    Energy Technology Data Exchange (ETDEWEB)

    Verma, H. C., E-mail: hcverma@iitk.ac.in [I I T Kanpur, Department of Physics (India); Misra, S., E-mail: misrasaumitra@gmail.com [Indian Institute of Geomagnetism (India); Shyam Prasad, M., E-mail: shyam@nio.org [National Institute of Oceanography, Geological Oceanography Division (India); Bijlani, N.; Tripathi, A., E-mail: rpt2002@sify.com [J.N.V. University, Department of Physics (India); Newsom, Horton, E-mail: newsom@unm.edu [University of New Mexico, Institute of Meteoritics and Department of Earth and Planetary Sciences (United States)

    2008-09-15

    Iron mineralogy has been studied using Moessbauer spectroscopy on eight glassy impactite samples from different parts of the Lonar Crater Rim Region. Distinct changes are observed when compared to the host basaltic samples. Significant amount of Fe{sup 3+} phase is observed in the impactite samples whereas this phase is known to be almost absent in the basalt. Besides this we have a strong Fe{sup 2+} doublet showing up corresponding to the main iron-containing mineral. The Moessbauer results are very similar to those with glasses from Ries crater which is also believed to have formed by meteoritic impact but on nonbasaltic rock bed. Besides the glassy samples, we also study some spherules found in the crater region and some fine glassy particles on the surfaces of melt impact bombs. These contain a good amount of magnetically ordered phase, most likely nanosize hematite. Interestingly, part of it is strongly attracted by a magnet and part of it is not. But both parts show a significantly strong six-line component corresponding to hematite.

  7. Fifty years of Moessbauer spectroscopy: from alloys and oxides to glasses and nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Johnson, C. E., E-mail: cjohnson@utsi.edu [University of Tennessee Space Institute, Center for Laser Applications (United States); Johnson, J. A. [University of Tennessee Space Institute, Department of Mechanical, Aerospace and Biomedical Engineering (United States)

    2012-03-15

    The Moessbauer Effect was discovered in 1957. In 1960 Moessbauer spectroscopy was born when two important papers appeared on (i) the magnetic hyperfine interaction and (ii) the electric monopole (isomer shift) and quadrupole interactions. These transformed an interesting phenomenon into a method for probing solids. Applications to magnetism, metals and alloys, chemical compounds, biological molecules, geology, archaeology and other sciences followed and are still of current interest. Two areas of research where Moessbauer spectroscopy is making unique contributions are in determining oxidation states in (i) glasses and (ii) nanoparticles. Some recent measurements are described.

  8. Spectroscopic investigations of dispersion-shifted fiber with thin active Bi-doped ring and high nonlinear refractive index

    Science.gov (United States)

    Zlenko, A. S.; Akhmetshin, U. G.; Bogatyrjov, V. A.; Bulatov, L. I.; Dvoyrin, V. V.; Firstov, S. V.; Dianov, E. M.

    2009-10-01

    A germanium-doped silica-core fiber with an active region in the form of a thin ring of silica doped with bismuth ions was fabricated. Bismuth doping in the ring surrounding the core allows to stabilize bismuth in silica glass, and it does not impose any restrictions on the composition of the core. The bismuth concentration in the ring is less than 0.2 wt.%. The GeO2 concentration in the core is more than 15 mol.%. A high germanium concentration in the core allows to shift the zero dispersion wavelength to 1860 nm and to obtain a high nonlinear refractive index (n2 more than 3,2*10-20 m2/W). Spectroscopic investigations were carried out in the visible and near infrared (800-1700 nm) spectral range. Despite the small concentration of bismuth, we observed the absorption and luminescence characteristic bands, confirming the presence of bismuth active centers in silica glass. Upon pumping at 1350 nm the on/off gain spectrum was measured on a 20-m fiber. The gain was observed throughout investigated range of 1430-1530 nm. The maximal gain of ~9.5 dB was obtained near 1430 nm. The results of the spectroscopic investigations of the fiber with a thin active Bi-doped ring showed prospects of the creation and application of such fiber type for laser and nonlinear optics.

  9. Mg-doped hydroxyapatite nanoplates for biomedical applications: A surfactant assisted microwave synthesis and spectroscopic investigations

    Energy Technology Data Exchange (ETDEWEB)

    Mishra, Vijay Kumar [Department of Physics, Faculty of Science, Banaras Hindu University, Varanasi 221005 (India); Bhattacharjee, Birendra Nath; Parkash, Om [Department of Ceramic Engineering, Indian Institute of Technology, Banaras Hindu University, Varanasi 221005 (India); Kumar, Devendra, E-mail: devendra.cer@iitbhu.ac.in [Department of Ceramic Engineering, Indian Institute of Technology, Banaras Hindu University, Varanasi 221005 (India); Rai, Shyam Bahadur, E-mail: sbrai49@yahoo.co.in [Department of Physics, Faculty of Science, Banaras Hindu University, Varanasi 221005 (India)

    2014-11-25

    Highlights: • Microwave irradiation technique: employed for the synthesis of Mg-HAp nanoplates. • Surfactant (EDTA) assisted synthesis of Mg-HAp. • FT-IR and Raman analysis of functional groups of Mg-HAp. - Abstract: Nanoplates of Mg doped hydroxyapatite (Mg-HAp) were derived successfully and rapidly via microwave irradiation technique. Hydroxyapatite (HAp) is the hard tissues and main inorganic component in mammals. Different nanostructures of HAp exist in different parts of human bone but nanorods are very common due to its intrinsic nature to grow in rode-like structure under physiological as well as under applied ambient conditions in laboratory. On the addition of Mg at very low level (0.06 mol%) in pure HAp results the formation of 2-D plate-like nanostructures rather than rod-like which is the matter of interest. In this attempt our efforts have been focused on the study of effect of Mg incorporation on structural and spectroscopic properties of HAp prepared via microwave irradiation technique. This technique is preferred due to several advantages viz. very fast as well as homogeneous heating, time/energy saving and eco-friendliness. The calcium nitrate tetrahydrate (Ca(NO{sub 3}){sub 2}⋅4H{sub 2}O)) as a source of calcium, magnesium nitrate hexahydrate (Mg(NO{sub 3}){sub 2}⋅6H{sub 2}O) as a source of magnesium, disodium hydrogen phosphate dihydrate (NaH{sub 2}PO{sub 4}⋅2H{sub 2}O) as a source of phosphorous and sodium ethylene diamine tetra acetate (NaEDTA) as a surfactant were used as starting reagents. Sodium hydroxide (NaOH) pellets were employed to adjust the pH value of final solution. The solution of fixed pH value was kept into the microwave oven generating waves of frequency 2.45 GHz (water absorption frequency) and power 750 W for 8 min. The precipitate thus obtained was washed, centrifuged and then dried at 100 °C for 2 h. Dried powder was then calcined at 700 °C for 2 h. The bright white powder thus obtained was characterized

  10. Investigating the Spectroscopic Variability and Magnetic Activity of Photometrically Variable M Dwarfs in SDSS

    Science.gov (United States)

    Ventura, Jean-Paul; Cid, Aurora; Schmidt, Sarah J.; Rice, Emily L.; Cruz, Kelle L.

    2017-01-01

    Magnetic activity, a wide range of observable phenomena produced in the outer atmospheres of stars, is currently not well understood for M dwarfs. In higher mass stars, magnetic activity is powered by a dynamo process involving the differential rotation of a star’s inner regions. This process generates a magnetic field, heats up regions in the atmosphere, and produces emission line radiation (H-alpha) from collisional excitation. Using the Sloan Digital Sky Survey’s (SDSS) Time Domain Spectroscopic Survey (TDSS), we will compare the H-alpha emission line strengths for a sample of 12,000 known photometrically variable M dwarfs observed in the PAN-STARRS1 survey with those of a known non-variable sample. This will be done in order to test whether photometric variability of the sample correlate with chromospheric H-alpha emission features and if not, explore the alternate reasons for that photometric variability, like binarity.

  11. Electrochemical and spectroscopic investigations of immobilized de novo designed heme proteins on metal electrodes

    DEFF Research Database (Denmark)

    Albrecht, Tim; Li, WW; Ulstrup, Jens;

    2005-01-01

    On the basis of rational design principles, template-assisted four-helix-bundle proteins that include two histidines for coordinative binding of a heme were synthesized. Spectroscopic and thermodynamic characterization of the proteins in solution reveals the expected bis-histidine coordinated heme...... methods. For all proteins, immobilization causes a decrease in protein stability and a loosening of the helix packing, as reflected by a partial dissociation of a histidine ligand in the ferrous state and very low redox potentials. For the covalently attached MOP-C, the overall interfacial redox process...... involves the coupling of electron transfer and heme ligand dissociation, which was analyzed by time-resolved SERR spectroscopy. Electron transfer was found to be significantly slower for the mono-histidine-coordinated than for the bis-histidine-coordinated heme. For the latter, the formal heterogeneous...

  12. Investigation of effect of annealing on thermally evaporated ZnSe thin films through spectroscopic techniques

    Science.gov (United States)

    Mahesha, M. G.; Rashmitha; Meghana, N.; Padiyar, Meghavarsha

    2017-09-01

    ZnSe thin films have been grown on clean glass substrates by thermal evaporation technique and deposited films have been annealed at 473 K. William-Hall method has been adopted to extract information on crystallite size and internal strain in the film from X-ray diffractogram. Effect of annealing on ZnSe films has been analyzed by spectroscopic techniques which include optical absorption, Raman, and photoluminescence spectroscopy. From optical absorption, band gap has been estimated along with other optical parameters like refractive index and extinction coefficient. Also, Urbach tail, which originates near bad edge due to structural disorders, has been characterized. Raman spectra have been analyzed to get the information on the influence of crystallite size and strain effect on peak position, intensity and width. Photoluminescence spectra have been recorded and analyzed to get an insight on defect levels induced due to vacancies, interstadials, and impurity complexes.

  13. Raman and terahertz spectroscopical investigation of cocrystal formation process of piracetam and 3-hydroxybenzoic acid

    Science.gov (United States)

    Du, Yong; Zhang, Huili; Xue, Jiadan; Fang, Hongxia; Zhang, Qi; Xia, Yi; Li, Yafang; Hong, Zhi

    2015-03-01

    Cocrystallization can improve physical and chemical properties of active pharmaceutical ingredient, and this feature has great potential in pharmaceutical development. In this study, the cocrystal of piracetam and 3-hydroxybenzoic acid under grinding condition has been characterized by Raman and terahertz spectroscopical techniques. The major vibrational modes of individual starting components and cocrystal are obtained and assigned. Spectral results show that the vibrational modes of the cocrystal are different from those of the corresponding parent materials. The dynamic process of such pharmaceutical cocrystal formation has also been monitored directly with Raman and THz spectra. The formation rate is pretty fast in first several 20 min grinding time, and then it becomes slow. After ∼35 min, such process has been almost completed. These results offer us the unique means and benchmark for characterizing the cocrystal conformation from molecule-level and also provide us rich information about the reaction dynamic during cocrystal formation process in pharmaceutical fields.

  14. Efficient ultrasound-assisted synthesis, spectroscopic, crystallographic and biological investigations of pyrazole-appended quinolinyl chalcones

    Science.gov (United States)

    Prasath, R.; Bhavana, P.; Sarveswari, S.; Ng, Seik Weng; Tiekink, Edward R. T.

    2015-02-01

    Two series of new quinolinyl chalcones containing a pyrazole group, 3a-f and 4a-r, have been synthesized by Claisen-Schmidt condensation of the derivatives of 2-methyl-3-acetylquinoline with either substituted 1,3-diphenyl-1H-pyrazole-4-carbaldehyde or 5-chloro-3-methyl-1-phenyl-1H-pyrazole-4-carbaldehyde in 76-93% yield under ultrasonic method. The compounds were characterized using IR, 1H NMR and ESI-MS spectroscopic methods and, for representative compounds, by X-ray crystallography. An E-configuration about the Cdbnd C ethylene bond has been established via 1H NMR spectroscopy and X-ray crystallography. These compounds show promising anti-microbial properties, with 4a and 3e being the most potent against bacterial and fungal strains, respectively and the methoxy substituted compounds showed moderate anti-oxidant activity.

  15. Spectroscopic investigation on the interaction of maslinic acid with bovine serum albumin

    Energy Technology Data Exchange (ETDEWEB)

    Molina-Bolívar, J.A., E-mail: jmb@uma.es [Department of Applied Physics II, Engineering School, University of Málaga, 29071 Málaga (Spain); Galisteo-González, F. [Department of Applied Physics, University of Granada, 18071 Granada (Spain); Carnero Ruiz, C. [Department of Applied Physics II, Engineering School, University of Málaga, 29071 Málaga (Spain); Medina-O' Donnell, M.; Parra, A. [Department of Organic Chemistry, University of Granada, 18071 Granada (Spain)

    2014-12-15

    Ultraviolet–visible (UV–vis), steady-state and time-resolved fluorescence, and Fourier transform-infrared (FT-IR) spectroscopy were used to study the interaction between maslinic acid (MA) and bovine serum albumin (BSA). Binding constants were determined at three different temperatures (298, 304, and 310 K). Spectroscopic analysis revealed that the fluorescence-quenching mechanism between MA and BSA was a static quenching procedure. MA specifically binds to one site of the BSA molecule forming a stable complex with a binding constant of (5.4±0.4)×10{sup 4} M{sup −1} at pH 7.4 and 298 K. From the thermodynamic parameters of the binding process (ΔG{sup 0}, ΔH{sup 0} and ΔS{sup 0}) it can be inferred that hydrogen bonds and van der Waals interactions are the predominant intermolecular forces responsible for the stabilization of the complex. Anisotropy studies revealed that tryptophan residues of BSA undergo motion restrictions as a result of the interaction with MA. The distance between MA and the fluorophore residue of BSA was evaluated according to the theory of Föster for fluorescence resonance energy transfer (FRET). Observations from FT-IR spectra and three-dimensional fluorescence indicated changes in the conformation of BSA upon ligand binding. - Highlights: • The interaction between MA and BSA was examined with spectroscopic techniques. • The interaction between MA and BSA was studied at different temperatures. • Fluorescence spectroscopy studies suggest that quenching mechanism is static. • The hydrogen bonds and van der Waals interactions are predominant forces. • Conformational changes of the protein upon binding of MA were observed.

  16. Moessbauer spectroscopy of the SNC meteorite Zagami

    Science.gov (United States)

    Agerkvist, D. P.; Vistisen, L.

    1993-01-01

    We have performed Mossbauer spectroscopy on two different pieces of the meteorite Zagami belonging to the group of SNC meteorites. In one of the samples we found a substantial amount of olivine inter grown with one kind of pyroxene, and also another kind of pyroxene very similar to the pyroxene in the other sample we examined. Both samples showed less than 1 percent of Fe(3+) in the silicate phase. The group of SNC meteorites called shergottites, to which Zagami belongs, are achondrites whose texture, mineralogy and composition resembles those of terrestrial diabases. The results from the investigation are presented.

  17. Effect of particle size and alloying with different metals on {sup 57}Fe Moessbauer spectra

    Energy Technology Data Exchange (ETDEWEB)

    Nazir, Rabia; Mazhar, Muhammad, E-mail: mazhar42pk@yahoo.com [Quaid-i-Azam University, Department of Chemistry (Pakistan); Siddique, Muhammad [PINSTECH, Physics Division (Pakistan); Hussain, S. Tajammul [Quaid-i-Azam University, Department of Chemistry (Pakistan)

    2009-02-15

    Iron nanoparticles of various sizes have been synthesized using the chemical route which involves the preparation of iron bipyridine complexes in presence of different capping agents followed by thermal decomposition at 450 deg. C in inert atmosphere. The bimetallic nanoalloys of Fe with Mg and Pd have also been prepared by following the same route. The resulting nanoparticles have been characterized by EDX-RF, XRD, AFM and {sup 57}Fe Moessbauer spectroscopy. The appearance of quadrupole doublets in the Moessbauer spectra of Fe nanoparticles indicates the absence of magnetic interaction and variation in parameters is due to the varying particle size. The Moessbauer spectrum of Fe-Mg{sub 2} bimetallic nanoalloy shows two doublets indicating the presence of superparamagnetism. The two doublets can be attributed to change in s-electron density of iron resulting from its two neighboring magnesium atoms. Fe-Pd nanoalloy Moessbauer spectrum is characterized by having a superparamagnetic doublet and a ferromagnetic sextet.

  18. Real time spectroscopic ellipsometry investigation of homoepitaxial GaN grown by plasma assisted molecular beam epitaxy

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Tong-Ho; Choi, Soojeong; Wu, Pae; Brown, April [Department of Electrical and Computer Engineering, Duke University, 128 Hudson Hall, Durham, NC (United States); Losurdo, Maria; Giangregorio, Maria M.; Bruno, Giovanni [Institute of Inorganic Methodologies and of Plasmas, IMIP-CNR and INSTM UdR Bari, via Orabona, 4, 70126 Bari (Italy); Moto, Akihiro [Innovation Core SEI, Inc., 3235 Kifer Road, Santa Clara, CA 95051 (United States)

    2006-06-15

    The growth of GaN by plasma assisted molecular beam epitaxy on GaN template substrates (GaN on sapphire) is investigated with in-situ multi-channel spectroscopic ellipsometry. Growth is performed under various Ga/N flux ratios at growth temperatures in the range 710-780 C. The thermal roughening of the GaN template caused by decomposition of the surface is investigated through the temporal variation of the GaN pseudodielectric function over the temperature range of 650 C to 850 C. The structural, morphological, and optical properties are also discussed. (copyright 2006 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  19. Dipodal quinoline-tethered fluorescent probe synthesis and investigation of spectroscopic properties

    Science.gov (United States)

    Obalı, Aslıhan Yılmaz; Yilmaz, Menzeher Serkan; Uçan, Halil İsmet

    2017-10-01

    Novel quinoline-tethered fluorescent probe was designed and synthesized as multidentate ligand. Their sensing actions were confirmed by UV-Vis absorbance and emission spectroscopic studies in presence of perchlorate salts of Co2+, Li+, Fe2+, K+, Pb2+, Cu2+, Zn2+, Ni2+, Hg2+, Ag+ cations in acetonitrile (1 × 10-5 M for absorption studies, 1 × 10-7 M for fluorescence studies). It was found that the dipodal compounds can selectively bind to Cu2+ and Ag+ metal ions with a significant quenching in their emissions. The capture of Cu2+ and Ag+ by the probe resulted in deprotonation of the secondary amine conjugated to the quinoline-tethered probe, so that the electron-donation ability of the 'N' atom would be greatly enhanced and the probe (2) showed blue-shift in emission and exhibited an on-off fluorescent response. The binding study was explored by using fluorescence spectroscopy with Job plot method.

  20. Investigation of the interaction between berberine and nucleosomes in solution: Spectroscopic and equilibrium dialysis approach

    Science.gov (United States)

    Rabbani-Chadegani, Azra; Mollaei, Hossein; Sargolzaei, Javad

    2017-02-01

    Berberine is a natural plant alkaloid with high pharmacological potential. Although its interaction with free DNA has been the subject of several reports, to date there is no work concerning the effect of berberine on nucleoprotein structure of DNA, the nucleosomes. The present study focuses on the binding affinity of berberine to nucleosomes and histone H1 employing various spectroscopic techniques, fluorescence, circular dichroism, thermal denaturation as well as equilibrium dialysis. The results showed that the binding of berberine to nucleosomes is positive cooperative with Ka = 5.57 × 103 M- 1. Berberine quenched with the chromophores of protein moiety of nucleosomes and reduced fluorescence emission intensity at 335 nm with Ksv value of 0.135. Binding of berberine to nucleosomes decreased the absorbance at 210 and 260 nm, produced hypochromicity in thermal denaturation profiles and its affinity to nucleoprotein structure of nucleosomes was much higher than to free DNA. Berberine also exhibited high affinity to histone H1 in solution and the binding was positive cooperative with. Ka = 3.61 × 103 M- 1. Moreover berberine decreased fluorescence emission intensity of H1 by quenching with tyrosine residue in its globular core domain. The circular dichroism profiles demonstrated that the binding of drug induced secondary structural changes in both DNA stacking and histone H1. It is concluded that berberine is genotoxic drug, interacts with nucleosomes and in this process histone H1 is involved to exert its anticancer activity.

  1. Spectroscopic investigation and direct comparison of the reactivities of iron pyridyl oxidation catalysts

    Science.gov (United States)

    Song, Yang; Mayes, Howard G.; Queensen, Matthew J.; Bauer, Eike B.; Dupureur, Cynthia M.

    2017-03-01

    The growing interest in green chemistry has fueled attention to the development and characterization of effective iron complex oxidation catalysts. A number of iron complexes are known to catalyze the oxidation of organic substrates utilizing peroxides as the oxidant. Their development is complicated by a lack of direct comparison of the reactivities of the iron complexes. To begin to correlate reactivity with structural elements, we compare the reactivities of a series of iron pyridyl complexes toward a single dye substrate, malachite green (MG), for which colorless oxidation products are established. Complexes with tetradentate, nitrogen-based ligands with cis open coordination sites were found to be the most reactive. While some complexes reflect sensitivity to different peroxides, others are similarly reactive with either H2O2 or tBuOOH, which suggests some mechanistic distinctions. [Fe(S,S-PDP)(CH3CN)2](SbF6)2 and [Fe(OTf)2(tpa)] transition under the oxidative reaction conditions to a single intermediate at a rate that exceeds dye degradation (PDP = bis(pyridin-2-ylmethyl) bipyrrolidine; tpa = tris(2-pyridylmethyl)amine). For the less reactive [Fe(OTf)2(dpa)] (dpa = dipicolylamine), this reaction occurs on a timescale similar to that of MG oxidation. Thus, the spectroscopic method presented herein provides information about the efficiency and mechanism of iron catalyzed oxidation reactions as well as about potential oxidative catalyst decomposition and chemical changes of the catalyst before or during the oxidation reaction.

  2. Investigating the spectroscopic, magnetic and circumstellar variability of the O9 subgiant star HD 57682

    CERN Document Server

    Grunhut, J H; Sundqvist, J O; ud-Doula, A; Neiner, C; Ignace, R; Marcolino, W L F; Rivinius, Th; Fullerton, A; Kaper, L; Mauclaire, B; Buil, C; Garrel, T; Ribeiro, J; Ubaud, S

    2012-01-01

    The O9IV star HD 57682, discovered to be magnetic within the context of the MiMeS survey in 2009, is one of only eight convincingly detected magnetic O-type stars. Among this select group, it stands out due to its sharp-lined photospheric spectrum. Since its discovery, the MiMeS Collaboration has continued to obtain spectroscopic and magnetic observations in order to refine our knowledge of its magnetic field strength and geometry, rotational period, and spectral properties and variability. In this paper we report new ESPaDOnS spectropolarimetric observations of HD 57682, which are combined with previously published ESPaDOnS data and archival H{\\alpha} spectroscopy. This dataset is used to determine the rotational period (63.5708 \\pm 0.0057 d), refine the longitudinal magnetic field variation and magnetic geometry (dipole surface field strength of 880\\pm50 G and magnetic obliquity of 79\\pm4\\circ as measured from the magnetic longitudinal field variations, assuming an inclination of 60\\circ), and examine the p...

  3. A Spectroscopic Investigation on the Structural Evolution of Soy Based Polyurethane Foams

    Science.gov (United States)

    Puthanparambil, Deepa; Kimball, Casey; Hsu, Shaw L.

    2009-03-01

    Our current research deals with an economical and renewable soy based polyol for use in polyurethane foams. Infrared spectroscopic studies have revealed that the amount of polyurea segments formed and the kinetics of their formation in soy based polyurethane foam systems are considerably different from traditional systems employing ethylene oxide -- propylene oxide based polyols. The most crucial aspect of this research deals with the miscibility of water in the reactive mixtures involving extremely hydrophobic soy-based polyols. High Field Nuclear Magnetic Resonance Spectroscopy (NMR) with D2O as the probing agent was employed to determine the miscibility behavior at the molecular level. This technique was able to establish the structure and location of dispersed water, which can be extremely different based on the polyols used, thus affecting the morphology of the foam. The length and amount of polyureas directly impact the kinetics of the phase separation process to form the hard-segment rich domains and associated physical properties. The aggregation of these polyurea hard domains were characterized by the hydrogen bonds formed. This structural transformation as a function of reaction is also reflected in the segmental relaxation kinetics characterized by spin-spin diffusion, measured using a low field NMR instrument.

  4. IR spectroscopic investigation of the inhibition of the glycation process by acetylsalicylic acid

    Science.gov (United States)

    Otero de Joshi, Virginia; Gil, Herminia; Contreras, Silvia; Velasquez, William; Joshi, Narahari V.

    2000-05-01

    An IR spectroscopic study was carried out at room temperature for Human Serum albumin (HSA) glycated with fructose and glucose and inhibited with acetylsalicylic acid. The glycation process was carried out in our laboratory by a conventional method to confirm earlier reported observation of the effect of glycation on the intensity variation of the IR spectra, particularly, in the range 1500 cm-1 to 1700 cm-1 and around 3300 cm-1. IR spectra reveal that the effects of glycation of HSA by fructose are more intense than with glucose, which is the expected. Bovine serum albumin was also glycated using Glucose-6-phosphate disodium salt, and gamma-globulin was glycate with glucose, As expected, the glycation process was more intense with glucose-t-phosphate disodium salt. Acetyl salicylic acid was also used and its inhibitor effects could be observed in both cases, with glucose and with glucose-6-phosphate disodium salt even though, to a smaller extent with the latter. This is consistent with the earlier data and is explained on the basis of the attachment of macromolecules to (epsilon) -NH2 groups of lysines. The experimental results confirm that acetylsalicylic acid, indeed, acts as an inhibitor by acetylation of the (epsilon) -NG2 group where the sugars are supposed to be attached.

  5. Qualitative and quantitative changes in phospholipids and proteins investigated by spectroscopic techniques in animal depression model

    Science.gov (United States)

    Depciuch, J.; Sowa-Kucma, M.; Nowak, G.; Papp, M.; Gruca, P.; Misztak, P.; Parlinska-Wojtan, M.

    2017-04-01

    Depression becomes nowadays a high mortality civilization disease with one of the major causes being chronic stress. Raman, Fourier Transform Infra Red (FTIR) and Ultraviolet-Visible (UV-vis) spectroscopies were used to determine the changes in the quantity and structure of phospholipids and proteins in the blood serum of rats subjected to chronic mild stress, which is a common animal depression model. Moreover, the efficiency of the imipramine treatment was evaluated. It was found that chronic mild stress not only damages the structure of the phospholipids and proteins, but also decreases their level in the blood serum. A 5 weeks imipramine treatment did increase slightly the quantity of proteins, leaving the damaged phospholipids unchanged. Structural information from phospholipids and proteins was obtained by UV-vis spectroscopy combined with the second derivative of the FTIR spectra. Indeed, the structure of proteins in blood serum of stressed rats was normalized after imipramine therapy, while the impaired structure of phospholipids remained unaffected. These findings strongly suggest that the depression factor, which is chronic mild stress, may induce permanent (irreversible) damages into the phospholipid structure identified as shortened carbon chains. This study shows a possible new application of spectroscopic techniques in the diagnosis and therapy monitoring of depression.

  6. On simfitting MER Moessbauer data to characterize Martian hematite

    Energy Technology Data Exchange (ETDEWEB)

    Agresti, David G [University of Alabama at Birmingham, Birmingham, AL 35294-1170 (United States); Fleischer, Iris; Klingelhoefer, Goestar [Institut fuer Anorganische und Analytische Chemie, Universitaet Mainz (Germany); Morris, Richard V, E-mail: agresti@uab.ed, E-mail: fleischi@uni-mainz.d [NASA Johnson Space Center, Houston, Texas 77058 (United States)

    2010-03-01

    Moessbauer spectra of Eagle Crater outcrop rocks in Meridiani Planum were acquired by the Mars Exploration Rover (MER) Opportunity. Sixty spectra, containing {approx}20 to 60% hematite by area, were simultultaneously fit (simfit) in a self-consistent manner to a single chi-squared minimum, where relations among parameters from different spectra were defined for both sol (Martian day) and acquisition temperature (200-280 K). Different spectral models were compared, hematite being modeled optimally with two sextets. Sextet S1 ({approx}35% of total sextet area) has narrower linewidths, a larger magnetic hyperfine field, and a quadrupole shift that changes smoothly from positive to negative values as the temperature increases through the bulk Morin transition temperature. Sextet S2 has broader linewidths, a likely skewed line shape, a smaller hyperfine field, and a quadrupole shift that remains negative at all temperatures, implying the S2 phase is weakly ferromagnetic at all temperatures.

  7. Moessbauer spectroscopy and scanning electron microscopy of the Murchison meteorite

    Science.gov (United States)

    Brown, Christopher L.; Oliver, Frederick W.; Hammond, Ernest C., Jr.

    1989-01-01

    Meteorites provide a wealth of information about the solar system's formation, since they have similar building blocks as the Earth's crust but have been virtually unaltered since their formation. Some stony meteorites contain minerals and silicate inclusions, called chondrules, in the matrix. Utilizing Moessbauer spectroscopy, we identified minerals in the Murchison meteorite, a carbonaceous chondritic meteorite, by the gamma ray resonance lines observed. Absorption patterns of the spectra were found due to the minerals olivine and phyllosilicate. We used a scanning electron microscope to describe the structure of the chondrules in the Murchison meteorite. The chondrules were found to be deformed due to weathering of the meteorite. Diameters varied in size from 0.2 to 0.5 mm. Further enhancement of the microscopic imagery using a digital image processor was used to describe the physical characteristics of the inclusions.

  8. Pottery from a Chimu Workshop Studied by Moessbauer Spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Tschauner, H. [Harvard University, Department of Anthropology (United States); Wagner, U. [Technische Universitaet Muenchen, Physik-Department E15 (Germany)

    2003-09-15

    Ceramic finds from a pottery workshop in the Lambayeque valley were studied by neutron activation analysis, Moessbauer spectroscopy and X-ray diffraction in an attempt to assess an advanced division of labour on the North Coast of Peru during the Chimu period (AD 1350-1460). The study suggests that the material was predominantly fired in a reducing environment with partial reoxidation at the end of the firing cycles, although firing in an oxidising atmosphere has taken place occasionally. The observed variation of firing conditions is characteristic for the use of pit kilns. The results of the archaeometric studies confirm the stylistic studies and show that pottery was no status symbol and far less important as a carrier of Chimu style than metal artefacts.

  9. Application of Moessbauer spectroscopy on corrosion products of NPP

    Energy Technology Data Exchange (ETDEWEB)

    Dekan, J., E-mail: julius.dekan@stuba.sk; Lipka, J.; Slugen, V. [Institute of Nuclear and Physical Engineering, Faculty of Electrical Engineering and Information Technology, SUT (Slovakia)

    2013-04-15

    Steam generator (SG) is generally one of the most important components at all nuclear power plants (NPP) with close impact to safe and long-term operation. Material degradation and corrosion/erosion processes are serious risks for long-term reliable operation. Steam generators of four VVER-440 units at nuclear power plants V-1 and V-2 in Jaslovske Bohunice (Slovakia) were gradually changed by new original 'Bohunice' design in period 1994-1998, in order to improve corrosion resistance of SGs. Corrosion processes before and after these design and material changes in Bohunice secondary circuit were studied using Moessbauer spectroscopy during last 25 years. Innovations in the feed water pipeline design as well as material composition improvements were evaluated positively. Moessbauer spectroscopy studies of phase composition of corrosion products were performed on real specimens scrapped from water pipelines or in form of filters deposits. Newest results in our long-term corrosion study confirm good operational experiences and suitable chemical regimes (reduction environment) which results mostly in creation of magnetite (on the level 70 % or higher) and small portions of hematite, goethite or hydrooxides. Regular observation of corrosion/erosion processes is essential for keeping NPP operation on high safety level. The output from performed material analyses influences the optimisation of operating chemical regimes and it can be used in optimisation of regimes at decontamination and passivation of pipelines or secondary circuit components. It can be concluded that a longer passivation time leads more to magnetite fraction in the corrosion products composition.

  10. Study of the S phase structure on the AISI 316L steel by X-ray diffraction and Moessbauer spectroscopy; Estudo da estrutura da fase S no aco AISI 316L por difracao de raios X e espectroscopia Moessbauer

    Energy Technology Data Exchange (ETDEWEB)

    Gontijo, L.C. [Centro Federal de Educacao Tecnologica do Espirito Santo, Vitoria, ES (Brazil). Coordenadoria de Ciencia e Tecnologia; Machado, R.; Nascente, P.A.P. [Universidade Federal de Sao Carlos, SP (Brazil). Dept. de Engenharia de Materiais]. E-mail: nascente@power.ufscar.br; Miola, E.J. [Universidade Federal de Sao Carlos, SP (Brazil). Dept. de Fisica; Casteletti, L.C. [Universidade de Sao Paulo, Sao Carlos, SP (Brazil). Dept. de Engenharia de Materiais, Aeronautica e Automobilistica

    2005-07-01

    The plasma-nitriding technology has been employed in the industry with the objective of improving the surface properties of metals and alloys. By using the conventional nitriding process at low temperature, some of the properties of the austenitic stainless steels are enhanced by the formation of the S phase, also called expanded austenite. This phase is formed on the surfaces of the austenitic stainless steels nitrided under certain conditions. In the past years, an extensive research has been carried out for the understanding of the S phase, but some questions remain with no answer or with contradictory explanations. In this work, the AISI 316L steel was plasma-nitrided at 350 and 400 deg C, and the samples were characterized by X-ray diffraction (XRD) and conversion electron Moessbauer spectroscopy (CEMS) in order to investigate the S phase. XRD analysis identified the presence of a distorted cubic structure phase. The layer consists of a distribution of nitrogen austenite with different content of nitrogen, ranging from approximately 10 to 40 at-%, and also {gamma}-Fe{sub 4}N and {epsilon}-Fe{sub 2-3}N phases. Moessbauer spectroscopy corroborates these results, and shows a decrease in nitrogen austenite with the increase in nitriding temperature. This decrease is related to the transformation of the nitrogen austenite to the {gamma}-Fe{sub 4}N phase. (author)

  11. Spectroscopic investigation of europium benzoate in acetonitrile: Luminescence enhancement and complexation studies

    Energy Technology Data Exchange (ETDEWEB)

    Kumar, Satendra; Maji, S. [Materials Chemistry Division, Chemistry Group, Indira Gandhi Centre for Atomic Research, Kalpakkam 603102 (India); Joseph, M. [Fuel Chemistry Division, Chemistry Group, Indira Gandhi Centre for Atomic Research, Kalpakkam 603102 (India); Sankaran, K., E-mail: ksran@igcar.gov.in [Materials Chemistry Division, Chemistry Group, Indira Gandhi Centre for Atomic Research, Kalpakkam 603102 (India)

    2015-05-15

    Luminescence from Eu{sup 3+} complexed with benzoic acid (BA) has been studied using acetonitrile (MeCN) as solvent. More than two orders luminescence enhancement is found as compared to Eu{sup 3+}–BA complex in aqueous medium. The lifetime of Eu{sup 3+} in this complex is 900 μs which is much higher as compared to 118 μs in aqueous medium, suggesting the luminescence enhancement is a result of reduction in non-radiative decay channels in MeCN medium. Luminescence spectroscopy along with UV–vis spectroscopy is used to study the complexation behavior of Eu{sup 3+}–BA in this medium. In contrary to aqueous medium where Eu{sup 3+}–BA forms ML and ML{sub 2} type species, spectroscopic data reveal formation of only ML{sub 3} complex with composition Eu(BA){sub 3}(MeCN){sub 6} in MeCN medium. Absorbance, luminescence lifetimes and the ratio of areas of 615–592 nm peaks are used in HypSpec computation program to determine the log β for the ML{sub 3} complex. - Highlights: • Luminescence and complexation of Eu{sup 3+}–BA have been studied in MeCN. • The luminescence intensity of Eu{sup 3+}–BA is 320 times more in MeCN compared to aqueous medium. • Luminescence enhancement is a result of sensitization and reduction in non-radiative decay channels in MeCN. • Eu{sup 3+} forms only ML{sub 3} type complex with BA in MeCN contrary to aqueous medium where it forms ML and ML{sub 2} type species.

  12. Investigation of optical and spectroscopic properties of Sm3+ ions in CaBAl glasses

    Science.gov (United States)

    Brito, D. R. N.; Queiroz, M. N.; Barboza, M. J.; Steimacher, A.; Pedrochi, F.

    2017-02-01

    Samples of CaBAl glass with composition of (25-x)CaO-50B2O3-15Al2O3-10CaF2-xSm2O3, with Sm2O3 concentration varying from 0.5 to 7 wt%, were prepared by using melt-quenching method in air atmosphere. The samples were prepared with different concentrations of Sm2O3, aiming to understand how the dopant changes the optical and spectroscopic properties of the glass. The doped CaBAl glasses were studied by means of volumetric density measurements, refractive index, optical absorption, luminescence at room temperature, luminescence as function of the temperature and radiative lifetime. All results were discussed in function of Sm2O3 concentration. The measured volumetric density and polarizability showed an increase with Sm2O3 doping. The refractive index showed a small increase due to RE doping, although within the errors. The absorption bands were attributed to Sm3+ transitions from the ground state 6H5/2 to the various excited states. The luminescence spectra present emission bands assigned to the appropriate electronic f-f transitions of Sm3+ ions; there are four emission bands at 565, 602, 649 and 710 nm. The luminescence quenching was observed up to 2 wt% of Sm2O3. The O/R ratio as function of the Sm2O3 concentration showed changes in the symmetry site with addition of Sm2O3. The CIE 1931 diagram presented a reddish-orange shift color with Sm2O3 doping. The luminescence intensity presents a decrease with temperature increase for all studied samples. The experimental lifetime decreases with the increase of Sm2O3, mainly due to ion-ion interaction.

  13. Microstructure and spectroscopic investigations of calcium zinc bismuth phosphate glass ceramics doped with manganese ions

    Science.gov (United States)

    Suneel Kumar, A.; Sambasiva Rao, M. V.; Chinna Ram, G.; Krishna Rao, D.

    2017-07-01

    Multi-component 10CaF2-20ZnO-(15 - x)Bi2O3-55P2O5:xMnO (0 ≤ x ≤ 2.5) glass ceramics were synthesised by melt quenching technique and heat treatment. The prepared glass ceramics were characterised by XRD, DTA, EDS and SEM. Spectroscopic studies such as optical absorption, EPR, FTIR and Raman were also carried out on these glass ceramics. The XRD and SEM studies have indicated that ceramic samples contain well defined and randomly distributed grains of different crystalline phases. The observed increase of enthalpy from DTA patterns up to 1 mol% of MnO indicates that the crystallisation starts initially from the surface of the material then gradually it is extended to the volume of the material and this influence is meagre at higher concentrations of MnO. The absorption spectra of manganese doped glass ceramics have exhibited two types of conventional bands; one due to Mn2+ ions and other due to Mn3+ ions. The EPR spectra of MnO doped glass ceramics showed a resonance signal around g2 = 2.023 with a six line hyperfine structure and another signal at about g1 = 4.314. The relative intensity and half-width of these two signals are observed to increase with the increase in the concentration of manganese ions up to 1 mol% beyond this concentration it is found to decrease. Such observation indicates the conversion of part of Mn2+ ions into Mn3+ ions in the glass ceramic matrix. The observed increase in the intensity of symmetrical structural units at the expense of asymmetrical structural units from the FTIR and Raman spectra at higher concentration of MnO indicating that Mn2+ ions occupy the network forming positions in the glass ceramic structure.

  14. A study of human liver ferritin and chicken liver and spleen using Moessbauer spectroscopy with high velocity resolution

    Energy Technology Data Exchange (ETDEWEB)

    Oshtrakh, M. I., E-mail: oshtrakh@mail.utnet.ru [Ural State Technical University-UPI, Faculty of Physical Techniques and Devices for Quality Control (Russian Federation); Milder, O. B.; Semionkin, V. A. [Ural State Technical University-UPI, Faculty of Experimental Physics (Russian Federation)

    2008-01-15

    Lyophilized samples of human liver ferritin and chicken liver and spleen were measured at room temperature using Moessbauer spectroscopy with high velocity resolution. An increase in the velocity resolution of Moessbauer spectroscopy permitted us to increase accuracy and decrease experimental error in determining the hyperfine parameters of human liver ferritin and chicken liver and spleen. Moessbauer spectroscopy with high velocity resolution may be very useful for revealing small differences in hyperfine parameters during biomedical research.

  15. Characterization of the firing conditions of archaeological Marajoara pottery by Moessbauer spectroscopy and X-ray diffraction

    Energy Technology Data Exchange (ETDEWEB)

    Munayco, P., E-mail: mpablo@cbpf.br; Scorzelli, R. B. [Centro Brasileiro de Pesquisas Fisicas (Brazil)

    2013-08-15

    Here we report on a study of samples from fragments of Marajoara ceramics using {sup 57}Fe Moessbauer spectroscopy and XRD. The Moessbauer spectra were measured at room temperature (RT) and at liquid helium temperature (4.2 K). Despite a certain variability of the Moessbauer spectra, dominant features could be established, which allowed the samples to be classified into characteristic types (Moess-types) according to their Moessbauer patterns. The different Moess-types were defined on account of the presence and intensity or the absence of certain components, mainly in the RT spectra. The analysis is complemented by data obtained by X-ray diffraction.

  16. Investigation of temperature dependent dielectric constant of a sputtered TiN thin film by spectroscopic ellipsometry

    Science.gov (United States)

    Tripura Sundari, S.; Ramaseshan, R.; Jose, Feby; Dash, S.; Tyagi, A. K.

    2014-01-01

    The temperature dependence of optical constants of titanium nitride thin film is investigated using Spectroscopic Ellipsometry (SE) between 1.4 and 5 eV in the temperature range of 300 K to 650 K in steps of 50 K. The real and imaginary parts of the dielectric functions ɛ1(E) and ɛ2(E) marginally increase with increase in temperature. A Drude Lorentz dielectric analysis based on free electron and oscillator model are carried out to describe the temperature behavior. With increase in temperature, the unscreened plasma frequency and broadening marginally decreased and increased, respectively. The parameters of the Lorentz oscillator model also showed that the relaxation time decreased with temperature while the oscillator energies increased. This study shows that owing to the marginal change in the refractive index with temperature, titanium nitride can be employed for surface plasmon sensor applications even in environments where rise in temperature is imminent.

  17. Investigation of luminescence and spectroscopic properties of Nd3+ions in cadmium alkali borate glasses

    Science.gov (United States)

    Mohan, Shaweta; Thind, Kulwant Singh

    2016-07-01

    Neodymium doped cadmium alkali borate glasses having composition 20CdOsbnd 20R2Osbnd 59.5H3BO3sbnd 0.5Nd2O3; (R = Li, Na and K) were prepared by conventional melt-quenching technique. The amorphous nature of the glasses was confirmed by X-ray diffraction studies. The physical properties such as density, refractive index, molar volume, rare earth ion concentration etc. were determined. Optical absorption and fluorescence spectra were recorded. The Judd-Ofelt theory was applied on the optical absorption spectra of the glasses to evaluate the three phenomenological intensity parameters Ω2, Ω4 and Ω6. These parameters were in turn used to predict the radiative properties such as the radiative transition probability (A), radiative lifetime (τR) and branching ratio (βR) for the fluorescent levels of Nd3+ ion in the present glass series. The lasing efficiency of the prepared glasses has been characterized by the spectroscopic quality factor (Ω4/Ω6), the value of which is in the range of 0.2-1.5, typical for Nd3+ in different laser hosts. The variation of Ω2 with the change in alkali oxide has been attributed to the changes in the asymmetry of the ligand field at the rare earth ion site. The shift of the hypersensitive bands, study of the oscillator strengths and the variation of the spectral profile of the transition 4I9/2 → 4F7/2 + 4S3/2 indicate a maximum covalency of Ndsbnd O bond for glass with potassium ions. From the fluorescence spectra, peak wavelength (λp), effective line widths (Δλeff) and stimulated emission cross-section (σp) have been obtained for the three transitions 4F3/2 → 4I9/2,4F3/2 → 4I11/2 and4F3/2 → 4I13/2 of Nd3+ ion. The relatively high values of σp obtained for Nd3+ in present glass system suggest that these materials can be considered as suitable candidates for laser applications. The glass with potassium ions shows the highest value of the stimulated emission cross-section.

  18. Time resolved spectroscopic investigation of SiD2 + D2: kinetic study

    Science.gov (United States)

    Al-Rubaiey, Najem A.; Walsh, Robin

    2017-03-01

    Silylenes (silanediyls) have made an important impact on organosilicon chemistry even if it is of more recent foundation than carbenes in organic chemistry and much less complete. These species are highly reactive intermediates. They play a central role in the chemical vapour deposition (CVD) of various silicon-containing thin films which have a technological importance in microelectronics as well as in the dry etching processes of silicon wafers. Spectroscopic methods have been developed to observe these species, a necessary pre-requisite to their direct monitoring. In this work, deuterated phenylsilane precursor, PhSiD3 was chosen for SiD2 because its analogue phenylsilane, PhSiH3 proved to be a good precursor for SiH2 and the high quality decay signals observed revealed that SiD2 be readily detected from PhSiD3 and that if other decomposition pathways (e.g. PhSiD + D2) are occurring, they do not effect measurements of the rate constants for SiD2. The absorption spectrum of SiD2 formed from the flash photolysis of a mixture of PhSiD3 and SF6 at 193nm were found in the region 17384-17391 cm-1 with strong band at 17387.07 cm-1. This single rotational line of pQ1 was chosen to monitor SiD2 removal. Time-resolved studies of SiD2 have been carried out to obtain rate constants for its bimolecular reactions with D2. The reactions were studied over the pressure range 5-100 Torr (in SF6 bath gas) at four temperatures in the range 298-498K. Single decay from 10 photolysis laser shots were averaged and found to give reasonable first-order kinetics fits. Second order kinetics were obtained by pressure dependence of the pseudo first order decay constants and substance D2 pressures within experimental error. The reaction was found to be weakly pressure dependent at all temperatures, consistent with a third-body mediated association process. In addition, SiH2+ H2 reaction is approximately ca. 60% faster than SiD2+D2 reaction. Theoretical extrapolations (using Lindemann

  19. Time resolved spectroscopic investigation of SiD2 + D2: kinetic study

    Directory of Open Access Journals (Sweden)

    Al-Rubaiey Najem A.

    2017-01-01

    Full Text Available Silylenes (silanediyls have made an important impact on organosilicon chemistry even if it is of more recent foundation than carbenes in organic chemistry and much less complete. These species are highly reactive intermediates. They play a central role in the chemical vapour deposition (CVD of various silicon-containing thin films which have a technological importance in microelectronics as well as in the dry etching processes of silicon wafers. Spectroscopic methods have been developed to observe these species, a necessary pre-requisite to their direct monitoring. In this work, deuterated phenylsilane precursor, PhSiD3 was chosen for SiD2 because its analogue phenylsilane, PhSiH3 proved to be a good precursor for SiH2 and the high quality decay signals observed revealed that SiD2 be readily detected from PhSiD3 and that if other decomposition pathways (e.g. PhSiD + D2 are occurring, they do not effect measurements of the rate constants for SiD2. The absorption spectrum of SiD2 formed from the flash photolysis of a mixture of PhSiD3 and SF6 at 193nm were found in the region 17384-17391 cm-1 with strong band at 17387.07 cm-1. This single rotational line of pQ1 was chosen to monitor SiD2 removal. Time-resolved studies of SiD2 have been carried out to obtain rate constants for its bimolecular reactions with D2. The reactions were studied over the pressure range 5-100 Torr (in SF6 bath gas at four temperatures in the range 298-498K. Single decay from 10 photolysis laser shots were averaged and found to give reasonable first-order kinetics fits. Second order kinetics were obtained by pressure dependence of the pseudo first order decay constants and substance D2 pressures within experimental error. The reaction was found to be weakly pressure dependent at all temperatures, consistent with a third-body mediated association process. In addition, SiH2+ H2 reaction is approximately ca. 60% faster than SiD2+D2 reaction. Theoretical extrapolations (using

  20. Investigating organic multilayers by spectroscopic ellipsometry: specific and non-specific interactions of polyhistidine with NTA self-assembled monolayers

    Directory of Open Access Journals (Sweden)

    Ilaria Solano

    2016-04-01

    Full Text Available Background: A versatile strategy for protein–surface coupling in biochips exploits the affinity for polyhistidine of the nitrilotriacetic acid (NTA group loaded with Ni(II. Methods based on optical reflectivity measurements such as spectroscopic ellipsometry (SE allow for label-free, non-invasive monitoring of molecule adsorption/desorption at surfaces.Results: This paper describes a SE study about the interaction of hexahistidine (His6 on gold substrates functionalized with a thiolate self-assembled monolayer bearing the NTA end group. By systematically applying the difference spectra method, which emphasizes the small changes of the ellipsometry spectral response upon the nanoscale thickening/thinning of the molecular film, we characterized different steps of the process such as the NTA-functionalization of Au, the adsorption of the His6 layer and its eventual displacement after reaction with competitive ligands. The films were investigated in liquid, and ex situ in ambient air. The SE investigation has been complemented by AFM measurements based on nanolithography methods (nanografting mode.Conclusion: Our approach to the SE data, exploiting the full spectroscopic potential of the method and basic optical models, was able to provide a picture of the variation of the film thickness along the process. The combination of δΔi+1,i(λ, δΨi+1,i(λ (layer-addition mode and δΔ†i',i+1(λ, δΨ†i',i+1(λ (layer-removal mode difference spectra allowed us to clearly disentangle the adsorption of His6 on the Ni-free NTA layer, due to non specific interactions, from the formation of a neatly thicker His6 film induced by the Ni(II-loading of the NTA SAM.

  1. Sm{sup 3+}-doped Sc{sub 2}O{sub 3} polycrystalline ceramics: Spectroscopic investigation

    Energy Technology Data Exchange (ETDEWEB)

    Gheorghe, Cristina, E-mail: cristina_gheorghe2002@yahoo.com [National Institute for Laser, Plasma and Radiation Physics, ECS Laboratory, 077125 Magurele-Bucharest (Romania); Lupei, Aurelia; Voicu, Flavius [National Institute for Laser, Plasma and Radiation Physics, ECS Laboratory, 077125 Magurele-Bucharest (Romania); Enculescu, Monica [National Institute of Materials Physics Optics and Spectroscopy Laboratory, PO Box MG-7, 77125 Magurele-Bucharest (Romania)

    2012-09-15

    Highlights: Black-Right-Pointing-Pointer Investigation of Sm{sup 3+}: Sc{sub 2}O{sub 3} ceramics in order to evaluate its potential for visible emission. Black-Right-Pointing-Pointer The optical spectra in the UV-IR at 10 and 300 K range of Sm{sup 3+} Sc{sub 2}O{sub 3} ceramics, were performed. Black-Right-Pointing-Pointer Spectroscopic parameters were evaluated in the frame of the Judd-Ofelt theory. - Abstract: Sm{sup 3+}-doped Sc{sub 2}O{sub 3} translucent polycrystalline ceramics were fabricated by solid-state reaction method in order to evaluate its potential for visible emission. The optical spectra in the UV-IR range of Sm{sup 3+} in these samples, at different temperatures (10-300 K), were performed. A series of data on Sm: Sc{sub 2}O{sub 3} system not investigated previously were obtained from the analysis of the absorption and visible emission spectra as well as the emission kinetics: an extended energy level scheme, absorption cross sections for different bands, lifetimes, etc. Additional spectroscopic parameters were evaluated in the frame of the Judd-Ofelt (J-O) theory: J-O intensity parameters, oscillator strengths, radiative transitions probabilities, radiative lifetimes, branching ratios, and the cross sections (by Fuechtbauer-Ladenburg) of the main three visible emissions: {sup 4}G{sub 5/2} {yields} {sup 6}H{sub 5/2} (yellow), {sup 4}G{sub 5/2} {yields} {sup 6}H{sub 7/2} (orange) and {sup 4}G{sub 5/2} {yields} {sup 6}H{sub 9/2} (red).

  2. Solid-State Spectroscopic Investigation of Molecular Interactions between Clofazimine and Hypromellose Phthalate in Amorphous Solid Dispersions.

    Science.gov (United States)

    Nie, Haichen; Su, Yongchao; Zhang, Mingtao; Song, Yang; Leone, Anthony; Taylor, Lynne S; Marsac, Patrick J; Li, Tonglei; Byrn, Stephen R

    2016-11-07

    It has been technically challenging to specify the detailed molecular interactions and binding motif between drugs and polymeric inhibitors in the solid state. To further investigate drug-polymer interactions from a molecular perspective, a solid dispersion of clofazimine (CLF) and hypromellose phthalate (HPMCP), with reported superior amorphous drug loading capacity and physical stability, was selected as a model system. The CLF-HPMCP interactions in solid dispersions were investigated by various solid state spectroscopic methods including ultraviolet-visible (UV-vis), infrared (IR), and solid-state NMR (ssNMR) spectroscopy. Significant spectral changes suggest that protonated CLF is ionically bonded to the carboxylate from the phthalyl substituents of HPMCP. In addition, multivariate analysis of spectra was applied to optimize the concentration of polymeric inhibitor used to formulate the amorphous solid dispersions. Most interestingly, proton transfer between CLF and carboxylic acid was experimentally investigated from 2D (1)H-(1)H homonuclear double quantum NMR spectra by utilizing the ultrafast magic-angle spinning (MAS) technique. The molecular interaction pattern and the critical bonding structure in CLF-HPMCP dispersions were further delineated by successfully correlating ssNMR findings with quantum chemistry calculations. These high-resolution investigations provide critical structural information on active pharmaceutical ingredient-polymer interaction, which can be useful for rational selection of appropriate polymeric carriers, which are effective crystallization inhibitors for amorphous drugs.

  3. NIR fluorescence spectroscopic investigations of Er{sup 3+}-ions doped borate based tellurium calcium zinc niobium oxide glasses

    Energy Technology Data Exchange (ETDEWEB)

    Ravi, O. [Department of Instrumentation, Sri Venkateswara University, Tirupati 517502 (India); Dhoble, S.J. [Department of Physics, RTM Nagpur University, Nagpur 440033 (India); Ramesh, B.; Devarajulu, G. [Department of Physics, Sri Venkateswara University, Tirupati 517502 (India); Reddy, C. Madhukar [Department of Physics, AP Model School, Yerravaripalem 517194 (India); Linganna, K. [Department of Physics, Sri Venkateswara University, Tirupati 517502 (India); Reddy, G. Rajasekhar [Department of Instrumentation, Sri Venkateswara University, Tirupati 517502 (India); Raju, B. Deva Prasad, E-mail: drdevaprasadraju@gmail.com [Department of Physics, Sri Venkateswara University, Tirupati 517502 (India); Department of Future Studies, Sri Venkateswara University, Tirupati 517502 (India)

    2015-08-15

    A series of Er{sup 3+} ions doped tellurium calcium zinc niobium borate glasses were prepared by the melt quenching technique. The prepared samples were investigated by optical absorption and near infrared fluorescence spectroscopic studies. The obtained Judd–Ofelt intensity parameters Ω{sub λ} (λ=2, 4 and 6) were determined through experimental and calculated oscillator strengths obtained from absorption spectra and their results are studied and compared with reported literature. The stark-level energies of {sup 4}I{sub 13/2} excited and {sup 4}I{sub 15/2} ground states were evaluated by using both the absorption and emission measurements. The effect of Er{sup 3+} ion concentration on the emission intensity of {sup 4}I{sub 13/2}→{sup 4}I{sub 15/2} transition was discussed. Intense and broad 1.53 µm infrared fluorescence is observed at 980 nm diode laser excitation. Photoluminescence (PL) and its decay behavior studies were carried out for the transition {sup 4}I{sub 13/2}→{sup 4}I{sub 15/2} at 1.53 µm emission. The broad emission together with higher values of the bandwidth (81 nm), stimulated emission cross-section (32.25×10{sup −22} cm{sup 2}) and lifetime (530 µs for 1.0 mol% of Er{sup 3+}) of level {sup 4}I{sub 13/2} make these glasses attractive for broadband amplifiers. From the analysis of spectroscopic data, the present glass is a prospective photonic material for practical applications in the visible and NIR region. - Highlights: • In this study we prepared TCZNB glasses doped with Er{sup 3+} ions. • Glasses are characterized with absorption, emission and lifetime analysis. • Judd–Ofelt theory is used to calculate radiative properties. • TCZNB glasses could be used as NIR lasers.

  4. Moessbauer and magnetic studies of parent material from argentine pampas soils

    Energy Technology Data Exchange (ETDEWEB)

    Bidegain, J. C. [Laboratorio de Entrenamiento Multidisciplinario para la Investigacion Tecnologica (Argentina); Bartel, A. A. [Universidad Nacional de La Pampa, Facultad de Ciencias Exactas y Naturales (Argentina); Sives, F. R.; Mercader, R. C., E-mail: mercader@fisica.unlp.edu.ar [Universidad Nacional de La Plata, Departamento de Fisica, Facultad de Ciencias Exactas (Argentina)

    2007-02-15

    In order to establish a correlation between the different types of soils using hyperfine and magnetic parameters as climatic and environmental proxies, we have studied the differentiation of soil developed around 38.5{sup o} south latitude, in the central Pampas of Argentina, by means of Moessbauer spectroscopy and environmental magnetism. The soils transect (climosequence) investigated stretches from the drier west (around 64{sup o} W) to the more humid east (at around 59{sup o} W) in the Buenos Aires Province, covering a distance of 600 km. The soils studied developed during recent Holocene geologic times in a landscape characterized by small relict plateaus, slopes and depressions, dunes and prairies. The parent material consists of eolian sandy silts overlying calcrete layers. The low mean annual precipitation in the western parts of the region gives rise to soils without B-horizons, which limits the agricultural use of land. The preliminary results show an increase of the paramagnetic Fe{sup 3+} relative concentration from west to east in the soils investigated. Magnetite is probably mainly responsible for the observed enhancement in the susceptibility values. The magnetic response of the parent material is similar to that of the loess part of the previously investigated loess-paleosol sequences of the Argentine loess plateau.

  5. Comparative study of the iron cores in human liver ferritin, its pharmaceutical models and ferritin in chicken liver and spleen tissues using Moessbauer spectroscopy with a high velocity resolution

    Energy Technology Data Exchange (ETDEWEB)

    Alenkina, I.V.; Semionkin, V.A. [Faculty of Physical Techniques and Devices for Quality Control, Ural Federal University, Ekaterinburg (Russian Federation); Faculty of Experimental Physics, Ural Federal University, Ekaterinburg (Russian Federation); Oshtrakh, M.I. [Faculty of Physical Techniques and Devices for Quality Control, Ural Federal University, Ekaterinburg (Russian Federation); Klepova, Yu.V.; Sadovnikov, N.V. [Faculty of Physiology and Biotechnology, Ural State Agricultural Academy, Ekaterinburg, (Russian Federation); Dubiel, S.M. [Faculty of Physics and Applied Computer Science, AGH University of Science and Technology, Krakow (Poland)

    2011-07-01

    Full text: Application of the Moessbauer spectroscopy with a high velocity resolution (4096 channels) for a study of iron-containing biological species is of great interest. Improving the velocity resolution allows to reveal small variations in the electronic structure of iron, and to obtain hyperfine parameters with smaller instrumental (systematic) errors in comparison with measurements performed in 512 channels or less. It also allows a more reliable fitting of complex Moessbauer spectra. In the present study the Moessbauer spectroscopy with the high velocity resolution was used for a comparative analysis of ferritin and its pharmaceutically important models as well as iron storage proteins in a chicken liver and a spleen. The ferritin, an iron storage protein, consists of a nanosized polynuclear iron core formed by a ferrihydrite surrounded by a protein shell. Iron-polysaccharide complexes contain {beta}-FeOOH iron cores coated with various polysaccharides. The Moessbauer spectra of the ferritin and commercial products Imferon, MaltoferR and Ferrum Lek as well as those of the chicken liver and spleen tissues were measured with the high velocity resolution at 295 and 90 K. They were fitted using two models: (1) with a homogeneous iron core (an approximation using one quadrupole doublet), and (2) with a heterogeneous iron core (an approximation using several quadrupole doublets). The model (1) can be used as the first approximation fit to visualize small variations in the hyperfine parameters. Using this model, differences in the Moessbauer hyperfine parameters were obtained in both 295 and 90 K Moessbauer spectra. However, this model was considered as a rough approximation because the measured Moessbauer spectra had non-Lorentzian line shapes. Therefore, the spectra of the ferritin, Imferon, MaltoferR and Ferrum Lek as well as those of the liver and spleen tissues were fitted again using the model (2) in which a different number of the quadrupole doublets was

  6. Spectroscopic investigation on the interaction of copper porphyrazines and phthalocyanine with human telomeric G-quadruplex DNA.

    Science.gov (United States)

    Hassani, Leila; Hakimian, Fatemeh; Safaei, Elham

    2014-01-01

    The G-quadruplex DNA is a novel target for anticancer drug discovery and many scientific groups are investigating interaction of small molecules with G-quadruplex DNA to discover therapeutic agents for cancer. Here, interaction of a phthalocyanine (Cu(PcTs)) and two tetrapyridinoporphyrazines ([Cu(2,3-tmtppa)](4+) and [Cu(3,4-tmtppa)](4+)) with Na(+) and K(+) forms of human telomeric G-quadruplex DNA has been investigated by spectroscopic techniques. The results indicated that interaction of the cationic porphyrazines is remarkably stronger than the anionic phthalocyanine and they presumably bind to the G-quadruplex DNA through end-stacking. Fluorescent intercalator displacement assay implied the displacement ability of the complexes with thiazole orange. In addition, circular dichroism spectra of both quadruplex forms converge to the Na(+) isoform after binding to the porphyrazines. In conclusion, the porphyrazines as the complexes that bind to the G-quadruplex DNA, could be suitable candidates for further investigations about inhibition of telomerase enzyme. Copyright © 2013 Elsevier B.V. All rights reserved.

  7. Technical and technological investigation of cultural heritage: experience in applications of spectroscopic methods

    Science.gov (United States)

    Grigorieva, I. A.; Chugunova, K. S.; Kadikova, I. F.; Khavrin, S. V.; Pisareva, S. A.

    2016-12-01

    Physical and chemical methods of analysis are indispensable for restoration, study of painting techniques, examination and attribution of works of art. Development of new directions of investigations as well as improvements in sample preparation allow applying non-destructive analysis methods, minimizing amount of matter used to obtain informative spectra, preventing alteration and destruction of samples in the course of investigation. This paper observes the examples of applying optical and spectral methods, including molecular spectral analysis and electron microscopy, for study of binding media and pigments of painting and archaeological artifacts.

  8. Technical and technological investigation of cultural heritage: experience in applications of spectroscopic methods

    Directory of Open Access Journals (Sweden)

    Grigorieva I.A.

    2017-01-01

    Full Text Available Physical and chemical methods of analysis are indispensable for restoration, study of painting techniques, examination and attribution of works of art. Development of new directions of investigations as well as improvements in sample preparation allow applying non-destructive analysis methods, minimizing amount of matter used to obtain informative spectra, preventing alteration and destruction of samples in the course of investigation. This paper observes the examples of applying optical and spectral methods, including molecular spectral analysis and electron microscopy, for study of binding media and pigments of painting and archaeological artifacts.

  9. Spectroscopic investigation of the constituent components effect on the biodegradable package characteristics

    Science.gov (United States)

    Coťa, C.; Cioica, N.; Filip, C.; Fechete, R.; Todica, M.; Nagy, E. M.; Cozar, O.

    2015-12-01

    The effect of the nature and the content of the plasticizers (water, glycerol) on the corn starch based biodegradable packages properties (crystalline-amorphous) and also on their degradation process after absorption of distilled water were investigated by 1H NMR relaxation and 13C CP/MAS NMR spectroscopies. For this goal, a set of 14 samples with various starch/glycerol/water (mass %) ratios were prepared and investigated after extrusion process in order to establish their crystalline or amorphous character. The composition having starch/glycerol/water 68/17/15 mass % ratio was found to have a dominant amorphous character and very similar features with a commercial specimen (USA) used for the package. It was also found that this best package is extremely degraded after just one day under water absorption. The most resistant package was that with a large content of starch (78/19.5/2.5).

  10. Spectroscopic investigation of the constituent components effect on the biodegradable package characteristics

    Energy Technology Data Exchange (ETDEWEB)

    Coţa, C.; Cioica, N., E-mail: cioica@inma.ro; Nagy, E. M. [National Institute of Research-Development for Machines and Installations Designed to Agriculture and Food Industry – INMA Bucureşti – Cluj-Napoca Branch, 59, Al. Vaida-Voievod Str., RO-400458 Cluj-Napoca (Romania); Filip, C. [National Institute for Research and Development of Isotopic and Molecular Technologies, 65-103 Donath Str., 400293 Cluj-Napoca (Romania); Fechete, R. [Technical University of Cluj-Napoca, Dept. of Physics, 25 G. Baritiu Str., RO-400020 Cluj-Napoca (Romania); Todica, M. [Babeş-Bolyai University, Faculty of Physics, 1 Kogalniceanu Str., RO-400084, Cluj-Napoca (Romania); Cozar, O. [National Institute of Research-Development for Machines and Installations Designed to Agriculture and Food Industry – INMA Bucureşti – Cluj-Napoca Branch, 59, Al. Vaida-Voievod Str., RO-400458 Cluj-Napoca (Romania); Academy of Romanian Scientists, 54 Splaiul Independentei, RO-050094, Bucharest (Romania)

    2015-12-23

    The effect of the nature and the content of the plasticizers (water, glycerol) on the corn starch based biodegradable packages properties (crystalline-amorphous) and also on their degradation process after absorption of distilled water were investigated by {sup 1}H NMR relaxation and {sup 13}C CP/MAS NMR spectroscopies. For this goal, a set of 14 samples with various starch/glycerol/water (mass %) ratios were prepared and investigated after extrusion process in order to establish their crystalline or amorphous character. The composition having starch/glycerol/water 68/17/15 mass % ratio was found to have a dominant amorphous character and very similar features with a commercial specimen (USA) used for the package. It was also found that this best package is extremely degraded after just one day under water absorption. The most resistant package was that with a large content of starch (78/19.5/2.5)

  11. Spectroscopic investigation on the inclusion complex formation between amisulpride and γ-cyclodextrin.

    Science.gov (United States)

    Negi, Jeetendra Singh; Singh, Shivpal

    2013-02-15

    The purpose of this research was to investigate inclusion complex formation between poorly soluble drug amisulpride (AMI) and γ-cyclodextrin (γ-CD). The solubility of AMI was enhanced by formation of inclusion complex of AMI with nano-hydrophobic cavity of γ-CD. The stoichiometry of inclusion complex was studied by continuous variation Job's plot method and found 1:1. The binding constant was found 1166.65 M(-1) by Benesi-Hildebrand plot. The molecular docking of AMI and γ-CD was done to investigate complexation. The inclusion complex formation was further confirmed by (1)H NMR and FT-IR, DSC and XRD analysis. The solubility of AMI was increased 3.74 times after inclusion complex formation with γ-CD.

  12. Matrix Infrared Spectroscopic and Computational Investigations of Novel Small Uranium Containing Molecules - Final Technical Report

    Energy Technology Data Exchange (ETDEWEB)

    Andrews, Lester

    2014-10-17

    Direct reactions of f-element uranium, thorium and lanthanide metal atoms were investigated with small molecules. These metal atoms were generated by laser ablation and mixed with the reagent molecules then condensed with noble gases at 4K. The products were analyzed by absorption of infrared light to measure vibrational frequencies which were confirmed by quantum chemical calculations. We have learned more about the reactivity of uranium atoms with common molecules, which will aid in the develolpment of further applications of uranium.

  13. Spectroscopic Investigation of Indium Halides as Substitutes of Mercury in Low Pressure Discharges for Lighting Applications

    OpenAIRE

    Briefi, Stefan

    2012-01-01

    Low pressure discharges with indium halides as radiator are discussed as substitutes for hazardous mercury in conventional fluorescent lamps. In this work, the applicability of InBr and InCl in a low pressure discharge light source is investigated. The aim is to identify and understand the physical processes which determine the discharge characteristics and the efficiency of the generated near-UV emission of the indium halide molecule and of the indium atom which is created due to dissociatio...

  14. In situ vibrational spectroscopic investigation of C4 hydrocarbon selective oxidation over vanadium-phosphorus-oxide catalysts

    Energy Technology Data Exchange (ETDEWEB)

    Xue, Zhi -Yang [Iowa State Univ., Ames, IA (United States)

    1999-05-10

    n-Butane selective oxidation over the VPO catalyst to maleic anhydride is the first and only commercialized process of light alkane selective oxidation. The mechanism of this reaction is still not well known despite over twenty years of extensive studies, which can partially be attributed to the extreme difficulties to characterize catalytic reactions real-time under typical reaction conditions. In situ spectroscopic characterization techniques such as Infrared spectroscopy and laser Raman spectroscopy were used in the current mechanistic investigations of n-butane oxidation over VPO catalysts. To identify the reaction intermediates, oxidation of n-butane, 1,3-butadiene and related oxygenates on the VPO catalyst were monitored using FTIR spectroscopy under transient conditions. n-Butane was found to adsorb on the VPO catalyst to form olefinic species, which were further oxidized to unsaturated, noncyclic carbonyl species. The open chain dicarbonyl species then experienced cycloaddition to form maleic anhydride. VPO catalyst phase transformations were investigated using in situ laser Raman spectroscopy. This report contains Chapter 1: General introduction; Chapter 2: Literature review; and Chapter 5: Conclusion and recommendations.

  15. Investigation on the interaction between isorhamnetin and bovine liver catalase by spectroscopic techniques under different pH conditions.

    Science.gov (United States)

    Yang, Yumin; Li, Daojin

    2016-08-01

    The binding of isorhamnetin to bovine liver catalase (BLC) was first investigated at 302, 310 and 318 K at pH 7.4 using spectroscopic methods including fluorescence spectra, circular dichroism (CD) and UV-vis absorption. Spectrophotometric observations are rationalized mainly in terms of a static quenching process. The binding constants and binding sites were evaluated by fluorescence quenching methods. Enzymatic activity of BLC in the absence and presence of isorhamnetin was measured using a UV/vis spectrophotometer. The result revealed that the binding of isorhamnetin to BLC led to a reduction in the activity of BLC. The positive entropy change and enthalpy change indicated that the interaction of isorhamnetin with BLC was mainly driven by hydrophobic forces. The distance r between the donor (BLC) and acceptor (isorhamnetin) was estimated to be 2.99 nm according to fluorescence resonance energy transfer. Fluorescence, synchronous fluorescence, and CD spectra showed no obvious change in the conformation of BLC upon the binding of isorhamnetin. In addition, the influence of pH on the binding of isorhamnetin to BLC was investigated and the binding ability of the drug to BLC deceased under other pH conditions (pH 9.0, 6.5, 5.0, 3.5, or 2.0) as compared with that at pH 7.4. Copyright © 2016 John Wiley & Sons, Ltd.

  16. In situ vibrational spectroscopic investigation of C{sub 4} hydrocarbon selective oxidation over vanadium-phosphorus-oxide catalysts

    Energy Technology Data Exchange (ETDEWEB)

    Xue, Z.Y.

    1999-05-10

    n-Butane selective oxidation over the VPO catalyst to maleic anhydride is the first and only commercialized process of light alkane selective oxidation. The mechanism of this reaction is still not well known despite over twenty years of extensive studies, which can partially be attributed to the extreme difficulties to characterize catalytic reactions real-time under typical reaction conditions. In situ spectroscopic characterization techniques such as Infrared spectroscopy and laser Raman spectroscopy were used in the current mechanistic investigations of n-butane oxidation over VPO catalysts. To identify the reaction intermediates, oxidation of n-butane, 1,3-butadiene and related oxygenates on the VPO catalyst were monitored using FTIR spectroscopy under transient conditions. n-Butane was found to adsorb on the VPO catalyst to form olefinic species, which were further oxidized to unsaturated, noncyclic carbonyl species. The open chain dicarbonyl species then experienced cycloaddition to form maleic anhydride. VPO catalyst phase transformations were investigated using in situ laser Raman spectroscopy. This report contains Chapter 1: General introduction; Chapter 2: Literature review; and Chapter 5: Conclusion and recommendations.

  17. Spectroscopic, DFT and Z-scan supported investigation of dicyanoisophorone based push-pull NLOphoric styryl dyes

    Science.gov (United States)

    Erande, Yogesh; Sreenath, Mavila C.; Chitrambalam, Subramaniyan; Joe, Isaac H.; Sekar, Nagaiyan

    2017-04-01

    The dicyanoisophorone acceptor based NLOphores with Intramolecular Charge Transfer (ICT) character are newly synthesised, characterised and explored for linear and non linear optical (NLO) property investigation. Strong ICT character of these D-π-A styryl NLOphores is established with support of emission solvatochromism, polarity functions and Generalised Mulliken Hush (GMH) analysis. First, second and third order polarizability of these NLOphores is investigated by spectroscopic and TDDFT computational approach using CAM/B3LYP-6-311 + g (d, p) method. BLA and BOA values of these chromophores are evaluated from ground and excited state optimized geometries and found that the respective structures are approaching towards cyanine limit. Third order nonlinear susceptibility (X(3)/SUP>) along with nonlinear absorption coefficient (β) and nonlinear refraction (n2) are evaluated for these NLOphores using Z-scan experiment. All four chromophores exhibit large polarization anisotropy (Δα), first order hyperpolarizability (β0), second order hyperpolarizability (γ) and third order nonlinear susceptibility (X(3)/SUP>). TGA analysis proved these NLOphores are stable up to 320 °C and hence can be used in device fabrication.

  18. Resonance Enhanced Multi-Photon Ionization (rempi) and Double Resonance Uv-Uv and Ir-Uv Spectroscopic Investigation Isocytosine

    Science.gov (United States)

    Lee, Seung Jun; Min, Ahreum; Ahn, Ahreum; Moon, Cheol Joo; Choi, Myong Yong; Ishiuchi, Shun-Ichi; Miyazaki, Mitsuhiko; Fujii, Masaaki

    2013-06-01

    Isocytosine(iC), 2-aminouracil, is a non-natural nucleobase and its functional group's positions resemble those of guanine; therefore, its spectroscopic investigation is worthy of attention especially for the natural/unnatural base pairs with guanine and isoguanine. In this study, resonance enhanced multi-photon ionization (REMPI) and UV/IR-UV double resonance spectra of iC in the gas phase are presented. The collaboration work between Tokyo Institute of Technology, Japan and Gyeongsang National University, Korea using laser ablation and thermal evaporation, respectively, for producing jet-cooled iC is presented and discussed. The REMPI spectrum of iC monomers is recorded in the spectral range of 35000 to 36400cm-1, showing very congested π-π* vibronic bands. UV-UV hole burning spectroscopy is further conducted to investigate the conformational landscapes of iC monomers. Moreover, the presence of free OH band from IR-UV double resonance spectroscopy in combination with quantum chemical calculations convinces that the iC monomer in free-jet expansion experiment is an enol tautomer. However, a possible presence of a keto tautomer of iC may be provided by employing a pico-second experiment on iC.

  19. Spectroscopic investigations on Pr³+ and Nd³+ doped strontium-lithium-bismuth borate glasses.

    Science.gov (United States)

    Rajesh, D; Balakrishna, A; Seshadri, M; Ratnakaram, Y C

    2012-11-01

    Spectroscopic investigations on different concentrations (0.1, 0.5, 1.0, 1.5 and 2.0mol%) of Pr(3+) and Nd(3+) doped strontium lithium bismuth borate glasses have been done. X-ray diffraction, SEM with EDS, absorption and luminescence spectra were recorded for all the glass matrices and analyzed. X-ray diffraction profiles and SEM images conformed amorphous nature of investigated glass samples. EDS spectra of host glass and Pr(3+)doped glass matrices gave information about the chemical composition of glass samples. From the absorption spectra of Pr(3+) and Nd(3+) ions, Judd-Ofelt (J-O) intensity parameters (Ω(λ),λ=2, 4 and 6) have been calculated and compared with other glass matrices. The emission characteristics such as radiative lifetimes (τ(R)), measured and calculated branching ratios (β) and stimulated emission cross-sections (σ(P)) have been obtained for the observed emission transitions of Pr(3+) and Nd(3+) ions in the above glass matrix for all the concentrations. From the emission spectra of Pr(3+) and Nd(3+) doped glass matrices, the effect of concentration on the quenching of intensity of (1)D(2)→(3)H(4) transition of Pr(3+) ion and (4)F(3/2)→(4)I(9/2), (4)I(11/2) and (4)I(13/2) transitions of Nd(3+) have been studied and discussed.

  20. Nano sized Powder of Jackfruit Seed: Spectroscopic and Anti-microbial Investigative Approach

    CERN Document Server

    Theivasanthi, T; Palanivelu, M; Alagar, M

    2011-01-01

    This work reports aspect related to nano-sized particles of jackfruit seed. FTIR spectrum was recorded for functional groups analysis and EDAX analysis was done to identify the various elements of the sample. Both FTIR and EDAX analysis results indicated the presence of Starch. FTIR analysis confirmed the availability of anti-microbial Sulphur derivatives compounds. Microbiology assay found that jackfruit seed nanoparticles were effective against Escherichia coli and Bacillus megaterium bacteria. This work also investigated about the dual-function of the sample i.e. food ingredients possessing antimicrobial activities. Specific surface area of bacteria analysis revealed that it played a major role while on reactions with jackfruit seed nanoparticles.

  1. Co speciation in hardened cement paste: a macro- and micro-spectroscopic investigation.

    Science.gov (United States)

    Vespa, M; Dähn, R; Grolimund, D; Wieland, E; Scheidegger, A M

    2007-03-15

    Cement-based materials play an important role in multi-barrier concepts developed worldwide for the safe disposal of hazardous and radioactive wastes. Cement is used to condition and stabilize the waste materials and to construct the engineered barrier systems (container, backfill and liner materials) of repositories for radioactive waste. In this study, Co uptake by hardened cement paste (HCP) has been investigated with the aim of improving our understanding of the immobilization process of heavy metals in cement on the molecular level. X-ray-absorption spectroscopy (XAS) on powder material (bulk-XAS) was used to determine the local environment of Co in cement systems. Bulk-XAS investigations were complemented with micro-beam investigations to probe the inherent microscale heterogeneity of cement by using micro-X-ray-fluorescence (micro-XRF) and micro-XAS. Micro-XRF was used to gain information on the spatial heterogeneity of the Co distribution, whereas micro-XAS was employed to determine the speciation of Co on the microscale. The Co-doped HCP samples hydrated for time-scales from 1 hour up to 1 year were prepared under normal atmosphere, to simulate similar conditions as for waste packages. To investigate the role of oxygen, further samples were prepared in the absence of oxygen. The study showed that, for the samples prepared in air, Co(II) is oxidized to Co(III) after 1 hour of hydration time. Moreover, the relative amount of Co(III) increases with increasing hydration time. The study further revealed that Co(II) is predominately present as a Co-hydroxide-like phase and/or Co-phyllosilicates, whereas Co(III) tends to be incorporated into a CoOOH-like phase and/or Co-phyllomanganates. In contrast to samples prepared in air, XAS experiments with samples prepared in the absence of oxygen revealed solely the presence of Co(II). This finding indicates that oxygen plays an important role for Co oxidation in cement. Furthermore, the study suggests that Co

  2. IR spectroscopic investigation of the structure of water-fuel microemulsion for diesel engines

    Science.gov (United States)

    Vettegren', V. I.; Mamalimov, R. I.; Lozhkin, V. N.; Morozov, V. A.; Lozhkina, O. V.; Pimenov, Yu. A.

    2016-09-01

    The structures of a microemulsion formed by a surfactant (ammonium oleate), water drops of a linear size of 1-3 µm, and a diesel fuel has been investigated using IR spectroscopy. It has been found that ammonium oleate molecules in the microemulsion are dissociated on the positive NH4 + ion and the negative ion of the remaining part of the molecule, which forms the hydrogen bond with water molecules. This increases the rate of water, evaporation and leads to the more complete combustion of the diesel fuel. As a result, the concentration of harmful nitrogen oxides and soot particles in the exhaust gas of the diesel engine decreases.

  3. The analytical investigations of ancient pottery from Kaveripakkam, Vellore dist, Tamilnadu by spectroscopic techniques

    Science.gov (United States)

    Ravisankar, R.; Naseerutheen, A.; Raja Annamalai, G.; Chandrasekaran, A.; Rajalakshmi, A.; Kanagasabapathy, K. V.; Prasad, M. V. R.; Satpathy, K. K.

    2014-03-01

    Analytical investigations using Fourier Transform infrared spectroscopy (FT-IR), Powder X-ray Diffraction (PXRD), Thermal Analysis (TG-DTA), Scanning Electron Microscopy (SEM) and Energy Dispersive X-ray Fluorescence Spectrometry (EDXRF) were carried out on ancient pottery fragments from Kaveripakkam, in order to outline manufacturing skills, technology information, firing condition and temperature of potteries. The whole set of data showed the firing temperature in the range of 800-900 °C. The analytical characterization of the potsherds, by different complimentary techniques has allowed to identifying the raw materials and technology applied by the ancient artisans.

  4. Synthesis, X-ray crystallography, thermal studies, spectroscopic and electrochemistry investigations of uranyl Schiff base complexes.

    Science.gov (United States)

    Asadi, Zahra; Shorkaei, Mohammad Ranjkesh

    2013-03-15

    Some tetradentate salen type Schiff bases and their uranyl complexes were synthesized and characterized by UV-Vis, NMR, IR, TG, C.H.N. and X-ray crystallographic studies. From these investigations it is confirmed that a solvent molecule occupied the fifth position of the equatorial plane of the distorted pentagonal bipyramidal structure. Also, the kinetics of complex decomposition by using thermo gravimetric methods (TG) was studied. The thermal decomposition reactions are first order for the studied complexes. To examine the properties of uranyl complexes according to the substitutional groups, we have carried out the electrochemical studies. The electrochemical reactions of uranyl Schiff base complexes in acetonitrile were reversible.

  5. Biological applications and spectroscopic investigations of 4-nitrophenol-urea dimer: A DFT approach

    Science.gov (United States)

    Beaula, T. Joselin; Muthuraja, P.; Dhandapani, M.; Joe, I. Hubert; Rastogi, V. K.; Jothy, V. Bena

    2016-02-01

    Molecular geometry of grown crystal 4-nitrophenol-urea has been evaluated and compared with XRD data while the crystalline nature of the compound has been confirmed by PXRD study. Vibrational analysis has been performed using NCA and dielectric studies have been carried out at room temperature. NBO analysis has been applied in comparative study of charge delocalization. Molecular orbital contributions have been investigated by TDOS and αβDOS. Enhancement of microbial treatments against bacteria and fungi has been assessed and a remarkable efficiency has been recorded.

  6. Impedance Spectroscopic Investigation of the Degraded Dye-Sensitized Solar Cell due to Ageing

    Directory of Open Access Journals (Sweden)

    Parth Bhatt

    2016-01-01

    Full Text Available This paper investigates the effect of ageing on the performance of dye-sensitized solar cells (DSCs. The electrical characterization of fresh and degraded DSCs is done under AM1.5G spectrum and the current density-voltage (J-V characteristics are analyzed. Short circuit current density (JSC decreases significantly whereas a noticeable increase in open circuit voltage is observed. These results have been further investigated electroanalytically using electrochemical impedance spectroscopy (EIS. An increase in net resistance results in a lower JSC for the degraded DSC. This decrease in current is mainly due to degradation of TiO2-dye interface, which is observed from light and dark J-V characteristics and is further confirmed by EIS measurements. A reduction in the chemical capacitance of the degraded DSC is observed, which is responsible for the shifting of Fermi level with respect to conduction band edge that further results in an increase of open circuit voltage for the degraded DSC. It is also confirmed from EIS that the degradation leads to a better contact formation between the electrolyte and Pt electrode, which improves the fill factor of the DSC. But the recombination throughout the DSC is found to increase along with degradation. This study suggests that the DSC should be used under low illumination conditions and around room temperature for a longer life.

  7. Spectroscopic Investigations and DFT Calculations on 3-(Diacetylamino-2-ethyl-3H-quinazolin-4-one

    Directory of Open Access Journals (Sweden)

    Yusuf Sert

    2016-01-01

    Full Text Available The theoretical and experimental vibrational frequencies of 3-(diacetylamino-2-ethyl-3H-quinazolin-4-one (2 were investigated. The experimental Laser-Raman spectrum (4000–100 cm−1 and FT-IR spectrum (4000–400 cm−1 of the newly synthesized compound were recorded in the solid phase. Both the theoretical vibrational frequencies and the optimized geometric parameters such as bond lengths and bond angles have for the first time been calculated using density functional theory (DFT/B3LYP and DFT/M06-2X quantum chemical methods with the 6-311++G(d,p basis set using Gaussian 03 software. The vibrational frequencies were assigned with the help of potential energy distribution (PED analysis using VEDA 4 software. The calculated vibrational frequencies and the optimized geometric parameters were found to be in good agreement with the corresponding reported experimental data. Also, the energies of the lowest unoccupied molecular orbital (LUMO, highest occupied molecular orbital (HOMO, and other related molecular energies for 3-(diacetylamino-2-ethyl-3H-quinazolin-4-one (2 have been investigated using the same computational methods.

  8. Molecular structure activity on pharmaceutical applications of Phenacetin using spectroscopic investigation

    Science.gov (United States)

    Madanagopal, A.; Periandy, S.; Gayathri, P.; Ramalingam, S.; Xavier, S.

    2017-01-01

    The pharmaceutical compound; Phenacetin was investigated by analyzing FT-IR, FT-Raman and 1H &13C NMR spectra. The hybrid efficient computational calculations performed for computing physical and chemical parameters. The cause of pharmaceutical activity due to the substitutions; carboxylic, methyl and amine groups in appropriate positions on the pedestal compound was deeply investigated. Moreover, 13C NMR and 1H NMR chemical shifts correlated with TMS standard to explain the truth of compositional ratio of base and ligand groups. The bathochromic shift due to chromophores over the energy levels in UV-Visible region was strongly emphasized the Anti-inflammatory chemical properties. The chemical stability was pronounced by the strong kubo gap which showed the occurring of charge transformation within the molecule. The occurrence of the chemical reaction was feasibly interpreted by Gibbs free energy profile. The standard vibrational analysis stressed the active participation of composed ligand groups for the existence of the analgesic as well as antipyretic properties of the Phenacetin compound. The strong dipole interaction energy utilization for the transition among non-vanishing donor and acceptor for composition of the molecular structure was interpreted.

  9. Spectroscopic investigation of an intrinsic room temperature ferromagnetism in Co doped ZnO nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    N, Srinatha [Department of Physics, JB Campus, Bangalore University, Bangalore 560056 (India); Angadi, Basavaraj, E-mail: brangadi@gmail.com [Department of Physics, JB Campus, Bangalore University, Bangalore 560056 (India); Nair, K.G.M. [UGC-DAE-CSR, Kalpakkam Node, Kalpakkam, Kokilamedu 603 102 (India); Deshpande, Nishad G.; Shao, Y.C.; Pong, Way-Faung [Department of Physics, Tamkang University, Tamsui, Taipei 251, Taiwan (China)

    2014-08-15

    Highlights: • For the first time L-Valine was used as a fuel to synthesize Co:ZnO nanoparticles by solution combustion method. • Single phase and ferromagnetic nature were confirmed through XRD, SQUID, NEXAFS and XMCD. • Through NEXAFS and XMCD, the effect of ‘Co’ substitution at O K-edge, Co L{sub 3,2} edge, Zn L{sub 3,2} edge have been investigated. • Spectral features of NEXAFS and XMCD confirms an intrinsic RTFM by substitution of ‘Co{sup 2+}’ at ‘Zn{sup 2+}’ site and rules out the presence of secondary phases. - Abstract: Pure and Co substituted ZnO nano crystalline particles were prepared by solution combustion technique using L-Valine as a fuel. As synthesized powder samples were characterized by X-ray diffractometer and SQUID magnetometer to confirm the formation of single phase wurtzite structure and to study the bulk magnetic response of the sample, respectively. Magnetic studies show that Co doped ZnO nanoparticles exhibit ferromagnetism (FM) at room temperature (RT). Furthermore, the electronic structure and element specific magnetic properties were investigated by near-edge X-ray absorption fine structure (NEXAFS) and X-ray magnetic circular dichroism (XMCD) measurements, respectively. The effect of Co substitution on the spectral features of Co–ZnO at O K-edge, Co L{sub 3,2} edge, Zn L{sub 3,2} edge have been investigated. The spectral features of NEXAFS at Co L{sub 3,2} edge is entirely different from the spectral features of metallic clusters and other impurity phases, which rules out the presence of impurity phases. The valence state of ‘Co’ ion is found to be in +2 state. The FM nature of the sample was confirmed through XMCD spectra, which is due to the incorporation of divalent ‘Co’ ions. Hence the presented results confirm the substitution of ‘Co’ ions at ‘Zn’ site in the host lattice, which is responsible for the RTFM.

  10. Multi-spectroscopic methods investigation on the interaction of tenoxicam with DNA.

    Science.gov (United States)

    Liu, Bing-Mi; Zhang, Jun; Liu, Yang; Zhang, Li-Ping; Ma, Ping; Wang, Xin; Liu, Bin

    2015-12-01

    Non-steroidal anti-inflammatory drugs (NSAIDs) show chemopreventive and chemosuppressive effects on various cancer cell lines. They exert anticancer activities by inhibiting both at the protein level and/or at the transcription level. Thus, in this paper, the interaction between tenoxicam (TXM) and calf thymus DNA (ct-DNA) was investigated by UV-visible light, fluorescence, viscosity experiments and DNA melting studies. The results showed that TXM could bind to ct-DNA in the groove binding mode. The binding constants were 7.67 × 10(3) and 5.48 × 10(3) M(-1) at 293 and 300 K, respectively. Furthermore, the calculated thermodynamic parameters suggested that hydrogen bonds or van der Waals force might play an important role in the binding of TXM to ct-DNA. The obtained results should give new insight into the pharmacological activity of TXM.

  11. Spectroscopic (vibrational, NMR and UV-vis.) and quantum chemical investigations on 4-hexyloxy-3-methoxybenzaldehyde

    Science.gov (United States)

    Abbas, Ashgar; Gökce, Halil; Bahçeli, Semiha

    2016-01-01

    In this study, the 4-hexyloxy-3-methoxybenzaldehyde compound as one of the derivatives of vanillin which is a well known flavoring agent, C14H20O3, has been investigated by experimentally and extensively utilizing density functional theory (DFT) at the B3LYP/6-311++G(d,p) level. In this context, the optimized geometry, vibrational frequencies, 1H and 13C NMR chemical shifts, UV-vis. (in gas phase and in methanol solvent) spectra, HOMO-LUMO analysis, molecular electrostatic potential (MEP), thermodynamic parameters and atomic charges of 4-hexyloxy-3-methoxybenzaldehyde have been calculated. In addition, theoretically predicted IR, Raman and UV-vis. (in gas phase and in methanol solvent) spectra of the mentioned molecule have been constructed. The results calculated were compared with the experimental data.

  12. Spectroscopic investigations on the interactions between isopropanol and trypsin at molecular level.

    Science.gov (United States)

    Hu, Xinxin; Yu, Zehua; Liu, Rutao

    2013-05-01

    The toxicity of hydroxyl group of isopropanol to trypsin in aqueous solution was investigated by techniques including UV-visible absorption spectroscopy, fluorescence spectroscopy, circular dichroism (CD) spectroscopy, enzyme activity assay and molecular docking technology. The results of UV-visible absorption spectroscopy and CD spectra indicate that isopropanol could change the secondary structure of trypsin by increasing the content of α-helix and decreasing the content of β-sheet. The tertiary structure of trypsin was also changed owing to the loss of environmental asymmetry of amino acid residues. Isopropanol bound into a hydrophobic cavity on the surface of trypsin by a hydrogen bond located between the hydrogen atom on the hydroxyl of isopropanol and the oxygen atoms on SER 214 and hydrophobic interaction, as the molecular docking results showed. In addition, isopropanol could affect the function of trypsin by increasing its catalytic activity.

  13. Femtosecond laser irradiation of indium phosphide in air: Raman spectroscopic and atomic force microscopic investigations

    Energy Technology Data Exchange (ETDEWEB)

    Bonse, J.; Wrobel, J.M.; Brzezinka, K.-W.; Esser, N.; Kautek, W

    2002-12-30

    Surface modification and ablation of crystalline indium phosphide was performed with single and double 130 fs pulses from a Ti:sapphire laser. The morphological features resulting from laser processing, have been investigated by means of micro Raman spectroscopy as well as by optical, atomic force and scanning electron microscopy. The studies indicate amorphous, ablated and recrystallized zones on the processed surface. In the single-pulse irradiation experimentsveral different threshold fluences could be assigned to the processes of melting, ablation and polycrystalline resolidification. Residual stress has been detected within the irradiated areas. Double-pulse exposure experiments have been analyzed in order to clarify the effect of cumulative damage in the ablation process of indium phosphide.

  14. A DFT investigation of structure, spectroscopic properties and tautomerism of the anticonvulsant drug Lyrica

    Science.gov (United States)

    Sadeghzade, Zohre; Beyramabadi, S. Ali; Morsali, Ali

    2015-03-01

    The Lyrica (Pregabalin) is a novel anticonvulsant and neuropathic pain drug, which could exist as four possible conformers. Herein, employing density functional theory (DFT), and handling the solvent effects with the PCM model, the structural parameters, energetic behavior, natural bond orbital analysis (NBO), as well as tautomerism mechanization of the Lyrica are investigated. The L1 (-OH form) is the most stable conformer of the Lyrica, which can be tautomerized to the L5 (-NH form) tautomer. The tautomerism reaction includes an intramolecular-proton transfer, which affects considerably the structural parameters and atomic charges of the L1. The DFT-computed NMR chemical shifts and IR vibrational frequencies are good in agreement with the experimental values, confirming suitability of the optimized geometry for the Lyrica.

  15. Spectroscopic Investigation on the Interaction of a Cyanine Dye with Serum Albumins

    Institute of Scientific and Technical Information of China (English)

    ZHANG Ya-Zhou; YANG Qian-Fan; DU Hong-Yan; TANG Ya-Lin; XU Guang-Zhi; YAN Wen-Peng

    2008-01-01

    The interactions of a cyanine dye with human serum albumin (HSA) and bovine serum albumin (BSA) have been investigated by using absorption and fluorescence spectra.Absorption spectral studies show that binding to the serum albumins leads to a bathochromic shift of the monomer band together with a notable intensity change.Furthermore, the number of binding sites (n) was identified by the absorption spectra.There is a constant enhancement of fluorescence quantum yield when the cyanine dye complexes with HSA or BSA.The apparent binding constant (Ka) and the free energy changes (△G) were obtained by analysis of fluorescence data of the cyanine dye in the absence and presence of HSA and BSA.Compared to BSA, HSA associates with the dye in a stronger way.

  16. Interaction of sulfanilamide and sulfamethoxazole with bovine serum albumin and adenine: spectroscopic and molecular docking investigations.

    Science.gov (United States)

    Rajendiran, N; Thulasidhasan, J

    2015-06-05

    Interaction between sulfanilamide (SAM) and sulfamethoxazole (SMO) with BSA and DNA base (adenine) was investigated by UV-visible, fluorescence, cyclic voltammetry and molecular docking studies. Stern-Volmer fluorescence quenching constant (Ka) suggests SMO is more quenched with BSA/adenine than that of SAM. The distance r between donor (BSA/adenine) and acceptor (SAM and SMO) was obtained according to fluorescence resonance energy transfer (FRET). The results showed that hydrophobic forces, electrostatic interactions, and hydrogen bonds played vital roles in the SAM and SMO with BSA/adenine binding interaction. During the interaction, sulfa drugs could insert into the hydrophobic pocket, where the non-radioactive energy transfer from BSA/adenine to sulfa drugs occurred with high possibility. Cyclic voltammetry results suggested that when the drug concentration is increased, the anodic electrode potential deceased. The docking method indicates aniline group is interacted with the BSA molecules. Copyright © 2015 Elsevier B.V. All rights reserved.

  17. A spectroscopic and theoretical investigation of the proton-transfer laser. [Fisetin and 3-hydroxyflavone

    Energy Technology Data Exchange (ETDEWEB)

    Parthenopoulos, D.A.

    1988-01-01

    The lasing characteristics and the spectroscopy of intramolecular proton-transfer molecules were investigated in nonpolar and polar solvents. In addition, molecular orbital calculations on intramolecular proton-transfer molecules were performed. The efficient generation of coherent stimulated emission from 3-hydroxyflavone (3-HF) and fisetin, two molecules that exhibit intramolecular proton transfer was shown. Amplified spontaneous emission from 3-HF is achieved in polar aprotic and moderately protic solvents. The observed shifts of the tautomer fluorescence are attributed to hydrogen bonding interactions with the solvent. In contrast, 3-hydroxychromone does not exhibit amplified spontaneous emission in various solvents and concentrations. Picosecond transient absorption experiments reveal the existence of absorption bands overlapping the emission, which leads to high-loss terms in the gain equation.

  18. Spectroscopic investigation of the interaction of p-benzoquinone with casein in the solid state.

    Science.gov (United States)

    Vieira, Isadora S; Zaia, Dimas A M; Balena, Solange P; Mangrich, Antonio S; de Santana, Henrique

    2010-02-01

    The reaction between p-benzoquinone (PBQ) and casein (protein) in the solid state was studied. After reaction with protein, the FT-IR spectra showed a new band at 1215 cm(-1), with an intense sign attributed for casein/PBQ product. An optimum amount of PBQ for determination of the product when mixed with casein was 100mg and a reaction time of 30 min. The product was stable for a period of 24h after the reacting by heating. The interaction of PBQ with casein was investigated by FT-IR, reflectance, Raman and EPR spectroscopies. The reaction between PBQ and casein in the solid state yields a radical species (p-benzosemiquinone) that it is stabilized by the presence of p-biphenolate and p-benzoquinone species in the solid state. Copyright (c) 2009 Elsevier B.V. All rights reserved.

  19. Glass transition of polystyrene (PS) studied by Raman spectroscopic investigation of its phenyl functional groups

    Science.gov (United States)

    Bertoldo Menezes, D.; Reyer, A.; Marletta, A.; Musso, M.

    2017-01-01

    In polymeric materials the glass transition (GT) is a well-known and very important relaxation process related to movements of functional groups in the polymeric chain. In this work, we show the potential of Raman spectroscopy for exploring the GT process in the polymer polystyrene. We collected Raman spectra during a step-by-step heating process of the sample, which allowed us to collect signatures of the GT process from peak parameters of specific vibrational modes, and to verify the GT temperature. Results of the latter were in accordance with published values obtained via other methods. We identified the aromatic ring vibrational modes of the phenyl functional groups to be those which, due to steric hindrance, suffer the largest influence during the GT process. This confirms that Raman spectroscopy can be used as a complementary technique to perform GT investigations in polymeric materials due to its sensitivity to small intermolecular changes affecting vibrational properties of relevant functional side groups.

  20. Spectroscopic (vibrational, NMR and UV-vis.) and quantum chemical investigations on 4-hexyloxy-3-methoxybenzaldehyde.

    Science.gov (United States)

    Abbas, Ashgar; Gökce, Halil; Bahçeli, Semiha

    2016-01-05

    In this study, the 4-hexyloxy-3-methoxybenzaldehyde compound as one of the derivatives of vanillin which is a well known flavoring agent, C14H20O3, has been investigated by experimentally and extensively utilizing density functional theory (DFT) at the B3LYP/6-311++G(d,p) level. In this context, the optimized geometry, vibrational frequencies, (1)H and (13)C NMR chemical shifts, UV-vis. (in gas phase and in methanol solvent) spectra, HOMO-LUMO analysis, molecular electrostatic potential (MEP), thermodynamic parameters and atomic charges of 4-hexyloxy-3-methoxybenzaldehyde have been calculated. In addition, theoretically predicted IR, Raman and UV-vis. (in gas phase and in methanol solvent) spectra of the mentioned molecule have been constructed. The results calculated were compared with the experimental data.

  1. Interaction of cyclodextrins with human and bovine serum albumins: A combined spectroscopic and computational investigation

    Indian Academy of Sciences (India)

    Saptarshi Ghosh; Bijan Kumar Paul; Nitin Chattopadhyay

    2014-07-01

    Interaction of cyclodextrins (CDs) with the two most abundant proteins, namely human serum albumin (HSA) and bovine serum albumin (BSA), has been investigated using steady-state and time-resolved fluorometric techniques, circular dichroism measurements and molecular docking simulation. The study reveals that the three CDs interact differently on the fluorescence and fluorescence lifetimes of the serum albumins. However, fluorescence anisotropy and circular dichroism are not affected. Depending on their size, different CDs bind to the serum albumins in different positions, resulting in changes in the spectral behaviour of the proteins. Docking study suggests the probable binding sites of the three CDs with the proteins. Combined experimental and computational studies imply that sufficiently high concentration of CDs causes loosening of the rigid structures of these transport proteins, although their secondary structures remain intact. Thus, CDs are found to be safe for the serum proteins from the structural point of view.

  2. Moessbauer-Fresnel zone plate as nuclear monochromator

    Energy Technology Data Exchange (ETDEWEB)

    Mooney, T.M.; Alp, E.E.; Yun, W.B.

    1992-06-01

    Zone plates currently used in x-ray optics derive their focusing power from (a spatial variation of) the electronic refractive index -- that is, from the collective effect of electronic x-ray-scattering amplitudes. Nuclei also scatter x rays, and resonant nuclear-scattering amplitudes, particularly those associated with Moessbauer fluorescence, can dominate the refractive index for x-rays whose energies are very near the nuclear-resonance energy. A zone plate whose Fresnel zones are filled alternately with {sup 57}Fe and {sup 56}Fe ({sup 57}Fe has a nuclear resonance of natural width {Gamma} = 4.8 nano-eV at 14.413 keV; {sup 56}Fe has no such resonance) has a resonant focusing efficiency; it focuses only those x-rays whose energies are within several {Gamma} of resonance. When followed by an absorbing screen with a small pinhole, such a zone plate can function as a synchrotron-radiation monochromator with an energy resolution of a few parts in 10{sup 12}. The energy-dependent focusing efficiency and the resulting time-dependent response of a resonant zone plate are discussed.

  3. Spectroscopic and molecular modeling investigation on the binding of a synthesized steroidal amide to protein

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Hua-xin, E-mail: h.x.zhang@yeah.net; Liu, E.

    2014-09-15

    Owing to the various valuable biological activities, steroidal amides have become a hot topic in steroidal pharmaceutical chemistry. In this paper, an anti-tumor steroid derivate (DAAO) was synthesized and identified. The interaction between DAAO and human serum albumin (HSA) was studied by fluorescence spectra, circular dichroism (CD) spectra, molecular modeling and molecular probe techniques. The results suggested that DAAO had reacted with HSA through hydrogen bonds and van der Waals power. The formation of DAAO–HSA complex at ground state led to static quenching of HSA's fluorescence. The number of binding sites, binding constants, enthalpy change (ΔH{sup θ}), Gibbs free energy change (ΔG{sup θ}) and entropy change (ΔS{sup θ}) were calculated at different temperatures based on fluorescence quenching theory and classic equation. Molecular modeling investigation indicated that DAAO was more inclined to absorb on Sudlow's site I in subdomain IIA of HSA molecule on grounds of the lowest energy principle and steric hindrance effect. The binding location was further confirmed by fluorescence probe experiment using warfarin (site I probe) for displacement. Furthermore, the conformational changes of HSA in presence of DAAO were investigated by CD spectra. The results could provide new evidence explaining the relationship between the chemical structure and biological activity and may be useful for understanding the anti-cancer mechanism of steroidal drug. - Highlights: • A designed steroidal amide compound (DAAO) was synthesized by introducing amido bonds into a steroid nucleus. • DAAO binds to Sudlow's site I in HSA through hydrogen bonds and van der Waals power. • The interaction was a spontaneous and exothermic process with modest degree of reversibility. • The secondary structure of HSA and the microenvironment of TRP214 altered. • Amido bond in steroid nucleus (–NH–CO–) plays important role in stabling the structure of

  4. Mode of bindings of zinc oxide nanoparticles to myoglobin and horseradish peroxidase: A spectroscopic investigations

    Science.gov (United States)

    Mandal, Gopa; Bhattacharya, Sudeshna; Ganguly, Tapan

    2011-07-01

    The interactions between two heme proteins myoglobin (HMb) and horseradish peroxidase (HRP) with zinc oxide (ZnO) nanoparticles are investigated by using UV-vis absorption, steady state fluorescence, synchronous fluorescence, time-resolved fluorescence, FT-IR, atomic force microscopy (AFM) and circular dichroism (CD) techniques under physiological condition of pH˜7.4. The presence of mainly static mode in fluorescence quenching mechanism of HMb and HRP by ZnO nanoparticle indicates the possibility of formation of ground state complex. The processes of bindings of ZnO nanoparticles with the two proteins are spontaneous molecular interaction procedures. In both cases hydrogen bonding plays a major role. The circular dichroism (CD) spectra reveal that a helicity of the proteins is reduced by increasing ZnO nanoparticle concentration although the α-helical structures of HMb and HRP retain their identity. On binding to the ZnO nanoparticles the secondary structure of HRP molecules (or HMb molecules) remains unchanged while there is a substantial change in the environment of the tyrosin active site in case of HRP molecules and tryptophan active site in case of HMb molecules. Tapping mode atomic force microscopy (AFM) was applied for the investigation the structure of HRP adsorbed in the environment of nanoparticles on the silicon and on the bare silicon. HRP molecules adsorb and aggregate on the mica with ZnO nanoparticle. The aggregation indicates an attractive interaction among the adsorbed molecules. The molecules are randomly distributed on the bare silicon wafer. The adsorption of HRP in the environment of ZnO nanoparticle changes drastically the domains due to a strong interaction between HRP and ZnO nanoparticles. Similar situation is observed in case of HMb molecules. These findings demonstrate the efficacy of biomedical applications of ZnO nanoparticles as well as in elucidating their mechanisms of action as drugs in both human and plant systems.

  5. IR spectroscopic investigation of charge transfer at interfaces of organic semiconductors (Conference Presentation)

    Science.gov (United States)

    Beck, Sebastian; Hillebrandt, Sabina; Pucci, Annemarie

    2016-09-01

    In organic electronics, the interactions at interfaces between different organic and inorganic layers play a decisive role for device functionality and performance. Therefore, more detailed, quantitative studies of charge transfer (CT) at such interfaces are needed to improve the understanding of the underlying mechanisms. In this study we show that in-situ infrared spectroscopy can be used to investigate CT effects at organic/organic as well as inorganic/organic interfaces quantitatively. For different combinations of commonly used organic semiconductors such as 4,4´-bis(N-carbazolyl)-1,1´-biphenyl (CBP) or fluorinated zinc phthalocyanine (F4ZnPc) and inorganic contact materials such as molybdenum oxide (MoO3) or indium tin oxide (ITO) the CT at the interface was investigated using in-situ IR spectroscopy. The measurements were carried out under UHV conditions during film growth what enables a careful study of the influence of different parameters such as substrate temperature and layer thickness in a controlled way even on a nanometer scale. When the organic molecules are deposited onto the underlying layer charged and non-charged species form which can be identified and quantitatively analyzed in the IR spectra. It was also found that the deposition sequence can strongly influence the interface properties what might have strong implications on the layer stack design. For example, when MoO3 is deposited onto CBP, the CBP layer is strongly doped, due to diffusion of the deposited transition metal oxide clusters into the organic layer. Financial support by BMBF (project INTERPHASE) is gratefully acknowledged.

  6. Infrared spectroscopic investigations of environmental deNOx and hydrotreating catalysts

    Energy Technology Data Exchange (ETDEWEB)

    Topsoee, Nan-Yu

    1998-02-01

    The present work describes the application of infrared spectroscopy to the investigation of two very important of environmental catalyst systems, i.e. vanadia/titania catalysts for the selective catalytic reduction (SCR) of NOx by ammonia and molybdena/alumina catalyst systems for sulfur removal and other hydrotreating reactions. It is seen that the infrared studies have provided new insight into the surface structures present in the catalyst systems. Furthermore, and more importantly the results have made it possible to establish direct relationships between the fundamental molecular properties and the industrial performance. For these studies the application of a variety of different steady-state and transient FTIR techniques/approaches is shown to be very important. Infrared spectroscopy is one of the few techniques which can provide in situ surface information about real catalysts. Vanadia/titania deNOx catalysts are discussed. The reactivity of various surface species is discussed further based on transient temperature programmed surface reaction (TPSR) studies employing a combined in situ FTIR on-line mass spectrometric approach. The studies are performed by exposing different catalysts with chemisorbed NH{sub 3} to various reaction gases. Part II deals with the studies of hydrotreating catalysts. The catalysts (typically Co-Mo/Al{sub 2}O{sub 3} and Ni-Mo/Al{sub 2}O{sub 3}) are normally prepared in the oxidic (calcined) state but requires sulfiding in order to become activated. The infrared investigation of calcined alumina supported catalysts is discussed. The alumina support has a number of very specific hydroxyl groups. Mo is seen to interact with these groups resulting in the formation of monolayer-type structures bonded to the support via Mo-O-Al bridges. The monolayer structures are seen to be restricted to the original hydroxyl part of the alumina surface. It is seen that there is a preference for Mo to interact with the most basic Al-OH groups and

  7. Effect of chitosan/riboflavin modification on resin/dentin interface: spectroscopic and microscopic investigations.

    Science.gov (United States)

    Daood, Umer; Iqbal, Kulsum; Nitisusanta, Lorraine I; Fawzy, Amr S

    2013-07-01

    The aim of this study is to investigate the morphological and chemical changes of demineralized dentin collagen-matrix and resin/dentin interface associated with chitosan/riboflavin modification. Dentin disc specimens were prepared from sound molars, acid-etched with 35% phosphoric acid and modified with either 0.1% riboflavin or chitosan/riboflavin (Ch/RF ratios 1:4 or 1:1) and photo-activated by UVA. Morphological and chemical changes associated with surface modification were characterized by SEM and micro-Raman spectroscopy. Dentin surfaces of sound molars were exposed, acid-etched, and modified as described before. Etch-and-rinse dentin adhesive was applied, light-cured, and layered with resin-restorative composite. The resin infiltration and resin/dentin interface were characterized by micro-Raman spectroscopy and SEM. An open-intact collagen network-structure, formation of uniform hybrid-layer and higher resin infiltration were found with 0.1%RF and Ch/RF 1:4 modifications. Raman analysis revealed chemical changes and shifts in Amide bands with the modification of dentin collagen-matrix. The use of riboflavin and chitosan/riboflavin formulations to modify dentin-collagen matrix, with the defined ratios, stabilizes the collagen fibrillar network and enhances resin infiltration and hybrid layer formation. These preliminary results are encouraging for subsequent consideration of chitosan/riboflavin modification in adhesive dentistry.

  8. Structural and spectroscopic investigation of lanthanum-substituted strontium-oxybritholites

    Indian Academy of Sciences (India)

    K Boughzala; S Nasr; E Ben Salem; F Kooli; K Bouzouita

    2009-05-01

    Lanthanum-substituted strontium-oxybritholites, Sr10-La(PO4)6-(SiO4)O with = 0, 2 and 4, prepared by solid state reaction were investigated by chemical analysis, powder X-ray diffraction, Raman and 29Si MAS NMR spectroscopies. The refinements of powder XRD patterns of the substituted compounds by the Rietveld method showed that the lanthanum occupied the two metal sites, i.e. (4f) and (6h) sites into the apatite structure, with a clear preference for the (6h) sites. A progressive shift of the free oxygen O(4) towards the centre of the triangles formed by the metal-atoms in the (6h) positions was observed when the lanthanum content increased. It led to the formation of a Sr/La(2)-O(4) strong bond, which might have increased the stability of these compounds. The bands of Raman spectra were assigned to the vibration modes of PO4 and SiO4 groups. The comparison of the results of 29Si MAS NMR analysis with those obtained with the 31P previously reported, suggested that both species occupied the same crystallographic sites.

  9. Investigation on the inclusion and toxicity of acriflavine with cyclodextrins: A spectroscopic approach

    Science.gov (United States)

    Manivannan, C.; Meenakshi Sundaram, K.; Sundararaman, M.; Renganathan, R.

    2014-03-01

    Acriflavine hydrochloride (AFN) is a prospective drug worn in the eradication of HIV1 infection. The toxicity and adverse side effects renders the potent drug to limits its usage. However, to overcome the dilemma we have aimed to select carriers with great complexation efficiencies in different cyclodextrins (CDs) of varying cavity size. The interaction of AFN with α, β and γ-CDs were investigated using absorption and steady state as well as lifetime measurements. From the obtained data it was found that AFN fits in the cavity of α and β-CDs but unable to form inclusion complex with γ-CD. The effect of quencher molecules during the inclusion phenomena of AFN with CDs was explored via steady state measurements. The nature of binding forces responsible for the inclusion of AFN with CDs was discussed by using thermodynamic parameters. Using Benesi-Hildebrand equation the stoichiometry of AFN with CDs was predominantly found to be 1:1. To get deeper in situ, the in vitro toxicity of AFN and its complexation product were probed by Artemia salina sp. The toxicity of AFN was reduced when complexed with α and β-CDs.

  10. Micro-spectroscopic investigation of selenium-bearing minerals from the Western US Phosphate Resource Area

    Directory of Open Access Journals (Sweden)

    Gunter Mickey E

    2005-01-01

    Full Text Available Mining activities in the US Western Phosphate Resource Area (WPRA have released Se into the environment. Selenium has several different oxidation states and species, each having varying degrees of solubility, reactivity, and bioavailability. In this study we are investigating the speciation of Se in mine-waste rocks. Selenium speciation was determined using bulk and micro-x-ray absorption spectroscopy (XAS, as well as micro-x-ray fluorescence mapping. Rocks used for bulk-XAS were ground into fine powders. Shale used for micro-XAS was broken along depositional planes to expose unweathered surfaces. The near edge region of the XAS spectra (XANES for the bulk rock samples revealed multiple oxidation states, with peaks indicative of Se(-II, Se(IV, and Se(+VI species. Micro-XANES analysis of the shale indicated that three unique Se-bearing species were present. Using the XANES data together with ab initio fitting of the extended x-ray absorption fine structure region of the micro-XAS data (micro-EXAFS the three Se-bearing species were identified as dzharkenite, a di-selenide carbon compound, and Se-substituted pyrite. Results from this research will allow for a better understanding of the biogeochemical cycling of Se in the WPRA.

  11. Mid-infrared spectroscopic investigation of the perfect vitrification of poly(ethylene glycol) aqueous solutions.

    Science.gov (United States)

    Gemmei-Ide, Makoto; Miyashita, Takashi; Kagaya, Shigehiro; Kitano, Hiromi

    2015-10-01

    Crystallization/recrystallization behaviors of poly(ethylene glycol) (PEG) aqueous solutions with water contents (WC's) of ∼36-51 wt % were investigated by temperature-variable mid-infrared spectroscopy. At a WC of 43.2 wt %, crystallization and recrystallization of water and PEG were not observed. At this specific WC value (WCPV), perfect vitrification occurred. Below and above the WCPV value, crystallization/recrystallization behaviors changed drastically. The crystallization temperature below WCPV (237 K) was ∼10 K greater than that above WCPV (226 K). Recrystallization above and below WCPV occurred in one (213 K) and two (198 and 210 K) steps, respectively. These findings resulted from the difference in the (re)crystallization behaviors of water molecules associated with PEG chains with helical and random-coil conformations. These two types of water molecules might have limiting concentrations for their (re)crystallization, indicating that perfect vitrification might have occurred when the concentrations of the two types of water molecules were less than the limiting concentrations of their (re)crystallization.

  12. Spectroscopic investigation of plasma electrolytic borocarburizing on q235 low-carbon steel

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Run [Key Laboratory for Beam Technology and Materials Modification of Ministry of Education, College of Nuclear Science and Technology, Beijing Normal University, Beijing 100875 (China); Beijing Radiation Center, Beijing 100875 (China); Zhenjiang Watercraft College, Zhenjiang 212000, Jiangsu (China); Wang, Bin; Wu, Jie [Key Laboratory for Beam Technology and Materials Modification of Ministry of Education, College of Nuclear Science and Technology, Beijing Normal University, Beijing 100875 (China); Beijing Radiation Center, Beijing 100875 (China); Xue, Wenbin, E-mail: xuewb@bnu.edu.cn [Key Laboratory for Beam Technology and Materials Modification of Ministry of Education, College of Nuclear Science and Technology, Beijing Normal University, Beijing 100875 (China); Beijing Radiation Center, Beijing 100875 (China); Jin, Xiaoyue; Du, Jiancheng; Hua, Ming [Key Laboratory for Beam Technology and Materials Modification of Ministry of Education, College of Nuclear Science and Technology, Beijing Normal University, Beijing 100875 (China); Beijing Radiation Center, Beijing 100875 (China)

    2014-12-01

    Highlights: • The plasma discharge behaviors for PEB/C on steels were evaluated by OES. • Electron temperature, concentration, atomic ionization degree were calculated. • The decomposition mechanism of electrolyte and was analyzed. - Abstract: A plasma electrolytic borocarburizing process (PEB/C) in borax electrolyte with glycerin additive was employed to fabricate a hardening layer on Q235 low-carbon steel. Optical emission spectroscopy (OES) was utilized to investigate the spectroscopy characteristics of plasma discharge around the steel during PEB/C process. Some plasma parameters were calculated in terms of OES. The electron temperature and electron concentration in plasma discharge zone is about 3000–12,000 K and 2 × 10{sup 22} m{sup −3}–1.4 × 10{sup 23} m{sup −3}. The atomic ionization degrees of iron, carbon and boron are 10{sup −16}–10{sup −3}, and 10{sup −23}–10{sup −6}, 10{sup −19}–10{sup −4}, respectively, which depend on discharge time. The surface morphology and cross-sectional microstructure of PEB/C hardening layer were observed, and the electrolyte decomposition and plasma discharge behaviors were discussed.

  13. Vibrational spectroscopic and structural investigations of 2-amino-6-methoxy-3-nitropyridine: a DFT approach

    Energy Technology Data Exchange (ETDEWEB)

    Premkumar, S.; Asath, R. Mohamed; Mathavan, T.; Benial, A. Milton Franklin [Department of Physics, Nadar Mahajana Sangam S.Vellaichamy Nadar College, Tamil Nadu (India); Rekha, T.N.; Rajkumar, Beulah J.M.; Jawahar, A., E-mail: miltonfranklin@yahoo.com [Department of Physics, Lady Doak College, Tamilnadu (India)

    2015-12-15

    The conformational analysis of 2-amino-6-methoxy-3-nitropyridine molecule (AMNP) has been carried out using density functional theory calculations. The vibrational spectra of the molecule is simulated theoretically and compared experimentally, and the vibrational frequencies are assigned on the basis of potential energy distribution calculations. Electronic properties of the molecule derived from the theoretical ultraviolet–visible spectrum are validated experimentally. The higher non-linear optical activity of the molecule is indicated in the first-order hyperpolarizability calculations. The natural bond orbital and Mulliken atomic charge distribution analysis confirm intramolecular charge transfers and intramolecular interactions. The Frontier molecular orbitals are plotted, and the related molecular properties are calculated and discussed. The molecular electrostatic potential contour map is simulated. As the presence of intramolecular interactions and the associated charge transfers between the pyridine ring of AMNP molecule and the lone pair of oxygen is a common molecular feature of a pharmaceutical compound, this investigation paves the way for its possible biomedical applications. Further, the considerably higher non-linear optical (NLO) activity of the molecule identified suggests its potential applications in the design of new optical materials. (author)

  14. Investigation of Interaction Between Ozagrel and Human Serum Albumin by Spectroscopic and Electrochemical Methods

    Science.gov (United States)

    Li, S.; Wang, Li; Hao, J.; Wang, L.; Tong, Y.-J.; Fu, Z.-Q.; Zhang, A.-P.

    2017-01-01

    The interaction between ozagrel and human serum albumin (HSA) was investigated by fl uorescence spectroscopy, UV-Vis absorption spectroscopy, cyclic voltammetry (CV), differential pulse voltammetry (DPV), and Fourier transform infrared spectroscopy (FTIR) under simulative physiological conditions. The results of CV, DPV and fl uorescence titration revealed that ozagrel bound to HSA. The enthalpy change (ΔH) and the entropy change (ΔS) were derived to be positive values, indicating that the hydrophobic force played the main role in the binding of ozagrel with HSA. The binding distance between ozagrel and HSA was 1.75 nm. Upon binding with ozagrel, the conformation and the secondary structure of HSA molecules were changed. The percentage of α-helix and β-sheet structures decreased by 7.25% and 4.58%, respectively, while the percentage of a β-turn structure increased by 2.67%. The effect of common ions on the binding of ozagrel with HSA was also examined. This study will give an insight into the evaluation of the drug's stabi-lity during transport and its releasing effi ciency at the target site under simulative physiological conditions.

  15. Spectroscopic investigations on SrAl{sub 2}O{sub 4} polymorphs

    Energy Technology Data Exchange (ETDEWEB)

    Boutinaud, P., E-mail: philippe.boutinaud@ensccf.fr [Clermont Université, ENSCCF, Institut de Chimie de Clermont-Ferrand, BP 10448, F-63000 Clermont-Ferrand (France); Boyer, D. [Clermont Université, ENSCCF, Institut de Chimie de Clermont-Ferrand, BP 10448, F-63000 Clermont-Ferrand (France); Perthue, A. [Clermont Université, UBP, Institut de Chimie de Clermont-Ferrand, BP 10448, F-63000 Clermont-Ferrand (France); Mahiou, R. [CNRS, UMR 6296, ICCF, F-63177 Aubière (France); Cavalli, E. [Dipartimento di Chimica Generale ed Inorganica, Chimica Analitica, Chimica Fisica, Università di Parma, Parma (Italy); Brik, M.G. [Institute of Physics, University of Tartu, Riia 142, Tartu 51014 (Estonia)

    2015-03-15

    Nominally undoped and Eu{sup 3+} or Eu{sup 3+}–Dy{sup 3+} doped SrAl{sub 2}O{sub 4} powders are prepared using source chemicals of standard grade (99–99.99%) by solid state and sol–gel procedures, in order to vary the proportions of monoclinic (P2{sub 1}) and hexagonal (P6{sub 3} and P6{sub 3}22) polymorphs in the compounds. Electron spin resonance reveals systematic contamination of the compounds by transition metal ions. The emission properties of the materials are investigated at 77 K upon UV and blue excitations. The optical features are ascribed, for the essential, to Mn{sup 4+} ions. The spectroscopy of this ion in conjunction with X-ray diffraction data and theoretical considerations is used to individuate P6{sub 3}22, P6{sub 3} and P2{sub 1} phases in the doped and undoped SrAl{sub 2}O{sub 4} powders. - Highlights: • Different polymorphs of SrAl{sub 2}O{sub 4}, undoped or doped with Eu{sup 3+}, were synthesized. • Contamination by transition metals is proved by ESR and photoluminescence. • The Mn{sup 4+} spectroscopy allows the identification of the SrAl{sub 2}O{sub 4} polymorph.

  16. Synthesis and spectroscopic DNA binding investigations of dibutyltin N-(5-chlorosalicylidene)-leucinate

    Science.gov (United States)

    Zhang, Shufang; Yuan, Hongyu; Tian, Laijin

    2017-02-01

    A new dibutyltin N-(5-Chlorosalicylidene)-leucinate (DNCL) was synthesized by the reaction of dibutyltin dichloride with in situ formed potassium N-(5-chlorosalicylidene)-L-isoleucinate 3 characterized by elemental analysis, IR, 1H NMR (1H, 13C and 119Sn) spectra. The interaction between DNCL and calf thymus deoxyribonucleic acid (ctDNA) in a pH 7.4 Tris-HCl buffer solution was investigated by UV-Vis spectroscopy, fluorescence spectroscopy, and viscosity measurements. It was found that DNCL molecules could intercalate into the base pairs of DNA, forming a DNCL-DNA complex with a binding constant of Kf = 5.75 × 105 L mol-1 (310 K). The thermodynamic parameters enthalpy change (ΔH), entropy change (ΔS) and Gibbs free energy (ΔG) were calculated to be 1.16 × 105 J mol-1, 486.5 J K-1 mol -1 and -3.48 × 104 J mol-1 at 310 K, respectively. Hydrophobic interaction was the predominant intermolecular force in stabilizing the DNCL-DNA complex.

  17. Internal structure changes in bleached black human hair resulting from chemical treatments: A Raman spectroscopic investigation

    Science.gov (United States)

    Kuzuhara, Akio

    2014-11-01

    In order to investigate in detail the influence of chemical treatments (reduction, hydrolyzed eggwhite protein (HEWP) treatment, and oxidation) on damaged hair keratin fibers, the structure of cross-sections at various depths of excessively bleached (damaged) black human hair resulting from a permanent waving process was directly analyzed using Raman spectroscopy. It was found that L-cysteine (CYS) largely reacted with the gauche-gauche-gauche (GGG) conformation of disulfide (-SS-) groups (while CYS did not react with the trans-gauche-trans (TGT) conformation). In particular, not only the GGG content, but also the cysteic acid content existing throughout the cortex region of the excessively bleached human hair remarkably decreased by performing the oxidation process after reduction. On the other hand, the GGG content of the excessively bleached black human hair increased, while the TGT content decreased by performing the oxidation process after reduction and then HEWP treatment processes. From these experiments, the authors concluded that some of the keratin associated protein (KAP), which has a rich -SS- content and cysteic acid content was eluted from the cortex region along with the disconnection of -SS- groups, thereby leading to the remarkable reduction in the reconnection of -SS- groups of the excessively bleached black human hair after the permanent waving process (the reduction and oxidation processes). Also, the authors concluded that the HEWP treatment process in the permanent waving process caused the reconstruction of the KAP, thereby contributing to the acceleration of the reconnection of -SS- groups during the oxidation process.

  18. Spectroscopic investigations of arrays containing vertically and horizontally aligned silicon nanowires

    Science.gov (United States)

    Volpati, Diogo; Mårtensson, Niklas; Anttu, Nicklas; Viklund, Per; Sundvall, Christian; Åberg, Ingvar; Bäckström, Joakim; Olin, Håkan; Björk, Mikael T.; Castillo-Leon, Jaime

    2016-12-01

    The properties of nanowire arrays have been investigated mainly in comparison with isolated nanowires or thin films, owing to the difficulty in controlling the nanowire alignment. In this study, we report on arrays containing vertically or horizontally aligned silicon nanowires, whose alignment and structure were determined using x-ray diffraction and scanning electron microscopy. The Raman spectra of the nanowire arrays differ from those of isolated nanowires because of distinct heat dissipation rates of the absorbed energy from the laser, in agreement with recent theoretical calculations. The tailored alignment of the nanowires on solid substrates up to 1 inch of diameter also enabled the observation of resonance modes associated with light trapped into the nanowires. This was proven by comparing the light absorbed and scattered by the arrays, and may be exploited to enhance light harvesting in tandem solar cells. Significantly, the control of the assembly of nanowire arrays may have a direct impact on bottom-up technologies of high anisotropy nanomaterials.

  19. The Human Telomere Sequence, (TTAGGG4, in the Absence and Presence of Cosolutes: A Spectroscopic Investigation

    Directory of Open Access Journals (Sweden)

    Vishal R. Sharma

    2014-01-01

    Full Text Available Historically, biophysical studies of nucleic acids have been carried out under near ideal conditions, i.e., low buffer concentration (e.g., 10 mM phosphate, pH 7, low ionic strength (e.g., 100 mM and, for optical studies, low concentrations of DNA (e.g., 1 × 10−6 M. Although valuable structural and thermodynamic data have come out of these studies, the conditions, for the most, part, are inadequate to simulate realistic cellular conditions. The increasing interest in studying biomolecules under more cellular-like conditions prompted us to investigate the effect of osmotic stress on the structural and thermodynamic properties of DNA oligomers containing the human telomere sequence (TTAGGG. Here, we report the characterization of (TTAGGG4 in potassium phosphate buffer with increasing percent PEG (polyethylene glycol or acetonitrile. In general, the presence of these cosolutes induces a conformational change from a unimolecular hybrid structure to a multimolecular parallel stranded structure. Hence, the structural change is accompanied with a change in the molecularity of quadruplex formation.

  20. Nuclear structure investigations of 84Sr and 86Sr using γ-ray spectroscopic methods

    Science.gov (United States)

    Duckwitz, H.; Petkov, P.; Thomas, T.; Ahn, T.; Blazhev, A.; Cooper, N.; Fransen, C.; Hinton, M.; Ilie, G.; Jolie, J.; Werner, V.

    2017-09-01

    To investigate the low-spin structure of 84Sr and 86Sr, two fusion-evaporation experiments using the (p,2n) reaction have been performed. The data have been evaluated in terms of γ-ray spectroscopy, i.e. the level scheme was built up, branching intensities were determined, nuclear state spin and parity assignments were made after γγ angular correlation analyses. The previously known level scheme information was extended. In addition, lifetimes were determined by means of the Doppler Shift Attenuation Method (DSAM). In 86Sr, a new method for lifetime determinations, the Spectral Difference Method (SDM), was applied for the first time. In cases where all necessary input variables were known, reduced transition strengths were calculated with Monte Carlo simulated probability density functions. It is stressed that linear error propagation for the calculated errors of reduced transition strengths is not universally applicable. As both nuclei lie in the vicinity of the N=50 neutron shell closure and on a possible proton subshell closure of the 2p3/2 orbital at Z=38, Nuclear Shell Model calculations for 84Sr, 86Sr, and 88Sr have been performed in the truncated (2p3/2, 1f5/2, 2p1/2, 1g9/2) model space for protons and neutrons with the empirical JUN45 residual interaction. The comparison between experimental results and theoretical predictions show a large degree of consistency.

  1. Spectroscopic investigation of the electronic structure of the chlorine molecule in the VUV

    Science.gov (United States)

    Moeller, Thomas; Jordan, Bernhard; Gürtler, Peter; Zimmerer, Georg; Haaks, Dieter; Le Calve, Jacques; Castex, Marie-Claude

    1983-04-01

    Vacuum ultraviolet absorption spectroscopy and fluorescence analysis under selective optical excitation have been combined to deduce the electronic structure of Cl 2. Between 73000 and 81000 cm -1 five bound electronic states could be analysed. Some of them are affected by pronounced Rydberg—valence mixing. Especially the 1 1∑ u+ state clearly yields a double-well structure which results from an avoided crossing between an ionic valence and a Rydberg state. The double-well structure is responsible for an irregular vibrational sequence between 73000 and 74500 cm -1 which either prevented an analysis in earlier investigations or lead to wrong assignments. The FC factors of the 1 1∑ u+ fluorescence with its bound—bound and bound—free contributions between ≈ 73000 and 50000 cm -1 are also severely affected by the double-well structure. The results are compared with the first ab initio calculations of the electronic structure of Cl 2. In general, excellent agreement is found.

  2. Investigation of the interaction of deltamethrin (DM) with human serum albumin by multi-spectroscopic method

    Science.gov (United States)

    Wang, Jiaman; Ma, Liang; Zhang, Yuhao; Jiang, Tao

    2017-02-01

    The interaction of Deltamethrin (DM) with human serum albumin (HSA) under the condition of simulating human blood pH environment (pH = 7.4) was investigated by fluorescence, UV-Vis absorbance and circular dichroism (CD) spectroscopy. It was shown that DM was a static quencher of HSA. The binding constants (Ka) are 3.598 × 104 L mol-1 (25 °C); the thermodynamic parameters (ΔH = -3.269 × 104 kJ mol-1, ΔS = -22.81 kJ mol-1 k-1, ΔG = -25889.8 kJ mol-1) obtained with the thermodynamic equation. The hydrogen bond and Vander Waals were the main driving force. The effect of DM on the conformation of HSA was observed by three-dimensional (3D) fluorescence and circular dichroism spectra, indicating that the interaction between DM and HSA was achieved through the binding of DM with the tryptophan and tyrosine residues of HSA. The study on the interaction of DM and Bovine Serum Albumin (BSA) was researched and compared. Difference exists in the interactions of with each of the serum albumins. We will verify and supplement that DM residue in animals and human metabolism, toxicology and other mechanisms are different.

  3. Non intrusive spectroscopic investigations of soot and unburnt hydrocarbons in combustion gases

    Science.gov (United States)

    Hilton, Moira; Arrigone, Giovanni M.; Miller, Michael N.

    1999-09-01

    Fourier Transform Infrared (FTIR) spectroscopy was used to investigate the IR spectral absorption of soot particles from a Palas smoke generator. A TSI Condensation Particle Counter was used to quantify the number of soot particles produced and this was related to the intensity of the IR absorption. The broad band IR absorption increases with soot particle count but quantitative measurements of total soot mass were not obtained because accurate size distributions of the particles were not available. A sample of gas turbine engine exhaust gas was analyzed by Gas Chromatography-Mass Spectroscopy to determine the primary constituent unburnt hydrocarbon (UHC) species. Their relative proportions were measured with a Flame Ionization Detector (FID). These species are predominantly unsaturated C2 to C6 hydrocarbons. The infrared absorption spectrum of the exhaust gas sample was compared with that of combustion products from a laboratory kerosene burner using a multipass White cell. These were also compared with reference spectra and IR spectra of UHCs obtained non-intrusively from gas turbine engine tests. There are IR spectral band shape differences indicating that the relative proportions of the constituent UHCs in gas turbine exhaust are different from those in a kerosene burner plume.

  4. Raman spectroscopic investigation of spinal cord injury in a rat model

    Science.gov (United States)

    Saxena, Tarun; Deng, Bin; Stelzner, Dennis; Hasenwinkel, Julie; Chaiken, Joseph

    2011-02-01

    Raman spectroscopy was used to study temporal molecular changes associated with spinal cord injury (SCI) in a rat model. Raman spectra of saline-perfused, injured, and healthy rat spinal cords were obtained and compared. Two injury models, a lateral hemisection and a moderate contusion were investigated. The net fluorescence and the Raman spectra showed clear differences between the injured and healthy spinal cords. Based on extensive histological and biochemical characterization of SCI available in the literature, these differences were hypothesized to be due to cell death, demyelination, and changes in the extracellular matrix composition, such as increased expression of proteoglycans and hyaluronic acid, at the site of injury where the glial scar forms. Further, analysis of difference spectra indicated the presence of carbonyl containing compounds, hypothesized to be products of lipid peroxidation and acid catalyzed hydrolysis of glycosaminoglycan moieties. These results compared well with in vitro experiments conducted on chondroitin sulfate sugars. Since the glial scar is thought to be a potent biochemical barrier to nerve regeneration, this observation suggests the possibility of using near infrared Raman spectroscopy to study injury progression and explore potential treatments ex vivo, and ultimately monitor potential remedial treatments within the spinal cord in vivo.

  5. Raman spectroscopic and mass spectrometric investigations of the hydrogen isotopes and isotopically labelled methane

    Energy Technology Data Exchange (ETDEWEB)

    Jewett, J.R., Fluor Daniel Hanford

    1997-02-24

    Suitable analytical methods must be tested and developed for monitoring the individual process steps within the fuel cycle of a fusion reactor and for tritium accountability. The utility of laser-Raman spectroscopy accompanied by mass spectrometry with an Omegatron was investigated using the analysis of all hydrogen isotopes and isotopically labeled methanes as an example. The Omegatron is useful for analyzing all hydrogen isotopes mixed with the stable helium isotopes. The application of this mass spectrometer were demonstrated by analyzing mixtures of deuterated methanes. In addition, it was employed to study the radiochemical Witzbach exchange reaction between tritium and methanes. A laser-Raman spectrometer was designed for analysis of tritium-containing gases and was built from individual components. A tritium-compatible, metal-sealed Raman cuvette having windows with good optical properties and additional means for measuring the stray light was first used successfully in this work. The Raman spectra of the hydrogen isotopes were acquired in the pure rotation mode and in the rotation-vibration mode and were used for on. The deuterated methanes were measured by Raman spectroscopy, the wavenumbers determined were assigned to the corresponding vibrations, and the wavenumbers for the rotational fine-structure were summarized in tables. The fundamental Vibrations of the deuterated methanes produced Witzbach reactions were detected and assigned. The fundamental vibrations of the molecules were obtained with Raman spectroscopy for the first time in this work. The @-Raman spectrometer assembled is well suited for the analysis of tritium- containing gases and is practical in combination with mass spectrometry using an Omegatron, for studying gases used in fusion.

  6. Spectroscopic investigation on the interaction of some surfactant-cobalt(III) complexes with serum albumins

    Energy Technology Data Exchange (ETDEWEB)

    Vignesh, Gopalaswamy; Nehru, Selvan; Manojkumar, Yesaiyan; Arunachalam, Sankaralingam, E-mail: arunasurf@yahoo.com

    2014-01-15

    The interaction of HSA/BSA with single and double chain surfactant-cobalt(III) complexes, cis-[Co(phen){sub 2}(UA)Cl](ClO{sub 4}){sub 2}·2H{sub 2}O (1), cis-[Co(phen){sub 2}(UA){sub 2}](ClO{sub 4}){sub 3}·2H{sub 2}O (2), cis-[Co(en){sub 2}(UA)Cl](ClO{sub 4}){sub 2}·2H{sub 2}O (3), cis-[Co(en){sub 2}(UA){sub 2}](ClO{sub 4}){sub 3}·2H{sub 2}O (4), were investigated by steady state fluorescence, UV–vis absorption, synchronous, three dimensional fluorescence and circular dichroism spectroscopy. The results reveal that the quenching of HSA/BSA by all the four complexes takes place through static mechanism. The binding constant, binding sites and thermodymamic parameter were calculated. The results illustrate that the double chain surfactant-cobalt(III) complexes bind more strongly than the corresponding single chain complexes. The distance between donor (HSA/BSA) and acceptor (surfactant-cobalt(III) complexes) was obtained according to FRET. The results of synchronous, three dimensional and circular dichroism spectroscopy studies show that all the complexes caused considerable amount of conformational and some amount of environment changes in HSA/BSA. -- Highlights: • Binding of single and double chain surfactant-cobalt(III) complexes with serum albumins. • Hydrophobic attraction plays a major role in the binding process. • Binding induces considerable amount of conformational changes in the protein.

  7. Spectroscopic investigation of the charge dynamics of heavy ions penetrating solid and gaseous targets

    Energy Technology Data Exchange (ETDEWEB)

    Korostiy, S.

    2007-01-15

    This thesis presents the study of the slowing down process of fast heavy ions inside matter. In the framework of this research, the influence of the target density on the stopping process is investigated. Experiments on the interaction of {sup 48}Ca{sup 6+}-{sup 48}Ca{sup 10+} and {sup 26}Mg{sup 5+} ion beams with initial energies of 11.4 MeV/u and 5.9 MeV/u with solid and gaseous targets have been carried out. A novel diagnostic method, X-ray spectroscopy of K-shell projectile radiation, is used to determine the ion charge state in relation to its velocity during the penetration of fast heavy ions inside the stopping material. A spatially resolved analysis of the projectile and target radiation in solids is achieved for the first time. The application of low-density silica aerogels as stopping media provided a stretching of the ion stopping length by 20 - 100 times in comparison with solid quartz. The Doppler Effect observed on the projectile K-shell spectra is used to calculate the ion velocity in dependence on the ion penetration depth in the target material. A comparative analysis of K{sub {alpha}} spectra of fast heavy ions is performed in solid (silica aerogels) and gaseous targets (Ar and Ne gases) at the same ion energy. It is shown that the dominant role of collisions in dense matter leads to an increase of the effective ionization cross section at high ion velocity and suppression of the electron capture to the projectile ion excited states at low ion velocity. As a result, an increase of the ion charge state in dense matter is observed. The experimentally detected effects are interpreted with numerical calculations of the projectile population kinetics, which are in good agreement with measurements. (orig.)

  8. A spectroscopic investigation of the interaction between c-MYC DNA and tetrapyridinoporphyrazinatozinc(II).

    Science.gov (United States)

    Hassani, Leila; Fazeli, Zahra; Safaei, Elham; Rastegar, Hossein; Akbari, Minoo

    2014-06-01

    The c-MYC gene plays an important role in the regulation of cell proliferation and growth and it is overexpressed in a wide variety of human cancers. Around 90% of c-MYC transcription is controlled by the nuclease-hypersensitive element III1 (NHE III1), whose 27-nt purine-rich strand has the ability to form a G-quadruplex structure under physiological conditions. Therefore, c-MYC DNA is an attractive target for drug design, especially for cancer chemotherapy. Here, the interaction of water-soluble tetrapyridinoporphyrazinatozinc(II) with 27-nt G-rich strand (G/c-MYC), its equimolar mixture with the complementary sequence (GC/c-MYC) and related C-rich oligonucleotide (C/c-MYC) is investigated. Circular dichroism (CD) measurements of the G-rich 27-mer oligonucleotide in 150 mM KCl, pH 7 demonstrate a spectral signature consistent with parallel G-quadruplex DNA. Furthermore, the CD spectrum of the GC rich oligonucleotide shows characteristics of both duplex and quadruplex structures. Absorption spectroscopy implies that the complex binding of G/c-MYC and GC/c-MYC is a two-step process; in the first step, a very small red shift and hypochromicity and in the second step, a large red shift and hyperchromicity are observed in the Q band. Emission spectra of zinc porphyrazine are quenched upon addition of three types of DNA. According to the results of spectroscopy, it can be concluded the dominant binding mode is probably, outside binding and end stacking.

  9. Spectroscopic and bond-topological investigation of interstitial volatiles in beryl from Slovakia

    Science.gov (United States)

    Fridrichová, Jana; Bačík, Peter; Bizovská, Valéria; Libowitzky, Eugen; Škoda, Radek; Uher, Pavel; Ozdín, Daniel; Števko, Martin

    2016-06-01

    Nine beryl samples from Western Carpathians, Slovakia, were investigated by infrared and Raman spectroscopy and differential thermal analysis. Two types of water H2O I and H2O II were detected. Infrared spectroscopy proved the presence of water type I and II in the presence of alkali cations with several bands: (1) symmetric stretching vibration—ν1; (2) antisymmetric stretching mode—ν3; (3) bending vibration—ν2. The presence of singly and doubly coordinated type II water (IIs and IId) was confirmed by single-crystal IR spectroscopy. From Raman spectra a band at 3606 cm-1 was assigned to ν1 of water type I and the range of 3597-3600 cm-1 to water type II. The presence of doubly coordinating water indicates a relatively highly hydrated environment with the presence of alkali ions including Na as the dominant cation coordinated by H2O II. CO2 bands were detected only by single-crystal IR spectroscopy. Thermal analysis proved total water loss in the range of 1.4-2.0 wt% and three main dehydration events. Based on the study of bond-topological arrangements two molecules of H2O IId are each bound with two H···O1 bonds and one Na-OW bond with an angular distortion, and by releasing one H2O molecule more stable H2O IIs is produced. The H2O I molecule is bound only by two equivalent hydrogen bonds. The H2O IIs molecule with a Na-OW bond strength of 0.28 vu and two H···O1 bonds of 0.14 vu without any forced angular distortion is the most stable of all.

  10. Effect of hybrid oxidation on the titanium oxide layer's properties investigated by spectroscopic methods

    Science.gov (United States)

    Jasinski, J. J.; Kurpaska, L.; Lubas, M.; Lesniak, M.; Jasinski, J.; Sitarz, M.

    2016-12-01

    In this work the study of hybrid Ti Grade 2 during oxidation using FADT - fluidized bed atmospheric diffusive treatment and PVD - magnetron sputtering have been investigated. Additionally, the influence of the oxidation method on the change in the mechanism of oxygen transport to the substrate have been discussed (phenomenon responsible for the improvement of bioactivity). Presented method consists in forming the titanium surface layer saturated with oxygen due to the diffusion and deposition of a thin homogeneous oxide coating on the Ti surface. Discussed processes diminish the surface roughness and increase bio-compatibility of the surface, which results in easier hydroxyapatite cluster deposition. The diffusion process was conducted on Al2O3 fluidized bed, with air as the fluidizing factor at 913 K for 8 h. The deposition of the oxide coatings were carried out with magnetron sputtering, with the use of a TiO2 target at a pressure of 3 × 10-2 mbars and power of 350 W. To evaluate the effects of hybrid oxidation and to determine the mechanism of oxygen transport, the following research methods have been applied: spectroscopy (GDOS, SIMS, RS), microscopic methods (SEM-EDS, SEM-EBSD, TEM-EFTEM), X-ray tests (μ-XRD, GID). Obtained test results were used to identify the type of oxide coatings, to assess the thickness of the layers and to study the influence of crystallographic orientation on oxygen transport and concentration in the surface layer and in the oxide coating. It has been found that the formation of oxide coatings created by using the hybrid method (FADT + PVD leads to a change in oxygen concentration in the substrate due to introduced defects. This phenomenon is in opposition to the conventional methods such as: electrochemical or laser oxidation. In contrast, forming a tight homogeneous oxide coating on Ti surface improves the biocompatibility, which is particularly important in the context of biomedical applications.

  11. Magnetic and Moessbauer studies of Ni substituted Li-Zn ferrite

    Energy Technology Data Exchange (ETDEWEB)

    Soibam, Ibetombi [Department of Physics, Manipur University, Canchipur 795 003 (India)], E-mail: ibetombi_phys@rediffmail.com; Phanjoubam, Sumitra [Department of Physics, Manipur University, Canchipur 795 003 (India); Prakash, C. [Directorate of ER and IPR, DRDO Bhawan, Rajaji Marg, New Delhi 110 011 (India)

    2009-09-15

    Li-Zn ferrites substituted with Ni having the compositional formula Li{sub 0.4-0.5x}Zn{sub 0.2}Ni{sub x}Fe{sub 2.4-0.5x}O{sub 4} where x=0.02{<=}x{<=}0.1 in steps of 0.02 were fabricated by the citrate precursor method. This method has been employed to get nanosized particles and good magnetic properties. The spinel phase structure of the prepared ferrites was confirmed by XRD analysis. The effect of Ni concentration on magnetic properties such as saturation magnetization and Curie temperature were investigated. A good knowledge of these magnetic properties is desirable from application point of view. The values observed are large and both quantities were found to decrease with substitution. The saturation magnetizations were found to vary from 78 to 94 emu/gm while the Curie temperature which limits the operating temperature of the system ranges between 563 and 584 {sup o}C. Moessbauer data were also recorded at room temperature and the hyperfine parameters like isomer shift, quadrupole splitting and internal magnetic field estimated. The results obtained and mechanisms involved are discussed.

  12. DyNi{sub 2}Mn-magnetisation and Moessbauer spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Wang Jianli; Campbell, Stewart James, E-mail: stewart.campbell@adfa.edu.au [University of New South Wales, School of Physical, Environmental and Mathematical Sciences (Australia); Kennedy, Shane Joseph [ANSTO, Bragg Institute (Australia); Dou Shixue [University of Wollongong, Institute for Superconductivity and Electronic Materials (Australia); Wu Guangheng [Chinese Academy of Science, Institute of Physics (China)

    2012-03-15

    The physical properties of DyNi{sub 2}Mn doped with {sup 57}Fe have been investigated by X-ray diffraction, magnetisation (10-300 K) and {sup 57}Fe Moessbauer spectroscopy measurements (5-300 K). DyNi{sub 2}Mn({sup 57}Fe) crystallizes in the MgCu{sub 2}-type cubic structure (Fd{sup }-3m space group). The ordering temperature is found to be T{sub C} = 99(2) K, much higher than those of DyNi{sub 2} ({approx}22 K) and DyMn{sub 2} ({approx}35 K). Analyses of isothermal M-H curves and the related Arrott plots confirm that the magnetic phase transition at T{sub C} is second order. The magnetic entropy change around T{sub C} is 4.0 J/kg K for a magnetic field change of 0 T to 5 T. The spectra above T{sub C} exhibit features consistent with quadrupolar effects while below T{sub C} the spectra exhibit magnetic hyperfine splitting. The Debye temperature for DyNi{sub 2}Mn has been determined as {theta}{sub D} = 200(20) K from a fit to the variable temperature isomer shift IS(T).

  13. Characterization of a mechanochemically activated titanium-hematite mixture: Moessbauer spectroscopy study

    Energy Technology Data Exchange (ETDEWEB)

    Cristobal, A.A. [Division Ceramicos - INTEMA, Universidad Nacional de Mar del Plata - CONICET, Av. J.B.Justo 4302, B7608FDQ Mar del Plata (Argentina); Ramos, C.P., E-mail: ciramos@cnea.gov.a [GIyA - CAC - CNEA, Av. Gral. Paz 1499, 1650 San Martin, Bs. As. (Argentina); CONICET (Argentina); Botta, P. [Division Ceramicos - INTEMA, Universidad Nacional de Mar del Plata - CONICET, Av. J.B.Justo 4302, B7608FDQ Mar del Plata (Argentina); Aglietti, E.F. [Centro de Tecnologia de Recursos Minerales y Ceramica - CETMIC, CONICET- CIC, Camino Parque Centenario y 506, B1897ZCA M.B.Gonnet (Argentina); Saragovi, C. [GIyA - CAC - CNEA, Av. Gral. Paz 1499, 1650 San Martin, Bs. As. (Argentina); Porto, J.M. [Division Ceramicos - INTEMA, Universidad Nacional de Mar del Plata - CONICET, Av. J.B.Justo 4302, B7608FDQ Mar del Plata (Argentina)

    2009-10-01

    Mechanochemical processes involving reactions between metals and crystalline oxides are of interest because of their potential technological applications in structural, magnetic or electric materials. In addition they can contribute to the understanding of the natural occurring processes that lead to the formation of minerals and soils. The controlled studies of how the distribution of cations in the titanomagnetites takes place can help toward building a model for the nature of their magnetism and, since they are the primary carriers of rock and soil magnetism, are therefore intensively investigated in many experimental and theoretical studies. In behalf of a better comprehension of the thermal, physical-chemical, magnetic and hyperfine behavior, we have considered a titanium and hematite mixture, with molar ratio Ti:Fe{sub 2}O{sub 3} of 1:2, mechanochemically activated during different activation times. We have studied the development of new phases by X-ray diffraction, scanning electron microscopy and Moessbauer spectroscopy. The evolution from the starting materials affected by different milling times and subsequent annealing shows that Ti reduces the Fe ions in the Fe{sub 2}O{sub 3} lattice, partly to Fe{sup 2+} and partly to metallic Fe.

  14. Electrochemical and conversion electron Moessbauer study of corrosion induced by acid rain

    Energy Technology Data Exchange (ETDEWEB)

    Vertes, C.; Lakatos-Varsanyi, M.; Vertes, A. (Dept. of Physical Chemistry and of Nuclear Chemistry, Eoetvoes Univ., Budapest (Hungary)); Meisel, W.; Guetlich, P. (Inst. of Inorganic Chemistry and Analytical Chemistry, Univ. Mainz (Germany))

    1993-04-01

    The passivation of low carbon steel was studied in aqueous solution of 0.5M Na[sub 2]SO[sub 4]+0.001M NaHSO[sub 3] (pH 3.5, 6.5 and 8.5) which can be considered as a model of acid rain. The used conversion electron Moessbauer spectroscopy (CEMS) with the complementary electrochemical investigations proved that the sulfite ions induce pitting corrosion at pH 3.5 and 6.5, while the measurements showed much weaker pitting at pH 8.5. The compositions and thicknesses of the passive films formed during the electrochemical treatments are determined from the CEM spectra. Only [gamma]-FeOOH was found on the surface of the samples at pH 6.5 and 8.5. Nevertheless, at pH 3.5 the sextet belonging to Fe[sub 3]C appears in the spectra, and also FeSO[sub 4].H[sub 2]O could be detected in low concentration. (orig.).

  15. Trace cobalt speciation in bacteria and at enzymic active sites using emission Moessbauer spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Kamnev, A.A.; Antonyuk, L.P.; Smirnova, V.E.; Serebrennikova, O.B. [Laboratory of Biochemistry, Institute of Biochemistry and Physiology of Plants and Microorganisms, Russian Academy of Sciences, Saratov (Russian Federation); Kulikov, L.A.; Perfiliev, Yu.D. [Laboratory of Nuclear Chemistry Techniques, Department of Radiochemistry, Faculty of Chemistry, Moscow State University (Russian Federation)

    2002-02-01

    {sup 57}Co emission Moessbauer spectroscopy (EMS) allows the chemical state of cobalt, as influenced by its coordination environment, to be monitored in biological samples at its physiological (trace) concentrations. To draw attention to EMS as a valuable tool for speciation of cobalt in biocomplexes, the process of cobalt(II) metabolism in cells of the plant growth-promoting rhizobacterium Azospirillum brasilense Sp245 was investigated using EMS of {sup 57}Co{sup II}-doped bacterial cells. EMS measurements also showed {sup 57}Co{sup II}-activated glutamine synthetase (GS, a key enzyme of nitrogen metabolism, isolated from this bacterium) to have two different cobalt(II) forms at its active sites, in agreement with data available on other bacterial GSs. Chemical after-effects following electron capture by the nucleus of the parent {sup 57}Co{sup II} during the {sup 57}Co{yields}{sup 57}Fe transition, which contribute to the formation of a stabilised daughter {sup 57}Fe{sup III} component along with the nucleogenic {sup 57}Fe{sup II} forms, are also briefly considered. (orig.)

  16. Performance of new solid state {gamma}-detectors in {sup 57}Fe Moessbauer spectroscopy experiments

    Energy Technology Data Exchange (ETDEWEB)

    Dellmann, Til; Klauss, Hans-Henning [Institute of Solid State Physics, TU Dresden (Germany)

    2011-07-01

    Usually, proportional counter tubes are used in {sup 57}Fe Moessbauer spectroscopy for the detection of the 14.4 keV transition line. % and further signal processing. The recent developement of Si-based solid state detectors led to commercially available drift detectors (SDD) and high purity PiN diodes without the necessity of cooling with liquid nitrogen. First applications of SDD detectors in the analysis of minerals are already highly promising. In this talk, we present a detailed comparison between the three detector types and their use in Moessbauer spectroscopy using a standard absorber-source-combination (metallic iron with a 2.0 GBq {sup 57}Co/Rh source) in absorbtion geometry. Starting with the definition of a global efficiency function, which optimises the goodness of a Moessbauer spectrum and thus the required measurement time, we examined the influence of the intrinsic detector parameters on the global efficiency.

  17. {sup 237}Np and {sup 57}Fe Moessbauer study of NpFeGa{sub 5}

    Energy Technology Data Exchange (ETDEWEB)

    Homma, Y., E-mail: yhomma@imr.tohoku.ac.jp [Tohoku University, Institute for Materials Research (Japan); Nakada, M. [Japan Atomic Energy Research Institute, Nuclear Science and Engineering Directorate (Japan); Nakamura, A. [Japan Atomic Energy Research Institute, Advance Science Research Center (Japan); Nasu, S.; Aoki, D. [Tohoku University, Institute for Materials Research (Japan); Sakai, H.; Ikeda, S.; Yamamoto, E.; Haga, Y.; Onuki, Y. [Japan Atomic Energy Research Institute, Advance Science Research Center (Japan); Shiokawa, Y. [Tohoku University, Institute for Materials Research (Japan)

    2006-02-15

    {sup 57}Fe and {sup 237}Np Moessbauer Omeasurements have been performed for NpFeGa{sub 5}, which is one of the so-called neptunium 1-1-5 compounds. The {sup 57}Fe Moessbauer spectra below T{sub N} = 118 K show the magnetically ordered state. The magnitude of the hyperfine magnetic field at the {sup 57}Fe nucleus is determined to be 1.98 {+-} 0.05 T at 10 K. From the {sup 237}Np Moessbauer spectrum at 10 K, the hyperfine magnetic field at the {sup 237}Np nucleus is 203 T and the hyperfine coupling constant is determined to be 237 T/{mu}{sub B} using the Np atomic magnetic moment of 0.86 {mu}{sub B} determined by the neutron diffraction study.

  18. Selected applications of {sup 57}Fe Moessbauer spectroscopy to mineral studies

    Energy Technology Data Exchange (ETDEWEB)

    Grave, E. de; Eeckhout, S.G. [University of Gent, Department of Subatomic and Radiation Physics (Belgium); McCammon, C.A. [University of Bayreuth, Bayerisches Geoinstitut (Germany)

    1999-11-15

    The microscopic models which are commonly used to interpret the temperature variations of the centre shifts and quadrupole splittings observed from the Moessbauer spectra of iron-containing minerals are briefly presented and illustrated using the results of recent studies of ortho- and clinopyroxenes. The importance of applied-field Moessbauer spectroscopy for the determination of the electric field gradient is indicated. Aspects of the magnetic spectra of Fe{sup 2+}-bearing minerals emphasise the benefit of using external fields to elucidate the nature of the magnetic ordering. Two Fe{sup 3+} minerals, bernalite and franklinite, serve as examples to illustrate this point. Finally, two applications of the Moessbauer milliprobe technique are presented: the characterisation of inclusions in diamond, and the determination of the oxidation state of a new iron uranyl sulfate mineral, deliensite.

  19. Structure and function of proteins investigated by crystallographic and spectroscopic time-resolved methods

    Science.gov (United States)

    Purwar, Namrta

    crystal. Time-resolved X-ray data collected at pH's of 4, 7 and 9 demonstrate that pH alters the kinetics of the PYP photocycle dramatically. At pH 4 the photocycle lasts almost one order of magnitude longer in time compared to pH 7. The final intermediate that accumulates at both pH 7 and pH 4 is absent at pH 9. Results from the dose- and the pH-dependent time-resolved crystallographic experiments show that it is imperative to carefully control the conditions under which time-resolved data are collected. With these considerations we collected a comprehensive time-series from nanoseconds to seconds at 14 different temperature settings from -40 °C to 70 °C. Results from time-resolved crystallography are corroborated by employing time-resolved absorption spectroscopy. For this, absorption spectra on crystals and solution are collected by a fast micro-spectrophotometer custom-designed in our lab. We identify kinetic phases of the PYP photocycle at all 14 temperature settings. Relaxation times associated with these phases are temperature-dependent and can be fit by the Van't Hoff-Arrhenius equation. Kinetic modeling yields entropy and enthalpy values at the barriers of the activation solely from the time-resolved crystallographic data. With this, we advance crystallography to a new frontier: the determination of free energy surfaces. Investigating enzymatic reactions can be challenging, because they are non-cyclic. After one turnover product must be washed away and substrate must be reloaded. A promising approach for routine application can be envisioned at the new 4th generation X-ray sources, such as X-ray free electron lasers (XFELs). With our results we set the scene to comprehensively investigate all kinds of enzymatic reactions with these instruments.

  20. Spectroscopic investigation of Dy3+:Lu2Si2O7 single crystal: A potential 589 nm laser medium

    Science.gov (United States)

    Huang, Jianhui; Chen, Yujin; Huang, Jianhua; Gong, Xinghong; Lin, Yanfu; Luo, Zundu; Huang, Yidong

    2017-10-01

    A trivalent dysprosium-doped Lu2Si2O7 single crystal was grown by the Czochralski method. Segregation coefficient of Dy3+ ion in the crystal is about 0.56. Spectroscopic properties of the crystal were investigated at room temperature. In particular, the polarized absorption spectra were analyzed using the Judd-Ofelt theory and the intensity parameters were determined. Then the spontaneous transition probabilities, branching ratios, and radiative lifetime related to the 4F9/2 multiplet were calculated. Emission cross-section for the 4F9/2 → 6H13/2 transition at 589 nm is up to 1.27 × 10-21 cm2 for E//Y polarization. Thermal conductivity of the crystal was measured to be 9.46 Wm-1K-1 at room temperature. The experimental results show that the Dy3+:Lu2Si2O7 crystal is a promising gain medium for solid state 589 nm laser.

  1. Investigation of role of silver nanoparticles on spectroscopic properties of biologically active coumarin dyes 4PTMBC and 1IPMBC.

    Science.gov (United States)

    Raghavendra, U P; Basanagouda, Mahantesha; Thipperudrappa, J

    2015-01-01

    The role of silver nanoparticles on spectroscopic properties of biologically active coumarin dyes 4-p-tolyloxymethyl-benzo[h]coumarin (4PTMBC) and 1-(4-iodophenoxymethyl)-benzo[f]coumarin (1IPMBC) has been investigated using absorption and fluorescence spectroscopy. Silver nanoparticles are synthesized by chemical reduction method and the estimated size by Mie theory is 12 nm. The absorption spectral changes of dyes in the presence of silver nanoparticles suggest their possible interaction with silver nanoparticles. The apparent association constants of the interaction are estimated using Benesi-Hildebrand model. Fluorescence quenching has been observed in both the dyes with the addition of silver nanoparticles. The Stern-Volmer plots of fluorescence quenching are found to be nonlinear showing positive deviation. The magnitudes of quenching rate parameter and fluorescence lifetime measurements indicate the presence of both collisional and static quenching mechanisms. The binding constants and the number of binding sites for the static type of quenching have been estimated from the fluorescence data. The role of diffusion, energy transfer and electron transfer processes in fluorescence quenching mechanism has been discussed.

  2. Investigation of a transiting planet candidate in Trumpler 37: an astrophysical false positive eclipsing spectroscopic binary star

    CERN Document Server

    Errmann, R; Schmidt, T O B; Seeliger, M; Howard, A W; Maciejewski, G; Neuhäuser, R; Meibom, S; Kellerer, A; Dimitrov, D P; Dincel, B; Marka, C; Mugrauer, M; Ginski, Ch; Adam, Ch; Raetz, St; Schmidt, J G; Hohle, M M; Berndt, A; Kitze, M; Trepl, L; Moualla, M; Eisenbeiß, T; Fiedler, S; Dathe, A; Graefe, Ch; Pawellek, N; Schreyer, K; Kjurkchieva, D P; Radeva, V S; Yotov, V; Chen, W P; Hu, S C -L; Wu, Z -Y; Zhou, X; Pribulla, T; Budaj, J; Vaňko, M; Kundra, E; Hambálek, Ľ; Krushevska, V; Bukowiecki, Ł; Nowak, G; Marschall, L; Terada, H; Tomono, D; Fernandez, M; Sota, A; Takahashi, H; Oasa, Y; Briceño, C; Chini, R; Broeg, C H

    2014-01-01

    We report our investigation of the first transiting planet candidate from the YETI project in the young (~4 Myr old) open cluster Trumpler 37. The transit-like signal detected in the lightcurve of the F8V star 2M21385603+5711345 repeats every 1.364894+/-0.000015 days, and has a depth of 54.5+/-0.8 mmag in R. Membership to the cluster is supported by its mean radial velocity and location in the color-magnitude diagram, while the Li diagnostic and proper motion are inconclusive in this regard. Follow-up photometric monitoring and adaptive optics imaging allow us to rule out many possible blend scenarios, but our radial-velocity measurements show it to be an eclipsing single-lined spectroscopic binary with a late-type (mid-M) stellar companion, rather than one of planetary nature. The estimated mass of the companion is 0.15-0.44 solar masses. The search for planets around very young stars such as those targeted by the YETI survey remains of critical importance to understand the early stages of planet formation a...

  3. Investigation of the mouse cerebellum using STIM and {mu}-PIXE spectrometric and FTIR spectroscopic mapping and imaging

    Energy Technology Data Exchange (ETDEWEB)

    Hackett, M.J. [School of Chemistry, University of Sydney, NSW 2006 (Australia); Siegele, R., E-mail: rns@ansto.gov.au [Institute for Environmental Research, Australian Nuclear Science and Technology Organisation, Lucas Heights NSW 2234 (Australia); El-Assaad, F. [Vascular Immunology Unit, Bosch Institute and School of Medical Sciences, University of Sydney, NSW 2006 (Australia); McQuillan, J.A. [Molecular Immunopathology Unit, Bosch Institute and School of Medical Sciences, University of Sydney, NSW 2006 (Australia); Aitken, J.B.; Carter, E.A. [School of Chemistry, University of Sydney, NSW 2006 (Australia); Grau, G.E. [Vascular Immunology Unit, Bosch Institute and School of Medical Sciences, The University of Sydney, NSW 2006 (Australia); Hunt, N.H. [Molecular Immunopathology Unit, Bosch Institute and School of Medical Sciences, The University of Sydney, NSW 2006 (Australia); Cohen, D. [Institute for Environmental Research, Australian Nuclear Science and Technology Organisation, Lucas Heights NSW 2234 (Australia); Lay, P.A. [School of Chemistry, The University of Sydney, NSW 2006 (Australia)

    2011-10-15

    The cerebral biochemistry associated with the development of many neurological diseases remains poorly understood. In particular, incomplete understanding of the mechanisms through which vascular inflammation manifests in tissue damage and altered brain function is a significant hindrance to the development of improved patient therapies. To this extent, a combination of spectrometric/spectroscopic mapping/imaging methods with an inherent ability to provide a wealth of biochemical and physical information have been investigated to understand further the pathogenesis of brain disease. In this study, proton-induced X-ray emission (PIXE) mapping was combined with scanning transmission ion microscopy (STIM) mapping and Fourier-transform infrared (FTIR) imaging of the same tissue sample to study directly the composition of the murine (mouse) cerebellum. The combination of the elemental, density and molecular information provided by these techniques enabled differentiation between four specific tissue types within the murine cerebellum (grey matter, white matter, molecular layer and micro blood vessels). The results presented are complementary, multi-technique measurements of the same tissue sample. They show elemental, density and molecular differences among the different tissue types.

  4. An investigation of the photophysical properties of minor groove bound and intercalated DAPI through quantum-mechanical and spectroscopic tools.

    Science.gov (United States)

    Biancardi, Alessandro; Biver, Tarita; Secco, Fernando; Mennucci, Benedetta

    2013-04-07

    The fluorescent probe 4',6-diamidino-2-phenylindole (DAPI) is a dye known to interact with polynucleotides in a non-univocal manner, both intercalation and minor groove binding modes being possible, and to specifically change its photophysical properties according to the different environments. To investigate this behavior, quantum-mechanical calculations using time-dependent density functional theory (TDDFT), coupled with polarizable continuum and/or atomistic models, were performed in combination with spectroscopic measurements of the probe in the different environments, ranging from a homogeneous solution to the minor groove or intercalation pockets of double stranded nucleic acids. According to our simulation, the electronic transition involves a displacement of the electron charge towards the external amidine groups and this feature makes the absorption energies very environment-sensitive while a much smaller sensitivity is seen in the fluorescence energies. Moreover, the calculations show that the DAPI molecule, when minor groove bound to the nucleic acid, presents both a reduced geometrical flexibility because of the rigid DNA pocket and a reduced polarization due to the very "apolar" microenvironment. All these effects can be used to better understand the observed enhancement of the fluorescence, which makes it an excellent marker for DNA.

  5. Computational Chemistry Meets Experiments for Explaining the Behavior of Bibenzyl: A Thermochemical and Spectroscopic (Infrared, Raman, and NMR) Investigation.

    Science.gov (United States)

    Latouche, Camille; Barone, Vincenzo

    2014-12-09

    The structure, conformational behavior, and spectroscopic parameters of bibenzyl have been investigated by a computational protocol including proper treatment of anharmonic and hindered rotor contributions. Conventional hybrid functionals overstabilize the anti conformer while low-order post-Hartree-Fock (MP2) approaches strongly favor the gauche conformer. However, inclusion of semiempirical dispersion effects in density functionals or coupled cluster post-Hartree-Fock models agree in forecasting the simultaneous presence of both conformers in the gas phase with a slightly larger stability (0.7 kcal·mol(-1)) of the gauche conformer. Addition of thermal and entropic effects finally leads to very close Gibbs free energies for both conformers and, thus, to a slight preference for the gauche form due to statistical factors (2 vs 1). The situation remains essentially the same in solution. On these grounds, perturbative vibrational computations including both electrical and mechanical anharmonicities lead to IR and Raman spectra in remarkable agreement with experiment. Full assignment of the IR spectra explains the presence of peaks from gauche or anti conformers. Comparison between computed and experimental Raman spectra confirms that both conformers are present in liquid phase, whereas the anti conformer seems to be preponderant in the solid state. Also computed NMR parameters are in good agreement with experiment.

  6. Microwave spectroscopic and theoretical investigations of the strongly hydrogen bonded hexafluoroisopropanol···water complex.

    Science.gov (United States)

    Shahi, A; Arunan, E

    2015-10-14

    This paper reports microwave spectroscopic and theoretical investigations on the interaction of water with hexafluoroisopropanol (HFIP). The HFIP monomer can exist in two conformations, antiperiplanar (AP) and synclinical (SC). The former is about 5 kJ mol(-1) more stable than the latter. Theoretical calculations predicted three potential minima for the complex, two having AP and one having SC conformations. Though, the binding energy for the HFIP(SC)···H2O turned out to be larger than that for the other two conformers having HFIP in the AP form, the global minimum for the complex in the potential energy hypersurface had HFIP in the AP form. Experimental rotational constants for four isotopologues measured using a pulsed nozzle Fourier transform microwave spectrometer, correspond to the global minimum in the potential energy hypersurface. The structural parameters and the internal dynamics of the complex could be determined from the rotational spectra of the four isotopologues. The global minimum has the HFIP(AP) as a hydrogen bond donor forming a strong hydrogen bond with H2O. To characterize the strength of the bonding and to probe the other interactions within the complex, atoms in molecules, non-covalent interaction index and natural bond orbital theoretical analyses have been performed.

  7. Investigation of the behavior of HSA upon binding to amlodipine and propranolol: Spectroscopic and molecular modeling approaches

    Science.gov (United States)

    Housaindokht, Mohammad Reza; Rouhbakhsh Zaeri, Zeinab; Bahrololoom, Mahmood; Chamani, Jamshid; Bozorgmehr, Mohammad Reza

    2012-01-01

    The interaction between human serum albumin (HSA) and two drugs - amlodipine and propranolol - was investigated using fluorescence, UV absorption and circular dichroism (CD) spectroscopy. In addition, the binding site was established by applying molecular modeling technique. Fluorescence data suggest that amlodipine will quench the intrinsic fluorescence of HSA; whereas propranolol enhances the fluorescence of HSA. The binding constants for the interaction of amlodipine and propranolol with HSA were found to be 3.63 × 10 5 M -1 and 2.29 × 10 4 M -1, respectively. The percentage of secondary structure feature of each one of the HSA-bound drugs, i.e. the α-helix content, was estimated empirically by circular dichroism. The results indicated that amlodipine causes an increase, and that propranolol leads to a decrease in α-helix content of HSA. The spectroscopic analysis indicates that the binding mechanisms of the two drugs are different from each other. The data obtained by the molecular modeling study indicated that these drugs bind, with different affinity, to different sites located in subdomain IIA and IIIA.

  8. Raman spectroscopic investigation of the chemopreventive response of naringenin and its nanoparticles in DMBA-induced oral carcinogenesis

    Science.gov (United States)

    Krishnakumar, N.; Sulfikkarali, N. K.; Manoharan, S.; Venkatachalam, P.

    2013-11-01

    Raman spectroscopy is a vibrational spectroscopic technique that can be used to optically probe the biomolecular changes associated with tumor progression. The aim of the present study is to investigate the biomolecular changes in chemopreventive response of prepared naringenin-loaded nanoparticles (NARNPs) relative to efficacy of free naringenin (NAR) during 7,12-dimethyl benz(a)anthracene (DMBA)-induced oral carcinogenesis by Fourier Transform Raman (FT-Raman) spectroscopy. Oral squamous cell carcinoma (OSCC) was developed in the buccal pouch of golden Syrian hamsters by painting with 0.5% DMBA in liquid paraffin three times a week for 14 weeks. Raman spectra differed significantly between the control and tumor tissues, with tumors showing higher percentage signals for nucleic acids, phenylalanine and tryptophan and a lower in the percentage of phospholipids. Moreover, oral administration of free NAR and NARNPs significantly increased phospholipids and decreased the levels of tryptophan, phenylalanine and nucleic acid contents. On a comparative basis, NARNPs was found to have a more potent antitumor effect than free NAR in completely preventing the formation of squamous cell carcinoma and in improving the biochemical status to a normal range in DMBA-induced oral carcinogenesis. The present study further suggest that Raman spectroscopy could be a valuable tool for rapid and sensitive detection of specific biomolecular changes in response to chemopreventive agents.

  9. Spectroscopic investigations of Np(V/VI) redox speciation in hyperalkaline TMA-(OH, Cl) solutions

    Energy Technology Data Exchange (ETDEWEB)

    Gaona, X.; Dardenne, K.; Liu, X.; Rothe, J.; Denecke, M.A.; Altmaier, M. [Karlsruhe Institute of Technology (KIT), Karlsruhe (Germany). Inst. fuer Nukleare Entsorgung; Tits, J.; Wieland, E. [Paul Scherrer Institut (PSI), Villigen (Switzerland). Lab. for Waste Management

    2012-07-01

    The redox chemistry of Np(V/VI) was investigated in {proportional_to} 0.6 M tetramethylammonium hydroxide/chloride (TMA-(OH, Cl)) solutions with 9 {<=} -log [H{sup +}] {<=} 13.5. Redox conditions were defined by the absence or presence of ClO{sup -} as oxidizing agent (Na-salt, 5 x 10{sup -3} M and 5 x 10{sup -2} M). The high total Np concentration ([Np]{sub tot} {proportional_to} 2 x 10{sup -3} M) led to the precipitation of solid phases in some of the samples. The carbonate concentration (as impurity of TMA-OH) was 2-3 x 10{sup -3} M. UV-vis/NIR spectra obtained from the supernatant in TMA-(OH, Cl) solutions and absence of ClO{sup -} showed clear Np(V) features, identified as NpO{sub 2}{sup +}, NpO{sub 2}CO{sub 3}{sup -} and (NpO{sub 2}){sub x}(CO{sub 3}){sub y}(OH){sub z}{sup x-2y-z}. No NIR features were observed within 800 nm {<=} {lambda} {<=} 1300 nm for samples with ClO{sup -}. XANES edge energies and features of these samples confirmed the predominance of Np(V) in the absence of ClO{sup -} and Np(VI) in the presence of ClO{sup -}, by comparison to XANES reference spectra of Np(III/IV/V/VI) prepared within the present work by in-situ electrolysis. A similar Np redox distribution was observed for the solid phases based on XANES and EXAFS measurements. EXAFS spectra indicative of Np{sup V}O{sub 2}OH(s) and Np{sup VI}O{sub 3} . xH{sub 2}O(s) were obtained for samples in absence and presence of ClO{sup -}, respectively. The formation of a Na-Np(VI) phase in 5 x 10{sup -2} M ClO{sup -} and -log [H{sup +}] {proportional_to} 12 was also indicated from the EXAFS, chemical analysis and SEM-EDS. These results indicate that Np(VI) aqueous species and solid compounds prevail far below the oxidation border of water in alkaline solutions and also far below the E{sub H} border calculated with the current NEA data selection [1]. These observations are further supported by correlations of literature thermodynamic data for actinides (U, Np, Pu and Am), which predict the

  10. Moessbauer spectroscopy of Mg(0.9)Fe(0.1)SiO3 perovskite

    Science.gov (United States)

    Jeanloz, Raymond; O'Neill, Bridget; Pasternak, Moshe P.; Taylor, R. D.; Bohlen, Steven R.

    1992-01-01

    Ambient pressure Moessbauer spectra of Mg(0.9)Fe-57(0.1)SiO3 perovskite synthesized at pressure-temperature conditions of about 50 GPa and 1700 K show that the iron is entirely high-spin Fe(2+) and appears to be primarily located in the octahedral site within the crystal structure. We observe broad Moessbauer lines, suggesting a distribution of electric-field gradients caused by disorder associated with the Fe ions. Also, the perovskite exhibits magnetic ordering at temperatures lower than 5 K, implying that there is a magnetic contribution to the absolute ('third-law') entropy of this phase.

  11. The big and little of fifty years of Moessbauer spectroscopy at Argonne.

    Energy Technology Data Exchange (ETDEWEB)

    Westfall, C.

    2005-09-20

    Using radioactive materials obtained by chance, a turntable employing gears from Heidelberg's mechanical toy shops, and other minimal equipment available in post World War II Germany, in 1959 Rudolf Moessbauer confirmed his suspicion that his graduate research had yielded ground-breaking results. He published his conclusion: an atomic nucleus in a crystal undergoes negligible recoil when it emits a low energy gamma ray and provides the entire energy to the gamma ray. In the beginning Moessbauer's news might have been dismissed. As Argonne nuclear physicist Gilbert Perlow noted: ''Everybody knew that nuclei were supposed to recoil when emitting gamma rays--people made those measurements every day''. If any such effect existed, why had no one noticed it before? The notion that some nuclei would not recoil was ''completely crazy'', in the words of the eminent University of Illinois condensed matter physicist Frederich Seitz. Intrigued, however, nuclear physicists as well as condensed matter (or solid state) physicists in various locations--but particularly at the Atomic Energy Research Establishment at Harwell in Britain and at Argonne and Los Alamos in the U.S.--found themselves pondering the Moessbauer spectra with its nuclear and solid state properties starting in late 1959. After an exciting year during which Moessbauer's ideas were confirmed and extended, the physics community concluded that Moessbauer was right. Moessbauer won the Nobel Prize for his work in 1961. In the 1960s and 1970s Argonne physicists produced an increasingly clear picture of the properties of matter using the spectroscopy ushered in by Moessbauer. The scale of this traditional Moessbauer spectroscopy, which required a radioactive source and other simple equipment, began quite modestly by Argonne standards. For example Argonne hosted traditional Moessbauer spectroscopy research using mostly existing equipment in the early days and

  12. Moessbauer and infrared spectroscopy as a diagnostic tool for the characterization of ferric tannates

    Energy Technology Data Exchange (ETDEWEB)

    Jaen, Juan A., E-mail: jjaen@ancon.up.ac.p [Universidad de Panama, Depto. de Quimica Fisica, CITEN, Lab. No. 105, Edificio de Laboratorios Cientificos-VIP (Panama); Navarro, Cesar [Universidad de Panama, Escuela de Quimica, Facultad de Ciencias Naturales, Exactas y Tecnologia (Panama)

    2009-07-15

    Fourier transform infrared spectroscopy and Moessbauer spectroscopy are use for the characterization and qualitative analysis of hydrolysable and condensed tannates. The two classes of tannates may be differentiated from the characteristic IR pattern. Moessbauer proof that a mixture of mono- and bis-type ferric tannate complexes, and an iron(II)-tannin complex are obtained from the interaction of hydrolysable tannins (tannic acid and chestnut tannin) and condensed tannins (mimosa and quebracho) with a ferric nitrate solution. At pH 7, a partially hydrolyzed ferric tannate complex was also obtained.

  13. Application of {sup 57}Co emission Moessbauer spectroscopy to studying biocomplexes in frozen solutions

    Energy Technology Data Exchange (ETDEWEB)

    Kamnev, A. A., E-mail: aakamnev@ibppm.sgu.ru [Laboratory of Biochemistry of Plant-Bacterial Symbioses, Institute of Biochemistry and Physiology of Plants and Microorganisms, Russian Academy of Sciences (Russian Federation); Kulikov, L. A.; Perfiliev, Yu. D. [M.V. Lomonosov Moscow State University, Laboratory of Nuclear Chemistry Techniques, Department of Radiochemistry, Faculty of Chemistry (Russian Federation); Antonyuk, L. P. [Laboratory of Biochemistry of Plant-Bacterial Symbioses, Institute of Biochemistry and Physiology of Plants and Microorganisms, Russian Academy of Sciences (Russian Federation); Kuzmann, E.; Vertes, A. [Eoetvoes Lorand University, Research Group for Nuclear Techniques in Structural Chemistry, Hungarian Academy of Sciences, Department of Nuclear Chemistry (Hungary)

    2005-09-15

    Emission Moessbauer spectroscopy with the {sup 57}Co isotope was used to study very dilute rapidly frozen aqueous solutions of cobalt(II) complexes with low-molecular-weight biomolecules (aromatic amino acids - anthranilic acid and L-tryptophan) and within a sophisticated biopolymer, bacterial glutamine synthetase, a key enzyme of nitrogen metabolism. The appearance of after-effects of the {sup 57}Co{sup {yields}57}Fe nuclear transformation as well as the coordination properties of the cation and the ligands in the complexes are discussed on the basis of their Moessbauer parameters.

  14. Reducing firing of an early pottery making kiln at Batan Grande, Peru: A Moessbauer study

    Energy Technology Data Exchange (ETDEWEB)

    Wagner, U. [Technische Universitaet Muenchen, Physik-Department E15 (Germany); Gebhard, R. [Praehistorische Staatssammlung (Germany); Haeusler, W.; Hutzelmann, T. [Technische Universitaet Muenchen, Physik-Department E15 (Germany); Riederer, J. [Rathgen-Forschungslabor (Germany); Shimada, I. [Southern Illinois University (United States); Sosa, J.; Wagner, F.E. [Technische Universitaet Muenchen, Physik-Department E15 (Germany)

    1999-11-15

    Material from field firing experiments using a 2,700-year old Formative kiln at Batan Grande, Peru, was studied by X-ray diffraction and Moessbauer spectroscopy. The experiments explore the technology involved in producing the gray and black reduced ware for which Cupisnique and other Formative ceramics are justly known. During firing, the iron-bearing compounds in clays undergo characteristic changes which depend on kiln temperature and atmosphere. These changes can be observed in the Moessbauer spectra. By comparing spectra of an appropriate clay fired in field experiments and in the laboratory with the spectra of ancient ceramics, a description of Formative firing techniques in a reducing environment is attempted.

  15. Transmission of Moessbauer rays through ferromagnets in radio-frequency magnetic field

    Energy Technology Data Exchange (ETDEWEB)

    Dzyublik, A. Ya., E-mail: dzyublik@ukr.net [Institute for Nuclear Research (Ukraine); Sadykov, E. K. [Kazan (Volga region) Federal University (Russian Federation); Petrov, G. I. [Kazan State Power Engineering University (Russian Federation); Arinin, V. V.; Vagizov, F. G. [Kazan (Volga region) Federal University (Russian Federation); Spivak, V. Yu. [Institute for Nuclear Research (Ukraine)

    2013-08-15

    The transmission of Moessbauer radiation through a thick ferromagnetic crystal, exposed to a radio-frequency (rf) magnetic field, is studied. The quantum-mechanical dynamical scattering theory is developed, taking into account the periodical reversals of the magnetic field at the nuclei. The Moessbauer forward scattering (FS) spectra of the weak ferromagnet FeBO{sub 3} placed into rf field are measured. It is found that the coherent gamma wave in the crystal absorbs or emits only couples of the rf photons. As a result, the FS spectra consist of equidistant lines spaced by twice the frequency of the rf field in contrast to the absorption spectra.

  16. Moessbauer absorption by thick ferromagnets in radio-frequency magnetic field

    CERN Document Server

    Dzyublik, A Y

    2002-01-01

    The dynamical scattering theory is developed for transmission of the Moessbauer radiation through a ferromagnetic absorber of arbitrary thickness whose magnetization periodically reverses under the influence of an external radio-frequency (RF) magnetic field. The thickness dependence of the Moessbauer absorption spectrum as well as the time dependence and energy distribution of the transmitted beam are analyzed. The transmitted spectrum as a function of the frequency of transmitted gamma-quanta, reveals a sideband structure separated by twice the frequency of the RF field, which collapses to a single line at high frequencies.

  17. Nanophase mixed-valence iron minerals in meteorites identified by cryogenic Moessbauer spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Burns, R.G. [Massachusetts Inst. of Tech., Cambridge, MA (United States). Dept. of Earth, Atmospheric and Planetary Sciences; Fisher, D.S. [Massachusetts Inst. of Tech., Cambridge, MA (United States). Dept. of Earth, Atmospheric and Planetary Sciences

    1994-11-01

    Determination of oxidation states and the crystal chemistry of iron-bearing minerals in carbonaceous chondrites by Moessbauer spectroscopy is complicated by thermally-induced electron-hopping in cronstedtite, superparamagnetism of hydrous ferric oxides and ill-defined contributions from an incommensurate layered iron sulfide phase believed to be tochilinite. Moessbauer spectra measurements at 30 K of several terrestrial cronstedtite and tochilinite specimens have enables modal proportions of these minerals, as well as Fe{sup 3+}/Fe{sup 2+} ratios, to be determined quantitatively in a suite of CM-type meteorites. (orig.)

  18. Effect of Ti{sup 4+} substitution on the hyperfine properties of Li-Sb-Ti ferrites using Moessbauer spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Chongtham, Shivaji, E-mail: schongtham@rediffmail.com [Manipur Science and Technology Council, R and D Division (India); Soibam, Ibetombi; Phanjoubam, Sumitra; Sarma, H. N. K. [Manipur University, Department of Physics (India); Verma, H. C. [IIT Kanpur, Department of Physics (India)

    2008-11-15

    Moessbauer investigations were carried out at room temperature on the ferrite system Li{sub 0.6+0.5t}Fe{sub 2.3-1.5t}Ti{sub t}Sb{sub 0.1}O{sub 4} (0.0 {<=} t {<=} 1.0 in steps of 0.2). The effect of Ti{sup 4+} concentration on the various hyperfine interactions like Isomer shift, quadrupole splitting and internal magnetic field have been studied. The spectra exhibited well-defined Zeeman sextets at low substitution level, corresponding to the A and B sites. The sample with t = 1.0 showed paramagnetic behaviour. The results obtained have been discussed.

  19. Precise determination of Moessbauer lineshape parameters including interference

    Energy Technology Data Exchange (ETDEWEB)

    Mullen, J.G.; Djedid, A.; Bullard, B.; Schupp, G.; Cowan, D.; Cao, Y.; Crow, M.L.; Yelon, W.

    1987-01-01

    Using 100 Ci /sup 183/Ta and 5 Ci /sup 182/Ta sources, with LiF and NaCl crystal monochromating filters, we have measured the lineshape parameters for the 46.5 keV and 99.1 keV Moessbauer effect (ME) transitions of /sup 183/W and the 100.1 keV transition of /sup 182/W. Using an analytic representation of the convolution integral and utilizing asymptotic analyses of the lineshape, we find, for both transmission and microfoil internal conversion (MICE) experiments, accurate values of all ME parameters including width, position, cross section, and interference. This new approach allows deconvolution of source and absorber spectra and gives a simple analytic expression for both as well as their Fourier transforms. The line widths for the 46.5, 99.1, and 100.1 keV transitions are 3.10(10), 0.369(18), and 0.195(12) cm/s, respectively. The interference parameters are -0.00257(9), -0.0093(12), and -0.0107(12) in the same respective order. The agreement between transmission and MICE measurements for the above lineshape parameters is within the experimental errors. We believe these measurements are the first having sufficient precision to allow a quantitative comparison with dispersion theory and they indicate interference parameters 10 to 20% smaller than predicted. Our measured line widths are less than earlier reported values. This is because our analysis of the true lineshape and the study of line asymptotics permits a quantitative determination of the isomer lifetimes rather than the usual lower bound found in earlier ME experiments. 37 refs., 4 figs., 2 tabs.

  20. a Combined Gigahertz and Terahertz Synchrotron-Based Fourier Transform Infrared Spectroscopic Investigation of Ortho-D

    Science.gov (United States)

    Albert, Sieghard; Chen, Ziqiu; Fábri, Csaba; Prentner, Robert; Quack, Martin; Zindel, Daniel

    2017-06-01

    Tunneling switching is a fundamental phenomenon of interest in molecular quantum dynamics including also chiral molecules and parity violation. Deuterated phenols have been identified as prototypical achrial candidates. We report the high resolution spectroscopic investigation of the ortho-D-phenol in the GHz and THz ranges following our recent discovery of tunneling switching in its isotopomer meta-D-phenol. Here we report new results on ortho-D-phenol.The pure rotational spectra were recorded in the range of 72-117 GHz and assigned to the syn- and anti- structures in the ground and the first excited torsional states. Specific torsional states were assigned based on a comparison of experimental rotational constants with the quasiadiabatic channel reaction path Hamiltonian (RPH) calculations. The torsional fundamental at 308 cm^{-1} and the first hot band at 275 cm^{-1} were subsequently assigned. The analyses of pure rotational and rovibrational spectra shall be discussed in detail in relation to possible tunneling switching. M. Quack , Fundamental Symmetries and Symmetry Violations from High-resolution Spectroscopy, Handbook of High Resolution Spectroscopy, M. Quack and F. Merkt eds.,John Wiley & Sons Ltd, Chichester, New York, 2001, vol. 1, ch. 18, pp. 659-722. R. Prentner, M. Quack, J. Stohner and M. Willeke, J. Phys. Chem. A 119, 12805-12822 (2015). S. Albert, Z. Chen, C. Fábri, R. Prentner M. Quack and D. Zindel, paper at this meeting. S. Albert, Ph. Lerch, R. Prentner and M. Quack, Angew. Chem. Int. Ed. 52, 346-349 (2013). S. Albert, Z. Chen, C. Fábri,P. Lerch, R. Prentner and M. Quack, Mol.Phys. 114, 2751-2768 (2016) and 71st International Symposium on Molecular Spectroscopy, Urbana-Champaign, USA, June 20-24, Talk FE04 (2016).

  1. Linear and nonlinear optical investigations of nano-scale Si-doped ZnO thin films: spectroscopic approach

    Science.gov (United States)

    Jilani, Asim; Abdel-wahab, M. Sh.; Zahran, H. Y.; Yahia, I. S.; Al-Ghamdi, Attieh A.

    2016-09-01

    Pure and Si-doped ZnO (SZO) thin films at different concentration of Si (1.9 and 2.4 wt%) were deposited on highly cleaned glass substrate by radio frequency (DC/RF) magnetron sputtering. The morphological and structural investigations have been performed by atomic force electron microscope (AFM) and X-ray diffraction (XRD). The X-ray photoelectron spectroscopy was employed to study the composition and the change in the chemical state of Si-doped ZnO thin films. The optical observations like transmittance, energy band gap, extinction coefficient, refractive index, dielectric loss of pure and Si-doped ZnO thin films have been calculated. The linear optical susceptibility, nonlinear refractive index, and nonlinear optical susceptibility were also studied by the spectroscopic approach rather than conventional Z-scan method. The energy gap of Si-doped ZnO thin films was found to increase as compared to pure ZnO thin films. The crystallinity of the ZnO thin films was effected by the Si doping. The O1s spectra in pure and Si-doped ZnO revealed the bound between O-2 and Zn+2 ions and reduction in the surface oxygen with the Si doping. The chemical state analysis of Si 2p showed the conversation of Si to SiOx and SiO2. The increase in the first-order linear optical susceptibility χ (1) and third-order nonlinear optical susceptibility χ (3) was observed with the Si doping. The nonlinear studies gave some details about the applications of metal oxides in nonlinear optical devices. In short, this study showed that Si doping through sputtering has effected on the structural, surface and optical properties of ZnO thin films which could be quite useful for advanced applications such as metal-oxide-based optical devices.

  2. Spectroscopic investigation of the interaction between G-quadruplex of KRAS promoter sequence and three isoquinoline alkaloids

    Science.gov (United States)

    Wen, Li-Na; Xie, Meng-Xia

    2017-01-01

    KRAS promoter can form G-quadruplex structure and regulate gene transcription. The drugs which can bind with G-quadruplex of KRAS promoter may be potential remedy for treatment of cancers associated with KRAS mutation. The interaction mechanism between the G-quadruplex of KRAS promoter and three isoquinoline alkaloids (jatrorrhizine, berberine and sanguinarine) has been investigated by UV-visible, fluorescence and circular dichroism spectroscopic methods. The results showed that the three alkaloids can form complexes with G-quadruplex KRAS promoter with the molecular ratio of 1:1, and the binding constants were (0.90 ± 0.16) × 106 L mol- 1, (0.93 ± 0.21) × 106 L mol- 1 and (1.16 ± 0.45) × 106 L mol- 1 for jatrorrhizine, berberine and sanguinarine. The absorption spectra, KI quenching and fluorescence anisotropy and polarization studies suggested jatrorrhizine and berberine interacted with G-quadruplex by not only end-stacking binding mode but also grooves or loops binding mode, while sanguinarine by end-stacking binding mode. Sanguinarine was more beneficial to maintain the stability and parallel conformation of KRAS promoter G-quadruplex. MTT assay was performed to evaluate antiproliferation effects of the three isoquinoline alkaloids on SW620 cells, and the antiproliferation effects of the three alkaloids were sanguinarine > berberine > jatrorrhizine. All the three alkaloids can bind with KRAS promoter G-quadruplex, and sanguinarine had the better binding property and antiproliferation effects on SW620 cells. The results obtained are meaningful to explore potential reagents targeting the parallel G-quadruplex structure of KRAS promoter for gene theraphy of colorectal carcinomas.

  3. Molecular interaction of 2,4-diacetylphloroglucinol (DAPG) with human serum albumin (HSA): The spectroscopic, calorimetric and computational investigation

    Science.gov (United States)

    Pragna Lakshmi, T.; Mondal, Moumita; Ramadas, Krishna; Natarajan, Sakthivel

    2017-08-01

    Drug molecule interaction with human serum albumin (HSA) affects the distribution and elimination of the drug. The compound, 2,4-diacetylphloroglucinol (DAPG) has been known for its antimicrobial, antiviral, antihelminthic and anticancer properties. However, its interaction with HSA is not yet reported. In this study, the interaction between HSA and DAPG was investigated through steady-state fluorescence, time-resolved fluorescence (TRF), circular dichroism (CD), Fourier transform infrared (FT-IR) spectroscopy, isothermal titration calorimetry (ITC), molecular docking and molecular dynamics simulation (MDS). Fluorescence spectroscopy results showed the strong quenching of intrinsic fluorescence of HSA due to interaction with DAPG, through dynamic quenching mechanism. The compound bound to HSA with reversible and moderate affinity which explained its easy diffusion from circulatory system to target tissue. The thermodynamic parameters from fluorescence spectroscopic data clearly revealed the contribution of hydrophobic forces but, the role of hydrogen bonds was not negligible according to the ITC studies. The interaction was exothermic and spontaneous in nature. Binding with DAPG reduced the helical content of protein suggesting the unfolding of HSA. Site marker fluorescence experiments revealed the change in binding constant of DAPG in the presence of site I (warfarin) but not site II marker (ibuprofen) which confirmed that the DAPG bound to site I. ITC experiments also supported this as site I marker could not bind to HSA-DAPG complex while site II marker was accommodated in the complex. In silico studies further showed the lowest binding affinity and more stability of DAPG in site I than in site II. Thus the data presented in this study confirms the binding of DAPG to the site I of HSA which may help in further understanding of pharmacokinetic properties of DAPG.

  4. Moessbauer spectroscopy evidence of intrinsic non-stoichiometry in iron telluride single crystals

    Energy Technology Data Exchange (ETDEWEB)

    Kiiamov, Airat G.; Tayurskii, Dmitrii A. [Institute of Physics, Kazan Federal University (Russian Federation); Centre for Quantum Technologies, Kazan Federal University (Russian Federation); Lysogorskiy, Yury V.; Vagizov, Farit G. [Institute of Physics, Kazan Federal University (Russian Federation); Tagirov, Lenar R. [Institute of Physics, Kazan Federal University (Russian Federation); E.K. Zavoisky Physical-Technical Institute, Russian Academy of Sciences, Kazan (Russian Federation); Croitori, Dorina [Institute of Applied Physics, Academy of Sciences of Moldova, Chisinau (Moldova, Republic of); Tsurkan, Vladimir [Institute of Applied Physics, Academy of Sciences of Moldova, Chisinau (Moldova, Republic of); Experimental Physics V, University of Augsburg (Germany); Loidl, Alois [Experimental Physics V, University of Augsburg (Germany)

    2017-04-15

    The FeTe parent compound for iron-superconductor chalcogenides was studied applying Moessbauer spectroscopy accompanied by ab initio calculations of electric field gradients at the iron nuclei. Room-temperature (RT) Moessbauer spectra of single crystals have shown asymmetric doublet structure commonly ascribed to contributions of over-stoichiometric iron or impurity phases. Low-temperature Moessbauer spectra of the magnetically ordered compound could be well described by four hyperfine-split sextets, although no other foreign phases different from Fe{sub 1.05}Te were detected by XRD and microanalysis within the sensitivity limits of the equipment. Density functional ab initio calculations have shown that over-stoichiometric iron atoms significantly affect electron charge and spin density up to the second coordination sphere of the iron sub-lattice, and, as a result, four non-equivalent groups of iron atoms are formed by their local environment. The resulting four-group model consistently describes the angular dependence of the single crystals Moessbauer spectra as well as intensity asymmetry of the doublet absorption lines in powdered samples at RT. We suppose that our approach could be extended to the entire class of Fe{sub 1+y}Se{sub 1-x}Te{sub x} compounds, which contain excess iron atoms. (copyright 2016 by WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  5. LACAME 2006: Latin American conference on the applications of the Moessbauer effects. Program and Abstract Book

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2006-07-01

    Theoretical and experimental papers are present in these proceedings on the following subjects: Moessbauer effects and spectroscopy, minerals, structural chemical analysis, crustal structure, ion oxides, hyperfine structure, geology, catalysts, transmission and absorption spectroscopies, materials, crystal and hyperfine structures, stereochemistry and geological materials.

  6. Use of Moessbauer spectroscopy to study reaction products of polyphenols and iron compounds

    Energy Technology Data Exchange (ETDEWEB)

    Gust, J. (Building Research Inst., Warsaw (Poland)); Suwalski, J. (Atomic Energy Inst., Otwock-Swierk (Poland))

    1994-05-01

    Moessbauer spectroscopy was used to study parameters of the reaction products of iron compounds (Fe[sup III]) and polyphenols with hydroxyl (OH) groups in ortho positions. Polyphenols used in the reaction were catechol, pyrogallol, gallic acid, and oak tannin. The Fe-containing compounds were hydrated ferric sulfate (Fe[sub 2][SO[sub 4

  7. First-principles calculations of Moessbauer hyperfine parameters for solids and large molecules

    Energy Technology Data Exchange (ETDEWEB)

    Guenzburger, Diana [Centro Brasileiro de Pesquisas Fisicas (CBPF), Rio de Janeiro, RJ (Brazil); Ellis, D.E. [Northwestern Univ., Evanston, IL (United States). Dept. of Physics; Zeng, Z. [Academia Sinica, Hefei, AH (China). Inst. of Solid-State Physics

    1997-10-01

    Electronic structure calculations based on Density Functional theory were performed for solids and large molecules. The solids were represented by clusters of 60-100 atoms embedded in the potential of the external crystal. Magnetic moments and Moessbauer hyperfine parameters were derived. (author) 22 refs., 8 figs., 1 tab.

  8. Moessbauer study of the orientation of the magnetic moments in Fe—based nanocrystalline alloys

    Institute of Scientific and Technical Information of China (English)

    HuBing-Yuan; ZhangGui-Lin; 等

    1997-01-01

    Magneto-impedance(MI) effect in Fe-based nanocrystalline Fe73 Cu1Nb1.5Mo2Si13.5B alloys has been observed by Moessbauer spectroscopy.The results show that the field dependence of the MI ratio is strongly influenced by the transverse magnetic structure in samples.

  9. Magnetic structures of vanadium iodide (VI2): long- and short-range order and Moessbauer spectroscopy.

    NARCIS (Netherlands)

    Kuindersma, S. R.; Sanchez, J. P.; Haas, C.

    1980-01-01

    Neutron diffraction data of VI2 show a magnetic phase transition at 14 K from a 120° magnetic structure to a collinear structure. The collinear structure is compatible with low-temp. Moessbauer spectra. The 120° structure is not a magnetic phase with long-range order but rather a paramagnetic phase

  10. Moessbauer study on the antiferromagnetic FeO synthesized under high pressure

    Energy Technology Data Exchange (ETDEWEB)

    Yoshikawa, Takuro [University of Tsukuba, Institute of Applied Physics (Japan); Kanke, Yasushi [National Institute of Materials Science (Japan); Yanagihara, Hideto; Kita, Eiji, E-mail: kita@bk.tsukuba.ac.jp [University of Tsukuba, Institute of Applied Physics (Japan); Tsunoda, Yorihiko [Waseda University, School of Science and Engineering (Japan); Siratori, Kiiti [University of Tsukuba, Institute of Applied Physics (Japan); Kohn, Kay [Waseda University, School of Science and Engineering (Japan)

    2012-03-15

    Moessbauer study and magnetic measurements were carried out on the stoichiometric FeO, prepared with the high pressure ({approx}5.5GPa) synthesis technique. Well known defects (Koch-Cohen clusters) in FeO are detected even in the stoichiometric specimen, prepared at high temperatures.

  11. Study on the magnetic behavior of In-doped nickel chromite by using Moessbauer spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Hyun, Sung Wook; Kim, Chul Sung [Kookmin University, Seoul (Korea, Republic of); Park, Seung Iel [Sukwon Co. Ltd., Gumi (Korea, Republic of); Oh, Young Jei [Korea Institute of Science and Technology, Seoul (Korea, Republic of)

    2011-02-15

    NiCr{sub 1.9-x} {sup 57}Fe{sub 0.1}In{sub x}O{sub 4} (x = 0.0, 0.1, 0.3, and 0.5) was prepared by using a sol-gel method. The crystal structure at room temperature was determined to be a normal cubic spinel with space group Fd3m. An analysis of the x-ray diffraction patterns was performed using a Rietveld refinement method while the Bragg R{sub B} and R{sub F} factors were below 5%. The magnetic Neel temperature decreased from 150 K to 77 K with increasing In concentration, which was confirmed by zero-field-cooled (ZFC) magnetization at applied fields under 100 Oe and by Moessbauer spectra measured at various temperatures. Magnetic hysteresis loops of the samples at 77 K showed drastically increasing magnetization and decreasing coercivity with increasing In concentration. The Moessbauer spectra of the samples were measured at various temperatures ranging from 4.2 to 295 K. The isomer shift value showed that the charge states of the iron ions are ferric. The Moessbauer spectra showed two magnetic phases with two different magnetic spin direction sites for the Cr{sup 3+} ion state. Moessbauer spectra below 77 K showed 6 sharp absorption lines and the linewidth became broader with increasing temperature, which indicates a Jahn-Teller distortion and relaxation.

  12. Micro-spectroscopic investigation of valence change processes in resistive switching SrTiO{sub 3} thin films

    Energy Technology Data Exchange (ETDEWEB)

    Koehl, Annemarie

    2014-05-15

    Due to physical limitations of the currently used flash memory in terms of writing speed and scalability, new concepts for data storage attract great interest. A possible alternative with promising characteristics are so-called ''Resistive Random Access Memories'' (ReRAM). These memory devices are based on the resistive switching effect where the electrical resistance of a metal-insulator-metal (MIM) structure can be switched reversibly by a current or voltage pulse. Although this effect attracted wide scientific as well as commercial interest, up to now the it is not fully understood on a microscopic scale. Consequently, in this work the chemical and physical modifications caused by the resistive switching process are studied by spectroscopic techniques. As most switching models predict a strongly localized rather than a homogeneous effect, advanced micro-spectroscopy techniques are employed where additionally the lateral structure of the sample is imaged. In this work Fe-doped SrTiO{sub 3} films are used as model material due to the thorough understanding of their defect chemistry. The epitaxial thin films are prepared by pulsed laser deposition. In a first approach, transmission X-ray microscopy is employed to study the bulk properties of ReRAM devices. At first, a new procedure for sample preparation based on a selective etching process is developed in order to realize photon-transparent samples. Investigations of switched devices reveal a significant contribution of Ti{sup 3+} states within growth defects. In contrast to the indirect evidence in previous studies, this observation directly confirms that the resistance change is based on a local redox-process. The localization of the switching process within the growth defects is explained by a self-accelerating process due to Joule heating within the pre-reduced defects. In a second approach, after removal of the top electrode the chemical and electronic structure of the former interface

  13. The study of polymers in geometrically confined states by the thermal analysis, the spectroscopic study, and the morphological investigation

    Science.gov (United States)

    Lu, Xiaolin

    2005-07-01

    This thesis focuses on the study of the different geometrically confined states of polyacrylamide (PAL) in bulk film, single chain globules, and thin films. The thermal analysis, the spectroscopic study, and the morphological investigation were carried out. The main contribution of this thesis is that we have acquired a better understanding about the glass transition (T g) behavior of polymers. Although the glass transition is a well known phenomenon for liquids with strong covalently bonded structures, and is especially noteworthy for amorphous polymers, understanding the glass transition still remains one of the most intriguing puzzles in condensed matter physics at present. The solution of the glass transition puzzle will ultimately influence different fields in polymer science, particularly biophysics and biochemistry. Our approach to this complicated assignment, the glass transition phenomenon, is to examine the glass transition behavior of polymer chains in 3 dimensional confinement for single molecular single chain globules, 1 dimensional confinement for polymer thin films, and 0 dimensional confinement for bulk state polymer. We found that the glass transition temperature of a polymer depends on several factors, such as the inter-chain interlock entanglement, the inter-chain molecular interactions, the intra-chain cohesional entanglement, and the local chain orientation and conformational entropy. These factors have been systematically investigated by carefully preparing the polymer samples in different confined states. The main conclusion is that, although the glass transition is a non-equilibrium dynamic property, the true glass transition can be reached when polymer chains are free of the inter-chain entanglement. A better example is illustrated, in this thesis, of the glass transition behavior for the well-annealed single chain globules. PAL single chain globules are prepared by spray drying from the dilute solution. The size and morphology of the

  14. Spectroscopic investigations on sorption of uranium onto suspended bentonite. Effects of pH, ionic strength and complexing anions

    Energy Technology Data Exchange (ETDEWEB)

    Verma, Parveen Kumar; Pathak, Priyanath; Mohapatra, Manoj; Mohapatra, Prasanta Kumar [Bhabha Atomic Research Centre, Mumbai (India). Radiochemistry Div.; Yadav, Ashok Kumar; Jha, Sambhunath; Bhattacharyya, Dibyendu [Bhabha Atomic Research Centre, Mumbai (India). Atomic and Molecular Physics Div.

    2015-06-01

    Batch sorption experiments were carried out under aerobic conditions to understand the sorption behavior of U(VI) onto bentonite clay under varying pH (2-8) and ionic strength (I = 0.01 - 1 M (NaClO{sub 4})) conditions. The influences of different complexing anions (1 x 10{sup -4} M) such as oxalic acid (ox), carbonate (CO{sub 3}{sup 2-}), citric acid (cit), and humic acid (HA, 10 mg/L) on the sorption behavior were also investigated. The sorption of U(VI) increased with increasing pH up to pH 6 beyond which a decrease was attributed to the formation of anionic carbonate species. Marginal influence of the change in the ionic strength of the medium on the sorption profile of uranium suggested inner-sphere complexation onto the bentonite surface. The presence of humic acid showed interesting sorption profile with varying pH. Initially, there was an enhancement in the sorption with increased pH followed by a plateau and finally a decrease thereafter due to the formation of aqueous U(VI)-humate complexes. Spectroscopic studies such as UV spectrophotometry, luminescence and extended X-ray absorption fine structure (EXAFS) measurements were also performed to understand the changes in aqueous speciation of U(VI) ion. The luminescence yields of different aqueous U(VI) species followed the order: U(VI){sub Hydroxy} > U(VI){sub HumicAcid} > U(VI){sub carbonate} > U(VI){sub citrate}. The lower luminescence yield of U(VI)carbonate complex can be attributed to the strong dynamic quenching by carbonate at room temperature. The U(VI) samples shows two distinct life-time suggesting the presence of the different luminescent U(VI) species. Similar trend was observed for U(VI)-bentonite suspension in presence/absence of the complexing ligands. There was luminescence quenching for the sorbed U(VI) due to surface complexation. These observations were further supported by spectrophotometric measurements. EXAFS spectra of U(VI) samples were recorded in luminescence mode at the U L{sub 3

  15. Interaction of an aluminum atom with an alkaline earth atom: Spectroscopic and ab initio investigations of AlCa

    Science.gov (United States)

    Behm, Jane M.; Morse, Michael D.; Boldyrev, Alexander I.; Simons, Jack

    1994-10-01

    A spectroscopic analysis of diatomic AlCa generated by laser vaporization of a 2:1 Al:Ca metal alloy followed by supersonic expansion has been completed using resonant two-photon ionization spectroscopy. Four excited electronic states have been identified and investigated in the energy region from 13 500 to 17 900 cm-1. These are the [13.5] 2Πr, the [15.8] 2Σ, the [17.0] 2Δ3/2(?), and the [17.6] 2Δ3/2 states. From rotational analysis excited state bond lengths have been measured for three of the four excited states, and the ground state has been unambiguously determined as a 2Πr state with a weighted least squares value of the ground state bond length of r0` = 3.1479± 0.0010 Å. The ionization energy of the molecule has also been directly determined as 5.072±0.028 eV. Ab initio calculations for the potential energy curves of seven low-lying states of AlCa [X 2Πr, 2Σ+, 4Σ-, 4Πr, 2Πr(2), 2Δ, and 2Σ-] and for the X 1Σ+ ground electronic state of AlCa+ have been carried out. In agreement with experiment, 2Πr is calculated to be the ground electronic state of the neutral molecule. The dissociation energies of AlCa (X 2Πr) into Al(3s23p1,2P0)+Ca(4s2,1S) and for AlCa+ (X 1Σ+) into Al+(3s2,1S)+Ca(4s2,1S) are calculated to be 0.47 and 1.50 eV, respectively. The excited 2Σ+, 4Σ-, 4Πr, 2Πr(2), 2Δ, and 2Σ- states are calculated to lie 0.2, 0.7, 0.7, 1.1, 1.1, and 1.1 eV above X 2Πr, respectively, and the vertical and adiabatic ionization energies of AlCa have been calculated to be 5.03 and 4.97 eV, respectively.

  16. Thermodynamic and Spectroscopic Investigation of Interactions between Reactive Red 223 and Reactive Orange 122 Anionic Dyes and Cetyltrimethyl Ammonium Bromide (CTAB Cationic Surfactant in Aqueous Solution

    Directory of Open Access Journals (Sweden)

    Muhammad Irfan

    2014-01-01

    Full Text Available The present study describes the conductometric and spectroscopic study of the interaction of reactive anionic dyes, namely, reactive red 223 and reactive orange 122 with the cationic surfactant cetyltrimethyl ammonium bromide (CTAB. In a systematic investigation, the electrical conductivity data was used to calculate various thermodynamic parameters such as free energy (ΔG, enthalpy (ΔH, and the entropy (ΔS of solubilization. The trend of change in these thermodynamic quantities indicates toward the entropy driven solubilization process. Moreover, the results from spectroscopic data reveal high degree of solubilization, with strong interactions observed in the cases of both dyes and the CTAB. The spontaneous nature of solubilization and binding was evident from the observed negative values of free energies (ΔGp and ΔGb.

  17. Thermodynamic and spectroscopic investigation of interactions between reactive red 223 and reactive orange 122 anionic dyes and cetyltrimethyl ammonium bromide (CTAB) cationic surfactant in aqueous solution.

    Science.gov (United States)

    Irfan, Muhammad; Usman, Muhammad; Mansha, Asim; Rasool, Nasir; Ibrahim, Muhammad; Rana, Usman Ali; Siddiq, Mohammad; Zia-Ul-Haq, Muhammad; Jaafar, Hawa Z E; Khan, Salah Ud-Din

    2014-01-01

    The present study describes the conductometric and spectroscopic study of the interaction of reactive anionic dyes, namely, reactive red 223 and reactive orange 122 with the cationic surfactant cetyltrimethyl ammonium bromide (CTAB). In a systematic investigation, the electrical conductivity data was used to calculate various thermodynamic parameters such as free energy (ΔG), enthalpy (ΔH), and the entropy (ΔS) of solubilization. The trend of change in these thermodynamic quantities indicates toward the entropy driven solubilization process. Moreover, the results from spectroscopic data reveal high degree of solubilization, with strong interactions observed in the cases of both dyes and the CTAB. The spontaneous nature of solubilization and binding was evident from the observed negative values of free energies (ΔG p and ΔG b).

  18. Investigation of a shock wave in an arcjet He plasma by using an electric probe and emission spectroscope

    Energy Technology Data Exchange (ETDEWEB)

    Kumagawa, G.; Kozue, K.; Fujino, S.; Matsuoka, L.; Endo, T.; Namba, S. [Hiroshima University, Higashi-Hiroshima (Japan); Tamura, N. [National Institute for Fusion Science, Gifu (Japan); Ezumi, N. [Nagano National College of Technology, Nagano (Japan)

    2014-10-15

    We developed an arcjet plasma device having a converging and diverging supersonic conical nozzle. Bright and dark emission structures were formed, depending on the gas pressure in the expansion section. In order to understand the mechanism for the formation of the structures, we evaluated the plasma parameters (electron density and temperature) by using a single probe and a visible emission spectroscope. The analysis of the probe measurements showed no temperature variation around the bright emission region. The plasma density increased significantly by a factor of two. Similar trends were also observed in the spectroscopic measurements. Moreover, the cell width (wavelength) of the shock wave calculated from the compressible fluid dynamics was in good agreement with the experimental value, indicating that this emission structure was caused by a shock cell that could be described by using compressible flow dynamics.

  19. Spectroscopic investigations of newly formed betulin-cyclodextrin guest-host type complexes as potential anti skin cancer candidates

    Science.gov (United States)

    Falamaş, A.; Pînzaru, S. Cînta; Chiş, V.; Dehelean, C.

    2011-05-01

    Betulin and the related compounds found in the outer bark of the birch tree have attached an increasing interest in the pharmaceutical formulation, due to their anti-cancer activity. Betulin exhibits a very poor solubility; therefore new approaches are required, such as the preparation of the guest-host type complexes using cyclodextrins. The new prepared betulin - hydroxy-propyl-gamma-cyclodextrin (HPGCD) complexes have been obtained and characterized using vibrational spectroscopic techniques in conjunction with quantum chemical calculation.

  20. Spin density wave in (Fe{sub x}V{sub 3-x})S{sub 4} and the coexistence of normal and condensate states: A Moessbauer study

    Energy Technology Data Exchange (ETDEWEB)

    Embaid, B.P., E-mail: pembaid@fisica.ciens.ucv.ve [Laboratorio de Magnetismo, Escuela de Fisica, Universidad Central de Venezuela, Apartado 47586, Los Chaguaramos, Caracas 1041-A (Venezuela, Bolivarian Republic of); Gonzalez-Jimenez, F. [Laboratorio de Magnetismo, Escuela de Fisica, Universidad Central de Venezuela, Apartado 47586, Los Chaguaramos, Caracas 1041-A (Venezuela, Bolivarian Republic of)

    2013-03-15

    Iron-vanadium sulfides of the monoclinic system Fe{sub x}V{sub 3-x}S{sub 4} (1.0{<=}x{<=}2.0) have been investigated by {sup 57}Fe Moessbauer Spectroscopy in the temperature range 30-300 K. Incommensurate spin density waves (SDW) have been found in this system. An alternative treatment of the spectra allows a direct measurement of the temperature evolution of condensate density of the SDW state which follows the Maki-Virosztek formula. For composition (x=1.0) the SDW condensate is unpinned while for compositions (x>1.0) the SDW condensate is pinned. Possible causes of the pinning-unpinning SDW will be discussed. - Highlights: Black-Right-Pointing-Pointer Fe{sub x}V{sub 3-x}S{sub 4}(1.0{<=}x{<=}2.0) system was investigated by {sup 57}Fe Moessbauer Spectroscopy. Black-Right-Pointing-Pointer Incommensurate spin density wave (SDW) has been found in this system. Black-Right-Pointing-Pointer We report the temperature evolution of the condensate density of SDW state. Black-Right-Pointing-Pointer For composition (x=1.0) the SDW is unpinned while for (x>1.0) is pinned.

  1. Computational and Spectroscopic Investigations of the Molecular Scale Structure and Dynamics of Geologically Important Fluids and Mineral-Fluid Interfaces

    Energy Technology Data Exchange (ETDEWEB)

    R. James Kirkpatrick; Andrey G. Kalinichev

    2008-11-25

    significantly larger systems. These calculations have allowed us, for the first time, to study the effects of metal cations with different charges and charge density on the NOM aggregation in aqueous solutions. Other computational work has looked at the longer-time-scale dynamical behavior of aqueous species at mineral-water interfaces investigated simultaneously by NMR spectroscopy. Our experimental NMR studies have focused on understanding the structure and dynamics of water and dissolved species at mineral-water interfaces and in two-dimensional nano-confinement within clay interlayers. Combined NMR and MD study of H2O, Na+, and Cl- interactions with the surface of quartz has direct implications regarding interpretation of sum frequency vibrational spectroscopic experiments for this phase and will be an important reference for future studies. We also used NMR to examine the behavior of K+ and H2O in the interlayer and at the surfaces of the clay minerals hectorite and illite-rich illite-smectite. This the first time K+ dynamics has been characterized spectroscopically in geochemical systems. Preliminary experiments were also performed to evaluate the potential of 75As NMR as a probe of arsenic geochemical behavior. The 75As NMR study used advanced signal enhancement methods, introduced a new data acquisition approach to minimize the time investment in ultra-wide-line NMR experiments, and provides the first evidence of a strong relationship between the chemical shift and structural parameters for this experimentally challenging nucleus. We have also initiated a series of inelastic and quasi-elastic neutron scattering measurements of water dynamics in the interlayers of clays and layered double hydroxides. The objective of these experiments is to probe the correlations of water molecular motions in confined spaces over the scale of times and distances most directly comparable to our MD simulations and on a time scale different than that probed by NMR. This work is being done

  2. Structure investigations of electrodeposited nickel

    Energy Technology Data Exchange (ETDEWEB)

    Vertes, A.; Czako-Nagy, I.; Lakatos-Varsani, M. (Eoetvoes Lorand Tudomanyegyetem, Budapest (Hungary). Dept. of Physical Chemistry); Kajcsos, Z. (Hungarian Academy of Sciences, Budapest. Central Research Inst. for Physics); Csordas, L. (Eoetvoes Lorand Tudomanyegyetem, Budapest (Hungary). Dept. of Solid State Physics); Brauer, G. (Zentralinstitut fuer Kernforschung, Rossendorf bei Dresden (German Democratic Republic)); Leidheiser, H. Jr. (Lehigh Univ., Bethlehem, PA (USA). Center for Surface and Coatings Research)

    1982-08-01

    Nickel, electrodeposited under different conditions and yielding different values of stress, was investigated by positron annihilation (lifetime and Doppler-broadening), Moessbauer effect and X-ray diffraction measurements. Two-component positron lifetime spectra were obtained. The first component is thought to result from bulk annihilation and trapping at single trapping centres (TC). Estimations of TC-concentrations are obtained by means of the trapping model. The second one possibly denotes annihilation at voids, the number of which is dependent on the stress in the deposit. Results of Doppler-broadening measurements support this interpretation. The Moessbauer results show differences in the magnetic orientation in the three samples examined.

  3. FTIR, Raman, and UV-Vis spectroscopic and DFT investigations of the structure of iron-lead-tellurate glasses.

    Science.gov (United States)

    Rada, Simona; Dehelean, Adriana; Culea, Eugen

    2011-08-01

    In this work, the effects of iron ion intercalations on lead-tellurate glasses were investigated via FTIR, Raman and UV-Vis spectroscopies. This homogeneous glass system has compositions xFe(2)O(3)·(100-x)[4TeO(2)·PbO(2)], where x = 0-60 mol%. The presented observations in these mechanisms show that the lead ions have a pronounced affinity towards [TeO(3)] structural units, resulting in the deformation of the Te-O-Te linkages, and leading to the intercalation of [PbO( n )] (n = 3, 4) and [FeO( n )] (n = 4, 6) entities in the [TeO(4)] chain network. The formation of negatively charged [FeO(4)](1-) structural units implies the attraction of Pb(2+) ions in order to compensate for this electrical charge. Upon increasing the Fe(2)O(3) content to 60 mol%, the network can accommodate an excess of oxygen through the formation of [FeO(6)] structural units and the conversion of [TeO(4)] into [TeO(3)] structural units. For even higher Fe(2)O(3) contents, Raman spectra indicate a greater degree of depolymerization of the vitreous network than FTIR spectra do. The bands due to the Pb-O bond vibrations are very strongly polarized and the [TeO(4)] structural units convert into [TeO(3)] units via an intermediate coordination stage termed "[TeO(3+1)]" structural units. Our UV-Vis spectroscopic data show two mechanisms: (i) the conversion of the Fe(3+) to Fe(2+) at the same time as the oxidation of Pb(2+) to Pb(+4) ions for samples with low Fe(2)O(3) contents; (ii) when the Fe(2)O(3) content is high (x ≥ 50 mol%), the Fe(2+) ions capture positive holes and are transferred to Fe(3+) ions through a photochemical reaction, while the Pb(2+) ions are formed by the reduction of Pb(4+) ions. DFT calculations show that the addition of Fe(2)O(3) to lead-tellurate glasses seems to break the axial Te-O bonds, and the [TeO(4)] structural units are gradually transformed into [TeO(3+1)]- and [TeO(3)]-type polyhedra. Analyzing these data further indicates a gradual

  4. Development of a highly efficient conversion electron Moessbauer spectroscopy (CEMS) detector for low temperature (<20 K) measurements and tests on Fe / (Eu{sub x}Pb{sub 1-x})Te bilayers; Desenvolvimento de um detector de alta eficiencia para espectroscopia Moessbauer de eletrons de conversao (CEMS) a baixas temperaturas (<20K) e testes em bicamadas Fe / (Eu{sub x}Pb{sub 1-x})Te

    Energy Technology Data Exchange (ETDEWEB)

    Pombo, Carlos Jose da Silva Matos

    2006-07-01

    The {sup 57}Fe Moessbauer spectroscopy is a nuclear, non-destructive technique used for the investigation of structural, magnetic and hyperfine properties of several materials. It is a powerful tool in characterizing materials in physics, metallurgy, geology and biology field areas, especially magnetic materials, alloys and minerals containing Fe. Lately, the Conversion Electron Moessbauer Spectroscopy (CEMS) is widely used in making studies on ultra-thin magnetic films, as well as other nanostructured materials. In case of magnetic nanostructures, low temperature (LT) studies are especially important due to the possibility of dealing with superparamagnetic effects. In this work it was developed a CEMS measurement system for low temperatures (<20 K) based on a solid-state electron multiplier (Channeltron{sup R}) and an optical cryostat (Model SVT-400, Janis Research Co, USA), from which the project was originally conceived at the Applied Physics / Moessbauer spectroscopy Department from University of Duisburg-Essen, Germany. The LT-CEMS system was fully built, tested and successfully applied in a preliminary characterization of Fe/(Eu{sub x}Pb{sub 1-x})Te(111) bilayers with use of a 15 angstrom, {sup 57} Fe probe layer, with reasonable results at sample temperatures as low as 8 K. (author)

  5. Moessbauer study of glasses in meteorites: the D'Orbigny angrite and Cachari eucrite

    Energy Technology Data Exchange (ETDEWEB)

    Abdu, Y. A.; Souza Azevedo, I. [Centro Brasileiro de Pesquisas Fisicas (Brazil); Stewart, S. J. [Universidad Nacional de La Plata, IFLP, CONICET, Depto. De Fisica, Facultad de Cs. Exactas (Argentina); Lopez, A. [Centro Brasileiro de Pesquisas Fisicas (Brazil); Varela, M. E. [CONICET-UNS, Depto. de Geologia (Argentina); Kurat, G. [Naturhistorisches Museum (Austria); Scorzelli, R. B., E-mail: scorza@cbpf.br [Centro Brasileiro de Pesquisas Fisicas (Brazil)

    2005-11-15

    Moessbauer spectroscopy measurements at room temperature (RT) and at liquid helium temperature (4.2 K) were carried out on bulk and glass samples from the D'Orbigny (angrite) and Cachari (eucrite) meteorites. The RT Moessbauer spectrum of the bulk sample of D'Orbigny shows the presence of Fe{sup 2+} in olivine and pyroxene and that of bulk Cachari contains only pyroxene. Very small amounts of Fe{sup 3+} are also present in the bulk samples, but are attributed to surface contamination. The RT spectra of the D'Orbigny and Cachari glasses are fitted with three doublets, which are assigned to Fe{sup 2+} at three different octahedral positions. No Fe{sup 3+} was detected in the glass samples. The spectra of the glasses measured at 4.2 K show the presence of relaxation effects. The results suggest a certain degree of structural ordering in these glasses.

  6. Moessbauer Study of Ceramic Finds from the Galeria de las Ofrendas, Chavin de Huantar

    Energy Technology Data Exchange (ETDEWEB)

    Lumbreras, L. G. [Museo Nacional de Antropologia (Peru); Gebhard, R. [Archaeologische Staatssammlung Muenchen (Germany); Haeusler, W. [Technische Universitaet Muenchen, Physik-Department E15 (Germany); Kauffmann-Doig, F. [Universidad Peruana de Ciencias Aplicadas (UPC) (Peru); Riederer, J. [Rathgen-Forschungslabor (Germany); Sieben, G.; Wagner, U. [Technische Universitaet Muenchen, Physik-Department E15 (Germany)

    2003-09-15

    Ceramic finds from the Galeria de las Ofrendas at Chavin de Huantar and surface finds from the settlement of Chavin were characterised by combining the results of archaeological typology with archaeometric studies using neutron activation analysis, Moessbauer spectroscopy, X-ray diffraction and thin-section microscopy. Sherds from the pyramid Tello are included in the study as representative of local material. The analyses show that the vessels were made from different raw materials and that different firing procedures were used in their production. Sherds of certain styles largely exhibit similar types of Moessbauer patterns and in many instances also have similar element compositions. This supports the archaeological notion that the vessels were brought to Chavin from the provinces, perhaps on the occasion of a festivity.

  7. Firing of Clays Studied by X-ray Diffraction and Moessbauer Spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Haeusler, W. [Technische Universitaet Muenchen, Physik-Department E15 (Germany)

    2004-06-15

    Three bentonites of varying purity were fired in air under controlled conditions up to 1300{sup o}C in an attempt to provide data for the assessment of firing techniques used in prehistoric pottery making. X-ray diffraction of samples heated at increasing temperatures allows to study the mineral transformations, the breakdown of the clay structure and the formation of new minerals in the high-temperature region. Moessbauer spectroscopy reveals the change of valence state and of the environment of the iron atoms on heating. Non iron-bearing minerals are only accessible by X-ray diffraction, while iron-containing oxidic and amorphous phases may be difficult to detect, due to poor crystallinity and small particle size. The combination of X-ray diffraction and Moessbauer spectroscopy therefore has a considerable potential in the study of the chemical and physical transformations occurring in pottery clays during firing.

  8. Moessbauer study of peroxynitrito complex formation with Fe{sup III}-chelates

    Energy Technology Data Exchange (ETDEWEB)

    Homonnay, Zoltan, E-mail: homonnay@ludens.elte.hu; Buszlai, Peter; Nador, Judit [Eoetvoes University, Institute of Chemistry (Hungary); Sharma, Virender K. [Florida Institute of Technology (United States); Kuzmann, Erno; Vertes, Attila [Eoetvoes University, Institute of Chemistry (Hungary)

    2012-03-15

    The reaction of the {mu}-oxo-diiron(III)-L complex (L = EDTA, ethylene diamine tetraacetate, HEDTA, hydroxyethyl ethylene diamine triacetate, and CyDTA, cyclohexane diamine tetraacetate) with peroxynitrite in alkaline solution was studied by Moessbauer spectroscopy using rapid-freezing technique. These complexes yield an (L)Fe{sup III}({eta}{sup 2}-O{sub 2}){sup 3-} complex ion when they react with hydrogen peroxide and the formation of the peroxide adduct results in a deep purple coloration of the solution. The same color appears when the reaction occurs with peroxinitrite. Although spectrophotometry indicated some difference between the molar extinction coefficients of the peroxo and the peroxinitrito adducts, the Moessbauer parameters proved to be the same within experimental error. It is concluded that the peroxynitrite ion decomposes when reacting with Fe{sup III}(L) and the peroxo adduct forms.

  9. Moessbauer study of Martensitic transformation and collective magnetic excitations in Fe9Ni1 fine particles

    Institute of Scientific and Technical Information of China (English)

    H.M.Widatallah; 黄润生; 等

    1996-01-01

    The austenite to martensity ransformation in fine Fe90Ni.10 particles prepared by evaporation is studied by Moessbauer technique.Unlike bulk Fe.9Ni.1 which is entirely transformed to martensite.these particles show a remarkable austenite stability upon cooling upto liquid nitrogen temperature.This stability is associated with the oxide surface layer formed on the particles and also with their small size.A hyperfine field approach is employed to analyze the martensitic transformation in the particles.It is also shown that,in contrast with large particles ,the temperature variation of the Moessbauer average hyperfine field of the fine particles can be satisfactorily explained in terms of the collective magnetic excitations model.

  10. Investigating the origin and spectroscopic variability of the near-infrared HI lines in the Herbig star VV Ser

    CERN Document Server

    López, Rebeca García; Garatti, Alessio Caratti o; Kreplin, Alexander; Weigelt, Gerd; Tambovtseva, Larisa V; Grinin, Vladimir P; Ray, Thomas P

    2015-01-01

    The origin of the near-infrared (NIR) HI emission lines in young stellar objects are not yet understood. To probe it, we present multi-epoch LBT-LUCIFER spectroscopic observations of the Pa{\\delta}, Pa{\\beta}, and Br{\\gamma} lines observed in the Herbig star VVSer, along with VLTI-AMBER Br{\\gamma} spectro-interferometric observations at medium resolution. Our spectroscopic observations show line profile variability in all the HI lines. The strongest variability is observed in the redshifted part of the line profiles. The Br{\\gamma} spectro-interferometric observations indicate that the Br{\\gamma} line emitting region is smaller than the continuum emitting region. To interpret our results, we employed radiative transfer models with three different flow configurations: magnetospheric accretion, a magneto-centrifugally driven disc wind, and a schematic bipolar outflow. Our models suggest that the HI line emission in VVSer is dominated by the contribution of an extended wind, perhaps a bipolar outflow. Although t...

  11. Nondestructive depth-resolved spectroscopic investigation of the heavily intermixed In2S3/Cu(In,Ga)Se2 interface

    Energy Technology Data Exchange (ETDEWEB)

    Bar, Marcus; Barreau, N.; Couzinie-Devy, F.; Pookpanratana, S.; Klaer, J.; Blum, M.; Zhang, Y.; Yang, W.; Denlinger, J.D.; Schock, H.W.; Weinhardt, L.; Kessler, J.; Heske, Clemens

    2010-04-06

    The chemical structure of the interface between a nominal In2S3 buffer and a Cu(In,Ga)Se2 (CIGSe) thin-film solar cell absorber was investigated by soft x-ray photoelectron and emission spectroscopy. We find a heavily intermixed, complex interface structure, in which Cu diffuses into (and Na through) the buffer layer, while the CIGSe absorber surface/interface region is partially sulfurized. Based on our spectroscopic analysis, a comprehensive picture of the chemical interface structure is proposed.

  12. Nondestructive depth-resolved spectroscopic investigation of the heavily intermixed In2S3/Cu(In,Ga)Se2 interface

    Science.gov (United States)

    Bär, M.; Barreau, N.; Couzinié-Devy, F.; Pookpanratana, S.; Klaer, J.; Blum, M.; Zhang, Y.; Yang, W.; Denlinger, J. D.; Schock, H.-W.; Weinhardt, L.; Kessler, J.; Heske, C.

    2010-05-01

    The chemical structure of the interface between a nominal In2S3 buffer and a Cu(In,Ga)Se2 (CIGSe) thin-film solar cell absorber was investigated by soft x-ray photoelectron and emission spectroscopy. We find a heavily intermixed, complex interface structure, in which Cu diffuses into (and Na through) the buffer layer, while the CIGSe absorber surface/interface region is partially sulfurized. Based on our spectroscopic analysis, a comprehensive picture of the chemical interface structure is proposed.

  13. Effect of nanocrystallization on the electrical conductivity enhancement and Moessbauer hyperfine parameters of iron based glasses

    Energy Technology Data Exchange (ETDEWEB)

    El-Desoky, M.M., E-mail: mmdesoky@gmail.com [Department of Physics, Faculty of Education, Suez Canal University, Al-Arish 45511, North Sinaa (Egypt); Ibrahim, F.A. [Department of Physics, Faculty of Education, Suez Canal University, Al-Arish 45511, North Sinaa (Egypt); Mostafa, A.G.; Hassaan, M.Y. [Department of Physics, Faculty of Science, Al-Azhar University, Nasr City 11884, Cairo (Egypt)

    2010-09-15

    Selected glasses of Fe{sub 2}O{sub 3}-PbO{sub 2}-Bi{sub 2}O{sub 3} system have been transformed into nanomaterials by annealing at temperature close to crystallization temperature (T{sub c}) for 1 h. The effects of the annealing of the present samples on its structural and electrical properties were studied by Moessbauer spectroscopy, transmission electron micrograph (TEM), differential scanning calorimeter (DSC) and dc conductivity ({sigma}). Moessbauer spectroscopy was used in order to determine the states of iron and its hyperfine structure. The effect of nanocrystalization on the Moessbauer hyperfine parameters did not exhibit significant modifications in present glasses. However, in case of glass ceramic nanocrystals show a distinct decrease in the quadrupole splitting ({Delta}) is observed, reflecting an evident decrease in the distortion of structural units like FeO{sub 4} units. In general, the Moessbauer parameters of the nano-crystalline phase exhibit tendency to increase with PbO{sub 2} content. TEM of as-quenched glasses confirm the homogeneous and essentially featureless morphology. TEM of the corresponding glass ceramic nanocrystals indicates nanocrystals embedded in the glassy matrix with average particle size of about 32 nm. The crystallization temperature (T{sub c}) was observed to decrease with PbO{sub 2} content. The glass ceramic nanocrystals obtained by annealing at T{sub c} exhibit improvement of electrical conductivity up to four orders of magnitude than the starting glasses. This considerable improvement of electrical conductivity after nanocrystallization is attributed to formation of defective, well-conducting phases 'easy conduction paths' along the glass-crystallites interfaces.

  14. Moessbauer and magnetic studies of cobalt substituted lithium zinc ferrites prepared by citrate precursor method

    Energy Technology Data Exchange (ETDEWEB)

    Soibam, Ibetombi [Department of Physics, Manipur University, Canchipur, Imphal 795003, Manipur (India)], E-mail: ibetombi_phys@rediffmail.com; Phanjoubam, Sumitra [Department of Physics, Manipur University, Canchipur, Imphal 795003, Manipur (India); Prakash, Chandra [Directorate of ER and IPR, DRDO Bhawan, Rajaji Marg, New Delhi 110011 (India)

    2009-05-05

    Nanocrystalline lithium zinc ferrites substituted with cobalt were synthesized by the citrate precursor method. X-ray diffraction was used to confirm the spinel phase. Moessbauer studies at room temperature were carried out to study the effect of cobalt concentration on the various hyperfine interactions. Variation of the saturation magnetization with respect to composition was discussed. The result shows some anomalous behaviour when cobalt is substituted to lithium ferrite in presence of zinc.

  15. Iron-nickel alloy from iron meteorite Chinga studied by Moessbauer spectroscopy with high velocity resolution

    Energy Technology Data Exchange (ETDEWEB)

    Oshtrakh, M. I., E-mail: oshtrakh@mail.utnet.ru; Grokhovsky, V. I.; Abramova, N. V. [Ural State Technical University-UPI, Faculty of Physical Techniques and Devices for Quality Control (Russian Federation); Semionkin, V. A. [Ural State Technical University-UPI, Faculty of Experimental Physics (Russian Federation); Milder, O. B. [Ural State Technical University-UPI, Radio-Technical Department (Russian Federation)

    2009-04-15

    Study of iron-nickel alloy from iron meteorite Chinga using Moessbauer spectroscopy with improved velocity resolution (measurement and presentation in 4,096 channels) revealed six magnetic components which may be related to various {alpha}-Fe(Ni, Co) and {gamma}-Fe(Ni, Co) phases while previous study with low velocity resolution (in 512 channels) revealed only three magnetic components. This new result was in agreement with the scanning electron microscopy study.

  16. Moessbauer Study of a Celtic Pottery-Making Kiln in Lower Bavaria

    Energy Technology Data Exchange (ETDEWEB)

    Gebhard, R. [Archaeologische Staatssammlung (Germany); Guggenbichler, E.; Haeusler, W. [Technische Universitaet Muenchen, Physik Department E15 (Germany); Riederer, J. [Staatliche Museen Preussischer Kulturbesitz, Rathgen-Forschungslabor (Germany); Schmotz, K. [Kreisarchaeologie Deggendorf (Germany); Wagner, F. E.; Wagner, U. [Technische Universitaet Muenchen, Physik Department E15 (Germany)

    2004-06-15

    In 1995 a well preserved 3rd century BC Celtic kiln for pottery making was excavated at Schmiedorf in Lower Bavaria. The firing chamber and the flue plate of the kiln were preserved, whereas the dome was not found. We report on a study of material from this kiln by neutron activation analysis, thin-section microscopy, X-ray diffraction and Moessbauer spectroscopy, all performed with the aim to learn more about pottery-making procedures in Celtic times.

  17. Moessbauer study of Haltern 70 amphora sherds from Castro do Vieito, North of Portugal

    Energy Technology Data Exchange (ETDEWEB)

    Costa, B F O; Ramos Silva, M [CEMDRX, Department of Physics, University of Coimbra, P-3004-516, Coimbra (Portugal); Pereira, G [Science Museum of the University of Coimbra, P-3000-272, Coimbra Portugal (Portugal); Silva, A J M [Centro de Estudos Arqueologicos das Universidades de Coimbra e do Porto/CAM, Palacio de Sub-Ripas P-3004-395 Coimbra (Portugal); Carmo, S J C do, E-mail: benilde@ci.uc.p [GIAN, Department of Physics, University of Coimbra, P-3004-516, Coimbra (Portugal)

    2010-03-01

    Haltern 70 amphora sherds obtained from Castro do Vieito were studied by Moessbauer spectroscopy, X-ray diffraction and X-ray fluorescence. In all our samples non magnetic Fe{sup 3+} haematite species were found. In some samples, also Fe{sup 2+} was found. We conclude that the samples were fired under changing atmosphere, air being admitted at the end of the firing cycle following firing in a reducing atmosphere.

  18. Electron magnetic resonance and Moessbauer studies on iron doped SnO{sub 2} nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Grecu, Maria Nicoleta, E-mail: mgrecu@infim.ro; Constantinescu, Serban Gr.; Ghica, Daniela; Tarabasanu-Mihaila, Doina; Diamandescu, Lucian [National Institute of Materials Physics (Romania)

    2012-03-15

    Iron doped (0.25-7.5% molar) hydrothermal nano-SnO{sub 2} was characterized by electron magnetic resonance (EMR) and Moessbauer spectroscopies. Only a small fraction of transition metal ions are in magnetic ordered state, contrary to the similar crystallographic compound TiO{sub 2}. Temperature dependences of spectra suggest that by increasing iron concentration, or annealing temperature, iron ions migrate to nanoparticles surfaces forming disordered iron oxides.

  19. Moessbauer spectrometry applied to the study of laboratory samples made of iron gall ink

    Energy Technology Data Exchange (ETDEWEB)

    Burgaud, C. [Centre de Recherche pour la Conservation des Collections, MNHN, CNRS, MCC, 36 rue Geoffroy Saint Hilaire, CP 21, Paris (France); Universite de La Rochelle, LEMMA, Batiment Marie Curie, La Rochelle Cedex 01 (France); Rouchon, V. [Centre de Recherche pour la Conservation des Collections, MNHN, CNRS, MCC, 36 rue Geoffroy Saint Hilaire, CP 21, Paris (France); Refait, P. [Universite de La Rochelle, LEMMA, Batiment Marie Curie, La Rochelle Cedex 01 (France); Wattiaux, A. [Universite de Bordeaux 1, Institut de Chimie de la Matiere Condensee de Bordeaux, CNRS, Pessac Cedex (France)

    2008-07-15

    Iron gall inks consist of a mixture of vitriol, gall nut extracts and gum arabic. The association of the iron(II) sulphate present in vitriols, and the carboxyphenolic acids present in gall nut extracts leads to the formation of dark coloured iron-based precipitates. In order to evaluate the percentage of iron used in the formation of these precipitates, transmission Moessbauer spectroscopy (MS) measurements were performed on laboratory made inks at room temperature. These were completed by X-ray diffraction (XRD), and Raman spectroscopy measurements. The samples consisted of several solutions of iron(II) sulphate, gallic acid and gum arabic. After evaporation, the residues were analysed. Up to eight different Moessbauer signatures were detected, most of them correlated to iron sulphates. The Moessbauer signature of the iron gall precipitate was also isolated. It is not distinctly defined and may overlap with the signatures of iron(III) hydroxy-sulphates, such as jarosite or copiapite. Raman spectrometry then proved to be a useful complementary technique for the identification of the precipitate. (orig.)

  20. Reclassification of CK chondrites confirmed by elemental analysis and Fe-Moessbauer spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Kubuki, Shiro, E-mail: kubuki@tmu.ac.jp; Iwanuma, Jun; Akiyama, Kazuhiko; Isa, Miki; Shirai, Naoki; Ebihara, Mitsuru [Tokyo Metropolitan University, Department of Chemistry, Graduate School of Science and Engineering (Japan); Nishida, Tetsuaki [Kinki University, Department of Biological and Environmental Chemistry, Faculty of Humanity-Oriented Science and Engineering (Japan)

    2012-03-15

    Twenty CK chondrites collected in the Antarctica Continent were characterized by inductively-coupled plasma mass spectrometry (ICP-MS), prompt gamma ray analysis (PGA), instrumental neutron activation analysis (INAA), X-ray diffractometry (XRD) and {sup 57}Fe-Moessbauer spectroscopy. As a result of elemental analysis, it was revealed that 18.2{approx}26.4 mass% of iron was included in the each chondrite. Moessbauer spectrum of LEW86258, classified as a typical CK chondrite, was found to be composed of two paramagnetic doublets and two magnetic sextets. Moessbauer spectra were assigned to the absorption due to forsterite (Mg{sub 1.36}Fe{sub 0.64}SiO{sub 4}) and magnetite (Fe{sub 3}O{sub 4}), as also confirmed by XRD. XRD study of LAP03834, reclassified from CK to R chondrite, revealed the presence of crystalline phase due to forsterite. These results indicate that LAP03834 and related chondrites, i.e., MET01149, LAP03923 and MAC02453, should be reclassified as R or LL chondrite.

  1. Moessbauer effect of the alkaline and alkaline earth metal nitroprusside powders

    CERN Document Server

    Yang, T H; Kim, H S; Hong, C Y; Kim, H B; Cho, H Y; Kim, D Y; Moon, Y S

    2000-01-01

    We observe Moessbauer spectra of Fe atoms centered in nitroprusside anions of sodium nitroprusside (Na sub 2 [Fe(CN) sub 5 NO] 2H sub 2 O). potassium-nitroprusside (K sub 2 [Fe(CN)] sub 5 NO centre dot 2.5H sub 2 O), rubidium nitroprusside (Rb sub 2 [Fe(CN) sub 5 NO centre dot H sub 2 O), magnesium nitroprusside (Mg[Fe(CN) sub 5 NO], calcium nitroprusside (Ca[Fe(CN) sub 5 NO]centre dot 4H sub 2 O), and barium nitroprusside (Ba[Fe(CN) sub 5 NO]centre dot 3H sub 2 O) samples which have photochromic properties. We compare the Moessbauer parameters, the values of the isomer shifts and the quadrupole splittings of the samples with those of a sodium nitroprusside single crystal which is a standard material. The values of the isomer shifts and the quadrupole splittings of the various compounds are close to each other. The values of the line broadening of all samples are between 2.1 GAMMA sub N and 2.5 GAMMA sub N. The Moessbauer Lamb factors (f) are between 0.252(1) and 0.340(2). These values are obtained from the s...

  2. Moessbauer study of spin structure transformation from an incommensurate to a commensurate state

    Energy Technology Data Exchange (ETDEWEB)

    Choi, Kang Ryong; Park, Seung-Iel; Kim, Sam Jin; Kim, Chul Sung, E-mail: cskim@phys.kookmin.ac.kr [Kookmin University, Departmentt of Physics (Korea, Republic of)

    2009-01-15

    We present crystallographic and magnetic properties of NiCr{sub 1.98}{sup 57}Fe{sub 0.02}O{sub 4} by using X-ray diffractometry (XRD), vibrating sample magnetometry (VSM), and Moessbauer spectroscopy. The lattice constants a{sub 0} were determined to be 8.318 A. The ferrimagnetic Neel temperature (T{sub N}) for NiCr{sub 1.98}{sup 57}Fe{sub 0.02}O{sub 4} is determined to be 90 K. The Moessbauer absorption spectra for all chromites at 4.2 K show two well developed sextets superposed with small difference of hyperfine fields (H{sub hf}) caused by Cr{sup 3+} ions in two different magnetic sites. The values of the isomer shifts show that the charge states of Fe are Fe{sup 3+} for all temperature range. Ni-chromites Moessbauer spectra below T{sub N} present aline broadening due to a Jahn-Teller distortion and show that spin structure behavior of Cr ions change from an incommensurate to a commensurate state.

  3. Mineral identification in Colombian coals using Moessbauer spectroscopy and X-ray diffraction

    Energy Technology Data Exchange (ETDEWEB)

    Fajardo, M. [Universidad del Valle, A.A, Departamento de Fisica (Colombia); Mojica, J. [Instituto Nacional de Investigaciones en Geociencia, Mineria y Quimica (INGEOMINAS) (Colombia); Barraza, J. [Universidad del Valle, A.A, Departamento de Procesos Quimicos, Facultad de Ingenieria (Colombia); Perez Alcazar, G.A.; Tabares, J.A. [Universidad del Valle, A.A, Departamento de Fisica (Colombia)

    1999-11-15

    Minerals were identified in three Colombian coal samples from the Southwest of the country using Moessbauer spectroscopy and X-ray diffraction. Original and sink separated coal fractions of specific gravity 1.40 and 1.60 with particle size less than 600 {mu}m were used in the study. Using Moessbauer spectroscopy, the minerals identified in the original coal samples were pyrite jarosite, ankerite, illite and ferrous sulfate, whereas by means of X-ray diffraction, minerals identified were kaolinite, quartz, pyrite, and jarosite. Differences in mineral composition were found in the original and sink separated fractions using both techniques. Moessbauer spectra show that the mineral phases in low concentrations such as illite, ankerite and ferrous sulfate do not always appear in the spectra of sink coals, despite of those minerals occurring in the original coal, due to the fact that they are associated with the organic matter and not liberated in the grinding process. X-ray results show that the peak intensity grows as the specific gravity is increased indicating that the density separation method could be an effective process to clean coal.

  4. Behavior of H(sub2)O and OH in lawsonite : a single crystal neutron diffraction and Raman spectroscopic investigation.

    Energy Technology Data Exchange (ETDEWEB)

    Kolesov, B. A.; Lager, G. A.; Schultz, A. J.; Russian Academy of Science; Univ. of Louisville

    2008-01-01

    Neutron diffraction and polarized single-crystal Raman spectroscopic measurements were made on the high-pressure silicate lawsonite, CaAl{sub 2}(Si{sub 2}O{sub 7})(OH){sub 2} {center_dot} H{sub 2}O, from Tiburon Peninsula, California. For the diffraction measurements, intensity reflection data were collected at temperatures of 295, 110 and 20 K using time-of-flight neutron diffraction methods to further examine two reversible, order-disorder type phase transitions occurring at 273 and 155 K [Cmcm (> 273 K) {yields} Pmcn (< 273 K) {yields} P2{sub 1}cn (< 155 K)]. These data are also used to model the H atom displacements in lawsonite as a function of temperature and to provide better insight into the nature of H bonding. The Raman spectroscopic measurements (2500 to 4000 cm{sup -1} at 4 {ge} T {ge} 300 K) were carried out on the same crystal used for the neutron diffraction study. Four OH-related bands are observed between 2700 and 3600 cm{sup -1}. The OH groups and H{sub 2}O molecules, which are linked by hydrogen bonding, build quasi one-dimensional chains in lawsonite, that run parallel to [001] and thus a model consisting of isolated oscillators cannot be used to interpret the spectra at ambient temperature. A notable feature of spectral behavior at 240-260 K in the vicinity of the Cmcm {leftrightarrow} Pmcn phase transition is the change-over of strong hydrogen bonding from the OH group to the H{sub 2}O molecule. The lowest-wavenumber OH(H{sub 2}O) band at 2780 cm{sup -1} at 4 K is broad and asymmetric, which is related to strong hydrogen bonding, and is characterized by strong anharmonicity. This band was deconvoluted into a number of combination modes consisting of an internal-H{sub 2}O and various external-H{sub 2}O vibrations.

  5. Spectroscopic investigation of new fullerene based acceptors for organic solar cells; Spektroskopische Untersuchung neuartiger Fullerenakzeptoren fuer organische Solarzellen

    Energy Technology Data Exchange (ETDEWEB)

    Liedte, Moritz Nils

    2012-04-27

    high open circuit voltage of 835 mV in the devices produced, but also a rather low current density. I tried to understand the processes in the charge carrier generation and extraction process causing this. Using several measurement techniques, combined with general knowledge about comparable endohedral fullerenes from the literature, I was able to identify an internal charge transfer of electrons from the lutetium atoms encaged in the C{sub 80} to the fullerene bulk as origin The results presented in this work give further indications for the advantages of using C{sub 70} based fullerene acceptors in organic solar cells to raise the total power conversion efficiencies of these devices, despite the higher production costs. The identification of anion signatures of different fullerenes show an additional method to monitor the excitation processes by optical spectroscopy in bulk-heterojunction devices. My research regarding the Lu{sub 3}N rate at C{sub 80} molecule showed a general effect regarding this class of molecules, that will be important for any further synthesizes or application of such molecules in organic photovoltaics. While the projects regarding the dimer acceptors and the Lu{sub 3}N rate at C{sub 80} molecule were completed in this work, the analysis of spectroscopic anion signatures left some open questions, especially for large fullerenes. Further investigations using spin sensitive or time resolved techniques, as available in our research group, could be useful to gather more detailed information on this topic. Also trying to get some PC{sub 81}BM for photoinduced absorption measurements, alone and in blend with several polymers, might be another way to energetically pinpoint the anion signature on C{sub 80}.

  6. Study of iron valence state and position in sub-site by Moessbauer spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Uhm, Young Rang; Lim, Jae Cheong; KIm, Chul Sung [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of); Son, Kwang Jae [Kookmin Univ., Seoul (Korea, Republic of)

    2014-05-15

    The magnetic ordering temperature and the magnitude of the magnetic fields at the iron sites of YIG can be influenced by substituting, either partially or totally, the Fe{sup 3+} ions at the octahedral and/or the tetrahedral sites with magnetic or diamagnetic ions, and/or by substitution the Y{sup 3+} ions at the dodecahedral sites with magnetic rare earth ions. It has been known for some time that Moessbauer spectroscopy is a powerful method by which iron-containing garnets can be studied. We report here on the synthesis of the compounds with garnet-related structures of composition Y{sub 3}Fe{sub 4.5}Cr{sub 0.5}O{sub 12} and its examination by {sup 57}Fe Moessbauer spectroscopy. The chromium in compounds of the Y{sub 3}Fe{sub 4.5}Cr{sub 0.5}O{sub 12} is distributed at an octahedral site. The Moessbauer spectra can be analyzed using 3 or 4 sets of six Lorentzians with increasing amount of Cr{sup 3+} compounds in this system. It results from the distribution ({sub 4}C{sub n}) of Fe{sup 3+} and Cr{sup 3+} at an octahedral site. A comparative study of ferrous tablets of Dynabi was carried out using Moessbauer spectroscopy. The obtained results revealed the presence of ferrous (Fe{sup 2+}) gluconate and ferrous fumarate in a sample. This observation is important to better control the iron state in such medicaments because their pharmaceutical effect in the body is related to the form and valence of iron. The Cr-containing yttrium iron garnet (YIG), and the exchange interactions and site distributions were studied using {sup 57}Fe Moessbauer spectroscopy. The obtained results revealed the presence of ferrous (Fe{sup 2+}) gluconate and ferrous fumarate in the sample. This observation is important better control the iron state in such medicaments because their pharmaceutical effect in the body is related to the form and valence of iron.

  7. Investigations of Spectroscopic Factors and Sum Rules from the Single Neutron Transfer Reaction 111Cd(d→$\\overrightarrow {\\rm{d}} $,p112Cd

    Directory of Open Access Journals (Sweden)

    Jamieson D.S.

    2014-03-01

    Full Text Available Cadmium isotopes have been presented for decades as excellent examples of vibrational nuclei, with low-lying levels interpreted as multi-phonon quadrupole, octupole, and mixed-symmetry states. A large amount of spectroscopic data has been obtained through various experimental studies of cadmiumisotopes. In the present work, the 111Cd(d→$\\overrightarrow {\\rm{d}} $,p112Cd reaction was used to investigate the single-particle structure of the 112Cd nucleus. A 22 MeV beam of polarized deuterons was obtained at the Maier-Leibnitz laboratory in Garching, Germany. The reaction ejectiles were momentum analyzed using a Q3D spectrograph, and 130 levels have been identified up to 4.2 MeV of excitation energy. Using DWBA analysis with optical model calculations, spin-parity assignments have been made for observed levels, and spectroscopic factors have been extracted from the experimental angular distributions of differential cross section and analyzing power. In this high energy resolution investigation, many additional levels have been observed compared with the previous (d,p study using 8 MeV deuterons [1]. There were a total of 44 new levels observed, and the parity assignments of 34 levels were improved.

  8. Moessbauer study of iron-carbide growth and Fischer-Tropsch activity

    Energy Technology Data Exchange (ETDEWEB)

    Rao, K.R.P.M.; Huggins, F.E.; Huffman, G.P. [Univ. of Kentucky, Lexington, (United States)] [and others

    1995-12-31

    There is a need to establish a correlation between the Fischer-Tropsch (FT) activity of an iron-based catalyst and the catalyst phase during FT synthesis. The nature of iron phases formed during activation and FT synthesis is influenced by the nature of the gas and pressure apart from other parameters like temperature, flow rate etc., used for activation. Moessbauer investigations of iron-based catalysts subjected to pretreatment at two different pressures in gas atmospheres containing mixtures of CO, H{sub 2}, and He have been carried out. Studies on UCI 1185-57 (64%Fe{sub 2}O{sub 3}/5%CuO/1%K{sub 2}O/30% Kaolin) catalyst indicate that activation of the catalyst in CO at 12 atms. leads to the formation of 100% magnetite and the magnetite formed gets rapidly converted to at least 90% of {chi}-Fe{sub 5}C{sub 2} during activation. The FT activity was found to be good at 70-80% of (H{sub 2}+CO) conversion. On the other hand, activation. The FT activity was found to be good at 70-80% of (H{sub 2}+CO) conversion. On the other hand, activation of the catalyst in synthesis gas at 12 atms. leads to formation of Fe{sub 3}O{sub 4} and it gets sluggishly converted to {chi}-Fe{sub 5}C{sub 2} and {epsilon}-Fe{sub 2.2}C during activation and both continue to grow slowly during FT synthesis. FT activity is found to be poor. Pretreatment of the catalyst, 100fe/3.6Si/0.71K at a low pressure of 1 atms. in syngas gave rise to the formation of {chi}-Fe{sub 5}C{sub 2} and good FT activity. On the other hand, pretreatment of the catalyst, 100Fe/3.6Si/0.71K at a relatively high pressure of 12 atms. in syngas did not give rise to the formation any carbide and FT activity was poor.

  9. Investigating the biochemical progression of liver disease through fibrosis, cirrhosis, dysplasia, and hepatocellular carcinoma using Fourier transform infrared spectroscopic imaging

    Science.gov (United States)

    Sreedhar, Hari; Pant, Mamta; Ronquillo, Nemencio R.; Davidson, Bennett; Nguyen, Peter; Chennuri, Rohini; Choi, Jacqueline; Herrera, Joaquin A.; Hinojosa, Ana C.; Jin, Ming; Kajdacsy-Balla, Andre; Guzman, Grace; Walsh, Michael J.

    2014-03-01

    Hepatocellular carcinoma (HCC) is the most common form of primary hepatic carcinoma. HCC ranks the fourth most prevalent malignant tumor and the third leading cause of cancer related death in the world. Hepatocellular carcinoma develops in the context of chronic liver disease and its evolution is characterized by progression through intermediate stages to advanced disease and possibly even death. The primary sequence of hepatocarcinogenesis includes the development of cirrhosis, followed by dysplasia, and hepatocellular carcinoma.1 We addressed the utility of Fourier Transform Infrared (FT-IR) spectroscopic imaging, both as a diagnostic tool of the different stages of the disease and to gain insight into the biochemical process associated with disease progression. Tissue microarrays were obtained from the University of Illinois at Chicago tissue bank consisting of liver explants from 12 transplant patients. Tissue core biopsies were obtained from each explant targeting regions of normal, liver cell dysplasia including large cell change and small cell change, and hepatocellular carcinoma. We obtained FT-IR images of these tissues using a modified FT-IR system with high definition capabilities. Firstly, a supervised spectral classifier was built to discriminate between normal and cancerous hepatocytes. Secondly, an expanded classifier was built to discriminate small cell and large cell changes in liver disease. With the emerging advances in FT-IR instrumentation and computation there is a strong drive to develop this technology as a powerful adjunct to current histopathology approaches to improve disease diagnosis and prognosis.

  10. A Comprehensive Spectroscopic and Computational Investigation to Probe the Interaction of Antineoplastic Drug Nordihydroguaiaretic Acid with Serum Albumins.

    Directory of Open Access Journals (Sweden)

    Saima Nusrat

    Full Text Available Exogenous drugs that are used as antidote against chemotheray, inflammation or viral infection, gets absorbed and interacts reversibly to the major serum transport protein i.e. albumins, upon entering the circulatory system. To have a structural guideline in the rational drug designing and in the synthesis of drugs with greater efficacy, the binding mechanism of an antineoplastic and anti-inflammatory drug Nordihydroguaiaretic acid (NDGA with human and bovine serum albumins (HSA & BSA were examined by spectroscopic and computational methods. NDGA binds to site II of HSA with binding constant (Kb ~105 M-1 and free energy (ΔG ~ -7.5 kcal.mol-1. It also binds at site II of BSA but with lesser binding affinity (Kb ~105 M-1 and ΔG ~ -6.5 kcal.mol-1. The negative value of ΔG, ΔH and ΔS for both the albumins at three different temperatures confirmed that the complex formation process between albumins and NDGA is spontaneous and exothermic. Furthermore, hydrogen bonds and hydrophobic interactions are the main forces involved in complex formation of NDGA with both the albumins as evaluated from fluorescence and molecular docking results. Binding of NDGA to both the albumins alter the conformation and causes minor change in the secondary structure of proteins as indicated by the CD spectra.

  11. Probing the interaction of a therapeutic flavonoid, pinostrobin with human serum albumin: multiple spectroscopic and molecular modeling investigations.

    Directory of Open Access Journals (Sweden)

    Shevin R Feroz

    Full Text Available Interaction of a pharmacologically important flavonoid, pinostrobin (PS with the major transport protein of human blood circulation, human serum albumin (HSA has been examined using a multitude of spectroscopic techniques and molecular docking studies. Analysis of the fluorescence quenching data showed a moderate binding affinity (1.03 × 10(5 M(-1 at 25°C between PS and HSA with a 1∶1 stoichiometry. Thermodynamic analysis of the binding data (ΔS = +44.06 J mol(-1 K(-1 and ΔH = -15.48 kJ mol(-1 and molecular simulation results suggested the involvement of hydrophobic and van der Waals forces, as well as hydrogen bonding in the complex formation. Both secondary and tertiary structural perturbations in HSA were observed upon PS binding, as revealed by intrinsic, synchronous, and three-dimensional fluorescence results. Far-UV circular dichroism data revealed increased thermal stability of the protein upon complexation with PS. Competitive drug displacement results suggested the binding site of PS on HSA as Sudlow's site I, located at subdomain IIA, and was well supported by the molecular modelling data.

  12. Spectroscopic investigation of the A (1)A(")-X (1)A(') electronic transition of HSiNCO.

    Science.gov (United States)

    Dover, Matthew R; Evans, Corey J; Western, Colin M

    2009-09-28

    The first spectroscopic observation of the previously unknown species HSiNCO has been reported. HSiNCO was generated by the fragmentation of trimethylsilylisocyanate with a high-voltage discharge source. The 0(0)(0) band of the A (1)A(")-X (1)A(') transition has been recorded with full rotational resolution using laser-induced fluorescence spectroscopy and ground and excited state rotational and centrifugal distortion constants determined. Ten additional vibrational bands belonging to HSiNCO have also been observed in the laser-induced fluorescence spectrum and have been assigned based on predicted anharmonic vibrational frequencies. Due to the large change in geometry upon excitation, a number of axis-rotation peaks have been observed in the 0(0)(0) band and the axis-rotation angle (theta(T)) has been estimated to be 0.6 degrees +/-0.2 degrees. Dispersed fluorescence spectroscopy has been carried out and nu(8) (the N-C-O out-of-plane bending mode) and a number of overtones of nu(4) (the Si-H wagging mode) have been observed in the ground electronic state.

  13. Spectroscopic investigation of the A~ 1A''-X~ 1A' electronic transition of HSiNCO

    Science.gov (United States)

    Dover, Matthew R.; Evans, Corey J.; Western, Colin M.

    2009-09-01

    The first spectroscopic observation of the previously unknown species HSiNCO has been reported. HSiNCO was generated by the fragmentation of trimethylsilylisocyanate with a high-voltage discharge source. The 000 band of the à A1″-X˜ A1' transition has been recorded with full rotational resolution using laser-induced fluorescence spectroscopy and ground and excited state rotational and centrifugal distortion constants determined. Ten additional vibrational bands belonging to HSiNCO have also been observed in the laser-induced fluorescence spectrum and have been assigned based on predicted anharmonic vibrational frequencies. Due to the large change in geometry upon excitation, a number of axis-rotation peaks have been observed in the 000 band and the axis-rotation angle (θT) has been estimated to be 0.6°±0.2°. Dispersed fluorescence spectroscopy has been carried out and ν8 (the N-C-O out-of-plane bending mode) and a number of overtones of ν4 (the Si-H wagging mode) have been observed in the ground electronic state.

  14. 4-Cyano-α-methyl-l-phenylalanine as a spectroscopic marker for the investigation of peptaibiotic-membrane interactions.

    Science.gov (United States)

    De Zotti, Marta; Bobone, Sara; Bortolotti, Annalisa; Longo, Edoardo; Biondi, Barbara; Peggion, Cristina; Formaggio, Fernando; Toniolo, Claudio; Dalla Bona, Andrea; Kaptein, Bernard; Stella, Lorenzo

    2015-04-01

    Two analogs of the ten-amino acid residue, membrane-active lipopeptaibiotic trichogin GA IV, mono-labeled with 4-cyano-α-methyl-L-phenylalanine, a potentially useful fluorescence and IR absorption probe of the local microenvironment, were synthesized by the solid-phase methodology and conformationally characterized. The single modification was incorporated either at the N-terminus (position 1) or near the C-terminus (position 8) of the peptide main chain. In both cases, the replaced amino acid was the equally helicogenic α-aminoisobutyric acid (Aib) residue. We performed a solution conformational analysis by use of FT-IR absorption, CD, and 2D-NMR spectroscopies. The results indicate that both labeled analogs essentially maintain the overall helical propensity of the naturally occurring lipopeptaibiotic. Peptide-membrane interactions were assessed by fluorescence and ATR-IR absorption techniques. Analogies and differences between the two peptides were highlighted. Taken together, our data confirm literature results that some of the spectroscopic parameters of the 4-cyanobenzyl chromophore are sensitive markers of the local microenvironment.

  15. Spectroscopic and structural investigation on intermediates species structurally associated to the tricyclic bisguanidine compound and to the toxic agent, saxitoxin

    Science.gov (United States)

    Romani, Davide; Tsuchiya, Shigeki; Yotsu-Yamashita, Mari; Brandán, Silvia Antonia

    2016-09-01

    In the present work, we have studied the structural, topological and spectroscopic properties of five cyclic and of open chain species derived from tricyclic bisguanidine compound in gas and aqueous phases combining the DFT calculations with the experimental infrared and 1H NMR, 13C NMR and UV-visible spectra. These species are members of the saxitoxin family and they were recently synthesized by Tsuchiya et al. (Chemistry. A European Journal, 21 (2015) 7835-7840). Here, the self consistent reaction force (SCRF) calculations were employed in aqueous medium to study the solvation energies by using the polarized continuum (PCM) and solvation (SM) models. All the calculations were performed with the 6-31G* and 6-311++G** basis sets. The atomic charges, electrostatic potentials, bond order, stabilization energy, topological properties suggest the structural connection between the cyclic cationic and saxitoxin species while the electrophilicity and nucleophilicity indexes could be one of the explanations for the Nav blocking activities of these species. The complete vibrational assignments for all the species are reported. The predicted spectra present a reasonable concordance with the corresponding experimental ones.

  16. A new combined nuclear magnetic resonance and Raman spectroscopic probe applied to in situ investigations of catalysts and catalytic processes

    Energy Technology Data Exchange (ETDEWEB)

    Camp, Jules C. J.; Mantle, Michael D. [Department of Chemical Engineering and Biotechnology, University of Cambridge, Pembroke Street, Cambridge CB2 3RA (United Kingdom); York, Andrew P. E. [Johnson Matthey Technology Centre, Blounts Court, Sonning Common, Reading RG4 9NH (United Kingdom); McGregor, James, E-mail: james.mcgregor@sheffield.ac.uk [Department of Chemical and Biological Engineering, University of Sheffield, Mappin Street, Sheffield S1 3JD (United Kingdom)

    2014-06-15

    Both Raman and nuclear magnetic resonance (NMR) spectroscopies are valuable analytical techniques capable of providing mechanistic information and thereby providing insights into chemical processes, including catalytic reactions. Since both techniques are chemically sensitive, they yield not only structural information but also quantitative analysis. In this work, for the first time, the combination of the two techniques in a single experimental apparatus is reported. This entailed the design of a new experimental probe capable of recording simultaneous measurements on the same sample and/or system of interest. The individual datasets acquired by each spectroscopic method are compared to their unmodified, stand-alone equivalents on a single sample as a means to benchmark this novel piece of equipment. The application towards monitoring reaction progress is demonstrated through the evolution of the homogeneous catalysed metathesis of 1‑hexene, with both experimental techniques able to detect reactant consumption and product evolution. This is extended by inclusion of magic angle spinning (MAS) NMR capabilities with a custom made MAS 7 mm rotor capable of spinning speeds up to 1600 Hz, quantified by analysis of the spinning sidebands of a sample of KBr. The value of this is demonstrated through an application involving heterogeneous catalysis, namely the metathesis of 2-pentene and ethene. This provides the added benefit of being able to monitor both the reaction progress (by NMR spectroscopy) and also the structure of the catalyst (by Raman spectroscopy) on the very same sample, facilitating the development of structure-performance relationships.

  17. Investigations on analytic potential energy function, spectroscopic parameters and vibrational manifolds (J = 0) of the SD+(X3∑-) ion

    Institute of Scientific and Technical Information of China (English)

    Zhang Jin-Ping; Shi De-Heng; Sun Jin-Feng; Liu Yu-Fang; Zhu Zun-Lue; Ma Heng

    2009-01-01

    This paper investigates the spectroscopic properties of the SD+(X3∑-) ion by employing the coupled-cluster singles-doublcs-approximate-triples [CCSD(T)] theory combining with the quintuple correlation-consistent basis set augmented with diffuse functions (aug-cc-pV5Z) of Dunning and co-workers. The accurate adiabatic potential energy function is obtained by the least-squares fitting method with the 100 ab initio points, which are calculated at the unrestricted CCSD(T)/aug-cc-pV5Z lcvcl of theory over the internuclear separation range from 0.09 to 2.46 nm. Using the potential, it accurately determines the spectroscopic parameters (De, ωeχe, αe and Be). The prcsent De, Re, ωe,ωeχe,αe and Be results are of 3.69119 eV, 0.13644nm, 1834.949cm-1, 25.6208cm-1, 0.1068cm-1 and 4.7778cm-1,respectively, which are in remarkably good agreement with the experimental findings. A total of 29 vibrational states has been predicted by numerically solving the radial Schrodinger equation of nuclear motion when the rotational quantum number J equals zero. The complete vibrational levels, classical turning points, inertial rotation and centrifugal distortion constants are reported when J = 0 for the first time, which are in good accord with the measurements wherever available.

  18. Investigation of the Spectroscopic Information on Functional Groups Related to Carbohydrates in Different Morphological Fractions of Corn Stover and Their Relationship to Nutrient Supply and Biodegradation Characteristics.

    Science.gov (United States)

    Xin, Hangshu; Ding, Xue; Zhang, Liyang; Sun, Fang; Wang, Xiaofan; Zhang, Yonggen

    2017-05-24

    The objectives of this study were to investigate (1) nutritive values and biodegradation characteristics and (2) mid-IR spectroscopic features within the regions associated with carbohydrate functional groups (including cellulosic component (CELC), structural carbohydrate (STCHO), and total carbohydrate (CHO)) in different morphological fractions of corn stover. Furthermore, correlation and regression analyses were also applied to determine the relationship between nutritional values and spectroscopic parameters. The results showed that different morphological sections of corn stover had different nutrient supplies, in situ biodegradation characteristics, and spectral structural features within carbohydrate regions. The stem rind and ear husk were both high in fibrous content, which led to the lowest effective degradabilities (ED) among these stalk fractions. The ED values of NDF were ranked ear husk > stem pith > leaf blade > leaf sheath > whole plant > stem rind. Intensities of peak height and area within carbohydrate regions were relatively more stable compared with spectral ratio profiles. Significant difference was found only in peak area intensity of CELC, which was at the highest level for stem rind, followed by stem pith, leaf sheath, whole plant, leaf blade, and ear husk. Correlation results showed that changes in some carbohydrate spectral ratios were highly associated with carbohydrate chemical profiles and in situ rumen degradation kinetics. Among the various carbohydrate molecular spectral parameters that were tested in multiple regression analysis, CHO height ratios, and area ratios of CELC:CHO and CELC:STCHO as well as CELC area were mostly sensitive to nutrient supply and biodegradation characteristics in different morphological fractions of corn stover.

  19. Investigation of Bovine Serum Albumin (BSA Attachment onto Self-Assembled Monolayers (SAMs Using Combinatorial Quartz Crystal Microbalance with Dissipation (QCM-D and Spectroscopic Ellipsometry (SE.

    Directory of Open Access Journals (Sweden)

    Hanh T M Phan

    Full Text Available Understanding protein adsorption kinetics to surfaces is of importance for various environmental and biomedical applications. Adsorption of bovine serum albumin to various self-assembled monolayer surfaces including neutral and charged hydrophilic and hydrophobic surfaces was investigated using in-situ combinatorial quartz crystal microbalance with dissipation and spectroscopic ellipsometry. Adsorption of bovine serum albumin varied as a function of surface properties, bovine serum albumin concentration and pH value. Charged surfaces exhibited a greater quantity of bovine serum albumin adsorption, a larger bovine serum albumin layer thickness, and increased density of bovine serum albumin protein compared to neutral surfaces at neutral pH value. The quantity of adsorbed bovine serum albumin protein increased with increasing bovine serum albumin concentration. After equilibrium sorption was reached at pH 7.0, desorption of bovine serum albumin occurred when pH was lowered to 2.0, which is below the isoelectric point of bovine serum albumin. Our data provide further evidence that combinatorial quartz crystal microbalance with dissipation and spectroscopic ellipsometry is a sensitive analytical tool to evaluate attachment and detachment of adsorbed proteins in systems with environmental implications.

  20. A comparison investigation of DNP-binding effects to HSA and HTF by spectroscopic and molecular modeling techniques.

    Science.gov (United States)

    Zolfagharzadeh, Mahboobeh; Pirouzi, Maliheh; Asoodeh, Ahmad; Saberi, Mohammad Reza; Chamani, Jamshidkhan

    2014-12-01

    This paper describes the interaction between 2,4-dinitrophenol (DNP) with the two drug carrier proteins - human serum albumin (HSA) and human holo transferrin (HTF). Hence, binding characteristics of DNP to HSA and HTF were analyzed by spectroscopic and molecular modeling techniques. Based on results obtained from fluorescence spectroscopy, DNP had a strong ability to quench the intrinsic fluorescence of HSA and HTF through a static quenching procedure. The binding constant and the number of binding sites were calculated as 2.3 × 10(11) M(-1) and .98 for HSA, and 1.7 × 10(11) M(-1) and 1.06 for HTF, respectively. In addition, synchronous fluorescence results showed that the microenvironment of Trp had a slight tendency of increasing its hydrophobicity, whereas the microenvironment of the Tyr residues of HSA did not change and that of HTF showed a significant trend (red shift of about 4 nm) of an increase in polarity. The distance between donor and acceptor was obtained by the Förster energy according to fluorescence resonance energy transfer, and was found to be 3.99 and 3.72 nm for HSA and HTF, respectively. The critical induced aggregation concentration (CCIAC) of the drug on both proteins was determined and confirmed by an inflection point of the zeta potential behavior. Circular dichroism data revealed that the presence of DNP caused a decrease of the α-helical content of HSA and HTF, and induced a remarkable mild denaturation of both proteins. The molecular modeling data confirmed our experimental results. This study is deemed useful for determining drug dosage.

  1. Spectroscopic investigation of the wettability of multilayer graphene using highly ordered pyrolytic graphite as a model material.

    Science.gov (United States)

    Ashraf, Ali; Wu, Yanbin; Wang, Michael C; Aluru, Narayana R; Dastgheib, Seyed A; Nam, SungWoo

    2014-11-04

    We report the intrinsic water contact angle (WCA) of multilayer graphene, explore different methods of cleaning multilayer graphene, and evaluate the efficiency of those methods on the basis of spectroscopic analysis. Highly ordered pyrolytic graphite (HOPG) was used as a model material system to study the wettability of the multilayer graphene surface by WCA measurements. A WCA value of 45° ± 3° was measured for a clean HOPG surface, which can serve as the intrinsic WCA for multilayer graphene. A 1 min plasma treatment (100 W) decreased the WCA to 6°, owing to the creation of surface defects and functionalization by oxygen-containing groups. Molecular dynamics simulations of water droplets on the HOPG surface with or without the oxygen-containing defect sites confirmed the experimental results. Heat treatment at near atmospheric pressure and wet chemical cleaning methods using hydrofluoric acid and chloroform did not change the WCA significantly. Low-pressure, high-temperature annealing under argon and hydrogen reduced the WCA to 54°, close to the intrinsic WCA of HOPG. Raman spectroscopy and atomic force microscopy did not show any significant change for the HOPG surface after this treatment, confirming low-pressure, high-temperature annealing as an effective technique to clean multilayer graphene without damaging the surface. Time-of-flight secondary ion mass spectrometry indicated the existence of hydrocarbon species on the surface of the HOPG sample that was exposed to air for surfaces after the different cleaning techniques were performed to correlate the WCA to the surface chemistry. X-ray photoelectron spectroscopy results revealed that the WCA value changed drastically, depending on the amounts of oxygen-containing and hydrocarbon-containing groups on the surface.

  2. Bio-important antipyrine derived Schiff bases and their transition metal complexes: Synthesis, spectroscopic characterization, antimicrobial, anthelmintic and DNA cleavage investigation

    Science.gov (United States)

    Manjunath, M.; Kulkarni, Ajaykumar D.; Bagihalli, Gangadhar B.; Malladi, Shridhar; Patil, Sangamesh A.

    2017-01-01

    Spectroscopic (IR, NMR, UV-vis, ESR, ESI-mass), magnetic and TGA studies suggests octahedral geometry for all the CoII, NiII and CuII complexes of the Schiff bases, derived from 4-aminoantipyrine and 8-formyl-7-Hydroxy-4-methylcoumarin/5-formyl-6-hydroxycoumarin, coordinated through ONO donor sites. Antibacterial (Escherichia coli, Staphylococcus aureus, Pseudomonas aeruginosa and Salmonella typhi), antifungal (Aspergillus niger, Aspergillus flavus and Cladosporium) and DNA cleavage properties of the metal complexes are investigated. The results suggested that some of the synthesized compounds are potential antimicrobials. The synthesized compounds tested for their anthelmintic activities and it was found that CoII and NiII complexes exhibited good anthelmintic properties.

  3. Efficient synthesis of metallated thioporphyrazines in task specific ionic liquids and their spectroscopic investigation of binding with selected transition metal ions

    Indian Academy of Sciences (India)

    POONAM; RITIKA NAGPAL; SMRITI ARORA; SHIVE M S CHAUHAN

    2016-09-01

    Tetramerization of substituted maleonitriles in task specific 2-hydroxylethyl based imidazolium ionic liquids at 120◦C gave corresponding electron rich peripheral substituted thioporphyrazines in moderate yield. The 2-hydroxylethyl imidazolium ionic liquids gave better yields of peripheral substituted thioporphyrazinesin comparison with non-hydroxyl functionalized ionic liquids. Further, these peripherally functionalized porphyrazines containing sulphur are used to investigate spectroscopically the binding studies with palladium(II) and mercury(II) ions. These metal ions are toxic in nature and deserve serious attention in the areaof design of effective separation and efficient micro-sensing techniques. The UV–Vis absorption spectroscopy and fluorescence signalling are mainly used to study peripheral binding of transition metal ions.

  4. Investigation on Acute Biochemical Effects of Ce(NO3)3 on Liver and Kidney Tissues by MAS 1H NMR Spectroscopic-Based Metabonomic Approach

    Institute of Scientific and Technical Information of China (English)

    2006-01-01

    High resolution magic angle spinning (MAS)-1 H nuclear magnetic resonance (NMR) spectroscopic-based metabonomic approach was applied to the investigation on the acute biochemical effects of Ce(NO3)3. Male Wistar rats were liver and kidney tissues were analyzed using principal component analysis to extract toxicity information. The biochemical effects of Ce(NO3)3 were characterized by the increase of triglycerides and lactate and the decrease of glycogen in rat liver tissue, together with an elevation of the triglyceride level and a depletion of glycerophosphocholine and betaine in kidney tissues. The target lesions of Ce(NO3)3 on liver and kidney were found by MAS NMR-based metabonomic method. This study demonstrates that the combination of MAS 1H NMR and pattern recognition analysis can be an effective method for studies of biochemical effects of rare earths.

  5. Spectroscopic investigation on kinetics, thermodynamics and mechanism for electron transfer reaction of iron(III) complex with sulphur centered radical in stimulated biological system.

    Science.gov (United States)

    Deepalakshmi, S; Sivalingam, A; Kannadasan, T; Subramaniam, P; Sivakumar, P; Brahadeesh, S T

    2014-04-24

    Electron transfer reactions of biological organic sulphides with several metal ions to generate sulphide radical cations are a great concern in biochemical process. To understand the mechanism, a stimulated biological system having model compounds, iron(III)-bipyridyl complex with thio-diglycolic acid (TDGA) was investigated. Spectroscopic study reveals the kinetics and thermodynamics of the reaction in aqueous perchloric acid medium. The reaction follows first and fractional order of 0.412 with respect to [Fe(bpy)3](3+) and TDGA, respectively. The oxidation is insensitive to variation in [H(+)] but slightly decreases with increase in ionic strength ([I]). Addition of acrylamide, a radical scavenger has no effect on the rate of the reaction. The high negative value of ΔS(#) (-74.3±1.09 J K(-1) mol(-1)) indicates the complex formed has a definite orientation higher than the reactants. Based on the above results, a suitable reaction mechanism for this reaction is proposed.

  6. A Moessbauer effect study of the Fe{sub 2+x}Mn{sub 1-x}Al Heusler alloys

    Energy Technology Data Exchange (ETDEWEB)

    Paduani, C., E-mail: paduani@fisica.ufsc.br [DF-UFSC (Brazil); Samudio Perez, C. A. [ICE-UPF (Brazil); Schaf, J. [IF-UFRGS (Brazil); Ardisson, J. D. [CDTN (Brazil); Takeuchi, A. Y. [CBPF (Brazil); Yoshida, M. I. [DQ-ICEX-UFMG (Brazil)

    2010-01-15

    In this work the Moessbauer spectroscopy has been used to study the magnetic properties of Fe{sub 2+x}Mn{sub 1-x}Al alloys with small deviations of composition from the stoichiometric 2:1:1. The Moessbauer parameters obtained for the L2{sub 1} phase indicate H{sub hf} fields of about 25 T and 30 T at 80 K for Fe atoms at X sites in the ordered X{sub 2}YZ structure of the L2{sub 1} full Heusler alloys.

  7. Spectroscopic investigation into the interaction of a diazacyclam-based macrocyclic copper(ii) complex with bovine serum albumin.

    Science.gov (United States)

    Shahabadi, Nahid; Hakimi, Mohammad; Morovati, Teimoor; Hadidi, Saba; Moeini, Keyvan

    2017-02-01

    Cyclam-based ligands and their complexes are known to show antitumor activity. This study was undertaken to examine the interaction of a diazacyclam-based macrocyclic copper(II) complex with bovine serum albumin (BSA) under physiological conditions. The interactions of different metal-based drugs with blood proteins, especially those with serum albumin, may affect the concentration and deactivation of metal drugs, and thereby influence their availability and toxicity during chemotherapy. In this vein, several spectral methods including UV-vis absorption, fluorescence and circular dichroism (CD) spectroscopy techniques were used. Spectroscopic analysis of the fluorescence quenching confirmed that the Cu(II) complex quenched BSA fluorescence intensity by a dynamic mechanism. In order to further determine the quenching mechanism, an analysis of Stern-Volmer plots at various concentrations of BSA was carried out. It was found that the KSV value increased with the BSA concentration. It was suggested that the fluorescence quenching process was a dynamic quenching rather than a static quenching mechanism. Based on Förster's theory, the average binding distance between the Cu(II) complex and BSA (r) was found to be 4.98 nm; as the binding distance was less than 8 nm, energy transfer from BSA to the Cu(II) complex had a high possibility of occurrence. Thermodynamic parameters (positive ΔH and ΔS values) and measurement of competitive fluorescence with 1-anilinonaphthalene-8-sulphonic acid (1,8-ANS) indicated that hydrophobic interaction plays a major role in the Cu(II) complex interaction with BSA. A Job's plot of the results confirmed that there was one binding site in BSA for the Cu(II) complex (1:1 stoichiometry). The site marker competitive experiment confirmed that the Cu(II) complex was located in site I (subdomain IIA) of BSA. Finally, CD data indicated that interaction of the Cu(II) complex with BSA caused a small increase in the α-helical content. Copyright

  8. Molecular structure and spectroscopic investigations combined with hypoglycemic/anticancer and docking studies of a new barbituric acid derivative

    Science.gov (United States)

    Barakat, Assem; Soliman, Saied M.; Elshaier, Yaseen A. M. M.; Ali, M.; Al-Majid, Abdullah Mohammed; Ghabbour, Hazem A.

    2017-04-01

    The one-pot synthesis reaction of barbituric acid derivative, 1,3-cyclohexandione, and 4-fluorobenzaldehyde in water mediated by NHEt2 as base afforded 4 with excellent yield. The synthesized compound was characterized by spectrophotometric tools as well as X-ray single crystal diffraction technique. The stability of the nine possible isomers of the synthesized compound was studied using the B3LYP method and 6-31G(d,p) basis set. The electronic and spectroscopic properties of the most stable isomer were predicted. The UV-Vis absorption spectrum displayed two bands at 203 and 257 nm in the solvent chloroform. The latter was calculated at 235.6 nm (f = 0.1995) in the gas phase due to H-2→L (42%) and H-1→L+2 (14%) excitations. In solution, using chloroform as a solvent, a slight bathochromic shift to 237.6 nm with an increase in the absorption intensity (f = 0.2898) was predicted. The molecular orbital energy level diagram of this transition band was characterized mainly by π-π* transitions. The 13C and 1H NMR chemical shifts correlated well with the experimental data. The correlations had higher correlation coefficients (R2) when solvent effects were considered. The atomic charges were calculated using natural population analysis and the charged regions were presented using a molecular electrostatic potential (MEP) map. The synthesized compound was examined as a hypoglycemic agent via inhibition of α-glucosidase and β-glucuronidase enzymes. Its inhibitory activity against α-glucosidase was 10 times greater than the inhibitory activity of the standard drug acarbose (IC50 77.9 ± 0.3 μM and 840 ± 1.73 μM, respectively). Moreover, the target compound was evaluated for anticancer activity against MCF-7, H460, 3T3, and Hela cell lines. It demonstrated inhibitory activity against the MCF-7 and H460 cell lines with IC50 5.80 ± 0.12 and 19.6 ± 0.5 μM, respectively, in comparison to doxorubicin. The docking study was performed using the OpenEye program.

  9. Magnetic nanoparticles based on iron coated carbon produced from the reaction of Fe{sub 2}O{sub 3} with CH{sub 4}: a Moessbauer study

    Energy Technology Data Exchange (ETDEWEB)

    Tristao, Juliana C.; Silva, Aline A. [Universidade Federal de Minas Gerais, Departamento de Quimica-ICEx (Brazil); Ardisson, Jose D. [Centro de Desenvolvimento de Tecnologia Nuclear, CDTN, Laboratorio de Fisica Aplicada (Brazil); Lago, Rochel M., E-mail: rochel@ufmg.br [Universidade Federal de Minas Gerais, Departamento de Quimica-ICEx (Brazil)

    2010-01-15

    In this work, it was investigated the production of magnetic nanoparticles encapsulated with carbon by the reaction of hematite and methane by Temperature Programmed Reaction up to 950 deg. C. XRD and Moessbauer analyses showed that the materials prepared at 600 deg. C and 700 deg. C are mainly composed of magnetite and small amounts of hematite {alpha} -Fe{sub 2}O{sub 3} with particle size of 30-40 nm. At higher temperatures, the spectra also display two central doublets corresponding to wuestite phase (Fe{sub 1-x}O). The materials were also characterized by magnetization measurements, BET surface area, thermal analysis (TG) and SEM. These materials can be prepared by a simple and low cost process and show great potential to be used as adsorbents and catalyst support.

  10. Moessbauer study of Fe[sub 3-x]Cr[sub x]Si alloys with DO[sub 3]-type ordering. [Fe-Cr-Si

    Energy Technology Data Exchange (ETDEWEB)

    Satula, D.; Szymanski, K.; Dobrzynski, L.; Waliszewski, J. (Faculty of Physics, Warsaw Univ. Branch, Bialystok (Poland))

    1993-02-01

    The influence of chromium atoms substituting for iron in the Fe[sub 3-x]Cr[sub x]Si alloys with DO[sub 3]-type ordering is investigated by Moessbauer spectroscopy at room temperature. Using the correlation between local hyperfine magnetic field and magnetic moments observed for Fe[sub 3]Si it is inferred that the magnetic moment of iron in Fe[sub 3-x]Cr[sub x]Si decreases linearly with x for both (A,C) and B sites. A few models intended to describe an influence of Cr on local hyperfine fields are tested. It is found that the local hyperfine magnetic field depends primarily on the chemical composition of the nearest neighbour shell. The isomer shift and magnetic hyperfine field show no substantial dependence on the alloy composition. Chromium atoms occupy, unexpectedly, both B and (A, C) sites, although the B sites are preferentially occupied. (orig.).

  11. Moessbauer- and EPR-Snapshots of an Enzymatic Reaction: The Cytochrome P450 Reaction Cycle

    Energy Technology Data Exchange (ETDEWEB)

    Schuenemann, V. [University of Luebeck, Institute of Physics (Germany); Jung, C. [Max-Delbrueck-Center for Molecular Medicine (Germany); Lendzian, F. [Technical University, PC 14, Max-Volmer Laboratory for Biophysical Chemistry (Germany); Barra, A.-L. [Grenoble High Magnetic Field Laboratory (France); Teschner, T.; Trautwein, A. X. [University of Luebeck, Institute of Physics (Germany)

    2004-12-15

    In this communication we present a complimentary Moessbauer- and EPR-study of the time dependance of the reaction of substrate free P450cam with peracetic acid within a time region ranging from 8 ms up to 5 min. An Fe(IV) species as well as a tyrosyl radical residing on the amino acid residue Tyr96 have been identified as reaction intermediates. These species possibly are formed by the reduction of compound I by means of transferring an electron from Tyr 96 to the heme moiety.

  12. {sup 57}Fe Moessbauer Studies in Mo-Fe Supported Catalysts

    Energy Technology Data Exchange (ETDEWEB)

    Castelao-Dias, M. [University of Coimbra, Department of Chemical Engineering (Portugal); Costa, B. F. O. [University of Coimbra, Department of Physics (Portugal); Quinta-Ferreira, R. M. [University of Coimbra, Department of Chemical Engineering (Portugal)

    2001-09-15

    Industrially, the Mo-Fe catalysts used in the selective oxidation of methanol to formaldehyde can rapidly deactivate. The use of support materials may reduce the high temperatures in the catalytic bed and/or increase thermal and mechanical resistance. However, during the preparation of these catalysts, or even during reaction conditions, the active species may react with the support material losing their catalytic activity. In this work silica, silicium carbide and titania were studied as supported catalysts by Moessbauer spectroscopy which proved to be a useful technique in the choice of supported materials.

  13. In situ{sup 119}Sn Moessbauer spectroscopy study of Sn-based electrode materials

    Energy Technology Data Exchange (ETDEWEB)

    Aboulaich, Abdelmaula, E-mail: abdelmaula.aboulaich@univ-mont2.fr; Robert, Florent; Lippens, Pierre Emmanuel; Aldon, Laurent; Olivier-Fourcade, Josette [Universite Montpellier II, Laboratoire des Agregats Moleculaires et Materiaux Inorganiques (UMR 5072-CNRS) (France); Willmann, Patrick [Centre National d' Etudes Spatiales (France); Jumas, Jean-Claude [Universite Montpellier II, Laboratoire des Agregats Moleculaires et Materiaux Inorganiques (UMR 5072-CNRS) (France)

    2006-01-15

    Sn-based composite materials were synthetized by a conventional melt-quenching method, and studied by X-ray diffraction, electrochemistry and in situ{sup 119}Sn Moesssbauer spectroscopy. Tin was dispersed ex situ into a matrix formed from B{sub 2}O{sub 3}:P{sub 2}O{sub 5}. XRD and {sup 119}Sn Moessbauer spectroscopy show the formation of an interface between the active species (Sn{sup 0}) and the matrix. This amorphous interface acts as a 'buffer-zone' which compensates volume changes during the tin-lithium alloy formation and avoids aggregation of tin particles.

  14. Moessbauer characterization of joints of steel pieces in transient liquid phase bonding experiences

    Energy Technology Data Exchange (ETDEWEB)

    Di Luozzo, N.; Martinez Stenger, P. F.; Canal, J. P.; Fontana, M. R.; Arcondo, B., E-mail: barcond@fi.uba.ar [INTECIN (UBA-CONICET), Laboratorio de Solidos Amorfos, Facultad de Ingenieria (Argentina)

    2011-11-15

    Joining of seamless, low carbon, steel tubes were performed by means of Transient Liquid Phase Bonding process employing a foil of Fe-Si-B metallic glass as filler material. The influence of the main parameters of the process was evaluated: temperature, holding time, pressure and post weld heat treatment. Powder samples were obtained from the joint of tubes and characterized employing Moessbauer Spectroscopy in transmission geometry. The sampling was performed both in tubes successfully welded and in those which show joint defects. The results obtained are correlated with the obtained microstructure and the diffusion of Si and B during the process.

  15. Early Pottery Making in Northern Coastal Peru. Part III: Moessbauer Study of Sican Pottery

    Energy Technology Data Exchange (ETDEWEB)

    Shimada, I. [Southern Illinois University (United States); Haeusler, W.; Hutzelmann, T. [Technische Universitaet Muenchen, Physik-Department E15 (Germany); Riederer, J. [Rathgen-Forschungslabor, Staatliche Museen Preussischer Kulturbesitz (Germany); Wagner, U. [Technische Universitaet Muenchen, Physik-Department E15 (Germany)

    2003-09-15

    Sican blackware from a 1000-year old elite tomb at Huaca Loro was characterised by neutron activation analysis, optical thin-section microscopy, X-ray diffraction and Moessbauer spectroscopy. A number of blackware fragments from the later site of Puerto Pobre (ca. AD 1460-1550) were included in the analysis for comparison and found to be of different origin. The black surface of the specimens from Huaca Loro is mostly due to carbon deposition during firing in a reducing environment. Part of the pottery was merely dried at temperatures below 400 deg. C, perhaps because it was made in haste for funeral use.

  16. Moessbauer studies of frataxin role in iron-sulfur cluster assembly and dysfunction-related disease

    Energy Technology Data Exchange (ETDEWEB)

    Garcia-Serres, Ricardo [Universite Joseph Fourier (France); Clemancey, Martin [CNRS, UMR5249 (France); Oddou, Jean-Louis [Universite Joseph Fourier (France); Pastore, Annalisa [Medical Research Council National Institute for Medical Research (United Kingdom); Lesuisse, Emmanuel [Laboratoire Mitochondries, Metaux et Stress oxydant, Institut Jacques Monod, CNRS-Universite Paris (France); Latour, Jean-Marc, E-mail: jean-marc.latour@cea.fr [CEA, iRTSV, LCBM (France)

    2012-03-15

    Friedreich ataxia is a disease that is associated with defects in the gene coding for a small protein frataxin. Several different roles have been proposed for the protein, including iron chaperoning and iron storage. Moessbauer spectroscopy was used to probe these hypotheses. Iron accumulation in mutant mitochondria unable to assemble iron sulfur clusters proved to be insensitive to overexpression of frataxin, ruling out its potential involvement as an iron storage protein similar to ferritin. Rather, it was found that frataxin negatively regulates iron sulfur cluster assembly.

  17. Moessbauer study of a Fe-Zr-B-Cu-(Ge, Co) nanocrystalline alloy series

    Energy Technology Data Exchange (ETDEWEB)

    Blazquez, J.S. [Departamento de Fisica de la Materia Condensada. ICMSE-CSIC. Universidad de Sevilla, Apartado 1065, 41080 Sevilla (Spain); Franco, V. [Departamento de Fisica de la Materia Condensada. ICMSE-CSIC. Universidad de Sevilla, Apartado 1065, 41080 Sevilla (Spain); Conde, A. [Departamento de Fisica de la Materia Condensada. ICMSE-CSIC. Universidad de Sevilla, Apartado 1065, 41080 Sevilla (Spain)]. E-mail: conde@us.es

    2006-09-28

    Amorphous and nanocrystalline Fe-Zr-B-Cu alloys with partial substitution of Co for Fe and Ge for B have been studied by Moessbauer spectrometry (MS). The compositional and microstructural dependence of the different hyperfine parameters were related to the results obtained by X-ray diffraction (XRD) and saturation magnetization measurements. Combination of MS and XRD leads to estimate an interface region, of thickness {approx}0.6 nm. The magnetic moment per transition metal of the crystalline phase is reduced with respect to binary crystalline alloys due to the existence of the interface.

  18. Extraterrestrial Moessbauer spectroscopy: more than 3 years of Mars exploration and developments for future missions

    Energy Technology Data Exchange (ETDEWEB)

    Schroeder, Christian, E-mail: christian.schroeder-1@nasa.gov [NASA Johnson Space Center, Astromaterials Research and Exploration Science, Mail Code KR (United States); Klingelhoefer, Goestar, E-mail: klingel@mail.uni-mainz.de [Johannes Gutenberg-Universitaet, Institut fuer Anorganische und Analytische Chemie (Germany); Morris, Richard V., E-mail: richard.v.morris@nasa.gov [NASA Johnson Space Center, Astromaterials Research and Exploration Science, Mail Code KR (United States); Rodionov, Daniel S., E-mail: rodionov@iki.rssi.ru; Fleischer, Iris, E-mail: fleischi@uni-mainz.de; Blumers, Mathias, E-mail: mblumers@uni-mainz.de [Johannes Gutenberg-Universitaet, Institut fuer Anorganische und Analytische Chemie (Germany)

    2008-02-15

    After almost 4 years of operating on the surface of Mars, Moessbauer spectroscopy has become a mature technique for robotic planetary exploration. The combination of quantitative information about the distribution of Fe among its oxidation and coordination states, identification of Fe-bearing phases, and relative distribution of Fe among those phases provides valuable contributions to the search for past water activity, the assessment of past environmental conditions, and the suitability for life of the two NASA Mars Exploration Rover landing sites. Experience from the Mars Exploration Rover Mission highlights needs for improvement of the instruments for future missions such as the Russian Phobos-Grunt and the European ExoMars rover.

  19. Gold-surface binding of molecular switches studied by Moessbauer spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Homenya, Patrick, E-mail: patrick.homenya@acd.uni-hannover.de [Leibniz Universitaet Hannover, Institut fuer Anorganische Chemie (Germany); Messerschmidt, Markus; Tahir, Muhammad Nawaz [Johannes Gutenberg-Universitaet Mainz, Institut fuer Anorganische Chemie und Analytische Chemie (Germany); Martinez, Victor [University of Valencia, Institut de Ciencia Molecular (Spain); Cheng, Yajun [Johannes Gutenberg-Universitaet Mainz, Institut fuer Anorganische Chemie und Analytische Chemie (Germany); Gutmann, Jochen S. [Max Planck-Institut fuer Polymerforschung (Germany); Klein, Michael; Jung, Stefan; Wolff, Morris; Saadat, Reza; Nariaki, Driss [Leibniz Universitaet Hannover, Institut fuer Anorganische Chemie (Germany); Boca, Roman [Slovak Technical University (FCHPT), Institute of Inorganic Chemistry (Slovakia); Klingelhoefer, Goestar; Tremel, Wolfgang [Johannes Gutenberg-Universitaet Mainz, Institut fuer Anorganische Chemie und Analytische Chemie (Germany); Renz, Franz, E-mail: franz.renz@acd.uni-hannover.de [Leibniz Universitaet Hannover, Institut fuer Anorganische Chemie (Germany)

    2012-03-15

    The nonanuclear coordination compound [Mo{sup IV}{l_brace}(CN)Fe{sup III}(3-methyl-saldptn){r_brace}{sub 8}]Cl{sub 4} exhibits multiple spin transitions (3-methyl-saldptn = N,N Prime -bis(3 Prime Prime -methyl-2 Prime Prime -hydroxy-benzyliden)-1,7-diamino-4-azaheptane). This spin crossover cluster is bound via a self-assembled monolayer onto a two dimensional array gold surface. Moessbauer spectroscopy indicates that the thermally and optically induced spin crossover of the compound is maintained. Thereby, the foundation for its potential practical application (e.g. in the field of information storage) was laid.

  20. Iron-57 Moessbauer spectroscopy studies of meteorites recovered from Roosevelt County, USA

    Energy Technology Data Exchange (ETDEWEB)

    Berry, F.J. (Dept. of Chemistry, Open Univ., Milton Keynes (United Kingdom)); Bland, P.A. (Dept. of Earth Sciences, Open Univ., Milton Keynes (United Kingdom)); Oates, G. (Dept. of Chemistry, Open Univ., Milton Keynes (United Kingdom)); Pillinger, C.T. (Dept. of Earth Sciences, Open Univ., Milton Keynes (United Kingdom))

    1994-02-01

    Some H5 ordinary chondrite meteorites recovered from the desert region of Roosevelt County in New Mexico, USA and [sup 14]C dated to determine the terrestrial age have been examined by [sup 57]Fe Moessbauer spectroscopy. The preliminary results suggest the increasing oxidation of Fe[sup 0] in the iron-nickel alloy phase and of Fe[sup 2+] in the iron-sulphide and -silicate phases as a result of terrestrial weathering over ca. 38 000 years and which induces the formation of macroscopic iron oxide/oxyhydroxide phases. (orig.)

  1. Investigations on five iron meteorites

    Energy Technology Data Exchange (ETDEWEB)

    Bonazzi, A. [Parma Univ. (Italy). Istituto di Mineralogia; Jiang, K. [Ist. di Scienze Fisiche, Univ. of Parma (Italy); Ortalli, I. [Ist. di Scienze Fisiche, Univ. of Parma (Italy); Pedrazzi, G. [Ist. di Scienze Fisiche, Univ. of Parma (Italy); Zhang, X. [Ist. di Scienze Fisiche, Univ. of Parma (Italy)

    1994-11-01

    In the present paper, we report an analysis of five iron meteorites belonging to the private collection of the mineralogy museum of the University of Parma (Italy). The collection is made up of eighteen samples, collected over two centuries. Up to now, they have never been studied by spectroscopical techniques and their classification was estimated on the basis of morphological inspection. Electron microscopy (SEM), X-ray diffraction (XRD), X-ray fluorescence (XRF), and Moessbauer spectroscopy (MS) have been used to analyse the samples. (orig.)

  2. Circular dichroism spectroscopic investigation of double-decker phthalocyanine with G-Quadruplex as promising telomerase inhibitor

    Science.gov (United States)

    Baǧda, Efkan; Baǧda, Esra; Yabaş, Ebru

    2017-01-01

    In the present study, interaction of a double-decker phthalocyanine with two G-quadruplex DNA, Tel 21 and cMYC, was investigated. To the best of our knowledge, this is the first study about G-quadruplex-double decker phthalocyanine interaction. The spectrophotometric titration method was used for binding constant calculations. From the binding constants, it can be said that double-decker phthalocyanine more likely to bind Tel 21 rather than cMYC. The conformational changes upon binding were monitored via circular dichroism spectroscopy. The ethidium bromide replacement assay was investigated spectrofluorometrically.

  3. Characterization of the Roraima savanna across of X-ray diffraction, thermomagnetic analysis and Moessbauer spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Silva, Gilmar A.; Araujo, R.C.; Sergio, C.S. [Universidade Federal de Roraima (UFRR), Boa Vista, RR (Brazil)

    2012-07-01

    Full text: The technique of X-ray diffraction has great resolving power to determine the phases present in crystalline material, thereby enabling it to determine the elements present in the materials as well as changes in structure that they can suffer when subjected to various physical processes and/or chemical means. The research had as objective to characterize the mineralogy of iron oxides, silicon, aluminum and other minerals in the soil of five points of the Roraima savannah. The points where samples were collected are five municipalities in the state of Roraima. The area of sampling is part of the savanna in Roraima. The samples were collected. We analyzed samples from five points from the collection of natural soil in the locations listed. The samples were placed in a mill to a uniform grain size. After the milling process, the magnetic material was separated using a permanent magnet. Then the samples were analyzed by x-ray diffraction, thermomagnetic analysis and Moessbauer spectroscopy. Preliminary results of XRD showed the occurrence of phases of oxides of iron, silicon, aluminum and other phases less. Thermomagnetic analysis show that the magnetic phases are magnetite and hematite. The results of the Moessbauer spectroscopy indicates the reliability in the two prior art and confirmed the presence of the phases of oxides of iron present in the soil analyzed. (author)

  4. Studies of Fe-binding sites within multiwall carbon nanotubes using Moessbauer spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Luberda-Durnas, Katarzyna; Nieznalska, Magdalena; Matlak, Krzysztof; Korecki, Jozef; Burda, Kvetoslava [Faculty of Physics and Applied Computer Science, AGH - University of Science and Technology, Krakow (Poland); Mazurkiewicz, Marta; Malolepszy, Artur [Faculty of Material Science and Engineering, Warsaw University of Technology, Warsaw (Poland); Khachataryan, Gohar; Khachataryan, Karen; Tomasik, Piotr; Michalski, Oskar [Department of Chemistry, Agricultural University, Krakow (Poland); Stobinski, Leszek [Faculty of Material Science and Engineering, Warsaw University of Technology, Warsaw (Poland); Institute of Physical Chemistry, Polish Academy of Sciences, Warsaw (Poland)

    2011-08-15

    The potential applications of carbon nanotubes (CNTs) are strongly related to their physical and chemical properties. In this work, results of different methods for the oxidation of crude CNTs are reported. These methods changed Fe binding sites within multiwall carbon nanotubes (MWCNTs). Moessbauer spectroscopy was used to detect the chemical properties of the Fe-phases in MWCNTs. Signals from the iron carbide Fe{sub 3}C were the main components in the Moessbauer spectra of unmodified MWCNTs revealing magnetic ordering even at 300 K. In oxidized MWCNTs, the amount of Fe{sub 3}C decreased and {gamma}-Fe and {alpha}-Fe, ferrihydrates of iron oxides and different forms of goethite appeared. In MWCNTs oxidized with HClO{sub 4}, a significant fraction ({proportional_to}24%) of magnetically ordered Fe{sub 2}O{sub 3} particles was detected. This study showed that traces of iron catalyst embedded in MWCNTs could be used as a sensitive probe to monitor various MWCNT modifications. (Copyright copyright 2011 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  5. Moessbauer studies of iron ore from East Awinat mountains in Libya

    Energy Technology Data Exchange (ETDEWEB)

    Ellid, M.S. [Tajoura Nucl. Res. Center, Tripoli (Libyan Arab Jamahiriya). Dept. of Phys. and Mater. Sci.; Fallagh, F. [Tajoura Nucl. Res. Center, Tripoli (Libyan Arab Jamahiriya). Dept. of Phys. and Mater. Sci.

    1994-11-01

    In this paper, we report studies of local and imported iron ores using the techniques of Moessbauer spectroscopy, X-ray diffraction, and chemical analysis. Results from Moessbauer spectroscopy and X-ray diffraction of the two ores indicate that the raw materials consist mainly of hematite with a magnetic field of 517 kOe. The d-spacings are consistent with {alpha}-Fe{sub 2}O{sub 3}. A series of reduction processes in an H{sub 2} environment at 410 C for the local ore was performed in order to understand the kinetics of reduction. The reduction was complete after 5 h and the spectra reveal only an {alpha}-Fe phase with a hyperfine magnetic field of 330 kOe. On the other hand, the reduced pellets, from Misratah`s Iron and Steel Factory (imported iron ore), reveal the presence of an additional phase. This phase was identified as {theta}-carbide with a magnetic field of 208 kOe and an isomer shift of 0.22 mm/s. (orig.)

  6. Moessbauer study of the cubic Laves phase intermetallic compound TmFe/sub 2/

    Energy Technology Data Exchange (ETDEWEB)

    Bleaney, B.; Bowden, G.J.; Cadogan, J.M. (New South Wales Univ., Kensington (Australia). School of Physics); Day, R.K.; Dunlop, J.B. (Commonwealth Scientific and Industrial Research Organization, Lindfield (Australia). Div. of Applied Physics)

    1982-04-01

    The results of a /sup 169/Tm and /sup 57/Fe Moessbauer study of the cubic Laves compound TmFe/sub 2/ over the temperature range 1.3-550 K are presented and discussed. The new results are used, in conjunction with existing NMR, Moessbauer and magnetic anisotropy data for TmFe/sub 2/ and Tm metal, to deduce a value of Psub(4f) 536 +- 14 MHz for the saturation value of the first excited state of the /sup 169/Tm nucleus. Estimates are also given for the exchange field ..mu..sub(B)Bsub(ex)(T = O K)/ksub(B) = 153 +- 3 K acting on the Tm/sup 3 +/ ion in TmFe/sub 2/, the quadrupole moment of the I = 3/2 state of the /sup 169/Tm nucleus. Q = -1.36 +- 0.11 b, and the lattice contribution to the nuclear quadrupole interaction in Tm metal, Psub(c) = -54.8 +- 5 MHz (for Q = -1.20 +- 0.07 b) and Psub(c) = -61 +- 8 MHz (for Q = -1.36 +- 0.11 b). In addition estimates are given for the various transferred and parent hyperfine fields in TmFe.

  7. Design and Construction of an Autonomous Control System for Moessbauer Spectrometry

    Energy Technology Data Exchange (ETDEWEB)

    Velasquez, A. A., E-mail: avelasq@fisica.udea.edu.co; Trujillo, J. M.; Morales, A. L.; Tobon, J. E.; Reyes, L. [Universidad de Antioquia, Grupo de Instrumentacion Cientifica y Microelectronica (Colombia); Gancedo, J. R. [Consejo Superior de Investigaciones Cientificas, Instituto de Quimica-Fisica, ' Rocasolano' (Spain)

    2005-02-15

    An autonomous control system for Moessbauer spectrometry based on two modules has been designed and built. The first module operates as a multichannel analyzer for the acquisition and storage of spectra, and the second one is a driver unit which controls and supplies the power for the velocity transducer. A microcontroller executes the digital control algorithm for the velocity transducer motion and manages the data acquisition and storage tasks. The user can monitor the system from an external PC through the serial port. A graphic interface made with the LabVIEW software allows the user to adjust digitally the control parameters for the velocity transducer motion, the channels number, to visualize as well as save spectra in a file. The microcontroller can be reprogrammed from the PC through the same serial port without intervention of a universal programmer, which allows the user to make proper software for different applications of the system. The system has been tested for linearity with several standard absorbers yielding satisfactory results. The low cost of its design, construction and maintenance make this equipment to be an attractive choice when assembling a Moessbauer spectrometer.

  8. On Spin Hamiltonian fits to Moessbauer spectra of high-spin Fe(II) porphyrinate systems

    Energy Technology Data Exchange (ETDEWEB)

    Schulz, Charles E., E-mail: cschulz@knox.edu [Knox College, Department of Physics (United States); Hu Chuanjiang, E-mail: scheidt.1@nd.edu; Scheidt, W. Robert [University of Notre Dame, Department of Chemistry and Biochemistry (United States)

    2006-06-15

    Fits to Moessbauer spectra of high-spin iron(II) porphyrinates have been applied to the Fe(II) model compounds octaethylporphyrin(1,2-dimethylimidazole) and tetra-paramethoxyporphyrin(1,2-dimethylimidazole). Moessbauer spectra have been measured on these compounds at 4.2 K in large applied fields. Spin Hamiltonians were used for fitting both the electronic and nuclear interactions. The fits are done by adjusting the Hamiltonian parameters to simultaneously minimize the total {chi}{sup 2} for three different applied fields. In order to get best fits, the EFG tensor need to be rotated relative to the ZFS tensor. A comparative sensitivity analysis of their Spin Hamiltonian parameters has also been done on the ZFS parameters D, and the EFG asymmetry parameter {eta}. The best fits suggest that both systems definitely have a negative quadrupole splitting, and that largest EFG component is tilted far from the z-axis of the ZFS tensor, which is likely to be near the heme normal.

  9. Spectroscopic and time-dependent density functional theory investigation of the photophysical properties of zearalenone and its analogs

    Science.gov (United States)

    Structures of the mycotoxin zearalenone and its analogs were investigated using density functional theory methods to gain insight into the ground state and excited state properties related to detection. Zearalenone is an estrogenic mycotoxin that can occur in agricultural commodities, and ultraviole...

  10. Spectroscopic investigations of dark Si nanocrystals in SiO2 and their role in external quantum efficiency quenching"

    NARCIS (Netherlands)

    Limpens, R.; Gregorkiewicz, T.

    2013-01-01

    The percentage of dark silicon nanocrystals, i.e., the nanocrystals that are not able to radiatively recombine after absorption of a photon, is investigated by combining measurements of external and internal quantum efficiencies. The study is conducted on samples prepared by co-sputtering and subseq

  11. Electrochemical and spectroscopic investigations of uranium(III) with N,N,N',N'-tetramethylmalonamide in DMF

    Energy Technology Data Exchange (ETDEWEB)

    Yamamura, T. [Institute for Materials Research, Tohoku University, Sendai, Miyagi 980-8577 (Japan)]. E-mail: yamamura@imr.tohoku.ac.jp; Shirasaki, K. [Institute for Materials Research, Tohoku University, Sendai, Miyagi 980-8577 (Japan); Li, D.X. [Institute for Materials Research, Tohoku University, Sendai, Miyagi 980-8577 (Japan); Shiokawa, Y. [Institute for Materials Research, Tohoku University, Sendai, Miyagi 980-8577 (Japan)

    2006-07-20

    In order to investigate the electrode reaction of negative electrolyte, U(III)/U(IV), of the all-uranium redox-flow battery proposed by us, we investigated the magnetic susceptibility, spectroscopy and electrode reactions of U(III) and U(IV) complexes with N,N,N',N'-tetramethylmalonamide (TMMA). The effective magnetic moment for the U(III) complex (1.95{mu} {sub B}/atomU) is significantly smaller than the theoretical moment for free U{sup 3+} ion, and this may indicate the itinerant nature of U(III) due to the coordination of TMMA. In N,N-dimethylformamide (DMF), the energy levels due to f-f transitions was only slightly perturbed from those of uranium(III) perchlorate in DMF. The U(III)/U(IV) redox potential of U(III)-TMMA complex shifted negatively from that of uranium(III) perchlorate.

  12. Spectroscopic and catalytic investigations of VxOy/SBA-15 and magnesium vanadate model catalysts for selective propene oxidation

    OpenAIRE

    Walter, Anke

    2011-01-01

    The objective of the present work was elucidating structure-activity relationships concerning the individual role of vanadium sites in selective propene oxidation. Two suitable vanadium oxide model catalyst systems were employed: vanadium oxides supported on SBA-15, “VxOy/SBA-15”, and various magnesium vanadate phases. Detailed investigations on the preparation, thermal stability, structure, and structural evolution under reducing and propene oxidizing condition were conducted. Various in sit...

  13. UV–Vis and ATR–FTIR spectroscopic investigations of postmortem interval based on the changes in rabbit plasma

    Science.gov (United States)

    Wang, Qi; He, Haijun; Li, Bing; Lin, Hancheng; Zhang, Yinming; Zhang, Ji

    2017-01-01

    Estimating PMI is of great importance in forensic investigations. Although many methods are used to estimate the PMI, a few investigations focus on the postmortem redistribution. In this study, ultraviolet–visible (UV–Vis) measurement combined with visual inspection indicated a regular diffusion of hemoglobin into plasma after death showing the redistribution of postmortem components in blood. Thereafter, attenuated total reflection–Fourier transform infrared (ATR–FTIR) spectroscopy was used to confirm the variations caused by this phenomenon. First, full-spectrum partial least-squares (PLS) and genetic algorithm combined with PLS (GA-PLS) models were constructed to predict the PMI. The performance of GA-PLS model was better than that of full-spectrum PLS model based on its root mean square error (RMSE) of cross-validation of 3.46 h (R2 = 0.95) and the RMSE of prediction of 3.46 h (R2 = 0.94). The investigation on the similarity of spectra between blood plasma and formed elements also supported the role of redistribution of components in spectral changes in postmortem plasma. These results demonstrated that ATR-FTIR spectroscopy coupled with the advanced mathematical methods could serve as a convenient and reliable tool to study the redistribution of postmortem components and estimate the PMI. PMID:28753641

  14. Spectroscopic investigation of Er{sup 3+} in fluorotellurite glasses for 2.7 μm luminescence

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Feng; Bi, Zhuanfang; Chen, Jiayang; Huang, Anping [Key Laboratory of Micro-nano Measurement, Manipulation and Physics (Ministry of Education), School of Physics and Nuclear Energy Engineering, Beihang University, Beijing, 100191 (China); Zhu, Yongchang [China Building Materials Academy, Beijing, 100024 (China); Chen, Baojie [Department of Electronic Engineering, City University of Hong Kong, Kowloon, Hong Kong (China); Xiao, Zhisong, E-mail: zsxiao@buaa.edu.cn [Key Laboratory of Micro-nano Measurement, Manipulation and Physics (Ministry of Education), School of Physics and Nuclear Energy Engineering, Beihang University, Beijing, 100191 (China)

    2015-11-15

    Er{sup 3+} doped fluorotellurite glass (TeO{sub 2}–BaF{sub 2}–NaF) with different Er{sup 3+} concentrations were prepared, glass thermal stability and structure were investigated by differential scanning calorimetry (DSC) test and Raman spectrum, respectively. 2.7 μm light emission was observed under 980 nm excitation in these fluorotellurite glasses. The 2.7 μm emission properties were investigated through the measured absorption and emission spectra. The spontaneous transition probability (A), branching ratio (β), emission and absorption cross sections were calculated and the values were relatively larger than some reported values, which indicated that this kind of fluorotellurite glass has potential application as host material for 2.7 μm lasers. - Highlights: • High T{sub g} (375 °C) provides good thermal stability to resist thermal damage. • The introduction of F{sup −} decreases the connectivity of the tellurite former network. • Er{sup 3+} doped TBN glasses have been investigated using Judd–Ofelt (JO) theory. • TBN glasses possess high stimulated emission cross section σ{sub e} for 2.7 μm emission.

  15. Spectroscopic investigations on the effect of N-Acetyl-L-cysteine-Capped CdTe Quantum Dots on catalase

    Science.gov (United States)

    Sun, Haoyu; Yang, Bingjun; Cui, Erqian; Liu, Rutao

    2014-11-01

    Quantum dots (QDs) are recognized as some of the most promising semiconductor nanocrystals in biomedical applications. However, the potential toxicity of QDs has aroused wide public concern. Catalase (CAT) is a common enzyme in animal and plant tissues. For the potential application of QDs in vivo, it is important to investigate the interaction of QDs with CAT. In this work, the effect of N-Acetyl-L-cysteine-Capped CdTe Quantum Dots with fluorescence emission peak at 612 nm (QDs-612) on CAT was investigated by fluorescence, synchronous fluorescence, fluorescence lifetime, ultraviolet-visible (UV-vis) absorption and circular dichroism (CD) techniques. Binding of QDs-612 to CAT caused static quenching of the fluorescence, the change of the secondary structure of CAT and the alteration of the microenvironment of tryptophan residues. The association constants K were determined to be K288K = 7.98 × 105 L mol-1 and K298K = 7.21 × 105 L mol-1. The interaction between QDs-612 and CAT was spontaneous with 1:1 stoichiometry approximately. The CAT activity was also inhibited for the bound QDs-612. This work provides direct evidence about enzyme toxicity of QDs-612 to CAT in vitro and establishes a new strategy to investigate the interaction between enzyme and QDs at a molecular level, which is helpful for clarifying the bioactivities of QDs in vivo.

  16. Structural and spectroscopic investigation on antioxidant dipeptide, L-Methionyl-L-Serine: A combined experimental and DFT study

    Science.gov (United States)

    Kecel-Gunduz, Serda; Bicak, Bilge; Celik, Sefa; Akyuz, Sevim; Ozel, Aysen E.

    2017-06-01

    The focus of this study is to determine the conformational, structural and vibrational properties of Methionyl-Serine dipeptide (L-Methionyl-L-Serine, Met-Ser), a biological active molecule. To investigate their energetically preferred conformations, molecular mechanics methods were utilized to determine the optimal conformations of the 3402 different dihedral angle values of the backbone and side chains. It was found that the extended (e) backbone shape in the LB conformational range was the most stable L-Methionyl-L-Serine dipeptide conformation, with 3.12 kcal/mol of energy. Density Functional Theory (DFT) was used to determine the optimized geometry, the vibrational wavenumbers and modes of the title dipeptide values, with 6-31G (d,p) and 6-311++G (d,p) basis sets. The potential energy distribution data was used to carry out the assignment of the bands. In addition, the vibrational spectra of the most stable conformer and its dimer form were determined and the obtained results were compared with the experimental IR and Raman spectra in the solid phase. To determine the presence of intramolecular charge transfer, molecular dipole moment, polarizability and hyperpolarizability, the Natural Bond Orbital (NBO), HOMO-LUMO calculations, the linear polarizability (α) and the first order hyperpolarizability (β0) value analyses of the investigated molecule were carried out using the DFT with the B3LYP/6-31++G(d,p) basis set. This study aims to determine a relatively stable conformation of antioxidant dipeptide and to investigate the molecular geometry, molecular vibrations and hydrogen bonding interactions between monomeric and dimeric forms of Methiony-Serine dipeptide.

  17. Raman spectroscopic investigation of 13CO 2 labeling and leaf dark respiration of Fagus sylvatica L. (European beech).

    Science.gov (United States)

    Keiner, Robert; Gruselle, Marie-Cécile; Michalzik, Beate; Popp, Jürgen; Frosch, Torsten

    2015-03-01

    An important issue, in times of climate change and more extreme weather events, is the investigation of forest ecosystem reactions to these events. Longer drought periods stress the vitality of trees and promote mass insect outbreaks, which strongly affect ecosystem processes and services. Cavity-enhanced Raman gas spectrometry was applied for online multi-gas analysis of the gas exchange rates of O2 and CO2 and the labeling of Fagus sylvatica L. (European beech) seedlings with (13)CO2. The rapid monitoring of all these gases simultaneously allowed for the separation of photosynthetic uptake of CO2 by the beech seedlings and a constant (12)CO2 efflux via respiration and thus for a correction of the measured (12)CO2 concentrations in course of the labeling experiment. The effects of aphid infestation with the woolly beech aphid (Phyllaphis fagi L.) as well as the effect of a drought period on the respirational gas exchange were investigated. A slightly decreased respirational activity of drought-stressed seedlings in comparison to normally watered seedlings was found already for a low drought intensity. Cavity-enhanced Raman gas monitoring of O2, (12)CO2, and (13)CO2 was proven to be a powerful new tool for studying the effect of drought stress and aphid infestation on the respirational activity of European beech seedlings as an example of important forest species in Central Europe.

  18. FT-IR spectroscopic investigation of ionic interactions in PPG 4000: AgCF3SO3 polymer electrolyte.

    Science.gov (United States)

    Suthanthiraraj, S Austin; Kumar, R; Paul, B Joseph

    2009-01-01

    The effect of salt concentration on the ubiquitous ionic interactions observed in the case of the silver ion conducting polymer electrolyte system poly(propylene glycol) (PPG)-silver triflate has been investigated using Fourier transform infrared (FT-IR) spectroscopy as a probe for the characterization of the local environment of the triflate ion in PPG-based polymer electrolytes. The maximum free anion concentrations of symmetric and asymmetric SO(3) stretching modes in the case of poly(propylene glycol) complexed with silver triflate (AgCF(3)SO(3)) corresponding to the ether oxygen metal cation ratios from 2:1 to 6:1 have been investigated in detail. The present Fourier transform infrared spectral studies of the C-O-C stretching mode have shown reduction in the intensity, due to the decrease of salt concentration. The splitting of vibrational modes has been analyzed in terms of free ions, ion pairs and aggregates. The bands of SO(3) symmetric stretching mode appearing at 1032 and 1038 cm(-1) in the chosen polymer electrolyte material have been assigned to free ions and ion pairs respectively.

  19. Vibrational, NMR and UV-visible spectroscopic investigation and NLO studies on benzaldehyde thiosemicarbazone using computational calculations

    Science.gov (United States)

    Moorthy, N.; Prabakar, P. C. Jobe; Ramalingam, S.; Pandian, G. V.; Anbusrinivasan, P.

    2016-04-01

    In order to investigate the vibrational, electronic and NLO characteristics of the compound; benzaldehyde thiosemicarbazone (BTSC), the XRD, FT-IR, FT-Raman, NMR and UV-visible spectra were recorded and were analysed with the calculated spectra by using HF and B3LYP methods with 6-311++G(d,p) basis set. The XRD results revealed that the stabilized molecular systems were confined in orthorhombic unit cell system. The cause for the change of chemical and physical properties behind the compound has been discussed makes use of Mulliken charge levels and NBO in detail. The shift of molecular vibrational pattern by the fusing of ligand; thiosemicarbazone group with benzaldehyde has been keenly observed. The occurrence of in phase and out of phase molecular interaction over the frontier molecular orbitals was determined to evaluate the degeneracy of the electronic energy levels. The thermodynamical studies of the temperature region 100-1000 K to detect the thermal stabilization of the crystal phase of the compound were investigated. The NLO properties were evaluated by the determination of the polarizability and hyperpolarizability of the compound in crystal phase. The physical stabilization of the geometry of the compound has been explained by geometry deformation analysis.

  20. Structural, NMR Spectroscopic, and Computational Investigation of Hemin Loading in the Hemophore HasAp from Pseudomonas aeruginosa

    Energy Technology Data Exchange (ETDEWEB)

    Jepkorir, Grace; Rodrguez, Juan Carlos; Rui, Huan; Im, Wonpil; Lovell, Scott; Battaile, Kevin P.; Alontaga, Aileen Y.; Yukl, Erik T.; Monne-Loccoz, Pierre; Rivera, Mario (Oregon State U.); (Kansas); (Hauptman)

    2010-08-16

    When challenged by low-iron conditions several Gram-negative pathogens secrete a hemophore (HasA) to scavenge hemin from its host and deliver it to a receptor (HasR) on their outer membrane for internalization. Here we report results from studies aimed at probing the structural and dynamic processes at play in the loading of the apo-hemophore secreted by P. aeruginosa (apo-HasAp) with hemin. The structure of apo-HasAp shows a large conformational change in the loop harboring axial ligand His32 relative to the structure of holo-HasAp, whereas the loop bearing the other axial ligand, Tyr75, remains intact. To investigate the role played by the axial ligand-bearing loops in the process of hemin capture we investigated the H32A mutant, which was found to exist as a monomer in its apo-form and as a mixture of monomers and dimers in its holo-form. We obtained an X-ray structure of dimeric H32A holo-HasAp, which revealed that the two subunits are linked by cofacial interactions of two hemin molecules and that the conformation of the Ala32 loop in the dimer is identical to that exhibited by the His32 loop in wild type apo-HasAp. Additional data suggest that the conformation of the Ala32 loop in the dimer is mainly a consequence of dimerization. Hence, to investigate the effect of hemin loading on the topology of the His32 loop we also obtained the crystal structure of monomeric H32A holo-HasAp coordinated by imidazole (H32A-imidazole) and investigated the monomeric H32A HasAp and H32A-imidazole species in solution by NMR spectroscopy. The structure of H32A-imidazole revealed that the Ala32 loop attains a 'closed' conformation nearly identical to that observed in wild type holo-HasAp, and the NMR investigations indicated that this conformation is maintained in solution. The NMR studies also highlighted conformational heterogeneity at the H32 loop hinges and in other key sections of the structure. Targeted molecular dynamics simulations allowed us to propose a

  1. Investigation of applicability of a mid-infrared spectroscopic method using an attenuated total reflection accessory and a new near-infrared transmission method for determination of faecal fat

    NARCIS (Netherlands)

    Volmer, M; Kingma, AW; Borsboom, PCF; Wolthers, BG; Kema, IP

    2001-01-01

    In many laboratories, the titrimetric method of Van de Kamer is used for the analysis of faecal fat content of patients suspected of steatorrhoea. We investigated the applicability of a mid-infrared (MIR) spectroscopic method, using an attenuated total reflection (ATR) accessory, and a new near-infr

  2. Investigation of applicability of a mid-infrared spectroscopic method using an attenuated total reflection accessory and a new near-infrared transmission method for determination of faecal fat

    NARCIS (Netherlands)

    Volmer, M; Kingma, AW; Borsboom, PCF; Wolthers, BG; Kema, IP

    In many laboratories, the titrimetric method of Van de Kamer is used for the analysis of faecal fat content of patients suspected of steatorrhoea. We investigated the applicability of a mid-infrared (MIR) spectroscopic method, using an attenuated total reflection (ATR) accessory, and a new

  3. CH3NH3PbI3, A Potential Solar Cell Candidate: Structural and Spectroscopic Investigations.

    Science.gov (United States)

    Nandi, Pronoy; Giri, Chandan; Joseph, Boby; Rath, S; Manju, U; Topwal, D

    2016-12-15

    Hybrid organic-inorganic metal halides of the type CH3NH3PbX3 have emerged as potential materials for photovoltaic applications. In this paper we discuss structural, electronic, and optical spectroscopy investigations performed on high quality single crystals of CH3NH3PbI3. Our results conclusively suggest that CH3NH3PbI3 crystallizes in centrosymmetric space group and the methylammonium moiety exhibits disordered packing at room temperature. Extracted values of the exciton binding energy, the electron-phonon coupling constant, and the schematic energy level diagram constructed from the emission broadening, Raman, and photoemission spectroscopy measurements clearly show the potential of this system in photovoltaic applications.

  4. EPR and UV/VIS spectroscopic investigations of VO2+ complexes and compounds formed in alkali pyrosulfates

    DEFF Research Database (Denmark)

    Rasmussen, Søren Birk; Eriksen, Kim Michael; Fehrmann, Rasmus

    2002-01-01

    fraction of the sample occupied by the cation. This indicates that spin-spin relaxation effects are the major contribution to line broadening. Combining information from UV/VIS and EPR spectra shows that the VO2+ unit in the molten salt solvent exhibits electronic properties close to aqueous solutions of V(IV).......The catalytically important molten salt-gas system M2S2O7-M2SO4-V2O5/SO2(g) (M = Na. K, Rb, Cs) has been investigated by X- and Q-band EPR spectroscopy. In order to obtain information about the V(IV) complex formation in the melts, samples rather dilute in V2O5 were quenched from the molten state...

  5. Spectroscopic investigation of the electronic structure of thin atomic layer deposition HfO{sub 2} films

    Energy Technology Data Exchange (ETDEWEB)

    Corrêa, Silma Alberton, E-mail: silma.alberton@ufrgs.br; Brizzi, Simone; Schmeisser, Dieter [Applied Physics and Sensors, Brandenburg University of Technology Cottbus-Senftenberg, Konrad-Wachsmann-Allee 17, 03046 Cottbus (Germany)

    2016-01-15

    The electronic structure of HfO{sub 2} thin films is investigated employing resonant photoelectron spectroscopy (resPES). The detailed analysis of the O1s resonance profile enables the determination of the partial density of states for the valence and the conduction bands as well as the electronic band gap to be 6.2 eV. The position of the charge neutrality level is evaluated. Thereby, it is demonstrated that the resPES data are able to combine information both for the valence as well as for the conduction band states. In addition, evidences for intrinsic in-gap states attributed to polaronic and charge transfer states are given. Electronic charges within the atomic layer deposition-HfO{sub 2} films are identified, pointing out that the amount of charges is essential to determine the accurate position of the surface potentials.

  6. Ultraviolet-Visible (UV-Vis) and Fluorescence Spectroscopic Investigation of the Interactions of Ionic Liquids and Catalase.

    Science.gov (United States)

    Dong, Xing; Fan, Yunchang; Yang, Peng; Kong, Jichuan; Li, Dandan; Miao, Juan; Hua, Shaofeng; Hu, Chaobing

    2016-11-01

    The inhibitory effects of nine ionic liquids (ILs) on the catalase activity were investigated using fluorescence, absorption ultraviolet-visible spectroscopy. The interactions of ILs and catalase on the molecular level were studied. The experimental results indicated that ILs could inhibit the catalase activity and their inhibitory abilities depended on their chemical structures. Fluorescence experiments showed that hydrogen bonding played an important role in the interaction process. The inhibitory abilities of ILs on catalase activity could be simply described by their hydrophobicity and hydrogen bonding abilities. Unexpected less inhibitory effects of trifluoromethanesulfonate (TfO(-)) might be ascribed to its larger size, which makes it difficult to go through the substrate channel of catalase to the active site. © The Author(s) 2016.

  7. Infrared Spectroscopic Investigation of the Acidic CH Bonds in Cationic n-Alkanes: Pentane, Hexane, and Heptane.

    Science.gov (United States)

    Xie, Min; Matsuda, Yoshiyuki; Fujii, Asuka

    2016-08-18

    Radical cations of n-alkanes (pentane, hexane, and heptane) in the gas phase are investigated by infrared predissociation spectroscopy with the argon or nitrogen tagging. All-trans and gauche-involving conformers are identified for these cations by comparisons of observed infrared spectra and vibrational simulations. Intense CH stretch bands are observed in the frequency region lower than the normal alkyl CH stretch frequency. These low frequencies and high intensities of the CH stretch bands are caused by the CH bond weakening and the enhanced positive charge of the hydrogen atoms through the delocalization of the σ electron in the CH bonds. These effects of the delocalization of the σ electron result in the enhanced acidity of the CH bonds. The conformation as well as alkyl chain length dependence of the acidity of the CH bonds is demonstrated by the CH stretch frequency shift trend.

  8. Spectroscopic (far or terahertz, mid-infrared and Raman) investigation, thermal analysis and biological activity of piplartine

    Science.gov (United States)

    Srivastava, Anubha; Karthick, T.; Joshi, B. D.; Mishra, Rashmi; Tandon, Poonam; Ayala, A. P.; Ellena, Javier

    2017-09-01

    Research in the field of medicinal plants including Piper species like long pepper (Piper longum L.- Piperaceae) is increasing all over the world due to its use in traditional and Ayurvedic medicine. Piplartine (piperlongumine, 5,6-dihydro-1-[(2E)-1-oxo-3-(3,4,5-trimethoxyphenyl)-2-propenyl]-2(1H)-pyridinone), a biologically active alkaloid/amide was isolated from the phytochemical investigations of Piper species, as long pepper. This alkaloid has cytotoxic, anti-fungal, anti-diabetic, anti-platelet aggregation, anti-tumoral, anxiolytic, anti-depressant, anti-leishmanial, and genotoxic activities, but, its anticancer property is the most promising and has been widely explored. The main purpose of the work is to present a solid state characterization of PPTN using thermal analysis and vibrational spectroscopy. Quantum mechanical calculations based on the density functional theory was also applied to investigate the molecular conformation and vibrational spectrum, which was compared with experimental results obtained by Raman scattering, far (terahertz) and mid-infrared adsorption spectroscopy. NBO analysis has been performed which predict that most intensive interactions in PPTN are the hyperconjugative interactions between n(1) N6 and π*(O1sbnd C7) having delocalization energy of 50.53 kcal/mol, Topological parameters have been analyzed using 'AIM' analysis which governs the three bond critical points (BCPs), one di-hydrogen, and four ring critical points (RCPs). MEP surface has been plotted which forecast that the most negative region is associated with the electronegative oxygen atoms (sites for nucleophilic activity). Theoretically, to confirm that the title compound has anti-cancer, anti-diabetic and anti-platelet aggregation activities, it was analyzed by molecular docking interactions with the corresponding target receptors. The obtained values of H-bonding parameters and binding affinity prove that its anti-cancer activity is the more prominent than the

  9. Spectroscopic investigation of Ginkgo biloba terpene trilactones and their interaction with amyloid peptide Aβ(25-35)

    Science.gov (United States)

    He, Jiangtao; Petrovic, Ana G.; Dzyuba, Sergei V.; Berova, Nina; Nakanishi, Koji; Polavarapu, Prasad L.

    2008-04-01

    The beneficial effects of Ginkgo biloba extract in the "treatment" of dementia are attributed to its terpene trilactone (TTL) constituents. The interactions between TTLs and amyloid peptide are believed to be responsible in preventing the aggregation of peptide. These interactions have been investigated using infrared vibrational absorption (VA) and circular dichroism (VCD) spectra. Four TTLs, namely ginkgolide A (GA), ginkgolide B (GB), ginkgolide C (GC) and bilobalide (BB) and amyloid Aβ(25-35) peptide, as a model for the full length peptide, are used in this study. GA-monoether and GA-diether have also been synthesized and investigated to help understand the role of individual carbonyl groups in these interactions. The precipitation and solubility issues encountered with the mixture of ginkgolide + Aβ peptide for VA and VCD studies were overcome using binary ethanol-D 2O solvent mixture. The experimental VA and VCD spectra of GA, GB, GC and BB, GA-monoether and GA-diether have been analyzed using the corresponding spectra predicted with density functional theory. The time-dependent experimental VA and VCD spectra of Aβ(25-35) peptide and the corresponding experimental spectra in the presence of TTLs indicated that the effect of the TTLs in modulating the aggregation of Aβ(25-35) peptide is relatively small. Such small effects might indicate the absence of a specific interaction between the TTLs and Aβ(25-35) peptide as a major force leading to the reduced aggregation of amyloid peptides. It is possible that the therapeutic effect of G. biloba extract does not originate from direct interactions between TTLs and the Aβ(25-35) peptide and is more complex.

  10. Electron paramagnetic resonance spectroscopic investigation of the inhibition of the phosphoroclastic system of Clostridium sporogenes by nitrite.

    Science.gov (United States)

    Payne, M J; Woods, L F; Gibbs, P; Cammack, R

    1990-10-01

    The proposal that nitrite exerts its inhibitory effect on anaerobic bacteria by direct interaction with the iron-sulphur proteins of the phosphoroclastic system was investigated. The effects of nitrate, nitrite with or without ascorbate, and nitric oxide on the growth of Clostridium sporogenes in liquid cultures at pH 7.4, on the rates of hydrogen production, and on the activities of the enzymes pyruvate-ferredoxin oxidoreductase and hydrogenase, and of ferredoxin were investigated. In agreement with previous studies, nitrate was the least effective inhibitor of cell growth, and nitric oxide the most effective. Nitrite reductase activity was very low in C. sporogenes, indicating that the presence of external reducing agents would be necessary for the reduction of nitrite to nitric oxide. Inhibition by nitrite was enhanced by ascorbate; 0.5 mM-nitrite with 10 mM-ascorbate stopped growth completely. In partially-purified preparations 4.1 mM-NaNO2 and equimolar ascorbate caused complete inactivation of hydrogenase activity but only partial (up to 78%) inactivation of pyruvate-ferredoxin oxidoreductase. This agreed with the loss of hydrogen production observed with nitrite in vivo. Inhibition occurred within 5 min, and was irreversible in each case. Electron paramagnetic resonance (EPR) spectroscopy showed that paramagnetic [Fe(NO)2(SR)2] species were formed during growth in the presence of nitrite, and were associated with cells. However, the intensity of these EPR signals did not correlate with the inhibition of cell growth. The [4Fe-4S] clusters in ferredoxin were shown by EPR spectroscopy to be resistant to treatment with 3.6 mM-NaNO2 and 3.6 mM-ascorbate. It is concluded that the effects of nitrite on pre-formed iron-sulphur proteins are not convincing as a basis for the lethal effects on bacterial cells.

  11. Spectroscopic data

    CERN Document Server

    Melzer, J

    1976-01-01

    During the preparation of this compilation, many people contributed; the compilers wish to thank all of them. In particular they appreciate the efforts of V. Gilbertson, the manuscript typist, and those of K. C. Bregand, J. A. Kiley, and W. H. McPherson, who gave editorial assistance. They would like to thank Dr. J. R. Schwartz for his cooperation and encouragement. In addition, they extend their grati­ tude to Dr. L. Wilson of the Air Force Weapons Laboratory, who gave the initial impetus to this project. v Contents I. I ntroduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 . . . . . . . . . . . . . . . . 11. Organization ofthe Spectroscopic Table. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2 Methods of Production and Experimental Technique . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2 Band Systems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2...

  12. Spectroscopic investigation of the chemical and electronic properties of chalcogenide materials for thin-film optoelectronic devices

    Science.gov (United States)

    Horsley, Kimberly Anne

    Chalcogen-based materials are at the forefront of technologies for sustainable energy production. This progress has come only from decades of research, and further investigation is needed to continue improvement of these materials. For this dissertation, a number of chalcogenide systems were studied, which have applications in optoelectronic devices, such as LEDs and Photovoltaics. The systems studied include Cu(In,Ga)Se2 (CIGSe) and CuInSe 2 (CISe) thin-film absorbers, CdTe-based photovoltaic structures, and CdTe-ZnO nanocomposite materials. For each project, a sample set was prepared through collaboration with outside institutions, and a suite of spectroscopy techniques was employed to answer specific questions about the system. These techniques enabled the investigation of the chemical and electronic structure of the materials, both at the surface and towards the bulk. CdS/Cu(In,Ga)Se2 thin-films produced from the roll-to-roll, ambient pressure, Nanosolar industrial line were studied. While record-breaking efficiency cells are usually prepared in high-vacuum (HV) or ultra-high vacuum (UHV) environments, these samples demonstrate competitive mass-production efficiency without the high-cost deposition environment. We found relatively low levels of C contaminants, limited Na and Se oxidation, and a S-Se intermixing at the CdS/CIGSe interface. The surface band gap compared closely to previously investigated CIGSe thin-films deposited under vacuum, illustrating that roll-to-roll processing is a promising and less-expensive alternative for solar cell production. An alternative deposition process for CuInSe2 was also studied, in collaboration with the University of Luxembourg. CuInSe2 absorbers were prepared with varying Cu content and surface treatments to investigate the potential to produce an absorber with a Cu-rich bulk and Cu-poor surface. This is desired to combine the bulk characteristics of reduced defects and larger grains in Cu-rich films, while maintaining

  13. Spectroscopic properties and radiation damage investigation of a diamond based Schottky diode for ion-beam therapy microdosimetry

    Energy Technology Data Exchange (ETDEWEB)

    Verona, C.; Marinelli, Marco; Verona-Rinati, G. [INFN - Dipartimento di Ingegneria Industriale, Università di Roma “Tor Vergata,” Roma (Italy); Magrin, G.; Solevi, P.; Mayer, R. [EBG MedAustron Marie Curie-St. 5, 2700 Wiener Neustadt (Austria); Grilj, V.; Jakšić, M. [Ruder Boškovic Institute, Bijenicka cesta 54, P.O. Box 180, 10002 Zagreb (Croatia)

    2015-11-14

    In this work, a detailed analysis of the properties of a novel microdosimeter based on a synthetic single crystal diamond is reported. Focused ion microbeams were used to investigate the device spectropscopic properties as well as the induced radiation damage effects. A diamond based Schottky diode was fabricated by chemical vapor deposition with a very thin detecting region, about 400 nm thick (approximately 1.4 μm water equivalent thickness), corresponding to the typical size in microdosimetric measurements. A 200 × 200 μm{sup 2} square metallic contact was patterned on the diamond surface by standard photolithography to define the sensitive area. Experimental measurements were carried out at the Ruder Boškovic′ Institute microbeam facility using 4 MeV carbon and 5 MeV silicon ions. Ion beam induced charge maps were employed to characterize the microdosimeter response in terms of its charge collection properties. A stable response with no evidence of polarization or memory effects was observed up to the maximum investigated ion beam flux of about 1.7 × 10{sup 9} ions·cm{sup −2}·s{sup −1}. A homogeneity of the response about 6% was found over the sensitive region with a well-defined confinement of the response within the active area. Tests of the radiation damage effect were performed by selectively irradiating small areas of the device with different ion fluences, up to about 10{sup 12} ions/cm{sup 2}. An exponential decrease of the charge collection efficiency was observed with a characteristic decay constant of about 4.8 MGy and 1 MGy for C and Si ions, respectively. The experimental data were analyzed by means of GEANT4 Monte Carlo simulations. A direct correlation between the diamond damaging effect and the Non Ionizing Energy Loss (NIEL) fraction was found. In particular, an exponential decay of the charge collection efficiency with an exponential decay as a function of NIEL is observed, with a characteristic constant of about

  14. Investigation of the binding affinity in vitamin B12-Bovine serum albumin system using various spectroscopic methods

    Science.gov (United States)

    Makarska-Bialokoz, Magdalena

    2017-09-01

    The binding affinity between vitamin B12 (VitB12) and bovine serum albumin (BSA) has been investigated in aqueous solution at pH = 7.4, employing UV-vis absorption and steady-state, synchronous and three-dimensional fluorescence spectra techniques. Representative effects noted for BSA intrinsic fluorescence resulting from the interactions with VitB12 confirm the formation of π-π stacked non-covalent and non-fluorescent complexes in the system VitB12-BSA. All the determined parameters, the binding, fluorescence quenching and bimolecular quenching rate constants (of the order of 104 L mol- 1, 103 L mol- 1 and 1011 L mol- 1 s- 1, respectively), as well as Förster resonance energy transfer parameters validate the mechanism of static quenching. The interaction with VitB12 induces folding of the polypeptide chains around Trp residues of BSA, resulting in a more hydrophobic surrounding. Presented outcomes suggest that the addition of VitB12 can lead to the more organized BSA conformation and its more folded tertiary structure, what could influence the physiological functions of bovine serum albumin, notably in case of its overuse or abnormal metabolism.

  15. Tin(IV) derivatives of 2,6-pyridinedicarboxylate: A 119Sn Mössbauer spectroscopic investigation

    Science.gov (United States)

    Costa, Luiz C. M.; Maia, José Roberto da S.; de Lima, Geraldo M.; Ardisson, José D.

    2006-02-01

    A series of organotin(IV) derivatives of 2,6-pyridinedicarboxylate has been investigated by Mössbauer spectroscopy in order to elucidate aspects concerning bonding and structural features in the solid state. A geometrical pattern of five-fold coordination at the metal centre has been revealed for SnCl 3Bu and SnClBu 3 derivatives. Trans stereochemistry for the butyl and vinyl groups of SnCl 2Bu 2 and SnCl 2(Vin) 2 derivatives has also been identified by this method. The isomer shift for the divinyl derivative is concurrent to a 7-coordinate metal centre contrasting to that for the dibutyl one. Although there is a discrepancy in isomer shift between these compounds, both have seven-fold coordination at the Sn(IV) nucleus. The resulting data has given evidence that 2,6-pyridinedicarboxylate is acting as a tridentate ligand through pyridil and carbolxylate moiety to all derivatives except for SnClBu 3. For the latter, the coordination mode occurs via carboxylate groups. The overall data support distorted geometrical pattern to all complexes in solid state.

  16. Spectroscopic Investigations of the Binding Interaction of a New Indanedione Derivative with Human and Bovine Serum Albumins

    Directory of Open Access Journals (Sweden)

    Mihaela Hillebrand

    2009-04-01

    Full Text Available Binding of a newly synthesized indanedione derivative, 2-(2-hydroxy-3-ethoxybenzylidene-1,3-indanedione (HEBID, to human and bovine serum albumins (HSA and BSA, under simulated physiological conditions was monitored by fluorescence spectroscopy. The binding parameters (binding constants and number of binding sites and quenching constants were determined according to literature models. The quenching mechanism was assigned to a Förster non-radiative energy transfer due to the HEBID-SA complex formation. A slightly increased affinity of HEBID for HSA was found, while the number of binding sites is approximately one for both albumins. The molecular distance between donor (albumin and acceptor (HEBID and the energy transfer efficiency were estimated, in the view of Förster’s theory. The effect of HEBID on the protein conformation was investigated using circular dichroism and synchronous fluorescence spectroscopies. The results revealed partial unfolding in the albumins upon interaction, as well as changes in the local polarity around the tryptophan residues

  17. Systematic investigation of the toxicity interaction of ZnSe@ZnS QDs on BSA by spectroscopic and microcalorimetry techniques.

    Science.gov (United States)

    Ding, Ling; Zhou, Peijiang; Zhan, Hongju; Zhao, Xiaohu; Chen, Chi; He, Zhenyu

    2013-08-01

    The interaction of ZnSe@ZnS quantum dots (QDs) and bovine serum albumin (BSA) was investigated by means of fluorescence (FL) spectrometry, circular dichroism (CD) spectra, and isothermal titration calorimetry (ITC). The fluorescence intensity of BSA decreased regularly with the increasing of QDs concentration. The decrease of BSA fluorescence intensity was proved to be a kind of static quenching. CD results show the helicity of BSA decreased from 38.04% to 26.51% with the addition of QDs, which suggests a stronger structural change that is related to a low degree of surface coverage. And also, both ion strength and pH value could affect the interaction between BSA and QDs, suggesting that both the static electronic attraction and H-bond contribute to the interaction between BSA and QDs. The thermodynamics of interaction between BSA and QDs were calculated from ITC data. Both enthalpy and entropy changes were favorable for the interaction in Tris-buffer, while only enthalpy change was favorable for the interaction in NaCl or HCl solution.

  18. Spectroscopic investigation on sonodynamic and sonocatalytic damage of BSA molecules by Thymol Blue (TB) derivants under ultrasonic irradiation.

    Science.gov (United States)

    Wang, Qi; Wu, Qiong; Wang, Jun; Chen, Dandan; Li, Ying; Gao, Jingqun; Wang, Baoxin

    2014-07-15

    In this paper, the Thymol Blue derivants including Thymol Blue (thymolsulfonphthalein), Thymol Blue-DA (3,3'-Bis [N,N-bis (carboxymethyl) aminomethyl] thymolsulfonphthalein) and Thymol Blue-DA-Fe(III) (3,3'-Bis [N,N-bis (carboxymethyl) aminomethyl] thymolsulfonphthalein-Ferrous(III)) were adopted as sonosensitizers to study the sonodynamic and sonocatalytic activities under ultrasonic irradiation. At first, the interaction of Thymol Blue derivants with bovine serum albumin (BSA) was studied by fluorescence spectroscopy. On that basis, the sonodynamic and sonocatalytic damages of Thymol Blue derivants to BSA under ultrasonic irradiation were investigated by the combination of UV-vis, circular dichroism (CD) and fluorescence spectroscopy. Meanwhile, some influenced factors (ultrasonic irradiation time, Thymol Blue derivants concentration and ionic strength) on the damaging degree of BSA molecules were also reviewed. In addition, synchronous fluorescence spectra were used to estimate the binding and damage sites of Thymol Blue derivants to BSA. Finally, the generation of ROS during sonodynamic and sonocatalytic processes was confirmed by the method of Oxidation-Extraction Spectrometry (OEP). Perhaps, this paper may offer some important subjects for the study of Thymol Blue derivants in sonodynamic therapy (SDT) and sonocatalytic therapy (SCT) technologies for tumor treatment and the effect of the amino acid and central metal.

  19. Spectroscopic Investigation of the Canopy Configurations in Nanoparticle Organic Hybrid Materials of Various Grafting Densities during CO 2 Capture

    KAUST Repository

    Petit, Camille

    2012-01-12

    Novel liquid-like nanoparticle organic hybrid materials (NOHMs) made of polyetheramine chains tethered onto functionalized silica nanoparticles were synthesized and characterized before and after exposure to CO 2 using NMR, Raman, and ATR FT-IR spectroscopies in order to investigate the effect of the grafting densities on the NOHM canopy structure. Considering the promising tunable properties for CO 2 capture of NOHMs, this study was conducted to provide important structural information to better design NOHMs for CO 2 capture. In order to minimize the CO 2 absorption via enthalpic effect and provide a more accurate assessment of the structural effects, the NOHMs were synthesized without task-specific groups. A greater chain ordering and decreased intermolecular interactions were observed in NOHMs compared to the unbound polymer. This was attributed to the specific structural arrangement of the frustrated canopy. The distinct configuration of grafted polymer chains caused different CO 2 packing and CO 2-induced swelling behaviors between the NOHMs and the unbound polymer. The grafting density influenced the ordering and coupling of the polymer chains and CO 2-induced swelling. Its effect on the CO 2 packing behavior was less pronounced. © 2011 American Chemical Society.

  20. Synthesis, crystal growth and spectroscopic investigation of novel metal organic crystal: β-Alanine cadmium bromide monohydrate (β-ACBM)

    Science.gov (United States)

    Renugadevi, R.; Kesavasamy, R.

    2014-07-01

    β-Alanine cadmium bromide monohydrate (β-ACBM), a new metal organic crystal has been grown from aqueous solution by slow evaporation technique. The grown crystals have been subjected to single crystal X-ray diffraction analysis to determine the crystal structure. The β-ACBM crystallized in monoclinic system with space group P21/c. The presence of protons and carbons in the β-alanine cadmium bromide monohydrate was confirmed by 1H and 13C nuclear magnetic resonance spectral analysis. The mode of vibration of different molecular groups present in β-ACBM was identified by FT-IR spectral analysis. Transparency of crystals in UV-Vis-NIR region has also been studied. The thermal characteristics of as-grown crystals were analyzed using thermo gravimetric and differential thermal analyses. The magnetic property of the grown crystal was investigated using Vibrating Sample Magnetometer (VSM) at ambient temperature. The mechanical stability of β-ACBM was evaluated by Vickers microhardness measurement.

  1. Investigation of the Interaction between Patulin and Human Serum Albumin by a Spectroscopic Method, Atomic Force Microscopy, and Molecular Modeling

    Directory of Open Access Journals (Sweden)

    Li Yuqin

    2014-01-01

    Full Text Available The interaction of patulin with human serum albumin (HSA was studied in vitro under normal physiological conditions. The study was performed using fluorescence, ultraviolet-visible spectroscopy (UV-Vis, circular dichroism (CD, atomic force microscopy (AFM, and molecular modeling techniques. The quenching mechanism was investigated using the association constants, the number of binding sites, and basic thermodynamic parameters. A dynamic quenching mechanism occurred between HSA and patulin, and the binding constants (K were 2.60 × 104, 4.59 × 104, and 7.01 × 104 M−1 at 288, 300, and 310 K, respectively. Based on fluorescence resonance energy transfer, the distance between the HSA and patulin was determined to be 2.847 nm. The ΔG0, ΔH0, and ΔS0 values across various temperatures indicated that hydrophobic interaction was the predominant binding force. The UV-Vis and CD results confirmed that the secondary structure of HSA was altered in the presence of patulin. The AFM results revealed that the individual HSA molecule dimensions were larger after interaction with patulin. In addition, molecular modeling showed that the patulin-HSA complex was stabilized by hydrophobic and hydrogen bond forces. The study results suggested that a weak intermolecular interaction occurred between patulin and HSA. Overall, the results are potentially useful for elucidating the toxigenicity of patulin when it is combined with the biomolecular function effect, transmembrane transport, toxicological, testing and other experiments.

  2. Synthesis, vibrational spectroscopic investigations, molecular docking, antibacterial and antimicrobial studies of 5-ethylsulphonyl-2-(p-aminophenyl)benzoxazole

    Science.gov (United States)

    Parveen S, Shana; Al-Alshaikh, Monirah A.; Panicker, C. Yohannan; El-Emam, Ali A.; Arisoy, Mustafa; Temiz-Arpaci, Ozlem; Van Alsenoy, C.

    2016-07-01

    The optimized molecular structure, vibrational wavenumbers, corresponding vibrational assignments of 5-ethylsulphonyl-2-(p-aminophenyl)benzoxazole have been investigated experimentally and theoretically based on density functional theory. Synthesis and antibacterial and antimicrobial activities of the title compound were reported. The FT-IR and FT-Raman spectra were recorded in solid phase and the experimental bands were assigned and characterized on the basis of potential energy distribution. The HOMO and LUMO energies show that the charge transfer occur within the molecule. Stability arising from hyperconjugative interactions and charge delocalization were analysed using natural bond orbital analysis. Binding free energy of -9.8 kcal/mol as predicted by docking studies suggests good binding affinity and the inhibitor forms a stable complex with FAK as is evident from the ligand-receptor interactions. The title compound possesses lower activity against Candida albicans with MIC value of 64 μg/ml than the compared reference drugs as fluconazole and amphotericin B and possesses the same activity with value of 64 μg/ml against Candida krusei as the reference drug, fluconazole.

  3. Micro-structural, electrical and spectroscopic investigations of pulsed laser ablated palladium incorporated nanostructured tungsten oxide films.

    Science.gov (United States)

    Lethy, K J; Beena, D; Pillai, V P Mahadevan; Suresh, K A

    2009-09-01

    Pure and Pd incorporated (0.5, 1 and 5 wt%) WO3 films are prepared on quartz substrates using pulsed laser ablation (PLD) technique in an oxygen ambient of 0.12 mbar, at a substrate temperature (Ts) of 873 K. Palladium incorporation effects on the microstructure, optical and electrical properties of tungsten oxide films are systematically investigated using techniques like X-ray diffraction (XRD), Atomic Force Microscopy (AFM), Scanning Electron Microscopy (SEM), Energy dispersive X-ray spectroscopy (EDX), micro-Raman spectroscopy, UV-Vis absorption spectroscopy and temperature dependent electrical resistivity measurements. The micro-structural analysis by XRD and micro-Raman indicates that Pd addition can perturb the tungsten oxide lattice and suppress the grain growth. Optical band gap values of the films increases from 3.17 eV for pure WO3 to 3.29 eV for 5 wt% Pd incorporated WO3 films. All the films present high transparency in the visible spectral range. The electrical resistivity studies of the pure and Pd incorporated films done at room temperature and for the range of temperature; 170-450 K reveal that Pd addition can lower the resistivity of the WO3 thin films. Room temperature resistivity as well as activation energy of the film decreases exponentially with Pd incorporation concentration. Highly transparent, nanocrystalline and semiconducting WO3 films with low resistivity obtained by Pd incorporation can make WO3 suitable for microelectronics industry and for gas sensing applications.

  4. EPR and UV/VIS spectroscopic investigations of VO2+ complexes and compounds formed in alkali pyrosulfates

    DEFF Research Database (Denmark)

    Rasmussen, Søren Birk; Eriksen, Kim Michael; Fehrmann, Rasmus

    2002-01-01

    The catalytically important molten salt-gas system M2S2O7-M2SO4-V2O5/SO2(g) (M = Na. K, Rb, Cs) has been investigated by X- and Q-band EPR spectroscopy. In order to obtain information about the V(IV) complex formation in the melts, samples rather dilute in V2O5 were quenched from the molten state...... at 450-460degreesC to 0degreesC. EPR spectra of the quenched samples were recorded on samples with alkali to vanadium (M/V) ratios 40, 80 and 160. The spectra show that two V(IV) complexes dominate in the melt regardless of the type of alkali metal ion. In systems with low activity of sulfate...... a paramagnetic V(IV) complex with g(parallel to) = 1.915, g(perpendicular to) = 1,978 and line widths 5-15 Gauss is observed. In systems saturated with M2SO4 the obtained EPR spectra show a paramagnetic complex with the g-tensors g(parallel to) = 1.930, g(perpendicular to) = 1.980 and line widths 20-60 Gauss...

  5. Spectroscopic investigation, HOMO-LUMO and NLO studies on L-histidinium maleate based on DFT approach

    Science.gov (United States)

    Dhanavel, S.; Stephen, A.; Asirvatham, P. Samuel

    2017-05-01

    The molecular structure of the title compound L-Histidinium Maleate (LHM) was constructed and optimized based on Density Functional Theory method (DFT-B3LYP) with the 6-31G (d,p) basis set. The fundamental vibrational spectral assignment was analyzed with the aid of optimized structure of LHM. The study on electronic properties such as, HOMO-LUMO energies and absorption wavelength were performed using Time dependent DFT (TD-DFT) approach which reveals that energy transfer occur within the molecule. 13C NMR chemical shift values were measured using Gauge independent atomic orbital method (GIAO) and the obtained values are in good agreement with the reported experimental values. Hardness, ionization potential and electrophilicity index also calculated. The electric dipole moment (μtot) and hyperpolarizability (βtot) values of the investigated molecules were computed. The calculated value (β) was 3.7 times higher than that of urea, which confirms the LHM molecule is a potential candidate for NLO applications.

  6. Chemical and spectroscopic investigation of the Raphael's cartoon of the School of Athens from the Pinacoteca Ambrosiana

    Science.gov (United States)

    Ioele, Marcella; Sodo, Armida; Casanova Municchia, Annalaura; Ricci, Maria Antonietta; Russo, Alfonso Pio

    2016-12-01

    The cartoon of "The School of Athens", realized by the famous artist Raffaello Sanzio, is a masterpiece of Italian Renaissance. It is a full-scale (804 × 285 cm2) preparatory cartoon, stored at the Pinacoteca Ambrosiana (Milan, Italy). In order to characterize the cartoon and the drawing and to investigate its conservation state, several scientific analyses have been performed, both in situ and on sampled fragments. This multi-analytical approach has identified most of the materials used in the original drawing and in restored areas and provided a map of previous restoration works. Here we report the results obtained by Raman and FTIR spectroscopy, scanning electron microscopy equipped with X-ray micro-analysis (SEM-EDS), pH measurements and micro-chemical tests. pH measurements proved the absence of an acidic decay of the paper. The original paper from linen and hemp fibres is well preserved. It is filled with calcium carbonate and has received a light sizing with protein glue, now almost completely transformed into oxalates. 1797 French intervention paper is of lower quality and has been covered with a patina of lead white in Arabic gum, most likely in an attempt to match the colour to the tone of the original. Both papers are stuck to a support paper with flour glue (containing starch and gluten) and glued with the same adhesive to a canvas lining. In situ Raman spectroscopy has clearly shown that the original drawing was in charcoal and lead white, while the restored areas have been drawn using charcoal and graphite.

  7. Characterisation of agricultural waste-derived biochars and their sorption potential for sulfamethoxazole in pasture soil: A spectroscopic investigation

    Energy Technology Data Exchange (ETDEWEB)

    Srinivasan, Prakash; Sarmah, Ajit K., E-mail: a.sarmah@auckland.ac.nz

    2015-01-01

    We investigated the effects of feedstock type and pyrolysis temperatures on the sorptive potential of a model pastoral soil amended with biochars for sulfamethoxazole (SMO), using laboratory batch sorption studies. The results indicated that high temperature chars exhibited enhanced adsorptive potential, compared to low temperature chars. Pine sawdust (PSD) biochar produced at 700 °C using the steam gasification process exhibited the highest sorptive capacity (2-fold greater than the control treatment) for SMO among the three biochars used. Soils amended with green waste (GW) biochars produced at three different pyrolysis temperatures showed a small increase in SMO sorption with the increases in temperature. The NMR spectra, the elemental molar ratios (H/C, O/C) and polarity index (O + N)/C of the biochars revealed that PSD biochar possessed the highest degree of aromatic condensation compared to CC and GW chars. These results correlated well with the sorption affinity of each biochar, with effective distribution coefficient (K{sub d}{sup eff}) being highest for PSD and lowest for GW biochars. X-ray photoelectron spectroscopy results for the biochars showed a relatively large difference in oxygen containing surface functional groups amongst the GW biochars. However, they exhibited nearly identical sorption affinity to SMO, indicating negligible role of oxygen containing surface functional groups on SMO sorption. These observations provide important information on the use of biochars as engineered sorbents for environmental applications, such as reducing the bioavailability of antibiotics and/or predicting the fate of sulfonamides in biochar-amended soils. - Highlights: • High temperature chars showed enhanced adsorptive potential, compared to low temperature chars. • Oxygen containing acidic functional groups of biochar play negligible role in sorption. • Biochar properties like specific surface area and aromaticity enhanced its sorption capacity.

  8. Spectroscopic Characterization, Computational Investigation, and Comparisons of ECX− (E = As, P, and N; X = S and O) Anions

    Energy Technology Data Exchange (ETDEWEB)

    Hou, Gao-Lei; Chen, Bo; Transue, Wesley J.; Yang, Zheng; Grutzmacher, Hansjorg; Driess, Matthias; Cummins, Christopher C.; Borden, Weston; Wang, Xue-Bin

    2017-07-05

    Three newly-synthesized [Na+(221-kryptofix)] salts containing AsCO–, PCO–, and PCS– anions were successfully electrosprayed into the vacuum, and the ECX– (E = As, P; X = O, S) anions were investigated by negative ion photoelectron spectroscopy (NIPES) and high resolution photoelectron imaging spectroscopy. For each ECX– anion, a well-resolved NIPE spectrum was obtained, in which every major peak is split into a doublet. The splittings are attributed to spin-orbit coupling (SOC) in the ECX• radicals. Vibrational progressions in the NIPE spectra of ECX– were assigned to the symmetric and antisymmetric stretching modes in ECX• radicals. The electron affinities (EAs) and SOC splittings of ECX• are determined from the NIPE spectra to be: AsCO•: EA = 2.414 ± 0.002 eV, SOC splitting = 988 cm-1; PCO•: EA = 2.670 ± 0.005 eV, SOC splitting = 175 cm-1; PCS•: EA = 2.850 ± 0.005 eV, SOC splitting = 300 cm-1. Calculations using the B3LYP, CASPT2, and CCSD(T) methods all predict linear geometries for both the anions and neutral radicals. The calculated EAs and SOC splittings for ECX• are in excellent agreement with the experimentally-measured values. The simulated NIPE spectra, based on the calculated Franck-Condon factors, and SOC splittings nicely reproduce all of the observed spectral peaks, thus allowing unambiguous spectral assignments. The finding that PCS has the greatest EA of the three triatomic molecules considered here is counterintuitive based upon electronegativity considerations, but understandable in terms of the HOMO of PCS– having the greatest degree of delocalization onto both terminal atoms.

  9. Spectroscopic (infrared, Raman, UV and NMR) analysis, Gaussian hybrid computational investigation (MEP maps/HOMO and LUMO) on cyclohexanone oxime

    Science.gov (United States)

    Ramalingam, S.; Karabacak, M.; Periandy, S.; Puviarasan, N.; Tanuja, D.

    2012-10-01

    In the present analysis, FT-IR/FT-Raman spectra of the cyclohexanone oxime (CHO, C6H11NO) are recorded. The observed vibrational frequencies are assigned and the computational calculations are carried out by HF and DFT (B3LYP and B3PW91) methods with 6-311++G(d,p) basis set and the corresponding results are tabulated. In order to yield good coherence with observed values, the calculated frequencies are scaled by appropriate scale factors. The complete assignments are performed on the basis of the total energy distribution (TED) of the vibrational modes, calculated with scaled quantum mechanics (SQM) method. The alternation of structure of cyclohexanone due to the substitution of NOH is investigated. The vibrational sequence pattern of the molecule related to the substitutions is analyzed. Comparison of the observed fundamental vibrational frequencies of CHO and calculated results by density functional (B3LYP and B3PW91) and HF methods indicates that B3LYP is superior to the scaled HF and B3PW91 approach for molecular vibrational problems. Moreover, 13C NMR and 1H NMR chemical shifts are calculated by using the gauge independent atomic orbital (GIAO) method with HF/B3LYP/B3PW91 methods and the same basis set. A study on the electronic properties; absorption wavelengths, excitation energy, dipole moment and frontier molecular orbital energies, are performed by HF and DFT methods. The calculated HOMO and LUMO energies show that charge transfer occurs within the molecule. Besides frontier molecular orbitals (FMO), molecular electrostatic potential (MEP) was performed. NLO properties and Mulliken charges of the CHO was also calculated and interpreted. The thermodynamic properties (heat capacity, entropy, and enthalpy) of the title compound at different temperatures are calculated in gas phase.

  10. Infrared and Fluorescence Spectroscopic Investigations of the Acyl Surface Modification of Hydrogel Beads for the Deposition of a Phospholipid Coating.

    Science.gov (United States)

    Grossutti, Michael; Seenath, Ryan; Lipkowski, Jacek

    2015-10-27

    The scaffolded vesicle has been employed as an alternative means of developing natural model membranes and envisioned as a potential nutraceutical transporter. Furthering the research of the scaffolded vesicle system, a nucleophilic substitution reaction was implemented to form an ester linkage between palmitate and terminal hydroxyl groups of dextran in order to hydrophobically modify the hydrogel scaffold. An average tilt angle of 38° of the hydrophobic palmitate modifying layer on the surface of the hydrogel was determined from dichroic ratios obtained from infrared spectra collected in the attenuated total reflection (ATR) configuration. ATR-IR studies of the DMPC-coated acylated hydrogel demonstrated that the hydrocarbon chains of the DMPC coating was similar to those of the DMPC bilayers and that the underlying palmitate layer had a negligible effect on the average tilt angle (26°) of the DMPC coating. The permeability of this acylated hydrogel was investigated with fluorescence spectroscopy and the terbium/dipicolinic acid assay. The hydrophobic modification on the surface of the hydrogel bead allowed for an efficient deposition of a DMPC layer that served as an impermeable barrier to terbium efflux. About 72% of DMPC-coated acylated hydrogel beads showed ideal barrier properties. The remaining 28% were leaking, but the half-life of terbium efflux of the DMPC-coated acylated hydrogel was increasing, and the total amount of leaked terbium was decreasing with the incubation time. The half-life time and the retention were considered a marked improvement relative to past scaffolded vesicle preparations. The process of acylating hydrogel beads for efficient DMPC deposition has been identified as another viable method for controlling the permeability of the scaffolded vesicle.

  11. Internal structural changes in keratin fibres resulting from combined hair waving and stress relaxation treatments: a Raman spectroscopic investigation.

    Science.gov (United States)

    Kuzuhara, A

    2016-04-01

    The objective of our research was to investigate the influence of chemical treatments (reduction, stress relaxation and oxidation) on hair keratin fibres. The structure of cross-sections at various depths of virgin white human hair resulting from permanent waving treatments with stress relaxation process was directly analysed at a molecular level using Raman spectroscopy. In particular, the three disulphide (-SS-) conformations in human hair were compared by S-S band analysis. The gauche-gauche-gauche (GGG) and gauche-gauche-trans (GGT) contents of -SS- groups remarkably decreased, while the trans-gauche-trans (TGT) content was not changed by performing the reduction process with thioglycolic acid. In addition, the high-temperature stress relaxation process after reduction accelerated the disconnection of -SS- (GGG and GGT) groups in the human hair, while the low-temperature stress relaxation process after reduction accelerated the reconnection of -SS- (GGG and GGT) groups. Moreover, the S-O band intensity at 1042 cm(-1) , assigned to cysteic acid, existing in the cuticle region and the surface of the cortex region increased, while the GGG content significantly decreased by performing the oxidation process after the reduction and the high-temperature stress relaxation processes. The author concluded that the high-temperature relaxation process after reduction accelerated the disconnection of -SS- (GGG and GGT) groups, thereby leading to the remarkable local molecular disorganization (an increase in the cysteic acid content and a decrease in the GGG content) on the cuticle and cortex cells during the oxidation process. © 2015 Society of Cosmetic Scientists and the Société Française de Cosmétologie.

  12. Moessbauer Study of Serpentine Minerals in the Ultramafic Body of Tehuitzingo, Southern Mexico

    Energy Technology Data Exchange (ETDEWEB)

    Gonzalez-Mancera, G., E-mail: ggm@servidor.unam.mx [Ciudad Universitaria, Facultad de Quimica, Circuito Exterior, Edif. ' D' (Mexico); Ortega-Gutierrez, F. [Ciudad Universitaria, Instituto de Geologia, Circuito Exterior (Mexico); Nava, N. E. [Instituto Mexicano del Petroleo (Mexico); Arriola, H. S. [Ciudad Universitaria, Facultad de Quimica, Circuito Exterior, Edif. ' D' (Mexico)

    2003-06-15

    Serpentine 'polymorph' minerals (chrysotile, lizardite, and antigorite) are hydrous Mg-Fe silicates that commonly form serpentine rock (serpentinite) by hydration of olivine-pyroxene peridotites from the mantle of the Earth. During the complex geologic history of orogenic belts, the redox and hydration state of the mantle changes, and olivine and pyroxenes are replaced by serpentine group minerals during tectonic deformation and uplift. Unfortunately, modern microanalysis of minerals by electron probe does not distinguish the oxidation state of iron, and it has to be assumed or estimated by precise methods, such as Moessbauer spectrometry. The studied samples were collected in the Xayacatlan Formation of the Tehuitzingo area, State of Puebla, within the Paleozoic Acatlan Complex. The original mantle peridotite was completely converted to serpentinite, with secondary crystallization of Fe-Mg oxides, calcsilicates, and carbonates. The three serpentine 'polymorphs' were identified in the studied samples, although with a clear predominance of the high-temperature member antigorite, which was preliminary determined by optical petrography, X-ray diffraction, electron probe, and scanning electron microscopy. Microprobe total iron content in most specimens was <2%, but some were higher. Principal substitutions involving ferrous and ferric iron in serpentine minerals occur in the octahedral site, but minor and infrequent Fe{sup +3} substitution at the tetrahedral site may also occur according to some Moessbauer studies. This paper studied the iron valence state and its position in serpentine minerals of the Tehuitzingo ultramafic body using Moessbauer techniques. The analyses in most samples detected one doublet, compatible with Fe{sup +2} in octahedral coordination, but only two specimens displayed two doublets corresponding to Fe{sup +2} and Fe{sup +3} in octahedral coordination. Doublets corresponding to Fe{sup +3} in tetrahedral sites were not found

  13. Effect of an allophanic soil on humification reactions between catechol and glycine: Spectroscopic investigations of reaction products

    Science.gov (United States)

    Fukushima, Masami; Miura, Akitaka; Sasaki, Masahide; Izumo, Kenji

    2009-01-01

    Adduction of amino acids to phenols is a possible humification reaction pathway [F.J. Stevenson, Humus Chemistry: Genesis, Composition, Reaction, second ed., Wiley, New York, 1994, pp. 188-211; M.C. Wang, P.M. Huang, Sci. Total Environ. 62 (1987) 435; M.C. Wang, P.M. Huang, Soil Sci. Soc. Am. J. 55 (1991) 1156; M.C. Wang, P.M. Huang, Geoderma 112 (2003) 31; M.C. Wang, P.M. Huang, Geoderma 124 (2005) 415]. To elucidate the reaction kinetics and products of abiotic humification, the effects of an allophanic soil on the adduction of amino acids to phenols were investigated using catechol (CT) and glycine (Gly) as a model phenol and amino acid, respectively. An aqueous solution containing CT and Gly (pH 7.0) in the presence of allophanic soil was incubated for 2 weeks, and the kinetics of the humification reactions were monitored by analysis of absorptivity at 600 nm ( E600). A mixture of CT and Gly in the absence of allophanic soil was used as a control. The E600 value increased markedly in the presence of allophanic soil. In addition, unreacted CT was detected in the control reaction mixture, but not in the allophane-containing reaction mixture. Under the sterilized conditions, absorbance at 600 nm for the control reaction mixture was significantly smaller than that for the allophanic soil-containing reaction mixture, which indicates there was no microbial participation during incubation. These results indicate that the allophanic soil effectively facilitated humification reactions between CT and Gly. The reaction mixtures were acidified and humic-like acid (HLA) was isolated as a precipitate. The elemental composition, acidic functional group contents, molecular weight, FT-IR, solid-state CP-MAS 13C NMR, and 1H NMR spectra of the purified HLAs were analyzed. The results of these analyses indicate that the nitrogen atom of Gly binds to the aromatic carbon of CT in the HLA products.

  14. Raman Spectroscopic Online Investigation of Respiratory Quotients in Pinus Sylvestris and Picea Abies during Drought and Shading

    Science.gov (United States)

    Hanf, S.; Fischer, S.; Hartmann, H.; Trumbore, S.; Popp, J.; Frosch, T.

    2014-12-01

    Drought and heat waves have been linked to forest mortality event across the globe. The underlying physiological processes are still not elucidated but both tree carbon and water relations have been identified as the driving forces. While studies on tree hydraulics are straightforward, studies on the tree carbon balance are not. For example, the use of different carbon compounds for maintenance respiration during drought cannot be assessed with measurements of carbon pools but requires real-time analyses of respiration stoichiometry. However, so far there were no technical solutions for such applications. Here we introduce cavity-enhanced Raman spectrometry (CERS) for simultaneous real-time monitoring of O2 and CO2 and rapid and continuous quantification of dark respiration rates and the respiratory quotient (RQ), i.e. the ratio of CO2 produced over O2 consumed during respiration. This ratio indicates the proportions of different substrates (carbohydrates [COH], lipids, proteins) used during respiration and allows fundamental insights into tree physiology. CERS combines high temporal resolution with a high dynamic concentration range for all important gases, ranging from few ppm to 100 vol. % with a single measurement every few seconds. The respiration analysis of tree branches was performed in a closed chamber for two species of different drought tolerance, Pinus sylvestris and Picea abies. We applied not only drought but also a shading treatment because both cause reductions in carbon assimilation rates but have different effects on tree hydraulics. Declines in RQ during shading in both species indicate a switch from pure COH metabolism to a mixture of COH, lipids and proteins. During drought such declines occurred only in the drought-tolerant pine but not in spruce and the underlying more dynamic carbon use strategy in pine may provide a physiological basis for its drought tolerance, more detailed investigation still pending. Our study highlights the suitability

  15. Investigation on synthesis, structure, morphology, spectroscopic and electrochemical studies of praseodymium-doped ceria nanoparticles by combustion method

    Energy Technology Data Exchange (ETDEWEB)

    Esther Jeyanthi, C., E-mail: esther.jeyanthi@yahoo.com [Research and Development Centre, Bharathiar University, Coimbatore 641046 (India); Department of Physics, Panimalar Engineering College, Chennai 600123, TN (India); Siddheswaran, R. [New Technologies Research Centre, University of West Bohemia in Pilsen, Plzeň 30614 (Czech Republic); Kumar, Pushpendra [Institute of Atomic and Molecular Sciences, Academia Sinica, Taipei 10617, Taiwan (China); Karl Chinnu, M. [Department of Applied Physics, Tunghai University, Taichung City, 40740, Taiwan (China); Rajarajan, K. [Department of Physics, Rajeswari Vedachalam Govt. Arts College, Chengalpet 603001, TN (India); Jayavel, R. [Centre for Nanoscience and Technology, Anna University, Chennai 600025 (India)

    2015-02-01

    The investigation deals with the synthesis and characterization of praseodymium doped ceria (PDC) nanoparticles by citrate nitrate auto-combustion method. The as prepared PDC powders were calcined at 700 °C, and then dense cylindrical electrolyte bodies were fabricated by uni-axial compression followed by sintering at 1200 °C. The PDC nanocrystals and compacts were subjected to characterization studies such as X-ray diffraction, scanning and transmission electron microscopy, elemental analysis, Fourier transform infrared spectroscopy (FTIR), Raman spectroscopy and electrochemical analyses. The crystal structure of PDC was found to be a cubic fluorite system by X-ray diffraction analysis (XRD). The surface morphologies and the grain distributions of the calcined nanoparticles and sintered bodies were studied by scanning electron microscopy (SEM). The grain size of the sintered material was found to be in the range from 100 nm to 500 nm. Transmission electron microscopic (TEM) images revealed the presence of polyhedral, sphere-like shape of the nanoparticles with a size range 10–25 nm. The symmetric stretching mode of the Ce–O was obtained at 555 cm{sup −1} in the FTIR spectrum. The Raman active mode for the PDC was obtained at 457 cm{sup −1}. The presence of oxygen vacancies was confirmed from the weaker absorption band observed at 560 cm{sup −1} in the Raman spectrum. The change in current density with increasing sweep scan potential was studied by cyclic voltammetry (CV) analysis. The specific capacitance range of the PDC was calculated as 20–72.4 Fg{sup −1}. - Highlights: • Praseodymium doped Ceria was synthesized by citrate nitrate auto-combustion method. • XRD revealed that they crystallize as single-phase cubic fluorite structure. • FTIR and RAMAN studies were carried to analyze the existence of functional groups. • The morphology of the particles and compacts were analyzed by SEM and TEM. • Cyclic voltammetry (CV) for the

  16. Near-infrared spectroscopic investigation of water in supercritical CO2 and the effect of CaCl2

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Zheming; Felmy, Andrew R.; Thompson, Christopher J.; Loring, John S.; Joly, Alan G.; Rosso, Kevin M.; Schaef, Herbert T.; Dixon, David A.

    2013-01-01

    Near-infrared (NIR) spectroscopy was applied to investigate the dissolution and chemical interaction of water dissolved into supercritical carbon dioxide (scCO2) and the influence of CaCl2 in the co-existing aqueous phase at fo empe e : 40 50 75 nd 100 C at 90 atm. Consistent with the trend of the vapor pressure of water, the solubility of pure water in scCO2 inc e ed f om 40 °C (0.32 mole%) o 100 °C (1.61 mole%). The presence of CaCl2 negatively affects the solubility of water in scCO2: at a given temperature and pressure the solubility of water decreased as the concentration of CaCl2 in the aqueous phase increased, following the trend of the activity of water. A 40 °C, the water concentration in scCO2 in contact with saturated CaCl2 aqueous solution was only 0.16 mole%, a drop of more than 50% as compared to pure water while that a 100 °C was 1.12 mole%, a drop of over 30% as compared to pure water, under otherwise the same conditions. Analysis of the spectral profiles suggested that water dissolved into scCO2 exists in the monomeric form under the evaluated temperature and pressure conditions, for both neat water and CaCl2 solutions. However, its rotational degrees of freedom decrease at lower temperatures due to higher fluid densities, leading to formation of weak H2O:CO2 Lewis acid-base complexes. Similarly, the nearly invariant spectral profiles of dissolved water in the presence and absence of saturated CaCl2 under the same experimental conditions was taken as evidence that CaCl2 dissolution in scCO2 was limited as the dissolved Ca2+/CaCl2 would likely be highly hydrated and would alter the overall spectra of waters in the scCO2 phase.

  17. Spectroscopic investigations of plasma nitriding processes: A comparative study using steel and carbon as active screen materials

    Science.gov (United States)

    Hamann, S.; Burlacov, I.; Spies, H.-J.; Biermann, H.; Röpcke, J.

    2017-04-01

    Low-pressure pulsed DC H2-N2 plasmas were investigated in the laboratory active screen plasma nitriding monitoring reactor, PLANIMOR, to compare the usage of two different active screen electrodes: (i) a steel screen with the additional usage of CH4 as carbon containing precursor in the feeding gas and (ii) a carbon screen without the usage of any additional gaseous carbon precursor. Applying the quantum cascade laser absorption spectroscopy, the evolution of the concentration of four stable molecular species, NH3, HCN, CH4, and C2H2, has been monitored. The concentrations were found to be in a range of 1012-1016 molecules cm-3. By analyzing the development of the molecular concentrations at variations of the screen plasma power, a similar behavior of the monitored reaction products has been found for both screen materials, with NH3 and HCN as the main reaction products. When using the carbon screen, the concentration of HCN and C2H2 was 30 and 70 times higher, respectively, compared to the usage of the steel screen with an admixture of 1% CH4. Considering the concentration of the three detected hydrocarbon reaction products, a combustion rate of the carbon screen of up to 69 mg h-1 has been found. The applied optical emission spectroscopy enabled the determination of the rotational temperature of the N2+ ion which has been in a range of 650-900 K increasing with the power in a similar way in the plasma of both screens. Also with power the ionic component of nitrogen molecules, represented by the N2+ (0-0) band of the first negative system, as well as the CN (0-0) band of the violet system increase strongly in relation to the intensity of the neutral nitrogen component, i.e., the N2 (0-0) band of the second positive system. In addition, steel samples have been treated with both the steel and the carbon screen resulting in a formation of a compound layer of up to 10 wt. % nitrogen and 10 wt. % carbon, respectively, depending on the screen material.

  18. Moessbauer effect studies of disordered Fe-Ru alloys

    Energy Technology Data Exchange (ETDEWEB)

    Poettker, W.E.; Paduani, C. [Departamento de Fisica, Universidade Federal de Santa Catarina, UFSC, Florianopolis, CEP 88040-900, SC (Brazil); Ardisson, J.D. [Centro de Desenvolvimento da Tecnologia Nuclear, CDTN, Belo Horizonte, CEP 30123-970, MG (Brazil); Ioshida, M.I. [Departamento de Quimica, Universidade Federal de Minas Gerais, ICEX-UFMG, Belo Horizonte, Caixa Postal 702, CEP 31270-901, MG (Brazil)

    2004-09-01

    The bcc and hcp phases of disordered Fe{sub 100-x}Ru{sub x} alloys are investigated with several experimental techniques to study the composition dependence of the magnetic properties in these structures. With an appropriate annealing the prepared samples are single phase. The iron rich alloys are ferromagnetic at room temperature with the bcc structure. However, an antiferromagnetic coupling is introduced with the addition of ruthenium. Above 30 at% Ru a paramagnetic behavior is observed at 300 K and 77 K, where the alloys have the hcp structure. In the ferromagnetic phase the Curie temperature decreases steadily with the increase of the ruthenium concentration. In the paramagnetic hcp phase the mean volume per atom is al-most triplicated as compared to the bcc phase, which brings out the breakdown of the magnetization and the collapse of the hyperfine field at the iron sites simultaneously with the crystallographic phase transition. (copyright 2004 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  19. Moessbauer study of mixed crystalline (Eu sub 2 O sub 3) sub x (Fe sub 2 O sub 3) sub 1 sub - sub x (x=0.45)

    CERN Document Server

    Kim, J G; Kim, Y H; Kim, E C

    1998-01-01

    The crystallography and the temperature dependence of the Moessbauer parameters of mixed crystalline (Eu sub 2 O sub 3) sub x (Fe sub 2 O sub 3) sub 1 sub - sub x (x=0.45) were studied by the method of X-ray diffraction at room temperature and Moessbauer spectroscopy within the temperature range from liquid nitrogen temperature to 540 K. The X-ray diffraction pattern of the sample showed the coexistence of cubic and orthorhombic crystal phases. The Moessbauer spectrum of 540 K indicated a crystal phase which was in good agreement with the X-ray result and gave no indication, within the experimental error, of any other crystal phases. By analyzing the temperature dependence of the Moessbauer parameters by using the spin-wave theory and the Debye model, useful result were obtained for examining the changes in the physical properties in mixed crystalline system.

  20. Synthesis, crystal structure, spectroscopic investigations and DFT calculations of the copper(II) complex of 4-(Trifluoromethyl)pyridine-2-carboxylic acid

    Science.gov (United States)

    Vural, Hatice; Orbay, Metin

    2017-10-01

    A novel polymeric complex of Cu(II) ion, [Cu(tfpc)2]n [tfpc: 4-(Trifluoromethyl)pyridine-2-carboxylate] has been prepared and characterized spectroscopically (by FT-IR) and structurally (by single-crystal XRD). The geometry around the Cu(II) center can be described as square planar made by tfpc ligand having nitrogen and oxygen atoms. Additionally, the Cu(II) complex has a one-dimensional double-bridged polymeric structure in which Cu(II) ions are bridged by two oxygen atoms of adjacent planes. The crystal packing has been stabilized by Csbnd H⋯O intra and intermolecular hydrogen bonds. The molecular structure of the Cu(II) complex has been optimized using the Density Functional Theory (DFT) B3LYP, B3PW91 and PBEPBE levels with 6-311+G(d,p) basis set. The calculated electronic spectra have been explained using the time dependent DFT (TD-DFT) method by applying the polarized continuum model (PCM). The vibrational spectral data have been calculated and compared with experimental ones. The non-linear optical (NLO) properties of the title compound have been investigated using the DFT method with three different levels. Natural Bond Orbital (NBO) property of the Cu(II) complex has been performed by the B3LYP density functional and the 6-311+G(d,p) basis set.

  1. The spectroscopic properties of anticancer drug Apigenin investigated by using DFT calculations, FT-IR, FT-Raman and NMR analysis

    Science.gov (United States)

    Mariappan, G.; Sundaraganesan, N.; Manoharan, S.

    2012-09-01

    The FT-Raman and FT-Infrared spectra of solid Apigenin sample were measured in order to elucidate the spectroscopic properties of title molecule in the spectral range of 3500-50 cm-1 and 4000-400 cm-1, respectively. The recorded FT-IR and FT-Raman spectral measurements favor the calculated (by B3LYP/6-31G(d,p) method) structural parameters which are further supported by spectral simulation. Additional support is given by the collected 1H and 13C NMR spectra recorded with the sample dissolved in DMSO. The predicted chemical shifts at the B3LYP/6-31G(d) level obtained using the Gauge-Invariant Atomic Orbitals (GIAO) method with and without inclusion of solvent using the Polarizable Continuum Model (PCM). By using TD-DFT method, electronic absorption spectra of the title compound have been predicted and a good agreement with the TD-DFT method and the experimental one is determined. The UV-visible absorption spectra of the compound that dissolved in Ethanol, Methanol and DMSO were recorded in the range of 800-200 nm. The formation of hydrogen bond and the most possible interaction are explained using natural bond orbital (NBO) analysis. In addition, the molecular electrostatic potential (MEP), frontier molecular orbitals (FMO) analysis and atomic charges of the title compound were investigated using theoretical calculations. The results are discussed herein and compared with similar molecules whenever appropriate.

  2. A comprehensive spectroscopic and computational investigation of intramolecular proton transfer in the excited states of 2-(2′-hydroxyphenyl) benzoxazole and its derivatives

    Energy Technology Data Exchange (ETDEWEB)

    Padalkar, Vikas S. [Tinctorial Chemistry Group, Institute of Chemical Technology, Matunga, Mumbai 400019 (India); Ramasami, Ponnadurai, E-mail: ramchemi@intnet.mu [Computational Chemistry Group, Department of Chemistry, Faculty of Science, University of Mauritius, Réduit (Mauritius); Sekar, Nagaiyan, E-mail: n.sekar@ictmumbai.edu.in [Tinctorial Chemistry Group, Institute of Chemical Technology, Matunga, Mumbai 400019 (India)

    2014-02-15

    The excited-state intramolecular proton transfer (ESIPT) fluorescence of the 2-(2′ hydroxyphenyl) benzoxazole (HBO) and its derivatives with NO{sub 2} as electron acceptor and NH{sub 2} as electron donor at the 4 and 5 position of benzoxazole ring was studied by spectroscopic and computational methods. The changes in the electronic transition, energy levels, and orbital diagrams of the HBO derivatives were investigated using the DFT computations and they were correlated with the experimental spectral emission. The benzoxazole derivatives are fluorescent under UV-light in solution. Photophysical properties of the compounds were also studied in solvents of different polarities. Experimental absorption and emission wavelengths are in agreement with those computed with a deviation ranging between 0 and 50%. The computational methods have been useful for molecular understanding of the transitions responsible for the fluorescent spectra. -- Highlights: • Experimental photophysical properties of 2-substituted benzoxazoles in different solvents have been studied and compared with the computational data. • Compounds show dual emission due to ESIPT process and was supported by DFT and TD-DFT computations. • Experimental results and computational results are in good agreements.

  3. Theoretical spectroscopic investigations of HNS{sup q} and HSN{sup q} (q = 0, +1, −1) in the gas phase

    Energy Technology Data Exchange (ETDEWEB)

    Ben Yaghlane, S., E-mail: roberto.linguerri@u-pem.fr, E-mail: saidayagh@gmail.com; Jaidane, N.-E. [Laboratoire de Spectroscopie Atomique, Moléculaire et Applications - LSAMA, Université de Tunis El Manar, Tunis (Tunisia); Cotton, C. E.; Francisco, J. S. [Department of Chemistry and Department of Earth and Atmospheric Science, Purdue University, West Lafayette, Indiana 49707 (United States); Al Mogren, M. M. [Chemistry Department, Faculty of Science, King Saud University, PO Box 2455, Riyadh 11451 (Saudi Arabia); Linguerri, R., E-mail: roberto.linguerri@u-pem.fr, E-mail: saidayagh@gmail.com; Hochlaf, M. [Laboratoire Modélisation et Simulation Multi Echelle, Université Paris-Est, MSME UMR 8208 CNRS, 5 bd Descartes, 77454 Marne-la-Vallée (France)

    2014-06-28

    We performed accurate ab initio investigations of the geometric parameters and the vibrational structure of neutral HNS/HSN triatomics and their singly charged anions and cations. We used standard and explicitly correlated coupled cluster approaches in connection with large basis sets. At the highest levels of description, we show that results nicely approach those obtained at the complete basis set limit. Moreover, we generated the three-dimensional potential energy surfaces (3D PESs) for these molecular entities at the coupled cluster level with singles and doubles and a perturbative treatment of triple excitations, along with a basis set of augmented quintuple-zeta quality (aug-cc-pV5Z). A full set of spectroscopic constants are deduced from these potentials by applying perturbation theory. In addition, these 3D PESs are incorporated into variational treatment of the nuclear motions. The pattern of the lowest vibrational levels and corresponding wavefunctions, up to around 4000 cm{sup −1} above the corresponding potential energy minimum, is presented for the first time.

  4. Synthesis of quinoline derivatives containing pyrazole group and investigation of their crystal structure and spectroscopic properties in relation to acidity and alkalinity of mediums

    Science.gov (United States)

    Ren, Tiegang; Wang, Jie; Li, Guihui; Cheng, Hongbin; Li, Yongzhe

    2014-08-01

    Two series of quinoline derivatives containing pyrazole group were synthesized and characterized by means of 1H NMR, FT-IR, MS, elemental analysis and X-ray single crystal diffraction, and their UV-vis absorption behavior and fluorescence properties were also measured. Moreover, the effects of acetic acid and triethylamine on the spectroscopic properties of synthesized products were examined with compounds 3a and 5a as examples. It has been found that all synthesized quinoline derivatives show maximum absorption peak at 303 nm and emission peaks around 445 nm. Besides, both acetic acid and triethylamine can change the acidity of the medium, thereby influencing the UV-vis absorption spectra and fluorescence spectra of synthesized products. Moreover, theoretical investigations indicate that the integration of H+ and N atom of quinoline ring favors the formation of a new product in the presence of acetic acid, and the product obtained in this case shows a new UV-vis absorption peak at 400 nm.

  5. Spectroscopic Investigation of p-Shell Lambda Hypernuclei by the (e,e'K+) Reaction

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Chunhua [Hampton Univ., Hampton, VA (United States)

    2014-08-01

    Hypernuclear spectroscopy is a powerful tool to investigate Lambda-N interaction. Compared with other Lambda hypernuclei productions, electroproduction via the (e,e'K+) reaction has the advantage of exciting states deeply inside of the hypernucleus and achieving sub-MeV energy resolution. The E05-115 experiment, which was successfully performed in 2009, is the third generation hypernuclear experiment in JLab Hall C. A new splitter magnet and electron spectrometer were installed, and beam energy of 2.344 GeV was selected in this experiment. These new features gave better field uniformity, optics quality and made the tilt method more effective in improving yield-to-background ratio. The magnetic optics of the spectrometers were carefully studied with GEANT simulation, and corrections were applied to compensate for the fringe field cross talk between the compact spectrometer magnets. The non-linear least chi-squared method was used to further calibrate the spectrometer with the events from Lambda, Sigma0 and B12Lambda and uniform magnetic optics as well as precise kinematics were achieved. Several p-shell Lambda hypernuclear spectra, including B12Λ, Be10Λ, He7Λ, were obtained with high energy resolution and good accuracy. For B12Λ, eight peaks were recognized with the resolution of ~540keV (FWHM), and the ground state binding energy was obtained as 11.529 ± 0.012(stat.) ± 0.110(syst.) MeV. Be10Λ, twelve peaks were recognized with the resolution of ~520keV (FWHM), and the binding energy of the ground state was determined as 8.710 ± 0.059(stat.) ± 0.114(syst.) MeV. For He7Λ, three peaks were recognized with the resolution of ~730keV, and the ground state binding energy was obtained as 5.510 ± 0.050(stat.) ± 0.120(syst.) MeV. Compared with the published data of B12Λ from the JLab Hall A experiment

  6. Spectroscopic and theoretical investigations of vibrational frequencies in binary unsaturated transition-metal carbonyl cations, neutrals, and anions.

    Science.gov (United States)

    Zhou, M; Andrews, L; Bauschlicher, C W

    2001-07-01

    Figure 18 presents the C-O stretching vibrational frequencies of the first-row transition-metal monocarbonyl cations, neutrals, and anions in solid neon; similar diagrams have been reported for neutral MCO species in solid argon, but three of the early assignments have been changed by recent work and one new assignment added. The laser-ablation method produces mostly neutral atoms with a few percent cations and electrons for capture to make anions; in contrast, thermal evaporation gives only neutral species. Hence, the very recent neon matrix investigations in our laboratory provide carbonyl cations and anions for comparison to neutrals on a level playing field. Several trends are very interesting. First, for all metals, the C-O stretching frequencies follow the order cations > neutrals > anions with large diagnostic 100-200 cm-1 separations, which is consistent with the magnitude of the metal d to CO pi * donation. Second, for a given charge, there is a general increase in C-O stretching vibrational frequencies with increasing metal atomic number, which demonstrates the expected decrease in the metal to CO pi * donation with increasing metal ionization potential. Some of the structure in this plot arises from the extra stability of the filled and half-filled d shell and from the electron pairing that occurs at the middle of the TM row; the plot resembles the "double-humped" graph found for the variation in properties across a row of transition metals. For the anions, the variation with metal atom is the smallest since all of the metals can easily donate charge to the CO ligand. Third, for the early transition-metal Ti, V, and Cr families, the C-O stretching frequencies decrease when going down the family, but the reverse relationship is observed for the late transition-metal Fe, Co, and Ni families. In most of the present discussion, we have referred to neon matrix frequencies; however, the argon matrix frequencies are complementary, and useful information can be

  7. Structure, magnetic properties and Moessbauer spectra of La{sub 0.67}Sr{sub 0.33}Fe{sub x}Mn{sub 1 - x}O{sub 3} manganites oxide prepared by mechanical ball milling method

    Energy Technology Data Exchange (ETDEWEB)

    Cherif, Wajdi, E-mail: wajdi_cherif@yahoo.fr; Ellouze, Mohamed, E-mail: mohamed.ellouze@fss.rnu.tn [Sfax University, Faculty of Sciences (Tunisia); Lehlooh, Abdel-Fatah, E-mail: alehlooh@yahoo.com [King Faisal University (Saudi Arabia); Mahmood, Sami H., E-mail: s.mahmood@ju.edu.jo [The University of Jordan (Jordan); Elhalouani, Foued, E-mail: foued.elhalouani@enis.rnu.tn [National School of Engineers, Sfax University (Tunisia)

    2012-05-15

    La{sub 0.67}Sr{sub 0.33}Fe{sub x}Mn{sub 1-x}O{sub 3}, with x = 0.0, 0.1, 0.2 and 1 have been elaborated by mechanical system. X-ray diffraction, Scanning electron microscopy, Magnetic measurements and Moessbauer spectroscopy for the systems have been investigated. Rietveld analysis of the X-ray powder diffraction show that the samples crystallise in the orthorhombic perovskite system with Pnma space group. The average particle size of about 60 nanometre was obtained from scanning electron microscopy and X-ray diffraction. The investigated samples exhibit a ferromagnetic to paramagnetic transition with increasing temperature. The presence of manganese in the structure leads to an increase of the Curie temperature as well as to spontaneous magnetization. The magnetization versus applied magnetic field shows a small coercive field and an unsaturated magnetization which indicates that the nanoparticles of all samples are superparamagnetic at around room temperature. Room temperature Moessbauer spectra show that the samples with x = 0.1 and x = 1.0 contain minority {alpha}-Fe{sub 2}O{sub 3} and other spinel ferrite species. Also, they indicate that Fe{sup 3 + } ions are present in slightly distorted octahedral sites in the samples with x = 0.1 and 0.2, while mixed Fe valency was observed for the sample with x = 1.0.

  8. Moessbauer study of the Ordinary-Chondrite meteorite Thylacine Hole-001

    Energy Technology Data Exchange (ETDEWEB)

    Cadogan, J. M., E-mail: cadogan@physics.umanitoba.ca [University of Manitoba, Department of Physics and Astronomy (Canada); Devlin, E. J. [NCSR Demokritos, Institute of Materials Science (Greece)

    2012-03-15

    The Thylacine Hole-001 meteorite was recovered from the Nullarbor Desert (Australia) in 1977 and is an Ordinary Chondrite, Group H4/5br, which has undergone moderate to severe (B/C) weathering. We have characterised the Fe-bearing phases in Thylacine Hole-001 by {sup 57}Fe Moessbauer Spectroscopy at 300 K, 100 K, 50 K and 4 K. The spectrum at 300 K is dominated by the paramagnetic doublets of Olivine, Pyroxene and a Ferric component which is most likely nanoparticulate Goethite. Magnetically split sextets due to Maghemite or Magnetite are also present, consistent with the relatively advanced terrrestrial age of 28,500 yrs The nanoparticulate Goethite component shows a blocked, magnetically split sextet at low temperatures. We also observe the effects of magnetic ordering of the Olivine and Pyroxene below 50 K.

  9. Iron implantation in gadolinium gallium garnet studied by conversion-electron Moessbauer spectroscopy

    CERN Document Server

    Szucs, I; Fetzer, C; Langouche, G

    1998-01-01

    Gadolinium gallium garnet single crystals were implanted with doses of sup 5 sup 7 Fe ions in the range 8x10 sup 1 sup 5 - 6x10 sup 1 sup 6 atoms cm sup - sup 2. Depending on the dose, iron with Fe sup 2 sup + or Fe sup 3 sup + charge states was found to have formed after the implantation. After a subsequent annealing in air, the iron oxidized to Fe sup 3 sup +. The Moessbauer and channelling measurements showed lattice recrystallization taking place at 600 deg. C. After recrystallization, the iron was found to have substituted for gallium ions both at the octahedral and at the tetrahedral positions. The relative concentration of the two types of iron at the two sites shifted towards the equilibrium distribution upon high-temperature annealing. (author)

  10. Bonding and Moessbauer Isomer Shifts in (Hg,Pb)—1223 Cuprate

    Institute of Scientific and Technical Information of China (English)

    高发明; 田永君; 谌岩; 李东春; 董海峰; 张思远

    2003-01-01

    By using the chemical bond theory of dielectric description,the chemical bond parameters of(Hg,Pb)-1223 were calculated.The results show that the(Ba,Sr)-O and Ca-0 types of bond have higher ionic character,while the Cu-O and(Hg,Pb)-0 types of bond have more covalent character.Moessbauer isomer shifts of 57Fe and 119Sn doped in(Hg,Pb)-1223 were calculated by using the chemical environmental factor,he,defined by covalency and electronic polarizability.Four valence state tin and three valence iron sites were identified in 57Fe and 119Sn doped(Hg,Pb)-1223 superconductor.It can be concluded that all of the Fe atoms substitute the Cu at square planar Cu(1) site,Whereas Sn prefers to substitute the square pyramidal Cu(2) site.

  11. Moessbauer hyperfine spectra of DyCo/sub 2/Si/sub 2/

    Energy Technology Data Exchange (ETDEWEB)

    Boge, M.; Chappert, J. (CEA Centre d' Etudes Nucleaires de Grenoble, 38 (France). Dept. de Recherche Fondamentale); Asch, L.; Kalvius, G.M. (Technische Univ. Muenchen, Garching (Germany, F.R.). Fakultaet fuer Physik); Gal, J. (Israel Atomic Energy Commission, Beersheba. Nuclear Research Center-Negev); Goerlich, E.A. (Uniwersytet Jagiellonski, Krakow (Poland). Inst. Fizyki)

    1983-12-01

    Moessbauer spectra of /sup 161/Dy in DyCo/sub 2/Si/sub 2/ were taken between 4.2 K and 78 K. The tetragonal intermetallic has a Neel temperature of Tsub(N)=21 K. Up to 25 K spectra are characterized by extremely slow electronic relaxation, precluding the usual collapse of hyperfine splitting on approaching Tsub(N). Between Tsub(N) and 78 K relaxation spectra are seen. The most unusual feature is a slow, steady decrease of Bsub(hf) and e/sup 2/qQ with temperature. It is suggested that this arises from changes in the wave function of the electronic ground state by influences of the molecular and the crystalline electric fields.

  12. Moessbauer study of the Fe mineralogy in two different Argentine soils

    Energy Technology Data Exchange (ETDEWEB)

    Mijovilovich, A. [Departamento de Fisica, Comision Nacional de Energia Atomica (Argentina); Morras, H. [Instituto de Suelos, INTA-CIRN (Argentina); Causevic, H. [Universidad de Buenos Aires, Ciudad Universitaria, Facultad de Ciencias Exactas y Naturales (Argentina); Saragovi, C. [Departamento de Fisica, Comision Nacional de Energia Atomica (Argentina)

    1999-11-15

    Two Argentine soils featuring different characteristics and compositions (mollisols and ultisols) have been studied by Moessbauer spectroscopy and X-ray diffraction. The first type has a weakly developed profile with a solum thickness of 40 cm; the Fe oxyhydroxides are present in low concentrations in mixtures with other slightly weathered minerals (e.g., quartz, feldspars, 2 : 1 phyllosilicates, etc.). The second one is a typic kandihumult, which is a highly weathered red coloured, deep soil. The Fe oxyhydroxides are abundant, mixed mainly with kaolinite clay minerals. Analyses of iron mineralogy show hematite and goethite in both soils. Their ratio is low in the first case and high in the last case. Magnetite-maghemite are also present in both situations, but in the mollisol their content is much lower than in the ultisol. The mineralogy found is related to the different lithological characteristics and processes of pedological evolution on both soils.

  13. A Moessbauer study of the chemical stability of iron oxide nanoparticles in PMMA and PVB beads

    Energy Technology Data Exchange (ETDEWEB)

    Chen Wei [Department of Physics, Technical University of Denmark, Building 307, DK-2800 Kongens Lyngby (Denmark); College of Physics Science and Information Engineering, Hebei Normal University, Shijiazhuang 050016 (China); Morup, Steen [Department of Physics, Technical University of Denmark, Building 307, DK-2800 Kongens Lyngby (Denmark); Hansen, Mikkel F. [Department of Micro and Nanotechnology, Technical University of Denmark, DTU Nanotech, Building 345 East, DK-2800 Kongens Lyngby (Denmark)], E-mail: mfh@mic.dtu.dk; Banert, Tobias; Peuker, Urs A. [Institute of Chemical Engineering, Clausthal University of Technology, D-38678 Clausthal-Zellerfeld (Germany)

    2008-08-15

    We have prepared magnetic beads consisting of iron oxide nanoparticles in a polymethyl methacrylate (PMMA) and a polyvinyl butyral (PVB) matrix. High-field Moessbauer studies show that the particles have an almost perfect collinear spin structure and magnetization measurements show that they are superparamagnetic at room temperature at a time scale of seconds. We have followed the oxidation of the particles, which initially have a stoichiometry close to magnetite. The oxidation is fast during the first 2-3 weeks and then continues slowly such that even after 30 weeks the particles have not completely transformed to maghemite. The PVB beads are hydrophilic and biocompatible and are therefore well suited for applications in medicine and biology.

  14. Powders with superparamagnetic Fe{sub 3}C particles studied with Moessbauer spectrometry

    Energy Technology Data Exchange (ETDEWEB)

    David, B; Schneeweiss, O [Institute of Physics of Materials, Academy of Sciences of the Czech Republic, v.v.i., Ziz' kova 22, CZ-61662 Brno (Czech Republic); Dumitrache, F; Fleaca, C; Alexandrescu, R; Morjan, I [National Institute for Lasers, Plasma and Radiation Physics, PO Box MG-36, 077125 Bucharest-Magurele (Romania)

    2010-03-01

    Two nanopowders with superparamagnetic Fe{sub 3}C particles were synthesised by the method of laser-induced pyrolysis of gaseous precursors. Both were characterised by X-ray diffraction, Moessbauer spectrometry and standard magnetic measurements. The mean crystallite size of Fe{sub 3}C was 3 nm for the first sample and 10 nm for the second sample (Scherrer formula), i.e. it was lower than in our previously studied ferromagnetic Fe{sub 3}C-based sample. Fe{sub 3}C phase in both present samples exhibited by {approx}20 K reduced Curie temperature which is interpreted as a nanosize effect. After annealing of the samples at 1073 K for 30 minutes the Curie temperature of the Fe{sub 3}C phase in both samples matched its standard bulk value. Beside Fe{sub 3}C phase also Fe{sub 3}O{sub 4} and carbon black were present in the synthesised samples.

  15. Comparative Moessbauer study of the oxidation of pyrite under different conditions

    Energy Technology Data Exchange (ETDEWEB)

    Gracia, M.; Gancedo, J.R.; Martinez-Alonso, A.; Tascon, J.M.D. (Instituto de Quimica Fisica ' Rocasolano' , Madrid (Spain))

    1990-07-01

    Samples of pyrite-rich brown coal from As Pontes and Meirama coalfields (Spain) were oxidized either by air at atmospheric pressure or by a cool oxygen plasma generated by radiofrequency activation. Despite the very different nature and characteristics of the oxidizing media, in both cases the RT Moessbauer spectra were easily fitted to two doublets, whose parameters matched those of pyrite and jarosite (hydrated iron (III) sulphate). The extent of pyrite oxidation to jarosite was monitored by the relative spectral areas of pyrite and jarosite doublets. Both, air and plasma, oxidized pyrite to the same extent and in a similar way, in contrast to coal organic matter, which was scarcely modified by air but completely oxidized by the plasma at the same temperature (ca. 423 K). The incomplete oxidation of pyrite by plasma is attributed to the action of a thin calcium sulphate layer which hinders the access of activated oxygen to small pyrite crystals. 18 refs., 3 tabs., 2 figs.

  16. Moessbauer study of carbon coated iron magnetic nanoparticles produced by simultaneous reduction/pyrolysis

    Energy Technology Data Exchange (ETDEWEB)

    Mendonca, Fernanda G. [Universidade Federal de Minas Gerais, Departamento de Quimica - ICEx (Brazil); Ardisson, Jose D. [CDTN, Laboratorio de Fisica Aplicada, Centro de Desenvolvimento de Tecnologia Nuclear (Brazil); Rosmaninho, Marcelo G.; Lago, Rochel M.; Tristao, Juliana C., E-mail: juliana@ufv.br [Universidade Federal de Minas Gerais, Departamento de Quimica - ICEx (Brazil)

    2011-11-15

    Magnetic iron nanoparticles immersed in a carbon matrix were produced by a combined process of controlled dispersion of Fe{sup 3 + } ions in sucrose, thermal decomposition with simultaneous reduction of iron cores and the formation of the porous carbonaceous matrix. The materials were prepared with iron contents of 1, 4 and 8 in %wt in sucrose and heated at 400, 600 and 800 Degree-Sign . The samples were analyzed by XRD, Moessbauer spectroscopy, magnetization measurements, TG, SEM and TEM. The materials prepared at 400 Degree-Sign are composed essentially of Fe{sub 3}O{sub 4} particles and carbon, while treatments at higher temperatures, e.g. 600 and 800 Degree-Sign produced as main phases Fe{sup 0} and Fe{sub 3}C. The Moessbauer spectra of samples heated at 400 Degree-Sign showed two sextets characteristic of a magnetite phase and other contributions compatible with Fe{sup 3 + } and Fe{sup 2 + } phases in a carbonaceous matrix. Samples treated at temperatures above 600 Degree-Sign showed the presence of metallic iron with concentrations between 16-43%. The samples heated at 800 Degree-Sign produced higher amounts of Fe{sub 3}C (between 20% and 58%). SEM showed for the iron 8% sample treated at 600-800 Degree-Sign C particle sizes smaller than 50 nm. Due to the presence of Fe{sup 0} particles in the carbonaceous porous matrix the materials have great potential for application as magnetic adsorbents.

  17. Impedance spectroscopic investigation of the effect of thin azo-calix[4]arene film type on the cation sensitivity of the gold electrodes

    Energy Technology Data Exchange (ETDEWEB)

    Mlika, R., E-mail: mlikarym@yahoo.fr [Laboratoire de Physique et Chimie des Interfaces (LPCI), Faculte des Sciences de Monastir, Avenue de l' environnement, 5000 Monastir (Tunisia); Rouis, A. [Laboratoire de Physique et Chimie des Interfaces (LPCI), Faculte des Sciences de Monastir, Avenue de l' environnement, 5000 Monastir (Tunisia); Bonnamour, I. [Universite de Lyon, Institut de Chimie et Biochimie Moleculaires et Supramoleculaires, Universite Claude Bernar, Lyon 1, 43 Boulevard du 11 Novembre 1918, 69622 Villeurbanne (France); Ouada, H. Ben [Laboratoire de Physique et Chimie des Interfaces (LPCI), Faculte des Sciences de Monastir, Avenue de l' environnement, 5000 Monastir (Tunisia)

    2011-10-10

    In this work, we report the impedance spectroscopic investigation of the effect of the thin film type on the selectivity of gold/azo-calix[4]arene electrodes. For this purpose, two C1 and C3 azo-calix[4]arene derivative molecules, used as thin films, are deposited by spin-coating process on the gold surface. These thin films were first studied using contact angle measurements. This revealed a less hydrophobic character for C3 thin film, which has been attributed to the presence of hydroxyl groups at the lower rim. The sensitivity study, by Electrochemical Impedance Spectroscopy (EIS), towards Cu{sup 2+} and Eu{sup 3+} cations, has showed that the C3 thin film is more sensitive and selective towards Eu{sup 3+} than C1. This best performance is due to the presence of two ester groups acting as clips and leading to more complexation stability. The EIS results were modeled by an appropriate equivalent circuit for the aim of elucidating electrical properties of thin films. This modeling has exposed that C3 thin film presents lower ionic conductivity and limited diffusion phenomenon at the interface. Highlights: {yields} C1 and C3 azo-calix[4]arenes thin films are deposited on the gold surface. {yields} The lower hydrophobicity for C3 was attributed to the presence of hydroxyl groups. {yields} The C3 thin film is more sensitive and selective towards Eu{sup 3+} than C1 one. {yields} This best performance is due to the presence of two ester groups acting as clips.

  18. Binding affinities of Schiff base Fe(II) complex with BSA and calf-thymus DNA: Spectroscopic investigations and molecular docking analysis

    Science.gov (United States)

    Rudra, Suparna; Dasmandal, Somnath; Patra, Chiranjit; Kundu, Arjama; Mahapatra, Ambikesh

    2016-09-01

    The binding interaction of a synthesized Schiff base Fe(II) complex with biological macromolecules viz., bovine serum albumin (BSA) and calf thymus(ct)-DNA have been investigated using different spectroscopic techniques coupled with viscosity measurements at physiological pH and 298 K. Regular amendments in emission intensities of BSA upon the action of the complex indicate significant interaction between them, and the binding interaction have been characterized by Stern Volmer plots and thermodynamic binding parameters. On the basis of this quenching technique one binding site with binding constant (Kb = (7.6 ± 0.21) × 105) between complex and protein have been obtained at 298 K. Time-resolved fluorescence studies have also been encountered to understand the mechanism of quenching induced by the complex. Binding affinities of the complex to the fluorophores of BSA namely tryptophan (Trp) and tyrosine (Tyr) have been judged by synchronous fluorescence studies. Secondary structural changes of BSA rooted by the complex has been revealed by CD spectra. On the other hand, hypochromicity of absorption spectra of the complex with the addition of ct-DNA and the gradual reduction in emission intensities of ethidium bromide bound ct-DNA in presence of the complex indicate noticeable interaction between ct-DNA and the complex with the binding constant (4.2 ± 0.11) × 106 M- 1. Life-time measurements have been studied to determine the relative amplitude of binding of the complex to ct-DNA base pairs. Mode of binding interaction of the complex with ct-DNA has been deciphered by viscosity measurements. CD spectra have also been used to understand the changes in ct-DNA structure upon binding with the metal complex. Density functional theory (DFT) and molecular docking analysis have been employed in highlighting the interactive phenomenon and binding location of the complex with the macromolecules.

  19. Nondestructive spectroscopic and petrochemical investigations of Paleoarchean spherule layers from the ICDP drill core BARB5, Barberton Mountain Land, South Africa

    Science.gov (United States)

    Fritz, Jörg; Tagle, Roald; Ashworth, Luisa; Schmitt, Ralf Thomas; Hofmann, Axel; Luais, Béatrice; Harris, Phillip D.; Hoehnel, Desirée; Özdemir, Seda; Mohr-Westheide, Tanja; Koeberl, Christian

    2016-12-01

    A Paleoarchean impact spherule-bearing interval of the 763 m long International Continental Scientific Drilling Program (ICDP) drill core BARB5 from the lower Mapepe Formation of the Fig Tree Group, Barberton Mountain Land (South Africa) was investigated using nondestructive analytical techniques. The results of visual observation, infrared (IR) spectroscopic imaging, and micro-X-ray fluorescence (μXRF) of drill cores are presented. Petrographic and sedimentary features, as well as major and trace element compositions of lithologies from the micrometer to kilometer-scale, assisted in the localization and characterization of eight spherule-bearing intervals between 512.6 and 510.5 m depth. The spherule layers occur in a strongly deformed section between 517 and 503 m, and the rocks in the core above and below are clearly less disturbed. The μXRF element maps show that spherule layers have similar petrographic and geochemical characteristics but differences in (1) sorting of two types of spherules and (2) occurrence of primary minerals (Ni-Cr spinel and zircon). We favor a single impact scenario followed by postimpact reworking, and subsequent alteration. The spherule layers are Al2O3-rich and can be distinguished from the Al2O3-poor marine sediments by distinct Al-OH absorption features in the short wave infrared (SWIR) region of the electromagnetic spectrum. Infrared images can cover tens to hundreds of square meters of lithologies and, thus, may be used to search for Al-OH-rich spherule layers in Al2O3-poor sediments, such as Eoarchean metasediments, where the textural characteristics of the spherule layers are obscured by metamorphism.

  20. Binding affinities of Schiff base Fe(II) complex with BSA and calf-thymus DNA: Spectroscopic investigations and molecular docking analysis.

    Science.gov (United States)

    Rudra, Suparna; Dasmandal, Somnath; Patra, Chiranjit; Kundu, Arjama; Mahapatra, Ambikesh

    2016-09-05

    The binding interaction of a synthesized Schiff base Fe(II) complex with biological macromolecules viz., bovine serum albumin (BSA) and calf thymus(ct)-DNA have been investigated using different spectroscopic techniques coupled with viscosity measurements at physiological pH and 298K. Regular amendments in emission intensities of BSA upon the action of the complex indicate significant interaction between them, and the binding interaction have been characterized by Stern Volmer plots and thermodynamic binding parameters. On the basis of this quenching technique one binding site with binding constant (Kb=(7.6±0.21)×10(5)) between complex and protein have been obtained at 298K. Time-resolved fluorescence studies have also been encountered to understand the mechanism of quenching induced by the complex. Binding affinities of the complex to the fluorophores of BSA namely tryptophan (Trp) and tyrosine (Tyr) have been judged by synchronous fluorescence studies. Secondary structural changes of BSA rooted by the complex has been revealed by CD spectra. On the other hand, hypochromicity of absorption spectra of the complex with the addition of ct-DNA and the gradual reduction in emission intensities of ethidium bromide bound ct-DNA in presence of the complex indicate noticeable interaction between ct-DNA and the complex with the binding constant (4.2±0.11)×10(6)M(-1). Life-time measurements have been studied to determine the relative amplitude of binding of the complex to ct-DNA base pairs. Mode of binding interaction of the complex with ct-DNA has been deciphered by viscosity measurements. CD spectra have also been used to understand the changes in ct-DNA structure upon binding with the metal complex. Density functional theory (DFT) and molecular docking analysis have been employed in highlighting the interactive phenomenon and binding location of the complex with the macromolecules.

  1. Spectroscopic investigations on the effect of humic acid on the formation and solubility of secondary solid phases of Ln2(CO3)3

    Institute of Scientific and Technical Information of China (English)

    Stella Antoniou; Ioannis Pashalidis; Andre Gessner; Michael U Kumke

    2011-01-01

    The formation of secondary Ln(Ⅲ) solid phases (e.g., Nd2(CO3)3 and Sm2(CO3)3) was studied as a function of the humic acid concentration in 0.1 mol/L NaClO4 aqueous solution in the neutral pH range (5-6.5). The solid phases under investigation were prepared by alkaline precipitation under 100% CO2 atmosphere and characterized by attenuated total reflectance Fourier transform infrared spectroscopy (ATR-FTIR), X-ray diffraction (XRD), time-resolved laser fluorescence spectroscopy (TRLFS), diffuse reflectance ultraviolet-visible (DR-UV-Vis), Raman spectroscopy, and solubility measurements. The spectroscopic data obtained indicated that Nd2(CO3)3 and Sm2(CO3)3 were stable and remained the solubility limiting solid phases even in the presence of increased humic acid concentration (0.5 g/L) in solution.Upon base addition in the Ln(Ⅲ)-HA system, decomplexation of the previously formed Ln(Ⅲ)-humate complexes and precipitation of two distinct phases occurred, the inorganic (Ln2(CO3)3) and the organic phase (HA), which was adsorbed on the particle surface of the former.Nevertheless, humic acid affected the particle size of the solid phases. Increasing humic acid concentration resulted in decreasing crystallite size of the Nd2(CO3)3 and increasing crystallite size of the Sm2(CO3)3 solid phase, and affected inversely the solubility of the solid phases.However, this impact on the solid phase properties was expected to be of minor relevance regarding the chemical behavior and migration of trivalent lanthanides and actinides in the geosphere.

  2. NMR, FT-IR, Raman and UV-Vis spectroscopic investigation and DFT study of 6-Bromo-3-Pyridinyl Boronic Acid

    Science.gov (United States)

    Dikmen, Gökhan; Alver, Özgür

    2015-11-01

    Possible stable conformers and geometrical molecular structures of 6-Bromo-3-Pyridinyl Boronic acid (6B3PBA; C5H5BBrNO2) were studied experimentally and theoretically using FT-IR and Raman spectroscopic methods. FT-IR and Raman spectra were recorded in the region of 4000-400 cm-1 and 3700-400 cm-1, respectively. The structural properties were investigated further, using 1H, 13C, 1H coupled 13C, HETCOR, COSY and APT NMR techniques. The optimized geometric structures were searched by Becke-3-Lee-Yang-Parr (B3LYP) hybrid density functional theory method with 6-311++G(d, p) basis set. Vibrational wavenumbers of 6B3PBA were calculated whereby B3LYP density functional methods including 6-311++G(d, p), 6-311G(d, p), 6-311G(d), 6-31G(d, p) and 6-31G(d) basis sets. The comparison of the experimentally and theoretically obtained results using mean absolute error and experimental versus calculated correlation coefficients for the vibrational wavenumbers indicates that B3LYP method with 6-311++G(d, p) gives more satisfactory results for predicting vibrational wavenumbers when compared to the 6-311G(d, p), 6-311G(d), 6-31G(d, p) and 6-31G(d) basis sets. However, this method and none of the mentioned methods here seem suitable for the calculations of OH stretching modes, most likely because increasing unharmonicity in the high wave number region and possible intra and inter molecular interactions at OH edges lead some deviations between experimental and theoretical results. Moreover, reliable vibrational assignments were made on the basis of total energy distribution (TED) calculated using scaled quantum mechanical (SQM) method.

  3. Spectroscopic investigation of new water soluble Mn(II)(2) and Mg(II)(2) complexes for the substrate binding models of xylose/glucose isomerases.

    Science.gov (United States)

    Patra, Ayan; Bera, Manindranath

    2014-01-30

    In methanol, the reaction of stoichiometric amounts of Mn(OAc)(2)·4H(2)O and the ligand H(3)hpnbpda [H(3)hpnbpda=N,N'-bis(2-pyridylmethyl)-2-hydroxy-1,3-propanediamine-N,N'-diacetic acid] in the presence of NaOH, afforded a new water soluble dinuclear manganese(II) complex, [Mn2(hpnbpda)(μ-OAc)] (1). Similarly, the reaction of Mg(OAc)(2)·4H(2)O and the ligand H3hpnbpda in the presence of NaOH, in methanol, yielded a new water soluble dinuclear magnesium(II) complex, [Mg2(hpnbpda)(μ-OAc)(H2O)2] (2). DFT calculations have been performed for the structural optimization of complexes 1 and 2. The DFT optimized structure of complex 1 shows that two manganese(II) centers are in a distorted square pyramidal geometry, whereas the DFT optimized structure of complex 2 reveals that two magnesium(II) centers adopt a six-coordinate distorted octahedral geometry. To understand the mode of substrate binding and the mechanistic details of the active site metals in xylose/glucose isomerases (XGI), we have investigated the binding interactions of biologically important monosaccharides d-glucose and d-xylose with complexes 1 and 2, in aqueous alkaline solution by a combined approach of FTIR, UV-vis, fluorescence, and (13)C NMR spectroscopic techniques. Fluorescence spectra show the binding-induced gradual decrease in emission of complexes 1 and 2 accompanied by a significant blue shift upon increasing the concentration of sugar substrates. The binding modes of d-glucose and d-xylose with complex 2 are indicated by their characteristic coordination induced shift (CIS) values in (13)C NMR spectra for C1 and C2 carbon atoms.

  4. Synthesis, characterization, and spectroscopic investigation of new iron(III) and copper(II) complexes of a carboxylate rich ligand and their interaction with carbohydrates in aqueous solution.

    Science.gov (United States)

    Stewart, Christopher D; Arman, Hadi; Bawazir, Huda; Musie, Ghezai T

    2014-10-20

    New tetra-iron(III) (K4[1]·25H2O·(CH3)2CO and K3[2]·3H2O·(OH)) and di-copper(II) (Na3[3]·5H2O) complexes as carbohydrate binding models have been synthesized and fully characterized used several techniques including single crystal X-ray crystallography. Whereas K4[1]·25H2O·(CH3)2CO and Na3[3]·5H2O are completely water-soluble, K3[2]·3H2O·(OH) is less soluble in all common solvents including water. The binding of substrates, such as d-mannose, d-glucose, d-xylose, and xylitol with the water-soluble complexes in different reaction conditions were investigated. In aqueous alkaline media, complexes K4[1]·25H2O·(CH3)2CO and Na3[3]·5H2O showed coordination ability toward the applied substrates. Even in the presence of stoichiometric excess of the substrates, the complexes form only 1:1 (complex/substrate) molar ratio species in solution. Apparent binding constants, pKapp, values between the complexes and the substrates were determined and specific mode of substrate binding is proposed. The pKapp values showed that d-mannose coordinates strongest to K4[1]·25H2O·(CH3)2CO and Na3[3]·5H2O. Syntheses, characterizations and detailed substrate binding study using spectroscopic techniques and single crystal X-ray diffraction are reported.

  5. Moessbauer comparative study of Fe-Si (3.5 wt%) alloys produced by melting and by mechanical alloying

    Energy Technology Data Exchange (ETDEWEB)

    Sanchez Sthepa, H.; Fajardo, M.; Perez Alcazar, G.A. [Universidad del Valle, A.A, Departamento de Materiales (Colombia)

    1999-11-15

    Moessbauer spectroscopy and X-ray diffraction measurements were done on Fe-Si (3.5 wt%) alloys produced by melting and by mechanical alloying during 15, 30, 50 and 75 milling hours from over 99% purity powders. The Moessbauer spectra were fitted using hyperfine field distribution and it was obtained for all the samples in three ferromagnetic sites with fields of 27, 30 and 33 T for the mechanical alloyed samples and 26.8, 30.13 and 32.83 T for the commercial sample. These three sites are attributed to the pure Fe, Fe with one Si in the next near neighbor (nnn) and Fe with two Si in the nnn. As the milling time increases, the mean field increases too. X-ray diffraction measurement shows that all the samples are BCC, with a lattice parameter that increases with the milling time. These lattice parameters are bigger than that of the commercial alloy.

  6. Unfolding the role of iron in Li-ion conversion electrode materials by {sup 57}Fe Moessbauer spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Tirado, Jose L., E-mail: iq1ticoj@uco.es; Lavela, Pedro; Perez Vicente, Carlos; Leon, Bernardo; Vidal-Abarca, Candela [Universidad de Cordoba, Laboratorio de Quimica Inorganica (Spain)

    2012-03-15

    {sup 57}Fe Moessbauer spectroscopy is particularly useful in the study of oxide and oxalate conversion anode materials for Li-ion batteries. After reduction in lithium test cells, all these materials showed Moessbauer spectra ascribable to iron atoms in two different environments with superparamagnetic relaxation. The spectra recorded at 12 K revealed the ferromagnetic character in agreement with particle sizes of ca. 5 nm. The two types of iron can be ascribed then to surface and core atoms. Core iron atoms play an important role to retain high faradic capacity values for a large number of cycles. These atoms are preserved from irreversible reactions with the electrolyte and hence they promote a high reversibility and rate capability.

  7. XRD and Moessbauer characterization of iron-doped SnO{sub 2} powders obtained by ball-milling

    Energy Technology Data Exchange (ETDEWEB)

    Brito, A.D.B. de; Alves, H.W.L.; Raposo, M.T. [Universidade Federal de Sao Joao del-Rei (UFSJ), MG (Brazil); Ardisson, J.D. [Centro de Desenvolvimento da Tecnologia Nuclear (CDTN/CNEN-MG), Belo Horizonte, MG (Brazil)

    2012-07-01

    Full text: Rutile SnO{sub 2} (or cassiterite) is a semiconductor oxide, with many industrial applications, mainly as spin source for spintronics because of the relevant electronic and magnetic properties changes when doped with transition elements (TE) like Fe, Co, Ni and Co. Therefore, it is meaningful for the materials science research to study the properties of SnO{sub 2} nanomaterials doped by a TE ion. In this work, mechanical alloying process has been used to produce SnO{sub 2} doped with iron. The samples were characterized by X-Ray and Moessbauer spectroscopy. The crystalline alloy were obtained by milling in a planetary ball mill with a zirconia milling assembly for up to 24 hours in air, at room temperature. The mill rotation speed was 250 rpm and two different powder-to-ball weight ratios, 1:20 and 1:10, were used. X-ray diffraction analyses of SnO{sub 2} powders indicate only the formation of the cassiterite phase. X-Ray diffraction results of SnO{sub 2} doped with 10% of iron show some peaks quite wider when compared with diffraction peaks of the undoped samples, suggesting the absorption of iron probably in a new phase with tin. However, this phase cannot be identified by X-Ray diffraction. Moessbauer spectroscopy analyses (table below) indicate the presence of 85% of {alpha}-Fe and two new phases, both related to Fe-Sn phase magnetically disordered. On the other hand, {sup 119}Sn-Moessbauer spectroscopy measurements show the presence of tetrahedral tin (IV), chemical environment of the tin species. Based on the obtained results, thermal annealing and new measurements with both XRD and Moessbauer spectroscopies will be performed and compared with them. (author)

  8. Moessbauer study of the composition and corrosion behaviour of electrodeposited and cast brass containing 1-4 m% tin

    Energy Technology Data Exchange (ETDEWEB)

    Vertes, A.; Suba, M.; Varsanyi-Lakatos, M.; Czako-Nagy, I. (Eoetvoes Lorand Tudomanyegyetem, Budapest (Hungary). Fizikai Kemiai es Radiologiai Tanszek); Pchelnikov, A.P.; Losev, V.V. (AN SSSR, Moscow. Inst. Fizicheskoj Khimii)

    1982-09-06

    Moessbauer measurements on electrodeposited and cast brass containing 1-4 m% tin were carried out using conversion electron detector. It was found that the tin formed phases with copper but not with zinc. The identified phases were ..beta.., ..gamma.., epsilon and eta and their ratio depended on the tin concentration and on the preparation process of the brass. The corrosion behaviour of the samples was also studied.

  9. Charge structure and cation distribution on Fe-Ga chalcogenide spinel by neutron diffraction and Moessbauer spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Sam Jin; Son, Bae Soon; Shim, In Bo; Kim, Chul Sung [Kookmin University, Seoul (Korea, Republic of); Hong, Kun Pyo [Korea Atomic Energy Research Institute, Taejon (Korea, Republic of)

    2005-07-01

    FeGa{sub x}Cr{sub 2-x}S{sub 4} (x=0.1 and 0.3) have been studied with x-ray, neutron difraction, and Moessbauer spectroscopy. Rietveld refinement of x-ray, neutron diffraction, and Moessbauer spectroscopy lead to the conclusion that the samples are in inverse spinel type, where the majority of Ga ions are present at tetrahedral site (A). The neutron diffractions on FeGa{sub x}Cr{sub 2-x}S{sub 4} (x=0.1) above 10 K show long range interaction behaviors and reveal an antiferromagnetic ordering, with the magnetic moment of Fe{sup 2+}(- 3.45 {mu}{sub B}) aligned antiparallel to Cr{sup 3+} (+2.89 {mu}{sub B}) at 10 K. Fe ions migrate from the tetrahedral (A) site to the octahedral (B) site with increase of Ga substitutions. The electric quadrupole splittings of the A and B sites in Moessbauer spectra give a direct evidence that Ga ion stimulate asymmetric charge distribution of Fe ions in the A site.

  10. Neutron diffraction and Moessbauer study on FeGa{sub x}Cr{sub 2-x}S{sub 4}

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Sam Jin; Son, Bae Soon; Shim, In-Bo [Kookmin University, Department of Physics (Korea, Republic of); Lee, Bo Wha [Hankuk University of Foreign Studies, Department of Physics (Korea, Republic of); Kim, Chul Sung, E-mail: cskim@phys.kookmin.ac.kr [Kookmin University, Department of Physics (Korea, Republic of)

    2006-02-15

    Ga doped sulphur spinel FeGa{sub x}Cr{sub 2-x}S{sub 4} (x = 0.1 and 0.3) have been studied with X-ray, neutron diffraction, and Moessbauer spectroscopy. Rietveld refinement of X-ray, neutron diffraction, and Moessbauer spectroscopy lead to the conclusion that the samples are in inverse spinel type, where most Ga ions are present at octahedral site (B). The neutron diffractions on FeGa{sub x}Cr{sub 2-x}S{sub 4} (x = 0.1) above 10 K show long range interaction behaviors and reveal a ferrimagnetic ordering, with the magnetic moment of Fe{sup 2+}(-3.45 {mu}{sub B}) aligned antiparallel to Cr{sup 3+} (+2.89 {mu}{sub B}) at 10 K. Fe ions migrate from the tetrahedral (A) site to the octahedral (B) site with an increase in Ga substitutions. The electric quadrupole splittings of the A and B sites in Moessbauer spectra give direct evidence that Ga ions stimulate an asymmetric charge distribution of Fe ions in the A site.

  11. Microscale Syntheses, Reactions, and 1H NMR Spectroscopic Investigations of Square Planar Macrocyclic Tetraamido-N Cu(III) Complexes Relevant to Green Chemistry

    Science.gov (United States)

    Uffelman, Erich S.; Doherty, Jonathan R.; Schulze, Carl; Burke, Amy L.; Bonnema, Kristen R.; Watson, Tanya T.; Lee, Daniel W., III

    2004-01-01

    Microscale fusions, description, and spectroscopic analysis of the reactivity of a square planar Cu(III) complex significant to green chemistry, are presented. The experiment also includes nine focal points on which pre-lab and post-lab questions are based, and the final exams reflect the students' comprehension of these and other features of…

  12. {sup 57}Fe Moessbauer spectroscopy applied to the study of rare-earth iron permanent magnets

    Energy Technology Data Exchange (ETDEWEB)

    Persiano, A.I.C. [Departamento de Fisica-UFMG (Brazil)], E-mail: persiano@fisica.ufmg.br

    1999-11-15

    A survey of some important applications of {sup 57}Fe Moessbauer spectroscopy to the study of local magnetic and structural characteristics of the main phases in the rare-earth-transition metal (RE-TM) class of materials used in the development of the new generations of high performance permanent magnets is presented. A brief history of the hard magnets evolution in the last decades is followed by the description and interpretation of the main effects on the hyperfine interactions revealed by the Moessbauer technique. The contribution of the distinct crystallographic iron sites to the saturation magnetization of the rare-earth iron compounds is discussed in terms of the corresponding types of magnetic coupling, based mainly on the iron-iron distances, the number of iron neighbors and the respective hyperfine fields. These features are inferred from the energy of the resonant absorption by the iron sites 4e/4c/8j{sub 1}/8j{sub 2}/16k{sub 1}/16k{sub 2} in the Nd{sub 2}Fe{sub 14}B, sites 6c/9d/18f/18h in the light RE{sub 2}Fe{sub 17}N{sub 3} and 8f/8i/8j in the RE(Fe{sub 12-x}TM{sub x}) phases. The direction of the easy axis of magnetization is discussed taking into account the effects due to the interaction between the local magnetization vector and the electric field gradients. Some other characteristics such as the occupancy of the TM atoms in the 1 : 12 compounds as well as in some hybrid (Fe +TM) 2 : 17 structures are also discussed in terms of the changes in the relative subspectral areas. The effects regarding charge transfers and lattice expansions due to the incorporation of nitrogen and also of other different interstitial elements to the 2 : 17 rhombohedral structure are discussed considering the relative changes of the isomer shifts in comparison with the alterations in the parameter due exclusively to the respective volume expansions.

  13. On the Analysis of the Moessbauer Spectra of the Rust Converted by Tannic and Phosphoric Acids

    Energy Technology Data Exchange (ETDEWEB)

    Barrero, C. A. [Universidad de Antioquia, Grupo de Estado Solido, Instituto de Fisica (Colombia); Rios, J. F. [Universidad de Antioquia, Grupo de Corrosion y Proteccion, Facultad de Ingenierias (Colombia); Morales, A. L. [Universidad de Antioquia, Grupo de Estado Solido, Instituto de Fisica (Colombia); Bohorquez, A.; Perez-Alcazar, G. [Universidad del Valle, Grupo de Metalurgia Fisica y Transiciones de Fase, Departamento de Fisica (Colombia)

    2003-06-15

    In previous work, we reported results on the action of rust converters based on a mixture of tannic and phosphoric acids, upon the rust formed on mild steel coupons. There, the rust before and after the application of converters were characterized by room-temperature Moessbauer spectroscopy, among other techniques. The present work is an extension of this one, and additional MS at 77 K, 130 K and 300 K for some samples are presented. Special emphasis is given to the methodology of analysis. Our results confirm previous findings that an important portion of the magnetite remains without conversion. New information was also derived: (i) the converters seem to affect more the magnetite octahedral (B) than the tetrahedral (A) sites; (ii) among the magnetite B sites, the Fe{sup 2+} is the most affected; (iii) at least 31% of magnetic goethite at 77 K is transformed by the converter; and (iv) the presence of an additional phase identified as ferrous phosphate, could be resolved unambiguously only at these lower temperatures.

  14. Microstructure of Fe implanted yttria stabilised zirconia studied by Moessbauer spectroscopy and TEM

    Energy Technology Data Exchange (ETDEWEB)

    Burggraaf, A.J.; Scholten, D.; Hassel, B.A. van

    1988-05-01

    Single crystalline and ceramic solid solutions of (1-0.chi)(ZrO/sub 2/)-(0.chi)(YO/sub 1.5/) with chi = 14-17 were implanted with high doses of Fe. Specific profile shapes were realised. The microstructure of the material before and after annealing was studied by conversion electron Moessbauer spectroscopy (CEMS), ion channeling and transmission electron microscopy (TEM). Initially Fe is present as metallic particles Fe/sup 0/ and as Fe/sup 2+/ and Fe/sup 3+/ ions. Their relative abundancy depends on the implantation conditions. Annealing leads to complete oxidation (Fe/sup 3+/) at low temperature and to the formation of microprecipitates of Fe/sub 2/O/sub 3/ (< 5 nm). A maximum of 4.5x10/sup 21/ Fe cm/sup -3/ can be substitutionally incorporated for Zr. This Fe is present in a metastable state. Ion channeling and electron diffraction experiments revealed that high fluence Fe implantation does not result in amorphisation but in recrystallisation of the matrix.

  15. Rayleigh scattering of Moessbauer radiation in oriented fibres of hydrated biopolymers

    Energy Technology Data Exchange (ETDEWEB)

    Albanese, G. [Parma Univ. (Italy). Ist. di Fisica; Deriu, A. [Parma Univ. (Italy). Ist. di Fisica; Cavatorta, F. [Parma Univ. (Italy). Ist. di Fisica; Rupprecht, A. [Stockholm Univ. (Sweden). Dept. of Physical, Inorganic and Structural Chemistry

    1995-03-01

    The Rayleigh scattering of Moessbauer radiation (RSMR) has been measured on films of highly oriented hydrated polynucleotides (A-NaDNA) and polysaccharides (Na-hyaluronate). Both DNA and hyaluronate (HA) have helical secondary structures with a similar pitch (28.2 A for A-DNA, and 32.8 A for Na-HA), but they differ in the basic elements which make up the helices and in the extent of water-biopolymer interactions. These differences are responsible for the diverse stiffness of the polymer backbone, and also affect the dynamics of the first hydration layers. For both samples the elastic scattering intensity shows a sharp peak at about 2 A{sup -1} only for samples oriented with Q parallel to the fibre direction. Its position is close to that of the first maximum in the structure factor of bulk water; it is, however, much narrower than in pure H{sub 2}O and it is similar to a crystalline Bragg peak. It can be attributed to an ordered structure of water along the double helices. From the temperature dependence of the elastic intensity under the peak maximum, the mean square displacement of water oxygens in the direction parallel to the helices has been deduced. The thermal diffuse scattering intensity is also peaked at the same Q values of the elastic intensity, indicating the presence of coherent vibrational excitations propagating along the ordered water filaments. (orig.)

  16. A Moessbauer spectroscopy and magnetometry study of magnetic multilayers and oxides

    CERN Document Server

    Bland, J

    2002-01-01

    A study of the magnetic properties of thin films, multilayers and oxides has been performed using Moessbauer spectroscopy and SQUID magnetometry. The systems studied are DyFe sub 2 , HoFe sub 2 and YFe sub 2 cubic Laves Phase thin films, DyFe sub 2 /Dy and DyFe sub 2 /YFe sub 2 multilayers; Ce/Fe and U/Fe multilayers; and iron oxide powders and thin films. CEMS results at room temperature show a low symmetry magnetic easy axis for all of the Laves Phase samples studied. Analysis of the dipolar and contact hyperfine fields show that this axis is close to the [2-bar41] and [3-bar51] directions but cannot be fully determined. The spin moments lie out of plane in all samples by approximately 22 deg, indicating a significant magneto-elastic anisotropy. 2.5 kG inplane applied field measurements indicate a much larger magnitude of magnetocrystalline anisotropy in the DyFe sub 2 system than in the YFe sub 2 system. In the DyFe sub 2 /YFe sub 2 multilayer samples the anisotropy is dominated by the dysprosium single-io...

  17. Design and construction of an electromechanical velocity modulator for Moessbauer spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Velasquez, A. A., E-mail: avelas26@eafit.edu.co; Carmona, A. [Universidad EAFIT, Grupo de Electromagnetismo Aplicado (Colombia); Velasquez, D.; Angel, L. [Universidad EAFIT, Grupo de Optica Aplicada (Colombia)

    2011-11-15

    In this paper we report the design, construction and characterization of an electromechanical velocity modulator for application in Moessbauer spectroscopy. The modulator was constructed with copper coils, Neodymium magnets, steel cores and polymeric membranes. The magnetic field in the driving and velocity sensing stages was analyzed by the finite element method, which showed a linear relation between the magnetic field in the region of motion of both coils and the position of the coils within the steel cores. The results obtained by computational simulation allowed us to optimize geometries and dimensions of the elements of the system. The modulator presented its first resonance frequency at 16.7 Hz, this value was in good agreement with that predicted by a second order model, which showed a resonant frequency of 16.8 Hz. The linearity of the velocity signal of the modulator was analyzed through an optical method, based on a Michelson-Morley interferometer, in which the modulator moved one of the mirrors. Results showed a satisfactory linearity of the velocity signal obtained in the sensing coil, whose correlation with a straight line was around 0.99987 for a triangular reference waveform.

  18. Moessbauer spectroscopy description of limonite from Taraco, in the Huancane Province of the Puno Region, Peru

    Energy Technology Data Exchange (ETDEWEB)

    Bustamante, A., E-mail: abustamanted@unmsm.edu.pe [San Marcos National University, School of Physical Sciences (Peru); Cabrera, J.; Garcia, V.; Urday, E. [Saint Augustine National University in Arequipa, Electron Microscopy Center (Peru); Abdu, Y. A.; Scorzelli, R. B. [Centro Brasileiro de Pesquisas Fisicas (Brazil)

    2005-11-15

    Natural iron oxides are very common in nature and are the main components of many minerals, rocks and soils. There are a great variety of these minerals in Peru, especially in the Andes region. The mineral studied was extracted from the Taraco District in the Huancane Province of the Puno Region. The extracted sample is a yellowish mineral with very small particles which is called limonite. X-ray diffraction indicates the presence of goethite as the principal mineralogical phase and quartz as the secondary phase. The {sup 57}Fe Moessbauer spectra at room temperature show broadened spectra that were fitted using a distribution model. The most probable field of the magnetic component is 21T, corresponding to the presence of small particles of goethite, confirmed by the 4.2 K spectrum. MS of the calcinated sample in air at 900 deg. C show the presence of two hematite sextets, one related to bulk particles and another to surface particles. Chemical analysis using Scanning Electron Microscopy and Energy Dispersive X-ray Spectrometer indicates that O and Fe are the major components; other elements such as Al, Si, Mg and Ca are also present.

  19. Moessbauer and XRD study of pulse plated Fe-P and Fe-Ni thin layers

    Energy Technology Data Exchange (ETDEWEB)

    Miko, Annamaria [Bay Zoltan Institute for Material Science (Hungary); Kuzmann, Erno, E-mail: kuzmann@para.chem.elte.hu [Eoetvoes Lorand University, Research Group for Nuclear Methods in Structural Chemistry, Hungarian Academy of Sciences, Department of Nuclear Chemistry (Hungary); Lakatos-Varsanyi, Magda [Bay Zoltan Institute for Material Science (Hungary); Kakay, Attila [Research Institute for Solid State Physics and Optics (Hungary); Nagy, Ferenc [Eoetvoes Lorand University, Research Group for Nuclear Methods in Structural Chemistry, Hungarian Academy of Sciences, Department of Nuclear Chemistry (Hungary); Varga, Lajos Karoly [Research Institute for Solid State Physics and Optics (Hungary)

    2005-09-15

    {sup 57}Fe conversion electron Moessbauer spectroscopy, X-ray diffraction, electrochemical and magnetic measurements were used to study pulse electroplated Fe-P and Ni-Fe coatings. XRD and {sup 57}Fe CEMS measurements revealed the amorphous character of the novel pulse plated Fe-P alloys. CEM spectra indicated significant differences in the short range order and in the magnetic anisotropy between the Fe-P deposits pulse plated at medium long deposition time (t{sub on} = 2 ms), with short relaxation time (t{sub off} = 9 ms) and low current density (I{sub p} = 0.05 Acm{sup -2}) or at short deposition time (t{sub on} = 1 ms) with long relaxation time (t{sub off} = 250 ms) and high current density (I{sub p} = 1.0 Acm{sup -2}). The broad peaks centred around the fcc reflections in XRD of the pulse plated Ni-22 wt.% Fe deposit reflected a microcrystalline Ni-Fe alloy with a very fine, 5-8 nm, grain size. The CEM spectrum of the pulse plated Ni-22 wt.% Fe coating corresponded to a highly disordered solid solution alloy containing a minute amount of ferrihydrite. Extreme favourable soft magnetic properties were observed with these Ni-Fe and Fe-P pulse plated thin layers.

  20. Exploring the Verwey-Type Transition in GdBaFe{sub 2}O{sub 5+w} Using {sup 57}Fe Moessbauer Spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Linden, J., E-mail: jlinden@abo.fi [Abo Akademi, Physics Department (Finland); Karen, P. [University of Oslo, Department of Chemistry (Norway); Yamauchi, H.; Karppinen, M. [Tokyo Institute of Technology, Materials and Structures Laboratory (Japan)

    2004-12-15

    {sup 57}Fe Moessbauer spectroscopy was used to study the double perovskite GdBaFe{sub 2}O{sub 5+w}, which exhibits mixing of the integer valence states of iron. The valence mixing/separation process Fe{sup 2+}+Fe{sup 3+{r_reversible}}2Fe{sup 2.5+} was investigated as a function of temperature. For nearly stoichiometric compositions of w{approx}0, a two-step Verwey-type transition is registered that separates Fe{sup 2.5+} into intermediate valence- and spin states Fe{sup 2.5-elementof} and Fe{sup 2.5+elementof} and then into the integer valences Fe{sup 2+} and Fe{sup 3+}. Both steps are accompanied by a decrease in electrical conductivity, altogether by two orders of magnitude. Seebeck measurements identify holes as dominating charge carriers, with activation energy for hopping of {approx}0.10 eV in the valence-mixed state. It is inferred that the mixing electrons are not simply delocalized over the lattice, but rather form bridges connecting pairs of adjacent Fe atoms along the c axis.

  1. Moessbauer studies of single crystal Pr sub 1 sub / sub 3 Sr sub 2 sub / sub 3 FeO sub 3

    CERN Document Server

    Uhm, Y R; Kim, C S; Tomioka, Y; Tokura, Y

    2000-01-01

    Single crystal Pr sub 1 sub / sub 3 Sr sub 2 sub / sub 3 FeO sub 3 was synthesized by using the floating zone method and the relation of magnetic properties and charge ordering transition with lattice dynamics was systematically investigated. Moessbauer spectra of Pr sub 1 sub / sub 3 sub S r sub 2 sub / sub 3 FeO sub 3 were taken at various temperatures ranging from 20 K to room temperature. The charge disproportionation, in which iron with valence states Fe sup 3 sup + and Fe sup 5 sup + was found in a ratio of 2:1, was detected in Pr sub 1 sub / sub 3 Sr sub 2 sub / sub 3 FeO sub 3 below 190+-3 K. Iron with valence state Fe sup 4 sup + coexisted in Pr sub 1 sub / sub 3 sub S r sub 2 sub / sub 3 FeO sub 3 at and above 150 K, and its ratio increased from 13 to 66 % with increasing temperature. This result means that charge-ordered and -disordered phases co-exist in Pr sub 1 sub / sub 3 Sr sub 2 sub / sub 3 FeO sub 3.

  2. Characterization of Ag-Ge-Se bulk glasses by means of Moessbauer effect on {sup 57}Fe and {sup 119}Sn atomic nuclei

    Energy Technology Data Exchange (ETDEWEB)

    Arcondo, B; Urena, M A; Garrido, J M Conde; Rocca, J A; Fontana, M, E-mail: barcond@fi.uba.a [Laboratorio de Solidos Amorfos, INTECIN, Facultad de IngenierIa, Universidad de Buenos Aires-CONICET (Argentina)

    2010-03-01

    In this work, the structure of Fe and Sn doped Ag{sub x}(Ge{sub 0.25}Se{sub 0.75}){sub 100-x} (x=0 to 25 at.%) intrinsically inhomogeneous glasses is analyzed employing {sup 119m}Sn and {sup 57}Fe Moessbauer spectroscopy, X-ray diffractometry and scanning electron microscopy. {sup 119m}Sn enters in the glass as a substitutional impurity for Ge whereas {sup 57}Fe enters as an interstitial impurity. Moessbauer spectra obtained with {sup 119m}SnO{sub 3}Ca source, from samples containing about 1% {sup 119}Sn for Ge, reveal that the local order of Ge in both amorphous phases is basically the same whereas Moessbauer spectra obtained with {sup 57}Fe(Rh) source, from samples containing about 0.5% {sup 57}Fe, evidence the differences between both phases.

  3. Study of the interaction of ions iron (II) with poly aniline by X-ray, Moessbauer spectroscopy and conductivity;Estudo da interacao de ions ferro (II) com polianilina por espectroscopia Moessbauer, raios-X e condutividade

    Energy Technology Data Exchange (ETDEWEB)

    Fornazier Filho, Yonis; Silva Filho, Eloi Alves da, E-mail: yonis.fornazier@gmail.co [Universidade Federal do Espirito Santo (DQ/UFES), Vitoria, ES (Brazil). Dept. de Quimica; Filho, Evaristo N. [Universidade Federal do Espirito Santo (DF/UFES), Vitoria, ES (Brazil). Dept. de Fisica

    2009-07-01

    The study of the interaction of ions Fe (II) with polyaniline was done by obtaining this polymer in the form of salt esmeraldine (Pani-ES) on addition of salt Fe(NH{sub 4}){sub 2}(SO{sub 4}){sub 2}centre dot6H{sub 2}O in equimolar quantities in the temperature environment. We used the techniques of Moessbauer spectroscopy, X-ray diffraction (XRD) and measures of conductivity with application of pressure. The results showed that the occurs formation of the complex Pani-Fe (II) and indicate that the ion Fe (II) interacted with the benzenoid nitrogens groups of the polymeric chain. (author)

  4. On the interpretation of {sup 57}Fe Moessbauer spectra from CdTe thin films with substitutions of Fe, In, and Sb

    Energy Technology Data Exchange (ETDEWEB)

    Yee-Madeira, H. [Centro de Investigacion y de Estudios Avanzados, IPN, Mexico City (Mexico). Dept. de Fisica]|[Depto. de Fisica, Esc. Sup. de Fisica y Matematicas (ESFM) del IPN, Edif. 9, U. P. ALM, 07738, Mexico D.F. (Mexico); Reguera, E.; Zelaya-Angel, O.; Sanchez-Sinencio, F. [Centro de Investigacion y de Estudios Avanzados, IPN, Mexico City (Mexico). Dept. de Fisica; Montiel-Sanchez, H. [Depto. de Fisica, Esc. Sup. de Fisica y Matematicas (ESFM) del IPN, Edif. 9, U. P. ALM, 07738, Mexico D.F. (Mexico); Scorzelli, R.B. [Centro Brasileiro de Pesquisas Fisicas, Rua Xavier Sigaud 150, CEP 22290, Urca, Rio de Janeiro (Brazil)

    1999-02-26

    {sup 57}Fe Moessbauer spectra of well characterized CdTe thin films with substitutions of Fe, In and Sb were recorded and interpreted according to the changes in the ionic radii and electronic properties of these substitutions relative to Cd in the CdTe framework. The literature reports of certain correlations among the iron valence, Fe{sup 2+} or Fe{sup 3+}, and the crystallinity of the films are critically discussed and an explanation of their origin is provided. The Moessbauer results also allow direct understanding of the effect of In and Sb substitutions on the properties of the films. (orig.) 22 refs.

  5. Synthesis, magnetic properties and Moessbauer spectroscopy for the pyrochlore family Bi{sub 2}BB Prime O{sub 7} with B=Cr and Fe and B Prime =Nb, Ta and Sb

    Energy Technology Data Exchange (ETDEWEB)

    Blanco, Maria C. [INFIQC (CONICET), Dpto. de Fisicoquimica, Fac. de Ciencias Quimicas, U.N.C., Cordoba (X5000HUA) (Argentina); Franco, Diego G. [INFIQC (CONICET), Dpto. de Fisicoquimica, Fac. de Ciencias Quimicas, U.N.C., Cordoba (X5000HUA) (Argentina); Centro Atomico Bariloche - CNEA, Av. E. Bustillo 9500, S.C. de Bariloche (8500), R.N. (Argentina); Jalit, Yamile; Pannunzio Miner, Elisa V. [INFIQC (CONICET), Dpto. de Fisicoquimica, Fac. de Ciencias Quimicas, U.N.C., Cordoba (X5000HUA) (Argentina); Berndt, Graciele; Paesano, Andrea [Departamento de Fisica, Universidade Estadual de Maringa, Parana (Brazil); Nieva, Gladys [Centro Atomico Bariloche - CNEA, Av. E. Bustillo 9500, S.C. de Bariloche (8500), R.N. (Argentina); Carbonio, Raul E., E-mail: carbonio@mail.fcq.unc.edu.ar [INFIQC (CONICET), Dpto. de Fisicoquimica, Fac. de Ciencias Quimicas, U.N.C., Cordoba (X5000HUA) (Argentina)

    2012-08-15

    The samples Bi{sub 2}BB Prime O{sub 7}, with B=Cr and Fe and B Prime =Nb, Ta and Sb were prepared by solid state method. The crystallographic structure was investigated on the basis of X-ray powder diffraction data. Rietveld refinements show that the crystal structure is cubic, space group Fd-3m. The Bi{sup 3+} cation on the eight-coordinate pyrochlore A-site shows displacive disorder, as a consequence of its lone pair electron configuration. There is also a considerable A-site disorder shown by Rietveld Analysis and confirmed in the case of the iron containing samples with Moessbauer spectroscopy. The magnetic measurements show paramagnetic behavior at all temperatures for the Cr oxides. The Fe pyrochlores show antiferromagnetic order around 10 K.

  6. Spectroscopic and quantum chemical investigations of substituent effects on the azo-hydrazone tautomerism and acid-base properties of arylazo pyridone dyes.

    Science.gov (United States)

    Dostanić, J; Mijin, D; Ušćumlić, G; Jovanović, D M; Zlatar, M; Lončarević, D

    2014-04-05

    A series of 5-(4-substituted arylazo)-6-hydroxy-4-methyl-3-cyano-2-pyridone dyes was synthesized and the structure of the dyes was confirmed by UV-Vis, FT-IR, (1)H NMR and (13)C NMR spectroscopic techniques. The azo-hydrazone tautomeric equilibrium was found to depend on the substituents as well as on the acidity and basicity of the media. Ionization constant, pKa, of the dyes was determined by UV-Vis spectroscopy and correlated with the Hammett substituent constants, σp and σI. The interpretation of the effect of different substituent in phenyl ring of arylazo pyridone dyes on their spectroscopic and structural properties was based on quantum chemical calculations performed by the density functional theory (DFT/M06-2X) method. The DFT calculations confirmed the existence of two forms in water solution: hydrazone form in acidic and neutral media and anionic form in basic media. The different contribution of azo and hydrazone canonical forms of anionic form is observed for dyes with electron-donating and dyes with electron-withdrawing groups. The dependence of absorption spectra and determined pKa values to the substituent type seems to be mostly due to azo/hydrazone canonical structure ratio in their anionic form. Copyright © 2013 Elsevier B.V. All rights reserved.

  7. An {sup 57}Fe Moessbauer study of three Australian L5 ordinary-chondrite meteorites: dating Kinclaven-001

    Energy Technology Data Exchange (ETDEWEB)

    Cadogan, J. M., E-mail: s.cadogan@adfa.edu.au [The University of New South Wales, School of Physical, Environmental and Mathematical Sciences (Australia); Rebbouh, L.; Mills, J. V. J. [University of Manitoba, Department of Physics and Astronomy (Canada); Bland, P. A. [Imperial College London, Impacts and Astromaterials Research Centre (IARC), Department of Earth Science and Engineering (United Kingdom)

    2013-12-15

    Three L5-type ordinary chondrite meteorites recovered from the Nullarbor Region of Western Australia were studied by {sup 57}Fe Moessbauer spectroscopy: Kinclaven-001, Camel Donga-007 and Gunnadorah-002. The relative amounts of the various Fe-bearing phases including the primary minerals (Olivine, Pyroxene, Troilite and Fe-Ni metal) and the ferric alteration products (Goethite, Maghemite/Magnetite) were obtained to determine the percentage of iron converted to Fe{sup 3 + } by weathering processes. These data allow us to estimate the terrestrial age of Kinclaven-001 at 1,700 {+-} 1,300 yrs.

  8. Moessbauer studies of one representative hydromorphic soil of the coastal area of the Rio de La Plata

    Energy Technology Data Exchange (ETDEWEB)

    Guichon, B. A. [Universidad Nacional de La Plata, Instituto de Geomorfologia y Suelos (Argentina); Desimoni, J.; Mercader, R. C., E-mail: mercader@fisica.unlp.edu.ar [Universidad Nacional de La Plata, Departamento de Fisica, IFLP-CONICET, Facultad de Ciencias Exactas (Argentina); Imbellone, P. A. [Universidad Nacional de La Plata, Instituto de Geomorfologia y Suelos (Argentina)

    2010-01-15

    In the present work, we have applied Moessbauer spectroscopy as well as the traditional chemical analyses to assess the contents of different states of Fe in oxides and hydroxides in an Entisol soil from the Argentine coastal plain of the Rio de La Plata. Tentative assignments for the different Fe ion sites are proposed. Our findings show that the isomer shift and quadrupole splitting are sensitive to the changes detected in the Fe{sup 2+} contents of the soluble phase while others remain constant within the experimental uncertainties.

  9. Moessbauer spectroscopy study of a mineral sample from Oshno Hill, District of Chavin de Pariarca, Huanuco Region, Peru

    Energy Technology Data Exchange (ETDEWEB)

    Bustamante, A., E-mail: abustamanted@unmsm.edu.pe [Universidad Nacional Mayor de San Marcos, Laboratorio de Ceramicos y Nanomateriales, Facultad de Ciencias Fisicas (Peru); Lovera, D. [Universidad Nacional Mayor de San Marcos, Facultad de Ingenieria Geologica, Minera, Metalurgica y Geografica (Peru); Quille, R. [Universidad Nacional Mayor de San Marcos, Laboratorio de Ceramicos y Nanomateriales, Facultad de Ciencias Fisicas (Peru); Arias, A. V.; Quinones, J. [Universidad Nacional Mayor de San Marcos, Facultad de Ingenieria Geologica, Minera, Metalurgica y Geografica (Peru)

    2010-01-15

    The analysis by X-ray diffraction of a mining sample collected from Oshno hill, which is located in the District of Chavin de Pariarca, Huamalies Province, Huanuco, Peru, indicates the presence of lepidocrocite ({gamma}-FeOOH) and goethite ({alpha}-FeOOH). The room temperature Moessbauer spectrum (MS) doublet with broad lines displays hyperfine parameters corresponding to the presence of particles of iron hydroxides smaller than 100 A in a superparamagnetic regime. The measurement of a MS at 4.2 K allowed confirming the presence of goethite and lepidocrocite (with average magnetic fields of 49.21 T and 44.59 T, respectively).

  10. A Moessbauer and Electrochemical Characterization of the Corrosion Products Formed from Marine and Marine-Antartic Environments

    Energy Technology Data Exchange (ETDEWEB)

    Ohanian, M.; Caraballo, R.; Dalchiele, E. A.; Quagliata, E. [Instituto de Ingenieria Quimica, Facultad de Ingenieria (Uruguay)

    2003-06-15

    Corrosion products formed on low alloy steel under two marine environments are characterised. Both environments are classified as C4 according to the ISO 9223 Standard. The corrosion products are identified and their relative proportion is determined by Moessbauer spectroscopy (transmission geometry). Free potentials of corrosion are measured to evaluate the activity of their surfaces. Structural characterisation by XRD were performed on selected samples. It is concluded that the principal phases are goethite, lepidocrocite, ferrihidrite and maghemite. The relative amount of each of them changes with time and with the atmospheric dynamics of each environment.

  11. The origin of copiapite from chlorite pyritic schist (Wiesciszowice, Lower Silesia, Poland) in the light of Moessbauer analysis

    Energy Technology Data Exchange (ETDEWEB)

    Adamczyk, Z., E-mail: zdzislaw.adamczyk@polsl.pl [Silesian University of Technology, Institute of Applied Geology (Poland); Komraus, J. L., E-mail: komraus@us.edu.pl [University of Silesia, Institute of Physics (Poland)

    2008-01-15

    This work presents the results of the analysis of copiapite, formed from weathering and oxidation of pyrite in pyritic schist from Wiesciszowice, Lower Silesia (Poland). The pure phase of copiapite was found in secondary minerals after pyrite and identified by optical microscopy, XRD and Moessbauer spectroscopy. In the analyzed copiapite major cations appear to be Fe{sup 2+} and Fe{sup 3+}. Some Fe{sup 3+} is substituted by other cations, mainly Al{sup 3+}. Al{sup 3+} probably comes from leaching of chlorite from which hydrated sulphates of iron, mainly szomolnokite, form followed by hydrated sulphates fibroferrite, which is replaced by copiapite.

  12. Iron Mineralogy and Aqueous Alteration on Mars from the MER Moessbauer Spectrometers. Chapter 15

    Science.gov (United States)

    Morris, Richard V.; Klingelhoefer, Goestar

    2007-01-01

    The twin Mars Exploration Rovers Spirit (Gusev crater) and Opportunity (Meridiani Planum) used MIMOS II Moessbauer spectrometers to analyze martian surface materials in the first application of extraterrestrial Moessbauer spectroscopy. The instruments acquired spectra that identified the speciation of Fe according to oxidation state, coordination state, and mineralogical composition and provided quantitative information about the distribution of Fe among oxidation states, coordination states, and Fe-bearing phases. A total of 12 unique Fe-bearing phases were identified: Fe(2+) in olivine, pyroxene, and ilmenite; Fe(2+) and Fe(3+) in magnetite and chromite; Fe(3+) in nanophase ferric oxide (npOx), hematite, goethite, jarosite, an unassigned Fe3+ sulfate, and an unassigned Fe(3+) phase associated with jarosite; and Fe(0) in kamacite. Weakly altered basalts at Gusev crater (SO3 = 2.5 +/- 1.4 wt.% and Fe(3+)/Fe(sub T) = 0.24 +/- 0.11) are widespread on the Gusev plains and occur in less abundance on West Spur and Husband Hill in the Columbia Hills. Altered low-S rocks (SO3 = 5.2 +/- 2.0 wt.% and Fe(3+)/Fe(sub T) = 0.63 +/- 0.18) are the most common type of rock in the Columbia Hills. Ilm-bearing, weakly altered basalts were detected only in the Columbia Hills, as was the only occurrence of chromite in an altered low-S rock named Assemblee. Altered high-S rocks (SO3 > 14.2 wt.% and Fe(3+)/Fe(sub T) = 0.83 +/- 0.05) are the outcrop rocks of the ubiquitous Burns formation at Meridiani Planum. Two Fe(0)-bearing rocks at Meridiani Planum (Barberton and Heat Shield Rock) are meteorites. Laguna Class soil is weakly altered (SO3 = 6 +/- 2 wt.% and Fe(3+)/Fe(sub T) = 0.29 +/- 0.08) and widely distributed at both Gusev crater and Meridiani Planum, implying efficient global mixing processes or a global distribution of precursor rocks with comparable Fe mineralogical compositions. Paso Robles Class soil is heavily altered (SO3 approx. 31 wt.% and Fe(3+)/Fe(sub T) = 0.83 +/- 0

  13. Moessbauer Mineralogical Evidence for Aqueous Processes at Gusev Crater and Meridiani Planum

    Science.gov (United States)

    Morris, R. V.; Klingelhoefer, G.

    2004-12-01

    The Moessbauer spectrometers on the MER rovers have measured the relative abundances of iron with respect to both oxidation state and iron-bearing phase at Gusev Crater (Spirit rover) and Meridiani Planum (Opportunity rover). The assemblage of phases indicates aqueous alteration processes at both landing sites. Although the rock and soil of the Gusev Crater plains are dominated by Fe(2+) in olivine-bearing basalt (~Fo60), a Fe(3+)-rich component (nanophase ferric oxide, np-Ox) has significant abundance in surface soils (13-28% of total Fe) and in the surface coatings (rinds) of certain rocks (39%) but not in rock interiors exposed by grinding (5-6%). The mode of occurrence of np-Ox implies that it is the product of oxidative alteration of Fe(2+) silicate and oxide phases in the presence of H2O. The ubiquitous presence of sulfur in soil and in rock coatings, as determined by the MER-A APXS instrument, suggests that the alteration occurred under acid-sulfate conditions, so that both hydrolytic and sulfatic reactions are viable. A possible source for the weathering agents is volcanic emanations rich in H2O and SO2. Generally, rocks in the Columbia Hills are significantly more altered than those in the Gusev plains, with a higher proportion of Fe(3+) oxide phases compared to Fe(2+) silicate phases. This mineralogical dichotomy implies a difference in the timing, rate, duration, and/or mechanism of alteration for basaltic material in the Gusev plains compared to basaltic material in the Columbia Hills. It is possible, for example, that the basaltic material in the Columbia Hills underwent aqueous alteration in a paleoclimate that favored nearly complete alteration and that the basaltic material of the Gusev plains will not achieve the degree of alteration exhibited by the Columbia Hills under current martian surface conditions. Because its structure contains the hydroxide anion, the Moessbauer detection of the hydroxide sulfate jarosite (K,Na)Fe3(SO4)2(OH)6 in outcrops

  14. A Moessbauer effect study of structural ordering in rapidly quenched Fe-Ga alloys

    Energy Technology Data Exchange (ETDEWEB)

    Dunlap, R.A. [Defence R and D Canada-Atlantic, P.O. Box 1012, Dartmouth, Nova Scotia B2Y 3Z7 (Canada) and Department of Physics and Atmospheric Science, Dalhousie University, Halifax, Nova Scotia B3H 3J5 (Canada) and Institute for Research in Materials, Dalhousie University, Halifax, Nova Scotia B3H 3J5 (Canada)]. E-mail: dunlap@fizz.phys.dal.ca; McGraw, J.D. [Department of Physics and Atmospheric Science, Dalhousie University, Halifax, Nova Scotia B3H 3J5 (Canada); Farrell, S.P. [Defence R and D Canada-Atlantic, P.O. Box 1012, Dartmouth, Nova Scotia B2Y 3Z7 (Canada)

    2006-10-15

    Samples of Fe{sub 100-} {sub x} Ga {sub x} (x=8.3, 17.9, 20.5 and 23.3) were prepared by rapid solidification from the melt using a single Cu roller. X-ray diffraction studies of all samples showed them to be single phase with the disordered BCC structure. No evidence of superlattice reflections from D0{sub 3} ordering was observed for any of the samples. Room-temperature {sup 57}Fe Moessbauer effect spectra indicated that all samples were ferromagnetically ordered. Spectra were fit to distributions of hyperfine fields. The x=8.3 sample showed a hyperfine field distribution that was single peaked and indicated a reasonably random distribution of local Fe environments. The x=17.9 and 20.5 samples showed hyperfine field distributions that were bimodal and indicated two distinct local Fe environments. The x=23.3 sample showed three distinct field components. It is suggested that the x=8.3, 17.9 and 20.5 alloys are primarily a disordered BCC phase. The x=8.3 alloy shows a small amount of short-range Ga-Ga pairing, while this short-range pairing is significantly greater in the x=17.9 and 20.5 alloys. The three field components in the x=23.3 alloy correspond well to the two sites associated with the D0{sub 3} phase and a third component corresponding to a remaining L1{sub 2} phase suggesting the presence of at least short-range D0{sub 3} clustering in this alloy.

  15. Moessbauer and magnetic studies of Fe{sub 3-x}Co{sub x}Al

    Energy Technology Data Exchange (ETDEWEB)

    Szymanski, K. E-mail: kszym@alpha.uwb.edu.pl; Biernacka, M.; Dobrzynski, L.; Perzynska, K.; Recko, K.; Satula, D.; Waliszewski, J.; Zaleski, P

    2000-02-01

    Results of Moessbauer, magnetic and X-ray diffraction measurements of Fe{sub 3-x}Co{sub x}Al system are presented. At small concentration of Co the structure is of DO{sub 3}-type. For x=0.5, Fe{sub 3-x}Co{sub x}Al is located on the ternary Fe-Co-Al phase diagram in the region where two crystallographic phases coexists. It is shown how the presence of Co modifies the lattice parameter and the Debye temperature. Dependence of these two parameters on x are discussed and qualitatively explained as due to the lattice shrinking caused by Co-Al pair interaction. The magnetic moment of Co is esti