WorldWideScience

Sample records for modular robotic welding

  1. Modular Robotic Wearable

    DEFF Research Database (Denmark)

    Lund, Henrik Hautop; Pagliarini, Luigi

    2009-01-01

    In this concept paper we trace the contours and define a new approach to robotic systems, composed of interactive robotic modules which are somehow worn on the body. We label such a field as Modular Robotic Wearable (MRW). We describe how, by using modular robotics for creating wearable....... Finally, by focusing on the intersection of the combination modular robotic systems, wearability, and bodymind we attempt to explore the theoretical characteristics of such approach and exploit the possible playware application fields....

  2. On sub-modularization and morphological heterogeneity in modular robotics

    DEFF Research Database (Denmark)

    Lyder, A. H.; Stoy, K.; Garciá, R. F. M.

    2012-01-01

    Modular robots are a kind of robots built from mechatronic modules, which can be assembled in many different ways allowing the modular robot to assume a wide range of morphologies and functions. An important question in modular robotics is to which degree modules should be heterogeneous....... In this paper we introduce two contributing factors to heterogeneity namely morphological heterogeneity and sub-functional modularization. Respectively, the ideas are to create modules with significantly different morphologies and to spread sub-functionality across modules. Based on these principles we design...... and implement the Thor robot and evaluate it by participating in the ICRA Planetary Robotic Contingency Challenge. The Thor robot demonstrates that sub-functional modularity and morphological heterogeneity may increase the versatility of modular robots while reducing the complexity of individual modules, which...

  3. Towards Versatile Robots Through Open Heterogeneous Modular Robots

    DEFF Research Database (Denmark)

    Lyder, Andreas

    arises, a new robot can be assembled rapidly from the existing modules, in contrast to conventional robots, which require a time consuming and expensive development process. In this thesis we define a modular robot to be a robot consisting of dynamically reconfigurable modules. The goal of this thesis......Robots are important tools in our everyday life. Both in industry and at the consumer level they serve the purpose of increasing our scope and extending our capabilities. Modular robots take the next step, allowing us to easily create and build various robots from a set of modules. If a problem...... is to increase the versatility and practical usability of modular robots by introducing new conceptual designs. Until now modular robots have been based on a pre-specified set of modules, and thus, their functionality is limited. We propose an open heterogeneous design concept, which allows a modular robot...

  4. Robotic hand with modular extensions

    Science.gov (United States)

    Salisbury, Curt Michael; Quigley, Morgan

    2015-01-20

    A robotic device is described herein. The robotic device includes a frame that comprises a plurality of receiving regions that are configured to receive a respective plurality of modular robotic extensions. The modular robotic extensions are removably attachable to the frame at the respective receiving regions by way of respective mechanical fuses. Each mechanical fuse is configured to trip when a respective modular robotic extension experiences a predefined load condition, such that the respective modular robotic extension detaches from the frame when the load condition is met.

  5. WARRIOR II, a high performance modular electric robot system

    International Nuclear Information System (INIS)

    Downton, G.C.

    1996-01-01

    Initially designed for in-reactor welding by the Central Electricity Generating Board, WARRIOR has been developed using the concept of modular technology to become a light-weight, high performance robotic system. Research work on existing machines for in-reactor inspection and repair and heavy duty hydraulic manipulators was progressed in order to develop WARRIOR II, a versatile in-reactor welding system usable at any nuclear power station light enough to be deployed by existing remote handling equipment. WARRIOR II can be significantly reconfigured quickly to pursue different ends. (UK)

  6. Modular Robotics in an African Context

    DEFF Research Database (Denmark)

    Lund, Henrik Hautop

    2011-01-01

    In this paper, we review the concept, development and use of modular robotic devices for education, health improvements, and business in Africa. The modular robotics inspired technology has the advantage of allowing any user easy access to a physical construction of new and advanced technology. We...... conceptualized several educational tools inspired by modular robotics for contextualized IT education in Tanzania, leading to a novel IT degree program and the development of East Africa’s first science and business park in Iringa, Tanzania. The prototypes inspired by modular robotics were developed in the local......, rural context and tested by local users in hospitals and rehabilitation centres. In this paper, we review the development of both modular building blocks for education and modular robotic tiles for rehabilitation in Tanzania....

  7. Fable: Socially Interactive Modular Robot

    DEFF Research Database (Denmark)

    Magnússon, Arnþór; Pacheco, Moises; Moghadam, Mikael

    2013-01-01

    Modular robots have a significant potential as user-reconfigurable robotic playware, but often lack sufficient sensing for social interaction. We address this issue with the Fable modular robotic system by exploring the use of smart sensor modules that has a better ability to sense the behavior...

  8. Modular robotics for playful physiotherapy

    DEFF Research Database (Denmark)

    Lund, Henrik Hautop

    2009-01-01

    We developed modular robotic tiles to be used for playful physiotherapy, which is supposed to motivate patients to engage in and perform physical rehabilitation exercises. We tested the modular robotic tiles for an extensive period of time (3 years) in daily use in a hospital rehabilitation unit e.......g. for cardiac patients. Also, the tiles were tested for performing physical rehabilitation of stroke patients in their private home. In all pilot test cases qualitative feedback indicate that the patients find the playful use of modular robotic tiles engaging and motivating for them to perform...

  9. Integrated sensors for robotic laser welding

    NARCIS (Netherlands)

    Iakovou, D.; Aarts, Ronald G.K.M.; Meijer, J.; Beyer, E.; Dausinger, F; Ostendorf, A; Otto, A.

    2005-01-01

    A welding head is under development with integrated sensory systems for robotic laser welding applications. Robotic laser welding requires sensory systems that are capable to accurately guide the welding head over a seam in three-dimensional space and provide information about the welding process as

  10. Designing Modular Robotic Playware

    DEFF Research Database (Denmark)

    Lund, Henrik Hautop; Marti, Patrizia

    2009-01-01

    In this paper, we explore the design of modular robotic objects that may enhance playful experiences. The approach builds upon the development of modular robotics to create a kind of playware, which is flexible in both set-up and activity building for the end-user to allow easy creation of games....... Key features of this design approach are modularity, flexibility, and construction, immediate feedback to stimulate engagement, activity design by end-users, and creative exploration of play activities. These features permit the use of such modular playware by a vast array of users, including disabled...... children who often could be prevented from using and taking benefits from modern technologies. The objective is to get any children moving, exchanging, experimenting and having fun, regardless of their cognitive or physical ability levels. The paper describes two prototype systems developed as modular...

  11. Modular robotic tiles: experiments for children with autism

    DEFF Research Database (Denmark)

    Lund, Henrik Hautop; Dam Pedersen, Martin; Beck, Richard

    2009-01-01

    rehabilitation), and with the proper radio communication mechanism they may give unique possibilities for documentation of the physical activity (e.g., therapeutic treatment). A major point of concern in modular robotics is the connection mechanism, so we investigated different solutions for the connection......We developed a modular robotic tile and a system composed of a number of these modular robotic tiles. The system composed of the modular robotic tiles engages the user in physical activities, e.g., physiotherapy, sports, fitness, and entertainment. The modular robotic tiles motivate the user...... to perform physical activities by providing immediate feedback based upon their physical interaction with the system. With the modular robotic tiles, the user is able to make new physical set-ups within less than a minute. The tiles are applicable for different forms of physical activities (e.g., therapeutic...

  12. Automatic Modeling and Simulation of Modular Robots

    Science.gov (United States)

    Jiang, C.; Wei, H.; Zhang, Y.

    2018-03-01

    The ability of reconfiguration makes modular robots have the ability of adaptable, low-cost, self-healing and fault-tolerant. It can also be applied to a variety of mission situations. In this manuscript, a robot platform which relied on the module library was designed, based on the screw theory and module theory. Then, the configuration design method of the modular robot was proposed. And the different configurations of modular robot system have been built, including industrial mechanical arms, the mobile platform, six-legged robot and 3D exoskeleton manipulator. Finally, the simulation and verification of one system among them have been made, using the analyses of screw kinematics and polynomial planning. The results of experiments demonstrate the feasibility and superiority of this modular system.

  13. Sensor integration for robotic laser welding processes

    NARCIS (Netherlands)

    Iakovou, D.; Aarts, Ronald G.K.M.; Meijer, J.; Ostendorf, A; Hoult, A.; Lu, Y.

    2005-01-01

    The use of robotic laser welding is increasing among industrial applications, because of its ability to weld objects in three dimensions. Robotic laser welding involves three sub-processes: seam detection and tracking, welding process control, and weld seam inspection. Usually, for each sub-process,

  14. Welding robot package; Arc yosetsu robot package

    Energy Technology Data Exchange (ETDEWEB)

    Nishikawa, S. [Yaskawa Electric Corp., Kitakyushu (Japan)

    1998-09-01

    For the conventional high-speed welding robot, the welding current was controlled mainly for reducing the spatters during short circuits and for stabilizing the beads by the periodic short circuits. However, an increase of deposition amount in response to the speed is required for the high-speed welding. Large-current low-spatter welding current region control was added. Units were integrated into a package by which the arc length is kept in short without dispersion of arc length for welding without defects such as undercut and unequal beads. In automobile industry, use of aluminum parts is extended for the light weight. The welding is very difficult, and automation is not so progressing in spite of the poor environment. Buckling of welding wire is easy to occur, and supply of wire is obstructed by the deposition of chipped powders on the torch cable, which stay within the contact chip resulting in the deposition. Dislocation of locus is easy to occur at the corner of rectangular pipe during the welding. By improving these troubles, an aluminum MIG welding robot package has been developed. 13 figs.

  15. Robot welding process control

    Science.gov (United States)

    Romine, Peter L.

    1991-01-01

    This final report documents the development and installation of software and hardware for Robotic Welding Process Control. Primary emphasis is on serial communications between the CYRO 750 robotic welder, Heurikon minicomputer running Hunter & Ready VRTX, and an IBM PC/AT, for offline programming and control and closed-loop welding control. The requirements for completion of the implementation of the Rocketdyne weld tracking control are discussed. The procedure for downloading programs from the Intergraph, over the network, is discussed. Conclusions are made on the results of this task, and recommendations are made for efficient implementation of communications, weld process control development, and advanced process control procedures using the Heurikon.

  16. Modular robotic applications in nuclear power plant maintenance

    International Nuclear Information System (INIS)

    Glass, S.W.; Ranson, C.C.; Reinholtz, C.F.; Calkins, J.M.

    1996-01-01

    General-purpose factory automation robots have experienced limited use in nuclear maintenance and hazardous-environment work spaces due to demanding requirements on size, weight, mobility and adaptability. Robotic systems in nuclear power plants are frequently custom designed to meet specific space and performance requirements. Examples of these custom configurations include Framatome Technologies COBRA trademark Steam Generator Manipulator and URSULA trademark Reactor Vessel Inspection Manipulator. The use of custom robots in nuclear plants has been limited because of the lead time and expense associated with custom design. Developments in modular robotics and advanced robot control software coupled with more powerful low-cost computers, however, are helping to reduce the cost and schedule for deploying custom robots. A modular robotic system allows custom robot configurations to be implemented using standard (modular) joints and adaptable controllers. This paper discusses Framatome Technologies (FTI) current and planned developments in the area of modular robot system design

  17. Fractal gene regulatory networks for robust locomotion control of modular robots

    DEFF Research Database (Denmark)

    Zahadat, Payam; Christensen, David Johan; Schultz, Ulrik Pagh

    2010-01-01

    Designing controllers for modular robots is difficult due to the distributed and dynamic nature of the robots. In this paper fractal gene regulatory networks are evolved to control modular robots in a distributed way. Experiments with different morphologies of modular robot are performed and the ......Designing controllers for modular robots is difficult due to the distributed and dynamic nature of the robots. In this paper fractal gene regulatory networks are evolved to control modular robots in a distributed way. Experiments with different morphologies of modular robot are performed...

  18. Mechanized hyperbaric welding by robots

    International Nuclear Information System (INIS)

    Aust, E.; Santos, J.F. dos; Bohm, K.H.; Hensel, H.D.

    1988-01-01

    At the GKSS-Forschungszentrum investigations are carried out on mechanized welded test plates produced under working pressure between 10 to 110 bar in breathable TRIMIX-5-atmosphere. The welds are performed by a modified industrial robot, which was adapted in its components to withstand these severe conditions. Variations on the welding parameters were made to maintain a stable arc as well as to provide on indication of the effect of the variables on the mechanical properties of the welded joint. During all tests the robot showed a very good function. Good reliable welds were achieved meeting the requirements according API II04 or BS 4515-1984. (orig.) [de

  19. Modeling of welded bead profile for rapid prototyping by robotic MAG welding

    Institute of Scientific and Technical Information of China (English)

    CAO Yong; ZHU Sheng; WANG Tao; WANG Wanglong

    2009-01-01

    As a deposition technology, robotic metal active gas(MAG) welding has shown new promise for rapid prototyping (RP) of metallic parts. During the process of metal forming using robotic MAG welding, sectional profile of single-pass welded bead is critical to formed accuracy and quality of metal pans. In this paper, the experiments of single-pass welded bead for rapid prototyping using robotic MAG welding were carried out. The effect of some edge detectors on the cross-sectional edge of welded bead was discussed and curve fitting was applied using leat square fitting. Consequently, the mathematical model of welded bead profile was developed. The experimental results show that good shape could be obtained under suitable welding parameters. Canny operawr is suitable to edge detection of welded bead profile, and the mathematical model of welded bead profile developed is approximately parabola.

  20. WARRIOR II, a high performance modular electric robot system

    International Nuclear Information System (INIS)

    Downton, G.C.

    1996-01-01

    A high performance electric robot, WARRIOR, was built for in-reactor welding at the Oldbury nuclear power plant in the United Kingdom in the mid 1980s. WARRIOR II has been developed as a lighter, smaller diameter articulated welding robot which can be deployed on its umbilical down a stand pipe for remote docking with the manipulator system which delivers it to its work site. A key feature of WARRIOR II has been the development of a prototype spherical modular joint. The module provides the drive torque necessary to motivate the robot arm, acts as the joint bearing, has standard mechanical interfaces for the limb sections, accurately measures the joint angle and has cable services running through the centre. It can act either as a bend or rotate joint and the interconnecting limb sections need only to be simple tubular sections. A wide range of manipulator configurations to suit the access constraints of particular problems can be achieved with a set of joint modules and limb sections. A general purpose motion controller has also been developed which is capable of kinematically controlling any configuration of WARRIOR II thus contributing to the realisation of the concept of a general purpose tool which can be used over and over again, at short notice, in any situation where a high precision, light weight, versatile manipulator is required. (UK)

  1. A System for Complex Robotic Welding

    DEFF Research Database (Denmark)

    Madsen, Ole; Sørensen, Carsten Bro; Olsen, Birger

    2002-01-01

    This paper presents the architecture of a system for robotic welding of complex tasks. The system integrates off-line programming, control of redundant robots, collision-free motion planning and sensor-based control. An implementation for pipe structure welding made at Odense Steel Shipyard Ltd......., Denmark, demonstrates the system can be used for automatic welding of complex products in one-of-a-kind production....

  2. Evaluation of modular robot system for maintenance tasks in hot cell

    Energy Technology Data Exchange (ETDEWEB)

    Pagala, Prithvi Sekhar, E-mail: ps.pagala@upm.es [Centre for Automation and Robotics UPM-CSIC (Spain); Ferre, Manuel, E-mail: m.ferre@upm.es [Centre for Automation and Robotics UPM-CSIC (Spain); Orona, Luis, E-mail: l.orona@gsi.de [GSI Helmholtzzentrum für Schwerionenforschung (Germany)

    2014-10-15

    Highlights: •Modular robot deployment inside hot cell for remote manipulation evaluated. •Flexible and adaptable system for variety of tasks presented. •Uses in large workspaces and evolving requirements shown. -- Abstract: This work assesses the use of a modular robot system to perform maintenance and inspection tasks such as, remote flexible inspection, manipulation and cooperation with deployed systems inside the hot cell. A flexible modular solution for the inclusion in maintenance operations is presented. The proposed heterogeneous modular robotic system is evaluated using simulations of the prototype across selected robot configuration to perform tasks. Results obtained show the advantages and ability of the modular robot to perform the necessary tasks as well as its ability to adapt and evolve depending on the need. The simulation test case inside hot cell shows modular robot configuration, a two modular arm to perform tele-operation tasks in the workspace and a wheeled platform for inspection collaborating to perform tasks. The advantage of using re-configurable modular robot over conventional robot platforms is shown.

  3. The impact of module morphologies on modular robots

    DEFF Research Database (Denmark)

    Liu, Ceyue; Liu, Jiangong; Moreno Garcia, Rodrigo

    2017-01-01

    RGE, and defined the number of connection faces and their relative positions as morphological parameters. Afterwards, we evolved the morphology and control of robots composed of EMeRGE modules in a robotic simulation platform. Simulation results indicate that robots containing modules with only two available......Many different types of modular robots have been designed in the last two decades. However, limited research has been done on analyzing which module morphology is able to create better robots for a given task. To address this issue, this paper investigates how the number and position of available...... connection faces in a module influence the evolvability of the modular robot. In contrast to previous research on modular robots, an analysis of the morphology of the module is done in order to improve and simplify its mechanical design. To this end, we designed a homogeneous module called EMe...

  4. Towards Versatile Robots Through Open Heterogeneous Modular Robots

    OpenAIRE

    Lyder, Andreas

    2010-01-01

    Robots are important tools in our everyday life. Both in industry and at the consumer level they serve the purpose of increasing our scope and extending our capabilities. Modular robots take the next step, allowing us to easily create and build various robots from a set of modules. If a problem arises, a new robot can be assembled rapidly from the existing modules, in contrast to conventional robots, which require a time consuming and expensive development process. In this thesis we define a ...

  5. HexaMob—A Hybrid Modular Robotic Design for Implementing Biomimetic Structures

    Directory of Open Access Journals (Sweden)

    Sasanka Sankhar Reddy CH.

    2017-10-01

    Full Text Available Modular robots are capable of forming primitive shapes such as lattice and chain structures with the additional flexibility of distributed sensing. The biomimetic structures developed using such modular units provides ease of replacement and reconfiguration in co-ordinated structures, transportation etc. in real life scenarios. Though the research in the employment of modular robotic units in formation of biological organisms is in the nascent stage, modular robotic units are already capable of forming such sophisticated structures. The modular robotic designs proposed so far in modular robotics research vary significantly in external structures, sensor-actuator mechanisms interfaces for docking and undocking, techniques for providing mobility, coordinated structures, locomotions etc. and each robotic design attempted to address various challenges faced in the domain of modular robotics by employing different strategies. This paper presents a novel modular wheeled robotic design - HexaMob facilitating four degrees of freedom (2 degrees for mobility and 2 degrees for structural reconfiguration on a single module with minimal usage of sensor-actuator assemblies. The crucial features of modular robotics such as back-driving restriction, docking, and navigation are addressed in the process of HexaMob design. The proposed docking mechanism is enabled using vision sensor, enhancing the capabilities in docking as well as navigation in co-ordinated structures such as humanoid robots.

  6. Spline-based automatic path generation of welding robot

    Institute of Scientific and Technical Information of China (English)

    Niu Xuejuan; Li Liangyu

    2007-01-01

    This paper presents a flexible method for the representation of welded seam based on spline interpolation. In this method, the tool path of welding robot can be generated automatically from a 3D CAD model. This technique has been implemented and demonstrated in the FANUC Arc Welding Robot Workstation. According to the method, a software system is developed using VBA of SolidWorks 2006. It offers an interface between SolidWorks and ROBOGUIDE, the off-line programming software of FANUC robot. It combines the strong modeling function of the former and the simulating function of the latter. It also has the capability of communication with on-line robot. The result data have shown its high accuracy and strong reliability in experiments. This method will improve the intelligence and the flexibility of the welding robot workstation.

  7. Automatic Specialization of Modular Robot Limbs

    Data.gov (United States)

    National Aeronautics and Space Administration — Modular robotic systems have the potential to be adapted to varying tasks using a single platform and enable customizable robots to be developed faster and more...

  8. A Modular Approach to Redundant Robot Control

    International Nuclear Information System (INIS)

    Anderson, R.J.

    1997-12-01

    This paper describes a modular approach for computing redundant robot kinematics. First some conventional redundant control methods are presented and shown to be 'passive control laws', i.e. they can be represented by a network consisting of passive elements. These networks are then put into modular form by applying scattering operator techniques. Additional subnetwork modules can then be added to further shape the motion. Modules for obstacle detection, joint limit avoidance, proximity sensing, and for imposing nonlinear velocity constraints are presented. The resulting redundant robot control system is modular, flexible and robust

  9. Recognition and automatic tracking of weld line in fringe welding by autonomous mobile robot with visual sensor

    International Nuclear Information System (INIS)

    Suga, Yasuo; Saito, Keishin; Ishii, Hideaki.

    1994-01-01

    An autonomous mobile robot with visual sensor and four driving axes for welding of pipe and fringe was constructed. The robot can move along a pipe, and detect the weld line to be welded by visual sensor. Moreover, in order to perform welding automatically, the tip of welding torch can track the weld line of the joint by rotating the robot head. In the case of welding of pipe and fringe, the robot can detect the contact angle between the two base metals to be welded, and the torch angle changes according to the contact angle. As the result of tracking test by the robot system, it was made clear that the recognition of geometry of the joint by the laser lighting method and automatic tracking of weld line were possible. The average tracking error was ±0.3 mm approximately and the torch angle could be always kept at the optimum angle. (author)

  10. Optimization of process parameters in welding of dissimilar steels using robot TIG welding

    Science.gov (United States)

    Navaneeswar Reddy, G.; VenkataRamana, M.

    2018-03-01

    Robot TIG welding is a modern technique used for joining two work pieces with high precision. Design of Experiments is used to conduct experiments by varying weld parameters like current, wire feed and travelling speed. The welding parameters play important role in joining of dissimilar stainless steel SS 304L and SS430. In this work, influences of welding parameter on Robot TIG Welded specimens are investigated using Response Surface Methodology. The Micro Vickers hardness tests of the weldments are measured. The process parameters are optimized to maximize the hardness of the weldments.

  11. Development of underwater YAG laser repair welding robots for tanks

    International Nuclear Information System (INIS)

    Miwa, Yasuhiro; Satoh, Syuichi; Ito, Kosuke; Kochi, Tsutomu; Kojima, Toshio; Ohwaki, Katsura; Morita, Ichiro

    1999-01-01

    A remote-controlled repair welding robot which uses YAG laser welding technology in underwater environment was developed. This is an underwater robot technology combined with a laser welding technology. This report will describe the structure and performance of this robot, and the welding test results. The repair welding robot consists of two parts. The one is driving equipment, and the other is welding unit. It can swim in the tank, move around the tank wall, and stay on the welding area. After that it starts YAG laser repair welding. The target of this technology is inner surface repair of some tanks made of austenitic stainless steel, for example RW (Radioactive Waste) tanks. A degradation by General Corrosion and so on might be occurred at inner surface of these tanks in BWR type nuclear power plants. If the damaged area is wide, repair welding works are done. Some workers go into the tank and set up scaffolding after full drainage. In many cases it spends too much time for draining water and repair welding preparation. If the repair welding works can be done in underwater environment, the outage period will be reduced. This is a great advantage. (author)

  12. Justification of the technical requirements of a fully functional modular robot

    Directory of Open Access Journals (Sweden)

    Shlyakhov Nikita

    2017-01-01

    Full Text Available Modular robots are characterized by limited built-in resources necessary for communication, connection and movement of modules, when performing reconfiguration tasks at rigidly interconnected elements. In developing the technological fundamentals of designing modular robots with pairwise connection mechanisms, we analysed modern hardware and model algorithms typical of a fully functional robot, which provide independent locomotion, communication, navigation, decentralized power and control. A survey of actuators, batteries, sensors, communication means, suitable for modular robotics is presented.

  13. Robotic Assistance by Impedance Compensation for Hand Movements While Manual Welding.

    Science.gov (United States)

    Erden, Mustafa Suphi; Billard, Aude

    2016-11-01

    In this paper, we present a robotic assistance scheme which allows for impedance compensation with stiffness, damping, and mass parameters for hand manipulation tasks and we apply it to manual welding. The impedance compensation does not assume a preprogrammed hand trajectory. Rather, the intention of the human for the hand movement is estimated in real time using a smooth Kalman filter. The movement is restricted by compensatory virtual impedance in the directions perpendicular to the estimated direction of movement. With airbrush painting experiments, we test three sets of values for the impedance parameters as inspired from impedance measurements with manual welding. We apply the best of the tested sets for assistance in manual welding and perform welding experiments with professional and novice welders. We contrast three conditions: 1) welding with the robot's assistance; 2) with the robot when the robot is passive; and 3) welding without the robot. We demonstrate the effectiveness of the assistance through quantitative measures of both task performance and perceived user's satisfaction. The performance of both the novice and professional welders improves significantly with robotic assistance compared to welding with a passive robot. The assessment of user satisfaction shows that all novice and most professional welders appreciate the robotic assistance as it suppresses the tremors in the directions perpendicular to the movement for welding.

  14. The EMeRGE modular robot, an open platform for quick testing of evolved robot morphologies

    DEFF Research Database (Denmark)

    Moreno Garcia, Rodrigo; Liu, Ceyue; Faina, Andres

    2017-01-01

    This work presents the hardware design and implementation of the EMeRGE open modular robot platform. EMeRGE (Easy Modular Embodied Robot Generation) modules are designed to be cheap and easy to build and their hardware is open for anyone to use and modify. Four magnetic connectors enable the quick...... assembly of different complex robot morphologies like the ones generated by evolutionary robotics experiments. Non-human agents, like robotic manipulators, can also take advantage of the magnetic connectors to assemble and disassemble morphologies....

  15. Establishing an Improved Kane Dynamic Model for the 7-DOF Reconfigurable Modular Robot

    Directory of Open Access Journals (Sweden)

    Xiao Li

    2017-01-01

    Full Text Available We propose an improved Kane dynamic model theory for the 7-DOF modular robot in this paper, and the model precision is improved by the improved function T′it. We designed three types of progressive modular joints for reconfigurable modular robot that can be used in industrial robot, space robot, and special robot. The Kane dynamic model and the solid dynamic model are established, respectively, for the 7-DOF modular robot. After that, the experimental results are obtained from the simulation experiment of typical task in the established dynamic models. By the analysis model of error, the equation of the improved torque T′it is derived and proposed. And the improved Kane dynamic model is established for the modular robot that used T′it. Based on the experimental data, the undetermined coefficient matrix is five-order linear that was proved in 7-DOF modular robot. And the explicit formulation is solved of the Kane dynamic model and can be used in control system.

  16. Modular robotics overview of the 'state of the art'

    International Nuclear Information System (INIS)

    Kress, R.L.; Jansen, J.F.; Hamel, W.R.

    1996-08-01

    The design of a robotic arm processing modular components and reconfigurable links is the general goal of a modular robotics development program. The impetus behind the pursuit of modular design is the remote engineering paradigm of improved reliability and availability provided by the ability to remotely maintain and repair a manipulator operating in a hazardous environment by removing and replacing worn or failed modules. Failed components can service off- line and away from hazardous conditions. The desire to reconfigure an arm to perform different tasks is also an important driver for the development of a modular robotic manipulator. In order to bring to fruition a truly modular manipulator, an array of technical challenges must be overcome. These range from basic mechanical and electrical design considerations such as desired kinematics, actuator types, and signal and transmission types and routings, through controls issues such as the need for control algorithms capable of stable free space and contact control, to computer and sensor design issues like consideration of the use of embedded processors and redundant sensors. This report presents a brief overview of the state of the art of technical issues relevant of modular robotic arm design. The focus is on breadth of coverage, rather than depth, in order to provide a reference frame for future development

  17. SMARBot: a modular miniature mobile robot platform

    Science.gov (United States)

    Meng, Yan; Johnson, Kerry; Simms, Brian; Conforth, Matthew

    2008-04-01

    Miniature robots have many advantages over their larger counterparts, such as low cost, low power, and easy to build a large scale team for complex tasks. Heterogeneous multi miniature robots could provide powerful situation awareness capability due to different locomotion capabilities and sensor information. However, it would be expensive and time consuming to develop specific embedded system for different type of robots. In this paper, we propose a generic modular embedded system architecture called SMARbot (Stevens Modular Autonomous Robot), which consists of a set of hardware and software modules that can be configured to construct various types of robot systems. These modules include a high performance microprocessor, a reconfigurable hardware component, wireless communication, and diverse sensor and actuator interfaces. The design of all the modules in electrical subsystem, the selection criteria for module components, and the real-time operating system are described. Some proofs of concept experimental results are also presented.

  18. Sambot II: A self-assembly modular swarm robot

    Science.gov (United States)

    Zhang, Yuchao; Wei, Hongxing; Yang, Bo; Jiang, Cancan

    2018-04-01

    The new generation of self-assembly modular swarm robot Sambot II, based on the original generation of self-assembly modular swarm robot Sambot, adopting laser and camera module for information collecting, is introduced in this manuscript. The visual control algorithm of Sambot II is detailed and feasibility of the algorithm is verified by the laser and camera experiments. At the end of this manuscript, autonomous docking experiments of two Sambot II robots are presented. The results of experiments are showed and analyzed to verify the feasibility of whole scheme of Sambot II.

  19. Mechanical and electrochemical characteristics with welding materials in robotic MIG welding of dissimilar Al alloys

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Seong Jong; Han, Min Su; Woo, Yong Bin [Mokpo Maritime Univ., Mokpo (Korea, Republic of)

    2013-05-15

    In this study, mechanical and electrochemical characteristics with welding material in MIG welded with ROBOT for dissimilar Al alloys were investigated using various experiment methods. The MIG welding by ROBOT with ER5183 and ER5556 for the 5456-H116 and 6061-T6 Al alloy were carried out. The hardness of welding zone was lower than that of base metal. In electrochemical experiment, ER5183 welding material presented excellent characteristics. The yield strength and maximum tensile strength in welding with welding material of ER5183 presented lower value than those of ER5556. The elongation and time-to-fracture showed the opposite results.

  20. A Modular Architecture for Developing Robots for Industrial Applications

    DEFF Research Database (Denmark)

    Faina, Andres; Orjales, Felix; Souto, Daniel

    2015-01-01

    addresses the problem the other way around. In this line, we start by defining the industrial settings the architecture is aimed at and then extract the main features that would be required from a modular robotic architecture to operate successfully in this context. Finally, a particular heterogeneous......This chapter is concerned with proposing ways to make feasible the use of robots in many sectors characterized by dynamic and unstructured environments. In particular, we are interested in addressing the problem through a new approach, based on modular robotics, to allow the fast deployment...... modular robotic architecture is designed from these requirements and a laboratory implementation of it is built in order to test its capabilities and show its versatility using a set of different configurations including manipulators, climbers and walkers....

  1. On the Efficiency of Local and Global Communication in Modular Robots

    DEFF Research Database (Denmark)

    Garcia, Ricardo Franco Mendoza; Schultz, Ulrik Pagh; Støy, Kasper

    2009-01-01

    use parameters to describe the topology of modular robots, develop a probabilistic model of local communication using these parameters and, using a model of global communication from literature, compare the transmission times of local and global communication in different robots. Based on our results......As exchange of information is essential to modular robots, deciding between local or global communication is a common design choice. This choice, however, still lacks theoretical support. In this paper we analyse the efficiency of local and global communication in modular robots. To this end, we...

  2. Self-sufficiency of an autonomous reconfigurable modular robotic organism

    CERN Document Server

    Qadir, Raja Humza

    2015-01-01

    This book describes how the principle of self-sufficiency can be applied to a reconfigurable modular robotic organism. It shows the design considerations for a novel REPLICATOR robotic platform, both hardware and software, featuring the behavioral characteristics of social insect colonies. Following a comprehensive overview of some of the bio-inspired techniques already available, and of the state-of-the-art in re-configurable modular robotic systems, the book presents a novel power management system with fault-tolerant energy sharing, as well as its implementation in the REPLICATOR robotic modules. In addition, the book discusses, for the first time, the concept of “artificial energy homeostasis” in the context of a modular robotic organism, and shows its verification on a custom-designed simulation framework in different dynamic power distribution and fault tolerance scenarios. This book offers an ideal reference guide for both hardware engineers and software developers involved in the design and implem...

  3. Mechanical Design of Odin, an Extendable Heterogeneous Deformable Modular Robot

    DEFF Research Database (Denmark)

    Lyder, Andreas; Garcia, Ricardo Franco Mendoza; Støy, Kasper

    2008-01-01

    Highly sophisticated animals consist of a set of heterogenous modules decided by nature so that they can survive in a complex environment. In this paper we present a new modular robot inspired by biology called Odin. The Odin robot is based on a deformable lattice and consists of an extendable se...... of heterogeneous modules. We present the design and implementation of a cubic closed-packed (CCP) joint module, a telescoping link, and a flexible connection mechanism. The developed robot is highly versatile and opens up for a wide range of new research in modular robotics.......Highly sophisticated animals consist of a set of heterogenous modules decided by nature so that they can survive in a complex environment. In this paper we present a new modular robot inspired by biology called Odin. The Odin robot is based on a deformable lattice and consists of an extendable set...

  4. MRV - Modular Robotic Vehicle

    Science.gov (United States)

    Ridley, Justin; Bluethmann, Bill

    2015-01-01

    The Modular Robotic Vehicle, or MRV, completed in 2013, was developed at the Johnson Space Center in order to advance technologies which have applications for future vehicles both in space and on Earth. With seating for two people, MRV is a fully electric vehicle modeled as a "city car", suited for busy urban environments.

  5. Modular Track System For Positioning Mobile Robots

    Science.gov (United States)

    Miller, Jeff

    1995-01-01

    Conceptual system for positioning mobile robotic manipulators on large main structure includes modular tracks and ancillary structures assembled easily along with main structure. System, called "tracked robotic location system" (TROLS), originally intended for application to platforms in outer space, but TROLS concept might also prove useful on Earth; for example, to position robots in factories and warehouses. T-cross-section rail keeps mobile robot on track. Bar codes mark locations along track. Each robot equipped with bar-code-recognizing circuitry so it quickly finds way to assigned location.

  6. Quality assurance and control for robotic GMA welding

    International Nuclear Information System (INIS)

    Xie Max X.

    1992-01-01

    A quality assurance (QA) model has been developed. This model systematically considers the relevant activities before, during and after the welding operations with respect to quality. Efficient quality assurance requires that the functionality of the present robotic welding systems needs to be increased and that the knowledge of the personnel involved in the design and production needs to be improved. The collaboration between different departments and personnel needs also to be improved. The procedure specification aspects have been studied and a method for the determination of optimal welding parameters is presented with regards to process stability, quality requirements and productivity. A main productivity problem of robotic welding systems for small series production is due to the time spent on the specification of welding procedures. In order to improve the efficiency, expert systems technology has been studied and applied to automatically generate optimal welding procedures. An objective method for the assessment of process stability has been developed, based upon the analysis of the electrical signals of welding arcs. Furthermore, a method has been developed to monitor the process stability. It is found that it is possible to identify the causes of the disturbance of process stability and to predict the weld quality characteristics based on the analysis of the electrical signals. Though quality is formed during the welding operation, the diagnosis of the causes of quality disturbances is important for the prevention of quality problems of subsequent welds and has been discussed. To assist the operators, expert systems technology is also applied. Further work should be directed to the integration of various QA functions in the robotic arc welding system so that both quality and productivity aspects of the system ban be further improved. (au)

  7. Morphology Independent Learning in Modular Robots

    DEFF Research Database (Denmark)

    Christensen, David Johan; Bordignon, Mirko; Schultz, Ulrik Pagh

    2009-01-01

    Hand-coding locomotion controllers for modular robots is difficult due to their polymorphic nature. Instead, we propose to use a simple and distributed reinforcement learning strategy. ATRON modules with identical controllers can be assembled in any configuration. To optimize the robot’s locomotion...... speed its modules independently and in parallel adjust their behavior based on a single global reward signal. In simulation, we study the learning strategy’s performance on different robot configurations. On the physical platform, we perform learning experiments with ATRON robots learning to move as fast...

  8. Development of a Modular Robotic Platform

    Directory of Open Access Journals (Sweden)

    Claudiu Ioan Cirebea

    2014-12-01

    Full Text Available In this paper a modular robotic platform is presented, for students and researchers laboratory work based on the Matlab-Simulink and dSpace real time control platform. The goal of this combination is to stimulate and to experiment with real time hardware and software in courses where mobile robotics is adopted as a motivating platform to introduce mechatronics competencies. Its many possibilities for modifications and extensions make experiments very easy. We used, for example, an omnidirectional mobile robot configuration with three Swedish wheels, whose kinematic model was simulated using Simulink. For real-time control, of the robot, the developed model has been implemented using DSpace platform DS1103.

  9. Lessons Learned in Designing User-configurable Modular Robotics

    DEFF Research Database (Denmark)

    Lund, Henrik Hautop

    2013-01-01

    User-configurable robotics allows users to easily configure robotic systems to perform task-fulfilling behaviors as desired by the users. With a user configurable robotic system, the user can easily modify the physical and func-tional aspect in terms of hardware and software components of a robotic...... with the semi-autonomous com-ponents of the user-configurable robotic system in interaction with the given environment. Components constituting such a user-configurable robotic system can be characterized as modules in a modular robotic system. Several factors in the definition and implementation...

  10. Mechanized and robotized welding in shipbuilding; Zosen ni okeru yosetsu no jidoka robot ka

    Energy Technology Data Exchange (ETDEWEB)

    Kanda, Y. [Ishikawajima-Harima Heavy Industries Co. Ltd., Tokyo (Japan)

    1997-12-01

    Large-scale ships such as VLCC are built at the Kure No.1 Works of IHI (Ishikawajima-Harima Heavy Industry). This paper introduces current status of mechanized and robotized welding at the works. For the sub-assembly with short weld length and horizontal fillet, simplified automatic welders are used in which mag-welding method using CO2 is adopted. The frequent wound welding of member ends can be automatically conducted using welders developed by IHI. In the large-scale assembly processes, remarkable rationalization and highly accurate assembly of flat plate welding have been promoted. Tankers, container ships, and bulk carriers can be treated at the same time. Teaching times of welding robots can be greatly reduced by a technique called parametric treatment. In the future, it is essential to enhance the accuracy of members by introducing the laser cutting during machining processes. Completely self-type mechanization is required as well as large-output laser welding and sensor technology. 3 refs., 12 figs., 2 tabs.

  11. Anatomy-Based Organization of Modular Robots

    DEFF Research Database (Denmark)

    Christensen, David Johan; Campbell, Jason

    2008-01-01

    This paper presents a novel biologically inspired hierarchical approach to organizing and controlling modular robots. The purpose of our approach is to decompose the complexity of assembling and commanding a functional robot made of numerous simple modules (thousands to millions) by introducing...... a hierarchy of structure and control. The robots we describe incorporate anatomically inspired parts such as muscles, bones and joints, and these parts in turn are assembled from modules. Each of those parts encapsulates one or more functions, e.g. a muscle can contract. Control of the robot can then be cast...... as a problem of controlling its anatomical parts rather than each discrete module. We show simulation results from experiments using gradient-based primitives to control parts of increasingly complex robots, including snake, crawler, cilia-surface, arm-joint-muscle and grasping robots. We conclude...

  12. On the Efficiency of Local and Global Communication in Modular Robots

    DEFF Research Database (Denmark)

    Garcia, Ricardo Franco Mendoza; Schultz, Ulrik Pagh; Støy, Kasper

    2009-01-01

    , we conclude that global communication is convenient for centralized control approaches and local communication is convenient for distributed control approaches. In addition, we conclude that global is in general convenient for low-connectivity configurations, such as chains, trees or limbs......As exchange of information is essential to modular robots, deciding between local or global communication is a common design choice. This choice, however, still lacks theoretical support. In this paper we analyse the efficiency of local and global communication in modular robots. To this end, we...... use parameters to describe the topology of modular robots, develop a probabilistic model of local communication using these parameters and, using a model of global communication from literature, compare the transmission times of local and global communication in different robots. Based on our results...

  13. Development of sensor augmented robotic weld systems for aerospace propulsion system fabrication

    Science.gov (United States)

    Jones, C. S.; Gangl, K. J.

    1986-01-01

    In order to meet stringent performance goals for power and reuseability, the Space Shuttle Main Engine was designed with many complex, difficult welded joints that provide maximum strength and minimum weight. To this end, the SSME requires 370 meters of welded joints. Automation of some welds has improved welding productivity significantly over manual welding. Application has previously been limited by accessibility constraints, requirements for complex process control, low production volumes, high part variability, and stringent quality requirements. Development of robots for welding in this application requires that a unique set of constraints be addressed. This paper shows how robotic welding can enhance production of aerospace components by addressing their specific requirements. A development program at the Marshall Space Flight Center combining industrial robots with state-of-the-art sensor systems and computer simulation is providing technology for the automation of welds in Space Shuttle Main Engine production.

  14. Fable: Design of a Modular Robotic Playware Platform

    DEFF Research Database (Denmark)

    Pacheco, Moises; Moghadam, Mikael; Magnússon, Arnþór

    2013-01-01

    -based system composed of reconfigurable heterogeneous modules with a reliable and scalable connector. Furthermore, this paper describes tests where the connector design is tested with children, and presents examples of a moving snake and a quadruped robot, as well as an interactive upper humanoid torso.......We are developing the Fable modular robotic system as a playware platform that will enable non-expert users to develop robots ranging from advanced robotic toys to robotic solutions to problems encountered in their daily lives. This paper presents the mechanical design of Fable: a chain...

  15. Collective Modular Underwater Robotic System for Long-Term Autonomous Operation

    DEFF Research Database (Denmark)

    Christensen, David Johan; Andersen, Jens Christian; Blanke, Mogens

    This paper provides a brief overview of an underwater robotic system for autonomous inspection in confined offshore underwater structures. The system, which is currently in development, consist of heterogeneous modular robots able to physically dock and communicate with other robots, transport...

  16. Modular Robotic Vehicle

    Science.gov (United States)

    Borroni-Bird, Christopher E. (Inventor); Vitale, Robert L. (Inventor); Lee, Chunhao J. (Inventor); Ambrose, Robert O. (Inventor); Bluethmann, William J. (Inventor); Junkin, Lucien Q. (Inventor); Lutz, Jonathan J. (Inventor); Guo, Raymond (Inventor); Lapp, Anthony Joseph (Inventor); Ridley, Justin S. (Inventor)

    2015-01-01

    A modular robotic vehicle includes a chassis, driver input devices, an energy storage system (ESS), a power electronics module (PEM), modular electronic assemblies (eModules) connected to the ESS via the PEM, one or more master controllers, and various embedded controllers. Each eModule includes a drive wheel containing a propulsion-braking module, and a housing containing propulsion and braking control assemblies with respective embedded propulsion and brake controllers, and a mounting bracket covering a steering control assembly with embedded steering controllers. The master controller, which is in communication with each eModule and with the driver input devices, communicates with and independently controls each eModule, by-wire, via the embedded controllers to establish a desired operating mode. Modes may include a two-wheel, four-wheel, diamond, and omni-directional steering modes as well as a park mode. A bumper may enable docking with another vehicle, with shared control over the eModules of the vehicles.

  17. On detection and automatic tracking of butt weld line in thin wall pipe welding by a mobile robot with visual sensor

    International Nuclear Information System (INIS)

    Suga, Yasuo; Ishii, Hideaki; Muto, Akifumi

    1992-01-01

    An automatic pipe welding mobile robot system with visual sensor was constructed. The robot can move along a pipe, and detect the weld line to be welded by visual sensor. Moreover, in order to make an automatic welding, the welding torch can track the butt weld line of the pipes at a constant speed by rotating the robot head. Main results obtained are summarized as follows: 1) Using a proper lighting fixed in front of the CCD camera, the butt weld line of thin wall pipes can be recongnized stably. In this case, the root gap should be approximately 0.5 mm. 2) In order to detect the weld line stably during moving along the pipe, a brightness distribution measured by the CCD camera should be subjected to smoothing and differentiating and then the weld line is judged by the maximum and minimum values of the differentials. 3) By means of the basic robot system with a visual sensor controlled by a personal computer, the detection and in-process automatic tracking of a weld line are possible. The average tracking error was approximately 0.2 mm and maximum error 0.5 mm and the welding speed was held at a constant value with error of about 0.1 cm/min. (author)

  18. A Modular, Reconfigurable Mold for a Soft Robotic Gripper Design Activity

    Directory of Open Access Journals (Sweden)

    Jiawei Zhang

    2017-09-01

    Full Text Available Soft robotics is an emerging field with strong potential to serve as an educational tool due to its advantages such as low costs and shallow learning curves. In this paper, we introduce a modular and reconfigurable mold for flexible design of pneumatic soft robotic grippers. By using simple assembly kits, students at all levels are able to design and construct soft robotic grippers that vary in function and performance. The process of constructing the modular mold enables students to understand how design choices impact system performance. Our unique modular mold allows students to select the number and length of fingers in a gripper, as well as to adjust the internal geometry of the pneumatic actuator cavity, which dictates how and where bending of a finger occurs. In addition, the mold may be deconstructed and reconfigured, which allows for fast iterative design and lowers material costs (since a new mold does not need to be made to implement a design change. We further demonstrate the feasibility of the modular mold by implementing it in a soft robot design activity in classrooms and showing a sufficiently high rate of student success in designing and constructing a functional soft robotic gripper.

  19. Evolution and Morphogenesis of Simulated Modular Robots: A Comparison Between a Direct and Generative Encoding

    DEFF Research Database (Denmark)

    Veenstra, Frank; Faina, Andres; Risi, Sebastian

    2017-01-01

    Modular robots oer an important benet in evolutionary robotics, which is to quickly evaluate evolved morphologies and control systems in reality. However, articial evolution of simulated modular robotics is a dicult and time consuming task requiring signicant computational power. While articial...... evolution in virtual creatures has made use of powerful generative encodings, here we investigate how a generative encoding and direct encoding compare for the evolution of locomotion in modular robots when the number of robotic modules changes. Simulating less modules would decrease the size of the genome...

  20. A heterogeneous electronics architecture for dealing with complexity in modular robots

    DEFF Research Database (Denmark)

    Garcia, Ricardo Franco Mendoza

    2011-01-01

    Modular robots are robots built from many similar modules that can be arranged in different configurations to suit tasks in hand. Although promising, current incarnations of this technology suffer of an important drawback: modules are usually extremely expensive. This thesis proposes...... a heterogeneous electronics architecture that addresses the price and complexity of modular robots by focusing on the good aspects of homogeneous and heterogeneous designs, such as sequential implementation and reusable components. The architecture was implemented in four robots: Odin V1, Odin V2, Thor...... and Locomorph. In all cases, development time from conception to realization took less than a year, and two of these robots were able to take part in an international robot competition soon after their implementation. We conclude that heterogeneity brings three important advantages to the current stage...

  1. MODULAR MANIPULATOR FOR ROBOTICS APPLICATIONS

    International Nuclear Information System (INIS)

    Geisinger, Joseph W. Ph.D.

    2001-01-01

    ARM Automation, Inc. is developing a FR-amework of modular actuators that can address the DOE's wide range of robotics needs. The objective of this effort is to demonstrate the effectiveness of this technology by constructing a manipulator FR-om these actuators within a glovebox for Automated Plutonium Processing (APP). At the end of the project, the system of actuators was used to construct several different manipulator configurations, which accommodate common glovebox tasks such as repackaging. The modular nature and quickconnects of this system simplify installation into ''hot'' boxes and any potential modifications or repair therein. This work focused on the development of self-contained robotic actuator modules including the embedded electronic controls for the purpose of building a manipulator system. Both of the actuators developed under this project contain the control electronics, sensors, motor, gear train, wiring, system communications and mechanical interfaces of a complete robotics servo device. Test actuators and accompanying DISC(trademark)s underwent validation testing at The University of Texas at Austin and ARM Automation, Inc. following final design and fabrication. The system also included custom links, an umbilical cord, an open architecture PC-based system controller, and operational software that permitted integration into a completely functional robotic manipulator system. The open architecture on which this system is based avoids proprietary interfaces and communication protocols which only serve to limit the capabilities and flexibility of automation equipment. The system was integrated and tested in the contractor's facility for intended performance and operations. The manipulator was tested using the full-scale equipment and process mock-ups. The project produced a practical and operational system including a quantitative evaluation of its performance and cost

  2. Fable II: Design of a Modular Robot for Creative Learning

    DEFF Research Database (Denmark)

    Pacheco, Moises; Fogh, Rune; Lund, Henrik Hautop

    2015-01-01

    Robotic systems have a high potential for creative learning if they are flexible, accessible and engaging for the user in the experimental process of building and programming robots. In this paper we describe the Fable modular robotic system for creative learning which we develop to enable and mo...

  3. Underwater welding using remote controlled robots. Development of remote underwater welding technology with a high power YAG laser

    International Nuclear Information System (INIS)

    Miwa, Yasuhiro; Sato, Syuuichi; Kojima, Toshio; Owaki, Katsura; Hirose, Naoya

    2002-01-01

    As components in nuclear power plant have been periodically carried out their inspection and repair to keep their integrity, on radioactive liquid wastes storage facility, because of difficulty on their inspection by human beings, some are remained without inspection, and even when capable of inspection, conversion from human works to remote operations is desired from a viewpoint of their operation efficiency upgrading. For response to these needs, some developments on a technology capable of carrying out inspection of their inside at underwater environment and repairing welding with YAG laser by means of remote operation, have been performed. Remote underwater inspection and repair technology is a combination technology of already applied underwater mobile technique (underwater inspection robot) with underwater YAG laser welding technique which is recently at actual using level. Therefore, this technology is composed of an inspection robot and a repair welding robot. And, testing results using the underwater inspection robot and welding test results using the underwater repair welding robot, were enough preferable to obtain forecasting applicable to actual apparatuses. This technology is especially effective for inspection and repair of inside of nuclear fuel cycle apparatuses and relatively high dose apparatuses, and can be thought to be applicable also to large capacity tanks, tanks dealing with harmful matters, underwater structures, and so on, in general industries. (G.K.)

  4. Collaborative Assembly Operation between Two Modular Robots Based on the Optical Position Feedback

    Directory of Open Access Journals (Sweden)

    Liying Su

    2009-01-01

    Full Text Available This paper studies the cooperation between two master-slave modular robots. A cooperative robot system is set up with two modular robots and a dynamic optical meter-Optotrak. With Optotrak, the positions of the end effectors are measured as the optical position feedback, which is used to adjust the robots' end positions. A tri-layered motion controller is designed for the two cooperative robots. The RMRC control method is adopted to adjust the master robot to the desired position. With the kinematics constraints of the two robots including position and pose, joint velocity, and acceleration constraints, the two robots can cooperate well. A bolt and nut assembly experiment is executed to verify the methods.

  5. Welding Robot Collision-Free Path Optimization

    Directory of Open Access Journals (Sweden)

    Xuewu Wang

    2017-02-01

    Full Text Available Reasonable welding path has a significant impact on welding efficiency, and a collision-free path should be considered first in the process of welding robot path planning. The shortest path length is considered as an optimization objective, and obstacle avoidance is considered as the constraint condition in this paper. First, a grid method is used as a modeling method after the optimization objective is analyzed. For local collision-free path planning, an ant colony algorithm is selected as the search strategy. Then, to overcome the shortcomings of the ant colony algorithm, a secondary optimization is presented to improve the optimization performance. Finally, the particle swarm optimization algorithm is used to realize global path planning. Simulation results show that the desired welding path can be obtained based on the optimization strategy.

  6. MODULAR MANIPULATOR FOR ROBOTICS APPLICATIONS

    Energy Technology Data Exchange (ETDEWEB)

    Joseph W. Geisinger, Ph.D.

    2001-07-31

    ARM Automation, Inc. is developing a framework of modular actuators that can address the DOE's wide range of robotics needs. The objective of this effort is to demonstrate the effectiveness of this technology by constructing a manipulator from these actuators within a glovebox for Automated Plutonium Processing (APP). At the end of the project, the system of actuators was used to construct several different manipulator configurations, which accommodate common glovebox tasks such as repackaging. The modular nature and quickconnects of this system simplify installation into ''hot'' boxes and any potential modifications or repair therein. This work focused on the development of self-contained robotic actuator modules including the embedded electronic controls for the purpose of building a manipulator system. Both of the actuators developed under this project contain the control electronics, sensors, motor, gear train, wiring, system communications and mechanical interfaces of a complete robotics servo device. Test actuators and accompanying DISC{trademark}s underwent validation testing at The University of Texas at Austin and ARM Automation, Inc. following final design and fabrication. The system also included custom links, an umbilical cord, an open architecture PC-based system controller, and operational software that permitted integration into a completely functional robotic manipulator system. The open architecture on which this system is based avoids proprietary interfaces and communication protocols which only serve to limit the capabilities and flexibility of automation equipment. The system was integrated and tested in the contractor's facility for intended performance and operations. The manipulator was tested using the full-scale equipment and process mock-ups. The project produced a practical and operational system including a quantitative evaluation of its performance and cost.

  7. Study on Intelligent Control of Metal Filling System by Welding Robots in the Open Environment

    Directory of Open Access Journals (Sweden)

    Wei Fu

    2014-08-01

    Full Text Available robot model of three-arm and five-degree freedom plus large scope of traversing welding was established, and decoupling of models of “large scope of traversing”, “triangle movement of two arms” and “spherical movement of one arm” was realized. The model of “triangle movement of two arms ”is able to use geometrical calculation to solve the kinematics inverse problem , avoid the multiplicity, improve the calculation speed, eliminate the blind spots of the motions of welding gun of welding robot, and simplify the kinematic pair of kinematic mechanism for the arc filling strategy during welding travelling of robot. Binocular stereo vision camera was used to detect the edges of welds, and laser array sensor was used to detect the amount of metal filling of welds. In completely open conditions, feedback was fused based on sensor data to realize the welding tracking control by welding robot.

  8. Hardware Design and Testing of SUPERball, A Modular Tensegrity Robot

    Science.gov (United States)

    Sabelhaus, Andrew P.; Bruce, Jonathan; Caluwaerts, Ken; Chen, Yangxin; Lu, Dizhou; Liu, Yuejia; Agogino, Adrian K.; SunSpiral, Vytas; Agogino, Alice M.

    2014-01-01

    We are developing a system of modular, autonomous "tensegrity end-caps" to enable the rapid exploration of untethered tensegrity robot morphologies and functions. By adopting a self-contained modular approach, different end-caps with various capabilities (such as peak torques, or motor speeds), can be easily combined into new tensegrity robots composed of rods, cables, and actuators of different scale (such as in length, mass, peak loads, etc). As a first step in developing this concept, we are in the process of designing and testing the end-caps for SUPERball (Spherical Underactuated Planetary Exploration Robot), a project at the Dynamic Tensegrity Robotics Lab (DTRL) within NASA Ames's Intelligent Robotics Group. This work discusses the evolving design concepts and test results that have gone into the structural, mechanical, and sensing aspects of SUPERball. This representative tensegrity end-cap design supports robust and repeatable untethered mobility tests of the SUPERball, while providing high force, high displacement actuation, with a low-friction, compliant cabling system.

  9. Sensor development and integration for robotized laser welding

    NARCIS (Netherlands)

    Iakovou, D.

    2009-01-01

    Laser welding requires fast and accurate positioning of the laser beam over the seam trajectory. The task of accurate positioning of the laser tools is performed by robotic systems. It is therefore necessary to teach the robot the path it has to follow. Seam teaching is implemented in several ways:

  10. Reusable Electronics and Adaptable Communication as Implemented in the Odin Modular Robot

    DEFF Research Database (Denmark)

    Garcia, Ricardo Franco Mendoza; Lyder, Andreas; Christensen, David Johan

    2009-01-01

    This paper describes the electronics and communication system of Odin, a novel heterogeneous modular robot made of links and joints. The electronics is divided into two printed circuit boards: a General board with reusable components and a Specific board with non-reusable components. While...... electrical signals. The implementations of actuator and power links show that splitting the electronics into General and Specific boards allows rapid development of different types of modules, and an analysis of performance indicates that the communication system is simple, fast and flexible....... As the electronic design reuses approx. 50% of components between two different types of modules, we find it convenient for heterogeneous modular robots where production costs demand a small set of parts. In addition, as the features of the communication system are desirable in modular robots, we think...

  11. Playful Interaction with Voice Sensing Modular Robots

    DEFF Research Database (Denmark)

    Heesche, Bjarke; MacDonald, Ewen; Fogh, Rune

    2013-01-01

    This paper describes a voice sensor, suitable for modular robotic systems, which estimates the energy and fundamental frequency, F0, of the user’s voice. Through a number of example applications and tests with children, we observe how the voice sensor facilitates playful interaction between child...... children and two different robot configurations. In future work, we will investigate if such a system can motivate children to improve voice control and explore how to extend the sensor to detect emotions in the user’s voice....

  12. In Silico Investigation of a Surgical Interface for Remote Control of Modular Miniature Robots in Minimally Invasive Surgery

    Directory of Open Access Journals (Sweden)

    Apollon Zygomalas

    2014-01-01

    Full Text Available Aim. Modular mini-robots can be used in novel minimally invasive surgery techniques like natural orifice transluminal endoscopic surgery (NOTES and laparoendoscopic single site (LESS surgery. The control of these miniature assistants is complicated. The aim of this study is the in silico investigation of a remote controlling interface for modular miniature robots which can be used in minimally invasive surgery. Methods. The conceptual controlling system was developed, programmed, and simulated using professional robotics simulation software. Three different modes of control were programmed. The remote controlling surgical interface was virtually designed as a high scale representation of the respective modular mini-robot, therefore a modular controlling system itself. Results. With the proposed modular controlling system the user could easily identify the conformation of the modular mini-robot and adequately modify it as needed. The arrangement of each module was always known. The in silico investigation gave useful information regarding the controlling mode, the adequate speed of rearrangements, and the number of modules needed for efficient working tasks. Conclusions. The proposed conceptual model may promote the research and development of more sophisticated modular controlling systems. Modular surgical interfaces may improve the handling and the dexterity of modular miniature robots during minimally invasive procedures.

  13. Ani-Bot: A Mixed-Reality Ready Modular Robotics System

    OpenAIRE

    Xu, Zhuangying; Cao, Yuanzhi

    2017-01-01

    DIY modular robotics has always had a strong appeal to makers and designers; being able to quickly design, build, and animate their own robots opens the possibility of bringing imaginations to life. However, current interfaces to control and program the DIY robot either lacks connection and consistency between the users and target (Graphical User Interface) or suffers from limited control capabilities due to the lack of versatility and functionality (Tangible User interface). We present Ani-B...

  14. An evolution friendly modular architecture to produce feasible robots

    DEFF Research Database (Denmark)

    Faina, Andres; Bellas, Francisco; Orjales, Felix

    2015-01-01

    This paper proposes the use of a modular robotic architecture in order to produce feasible robots through evolution. To this end, the main requirements the architecture must fulfill are analyzed and a top-down methodology is employed to obtain the different types of modules that make it up...... is described and different experiments provide an indication of how versatile the architecture is for evolving robot morphologies and control for specific tasks and how easy it is to build them....

  15. The Role of Modular Robotics in Mediating Nonverbal Social Exchanges

    DEFF Research Database (Denmark)

    Marti, P; Giusti, L; Lund, Henrik Hautop

    2009-01-01

    This paper outlines the use of modular robotics to encourage and facilitate nonverbal communication during therapeutic intervention in dementia care. A set of new socially interactive modular robotic devices called rolling pins (RPs) has been designed and developed to assist the therapist...... is that they are able to communicate with each other or with other devices equipped with the same radio communication technology. The RPs are usually used in pairs, as the local feedback of an RP can be set depending not only on its own speed and orientation but also on the speed and the orientation of the peer RP...

  16. Research on Kinematic Trajectory Simulation System of KUKA Arc Welding Robot System

    Science.gov (United States)

    Hu, Min

    2017-10-01

    In this paper, the simulation trajectory simulation of KUKA arc welding robot system is realized by means of VC platform. It is used to realize the teaching of professional training of welding robot in middle school. It provides teaching resources for the combination of work and study and integration teaching, which enriches the content of course teaching.

  17. Modular architecture for robotics and teleoperation

    Science.gov (United States)

    Anderson, Robert J.

    1996-12-03

    Systems and methods for modularization and discretization of real-time robot, telerobot and teleoperation systems using passive, network based control laws. Modules consist of network one-ports and two-ports. Wave variables and position information are passed between modules. The behavior of each module is decomposed into uncoupled linear-time-invariant, and coupled, nonlinear memoryless elements and then are separately discretized.

  18. Experience and Applications Up-date: Automation of Arc-Welding Operations Using Robot-Technology

    International Nuclear Information System (INIS)

    Teubel, G.

    1996-01-01

    In a short introduction, the important criteria for the correct choice of a robot cell, taking into account the given application, are highlighted. Furthermore, important hints are listed in terms of management decisions. The second chapter shows the main features of a welding robot cell in line with the present state of the art and describes some new developments with the aim of extending the arc-welding system to new applications such as flame cutting and beveling. The third chapter as centre piece gives an overall view of a brand new network control with many outstanding features for the users of arc-welding robots. the fourth and last chapter shows a recent realisation of a highly sophisticated F.M.S. system for welding, in random sequence, different large and heavy components. (Author) 1 ref

  19. Mechanical Design of Odin, an Extendable Heterogeneous Deformable Modular Robot

    DEFF Research Database (Denmark)

    Lyder, Andreas; Garcia, Ricardo Franco Mendoza; Støy, Kasper

    2008-01-01

    Highly sophisticated animals consist of a set of heterogenous modules decided by nature so that they can survive in a complex environment. In this paper we present a new modular robot inspired by biology called Odin. The Odin robot is based on a deformable lattice and consists of an extendable se...

  20. Sensor based robot laser welding - based on feed forward and gain sceduling algorithms

    DEFF Research Database (Denmark)

    Andersen, Henrik John

    2001-01-01

    A real-time control system forlaser welding of thick steel plates are developed and tested in a industrial environment. The robotic execution of the laser welding process is based on measure weld joint geometry and impirically established welding procedures. The influence of industrial production...

  1. Biologically Inspired Object Localization for a Modular Mobile Robotic System

    Directory of Open Access Journals (Sweden)

    Zlatogor Minchev

    2005-12-01

    Full Text Available The paper considers a general model of real biological creatures' antennae, which is practically implemented and tested, over a real element of a mobile modular robotic system - the robot MR1. The last could be utilized in solving of the most classical problem in Robotics - Object Localization. The functionality of the represented sensor system is described in a new and original manner by utilizing the tool of Generalized Nets - a new likelihood for description, modelling and simulation of different objects from the Artificial Intelligence area including Robotics.

  2. Concept of modular flexure-based mechanisms for ultra-high precision robot design

    Directory of Open Access Journals (Sweden)

    M. Richard

    2011-05-01

    Full Text Available This paper introduces a new concept of modular flexure-based mechanisms to design industrial ultra-high precision robots, which aims at significantly reducing both the complexity of their design and their development time. This modular concept can be considered as a robotic Lego, where a finite number of building bricks is used to quickly build a high-precision robot. The core of the concept is the transformation of a 3-D design problem into several 2-D ones, which are simpler and well-mastered. This paper will first briefly present the theoretical bases of this methodology and the requirements of both types of building bricks: the active and the passive bricks. The section dedicated to the design of the active bricks will detail the current research directions, mainly the maximisation of the strokes and the development of an actuation sub-brick. As for the passive bricks, some examples will be presented, and a discussion regarding the establishment of a mechanical solution catalogue will conclude the section. Last, this modular concept will be illustrated with a practical example, consisting in the design of a 5-degree of freedom ultra-high precision robot.

  3. Three-dimensional construction and omni-directional rolling analysis of a novel frame-like lattice modular robot

    Science.gov (United States)

    Ding, Wan; Wu, Jianxu; Yao, Yan'an

    2015-07-01

    Lattice modular robots possess diversity actuation methods, such as electric telescopic rod, gear rack, magnet, robot arm, etc. The researches on lattice modular robots mainly focus on their hardware descriptions and reconfiguration algorithms. Meanwhile, their design architectures and actuation methods perform slow telescopic and moving speeds, relative low actuation force verse weight ratio, and without internal space to carry objects. To improve the mechanical performance and reveal the locomotion and reconfiguration binary essences of the lattice modular robots, a novel cube-shaped, frame-like, pneumatic-based reconfigurable robot module called pneumatic expandable cube(PE-Cube) is proposed. The three-dimensional(3D) expanding construction and omni-directional rolling analysis of the constructed robots are the main focuses. The PE-Cube with three degrees of freedom(DoFs) is assembled by replacing the twelve edges of a cube with pneumatic cylinders. The proposed symmetric construction condition makes the constructed robots possess the same properties in each supporting state, and a binary control strategy cooperated with binary actuator(pneumatic cylinder) is directly adopted to control the PE-Cube. Taking an eight PE-Cube modules' construction as example, its dynamic rolling simulation, static rolling condition, and turning gait are illustrated and discussed. To testify telescopic synchronization, respond speed, locomotion feasibility, and repeatability and reliability of hardware system, an experimental pneumatic-based robotic system is built and the rolling and turning experiments of the eight PE-Cube modules' construction are carried out. As an extension, the locomotion feasibility of a thirty-two PE-Cube modules' construction is analyzed and proved, including dynamic rolling simulation, static rolling condition, and dynamic analysis in free tipping process. The proposed PE-Cube module, construction method, and locomotion analysis enrich the family of the

  4. Flexible, fpga-based electronics for modular robots

    DEFF Research Database (Denmark)

    Brandt, David; Larsen, Jørgen Christian; Christensen, David Johan

    2008-01-01

    In this paper we introduce electronics for the ATRON self-reconfigurable robot based on field programmable gate arrays (FPGAs). The immediate advantage of using FPGAs is that some of the module’s electronics can be moved into the FPGA, thereby the number of components can be reduced. In the case...... the FPGA and therefore integrate task-specific electronics without physically changing the electronics or we can reconfigure the electronics for specific tasks. The disadvantages of an FPGA-based design include the cost of FPGAs, the extra layer of complexity in programming, and a limited increase in power...... consumption compared to micro-controllers. However, overall FPGAs make the electronics of modular robots more flexible and therefore may make them more suitable for real applications. AB - In this paper we introduce electronics for the ATRON self-reconfigurable robot based on field programmable gate arrays...

  5. Strength analysis and optimization of welding robot mechanism in emergency stop state

    OpenAIRE

    Zdeněk Poruba; Jiří Podešva; Ondřej František; Martin Fusek; Robert Brázda; Marek Sadílek

    2016-01-01

    The contribution deals with the strength analysis and optimization of the welding robot mechanism in emergency stop state. The common operational positioning of the welding robot is characterized by smooth course of speeds in the time. The resulting load does not differ significantly from the static loading. However the safety requirements given by the norm require the ability of emergency stop function. Since the course of speed in time is rather steep the higher values of acceleration and t...

  6. Automated Fuel Element Closure Welding System

    International Nuclear Information System (INIS)

    Wahlquist, D.R.

    1993-01-01

    The Automated Fuel Element Closure Welding System is a robotic device that will load and weld top end plugs onto nuclear fuel elements in a highly radioactive and inert gas environment. The system was developed at Argonne National Laboratory-West as part of the Fuel Cycle Demonstration. The welding system performs four main functions, it (1) injects a small amount of a xenon/krypton gas mixture into specific fuel elements, and (2) loads tiny end plugs into the tops of fuel element jackets, and (3) welds the end plugs to the element jackets, and (4) performs a dimensional inspection of the pre- and post-welded fuel elements. The system components are modular to facilitate remote replacement of failed parts. The entire system can be operated remotely in manual, semi-automatic, or fully automatic modes using a computer control system. The welding system is currently undergoing software testing and functional checkout

  7. Remote machining and robotic welding in a proton cyclotron

    Energy Technology Data Exchange (ETDEWEB)

    Cameron, W; Mark, C

    1984-09-01

    Increasing residual radiation in the TRIUMF meson research facility cyclotron at the University of British Columbia has required development of a remotely operable industrial robot cutting and vacuum tight welding capabili

  8. Soft and smart modular structures actuated by shape memory alloy (SMA) wires as tentacles of soft robots

    Science.gov (United States)

    Jin, Hu; Dong, Erbao; Xu, Min; Liu, Chunshan; Alici, Gursel; Jie, Yang

    2016-08-01

    This paper introduces the design and fabrication of a multi-layered smart modular structure (SMS) that has been inspired by the muscular organs and modularity in soft animals. The SMS is capable of planar reciprocal motion of bending in heating process and recovering in cooling process when SMA wires carry out phase transformation. An adaptive regulation heating strategy is applied to avoid overheating and achieve bending range control of the SMS based on the resistance feedback of the SMA wires which as actuator of the SMS. The SMS can modular assemble soft robots with multiple morphologies such as lateral robots, bilateral robots and actinomorphic robots. A five-armed actinomorphic soft robot is conducted to crawling in terrestrial ground (max speed: 140 mm s-1, 0.7 body s-1), swimming in underwater environment (max speed: 67 mm s-1, 2.5 height s-1) and griping fragile objects (max object weight: 0.91 kg, 15 times the weight of itself). Those demonstrate that the performance of the SMS is good enough to be modular units to establish soft robots which possess a high speed of response, good adaptability and a safe interaction with their environments.

  9. Representation and shape estimation of Odin, a parallel under-actuated modular robot

    DEFF Research Database (Denmark)

    Lyder, Andreas; Petersen, Henrik Gordon; Støy, Kasper

    2009-01-01

    To understand the capabilities and behavior of a robot it is important to have knowledge about its physical structure and how its actuators control its shape. In this paper we analyze the kinematics and develop a general representation of a configuration of the heterogeneous modular robot Odin...... can be used to find the physical constraints of the Odin robot and estimate the shape of a configuration....

  10. Robotic system for orbital welding of pipes; Sistema robotizado para soldagem orbital de dutos

    Energy Technology Data Exchange (ETDEWEB)

    Bracarense, Alexandre Queiroz; Lima, II, Eduardo Jose; Torres, Guilherme Fortunato; Ramalho, Frederico [Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, MG (Brazil); Felizardo, Ivanilza; Zanon, Gislaine Pires [ROTECH Tecnologia Robotica Ltda., Belo Horizonte, MG (Brazil)

    2004-07-01

    This work presents the robotic system projected for orbital welding of pipelines of oil and gas. The system consists of a controller (microcomputer), that allows the execution of all the referring tasks to the welding in an autonomous way, and two manipulates, to what are coupled the welding torches that are connected to a welding power source with double wire feeders. With this system, GMA W process is used to execute the root pass, while FCA W process, besides the GMA W, is used for the filling and finishing passes. The system has four degrees of freedom, allowing the control of stick out, travel speed, torch angle and positioning. Besides these, the arc voltage and and welding current are also controlled during the process. Knowing that for each welding position (plane, vertical up and down and over head) a great group of parameters must be used, several tests were accomplished. With these values a controlled variation could be accomplished in an uninterrupted way when welding position changes, getting the increase of the productivity and also the quality of the weld performed by a robotic system. (author)

  11. Robotic and automatic welding development at the Marshall Space Flight Center

    Science.gov (United States)

    Jones, C. S.; Jackson, M. E.; Flanigan, L. A.

    1988-01-01

    Welding automation is the key to two major development programs to improve quality and reduce the cost of manufacturing space hardware currently undertaken by the Materials and Processes Laboratory of the NASA Marshall Space Flight Center. Variable polarity plasma arc welding has demonstrated its effectiveness on class 1 aluminum welding in external tank production. More than three miles of welds were completed without an internal defect. Much of this success can be credited to automation developments which stabilize the process. Robotic manipulation technology is under development for automation of welds on the Space Shuttle's main engines utilizing pathfinder systems in development of tooling and sensors for the production applications. The overall approach to welding automation development undertaken is outlined. Advanced sensors and control systems methodologies are described that combine to make aerospace quality welds with a minimum of dependence on operator skill.

  12. Strength analysis and optimization of welding robot mechanism in emergency stop state

    Directory of Open Access Journals (Sweden)

    Zdeněk Poruba

    2016-03-01

    Full Text Available The contribution deals with the strength analysis and optimization of the welding robot mechanism in emergency stop state. The common operational positioning of the welding robot is characterized by smooth course of speeds in the time. The resulting load does not differ significantly from the static loading. However the safety requirements given by the norm require the ability of emergency stop function. Since the course of speed in time is rather steep the higher values of acceleration and thus higher excitation force is expected. The dynamical simulation performed describes the response of the robot mechanism in the form of stress course in time, quantifies the peak values of the stress caused by the dynamical component of loading and highlights the potential risks associated with this phenomenon.

  13. Representation and shape estimation of Odin, a parallel under-actuated modular robot

    DEFF Research Database (Denmark)

    Lyder, Andreas; Petersen, Henrik Gordon; Støy, Kasper

    2009-01-01

    To understand the capabilities and behavior of a robot it is important to have knowledge about its physical structure and how its actuators control its shape. In this paper we analyze the kinematics and develop a general representation of a configuration of the heterogeneous modular robot Odin....... The basics of estimating the shape of the Odin robot is presented, which leads the way for further research on the Odin robot and similar robots. We present an example of how to represent and estimate the shape of a tetrahedron configuration with various types of modules. We conclude that this representation...... can be used to find the physical constraints of the Odin robot and estimate the shape of a configuration....

  14. FUZZY REGRESSION MODEL TO PREDICT THE BEAD GEOMETRY IN THE ROBOTIC WELDING PROCESS

    Institute of Scientific and Technical Information of China (English)

    B.S. Sung; I.S. Kim; Y. Xue; H.H. Kim; Y.H. Cha

    2007-01-01

    Recently, there has been a rapid development in computer technology, which has in turn led todevelop the fully robotic welding system using artificial intelligence (AI) technology. However, therobotic welding system has not been achieved due to difficulties of the mathematical model andsensor technologies. The possibilities of the fuzzy regression method to predict the bead geometry,such as bead width, bead height, bead penetration and bead area in the robotic GMA (gas metalarc) welding process is presented. The approach, a well-known method to deal with the problemswith a high degree of fuzziness, is used to build the relationship between four process variablesand the four quality characteristics, respectively. Using these models, the proper prediction of theprocess variables for obtaining the optimal bead geometry can be determined.

  15. Self-reconfiguration of Modular Underwater Robots using an Energy Heuristic

    DEFF Research Database (Denmark)

    Furno, Lidia; Blanke, Mogens; Galeazzi, Roberto

    2017-01-01

    This paper investigates self-reconfiguration of a modular robotic system, which consists of a cluster of modular vehicles that can attach to each other by a connection mechanism. Thereby, they can form a desired morphology to meet task specific requirements. Reconfiguration can be needed due to limi...... in morphologies. The properties of the proposed self-reconfiguration algorithm are evaluated through simulations and preliminary model tank experiments. The energy based heuristic for reconfiguration is compared to a traditional solution that minimizes the Euclidean distance....

  16. Truss Assembly and Welding by Intelligent Precision Jigging Robots

    Science.gov (United States)

    Komendera, Erik; Dorsey, John T.; Doggett, William R.; Correll, Nikolaus

    2014-01-01

    This paper describes an Intelligent Precision Jigging Robot (IPJR) prototype that enables the precise alignment and welding of titanium space telescope optical benches. The IPJR, equipped with micron accuracy sensors and actuators, worked in tandem with a lower precision remote controlled manipulator. The combined system assembled and welded a 2 m truss from stock titanium components. The calibration of the IPJR, and the difference between the predicted and the truss dimensions as-built, identified additional sources of error that should be addressed in the next generation of IPJRs in 2D and 3D.

  17. Modular robot

    International Nuclear Information System (INIS)

    Ferrante, T.A.

    1997-01-01

    A modular robot may comprise a main body having a structure defined by a plurality of stackable modules. The stackable modules may comprise a manifold, a valve module, and a control module. The manifold may comprise a top surface and a bottom surface having a plurality of fluid passages contained therein, at least one of the plurality of fluid passages terminating in a valve port located on the bottom surface of the manifold. The valve module is removably connected to the manifold and selectively fluidically connects the plurality of fluid passages contained in the manifold to a supply of pressurized fluid and to a vent. The control module is removably connected to the valve module and actuates the valve module to selectively control a flow of pressurized fluid through different ones of the plurality of fluid passages in the manifold. The manifold, valve module, and control module are mounted together in a sandwich-like manner and comprise a main body. A plurality of leg assemblies are removably connected to the main body and are removably fluidically connected to the fluid passages in the manifold so that each of the leg assemblies can be selectively actuated by the flow of pressurized fluid in different ones of the plurality of fluid passages in the manifold. 12 figs

  18. A development of an automated ultrasonic TOFD inspection system using an welding line tracing robot

    International Nuclear Information System (INIS)

    Cho, Hyun; Song, Sung Jin; Lee, Kang Won; Kim, Young Jin; Woo, Jong Sik

    2006-01-01

    Large scaled ships, manufactured inside of the country, should be passed welding inspection and painting film inspection. Normally, these kind of inspections are conducted by human inspectors manually, although it cause industrial disasters such as falling accidents and diving accidents frequently. In addition, Ship makers are not to give a full trust to shipowners because manual inspections cannot be conducted all over the welding parts. So, in this study we developed an automated ultrasonic TOFD inspection system using an welding line tracing robot. This system, controlled by an inspector at a remote field, can inspect welding parts of ship outer panel both under water and in air. In this paper we present the developed robot and ultrasonic TOFD inspection system and the inspection result.

  19. A development of an automated ultrasonic TOFD inspection system using an welding line tracing robot

    International Nuclear Information System (INIS)

    Cho, Hyun; Song, Sung Jin; Lee, Kang Won; Kim, Young Jin; Woo, Jong Sik

    2006-01-01

    Large scaled ships, manufactured inside of the country, should be passed welding inspection and painting film inspection. Normally, these kind of inspections are conducted by human inspectors manually, although it cause industrial disasters such as falling accidents and diving accidents frequently. In addition, Ship makers are not to give a full trust to ship owners because manual inspections cannot be conducted all over the welding parts. So, in this study we developed an automated ultrasonic TOFD inspection system using an welding line tracing robot. This system, controlled by an inspector at a remote field, can inspect welding parts of ship outer panel both under water and in air. In this paper we present the developed robot and ultrasonic TOFD inspection system and the inspection result.

  20. Design of a Robust Stair Climbing Compliant Modular Robot to Tackle Overhang on Stairs

    OpenAIRE

    Bhole, Ajinkya; Turlapati, Sri Harsha; S, Rajashekhar V.; Dixit, Jay; Shah, Suril V.; Krishna, K Madhava

    2016-01-01

    This paper discusses the concept and parameter design of a Robust Stair Climbing Compliant Modular Robot, capable of tackling stairs with overhangs. Modifying the geometry of the periphery of the wheels of our robot helps in tackling overhangs. Along with establishing a concept design, robust design parameters are set to minimize performance variation. The Grey-based Taguchi Method is adopted for providing an optimal setting for the design parameters of the robot. The robot prototype is shown...

  1. A MODULAR ACTUATOR ARCHITECTURE FOR ROBOTIC APPLICATIONS

    Energy Technology Data Exchange (ETDEWEB)

    None

    2001-07-01

    .'s (ARM) modular robotic manipulator technology developed for DOE EM operations, which addresses many of the issues discussed in the previous section. This manipulator system has the capability of custom configurations, which accommodate common glovebox tasks such as materials repackaging. The modular nature and quick connects of this system simplify installations into ''hot'' boxes and any potential modifications or repair therein. In the field of automation and robotics, a very common element is one used to generate motion for precise positioning of loads. One example of such an automation component would be an individual joint within an industrial robotic manipulator. This component consists of a tightly integrated package containing an electric motor, gear train, output support bearings, position sensors, brake, servo-amplifier and communications controller. Within the context of this paper, this key building block is referred to as an actuator module. With regard to the needs of the EM, [8] and [9] have shown that while each focus area has unique requirements for robotic automation at a system or manipulator level, their requirements at the actuator level are very similar. Thereby, a modular approach to automation which utilizes a small set of versatile actuator modules can be used to construct a broad range of robotic systems and automation cells suited to EM applications. By providing a pre-engineered, pre-integrated motion system to different robotics users within the DOE, new automation systems can be more quickly created without extensive expertise in motion control or the expense of building custom equipment.

  2. A MODULAR ACTUATOR ARCHITECTURE FOR ROBOTIC APPLICATIONS

    International Nuclear Information System (INIS)

    None

    2001-01-01

    .'s (ARM) modular robotic manipulator technology developed for DOE EM operations, which addresses many of the issues discussed in the previous section. This manipulator system has the capability of custom configurations, which accommodate common glovebox tasks such as materials repackaging. The modular nature and quick connects of this system simplify installations into ''hot'' boxes and any potential modifications or repair therein. In the field of automation and robotics, a very common element is one used to generate motion for precise positioning of loads. One example of such an automation component would be an individual joint within an industrial robotic manipulator. This component consists of a tightly integrated package containing an electric motor, gear train, output support bearings, position sensors, brake, servo-amplifier and communications controller. Within the context of this paper, this key building block is referred to as an actuator module. With regard to the needs of the EM, [8] and [9] have shown that while each focus area has unique requirements for robotic automation at a system or manipulator level, their requirements at the actuator level are very similar. Thereby, a modular approach to automation which utilizes a small set of versatile actuator modules can be used to construct a broad range of robotic systems and automation cells suited to EM applications. By providing a pre-engineered, pre-integrated motion system to different robotics users within the DOE, new automation systems can be more quickly created without extensive expertise in motion control or the expense of building custom equipment

  3. Robust Control of Welding Robot for Tracking a Rectangular Welding Line

    Directory of Open Access Journals (Sweden)

    Manh Dung Ngo

    2008-11-01

    Full Text Available This paper highlights a welding robot (WR for its end effector to track a rectangular welding line (RWL. The WR includes five actuators which use a DC motor as a power source. Two controllers are proposed to control the WR's end effector: a main controller and a servo controller. Firstly, based on WR's kinematic equations and its feedback errors using backstepping method the main controller is proposed to design the reference-inputs for the WR's actuators in order that the WR's end effector tracks the RWL. Secondly, based on the dynamic equation of WR's actuator, the servo controller is designed using an active disturbance rejection control method. Finally, a control system incorporated with the main controller and the servo controllers make the WR's end effector robustly track a RWL in the presence of the modeling uncertainty and disturbances during the welding process. In experiment, the main controller which has a function as a master of the control system links to the five servo controllers which have a function as a slave via I2C communication. The effectiveness of the proposed control system is proven through the simulation and experimental results.

  4. Robust Control of Welding Robot for Tracking a Rectangular Welding Line

    Directory of Open Access Journals (Sweden)

    Manh Dung Ngo

    2006-09-01

    Full Text Available This paper highlights a welding robot (WR for its end effector to track a rectangular welding line (RWL. The WR includes five actuators which use a DC motor as a power source. Two controllers are proposed to control the WR's end effector: a main controller and a servo controller. Firstly, based on WR's kinematic equations and its feedback errors using backstepping method the main controller is proposed to design the reference-inputs for the WR's actuators in order that the WR's end effector tracks the RWL. Secondly, based on the dynamic equation of WR's actuator, the servo controller is designed using an active disturbance rejection control method. Finally, a control system incorporated with the main controller and the servo controllers make the WR's end effector robustly track a RWL in the presence of the modeling uncertainty and disturbances during the welding process. In experiment, the main controller which has a function as a master of the control system links to the five servo controllers which have a function as a slave via I2C communication. The effectiveness of the proposed control system is proven through the simulation and experimental results.

  5. Work organisation and quality control in a welding robotic cell

    OpenAIRE

    Moniz, António

    1993-01-01

    In this paper is analyzed the work organization and the forms of quality control in a robotic welding station in a company of office equipment and metal components manufacturing. The robotic cell is recent and works in two shifts. Quality and production rationalization implied in this firms the adoption of a strategy of organization of teamwork, and it is supported the collaborative tools to decrease the possibilities for errors and to improve means and methods of manufacturing. The analysis ...

  6. Adaptive control of penetration and joint following for robotic GTA welding

    International Nuclear Information System (INIS)

    Bahram Mir Sadeghi; Hishamuddin Jamaludin; Iskandar Baharin

    1997-01-01

    A statistical-based method for adaptive control of weld pool penetration and joint following in Tungsten Inert Gas Welding as an approach to process and trajectory control of robotic GTA welding has been designed and simulated. Welding process parameters such as: base current and time, pulse current and time, electrode tip to work piece distance, filler travelling speed, torch speed and work piece thickness were used for finding the equations which describe the interrelationship between the aforementioned variables and penetration depth as well as bead width. The calculation of these equations was developed from the statistical regression analysis of 80 welds deposited using various combinations of welding parameters. For monitoring of the work piece thickness variations, an ultrasonic device was used. In order to control the weld trajectory, a CCD camera was also used. The results showed that the misalignment of the progressive heat affected zone which is adjacent to the weld puddle can be detected, and used for control of the weld trajectory. Also, it was found that scanning of a certain region of the captured image in front of the weld puddle decreases the data processing time drastically

  7. A Low Cost, Modular Robotics Tool Carrier For Precision Agriculture Research

    DEFF Research Database (Denmark)

    Nielsen, S H; Jensen, K; Bøgild, A

    of operation. Armadillos industrial grade Linux based FroboBox computer runs the FroboMind architecture which is based on the Robot Operating System (ROS) by Willow Garage. FroboMind is a novel generic architecture that has been implemented and successfully tested on different field robots. It has been...... developed for research within precision agriculture and the design is highly modular in order to optimize with respect to extensibility, scalability, short development time and code reuse. All FroboMind software components used for the Armadillo robot are released as open-source. A prototype of Armadillo...... focus on further improving the Armadillo hardware and software and application to new research projects....

  8. Design of the Intersector Welding Robot for vacuum vessel assembly and maintenance

    International Nuclear Information System (INIS)

    Jones, L.; Dagenais, J.-F.; Daenner, W.; Maisonnier, D.

    2000-01-01

    Next Step Fusion Devices require on-site (field weld) joining of sectors of the thick-walled vacuum vessel for structural and vacuum integrity. EFDA (European Fusion Development Agreement) is supporting an R and D programme to investigate processes for assembly of the vacuum vessel and to carry out cutting, re-welding and inspection for remote sector replacement, forming part of the overall VV/blanket research effort. In order to direct the process end-effectors along the field joint zone, a track-mounted Intersector Welding Robot (IWR) on a mock-up of a region of the vacuum vessel has been designed and is described in this paper. A rail-mounted hexapod type robot offers six axes of motion over a limited work envelope with high payload to robot weight ratio. A solution to the production of reduced pressure local vacuum is the installation of short, lightweight segments bolted to each other and the vessel wall. The various process heads can be mounted using end-effectors of special design. To minimise the supply and interface problems for the IWR prototype, its motion control and electronic systems will be embedded locally. A laser scan with camera forms the on-line seam tracking capability to compensate for rail and seam deviations

  9. Remote machining and robotic welding in a proton cyclotron

    International Nuclear Information System (INIS)

    Cameron, W.; Mark, C.

    1984-01-01

    Increasing residual radiation in the TRIUMF meson research facility cyclotron at the University of British Columbia has required development of a remotely operable industrial robot cutting and vacuum tight welding capability for modification and updating of vacuum tank access ports, and for possible repairs of leaks or holes in the vacuum tank periphery

  10. A MODULAR DESIGN OF A WALL-CLIMBING ROBOT AND ITS MECHATRONICS CONTROLLER

    Directory of Open Access Journals (Sweden)

    N.S. Tlale

    2012-01-01

    Full Text Available

    ENGLISH ABSTRACT: The modular design of a wall-climbing robot, implementing two articulated legs per module (biped robotic modules, is presented in this paper. Modular design improves a wall-climbing robot’s manoeuvrability and flexibility during surface changes or while walking on uneven surfaces. The design of the articulated legs uses four motors to control the posture of the vacuum cups, achieving the best possible contact with the surface. Each leg can contain more than five sensors for effective feedback control, and additional sensors such as gyros, CCD sensors, etc, can be fitted on a module, depending on the robot’s application. As the number of modules used in the design of the robot is increased, the number of actuators and sensors increases exponentially. A distributed mechatronics controller of such systems is presented.

    AFRIKAANSE OPSOMMING: Modulêre ontwerp van 'n muurklim-robot met twee geskarnierde bene per module (twee-benige robotmodules word in hierdie artikel weergegee. Modulêre ontwerp verbeter die muurklim-robot se beweeglikheid en aanpasbaarheid tydens veranderings in die loopvlak of terwyl dit loop op ongelyke oppervlaktes. Ontwerp van geskarnierde bene implementeer vier motors wat die oriëntasie van vakuumsuigdoppe beheer om die bes moontlike kontak met die loopvlak te handhaaf. Elke been kan meer as vyf sensors hê vir doeltreffende terugvoerbeheer, en bykomende sensors soos giroskope, CCD sensors, ens. kan by 'n module gevoeg word soos die toepassing van die robot dit mag vereis. Soos die aantal modules wat in die ontwerp van die robot gebruik word, toeneem, neem die aantal aktiveerders en sensors eksponensiëel toe. 'n Verdeelde megatroniese beheerder van sulke stelsels word aangebied.

  11. Towards Python-based Domain-specific Languages for Self-reconfigurable Modular Robotics Research

    DEFF Research Database (Denmark)

    Moghadam, Mikael; Christensen, David Johan; Brandt, David

    2011-01-01

    communication, module identification, easy software transfer and reliable module-to-module communication. The end result is a software platform for modular robots that where appropriate builds on existing work in operating systems, virtual machines, middleware and high-level languages....

  12. A robotic platform for laser welding of corneal tissue

    Science.gov (United States)

    Rossi, Francesca; Micheletti, Filippo; Magni, Giada; Pini, Roberto; Menabuoni, Luca; Leoni, Fabio; Magnani, Bernardo

    2017-07-01

    Robotic surgery is a reality in several surgical fields, such as in gastrointestinal surgery. In ophthalmic surgery the required high spatial precision is limiting the application of robotic system, and even if several attempts have been designed in the last 10 years, only some application in retinal surgery were tested in animal models. The combination of photonics and robotics can really open new frontiers in minimally invasive surgery, improving the precision, reducing tremor, amplifying scale of motion, and automating the procedure. In this manuscript we present the preliminary results in developing a vision guided robotic platform for laser-assisted anterior eye surgery. The robotic console is composed by a robotic arm equipped with an "end effector" designed to deliver laser light to the anterior corneal surface. The main intended application is for laser welding of corneal tissue in laser assisted penetrating keratoplasty and endothelial keratoplasty. The console is equipped with an integrated vision system. The experiment originates from a clear medical demand in order to improve the efficacy of different surgical procedures: when the prototype will be optimized, other surgical areas will be included in its application, such as neurosurgery, urology and spinal surgery.

  13. Rapid prototyping using robot welding : process description

    OpenAIRE

    Ribeiro, António Fernando; Norrish, John

    1997-01-01

    Rapid Prototyping is a relatively recent technique to produce component prototypes for industry in a much shorter period of time, since the time to market a product is essential to its success. A new Rapid Prototyping process which uses metal as the raw material had been under development at Cranfield University in the last few years. The process uses a Gas Metal Arc fusion welding robot which deposits successive layers of metal in such way that it forms a 3D solid component. Firstly, a CAD s...

  14. Evaluation of Distortion in Welding Unions of 304 Stainless Steel with Elliptic Trajectory Using a Welding Robot

    Science.gov (United States)

    Carrasco-González, L. A.; Hurtado-Delgado, E.; Reyes-Valdés, F. A.

    The aim of this investigation is to evaluate the distortions generated in welding unions of stainless steel 304 by effect of the welding temperature and the microestructural changes. The joint design is a 100 × 100 mm steel plate of 3 mm thickness. The plate was joined to a tube of 50 mm diameter and 2 mm thickness, which has a defined angular cut; therefore, the trajectory followed by the seam has an elliptic form. Temperature data acquisition was developed by type K thermocouples, placed in pairs at 0°, 90°, 180° and 270° along the welding trajectory and connected to a data acquisition device yo obtain the measures to generate time-temperature plots. The welding process was executed by a KUKA ®; KR16 welding robot with an integrated GMAW (Gas metal arc welding) process where the input parameters of voltage, wire feed and travel speed are set to constant. The distortion of the work piece was measured using a laser scanning technique that generates a point cloud with the VXelements TM software for comparison between the pre and post-weld condition. Microstructural evaluation was performed on transversal sections of the seam, at the mentioned angles for correlation.

  15. Intelligent Control of Welding Gun Pose for Pipeline Welding Robot Based on Improved Radial Basis Function Network and Expert System

    Directory of Open Access Journals (Sweden)

    Jingwen Tian

    2013-02-01

    Full Text Available Since the control system of the welding gun pose in whole-position welding is complicated and nonlinear, an intelligent control system of welding gun pose for a pipeline welding robot based on an improved radial basis function neural network (IRBFNN and expert system (ES is presented in this paper. The structure of the IRBFNN is constructed and the improved genetic algorithm is adopted to optimize the network structure. This control system makes full use of the characteristics of the IRBFNN and the ES. The ADXRS300 micro-mechanical gyro is used as the welding gun position sensor in this system. When the welding gun position is obtained, an appropriate pitch angle can be obtained through expert knowledge and the numeric reasoning capacity of the IRBFNN. ARM is used as the controller to drive the welding gun pitch angle step motor in order to adjust the pitch angle of the welding gun in real-time. The experiment results show that the intelligent control system of the welding gun pose using the IRBFNN and expert system is feasible and it enhances the welding quality. This system has wide prospects for application.

  16. Study on Laser Welding Process Monitoring Method

    OpenAIRE

    Knag , Heeshin

    2017-01-01

    International audience; In this paper, a study of quality monitoring technology for the laser welding was conducted. The laser welding and the industrial robotic systems were used with robot-based laser welding systems. The laser system used in this study was 1.6 kW fiber laser, while the robot system was Industrial robot (pay-load : 130 kg). The robot-based laser welding system was equipped with a laser scanner system for remote laser welding. The welding joints of steel plate and steel plat...

  17. Study on Laser Welding Process Monitoring Method

    OpenAIRE

    Heeshin Knag

    2016-01-01

    In this paper, a study of quality monitoring technology for the laser welding was conducted. The laser welding and the industrial robotic systems were used with robot-based laser welding systems. The laser system used in this study was 1.6 kW fiber laser, while the robot system was Industrial robot (pay-load : 130 kg). The robot-based laser welding system was equipped with a laser scanner system for remote laser welding. The welding joints of steel plate and steel plate coated with zinc were ...

  18. Towards Python-based Domain-specific Languages for Self-reconfigurable Modular Robotics Research

    DEFF Research Database (Denmark)

    Moghadam, Mikael; Johan Christensen, David; Brandt, David

    2013-01-01

    This paper explores the role of operating system and high-level languages in the development of software and domain-specific languages (DSLs) for self-reconfigurable robotics. We review some of the current trends in self-reconfigurable robotics and describe the development of a software system...... for ATRON II which utilizes Linux and Python to significantly improve software abstraction and portability while providing some basic features which could prove useful when using Python, either stand-alone or via a DSL, on a self-reconfigurable robot system. These features include transparent socket...... communication, module identification, easy software transfer and reliable module-to-module communication. The end result is a software platform for modular robots that where appropriate builds on existing work in operating systems, virtual machines, middleware and high-level languages....

  19. IMPROVEMENT OF WELDED CONNECTIONS WITH SIDE LAP WELDS BY REDISTRIBUTION OF ALL-WELD METAL ALONG LENGTHS AND CROSS-SECTIONS THEREOF USING MECHANIZED AND ROBOTIC WELDING SYSTEMS

    Directory of Open Access Journals (Sweden)

    Pavlov Evgeniy Igorevich

    2017-05-01

    Full Text Available Experimental study of bearing capacity of samples of two series performed by semiautomatic welding in CO2 on the axis, and by robotic welding machine in mixture (CO2 + Ar, is presented. Welds of constant cross section, welds with extended leg on end sections, and welds in the form of two dowels on end sections were performed. Efficiency of pilot samples of the first series (with extended leg on end sections by way of a smooth transition defined by the ratio of weld metal volume to a crushing load reaches 28 % relative to samples with a leg constant as per length. Samples of the first series with an extended leg on end sections also showed efficiency increased to 17 %. According to the second series samples test results, the exceeding of bearing capacity of the samples performed with an extended leg on end sections by 24 % in comparison with the samples with a leg of constant cross section was determined. Samples of the second series performed in the form of two dowels on end sections demonstrated the exceeding of the relative bearing capacity by 42 % in comparison with the samples with a continuous leg of constant cross-section.

  20. EvoBot: An Open-Source, Modular Liquid Handling Robot for Nurturing Microbial Fuel Cells

    DEFF Research Database (Denmark)

    Faina, Andres; Nejatimoharrami, Farzad; Støy, Kasper

    2016-01-01

    makes it difficult to apply conventional liquid handling robots as they are designed to automate a predefined task. In order to address these issues, we have developed an open source liquid handling robot, EvoBot. It uses a modular approach, which gives us the possibility to reconfigure the robot...... for different experiments and make it possible for users to add functionality by just developing a function specific module. In addition, it provides sensors and extra functionality for monitoring an experiment, which allows researchers to perform interactive experiments with the aim of prolonging non...

  1. Modular Robotic System as Multisensory Room in Children’s Hospital

    DEFF Research Database (Denmark)

    Lund, Henrik Hautop; Henningsen, Anders; Nielsen, Rasmus

    2009-01-01

    immediate feedback based upon physical interaction with the system. The modularity, ease of use and the functionality of the devices such as modular robotic tiles and cubic I-BLOCKS suit well into these kinds of scenarios, because they can provide feedback in terms of light, vibration, sound and possibly...... of the tests conducted here at a children’s hospital, is that it was found to be very important to create feedback that was easily recognised by the users, and it was found that the interaction was boring if the feedback was too implicit (subtle) and not well understood by the user. Instead, users appreciated...... explicit immediate feedback very much because it was obvious and understandable, and did not require any a priori knowledge of the application....

  2. Voltage balancing in modular energy storage of power supply for micro resistance welding

    Directory of Open Access Journals (Sweden)

    Kozhushko Yu. V.

    2017-10-01

    Full Text Available Micro resistance welding is one of the most effective ways to obtain permanent joints of metal parts. The quality of welded joints strongly depends on the characteristics of the power supply of welding equipment. The power supplies for micro resistance welding based on Energy Storage topology have a softer impact on the network than the ones based on Direct Energy topology. The use of supercapacitors for Energy Storage type power supplies makes it possible to reduce the dimensions of welding equipment and to improve its technical parameters. However, the feature of the supercapacitors is low value of the nominal voltage, which usually does not exceed 3 V. To provide higher voltage, the modules of supercapacitors connected in series are designed. In order to extend the life time of such modules, a voltage balancing system is required. A circuit for balancing the voltage of a modular supercapacitor energy storage of a power supply for micro resistance welding is proposed. The fragments of calculation of control units of a supercapacitor module cell are given. The simulation of the balancing circuit operation is carried out and time charts of the supercapacitor charge process are obtained. The operability and effectiveness of the proposed solution is confirmed. The advantage of the proposed circuit is the possibility of obtaining the high efficiency because of returning the excessive energy of the module cell back into the power supply.

  3. Coating application procedure qualification for internal girth weld using a robot device

    Energy Technology Data Exchange (ETDEWEB)

    Koebsch, Andre; Cunha, Bruno Rocha Marques da; Barreto, Eduardo Chave; Nunes, Erik Barbosa; Solymossy, Victor [PETROBRAS S.A., Rio de Janeiro, RJ (Brazil)

    2009-12-19

    This year PETROBRAS complete 55 years old filling up our country of energy necessary to support our development. Some oil fields, especially from the northeast region, has being had their production decrease by their ageing. In order to have their live protracted some retrieval technical has being used. For example we can mention gas lift, production water injection, CO{sub 2} injection and so on. The produced water even treated has an elevated tenor of chloride, acid ph, presence of organics acids, H{sub 2}S and no O{sub 2}. The water became too corrosive by those characteristics. Due to it an anti corrosive coating application is demanded on the pipe internal surface and on the girth weld. The pipes are coated in a coating plant and it has a qualified coating procedure. Therefore an application of anti corrosive coating is demanded on the girth weld after the pipe welding. To accomplish this job an application procedure was developed using a robot. The PETROBRAS' Engineer witnesses the PQT of this procedure aiming to guarantee the applied coating quality. This paper will show the PQT results and a basic description of the robot operation. (author)

  4. Modular ankle robotics training in early subacute stroke: a randomized controlled pilot study.

    Science.gov (United States)

    Forrester, Larry W; Roy, Anindo; Krywonis, Amanda; Kehs, Glenn; Krebs, Hermano Igo; Macko, Richard F

    2014-09-01

    BACKGROUND. Modular lower extremity robotics may offer a valuable avenue for restoring neuromotor control after hemiparetic stroke. Prior studies show that visually guided and visually evoked practice with an ankle robot (anklebot) improves paretic ankle motor control that translates into improved overground walking. To assess the feasibility and efficacy of daily anklebot training during early subacute hospitalization poststroke. Thirty-four inpatients from a stroke unit were randomly assigned to anklebot (n = 18) or passive manual stretching (n = 16) treatments. All suffered a first stroke with residual hemiparesis (ankle manual muscle test grade 1/5 to 4/5), and at least trace muscle activation in plantar- or dorsiflexion. Anklebot training employed an "assist-as-needed" approach during >200 volitional targeted paretic ankle movements, with difficulty adjusted to active range of motion and success rate. Stretching included >200 daily mobilizations in these same ranges. All sessions lasted 1 hour and assessments were not blinded. Both groups walked faster at discharge; however, the robot group improved more in percentage change of temporal symmetry (P = .032) and also of step length symmetry (P = .038), with longer nonparetic step lengths in the robot (133%) versus stretching (31%) groups. Paretic ankle control improved in the robot group, with increased peak (P ≤ .001) and mean (P ≤ .01) angular speeds, and increased movement smoothness (P ≤ .01). There were no adverse events. Though limited by small sample size and restricted entry criteria, our findings suggest that modular lower extremity robotics during early subacute hospitalization is well tolerated and improves ankle motor control and gait patterning. © The Author(s) 2014.

  5. Study on robot motion control for intelligent welding processes based on the laser tracking sensor

    Science.gov (United States)

    Zhang, Bin; Wang, Qian; Tang, Chen; Wang, Ju

    2017-06-01

    A robot motion control method is presented for intelligent welding processes of complex spatial free-form curve seams based on the laser tracking sensor. First, calculate the tip position of the welding torch according to the velocity of the torch and the seam trajectory detected by the sensor. Then, search the optimal pose of the torch under constraints using genetic algorithms. As a result, the intersection point of the weld seam and the laser plane of the sensor is within the detectable range of the sensor. Meanwhile, the angle between the axis of the welding torch and the tangent of the weld seam meets the requirements. The feasibility of the control method is proved by simulation.

  6. Sensor controlled robotic welding for nuclear applications. Annual progress report

    International Nuclear Information System (INIS)

    Chin, B.A.; Madsen, N.H.; Goodling, J.S.

    1986-01-01

    Significant accomplishments towards the development of an adaptive robotic welding system have been made during the first eight months of the project. The project is currently within budget and on schedule. Accomplishments were both scientific and programmatic in form. A list of the scientific accomplishments follows: demonstrated that the thermal profiles generated for intentionally induced defects during the welding process are similar in steel, aluminum and stainless steel. The conclusion is therefore that infrared sensing is applicable to the welding of over 90% of all materials used in the energy industry. Completed design and testing of a first generation communication system used to transfer information from the infrared camera to the computer in a near real time form. This demonstrates that information can be obtained, sorted, transferred and received in a time frame consistent with on-line process control. Demonstrated rudimentary seam tracking using infrared sensing and closed loop logic routines. A linear relationship exists between measured peak surface temperature and depth of penetration. Similarily, a linear relationship exists between measured infrared width and weld bead width. These relations suggest that penetration parameters may be controlled using surface measurements as obtained by infrared thermography

  7. Welding mechanization in shipyard CIM; Zosen ni okeru yosetsu no jidoka robot ka CIM ka

    Energy Technology Data Exchange (ETDEWEB)

    Miyazaki, T. [Hitachi Zosen Corp., Osaka (Japan)

    1997-12-01

    This paper explains development and examples of application of automated welding devices from a viewpoint of an element technology constituting computer integrated manufacturing (CIM), based on the history of modernization of shipyards that has been achieved to date. In the first step of promoting the modernization, elevating cutting accuracy in the uppermost stream process was thought a starting point of rationalization. What have been achieved therefrom are adoption of the most advanced NC plasma cutting machine, and improvement in the computer aided system for the cutting machines. In addition, a twenty-electrode line welder has been developed, which does not create angle deformation in welding longerons, and can be operated even by unskilled workers. The welder has successfully realized a construction method in which robots can be applied more easily. Further developments have been made on a robot to weld cells, advanced CAD/CAM operation techniques which are linked with data from design, an automatic one-side welding device which can achieve a speed 2.5 times greater than by conventional devices, and an automation device for three-dimensionally bent blocks, whose automation has been regarded difficult. 11 figs., 1 tab.

  8. Modular Ankle Robotics Training in Early Sub-Acute Stroke: A Randomized Controlled Pilot Study

    Science.gov (United States)

    Forrester, Larry W.; Roy, Anindo; Krywonis, Amanda; Kehs, Glenn; Krebs, Hermano Igo; Macko, Richard F.

    2014-01-01

    Background Modular lower extremity (LE) robotics may offer a valuable avenue for restoring neuromotor control after hemiparetic stroke. Prior studies show that visually-guided and visually-evoked practice with an ankle robot (anklebot) improves paretic ankle motor control that translates into improved overground walking. Objective Assess the feasibility and efficacy of daily anklebot training during early sub-acute hospitalization post-stroke. Methods Thirty-four inpatients from a stroke unit were randomly assigned to anklebot (N=18) or passive manual stretching (N=16) treatments. All suffered a first stroke with residual hemiparesis (ankle manual muscle test grade 1/5 to 4/5), and at least trace muscle activation in plantar- or dorsiflexion. Anklebot training employed an “assist-as-needed” approach during > 200 volitional targeted paretic ankle movements, with difficulty adjusted to active range of motion and success rate. Stretching included >200 daily mobilizations in these same ranges. All sessions lasted 1 hour and assessments were not blinded. Results Both groups walked faster at discharge, however the robot group improved more in percent change of temporal symmetry (p=0.032) and also of step length symmetry (p=0.038), with longer nonparetic step lengths in the robot (133%) vs. stretching (31%) groups. Paretic ankle control improved in the robot group, with increased peak (p≤ 0.001) and mean (p≤ 0.01) angular speeds, and increased movement smoothness (p≤ 0.01). There were no adverse events. Conclusion Though limited by small sample size and restricted entry criteria, our findings suggest that modular lower extremity robotics during early sub-acute hospitalization is well tolerated and improves ankle motor control and gait patterning. PMID:24515923

  9. A distributed and morphology-independent strategy for adaptive locomotion in self-reconfigurable modular robots

    DEFF Research Database (Denmark)

    Christensen, David Johan; Schultz, Ulrik Pagh; Stoy, Kasper

    2013-01-01

    In this paper, we present a distributed reinforcement learning strategy for morphology-independent lifelong gait learning for modular robots. All modules run identical controllers that locally and independently optimize their action selection based on the robot’s velocity as a global, shared reward...

  10. Dynamic modelling, identification and simulation of industrial robots – for off-line programming of robotised laser welding

    NARCIS (Netherlands)

    Waiboer, R.R.

    2007-01-01

    Robotised laser welding is an innovative joining technique which is increasingly finding applications, especially in the automotive industry. In order to reduce the time needed to prepare and programthe laser welding robot, off-line programming systems are used. The off-line programming systems

  11. Modularity and Sparsity: Evolution of Neural Net Controllers in Physically Embodied Robots

    Directory of Open Access Journals (Sweden)

    Nicholas Livingston

    2016-12-01

    Full Text Available While modularity is thought to be central for the evolution of complexity and evolvability, it remains unclear how systems boot-strap themselves into modularity from random or fully integrated starting conditions. Clune et al. (2013 suggested that a positive correlation between sparsity and modularity is the prime cause of this transition. We sought to test the generality of this modularity-sparsity hypothesis by testing it for the first time in physically embodied robots. A population of ten Tadros — autonomous, surface-swimming robots propelled by a flapping tail — was used. Individuals varied only in the structure of their neural net control, a 2 x 6 x 2 network with recurrence in the hidden layer. Each of the 60 possible connections was coded in the genome, and could achieve one of three states: -1, 0, 1. Inputs were two light-dependent resistors and outputs were two motor control variables to the flapping tail, one for the frequency of the flapping and the other for the turning offset. Each Tadro was tested separately in a circular tank lit by a single overhead light source. Fitness was the amount of light gathered by a vertically oriented sensor that was disconnected from the controller net. Reproduction was asexual, with the top performer cloned and then all individuals entered into a roulette wheel selection process, with genomes mutated to create the offspring. The starting population of networks was randomly generated. Over ten generations, the population’s mean fitness increased two-fold. This evolution occurred in spite of an unintentional integer overflow problem in recurrent nodes in the hidden layer that caused outputs to oscillate. Our investigation of the oscillatory behavior showed that the mutual information of inputs and outputs was sufficient for the reactive behaviors observed. While we had predicted that both modularity and sparsity would follow the same trend as fitness, neither did so. Instead, selection gradients

  12. Comparison of robot surgery modular and total knee arthroplasty kinematics.

    Science.gov (United States)

    Yildirim, Gokce; Fernandez-Madrid, Ivan; Schwarzkopf, Ran; Walker, Peter S; Karia, Raj

    2014-04-01

    The kinematics of seven knee specimens were measured from 0 to 120 degrees flexion using an up-and-down crouching machine. Motion was characterized by the positions of the centers of the lateral and medial femoral condyles in the anterior-posterior direction relative to a fixed tibia. A modular unicompartmental knee, trochlea flange, and patella resurfacing (multicompartmental knee [MCK] system) were implanted using a surgeon-interactive robot system that provided accurate surface matching. The MCK was tested, followed by standard cruciate retaining (CR) and posterior stabilized (PS) knees. The motion of the MCK was close to anatomic, especially on the medial side, in contrast to the CR and PS knees that showed abnormal motion features. Such a modular knee system, accurately inserted, has the potential for close to normal function in clinical application. Thieme Medical Publishers 333 Seventh Avenue, New York, NY 10001, USA.

  13. SMAC — A Modular Open Source Architecture for Medical Capsule Robots

    Directory of Open Access Journals (Sweden)

    Beccani Marco

    2014-11-01

    Full Text Available The field of Medical Capsule Robots (MCRs is gaining momentum in the robotics community, with applications spanning from abdominal surgery to gastrointestinal (GI endoscopy. MCRs are miniature multifunctional devices usually constrained in both size and on-board power supply. The design process for MCRs is time consuming and resource intensive, as it involves the development of custom hardware and software components. In this work, we present the STORM Lab Modular Architecture for Capsules (SMAC, a modular open source architecture for MCRs aiming to provide the MCRs research community with a tool for shortening the design and development time for capsule robots. The SMAC platform consists of both hardware modules and firmware libraries that can be used for developing MCRs. In particular, the SMAC modules are miniature boards of uniform diameter (i.e., 9.8 mm that are able to fulfill five different functions: signal coordination combined with wireless data transmission, sensing, actuation, powering and vision/illumination. They are small in size, low power, and have reconfigurable software libraries for the Hardware Abstraction Layer (HAL, which has been proven to work reliably for different types of MCRs. A design template for a generic SMAC application implementing a robust communication protocol is presented in this work, together with its finite state machine abstraction, capturing all the architectural components involved. The reliability of the wireless link is assessed for different levels of data transmission power and separation distances. The current consumption for each SMAC module is quantified and the timing of a SMAC radio message transmission is characterized. Finally, the applicability of SMAC in the field of MCRs is discussed by analysing examples from the literature.

  14. Minimum Time Path Planning for Robotic Manipulator in Drilling/ Spot Welding Tasks

    Directory of Open Access Journals (Sweden)

    Qiang Zhang

    2016-04-01

    Full Text Available In this paper, a minimum time path planning strategy is proposed for multi points manufacturing problems in drilling/spot welding tasks. By optimizing the travelling schedule of the set points and the detailed transfer path between points, the minimum time manufacturing task is realized under fully utilizing the dynamic performance of robotic manipulator. According to the start-stop movement in drilling/spot welding task, the path planning problem can be converted into a traveling salesman problem (TSP and a series of point to point minimum time transfer path planning problems. Cubic Hermite interpolation polynomial is used to parameterize the transfer path and then the path parameters are optimized to obtain minimum point to point transfer time. A new TSP with minimum time index is constructed by using point-point transfer time as the TSP parameter. The classical genetic algorithm (GA is applied to obtain the optimal travelling schedule. Several minimum time drilling tasks of a 3-DOF robotic manipulator are used as examples to demonstrate the effectiveness of the proposed approach.

  15. A portable modular architecture for robotic manipulator control

    International Nuclear Information System (INIS)

    Butler, P.L.

    1993-01-01

    A control architecture has been developed to provide a framework for robotic manipulator control. This architecture, called the Modular Integrated Control Architecture (MICA), has been successfully applied to two different manipulator systems. MICA is a portable system in two respects. First, it can be used for the control of different types of manipulator systems. Second, the MICA code is portable across several operating environments. This portability allows the sharing of common control code among various systems. A major portion of MICA is the precise control of multiple processors that have to be coordinated to control a manipulator system. By having NUCA control the processor synchronization, the system developer can concentrate on the specific aspects of a new manipulator system. MICA also provides standard functions for trajectory generation that can be used for most manipulators. Custom trajectory generators can be easily added to suit the needs of a particular robotic control system. Another facility that MICA provides is a simulation of the manipulator, allowing the control code to be simulated before trying it on a manipulator system. Using this technique, one can develop code for a manipulator system without risking damage to the arm during development

  16. Automatic monitoring of vibration welding equipment

    Science.gov (United States)

    Spicer, John Patrick; Chakraborty, Debejyo; Wincek, Michael Anthony; Wang, Hui; Abell, Jeffrey A; Bracey, Jennifer; Cai, Wayne W

    2014-10-14

    A vibration welding system includes vibration welding equipment having a welding horn and anvil, a host device, a check station, and a robot. The robot moves the horn and anvil via an arm to the check station. Sensors, e.g., temperature sensors, are positioned with respect to the welding equipment. Additional sensors are positioned with respect to the check station, including a pressure-sensitive array. The host device, which monitors a condition of the welding equipment, measures signals via the sensors positioned with respect to the welding equipment when the horn is actively forming a weld. The robot moves the horn and anvil to the check station, activates the check station sensors at the check station, and determines a condition of the welding equipment by processing the received signals. Acoustic, force, temperature, displacement, amplitude, and/or attitude/gyroscopic sensors may be used.

  17. Novel Robot Solutions for Carrying out Field Joint Welding and Machining in the Assembly of the Vacuum Vessel of ITER

    International Nuclear Information System (INIS)

    Pessi, P.

    2009-01-01

    It is necessary to use highly specialized robots in ITER (International Thermonuclear Experimental Reactor) both in the manufacturing and maintenance of the reactor due to a demanding environment. The sectors of the ITER vacuum vessel (VV) require more stringent tolerances than normally expected for the size of the structure involved. VV consists of nine sectors that are to be welded together. The vacuum vessel has a toroidal chamber structure. The task of the designed robot is to carry the welding apparatus along a path with a stringent tolerance during the assembly operation. In addition to the initial vacuum vessel assembly, after a limited running period, sectors need to be replaced for repair. Mechanisms with closed-loop kinematic chains are used in the design of robots in this work. One version is a purely parallel manipulator and another is a hybrid manipulator where the parallel and serial structures are combined. Traditional industrial robots that generally have the links actuated in series are inherently not very rigid and have poor dynamic performance in high speed and high dynamic loading conditions. Compared with open chain manipulators, parallel manipulators have high stiffness, high accuracy and a high force/torque capacity in a reduced workspace. Parallel manipulators have a mechanical architecture where all of the links are connected to the base and to the end-effector of the robot. The purpose of this thesis is to develop special parallel robots for the assembly, machining and repairing of the VV of the ITER. The process of the assembly and machining of the vacuum vessel needs a special robot. By studying the structure of the vacuum vessel, two novel parallel robots were designed and built; they have six and ten degrees of freedom driven by hydraulic cylinders and electrical servo motors. Kinematic models for the proposed robots were defined and two prototypes built. Experiments for machine cutting and laser welding with the 6-DOF robot were

  18. Novel Robot Solutions for Carrying out Field Joint Welding and Machining in the Assembly of the Vacuum Vessel of ITER

    Energy Technology Data Exchange (ETDEWEB)

    Pessi, P.

    2009-07-01

    It is necessary to use highly specialized robots in ITER (International Thermonuclear Experimental Reactor) both in the manufacturing and maintenance of the reactor due to a demanding environment. The sectors of the ITER vacuum vessel (VV) require more stringent tolerances than normally expected for the size of the structure involved. VV consists of nine sectors that are to be welded together. The vacuum vessel has a toroidal chamber structure. The task of the designed robot is to carry the welding apparatus along a path with a stringent tolerance during the assembly operation. In addition to the initial vacuum vessel assembly, after a limited running period, sectors need to be replaced for repair. Mechanisms with closed-loop kinematic chains are used in the design of robots in this work. One version is a purely parallel manipulator and another is a hybrid manipulator where the parallel and serial structures are combined. Traditional industrial robots that generally have the links actuated in series are inherently not very rigid and have poor dynamic performance in high speed and high dynamic loading conditions. Compared with open chain manipulators, parallel manipulators have high stiffness, high accuracy and a high force/torque capacity in a reduced workspace. Parallel manipulators have a mechanical architecture where all of the links are connected to the base and to the end-effector of the robot. The purpose of this thesis is to develop special parallel robots for the assembly, machining and repairing of the VV of the ITER. The process of the assembly and machining of the vacuum vessel needs a special robot. By studying the structure of the vacuum vessel, two novel parallel robots were designed and built; they have six and ten degrees of freedom driven by hydraulic cylinders and electrical servo motors. Kinematic models for the proposed robots were defined and two prototypes built. Experiments for machine cutting and laser welding with the 6-DOF robot were

  19. Design of parallel intersector weld/cut robot for machining processes in ITER vacuum vessel

    International Nuclear Information System (INIS)

    Wu Huapeng; Handroos, Heikki; Kovanen, Janne; Rouvinen, Asko; Hannukainen, Petri; Saira, Tanja; Jones, Lawrence

    2003-01-01

    This paper presents a new parallel robot Penta-WH, which has five degrees of freedom driven by hydraulic cylinders. The manipulator has a large, singularity-free workspace and high stiffness and it acts as a transport device for welding, machining and inspection end-effectors inside the ITER vacuum vessel. The presented kinematic structure of a parallel robot is particularly suitable for the ITER environment. Analysis of the machining process for ITER, such as the machining methods and forces are given, and the kinematic analyses, such as workspace and force capacity are discussed

  20. A Combination of Machine Learning and Cerebellar Models for the Motor Control and Learning of a Modular Robot

    DEFF Research Database (Denmark)

    Baira Ojeda, Ismael; Tolu, Silvia; Pacheco, Moises

    2017-01-01

    We scaled up a bio-inspired control architecture for the motor control and motor learning of a real modular robot. In our approach, the Locally Weighted Projection Regression algorithm (LWPR) and a cerebellar microcircuit coexist, forming a Unit Learning Machine. The LWPR optimizes the input space...... and learns the internal model of a single robot module to command the robot to follow a desired trajectory with its end-effector. The cerebellar microcircuit refines the LWPR output delivering corrective commands. We contrasted distinct cerebellar circuits including analytical models and spiking models...

  1. Vision and Task Assistance using Modular Wireless In Vivo Surgical Robots

    Science.gov (United States)

    Platt, Stephen R.; Hawks, Jeff A.; Rentschler, Mark E.

    2009-01-01

    Minimally invasive abdominal surgery (laparoscopy) results in superior patient outcomes compared to conventional open surgery. However, the difficulty of manipulating traditional laparoscopic tools from outside the body of the patient generally limits these benefits to patients undergoing relatively low complexity procedures. The use of tools that fit entirely inside the peritoneal cavity represents a novel approach to laparoscopic surgery. Our previous work demonstrated that miniature mobile and fixed-based in vivo robots using tethers for power and data transmission can successfully operate within the abdominal cavity. This paper describes the development of a modular wireless mobile platform for in vivo sensing and manipulation applications. Design details and results of ex vivo and in vivo tests of robots with biopsy grasper, staple/clamp, video, and physiological sensor payloads are presented. These types of self-contained surgical devices are significantly more transportable and lower in cost than current robotic surgical assistants. They could ultimately be carried and deployed by non-medical personnel at the site of an injury to allow a remotely located surgeon to provide critical first response medical intervention irrespective of the location of the patient. PMID:19237337

  2. Vision and task assistance using modular wireless in vivo surgical robots.

    Science.gov (United States)

    Platt, Stephen R; Hawks, Jeff A; Rentschler, Mark E

    2009-06-01

    Minimally invasive abdominal surgery (laparoscopy) results in superior patient outcomes compared to conventional open surgery. However, the difficulty of manipulating traditional laparoscopic tools from outside the body of the patient generally limits these benefits to patients undergoing relatively low complexity procedures. The use of tools that fit entirely inside the peritoneal cavity represents a novel approach to laparoscopic surgery. Our previous work demonstrated that miniature mobile and fixed-based in vivo robots using tethers for power and data transmission can successfully operate within the abdominal cavity. This paper describes the development of a modular wireless mobile platform for in vivo sensing and manipulation applications. Design details and results of ex vivo and in vivo tests of robots with biopsy grasper, staple/clamp, video, and physiological sensor payloads are presented. These types of self-contained surgical devices are significantly more transportable and lower in cost than current robotic surgical assistants. They could ultimately be carried and deployed by nonmedical personnel at the site of an injury to allow a remotely located surgeon to provide critical first response medical intervention irrespective of the location of the patient.

  3. Development of a robotic manipulator for orbital welding; Desenvolvimento de um manipulador robotico para a sondagem orbital

    Energy Technology Data Exchange (ETDEWEB)

    Carvalho, Renon Steinbach; Dutra, Jair Carlos [Universidade Federal de Santa Catarina (UFSC), Florianopolis, SC (Brazil). Lab. de Soldagem; Bonacorso, Nelso Gauze [Centro Federal de Educacao Tecnologica de Santa Catarina (CEFET/SC), Florianopolis, SC (Brazil). Lab. da Automacao Hidraulica e Pneumatica (LAHP)

    2008-07-01

    On the national oil scenario, the pipelines have a high cost, specially on the long time spent on its constructions. Thus, this transaction optimizations become highly attractive. A form of improvement this task is to automate the process of welding. In this context it is interesting the use of a robot manipulator for the orbital welding. In the international market, there are dedicates solutions that meet the restrictions associated mainly with the ease of handling and dimensions. However,since these manipulators use foreign technology this makes the acquisition and maintenance costs high. The project aims to create subsides for greater efficiency in the task of union of pipelines through the development of a robotic manipulator. However it is clear that only the design of such a handler does not guarantee the quality of the root pass. Therefore, it is also being studied the use of the process MIG (Metal Inert Gas), through parametrization of CCC (Short-circuit controlled) in order to have a robust process of welding. The CCC monitors the process of welding and acts when there is detection od short circuit. It is obtained then higher pass from scratch controllability and drastically reduces the amount of spay. (author)

  4. Fast estimation of space-robots inertia parameters: A modular mathematical formulation

    Science.gov (United States)

    Nabavi Chashmi, Seyed Yaser; Malaek, Seyed Mohammad-Bagher

    2016-10-01

    This work aims to propose a new technique that considerably helps enhance time and precision needed to identify ;Inertia Parameters (IPs); of a typical Autonomous Space-Robot (ASR). Operations might include, capturing an unknown Target Space-Object (TSO), ;active space-debris removal; or ;automated in-orbit assemblies;. In these operations generating precise successive commands are essential to the success of the mission. We show how a generalized, repeatable estimation-process could play an effective role to manage the operation. With the help of the well-known Force-Based approach, a new ;modular formulation; has been developed to simultaneously identify IPs of an ASR while it captures a TSO. The idea is to reorganize the equations with associated IPs with a ;Modular Set; of matrices instead of a single matrix representing the overall system dynamics. The devised Modular Matrix Set will then facilitate the estimation process. It provides a conjugate linear model in mass and inertia terms. The new formulation is, therefore, well-suited for ;simultaneous estimation processes; using recursive algorithms like RLS. Further enhancements would be needed for cases the effect of center of mass location becomes important. Extensive case studies reveal that estimation time is drastically reduced which in-turn paves the way to acquire better results.

  5. Modular Training for Robot-Assisted Radical Prostatectomy: Where to Begin?

    Science.gov (United States)

    Lovegrove, Catherine; Ahmed, Kamran; Novara, Giacomo; Guru, Khurshid; Mottrie, Alex; Challacombe, Ben; der Poel, Henk Van; Peabody, James; Dasgupta, Prokar

    Effective training is paramount for patient safety. Modular training entails advancing through surgical steps of increasing difficulty. This study aimed to construct a modular training pathway for use in robot-assisted radical prostatectomy (RARP). It aims to identify the sequence of procedural steps that are learnt before surgeons are able to perform a full procedure without an intervention from mentor. This is a multi-institutional, prospective, observational, longitudinal study. We used a validated training tool (RARP Score). Data regarding surgeons' stage of training and progress were collected for analysis. A modular training pathway was constructed with consensus on the level of difficulty and evaluation of individual steps. We identified and recorded the sequence of steps performed by fellows during their learning curves. We included 15 urology fellows from UK, Europe, and Australia. A total of 15 surgeons were assessed by mentors in 425 RARP cases over 8 months (range: 7-79) across 15 international centers. There were substantial differences in the sequence of RARP steps according to the chronology of the procedure, difficulty level, and the order in which surgeons actually learned steps. Steps were not attempted in chronological order. The greater the difficulty, the later the cohort first undertook the step (p = 0.021). The cohort undertook steps of difficulty level I at median case number 1. Steps of difficulty levels II, III, and IV showed more variation in median case number of the first attempt. We recommend that, in the operating theater, steps be learned in order of increasing difficulty. A new modular training route has been designed. This incorporates the steps of RARP with the following order of priority: difficulty level > median case number of first attempt > most frequently undertaken in surgical training. An evidence-based modular training pathway has been developed that facilitates a safe introduction to RARP for novice surgeons. Copyright

  6. Experience and Applications Up-date: Automation of Arc-Welding Operations Using Robot-Technology; Experiencia y actualizacion de las aplicaciones: automatizacion de las operaciones de soldadura utilizando tecnologia robotica

    Energy Technology Data Exchange (ETDEWEB)

    Teubel, G

    1997-12-31

    In a short introduction, the important criteria for the correct choice of a robot cell, taking into account the given application, are highlighted. Furthermore, important hints are listed in terms of management decisions. The second chapter shows the main features of a welding robot cell in line with the present state of the art and describes some new developments with the aim of extending the arc-welding system to new applications such as flame cutting and beveling. The third chapter as centre piece gives an overall view of a brand new network control with many outstanding features for the users of arc-welding robots. the fourth and last chapter shows a recent realisation of a highly sophisticated F.M.S. system for welding, in random sequence, different large and heavy components. (Author) 1 ref.

  7. Problem of quality assurance during metal constructions welding via robotic technological complexes

    Science.gov (United States)

    Fominykh, D. S.; Rezchikov, A. F.; Kushnikov, V. A.; Ivashchenko, V. A.; Bogomolov, A. S.; Filimonyuk, L. Yu; Dolinina, O. N.; Kushnikov, O. V.; Shulga, T. E.; Tverdokhlebov, V. A.

    2018-05-01

    The problem of minimizing the probability for critical combinations of events that lead to a loss in welding quality via robotic process automation is examined. The problem is formulated, models and algorithms for its solution are developed. The problem is solved by minimizing the criterion characterizing the losses caused by defective products. Solving the problem may enhance the quality and accuracy of operations performed and reduce the losses caused by defective product

  8. Model-based Kinematics Generation for Modular Mechatronic Toolkits

    DEFF Research Database (Denmark)

    Bordignon, Mirko; Schultz, Ulrik Pagh; Støy, Kasper

    2011-01-01

    Modular robots are mechatronic devices that enable the construction of highly versatile and flexible robotic systems whose mechanical structure can be dynamically modified. The key feature that enables this dynamic modification is the capability of the individual modules to connect to each other...... in multiple ways and thus generate a number of different mechanical systems, in contrast with the monolithic, fixed structure of conventional robots. The mechatronic flexibility, however, complicates the development of models and programming abstractions for modular robots, since manually describing...... the Modular Mechatronics Modelling Language (M3L). M3L is a domain-specific language, which can model the kinematic structure of individual robot modules and declaratively describe their possible interconnections, rather than requiring the user to enumerate them in their entirety. From this description, the M...

  9. Distributed Robotics Education

    DEFF Research Database (Denmark)

    Lund, Henrik Hautop; Pagliarini, Luigi

    2011-01-01

    Distributed robotics takes many forms, for instance, multirobots, modular robots, and self-reconfigurable robots. The understanding and development of such advanced robotic systems demand extensive knowledge in engineering and computer science. In this paper, we describe the concept of a distribu......Distributed robotics takes many forms, for instance, multirobots, modular robots, and self-reconfigurable robots. The understanding and development of such advanced robotic systems demand extensive knowledge in engineering and computer science. In this paper, we describe the concept...... to be changed, related to multirobot control and human-robot interaction control from virtual to physical representation. The proposed system is valuable for bringing a vast number of issues into education – such as parallel programming, distribution, communication protocols, master dependency, connectivity...

  10. Development and control towards a parallel water hydraulic weld/cut robot for machining processes in ITER vacuum vessel

    International Nuclear Information System (INIS)

    Wu Huapeng; Handroos, Heikki; Pessi, Pekka; Kilkki, Juha; Jones, Lawrence

    2005-01-01

    This paper presents a special robot, able to carry out welding and machining processes from inside the ITER vacuum vessel (VV), consisting of a five degree-of-freedom parallel mechanism, mounted on a carriage driven by two electric motors on a rack. The kinematic design of the robot has been optimised for ITER access and a hydraulically actuated pre-prototype built. A hybrid controller is designed for the robot, including position, speed and pressure feedback loops to achieve high accuracy and high dynamic performances. Finally, the experimental tests are given and discussed

  11. Biologically Inspired Modular Neural Control for a Leg-Wheel Hybrid Robot

    DEFF Research Database (Denmark)

    Manoonpong, Poramate; Wörgötter, Florentin; Laksanacharoen, Pudit

    2014-01-01

    In this article we present modular neural control for a leg-wheel hybrid robot consisting of three legs with omnidirectional wheels. This neural control has four main modules having their functional origin in biological neural systems. A minimal recurrent control (MRC) module is for sensory signal...... processing and state memorization. Its outputs drive two front wheels while the rear wheel is controlled through a velocity regulating network (VRN) module. In parallel, a neural oscillator network module serves as a central pattern generator (CPG) controls leg movements for sidestepping. Stepping directions...... or they can serve as useful modules for other module-based neural control applications....

  12. Elements of Autonomous Self-Reconfigurable Robots

    DEFF Research Database (Denmark)

    Christensen, David Johan

    In this thesis, we study several central elements of autonomous self-reconfigurable modular robots. Unlike conventional robots such robots are: i) Modular, since robots are assembled from numerous robotic modules. ii) Reconfigurable, since the modules can be combined in a variety of ways. iii) Self......-reconfigurable, since the modules themselves are able to change how they are combined. iv) Autonomous, since robots control themselves without human guidance. Such robots are attractive to study since they in theory have several desirable characteristics, such as versatility, reliability and cheapness. In practice...... however, it is challenging to realize such characteristics since state-of-the-art systems and solutions suffer from several inherent technical and theoretical problems and limitations. In this thesis, we address these challenges by exploring four central elements of autonomous self-reconfigurable modular...

  13. DSLs in robotics

    DEFF Research Database (Denmark)

    Schultz, Ulrik Pagh; Bordignon, Mirko; Stoy, Kasper

    2017-01-01

    Robotic systems blend hardware and software in a holistic way that intrinsically raises many crosscutting concerns such as concurrency, uncertainty, and time constraints. These concerns make programming robotic systems challenging as expertise from multiple domains needs to be integrated...... conceptually and technically. Programming languages play a central role in providing a higher level of abstraction. This briefing presents a case study on the evolution of domain-specific languages based on modular robotics. The case study on the evolution of domain-specific languages is based on a series...... of DSL prototypes developed over five years for the domain of modular, self-reconfigurable robots....

  14. Automatic monitoring of the alignment and wear of vibration welding equipment

    Science.gov (United States)

    Spicer, John Patrick; Cai, Wayne W.; Chakraborty, Debejyo; Mink, Keith

    2017-05-23

    A vibration welding system includes vibration welding equipment having a welding horn and anvil, a host machine, a check station, and a welding robot. At least one displacement sensor is positioned with respect to one of the welding equipment and the check station. The robot moves the horn and anvil via an arm to the check station, when a threshold condition is met, i.e., a predetermined amount of time has elapsed or a predetermined number of welds have been completed. The robot moves the horn and anvil to the check station, activates the at least one displacement sensor, at the check station, and determines a status condition of the welding equipment by processing the received signals. The status condition may be one of the alignment of the vibration welding equipment and the wear or degradation of the vibration welding equipment.

  15. Sea-Shore Interface Robotic Design

    Science.gov (United States)

    2014-06-01

    for various beachfront terrains. Robotics , Robot , Amphibious Vehicles, Mobility, Surf-Zone, Autonomous, Wheg, exoskeleton Unclassified Unclassified...controllers and to showcase the benefits of a modular construction. The result was an exoskeleton design with modular components, see Figure 2.1. Figure 2.1...NAVAL POSTGRADUATE SCHOOL MONTEREY, CALIFORNIA THESIS SEA-SHORE INTERFACE ROBOTIC DESIGN by Timothy L. Bell June 2014 Thesis Advisor: Richard Harkins

  16. Conceptual design of modular fixture for frame welding and drilling process integration case study: Student chair in UNS industrial engineering integrated practicum

    Science.gov (United States)

    Darmawan, Tofiq Dwiki; Priadythama, Ilham; Herdiman, Lobes

    2018-02-01

    Welding and drilling are main processes of making chair frame from metal material. Commonly, chair frame construction includes many arcs which bring difficulties for its welding and drilling process. In UNS industrial engineering integrated practicum there are welding fixtures which use to fixing frame component position for welding purpose. In order to achieve exact holes position for assembling purpose, manual drilling processes were conducted after the frame was joined. Unfortunately, after it was welded the frame material become hard and increase drilling tools wear rate as well as reduce holes position accuracy. The previous welding fixture was not equipped with clamping system and cannot accommodate drilling process. To solve this problem, our idea is to reorder the drilling process so that it can be execute before welding. Thus, this research aims to propose conceptual design of modular fixture which can integrate welding and drilling process. We used Generic Product Development Process to address the design concept. We collected design requirements from 3 source, jig and fixture theoretical concepts, user requirements, and clamping part standards. From 2 alternatives fixture tables, we propose the first which equipped with mounting slots instead of holes. We test the concept by building a full sized prototype and test its works by conducting welding and drilling of a student chair frame. Result from the welding and drilling trials showed that the holes are on precise position after welding. Based on this result, we conclude that the concept can be a consideration for application in UNS Industrial Engineering Integrated Practicum.

  17. A Combination of Machine Learning and Cerebellar-like Neural Networks for the Motor Control and Motor Learning of the Fable Modular Robot

    DEFF Research Database (Denmark)

    Baira Ojeda, Ismael; Tolu, Silvia; Pacheco, Moises

    2017-01-01

    We scaled up a bio-inspired control architecture for the motor control and motor learning of a real modular robot. In our approach, the Locally Weighted Projection Regression algorithm (LWPR) and a cerebellar microcircuit coexist, in the form of a Unit Learning Machine. The LWPR algorithm optimizes...... the input space and learns the internal model of a single robot module to command the robot to follow a desired trajectory with its end-effector. The cerebellar-like microcircuit refines the LWPR output delivering corrective commands. We contrasted distinct cerebellar-like circuits including analytical...

  18. Simulation of Welding Distortions in Theory and Practice

    DEFF Research Database (Denmark)

    Birk-Sørensen, Martin; Kierkegaard, Henning

    1997-01-01

    by an optimised welding order. Welding test samples prove that the constraint of the sample and the time between each pass in a multipass weld affect the magnitude of distortion. Experiments with welding specimens in the form of butt-and fillet welds have been carried out. They show angular deflections as well......In the last few years the use of robot welding processes has increased significatnly. The programming of the robots has until now mainly focused on high efficiency, i.e.high torch rate time, and hence, minimising the inefficient "travelling" time. Together with developing high-performance welding...... due to cutting and welding and parlty in the form of dimensional variation due to human factors. Measurements have been made of the production line for assemblies. The measurements show that distortions related to the multirobot welding are a factor which can rather easily be controlled...

  19. Modular Power Supply for Micro Resistance Welding

    Directory of Open Access Journals (Sweden)

    Bondarenko Oleksandr

    2017-07-01

    Full Text Available The study is devoted to the important issue of enhancing the circuitry and characteristics of power supplies for micro resistance welding machines. The aim of the research is to provide high quality input current and to increase the energy efficiency of the output pulse generator by means of improving the circuit topologies of the power supply main blocks. In study, the principle of constructing the power supply for micro resistance welding, which provides high values of output welding current and high accuracy of welding pulse formation, makes it possible to reduce energy losses, and provides high quality of consumed input current, is represented. The multiphase topology of the charger with power factor correction based on SEPIC converters is suggested as the most efficient for charging the supercapacitor storage module. The multicell topology of the supercapacitor energy storage with voltage equalizing is presented. The parameters of the converter cells are evaluated. The calculations of energy efficiency of the power supply’s input and output converters based on suggested topologies are carried out and verified in MATLAB Simulink. The power factor value greater than 99 % is derived.

  20. Infrared sensing techniques for adaptive robotic welding

    International Nuclear Information System (INIS)

    Lin, T.T.; Groom, K.; Madsen, N.H.; Chin, B.A.

    1986-01-01

    The objective of this research is to investigate the feasibility of using infrared sensors to monitor the welding process. Data were gathered using an infrared camera which was trained on the molten metal pool during the welding operation. Several types of process perturbations which result in weld defects were then intentionally induced and the resulting thermal images monitored. Gas tungsten arc using ac and dc currents and gas metal arc welding processes were investigated using steel, aluminum and stainless steel plate materials. The thermal images obtained in the three materials and different welding processes revealed nearly identical patterns for the same induced process perturbation. Based upon these results, infrared thermography is a method which may be very applicable to automation of the welding process

  1. Roles and Self-Reconfigurable Robots

    DEFF Research Database (Denmark)

    Dvinge, Nicolai; Schultz, Ulrik Pagh; Christensen, David Johan

    2007-01-01

    A self-reconfigurable robot is a robotic device that can change its own shape. Self-reconfigurable robots are commonly built from multiple identical modules that can manipulate each other to change the shape of the robot. The robot can also perform tasks such as locomotion without changing shape......., significantly simplifying the task of programming self-reconfigurable robots. Our language fully supports programming the ATRON self-reconfigurable robot, and has been used to implement several controllers running both on the physical modules and in simulation.......A self-reconfigurable robot is a robotic device that can change its own shape. Self-reconfigurable robots are commonly built from multiple identical modules that can manipulate each other to change the shape of the robot. The robot can also perform tasks such as locomotion without changing shape....... Programming a modular, self-reconfigurable robot is however a complicated task: the robot is essentially a real-time, distributed embedded system, where control and communication paths often are tightly coupled to the current physical configuration of the robot. To facilitate the task of programming modular...

  2. Efficacy of dry-ice blasting in preventive maintenance of auto robotic assemblies

    Science.gov (United States)

    Baluch, Nazim; Mohtar, Shahimi; Abdullah, Che Sobry

    2016-08-01

    Welding robots are extensively applied in the automotive assemblies and `Spot Welding' is the most common welding application found in the auto stamping assembly manufacturing. Every manufacturing process is subject to variations - with resistance welding, these include; part fit up, part thickness variations, misaligned electrodes, variations in coating materials or thickness, sealers, weld force variations, shunting, machine tooling degradation; and slag and spatter damage. All welding gun tips undergo wear; an elemental part of the process. Though adaptive resistance welding control automatically compensates to keep production and quality up to the levels needed as gun tips undergo wear so that the welds remain reliable; the system cannot compensate for deterioration caused by the slag and spatter on the part holding fixtures, sensors, and gun tips. To cleanse welding robots of slag and spatter, dry-ice blasting has proven to be an effective remedy. This paper describes Spot welding process, analyses the slag and spatter formation during robotic welding of stamping assemblies, and concludes that the dry ice blasting process's utility in cleansing of welding robots in auto stamping plant operations is paramount and exigent.

  3. Modular Platform for Commercial Mobile Robots

    DEFF Research Database (Denmark)

    Kjærgaard, Morten

    , and not on putting the robots on the commercial market. At the time when this research project was started in May 2010, the amount of successful commercial applications based on mobile robots was very limited. The most known applications were vacuum cleaners, lawn mowers, and few examples of specialized transport...... by the individual groups and perhaps a few close industrial partners. This research project addresses the problem of increasing the potential for more commercial applications based on mobile wheeled robots. Therefore the main focus is not on inventing new ground-breaking robotics technology, but instead...... period, a signicant research community was created around one specific robot control framework called ROS. From the very beginning,this research project acknowledged the value of such a community, and put a significant eort into in uencing the ROS framework to become usable also for industry...

  4. Modular industrial robots as the tool of process automation in robotized manufacturing cells

    Science.gov (United States)

    Gwiazda, A.; Banas, W.; Sekala, A.; Foit, K.; Hryniewicz, P.; Kost, G.

    2015-11-01

    Recently the number of designed modular machine was increased. The term modular machine is used to denote different types of machinery, equipment and production lines, which are created using modular elements. Modular could be both mechanic elements, and drives, as well as control systems. This method of machine design is more and more popular because it allows obtaining flexible and relatively cheap solutions. So it is worth to develop the concept of modularity in next areas of application. The advantages of modular solutions are: simplification of the structure, standardization of components, and faster assembly process of the complete machine Additional advantages, which is particularly important for manufacturers, are shorter manufacturing times, longer production series and reduced manufacturing costs. Modular designing is also the challenge for designers and the need for a new approach to the design process, to the starting process and to the exploitation process. The purpose for many manufacturers is the standardization of the components used for creating the finished products. This purpose could be realized by the application of standard modules which could be combined together in different ways to create the desired particular construction as much as possible in accordance with the order. This solution is for the producer more favorable than the construction of a large machine whose configuration must be matched to each individual order. In the ideal case each module has its own control system and the full functionality of the modular machine is obtained due to the mutual cooperation of all modules. Such a solution also requires the modular components which create the modular machine are equipped with interfaces compatible one with another to facilitate their communication. The individual components of the machine could be designed, manufactured and used independently and production management task could be divided into subtasks. They could be also

  5. Robotics

    International Nuclear Information System (INIS)

    Scheide, A.W.

    1983-01-01

    This article reviews some of the technical areas and history associated with robotics, provides information relative to the formation of a Robotics Industry Committee within the Industry Applications Society (IAS), and describes how all activities relating to robotics will be coordinated within the IEEE. Industrial robots are being used for material handling, processes such as coating and arc welding, and some mechanical and electronics assembly. An industrial robot is defined as a programmable, multifunctional manipulator designed to move material, parts, tools, or specialized devices through variable programmed motions for a variety of tasks. The initial focus of the Robotics Industry Committee will be on the application of robotics systems to the various industries that are represented within the IAS

  6. Future use of robots in the automotive industry

    Energy Technology Data Exchange (ETDEWEB)

    Kelly, M P

    1982-01-01

    The future will see a dramatic increase in the number of robots used in the automotive industry. Well established applications, such as resistance spot welding, will continue to grow in the short term. Longer term, the much wider use of structural adhesives will supplant the spot welding process with robots applying the adhesives. Practical perception systems will enhance robot performance in arc welding, grinding, fettling, seam sealing and assembly operations, leading again to robot growth as vital elements of truly flexible manufacturing systems (FMS). A major robotic impact will be made in automotive paint shops as the need to conserve energy increases. The development of alternative painting materials, offering improved performance will add further impetus. Robotics of the future will progressively move to a CAD/CAM orientated data base, offering off-line programming capability, which together with essential inspection elements, will provide the means for totally automatic manufacture.

  7. Hand-Eye LRF-Based Iterative Plane Detection Method for Autonomous Robotic Welding

    Directory of Open Access Journals (Sweden)

    Sungmin Lee

    2015-12-01

    Full Text Available This paper proposes a hand-eye LRF-based (laser range finder welding plane-detection method for autonomous robotic welding in the field of shipbuilding. The hand-eye LRF system consists of a 6 DOF manipulator and an LRF attached to the wrist of the manipulator. The welding plane is detected by the LRF with only the wrist's rotation to minimize a mechanical error caused by the manipulator's motion. A position on the plane is determined as an average position of the detected points on the plane, and a normal vector to the plane is determined by applying PCA (principal component analysis to the detected points. In this case, the accuracy of the detected plane is analysed by simulations with respect to the wrist's angle interval and the plane angle. As a result of the analysis, an iterative plane-detection method with the manipulator's alignment motion is proposed to improve the performance of plane detection. For verifying the feasibility and effectiveness of the proposed plane-detection method, experiments are carried out with a prototype of the hand-eye LRF-based system, which consists of a 1 DOF wrist's joint, an LRF system and a rotatable plane. In addition, the experimental results of the PCA-based plane detection method are compared with those of the two representative plane-detection methods, based on RANSAC (RANdom SAmple Consensus and the 3D Hough transform in both accuracy and computation time's points of view.

  8. Easy Reconfiguration of Modular Industrial Collaborative Robots

    DEFF Research Database (Denmark)

    Schou, Casper

    2016-01-01

    the production staff collaborating to perform common tasks. This change of environment imposes a much more dynamic lifecycle for the robot which consequently requires new ways of interacting. This thesis investigates how the changeover to a new task on a collaborative robot can be performed by the shop floor...... operators already working alongside the robot. To effectively perform this changeover, the operator must both reconfigure the hardware of the robot and reprogram the robot to match the new task. To enable shop floor operators to quickly and intuitively program the robot, this thesis proposes the use...... of parametric, task-related robot skills with a manual parameterization method. Reconfiguring the hardware entails adding, removing, or modifying some of the robot’s components. This thesis investigate how software configurator tools can aid the operator in selecting appropriate hardware modules, and how agent...

  9. Programmable Automated Welding System (PAWS)

    Science.gov (United States)

    Kline, Martin D.

    1994-01-01

    An ambitious project to develop an advanced, automated welding system is being funded as part of the Navy Joining Center with Babcock & Wilcox as the prime integrator. This program, the Programmable Automated Welding System (PAWS), involves the integration of both planning and real-time control activities. Planning functions include the development of a graphical decision support system within a standard, portable environment. Real-time control functions include the development of a modular, intelligent, real-time control system and the integration of a number of welding process sensors. This paper presents each of these components of the PAWS and discusses how they can be utilized to automate the welding operation.

  10. A generic template for automated bioanalytical ligand-binding assays using modular robotic scripts in support of discovery biotherapeutic programs.

    Science.gov (United States)

    Duo, Jia; Dong, Huijin; DeSilva, Binodh; Zhang, Yan J

    2013-07-01

    Sample dilution and reagent pipetting are time-consuming steps in ligand-binding assays (LBAs). Traditional automation-assisted LBAs use assay-specific scripts that require labor-intensive script writing and user training. Five major script modules were developed on Tecan Freedom EVO liquid handling software to facilitate the automated sample preparation and LBA procedure: sample dilution, sample minimum required dilution, standard/QC minimum required dilution, standard/QC/sample addition, and reagent addition. The modular design of automation scripts allowed the users to assemble an automated assay with minimal script modification. The application of the template was demonstrated in three LBAs to support discovery biotherapeutic programs. The results demonstrated that the modular scripts provided the flexibility in adapting to various LBA formats and the significant time saving in script writing and scientist training. Data generated by the automated process were comparable to those by manual process while the bioanalytical productivity was significantly improved using the modular robotic scripts.

  11. Sensor controlled robotic welding for nuclear power plant operations

    International Nuclear Information System (INIS)

    Chin, B.A.

    1989-01-01

    The objective of the proposed research is to apply real time monitoring, artificial intelligence and on-line correction to dynamically control the depth of weld penetration and weld integrity during the welding process. Welding is a major technique used in the fabrication, construction and maintenance of power generating and energy conversion systems. In the welding process, fluctuations in process variables lead to weld defects such as lack of penetration, cracks, porosity and undesirable metallurgical structures. This research will apply advanced infrared sensing techniques which have been successfully used in seam tracking to the equally complex problem of weld defect and weld puddle penetration control. Thermal temperature distributions of plates being welded will be dynamically measured during welding using infrared techniques. These temperature distributions will be used to interpret changes in the size and shape of the molten metal pool and the presence of conditions that may lead to defects in the solidified weld. The ultimate result of this research will be the development of machines which are capable of sensing and altering process variables to eliminate defective welds and increase the productivity of the welding process. Successful completion of this proposed research will lead to potential major improvements in the fabrication, construction and maintenance of advanced nuclear reactors and promote increased safety and reliability while decreasing construction costs. 47 refs., 50 figs

  12. Globalization of Japanese steel industry. Part 2. Welding materials; Tekkogyo no kokusaika. 2. Yozai

    Energy Technology Data Exchange (ETDEWEB)

    Aida, I. [Kobe Steel, Ltd., Kobe (Japan)

    1995-01-01

    This paper mainly discusses the current status and problems of arc welding materials. The domestic production of welding materials has decreased. The recent trend of demand is characterized by the change of form make-up of welding materials. Various technologies for welding materials and their operation in Japan have developed with the progress of steel materials. The high quality and high-grade welding technologies, highly efficient production processes, laborsaving, and robotization have been promoted in various fields. In response to the rapid strong yen, quality and cost have to be further pursued, and amenity and cleanliness of welding have to be realized. The welding technologies have to be developed for large structures, such as ultra high-rise buildings, energy and chemical plants, ships, marine structures, etc. For the welding materials which are applied to robots and robot systems, obstruction factors for the operation have to be removed, which include the unsteady arc, re-arc badness, spattering, wear of chip, slag formation, etc. These measures promote the globalization of welding materials. 17 refs., 4 figs.

  13. A Weld Position Recognition Method Based on Directional and Structured Light Information Fusion in Multi-Layer/Multi-Pass Welding

    Directory of Open Access Journals (Sweden)

    Jinle Zeng

    2018-01-01

    Full Text Available Multi-layer/multi-pass welding (MLMPW technology is widely used in the energy industry to join thick components. During automatic welding using robots or other actuators, it is very important to recognize the actual weld pass position using visual methods, which can then be used not only to perform reasonable path planning for actuators, but also to correct any deviations between the welding torch and the weld pass position in real time. However, due to the small geometrical differences between adjacent weld passes, existing weld position recognition technologies such as structured light methods are not suitable for weld position detection in MLMPW. This paper proposes a novel method for weld position detection, which fuses various kinds of information in MLMPW. First, a synchronous acquisition method is developed to obtain various kinds of visual information when directional light and structured light sources are on, respectively. Then, interferences are eliminated by fusing adjacent images. Finally, the information from directional and structured light images is fused to obtain the 3D positions of the weld passes. Experiment results show that each process can be done in 30 ms and the deviation is less than 0.6 mm. The proposed method can be used for automatic path planning and seam tracking in the robotic MLMPW process as well as electron beam freeform fabrication process.

  14. A Weld Position Recognition Method Based on Directional and Structured Light Information Fusion in Multi-Layer/Multi-Pass Welding.

    Science.gov (United States)

    Zeng, Jinle; Chang, Baohua; Du, Dong; Wang, Li; Chang, Shuhe; Peng, Guodong; Wang, Wenzhu

    2018-01-05

    Multi-layer/multi-pass welding (MLMPW) technology is widely used in the energy industry to join thick components. During automatic welding using robots or other actuators, it is very important to recognize the actual weld pass position using visual methods, which can then be used not only to perform reasonable path planning for actuators, but also to correct any deviations between the welding torch and the weld pass position in real time. However, due to the small geometrical differences between adjacent weld passes, existing weld position recognition technologies such as structured light methods are not suitable for weld position detection in MLMPW. This paper proposes a novel method for weld position detection, which fuses various kinds of information in MLMPW. First, a synchronous acquisition method is developed to obtain various kinds of visual information when directional light and structured light sources are on, respectively. Then, interferences are eliminated by fusing adjacent images. Finally, the information from directional and structured light images is fused to obtain the 3D positions of the weld passes. Experiment results show that each process can be done in 30 ms and the deviation is less than 0.6 mm. The proposed method can be used for automatic path planning and seam tracking in the robotic MLMPW process as well as electron beam freeform fabrication process.

  15. Mergeable nervous systems for robots.

    Science.gov (United States)

    Mathews, Nithin; Christensen, Anders Lyhne; O'Grady, Rehan; Mondada, Francesco; Dorigo, Marco

    2017-09-12

    Robots have the potential to display a higher degree of lifetime morphological adaptation than natural organisms. By adopting a modular approach, robots with different capabilities, shapes, and sizes could, in theory, construct and reconfigure themselves as required. However, current modular robots have only been able to display a limited range of hardwired behaviors because they rely solely on distributed control. Here, we present robots whose bodies and control systems can merge to form entirely new robots that retain full sensorimotor control. Our control paradigm enables robots to exhibit properties that go beyond those of any existing machine or of any biological organism: the robots we present can merge to form larger bodies with a single centralized controller, split into separate bodies with independent controllers, and self-heal by removing or replacing malfunctioning body parts. This work takes us closer to robots that can autonomously change their size, form and function.Robots that can self-assemble into different morphologies are desired to perform tasks that require different physical capabilities. Mathews et al. design robots whose bodies and control systems can merge and split to form new robots that retain full sensorimotor control and act as a single entity.

  16. A Domain-Specific Language for Programming Self-Reconfigurable Robots

    DEFF Research Database (Denmark)

    Schultz, Ulrik Pagh; Christensen, David Johan; Støy, Kasper

    2007-01-01

    . Programming a modular, self-reconfigurable robot is however a complicated task: the robot is essentially a real-time, distributed embedded system, where control and communication paths often are tightly coupled to the current physical configuration of the robot. To facilitate the task of programming modular......, self-reconfigurable robots, we have developed a declarative, role-based language that allows the programmer to define roles and behavior independently of the concrete physical structure of the robot. Roles are compiled to mobile code fragments that distribute themselves over the physical structure...

  17. Modular Flooring System

    Science.gov (United States)

    Thate, Robert

    2012-01-01

    The modular flooring system (MFS) was developed to provide a portable, modular, durable carpeting solution for NASA fs Robotics Alliance Project fs (RAP) outreach efforts. It was also designed to improve and replace a modular flooring system that was too heavy for safe use and transportation. The MFS was developed for use as the flooring for various robotics competitions that RAP utilizes to meet its mission goals. One of these competitions, the FIRST Robotics Competition (FRC), currently uses two massive rolls of broadloom carpet for the foundation of the arena in which the robots are contained during the competition. The area of the arena is approximately 30 by 72 ft (approximately 9 by 22 m). This carpet is very cumbersome and requires large-capacity vehicles, and handling equipment and personnel to transport and deploy. The broadloom carpet sustains severe abuse from the robots during a regular three-day competition, and as a result, the carpet is not used again for competition. Similarly, broadloom carpets used for trade shows at convention centers around the world are typically discarded after only one use. This innovation provides a green solution to this wasteful practice. Each of the flooring modules in the previous system weighed 44 lb (.20 kg). The improvements in the overall design of the system reduce the weight of each module by approximately 22 lb (.10 kg) (50 %), and utilize an improved "module-to-module" connection method that is superior to the previous system. The MFS comprises 4-by-4-ft (.1.2-by- 1.2-m) carpet module assemblies that utilize commercially available carpet tiles that are bonded to a lightweight substrate. The substrate surface opposite from the carpeted surface has a module-to-module connecting interface that allows for the modules to be connected, one to the other, as the modules are constructed. This connection is hidden underneath the modules, creating a smooth, co-planar flooring surface. The modules are stacked and strapped

  18. Morphology Independent Learning in Modular Robots

    DEFF Research Database (Denmark)

    Christensen, David Johan; Bordignon, Mirko; Schultz, Ulrik Pagh

    2009-01-01

    speed its modules independently and in parallel adjust their behavior based on a single global reward signal. In simulation, we study the learning strategy’s performance on different robot configurations. On the physical platform, we perform learning experiments with ATRON robots learning to move as fast...

  19. Morphology Independent Learning in Modular Robots

    DEFF Research Database (Denmark)

    Christensen, David Johan; Bordignon, Mirko; Schultz, Ulrik Pagh

    2009-01-01

    speed its modules independently and in parallel adjust their behavior based on a single global reward signal. In simulation, we study the learning strategy?s performance on different robot con?gurations. On the physical platform, we perform learning experiments with ATRON robots learning to move as fast...

  20. From Virtual Creatures to Feasible Robots

    DEFF Research Database (Denmark)

    Faina, Andres; Souto, Daniel; Orjales, Félix

    with the main objective of obtaining feasible and manufacturable robots. To this end, a modular architecture has been defined and implemented [2], which faces real hardware issues and promotes the evolvability of the robotic structures by considering heterogeneous modules with a large number of connection faces......This paper provides a brief description of the robots obtained using the evolutionary design system called EDHMoR (Evolutionary Designer of Heterogeneous Modular Robots) that are displayed in the corresponding video [1]. This system is based on the coevolution of morphology and control...... per module. These modules constitute the building blocks the EDHMoR system uses to design the robots. Moreover, an evaluation methodology is proposed as a key element of EDMHoR, which is based on modifications in the environment that can produce more useful and realistic robots without limiting...

  1. Modularity for Modulating Exercises and Levels

    DEFF Research Database (Denmark)

    Lund, Henrik Hautop; Nielsen, Camilla Balslev

    2011-01-01

    The modular interactive tiles aim at engaging anybody (elderly, carer, hospital personnel, children) in performing playful and motivating physical activities. Inspired by modular robotics, each tile is a self-contained module with processing power and communication to neighbouring modules....... In this paper, we investigate the therapeutic use. We show how the tiles are tested extensively with cardiac patients, COLD patients and stroke patients in hospitals and in the private homes of patients and elderly. We find that therapists are using the modular aspect of the tiles for personalized training...

  2. A cargo-sorting DNA robot.

    Science.gov (United States)

    Thubagere, Anupama J; Li, Wei; Johnson, Robert F; Chen, Zibo; Doroudi, Shayan; Lee, Yae Lim; Izatt, Gregory; Wittman, Sarah; Srinivas, Niranjan; Woods, Damien; Winfree, Erik; Qian, Lulu

    2017-09-15

    Two critical challenges in the design and synthesis of molecular robots are modularity and algorithm simplicity. We demonstrate three modular building blocks for a DNA robot that performs cargo sorting at the molecular level. A simple algorithm encoding recognition between cargos and their destinations allows for a simple robot design: a single-stranded DNA with one leg and two foot domains for walking, and one arm and one hand domain for picking up and dropping off cargos. The robot explores a two-dimensional testing ground on the surface of DNA origami, picks up multiple cargos of two types that are initially at unordered locations, and delivers them to specified destinations until all molecules are sorted into two distinct piles. The robot is designed to perform a random walk without any energy supply. Exploiting this feature, a single robot can repeatedly sort multiple cargos. Localization on DNA origami allows for distinct cargo-sorting tasks to take place simultaneously in one test tube or for multiple robots to collectively perform the same task. Copyright © 2017, American Association for the Advancement of Science.

  3. Distributed mechatronics controller for modular wall climbing robot

    CSIR Research Space (South Africa)

    Tlale, NS

    2006-07-01

    Full Text Available - climbing robot for inspection in nuclear power plants.”, Proc. IEEE Int. Conf. on Robotics and Automation, pp. 409-1414. (Chen 2001) Chen, D-. J., 2001, “Architecture for Systematic Development of Mechatronics Software Systems”, Licentiate Thesis... provide a more cost effective solution to the problem (Luk et al 1991). Such robots are termed service robots by the International Service Robot Association (ISRA) (Pransky 1996). They are defined as machines that sense, think, and act to benefit (or...

  4. Robotic weld overlay coatings for erosion control

    Science.gov (United States)

    The erosion of materials by the impact of solid particles has received increasing attention during the past twenty years. Recently, research has been initiated with the event of advanced coal conversion processes in which erosion plays an important role. The resulting damage, termed Solid Particle Erosion (SPE), is of concern primarily because of the significantly increased operating costs which result in material failures. Reduced power plant efficiency due to solid particle erosion of boiler tubes and waterfalls has led to various methods to combat SPE. One method is to apply coatings to the components subjected to erosive environments. Protective weld overlay coatings are particularly advantageous in terms of coating quality. The weld overlay coatings are essentially immune to spallation due to a strong metallurgical bond with the substrate material. By using powder mixtures, multiple alloys can be mixed in order to achieve the best performance in an erosive environment. However, a review of the literature revealed a lack of information on weld overlay coating performance in erosive environments which makes the selection of weld overlay alloys a difficult task. The objective of this project is to determine the effects of weld overlay coating composition and microstructure on erosion resistance. These results will lead to a better understanding of erosion mitigation in CFB's.

  5. Welding process automation in power machine building

    International Nuclear Information System (INIS)

    Mel'bard, S.N.; Shakhnov, A.F.; Shergov, I.V.

    1977-01-01

    The level of welding automation operations in power engineering and ways of its enhancement are highlighted. Used as the examples of comlex automation are an apparatus for the horizontal welding of turbine rotors, remotely controlled automatic machine for welding ring joint of large-sized vessels, equipment for the electron-beam welding of steam turbine assemblies of alloyed steels. The prospects of industrial robots are noted. The importance of the complex automation of technological process, including stocking, assemblying, transportation and auxiliary operations, is emphasized

  6. Integrating modular mechatronic systems for immersive performances

    DEFF Research Database (Denmark)

    Pagliarini, Luigi; Lund, Henrik Hautop

    2015-01-01

    and video output in a very easy manner, thanks to mechatronical wearable interfaces. In this light, we describe two of our systems that explore the concept of run-time composition of a variety of input and output modalities, e.g. both music and graphical expression. Indeed, we developed both hardware......As a branch of mechatronic research in interactivity, and in robot art, we describe the concept of implementing Playware based tools inspired by modern AI robotic systems for audio-video performances. We develop immersive and personalizable tools that can allow any user to manipulate both audio...... to create a run-time audio-video performance that is original and unique. This can further be combined with modular wearable – inspired by modular robotics – to interact and control the performance. This mechatronic wearable concept and its implementations exemplify how to convey a user-centered experience...

  7. The Dynamics and Sliding Mode Control of Multiple Cooperative Welding Robot Manipulators

    Directory of Open Access Journals (Sweden)

    Bin Zi

    2012-08-01

    Full Text Available This paper deals with the design, dynamic modelling and sliding mode control of multiple cooperative welding robot manipulators (MWRMs. The MWRMs can handle complex tasks that are difficult or even impossible for a single manipulator. The kinematics and dynamics of the MWRMs are studied on the basis of the Denavit-Hartenberg and Lagrange method. Following that, considering the MWRM system with nonlinear and unknown disturbances, a non-singular terminal sliding mode control strategy is designed. By means of the Lyapunov function, the stability of the controller is proved. Simulation results indicate that the good control performance of the MWRMs is achieved by the non-singular terminal sliding mode controller, which also illustrates the correctness of the dynamic modelling and effectiveness of the proposed control strategy.

  8. Design Minimalism in Robotics Programming

    Directory of Open Access Journals (Sweden)

    Anthony Cowley

    2008-11-01

    Full Text Available With the increasing use of general robotic platforms in different application scenarios, modularity and reusability have become key issues in effective robotics programming. In this paper, we present a minimalist approach for designing robot software, in which very simple modules, with well designed interfaces and very little redundancy can be connected through a strongly typed framework to specify and execute different robotics tasks.

  9. Design Minimalism in Robotics Programming

    Directory of Open Access Journals (Sweden)

    Anthony Cowley

    2006-03-01

    Full Text Available With the increasing use of general robotic platforms in different application scenarios, modularity and reusability have become key issues in effective robotics programming. In this paper, we present a minimalist approach for designing robot software, in which very simple modules, with well designed interfaces and very little redundancy can be connected through a strongly typed framework to specify and execute different robotics tasks.

  10. Exception detection and handling in mission control for mobile robots

    DEFF Research Database (Denmark)

    Andersen, Thomas Timm; Andersen, Nils Axel; Ravn, Ole

    2013-01-01

    This paper introduces a method for robust, rule-based mission control for mobile robots in a modular framework. Due to the modularity of the framework, it is possible to use both hierarchical control and reactive behavior seamlessly to find solutions to both planned and unplanned event in the mis......This paper introduces a method for robust, rule-based mission control for mobile robots in a modular framework. Due to the modularity of the framework, it is possible to use both hierarchical control and reactive behavior seamlessly to find solutions to both planned and unplanned event...

  11. ITER lip seal welding and cutting developments

    Energy Technology Data Exchange (ETDEWEB)

    Levesy, B.; Cordier, J.J.; Jokinen, T. [ITER Organization, Route de Vinon sur Verdon, 13115 Saint Paul Lez Durance (France); Kujanpää, V.; Karhu, M. [VTT Technical Research Centre of Finland (Finland); Le Barbier, R. [ITER Organization, Route de Vinon sur Verdon, 13115 Saint Paul Lez Durance (France); Määttä, T. [VTT Technical Research Centre of Finland (Finland); Martins, J.P.; Utin, Y. [ITER Organization, Route de Vinon sur Verdon, 13115 Saint Paul Lez Durance (France)

    2015-10-15

    Highlights: • Different TIG and Laser welding techniques are tested. • Twin spot laser welding techniques is the best. • Limited heat input gives a stable weld pool in all positions. • Penetrations is achieved. • Lip seal welding and cutting with a robotic arm is successfully performed on a representative mock-up. - Abstract: The welded lip seals form part of the torus primary vacuum boundary in between the port plugs and the vacuum vessel, and are classified as Protection Important Component. In order to refurbish the port plugs or the in-vessel components, port plugs have to be removed from the machine. The lip seal design must enable up to ten opening of the vacuum vessel during the life time operation of the ITER machine. Therefore proven, remote reliable cutting and re-welding are essential, as these operations need to be performed in the port cells in a nuclear environment, where human presence will be restricted. Moreover, the combination of size of the components to be welded (∼10 m long vacuum compatible thin welds) and the congested environment close to the core of the machine constraint the type and size of tools to be used. This paper describes the lip seal cutting and welding development programme performed at the VTT Technical Research Centre, Finland. Potential cutting and welding techniques are analyzed and compared. The development of the cutting, TIG and laser welding techniques on samples are presented. Effects of lip seal misalignments and optimization of the 2 welding processes are discussed. Finally, the manufacturing and test of the two 1.2 m × 1 m representative mock-ups are presented. The set-up and use of a robotic arm for the mock-up cutting and welding operations are also described.

  12. ITER lip seal welding and cutting developments

    International Nuclear Information System (INIS)

    Levesy, B.; Cordier, J.J.; Jokinen, T.; Kujanpää, V.; Karhu, M.; Le Barbier, R.; Määttä, T.; Martins, J.P.; Utin, Y.

    2015-01-01

    Highlights: • Different TIG and Laser welding techniques are tested. • Twin spot laser welding techniques is the best. • Limited heat input gives a stable weld pool in all positions. • Penetrations is achieved. • Lip seal welding and cutting with a robotic arm is successfully performed on a representative mock-up. - Abstract: The welded lip seals form part of the torus primary vacuum boundary in between the port plugs and the vacuum vessel, and are classified as Protection Important Component. In order to refurbish the port plugs or the in-vessel components, port plugs have to be removed from the machine. The lip seal design must enable up to ten opening of the vacuum vessel during the life time operation of the ITER machine. Therefore proven, remote reliable cutting and re-welding are essential, as these operations need to be performed in the port cells in a nuclear environment, where human presence will be restricted. Moreover, the combination of size of the components to be welded (∼10 m long vacuum compatible thin welds) and the congested environment close to the core of the machine constraint the type and size of tools to be used. This paper describes the lip seal cutting and welding development programme performed at the VTT Technical Research Centre, Finland. Potential cutting and welding techniques are analyzed and compared. The development of the cutting, TIG and laser welding techniques on samples are presented. Effects of lip seal misalignments and optimization of the 2 welding processes are discussed. Finally, the manufacturing and test of the two 1.2 m × 1 m representative mock-ups are presented. The set-up and use of a robotic arm for the mock-up cutting and welding operations are also described.

  13. Modular Actuators for Space Applications, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — Rocketstar Robotics is proposing the development of a modern dual drive actuator. Rocketstar has put together numerous modern concepts for modular actuators that...

  14. Recent progress in the field of automated welding applied to maintenance activities

    International Nuclear Information System (INIS)

    Cullafroz, M.

    2004-01-01

    Automated and robot welding has 5 advantages compared to manual welding: -) under some conditions the automated circular welding does not require requalification testing as manual welding does, -) welding heads in robots have a reduced size compared to manual gears so they can enter and treat complex piping, -) by using an adequate viewing system the operator can be more than 10 meters away from the welding site which means that the radiation doses he receives is cut by a factor 1.5 to 2, -) whatever the configuration is, the deposition rate in automated welding stays high, the quality standard is steady and the risk of repairing is low, -) a gain in productivity if adequate equipment is used. In general, automated welding requires a TIG welding process and is applied in maintenance activities to: -) the main primary system and other circuits in stainless austenitic steels, -) the main secondary system and other circuits in low-percentage carbon steels, and -) the closure of spent fuel canisters. An application to the repairing of BWR's pipes is shown. (A.C.)

  15. Modular, Reconfigurable, High-Energy Technology Development

    Science.gov (United States)

    Carrington, Connie; Howell, Joe

    2006-01-01

    The Modular, Reconfigurable High-Energy (MRHE) Technology Demonstrator project was to have been a series of ground-based demonstrations to mature critical technologies needed for in-space assembly of a highpower high-voltage modular spacecraft in low Earth orbit, enabling the development of future modular solar-powered exploration cargo-transport vehicles and infrastructure. MRHE was a project in the High Energy Space Systems (HESS) Program, within NASA's Exploration Systems Research and Technology (ESR&T) Program. NASA participants included Marshall Space Flight Center (MSFC), the Jet Propulsion Laboratory (JPL), and Glenn Research Center (GRC). Contractor participants were the Boeing Phantom Works in Huntsville, AL, Lockheed Martin Advanced Technology Center in Palo Alto, CA, ENTECH, Inc. in Keller, TX, and the University of AL Huntsville (UAH). MRHE's technical objectives were to mature: (a) lightweight, efficient, high-voltage, radiation-resistant solar power generation (SPG) technologies; (b) innovative, lightweight, efficient thermal management systems; (c) efficient, 100kW-class, high-voltage power delivery systems from an SPG to an electric thruster system; (d) autonomous rendezvous and docking technology for in-space assembly of modular, reconfigurable spacecraft; (e) robotic assembly of modular space systems; and (f) modular, reconfigurable distributed avionics technologies. Maturation of these technologies was to be implemented through a series of increasingly-inclusive laboratory demonstrations that would have integrated and demonstrated two systems-of-systems: (a) the autonomous rendezvous and docking of modular spacecraft with deployable structures, robotic assembly, reconfiguration both during assembly and (b) the development and integration of an advanced thermal heat pipe and a high-voltage power delivery system with a representative lightweight high-voltage SPG array. In addition, an integrated simulation testbed would have been developed

  16. An example of the use of robotics in French nuclear power plants the ISIS robot

    International Nuclear Information System (INIS)

    Seguy, J.; Thirion, H.

    1988-01-01

    The authors report how Robotics in French nuclear power plants (NPP) is used to solve maintenance problems. One of the most typical example of the use of robotics in French NPP is the ISIS robot. The first generation of this robot has performed the repair of corroded upper internal structures in Chinon A3 gaz cooled reactor. Two robots of this type have successfully welded more than 200 repair parts in the core without major failure during more than 12,000 hours

  17. Fundamentals and advances in the development of remote welding fabrication systems

    Science.gov (United States)

    Agapakis, J. E.; Masubuchi, K.; Von Alt, C.

    1986-01-01

    Operational and man-machine issues for welding underwater, in outer space, and at other remote sites are investigated, and recent process developments are described. Probable remote welding missions are classified, and the essential characteristics of fundamental remote welding tasks are analyzed. Various possible operational modes for remote welding fabrication are identified, and appropriate roles for humans and machines are suggested. Human operator performance in remote welding fabrication tasks is discussed, and recent advances in the development of remote welding systems are described, including packaged welding systems, stud welding systems, remotely operated welding systems, and vision-aided remote robotic welding and autonomous welding systems.

  18. Robot vision

    International Nuclear Information System (INIS)

    Hall, E.L.

    1984-01-01

    Almost all industrial robots use internal sensors such as shaft encoders which measure rotary position, or tachometers which measure velocity, to control their motions. Most controllers also provide interface capabilities so that signals from conveyors, machine tools, and the robot itself may be used to accomplish a task. However, advanced external sensors, such as visual sensors, can provide a much greater degree of adaptability for robot control as well as add automatic inspection capabilities to the industrial robot. Visual and other sensors are now being used in fundamental operations such as material processing with immediate inspection, material handling with adaption, arc welding, and complex assembly tasks. A new industry of robot vision has emerged. The application of these systems is an area of great potential

  19. Concept design of robotic modules for needlescopic surgery.

    Science.gov (United States)

    Sen, Shin; Harada, Kanako; Hewitt, Zackary; Susilo, Ekawahyu; Kobayashi, Etsuko; Sakuma, Ichiro

    2017-08-01

    Many minimally invasive surgical procedures and assisting robotic systems have been developed to further minimize the number and size of incisions in the body surface. This paper presents a new idea combining the advantages of modular robotic surgery, single incision laparoscopic surgery and needlescopic surgery. In the proposed concept, modules carrying therapeutic or diagnostic tools are inserted in the abdominal cavity from the navel as in single incision laparoscopic surgery and assembled to 3-mm needle shafts penetrating the abdominal wall. A three degree-of-freedom robotic module measuring 16 mm in diameter and 51 mm in length was designed and prototyped. The performance of the three connected robotic modules was evaluated. A new idea of modular robotic surgery was proposed, and demonstrated by prototyping a 3-DOF robotic module. The performance of the connected robotic modules was evaluated, and the challenges and future work were summarized.

  20. INDUSTRIAL ROBOT REPEATABILITY TESTING WITH HIGH SPEED CAMERA PHANTOM V2511

    Directory of Open Access Journals (Sweden)

    Jerzy Józwik

    2016-12-01

    Full Text Available Apart from accuracy, one of the parameters describing industrial robots is positioning accuracy. The parameter in question, which is the subject of this paper, is often the decisive factor determining whether to apply a given robot to perform certain tasks or not. Articulated robots are predominantly used in such processes as: spot weld-ing, transport of materials and other welding applications, where high positioning repeatability is required. It is therefore essential to recognise the parameter in question and to control it throughout the operation of the robot. This paper presents methodology for robot positioning accuracy measurements based on vision technique. The measurements were conducted with Phantom v2511 high-speed camera and TEMA Motion software, for motion analysis. The object of the measurements was a 6-axis Yaskawa Motoman HP20F industrial robot. The results of measurements obtained in tests provided data for the calculation of positioning accuracy of the robot, which was then juxtaposed against robot specifications. Also analysed was the impact of the direction of displacement on the value of attained pose errors. Test results are given in a graphic form.

  1. Report on the actual situations of the commercially applied, industrial robots; Sangyoyo robot ni kansuru kigyo jittai chosa hokokusho

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1991-08-01

    Described herein are the actual situations of industrial robots as the FY 1991 questionnaire survey results. The questionnaires were sent to 541 factories, and 74% thereof were recovered. The major machine types fall into categories of manual manipulator, stationary sequence manipulator, remote controlling robot, sequence robot, playback robot, numerically controlling robot and intelligent robot. They are mainly driven by hydraulic, pneumatic, or electrical power. Their mechanism types cover polar coordinate, cylindrical coordinate, rectangular coordinate and articulation types, among others. They are mainly controlled by electronically, electrically (hydraulic or relay), or pneumatically. The major purposes for general works include casting, forging, resin processing, heat treatment, pressing, welding, coating, machining, cutting, assembling, reception/delivery of goods, and testing/inspection. The special works they are in service include those for power/gas/water services, construction works, and research and development. By work step, they are in service, e.g., for loading/unloading goods, palletising/packing goods, supporting, screening, welding, spraying/coating, grinding, clamping, assembling, and riveting. (NEDO)

  2. Design and Optimal Research of a Non-Contact Adjustable Magnetic Adhesion Mechanism for a Wall-Climbing Welding Robot

    Directory of Open Access Journals (Sweden)

    Minghui Wu

    2013-01-01

    Full Text Available Wall-climbing welding robots (WCWRs can replace workers in manufacturing and maintaining large unstructured equipment, such as ships. The adhesion mechanism is the key component of WCWRs. As it is directly related to the robot's ability in relation to adsorbing, moving flexibly and obstacle-passing. In this paper, a novel non-contact adjustably magnetic adhesion mechanism is proposed. The magnet suckers are mounted under the robot's axils and the sucker and wall are in non-contact. In order to pass obstacles, the sucker and the wheel unit can be pulled up and pushed down by a lifting mechanism. The magnetic adhesion force can be adjusted by changing the height of the gap between the sucker and the wall by the lifting mechanism. In order to increase the adhesion force, the value of the sucker's magnetic energy density (MED is maximized by optimizing the magnet sucker's structure parameters with a finite element method. Experiments prove that the magnetic adhesion mechanism has enough adhesion force and that the WCWR can complete wall-climbing work within a large unstructured environment.

  3. Nd-YAG laser welding of bare and galvanised steels

    International Nuclear Information System (INIS)

    Kennedy, S.C.; Norris, I.M.

    1989-01-01

    Until recently, one of the problems that has held back the introduction of lasers into car body fabrication has been the difficulty of integrating the lasers with robots. Nd-YAG laser beams can be transmitted through fibre optics which, as well as being considerably easier to manipulate than a mirror system, can be mounted on more lightweight accurate robots. Although previously only available at low powers, recent developments in Nd-YAG laser technology mean that lasers of up to 1kW average power will soon be available, coupled to a fibre optic beam delivery system. The increasing usage of zinc coated steels in vehicle bodies has led to welding problems using conventional resistance welding as well as CO 2 laser welding. The use of Nd-YAG lasers may be able to overcome these problems. This paper outlines work carried out at The Welding Institute on a prototype Lumonics 800W pulsed Nd-YAG laser to investigate its welding characteristics on bare and zinc coated car body steels

  4. Increasing Robotic Science Applications

    Data.gov (United States)

    National Aeronautics and Space Administration — The principal objectives are to demonstrate robotic-based scientific investigations and resource prospecting, and develop and demonstrate modular science instrument...

  5. Energy Efficiency of Robot Locomotion Increases Proportional to Weight

    DEFF Research Database (Denmark)

    Larsen, Jørgen Christian; Støy, Kasper

    2011-01-01

    The task of producing steady, stable and energy efficient locomotion in legged robots with the ability to walk in un- known terrain have for many years been a big challenge in robotics. This work is focusing on how different robots build from the modular robotic system, LocoKit by Larsen et. la [3...

  6. Energy Efficiency of Robot Locomotion Increases Proportional to Weight

    DEFF Research Database (Denmark)

    Larsen, J. C.; Stoy, K.

    2011-01-01

    The task of producing steady, stable and energy efficient locomotion in legged robots with the ability to walk in unknown terrain have for many years been a big challenge in robotics. This work is focusing on how different robots build from the modular robotic system, LocoKit by Larsen et al. [1...

  7. Motor modules in robot-aided walking

    Directory of Open Access Journals (Sweden)

    Gizzi Leonardo

    2012-10-01

    Full Text Available Abstract Background It is hypothesized that locomotion is achieved by means of rhythm generating networks (central pattern generators and muscle activation generating networks. This modular organization can be partly identified from the analysis of the muscular activity by means of factorization algorithms. The activity of rhythm generating networks is described by activation signals whilst the muscle intervention generating network is represented by motor modules (muscle synergies. In this study, we extend the analysis of modular organization of walking to the case of robot-aided locomotion, at varying speed and body weight support level. Methods Non Negative Matrix Factorization was applied on surface electromyographic signals of 8 lower limb muscles of healthy subjects walking in gait robotic trainer at different walking velocities (1 to 3km/h and levels of body weight support (0 to 30%. Results The muscular activity of volunteers could be described by low dimensionality (4 modules, as for overground walking. Moreover, the activation signals during robot-aided walking were bursts of activation timed at specific phases of the gait cycle, underlying an impulsive controller, as also observed in overground walking. This modular organization was consistent across the investigated speeds, body weight support level, and subjects. Conclusions These results indicate that walking in a Lokomat robotic trainer is achieved by similar motor modules and activation signals as overground walking and thus supports the use of robotic training for re-establishing natural walking patterns.

  8. Robotic arm

    Science.gov (United States)

    Kwech, Horst

    1989-04-18

    A robotic arm positionable within a nuclear vessel by access through a small diameter opening and having a mounting tube supported within the vessel and mounting a plurality of arm sections for movement lengthwise of the mounting tube as well as for movement out of a window provided in the wall of the mounting tube. An end effector, such as a grinding head or welding element, at an operating end of the robotic arm, can be located and operated within the nuclear vessel through movement derived from six different axes of motion provided by mounting and drive connections between arm sections of the robotic arm. The movements are achieved by operation of remotely-controllable servo motors, all of which are mounted at a control end of the robotic arm to be outside the nuclear vessel.

  9. Robots and lattice automata

    CERN Document Server

    Adamatzky, Andrew

    2015-01-01

    The book gives a comprehensive overview of the state-of-the-art research and engineering in theory and application of Lattice Automata in design and control of autonomous Robots. Automata and robots share the same notional meaning. Automata (originated from the latinization of the Greek word “αυτόματον”) as self-operating autonomous machines invented from ancient years can be easily considered the first steps of robotic-like efforts. Automata are mathematical models of Robots and also they are integral parts of robotic control systems. A Lattice Automaton is a regular array or a collective of finite state machines, or automata. The Automata update their states by the same rules depending on states of their immediate neighbours. In the context of this book, Lattice Automata are used in developing modular reconfigurable robotic systems, path planning and map exploration for robots, as robot controllers, synchronisation of robot collectives, robot vision, parallel robotic actuators. All chapters are...

  10. DESIGN OF A WELDING AND INSPECTION SYSTEM FOR WASTE STORAGE CLOSURE

    International Nuclear Information System (INIS)

    H.B. Smartt; A.D. Watkins; D.P. Pace; R.J. Bitsoi; E.D. Larsen T.R. McJunkin; C.R. Tolle

    2005-01-01

    This work reported here was done to provide a conceptual design for a robotic welding and inspection system for the Yucca Mountain Repository waste package closure system. The welding and inspection system is intended to make the various closure welds that seal and/or structurally join the lids to the waste package vessels. The welding and inspection system will also perform surface and volumetric inspections of the various closure welds and has the means to repair closure welds, if required. The system is designed to perform these various activities remotely, without the necessity of having personnel in the closure cell

  11. The Development of a Radiation Hardened Robot for Nuclear Facilities

    Energy Technology Data Exchange (ETDEWEB)

    Jung, Seung Ho; Kim, Chang Hoi; Seo, Yong Chil (and others)

    2007-04-15

    We has been developed two remotely controlled robotic systems. One is a underwater vehicle for inspection of the internal structures of PWRs and retrieving foreign stubs in the reactor pressure vessels and reactor coolant pipes. The other robotic system consists of a articulated-type mobile robot capable of recovering the failure of the fuel exchange machine and a mini modular mobile robot for inspection of feeder pipes with ultrasonic array sensors in PHWRs. The underwater robot has been designed by considering radiation effect, underwater condition, and accessibility to the working area. The size of underwater robot is designed to enter the cold legs. A extendable manipulator is mounted on the mobile robot, which can restore nuclear fuel exchange machine. The mini modular mobile robot is composed of dual inch worm mechanisms, which are constructed by two gripper bodies that can fix the robot body on to the pipe and move along the longitudinal and to rotate in a circumferential direction to access all of the outer surfaces of the pipe.

  12. Design and Implementation of Modular Software for Programming Mobile Robots

    Directory of Open Access Journals (Sweden)

    Alessandro Farinelli

    2006-03-01

    Full Text Available This article describes a software development toolkit for programming mobile robots, that has been used on different platforms and for different robotic applications. We address design choices, implementation issues and results in the realization of our robot programming environment, that has been devised and built from many people since 1998. We believe that the proposed framework is extremely useful not only for experienced robotic software developers, but also for students approaching robotic research projects.

  13. Human-Derived Disturbance Estimation and Compensation (DEC) Method Lends Itself to a Modular Sensorimotor Control in a Humanoid Robot.

    Science.gov (United States)

    Lippi, Vittorio; Mergner, Thomas

    2017-01-01

    The high complexity of the human posture and movement control system represents challenges for diagnosis, therapy, and rehabilitation of neurological patients. We envisage that engineering-inspired, model-based approaches will help to deal with the high complexity of the human posture control system. Since the methods of system identification and parameter estimation are limited to systems with only a few DoF, our laboratory proposes a heuristic approach that step-by-step increases complexity when creating a hypothetical human-derived control systems in humanoid robots. This system is then compared with the human control in the same test bed, a posture control laboratory. The human-derived control builds upon the identified disturbance estimation and compensation (DEC) mechanism, whose main principle is to support execution of commanded poses or movements by compensating for external or self-produced disturbances such as gravity effects. In previous robotic implementation, up to 3 interconnected DEC control modules were used in modular control architectures separately for the sagittal plane or the frontal body plane and successfully passed balancing and movement tests. In this study we hypothesized that conflict-free movement coordination between the robot's sagittal and frontal body planes emerges simply from the physical embodiment, not necessarily requiring a full body control. Experiments were performed in the 14 DoF robot Lucy Posturob (i) demonstrating that the mechanical coupling from the robot's body suffices to coordinate the controls in the two planes when the robot produces movements and balancing responses in the intermediate plane, (ii) providing quantitative characterization of the interaction dynamics between body planes including frequency response functions (FRFs), as they are used in human postural control analysis, and (iii) witnessing postural and control stability when all DoFs are challenged together with the emergence of inter

  14. A Reconfigurable Omnidirectional Soft Robot Based on Caterpillar Locomotion.

    Science.gov (United States)

    Zou, Jun; Lin, Yangqiao; Ji, Chen; Yang, Huayong

    2018-04-01

    A pneumatically powered, reconfigurable omnidirectional soft robot based on caterpillar locomotion is described. The robot is composed of nine modules arranged as a three by three matrix and the length of this matrix is 154 mm. The robot propagates a traveling wave inspired by caterpillar locomotion, and it has all three degrees of freedom on a plane (X, Y, and rotation). The speed of the robot is about 18.5 m/h (two body lengths per minute) and it can rotate at a speed of 1.63°/s. The modules have neodymium-iron-boron (NdFeB) magnets embedded and can be easily replaced or combined into other configurations. Two different configurations are presented to demonstrate the possibilities of the modular structure: (1) by removing some modules, the omnidirectional robot can be reassembled into a form that can crawl in a pipe and (2) two omnidirectional robots can crawl close to each other and be assembled automatically into a bigger omnidirectional robot. Omnidirectional motion is important for soft robots to explore unstructured environments. The modular structure gives the soft robot the ability to cope with the challenges of different environments and tasks.

  15. Eddy current testing system for bottom mounted instrumentation welds - 15206

    International Nuclear Information System (INIS)

    Kobayashi, N.; Ueno, S.; Suganuma, N.; Oodake, T.; Maehara, T.; Kasuya, T.; Ichikawa, H.

    2015-01-01

    We have demonstrated the scanning of eddy current testing (ECT) probe on the welds area including the nozzle, the J-welds and the buildup welds of the Bottom Mounted Instrumentation (BMI) mock-up using the developed ECT system and procedure. It is difficult to scan the probe on the BMI welds area because the area has a complex curved surface shape and narrow spaces. We made the space coordinates and the normal vectors on the scanning points as the scanning trajectory of probe on the welds area based on the measured results of welds surface shape on the mock-up. The multi-axis robot was used to scan the probe on the welds surface. Each motion axis position of the robot corresponding to each scanning point was calculated by the inverse kinematic algorithm. The BMI mock-up test was performed using the cross coil probe in the differential mode. The artificial stress corrosion cracking and the electrical discharge machining slits given on the mock-up surface were detected. The results show that the ECT can detect a defect of approximately 2.3 mm in length, 0.5 mm in depth and 0.2 mm in width for the BMI welds. From the output voltage of single coil, we estimated that the average and the maximum probe tilt angles on the mock-up surface under scanning were 2.6 degrees and 8.5 degrees, respectively

  16. Automatization and mechanization of welding in nuclear engineering

    Energy Technology Data Exchange (ETDEWEB)

    Shul' ma, I E; Kupin, N V

    1986-02-01

    The state of welding and cladding works, which constitute more than 12% of total labour content of NPP equipment production, is described. Special attention is paid to a considerable part of manual labour in the processes of thermal cutting and welding of joints inside the vessels. The necessity of perspective technology introduction is pointed out. It means, in particular, the introduction of technological complex robotics for automatic welding of pipes with tube plates in heat exchanger, the mechanization of cladding processes for sealing surfaces of locking equipment, facility equipment for the welding of steam generator vessels to bottoms by means of preliminary and concomitant heating devices.

  17. Automatization and mechanization of welding in nuclear engineering

    International Nuclear Information System (INIS)

    Shul'ma, I.E.; Kupin, N.V.

    1986-01-01

    The state of welding and cladding works, which constitute more than 12% of total labour content of NPP equipment production, is described. Special attention is paid to a considerable part of manual labour in the processes of thermal cutting and welding of joints inside the vessels. The necessity of perspective technology introduction is pointed out. It means, in particular, the introduction of technological complex robotics for automatic welding of pipes with tube plates in heat exchanger, the mechanization of cladding processes for sealing surfaces of locking equipment, facility equipment for the welding of steam generator vessels to bottoms by means of preliminary and concomitant heating devices

  18. Detailed characterization of welding fumes in personal exposure samples

    International Nuclear Information System (INIS)

    Quémerais, B; Mino, James; Amin, M R; Golshahi, H; Izadi, H

    2015-01-01

    The objective of the project was to develop a method allowing for detailed characterization of welding particles including particle number concentration, size distribution, surface chemistry and chemical composition of individual particles, as well as metal concentration of various welding fumes in personal exposure samples using regular sampling equipment. A sample strategy was developed to evaluate the variation of the collection methods on mass concentration. Samples were collected with various samplers and filters at two different locations using our collection system. The first location was using a robotic welding system while the second was manual welding. Collected samples were analysed for mass concentration using gravimetryand metal concentration using ICP/OES. More advanced analysis was performed on selected filters using X-Ray Photoelectron Spectroscopy to determine surface composition of the particles, and X-Ray Diffraction to determine chemical composition of the fumes. Results showed that the robotic system had a lot of variation in space when the collection system was located close to the weld. Collection efficiency was found to be quite variable depending upon the type of filter. As well, metal concentrations in blank filters were dependent upon the type of filter with MCE presenting with the highest blank values. Results obtained with the XRD and XPS systems showed that it was possible to analyse a small of powdered welding fume sample but results on filters were not conclusive. (paper)

  19. Development of a robot Holon using an open modular controller

    DEFF Research Database (Denmark)

    Schnell, Jakob; Andersen, Søren; Sørensen, Christian

    1999-01-01

    System (HoMuCS) architecture and methodology for implementing a HMS. This paper specifically reviews the development of a Robot Holon based on an open controller in the context of the HoMuCS architecture. The paper will describe the results and research work that was involved in developing a robot holon...... for a physical robot. The robot holon was implemented on an existing robot at the department which was upgraded by removing its native control system and replacing it with a new PC-based open controller. The development of the robot holon builds on the notion that a robot holon will be able to performboth......Holonic Manufacturing Systems (HMS) has during the last period presented itself as an advantageous theoretical foundation for the problems that arise in controlling agile manufacturing systems. Previous research, at the Department, has demonstrated how modern shop floor control systems can...

  20. Fatique Resistant, Energy Efficient Welding Program, Final Technical Report

    Energy Technology Data Exchange (ETDEWEB)

    Egland, Keith; Ludewig, Howard

    2006-05-25

    The program scope was to affect the heat input and the resultant weld bead geometry by synchronizing robotic weave cycles with desired pulsed waveform shapes to develop process parameters relationships and optimized pulsed gas metal arc welding processes for welding fatique-critical structures of steel, high strength steel, and aluminum. Quality would be addressed by developing intelligent methods of weld measurement that accurately predict weld bead geometry from process information. This program was severely underfunded, and eventually terminated. The scope was redirected to investigate tandem narrow groove welding of steel butt joints during the one year of partial funding. A torch was designed and configured to perform a design of experiments of steel butt weld joints that validated the feasability of the process. An initial cost model estimated a 60% cost savings over conventional groove welding by eliminating the joint preparation and reducing the weld volume needed.

  1. An underwater robot controls water tanks in nuclear power plants

    International Nuclear Information System (INIS)

    Lardiere, C.

    2015-01-01

    The enterprises Newton Research Labs and IHI Southwest Technologies have developed a robot equipped with sensors to inspect the inside walls (partially) and bottom of water tanks without being obliged to empty them. The robot called 'Inspector' is made up of 4 main components: a chassis with 4 independent steering wheels, a camera video system able to provide a 360 degree view, various non-destructive testing devices such as underwater laser scanners, automated ultra-sound or Foucault current probes and an operation system for both driving the robot and controlling the testing. The Inspector robot has been used to inspect the inside bottom of an operating condensate tank at the Palo Verde nuclear station. The robot was able to check all the welds joining the bottom plates and the welds between the walls and the bottom. The robot is also able to come back to the exact place where a defect was detected during a previous inspection. (A.C.)

  2. Multivariable Frequency Response Functions Estimation for Industrial Robots

    NARCIS (Netherlands)

    Hardeman, T.; Aarts, Ronald G.K.M.; Jonker, Jan B.

    2005-01-01

    The accuracy of industrial robots limits its applicability for high demanding processes, like robotised laser welding. We are working on a nonlinear exible model of the robot manipulator to predict these inaccuracies. This poster presents the experimental results on estimating the Multivariable

  3. BEAM–TO-COLUMN CONNECTION CALCULATIONS USING ROBOT SOFTWARE

    Directory of Open Access Journals (Sweden)

    Mykhaylo Pashechko

    2015-08-01

    Full Text Available A beam–to-column connection design and results of engineer calculations using Autodesk’s Robot Structural analysis are shown in the article. Two types of connections, bolted and welded, were calculated. The tensile resistance amounted to 912.74 kN, bending resistance to 100.87 kN·m and effective design capacity of the bolt amounted to 27.69 kN. Normal stress in the weld amounted to σ⊥max = τ⊥max = 72.72 MPa, in the vertical weld to σ⊥= τ⊥= 63.34 MPa and tangent stress amounted to τ|| = 4.37 MPa. The results allowed us to implement minor changes such as increasing the distance between the bolt and the edge and decreasing the size of the fillet welds. The design is fully compliant with the EN 1993-1-8 norm. Using Robot Structural Analysis substantially increased the pace of calculations giving precise and clear outcomes.

  4. Proton-irradiation technology for high-frequency high-current silicon welding diode manufacturing

    Science.gov (United States)

    Lagov, P. B.; Drenin, A. S.; Zinoviev, M. A.

    2017-05-01

    Different proton irradiation regimes were tested to provide more than 20 kHz-frequency, soft reverse recovery “snap-less” behavior, low forward voltage drop and leakage current for 50 mm diameter 7 kA/400 V welding diode Al/Si/Mo structure. Silicon diode with such parameters is very suitable for high frequency resistance welding machines of new generation for robotic welding.

  5. A 1993 review of welding in Japan

    Science.gov (United States)

    1994-07-01

    This paper describes a prospect on Japanese welding technologies available in 1993. Amid the increasing research publications on non-ferrous metals as structural materials, publications are also increasing on steel materials as to their fracture and welding mechanics, and structural control. Studies are being made on ceramics with respect to its bonding, interface reaction mechanisms, and mechanical characteristics. The paper describes the progress and improvement in conventional technologies in welding and cutting processes. Especially active is the study on solid face welding such as pressure welding and diffusion. A considerable decrease is seen in reports on thermal spraying. The paper also introduces surface processing and hydrostatic pressure processing as new processing techniques. In the area of welding devices, practical use of arc welding robots has come to near a completion stage. Technological development and cost reduction are indispensable to transfer to visual sensing with a higher intelligence level. With respect to the performance of joints, a large number of research has been reported on welding deformation and residual stress. The paper also dwells on corrosion resistance and welding cracks. Quality assurance, inspection, and related standards are described. Details are given on application of welding to different industrial fields.

  6. Robotic arm

    International Nuclear Information System (INIS)

    Kwech, H.

    1989-01-01

    A robotic arm positionable within a nuclear vessel by access through a small diameter opening and having a mounting tube supported within the vessel and mounting a plurality of arm sections for movement lengthwise of the mounting tube as well as for movement out of a window provided in the wall of the mounting tube is disclosed. An end effector, such as a grinding head or welding element, at an operating end of the robotic arm, can be located and operated within the nuclear vessel through movement derived from six different axes of motion provided by mounting and drive connections between arm sections of the robotic arm. The movements are achieved by operation of remotely-controllable servo motors, all of which are mounted at a control end of the robotic arm to be outside the nuclear vessel. 23 figs

  7. Ultrasonic diagnosis of spot welding in thin plates

    International Nuclear Information System (INIS)

    Kim, No You; Hong, Min Sung

    2005-01-01

    Spot welding widely used in automotive and aerospace industries has made it possible to produce more precise and smaller electric part by robotization and systemization of welding process. The quality of welding depends upon the size of nugget between the overlapped steel plates. Recently, the thickness of the steel plates becomes much thinner and hence, it introduces the smaller size of nugget. Therefore, it is necessary to develop the criterion to evaluate the quality of weld in order to obtain the optimal welding conditions for the better performance. In this paper, a thin steel plates, 0.1 mm through 0.3 mm thickness, have been spot-welded at different welding conditions and the nugget sizes are examined by defocused scanning microscopy. The relationships between nugget sizes and weldability have been investigated experimentally. The result of ultrasonic technique shows the good agreement with that of the tensile test.

  8. A Modular Approach for a Family of Ground Mobile Robots

    Directory of Open Access Journals (Sweden)

    Giuseppe Quaglia

    2013-07-01

    Full Text Available This paper deals with Epi.q, a family of mobile robots whose main characteristic is a wheel-legged hybrid locomotion. These multi-purpose robots can be successfully exploited for security and surveillance tasks. The document presents state of the art security robotics, the Epi.q mechanical architecture, the concept behind the robot driving unit, three prototypes and the design of a new one.

  9. BEETLE - A modular electronics family for robotics

    CSIR Research Space (South Africa)

    Dickens, J

    2015-11-01

    Full Text Available of applications. A family of modular electronic elements is proposed to address this need. The Beautiful Embedded Electronic Logic Element (BEETLE) family of boards is designed to be compact, low cost, robust, reusable and easy to program. This allows the boards...

  10. Applications of Chaotic Dynamics in Robotics

    Directory of Open Access Journals (Sweden)

    Xizhe Zang

    2016-03-01

    Full Text Available This article presents a summary of applications of chaos and fractals in robotics. Firstly, basic concepts of deterministic chaos and fractals are discussed. Then, fundamental tools of chaos theory used for identifying and quantifying chaotic dynamics will be shared. Principal applications of chaos and fractal structures in robotics research, such as chaotic mobile robots, chaotic behaviour exhibited by mobile robots interacting with the environment, chaotic optimization algorithms, chaotic dynamics in bipedal locomotion and fractal mechanisms in modular robots will be presented. A brief survey is reported and an analysis of the reviewed publications is also presented.

  11. Robotic Manufacturing of 18-ft (5.5m) Diameter Cryogenic Fuel Tank Dome Assemblies for the NASA Ares I Rocket

    Science.gov (United States)

    Jones, Ronald E.; Carter, Robert W.

    2012-01-01

    The Ares I rocket was the first launch vehicle scheduled for manufacture under the National Aeronautic and Space Administration's Constellation program. A series of full-scale Ares I development articles were constructed on the Robotic Weld Tool at the NASA George C. Marshall Space Flight Center in Huntsville, Alabama. The Robotic Weld Tool is a 100 ton, 7- axis, robotic manufacturing system capable of machining and friction stir welding large-scale space hardware. This paper will focus on the friction stir welding of 18-ft (5.5m) diameter cryogenic fuel tank components; specifically, the liquid hydrogen forward dome and two common bulkhead manufacturing development articles.

  12. Design and Implementation of a New DELTA Parallel Robot in Robotics Competitions

    Directory of Open Access Journals (Sweden)

    Jonqlan Lin

    2015-10-01

    Full Text Available This investigation concerns the design and implementation of the DELTA parallel robot, covering the entire mechatronic process, involving kinematics, control design and optimizing methods. To accelerate the construction of the robot, 3D printing is used to fabricate end-effector parts. The parts are modular, low-cost, reconfigurable and can be assembled in less time than is required for conventionally fabricated parts. The controller, including the control algorithm and human-machine interface (HMI, is coded using the Borland C++ Builder 6 Personal software environment. The integration of the motion controller with image recognition into an opto-mechatronics system is presented. The robot system has been entered into robotic competitions in Taiwan. The experimental results reveal that the proposed DELTA robot completed the tasks in those competitions successfully.

  13. Proton-irradiation technology for high-frequency high-current silicon welding diode manufacturing

    International Nuclear Information System (INIS)

    Lagov, P B; Drenin, A S; Zinoviev, M A

    2017-01-01

    Different proton irradiation regimes were tested to provide more than 20 kHz-frequency, soft reverse recovery “snap-less” behavior, low forward voltage drop and leakage current for 50 mm diameter 7 kA/400 V welding diode Al/Si/Mo structure. Silicon diode with such parameters is very suitable for high frequency resistance welding machines of new generation for robotic welding. (paper)

  14. The French A.E.C. nuclear robotic program

    International Nuclear Information System (INIS)

    Foult, T.

    1991-01-01

    The new French nuclear robotic program launched by the CEA was started at the beginning of 1988 for the duration of two years and with the total subsidy of about 130 million French franc. This program includes the following four steps: the definition of model missions dedicated to inspection and intervention in nuclear environment, the system analysis to define the systems, functions and specifications required to perform these model missions, the technological development required to achieve these systems, and the design of demonstration models with the partial integration of the above developments. The whole program including these four steps is called SYROCO (modular SYstem for RObots COoperating in radioactive environment). The repair of leak in a pipe in a reprocessing cell, the model mission in a PWR nuclear power plant, autonomous load bearing mobile robots, squirrel concept light modular carrier concept, radiation hardening, mechanic, perception of environment, communication, control and simulation and the demonstration models are described. SHERPA project, perception management, force controlled manipulator, squirrel project, light modular carrier, processes and NAB model mission simulation are particularly mentioned

  15. Marinization concept for the TRICEPT TR600 robot

    Energy Technology Data Exchange (ETDEWEB)

    Meyer, A.; Aust, E.; Niemann, H.R.; Santos, J.F. dos [GKSS-Forschungszentrum Geesthacht GmbH (Germany). Inst. fuer Materialforschung; Hammerin, R.; Neumann, K.E. [Neos Robotics AB, Taeby (Sweden); Gibson, D. [National Hyperbaric Centre, Aberdeen (United Kingdom)

    1998-11-01

    The need for automated welding repair systems of marine structures, ship hulls and nuclear installations had lead to an increasing demand for subsea robots. Considering the application of friction welding to perform underwater repairs, a TRICEPT TR600 robot has been identified as the most suitable system to withstand the high reaction forces characteristic of this process. This study reviews initially the research and development work carried out at GKSS to modify and test a Siemens-MANUTEC robot. After a description of the TRICEPT TR600 robot a marinization concept is presented and discussed in detail. Problems of galvanic corrosion in seawater are addressed in a separate chapter. The deflection of the robot in subsea water currents is estimated with a worst-case calculation. (orig.) [Deutsch] Der Wunsch, Roboter auch unter Wasser einsetzen zu koennen, waechst mit steigendem Interesse nach automatisierten Schweissverfahren fuer Reparaturen an marinen Bauwerken, Schiffsruempfen und in Kernenergieanlagen. Fuer den Einsatz von Reibschweissverfahren fuer diese Reparaturen wurde der TRICEPT TR600-Roboter ausgewaehlt, da dieser auch den charakteristisch hohen Prozesskraeften widerstehen kann. Die notwendigen Modifikationen und Pruefungen werden beispielhaft anhand des bei der GKSS modifizierten Siemens-MANUTEC-Roboters vorgestellt. Nach einer Beschreibung des TRICEPT-Roboters werden die notwendigen Umbaumassnahmen detailliert dargestellt und diskutiert. Auf die Problematik der galvanischen Korrosion in Seewasser wird in einem gesonderten Kapitel naeher eingegangen. Zusaetzlich wird eine moegliche Ablenkung des Roboters durch Wasserstroemung ueberschlaegig berechnet. (orig.)

  16. High quality joining techniques: in-process assurance (IPA) welding system

    Energy Technology Data Exchange (ETDEWEB)

    Kaihara, Shoichiro [Ishikawajima-Harima Heavy Industries Co. Ltd., Tokyo (Japan)

    1996-08-01

    On July 1, 1995, the Product Liability Law was enforced, and in industrial world, further reliability has been demanded. Recently, accompanying the progress of electronics, the proportion taken by automatic welders and robots increased in welding. By memorizing proper welding conditions, the welding from initial to final passes can be done fully automatically. Also feedback mechanism was equipped to mechanized welders, and the in-process control has become to be feasible. The way of thinking on confirming in process welding quality in arc welding is explained. IPA welding system utilizes the multi-media collecting images and sound, samples the change of welding conditions and the state of arc on a same screen, and monitors the deviation from the range of proper welding conditions. At the time of abnormality, inspector or a computer carries out image diagnosis and welding control, and the system indicates the soundness of welded parts. The basic concept and the flow chart of this system are shown. The experiment of applying the system to arc welding is reported. The correlation of welding phenomena and welding conditions is examined. (K.I.)

  17. High quality joining techniques: in-process assurance (IPA) welding system

    International Nuclear Information System (INIS)

    Kaihara, Shoichiro

    1996-01-01

    On July 1, 1995, the Product Liability Law was enforced, and in industrial world, further reliability has been demanded. Recently, accompanying the progress of electronics, the proportion taken by automatic welders and robots increased in welding. By memorizing proper welding conditions, the welding from initial to final passes can be done fully automatically. Also feedback mechanism was equipped to mechanized welders, and the in-process control has become to be feasible. The way of thinking on confirming in process welding quality in arc welding is explained. IPA welding system utilizes the multi-media collecting images and sound, samples the change of welding conditions and the state of arc on a same screen, and monitors the deviation from the range of proper welding conditions. At the time of abnormality, inspector or a computer carries out image diagnosis and welding control, and the system indicates the soundness of welded parts. The basic concept and the flow chart of this system are shown. The experiment of applying the system to arc welding is reported. The correlation of welding phenomena and welding conditions is examined. (K.I.)

  18. A Novel Docking System for Modular Self-Reconfigurable Robots

    Directory of Open Access Journals (Sweden)

    Tan Zhang

    2017-10-01

    Full Text Available Existing self-reconfigurable robots achieve connections and disconnections by a separate drive of the docking system. In this paper, we present a new docking system with which the connections and disconnections are driven by locomotion actuators, without the need for a separate drive, which reduces the weight and the complexity of the modules. This self-reconfigurable robot consists of two types of fundamental modules, i.e., active and passive modules. By the docking system, two types of connections are formed with the fundamental modules, and the docking and undocking actions are achieved through simple control with less sensory feedback. This paper describes the design of the robotic modules, the docking system, the docking process, and the docking force analysis. An experiment is performed to demonstrate the self-reconfigurable robot with the docking system.

  19. Online Gait Learning for Modular Robots with Arbitrary Shapes and Sizes

    NARCIS (Netherlands)

    Weel, Berend; D'Angelo, M.; Haasdijk, Evert; Eiben, A. E.

    2017-01-01

    Evolutionary robotics using real hardware is currently restricted to evolving robot controllers, but the technology for evolvable morphologies is advancing quickly. Rapid prototyping (3D printing) and automated assembly are the main enablers of robotic systems where robot offspring can be produced

  20. Repair welding and online radiography

    International Nuclear Information System (INIS)

    Nuding, W.; Grimm, R.; Link, R.; Schroeder, P.; Schroeder, G.

    1990-01-01

    The status of a joint project is reported, which is to develop a computerized testing and welding system for repair work in turbine blades. An X-ray radiographic testing device consisting of microfocus tube, manipulator and image processing system, is modified for this purpose so as to offer a greater number of image points scanned for image processing, and to thus achieve a better resolution for reliable detection of even very small defects. The consistency of the X-ray tube performance, which is a pre-requisite for automation, is to be achieved by a wa tercooled, high-duty tube head. The recording of defect coordinates in the repair zone is done for input into a welding robot to be developed by other partners in the project, so as to allow automated welding work. (orig.) [de

  1. A flexible, computer-integrated robotic transfer system

    International Nuclear Information System (INIS)

    Lewis, W.I. III; Taylor, R.M.

    1987-01-01

    This paper reviews a robotic system used to transport materials across a radiation control zone and into a row of shielded cells. The robot used is a five-axis GCA 600 industrial robot mounted on a 50-ft ESAB welding track. Custom software incorporates the track as the sixth axis of motion. An IBM-PC integrates robot control, force sensing, and the operator interface. Multiple end-effectors and a quick exchange mechanism are used to handle a variety of materials and tasks. Automatic error detection and recovery is a key aspect of this system

  2. A step toward 'plug and play' robotics with SoC technology

    DEFF Research Database (Denmark)

    Sørensen, Anders Stengaard; Falsig, Simon; Ugilt, Rolf

    p, li { white-space: pre-wrap; } This article describe our progress toward simplifying and streamlining the low level systems integration of experimental robots, combining a System on Chip (SoC) approach with conventional modular approaches. The combined approach has increased flexibility, improved...... the embedded integration, and decreased the complexity of programming, compared to conventional modular approaches. We show the impact of the SoC approach in a simple demonstration and teaching model of a walking robot....

  3. A mobile robot with parallel kinematics constructed under requirements for assembling and machining of the ITER vacuum vessel

    International Nuclear Information System (INIS)

    Pessi, P.; Huapeng Wu; Handroos, H.; Jones, L.

    2006-01-01

    ITER sectors require more stringent tolerances ± 5 mm than normally expected for the size of structure involved. The walls of ITER sectors are made of 60 mm thick stainless steel and are joined together by high efficiency structural and leak tight welds. In addition to the initial vacuum vessel assembly, sectors may have to be replaced for repair. Since commercially available machines are too heavy for the required machining operations and the lifting of a possible e-beam gun column system, and conventional robots lack the stiffness and accuracy in such machining condition, a new flexible, lightweight and mobile robotic machine is being considered. For the assembly of the ITER vacuum vessel sector, precise positioning of welding end-effectors, at some distance in a confined space from the available supports, will be required, which is not possible using conventional machines or robots. This paper presents a special robot, able to carry out welding and machining processes from inside the ITER vacuum vessel, consisting of a ten-degree-of-freedom parallel robot mounted on a carriage driven by electric motor/gearbox on a track. The robot consists of a Stewart platform based parallel mechanism. Water hydraulic cylinders are used as actuators to reach six degrees of freedom for parallel construction. Two linear and two rotational motions are used for enlargement the workspace of the manipulator. The robot carries both welding gun such as a TIG, hybrid laser or e-beam welding gun to weld the inner and outer walls of the ITER vacuum vessel sectors and machining tools to cut and milling the walls with necessary accuracy, it can also carry other tools and material to a required position inside the vacuum vessel . For assembling an on line six degrees of freedom seam finding algorithm has been developed, which enables the robot to find welding seam automatically in a very complex environment. In the machining multi flexible machining processes carried out automatically by

  4. Fable: A Modular Robot for Students, Makers and Researchers

    DEFF Research Database (Denmark)

    Pacheco, Moises; Fogh, Rune; Lund, Henrik Hautop

    2014-01-01

    system consists of a range of modules equipped with sensors and actuators, which users can easily assemble into a wide range of robots within seconds. The robots are user- programmable on several levels of abstraction ranging from a simple visual programming language to powerful conventional ones...

  5. Robotics in space-age manufacturing

    Science.gov (United States)

    Jones, Chip

    1991-01-01

    Robotics technologies are developed to improve manufacturing of space hardware. The following applications of robotics are covered: (1) welding for the space shuttle and space station Freedom programs; (2) manipulation of high-pressure water for shuttle solid rocket booster refurbishment; (3) automating the application of insulation materials; (4) precision application of sealants; and (5) automation of inspection procedures. Commercial robots are used for these development programs, but they are teamed with advanced sensors, process controls, and computer simulation to form highly productive manufacturing systems. Many of the technologies are also being actively pursued in private sector manufacturing operations.

  6. Indigenous robotics technology in nuclear industries (Paper No. 039)

    Energy Technology Data Exchange (ETDEWEB)

    Challappa, S; Guha, S

    1987-01-01

    Robots are essential for material handling, stripping, fitting, welding and other operations in a hazardous environment as exits in nuclear industries. Adoptivity of the equipment to environment to carry out remote activity, accuracy of the performance and quality are the primordial considerations for selection of such types of robots. The essential features of a typical robot are described in this paper. As a first step towards development of such a robot, a six-axis multipurpose robot developed in Central Workshops, Bhabha Atomic Research Centre, is also described in this paper. (author). 2 figs.

  7. Indigenous robotics technology in nuclear industries (Paper No. 039)

    International Nuclear Information System (INIS)

    Challappa, S.; Guha, S.

    1987-02-01

    Robots are essential for material handling, stripping, fitting, welding and other operations in a hazardous environment as exits in nuclear industries. Adoptivity of the equipment to environment to carry out remote activity, accuracy of the performance and quality are the primordial considerations for selection of such types of robots. The essential features of a typical robot are described in this paper. As a first step towards development of such a robot, a six-axis multipurpose robot developed in Central Workshops, Bhabha Atomic Research Centre, is also described in this paper. (author). 2 figs

  8. Recent Development of Rehabilitation Robots

    Directory of Open Access Journals (Sweden)

    Zhiqin Qian

    2015-02-01

    Full Text Available We have conducted a critical review on the development of rehabilitation robots to identify the limitations of existing studies and clarify some promising research directions in this field. This paper is presented to summarize our findings and understanding. The demands for assistive technologies for elderly and disabled population have been discussed, the advantages and disadvantages of rehabilitation robots as assistive technologies have been explored, the issues involved in the development of rehabilitation robots are investigated, some representative robots in this field by leading research institutes have been introduced, and a few of critical challenges in developing advanced rehabilitation robots have been identified. Finally to meet the challenges of developing practical rehabilitation robots, reconfigurable and modular systems have been proposed to meet the identified challenges, and a few of critical areas leading to the potential success of rehabilitation robots have been discussed.

  9. Automation, robotics and remote handling technology in the nuclear fuel cycle

    International Nuclear Information System (INIS)

    Rajagopalan, C.; Venugopal, S.

    2013-01-01

    Automation and Robotics technology are making significant contributions in almost all fields of engineering and technology and their presence is felt in all spheres of human life. The importance of automation and robotics has increased rapidly in the recent years to cater to the global competitive pressures by the manufacturing industry by utilizing the increased productivity and improved quality this technology offers. Improvement of productivity, quality, profitability and, indeed, survival are the major motivating factors in the implementation of automation and robotics technology in the manufacturing sector. Robots are used extensively in the automotive industry, primarily for welding, painting and material handling applications. The electronics, aerospace, metalworking and consumer goods industries are also major potential robot users. The common uses of robots in industries mostly include the four Ps - Picking, Placing, Packaging and Painting - apart from other industrial routines like assembly and welding. As is the case with industrial tools and machineries, a properly designed robot (for the appropriate task) has almost unlimited endurance with the added benefit of precisions unmatched by human workers. With robot technology as a key element, integrated factory automation systems touch on nearly all types of manufacturing. The productivity and competitiveness in these industries will depend in large part on flexible automation through robotics

  10. Eddy current testing system for bottom mounted instrumentation welds

    Directory of Open Access Journals (Sweden)

    Kobayashi Noriyasu

    2015-01-01

    Full Text Available The capability of eddy current testing (ECT for the bottom mounted instrumentation (BMI weld area of reactor vessel in a pressurized water reactor was demonstrated by the developed ECT system and procedure. It is difficult to position and move the probe on the BMI weld area because the area has complexly curved surfaces. The space coordinates and the normal vectors at the scanning points were calculated as the scanning trajectory of probe based on the measured results of surface shape on the BMI mock-up. The multi-axis robot was used to move the probe on the mock-up. Each motion-axis position of the robot corresponding to each scanning point was calculated by the inverse kinematic algorithm. In the mock-up test, the probe was properly contacted with most of the weld surfaces. The artificial stress corrosion cracking of approximately 6 mm in length and the electrical-discharge machining slit of 0.5 mm in length, 1 mm in depth and 0.2 mm in width given on the weld surface were detected. From the probe output voltage, it was estimated that the average probe tilt angle on the surface under scanning was 2.6°.

  11. Positioning the laparoscopic camera with industrial robot arm

    DEFF Research Database (Denmark)

    Capolei, Marie Claire; Wu, Haiyan; Andersen, Nils Axel

    2017-01-01

    This paper introduces a solution for the movement control of the laparoscopic camera employing a teleoperated robotic assistant. The project propose an autonomous robotic solution based on an industrial manipulator, provided with a modular software which is applicable to large scale. The robot arm...... industrial robot arm is designated to accomplish this manipulation task. The software is implemented in ROS in order to facilitate future extensions. The experimental results shows a manipulator capable of moving fast and smoothly the surgical tool around a remote center of motion....

  12. Module-based structure design of wheeled mobile robot

    Directory of Open Access Journals (Sweden)

    Z. Luo

    2018-02-01

    Full Text Available This paper proposes an innovative and systematic approach for synthesizing mechanical structures of wheeled mobile robots. The principle and terminologies used for the proposed synthesis method are presented by adopting the concept of modular design, isomorphic and non-isomorphic, and set theory with its associated combinatorial mathematics. The modular-based innovative synthesis and design of wheeled robots were conducted at two levels. Firstly at the module level, by creative design and analysing the structures of classic wheeled robots, a wheel module set containing four types of wheel mechanisms, a suspension module set consisting of five types of suspension frames and a chassis module set composed of five types of rigid or articulated chassis were designed and generalized. Secondly at the synthesis level, two kinds of structure synthesis modes, namely the isomorphic-combination mode and the non-isomorphic combination mode were proposed to synthesize mechanical structures of wheeled robots; which led to 241 structures for wheeled mobile robots including 236 novel ones. Further, mathematical models and a software platform were developed to provide appropriate and intuitive tools for simulating and evaluating performance of the wheeled robots that were proposed in this paper. Eventually, physical prototypes of sample wheeled robots/rovers were developed and tested so as to prove and validate the principle and methodology presented in this paper.

  13. Robotic Art for Wearable

    DEFF Research Database (Denmark)

    Lund, Henrik Hautop; Pagliarini, Luigi

    2010-01-01

    on “simple” plug-and-play circuits, ranging from pure sensors-actuators schemes to artefacts with a smaller level of elaboration complexity. Indeed, modular robotic wearable focuses on enhancing the body perception and proprioperception by trying to substitute all of the traditional exoskeletons perceptive...

  14. Self-organized control in cooperative robots using a pattern formation principle

    International Nuclear Information System (INIS)

    Starke, Jens; Ellsaesser, Carmen; Fukuda, Toshio

    2011-01-01

    Self-organized modular approaches proved in nature to be robust and optimal and are a promising strategy to control future concepts of flexible and modular manufacturing processes. We show how this can be applied to a model of flexible manufacturing based on time-dependent robot-target assignment problems where robot teams have to serve manufacturing targets such that an objective function is optimized. Feasibility of the self-organized solutions can be guaranteed even for unpredictable situations like sudden changes in the demands or breakdowns of robots. As example an uncrewed space mission is visualized in a simulation where robots build a space station. - Highlights: → Adapting a pattern formation principle to control cooperative robots in a robust way. → Flexible manufacturing systems are modelled by time-dependent assignment problems. → Coupled selection equations guarantee feasibility of solutions. → Solution structure (permutations) is not destroyed by inhomogeneous growth rates. → Example of an uncrewed space mission shows effectivity and robustness.

  15. Optimization of the A-TIG welding for stainless steels

    Science.gov (United States)

    Jurica, M.; Kožuh, Z.; Garašić, I.; Bušić, M.

    2018-03-01

    The paper presents the influence of the activation flux and shielding gas on tungsten inert gas (A-TIG) welding of the stainless steel. In introduction part, duplex stainless steel was analysed. The A-TIG process was explained and the possibility of welding stainless steels using the A-TIG process to maximize productivity and the cost-effectiveness of welded structures was presented. In the experimental part duplex, 7 mm thick stainless steel has been welded in butt joint. The influence of activation flux chemical composition upon the weld penetration has been investigated prior the welding. The welding process was performed by a robot with TIG equipment. With selected A-TIG welding technology preparation of plates and consumption of filler material (containing Cr, Ni and Mn) have been avoided. Specimens sectioned from the produced welds have been subjected to tensile strength test, macrostructure analysis and corrosion resistance analysis. The results have confirmed that this type of stainless steel can be welded without edge preparation and addition of filler material containing critical raw materials as Cr, Ni and Mn when the following welding parameters are set: current 200 A, welding speed 9,1 cm/min, heat input 1,2 kJ/mm and specific activation flux is used.

  16. Papers of the annual welding conference

    International Nuclear Information System (INIS)

    1981-01-01

    Interest will be mainly focussed on structural welding in the fields of vehicle, power generating plant, railway bridge, reactor, tank and pipeline construction as well as energy transmission, energy production and space travel. Also under discussion will be such topical subjects as health and safety and the use of welding robots in the automobile industry, both these topics bearing direct relation to one another, at it is the labour-saving and health aspects which take precedence in both areas and to which medical experts are making valuable contributions to an ever increasing extent. (orig./IHOE) [de

  17. Training in Robotic Surgery-an Overview.

    Science.gov (United States)

    Sridhar, Ashwin N; Briggs, Tim P; Kelly, John D; Nathan, Senthil

    2017-08-01

    There has been a rapid and widespread adoption of the robotic surgical system with a lag in the development of a comprehensive training and credentialing framework. A literature search on robotic surgical training techniques and benchmarks was conducted to provide an evidence-based road map for the development of a robotic surgical skills for the novice robotic surgeon. A structured training curriculum is suggested incorporating evidence-based training techniques and benchmarks for progress. This usually involves sequential progression from observation, case assisting, acquisition of basic robotic skills in the dry and wet lab setting along with achievement of individual and team-based non-technical skills, modular console training under supervision, and finally independent practice. Robotic surgical training must be based on demonstration of proficiency and safety in executing basic robotic skills and procedural tasks prior to independent practice.

  18. Piezoelectrically Actuated Robotic System for MRI-Guided Prostate Percutaneous Therapy

    Science.gov (United States)

    Su, Hao; Shang, Weijian; Cole, Gregory; Li, Gang; Harrington, Kevin; Camilo, Alexander; Tokuda, Junichi; Tempany, Clare M.; Hata, Nobuhiko; Fischer, Gregory S.

    2014-01-01

    This paper presents a fully-actuated robotic system for percutaneous prostate therapy under continuously acquired live magnetic resonance imaging (MRI) guidance. The system is composed of modular hardware and software to support the surgical workflow of intra-operative MRI-guided surgical procedures. We present the development of a 6-degree-of-freedom (DOF) needle placement robot for transperineal prostate interventions. The robot consists of a 3-DOF needle driver module and a 3-DOF Cartesian motion module. The needle driver provides needle cannula translation and rotation (2-DOF) and stylet translation (1-DOF). A custom robot controller consisting of multiple piezoelectric motor drivers provides precision closed-loop control of piezoelectric motors and enables simultaneous robot motion and MR imaging. The developed modular robot control interface software performs image-based registration, kinematics calculation, and exchanges robot commands and coordinates between the navigation software and the robot controller with a new implementation of the open network communication protocol OpenIGTLink. Comprehensive compatibility of the robot is evaluated inside a 3-Tesla MRI scanner using standard imaging sequences and the signal-to-noise ratio (SNR) loss is limited to 15%. The image deterioration due to the present and motion of robot demonstrates unobservable image interference. Twenty-five targeted needle placements inside gelatin phantoms utilizing an 18-gauge ceramic needle demonstrated 0.87 mm root mean square (RMS) error in 3D Euclidean distance based on MRI volume segmentation of the image-guided robotic needle placement procedure. PMID:26412962

  19. A wall-crawling robot for reactor vessel inspection in advanced reactors

    International Nuclear Information System (INIS)

    Spelt, P.F.; Crane, C.; Feng, L.; Abidi, M.; Tosunoglu, S.

    1994-01-01

    A consortium of four universities and the Center for Engineering Systems Advanced Research of the Oak Ridge National Laboratory has designed a prototype wall-crawling robot to perform weld inspection in advanced nuclear reactors. Design efforts for the reactor vessel inspection robot (RVIR) concentrated on the Advanced Liquid Metal Reactor because it presents the most demanding environment in which such a robot must operate. The RVIR consists of a chassis containing two sets of suction cups that can alternately grasp the side of the vessel being inspected, providing both locomotion and steering functions. Sensors include three CCD cameras and a weld inspection device based on new shear-wave technology. The restrictions of the inspection environment presented major challenges to the team. These challenges were met in the prototype, which has been tested in a non-radiation, room-temperature mockup of the robot work environment and shown to perform as expected. (author)

  20. A wall-crawling robot for reactor vessel inspection in advanced reactors

    International Nuclear Information System (INIS)

    Spelt, P.F.; Crane, C.; Feng, L.; Abidi, M.; Tosunoglu, S.

    1994-01-01

    A consortium of four universities and the Center for Engineering Systems Advanced Research of the Oak Ridge National Laboratory has designed a prototype wall-crawling robot to perform weld inspection in advanced nuclear reactors. Design efforts for the reactor vessel inspection robot (RVIR) concentrated on the Advanced Liquid Metal Reactor because it presents the most demanding environment in which such a robot must operate. The RVIR consists of a chassis containing two sets of suction cups that can alternately grasp the side of the vessel being inspected, providing both locomotion and steering functions. Sensors include three CCD cameras and a weld inspection device based on new shear-wave technology. The restrictions of the inspection environment presented major challenges to the team. These challenges were met in the prototype, which has been tested in a non-radiation, room-temperature mockup of the robot work environment and shown to perform as expected

  1. A modular control architecture for real-time synchronous and asynchronous systems

    International Nuclear Information System (INIS)

    Butler, P.L.; Jones, J.P.

    1993-01-01

    This paper describes a control architecture for real-time control of complex robotic systems. The Modular Integrated Control Architecture (MICA), which is actually two complementary control systems, recognizes and exploits the differences between asynchronous and synchronous control. The asynchronous control system simulates shared memory on a heterogeneous network. For control information, a portable event-scheme is used. This scheme provides consistent interprocess coordination among multiple tasks on a number of distributed systems. The machines in the network can vary with respect to their native operating systems and the intemal representation of numbers they use. The synchronous control system is needed for tight real-time control of complex electromechanical systems such as robot manipulators, and the system uses multiple processors at a specified rate. Both the synchronous and asynchronous portions of MICA have been developed to be extremely modular. MICA presents a simple programming model to code developers and also considers the needs of system integrators and maintainers. MICA has been used successfully in a complex robotics project involving a mobile 7-degree-of-freedom manipulator in a heterogeneous network with a body of software totaling over 100,000 lines of code. MICA has also been used in another robotics system, controlling a commercial long-reach manipulator

  2. Supervisory control for a complex robotic system

    International Nuclear Information System (INIS)

    Miller, D.J.

    1988-01-01

    The Robotic Radiation Survey and Analysis System investigates the use of advanced robotic technology for performing remote radiation surveys on nuclear waste shipping casks. Robotic systems have the potential for reducing personnel exposure to radiation and providing fast reliable throughput at future repository sites. A primary technology issue is the integrated control of distributed specialized hardware through a modular supervisory software system. Automated programming of robot trajectories based upon mathematical models of the cask and robot coupled with sensory feedback enables flexible operation of a commercial gantry robot with the reliability needed to perform autonomous operations in a hazardous environment. Complexity is managed using structured software engineering techniques resulting in the generation of reusable command primitives which contribute to a software parts catalog for a generalized robot programming language

  3. Sociable mobile robots through self-maintained energy

    DEFF Research Database (Denmark)

    Ngo, Trung Dung; Schiøler, Henrik

    2006-01-01

    society, collecting and sharing are experimentally recognized as the highest property. This paper issues an approach to sociable robots using self-maintained energy in robot society, which is naturally inspired from swarm behavior of honey-bee and ant. Typically, autonomous mobile robots are usually......Research of sociable robots has emphasized interaction and coordination of mobile robots with inspiration from natural behavior of birds, insects, and fish: flocking, foraging, collecting, sharing and so forth. However, the animal behaviors are looking for food towards survival. In an animal...... equipped with a finite energy, thus they can operate in a finite time. To overcome the limitation, we describe practical deployment of a group of mobile robot with the possibility of carrying and exchanging fuel, e.g. battery to other robots. Early implementation that includes modular hardware and control...

  4. IT Systems in Aid of Welding Processes Quality Management in the Automotive Industry

    Directory of Open Access Journals (Sweden)

    Restecka M.

    2016-12-01

    Full Text Available The most important issue for the producers nowadays is to meet the requirements of customers, satisfying their perceived but also the unperceived needs. In order to control the quality of welding processes correctly one must have knowledge of welding drawings, symbols, designs of welded joints, welding procedures, requirements set in codes and standards, also have knowledge of the techniques of inspection and testing connected with the automotive industry. The article shows ways to increase quality in the industry through the use of robotization and computerization. Presented examples and application of IT systems in aid of welding processes quality management in the automotive industry.

  5. Generative Representations for the Automated Design of Modular Physical Robots

    Science.gov (United States)

    Hornby, Gregory S.; Lipson, Hod; Pollack, Jordan B.

    2003-01-01

    We will begin with a brief background of evolutionary robotics and related work, and demonstrate the scaling problem with our own prior results. Next we propose the use of an evolved generative representation as opposed to a non-generative representation. We describe this representation in detail as well as the evolutionary process that uses it. We then compare progress of evolved robots with and without the use of the grammar, and quantify the obtained advantage. Working two- dimensional and three-dimensional physical robots produced by the system are shown.

  6. Use of robotics in a Radwaste treatment plant

    International Nuclear Information System (INIS)

    Leeks, C.W.E.

    1991-01-01

    A 762 Unimate Puma, clean room standard Robot has been installed and commissioned in the Radwaste Treatment Plant at the Winfrith Technology Centre. The robot interacts with a variety of purpose designed tools and proprietary welding equipment. It performs 13 dedicated tasks in the final closure and health physics operations, before the 500 litre waste drum is despatched from the plant. (author)

  7. LEGO-based Robotics in Higher Education: 15 Years of Student Creativity

    Directory of Open Access Journals (Sweden)

    Ethan Danahy

    2014-02-01

    Full Text Available Our goal in this article is to reflect on the role LEGO robotics has played in college engineering education over the last 15 years, starting with the introduction of the RCX in 1998 and ending with the introduction of the EV3 in 2013. By combining a modular computer programming language with a modular building platform, LEGO Education has allowed students (of all ages to become active leaders in their own education as they build everything from animals for a robotic zoo to robots that play children's games. Most importantly, it allows all students to develop different solutions to the same problem to provide a learning community. We look first at how the recent developments in the learning sciences can help in promoting student learning in robotics. We then share four case studies of successful college-level implementations that build on these developments.

  8. Automatic weld joint X-ray inspection

    International Nuclear Information System (INIS)

    Richter, H.U.; Linke, D.; Siems, K.D.; Kruse, H.; Schuetze, E.

    1990-01-01

    A gantry mounted robotic x-ray inspection unit has been developed for the series testing of small and medium sized welded components (pipe bends and nozzles). The unit features computer controlled positioning of the x-ray tube and x-ray image amplifier. Image quality classes 2 and even 1 could be achieved without difficulty. (author)

  9. Design of a Simple and Modular 2-DOF Ankle Physiotherapy Device Relying on a Hybrid Serial-Parallel Robotic Architecture

    Directory of Open Access Journals (Sweden)

    Christos E. Syrseloudis

    2011-01-01

    Full Text Available The aim of this work is to propose a new 2-DOF robotic platform with hybrid parallel-serial structure and to undertake its parametric design so that it can follow the whole range of ankle related foot movements. This robot can serve as a human ankle rehabilitation device. The existing ankle rehabilitation devices present typically one or more of the following shortcomings: redundancy, large size, or high cost, hence the need for a device that could offer simplicity, modularity, and low cost of construction and maintenance. In addition, our targeted device must be safe during operation, disallow undesirable movements of the foot, while adaptable to any human foot. Our detailed study of foot kinematics has led us to a new hybrid architecture, which strikes a balance among all aforementioned goals. It consists of a passive serial kinematics chain with two adjustable screws so that the axes of the chain match the two main ankle-axes of typical feet. An active parallel chain, which consists of two prismatic actuators, provides the movement of the platform. Thus, the platform can follow the foot movements, thanks to the passive chain, and also possesses the advantages of parallel robots, including rigidity, high stiffness and force capabilities. The lack of redundancy yields a simpler device with lower size and cost. The paper describes the kinematics modelling of the platform and analyses the force and velocity transmission. The parametric design of the platform is carried out; our simulations confirm the platform's suitability for ankle rehabilitation.

  10. A robot-automated work site for repair of the Chinon A3 reactor

    International Nuclear Information System (INIS)

    Raynal, A.

    1987-01-01

    In 1982, following degradation due to corrosion of low-carbon steel by carbon dioxide gas, the utility undertook to repair some of the support structures at Chinon A3. This involved consolidation and reinforcing thermocouples and gas monitor pipeworks supports. A welding process was selected and the use of robots became indispensable because of the large number of components to be replaced (200 per outage). Two robots, supplied with tool heads and replacement components from outside the reactor were used. The robots and their servers were coordinated by a central computer and monitored by a closed circuit television system. Each repair operation was performed after ''training'' on a full-scale mockup of the top of the reactor reconstructed from telemetry of the real reactor dimensions. Since becoming operational in June 1986, the robots have accumulated over 20 000 hours of operation and seventy parts have been welded to the reactor. A 3D CAD system has been adapted to simulate the robots and analyse long trajectories in order to reduce robot learning time [fr

  11. The NMBU Phenotyping Robot; A Modified Version of Thorvald

    OpenAIRE

    Skattum, Kristine

    2017-01-01

    Soil compaction is a big problem in farming industry. This is why Pål Johan From in 2014, along with four master students, designed and built the agricultural robot Thorvald I. A light weighted robot that avoids soil compaction. Two years later, a new team of master students designed and built Thorvald II, where the goal was to make the robot module based. The modularity formed the basis of this thesis, where the goal was to design a modified version of Thorvald. The modified robot is ord...

  12. Laser welding engineering

    International Nuclear Information System (INIS)

    Bhieh, N. M.; El Eesawi, M. E.; Hashkel, A. E.

    2007-01-01

    Laser welding was in its early life used mainly for unusual applications where no other welding process would be suitable that was twenty five years ago. Today, laser welding is a fully developed part of the metal working industry, routinely producing welds for common items such as cigarette lighters, which springs, motor/transformer lamination, hermetic seals, battery and pacemaker cans and hybrid circuit packages. Yet very few manufacturing engineering have seriously considers employing lasers in their own operations. Why? There are many reasons, but a main one must be not acquainted with the operation and capabilities of a laser system. Other reasons, such as a relatively high initial cost and a concern about using lasers in the manufacturing environment, also are frequently cited, and the complexity of the component and flexibility of the light delivery system. Laser welding could be used in place of many different standard processes, such as resistance (spot or seam), submerged arc, RF induction, high-frequency resistance, ultrasonic and electronic and electron-beam. while each of these techniques has established an independent function in the manufacturing world, the flexible laser welding approach will operate efficiently and economically in many different applications. Its flexibility will even permit the welding system to be used for other machining function, such as drilling, scribing, sealing and serializing. In this article, we will look at how laser welding works and what benefits it can offer to manufacturing engineers. Some industry observers state that there are already 2,000 laser machine tools being used for cutting, welding and drilling and that the number could reach 30,000 over the next 15 years as manufacturing engineers become more aware of the capabilities of lasers [1). While most laser applications are dedicated to one product or process that involves high-volume, long-run manufacturing, the flexibility of a laser to supply energy to hard

  13. In situ post-weld heat treatment on martensitic stainless steel turbine runners using a robotic induction heating process to control temperature distribution

    Science.gov (United States)

    Boudreault, E.; Hazel, B.; Côté, J.; Godin, S.

    2014-03-01

    A new robotic heat treatment process is developed. Using this solution it is now possible to perform local heat treatment on large steel components. Crack, cavitation and erosion repairs on turbine blades and Pelton buckets are among the applications of this technique. The proof of concept is made on a 13Cr-4Ni stainless steel designated "CA6NM". This alloy is widely used in the power industry for modern system components. Given the very tight temperature tolerance (600 to 630 °C) for post-weld heat treatment on this alloy, 13Cr-4Ni stainless steel is very well suited for demonstrating the possibilities of this process. To achieve heat treatment requirements, an induction heating system is mounted on a compact manipulator named "Scompi". This robot moves a pancake coil in order to control the temperature distribution. A simulator using thermal finite element analysis is first used for path planning. A feedback loop adjusts parameters in function of environmental conditions.

  14. In situ post-weld heat treatment on martensitic stainless steel turbine runners using a robotic induction heating process to control temperature distribution

    International Nuclear Information System (INIS)

    Boudreault, E; Hazel, B; Côté, J; Godin, S

    2014-01-01

    A new robotic heat treatment process is developed. Using this solution it is now possible to perform local heat treatment on large steel components. Crack, cavitation and erosion repairs on turbine blades and Pelton buckets are among the applications of this technique. The proof of concept is made on a 13Cr-4Ni stainless steel designated C A6NM . This alloy is widely used in the power industry for modern system components. Given the very tight temperature tolerance (600 to 630 °C) for post-weld heat treatment on this alloy, 13Cr-4Ni stainless steel is very well suited for demonstrating the possibilities of this process. To achieve heat treatment requirements, an induction heating system is mounted on a compact manipulator named S compi . This robot moves a pancake coil in order to control the temperature distribution. A simulator using thermal finite element analysis is first used for path planning. A feedback loop adjusts parameters in function of environmental conditions

  15. Static stiffness modeling of a novel hybrid redundant robot machine

    International Nuclear Information System (INIS)

    Li Ming; Wu Huapeng; Handroos, Heikki

    2011-01-01

    This paper presents a modeling method to study the stiffness of a hybrid serial-parallel robot IWR (Intersector Welding Robot) for the assembly of ITER vacuum vessel. The stiffness matrix of the basic element in the robot is evaluated using matrix structural analysis (MSA); the stiffness of the parallel mechanism is investigated by taking account of the deformations of both hydraulic limbs and joints; the stiffness of the whole integrated robot is evaluated by employing the virtual joint method and the principle of virtual work. The obtained stiffness model of the hybrid robot is analytical and the deformation results of the robot workspace under certain external load are presented.

  16. Application of YAG laser processing in underwater welding and cutting

    Energy Technology Data Exchange (ETDEWEB)

    Ohwaki, Katsura; Morita, Ichiro; Kojima, Toshio; Sato, Shuichi [Ishikawajima-Harima Heavy Industries Co. Ltd., Tokyo (Japan)

    2002-09-01

    The high-power YAG laser is a new fabrication tool. The laser torch is easy to combine with complex with complex mechanics because of beam delivery through optical fiber. A direct underwater laser welding technology has been developed and applied to the preservation, maintenance and removal of nuclear power plants. For subdividing or removing operations for retirement of plants, the laser cutting properties were confirmed to allow a maximum cutting thickness of 80 mm. For repairing inner surface of stainless steel tanks, an underwater laser welding system using a remote-controlled robot was developed and the high quality of underwater laser welding was confirmed. (author)

  17. Modular construction: 30 years of experience in the naval sector, useful for nuclear power plants

    International Nuclear Information System (INIS)

    Lepelletier, P.; Danguy des Deserts, S.

    2014-01-01

    This article reviews the benefits of modular construction in the sector of submarines that was implemented in the mid eighties in French shipyards. The design of the submarine is cut in different longitudinal parts so that each part can be built and completely equipped independently from the other parts. The different parts are then joined and welded at the end of the process of fabrication to form the submarine. The main advantages of such a construction are shorter construction times, standardized construction and a higher quality standard. DCNS proposes to use modular construction for the design of Flexblue which is an immersed small modular reactor (SMR). More generally, modular construction will add economic competitiveness to SMR reactors that will be necessary to their full development on a worldwide scale

  18. Applicability of a track-based multiprocess portable robot to some maintenance tasks in CANDU nuclear plants

    International Nuclear Information System (INIS)

    Hazel, B.; Fihey, J.-L.; Laroche, Y.

    2000-01-01

    Hydro-Quebec has developed a six-axis, track-based, multiprocess robot. This lightweight (30 kg) compact robot travels on a bent track with a radius of curvature ranging from 1 m to infinity (straight track). Standard and tandem wires GMAW, FCAW and Narrow gap TIG welding as well as plasma gouging and cutting, electrical and pneumatic rough and precision grinding, and profile measurement functionalities have been incorporated. A description of this technology an its newly developed functionalities is given in this paper. Since 1995, a number of industrial and R and D projects have been performed using this technology now called the Scompi technology. The main field of application is the in situ repair of hydraulic turbine runners. However some applications have been developed in the nuclear field. One particular development was funded by the International Thermonuclear Experimental Reactor (ITER) project. Scompi was selected by the ITER US Home Team for a demonstration of remote techniques for welding, cutting and rewelding the 30 m diameter, 17 m high, vacuum vessel. The demonstration involved all position robotic plasma cutting and NG-TIG welding of a 316L, 40 mm thick, double wall. In 1998, two Scompi robots working in tandem performed in York, Pa, the joint welding and cutting of a full scale portion of the vacuum vessel. In 1995, the applicability of the Scompi technology to the repair of the divider plates in the four steam generators at Gentilly-2 was evaluated based on a joint proposal by Ontario Hydro Technologies (now Ontario Power Technologies-OPT) and Hydro-Quebec. A MIG welding procedure was proposed for the horizontal and vertical divider plates welds. A complete simulation of the robot and primary head demonstrated the feasibility of the concept. However, based on cost and scheduling, it was decided to proceed with a manual repair. Nevertheless it is anticipated that this technology will find its niche in the maintenance of Candu reactors. (author)

  19. Applicability of a track-based multiprocess portable robot to some maintenance tasks in CANDU nuclear plants

    Energy Technology Data Exchange (ETDEWEB)

    Hazel, B.; Fihey, J.-L.; Laroche, Y. [Hydro-Quebec, Varennes, Quebec (Canada)

    2000-07-01

    Hydro-Quebec has developed a six-axis, track-based, multiprocess robot. This lightweight (30 kg) compact robot travels on a bent track with a radius of curvature ranging from 1 m to infinity (straight track). Standard and tandem wires GMAW, FCAW and Narrow gap TIG welding as well as plasma gouging and cutting, electrical and pneumatic rough and precision grinding, and profile measurement functionalities have been incorporated. A description of this technology an its newly developed functionalities is given in this paper. Since 1995, a number of industrial and R and D projects have been performed using this technology now called the Scompi technology. The main field of application is the in situ repair of hydraulic turbine runners. However some applications have been developed in the nuclear field. One particular development was funded by the International Thermonuclear Experimental Reactor (ITER) project. Scompi was selected by the ITER US Home Team for a demonstration of remote techniques for welding, cutting and rewelding the 30 m diameter, 17 m high, vacuum vessel. The demonstration involved all position robotic plasma cutting and NG-TIG welding of a 316L, 40 mm thick, double wall. In 1998, two Scompi robots working in tandem performed in York, Pa, the joint welding and cutting of a full scale portion of the vacuum vessel. In 1995, the applicability of the Scompi technology to the repair of the divider plates in the four steam generators at Gentilly-2 was evaluated based on a joint proposal by Ontario Hydro Technologies (now Ontario Power Technologies-OPT) and Hydro-Quebec. A MIG welding procedure was proposed for the horizontal and vertical divider plates welds. A complete simulation of the robot and primary head demonstrated the feasibility of the concept. However, based on cost and scheduling, it was decided to proceed with a manual repair. Nevertheless it is anticipated that this technology will find its niche in the maintenance of Candu reactors. (author)

  20. Piezoelectrically Actuated Robotic System for MRI-Guided Prostate Percutaneous Therapy

    OpenAIRE

    Su, Hao; Shang, Weijian; Cole, Gregory; Li, Gang; Harrington, Kevin; Camilo, Alexander; Tokuda, Junichi; Tempany, Clare M.; Hata, Nobuhiko; Fischer, Gregory S.

    2014-01-01

    This paper presents a fully-actuated robotic system for percutaneous prostate therapy under continuously acquired live magnetic resonance imaging (MRI) guidance. The system is composed of modular hardware and software to support the surgical workflow of intra-operative MRI-guided surgical procedures. We present the development of a 6-degree-of-freedom (DOF) needle placement robot for transperineal prostate interventions. The robot consists of a 3-DOF needle driver module and a 3-DOF Cartesian...

  1. Robotic Manufacturing of 5.5 Meter Cryogenic Fuel Tank Dome Assemblies for the NASA Ares I Rocket

    Science.gov (United States)

    Jones, Ronald E.

    2012-01-01

    The Ares I rocket is the first launch vehicle scheduled for manufacture under the National Aeronautic and Space Administration's (NASA's) Constellation program. A series of full-scale Ares I development articles have been constructed on the Robotic Weld Tool at the NASA George C. Marshall Space Flight Center in Huntsville, Alabama. The Robotic Weld Tool is a 100 ton, 7-axis, robotic manufacturing system capable of machining and friction stir welding large-scale space hardware. This presentation will focus on the friction stir welding of 5.5m diameter cryogenic fuel tank components; specifically, the liquid hydrogen forward dome (LH2 MDA), the common bulkhead manufacturing development articles (CBMDA) and the thermal protection system demonstration dome (TPS Dome). The LH2 MDA was the first full-scale, flight-like Ares I hardware produced under the Constellation Program. It is a 5.5m diameter elliptical dome assembly consisting of eight gore panels, a y-ring stiffener and a manhole fitting. All components are made from aluminumlithium alloy 2195. Conventional and self-reacting friction stir welding was used on this article. An overview of the manufacturing processes will be discussed. The LH2 MDA is the first known fully friction stir welded dome ever produced. The completion of four Common Bulkhead Manufacturing Development Articles (CBMDA) and the TPS Dome will also be highlighted. Each CBMDA and the TPS Dome consists of a 5.5m diameter spun-formed dome friction stir welded to a y-ring stiffener. The domes and y-rings are made of aluminum 2014 and 2219 respectively. The TPS Dome has an additional aluminum alloy 2195 barrel section welded to the y-ring. Manufacturing solutions will be discussed including "fixtureless" welding with self reacting friction stir welding.

  2. Integrating Soft Robotics with the Robot Operating System: A Hybrid Pick and Place Arm

    Directory of Open Access Journals (Sweden)

    Ross M. McKenzie

    2017-08-01

    Full Text Available Soft robotic systems present a variety of new opportunities for solving complex problems. The use of soft robotic grippers, for example, can simplify the complexity in tasks such as the grasping of irregular and delicate objects. Adoption of soft robotics by the informatics community and industry, however, has been slow and this is, in-part, due to the amount of hardware and software that must be developed from scratch for each use of soft system components. In this paper, we detail the design, fabrication, and validation of an open-source framework that we designed to lower the barrier to entry for integrating soft robotic subsystems. This framework is built on the robot operating system (ROS, and we use it to demonstrate a modular, soft–hard hybrid system, which is capable of completing pick and place tasks. By lowering this barrier to entry through our open sourced hardware and software, we hope that system designers and Informatics researchers will find it easy to integrate soft components into their existing ROS-enabled robotic systems.

  3. Precise 3D Lug Pose Detection Sensor for Automatic Robot Welding Using a Structured-Light Vision System

    Directory of Open Access Journals (Sweden)

    Il Jae Lee

    2009-09-01

    Full Text Available In this study, we propose a precise 3D lug pose detection sensor for automatic robot welding of a lug to a huge steel plate used in shipbuilding, where the lug is a handle to carry the huge steel plate. The proposed sensor consists of a camera and four laser line diodes, and its design parameters are determined by analyzing its detectable range and resolution. For the lug pose acquisition, four laser lines are projected on both lug and plate, and the projected lines are detected by the camera. For robust detection of the projected lines against the illumination change, the vertical threshold, thinning, Hough transform and separated Hough transform algorithms are successively applied to the camera image. The lug pose acquisition is carried out by two stages: the top view alignment and the side view alignment. The top view alignment is to detect the coarse lug pose relatively far from the lug, and the side view alignment is to detect the fine lug pose close to the lug. After the top view alignment, the robot is controlled to move close to the side of the lug for the side view alignment. By this way, the precise 3D lug pose can be obtained. Finally, experiments with the sensor prototype are carried out to verify the feasibility and effectiveness of the proposed sensor.

  4. YARP: Yet Another Robot Platform

    Directory of Open Access Journals (Sweden)

    Lorenzo Natale

    2008-11-01

    Full Text Available We describe YARP, Yet Another Robot Platform, an open-source project that encapsulates lessons from our experience in building humanoid robots. The goal of YARP is to minimize the effort devoted to infrastructure-level software development by facilitating code reuse, modularity and so maximize research-level development and collaboration. Humanoid robotics is a "bleeding edge" field of research, with constant flux in sensors, actuators, and processors. Code reuse and maintenance is therefore a significant challenge. We describe the main problems we faced and the solutions we adopted. In short, the main features of YARP include support for inter-process communication, image processing as well as a class hierarchy to ease code reuse across different hardware platforms. YARP is currently used and tested on Windows, Linux and QNX6 which are common operating systems used in robotics.

  5. Defining Modules, Modularity and Modularization

    DEFF Research Database (Denmark)

    Miller, Thomas Dedenroth; Pedersen, Per Erik Elgård

    The paper describes the evolution of the concept of modularity in a historical perspective. The main reasons for modularity are: create variety, utilize similarities, and reduce complexity. The paper defines the terms: Module, modularity, and modularization.......The paper describes the evolution of the concept of modularity in a historical perspective. The main reasons for modularity are: create variety, utilize similarities, and reduce complexity. The paper defines the terms: Module, modularity, and modularization....

  6. Markov Chain Monte Carlo (MCMC) methods for parameter estimation of a novel hybrid redundant robot

    International Nuclear Information System (INIS)

    Wang Yongbo; Wu Huapeng; Handroos, Heikki

    2011-01-01

    This paper presents a statistical method for the calibration of a redundantly actuated hybrid serial-parallel robot IWR (Intersector Welding Robot). The robot under study will be used to carry out welding, machining, and remote handing for the assembly of vacuum vessel of International Thermonuclear Experimental Reactor (ITER). The robot has ten degrees of freedom (DOF), among which six DOF are contributed by the parallel mechanism and the rest are from the serial mechanism. In this paper, a kinematic error model which involves 54 unknown geometrical error parameters is developed for the proposed robot. Based on this error model, the mean values of the unknown parameters are statistically analyzed and estimated by means of Markov Chain Monte Carlo (MCMC) approach. The computer simulation is conducted by introducing random geometric errors and measurement poses which represent the corresponding real physical behaviors. The simulation results of the marginal posterior distributions of the estimated model parameters indicate that our method is reliable and robust.

  7. Beijing international welding fair report. Kokusaika ni ugokidashita chugoku yosetsukai

    Energy Technology Data Exchange (ETDEWEB)

    1991-07-01

    This paper reports the affairs at the Beijing International Scientific Conference for Welding and the International Welding Fair held in May 1991, including visitors{prime} comments on their impression. The Scientific Conference was held for three days in eleven sessions, where 135 theses were presented, most of which were related to high-tech areas including robotization, automation, laser welding and cutting, and ceramic bonding. The total attendance numbered 231 members, including 30 from Germany, 20 from Japan, 17 from Soviet, 7 from Korea, and one each from Finland and Switzerland, plus 150 from China. It was the third meeting for the Scientific Conference, which had the number of attendance jumped from the previous one showing the increased interest by the international welding industry toward China. Exhibits from overseas countries were few, a possible effect from the Tiananmen incident, only three from Japan. Welding machines exhibited by China were those made in or licensed by Japan. Strong impression was felt on the spread in use of CO{sub 2} semi-automatic welding machines. 3 figs.

  8. The Walk-Man Robot Software Architecture

    OpenAIRE

    Mirko Ferrati; Alessandro Settimi; Alessandro Settimi; Luca Muratore; Alberto Cardellino; Alessio Rocchi; Enrico Mingo Hoffman; Corrado Pavan; Dimitrios Kanoulas; Nikos G. Tsagarakis; Lorenzo Natale; Lucia Pallottino

    2016-01-01

    A software and control architecture for a humanoid robot is a complex and large project, which involves a team of developers/researchers to be coordinated and requires many hard design choices. If such project has to be done in a very limited time, i.e., less than 1 year, more constraints are added and concepts, such as modular design, code reusability, and API definition, need to be used as much as possible. In this work, we describe the software architecture developed for Walk-Man, a robot ...

  9. Evolving self-assembly in autonomous homogeneous robots: experiments with two physical robots.

    Science.gov (United States)

    Ampatzis, Christos; Tuci, Elio; Trianni, Vito; Christensen, Anders Lyhne; Dorigo, Marco

    2009-01-01

    This research work illustrates an approach to the design of controllers for self-assembling robots in which the self-assembly is initiated and regulated by perceptual cues that are brought forth by the physical robots through their dynamical interactions. More specifically, we present a homogeneous control system that can achieve assembly between two modules (two fully autonomous robots) of a mobile self-reconfigurable system without a priori introduced behavioral or morphological heterogeneities. The controllers are dynamic neural networks evolved in simulation that directly control all the actuators of the two robots. The neurocontrollers cause the dynamic specialization of the robots by allocating roles between them based solely on their interaction. We show that the best evolved controller proves to be successful when tested on a real hardware platform, the swarm-bot. The performance achieved is similar to the one achieved by existing modular or behavior-based approaches, also due to the effect of an emergent recovery mechanism that was neither explicitly rewarded by the fitness function, nor observed during the evolutionary simulation. Our results suggest that direct access to the orientations or intentions of the other agents is not a necessary condition for robot coordination: Our robots coordinate without direct or explicit communication, contrary to what is assumed by most research works in collective robotics. This work also contributes to strengthening the evidence that evolutionary robotics is a design methodology that can tackle real-world tasks demanding fine sensory-motor coordination.

  10. Effective programming of energy consuming industrial robot systems

    International Nuclear Information System (INIS)

    Trnka, K.; Pinter, T.; Knazik, M.; Bozek, P.

    2012-01-01

    This paper discusses the problem of effective motion planning for industrial robots. The first part dealt with current method for off-line motion planning. In the second part is presented the work done with one of the simulation system with automatic trajectory generation and off-line programming capability [4]. An spot welding process is involved. The practical application of this step strongly depends on the method for robot path optimization with high accuracy, thus, transform the path into a time and energy optimal robot program for the real world, which is discussed in the third step. (Authors)

  11. Novel low-cost vision-sensing technology with controllable of exposal time for welding

    Science.gov (United States)

    Zhang, Wenzeng; Wang, Bin; Chen, Nian; Cao, Yipeng

    2005-02-01

    In the process of robot Welding, position of welding seam and welding pool shape is detected by CCD camera for quality control and seam tracking in real-time. It is difficult to always get a clear welding image in some welding methods, such as TIG welding. A novel idea that the exposal time of CCD camera is automatically controlled by arc voltage or arc luminance is proposed to get clear welding image. A set of special device and circuits are added to a common industrial CCD camera in order to flexibly control the CCD to start or close exposal by control of the internal clearing signal of the accumulated charge. Two special vision sensors according to the idea are developed. Their exposal grabbing can be triggered respectively by the arc voltage and the variety of the arc luminance. Two prototypes have been designed and manufactured. Experiments show that they can stably grab clear welding images at appointed moment, which is a basic for the feedback control of automatic welding.

  12. An FPGA based Node-on-Chip Architecture, for Rapid Robotics Research

    DEFF Research Database (Denmark)

    Falsig, Simon; Sørensen, Anders Stengaard

    2010-01-01

    One of the major costs and inhibitors to practical robotics research is the time invested in design, implementation, integration, adjusting and debugging of the embedded control systems, that implement the discrete event control in experimental robots and robot systems. Usually researchers can...... with the compactness and integration associated with customized hardware. In this paper we present an FPGA based architecture and a framework of template modules for modular embedded control that has: • Dramatically reduced the time we spend on instrumentation of experimental robots. • Increased the quality...

  13. CANINE: a robotic mine dog

    Science.gov (United States)

    Stancil, Brian A.; Hyams, Jeffrey; Shelley, Jordan; Babu, Kartik; Badino, Hernán.; Bansal, Aayush; Huber, Daniel; Batavia, Parag

    2013-01-01

    Neya Systems, LLC competed in the CANINE program sponsored by the U.S. Army Tank Automotive Research Development and Engineering Center (TARDEC) which culminated in a competition held at Fort Benning as part of the 2012 Robotics Rodeo. As part of this program, we developed a robot with the capability to learn and recognize the appearance of target objects, conduct an area search amid distractor objects and obstacles, and relocate the target object in the same way that Mine dogs and Sentry dogs are used within military contexts for exploration and threat detection. Neya teamed with the Robotics Institute at Carnegie Mellon University to develop vision-based solutions for probabilistic target learning and recognition. In addition, we used a Mission Planning and Management System (MPMS) to orchestrate complex search and retrieval tasks using a general set of modular autonomous services relating to robot mobility, perception and grasping.

  14. Sociable Robots Through Self-Maintained Energy

    Directory of Open Access Journals (Sweden)

    Trung Dung Ngo

    2006-12-01

    Full Text Available Research of autonomous mobile robots has mostly emphasized interaction and coordination that are natually inspired from biological behavior of birds, insects, and fish: flocking, foraging, collecting, and sharing. However, most research has been only focused on autonomous behaviors in order to perform robots like animals, whereas it is lacked of determinant to those behaviours: energy. Approaching to clusted amimal and the higher, collective and sharing food among individuals are major activity to keep society being. This paper issues an approach to sociable robots using self-maintained energy in cooperative mobile robots, which is dominantly inspired from swarm behavior of collecting and sharing food of honey-bee and ant. Autonomous mobile robots are usually equipped with a finite energy, thus they can operate in a finite time. To overcome the finitude, we describe practical deployment of mobile robots that are capable of carrying and exchanging fuel to other robots. Mechanism implementation including modular hardware and control architecture to demonstrate the capabicities of the approach is presented. Subsequently, the battery exchange algorithm basically based on probabilistic modeling of total energy on each robot located in its local vicinity is described. The paper is concluded with challenging works of chain of mobile robots, rescue, repair, and relation of heterogeneous robots.

  15. Sociable Robots through Self-maintained Energy

    Directory of Open Access Journals (Sweden)

    Henrik Schioler

    2008-11-01

    Full Text Available Research of autonomous mobile robots has mostly emphasized interaction and coordination that are natually inspired from biological behavior of birds, insects, and fish: flocking, foraging, collecting, and sharing. However, most research has been only focused on autonomous behaviors in order to perform robots like animals, whereas it is lacked of determinant to those behaviours: energy. Approaching to clusted amimal and the higher, collective and sharing food among individuals are major activity to keep society being. This paper issues an approach to sociable robots using self-maintained energy in cooperative mobile robots, which is dominantly inspired from swarm behavior of collecting and sharing food of honey-bee and ant. Autonomous mobile robots are usually equipped with a finite energy, thus they can operate in a finite time. To overcome the finitude, we describe practical deployment of mobile robots that are capable of carrying and exchanging fuel to other robots. Mechanism implementation including modular hardware and control architecture to demonstrate the capabicities of the approach is presented. Subsequently, the battery exchange algorithm basically based on probabilistic modeling of total energy on each robot located in its local vicinity is described. The paper is concluded with challenging works of chain of mobile robots, rescue, repair, and relation of heterogeneous robots.

  16. Accuracy analysis of hybrid parallel robot for the assembling of ITER

    Energy Technology Data Exchange (ETDEWEB)

    Wang Yongbo [Institute of Mechatronics and Virtual Engineering, Lappeenranta University of Technology, Skinnarilankatu 34, 53850 Lappeenranta (Finland); The State Key Laboratory of Mechanical Transmission, Chongqing University (China); Pessi, Pekka [Institute of Mechatronics and Virtual Engineering, Lappeenranta University of Technology, Skinnarilankatu 34, 53850 Lappeenranta (Finland); Wu Huapeng [Institute of Mechatronics and Virtual Engineering, Lappeenranta University of Technology, Skinnarilankatu 34, 53850 Lappeenranta (Finland)], E-mail: huapeng@lut.fi; Handroos, Heikki [Institute of Mechatronics and Virtual Engineering, Lappeenranta University of Technology, Skinnarilankatu 34, 53850 Lappeenranta (Finland)

    2009-06-15

    This paper presents a novel mobile parallel robot, which is able to carry welding and machining processes from inside the international thermonuclear experimental reactor (ITER) vacuum vessel (VV). The kinematics design of the robot has been optimized for ITER access. To improve the accuracy of the parallel robot, the errors caused by the stiffness and manufacture process have to be compensated or limited to a minimum value. In this paper kinematics errors and stiffness modeling are given. The simulation results are presented.

  17. Accuracy analysis of hybrid parallel robot for the assembling of ITER

    International Nuclear Information System (INIS)

    Wang Yongbo; Pessi, Pekka; Wu Huapeng; Handroos, Heikki

    2009-01-01

    This paper presents a novel mobile parallel robot, which is able to carry welding and machining processes from inside the international thermonuclear experimental reactor (ITER) vacuum vessel (VV). The kinematics design of the robot has been optimized for ITER access. To improve the accuracy of the parallel robot, the errors caused by the stiffness and manufacture process have to be compensated or limited to a minimum value. In this paper kinematics errors and stiffness modeling are given. The simulation results are presented.

  18. Efficient Symbolic Task Planning for Multiple Mobile Robots

    Science.gov (United States)

    2016-12-13

    shows a map of the testing environment. S1 and S2 ( green rectangles) are the initial positions of two robots, and G1 and G2 (red ellipses) show their...intelligence, pages 1594–1597. AAAI Press, 2008. [25] Mausam and D. S. Weld . Planning with durative actions in stochastic domains. J. Artif. Intell. Res...JAIR), 31:33–82, 2008. [26] D. McDermott, M. Ghallab, A. Howe, C. Knoblock, A. Ram, M. Veloso, D. Weld , and D. Wilkins. Pddl-the planning domain

  19. Development and demonstration of a teleoperated modular robot system

    International Nuclear Information System (INIS)

    Tosunoglu, S.; Tesar, D.

    1992-01-01

    This collection of bi-monthly progress reports on the DOE/NE Robotics Program presents information on significant accomplishments, reports and major correspondence issued, important meetings, and major problems associated with the program

  20. Present and future of laser welding machine; Laser yosetsuki no genjo to tenbo

    Energy Technology Data Exchange (ETDEWEB)

    Taniu, Y. [Ishikawajima-Harima Heavy Industries Co. Ltd., Tokyo (Japan)

    1998-04-01

    This paper describes recent trends of laser welding machine. For CO2 laser welding machine, seam weld of large diameter weld pipes using a 25 kW-class machine, and plate weld of steel plate using a 45 kW-class machine are reported. For YAG laser welding machine, high-output 5.5 kW-class machines are commercialized. Machines with slab structure of plate-like YAG chrystal have been developed which show high-oscillation efficiency and can be applied to cutting. Machines have been developed in which YAG laser output with slab structure is transmitted through GI fiber. High-speed welding of aluminum alloys can be realized by improving the converging performance. Efficiency of YAG laser can be enhanced through the time-divided utilization by switching the beam transmission path using fiber change-over switch. In the automobile industry, CO2 laser is mainly used, and a system combining CO laser with articulate robot is realized. TIG and MIG welding is often used for welding of aluminum for railway vehicles. It is required to reduce the welding strain. In the iron and steel industry, the productivity has been improved by the laser welding. YAG laser is put into practice for nuclear reactors. 5 refs., 8 figs., 1 tab.

  1. Imaging Total Stations - Modular and Integrated Concepts

    Science.gov (United States)

    Hauth, Stefan; Schlüter, Martin

    2010-05-01

    Keywords: 3D-Metrology, Engineering Geodesy, Digital Image Processing Initialized in 2009, the Institute for Spatial Information and Surveying Technology i3mainz, Mainz University of Applied Sciences, forces research towards modular concepts for imaging total stations. On the one hand, this research is driven by the successful setup of high precision imaging motor theodolites in the near past, on the other hand it is pushed by the actual introduction of integrated imaging total stations to the positioning market by the manufacturers Topcon and Trimble. Modular concepts for imaging total stations are manufacturer independent to a large extent and consist of a particular combination of accessory hardware, software and algorithmic procedures. The hardware part consists mainly of an interchangeable eyepiece adapter offering opportunities for digital imaging and motorized focus control. An easy assembly and disassembly in the field is possible allowing the user to switch between the classical and the imaging use of a robotic total station. The software part primarily has to ensure hardware control, but several level of algorithmic support might be added and have to be distinguished. Algorithmic procedures allow to reach several levels of calibration concerning the geometry of the external digital camera and the total station. We deliver insight in our recent developments and quality characteristics. Both the modular and the integrated approach seem to have its individual strengths and weaknesses. Therefore we expect that both approaches might point at different target applications. Our aim is a better understanding of appropriate applications for robotic imaging total stations. First results are presented. Stefan Hauth, Martin Schlüter i3mainz - Institut für Raumbezogene Informations- und Messtechnik FH Mainz University of Applied Sciences Lucy-Hillebrand-Straße 2, 55128 Mainz, Germany

  2. Advanced cutting, welding and inspection methods for vacuum vessel assembly and maintenance

    Energy Technology Data Exchange (ETDEWEB)

    Jones, L. E-mail: jonesl@ipp.mgg.de; Alfile, J.-P.; Aubert, Ph.; Punshon, C.; Daenner, W.; Kujanpaeae, V.; Maisonnier, D.; Serre, M.; Schreck, G.; Wykes, M

    2000-11-01

    ITER requires a 316 l stainless steel, double-skinned vacuum vessel (VV), each shell being 60 mm thick. EFDA (European Fusion Development Agreement) is investigating methods to be used for performing welding and NDT during VV assembly and also cutting and re-welding for remote sector replacement, including the development of an Intersector Welding Robot (IWR) [Jones et al. This conference]. To reduce the welding time, distortions and residual stresses of conventional welding, previous work concentrated on CO{sub 2} laser welding and cutting processes [Jones et al. Proc. Symp. Fusion Technol., Marseilles, 1998]. NdYAG laser now provides the focus for welding of the rearside root and for completing the weld for overhead positions with multipass filling. Electron beam (E-beam) welding with local vacuum offers a single-pass for most of the weld depth except for overhead positions. Plasma cutting has shown the capability to contain the backside dross and preliminary work with NdYAG laser cutting has shown good results. Automated ultrasonic inspection of assembly welds will be improved by the use of a phased array probe system that can focus the beam for accurate flaw location and sizing. This paper describes the recent results of process investigations in this R and D programme, involving five European sites and forming part of the overall VV/blanket research effort [W. Daenner et al. This conference].

  3. AP1000{sup TM} plant modularization

    Energy Technology Data Exchange (ETDEWEB)

    Cantarero L, C.; Demetri, K. J. [Westinghouse Electric Co., 1000 Westinghouse Drive, Cranberry Township, PA 16066 (United States); Quintero C, F. P., E-mail: cantarc@westinghouse.com [Westinghouse Electric Spain, Padilla 17, 28006 Madrid (Spain)

    2016-09-15

    The AP1000{sup TM} plant is an 1100 M We pressurized water reactor (PWR) with passive safety features and extensive plant simplifications that enhance construction, operation, maintenance and safety. Modules are used extensively in the design of the AP1000 plant nuclear island. The AP1000 plant uses modern, modular-construction techniques for plant construction. The design incorporates vendor-designed skids and equipment packages, as well as large, multi-ton structural modules and special equipment modules. Modularization allows traditionally sequential construction tasks to be completed simultaneously. Factory-built modules can be installed at the site in a planned construction schedule. The modularized AP1000 plant allows many more construction activities to proceed in parallel. This reduces plant construction calendar time, thus lowering the costs of plant financing. Furthermore, performing less work onsite significantly reduces the amount of skilled field-craft labor, which costs more than shop labor. In addition to labor cost savings, doing more welding and fabrication in a factory environment raises the quality of work, allowing more scheduling flexibility and reducing the amount of specialized tools required onsite. The site layout for the AP1000 plant has been established to support modular construction and efficient operations during construction. The plant layout is compact, using less space than previous conventional plant layouts. This paper provides and overview of the AP1000 plant modules with an emphasis on structural modules. Currently the Westinghouse AP1000 plant has four units under construction in China and four units under construction in the United States. All have shown successful fabrication and installation of various AP1000 plant modules. (Author)

  4. AP1000"T"M plant modularization

    International Nuclear Information System (INIS)

    Cantarero L, C.; Demetri, K. J.; Quintero C, F. P.

    2016-09-01

    The AP1000"T"M plant is an 1100 M We pressurized water reactor (PWR) with passive safety features and extensive plant simplifications that enhance construction, operation, maintenance and safety. Modules are used extensively in the design of the AP1000 plant nuclear island. The AP1000 plant uses modern, modular-construction techniques for plant construction. The design incorporates vendor-designed skids and equipment packages, as well as large, multi-ton structural modules and special equipment modules. Modularization allows traditionally sequential construction tasks to be completed simultaneously. Factory-built modules can be installed at the site in a planned construction schedule. The modularized AP1000 plant allows many more construction activities to proceed in parallel. This reduces plant construction calendar time, thus lowering the costs of plant financing. Furthermore, performing less work onsite significantly reduces the amount of skilled field-craft labor, which costs more than shop labor. In addition to labor cost savings, doing more welding and fabrication in a factory environment raises the quality of work, allowing more scheduling flexibility and reducing the amount of specialized tools required onsite. The site layout for the AP1000 plant has been established to support modular construction and efficient operations during construction. The plant layout is compact, using less space than previous conventional plant layouts. This paper provides and overview of the AP1000 plant modules with an emphasis on structural modules. Currently the Westinghouse AP1000 plant has four units under construction in China and four units under construction in the United States. All have shown successful fabrication and installation of various AP1000 plant modules. (Author)

  5. Nested Reconfigurable Robots: Theory, Design, and Realization

    Directory of Open Access Journals (Sweden)

    Ning Tan

    2015-07-01

    Full Text Available Rather than the conventional classification method, we propose to divide modular and reconfigurable robots into intra-, inter-, and nested reconfigurations. We suggest designing the robot with nested reconfigurability, which utilizes individual robots with intra-reconfigurability capable of combining with other homogeneous/heterogeneous robots (inter-reconfigurability. The objective of this approach is to generate more complex morphologies for performing specific tasks that are far from the capabilities of a single module or to respond to programmable assembly requirements. In this paper, we discuss the theory, concept, and initial mechanical design of Hinged-Tetro, a self-reconfigurable module conceived for the study of nested reconfiguration. Hinged-Tetro is a mobile robot that uses the principle of hinged dissection of polyominoes to transform itself into any of the seven one-sided tetrominoes in a straightforward way. The robot can also combine with other modules for shaping complex structures or giving rise to a robot with new capabilities. Finally, the validation experiments verify the nested reconfigurability of Hinged-Tetro. Extensive tests and analyses of intra-reconfiguration are provided in terms of energy and time consumptions. Experiments using two robots validate the inter-reconfigur ability of the proposed module.

  6. Ultrasonic Real-Time Quality Monitoring Of Aluminum Spot Weld Process

    Science.gov (United States)

    Perez Regalado, Waldo Josue

    The real-time ultrasonic spot weld monitoring system, introduced by our research group, has been designed for the unsupervised quality characterization of the spot welding process. It comprises the ultrasonic transducer (probe) built into one of the welding electrodes and an electronics hardware unit which gathers information from the transducer, performs real-time weld quality characterization and communicates with the robot programmable logic controller (PLC). The system has been fully developed for the inspection of spot welds manufactured in steel alloys, and has been mainly applied in the automotive industry. In recent years, a variety of materials have been introduced to the automotive industry. These include high strength steels, magnesium alloys, and aluminum alloys. Aluminum alloys have been of particular interest due to their high strength-to-weight ratio. Resistance spot welding requirements for aluminum vary greatly from those of steel. Additionally, the oxide film formed on the aluminum surface increases the heat generation between the copper electrodes and the aluminum plates leading to accelerated electrode deterioration. Preliminary studies showed that the real-time quality inspection system was not able to monitor spot welds manufactured with aluminum. The extensive experimental research, finite element modelling of the aluminum welding process and finite difference modeling of the acoustic wave propagation through the aluminum spot welds presented in this dissertation, revealed that the thermodynamics and hence the acoustic wave propagation through an aluminum and a steel spot weld differ significantly. For this reason, the hardware requirements and the algorithms developed to determine the welds quality from the ultrasonic data used on steel, no longer apply on aluminum spot welds. After updating the system and designing the required algorithms, parameters such as liquid nugget penetration and nugget diameter were available in the ultrasonic data

  7. A mobile robot with parallel kinematics to meet the requirements for assembling and machining the ITER vacuum vessel

    Energy Technology Data Exchange (ETDEWEB)

    Pessi, Pekka [Lappeenranta University of Technology, Lappeenranta (Finland)], E-mail: pessi@lut.fi; Wu, Huapeng; Handroos, Heikki [Lappeenranta University of Technology, Lappeenranta (Finland); Jones, Lawrence [EFDA Close Support Unit, Boltzmannstrasse 2, Garching D-85748 (Germany)

    2007-10-15

    The present paper introduces a mobile parallel robot developed for International Thermonuclear Experimental Reactor (ITER). The task of the robot is to carry out welding and machining processes inside the ITER vacuum vessel. The kinematic design of the robot has been optimized for the ITER access. The kinematic analysis is given in the paper. A virtual prototype of the parallel robot is built. A dynamic behavior of the whole robot is studied by the multi-body system simulation (MBS)

  8. A mobile robot with parallel kinematics to meet the requirements for assembling and machining the ITER vacuum vessel

    International Nuclear Information System (INIS)

    Pessi, Pekka; Wu, Huapeng; Handroos, Heikki; Jones, Lawrence

    2007-01-01

    The present paper introduces a mobile parallel robot developed for International Thermonuclear Experimental Reactor (ITER). The task of the robot is to carry out welding and machining processes inside the ITER vacuum vessel. The kinematic design of the robot has been optimized for the ITER access. The kinematic analysis is given in the paper. A virtual prototype of the parallel robot is built. A dynamic behavior of the whole robot is studied by the multi-body system simulation (MBS)

  9. Development of robots for nuclear power plants

    International Nuclear Information System (INIS)

    Sasaki, Masayoshi

    1982-01-01

    In nuclear power plants, the reduction of maintenance time, the reduction of radiation exposure and man-power saving are increasingly required. To achieve these purposes, various remote-controlled devices, such as robots in a broad sense, have been earnestly developed. Of these, three machines for replacing, four devices for inspection, two systems for cleaning, and two equipment for processing are tabulated in this paper. Typical eight machines or equipment are briefly introduced, mainly describing their features or characteristics. Those are: a remotely handling machine for control rod drive mechanism, an automatic refueling machine, an automatic ultrasonic flaw detection system replacing for a manually operated testing system for the welded parts of primary cooling system, an automatic cask washing machine for decontamination, a floor-type remote inspection vehicle for various devices operating inside power plants, a monorail-type remote inspection vehicle for inspection in spaces where floor space is short, and a remote-controlled automatic pipe welding machine for welding operations in a radioactive environment such as replacing the piping of primary cooling system. Most of these devices serves for radiation exposure reduction at the same time. Existing nuclear power plant design assumes direct manual maintenance, which limits the introduction of robots. Future nuclear power plants should be designed on the assumption of automatic remote-controlled tools and devices being used in maintenance work. (Wakatsuki, Y.)

  10. Design of an eye-in-hand sensing and servo control framework for harvesting robotics in dense vegetation

    NARCIS (Netherlands)

    Barth, Ruud; Hemming, Jochen; Henten, van E.J.

    2016-01-01

    A modular software framework design that allows flexible implementation of eye-in-hand sensing and motion control for agricultural robotics in dense vegetation is reported. Harvesting robots in cultivars with dense vegetation require multiple viewpoints and on-line trajectory adjustments in order

  11. Modeling and Control of Collaborative Robot System using Haptic Feedback

    Directory of Open Access Journals (Sweden)

    Vivekananda Shanmuganatha

    2017-08-01

    Full Text Available When two robot systems can share understanding using any agreed knowledge, within the constraints of the system’s communication protocol, the approach may lead to a common improvement. This has persuaded numerous new research inquiries in human-robot collaboration. We have built up a framework prepared to do independent following and performing table-best protest object manipulation with humans and we have actualized two different activity models to trigger robot activities. The idea here is to explore collaborative systems and to build up a plan for them to work in a collaborative environment which has many benefits to a single more complex system. In the paper, two robots that cooperate among themselves are constructed. The participation linking the two robotic arms, the torque required and parameters are analyzed. Thus the purpose of this paper is to demonstrate a modular robot system which can serve as a base on aspects of robotics in collaborative robots using haptics.

  12. The National Shipbuilding Research Program: Evaluation of the Cincinnati Milacron T-3 Robot for Shipbuilding Welding

    Science.gov (United States)

    1984-01-01

    acknowledgement is extended to the members of Welding Panel SP-7 of the SNAME Ship Production Committee, who served as technical advisors in the preparation...Binzel Robo 450. . . . . . 4.4.4.1.3 Hobart WCG 600 . . . . . . 4.4.4.2 Maintenance and Service . . . . . . . 4.4.4.3 Recommendation...Machine Specialties D & F - Welding . . . Torch Binzel Robo 450 - Welding Torch. Hobart WCG - 600 - Welding Torch. Binzel Nozzle Cleaner

  13. Inline-process and quality control of spotwelds of car bodies - ultrasonic sensors integrated in resistance welding electrodes

    Energy Technology Data Exchange (ETDEWEB)

    Vogt, G.; Rieger, D.; Koehler, C. [Vogt Werkstoffpruefsysteme, Burgwedel (Germany)

    2006-07-01

    The self-developed inline ultrasonic testing system SPOTline is used for inspection and process control of resistant spot weldings. SPOTline provides with directly into the welding tong integrated ultrasonic sensors a 100% inspection during the welding process. The through transmission and pulse echo signals will be collected, stored and evaluated by means of fuzzy-logic and neuronal network technic. The results will be transmitted online from the spotline-client in the sql-data-base of the server for processing. World-wide SPOTline is the only ultrasonic inspection system, which is working under real production conditions in a network of welding robots. Test with 2 and 3 plates, high strength steels and all coatings demonstrate the accurately identification of discrepant welds. (orig.)

  14. A software architecture for adaptive modular sensing systems.

    Science.gov (United States)

    Lyle, Andrew C; Naish, Michael D

    2010-01-01

    By combining a number of simple transducer modules, an arbitrarily complex sensing system may be produced to accommodate a wide range of applications. This work outlines a novel software architecture and knowledge representation scheme that has been developed to support this type of flexible and reconfigurable modular sensing system. Template algorithms are used to embed intelligence within each module. As modules are added or removed, the composite sensor is able to automatically determine its overall geometry and assume an appropriate collective identity. A virtual machine-based middleware layer runs on top of a real-time operating system with a pre-emptive kernel, enabling platform-independent template algorithms to be written once and run on any module, irrespective of its underlying hardware architecture. Applications that may benefit from easily reconfigurable modular sensing systems include flexible inspection, mobile robotics, surveillance, and space exploration.

  15. Industrial robots in Europe - market, applications and developments

    Science.gov (United States)

    Schraft, R. D.

    1975-01-01

    Different companies involving a wide range of products and manufacturing processes were studied to define the requirements for industrial robots. A survey of all such automatic units offered on the world market was made to establish a data base. Principal applications include coating, spot welding, and loading and unloading operations.

  16. Characteristics of AZ31 Mg alloy joint using automatic TIG welding

    Science.gov (United States)

    Liu, Hong-tao; Zhou, Ji-xue; Zhao, Dong-qing; Liu, Yun-teng; Wu, Jian-hua; Yang, Yuan-sheng; Ma, Bai-chang; Zhuang, Hai-hua

    2017-01-01

    The automatic tungsten-inert gas welding (ATIGW) of AZ31 Mg alloys was performed using a six-axis robot. The evolution of the microstructure and texture of the AZ31 auto-welded joints was studied by optical microscopy, scanning electron microscopy, energy-dispersive X-ray spectroscopy, and electron backscatter diffraction. The ATIGW process resulted in coarse recrystallized grains in the heat affected zone (HAZ) and epitaxial growth of columnar grains in the fusion zone (FZ). Substantial changes of texture between the base material (BM) and the FZ were detected. The {0002} basal plane in the BM was largely parallel to the sheet rolling plane, whereas the c-axis of the crystal lattice in the FZ inclined approximately 25° with respect to the welding direction. The maximum pole density increased from 9.45 in the BM to 12.9 in the FZ. The microhardness distribution, tensile properties, and fracture features of the AZ31 auto-welded joints were also investigated.

  17. Structured control for autonomous robots

    International Nuclear Information System (INIS)

    Simmons, R.G.

    1994-01-01

    To operate in rich, dynamic environments, autonomous robots must be able to effectively utilize and coordinate their limited physical and occupational resources. As complexity increases, it becomes necessary to impose explicit constraints on the control of planning, perception, and action to ensure that unwanted interactions between behaviors do not occur. This paper advocates developing complex robot systems by layering reactive behaviors onto deliberative components. In this structured control approach, the deliberative components handle normal situations and the reactive behaviors, which are explicitly constrained as to when and how they are activated, handle exceptional situations. The Task Control Architecture (TCA) has been developed to support this approach. TCA provides an integrated set of control constructs useful for implementing deliberative and reactive behaviors. The control constructs facilitate modular and evolutionary system development: they are used to integrate and coordinate planning, perception, and execution, and to incrementally improve the efficiency and robustness of the robot systems. To date, TCA has been used in implementing a half-dozen mobile robot systems, including an autonomous six-legged rover and indoor mobile manipulator

  18. Precise Truss Assembly Using Commodity Parts and Low Precision Welding

    Science.gov (United States)

    Komendera, Erik; Reishus, Dustin; Dorsey, John T.; Doggett, W. R.; Correll, Nikolaus

    2014-01-01

    Hardware and software design and system integration for an intelligent precision jigging robot (IPJR), which allows high precision assembly using commodity parts and low-precision bonding, is described. Preliminary 2D experiments that are motivated by the problem of assembling space telescope optical benches and very large manipulators on orbit using inexpensive, stock hardware and low-precision welding are also described. An IPJR is a robot that acts as the precise "jigging", holding parts of a local structure assembly site in place, while an external low precision assembly agent cuts and welds members. The prototype presented in this paper allows an assembly agent (for this prototype, a human using only low precision tools), to assemble a 2D truss made of wooden dowels to a precision on the order of millimeters over a span on the order of meters. The analysis of the assembly error and the results of building a square structure and a ring structure are discussed. Options for future work, to extend the IPJR paradigm to building in 3D structures at micron precision are also summarized.

  19. Kinematics optimization and static analysis of a modular continuum robot used for minimally invasive surgery.

    Science.gov (United States)

    Qi, Fei; Ju, Feng; Bai, Dong Ming; Chen, Bai

    2018-02-01

    For the outstanding compliance and dexterity of continuum robot, it is increasingly used in minimally invasive surgery. The wide workspace, high dexterity and strong payload capacity are essential to the continuum robot. In this article, we investigate the workspace of a cable-driven continuum robot that we proposed. The influence of section number on the workspace is discussed when robot is operated in narrow environment. Meanwhile, the structural parameters of this continuum robot are optimized to achieve better kinematic performance. Moreover, an indicator based on the dexterous solid angle for evaluating the dexterity of robot is introduced and the distal end dexterity is compared for the three-section continuum robot with different range of variables. Results imply that the wider range of variables achieve the better dexterity. Finally, the static model of robot based on the principle of virtual work is derived to analyze the relationship between the bending shape deformation and the driven force. The simulations and experiments for plane and spatial motions are conducted to validate the feasibility of model, respectively. Results of this article can contribute to the real-time control and movement and can be a design reference for cable-driven continuum robot.

  20. Outline of a Hardware Reconfiguration Framework for Modular Industrial Mobile Manipulators

    DEFF Research Database (Denmark)

    Schou, Casper; Bøgh, Simon; Madsen, Ole

    2014-01-01

    This paper presents concepts and ideas of a hard- ware reconfiguration framework for modular industrial mobile manipulators. Mobile manipulators pose a highly flexible pro- duction resource due to their ability to autonomously navigate between workstations. However, due to this high flexibility new...... approaches to the operation of the robots are needed. Reconfig- uring the robot to a new task should be carried out by shop floor operators and, thus, be both quick and intuitive. Late research has already proposed a method for intuitive robot programming. However, this relies on a predetermined hardware...... configuration. Finding a single multi-purpose hardware configuration suited to all tasks is considered unrealistic. As a result, the need for reconfiguration of the hardware is inevitable. In this paper an outline of a framework for making hardware reconfiguration quick and intuitive is presented. Two main...

  1. Standards for space automation and robotics

    Science.gov (United States)

    Kader, Jac B.; Loftin, R. B.

    1992-01-01

    The AIAA's Committee on Standards for Space Automation and Robotics (COS/SAR) is charged with the identification of key functions and critical technologies applicable to multiple missions that reflect fundamental consideration of environmental factors. COS/SAR's standards/practices/guidelines implementation methods will be based on reliability, performance, and operations, as well as economic viability and life-cycle costs, simplicity, and modularity.

  2. Thermal analysis of LOFT modular DTT for LOCE transient

    International Nuclear Information System (INIS)

    Martin, C.M.

    1978-01-01

    A thermal analysis was performed on the LOFT modular drag-disc turbine transducer (MDTT) modular assembly. The purpose of this analysis was to determine the maximum temperature difference between the MDTT shroud and end cap during a LOCE. This temperature difference is needed for stress analysis of the MDTT endcap to fairing welds. The thermal analysis was done using TRIPLE, a three dimensional finite element code. A three dimensional model of the MDTT was made and transient temperature solutions were found for the different MDTT locations. The fluid temperature transients used for the solutions at all locations were from RELAP4 predictions of the LOFT L2-4 test which is considered the most severe temperature transient. Results of these calculations show the maximum temperature difference is 92 0 C (165 0 F) and occurs in the intact loop cold leg. This value and those found at other locations, are evaluated from the best available RELAP predicted temperatures during a nuclear LOCE

  3. The ISIS operation: Robotics repair work on the CHINON A3 natural uranium, carbon dioxide cooled, graphite moderated reactor

    International Nuclear Information System (INIS)

    Hilmoine, R.M.E.

    1989-01-01

    After describing the upper internal support structures of the CHINON A3 reactor, the problems resulting from their degradation due to corrosion and to the difficulties of the ISIS operation are presented here. The repair method is as follows: all tools and repair parts reach the working area by the feeding-pipes drilled through the 7 m thick concrete vessel surrounding the reactor core; the robots handle into the reactor, the tool heads and the repair parts which are automatically positioned and welded around the corroded structure, thus restoring the support of measurement devices. The parts are either linked together or to the existing structure by means of 2 studs of 12 mm in diameter. The different phases to sort out a problem are: in-core topography, reconforming of the full-scale mock-up with the repair area, learning on this mock-up and in-core repair. The technical specificities of the robots used are the following: they have an 11 meter long, 0.22 meter across telescopic mast with jointed arms reaching a radius of 2.7 m. Then the useful load is 70 daN and the repeatability 0.1 mm. Different tool heads can be handled by the robot: telemeter and laser reconstruction: it allows to locate the in core points and to materialize them on the mock-up by a laser crossed-beams locating technique; scouring: it cleans the corroded parts of the structures before welding; welding: it allows the parts handling and the carried studs welding; screwing; tensile test: carried out when the stud welds are defective. A high level computerized control system is organized around a central unit which calculates the displacements of robots and synchronises the actions of different tools by communicating with several local units. A 100,000 hour designing, a 200,000 hour building and assembling and a 450,000 hour operating on working area were necessary to repair 15 out of the 102 corroded structures by fitting and welding 205 repair parts. 10 figs

  4. Pipe robots for internal inspection, non-destructive testing and machining of pipelines

    International Nuclear Information System (INIS)

    Reiss, Alexander

    2016-01-01

    Inspector Systems is a specialist in manufacturing of tethered self-propelled pipe robots for internal inspection, non-destructive testing and machining of pipeline systems. Our industrial sectors, which originates from 30 year experience in the nuclear industry, are Gas and Oil (On-/Offshore, Refineries), Chemical, Petrochemical, Water etc. The pipe robots are able to get inserted through poor access points (e.g. valves) and to pass in bi-directional travelling vertical sections and numerous bends with small arc radius. The paper describes the system concept and performance of the pipe robot technology. A modular construction allows to equip the robots with different operational elements for the respective application.

  5. Development of modular control software for construction 3D-printer

    Science.gov (United States)

    Bazhanov, A.; Yudin, D.; Porkhalo, V.

    2018-03-01

    This article discusses the approach to developing modular software for real-time control of an industrial construction 3D printer. The proposed structure of a two-level software solution is implemented for a robotic system that moves in a Cartesian coordinate system with multi-axis interpolation. An algorithm for the formation and analysis of a path is considered to enable the most effective control of printing through dynamic programming.

  6. Laser assisted robotic surgery in cornea transplantation

    Science.gov (United States)

    Rossi, Francesca; Micheletti, Filippo; Magni, Giada; Pini, Roberto; Menabuoni, Luca; Leoni, Fabio; Magnani, Bernardo

    2017-03-01

    Robotic surgery is a reality in several surgical fields, such as in gastrointestinal surgery. In ophthalmic surgery the required high spatial precision is limiting the application of robotic system, and even if several attempts have been designed in the last 10 years, only some application in retinal surgery were tested in animal models. The combination of photonics and robotics can really open new frontiers in minimally invasive surgery, improving the precision, reducing tremor, amplifying scale of motion, and automating the procedure. In this manuscript we present the preliminary results in developing a vision guided robotic platform for laser-assisted anterior eye surgery. The robotic console is composed by a robotic arm equipped with an "end effector" designed to deliver laser light to the anterior corneal surface. The main intended application is for laser welding of corneal tissue in laser assisted penetrating keratoplasty and endothelial keratoplasty. The console is equipped with an integrated vision system. The experiment originates from a clear medical demand in order to improve the efficacy of different surgical procedures: when the prototype will be optimized, other surgical areas will be included in its application, such as neurosurgery, urology and spinal surgery.

  7. Robot technology and numbers in the classroom

    DEFF Research Database (Denmark)

    Majgaard, Gunver; Misfeldt, Morten; Nielsen, Jacob

    2010-01-01

    This paper explores how a cubic user-configurable modular robotic system can be used to support learning about numbers and how they are pronounced. The development is done in collaboration with a class of 7-8 year old children and their mathematics teacher. The tool is called Speakmath and it com...

  8. Mobile robots and remote systems in nuclear applications; Robots moviles y sistemas remotos en aplicaciones nucleares

    Energy Technology Data Exchange (ETDEWEB)

    Segovia de los Rios, J. A.; Benitez R, J. S., E-mail: armando.segovia@inin.gob.m [ININ, Departamento de Automatizacion e Instrumentacion, Carretera Mexico-Toluca s/n, 52750 Ocoyoacac, Estado de Mexico (Mexico)

    2010-07-01

    Traditionally, the robots have been used in the industry for the colored to the spray, welding, schemed, assemble and handling of materials. However, these devices have had a deep impact in the nuclear industry where the first objective has been to reduce the exhibition and the personnel contact with radioactive materials. Knowing the utility of the mobile robots and remote systems in nuclear facilities in the world, the Department of Automation and Instrumentation of the Instituto Nacional de Investigaciones Nucleares (ININ) has carried out some researches and applications that they have facilitated the work of the researches and professionals of the ININ involved in the handling of radioactive materials, as the system with monorail for the introduction of irradiated materials in a production cell of Iodine-131 and the robot vehicle for the radioactive materials transport TRASMAR (contraction of Transportacion Asistida de Materiales Radiactivos). (Author)

  9. Multi-optimization Criteria-based Robot Behavioral Adaptability and Motion Planning

    International Nuclear Information System (INIS)

    Pin, Francois G.

    2003-01-01

    Our overall objective is the development of a generalized methodology and code for the automated generation of the kinematics equations of robots and for the analytical solution of their motion planning equations subject to time-varying constraints, behavioral objectives and modular configuration

  10. Multi-optimization Criteria-based Robot Behavioral Adaptability and Motion Planning

    International Nuclear Information System (INIS)

    Pin, Grancois G.

    2004-01-01

    Our overall objective is the development of a generalized methodology and code for the automated generation of the kinematics equations of robots and for the analytical solution of their motion planning equations subject to time-varying constraints, behavioral objectives, and modular configuration

  11. Multiprocessor development for robot control

    International Nuclear Information System (INIS)

    Lee, Jong Min; Kim, Seung Ho; Hwang, Suk Yeoung; Sohn, Surg Won; Kim, Byung Soo; Kim, Chang Hoi; Lee, Yong Bum; Kim, Woong Ki

    1988-12-01

    The object of this project is to develop a multiprocessor system which is essential to robot technology. A multiprocessor system interconnecting many single board computer is much faster and flexible than a single processor. The developed multiprocessor will be used to control nuclear mobile robot, so a loosely coupled system is adopted as a robot controller. A total configuration of controller is divided into three main parts in related with its function. It is consisted of supervisory control part, functional control part, remote control part. The designed control system is to be expanded easily for further use with a modular architecture, so the functional independency within sub-systems can be obtained throughout the system structure. Electromagnetic interference affecting to the control system is minimized by using optical fiber as communication media between robot and control system. System performances is enhanced not only by using distributed architecture in hardware, but by adopting real-time, multi-tasking operating system in software. The iRMX86 OS is used and reconfigured for real-time, multi-tasking operation. RS-485 serial communication protocol is used between functional control part and remote control part. Since the developed multiprocessor control system is an essential and fundamental technology for artificial intelligent robot, the result of this project can be applied directly to nuclear mobile robot. (Author)

  12. A Software Architecture for Adaptive Modular Sensing Systems

    Directory of Open Access Journals (Sweden)

    Andrew C. Lyle

    2010-08-01

    Full Text Available By combining a number of simple transducer modules, an arbitrarily complex sensing system may be produced to accommodate a wide range of applications. This work outlines a novel software architecture and knowledge representation scheme that has been developed to support this type of flexible and reconfigurable modular sensing system. Template algorithms are used to embed intelligence within each module. As modules are added or removed, the composite sensor is able to automatically determine its overall geometry and assume an appropriate collective identity. A virtual machine-based middleware layer runs on top of a real-time operating system with a pre-emptive kernel, enabling platform-independent template algorithms to be written once and run on any module, irrespective of its underlying hardware architecture. Applications that may benefit from easily reconfigurable modular sensing systems include flexible inspection, mobile robotics, surveillance, and space exploration.

  13. A Modular Telerobot Control System for Accident Response

    International Nuclear Information System (INIS)

    Anderson, Robert J.; Shirey, David L.

    1999-01-01

    The Accident Response Mobile Manipulator System (ARMMS) is a teleoperated emergency response vehicle that deploys two hydraulic manipulators, five cameras, and an array of sensors to the scene of an incident. It is operated from a remote base station that can be situated up to four kilometers away from the site. Recently, a modular telerobot control architecture called SMART (Sandia's Modular Architecture for Robotic and Teleoperation) was applied to ARMMS to improve the precision, safety, and operability of the manipulators on board. Using SMART, a prototype manipulator control system was developed in a couple of days, and an integrated working system was demonstrated within a couple of months. New capabilities such as camera teleoperation, autonomous tool changeout and dual manipulator control have been incorporated. The final system incorporates twenty-two separate modules and implements eight different behavior modes. This paper describes the integration of SMART into the ARMMS system

  14. Compensating for telecommunication delays during robotic telerehabilitation.

    Science.gov (United States)

    Consoni, Leonardo J; Siqueira, Adriano A G; Krebs, Hermano I

    2017-07-01

    Rehabilitation robotic systems may afford better care and telerehabilitation may extend the use and benefits of robotic therapy to the home. Data transmissions over distance are bound by intrinsic communication delays which can be significant enough to deem the activity unfeasible. Here we describe an approach that combines unilateral robotic telerehabilitation and serious games. This approach has a modular and distributed design that permits different types of robots to interact without substantial code changes. We demonstrate the approach through an online multiplayer game. Two users can remotely interact with each other with no force exchanges, while a smoothing and prediction algorithm compensates motions for the delay in the Internet connection. We demonstrate that this approach can successfully compensate for data transmission delays, even when testing between the United States and Brazil. This paper presents the initial experimental results, which highlight the performance degradation with increasing delays as well as improvements provided by the proposed algorithm, and discusses planned future developments.

  15. Humanoid Robotics: Real-Time Object Oriented Programming

    Science.gov (United States)

    Newton, Jason E.

    2005-01-01

    Programming of robots in today's world is often done in a procedural oriented fashion, where object oriented programming is not incorporated. In order to keep a robust architecture allowing for easy expansion of capabilities and a truly modular design, object oriented programming is required. However, concepts in object oriented programming are not typically applied to a real time environment. The Fujitsu HOAP-2 is the test bed for the development of a humanoid robot framework abstracting control of the robot into simple logical commands in a real time robotic system while allowing full access to all sensory data. In addition to interfacing between the motor and sensory systems, this paper discusses the software which operates multiple independently developed control systems simultaneously and the safety measures which keep the humanoid from damaging itself and its environment while running these systems. The use of this software decreases development time and costs and allows changes to be made while keeping results safe and predictable.

  16. 3D Printer Instrumentation to Create Varied Geometries of Robotic Limbs and Heterogeneous Granular Media

    Science.gov (United States)

    2015-05-20

    Transfer Robo Ant The 3D printer was used to rapidly prototype a robot ant . The robot ant was used to model the behavior of the fire ant and to model...computer models and 3D printed ant robots are shown below. Snake Bot We used the 3D printed to rapidly design a modular, easily-modified snake...living organism (modern mudskippers, a terrestrial fish) and extinct early tetrapods (e.g. Ichthyostega, Acanthostega) while allowing us to explore

  17. ROCLA robots repaired after tough times

    CERN Multimedia

    2004-01-01

    The team of five welders and five mechanics, represented by Pascal Mésenge (right) and Fabrice Multon (left), worked during two week-ends to repair the two ROCLA. At the centre, Oliver Boettcher, technical manager for the robot. The two LHC magnet transport robots ROCLA have recently been repaired after cracks were found in the welds of their load-bearing structure. The Safety Commission suspended the use of one robot and limited the operation conditions of the other. These vehicles are used intensively for the transport of the LHC cryodipoles between the test and the assembly facilities SM18 and SMA18. As a consequence, a speedy solution had to be implemented to minimize the potential disruption to the LHC schedule. Appropriate CERN resources were immediately focused on the problem. As soon as TS/MME had designed a reinforced gantry support, the necessary raw material was ordered. Less than 10 days were required to get the two ROCLA robots operating again. This included 2 full weekends, many extra hours a...

  18. The Walk-Man Robot Software Architecture

    Directory of Open Access Journals (Sweden)

    Mirko Ferrati

    2016-05-01

    Full Text Available A software and control architecture for a humanoid robot is a complex and large project, which involves a team of developers/researchers to be coordinated and requires many hard design choices. If such project has to be done in a very limited time, i.e., less than 1 year, more constraints are added and concepts, such as modular design, code reusability, and API definition, need to be used as much as possible. In this work, we describe the software architecture developed for Walk-Man, a robot participant at the Darpa Robotics Challenge. The challenge required the robot to execute many different tasks, such as walking, driving a car, and manipulating objects. These tasks need to be solved by robotics specialists in their corresponding research field, such as humanoid walking, motion planning, or object manipulation. The proposed architecture was developed in 10 months, provided boilerplate code for most of the functionalities required to control a humanoid robot and allowed robotics researchers to produce their control modules for DRC tasks in a short time. Additional capabilities of the architecture include firmware and hardware management, mixing of different middlewares, unreliable network management, and operator control station GUI. All the source code related to the architecture and some control modules have been released as open source projects.

  19. Automated Kinematics Equations Generation and Constrained Motion Planning Resolution for Modular and Reconfigurable Robots

    Energy Technology Data Exchange (ETDEWEB)

    Pin, Francois G.; Love, Lonnie L.; Jung, David L.

    2004-03-29

    Contrary to the repetitive tasks performed by industrial robots, the tasks in most DOE missions such as environmental restoration or Decontamination and Decommissioning (D&D) can be characterized as ''batches-of-one'', in which robots must be capable of adapting to changes in constraints, tools, environment, criteria and configuration. No commercially available robot control code is suitable for use with such widely varying conditions. In this talk we present our development of a ''generic code'' to allow real time (at loop rate) robot behavior adaptation to changes in task objectives, tools, number and type of constraints, modes of controls or kinematics configuration. We present the analytical framework underlying our approach and detail the design of its two major modules for the automatic generation of the kinematics equations when the robot configuration or tools change and for the motion planning under time-varying constraints. Sample problems illustrating the capabilities of the developed system are presented.

  20. Design and Fabrication of an Elastomeric Unit for Soft Modular Robots in Minimally Invasive Surgery

    Science.gov (United States)

    De Falco, Iris; Gerboni, Giada; Cianchetti, Matteo; Menciassi, Arianna

    2015-01-01

    In recent years, soft robotics technologies have aroused increasing interest in the medical field due to their intrinsically safe interaction in unstructured environments. At the same time, new procedures and techniques have been developed to reduce the invasiveness of surgical operations. Minimally Invasive Surgery (MIS) has been successfully employed for abdominal interventions, however standard MIS procedures are mainly based on rigid or semi-rigid tools that limit the dexterity of the clinician. This paper presents a soft and high dexterous manipulator for MIS. The manipulator was inspired by the biological capabilities of the octopus arm, and is designed with a modular approach. Each module presents the same functional characteristics, thus achieving high dexterity and versatility when more modules are integrated. The paper details the design, fabrication process and the materials necessary for the development of a single unit, which is fabricated by casting silicone inside specific molds. The result consists in an elastomeric cylinder including three flexible pneumatic actuators that enable elongation and omni-directional bending of the unit. An external braided sheath improves the motion of the module. In the center of each module a granular jamming-based mechanism varies the stiffness of the structure during the tasks. Tests demonstrate that the module is able to bend up to 120° and to elongate up to 66% of the initial length. The module generates a maximum force of 47 N, and its stiffness can increase up to 36%. PMID:26650236

  1. Design and Fabrication of an Elastomeric Unit for Soft Modular Robots in Minimally Invasive Surgery.

    Science.gov (United States)

    De Falco, Iris; Gerboni, Giada; Cianchetti, Matteo; Menciassi, Arianna

    2015-11-14

    In recent years, soft robotics technologies have aroused increasing interest in the medical field due to their intrinsically safe interaction in unstructured environments. At the same time, new procedures and techniques have been developed to reduce the invasiveness of surgical operations. Minimally Invasive Surgery (MIS) has been successfully employed for abdominal interventions, however standard MIS procedures are mainly based on rigid or semi-rigid tools that limit the dexterity of the clinician. This paper presents a soft and high dexterous manipulator for MIS. The manipulator was inspired by the biological capabilities of the octopus arm, and is designed with a modular approach. Each module presents the same functional characteristics, thus achieving high dexterity and versatility when more modules are integrated. The paper details the design, fabrication process and the materials necessary for the development of a single unit, which is fabricated by casting silicone inside specific molds. The result consists in an elastomeric cylinder including three flexible pneumatic actuators that enable elongation and omni-directional bending of the unit. An external braided sheath improves the motion of the module. In the center of each module a granular jamming-based mechanism varies the stiffness of the structure during the tasks. Tests demonstrate that the module is able to bend up to 120° and to elongate up to 66% of the initial length. The module generates a maximum force of 47 N, and its stiffness can increase up to 36%.

  2. Soldadura (Welding). Spanish Translations for Welding.

    Science.gov (United States)

    Hohhertz, Durwin

    Thirty transparency masters with Spanish subtitles for key words are provided for a welding/general mechanical repair course. The transparency masters are on such topics as oxyacetylene welding; oxyacetylene welding equipment; welding safety; different types of welds; braze welding; cutting torches; cutting with a torch; protective equipment; arc…

  3. Evaluation of robotic inspection systems at nuclear power plants

    International Nuclear Information System (INIS)

    White, J.R.; Eversole, R.E.; Farnstrom, K.A.; Harvey, H.W.; Martin, H.L.

    1984-03-01

    This report presents and demonstrates a cost-effective approach for robotics application (CARA) to surveillance and inspection work in existing nuclear power plants. The CARA was developed by the Remote Technology Corporation to systematically determine the specific surveillance/inspection tasks, worker hazards, and access or equipment placement restraints in each of the many individual rooms or areas at a power plant. Guidelines for designing inspection robotics are included and are based upon the modular arrangement of commercially-available sensors and other components. Techniques for maximizing the cost effectiveness of robotics are emphasized in the report including: selection of low-cost robotic components, minimal installation work in plant areas, portable systems for common use in different areas, and standardized robotic modules. Factors considered as benefits are reduced radiation exposure, lower man-hours, shorter power outage, less waste material, and improved worker safety concerns. A partial demonstration of the CARA methodology to the Sequoyah (PWR) and Browns Ferry (BWR) Plants is provided in the report along with specific examples of robotic installations in high potential areas

  4. Video Game Device Haptic Interface for Robotic Arc Welding

    Energy Technology Data Exchange (ETDEWEB)

    Corrie I. Nichol; Milos Manic

    2009-05-01

    Recent advances in technology for video games have made a broad array of haptic feedback devices available at low cost. This paper presents a bi-manual haptic system to enable an operator to weld remotely using the a commercially available haptic feedback video game device for the user interface. The system showed good performance in initial tests, demonstrating the utility of low cost input devices for remote haptic operations.

  5. A Novel Telemanipulated Robotic Assistant for Surgical Endoscopy: Preclinical Application to ESD.

    Science.gov (United States)

    Zorn, Lucile; Nageotte, Florent; Zanne, Philippe; Legner, Andras; Dallemagne, Bernard; Marescaux, Jacques; de Mathelin, Michel

    2018-04-01

    Minimally invasive surgical interventions in the gastrointestinal tract, such as endoscopic submucosal dissection (ESD), are very difficult for surgeons when performed with standard flexible endoscopes. Robotic flexible systems have been identified as a solution to improve manipulation. However, only a few such systems have been brought to preclinical trials as of now. As a result, novel robotic tools are required. We developed a telemanipulated robotic device, called STRAS, which aims to assist surgeons during intraluminal surgical endoscopy. This is a modular system, based on a flexible endoscope and flexible instruments, which provides 10 degrees of freedom (DoFs). The modularity allows the user to easily set up the robot and to navigate toward the operating area. The robot can then be teleoperated using master interfaces specifically designed to intuitively control all available DoFs. STRAS capabilities have been tested in laboratory conditions and during preclinical experiments. We report 12 colorectal ESDs performed in pigs, in which large lesions were successfully removed. Dissection speeds are compared with those obtained in similar conditions with the manual Anubiscope platform from Karl Storz. We show significant improvements ( ). These experiments show that STRAS (v2) provides sufficient DoFs, workspace, and force to perform ESD, that it allows a single surgeon to perform all the surgical tasks and those performances are improved with respect to manual systems. The concepts developed for STRAS are validated and could bring new tools for surgeons to improve comfort, ease, and performances for intraluminal surgical endoscopy.

  6. Evaluation of characterisation techniques for particulate weld fume morphology

    International Nuclear Information System (INIS)

    Sterjovski, Z.; Monaghan, B.J.; Norrish, J.

    2009-01-01

    An evaluation of three techniques: scanning electron microscopy (SEM); transmission electron microscopy (TEM); and laser diffraction (LD), was carried out to determine the most suitable technique for the particle-size measurement of particulate-welding fume collected during the robotic gas-metal-arc welding (GMAW) of plain-carbon steel. Particulate fume was deposited onto an Al stub positioned at a horizontal distance of 30 mm and a vertical height of 50 mm from the welding arc, and was then prepared for SEM, TEM and LD sizing. Results are presented for paniculate-welding fume collected for three welding voltages (20, 23 and 26 V) and two metal-transfer modes (dip and dip/globular). TEM imaging was found to be the most effective of the three sizing technique as it was able to resolve both fine nano-particles (5 ran diameter) and coarse nano-particles (>100 mn diameter). The TEM approach showed that results determined were reproducible and that the majority of fume particles produced at the welding voltages investigated were less than 40 nm in diameter. SEM (La B6 filament) images were shown to be inadequate for the quantitative-size analysis of paniculate-welding fume due to the limited resolution of the microscope (-40 nm). However. SEM images did confirm that at a welding voltage of 23 V the majority of particle sizes produced were less than 100 nm in diameter, and thus supported the conclusion that the individual fume particles are predominantly in the nanometre size range. LD gave unexpectedly large mean particle sizes and did not detect particles less than 180 run in diameter. It is concluded that the LD technique measures particle agglomerates and/or simultaneously monitors multiple particles in the beam path.

  7. Construction concepts and validation of the 3D printed UST_2 modular stellarator

    Science.gov (United States)

    Queral, V.

    2015-03-01

    High accuracy, geometric complexity and thus high cost of stellarators tend to hinder the advance of stellarator research. Nowadays, new manufacturing methods might be developed for the production of small and middle-size stellarators. The methods should demonstrate advantages with respect common fabrication methods, like casting, cutting, forging and welding, for the construction of advanced highly convoluted modular stellarators. UST2 is a small modular three period quasi-isodynamic stellarator of major radius 0.26 m and plasma volume 10 litres being currently built to validate additive manufacturing (3D printing) for stellarator construction. The modular coils are wound in grooves defined on six 3D printed half period frames designed as light truss structures filled by a strong filler. A geometrically simple assembling configuration has been concocted for UST2 so as to try to lower the cost of the device while keeping the positioning accuracy of the different elements. The paper summarizes the construction and assembling concepts developed, the devised positioning methodology, the design of the coil frames and positioning elements and, an initial validation of the assembling of the components.

  8. Autonomous learning in humanoid robotics through mental imagery.

    Science.gov (United States)

    Di Nuovo, Alessandro G; Marocco, Davide; Di Nuovo, Santo; Cangelosi, Angelo

    2013-05-01

    In this paper we focus on modeling autonomous learning to improve performance of a humanoid robot through a modular artificial neural networks architecture. A model of a neural controller is presented, which allows a humanoid robot iCub to autonomously improve its sensorimotor skills. This is achieved by endowing the neural controller with a secondary neural system that, by exploiting the sensorimotor skills already acquired by the robot, is able to generate additional imaginary examples that can be used by the controller itself to improve the performance through a simulated mental training. Results and analysis presented in the paper provide evidence of the viability of the approach proposed and help to clarify the rational behind the chosen model and its implementation. Copyright © 2012 Elsevier Ltd. All rights reserved.

  9. Generation rate of carbon monoxide from CO2 arc welding.

    Science.gov (United States)

    Ojima, Jun

    2013-01-01

    CO poisoning has been a serious industrial hazard in Japanese workplaces. Although incomplete combustion is the major cause of CO generation, there is a risk of CO poisoning during some welding operations. The aim of the present study was to evaluate the generation rate of CO from CO2 arc welding under controlled laboratory conditions and estimate the ventilation requirements for the prevention of CO poisoning. Bead on plate welding was carried out with an automatic welding robot on a rolled steel base metal under several conditions. The concentration of emitted CO from the welding was measured by a real-time CO monitor in a well-ventilated laboratory that was free from ambient CO contamination. The generation rate of CO was obtained from the three measurements-the flow rate of the welding exhaust gas, CO concentration in the exhaust gas and the arcing time. Then the ventilation requirement to prevent CO poisoning was calculated. The generation rate of CO was found to be 386-883 ml/min with a solid wire and 331-1,293 ml/min with a flux cored wire respectively. It was found that the CO concentration in a room would be maintained theoretically below the OSHA PEL (50 ppm) providing the ventilation rate in the room was 6.6-25.9 m3/min. The actual ventilation requirement was then estimated to be 6.6-259 m3/min considering incomplete mixing. In order to prevent CO poisoning, some countermeasures against gaseous emission as well as welding fumes should be taken eagerly.

  10. A Scalable Neuro-inspired Robot Controller Integrating a Machine Learning Algorithm and a Spiking Cerebellar-like Network

    DEFF Research Database (Denmark)

    Baira Ojeda, Ismael; Tolu, Silvia; Lund, Henrik Hautop

    2017-01-01

    Combining Fable robot, a modular robot, with a neuroinspired controller, we present the proof of principle of a system that can scale to several neurally controlled compliant modules. The motor control and learning of a robot module are carried out by a Unit Learning Machine (ULM) that embeds...... the Locally Weighted Projection Regression algorithm (LWPR) and a spiking cerebellar-like microcircuit. The LWPR guarantees both an optimized representation of the input space and the learning of the dynamic internal model (IM) of the robot. However, the cerebellar-like sub-circuit integrates LWPR input...

  11. Robotics and remote handling in the nuclear industry

    Energy Technology Data Exchange (ETDEWEB)

    1984-01-01

    This book presents the papers given at a conference on the use of remote handling equipment in nuclear facilities. Topics considered at the conference included dose reduction, artificial intelligence in nuclear plant maintenance, robotic welding, uncertainty covariances, reactor operation and inspection, reactor maintenance and repair, uranium mining, fuel fabrication, reactor component manufacture, irradiated fuel and radioactive waste management, and radioisotope handling.

  12. Design and Control System of a Modular Parallel Robot for Medical Applications

    Directory of Open Access Journals (Sweden)

    Florin Covaciu

    2015-06-01

    Full Text Available Brachytherapy (BT, a cancer treatment method, is a type of internal radiation therapy which implies that radiation doses (seeds are placed inside the tumor, aiming to destroy only the cancerous cells, without affecting the surrounding healthy tissue. For a successful brachytherapy procedure, the accurate radiation seeds placement is an important issue, which is why a robotic system has been built for this task. The paper presents the design of a parallel robotic system for brachytherapy procedures and the control system architecture and its implementation.

  13. Development of a modular integrated control architecture for flexible manipulators. Final report

    International Nuclear Information System (INIS)

    Burks, B.L.; Battiston, G.

    1994-01-01

    In April 1994, ORNL and SPAR completed the joint development of a manipulator controls architecture for flexible structure controls under a CRADA between the two organizations. The CRADA project entailed design and development of a new architecture based upon the Modular Integrated Control Architecture (MICA) previously developed by ORNL. The new architecture, dubbed MICA-II, uses an object-oriented coding philosophy to provide a highly modular and expandable architecture for robotic manipulator control. This architecture can be readily ported to control of many different manipulator systems. The controller also provides a user friendly graphical operator interface and display of many forms of data including system diagnostics. The capabilities of MICA-II were demonstrated during oscillation damping experiments using the Flexible Beam Experimental Test Bed at Hanford

  14. An Adaptive Web-Based Support to e-Education in Robotics and Automation

    Science.gov (United States)

    di Giamberardino, Paolo; Temperini, Marco

    The paper presents the hardware and software architecture of a remote laboratory, with robotics and automation applications, devised to support e-teaching and e-learning activities, at an undergraduate level in computer engineering. The hardware is composed by modular structures, based on the Lego Mindstorms components: they are reasonably sophisticated in terms of functions, pretty easy to use, and sufficiently affordable in terms of cost. Moreover, being the robots intrinsically modular, wrt the number and distribution of sensors and actuators, they are easily and quickly reconfigurable. A web application makes the laboratory and its robots available via internet. The software framework allows the teacher to define, for the course under her/his responsibility, a learning path made of different and differently complex exercises, graduated in terms of the "difficulty" they require to meet and of the "competence" that the solver is supposed to have shown. The learning path of exercises is adapted to the individual learner's progressively growing competence: at any moment, only a subset of the exercises is available (depending on how close their levels of competence and difficulty are to those of the exercises already solved by the learner).

  15. Methodological Aspects of Modelling and Simulation of Robotized Workstations

    Directory of Open Access Journals (Sweden)

    Naqib Daneshjo

    2018-05-01

    Full Text Available From the point of view of development of application and program products, key directions that need to be respected in computer support for project activities are quite clearly specified. User interfaces with a high degree of graphical interactive convenience, two-dimensional and three-dimensional computer graphics contribute greatly to streamlining project methodologies and procedures in particular. This is mainly due to the fact that a high number of solved tasks is clearly graphic in the modern design of robotic systems. Automation of graphical character tasks is therefore a significant development direction for the subject area. The authors present results of their research in the area of automation and computer-aided design of robotized systems. A new methodical approach to modelling robotic workstations, consisting of ten steps incorporated into the four phases of the logistics process of creating and implementing a robotic workplace, is presented. The emphasis is placed on the modelling and simulation phase with verification of elaborated methodologies on specific projects or elements of the robotized welding plant in automotive production.

  16. Metric modular spaces

    CERN Document Server

    Chistyakov, Vyacheslav

    2015-01-01

    Aimed toward researchers and graduate students familiar with elements of functional analysis, linear algebra, and general topology; this book contains a general study of modulars, modular spaces, and metric modular spaces. Modulars may be thought of as generalized velocity fields and serve two important purposes: generate metric spaces in a unified manner and provide a weaker convergence, the modular convergence, whose topology is non-metrizable in general. Metric modular spaces are extensions of metric spaces, metric linear spaces, and classical modular linear spaces. The topics covered include the classification of modulars, metrizability of modular spaces, modular transforms and duality between modular spaces, metric  and modular topologies. Applications illustrated in this book include: the description of superposition operators acting in modular spaces, the existence of regular selections of set-valued mappings, new interpretations of spaces of Lipschitzian and absolutely continuous mappings, the existe...

  17. Communicating Cooperative Robots with Bluetooth

    DEFF Research Database (Denmark)

    Schiøler, Henrik; Son, L.T.; Madsen, Ole Brun

    2001-01-01

    A generic architecture for system of cooperating communicating mobile robots is presented. An overall structure is defined from a modularity viewpoint, where a number of generic modules are identified; low level communication interface, network layer services such as initial and adaptive network...... structuring, routing and capacity management, overall behaviour which includes commitment to overall strategies as well as local behaviour like trajectory planning and navigation. Focus is kept on communication aspects and an example application of establishing a reliable wireless real-time communication...

  18. THE FORMATION OF BIMETALLIC CONNECTION IN WELDER DEPOSITION UNDER LASER WELDING WITH THE FILLER WIRE FEED

    Directory of Open Access Journals (Sweden)

    A. P. Yelistratov

    2017-01-01

    Full Text Available The metallurgical and technological features of welding deposition in a robotic unit with a semiconductor laser are analyzed. The prospects of using beam with low energy density in the spot heating for applying metallic layers using filler wire are shown. 

  19. Robotic tool positioning process using a multi-line off-axis laser triangulation sensor

    Science.gov (United States)

    Pinto, T. C.; Matos, G.

    2018-03-01

    Proper positioning of a friction stir welding head for pin insertion, driven by a closed chain robot, is important to ensure quality repair of cracks. A multi-line off-axis laser triangulation sensor was designed to be integrated to the robot, allowing relative measurements of the surface to be repaired. This work describes the sensor characteristics, its evaluation and the measurement process for tool positioning to a surface point of interest. The developed process uses a point of interest image and a measured point cloud to define the translation and rotation for tool positioning. Sensor evaluation and tests are described. Keywords: laser triangulation, 3D measurement, tool positioning, robotics.

  20. Softworms: the design and control of non-pneumatic, 3D-printed, deformable robots.

    Science.gov (United States)

    Umedachi, T; Vikas, V; Trimmer, B A

    2016-03-10

    Robots that can easily interact with humans and move through natural environments are becoming increasingly essential as assistive devices in the home, office and hospital. These machines need to be safe, effective, and easy to control. One strategy towards accomplishing these goals is to build the robots using soft and flexible materials to make them much more approachable and less likely to damage their environment. A major challenge is that comparatively little is known about how best to design, fabricate and control deformable machines. Here we describe the design, fabrication and control of a novel soft robotic platform (Softworms) as a modular device for research, education and public outreach. These robots are inspired by recent neuromechanical studies of crawling and climbing by larval moths and butterflies (Lepidoptera, caterpillars). Unlike most soft robots currently under development, the Softworms do not rely on pneumatic or fluidic actuators but are electrically powered and actuated using either shape-memory alloy microcoils or motor tendons, and they can be modified to accept other muscle-like actuators such as electroactive polymers. The technology is extremely versatile, and different designs can be quickly and cheaply fabricated by casting elastomeric polymers or by direct 3D printing. Softworms can crawl, inch or roll, and they are steerable and even climb steep inclines. Softworms can be made in any shape but here we describe modular and monolithic designs requiring little assembly. These modules can be combined to make multi-limbed devices. We also describe two approaches for controlling such highly deformable structures using either model-free state transition-reward matrices or distributed, mechanically coupled oscillators. In addition to their value as a research platform, these robots can be developed for use in environmental, medical and space applications where cheap, lightweight and shape-changing deformable robots will provide new

  1. Experimental robot gripper control for handling of soft objects

    Science.gov (United States)

    Friedrich, Werner E.; Ziegler, T. H.; Lim, P.

    1996-10-01

    The challenging task of automated handling of variable objects necessitates a combination of innovative engineering and advanced information technology. This paper describes the application of a recently developed control strategy applied to overcome some limitations of robot handling, particularly when dealing with variable objects. The paper focuses on a novel approach to accommodate the need for sensing and actuation in controlling the pickup procedure. An experimental robot-based system for the handling of soft parts, ranging from artificial components to natural objects such as fruit and meat pieces was developed. The configuration comprises a modular gripper subsystem, and an industrial robot as part of a distributed control system. The gripper subsystem features manually configurable fingers with integrated sensing capabilities. The control architecture is based on a concept of decentralized control differentiating between positioning and gripping procedures. In this way, the robot and gripper systems are treated as individual handling operations. THis concept allows very short set-up times for future changes involving one or more sub-systems.

  2. Human-Robot Planetary Exploration Teams

    Science.gov (United States)

    Tyree, Kimberly

    2004-01-01

    The EVA Robotic Assistant (ERA) project at NASA Johnson Space Center studies human-robot interaction and robotic assistance for future human planetary exploration. Over the past four years, the ERA project has been performing field tests with one or more four-wheeled robotic platforms and one or more space-suited humans. These tests have provided experience in how robots can assist humans, how robots and humans can communicate in remote environments, and what combination of humans and robots works best for different scenarios. The most efficient way to understand what tasks human explorers will actually perform, and how robots can best assist them, is to have human explorers and scientists go and explore in an outdoor, planetary-relevant environment, with robots to demonstrate what they are capable of, and roboticists to observe the results. It can be difficult to have a human expert itemize all the needed tasks required for exploration while sitting in a lab: humans do not always remember all the details, and experts in one arena may not even recognize that the lower level tasks they take for granted may be essential for a roboticist to know about. Field tests thus create conditions that more accurately reveal missing components and invalid assumptions, as well as allow tests and comparisons of new approaches and demonstrations of working systems. We have performed field tests in our local rock yard, in several locations in the Arizona desert, and in the Utah desert. We have tested multiple exploration scenarios, such as geological traverses, cable or solar panel deployments, and science instrument deployments. The configuration of our robot can be changed, based on what equipment is needed for a given scenario, and the sensor mast can even be placed on one of two robot bases, each with different motion capabilities. The software architecture of our robot is also designed to be as modular as possible, to allow for hardware and configuration changes. Two focus

  3. M.I.N.G., Mars Investment for a New Generation: Robotic construction of a permanently manned Mars base

    Science.gov (United States)

    Amos, Jeff; Beeman, Randy; Brown, Susan; Calhoun, John; Hill, John; Howorth, Lark; Mcfaden, Clay; Nguyen, Paul; Reid, Philip; Rexrode, Stuart

    1989-01-01

    A basic procedure for robotically constructing a manned Mars base is outlined. The research procedure was divided into three areas: environment, robotics, and habitat. The base as designed will consist of these components: two power plants, communication facilities, a habitat complex, and a hangar, a garage, recreation and manufacturing facilities. The power plants will be self-contained nuclear fission reactors placed approx. 1 km from the base for safety considerations. The base communication system will use a combination of orbiting satellites and surface relay stations. This system is necessary for robotic contact with Phobos and any future communication requirements. The habitat complex will consist of six self-contained modules: core, biosphere, science, living quarters, galley/storage, and a sick bay which will be brought from Phobos. The complex will be set into an excavated hole and covered with approximately 0.5 m of sandbags to provide radiation protection for the astronauts. The recreation, hangar, garage, and manufacturing facilities will each be transformed from the four one-way landers. The complete complex will be built by autonomous, artificially intelligent robots. Robots incorporated into the design are as follows: Large Modular Construction Robots with detachable arms capable of large scale construction activities; Small Maneuverable Robotic Servicers capable of performing delicate tasks normally requiring a suited astronaut; and a trailer vehicle with modular type attachments to complete specific tasks; and finally, Mobile Autonomous Rechargeable Transporters capable of transferring air and water from the manufacturing facility to the habitat complex.

  4. M.I.N.G., Mars Investment for a New Generation: Robotic construction of a permanently manned Mars base

    Science.gov (United States)

    Amos, Jeff; Beeman, Randy; Brown, Susan; Calhoun, John; Hill, John; Howorth, Lark; McFaden, Clay; Nguyen, Paul; Reid, Philip; Rexrode, Stuart

    1989-05-01

    A basic procedure for robotically constructing a manned Mars base is outlined. The research procedure was divided into three areas: environment, robotics, and habitat. The base as designed will consist of these components: two power plants, communication facilities, a habitat complex, and a hanger, a garage, recreation and manufacturing facilities. The power plants will be self-contained nuclear fission reactors placed approx. 1 km from the base for safety considerations. The base communication system will use a combination of orbiting satellites and surface relay stations. This system is necessary for robotic contact with Phobos and any future communication requirements. The habitat complex will consist of six self-contained modules: core, biosphere, science, living quarters, galley/storage, and a sick bay which will be brought from Phobos. The complex will be set into an excavated hole and covered with approximately 0.5 m of sandbags to provide radiation protection for the astronauts. The recreation, hangar, garage, and manufacturing facilities will each be transformed from the four one-way landers. The complete complex will be built by autonomous, artificially intelligent robots. Robots incorporated into the design are as follows: Large Modular Construction Robots with detachable arms capable of large scale construction activities; Small Maneuverable Robotic Servicers capable of performing delicate tasks normally requiring a suited astronaut; and a trailer vehicle with modular type attachments to complete specific tasks; and finally, Mobile Autonomous Rechargeable Transporters capable of transferring air and water from the manufacturing facility to the habitat complex.

  5. Robotic inspection technology-process an toolbox

    Energy Technology Data Exchange (ETDEWEB)

    Hermes, Markus [ROSEN Group (United States). R and D Dept.

    2005-07-01

    Pipeline deterioration grows progressively with ultimate aging of pipeline systems (on-plot and cross country). This includes both, very localized corrosion as well as increasing failure probability due to fatigue cracking. Limiting regular inspecting activities to the 'scrapable' part of the pipelines only, will ultimately result into a pipeline system with questionable integrity. The confidence level in the integrity of these systems will drop below acceptance levels. Inspection of presently un-inspectable sections of the pipeline system becomes a must. This paper provides information on ROSEN's progress on the 'robotic inspection technology' project. The robotic inspection concept developed by ROSEN is based on a modular toolbox principle. This is mandatory. A universal 'all purpose' robot would not be reliable and efficient in resolving the postulated inspection task. A preparatory Quality Function Deployment (QFD) analysis is performed prior to the decision about the adequate robotic solution. This enhances the serviceability and efficiency of the provided technology. The word 'robotic' can be understood in its full meaning of Recognition - Strategy - Motion - Control. Cooperation of different individual systems with an established communication, e.g. utilizing Bluetooth technology, support the robustness of the ROSEN robotic inspection approach. Beside the navigation strategy, the inspection strategy is also part of the QFD process. Multiple inspection technologies combined on a single carrier or distributed across interacting container must be selected with a clear vision of the particular goal. (author)

  6. Mobile robots and remote systems in nuclear applications

    International Nuclear Information System (INIS)

    Segovia de los Rios, J. A.; Benitez R, J. S.

    2010-01-01

    Traditionally, the robots have been used in the industry for the colored to the spray, welding, schemed, assemble and handling of materials. However, these devices have had a deep impact in the nuclear industry where the first objective has been to reduce the exhibition and the personnel contact with radioactive materials. Knowing the utility of the mobile robots and remote systems in nuclear facilities in the world, the Department of Automation and Instrumentation of the Instituto Nacional de Investigaciones Nucleares (ININ) has carried out some researches and applications that they have facilitated the work of the researches and professionals of the ININ involved in the handling of radioactive materials, as the system with monorail for the introduction of irradiated materials in a production cell of Iodine-131 and the robot vehicle for the radioactive materials transport TRASMAR (contraction of Transportacion Asistida de Materiales Radiactivos). (Author)

  7. Construction concepts and validation of the 3D printed UST-2 modular stellarator

    International Nuclear Information System (INIS)

    Queral, V

    2015-01-01

    High accuracy, geometric complexity and thus high cost of stellarators tend to hinder the advance of stellarator research. Nowadays, new manufacturing methods might be developed for the production of small and middle-size stellarators. The methods should demonstrate advantages with respect common fabrication methods, like casting, cutting, forging and welding, for the construction of advanced highly convoluted modular stellarators. UST-2 is a small modular three period quasi-isodynamic stellarator of major radius 0.26 m and plasma volume 10 litres being currently built to validate additive manufacturing (3D printing) for stellarator construction. The modular coils are wound in grooves defined on six 3D printed half period frames designed as light truss structures filled by a strong filler. A geometrically simple assembling configuration has been concocted for UST-2 so as to try to lower the cost of the device while keeping the positioning accuracy of the different elements. The paper summarizes the construction and assembling concepts developed, the devised positioning methodology, the design of the coil frames and positioning elements and, an initial validation of the assembling of the components. (paper)

  8. Robotics in the nuclear environment-inspection and repairs inside the primary coolant system

    International Nuclear Information System (INIS)

    Guillet, J.; Marcel Tortolano

    2005-01-01

    The increase in the lifetime of the power plants and the ageing of materials require the intervention inside the components to carry out controls and possibly repairs in the event of discovered defects. Within this framework, EDF is investigating the feasibility of robotized repairs of the components and pipes of the main primary coolant system of a nuclear power plant. For several years, EDF R and D has engaged projects whose subject of study is the possibility of repairing components such as the main vessel; the pressurizer or the primary coolant pipes with the help of robots and dedicated tools. INTERVENTIONS INSIDE PRIMARY COOLANT PIPES: Studies undertaken by EDF highlighted that certain zones, particularly in pipe connections, can be affected by thermal fatigue which causes crackling defects or crackings. In anticipation of this phenomenon which would affect primary pipes and to avoid their replacements, EDF R and D has been studying the feasibility of examining and repairing these zones using robots. Robotized repair consists in introducing into the pipe while passing by the vessel, a 6 degrees of freedom manipulator mounted on a mobile carrier. This robot implements and carries out the trajectories of the different processes of repair: - Precise localization of the defects, - Elimination (possibly sampling) of the defects by machining, - Control that the defects were eliminated, - Weld metal buildup if the repair cavity is too deep, - Grinding followed by a new control of the surface. These studies and tests were conducted in the laboratory of EDF R and D in Chatou. The sequence of operations included machining by grinding and milling, profilometric control, dye penetrant testing, TIG welding and ultrasonic examinations. The results of the tests, executed on full scale models of components, are satisfactory and show the advantages of robotics compared with classical methods. ROBOTIZED INTERVENTIONS IN THE REACTOR VESSEL: Another difficult issue is the

  9. Experience with modular steam generator production and application of new testing methods

    International Nuclear Information System (INIS)

    Olesovsky

    Experience is reviewed gained at the Trebic IBZKG plant with the production of modular steam generators. The plant started producing steam generators for the Jaslovske Bohunice nuclear power plant in 1965. In addition to the steam generator for the A-1, the plant also produced a loop for the Melekess power plant and a steam generator for the BOR-60 reactor. Operating experience gained so far allowed improving the quality of the BOR steam generator, especially in the tube-tube plate joint. A double tube plate was used and the welded joint shape was changed. As a result of high requirements on the quality of welded joints, the steam generator has successfully been in operation for more then 10,000 hours. The existing experience was utilized in designing a new steam generator named Nadya. Many design and technological requirements were presented concerning the Nadya generator and many new checking operations have been included in technology. (Kr)

  10. The Modular Design and Production of an Intelligent Robot Based on a Closed-Loop Control Strategy.

    Science.gov (United States)

    Zhang, Libo; Zhu, Junjie; Ren, Hao; Liu, Dongdong; Meng, Dan; Wu, Yanjun; Luo, Tiejian

    2017-10-14

    Intelligent robots are part of a new generation of robots that are able to sense the surrounding environment, plan their own actions and eventually reach their targets. In recent years, reliance upon robots in both daily life and industry has increased. The protocol proposed in this paper describes the design and production of a handling robot with an intelligent search algorithm and an autonomous identification function. First, the various working modules are mechanically assembled to complete the construction of the work platform and the installation of the robotic manipulator. Then, we design a closed-loop control system and a four-quadrant motor control strategy, with the aid of debugging software, as well as set steering gear identity (ID), baud rate and other working parameters to ensure that the robot achieves the desired dynamic performance and low energy consumption. Next, we debug the sensor to achieve multi-sensor fusion to accurately acquire environmental information. Finally, we implement the relevant algorithm, which can recognize the success of the robot's function for a given application. The advantage of this approach is its reliability and flexibility, as the users can develop a variety of hardware construction programs and utilize the comprehensive debugger to implement an intelligent control strategy. This allows users to set personalized requirements based on their needs with high efficiency and robustness.

  11. Self-Reconfiguration Planning of Robot Embodiment for Inherent Safe Performance

    Science.gov (United States)

    Uchida, Masafumi; Nozawa, Akio; Asano, Hirotoshi; Onogaki, Hitoshi; Mizuno, Tota; Park, Young-Il; Ide, Hideto; Yokoyama, Shuichi

    In the situation in which a robot and a human work together by collaborating with each other, a robot and a human share one working environment, and each interferes in each other. In other ward, it is impossible to avoid the physical contact and the interaction of force between a robot and a human. The boundary of each complex dynamic occupation area changes in the connection movement which is the component of collaborative works at this time. The main restraint condition which relates to the robustness of that connection movement is each physical charactristics, that is, the embodiment. A robot body is variability though the embodiment of a human is almost fixed. Therefore, the safe and the robust connection movement is brought when a robot has the robot body which is well suitable for the embodiment of a human. A purpose for this research is that the colaboration works between the self-reconfiguration robot and a human is realized. To achieve this purpose, a self-reconfiguration algorithm based on some indexes to evaluate a robot body in the macroscopic point of view was examined on a modular robot system of the 2-D lattice structure. In this paper, it investigated effect specially that the object of learning of each individual was limited to the cooperative behavior between the adjoining modules toward the macroscopic evaluation index.

  12. An Evaluation of Camera Pose Methods for an Augmented Reality System: Application to Teaching Industrial Robots

    OpenAIRE

    Maidi , Madjid; Mallem , Malik; Benchikh , Laredj; Otmane , Samir

    2013-01-01

    International audience; In automotive industry, industrial robots are widely used in production lines for many tasks such as welding, painting or assembly. Their use requires, from users, both a good manipulation and robot control. Recently, new tools have been developed to realize fast and accurate trajectories in many production sectors by using the real prototype of vehicle or a generalized design within a virtual simulation platform. However, many issues could be considered in these cases...

  13. The modular modality frame model: continuous body state estimation and plausibility-weighted information fusion.

    Science.gov (United States)

    Ehrenfeld, Stephan; Butz, Martin V

    2013-02-01

    Humans show admirable capabilities in movement planning and execution. They can perform complex tasks in various contexts, using the available sensory information very effectively. Body models and continuous body state estimations appear necessary to realize such capabilities. We introduce the Modular Modality Frame (MMF) model, which maintains a highly distributed, modularized body model continuously updating, modularized probabilistic body state estimations over time. Modularization is realized with respect to modality frames, that is, sensory modalities in particular frames of reference and with respect to particular body parts. We evaluate MMF performance on a simulated, nine degree of freedom arm in 3D space. The results show that MMF is able to maintain accurate body state estimations despite high sensor and motor noise. Moreover, by comparing the sensory information available in different modality frames, MMF can identify faulty sensory measurements on the fly. In the near future, applications to lightweight robot control should be pursued. Moreover, MMF may be enhanced with neural encodings by introducing neural population codes and learning techniques. Finally, more dexterous goal-directed behavior should be realized by exploiting the available redundant state representations.

  14. Prediction of Weld Residual Stress of Narrow Gap Welds

    International Nuclear Information System (INIS)

    Yang, Jun Seog; Huh, Nam Su

    2010-01-01

    The conventional welding technique such as shield metal arc welding has been mostly applied to the piping system of the nuclear power plants. It is well known that this welding technique causes the overheating and welding defects due to the large groove angle of weld. On the other hand, the narrow gap welding(NGW) technique has many merits, for instance, the reduction of welding time, the shrinkage of weld and the small deformation of the weld due to the small groove angle and welding bead width comparing with the conventional welds. These characteristics of NGW affect the deformation behavior and the distribution of welding residual stress of NGW, thus it is believed that the residual stress results obtained from conventional welding procedure may not be applied to structural integrity evaluation of NGW. In this paper, the welding residual stress of NGW was predicted using the nonlinear finite element analysis to simulate the thermal and mechanical effects of the NGW. The present results can be used as the important information to perform the flaw evaluation and to improve the weld procedure of NGW

  15. Dynamic Arc Fitting Path Follower for Skid-Steered Mobile Robots

    Directory of Open Access Journals (Sweden)

    Peter Lepej

    2015-10-01

    Full Text Available Many applications, such as surveillance, inspection or search and rescue operations, can be performed with autonomous robots. Our aim is a control of modular autonomous systems in rescue robotics. One of the basic problems with autonomous robotics is the execution part where the control commands (translation and rotational velocities are produced for mobile bases. Therefore we have focused on this area because there is only a small amount of available path following software for skid-steered mobile robots. Our goal was to develop a velocity controller that could be used for multiple skid-steered mobile bases. We considered differential drive mobile bases such as tracked skid-steering mobile bases. Our approach is based on an arc fitting algorithm, which takes into account the robot constraints and kinematical model. It produces a continuous trajectory where fitting to the given path is adapted based on given parameters. Moreover, we have included orientation angle compensation while the mobile robot is moving and ground inclination compensation. Our rescue robot is described, together with the simulation setup and algorithm implementation. We compared our algorithm to the Hector-based software and curvature velocity approach. The results for the proposed algorithm are shown for the simulation results and the experiment.

  16. Modular, Adaptive, Reconfigurable Systems: Technology for Sustainable, Reliable, Effective, and Affordable Space Exploration

    Science.gov (United States)

    Esper, Jaime

    2004-01-01

    In order to execute the Vision for Space Exploration, we must find ways to reduce cost, system complexity, design, build, and test times, and at the same time increase flexibility to satisfy multiple functions. Modular, Adaptive, Reconfigurable System (MARS) technologies promise to set the stage for the delivery of system elements that form the building blocks of increasingly ambitious missions involving humans and robots. Today, space systems are largely specialized and built on a case-by-case basis. The notion of modularity however, is nothing new to NASA. The 1970's saw the development of the Multi-Mission Modular spacecraft (MMS). From 1980 to 1992 at least six satellites were built under this paradigm, and included such Goddard Space Flight Center missions as SSM, EUVE, UARS, and Landsat 4 and 5. Earlier versions consisted of standard subsystem "module" or "box" components that could be replaced within a structure based on predefined form factors. Although the primary motivation for MMS was faster/cheaper integration and test, standardization of interfaces, and ease of incorporating new subsystem technology, it lacked the technology maturity and programmatic "upgrade infrastructure" needed to satisfy varied mission requirements, and ultimately it lacked user buy-in. Consequently, it never evolved and was phased out. Such concepts as the Rapid Spacecraft Development Office (RSDO) with its regularly updated catalogue of prequalified busses became the preferred method for acquiring satellites. Notwithstanding, over the past 30 years since MMS inception, technology has advanced considerably and now modularity can be extended beyond the traditional MMS module or box to cover levels of integration, from the chip, card, box, subsystem, to the space system and to the system-of-systems. This paper will present the MARS architecture, cast within the historical context of MMS. Its application will be highlighted by comparing a state-of-the-art point design vs. a MARS

  17. Modular, Adaptive, Reconfigurable Systems: Technology for Sustainable, Reliable, Effective, and Affordable Space Exploration

    Science.gov (United States)

    Esper, Jaime

    2005-02-01

    In order to execute the Vision for Space Exploration, we must find ways to reduce cost, system complexity, design, build, and test times, and at the same time increase flexibility to satisfy multiple functions. Modular, Adaptive, Reconfigurable System (MARS) technologies promise to set the stage for the delivery of system elements that form the building blocks of increasingly ambitious missions involving humans and robots. Today, space systems are largely specialized and built on a case-by-case basis. The notion of modularity however, is nothing new to NASA. The 1970's saw the development of the Multi-Mission Modular spacecraft (MMS). From 1980 to 1992 at least six satellites were built under this paradigm, and included such Goddard Space Flight Center missions as SSM, EUVE, UARS, and Landsat 4 and 5. Earlier versions consisted of standard subsystem ``module'' or ``box'' components that could be replaced within a structure based on predefined form factors. Although the primary motivation for MMS was faster/cheaper integration and test, standardization of interfaces, and ease of incorporating new subsystem technology, it lacked the technology maturity and programmatic ``upgrade infrastructure'' needed to satisfy varied mission requirements, and ultimately it lacked user buy-in. Consequently, it never evolved and was phased out. Such concepts as the Rapid Spacecraft Development Office (RSDO) with its regularly updated catalogue of pre-qualified busses became the preferred method for acquiring satellites. Notwithstanding, over the past 30 years since MMS inception, technology has advanced considerably and now modularity can be extended beyond the traditional MMS module or box to cover levels of integration, from the chip, card, box, subsystem, to the space system and to the system-of-systems. This paper will present the MARS architecture, cast within the historical context of MMS. Its application will be highlighted by comparing a state-of-the-art point design vs. a

  18. Robots for hazardous duties: Military, space, and nuclear facility applications. (Latest citations from the NTIS bibliographic database). Published Search

    International Nuclear Information System (INIS)

    1993-09-01

    The bibliography contains citations concerning the design and application of robots used in place of humans where the environment could be hazardous. Military applications include autonomous land vehicles, robotic howitzers, and battlefield support operations. Space operations include docking, maintenance, mission support, and intra-vehicular and extra-vehicular activities. Nuclear applications include operations within the containment vessel, radioactive waste operations, fueling operations, and plant security. Many of the articles reference control techniques and the use of expert systems in robotic operations. Applications involving industrial manufacturing, walking robots, and robot welding are cited in other published searches in this series. (Contains a minimum of 183 citations and includes a subject term index and title list.)

  19. Optimization of welding parameters using a genetic algorithm: A robotic arm–assisted implementation for recovery of Pelton turbine blades

    Directory of Open Access Journals (Sweden)

    Luis Pérez Pozo

    2015-11-01

    Full Text Available This work presents the operational optimization of a welding operation involving using genetic algorithms. The welding curves correspond to the profile of a blade-shaped Pelton turbine. The procedure involved the development of a series of tests and observation of the parameters that will be controlled during the welding process. After the tests were performed, the samples were prepared for chemical attack, which allowed observation of the penetration, weld area, and dilution. After that, mathematical models were developed that correlate the controllable welding parameters with the aforementioned bead parameters. In those mathematical models, the optimization of the process parameters was performed using genetic algorithms. Specially programmed functions for mutation, reproduction, and initialization processes were written and used in the implemented model. After the optimization process was completed, the results were evaluated through new tests to verify whether the obtained objective functions properly describe the characteristics of the weld. The comparisons showed errors of less than 6%.

  20. Design of a Compact Actuation and Control System for Flexible Medical Robots.

    Science.gov (United States)

    Morimoto, Tania K; Hawkes, Elliot Wright; Okamura, Allison M

    2017-07-01

    Flexible medical robots can improve surgical procedures by decreasing invasiveness and increasing accessibility within the body. Using preoperative images, these robots can be designed to optimize a procedure for a particular patient. To minimize invasiveness and maximize biocompatibility, the actuation units of flexible medical robots should be placed fully outside the patient's body. In this letter, we present a novel, compact, lightweight, modular actuation, and control system for driving a class of these flexible robots, known as concentric tube robots. A key feature of the design is the use of three-dimensional printed waffle gears to enable compact control of two degrees of freedom within each module. We measure the precision and accuracy of a single actuation module and demonstrate the ability of an integrated set of three actuation modules to control six degrees of freedom. The integrated system drives a three-tube concentric tube robot to reach a final tip position that is on average less than 2 mm from a given target. In addition, we show a handheld manifestation of the device and present its potential applications.

  1. Investigation on mechanical properties of welded material under different types of welding filler (shielded metal arc welding)

    Science.gov (United States)

    Tahir, Abdullah Mohd; Lair, Noor Ajian Mohd; Wei, Foo Jun

    2018-05-01

    The Shielded Metal Arc Welding (SMAW) is (or the Stick welding) defined as a welding process, which melts and joins metals with an arc between a welding filler (electrode rod) and the workpieces. The main objective was to study the mechanical properties of welded metal under different types of welding fillers and current for SMAW. This project utilized the Design of Experiment (DOE) by adopting the Full Factorial Design. The independent variables were the types of welding filler and welding current, whereas the other welding parameters were fixed at the optimum value. The levels for types of welding filler were by the models of welding filler (E6013, E7016 and E7018) used and the levels for welding current were 80A and 90A. The responses were the mechanical properties of welded material, which include tensile strength and hardness. The experiment was analyzed using the two way ANOVA. The results prove that there are significant effects of welding filler types and current levels on the tensile strength and hardness of the welded metal. At the same time, the ANOVA results and interaction plot indicate that there are significant interactions between the welding filler types and the welding current on both the hardness and tensile strength of the welded metals, which has never been reported before. This project found that when the amount of heat input with increase, the mechanical properties such as tensile strength and hardness decrease. The optimum tensile strength for welded metal is produced by the welding filler E7016 and the optimum of hardness of welded metal is produced by the welding filler E7018 at welding current of 80A.

  2. Generation IV SFR Nuclear Reactors: Under Sodium Robotics for ASTRID

    International Nuclear Information System (INIS)

    Jouan-de-Kervenoael, T.; Rey, F.; Baque, F.

    2013-06-01

    For non-removable components of the future ASTRID prototype, repair operations will be performed in a gas environment. If the faulty area is located under the sodium free level, the gas-tight system will have to contain the inspection and repair tools and to protect them from the surrounding liquid sodium. Concerning repair tools, the unique laser tool has been selected for future SFRs: the repair scenario for in-sodium structures will first involve removing the sodium (after bulk draining), then machining and finally welding. Concerning conventional tools (brush or gas blower for sodium removal, milling machine for machining and TIG for welding for which its feasibility was demonstrated in the 1990's) are still considered as a back-up solution. The maintenance of future ASTRID nuclear reactor prototype (inspection, repair) will be performed during shut down periods with some robotic carriers which have to be introduced within the main vessel, in primary 200 deg. C sodium coolant with argon gas cover. Inspection campaigns will be 20 days long. These robots (or carriers) will allow bringing inspection and repairing tools up to concerned components and structures. The needed degrees of freedom associated to these operations will be assumed either directly by the carrier itself or by specifics lower end carrier device for accurate local positioning. Several carriers will be designed, well adapted to specific needs: type of maintenance operation and location of inspection and repair sites. Feedback experience was gained during Superphenix SFR operation with the MIR robot which allowed to successfully make the Non Destructive Examination of main vessel welding joints, the carrier being outside bulk sodium. Operating conditions for the ASTRID robots will be harder from those of the MIR robot: temperature ranging from 180 deg. C to 200 deg. C, radiation dose ranging from 105 to 106 Gy, but mainly direct immersion within liquid sodium coolant. At the design phase of

  3. Development of a self-maintenance radiation-tolerant robot

    International Nuclear Information System (INIS)

    Shimomura, Y.; Takahashi, H.; Tsuboi, Y.; Komatsu, K.

    2004-01-01

    The purpose of this research is to develop robot which dose not lose the function in radiation fields, and is able to get self-diagnosis and self-repair in the case of failure. The fundamental operation element and operational process algorithm are discussed. Utilizations of gas-micro electronics, which is easy to handle in comparison with vacuum field and to amplify with high speed by use of electron avalanche, are planed. The fundamental researches on radiation-tolerant robot which is not destructed by cosmic ray fields are carried out. The action of basic logic elements is ascertained. Self-repair type logic operations are considered. The self-repair type logic needs for to diagnosis abnormality of elements intellectually and repair by itself. Module failure diagnosis and repair plan technique based on qualitative inference are placed on the center of self-repair type logic. Self-maintenance robot can be actualized by modularization and divergence processing of diagnosis. (M. Suetake)

  4. Dynamic modeling and optimal joint torque coordination of advanced robotic systems

    Science.gov (United States)

    Kang, Hee-Jun

    The development is documented of an efficient dynamic modeling algorithm and the subsequent optimal joint input load coordination of advanced robotic systems for industrial application. A closed-form dynamic modeling algorithm for the general closed-chain robotic linkage systems is presented. The algorithm is based on the transfer of system dependence from a set of open chain Lagrangian coordinates to any desired system generalized coordinate set of the closed-chain. Three different techniques for evaluation of the kinematic closed chain constraints allow the representation of the dynamic modeling parameters in terms of system generalized coordinates and have no restriction with regard to kinematic redundancy. The total computational requirement of the closed-chain system model is largely dependent on the computation required for the dynamic model of an open kinematic chain. In order to improve computational efficiency, modification of an existing open-chain KIC based dynamic formulation is made by the introduction of the generalized augmented body concept. This algorithm allows a 44 pct. computational saving over the current optimized one (O(N4), 5995 when N = 6). As means of resolving redundancies in advanced robotic systems, local joint torque optimization is applied for effectively using actuator power while avoiding joint torque limits. The stability problem in local joint torque optimization schemes is eliminated by using fictitious dissipating forces which act in the necessary null space. The performance index representing the global torque norm is shown to be satisfactory. In addition, the resulting joint motion trajectory becomes conservative, after a transient stage, for repetitive cyclic end-effector trajectories. The effectiveness of the null space damping method is shown. The modular robot, which is built of well defined structural modules from a finite-size inventory and is controlled by one general computer system, is another class of evolving

  5. Automating the control of robotic systems in unstructured environments

    International Nuclear Information System (INIS)

    Harrigan, R.W.

    1993-01-01

    The US Department Energy's Office of Technology Development has sponsored the development of generic robotics technologies for application to a wide range of remote systems. Of primary interest is the development of technologies which enable faster, safer, and cheaper cleanup of hazardous waste sites than is possible using conventional human contact or remote manual approaches. The development of model-based sensor-directed robot control approaches supports these goals by developing modular control technologies which reduce the time and cost of development by allowing reuse of control system software. In addition, the use of computer models improves the safety of remote site cleanup by allowing automated errors detection and recovery while reducing the time for technology development

  6. Adaptive Strategy for Online Gait Learning Evaluated on the Polymorphic Robotic LocoKit

    DEFF Research Database (Denmark)

    Christensen, David Johan; Larsen, Jørgen Christian; Stoy, Kasper

    2012-01-01

    This paper presents experiments with a morphologyindependent, life-long strategy for online learning of locomotion gaits, performed on a quadruped robot constructed from the LocoKit modular robot. The learning strategy applies a stochastic optimization algorithm to optimize eight open parameters...... of a central pattern generator based gait implementation. We observe that the strategy converges in roughly ten minutes to gaits of similar or higher velocity than a manually designed gait and that the strategy readapts in the event of failed actuators. In future work we plan to study co-learning...

  7. EVALUATION OF STATE-OF-THE-ART MANIPULATORS AND REQUIREMENTS FOR DOE ROBOTICS APPLICATIONS

    Energy Technology Data Exchange (ETDEWEB)

    BLACK, DEREK; GRUPINSKI, STEPHEN

    1998-10-08

    This report provides an overview of applications within the DOE complex which could benefit from the use of modular robotics technology during remediation operations. Each application area contains one or more specific tasks which are presently conducted by humans under hazardous conditions or which are deemed highly impractical, or are altogether impossible without automation. Five major areas were investigated for specific needs with respect to automation. Information was collected on Mixed Waste Operations, Contaminant Automated Analysis, Tanks, Decontamination and Dismantlement and Automated Plutonium Processing. During this investigation, information was gathered from available literature, telephone interviews with informed personnel and on-site visits. This data serves to provide design requirements and guidelines for the design of a family of modular actuators, which will be used to construct manipulators suited to each task. In addition, a survey of existing modular manipulator designs is presented. This survey addresses modular manipulators developed inside government labs and in universities for such applications as space exploration or controls research. It also addresses efforts at commercially viable industrial manipulators which have been built. This survey of robotic systems provides the reader with a glimpse into what technology currently exists in the way of modular manipulator automation and, to a degree, where this technology may be applicable or, more often, where these systems are unsuited to EM applications. From the information gathered during this study, it is possible to sufficiently define the requirements of one manipulator system which can be used to conduct automated transfer operations within Plutonium gloveboxes. This manipulator will be constructed from ARM Automation actuator modules and will provide this application with a viable option for automation within these gloveboxes. The design issues surrounding this manipulator and its

  8. The development of mobile robot for security application and nuclear facilities

    Energy Technology Data Exchange (ETDEWEB)

    Kim, B. S.; Lee, Y. B.; Choi, Y. S.; Seo, Y. C.; Park, Y. M

    1999-12-01

    The use of a mobile robot system in nuclear radioactive environments has the advantage of watching and inspecting the NPP safety-related equipment systematically and repairing damaged parts efficiently, thereby enhancing the safe operations of NPPs as well as reducing significantly personnel's dose rate to radioactive environment. Key technology achieved through the development of such robotic system can be used for security application and can offer new approaches to many of the tasks faced to the industry as well. The mobile robot system was composed of a mobile subsystem, a manipulator subsystem, a control subsystem, and a sensor subsystem to use in security application and nuclear radioactive environments. The mobile subsystem was adopted to synchro-drive method to improve the mobility of it. And the manipulator subsystem was developed to minimize the weight and easy to control at remote site. Finally, we developed the USB-based robot control system considering the expandability and modularity. The developed mobile robot for inspection and security was experimented for the collision avoidance and autonomous algorithm, and then it was confirmed that the mobile robot was very effective to the security application and inspection of nuclear facilities. (author)

  9. The development of mobile robot for security application and nuclear facilities

    International Nuclear Information System (INIS)

    Kim, B. S.; Lee, Y. B.; Choi, Y. S.; Seo, Y. C.; Park, Y. M.

    1999-12-01

    The use of a mobile robot system in nuclear radioactive environments has the advantage of watching and inspecting the NPP safety-related equipment systematically and repairing damaged parts efficiently, thereby enhancing the safe operations of NPPs as well as reducing significantly personnel's dose rate to radioactive environment. Key technology achieved through the development of such robotic system can be used for security application and can offer new approaches to many of the tasks faced to the industry as well. The mobile robot system was composed of a mobile subsystem, a manipulator subsystem, a control subsystem, and a sensor subsystem to use in security application and nuclear radioactive environments. The mobile subsystem was adopted to synchro-drive method to improve the mobility of it. And the manipulator subsystem was developed to minimize the weight and easy to control at remote site. Finally, we developed the USB-based robot control system considering the expandability and modularity. The developed mobile robot for inspection and security was experimented for the collision avoidance and autonomous algorithm, and then it was confirmed that the mobile robot was very effective to the security application and inspection of nuclear facilities. (author)

  10. Multilayer controller for field robots - High portability and modularity to ease implementation

    DEFF Research Database (Denmark)

    Griepentrog, H. W.; Jæger-Hansen, Claes Lund; Ravn, Ole

    Various autonomous machines and robots exist in agriculture today as research prototypes. In many prototypes software and hardware are designed and developed from scratch. The MobotWare software framework has been used to create an overall system called multilayer controller. MobotWare is a softw......Various autonomous machines and robots exist in agriculture today as research prototypes. In many prototypes software and hardware are designed and developed from scratch. The MobotWare software framework has been used to create an overall system called multilayer controller. Mobot...... to advanced sensors and handles tasks like mapping and localization. Along with the MobotWare, machine dedicated firmware controlling specific platforms without internal CAN system has been updated. On the hardware side there has been added various new sensors and a safety circuit. The Multilayer controller...

  11. Dynamic analysis of a bio-inspired climbing robot using ADAMS-Simulink co-simulation

    Science.gov (United States)

    Chattopadhyay, P.; Dikshit, H.; Majumder, A.; Ghoshal, S.; Maity, A.

    2018-04-01

    Climbing robot has been an area of interest since the demand of inspection of pipeline, nuclear power plant, and various big structure is growing up rapidly. This paper represents the development of a bio-inspired modular robot which mimics inchworm locomotion during climbing. In the present paper, the climbing motion is achieved only on a flat vertical plane by magnetic adhesion principle. The robot is modelled as a 4-link planar mechanism with three revolute joints actuated by DC servo motors. Sinusoidal gait pattern is used to approximate the motion of an inchworm. The dynamics of the robot is presented by using ADAMS/MATLAB co-simulation methodology. The simulation result gives the maximum value of joint torque during one complete cycle of motion. This torque value is used for the selection of servo motor specifications required to build the prototype.

  12. Service Modularity

    DEFF Research Database (Denmark)

    Avlonitis, Viktor; Hsuan, Juliana

    2015-01-01

    The purpose of this research is to investigate the studies on service modularity with a goal of informing service science and advancing contemporary service systems research. Modularity, a general systems property, can add theoretical underpinnings to the conceptual development of service science...... in general and service systems in particular. Our research is guided by the following question: how can modularity theory inform service system design? We present a review of the modularity literature and associated concepts. We then introduce the contemporary service science and service system discourse...

  13. Weld Nugget Temperature Control in Thermal Stir Welding

    Science.gov (United States)

    Ding, R. Jeffrey (Inventor)

    2014-01-01

    A control system for a thermal stir welding system is provided. The control system includes a sensor and a controller. The sensor is coupled to the welding system's containment plate assembly and generates signals indicative of temperature of a region adjacent and parallel to the welding system's stir rod. The controller is coupled to the sensor and generates at least one control signal using the sensor signals indicative of temperature. The controller is also coupled to the welding system such that at least one of rotational speed of the stir rod, heat supplied by the welding system's induction heater, and feed speed of the welding system's weld material feeder are controlled based on the control signal(s).

  14. Haptic/graphic rehabilitation: integrating a robot into a virtual environment library and applying it to stroke therapy.

    Science.gov (United States)

    Sharp, Ian; Patton, James; Listenberger, Molly; Case, Emily

    2011-08-08

    Recent research that tests interactive devices for prolonged therapy practice has revealed new prospects for robotics combined with graphical and other forms of biofeedback. Previous human-robot interactive systems have required different software commands to be implemented for each robot leading to unnecessary developmental overhead time each time a new system becomes available. For example, when a haptic/graphic virtual reality environment has been coded for one specific robot to provide haptic feedback, that specific robot would not be able to be traded for another robot without recoding the program. However, recent efforts in the open source community have proposed a wrapper class approach that can elicit nearly identical responses regardless of the robot used. The result can lead researchers across the globe to perform similar experiments using shared code. Therefore modular "switching out"of one robot for another would not affect development time. In this paper, we outline the successful creation and implementation of a wrapper class for one robot into the open-source H3DAPI, which integrates the software commands most commonly used by all robots.

  15. Transition welds in welding of two-ply steels

    International Nuclear Information System (INIS)

    Fartushnyj, V.G.; Evsyukov, Yu.G.

    1977-01-01

    Studied were physico-mechanical properties of welds made by various welding wires of chromium-nickel and nickel-chromium steels in submerged arc welding of double-layer steels with main layer of the VSt.3sp. carbon steel. It is shown that service-reliable structures welded of two-layer steels are obtained by providing the content from 11 to 20 % Ni in the automatically welded transition layer

  16. Weld controller for automated nuclear service welding

    International Nuclear Information System (INIS)

    Barfield, K.L.; Strubhar, P.M.; Green, D.I.

    1995-01-01

    B and W Nuclear Technologies (BWNT) uses many different types of weld heads for automated welding in the commercial nuclear service industry. Some weld heads are purchased as standard items, while others are custom designed and fabricated by BWNT requiring synchronized multiaxis motion control. BWNT recently completed a development program to build a common weld controller that interfaces to all types of weld heads used by BWNT. Their goal was to construct a system that had the flexibility to add different modules to increase the capability of the controller as different application needs become necessary. The benefits from having a common controller are listed. This presentation explains the weld controller system and the types of applications to which it has been applied

  17. A Modular Re-configurable Rover System

    Science.gov (United States)

    Bouloubasis, A.; McKee, G.; Active Robotics Lab

    design allows the MTR to lift, lower, roll or tilt its body. It also provides the ability to lift any of the legs by nearly 300mm, enhancing internal re-configurability and therefore rough terrain stability off the robotic vehicle. A modular software and control architecture will be used so that integration to, and operation through the MTR, of different Packs can be demonstrated. An on-board high-level controller [4] will communicate with a small network of micro-controllers through an RS485 bus. Additional processing power could be obtained through a Pack with equivalent or higher computational capabilities. 1 The nature of the system offers many opportunities for behavior based control. The control system must accommodate not only rover based behaviors like obstacle avoidance and vehicle stabilization, but also any additional behaviors that different Packs may introduce. The Ego-Behavior Architecture (EBA) [5] comprises a number of behaviors which operate autonomously and independent of each other. This facilitates the design and suits the operation of the MTR since it fulfills the need for uncomplicated assimilation of new behaviors in the existing architecture. Our work at the moment focuses on the design and construction of the mechanical and electronic systems for the MTR and an associated Pack. References [1] NASA, Human Exploration of Mars: The Reference Mission (Version 3.0 with June, 1998 Addendum) of the NASA Mars Exploration Study Team, Exploration Office, Advanced Development Office, Lyndon B. Johnson Space Center, Houston, TX 77058, June, 1998. [2] A. Trebi-Ollennu, H Das Nayer, H Aghazarian, A ganino, P Pirjanian, B Kennedy, T Huntsberger and P Schenker, Mars Rover Pair Cooperatively Transporting a Long Payload, in Proceedings of the 2002 IEEE International Conference on Robotics and Automation, May 2002, pp. 3136-3141. [3] A. K. Bouloubasis, G. T McKee, P. S. Schenker, A Behavior-Based Manipulator for Multi-Robot Transport Tasks, in proceedings of the

  18. Use of servo controlled weld head for end closure welding

    Energy Technology Data Exchange (ETDEWEB)

    Pathak, S.K.; Setty, D.S.; Rameswara Rao, A.; Hemantha Rao, G.V.S.; Jayaraj, R.N. [Nuclear Fuel Complex, Dept. of Atomic Energy, Hyderabad (India)

    2010-07-01

    In the PHWR fuel fabrication line resistance welding processes are used for joining various zirconium based alloy components to fuel tube of similar material. The quality requirement of these welding processes is very stringent and has to meet all the product requirements. At present these welding processes are being carried out by using standard resistance welding machines. In the resistance welding process in addition to current and time, force is one of the critical and important parameter, which influences the weld quality. At present advanced feed back type fast response medium frequency weld controllers are being used. This has upslope/down slope, constant and repetitive weld pattern selection features makes this critical welding process more reliable. Compared to weld controllers, squeeze force application devices are limited and normally standard high response pneumatic cylinders are used in the welding process. With this type of devices the force is constant during welding process and cannot be varied during welding process as per the material deformation characteristics. Similarly due to non-availability of feed back systems in the squeeze force application systems restricts the accuracy and quality of the welding process. In the present paper the influence of squeeze force pattern on the weld quality using advanced feed back type servo based force control system was studied. Different squeeze forces were used during pre and post weld heat periods along with constant force and compared with the weld quality. (author)

  19. Development of SC structure modularization in Nuclear Power Plant

    International Nuclear Information System (INIS)

    Mun, Taeyoup

    2008-01-01

    New Focus on NPP are Rising Concerns on Global Warming, Potential energy crisis (geo-political), Improved reliability and safety of nuclear power plant, Advent of Generation 3+ NPP technology and Economical Energy Resource. New NPPs are 6 units in Korea and 23 in Asia being built, 32 units being planned in China by 2020 (150 by 2050), 10 units being planned in US by 2020 and IAEA expects $200 billions on NPP construction next 25 years (up to 30% of total world energy). □ SC(Steel Plate Concrete) structure · Steel Plate is used as a Structural Element instead of Reinforcing Bars in RC · SC structure consists of Steel Plate with Headed Studs. Connected by Tie-bars - The Primary Purpose of Tie-bars is to Stiffen and Hold Together the Plates during Construction Process - Headed Studs are Welded to the Inside of Steel Plate for composite action □ Benefits of SC Structure · Shorten Construction Duration for Re bar, Forming and Scaffolding Works · Minimize Site Labors · Improve the Construction Quality · Enable Construction Sites to be kept Clean □ SC Modularization · Fit for Modular Construction for Structural Features · Fit for Modular Construction for Structural Features · Inattentively Effective for Integrated Modules · Pre-fabrication, Pre-assembly and Modularization □ Project Overview · Project Name: Development of SC structure for Modularization in NPP · Project Type: Electric Power Industry R and D (Ministry of Knowledge Economy) · Duration: Sep. 2005 ∼ Aug. 2008 (36 Months) · Research Team and Scopes - Project Management: Korea Hydro and Nuclear Power Company (KHNP) - Development of Code and Standards for SC Structure: Korea Society of Steel Construction (KSSC) Korea Electric Power Research Institute (KEPRI) - Development of SC Structural Analysis and Design: Korea Power Engineering Company (KOPEC) - Development of Construction Techniques for SC Modularization: KHNP, Korea Institute of Nuclear Safety(KINS), KOPEC □ Performance

  20. Effects of Short-Term Training of Community-Dwelling Elderly with Modular Interactive Tiles

    DEFF Research Database (Denmark)

    Lund, Henrik Hautop; Jessen, Jari Due

    2014-01-01

    Objective: The objective of this study is to test for the increased mobility, agility, balancing, and general fitness of community-dwelling elderly individuals as a result of short-term training involving playing with modular interactive tiles (Entertainment Robotics, Odense, Denmark) at two...... individuals (63–95 years of age; mean, 83.2 years of age) were assessed in one intervention group without the use of a control group. The intervention group performed nine group sessions (1–1.5 hours each) of playful training with the modular interactive tiles over a 12-week period in two community activity...... community activity centers for the elderly. Three different tests from the Senior Fitness Test were used in order to test a variety of health parameters of the community-dwelling elderly, including those parameters related to fall prevention. Materials and Methods: Eighteen community-dwelling elderly...

  1. Welding hazards

    International Nuclear Information System (INIS)

    Khan, M.A.

    1992-01-01

    Welding technology is advancing rapidly in the developed countries and has converted into a science. Welding involving the use of electricity include resistance welding. Welding shops are opened in residential area, which was causing safety hazards, particularly the teenagers and children who eagerly see the welding arc with their naked eyes. There are radiation hazards from ultra violet rays which irritate the skin, eye irritation. Welding arc light of such intensity could damage the eyes. (Orig./A.B.)

  2. Application requirements for Robotic Nursing Assistants in hospital environments

    Science.gov (United States)

    Cremer, Sven; Doelling, Kris; Lundberg, Cody L.; McNair, Mike; Shin, Jeongsik; Popa, Dan

    2016-05-01

    In this paper we report on analysis toward identifying design requirements for an Adaptive Robotic Nursing Assistant (ARNA). Specifically, the paper focuses on application requirements for ARNA, envisioned as a mobile assistive robot that can navigate hospital environments to perform chores in roles such as patient sitter and patient walker. The role of a sitter is primarily related to patient observation from a distance, and fetching objects at the patient's request, while a walker provides physical assistance for ambulation and rehabilitation. The robot will be expected to not only understand nurse and patient intent but also close the decision loop by automating several routine tasks. As a result, the robot will be equipped with sensors such as distributed pressure sensitive skins, 3D range sensors, and so on. Modular sensor and actuator hardware configured in the form of several multi-degree-of-freedom manipulators, and a mobile base are expected to be deployed in reconfigurable platforms for physical assistance tasks. Furthermore, adaptive human-machine interfaces are expected to play a key role, as they directly impact the ability of robots to assist nurses in a dynamic and unstructured environment. This paper discusses required tasks for the ARNA robot, as well as sensors and software infrastructure to carry out those tasks in the aspects of technical resource availability, gaps, and needed experimental studies.

  3. Development of a Pneumatic Robot for MRI-guided Transperineal Prostate Biopsy and Brachytherapy: New Approaches

    Science.gov (United States)

    Song, Sang-Eun; Cho, Nathan B.; Fischer, Gregory; Hata, Nobuhito; Tempany, Clare; Fichtinger, Gabor; Iordachita, Iulian

    2011-01-01

    Magnetic Resonance Imaging (MRI) guided prostate biopsy and brachytherapy has been introduced in order to enhance the cancer detection and treatment. For the accurate needle positioning, a number of robotic assistants have been developed. However, problems exist due to the strong magnetic field and limited workspace. Pneumatically actuated robots have shown the minimum distraction in the environment but the confined workspace limits optimal robot design and thus controllability is often poor. To overcome the problem, a simple external damping mechanism using timing belts was sought and a 1-DOF mechanism test result indicated sufficient positioning accuracy. Based on the damping mechanism and modular system design approach, a new workspace-optimized 4-DOF parallel robot was developed for the MRI-guided prostate biopsy and brachytherapy. A preliminary evaluation of the robot was conducted using previously developed pneumatic controller and satisfying results were obtained. PMID:21399734

  4. Neuromechanical Control for Hexapedal Robot Walking on Challenging Surfaces and Surface Classification

    DEFF Research Database (Denmark)

    Xiong, Xiaofeng; Wörgötter, Florentin; Manoonpong, Poramate

    2014-01-01

    The neuromechanical control principles of animal locomotion provide good insights for the development of bio-inspired legged robots for walking on challenging surfaces. Based on such principles, we developed a neuromechanical controller consisting of a modular neural network (MNN) and of virtual...... agonist–antagonist muscle mechanisms (VAAMs). The controller allows for variable compliant leg motions of a hexapod robot, thereby leading to energy-efficient walking on different surfaces. Without any passive mechanisms or torque and position feedback at each joint, the variable compliant leg motions...... are achieved by only changing the stiffness parameters of the VAAMs. In addition, six surfaces can be also classified by observing the motor signals generated by the controller. The performance of the controller is tested on a physical hexapod robot. Experimental results show that it can effectively walk...

  5. Compensating Hand Function in Chronic Stroke Patients Through the Robotic Sixth Finger.

    Science.gov (United States)

    Salvietti, Gionata; Hussain, Irfan; Cioncoloni, David; Taddei, Sabrina; Rossi, Simone; Prattichizzo, Domenico

    2017-02-01

    A novel solution to compensate hand grasping abilities is proposed for chronic stroke patients. The goal is to provide the patients with a wearable robotic extra-finger that can be worn on the paretic forearm by means of an elastic band. The proposed prototype, the Robotic Sixth Finger, is a modular articulated device that can adapt its structure to the grasped object shape. The extra-finger and the paretic hand act like the two parts of a gripper cooperatively holding an object. We evaluated the feasibility of the approach with four chronic stroke patients performing a qualitative test, the Frenchay Arm Test. In this proof of concept study, the use of the Robotic Sixth Finger has increased the total score of the patients by two points in a five points scale. The subjects were able to perform the two grasping tasks included in the test that were not possible without the robotic extra-finger. Adding a robotic opposing finger is a very promising approach that can significantly improve the functional compensation of the chronic stroke patient during everyday life activities.

  6. Dynamic Modelling of a CPG-Controlled Amphibious Biomimetic Swimming Robot

    Directory of Open Access Journals (Sweden)

    Rui Ding

    2013-04-01

    Full Text Available This paper focuses on the modelling and control problems of a self-propelled, multimodal amphibious robot. Inspired by the undulatory body motions of fish and dolphins, the amphibious robot propels itself underwater by oscillations of several modular fish-like propelling units coupled with a pair of pectoral fins capable of non-continuous 360 degree rotation. In order to mimic fish-like undulating propulsion, a control architecture based on Central Pattern Generator (CPG is applied to the amphibious robot for robust swimming gaits, including forward and backward swimming and turning, etc. With the simplification of the robot as a multi-link serial mechanism, a Lagrangian function is employed to establish the hydrodynamic model for steady swimming. The CPG motion control law is then imported into the Lagrangian-based dynamic model, where an associated system of kinematics and dynamics is formed to solve real-time movements and, further, to guide the exploration of the CPG parameters and steady locomotion gaits. Finally, comparative results between the simulations and experiments are provided to show the effectiveness of the built control models.

  7. The Development of Control System Design for 5 DOF Nuclear Malaysia Robot Arm v2

    International Nuclear Information System (INIS)

    Mohd Zaid Hassan; Anwar Abdul Rahman; Rosli Darmawan; Mohd Arif Hamzah

    2011-01-01

    This paper describes a general design and implementation approach used for programming and controlling robotic systems such as remotely operated robotic manipulator systems. A hierarchical approach to control system design is adopted. The hierarchical design is translated into a component-based software design. A low-cost robotic arm and controller system is presented. The controller is a modular model of the robotic arm with the same degrees of freedom whose joints are equipped with sensors. The system takes advantage of the low cost and wide availability of control components and uses a low-cost, easy-to-program microprocessor. Furthermore, it presents the design and the construction of electronic systems for the control of an articulated robot developed for research and development related with instrumentation and control. The system is simple but it is designed the motor to move the robot arm to proper angular position according to the input controller. Limitations of the micro controller are discussed, and suggestions for further development of the robot arm and control are made. (author)

  8. Advanced Welding Concepts

    Science.gov (United States)

    Ding, Robert J.

    2010-01-01

    Four advanced welding techniques and their use in NASA are briefly reviewed in this poster presentation. The welding techniques reviewed are: Solid State Welding, Friction Stir Welding (FSW), Thermal Stir Welding (TSW) and Ultrasonic Stir Welding.

  9. Resistance seam welding

    International Nuclear Information System (INIS)

    Schueler, A.W.

    1977-01-01

    The advantages and disadvantages of the resistance seam welding process are presented. Types of seam welds, types of seam welding machines, seam welding power supplies, resistance seam welding parameters and seam welding characteristics of various metals

  10. Modularity and Economic Organization

    DEFF Research Database (Denmark)

    Sanchez, Ron; Mahoney, Joseph T.

    This paper addresses modularity as a basis for organizing economic activity. We first define the key concepts of architecture and of modularity as a special form of architecture. We then suggest how modular systems of all types may exhibit several properties of fundamental importance to the organ......This paper addresses modularity as a basis for organizing economic activity. We first define the key concepts of architecture and of modularity as a special form of architecture. We then suggest how modular systems of all types may exhibit several properties of fundamental importance...... to the organization of economic activities, including greater adaptability and evolvability than systems that lack modular properties. We draw extensively on our original 1996 paper on modularity and subsequent research to suggest broad theoretical implications of modularity for (i) firms' product strategies...... markets. We also discuss an evolutionary perspective on modularity as an emergent phenomenon in firms and industries. We explain how modularity as a relatively new field of strategy and economic research may provide a new theoretical perspective on economic organizing that has significant potential...

  11. Welding method, and welding device for use therein, and method of analysis for evaluating welds

    NARCIS (Netherlands)

    Aendenroomer, A.J.; Den Ouden, G.; Xiao, Y.H.; Brabander, W.A.J.

    1995-01-01

    Described is a method of automatically welding pipes, comprising welding with a pulsation welding current and monitoring, by means of a sensor, the variations occurring in the arc voltage caused by weld pool oscillations. The occurrence of voltage variations with only frequency components below 100

  12. The Design and Development of an Omni-Directional Mobile Robot Oriented to an Intelligent Manufacturing System.

    Science.gov (United States)

    Qian, Jun; Zi, Bin; Wang, Daoming; Ma, Yangang; Zhang, Dan

    2017-09-10

    In order to transport materials flexibly and smoothly in a tight plant environment, an omni-directional mobile robot based on four Mecanum wheels was designed. The mechanical system of the mobile robot is made up of three separable layers so as to simplify its combination and reorganization. Each modularized wheel was installed on a vertical suspension mechanism, which ensures the moving stability and keeps the distances of four wheels invariable. The control system consists of two-level controllers that implement motion control and multi-sensor data processing, respectively. In order to make the mobile robot navigate in an unknown semi-structured indoor environment, the data from a Kinect visual sensor and four wheel encoders were fused to localize the mobile robot using an extended Kalman filter with specific processing. Finally, the mobile robot was integrated in an intelligent manufacturing system for material conveying. Experimental results show that the omni-directional mobile robot can move stably and autonomously in an indoor environment and in industrial fields.

  13. Comparison of Welding Residual Stresses of Hybrid Laser-Arc Welding and Submerged Arc Welding in Offshore Steel Structures

    DEFF Research Database (Denmark)

    Andreassen, Michael Joachim; Yu, Zhenzhen; Liu, Stephen

    2016-01-01

    In the offshore industry, welding-induced distortion and tensile residual stresses have become a major concern in relation to the structural integrity of a welded structure. Particularly, the continuous increase in size of welded plates and joints needs special attention concerning welding induced...... residual stresses. These stresses have a negative impact on the integrity of the welded joint as they promote distortion, reduce fatigue life, and contribute to corrosion cracking and premature failure in the weld components. This paper deals with the influence and impact of welding method on the welding...... induced residual stresses. It is also investigated whether the assumption of residual stresses up to yield strength magnitude are present in welded structures as stated in the design guidelines. The fatigue strength for welded joints is based on this assumption. The two welding methods investigated...

  14. Spatial Programming for Industrial Robots through Task Demonstration

    Directory of Open Access Journals (Sweden)

    Jens Lambrecht

    2013-05-01

    Full Text Available Abstract We present an intuitive system for the programming of industrial robots using markerless gesture recognition and mobile augmented reality in terms of programming by demonstration. The approach covers gesture-based task definition and adaption by human demonstration, as well as task evaluation through augmented reality. A 3D motion tracking system and a handheld device establish the basis for the presented spatial programming system. In this publication, we present a prototype toward the programming of an assembly sequence consisting of several pick-and-place tasks. A scene reconstruction provides pose estimation of known objects with the help of the 2D camera of the handheld. Therefore, the programmer is able to define the program through natural bare-hand manipulation of these objects with the help of direct visual feedback in the augmented reality application. The program can be adapted by gestures and transmitted subsequently to an arbitrary industrial robot controller using a unified interface. Finally, we discuss an application of the presented spatial programming approach toward robot-based welding tasks.

  15. Welding technology transfer task/laser based weld joint tracking system for compressor girth welds

    Science.gov (United States)

    Looney, Alan

    1991-01-01

    Sensors to control and monitor welding operations are currently being developed at Marshall Space Flight Center. The laser based weld bead profiler/torch rotation sensor was modified to provide a weld joint tracking system for compressor girth welds. The tracking system features a precision laser based vision sensor, automated two-axis machine motion, and an industrial PC controller. The system benefits are elimination of weld repairs caused by joint tracking errors which reduces manufacturing costs and increases production output, simplification of tooling, and free costly manufacturing floor space.

  16. Kinematic-Kinetic-Rigidity Evaluation of a Six Axis Robot Performing a Task

    Directory of Open Access Journals (Sweden)

    H. Karagulle

    2012-11-01

    Full Text Available Six axis serial robots of different sizes are widely used for pick and place, welding and various other operations in industry. Developments in mechatronics, which is the synergistic integration of mechanism, electronics and computer control to achieve a functional system, offer effective solutions for the design of such robots. The integrated analysis of robots is usually used in the design stage. In this study, it is offered that the integrated analysis of robots can also be used at the application stage. SolidWorks, CosmosMotion and ABAQUS programs are used with an integrated approach. Integration software (IS is developed in Visual Basic by using the application programming interface (API capabilities of these programs. An ABB-IRB1400 industrial robot is considered for the study. Different trajectories are considered. Each task is first evaluated by a kinematic analysis. If the task is out of the workspace, then the task is cancelled. This evaluation can also be done by robot programs like Robot Studio. It is proposed that the task must be evaluated by considering the limits for velocities, motor actuation torques, reaction forces, natural frequencies, displacements and stresses due to the flexibility. The evaluation is done using kinematic, kinetic and rigidity evaluation charts. The approach given in this work can be used for the optimal usage of robots.

  17. Friction Stir Welding

    Science.gov (United States)

    Nunes, Arthur C., Jr.

    2008-01-01

    Friction stir welding (FSW) is a solid state welding process invented in 1991 at The Welding Institute in the United Kingdom. A weld is made in the FSW process by translating a rotating pin along a weld seam so as to stir the sides of the seam together. FSW avoids deleterious effects inherent in melting and promises to be an important welding process for any industries where welds of optimal quality are demanded. This article provides an introduction to the FSW process. The chief concern is the physical effect of the tool on the weld metal: how weld seam bonding takes place, what kind of weld structure is generated, potential problems, possible defects for example, and implications for process parameters and tool design. Weld properties are determined by structure, and the structure of friction stir welds is determined by the weld metal flow field in the vicinity of the weld tool. Metal flow in the vicinity of the weld tool is explained through a simple kinematic flow model that decomposes the flow field into three basic component flows: a uniform translation, a rotating solid cylinder, and a ring vortex encircling the tool. The flow components, superposed to construct the flow model, can be related to particular aspects of weld process parameters and tool design; they provide a bridge to an understanding of a complex-at-first-glance weld structure. Torques and forces are also discussed. Some simple mathematical models of structural aspects, torques, and forces are included.

  18. Numerical analysis of weld pool oscillation in laser welding

    Energy Technology Data Exchange (ETDEWEB)

    Cho, Jung Ho [Chungbuk National University, Cheongju (Korea, Republic of); Farson, Dave F [The Ohio State University, Columbus (United States); Hollis, Kendall; Milewski, John O. [Los Alamos National Laboratory, Los Alamos (United States)

    2015-04-15

    Volume of fluid (VOF) numerical simulation was used to investigate melt flow and volumetric oscillation of conduction-mode pulsed laser weld pools. The result is compared to high speed video stream of titanium laser spot welding experiment. The total simulation time is 10ms with the first 5 ms being heating and melting under constant laser irradiation and the remaining 5 ms corresponding to resolidification of the weld pool. During the melting process, the liquid pool did not exhibit periodic oscillation but was continually depressed by the evaporation recoil pressure. After the laser pulse, the weld pool was excited into volumetric oscillation by the release of pressure on its surface and oscillation of the weld pool surface was analyzed. The simulation model suggested adjusting thermal diffusivity to match cooling rate and puddle diameter during solidification which is distinguishable from previous weld pool simulation. The frequency continuously increased from several thousand cycles per second to tens of thousands of cycles per second as the weld pool solidified and its diameter decreased. The result is the first trial of investigation of small weld pool oscillation in laser welding although there have been several reports about arc welding.

  19. Alternate Welding Processes for In-Service Welding

    Science.gov (United States)

    2009-04-24

    Conducting weld repairs and attaching hot tap tees onto pressurized pipes has the advantage of avoiding loss of service and revenue. However, the risks involved with in-service welding need to be managed by ensuring that welding is performed in a rep...

  20. Hybrid laser-TIG welding, laser beam welding and gas tungsten arc welding of AZ31B magnesium alloy

    International Nuclear Information System (INIS)

    Liu Liming; Wang Jifeng; Song Gang

    2004-01-01

    Welding of AZ31B magnesium alloy was carried out using hybrid laser-TIG (LATIG) welding, laser beam welding (LBW) and gas tungsten arc (TIG) welding. The weldability and microstructure of magnesium AZ31B alloy welded using LATIG, LBW and TIG were investigated by OM and EMPA. The experimental results showed that the welding speed of LATIG was higher than that of TIG, which was caught up with LBW. Besides, the penetration of LATIG doubles that of TIG, and was four times that of LBW. In addition, arc stability was improved in hybrid of laser-TIG welding compared with using the TIG welding alone, especially at high welding speed and under low TIG current. It was found that the heat affect zone of joint was only observed in TIG welding, and the size of grains in it was evidently coarse. In fusion zone, the equiaxed grains exist, whose size was the smallest welded by LBW, and was the largest by TIG welding. It was also found that Mg concentration of the fusion zone was lower than that of the base one by EPMA in three welding processes

  1. Understanding Socio Technical Modularity

    DEFF Research Database (Denmark)

    Thuesen, Christian Langhoff; Kudsk, Anders; Hvam, Lars

    2011-01-01

    Modularity has gained an increasing popularity as a central concept for exploring product structure, process structure, organization structure and supply chain structure. With the offset in system theory the predominant understanding of modularity however faces difficulties in explaining the social...... dimension of modularity like irrational behaviors, cultural differences, learning processes, social organization and institutional influences on modularity. The paper addresses this gab offering a reinterpretation of the modularity concept from a socio-technical perspective in general and Actor Network...... Theory in particular. By formulating modularity from an ANT perspective covering social, material and process aspects, the modularity of a socio-technical system can be understood as an entanglement of product, process, organizational and institutional modularity. The theoretical framework is illustrated...

  2. Lectures on Hilbert modular varieties and modular forms

    CERN Document Server

    Goren, Eyal Z

    2001-01-01

    This book is devoted to certain aspects of the theory of p-adic Hilbert modular forms and moduli spaces of abelian varieties with real multiplication. The theory of p-adic modular forms is presented first in the elliptic case, introducing the reader to key ideas of N. M. Katz and J.-P. Serre. It is re-interpreted from a geometric point of view, which is developed to present the rudiments of a similar theory for Hilbert modular forms. The theory of moduli spaces of abelian varieties with real multiplication is presented first very explicitly over the complex numbers. Aspects of the general theory are then exposed, in particular, local deformation theory of abelian varieties in positive characteristic. The arithmetic of p-adic Hilbert modular forms and the geometry of moduli spaces of abelian varieties are related. This relation is used to study q-expansions of Hilbert modular forms, on the one hand, and stratifications of moduli spaces on the other hand. The book is addressed to graduate students and non-exper...

  3. Closing the weld gap with laser/mig hybrid welding process

    DEFF Research Database (Denmark)

    Bagger, Claus; Olsen, Flemming Ove; Wiwe, Bjarne David

    2003-01-01

    In this article, laboratory tests are demonstrated that systematically accesses the critical gap distance when welding CMn 2.13 mm steel with a 2.6 kW CO2 laser, combined with a MIG energy source. In the work, the welding speed is varied at gap distances from 0 to 0.8 mm such that the limits...... for obtaining sound welds are identified. The welds are quality assessed according to ISO 13.919-1 and EN25817, transversal hardness measurements are made and the heat input to the workpiece is calculated. The results show that the critical gap is 0.1 mm for a laser weld alone. With hybrid welding, this can...... be increased to 0.6 mm, even at a welding speed of 3.5 m/min. The maximum welding speed with the hybrid process is comparable to laser welding alone, 4.5 m/min. The measured hardness is comparable to MIG welding, and this corresponds to a 33 percent reduction compared to laser welding alone. The heat input...

  4. Mechanical design and optimal control of humanoid robot (TPinokio

    Directory of Open Access Journals (Sweden)

    Teck Chew Wee

    2014-04-01

    Full Text Available The mechanical structure and the control of the locomotion of bipedal humanoid is an important and challenging domain of research in bipedal robots. Accurate models of the kinematics and dynamics of the robot are essential to achieve bipedal locomotion. Toe-foot walking produces a more natural and faster walking speed and it is even possible to perform stretch knee walking. This study presents the mechanical design of a toe-feet bipedal, TPinokio and the implementation of some optimal walking gait generation methods. The optimality in the gait trajectory is achieved by applying augmented model predictive control method and the pole-zero cancellation method, taken into consideration of a trade-off between walking speed and stability. The mechanism of the TPinokio robot is designed in modular form, so that its kinematics can be modelled accurately into a multiple point-mass system, its dynamics is modelled using the single and double mass inverted pendulum model and zero-moment-point concept. The effectiveness of the design and control technique is validated by simulation testing with the robot walking on flat surface and climbing stairs.

  5. Line-feature-based calibration method of structured light plane parameters for robot hand-eye system

    Science.gov (United States)

    Qi, Yuhan; Jing, Fengshui; Tan, Min

    2013-03-01

    For monocular-structured light vision measurement, it is essential to calibrate the structured light plane parameters in addition to the camera intrinsic parameters. A line-feature-based calibration method of structured light plane parameters for a robot hand-eye system is proposed. Structured light stripes are selected as calibrating primitive elements, and the robot moves from one calibrating position to another with constraint in order that two misaligned stripe lines are generated. The images of stripe lines could then be captured by the camera fixed at the robot's end link. During calibration, the equations of two stripe lines in the camera coordinate system are calculated, and then the structured light plane could be determined. As the robot's motion may affect the effectiveness of calibration, so the robot's motion constraints are analyzed. A calibration experiment and two vision measurement experiments are implemented, and the results reveal that the calibration accuracy can meet the precision requirement of robot thick plate welding. Finally, analysis and discussion are provided to illustrate that the method has a high efficiency fit for industrial in-situ calibration.

  6. LASER WELDING WITH MICRO-JET COOLING FOR TRUCK FRAME WELDING

    Directory of Open Access Journals (Sweden)

    Jan PIWNIK

    2017-12-01

    Full Text Available The aim of this paper is to analyse the mechanical properties of the weld steel structure of car body truck frames after laser welding. The best welding conditions involve the use of proper materials and alloy elements in steel and filer materials, in addition to welding technology, state of stress and temperature of exploitation. We present for the first time the properties of steel track structures after laser welding with micro-jet cooling. Therefore, good selection of both welding parameters and micro-jet cooling parameters is very important to achieve a proper steel structure. In this study, the metallographic structure, tensile results and impact toughness of welded joints have been analysed in terms of welding parameters.

  7. Forming Completely Penetrated Welded T-joints when Pulsed Arc Welding

    Science.gov (United States)

    Krampit, N. Yu; Krampit, M. A.; Sapozhkov, A. S.

    2016-04-01

    The paper is focused on revealing the influence of welding parameters on weld formation when pulsed arc welding. As an experimental sample a T-joint over 10 mm was selected. Welding was carried out in flat position, which required no edge preparation but provided mono-directional guaranteed root penetration. The following parameters of welding were subjected to investigation: gap in the joint, wire feed rate and incline angles of the torch along and across the weld axis. Technological recommendations have been made with respect to pulsed arc welding; the cost price of product manufacturing can be reduced on their basis due to reduction of labor input required by machining, lowering consumption of welding materials and electric power.

  8. Resistance welding

    DEFF Research Database (Denmark)

    Bay, Niels; Zhang, Wenqi; Rasmussen, Mogens H.

    2003-01-01

    Resistance welding comprises not only the well known spot welding process but also more complex projection welding operations, where excessive plastic deformation of the weld point may occur. This enables the production of complex geometries and material combinations, which are often not possible...... to weld by traditional spot welding operations. Such joining processes are, however, not simple to develop due to the large number of parameters involved. Development has traditionally been carried out by large experimental investigations, but the development of a numerical programme system has changed...... this enabling prediction of the welding performance in details. The paper describes the programme in short and gives examples on industrial applications. Finally investigations of causes for failure in a complex industrial joint of two dissimilar metals are carried out combining numerical modelling...

  9. Cu-Fe welding techniques by electromagnetic and electron beam welding processes

    International Nuclear Information System (INIS)

    Kumar, Satendra; Saroj, P.C.; Kulkarni, M.R.; Sharma, A.; Rajawat, R.K.; Saha, T.K.

    2015-01-01

    Electromagnetic welding being a solid state welding process has been found suitable for welding Copper and Iron which are conventionally very tricky. Owing to good electrical conductivity of both copper and iron, they are best suited combination for EM welding. For the experimental conditions presented above, 1.0 mm wall thickness of Cu tube was lap welded to Fe disc. A heavy duty four disc stainless steel coil was used for electromagnetic welding of samples. MSLD of the welded samples indicated leak proof joints. Metallographic examination of the welds also revealed defect free interfaces. Electron beam welding is also a non-conventional welding process used for joining dissimilar materials. Autogenous welding of the above specimen was carried out by EBW method for the sake of comparison. A characterization analysis of the above mentioned joining processes will be discussed in the paper. (author)

  10. A cost-effective intelligent robotic system with dual-arm dexterous coordination and real-time vision

    Science.gov (United States)

    Marzwell, Neville I.; Chen, Alexander Y. K.

    1991-01-01

    Dexterous coordination of manipulators based on the use of redundant degrees of freedom, multiple sensors, and built-in robot intelligence represents a critical breakthrough in development of advanced manufacturing technology. A cost-effective approach for achieving this new generation of robotics has been made possible by the unprecedented growth of the latest microcomputer and network systems. The resulting flexible automation offers the opportunity to improve the product quality, increase the reliability of the manufacturing process, and augment the production procedures for optimizing the utilization of the robotic system. Moreover, the Advanced Robotic System (ARS) is modular in design and can be upgraded by closely following technological advancements as they occur in various fields. This approach to manufacturing automation enhances the financial justification and ensures the long-term profitability and most efficient implementation of robotic technology. The new system also addresses a broad spectrum of manufacturing demand and has the potential to address both complex jobs as well as highly labor-intensive tasks. The ARS prototype employs the decomposed optimization technique in spatial planning. This technique is implemented to the framework of the sensor-actuator network to establish the general-purpose geometric reasoning system. The development computer system is a multiple microcomputer network system, which provides the architecture for executing the modular network computing algorithms. The knowledge-based approach used in both the robot vision subsystem and the manipulation control subsystems results in the real-time image processing vision-based capability. The vision-based task environment analysis capability and the responsive motion capability are under the command of the local intelligence centers. An array of ultrasonic, proximity, and optoelectronic sensors is used for path planning. The ARS currently has 18 degrees of freedom made up by two

  11. Deconvoluting the Friction Stir Weld Process for Optimizing Welds

    Science.gov (United States)

    Schneider, Judy; Nunes, Arthur C.

    2008-01-01

    In the friction stir welding process, the rotating surfaces of the pin and shoulder contact the weld metal and force a rotational flow within the weld metal. Heat, generated by the metal deformation as well as frictional slippage with the contact surface, softens the metal and makes it easier to deform. As in any thermo-mechanical processing of metal, the flow conditions are critical to the quality of the weld. For example, extrusion of metal from under the shoulder of an excessively hot weld may relax local pressure and result in wormhole defects. The trace of the weld joint in the wake of the weld may vary geometrically depending upon the flow streamlines around the tool with some geometry more vulnerable to loss of strength from joint contamination than others. The material flow path around the tool cannot be seen in real time during the weld. By using analytical "tools" based upon the principles of mathematics and physics, a weld model can be created to compute features that can be observed. By comparing the computed observations with actual data, the weld model can be validated or adjusted to get better agreement. Inputs to the model to predict weld structures and properties include: hot working properties ofthe metal, pin tool geometry, travel rate, rotation and plunge force. Since metals record their prior hot working history, the hot working conditions imparted during FSW can be quantified by interpreting the final microstructure. Variations in texture and grain size result from variations in the strain accommodated at a given strain rate and temperature. Microstructural data from a variety of FSWs has been correlated with prior marker studies to contribute to our understanding of the FSW process. Once this stage is reached, the weld modeling process can save significant development costs by reducing costly trial-and-error approaches to obtaining quality welds.

  12. Investigation on welding and cutting methods for blanket support legs of fusion experimental reactors

    International Nuclear Information System (INIS)

    Tokami, Ikuhide; Nakahira, Masataka; Kurasawa, Toshimasa; Sato, Satoshi; Furuya, Kazuyuki; Hatano, Toshihisa; Takatsu, Hideyuki; Kuroda, Toshimasa.

    1996-07-01

    A toroidally-and poloidally-divided modular blanket has been proposed for a fusion experimental reactor, such as ITER, to enhance its maintainability as well as improve its fabricability. The blanket module, typically the size of 1 m wide, 1-2 m high and 0.4 m deep and the weight of 4 ton, will be supported by support legs which are extruded from back of the module and connected to a 70-100 mm thick strong back plate. The support leg has to withstand large electromagnetic force during plasma disruption and provide the way for in-situ module replacement by remote handling. For the connection method of the support leg to the back plate, a welding approach has been investigated here in terms of its high reliability against the large electromagnetic loads. For the welding approach, the support leg needs to be 70 mm thick, and the working space for welding/cutting heads are limited to 100 mm x 150 mm adjacent to the support leg. Based on a comparison of several welding methods, e.g. NGTIG, NGMIG and laser, NGTIG has been selected as a reference due to its well-established technology and the least R and D required. As for the cutting method, a plasma cutting has been given the highest priority to be pursued because of its compactness and high speed. Through preliminary design studies, the possibility of small welding/cutting heads that will work in the limited space has been shown, and maintenance route for in-situ module replacement with pre-and postfixture of the module has been investigated. Also preliminary R and Ds have resulted in; 1)the welding distortion is predictable according to the shape of weld groove and adjustable to meet the placement requirement of the module first wall, 2)the plasma cut surface can be rewelded without machining, 3)the welding/cutting time will meet the requirement of maintenance time. (author)

  13. Effects of Fusion Tack Welds on Self-Reacting Friction Stir Welds

    Science.gov (United States)

    Nunes, A. C., Jr.; Pendleton, M. L.; Brooke, S. A.; Russell, C. K.

    2012-01-01

    In order to know whether fusion tack welds would affect the strength of self-reacting friction stir seam welds in 2195-T87 aluminum alloy, the fracture stresses of 144 tensile test coupons cut from 24 welded panels containing segments of friction stir welds were measured. Each of the panels was welded under unique processing conditions. A measure of the effect of the tack welds for each panel was devised. An analysis of the measures of the tack weld effect supported the hypothesis that fusion tack welds do not affect the strength of self-reacting friction stir welds to a 5% level of confidence.

  14. Residual stress reduction in the penetration nozzle weld joint by overlay welding

    International Nuclear Information System (INIS)

    Jiang, Wenchun; Luo, Yun; Wang, B.Y.; Tu, S.T.; Gong, J.M.

    2014-01-01

    Highlights: • Residual stress reduction in penetration weld nozzle by overlay welding was studied. • The overlay weld can decrease the residual stress in the weld root. • Long overlay welding is proposed in the actual welding. • Overlay weld to decrease residual stress is more suitable for thin nozzle. - Abstract: Stress corrosion cracking (SCC) in the penetration nozzle weld joint endangers the structural reliability of pressure vessels in nuclear and chemical industries. How to decrease the residual stress is very critical to ensure the structure integrity. In this paper, a new method, which uses overlay welding on the inner surface of nozzle, is proposed to decrease the residual stresses in the penetration joint. Finite element simulation is used to study the change of weld residual stresses before and after overlay welding. It reveals that this method can mainly decrease the residual stress in the weld root. Before overlay welding, large tensile residual stresses are generated in the weld root. After overlay weld, the tensile hoop stress in weld root has been decreased about 45%, and the radial stress has been decreased to compressive stress, which is helpful to decrease the susceptibility to SCC. With the increase of overlay welding length, the residual stress in weld root has been greatly decreased, and thus the long overlay welding is proposed in the actual welding. It also finds that this method is more suitable for thin nozzle rather than thick nozzle

  15. Welding processes handbook

    CERN Document Server

    Weman, Klas

    2011-01-01

    Offers an introduction to the range of available welding technologies. This title includes chapters on individual techniques that cover principles, equipment, consumables and key quality issues. It includes material on such topics as the basics of electricity in welding, arc physics, and distortion, and the weldability of particular metals.$bThe first edition of Welding processes handbook established itself as a standard introduction and guide to the main welding technologies and their applications. This new edition has been substantially revised and extended to reflect the latest developments. After an initial introduction, the book first reviews gas welding before discussing the fundamentals of arc welding, including arc physics and power sources. It then discusses the range of arc welding techniques including TIG, plasma, MIG/MAG, MMA and submerged arc welding. Further chapters cover a range of other important welding technologies such as resistance and laser welding, as well as the use of welding techniqu...

  16. Welding Curriculum.

    Science.gov (United States)

    Alaska State Dept. of Education, Juneau. Div. of Adult and Vocational Education.

    This competency-based curriculum guide is a handbook for the development of welding trade programs. Based on a survey of Alaskan welding employers, it includes all competencies a student should acquire in such a welding program. The handbook stresses the importance of understanding the principles associated with the various elements of welding.…

  17. NUClear: A Loosely Coupled Software Architecture for Humanoid Robot Systems

    Directory of Open Access Journals (Sweden)

    Trent eHouliston

    2016-04-01

    Full Text Available This paper discusses the design and interface of NUClear, a new hybrid message-passing architecture for embodied humanoid robotics. NUClear is modular, low latency and promotes functional and expandable software design. It greatly reduces the latency for messages passed between modules as the messages routes are established at compile time. It also reduces the number of functions that must be written using a system called co-messages which aids in dealing with multiple simultaneous data. NUClear has primarily been evaluated on a humanoid robotic soccer platform and on a robotic boat platform, with evaluations showing that NUClear requires fewer callbacks and cache variables over existing message-passing architectures. NUClear does have limitations when applying these techniques on multi-processed systems. It performs best in lower power systems where computational resources are limited. Future work will focus on applying the architecture to new platforms, including a larger form humanoid platform and a virtual reality platform and further evaluating the impact of the novel techniques introduced.

  18. Modular implicits

    Directory of Open Access Journals (Sweden)

    Leo White

    2015-12-01

    Full Text Available We present modular implicits, an extension to the OCaml language for ad-hoc polymorphism inspired by Scala implicits and modular type classes. Modular implicits are based on type-directed implicit module parameters, and elaborate straightforwardly into OCaml's first-class functors. Basing the design on OCaml's modules leads to a system that naturally supports many features from other languages with systematic ad-hoc overloading, including inheritance, instance constraints, constructor classes and associated types.

  19. Kinematic and dynamic analysis of a serial-link robot for inspection process in EAST vacuum vessel

    Energy Technology Data Exchange (ETDEWEB)

    Peng Xuebing, E-mail: pengxb@ipp.ac.cn [Institute of Plasma Physics, Chinese Academy of Sciences, P.O. Box 1126, Shushanhu Road 350, Hefei, Anhui 230031 (China); Yuan Jianjun; Zhang Weijun [Research Institute of Robotics, Mechanical Engineering School, Shanghai Jiao Tong University, No.800, Dong Chuan Road, Min Hang District, Shanghai 200240 (China); Yang Yang; Song Yuntao [Institute of Plasma Physics, Chinese Academy of Sciences, P.O. Box 1126, Shushanhu Road 350, Hefei, Anhui 230031 (China)

    2012-08-15

    Highlights: Black-Right-Pointing-Pointer A serial-link robot FIVIR is proposed for inspection of EAST PFCs between plasma shots. Black-Right-Pointing-Pointer The FIVIR is a function modular design and has specially designed curvilinear mechanism for axes 4-6. Black-Right-Pointing-Pointer The D-H coordinate systems, forward and inverse kinematic model can be easily established and solved for the FIVIR. Black-Right-Pointing-Pointer The FIVIR can fulfill the required workspace and has a good dynamic performance in the inspection process. - Abstract: The present paper introduces a serial-link robot which is named flexible in-vessel inspection robot (FIVIR) and developed for Experimental Advanced Superconducting Tokamak (EAST). The task of the robot is to carry process tools, such as viewing camera and leakage detector, to inspect the components installed inside of EAST vacuum vessel. The FIVIR can help to understand the physical phenomena which could be happened in the vacuum vessel during plasma operation and could be one part of EAST remote handling system if needed. The FIVIR was designed with the consideration of having easy control and a good mechanics property which drives it resulted in function modular design. The workspace simulation and kinematic analysis are given in this paper. The dynamic behavior of the FIVIR is studied by multi-body system simulation using ADAMS software. The study result shows the FIVIR has ascendant kinematic and dynamic performance and can fulfill the design requirement for inspection process in EAST vacuum vessel.

  20. Kinematic and dynamic analysis of a serial-link robot for inspection process in EAST vacuum vessel

    International Nuclear Information System (INIS)

    Peng Xuebing; Yuan Jianjun; Zhang Weijun; Yang Yang; Song Yuntao

    2012-01-01

    Highlights: ► A serial-link robot FIVIR is proposed for inspection of EAST PFCs between plasma shots. ► The FIVIR is a function modular design and has specially designed curvilinear mechanism for axes 4–6. ► The D-H coordinate systems, forward and inverse kinematic model can be easily established and solved for the FIVIR. ► The FIVIR can fulfill the required workspace and has a good dynamic performance in the inspection process. - Abstract: The present paper introduces a serial-link robot which is named flexible in-vessel inspection robot (FIVIR) and developed for Experimental Advanced Superconducting Tokamak (EAST). The task of the robot is to carry process tools, such as viewing camera and leakage detector, to inspect the components installed inside of EAST vacuum vessel. The FIVIR can help to understand the physical phenomena which could be happened in the vacuum vessel during plasma operation and could be one part of EAST remote handling system if needed. The FIVIR was designed with the consideration of having easy control and a good mechanics property which drives it resulted in function modular design. The workspace simulation and kinematic analysis are given in this paper. The dynamic behavior of the FIVIR is studied by multi-body system simulation using ADAMS software. The study result shows the FIVIR has ascendant kinematic and dynamic performance and can fulfill the design requirement for inspection process in EAST vacuum vessel.

  1. LASER WELDING WITH MICRO-JET COOLING FOR TRUCK FRAME WELDING

    OpenAIRE

    Jan PIWNIK; Bożena SZCZUCKA-LASOTA; Tomasz WĘGRZYN; Wojciech MAJEWSKI

    2017-01-01

    The aim of this paper is to analyse the mechanical properties of the weld steel structure of car body truck frames after laser welding. The best welding conditions involve the use of proper materials and alloy elements in steel and filer materials, in addition to welding technology, state of stress and temperature of exploitation. We present for the first time the properties of steel track structures after laser welding with micro-jet cooling. Therefore, good selection of both welding paramet...

  2. Mobile/Modular BSL-4 Facilities for Meeting Restricted Earth Return Containment Requirements

    Science.gov (United States)

    Calaway, M. J.; McCubbin, F. M.; Allton, J. H.; Zeigler, R. A.; Pace, L. F.

    2017-01-01

    NASA robotic sample return missions designated Category V Restricted Earth Return by the NASA Planetary Protection Office require sample containment and biohazard testing in a receiving laboratory as directed by NASA Procedural Requirement (NPR) 8020.12D - ensuring the preservation and protection of Earth and the sample. Currently, NPR 8020.12D classifies Restricted Earth Return for robotic sample return missions from Mars, Europa, and Enceladus with the caveat that future proposed mission locations could be added or restrictions lifted on a case by case basis as scientific knowledge and understanding of biohazards progresses. Since the 1960s, sample containment from an unknown extraterrestrial biohazard have been related to the highest containment standards and protocols known to modern science. Today, Biosafety Level (BSL) 4 standards and protocols are used to study the most dangerous high-risk diseases and unknown biological agents on Earth. Over 30 BSL-4 facilities have been constructed worldwide with 12 residing in the United States; of theses, 8 are operational. In the last two decades, these brick and mortar facilities have cost in the hundreds of millions of dollars dependent on the facility requirements and size. Previous mission concept studies for constructing a NASA sample receiving facility with an integrated BSL-4 quarantine and biohazard testing facility have also been estimated in the hundreds of millions of dollars. As an alternative option, we have recently conducted an initial trade study for constructing a mobile and/or modular sample containment laboratory that would meet all BSL-4 and planetary protection standards and protocols at a faction of the cost. Mobile and modular BSL-2 and 3 facilities have been successfully constructed and deployed world-wide for government testing of pathogens and pharmaceutical production. Our study showed that a modular BSL-4 construction could result in approximately 90% cost reduction when compared to

  3. Chatter suppression methods of a robot machine for ITER vacuum vessel assembly and maintenance

    International Nuclear Information System (INIS)

    Wu, Huapeng; Wang, Yongbo; Li, Ming; Al-Saedi, Mazin; Handroos, Heikki

    2014-01-01

    Highlights: •A redundant 10-DOF serial-parallel hybrid robot for ITER assembly and maintains is presented. •A dynamic model of the robot is developed. •A feedback and feedforward controller is presented to suppress machining vibration of the robot. -- Abstract: In the process of assembly and maintenance of ITER vacuum vessel (ITER VV), various machining tasks including threading, milling, welding-defects cutting and flexible hose boring are required to be performed from inside of ITER VV by on-site machining tools. Robot machine is a promising option for these tasks, but great chatter (machine vibration) would happen in the machining process. The chatter vibration will deteriorate the robot accuracy and surface quality, and even cause some damages on the end-effector tools and the robot structure itself. This paper introduces two vibration control methods, one is passive and another is active vibration control. For the passive vibration control, a parallel mechanism is presented to increase the stiffness of robot machine; for the active vibration control, a hybrid control method combining feedforward controller and nonlinear feedback controller is introduced for chatter suppression. A dynamic model and its chatter vibration phenomena of a hybrid robot is demonstrated. Simulation results are given based on the proposed hybrid robot machine which is developed for the ITER VV assembly and maintenance

  4. Chatter suppression methods of a robot machine for ITER vacuum vessel assembly and maintenance

    Energy Technology Data Exchange (ETDEWEB)

    Wu, Huapeng; Wang, Yongbo, E-mail: yongbo.wang@lut.fi; Li, Ming; Al-Saedi, Mazin; Handroos, Heikki

    2014-10-15

    Highlights: •A redundant 10-DOF serial-parallel hybrid robot for ITER assembly and maintains is presented. •A dynamic model of the robot is developed. •A feedback and feedforward controller is presented to suppress machining vibration of the robot. -- Abstract: In the process of assembly and maintenance of ITER vacuum vessel (ITER VV), various machining tasks including threading, milling, welding-defects cutting and flexible hose boring are required to be performed from inside of ITER VV by on-site machining tools. Robot machine is a promising option for these tasks, but great chatter (machine vibration) would happen in the machining process. The chatter vibration will deteriorate the robot accuracy and surface quality, and even cause some damages on the end-effector tools and the robot structure itself. This paper introduces two vibration control methods, one is passive and another is active vibration control. For the passive vibration control, a parallel mechanism is presented to increase the stiffness of robot machine; for the active vibration control, a hybrid control method combining feedforward controller and nonlinear feedback controller is introduced for chatter suppression. A dynamic model and its chatter vibration phenomena of a hybrid robot is demonstrated. Simulation results are given based on the proposed hybrid robot machine which is developed for the ITER VV assembly and maintenance.

  5. Thermal Stir Welding: A New Solid State Welding Process

    Science.gov (United States)

    Ding, R. Jeffrey

    2003-01-01

    Thermal stir welding is a new welding process developed at NASA's Marshall Space Flight Center in Huntsville, AL. Thermal stir welding is similar to friction stir welding in that it joins similar or dissimilar materials without melting the parent material. However, unlike friction stir welding, the heating, stirring and forging elements of the process are all independent of each other and are separately controlled. Furthermore, the heating element of the process can be either a solid-state process (such as a thermal blanket, induction type process, etc), or, a fusion process (YG laser, plasma torch, etc.) The separation of the heating, stirring, forging elements of the process allows more degrees of freedom for greater process control. This paper introduces the mechanics of the thermal stir welding process. In addition, weld mechanical property data is presented for selected alloys as well as metallurgical analysis.

  6. Modular robotic system for forensic investigation support

    Science.gov (United States)

    Kowalski, Grzegorz; Główka, Jakub; Maciaś, Mateusz; Puchalski, Sławomir

    2017-10-01

    Forensic investigation on the crime scene is an activity that requires not only knowledge about the ways of searching for evidence, collecting and processing them. In some cases the area of operation might not be properly secured and poses threat to human health or life. Some devices or materials may be left intentionally or not to injure potential investigators. Besides conventional explosives, threats can be in form of CBRN materials, which have not only immediate effect on the exposed personnel, but can contaminate further people, when being transferred for example on clothes or unsecured equipment. In this case a risk evaluation should be performed, that can lead to conclusions that it is too dangerous for investigators to work. In that kind of situation remote devices, which are able to examine the crime scene and secure samples, can be used. In the course of R&D activities PIAP developed a system, which is based on small UGV capable of carrying out inspection of suspicious places and securing evidence, when needed. The system consists of remotely controlled mobile robot, its control console and a set of various inspection and support tools, that enable detection of CBRN threats as well as revelation, documentation and securing of the evidence. This paper will present main features of the system, like mission adjustment possibilities and communication aspects, and also examples of the forensic accessories.

  7. Product Architecture Modularity Strategies

    DEFF Research Database (Denmark)

    Mikkola, Juliana Hsuan

    2003-01-01

    The focus of this paper is to integrate various perspectives on product architecture modularity into a general framework, and also to propose a way to measure the degree of modularization embedded in product architectures. Various trade-offs between modular and integral product architectures...... and how components and interfaces influence the degree of modularization are considered. In order to gain a better understanding of product architecture modularity as a strategy, a theoretical framework and propositions are drawn from various academic literature sources. Based on the literature review......, the following key elements of product architecture are identified: components (standard and new-to-the-firm), interfaces (standardization and specification), degree of coupling, and substitutability. A mathematical function, termed modularization function, is introduced to measure the degree of modularization...

  8. Kinematics and dynamics analysis of a quadruped walking robot with parallel leg mechanism

    Science.gov (United States)

    Wang, Hongbo; Sang, Lingfeng; Hu, Xing; Zhang, Dianfan; Yu, Hongnian

    2013-09-01

    It is desired to require a walking robot for the elderly and the disabled to have large capacity, high stiffness, stability, etc. However, the existing walking robots cannot achieve these requirements because of the weight-payload ratio and simple function. Therefore, Improvement of enhancing capacity and functions of the walking robot is an important research issue. According to walking requirements and combining modularization and reconfigurable ideas, a quadruped/biped reconfigurable walking robot with parallel leg mechanism is proposed. The proposed robot can be used for both a biped and a quadruped walking robot. The kinematics and performance analysis of a 3-UPU parallel mechanism which is the basic leg mechanism of a quadruped walking robot are conducted and the structural parameters are optimized. The results show that performance of the walking robot is optimal when the circumradius R, r of the upper and lower platform of leg mechanism are 161.7 mm, 57.7 mm, respectively. Based on the optimal results, the kinematics and dynamics of the quadruped walking robot in the static walking mode are derived with the application of parallel mechanism and influence coefficient theory, and the optimal coordination distribution of the dynamic load for the quadruped walking robot with over-determinate inputs is analyzed, which solves dynamic load coupling caused by the branches’ constraint of the robot in the walk process. Besides laying a theoretical foundation for development of the prototype, the kinematics and dynamics studies on the quadruped walking robot also boost the theoretical research of the quadruped walking and the practical applications of parallel mechanism.

  9. Hexavalent chromium content in stainless steel welding fumes is dependent on the welding process and shield gas type.

    Science.gov (United States)

    Keane, Michael; Stone, Samuel; Chen, Bean; Slaven, James; Schwegler-Berry, Diane; Antonini, James

    2009-02-01

    Occupational exposure to welding fumes is a known health hazard. To isolate elements in stainless steel welding fumes with high potential for adverse health outcomes, fumes were generated using a robotic gas metal arc system, using four shield gases of varying oxygen content. The objective was to measure Cr(VI) concentrations in a broad spectrum of gas metal arc welding processes, and identify processes of exceptionally high or low Cr(VI) content. The gases used were 95% Ar/5% O(2), 98% Ar/2% O(2), 95% Ar/5%CO(2), and 75% He/25% Ar. The welder was operated in axial spray mode (Ar/O(2), Ar/CO(2)), short-circuit (SC) mode (Ar/CO(2) low voltage and He/Ar), and pulsed axial-spray mode (98% Ar/2% O(2)). Results indicate large differences in Cr(VI) in the fumes, with Ar/O(2) (Pulsed)>Ar/O(2)>Ar/CO(2)>Ar/CO(2) (SC)>He/Ar; values were 3000+/-300, 2800+/-85, 2600+/-120, 1400+/-190, and 320+/-290 ppm respectively (means +/- standard errors for 2 runs and 3 replicates per run). Respective rates of Cr(VI) generation were 1.5, 3.2, 4.4, 1.3, and 0.46 microg/min; generation rates were also calculated in terms of microg Cr(VI) per metre of wire used. The generation rates of Cr(VI) increased with increasing O(3) concentrations. Particle size measurements indicated similar distributions, but somewhat higher >0.6 microm fractions for the short-circuit mode samples. Fumes were also sampled into 2 selected size ranges, a microspatter fraction (>or=0.6 microm) and a fine (welding type and shield gas type, and this presents an opportunity to tailor welding practices to lessen Cr(VI) exposures in workplaces by selecting low Cr(VI)-generating processes. Short-circuit processes generated less Cr(VI) than axial-spray methods, and inert gas shielding gave lower Cr(VI) content than shielding with active gases. A short circuit He/Ar shielded process and a pulsed axial spray Ar/O(2) process were both identified as having substantially lower Cr(VI) generation rates per unit of wire used relative

  10. High-Field MRI-Compatible Needle Placement Robot for Prostate Interventions

    OpenAIRE

    SU, Hao; CAMILO, Alex; COLE, Gregory A.; HATA, Nobuhiko; TEMPANY, Clare M.; FISCHER, Gregory S.

    2011-01-01

    This paper presents the design of a magnetic resonance imaging (MRI) compatible needle placement system actuated by piezoelectric actuators for prostate brachytherapy and biopsy. An MRI-compatible modular 3 degree-of-freedom (DOF) needle driver module coupled with a 3-DOF x-y-z stage is proposed as a slave robot to precisely deliver radioactive brachytherapy seeds under interactive MRI guidance. The needle driver module provides for needle cannula rotation, needle insertion and cannula retrac...

  11. Sustainability of Welding Process through Bobbin Friction Stir Welding

    Science.gov (United States)

    Sued, M. K.; Samsuri, S. S. M.; Kassim, M. K. A. M.; Nasir, S. N. N. M.

    2018-03-01

    Welding process is in high demand, which required a competitive technology to be adopted. This is important for sustaining the needs of the joining industries without ignoring the impact of the process to the environment. Friction stir welding (FSW) is stated to be benefitting the environment through low energy consumption, which cannot be achieved through traditional arc welding. However, this is not well documented, especially for bobbin friction stir welding (BFSW). Therefore, an investigation is conducted by measuring current consumption of the machine during the BFSW process. From the measurement, different phases of BFSW welding process and its electrical demand are presented. It is found that in general total energy in BFSW is about 130kW inclusive of all identified process phases. The phase that utilise for joint formation is in weld phase that used the highest total energy of 120kWs. The recorded total energy is still far below the traditional welding technology and the conventional friction stir welding (CFSW) energy demand. This indicates that BFSW technology with its vast benefit able to sustain the joining technology in near future.

  12. Enabling high speed friction stir welding of aluminum tailor welded blanks

    Science.gov (United States)

    Hovanski, Yuri

    Current welding technologies for production of aluminum tailor-welded blanks (TWBs) are utilized in low-volume and niche applications, and have yet to be scaled for the high-volume vehicle market. This study targeted further weight reduction, part reduction, and cost savings by enabling tailor-welded blank technology for aluminum alloys at high-volumes. While friction stir welding (FSW) has traditionally been applied at linear velocities less than one meter per minute, high volume production applications demand the process be extended to higher velocities more amenable to cost sensitive production environments. Unfortunately, weld parameters and performance developed and characterized at low to moderate welding velocities do not directly translate to high speed linear friction stir welding. Therefore, in order to facilitate production of high volume aluminum FSW components, parameters were developed with a minimum welding velocity of three meters per minute. With an emphasis on weld quality, welded blanks were evaluated for post-weld formability using a combination of numerical and experimental methods. Evaluation across scales was ultimately validated by stamping full-size production door inner panels made from dissimilar thickness aluminum tailor-welded blanks, which provided validation of the numerical and experimental analysis of laboratory scale tests.

  13. Vibration Suppression for Improving the Estimation of Kinematic Parameters on Industrial Robots

    Directory of Open Access Journals (Sweden)

    David Alejandro Elvira-Ortiz

    2016-01-01

    Full Text Available Vibration is a phenomenon that is present on every industrial system such as CNC machines and industrial robots. Moreover, sensors used to estimate angular position of a joint in an industrial robot are severely affected by vibrations and lead to wrong estimations. This paper proposes a methodology for improving the estimation of kinematic parameters on industrial robots through a proper suppression of the vibration components present on signals acquired from two primary sensors: accelerometer and gyroscope. A Kalman filter is responsible for the filtering of spurious vibration. Additionally, a sensor fusion technique is used to merge information from both sensors and improve the results obtained using each sensor separately. The methodology is implemented in a proprietary hardware signal processor and tested in an ABB IRB 140 industrial robot, first by analyzing the motion profile of only one joint and then by estimating the path tracking of two welding tasks: one rectangular and another one circular. Results from this work prove that the sensor fusion technique accompanied by proper suppression of vibrations delivers better estimation than other proposed techniques.

  14. The Influence of Friction Stir Weld Tool Form and Welding Parameters on Weld Structure and Properties: Nugget Bulge in Self-Reacting Friction Stir Welds

    Science.gov (United States)

    Schneider, Judy; Nunes, Arthur C., Jr.; Brendel, Michael S.

    2010-01-01

    Although friction stir welding (FSW) was patented in 1991, process development has been based upon trial and error and the literature still exhibits little understanding of the mechanisms determining weld structure and properties. New concepts emerging from a better understanding of these mechanisms enhance the ability of FSW engineers to think about the FSW process in new ways, inevitably leading to advances in the technology. A kinematic approach in which the FSW flow process is decomposed into several simple flow components has been found to explain the basic structural features of FSW welds and to relate them to tool geometry and process parameters. Using this modelling approach, this study reports on a correlation between the features of the weld nugget, process parameters, weld tool geometry, and weld strength. This correlation presents a way to select process parameters for a given tool geometry so as to optimize weld strength. It also provides clues that may ultimately explain why the weld strength varies within the sample population.

  15. Modular entanglement.

    Science.gov (United States)

    Gualdi, Giulia; Giampaolo, Salvatore M; Illuminati, Fabrizio

    2011-02-04

    We introduce and discuss the concept of modular entanglement. This is the entanglement that is established between the end points of modular systems composed by sets of interacting moduli of arbitrarily fixed size. We show that end-to-end modular entanglement scales in the thermodynamic limit and rapidly saturates with the number of constituent moduli. We clarify the mechanisms underlying the onset of entanglement between distant and noninteracting quantum systems and its optimization for applications to quantum repeaters and entanglement distribution and sharing.

  16. Conceptual requirements for large fusion experiment control, data, robotics, and management systems

    International Nuclear Information System (INIS)

    Gaudreau, M.P.J.; Sullivan, J.D.

    1987-05-01

    The conceptual system requirements for the control, data, robotics, and project management (CDRM) system for the next generation of fusion experiments are developed by drawing on the success of the Tara control and data system. The requirements are described in terms of an integrated but separable matrix of well-defined interfaces among the various systems and subsystems. The study stresses modularity, performance, cost effectiveness, and exportability

  17. Developing Humanoid Robots for Real-World Environments

    Science.gov (United States)

    Stoica, Adrian; Kuhlman, Michael; Assad, Chris; Keymeulen, Didier

    2008-01-01

    Humanoids are steadily improving in appearance and functionality demonstrated in controlled environments. To address the challenges of operation in the real-world, researchers have proposed the use of brain-inspired architectures for robot control, and the use of robot learning techniques that enable the robot to acquire and tune skills and behaviours. In the first part of the paper we introduce new concepts and results in these two areas. First, we present a cerebellum-inspired model that demonstrated efficiency in the sensory-motor control of anthropomorphic arms, and in gait control of dynamic walkers. Then, we present a set of new ideas related to robot learning, emphasizing the importance of developing teaching techniques that support learning. In the second part of the paper we propose the use in robotics of the iterative and incremental development methodologies, in the context of practical task-oriented applications. These methodologies promise to rapidly reach system-level integration, and to early identify system-level weaknesses to focus on. We apply this methodology in a task targeting the automated assembly of a modular structure using HOAP-2. We confirm this approach led to rapid development of a end-to-end capability, and offered guidance on which technologies to focus on for gradual improvement of a complete functional system. It is believed that providing Grand Challenge type milestones in practical task-oriented applications accelerates development. As a meaningful target in short-mid term we propose the 'IKEA Challenge', aimed at the demonstration of autonomous assembly of various pieces of furniture, from the box, following included written/drawn instructions.

  18. Automatic orbital GTAW welding: Highest quality welds for tomorrow's high-performance systems

    Science.gov (United States)

    Henon, B. K.

    1985-01-01

    Automatic orbital gas tungsten arc welding (GTAW) or TIG welding is certain to play an increasingly prominent role in tomorrow's technology. The welds are of the highest quality and the repeatability of automatic weldings is vastly superior to that of manual welding. Since less heat is applied to the weld during automatic welding than manual welding, there is less change in the metallurgical properties of the parent material. The possibility of accurate control and the cleanliness of the automatic GTAW welding process make it highly suitable to the welding of the more exotic and expensive materials which are now widely used in the aerospace and hydrospace industries. Titanium, stainless steel, Inconel, and Incoloy, as well as, aluminum can all be welded to the highest quality specifications automatically. Automatic orbital GTAW equipment is available for the fusion butt welding of tube-to-tube, as well as, tube to autobuttweld fittings. The same equipment can also be used for the fusion butt welding of up to 6 inch pipe with a wall thickness of up to 0.154 inches.

  19. Complexity in Managing Modularization

    DEFF Research Database (Denmark)

    Hansen, Poul H. Kyvsgård; Sun, Hongyi

    2011-01-01

    In general, the phenomenon of managing modularization is not well known. The cause-effect relationships between modularization and realized benefits are complex and comprehensive. Though a number of research works have contributed to the study of the phenomenon of efficient and effective...... modularization management it is far from clarified. Recognizing the need for further empirical research, we have studied 40 modularity cases in various companies. The studies have been designed as long-term studies leaving time for various types of modularization benefits to emerge. Based on these studies we...... have developed a framework to support the heuristic and iterative process of planning and realizing modularization benefits....

  20. Influence of Welding Process and Post Weld Heat Treatment on Microstructure and Pitting Corrosion Behavior of Dissimilar Aluminium Alloy Welds

    Science.gov (United States)

    Venkata Ramana, V. S. N.; Mohammed, Raffi; Madhusudhan Reddy, G.; Srinivasa Rao, K.

    2018-03-01

    Welding of dissimilar Aluminum alloy welds is becoming important in aerospace, shipbuilding and defence applications. In the present work, an attempt has been made to weld dissimilar aluminium alloys using conventional gas tungsten arc welding (GTAW) and friction stir welding (FSW) processes. An attempt was also made to study the effect of post weld heat treatment (T4 condition) on microstructure and pitting corrosion behaviour of these welds. Results of the present investigation established the differences in microstructures of the base metals in T4 condition and in annealed conditions. It is evident that the thickness of the PMZ is relatively more on AA2014 side than that of AA6061 side. In FS welds, lamellar like shear bands are well noticed on the top of the stir zone. The concentration profile of dissimilar friction stir weld in T4 condition revealed that no diffusion has taken place at the interface. Poor Hardness is observed in all regions of FS welds compared to that of GTA welds. Pitting corrosion resistance of the dissimilar FS welds in all regions was improved by post weld heat treatment.

  1. Comparison of stainless and mild steel welding fumes in generation of reactive oxygen species

    Directory of Open Access Journals (Sweden)

    Frazer David

    2010-11-01

    Full Text Available Abstract Background Welding fumes consist of a wide range of complex metal oxide particles which can be deposited in all regions of the respiratory tract. The welding aerosol is not homogeneous and is generated mostly from the electrode/wire. Over 390,000 welders were reported in the U.S. in 2008 while over 1 million full-time welders were working worldwide. Many health effects are presently under investigation from exposure to welding fumes. Welding fume pulmonary effects have been associated with bronchitis, metal fume fever, cancer and functional changes in the lung. Our investigation focused on the generation of free radicals and reactive oxygen species from stainless and mild steel welding fumes generated by a gas metal arc robotic welder. An inhalation exposure chamber located at NIOSH was used to collect the welding fume particles. Results Our results show that hydroxyl radicals (.OH were generated from reactions with H2O2 and after exposure to cells. Catalase reduced the generation of .OH from exposed cells indicating the involvement of H2O2. The welding fume suspension also showed the ability to cause lipid peroxidation, effect O2 consumption, induce H2O2 generation in cells, and cause DNA damage. Conclusion Increase in oxidative damage observed in the cellular exposures correlated well with .OH generation in size and type of welding fumes, indicating the influence of metal type and transition state on radical production as well as associated damage. Our results demonstrate that both types of welding fumes are able to generate ROS and ROS-related damage over a range of particle sizes; however, the stainless steel fumes consistently showed a significantly higher reactivity and radical generation capacity. The chemical composition of the steel had a significant impact on the ROS generation capacity with the stainless steel containing Cr and Ni causing more damage than the mild steel. Our results suggest that welding fumes may cause acute

  2. A control system for uniform bead in fillet arc welding on tack welds

    International Nuclear Information System (INIS)

    Kim, Jae Woong; Lee, Jun Young

    2008-01-01

    Positioning a workpiece accurately and preventing weld distortion, tack welding is often adopted before main welding in the construction of welded structures. However, this tack weld deteriorates the final weld bead profile, so that the grinding process is usually performed for a uniform weld bead profile. In this study, a control system for uniform weld bead is proposed for the fillet arc welding on tack welds. The system consists of GMA welding machine, torch manipulator, laser vision sensor for measuring the tack weld size and the database for optimal welding conditions. Experiments have been performed for constructing the database and for evaluating the control capability of the system. It has been shown that the system has the capability to smooth the bead at the high level of quality

  3. Torque Measurement of Welding of Endplug-Endplate using Multi-pin Remote Welding System

    Energy Technology Data Exchange (ETDEWEB)

    Koo, Dae-Seo; Kim, Soo-Sung; Park, Geun-Il; Lee, Jung-Won; Song, Kee-Chan [Korea Atomic Energy Research Institute, Taejon (Korea, Republic of)

    2006-07-01

    As fuel bundles in PHWR irradiates, inner pressure in claddings of fuel rods increases owing to outer pressure and fission products of nuclear fissions. Because of leak possibility of welding between cladding and end plug, this welding part connects with safety of nuclear fuel rods. Because of importance of this welding part, weldability of end plug-cladding of nuclear fuel rods is continually researched. Welding method for research and commercialization is classified as melting, solid type welding or resistance welding. End plug cladding welding of nuclear fuel rods in PHWR takes advantage of resistance upset butt welding using multicycle mode. This method makes weld flash and shapes re-entrant corner owing to welding heat due to resistivity, contact resistance of cladding-end plug, and inelasticity deformation due to pressure. Welding part between cladding and end plug receives stresses and makes small cracks. In this study, remote welding system for multi-pin assembly was designed, fabricated and welding specimens of end plug-endplate were made using electrical resistance method. The torques of welding between end plug and endplate were measured. These results on welding current, pressure of main electrode and pressure of branch electrode were analyzed. Weldability between end plug and endplate was confirmed through metallographic examinations. In the future, optimal welding examinations due to welding current, welding pressure and welding time will be performed to improve weldability of end plug-endplate.

  4. Advantages of new micro-jet welding technology on weld microstructure control

    Directory of Open Access Journals (Sweden)

    Jan PIWNIK

    2013-01-01

    Full Text Available An innovative apparatus to welding process with micro-jet cooling of the weld made it possible to carry out technological tests, which have proved theoretical considerations about this problem. This project gives real opportunities for professional development in the field of welding with controlling the parameters of weld structure. These tests have proved that the new micro-jet technology has the potential for growth. It may be great achievement of welding technology in order to increase weld metal strength. The new technology with micro-jet cooling may have many practical applications in many fields, for example such as in the transport industry or to repair damaged metal elements. The advantages of the new device over the traditional system are the ability to control the structure of the weld, the weld mechanical performance increases and improve the quality of welded joints.

  5. Study on laser welding of austenitic stainless steel by varying incident angle of pulsed laser beam

    Science.gov (United States)

    Kumar, Nikhil; Mukherjee, Manidipto; Bandyopadhyay, Asish

    2017-09-01

    In the present work, AISI 304 stainless steel sheets are laser welded in butt joint configuration using a robotic control 600 W pulsed Nd:YAG laser system. The objective of the work is of twofold. Firstly, the study aims to find out the effect of incident angle on the weld pool geometry, microstructure and tensile property of the welded joints. Secondly, a set of experiments are conducted, according to response surface design, to investigate the effects of process parameters, namely, incident angle of laser beam, laser power and welding speed, on ultimate tensile strength by developing a second order polynomial equation. Study with three different incident angle of laser beam 89.7 deg, 85.5 deg and 83 deg has been presented in this work. It is observed that the weld pool geometry has been significantly altered with the deviation in incident angle. The weld pool shape at the top surface has been altered from semispherical or nearly spherical shape to tear drop shape with decrease in incident angle. Simultaneously, planer, fine columnar dendritic and coarse columnar dendritic structures have been observed at 89.7 deg, 85.5 deg and 83 deg incident angle respectively. Weld metals with 85.5 deg incident angle has higher fraction of carbide and δ-ferrite precipitation in the austenitic matrix compared to other weld conditions. Hence, weld metal of 85.5 deg incident angle achieved higher micro-hardness of ∼280 HV and tensile strength of 579.26 MPa followed by 89.7 deg and 83 deg incident angle welds. Furthermore, the predicted maximum value of ultimate tensile strength of 580.50 MPa has been achieved for 85.95 deg incident angle using the developed equation where other two optimum parameter settings have been obtained as laser power of 455.52 W and welding speed of 4.95 mm/s. This observation has been satisfactorily validated by three confirmatory tests.

  6. Exploring Modularity in Services

    DEFF Research Database (Denmark)

    Avlonitis, Viktor; Hsuan, Juliana

    2017-01-01

    the effects of modularity and integrality on a range of different analytical levels in service architectures. Taking a holistic approach, the authors synthesize and empirically deploy a framework comprised of the three most prevalent themes in modularity and service design literature: Offering (service...... insights on the mirroring hypothesis of modularity theory to services. Originality/value The paper provides a conceptualization of service architectures drawing on service design, modularity, and market relationships. The study enriches service design literature with elements from modularity theory...

  7. TECHNOLOGICAL ISSUES IN MECHANISED FEED WIG/TIG WELDING SURFACING OF WELDING

    Directory of Open Access Journals (Sweden)

    BURCA Mircea

    2016-09-01

    manual welding tests in the light of using the process for welding surfacing being known that in such applications mechanised operations are recommended whenever possible given the latter strengths i.e. increased productivity and quality deposits. The research also aims at achieving a comparative a study between wire mechanised feed based WIG manual welding and the manual rod entry based manual welding in terms of geometry deposits, deposits aesthetics, operating technique, productivity, etc . In this regard deposits were made by means of two welding procedures, and subsequently welding surfacing was made with the optimum values of the welding parameters in this case.

  8. Unix Philosophy and the Real World: Control Software for Humanoid Robots

    Directory of Open Access Journals (Sweden)

    Neil Thomas Dantam

    2016-03-01

    Full Text Available Robot software combines the challenges of general purpose and real-time software, requiring complex logic and bounded resource use. Physical safety, particularly for dynamic systems such as humanoid robots, depends on correct software. General purpose computation has converged on unix-like operating systems -- standardized as POSIX, the Portable Operating System Interface -- for devices from cellular phones to supercomputers. The modular, multi-process design typical of POSIX applications is effective for building complex and reliable software. Absent from POSIX, however, is an interproccess communication mechanism that prioritizes newer data as typically desired for control of physical systems. We address this need in the Ach communication library which provides suitable semantics and performance for real-time robot control. Although initially designed for humanoid robots, Ach has broader applicability to complex mechatronic devices -- humanoid and otherwise -- that require real-time coupling of sensors, control, planning, and actuation. The initial user space implementation of Ach was limited in the ability to receive data from multiple sources. We remove this limitation by implementing Ach as a Linux kernel module, enabling Ach's high-performance and latest-message-favored semantics within conventional POSIX communication pipelines. We discuss how these POSIX interfaces and design principles apply to robot software, and we present a case study using the Ach kernel module for communication on the Baxter robot.

  9. Robotics Technology Development Program Cross Cutting and Advanced Technology

    International Nuclear Information System (INIS)

    Harrigan, R.W.; Horschel, D.S.

    1994-01-01

    Need-based cross cutting technology is being developed which is broadly applicable to the clean up of hazardous and radioactive waste within the US Department of Energy's complex. Highly modular, reusable technologies which plug into integrated system architectures to meet specific robotic needs result from this research. In addition, advanced technologies which significantly extend current capabilities such as automated planning and sensor-based control in unstructured environments for remote system operation are also being developed and rapidly integrated into operating systems

  10. TosNet: An easy-to-use, real-time communications protocol for modular, distributed robot controllers

    DEFF Research Database (Denmark)

    Falsig, Simon; Sørensen, Anders Stengaard

    2009-01-01

    Net supports up to 15 nodes, with cycle-rates up to 25 kHz, depending on the configuration. The protocol stack is completely specified as VHDL code, implemented in an FPGA. The physical layer is implemented with Toslink fiberoptic links, offering a compact, robust and highly available link technology......This paper presents the TosNet network, created for robotics research, education, and prototyping, emphasizing ease of use, robustness, compactness, flexibility and fast hard realtime response, to allow distribution of all levels of the robot control system. The current implementation of Tos...

  11. Outcomes from the Delphi process of the Thoracic Robotic Curriculum Development Committee.

    Science.gov (United States)

    Veronesi, Giulia; Dorn, Patrick; Dunning, Joel; Cardillo, Giuseppe; Schmid, Ralph A; Collins, Justin; Baste, Jean-Marc; Limmer, Stefan; Shahin, Ghada M M; Egberts, Jan-Hendrik; Pardolesi, Alessandro; Meacci, Elisa; Stamenkovic, Sasha; Casali, Gianluca; Rueckert, Jens C; Taurchini, Mauro; Santelmo, Nicola; Melfi, Franca; Toker, Alper

    2018-06-01

    As the adoption of robotic procedures becomes more widespread, additional risk related to the learning curve can be expected. This article reports the results of a Delphi process to define procedures to optimize robotic training of thoracic surgeons and to promote safe performance of established robotic interventions as, for example, lung cancer and thymoma surgery. In June 2016, a working panel was spontaneously created by members of the European Society of Thoracic Surgeons (ESTS) and European Association for Cardio-Thoracic Surgery (EACTS) with a specialist interest in robotic thoracic surgery and/or surgical training. An e-consensus-finding exercise using the Delphi methodology was applied requiring 80% agreement to reach consensus on each question. Repeated iterations of anonymous voting continued over 3 rounds. Agreement was reached on many points: a standardized robotic training curriculum for robotic thoracic surgery should be divided into clearly defined sections as a staged learning pathway; the basic robotic curriculum should include a baseline evaluation, an e-learning module, a simulation-based training (including virtual reality simulation, Dry lab and Wet lab) and a robotic theatre (bedside) observation. Advanced robotic training should include e-learning on index procedures (right upper lobe) with video demonstration, access to video library of robotic procedures, simulation training, modular console training to index procedure, transition to full-procedure training with a proctor and final evaluation of the submitted video to certified independent examiners. Agreement was reached on a large number of questions to optimize and standardize training and education of thoracic surgeons in robotic activity. The production of the content of the learning material is ongoing.

  12. Welding Penetration Control of Fixed Pipe in TIG Welding Using Fuzzy Inference System

    Science.gov (United States)

    Baskoro, Ario Sunar; Kabutomori, Masashi; Suga, Yasuo

    This paper presents a study on welding penetration control of fixed pipe in Tungsten Inert Gas (TIG) welding using fuzzy inference system. The welding penetration control is essential to the production quality welds with a specified geometry. For pipe welding using constant arc current and welding speed, the bead width becomes wider as the circumferential welding of small diameter pipes progresses. Having welded pipe in fixed position, obviously, the excessive arc current yields burn through of metals; in contrary, insufficient arc current produces imperfect welding. In order to avoid these errors and to obtain the uniform weld bead over the entire circumference of the pipe, the welding conditions should be controlled as the welding proceeds. This research studies the intelligent welding process of aluminum alloy pipe 6063S-T5 in fixed position using the AC welding machine. The monitoring system used a charge-coupled device (CCD) camera to monitor backside image of molten pool. The captured image was processed to recognize the edge of molten pool by image processing algorithm. Simulation of welding control using fuzzy inference system was constructed to simulate the welding control process. The simulation result shows that fuzzy controller was suitable for controlling the welding speed and appropriate to be implemented into the welding system. A series of experiments was conducted to evaluate the performance of the fuzzy controller. The experimental results show the effectiveness of the control system that is confirmed by sound welds.

  13. Design of the reactor vessel inspection robot for the advanced liquid metal reactor

    International Nuclear Information System (INIS)

    Spelt, P.F.; Crane, C.; Feng, L.; Abidi, M.; Tosunoglu, S.

    1994-01-01

    A consortium of four universities and Oak Ridge National Laboratory designed a prototype wall-crawling robot to perform weld inspection in an advanced nuclear reactor. The restrictions of the inspection environment presented major challenges to the team. These challenges were met in the prototype, which has been tested in a mock non-hostile environment and shown to perform as expected, as detailed in this report

  14. Constraint optimization model of a scheduling problem for a robotic arm in automatic systems

    DEFF Research Database (Denmark)

    Kristiansen, Ewa; Smith, Stephen F.; Kristiansen, Morten

    2014-01-01

    are characteristics of the painting process application itself. Unlike spot-welding, painting tasks require movement of the entire robot arm. In addition to minimizing intertask duration, the scheduler must strive to maximize painting quality and the problem is formulated as a multi-objective optimization problem....... The scheduling model is implemented as a stand-alone module using constraint programming, and integrated with a larger automatic system. The results of a number of simulation experiments with simple parts are reported, both to characterize the functionality of the scheduler and to illustrate the operation...... of the entire software system for automatic generation of robot programs for painting....

  15. Versatile Friction Stir Welding/Friction Plug Welding System

    Science.gov (United States)

    Carter, Robert

    2006-01-01

    A proposed system of tooling, machinery, and control equipment would be capable of performing any of several friction stir welding (FSW) and friction plug welding (FPW) operations. These operations would include the following: Basic FSW; FSW with automated manipulation of the length of the pin tool in real time [the so-called auto-adjustable pin-tool (APT) capability]; Self-reacting FSW (SRFSW); SR-FSW with APT capability and/or real-time adjustment of the distance between the front and back shoulders; and Friction plug welding (FPW) [more specifically, friction push plug welding] or friction pull plug welding (FPPW) to close out the keyhole of, or to repair, an FSW or SR-FSW weld. Prior FSW and FPW systems have been capable of performing one or two of these operations, but none has thus far been capable of performing all of them. The proposed system would include a common tool that would have APT capability for both basic FSW and SR-FSW. Such a tool was described in Tool for Two Types of Friction Stir Welding (MFS- 31647-1), NASA Tech Briefs, Vol. 30, No. 10 (October 2006), page 70. Going beyond what was reported in the cited previous article, the common tool could be used in conjunction with a plug welding head to perform FPW or FPPW. Alternatively, the plug welding head could be integrated, along with the common tool, into a FSW head that would be capable of all of the aforementioned FSW and FPW operations. Any FSW or FPW operation could be performed under any combination of position and/or force control.

  16. Effect of Welding Parameters on Dilution and Weld Bead Geometry in Cladding

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    The effect of pulsed gas metal arc welding (GMAW) variables on the dilution and weld bead geometry in cladding X65 pipeline steel with 316L stainless steel was studied. Using a full factorial method, a series of experiments were carried out to know the effect of wire feed rate, welding speed, distance between gas nozzle and plate, and the vertical angle of welding on dilution and weld bead geometry. The findings indicate that the dilution of weld metal and its dimension i.e. width, height and depth increase with the feed rate, but the contact angle of the bead decreases first and then increases. Meantime, welding speed has an opposite effect except for dilution. There is an interaction effect between welding parameters at the contact angle. The results also show forehand welding or decreasing electrode extension decrease the angle of contact. Finally,a mathematical model is contrived to highlight the relationship between welding variables with dilution and weld bead geometry.

  17. Robot for Investigations and Assessments of Nuclear Areas

    Energy Technology Data Exchange (ETDEWEB)

    Kanaan, Daniel; Dogny, Stephane [AREVA D and S/DT, 30206 Bagnols sur Ceze (France)

    2015-07-01

    RIANA is a remote controlled Robot dedicated for Investigations and Assessments of Nuclear Areas. The development of RIANA is motivated by the need to have at disposal a proven robot, tested in hot cells; a robot capable of remotely investigate and characterise the inside of nuclear facilities in order to collect efficiently all the required data in the shortest possible time. It is based on a wireless medium sized remote carrier that may carry a wide variety of interchangeable modules, sensors and tools. It is easily customised to match specific requirements and quickly configured depending on the mission and the operator's preferences. RIANA integrates localisation and navigation systems. The robot will be able to generate / update a 2D map of its surrounding and exploring areas. The position of the robot is given accurately on the map. Furthermore, the robot will be able to autonomously calculate, define and follow a trajectory between 2 points taking into account its environment and obstacles. The robot is configurable to manage obstacles and restrict access to forbidden areas. RIANA allows an advanced control of modules, sensors and tools; all collected data (radiological and measured data) are displayed in real time in different format (chart, on the generated map...) and stored in a single place so that may be exported in a convenient format for data processing. This modular design gives RIANA the flexibility to perform multiple investigation missions where humans cannot work such as: visual inspections, dynamic localization and 2D mapping, characterizations and nuclear measurements of floor and walls, non destructive testing, samples collection: solid and liquid. The benefits of using RIANA are: - reducing the personnel exposures by limiting the manual intervention time, - minimizing the time and reducing the cost of investigation operations, - providing critical inputs to set up and optimize cleanup and dismantling operations. (authors)

  18. Robot for Investigations and Assessments of Nuclear Areas

    International Nuclear Information System (INIS)

    Kanaan, Daniel; Dogny, Stephane

    2015-01-01

    RIANA is a remote controlled Robot dedicated for Investigations and Assessments of Nuclear Areas. The development of RIANA is motivated by the need to have at disposal a proven robot, tested in hot cells; a robot capable of remotely investigate and characterise the inside of nuclear facilities in order to collect efficiently all the required data in the shortest possible time. It is based on a wireless medium sized remote carrier that may carry a wide variety of interchangeable modules, sensors and tools. It is easily customised to match specific requirements and quickly configured depending on the mission and the operator's preferences. RIANA integrates localisation and navigation systems. The robot will be able to generate / update a 2D map of its surrounding and exploring areas. The position of the robot is given accurately on the map. Furthermore, the robot will be able to autonomously calculate, define and follow a trajectory between 2 points taking into account its environment and obstacles. The robot is configurable to manage obstacles and restrict access to forbidden areas. RIANA allows an advanced control of modules, sensors and tools; all collected data (radiological and measured data) are displayed in real time in different format (chart, on the generated map...) and stored in a single place so that may be exported in a convenient format for data processing. This modular design gives RIANA the flexibility to perform multiple investigation missions where humans cannot work such as: visual inspections, dynamic localization and 2D mapping, characterizations and nuclear measurements of floor and walls, non destructive testing, samples collection: solid and liquid. The benefits of using RIANA are: - reducing the personnel exposures by limiting the manual intervention time, - minimizing the time and reducing the cost of investigation operations, - providing critical inputs to set up and optimize cleanup and dismantling operations. (authors)

  19. Fusion welding process

    Science.gov (United States)

    Thomas, Kenneth C.; Jones, Eric D.; McBride, Marvin A.

    1983-01-01

    A process for the fusion welding of nickel alloy steel members wherein a ferrite containing pellet is inserted into a cavity in one member and melted by a welding torch. The resulting weld nugget, a fusion of the nickel containing alloy from the members to be welded and the pellet, has a composition which is sufficiently low in nickel content such that ferrite phases occur within the weld nugget, resulting in improved weld properties. The steel alloys encompassed also include alloys containing carbon and manganese, considered nickel equivalents.

  20. MAG narrow gap welding - an economic way to minimize welding expenses

    International Nuclear Information System (INIS)

    Kast, W.; Scholz, E.; Weyland, F.

    1982-01-01

    The thicker structural components are, the more important it is to take measures to reduce the volume of the weld. The welding process requiring the smallest possible weld section is the so-called narrow gap process. In submerged arc narrow gap welding as well as in MAG narrow gap welding different variants are imaginable, some of them already in practical use. With regard to efficiency and weld quality an optimum variant of the MAG narrow gap welding process is described. It constitutes a two wire system in which two wire electrodes of 1.2 mm diameter are arranged one behind the other. In order to avoid lack of fusion, the wire guides are slightly pointed towards each groove face. Thus, by inclining the two arcs burning one behind the other in the direction of weld progress, it is achieved that two separately solidifying weld pools and two beads per layer are simultaneously formed. Welding parameters are selected in such a way that a heat input of 16-20 kJ/cm and a deposition rate of 11-16 kgs/h are obtained. In spite of this comparatively high deposition rate, good impact values are found both in the weld and HAZ (largely reduced coarse-grain zone) which is due to an optimum weld build-up. With the available welding equipment the process can be applied to structural members having a thickness of 40-400 mm. The width of gap is 13 mm (root section) with a bevel angle of 1 0 . As filler metal, basic flux-cored wires are used which, depending on the base metal to be welded and the required tensile properties, can be of the Mn-, MnMo-, MnCrMo-, MnNi-, or MnNiMo-alloyed types. (orig.)

  1. Advanced Welding Applications

    Science.gov (United States)

    Ding, Robert J.

    2010-01-01

    Some of the applications of advanced welding techniques are shown in this poster presentation. Included are brief explanations of the use on the Ares I and Ares V launch vehicle and on the Space Shuttle Launch vehicle. Also included are microstructural views from four advanced welding techniques: Variable Polarity Plasma Arc (VPPA) weld (fusion), self-reacting friction stir welding (SR-FSW), conventional FSW, and Tube Socket Weld (TSW) on aluminum.

  2. WELDING METHOD

    Science.gov (United States)

    Cornell, A.A.; Dunbar, J.V.; Ruffner, J.H.

    1959-09-29

    A semi-automatic method is described for the weld joining of pipes and fittings which utilizes the inert gasshielded consumable electrode electric arc welding technique, comprising laying down the root pass at a first peripheral velocity and thereafter laying down the filler passes over the root pass necessary to complete the weld by revolving the pipes and fittings at a second peripheral velocity different from the first peripheral velocity, maintaining the welding head in a fixed position as to the specific direction of revolution, while the longitudinal axis of the welding head is disposed angularly in the direction of revolution at amounts between twenty minutas and about four degrees from the first position.

  3. Friction stir welding tool and process for welding dissimilar materials

    Science.gov (United States)

    Hovanski, Yuri; Grant, Glenn J; Jana, Saumyadeep; Mattlin, Karl F

    2013-05-07

    A friction stir welding tool and process for lap welding dissimilar materials are detailed. The invention includes a cutter scribe that penetrates and extrudes a first material of a lap weld stack to a preselected depth and further cuts a second material to provide a beneficial geometry defined by a plurality of mechanically interlocking features. The tool backfills the interlocking features generating a lap weld across the length of the interface between the dissimilar materials that enhances the shear strength of the lap weld.

  4. Syllabus in Trade Welding.

    Science.gov (United States)

    New York State Education Dept., Albany. Bureau of Secondary Curriculum Development.

    The syllabus outlines material for a course two academic years in length (minimum two and one-half hours daily experience) leading to entry-level occupational ability in several welding trade areas. Fourteen units covering are welding, gas welding, oxyacetylene welding, cutting, nonfusion processes, inert gas shielded-arc welding, welding cast…

  5. Latest MIG, TIG arc-YAG laser hybrid welding systems for various welding products

    Science.gov (United States)

    Ishide, Takashi; Tsubota, Shuho; Watanabe, Masao

    2003-03-01

    Laser welding is capable of high-efficiency low-strain welding, and so its applications are started to various products. We have also put the high-power YAG laser of up to 10 kW to practical welding use for various products. On the other hand the weakest point of this laser welding is considered to be strict in the welding gap aiming allowance. In order to solve this problem, we have developed hybrid welding of TIG, MIG arc and YAG laser, taking the most advantages of both the laser and arc welding. Since the electrode is coaxial to the optical axis of the YAG laser in this process, it can be applied to welding of various objects. In the coaxial MIG, TIG-YAG welding, in order to make irradiation positions of the YAG laser beams having been guided in a wire or an electrode focused to the same position, the beam transmitted in fibers is separated to form a space between the separated beams, in which the laser is guided. With this method the beam-irradiating area can be brought near or to the arc-generating point. This enables welding of all directions even for the member of a three-dimensional shape. This time we carried out welding for various materials and have made their welding of up to 1 mm or more in welding groove gap possible. We have realized high-speed 1-pass butt welding of 4m/min in welding speed with the laser power of 3 kW for an aluminum alloy plate of approximately 4 mm thick. For a mild steel plate also we have realized butt welding of 1m/min with 5 kW for 6 mm thick. Further, in welding of stainless steel we have shown its welding possibility, by stabilizing the arc with the YAG laser in the welding atmosphere of pure argon, and shown that this welding is effective in high-efficiency welding of various materials. Here we will report the fundamental welding performances and applications to various objects for the coaxial MIG, TIG-YAG welding we have developed.

  6. Ultrasonic testing of austenitic welds and its dependency on the welding process

    International Nuclear Information System (INIS)

    Tabatabaeipour, S.M.; Honarvar, F.

    2009-01-01

    This paper describes the ultrasonic testing of austenitic welds prepared by two different welding processes. The tests were carried out by the ultrasonic Time-of-Flight Diffraction (ToFD) technique. Shielded Metal Arc Welding (SMAW) and Gas Tungsten Arc Welding (GTAW) are the welding processes used for preparing the specimens. Identical artificial defects were implanted in both welds during the welding process. Both specimens were examined by the ToFD technique under similar conditions. Metallographic images were also obtained from the cross sectional plane of both the SMA and GTA welds. These images show that the grain orientation in the two welded specimens are different. D-scan images obtained by the ToFD technique from these welds indicates that inspecting the specimens prepared by the SMAW process is easier than the one made by the GTAW process. The results also show that the D-scan images cannot reveal the small vertical drilled holes implanted in the specimens. (author)

  7. Service Modularity and Architecture

    DEFF Research Database (Denmark)

    Brax, Saara A.; Bask, Anu; Hsuan, Juliana

    2017-01-01

    , platform-based and mass-customized service business models, comparative research designs, customer perspectives and service experience, performance in context of modular services, empirical evidence of benefits and challenges, architectural innovation in services, modularization in multi-provider contexts......Purpose: Services are highly important in a world economy which has increasingly become service driven. There is a growing need to better understand the possibilities for, and requirements of, designing modular service architectures. The purpose of this paper is to elaborate on the roots...... of the emerging research stream on service modularity, provide a concise overview of existing work on the subject, and outline an agenda for future research on service modularity and architecture. The articles in the special issue offer four diverse sets of research on service modularity and architecture. Design...

  8. Friction Stir Welding of Tapered Thickness Welds Using an Adjustable Pin Tool

    Science.gov (United States)

    Adams, Glynn; Venable, Richard; Lawless, Kirby

    2003-01-01

    Friction stir welding (FSW) can be used for joining weld lands that vary in thickness along the length of the weld. An adjustable pin tool mechanism can be used to accomplish this in a single-pass, full-penetration weld by providing for precise changes in the pin length relative to the shoulder face during the weld process. The difficulty with this approach is in accurately adjusting the pin length to provide a consistent penetration ligament throughout the weld. The weld technique, control system, and instrumentation must account for mechanical and thermal compliances of the tooling system to conduct tapered welds successfully. In this study, a combination of static and in-situ measurements, as well as active control, is used to locate the pin accurately and maintain the desired penetration ligament. Frictional forces at the pin/shoulder interface were a source of error that affected accurate pin position. A traditional FSW pin tool design that requires a lead angle was used to join butt weld configurations that included both constant thickness and tapered sections. The pitch axis of the tooling was fixed throughout the weld; therefore, the effective lead angle in the tapered sections was restricted to within the tolerances allowed by the pin tool design. The sensitivity of the FSW process to factors such as thickness offset, joint gap, centerline offset, and taper transition offset were also studied. The joint gap and the thickness offset demonstrated the most adverse affects on the weld quality. Two separate tooling configurations were used to conduct tapered thickness welds successfully. The weld configurations included sections in which the thickness decreased along the weld, as well as sections in which the thickness increased along the weld. The data presented here include weld metallography, strength data, and process load data.

  9. The technology and welding joint properties of hybrid laser-tig welding on thick plate

    Science.gov (United States)

    Shenghai, Zhang; Yifu, Shen; Huijuan, Qiu

    2013-06-01

    The technologies of autogenous laser welding and hybrid laser-TIG welding are used on thick plate of high strength lower alloy structural steel 10CrNiMnMoV in this article. The unique advantages of hybrid laser-TIG welding is summarized by comparing and analyzing the process parameters and welding joints of autogenous laser welding laser welding and hybrid laser-TIG welding. With the optimal process parameters of hybrid welding, the good welding joint without visible flaws can be obtained and its mechanical properties are tested according to industry standards. The results show that the hybrid welding technology has certain advantages and possibility in welding thick plates. It can reduce the demands of laser power, and it is significant for lowering the aspect ratio of weld during hybrid welding, so the gas in the molten pool can rise and escape easily while welding thick plates. Therefore, the pores forming tendency decreases. At the same time, hybrid welding enhances welding speed, and optimizes the energy input. The transition and grain size of the microstructure of hybrid welding joint is better and its hardness is higher than base material. Furthermore, its tensile strength and impact toughness is as good as base material. Consequently, the hybrid welding joint can meet the industry needs completely.

  10. Effects of post weld heat treatment and weld overlay on the residual stress and mechanical properties in dissimilar metal weld

    International Nuclear Information System (INIS)

    Campos, Wagner R.C.; Ribeiro, Vladimir S.; Vilela, Alisson H.F.; Almeida, Camila R.O.; Rabello, Emerson G.

    2017-01-01

    The object of this work is a dissimilar metal weld (DMW) pipe joint between carbon steel (A-106 Gr B) and stainless steel (A-312 TP316L) pipes and filler metals of Nickel alloy (82/182), which find wide application in the field of chemical, oil, petroleum industries, fossil fuel and nuclear power plant. A lot of the failures that have occurred in dissimilar metal welded are affected greatly by residual stresses. Residual stress is often a cause of premature failure of critical components under normal operation of welded components. Several methods have been tested and developed for removing the tensile residual stresses. The aim of the methods is to reduce the tensile stress state or to create compressive stresses at a predefined area, such as the inner surface of a welded pipe joint. Post weld heat treatment (PWHT) and weld overlay (WOL) are two of the residual stress mitigation methods which reduce the tensile residual stress, create compressive stresses and arrest crack initiation and crack growth. The technique used to substantially minimized or eliminated this failure development in the root weld is the post weld heat treatments (stress relief heat treatment) or the weld overlay. In this work was studied the effectiveness in reducing internal residual stress in dissimilar metal welded pipe joints subjected to post weld heat treatment and weld overlay, measurement by hole-drilling strain-gage method of stress relaxation. Also held was mechanical characterization of the welded pipe joint itself. (author)

  11. Effects of post weld heat treatment and weld overlay on the residual stress and mechanical properties in dissimilar metal weld

    Energy Technology Data Exchange (ETDEWEB)

    Campos, Wagner R.C.; Ribeiro, Vladimir S.; Vilela, Alisson H.F.; Almeida, Camila R.O.; Rabello, Emerson G., E-mail: wrcc@cdtn.br, E-mail: camilarezende.cr@gmail.com, E-mail: egr@cdtn.br, E-mail: vladimirsoler@hotmail.com, E-mail: ahfv02@outlook.com [Centro de Desenvolvimento da Tecnologia Nuclear (CDTN/CNEN-MG), Belo Horizonte, MG (Brazil)

    2017-07-01

    The object of this work is a dissimilar metal weld (DMW) pipe joint between carbon steel (A-106 Gr B) and stainless steel (A-312 TP316L) pipes and filler metals of Nickel alloy (82/182), which find wide application in the field of chemical, oil, petroleum industries, fossil fuel and nuclear power plant. A lot of the failures that have occurred in dissimilar metal welded are affected greatly by residual stresses. Residual stress is often a cause of premature failure of critical components under normal operation of welded components. Several methods have been tested and developed for removing the tensile residual stresses. The aim of the methods is to reduce the tensile stress state or to create compressive stresses at a predefined area, such as the inner surface of a welded pipe joint. Post weld heat treatment (PWHT) and weld overlay (WOL) are two of the residual stress mitigation methods which reduce the tensile residual stress, create compressive stresses and arrest crack initiation and crack growth. The technique used to substantially minimized or eliminated this failure development in the root weld is the post weld heat treatments (stress relief heat treatment) or the weld overlay. In this work was studied the effectiveness in reducing internal residual stress in dissimilar metal welded pipe joints subjected to post weld heat treatment and weld overlay, measurement by hole-drilling strain-gage method of stress relaxation. Also held was mechanical characterization of the welded pipe joint itself. (author)

  12. On use of weld zone temperatures for online monitoring of weld quality in friction stir welding of naturally aged aluminium alloys

    International Nuclear Information System (INIS)

    Imam, Murshid; Biswas, Kajal; Racherla, Vikranth

    2013-01-01

    Highlights: • FSWs for 6063-T4 AA are done at different process parameters and sheet thicknesses. • Weld nugget zone and heat affected zone temperatures are monitored for each case. • Microstructural and mechanical characterisation of welds is done in all cases. • Weld ductility is found to be particularly sensitive to weld zone temperatures. • Strong correlation is found between WNZ and HAZ temperatures and weld properties. - Abstract: 6063-T4 aluminium alloy sheets of 3 and 6 mm thicknesses were friction stir butt welded using a square tool pin at a wide range of tool rotational speeds. Properties of obtained welds were characterised using tensile tests, optical micrographs, X-ray diffraction, and transmission electron microscopy. Shape, size, and distribution of precipitates in weld zones, and strength and ductility of welds were seen to directly correlate with peak temperatures in weld nugget and heat affected zones, independent of sheet thickness. In addition, fluctuations in measured temperature profiles, for 3 mm sheets, were seen to correlate with an increase in scatter of weld nugget zone properties for 3 mm sheets. Optimal weld strength and ductility were obtained for peak weld nugget zone temperatures of around 450 °C and corresponding peak heat affected zone temperatures of around 360–380 °C. Results obtained suggest that, at least for naturally aged aluminium alloys, nature of temperature evolution and magnitudes of peak temperatures in weld nugget and heat affected zones provide information on uniformity of properties in weld zones, overaging of heat affected zones, and formation of tunnel defects from improper material mixing at low weld zone temperatures

  13. Multi-optimization Criteria-based Robot Behavioral Adaptability and Motion Planning

    International Nuclear Information System (INIS)

    Pin, Francois G.

    2002-01-01

    Robotic tasks are typically defined in Task Space (e.g., the 3-D World), whereas robots are controlled in Joint Space (motors). The transformation from Task Space to Joint Space must consider the task objectives (e.g., high precision, strength optimization, torque optimization), the task constraints (e.g., obstacles, joint limits, non-holonomic constraints, contact or tool task constraints), and the robot kinematics configuration (e.g., tools, type of joints, mobile platform, manipulator, modular additions, locked joints). Commercially available robots are optimized for a specific set of tasks, objectives and constraints and, therefore, their control codes are extremely specific to a particular set of conditions. Thus, there exist a multiplicity of codes, each handling a particular set of conditions, but none suitable for use on robots with widely varying tasks, objectives, constraints, or environments. On the other hand, most DOE missions and tasks are typically ''batches of one''. Attempting to use commercial codes for such work requires significant personnel and schedule costs for re-programming or adding code to the robots whenever a change in task objective, robot configuration, number and type of constraint, etc. occurs. The objective of our project is to develop a ''generic code'' to implement this Task-space to Joint-Space transformation that would allow robot behavior adaptation, in real time (at loop rate), to changes in task objectives, number and type of constraints, modes of controls, kinematics configuration (e.g., new tools, added module). Our specific goal is to develop a single code for the general solution of under-specified systems of algebraic equations that is suitable for solving the inverse kinematics of robots, is useable for all types of robots (mobile robots, manipulators, mobile manipulators, etc.) with no limitation on the number of joints and the number of controlled Task-Space variables, can adapt to real time changes in number and

  14. Measuring weld heat to evaluate weld integrity

    Energy Technology Data Exchange (ETDEWEB)

    Schauder, V., E-mail: schauder@hks-prozesstechnik.de [HKS-Prozesstechnik GmbH, Halle (Germany)

    2015-11-15

    Eddy current and ultrasonic testing are suitable for tube and pipe mills and have been used for weld seam flaw detection for decades, but a new process, thermography, is an alternative. By measuring the heat signature of the weld seam as it cools, it provides information about weld integrity at and below the surface. The thermal processes used to join metals, such as plasma, induction, laser, and gas tungsten arc welding (GTAW), have improved since they were developed, and they get better with each passing year. However, no industrial process is perfect, so companies that conduct research in flaw detection likewise continue to develop and improve the technologies used to verify weld integrity: ultrasonic testing (UT), eddy current testing (ET), hydrostatic, X-ray, magnetic particle, and liquid penetrant are among the most common. Two of these are used for verifying the integrity of the continuous welds such as those used on pipe and tube mills: UT and ET. Each uses a transmitter to send waves of ultrasonic energy or electrical current through the material and a receiver (probe) to detect disturbances in the flow. The two processes often are combined to capitalize on the strengths of each. While ET is good at detecting flaws at or near the surface, UT penetrates the material, detecting subsurface flaws. One drawback is that sound waves and electrical current waves have a specific direction of travel, or an alignment. A linear defect that runs parallel to the direction of travel of the ultrasonic sound wave or a flaw that is parallel to the coil winding direction of the ET probe can go undetected. A second drawback is that they don't detect cold welds. An alternative process, thermography, works in a different fashion: It monitors the heat of the material as the weld cools. Although it measures the heat at the surface, the heat signature provides clues about cooling activity deep in the material, resulting in a thorough assessment of the weld's integrity It

  15. Feasibility of Muscle Synergy Outcomes in Clinics, Robotics, and Sports: A Systematic Review

    Directory of Open Access Journals (Sweden)

    Juri Taborri

    2018-01-01

    Full Text Available In the last years, several studies have been focused on understanding how the central nervous system controls muscles to perform a specific motor task. Although it still remains an open question, muscle synergies have come to be an appealing theory to explain the modular organization of the central nervous system. Even though the neural encoding of muscle synergies remains controversial, a large number of papers demonstrated that muscle synergies are robust across different tested conditions, which are within a day, between days, within a single subject, and between subjects that have similar demographic characteristics. Thus, muscle synergy theory has been largely used in several research fields, such as clinics, robotics, and sports. The present systematical review aims at providing an overview on the applications of muscle synergy theory in clinics, robotics, and sports; in particular, the review is focused on the papers that provide tangible information for (i diagnosis or pathology assessment in clinics, (ii robot-control design in robotics, and (iii athletes’ performance assessment or training guidelines in sports.

  16. The effect of post-welding conditions in friction stir welds: From weld simulation to Ductile Failure

    DEFF Research Database (Denmark)

    Hattel, Jesper Henri; Nielsen, Kim Lau; Tutum, Cem Celal

    2012-01-01

    software ANSYS, a thermo-mechanical model is employed to predict the thermally induced stresses and strains during welding, while an in-house finite element code is used to study the plastic flow localization and failure in a subsequent structural analysis. The coupling between the two models is made......The post-welding stress state, strain history and material conditions of friction stir welded joints are often strongly idealized when used in subsequent modeling analyses, typically by neglecting one or more of the features above. But, it is obvious that the conditions after welding do influence......, showed the largest influence of the post-welding conditions, even though significant relaxation of the residual stress state was predicted....

  17. Nitrogen And Oxygen Amount In Weld After Welding With Micro-Jet Cooling

    Directory of Open Access Journals (Sweden)

    Węgrzyn T.

    2015-06-01

    Full Text Available Micro-jet cooling after welding was tested only for MIG welding process with argon, helium and nitrogen as a shielded gases. A paper presents a piece of information about nitrogen and oxygen in weld after micro-jet cooling. There are put down information about gases that could be chosen both for MIG/MAG welding and for micro-jet process. There were given main information about influence of various micro-jet gases on metallographic structure of steel welds. Mechanical properties of weld was presented in terms of nitrogen and oxygen amount in WMD (weld metal deposit.

  18. A study of weld quality in ultrasonic spot welding of similar and dissimilar metals

    International Nuclear Information System (INIS)

    Al-Sarraf, Z; Lucas, M

    2012-01-01

    Several difficulties are faced in joining thinner sheets of similar and dissimilar materials from fusion welding processes such as resistance welding and laser welding. Ultrasonic metal welding overcomes many of these difficulties by using high frequency vibration and applied pressure to create a solid-state weld. Ultrasonic metal welding is an effective technique in joining small components, such as in wire bonding, but is also capable of joining thicker sheet, depending on the control of welding conditions. This study presents the design, characterisation and test of a lateral-drive ultrasonic metal welding device. The ultrasonic welding horn is modelled using finite element analysis and its vibration behaviour is characterised experimentally to ensure ultrasonic energy is delivered to the weld coupon. The welding stack and fixtures are then designed and mounted on a test machine to allow a series of experiments to be conducted for various welding and ultrasonic parameters. Weld strength is subsequently analysed using tensile-shear tests. Control of the vibration amplitude profile through the weld cycle is used to enhance weld strength and quality, providing an opportunity to reduce part marking. Optical microscopic examination and scanning electron microscopy (SEM) were employed to investigate the weld quality. The results show how the weld quality is particularly sensitive to the combination of clamping force and vibration amplitude of the welding tip.

  19. End-point impedance measurements across dominant and nondominant hands and robotic assistance with directional damping.

    Science.gov (United States)

    Erden, Mustafa Suphi; Billard, Aude

    2015-06-01

    The goal of this paper is to perform end-point impedance measurements across dominant and nondominant hands while doing airbrush painting and to use the results for developing a robotic assistance scheme. We study airbrush painting because it resembles in many ways manual welding, a standard industrial task. The experiments are performed with the 7 degrees of freedom KUKA lightweight robot arm. The robot is controlled in admittance using a force sensor attached at the end-point, so as to act as a free-mass and be passively guided by the human. For impedance measurements, a set of nine subjects perform 12 repetitions of airbrush painting, drawing a straight-line on a cartoon horizontally placed on a table, while passively moving the airbrush mounted on the robot's end-point. We measure hand impedance during the painting task by generating sudden and brief external forces with the robot. The results show that on average the dominant hand displays larger impedance than the nondominant in the directions perpendicular to the painting line. We find the most significant difference in the damping values in these directions. Based on this observation, we develop a "directional damping" scheme for robotic assistance and conduct a pilot study with 12 subjects to contrast airbrush painting with and without robotic assistance. Results show significant improvement in precision with both dominant and nondominant hands when using robotic assistance.

  20. Welding and cutting

    International Nuclear Information System (INIS)

    Drews, P.; Schulze Frielinghaus, W.

    1978-01-01

    This is a survey, with 198 literature references, of the papers published in the fields of welding and cutting within the last three years. The subjects dealt with are: weldability of the materials - Welding methods - Thermal cutting - Shaping and calculation of welded joints - Environmental protection in welding and cutting. (orig.) [de