WorldWideScience

Sample records for modifications tritium handling operation

  1. Safe handling of tritium

    International Nuclear Information System (INIS)

    1991-01-01

    The main objective of this publication is to provide practical guidance and recommendations on operational radiation protection aspects related to the safe handling of tritium in laboratories, industrial-scale nuclear facilities such as heavy-water reactors, tritium removal plants and fission fuel reprocessing plants, and facilities for manufacturing commercial tritium-containing devices and radiochemicals. The requirements of nuclear fusion reactors are not addressed specifically, since there is as yet no tritium handling experience with them. However, much of the material covered is expected to be relevant to them as well. Annex III briefly addresses problems in the comparatively small-scale use of tritium at universities, medical research centres and similar establishments. However, the main subject of this publication is the handling of larger quantities of tritium. Operational aspects include designing for tritium safety, safe handling practice, the selection of tritium-compatible materials and equipment, exposure assessment, monitoring, contamination control and the design and use of personal protective equipment. This publication does not address the technologies involved in tritium control and cleanup of effluents, tritium removal, or immobilization and disposal of tritium wastes, nor does it address the environmental behaviour of tritium. Refs, figs and tabs

  2. The tritium operations experience on TFTR

    International Nuclear Information System (INIS)

    Halle, A. von; Anderson, J.L.; Gentile, C.; Grisham, L.; Hosea, J.; Kamperschroer, J.; LaMarche, P.; Oldaker, M.; Nagy, A.; Raftopoulos, S.; Stevenson, T.

    1995-01-01

    The Tokamak Fusion Test Reactor (TFTR) tritium gas system is administratively limited to 5 grams of tritium and provides the feedstock gas for the neutral beam and torus injection systems. Tritium operations on TFTR began with leak checking of gas handling systems, qualification of the gas injection systems, and high power plasma operations using trace amounts of tritium in deuterium feedstock gas. Full tritium operation commenced with four highly diagnosed neutral beam pulses into a beamline calorimeter to verify planned tritium beam operating routines and to demonstrate the deuterium to tritium beam isotope exchange. Since that time, TFTR has successfully operated each of the twelve neutral beam ion sources in tritium during hundreds of tritium beam pulses and torus gas injections. This paper describes the TFTR tritium gas handling systems and TFTR tritium operations of the gas injection systems and the neutral beam ion sources. Tritium accounting and accountability is discussed, including tritium retention issues of the torus limiters and beam impinged surfaces of the beamline components. Also included is tritium beam velocity analysis that compares the neutral beam extracted ion species composition for deuterium and tritium and that determines the extent of beam isotope exchange on subsequent deuterium and tritium beam pulses. The required modifications to TFTR operating routines to meet the U.S. Department of Energy regulations for a low hazard nuclear facility and the problems encountered during initial tritium operations are described. (orig.)

  3. The tritium operations experience on TFTR

    International Nuclear Information System (INIS)

    von Halle, A.; Gentile, C.

    1994-01-01

    The Tokamak Fusion Test Reactor (TFTR) tritium gas system is administratively limited to 5 grains of tritium and provides the feedstock gas for the neutral beam and torus injection systems. Tritium operations on TFTR began with leak checking of gas handling systems, qualification of the gas injection systems, and high power plasma operations using using trace amounts of tritium in deuterium feedstock gas. Full tritium operation commenced with four highly diagnosed neutral beam pulses into a beamline calorimeter to verify planned tritium beam operating routines and to demonstrate the deuterium to tritium beam isotope exchange. Since that time, TFTR has successfully operated each of the twelve neutral beam ion sources in tritium during hundreds of tritium beam pulses and torus gas injections. This paper describes- the TFTR tritium gas handling systems and TFTR tritium operations of the gas injection systems and the neutral beam ion sources. Tritium accounting and accountability is discussed, including tritium retention issues of the torus limiters and beam impinged surfaces of the beamline components. Also included is tritium beam velocity analysis that compares the neutral beam extracted ion species composition for deuterium and tritium and that determines the extent of beam isotope exchange on subsequent deuterium and tritium beam pulses. The required modifications to TFTR operating routines to meet the US Department of Energy regulations for a low hazard nuclear facility and the problems encountered during initial tritium operations are described

  4. Experience in handling concentrated tritium

    International Nuclear Information System (INIS)

    Holtslander, W.J.

    1985-12-01

    The notes describe the experience in handling concentrated tritium in the hydrogen form accumulated in the Chalk River Nuclear Laboratories Tritium Laboratory. The techniques of box operation, pumping systems, hydriding and dehydriding operations, and analysis of tritium are discussed. Information on the Chalk River Tritium Extraction Plant is included as a collection of reprints of papers presented at the Dayton Meeting on Tritium Technology, 1985 April 30 - May 2

  5. DOE handbook: Tritium handling and safe storage

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1999-03-01

    The DOE Handbook was developed as an educational supplement and reference for operations and maintenance personnel. Most of the tritium publications are written from a radiological protection perspective. This handbook provides more extensive guidance and advice on the null range of tritium operations. This handbook can be used by personnel involved in the full range of tritium handling from receipt to ultimate disposal. Compliance issues are addressed at each stage of handling. This handbook can also be used as a reference for those individuals involved in real time determination of bounding doses resulting from inadvertent tritium releases. This handbook provides useful information for establishing processes and procedures for the receipt, storage, assay, handling, packaging, and shipping of tritium and tritiated wastes. It includes discussions and advice on compliance-based issues and adds insight to those areas that currently possess unclear DOE guidance.

  6. DOE handbook: Tritium handling and safe storage

    International Nuclear Information System (INIS)

    1999-03-01

    The DOE Handbook was developed as an educational supplement and reference for operations and maintenance personnel. Most of the tritium publications are written from a radiological protection perspective. This handbook provides more extensive guidance and advice on the null range of tritium operations. This handbook can be used by personnel involved in the full range of tritium handling from receipt to ultimate disposal. Compliance issues are addressed at each stage of handling. This handbook can also be used as a reference for those individuals involved in real time determination of bounding doses resulting from inadvertent tritium releases. This handbook provides useful information for establishing processes and procedures for the receipt, storage, assay, handling, packaging, and shipping of tritium and tritiated wastes. It includes discussions and advice on compliance-based issues and adds insight to those areas that currently possess unclear DOE guidance

  7. TFTR tritium operations lessons learned

    International Nuclear Information System (INIS)

    Gentile, C.A.; Raftopoulos, S.; LaMarche, P.

    1996-01-01

    The Tokamak Fusion Test Reactor which is the progenitor for full D-T operating tokamaks has successfully processed > 81 grams of tritium in a safe and efficient fashion. Many of the fundamental operational techniques associated with the safe movement of tritium through the TFTR facility were developed over the course of many years of DOE tritium facilities (LANL, LLNL, SRS, Mound). In the mid 1980's The Tritium Systems Test Assembly (TSTA) at LANL began reporting operational techniques for the safe handling of tritium, and became a major conduit for the transfer of safe tritium handling technology from DOE weapons laboratories to non-weapon facilities. TFTR has built on many of the TSTA operational techniques and has had the opportunity of performing and enhancing these techniques at America's first operational D-T fusion reactor. This paper will discuss negative pressure employing 'elephant trunks' in the control and mitigation of tritium contamination at the TFTR facility, and the interaction between contaminated line operations and Δ pressure control. In addition the strategy employed in managing the movement of tritium through TFTR while maintaining an active tritium inventory of < 50,000 Ci will be discussed. 5 refs

  8. TFTR tritium handling concepts

    International Nuclear Information System (INIS)

    Garber, H.J.

    1976-01-01

    The Tokamak Fusion Test Reactor, to be located on the Princeton Forrestal Campus, is expected to operate with 1 to 2.5 MA tritium--deuterium plasmas, with the pulses involving injection of 50 to 150 Ci (5 to 16 mg) of tritium. Attainment of fusion conditions is based on generation of an approximately 1 keV tritium plasma by ohmic heating and conversion to a moderately hot tritium--deuterium ion plasma by injection of a ''preheating'' deuterium neutral beam (40 to 80 keV), followed by injection of a ''reacting'' beam of high energy neutral deuterium (120 to 150 keV). Additionally, compressions accompany the beam injections. Environmental, safety and cost considerations led to the decision to limit the amount of tritium gas on-site to that required for an experiment, maintaining all other tritium in ''solidified'' form. The form of the tritium supply is as uranium tritide, while the spent tritium and other hydrogen isotopes are getter-trapped by zirconium--aluminum alloy. The issues treated include: (1) design concepts for the tritium generator and its purification, dispensing, replenishment, containment, and containment--cleanup systems; (2) features of the spent plasma trapping system, particularly the regenerable absorption cartridges, their integration into the vacuum system, and the handling of non-getterables; (3) tritium permeation through the equipment and the anticipated releases to the environment; (4) overview of the tritium related ventilation systems; and (5) design bases for the facility's tritium clean-up systems

  9. Handling of tritium-bearing wastes

    International Nuclear Information System (INIS)

    1981-01-01

    The generation of nuclear power and reprocessing of nuclear fuel results in the production of tritium and the possible need to control the release of tritium-contaminated effluents. In assessing the need for controls, it is necessary to know the production rates of tritium at different nuclear facilities, the technologies available for separating tritium from different gaseous and liquid streams, and the methods that are satisfactory for storage and disposal of tritiated wastes. The intention in applying such control technologies and methods is to avoid undesirable effects on the environment, and to reduce the radiation burden on operational personnel and the general population. This technical report is a result of the IAEA Technical Committee Meeting on Handling of Tritium-bearing Effluents and Wastes, which was held in Vienna, 4 - 8 December 1978. It summarizes the main topics discussed at the meeting and appends the more detailed reports on particular aspects that were prepared for the meeting by individual participants

  10. Experiences with decontaminating tritium-handling apparatus

    International Nuclear Information System (INIS)

    Maienschein, J.L.; Garcia, F.; Garza, R.G.; Kanna, R.L.; Mayhugh, S.R.; Taylor, D.T.

    1992-01-01

    Tritium-handling apparatus has been decontaminated as part of the downsizing of the LLNL Tritium Facility. Two stainless-steel glove boxes that had been used to process lithium deuteride-tritide (LiDT) slat were decontaminated using the Portable Cleanup System so that they could be flushed with room air through the facility ventilation system. In this paper the details on the decontamination operation are provided. A series of metal (palladium and vanadium) hydride storage beds have been drained of tritium and flushed with deuterium, in order to remove as much tritium as possible. The bed draining and flushing procedure is described, and a calculational method is presented which allows estimation of the tritium remaining in a bed after it has been drained and flushed. Data on specific bed draining and flushing are given

  11. Development of tritium-handling technique

    International Nuclear Information System (INIS)

    Ohmura, Hiroshi; Hosaka, Akio; Okamoto, Takahumi

    1988-01-01

    The overview of developing activities for tritium-handling techniques in IHI are presented. To establish a fusion power plant, tritium handling is one of the key technologies. Recently in JAERI, conceptual design of FER (Fusion Experimental Reactor) has been carried out, and the FER system requires a processing system for a large amount of tritium. IHI concentrate on investigation of fuel gas purification, isotope separation and storage systems under contract with Toshiba Corporation. Design results of the systems and each components are reviewed. IHI has been developing fundamental handling techniques which are the ZrNi bed for hydrogen isotope storage and isotope separation by laser. The ZrNi bed with a tritium storage capacity of 1000 Ci has been constructed and recovery capability of the hydrogen isotope until 10 -4 Torr {0.013 Pa} was confirmed. In laser isotope separation, the optimum laser wave length has been determined. (author)

  12. Tritium handling experience at Atomic Energy of Canada Limited

    Energy Technology Data Exchange (ETDEWEB)

    Suppiah, S.; McCrimmon, K.; Lalonde, S.; Ryland, D.; Boniface, H.; Muirhead, C.; Castillo, I. [Atomic Energy of Canad Limited - AECL, Chalk River Laboratories, Chalk River, ON (Canada)

    2015-03-15

    Canada has been a leader in tritium handling technologies as a result of the successful CANDU reactor technology used for power production. Over the last 50 to 60 years, capabilities have been established in tritium handling and tritium management in CANDU stations, tritium removal processes for heavy and light water, tritium measurement and monitoring, and understanding the effects of tritium on the environment. This paper outlines details of tritium-related work currently being carried out at Atomic Energy of Canada Limited (AECL). It concerns the CECE (Combined Electrolysis and Catalytic Exchange) process for detritiation, tritium-compatible electrolysers, tritium permeation studies, and tritium powered batteries. It is worth noting that AECL offers a Tritium Safe-Handling Course to national and international participants, the course is a mixture of classroom sessions and hands-on practical exercises. The expertise and facilities available at AECL is ready to address technological needs of nuclear fusion and next-generation nuclear fission reactors related to tritium handling and related issues.

  13. Experiences with decontaminating tritium-handling apparatus

    International Nuclear Information System (INIS)

    Maienschein, J.L.; Garcia, F.; Garza, R.G.; Kanna, R.L.; Mayhugh, S.R.; Taylor, D.T.

    1991-07-01

    Tritium-handling apparatus has been decontaminated as part of the shutdown of the LLNL Tritium Facility. Two stainless-steel gloveboxes that had been used to process lithium deuteride-tritide (LiDT) salt were decontaminated using the Portable Cleanup System so that they could be flushed with room air through the facility ventilation system. Further surface decontamination was performed by scrubbing the interior with paper towels and ethyl alcohol or Swish trademark. The surface contamination, as shown by swipe surveys, was reduced from 4x10 4 --10 6 disintegrations per minute (dpm)/cm 2 to 2x10 2 --4x10 4 dpm/cm 2 . Details on the decontamination operation are provided. A series of metal (palladium and vanadium) hydride storage beds have been drained of tritium and flushed with deuterium in order to remove as much tritium as possible. The bed draining and flushing procedure is described, and a calculational method is presented which allows estimation of the tritium remaining in a bed after it has been drained and flushed. Data on specific bed draining and flushing are given

  14. Preparations for deuterium tritium experiments on the Tokamak Fusion Test Reactor

    International Nuclear Information System (INIS)

    Hawryluk, R.J.; Adler, H.; Alling, P.; Ancher, C.; Anderson, H.; Anderson, J.W.; Arunasalam, V.; Ascione, G.; Ashcroft, D.; Barnes, G.

    1994-04-01

    The final hardware modifications for tritium operation have been completed for the Tokamak Fusion Test Reactor (TFTR). These activities include preparation of the tritium gas handling system, installation of additional neutron shielding, conversion of the toroidal field coil cooling system from water to a Fluorinet trademark system, modification of the vacuum system to handle tritium, preparation and testing of the neutral beam system for tritium operation and a final deuterium-deuterium (D-D) run to simulate expected deuterium-tritium (D-T) operation. Testing of the tritium system with low concentration tritium has successfully begun. Simulation of trace and high power D-T experiments using D-D have been performed. The physics objectives of D-T operation are production of ∼ 10 megawatts (MW) of fusion power, evaluation of confinement and heating in deuterium-tritium plasmas, evaluation of α-particle heating of electrons, and collective effects driven by alpha particles and testing of diagnostics for confined α-particles. Experimental results and theoretical modeling in support of the D-T experiments are reviewed

  15. Preparations for deuterium--tritium experiments on the Tokamak Fusion Test Reactor*

    International Nuclear Information System (INIS)

    Hawryluk, R.J.; Adler, H.; Alling, P.; Ancher, C.; Anderson, H.; Anderson, J.L.; Anderson, J.W.; Arunasalam, V.; Ascione, G.; Aschroft, D.; Barnes, C.W.; Barnes, G.; Batchelor, D.B.; Bateman, G.; Batha, S.; Baylor, L.A.; Beer, M.; Bell, M.G.; Biglow, T.S.; Bitter, M.; Blanchard, W.; Bonoli, P.; Bretz, N.L.; Brunkhorst, C.; Budny, R.; Burgess, T.; Bush, H.; Bush, C.E.; Camp, R.; Caorlin, M.; Carnevale, H.; Chang, Z.; Chen, L.; Cheng, C.Z.; Chrzanowski, J.; Collazo, I.; Collins, J.; Coward, G.; Cowley, S.; Cropper, M.; Darrow, D.S.; Daugert, R.; DeLooper, J.; Duong, H.; Dudek, L.; Durst, R.; Efthimion, P.C.; Ernst, D.; Faunce, J.; Fonck, R.J.; Fredd, E.; Fredrickson, E.; Fromm, N.; Fu, G.Y.; Furth, H.P.; Garzotto, V.; Gentile, C.; Gettelfinger, G.; Gilbert, J.; Gioia, J.; Goldfinger, R.C.; Golian, T.; Gorelenkov, N.; Gouge, M.J.; Grek, B.; Grisham, L.R.; Hammett, G.; Hanson, G.R.; Heidbrink, W.; Hermann, H.W.; Hill, K.W.; Hirshman, S.; Hoffman, D.J.; Hosea, J.; Hulse, R.A.; Hsuan, H.; Jaeger, E.F.; Janos, A.; Jassby, D.L.; Jobes, F.C.; Johnson, D.W.; Johnson, L.C.; Kamperschroer, J.; Kesner, J.; Kugel, H.; Kwon, S.; Labik, G.; Lam, N.T.; LaMarche, P.H.; Laughlin, M.J.; Lawson, E.; LeBlanc, B.; Leonard, M.; Levine, J.; Levinton, F.M.; Loesser, D.; Long, D.; Machuzak, J.; Mansfield, D.E.; Marchlik, M.; Marmar, E.S.; Marsala, R.; Martin, A.; Martin, G.; Mastrocola, V.; Mazzucato, E.; McCarthy, M.P.; Majeski, R.; Mauel, M.; McCormack, B.; McCune, D.C.; McGuire, K.M.; Meade, D.M.; Medley, S.S.; Mikkelsen, D.R.; Milora, S.L.; Monticello, D.; Mueller, D.; Murakami, M.; Murphy, J.A.; Nagy, A.; Navratil, G.A.; Nazikian, R.; Newman, R.; Nishitani, T.; Norris, M.; O'Connor, T.; Oldaker, M.; Ongena, J.; Osakabe, M.; Owens, D.K.; Park, H.; Park, W.; Paul, S.F.; Pavlov, Y.I.; Pearson, G.; Perkins, F.; Perry, E.; Persing, R.; Petrov, M.; Phillips, C.K.; Pitcher, S.; Popovichev, S.; Qualls, A.L.; Raftopoulos, S.; Ramakrishnan, R.; Ramsey, A.; Rasmussen, D.A.; Redi, M.H.

    1994-01-01

    The final hardware modifications for tritium operation have been completed for the Tokamak Fusion Test Reactor (TFTR) [Fusion Technol. 21, 1324 (1992)]. These activities include preparation of the tritium gas handling system, installation of additional neutron shielding, conversion of the toroidal field coil cooling system from water to a Fluorinert TM system, modification of the vacuum system to handle tritium, preparation, and testing of the neutral beam system for tritium operation and a final deuterium--deuterium (D--D) run to simulate expected deuterium--tritium (D--T) operation. Testing of the tritium system with low concentration tritium has successfully begun. Simulation of trace and high power D--T experiments using D--D have been performed. The physics objectives of D--T operation are production of ∼10 MW of fusion power, evaluation of confinement, and heating in deuterium--tritium plasmas, evaluation of α-particle heating of electrons, and collective effects driven by alpha particles and testing of diagnostics for confined α particles. Experimental results and theoretical modeling in support of the D--T experiments are reviewed

  16. Accounting control of tritium at the tritium process laboratory (TPL) of JAERI. Results of 15-year operation and research activity

    International Nuclear Information System (INIS)

    Nishi, Masataka; Yamanishi, Toshihiko; Hayashi, Takumi; Yamada, Masayuki; Suzuki, Takumi

    2003-01-01

    Research and development work of fuel processing technology and tritium safe-handling technology necessary for fusion reactors has been performed at the Tritium Process Laboratory (TPL) of JAERI. TPL is the first facility in Japan permitted to handle tritium of more than 1g (about 0.36PBq), and its operation itself is also important for the development of fusion reactor facility in the viewpoint of tritium control. Various experiments have been carried out at TPL safely since 1988 controlling 22PBq of tritium as the maximum observing regulations. In addition to the regulatory accounting and control, detailed independent control in TPL was planned and was established through its 15-year safe-operation. For future fusion fuel facility where kilo-grams of tritium will be handled, method of tritium accounting has been researched and some new technologies have been developed at TPL. Results of TPL operation and of the research activity in it contributed the completion of the engineering design of ITER. Further research activity on tritium accounting and control is in progress in TPL for the future fusion reactors. (author)

  17. Design approach for safe tritium handling in ITER

    International Nuclear Information System (INIS)

    Ohira, Shigeru

    2002-01-01

    Outlines for tritium handling and a fundamental approach for ensuring safety are presented. The amount of tritium stored and processed in the ITER facility will be much larger than that in the existing facilities for fusion research, though the processing methods and the conditions of processing (e.g., concentration, pressure, etc.) will be similar for those used in those facilities. Therefore, considerations to be taken for tritium handling, such as limitations of tritium permeation and leaks, provision of an appropriate ventilation/detritiation system for maintenance, measures to ensure mechanical integrity, etc., can be provided based on the knowledge obtained in the facilities. The Technical Advisory Committee of the Science and Technology Agency established a fundamental approach in 2000, and set out the basic safety principles and approaches as technical requirements of safety design and assessment, which were derived from the safety characteristics of the ITER plant. Sufficient prevention of accidents can be achieved by ensuring and maintaining the structural integrity of the enclosures containing radioactive materials against the loads anticipated during operation, and a low hazard potential of radioactive materials, sufficiently within prescribed limits, can be maintained by the vitiation and clean-up system even if large release is postulated. (author)

  18. Accounting and Control of Tritium at the Tritium Process Laboratory (TPL) of JAERI - Results of 15-year Operation and Research Activity -

    Science.gov (United States)

    Nishi, Masataka; Yamanishi, Toshihiko; Hayashi, Takumi; Yamada, Masayuki; Suzuki, Takumi

    Research and development work of fuel processing technology and tritium safe-handling technology necessary for fusion reactors has been performed at the Tritium Process Laboratory (TPL) of JAERI. TPL is the first facility in Japan permitted to handle tritium of more than 1g (about 0.36PBq), and its operation itself is also important for the development of fusion reactor facility in the viewpoint of tritium control. Various experiments have been carried out at TPL safely since 1988 controlling 22PBq of tritium as the maximum observing regulations. In addition to the regulatory accounting and control, detailed independent control in TPL was planned and was established throughits15-yearsafe-operation. For future fusion fuel facility where kilograms of tritium will be handled, method of tritium accounting has been researched and some new technologies have been developed at TPL. Results of TPL operation and of the research activity in it contributed the completion of the engineering design of ITER. Further research activity on tritium accounting and control is in progress in TPL for the future fusion reactors.

  19. Scoping studies of tritium handling in a tokamak experimental power reactor

    International Nuclear Information System (INIS)

    Cherdack, R.; Watson, J.S.; Clinton, S.D.; Fisher, P.W.

    1975-01-01

    Tritium handling techniques in an experimental fusion power reactor (EPR) are evaluated to determine the requirements of the system and to compare different equipment and techniques for meeting those requirements. Tritium process equipment is needed to (1) evacuate and maintain a vacuum in the plasma vessel and the neutral beam injectors, (2) purify and recycle tritium and deuterium for the plasma fuel cycle, (3) recover tritium from experimental breeding modules, and (4) provide tritium containment and atmospheric cleanup. A development program is outlined to develop and demonstrate the required techniques and equipment and to permit confident design of an EPR for operation by the mid-1980s

  20. Operation of the tokamak fusion test reactor tritium systems during initial tritium experiments

    International Nuclear Information System (INIS)

    Anderson, J.L.; Gentile, C.; Kalish, M.; Kamperschroer, J.; Kozub, T.; LaMarche, P.; Murray, H.; Nagy, A.; Raftopoulos, S.; Rossmassler, R.; Sissingh, R.; Swanson, J.; Tulipano, F.; Viola, M.; Voorhees, D.; Walters, R.T.

    1995-01-01

    The high power D-T experiments on the tokamak fusion test reactor (TFTR) at the Princeton Plasma Physics Laboratory commenced in November 1993. During initial operation of the tritium systems a number of start-up problems surfaced and had to be corrected. These were corrected through a series of system modifications and upgrades and by repair of failed or inadequate components. Even as these operational concerns were being addressed, the tritium systems continued to support D-T operations on the tokamak. During the first six months of D-T operations more than 107kCi of tritium were processed successfully by the tritium systems. D-T experiments conducted at TFTR during this period provided significant new data. Fusion power in excess of 9MW was achieved in May 1994. This paper describes some of the early start-up issues, and reports on the operation of the tritium system and the tritium tracking and accounting system during the early phase of TFTR D-T experiments. (orig.)

  1. An electrical pulse hydride injector (EPHI) for reactor fueling and tritium handling applications

    International Nuclear Information System (INIS)

    Azizov, E.A.; Kareev, Yu.A.; Savotkin, A.N.; Frunze, V.V.; Penzhorn, R.D.; Glugla, M.

    1995-01-01

    An electrical pulse hydride injector (EPHI) has been developed for reactor fuelling as well as for handling of hydrogen isotopes in facilities operating with tritium. Salient features of the EPHI are the accuracy with which the fuelling rate can be controlled and the avoidance of a pressurized ballast. The generator is simple and allows for safe operation with tritium. (orig.)

  2. Problems in tritium handling in fusion reactors studies at CEA within the european effort

    International Nuclear Information System (INIS)

    Roth, E.; Hircq, B.; Fidelle, J.P.

    1988-01-01

    Technological aspects of tritium handling linked with the operation of a fusion reactor are reviewed. Tritium storage is discussed from the point of view of the volumme of a single unit and of the nature of the metal bed. Purification of tritium and recovery from tritiated compounds is studied, including conversion from water to the gaseous form. Interaction of tritium and structural materials is developed from the point of view of corrosion, embrittlement, permeation. A flowsheet displaying a conception of a reference tritium circuit is proposed, and consideration is given to specifications of large components, namely pumps and gatevalves for tritium circuits

  3. Recent progress on developments of tritium safe handling techniques in Japan

    International Nuclear Information System (INIS)

    Watanabe, Kuniaki; Matsuyama, Masao

    1993-01-01

    Vast amounts of tritium will be used for thermonuclear fusion reactors. Without establishing safe handling techniques for large amounts of tritium, undoubtedly the fusion reactors will not be accepted. Japanese activity on tritium related research has considerably developed in the last 10 years. This review paper gives a brief summary of safe handling techniques developed by Japanese research groups. (author)

  4. The operation of the Tokamak Fusion Test Reactor Tritium Facility

    International Nuclear Information System (INIS)

    Gentile, C.A.; LaMarche, P.H.

    1995-01-01

    The TFTR tritium operations staff has successfully received, stored, handled, and processed over five hundred thousand curies of tritium for the purpose of supporting D-T (Deuterium-Tritium) operations at TFTR. Tritium operations personnel nominally provide continuous round the clock coverage (24 hours/day, 7 days/week) in shift complements consisting of I supervisor and 3 operators. Tritium Shift Supervisors and operators are required to have 5 years of operational experience in either the nuclear or chemical industry and to become certified for their positions. The certification program provides formal instruction, as well as on the job training. The certification process requires 4 to 6 months to complete, which includes an oral board lasting up to 4 hours at which time the candidate is tested on their knowledge of Tritium Technology and TFTR Tritium systems. Once an operator is certified, the training process continues with scheduled training weeks occurring once every 5 weeks. During D-T operations at TFTR the operators must evacuate the tritium area due to direct radiation from TFTR D-T pulses. During '' time operators maintain cognizance over tritium systems via a real time TV camera system. Operators are able to gain access to the Tritium area between TFTR D-T pulses, but have been excluded from die tritium area during D-T pulsing for periods up to 30 minutes. Tritium operators are responsible for delivering tritium gas to TFRR as well as processing plasma exhaust gases which lead to the deposition of tritium oxide on disposable molecular sieve beds (DMSB). Once a DMSB is loaded, the operations staff remove the expended DMSB, and replace it with a new DMSB container. The TFIR tritium system is operated via detailed procedures which require operator sign off for system manipulation. There are >300 procedures controlling the operation of the tritium systems

  5. Handling of tritium at TFTR

    International Nuclear Information System (INIS)

    Pierce, C.W.; Howe, H.J.; Yemin, L.; Lind, K.

    1977-01-01

    Some of the engineering approaches taken at TFTR for the tritium control systems are discussed as the requirements being placed on the tritium systems by the operating scenarios of the Tokamak. The tritium control systems presently being designed for TFTR will limit the annual release to the environment to less than 100 curies

  6. TSTA loop operation with 100 grams-level of tritium

    International Nuclear Information System (INIS)

    Yoshida, Hiroshi; Hirata, Shingo; Naito, Taisei

    1988-10-01

    The first loop operation tests of Tritium Systems Test Assembly (TSTA) with 100 grams-level of tritium were carried out at Los Alamos National Laboratory(LANL) on June and July, 1987. The tests were one of the milestones for TSTA goal scheduled in June, 1987 through June, 1988. The objectives were (i) to operate TSTA process loop composed of tritium supply system, fuel gas purification system, hydrogen isotope separation system, etc, (ii) to demonstrate TSTA safety subsystems such as secondary containment system, tritium waste treatment system and tritium monitoring system, and (iii) to accumulate handling experience of a large amount of tritium. This report describes the plan and procedures of the milestone run done in June and the summary results especially on the safety aspects. Analysis of the emergency shutdown of the process loop, which happened in the June run, is also reported. A brief description of the process and safety subsystems as well as the summary of the TSTA safety analysis report is included. (author)

  7. Tritium handling facilities at the Los Alamos Scientific Laboratory

    International Nuclear Information System (INIS)

    Anderson, J.L.; Damiano, F.A.; Nasise, J.E.

    1975-01-01

    A new tritium facility, recently activated at the Los Alamos Scientific Laboratory, is described. The facility contains a large drybox, associated gas processing system, a facility for handling tritium gas at pressures to approximately 100 MPa, and an effluent treatment system which removes tritium from all effluents prior to their release to the atmosphere. The system and its various components are discussed in detail with special emphasis given to those aspects which significantly reduce personnel exposures and atmospheric releases. (auth)

  8. Safe handling and monitoring of tritium in research on nuclear fusion

    International Nuclear Information System (INIS)

    Yoshida, Yoshikazu; Naruse, Yuji

    1978-01-01

    An actual condition of technique of safety handling and monitoring of tritium in the laboratory which treated a great quantity of tritium in relation to nuclear fusion, was described. With respect to the technique of safety handling of tritium, an actual condition of the technique in the U.S.A. which had wide experience in treating a great quantity of 3 H was mainly introduced, and it was helpful to a safety measure and a reduction of tritium effluence. Glovebox, hood, and other component machinery and tools for treating 3 H were also introduced briefly. As a monitoring technique, monitoring of indoor air and air exhaust by ionization chamber-type monitor for continuous monitoring of a great quantity of gaseous tritium was mentioned. Next, monitoring of a room, the surfaces of equipments, and draining, internal exposure of the individual, and monitoring of the environment were introduced. (Kanao, N.)

  9. Five years of tritium handling experience at the Tritium Systems Test Assembly

    International Nuclear Information System (INIS)

    Carlson, R.V.

    1989-01-01

    The Tritium Systems Test Assembly (TSTA) at Los Alamos National Laboratory is a facility designed to develop and demonstrate, in full scale, technologies necessary for safe and efficient operation of tritium systems required for tokamak fusion reactors. TSTA currently consists of systems for evacuating reactor exhaust gas with compound cryopumps; for removing impurities from plasma exhaust gas and recovering the chemically-combined tritium; for separating the isotopes of hydrogen; for transfer pumping; or storage of hydrogen isotopes; for gas analysis; and for assuring safety by the necessary control, monitoring, and tritium removal from effluent streams. TSTA also has several small scale experiments to develop and test new equipment and processes necessary for fusion reactors. In this paper, data on component reliability, failure types and rates, and waste quantities are presented. TSTA has developed a Quality Assurance program for preparing and controlling the documentation of the procedures required for the design, purchase, and operation of the tritium systems. Operational experience under normal, abnormal, and emergency conditions is presented. One unique aspect of operations at TSTA is that the design personnel for the TSTA systems are also part of the operating personnel. This has allowed for the relatively smooth transition from design to operations. TSTA has been operated initially as a research facility. As the system is better defined, operations are proceeding toward production modes. The DOE requirements for the operation of a tritium facility like TSTA include personnel training, emergency preparedness, radiation protection, safety analysis, and preoperational appraisals. The integration of these requirements into TSTA operations is discussed. 4 refs., 3 figs., 3 tabs

  10. Modification of a solid polymer electrolyte (SPE) electrolyser to ensure tritium compatibility

    International Nuclear Information System (INIS)

    Eichelhardt, F.; Cristescu, I.; Michling, R.; Welte, S.

    2010-01-01

    A Water Detritiation System (WDS) is required for the ITER Tritium Plant in order to process tritiated water which is accumulated in various subsystems (e.g. the hall ventilation systems). For the ITER-WDS, the Combined Electrolysis Catalytic Exchange (CECE) process with an electrolyser unit as one of the major components is envisaged. An experimental WDS was built and commissioned at the Tritium Laboratory Karlsruhe (TLK) for the investigation of various subsystems of the CECE process in tritium environment. The TLK-WDS consists of an 8 m Liquid Phase Catalytic Exchange column and two Solid Polymer Electrolyte electrolysers, each with a maximum hydrogen output of 1 m 3 /h. The commercially available Hogen40 electrolyser units from Proton Energy Systems are not tritium compatible concerning materials, joints and quality documentation (e.g. necessary certificates). In order to process tritiated water with tritium concentrations up to 370 GBq/kg, tritium compatibility had to be ensured by appropriate modifications. Up to now, the modified system has been operated with tritiated water for 3500 h, the maximum tritium concentration in the electrolysers being 190 GBq/kg. This contribution reports on the necessary modifications of the electrolyser units and the experiences gained thereby. The results are equally important for the ITER-WDS, where the maximum tritium concentration in the feed water of the electrolyser units will be even higher with 11 TBq/kg.

  11. Conception and operation of a 10 kCi liquid tritium target for the study of tritium nucleus by electron diffusion: 3H(e,e)

    International Nuclear Information System (INIS)

    Juster, F.P.

    1986-06-01

    We describe the conception and operation of an experimental setup, specially suited for the study of the nuclear structure of tritium by elastic electron scattering at intermediate energy. The experiment has been conducted at the ALS 700 MeV electron linac (Saclay, France). The radioactive nature of tritium has led to the design of a new target, suited for handling reliably ten kilocuries of tritium (one gram). The tritium is contained in three sealed envelopes. Initially a high pressure gas (23 bars) at room temperature, the tritium is cooled down to liquefaction by thermal conduction through a solid, without breaking any seal. The beam path and the scattered trajectories cross thin metallic windows. Additional protection, during the presence of personnel, is provided by a heavy container, remotely operated. Any leak in the containement vessels is detected by changes in pressure and/or temperature gauges, monitored by two independent processors. These processors handle the operation of the outer container, the beam switching and the spare venting system. No tritium leak has been detected during a total six-week run. The tritium liquefies in a cylindrical target, 5 cm long and 1 cm in diameter. A beam of 10 microamperes, in the 200-700 MeV, has been measured. The charge and magnetic form factors of tritium have been measured up to a momentum transfer of 31.3 fm -2 [fr

  12. Tritium contamination of concrete walls and floors in tritium-handling laboratory

    International Nuclear Information System (INIS)

    Kawano, T.; Kuroyanagi, M.; Tabei, T.

    2006-01-01

    A tritium handling laboratory was constructed at the National Institute for Fusion Science about twenty years ago and it was recently closed down. We completed the necessary work that is legally required in Japan at the laboratory, when the use of radioisotopes is discontinued, involving measurements of radioactive contamination. We mainly used smear and direct-immersion methods for the measurements. In applying the smear method, we used a piece of filter paper to wipe up the tritium staining the surfaces. The filter paper containing the tritium was placed directly into a dedicated vial, a scintillation cocktail was then poured over it, and the tritium was measured with a liquid scintillation counter. With the direct-immersion method, a piece of concrete was placed directly into a vial containing a scintillation cocktail, and the tritium in the concrete was measured with a liquid scintillation counter. As well as these measurements, we investigated water-extraction and heating-cooling methods for measuring tritium contamination in concrete. With the former, a piece of concrete was placed into water in a tube to extract the tritium, the water containing the extracted tritium was then poured into a dedicated vial containing a scintillation cocktail, and the tritium contamination was measured. With the latter, a piece of concrete was placed into a furnace and heated to 800 degrees centigrade to vaporize the tritiated water into flowing dry air. The flowing air was then cooled to collect the vaporized tritiated water in a tube. The collected water was placed in a vial for scintillation counting. To evaluate the direct-immersion method, ratios were determined by dividing the contamination measured with the heating-cooling method by that measured with the direct-immersion method. The average ratio was about 2.5, meaning a conversion factor from contamination obtained with the direct-immersion method to that with the heating-cooling method. We also investigated the

  13. Tritium activities in Canada

    International Nuclear Information System (INIS)

    Gierszewski, P.

    1995-01-01

    Canadian tritium activites comprise three major interests: utilites, light manufacturers, and fusion. There are 21 operating CANDU reactors in Canada; 19 with Ontario Hydro and one each with Hydro Quebec and New Brunswick Power. There are two light manufacturers, two primary tritium research facilities (at AECL Chalk River and Ontario Hydro Technologies), and a number of industry and universities involved in design, construction, and general support of the other tritium activities. The largest tritum program is in support of the CANDU reactors, which generate tritium in the heavy water as a by-product of normal operation. Currently, there are about 12 kg of tritium locked up in the heavy water coolant and moderator of these reactors. The fusion work is complementary to the light manufacturing, and is concerned with tritium handling for the ITER program. This included design, development and application of technologies related to Isotope Separation, tritium handling, (tritiated) gas separation, tritium-materials interaction, and plasma fueling

  14. Gas-handling system for studies of tritium-containing materials

    International Nuclear Information System (INIS)

    Carstens, D.H.W.

    1975-01-01

    A gas handling system for preparation and study of tritium containing compounds and materials is described. The system at any one time can handle amounts of DT gas up to about 3 moles and has provisions for purification, storage, and measurement of the gas. Experimental conditions covering the ranges 20 to 800 0 C and 0.1 Pa to 137 MPa (10 -2 torr to 20,000 psi) can be maintained. (auth)

  15. Tritium handling and processing experience at TSTA

    International Nuclear Information System (INIS)

    Anderson, J.L.; Okuno, K.

    1994-01-01

    In 1987, the Japan Atomic Energy Research Institute (JAERI) and the US Department of Energy (DOE) signed a collaborative agreement (Annex IV) for the joint funding and operation of the Tritium Systems Test Assembly (TSTA) at the Los Alamos National Laboratory (LANL) for a five year period ending June, 1992. After this initial five year collaboration, the Annex IV agreement was extended for another two year period ending June, 1994. During the first five years, a number of the integrated process loop tests of TSTA were conducted, as well as off-line testing of TSTA subsystems. During integrated loop testing the vacuum system, fuel cleanup systems, isotope separation system, transfer pumping system and gas analysis system, are interconnected and tested using 100 g-inventories of tritium to demonstrate steady-state operation of a tritium fuel processing cycle for a fusion reactor. These tests have resulted in a number of significant accomplishments and an experience data base on research, development and operation of the fuel processing system. One of the most significant accomplishments during the initial five year period was the continuous operation of the fuel processing loop for 25 days. During this 25-day extended operation, both the JAERI fuel cleanup system (J-FCU) and the original TSTA fuel cleanup system (FCU) were operated under similar conditions of flow, pressure, and impurity content of the DT gas. Both fuel cleanup systems were demonstrated to provide adequate impurity removal for plasma exhaust gas processing. The isotope separation system was operated continuously, producing pure tritium while rejecting protium as an impurity

  16. Tritium contaminated waste management at the tritium systems test assembly

    International Nuclear Information System (INIS)

    Jalbert, R.A.; Carlson, R.V.

    1987-01-01

    The Tritium Systems Test Assembly (TSTA) at Los Alamos continues to move toward full operation of an integrated, full-sized, computer-controlled fusion fuel processing loop. Concurrent nonloop experiments further the development of advanced tritium technologies and handling methods. Since tritium operations began in June 1984, tritium contaminated wastes have been produced at TSTA that are roughly typical in kind and amount of those to be produced by tritium fueling operations at fusion reactors. Methods of managing these wastes are described, including information on some methods of decontamination so that equipment can be reused. Data are given on the kinds and amounts of wastes and the general level of contamination. Also included are data on environmental emissions and doses to personnel that have resulted from TSTA operations. Particular problems in waste managements are discussed

  17. Overview of R and D activities on tritium processing and handling technology in JAEA

    Energy Technology Data Exchange (ETDEWEB)

    Yamanishi, Toshihiko, E-mail: yamanishi.toshihiko@jaea.go.jp [Japan Atomic Energy Agency, Tokai, Ibaraki 319-1195 (Japan); Nakamura, Hirofumi; Kawamura, Yoshinori; Iwai, Yasunori; Isobe, Kanetsugu; Oyaidsu, Makoto; Yamada, Masayuki; Suzuki, Takumi; Hayashi, Takumi [Japan Atomic Energy Agency, Tokai, Ibaraki 319-1195 (Japan)

    2012-08-15

    Highlights: Black-Right-Pointing-Pointer The tritium technologies have been studied at Tritium Process Laboratory of JAEA. Black-Right-Pointing-Pointer A monitoring method for the blanket system of a fusion reactor have been studied. Black-Right-Pointing-Pointer Basic studies on the tritium behavior in confinement system have been carried out. Black-Right-Pointing-Pointer Studies on the detritiation have been carried out as another significant activity. - Abstract: In JAEA, the tritium processing and handling technologies have been studied at TPL (Tritium Process Laboratory). The main R and D activities are: the tritium processing technology for the blanket recovery systems; the basic tritium behavior in confinement materials; and detritiation and decontamination. The R and D activities on tritium processing and handling technologies for a demonstration reactor (DEMO) are also planned to be carried out in the broader approach (BA) program by JAEA with Japanese universities. The ceramic proton conductor has been studied as a possible tritium processing method for the blanket system. The BIXS method has also been studied as a monitoring of tritium in the blanket system. The hydrogen transfer behavior from water to metal has been studied as a function of temperature. As for the behavior of high concentration tritium water, it was observed that the formation of the oxidized layer was prevented by the presence of tritium in water (0.23 GBq/cc). A new hydrophobic catalyst has been developed for the conversion of tritium to water. The catalyst could convert tritium to water at room temperature. A new Nafion membrane has also been developed by gamma ray irradiation to get the strong durability for tritium.

  18. ZEPHYR tritium system

    International Nuclear Information System (INIS)

    Swansiger, W.; Andelfinger, C.; Buchelt, E.; Fink, J.; Sandmann, W.; Stimmelmayr, A.; Wegmann, H.G.; Weichselgartner, H.

    1982-04-01

    The ignition experiment ZEPHYR will need tritium as an essential component of the fuel. The ZEPHYR Tritium Systems are designed as to recycle the fuel directly at the experiment. An amount of tritium, which is significantly below the total throughput, for example 10 5 Ci will be stored in uranium getters and introduced into the torus by a specially designed injection system. The torus vacuum system operates with tritium-tight turbomolecular pumps and multi-stage roots pumps in order to extract and store the spent fuel in intermediate storage tanks at atmospheric pressure. A second high vacuum system, similar in design, serves as to evacuate the huge containments of the neutral injection system. The spent fuel will be purified and subsequently processed by an isotope separation system in which the species D 2 , DT and T 2 will be recovered for further use. This isotope separation will be achieved by a preparative gaschromatographic process. All components of the tritium systems will be installed within gloveboxes which are located in a special tritium handling room. The atmospheres of the gloveboxes and of the tritium rooms are controlled by a tritium monitor system. In the case of a tritium release - during normal operation as well as during an accident - these atmospheres become processed by efficient tritium absorption systems. All ZEPHYR tritium handling systems are designed as to minimize the quantity of tritium released to the environment, so that the stringent German laws on radiological protection are satisfied. (orig.)

  19. Tips for the fabrication of temporary tritium experiments

    International Nuclear Information System (INIS)

    Binning, K.E.; Jenkins, E.M.

    1988-01-01

    The Tritium System Test Assembly (TSTA) is a facility built for the demonstration of tritium handling systems necessary for tritium-burning fusion reactors. The facility has been in operation handling tritium for four years. The current inventory of tritium is approximately one hundred grams, with DOE approval for a maximum inventory of two hundred grams. Not all experiments performed at TSTA require the operation of the main process loop. During the last four years, many small scale experiments have been performed to test the compatibility and operation of tritium processing components in small self-contained experimental packages. These packages are fabricated inside secondary containment gloveboxes and can be operated for hours or months with little monitoring. Construction of these packages need to be tritium compatible, inexpensive, easy to build, and versatile. This paper discusses some of the problems and remedies encountered during the building of temporary experiments

  20. Tips for the fabrication of temporary tritium experiments

    International Nuclear Information System (INIS)

    Binning, K.E.; Jenkins, E.M.

    1988-01-01

    The Tritium System Test Assembly (TSTA) is a facility built for the demonstration of tritium handling systems necessary for tritium-burning fusion reactors. The facility has been in operation handling tritium for four years. The current inventory of tritium is approximately one hundred grams with DOE approval exists for a maximum inventory of two hundred grams. Not all experiments performed at TSTA require the operation of the main process loop. During the last four years, many small scale experiments have been performed to test the compatibility and operation of tritium processing components in small self-contained experimental packages. These packages are fabricated inside secondary containment gloveboxes and can be operated for hours or months with little monitoring. Construction of these packages need to be tritium compatible, inexpensive, easy to build, and versatile. This paper discusses some of the problems and remedies encountered during the building of temporary experiments

  1. Tritium technology. A Canadian overview

    Energy Technology Data Exchange (ETDEWEB)

    Hemmings, R.L. [Canatom NPM (Canada)

    2002-10-01

    An overview of the various tritium research and operational activities in Canada is presented. These activities encompass tritium processing and recovery, tritium interactions with materials, and tritium health and safety. Many of these on-going activities form a sound basis for the tritium use and handling aspects of the ITER project. Tritium management within the CANDU heavy water reactor, associated detritiation facilities, research and development facilities, and commercial industry and improving the understanding of tritium behaviour in humans and the environment remain the focus of a long-standing Canadian interest in tritium. While there have been changes in the application of this knowledge and experience over time, the operating experience and the supporting research and development continue to provide for improved plant and facility operations, an improved understanding of tritium safety issues, and improved products and tools that facilitate tritium management. (author)

  2. Tritium technology. A Canadian overview

    International Nuclear Information System (INIS)

    Hemmings, R.L.

    2002-01-01

    An overview of the various tritium research and operational activities in Canada is presented. These activities encompass tritium processing and recovery, tritium interactions with materials, and tritium health and safety. Many of these on-going activities form a sound basis for the tritium use and handling aspects of the ITER project. Tritium management within the CANDU heavy water reactor, associated detritiation facilities, research and development facilities, and commercial industry and improving the understanding of tritium behaviour in humans and the environment remain the focus of a long-standing Canadian interest in tritium. While there have been changes in the application of this knowledge and experience over time, the operating experience and the supporting research and development continue to provide for improved plant and facility operations, an improved understanding of tritium safety issues, and improved products and tools that facilitate tritium management. (author)

  3. Some new techniques in tritium gas handling as applied to metal hydride synthesis

    International Nuclear Information System (INIS)

    Nasise, J.E.

    1988-01-01

    A state-of-the-art tritium Hydriding Synthesis System (HSS) was designed and built to replace the existing system within the Tritium Salt Facility (TSF) at the Los Alamos National Laboratory. This new hydriding system utilizes unique fast-cycling 7.9 mole uranium beds (47.5g of T at 100% loading) and novel gas circulating hydriding furnaces. Tritium system components discussed include fast-cycling uranium beds, circulating gas hydriding furnaces, valves, storage volumes, manifolds, gas transfer pumps, and graphic display and control consoles. Many of the tritium handling and processing techniques incorporated into this system are directly applicable to today's fusion fuel loops. 12 refs., 7 figs

  4. A Gas Target with a Tritium Gas Handling System

    Energy Technology Data Exchange (ETDEWEB)

    Holmqvist, B; Wiedling, T

    1963-12-15

    A detailed description is given of a simple tritium gas target and its tritium gas filling system, and how to put it into operation. By using the T (p,n) He reaction the gas target has been employed for production of monoenergetic fast neutrons of well defined energy and high intensity. The target has been operated successfully for a long time.

  5. Tritium handling trade studies and design options for the GA/ANL TNS

    International Nuclear Information System (INIS)

    Mintz, J.M.; Clemmer, R.G.; Maroni, V.A.

    1978-01-01

    A comprehensive effort involving members of both the General Atomic Company (GA) and the Argonne National Laboratory (ANL) has been undertaken to define the objectives, criteria and potential systems design solutions that accrue to the tritium handling systems for the next logical step in tokamak reactor development (TNS). A primary focus of these activities has been a systematic analysis of fuel cycle parameters and trade studies on the sensitivity of these parameters to reactor design and operating conditions. Principal results of these analyses and an assembly of potentially useful design concepts for various subsystems of the fuel cycle are presented

  6. JET Tokamak, preparation of a safety case for tritium operations

    Energy Technology Data Exchange (ETDEWEB)

    Boyer, Helen, E-mail: helen.boyer@ccfe.ac.uk [CCFE, Culham Science Centre (United Kingdom); Plummer, David; Johnston, Jane [CCFE, Culham Science Centre (United Kingdom)

    2016-11-01

    Highlights: • A safety case incorporating technical and ITER related upgrades. • Hazard analysis reworked to include new modelling assessments. • Fitness for purpose assessment of safety controls. - Abstract: A new Safety Case is required to permit tritium operations on JET during the forthcoming DTE2 campaign. The outputs, benefits and lessons learned associated with the production of this Safety Case are presented. The changes that have occurred to the Safety Case methodology since the last JET tritium Safety Case are reviewed. Consideration is given to the effects of modifications, particularly ITER related changes, made to the JET and the impact these have on the hazard assessments as well as normal operations. Several specialized assessments, including recent MELCOR modelling, have been undertaken to support the production of this Safety Case and the impact of these assessments is outlined. Discussion of the preliminary actions being taken to progress implementation of this Safety Case is provided, highlighting new methods to improve the dissemination of the key Safety Case results to the plant operators. Finally, the work required to complete this Safety Case, before the next tritium campaign, is summarized.

  7. Structural acceptance criteria Remote Handling Building Tritium Extraction Facility

    Energy Technology Data Exchange (ETDEWEB)

    Mertz, G.

    1999-12-16

    This structural acceptance criteria contains the requirements for the structural analysis and design of the Remote Handling Building (RHB) in the Tritium Extraction Facility (TEF). The purpose of this acceptance criteria is to identify the specific criteria and methods that will ensure a structurally robust building that will safely perform its intended function and comply with the applicable Department of Energy (DOE) structural requirements.

  8. Structural acceptance criteria Remote Handling Building Tritium Extraction Facility

    International Nuclear Information System (INIS)

    Mertz, G.

    1999-01-01

    This structural acceptance criteria contains the requirements for the structural analysis and design of the Remote Handling Building (RHB) in the Tritium Extraction Facility (TEF). The purpose of this acceptance criteria is to identify the specific criteria and methods that will ensure a structurally robust building that will safely perform its intended function and comply with the applicable Department of Energy (DOE) structural requirements

  9. Recommended radiological controls for tritium operations

    International Nuclear Information System (INIS)

    Mansfield, G.

    1992-01-01

    This informal report presents recommendations for an adequate radiological protection program for tritium operations. Topics include hazards analysis, facility design, personnel protection equipment, training, operational procedures, radiation monitoring, to include surface and airborne tritium contamination, and program management

  10. Tritium Room Air Monitor Operating Experience Review

    Energy Technology Data Exchange (ETDEWEB)

    L. C. Cadwallader; B. J. Denny

    2008-09-01

    Monitoring the breathing air in tritium facility rooms for airborne tritium is a radiological safety requirement and a best practice for personnel safety. Besides audible alarms for room evacuation, these monitors often send signals for process shutdown, ventilation isolation, and cleanup system actuation to mitigate releases and prevent tritium spread to the environment. Therefore, these monitors are important not only to personnel safety but also to public safety and environmental protection. This paper presents an operating experience review of tritium monitor performance on demand during small (1 mCi to 1 Ci) operational releases, and intentional airborne inroom tritium release tests. The tritium tests provide monitor operation data to allow calculation of a statistical estimate for the reliability of monitors annunciating in actual tritium gas airborne release situations. The data show a failure to operate rate of 3.5E-06/monitor-hr with an upper bound of 4.7E-06, a failure to alarm on demand rate of 1.4E-02/demand with an upper bound of 4.4E-02, and a spurious alarm rate of 0.1 to 0.2/monitor-yr.

  11. TPE upgrade for enhancing operational safety and improving in-vessel tritium inventory assessment in fusion nuclear environment

    Energy Technology Data Exchange (ETDEWEB)

    Shimada, M., E-mail: Masashi.Shimada@inl.gov [Fusion Safety Program, Idaho National Laboratory, Idaho Falls, ID 83415 (United States); Taylor, C.N.; Moore-McAteer, L.; Pawelko, R.J. [Fusion Safety Program, Idaho National Laboratory, Idaho Falls, ID 83415 (United States); Kolasinski, R.D.; Buchenauer, D.A. [Sandia National Laboratories, Hydrogen and Materials Science Department, Livermore, CA 94550 (United States); Cadwallader, L.C.; Merrill, B.J. [Fusion Safety Program, Idaho National Laboratory, Idaho Falls, ID 83415 (United States)

    2016-11-01

    The Tritium Plasma Experiment (TPE) is a unique high-flux linear plasma device that can handle beryllium, tritium, and neutron-irradiated plasma facing materials, and is the only existing device dedicated to evaluate in-vessel tritium inventory in the nuclear environment for fusion safety. The electrical upgrade were recently carried out to enhance operational safety and to improve plasma performance. New DC power supplies and a new control center enable remote plasma operations from outside of the contamination area for tritium, minimizing the possible exposure risk with tritium and beryllium and eliminating heat stress issue. In November 2015, the TPE successfully achieved first deuterium plasma via remote operation after a significant three-year upgrade. Simple linear scaling estimate showed that the TPE is expected to achieve Γ{sub i}{sup max} of >1.0 × 10{sup 23} m{sup −2} s{sup −1} and q{sub heat} of >1 MW m{sup −2} with new power supplies. This upgrade not only improves operational safety of the worker, but also enhances plasma performance to better simulate extreme plasma-material conditions expected in ITER, FNSF, and DEMO for improving in-vessel tritium inventory assessment in fusion nuclear environment.

  12. Radiation safety in radioluminous paint workshop handling tritium activated paint

    International Nuclear Information System (INIS)

    Gaur, P.K.; Venkateswaran, T.V.

    1986-01-01

    This paper discusses the safety features related to a workshop when tritium activated luminous paint is handled by workmen. Salient features of the workshop and the methods employed for monitoring the radiation levels are briefly outlined and results are discussed. The importance of proper ventilation of the workplace and precautions to be taken in the storage of painted articles are highlighted. (author). 1 table, 3 figs

  13. Conceptual design of tritium treatment facility

    International Nuclear Information System (INIS)

    Tachikawa, Katsuhiro

    1982-01-01

    In connection with the development of fusion reactors, the development of techniques concerning tritium fuel cycle, such as the refining and circulation of fuel, the recovery of tritium from blanket, waste treatment and safe handling, is necessary. In Japan Atomic Energy Research Institute, the design of the tritium process research laboratory has been performed since fiscal 1977, in which the following research is carried out: 1) development of hydrogen isotope separation techniques by deep cooling distillation method and thermal diffusion method, 2) development of the refining, collection and storage techniques for tritium using metallic getters and palladium-silver alloy films, and 3) development of the safe handling techniques for tritium. The design features of this facility are explained, and the design standard for radiation protection is shown. At present, in the detailed design stage, the containment of tritium and safety analysis are studied. The building is of reinforced concrete, and the size is 48 m x 26 m. Glove boxes and various tritium-removing facilities are installed in two operation rooms. Multiple wall containment system and tritium-removing facilities are explained. (Kako, I.)

  14. Tritium application: self-luminous glass tube(SLGT)

    International Nuclear Information System (INIS)

    Kim, K.; Lee, S.K.; Chung, E.S.; Kim, K.S.; Kim, W.S.; Nam, G.J.

    2005-01-01

    To manufacture SLGTs (self-luminous glass tubes), 4 core technologies are needed: coating technology, tritium injection technology, laser sealing/cutting technology and tritium handling technology. The inside of the glass tubes is coated with greenish ZnS phosphor particles with sizes varying from 4∝5 [μm], and Cu, and Al as an activator and a co-dopant, respectively. We also found that it would be possible to produce a phosphor coated glass tube for the SLGT using the well established cold cathode fluorescent lamp (CCFL) bulb manufacturing technology. The conceptual design of the main process loop (PL) is almost done. A delicate technique will be needed for the sealing/cutting of the glass tubes. Instead of the existing torch technology, a new technology using a pulse-type laser is under investigation. The design basis of the tritium handling facilities is to minimize the operator's exposure to tritium uptake and the emission of tritium to the environment. To fulfill the requirements, major tritium handling components are located in the secondary containment such as the glove boxes (GBs) and/or the fume hoods. The tritium recovery system (TRS) is connected to a GB and PL to minimize the release of tritium as well as to remove the moisture and oxygen in the GB. (orig.)

  15. Automated system for handling tritiated mixed waste

    International Nuclear Information System (INIS)

    Dennison, D.K.; Merrill, R.D.; Reitz, T.C.

    1995-03-01

    Lawrence Livermore National Laboratory (LLNL) is developing a semi system for handling, characterizing, processing, sorting, and repackaging hazardous wastes containing tritium. The system combines an IBM-developed gantry robot with a special glove box enclosure designed to protect operators and minimize the potential release of tritium to the atmosphere. All hazardous waste handling and processing will be performed remotely, using the robot in a teleoperational mode for one-of-a-kind functions and in an autonomous mode for repetitive operations. Initially, this system will be used in conjunction with a portable gas system designed to capture any gaseous-phase tritium released into the glove box. This paper presents the objectives of this development program, provides background related to LLNL's robotics and waste handling program, describes the major system components, outlines system operation, and discusses current status and plans

  16. Operation of the TSTA (Tritium Systems Test Assembly) with 100 gram tritium

    International Nuclear Information System (INIS)

    Sherman, R.H.; Bartlit, J.R.

    1988-01-01

    In March of 1988 full operation of the 4-column isotope separation system (ISS) was realized in runs that approximated the design load of tritium. Previous operations had been fraught with operating difficulties principally due to external systems. This report will examine the recent highly successful 6-day period of operation. During this time the system was cooled from room temperature, loaded with hydrogen isotopes including 109 grams of tritium, integrated with the transfer pumping, impurity injection, and impurity removal systems, as well as the remote computer control system. At the end of the operation 12 grams of tritium having a measured purity of 99.987% (remainder deuterium) were offloaded from the system. Observed profiles in the columns in general agree with computer models. A Height Equivalent to a Theoretical Plate (HETP) of 5.0 cm is confirmed. 3 refs., 5 figs

  17. Overhead remote handling systems for the process facility modifications project

    International Nuclear Information System (INIS)

    Wiesener, R.W.; Grover, D.L.

    1987-01-01

    Each of the cells in the process facility modifications (PFM) project complex is provided with a variety of general purpose remote handling equipment including bridge cranes, monorail hoist, bridge-mounted electromechanical manipulator (EMM) and an overhead robot used for high efficiency particulate air (HEPA) filter changeout. This equipment supplements master-slave manipulators (MSMs) located throughout the complex to provide an overall remote handling system capability. The overhead handling equipment is used for fuel and waste material handling operations throughout the process cells. The system also provides the capability for remote replacement of all in-cell process equipment which may fail or be replaced for upgrading during the lifetime of the facility

  18. Tritium inventory tracking and management

    International Nuclear Information System (INIS)

    Eichenberg, T.W.; Klein, A.C.

    1990-01-01

    This investigation has identified a number of useful applications of the analysis of the tracking and management of the tritium inventory in the various subsystems and components in a DT fusion reactor system. Due to the large amounts of tritium that will need to be circulated within such a plant, and the hazards of dealing with the tritium an electricity generating utility may not wish to also be in the tritium production and supply business on a full time basis. Possible scenarios for system operation have been presented, including options with zero net increase in tritium inventory, annual maintenance and blanket replacement, rapid increases in tritium creation for the production of additional tritium supplies for new plant startup, and failures in certain system components. It has been found that the value of the tritium breeding ratio required to stabilize the storage inventory depends strongly on the value and nature of other system characteristics. The real operation of a DT fusion reactor power plant will include maintenance and blanket replacement shutdowns which will affect the operation of the tritium handling system. It was also found that only modest increases in the tritium breeding ratio are needed in order to produce sufficient extra tritium for the startup of new reactors in less than two years. Thus, the continuous operation of a reactor system with a high tritium breeding ratio in order to have sufficient supplies for other plants is not necessary. Lastly, the overall operation and reliability of the power plant is greatly affected by failures in the fuel cleanup and plasma exhaust systems

  19. Development of a tritium monitor combined with an electrochemical tritium pump using a proton conducting oxide

    Energy Technology Data Exchange (ETDEWEB)

    Tanaka, M. [National Institute for Fusion Science, Toki, Gifu (Japan); Sugiyama, T. [Nagoya University, Fro-cho, Chikusa-ku, Nagoya (Japan)

    2015-03-15

    The detection of low level tritium is one of the key issues for tritium management in tritium handling facilities. Such a detection can be performed by tritium monitors based on proton conducting oxide technique. We tested a tritium monitoring system composed of a commercial proportional counter combined with an electrochemical hydrogen pump equipped with CaZr{sub 0.9}In{sub 0.1}O{sub 3-α} as proton conducting oxide. The hydrogen pump operated at 973 K under electrolysis conditions using tritiated water vapor (HTO). The proton conducting oxide extracts tritium molecules (HT) from HTO and tritium concentration is measured by the proportional counter. The advantage of the proposed tritium monitoring system is that it is able to convert HTO into molecular hydrogen.

  20. Tritium sorption by cement and subsequent release

    International Nuclear Information System (INIS)

    Ono, F.; Tanaka, S.; Yamawaki, M.

    1994-01-01

    In a fusion reactor or tritium handling facilities, contamination of concrete by tritium and subsequent release from it to the reactor or experimental rooms is a matter of problem for safety control of tritium and management of operational environment. In order to evaluate these tritium behavior, interaction of tritiated water with concrete or cement should be clarified. In the present study, HTO sorption and subsequent release from cement were studied by combining various experimental methods. From the basic studies on tritium-cement interactions, it has become possible to evaluate tritium uptake by cement or concrete and subsequent tritium release behavior as well as tritium removing methods from them

  1. Tritium emissions reduction facility (TERF)

    International Nuclear Information System (INIS)

    Lamberger, P.H.; Hedley, W.H.

    1993-01-01

    Tritium handling operations at Mound include production of tritium-containing devices, evaluation of the stability of tritium devices, tritium recovery and enrichment, tritium process development, and research. In doing this work, gaseous process effluents containing 400,000 to 1,000,000 curies per year of tritium are generated. These gases must be decontaminated before they can be discharged to the atmosphere. They contain tritium as elemental hydrogen, as tritium oxide, and as tritium-containing organic compounds at low concentrations (typically near one ppm). The rate at which these gases is generated is highly variable. Some tritium-containing gas is generated at all times. The systems used at Mound for capturing tritium from process effluents have always been based on the open-quotes oxidize and dryclose quotes concept. They have had the ability to remove tritium, regardless of the form it was in. The current system, with a capacity of 1.0 cubic meter of gas per minute, can effectively remove tritium down to part-per-billion levels

  2. Tritium application: self-luminous glass tube(SLGT)

    Energy Technology Data Exchange (ETDEWEB)

    Kim, K.; Lee, S.K.; Chung, E.S.; Kim, K.S.; Kim, W.S. [Nuclear Power Lab., Korea Electric Power Research Inst. (KEPRI), Daejeon (Korea); Nam, G.J. [Engineering Information Technology Center, Inst. for Advanced Engineering (IAE), Kyonggi-do (Korea)

    2005-07-01

    To manufacture SLGTs (self-luminous glass tubes), 4 core technologies are needed: coating technology, tritium injection technology, laser sealing/cutting technology and tritium handling technology. The inside of the glass tubes is coated with greenish ZnS phosphor particles with sizes varying from 4{proportional_to}5 [{mu}m], and Cu, and Al as an activator and a co-dopant, respectively. We also found that it would be possible to produce a phosphor coated glass tube for the SLGT using the well established cold cathode fluorescent lamp (CCFL) bulb manufacturing technology. The conceptual design of the main process loop (PL) is almost done. A delicate technique will be needed for the sealing/cutting of the glass tubes. Instead of the existing torch technology, a new technology using a pulse-type laser is under investigation. The design basis of the tritium handling facilities is to minimize the operator's exposure to tritium uptake and the emission of tritium to the environment. To fulfill the requirements, major tritium handling components are located in the secondary containment such as the glove boxes (GBs) and/or the fume hoods. The tritium recovery system (TRS) is connected to a GB and PL to minimize the release of tritium as well as to remove the moisture and oxygen in the GB. (orig.)

  3. Tritium contamination experience in an operational D-T fusion reactor

    International Nuclear Information System (INIS)

    Gentile, C.A.; Ascione, G.

    1994-01-01

    During December 1993, the Tokamak Fusion Test Reactor (TFTR) injected a mixture of deuterium and tritium in the TFTR vacuum vessel for the purpose of creating D-T plasmas. The tritium used in these D-T plasmas was stored, delivered and processed in the TFTR tritium facility that includes the tritium vault, waste handling area, clean-up area, and gas holding tank room. During this time period, several components in the tritium process system were found to have tritium leaks which led to tritium deposition on process skids, components and floor area. Radiological surveys of surfaces contaminated with tritium oxide indicate a decrease in surface contamination in time (on the order of 12 to 36 hours) as the result of room ventilation. In instances where the facility HVAC system was maintained in the purge mode, a dramatic decrease in surface contamination was observed. Areas contaminated with tritium oxide (> 16.6 Bq/100 cm 2 ) were found to be clean ( 2 ) after several hours of continuous purging by the facility HVAC system. In instances where relative humidity was not decreased, the tritium surface contamination was found to be attenuated. During the months of December 1993, January and February 1994 tritium leaking components were either replaced, redesigned or repaired. During this time period, data were collected in the form of contamination surveys, real time tritium monitor output, and HVAC configuration indicating the correlation of purge ventilation leading to a decrease in tritium oxide surface contamination

  4. Torus evacuation and tritium handling on NET

    International Nuclear Information System (INIS)

    Dinner, P.; Chazalon, M.; Iseli, M.

    1986-08-01

    The use of tritium as a fuel affects the design of many systems, as well as requiring several new systems not needed on non DT-burning Tokamaks. This paper summarizes: major tritium process interconnections, tritium flows and inventories; primary requirements, preferred design alternatives, and related development issues; design philosophy for tritium and primary vacuum systems. 14 refs

  5. Operating experience and procedures at the tritium systems test assembly

    International Nuclear Information System (INIS)

    Carlson, R.V.; Binning, K.E.; Cole, S.P.; Jenkins, E.M.; Wilhelm, R.C.; Cole, S.P.

    1988-01-01

    Operating procedures are important for the safe and efficient operation of the Tritium Systems Test Assembly (TSTA). TSTA has been operating for four years with tritium in a safe and efficient manner. The inventory of tritium in the process loop is 100 grams and several milestone runs have been completed. This paper describes the methods used to operate TSTA. 3 refs., 1 fig

  6. The TFTR 40 MW neutral beam injection system and DT operations

    International Nuclear Information System (INIS)

    Stevenson, T.; O'Connor, T.; Garzotto, V.

    1995-01-01

    Since December 1993, TFTR has performed DT experiments using tritium fuel provided mainly by neutral beam injection. Significant alpha particle populations and reactor-like conditions have been achieved at the plasma core, and fusion output power has risen to a record 10.7 MW using a record 40 MW NB heating. Tritium neutral beams have injected into over 480 DT plasmas and greater than 500 kCi have been processed through the neutral beam gas, cryo, and vacuum systems. Beam tritium injections, as well as tritium feedstock delivery and disposal, have now become part of routine operations. Shot reliability with tritium is about 90% and is comparable to deuterium shot reliability. This paper describes the neutral beam DT experience including the preparations, modifications, and operating techniques that led to this high level of success, as well as the critical differences in beam operations encountered during DT operations. Also, the neutral beam maintenance and repair history during DT operations, the corrective actions taken, and procedures developed for handling tritium contaminated components are discussed in the context of supporting a continuous DT program

  7. Tritium contamination experience in an operational D-T fusion reactor

    Energy Technology Data Exchange (ETDEWEB)

    Gentile, C.A.; Ascione, G. [Princeton Univ., NJ (United States). Plasma Physics Lab.; Anderson, J.L. [Los Alamos National Lab., NM (United States)] [and others

    1994-09-01

    During December 1993, the Tokamak Fusion Test Reactor (TFTR) injected a mixture of deuterium and tritium in the TFTR vacuum vessel for the purpose of creating D-T plasmas. The tritium used in these D-T plasmas was stored, delivered and processed in the TFTR tritium facility that includes the tritium vault, waste handling area, clean-up area, and gas holding tank room. During this time period, several components in the tritium process system were found to have tritium leaks which led to tritium deposition on process skids, components and floor area. Radiological surveys of surfaces contaminated with tritium oxide indicate a decrease in surface contamination in time (on the order of 12 to 36 hours) as the result of room ventilation. In instances where the facility HVAC system was maintained in the purge mode, a dramatic decrease in surface contamination was observed. Areas contaminated with tritium oxide (> 16.6 Bq/100 cm{sup 2}) were found to be clean (< 16.6 Bq/100 cm{sub 2}) after several hours of continuous purging by the facility HVAC system. In instances where relative humidity was not decreased, the tritium surface contamination was found to be attenuated. During the months of December 1993, January and February 1994 tritium leaking components were either replaced, redesigned or repaired. During this time period, data were collected in the form of contamination surveys, real time tritium monitor output, and HVAC configuration indicating the correlation of purge ventilation leading to a decrease in tritium oxide surface contamination.

  8. Confinement and Tritium Stripping Systems for APT Tritium Processing

    Energy Technology Data Exchange (ETDEWEB)

    Hsu, R.H. [Westinghouse Savannah River Company, AIKEN, SC (United States); Heung, L.K.

    1997-10-20

    This report identifies functions and requirements for the tritium process confinement and clean-up system (PCCS) and provides supporting technical information for the selection and design of tritium confinement, clean-up (stripping) and recovery technologies for new tritium processing facilities in the Accelerator for the Production of Tritium (APT). The results of a survey of tritium confinement and clean-up systems for large-scale tritium handling facilities and recommendations for the APT are also presented.

  9. Confinement and Tritium Stripping Systems for APT Tritium Processing

    International Nuclear Information System (INIS)

    Hsu, R.H.; Heung, L.K.

    1997-01-01

    This report identifies functions and requirements for the tritium process confinement and clean-up system (PCCS) and provides supporting technical information for the selection and design of tritium confinement, clean-up (stripping) and recovery technologies for new tritium processing facilities in the Accelerator for the Production of Tritium (APT). The results of a survey of tritium confinement and clean-up systems for large-scale tritium handling facilities and recommendations for the APT are also presented

  10. System support software for TSTA [Tritium Systems Test Assembly

    International Nuclear Information System (INIS)

    Claborn, G.W.; Mann, L.W.; Nielson, C.W.

    1987-10-01

    The fact that Tritium Systems Test Assembly (TSTA) is an experimental facility makes it impossible and undesirable to try to forecast the exact software requirements. Thus the software had to be written in a manner that would allow modifications without compromising the safety requirements imposed by the handling of tritium. This suggested a multi-level approach to the software. In this approach (much like the ISO network model) each level is isolated from the level below and above by cleanly defined interfaces. For example, the subsystem support level interfaces with the subsystem hardware through the software support level. Routines in the software support level provide operations like ''OPEN VALVE'' and CLOSE VALVE'' to the subsystem level. This isolates the subsystem level from the actual hardware. This is advantageous because changes can occur in any level without the need for propagating the change to any other level. The TSTA control system consists of the hardware level, the data conversion level, the operator interface level, and the subsystem process level. These levels are described

  11. Canadian capabilities in fusion fuels technology and remote handling

    International Nuclear Information System (INIS)

    1987-10-01

    This report describes Canadian expertise in fusion fuels technology and remote handling. The Canadian Fusion Fuels Technology Project (CFFTP) was established and is funded by the Canadian government, the province of Ontario and Ontario Hydro to focus on the technology necessary to produce and manage the tritium and deuterium fuels to be used in fusion power reactors. Its activities are divided amongst three responsibility areas, namely, the development of blanket, first wall, reactor exhaust and fuel processing systems, the development of safe and reliable operating procedures for fusion facilities, and, finally, the application of these developments to specific projects such as tritium laboratories. CFFTP also hopes to utilize and adapt Canadian developments in an international sense, by, for instance, offering training courses to the international tritium community. Tritium management expertise is widely available in Canada because tritium is a byproduct of the routine operation of CANDU reactors. Expertise in remote handling is another byproduct of research and development of of CANDU facilities. In addition to describing the remote handling technology developed in Canada, this report contains a brief description of the Canadian tritium laboratories, storage beds and extraction plants as well as a discussion of tritium monitors and equipment developed in support of the CANDU reactor and fusion programs. Appendix A lists Canadian manufacturers of tritium equipment and Appendix B describes some of the projects performed by CFFTP for offshore clients

  12. Tritium Systems Test Assembly operator training program

    International Nuclear Information System (INIS)

    Kerstiens, F.L.

    1985-01-01

    Proper operator training is needed to help ensure the safe operation of fusion facilities by personnel who are qualified to carry out their assigned responsibilities. Operators control and monitor the Tritium Systems Test Assembly (TSTA) during normal, emergency, and maintenance phases. Their performance is critical both to operational safety, assuring no release of tritium to the atmosphere, and to the successful simulation of the fusion reaction progress. Through proper training we are helping assure that TSTA facility operators perform their assignments in a safe and efficient manner and that the operators maintain high levels of operational proficiency through continuing training, retraining, requalification, and recertification

  13. 1997 evaluation of tritium removal and mitigation technologies for Hanford Site wastewaters

    International Nuclear Information System (INIS)

    Jeppson, D.W.; Biyani, R.K.; Duncan, J.B.; Flyckt, D.L.; Mohondro, P.C.; Sinton, G.L.

    1997-01-01

    This report contains results of a biennial assessment of tritium separation technology and tritium nitration techniques for control of tritium bearing wastewaters at the Hanford Site. Tritium in wastewaters at Hanford have resulted from plutonium production, fuel reprocessing, and waste handling operations since 1944. this assessment was conducted in response to the Hanford Federal Facility Agreement and Consent Order

  14. Current operations and experiments at the Tritium Systems Test Assembly

    International Nuclear Information System (INIS)

    Bartlit, J.R.; Anderson, J.L.

    1985-01-01

    The Tritium Systems Test Assembly (TSTA) has continued to move toward operation of a fully-integrated, full-sized, computer-controlled fusion fuel processing loop. Concurrent, nonloop experiments have answered important questions on new components and issues such as palladium diffusion membranes, ceramic electrolysis cells, regenerable tritium getters, laser Raman spectroscopy, unregenerable tritium inventory on molecular sieves, tritium contamination problems and decontamination methods, and operating data on reliability, emissions, doses, and wastes generated. 4 refs., 2 figs

  15. Tritium handling experience in vacuum systems at TSTA [Tritium Systems Test Assembly

    International Nuclear Information System (INIS)

    Anderson, J.L.; Jenkins, E.M.; Walthers, C.R.; Yoshida, H.; Fukui, H.; Naruse, Y.

    1989-01-01

    Compound cryopumps have been added to the Tritium Systems Test Assembly (TSTA) integrated fusion fuel loop. Operations have been performed which closely simulate an actual fusion reactor pumping scenario. In addition, performance data have been taken that support the concept of using coconut charcoal as a sorbent at 4K for pumping helium. Later tests show that coconut charcoal may be used to co-pump D,T and He mixtures on a single 4K panel. Rotary spiral pumps have been used successfully in several applications at TSTA and have acquired more than 9000 hours of maintenance-free operation. Metal bellows pumps have been used to back the spiral pumps and have been relatively trouble free in loop operations. Bellows pumps also have more than 9000 hours of maintenance-free operation. 5 refs., 6 figs

  16. Tritium transport and control in the FED

    International Nuclear Information System (INIS)

    Rogers, M.L.

    1981-01-01

    The tritium systems for the FED have three primary purposes. The first is to provide tritium and deuterium fuel for the reactor. This fuel can be new tritium or deuterium delivered to the plant site, or recycled DT from the reactor that must be processed before it can be recycled. The second purpose of the FED tritium systems is to provide state-of-the-art tritium handling to limit worker radiation exposure and to minimize tritium losses to the environment. The final major objective of the FED tritium systems is to provide an integrated system test of the tritium handling technology necessary to support the fusion reactor program. Every effort is being made to incorporate available information from the Tritium System Test Assembly (TSTA) at Los Alamos National Laboratory, the Tokamak Fusion Test Reactor (TFTR) tritium systems, and the tritium handling information generated within DOE for the past 20 years

  17. Design and operations at the National Tritium Labelling Facility

    International Nuclear Information System (INIS)

    Morimoto, H.; Williams, P.G.

    1991-09-01

    The National Tritium Labelling Facility (NTLF) is a multipurpose facility engaged in tritium labeling research. It offers to the biomedical research community a fully equipped laboratory for the synthesis and analysis of tritium labeled compounds. The design of the tritiation system, its operations and some labeling techniques are presented

  18. TSTA loop operation with 100 grams-level of tritium

    International Nuclear Information System (INIS)

    Yoshida, Hiroshi; Fukui, Hiroshi; Hirata, Shingo

    1988-12-01

    A fully integrated loop operation test of Tritium systems Test Assembly (TSTA) with 107 grams of tritium was completed at Los Alamos National Laboratory (LANL) in June, 1988. In this test, a compound cryopump with a charcoal panel was incorporated into the main process loop for the first time. The objectives were (i) to demonstrate the compound cryopump system with different flow rates and impurities, (ii) to demonstrate the regeneration of the compound cryopump system, (iii) to accumulate operating experience with other process systems such as the fuel cleanup system, the isotope separation system, the tritium supply and recovery system, etc. and (iv) to improve the data-base on TSTA safety systems such as the secondary containment system, tritium waste treatment system and tritium monitoring system. This report briefly describes characteristics of the main subsystems observed during the milestone run. (author)

  19. The LLNL portable tritium processing system

    International Nuclear Information System (INIS)

    Anon.

    1995-01-01

    The end of the Cold War significantly reduced the need for facilities to handle radioactive materials for the US nuclear weapons program. The LLNL Tritium Facility was among those slated for decommissioning. The plans for the facility have since been reversed, and it remains open. Nevertheless, in the early 1990s, the cleanup (the Tritium Inventory Removal Project) was undertaken. However, removing the inventory of tritium within the facility and cleaning up any pockets of high-level residual contamination required that we design a system adequate to the task and meeting today's stringent standards of worker and environmental protection. In collaboration with Sandia National Laboratory and EG ampersand G Mound Applied Technologies, we fabricated a three-module Portable Tritium Processing System (PTPS) that meets current glovebox standards, is operated from a portable console, and is movable from laboratory to laboratory for performing the basic tritium processing operations: pumping and gas transfer, gas analysis, and gas-phase tritium scrubbing. The Tritium Inventory Removal Project is now in its final year, and the portable system continues to be the workhorse. To meet a strong demand for tritium services, the LLNL Tritium Facility will be reconfigured to provide state-of-the-art tritium and radioactive decontamination research and development. The PTPS will play a key role in this new facility

  20. Simulation of tritium behavior after intended tritium release in ventilated room

    International Nuclear Information System (INIS)

    Iwai, Yasunori; Hayashi, Takumi; Yamanishi, Toshihiko; Kobayashi, Kazuhiro; Nishi, Masataka

    2001-01-01

    At the Tritium Process Laboratory (TPL) at the Japan Atomic Energy Research Institute (JAERI), Caisson Assembly for Tritium Safety study (CATS) with 12 m 3 of large airtight vessel (Caisson) was fabricated for confirmation and enhancement of fusion reactor safety to estimate tritium behavior in the case where a tritium leak event should happen. One of the principal objectives of the present studies is the establishment of simulation method to predict the tritium behavior after the tritium leak event should happen in a ventilated room. The RNG model was found to be valid for eddy flow calculation in the 50 m 3 /h ventilated Caisson with acceptable engineering precision. The calculated initial and removal tritium concentration histories after intended tritium release were consistent with the experimental observations in the 50 m 3 /h ventilated Caisson. It is found that the flow near a wall plays an important role for the tritium transport in the ventilated room. On the other hand, tritium behavior intentionally released in the 3,000 m 3 of tritium handling room was investigated experimentally under a US-Japan collaboration. The tritium concentration history calculated with the same method was consistent with the experimental observations, which proves that the present developed method can be applied to the actual scale of tritium handling room. (author)

  1. A tritium target system for μCF

    International Nuclear Information System (INIS)

    Zmeskal, J.; Ackerbauer, P.; Durham, W.B.; Heard, H.C.; Neumann, W.; Bossy, H.

    1990-12-01

    An apparatus has been constructed for the safe handling of tritium as part of a series of muon-catalyzed fusion experiments. The equipment was designed to handle 100 kCi of tritium. The main parts of this system are the oil-free high vacuum and transfer system, and the quadrupole mass analyzer for a direct determination of the target content. The system was used successfully for five continuous periods of operation of over one month each. A new target system was constructed at Lawrence Livermore National Laboratory (LLNL) for ultimate use at Paul Scherrer Institute (PSI) to investigate the high temperature and high pressure region. 9 refs., 4 figs

  2. Engineering studies of tritium recovery from CTR blankets and plasma exhaust

    International Nuclear Information System (INIS)

    Watson, J.S.

    1975-01-01

    Engineering studies on tritium handling problems in fusion reactors have included conceptual and experimental studies of techniques for recovery of tritium bred in the reactor blanket and conceptual designs for recovery and processing of tritium from plasma exhausts. The process requirements and promising techniques for the blanket system depend upon the materials used for the blanket, coolant, and structure and on the operating temperatures. Process requirements are likely to be set in some systems by allowable loss rates to the steam system or by inventory considerations. Conceptual studies have also been made for tritium handling equipment for fueling, recovery, and processing in plasma recycle systems of fusion reactors, and a specific design has been prepared for ''near-term'' Tokamak experiments. (auth)

  3. Technical and Scientific Aspects of the JET Trace-Tritium Experimental Campaign

    International Nuclear Information System (INIS)

    Jones, T.T.C.; Brennan, D; Pearce, R.J.H.; Stork, D.; Zastrow, K.-D.; Balshaw, N.; Bell, A.C.; Bertalot, L.; Boyer, H.; Butcher, P.R.; Challis, C.D.; Ciric, D.; Clarke, R.; Conroy, S.; Darke, A.C.; Davies, N.; Edlington, T.; Ericsson, G.; Gibbons, C.; Hackett, L.J.; Haupt, T.; Hitchin, M.; Kaye, A.S.; King, R.; Kiptily, V.G.; Knipe, S.; Lawrence, G.; Lobel, R.; Mason, A.; Morgan, P.D.; Patel, B.; Popovichev, S.; Stamp, M.; Surrey, E.; Terrington, A.; Worth, L.; Young, D.

    2005-01-01

    The JET Trace Tritium (TTE) programme marked the first use of tritium in experiments under the managerial control of UKAEA, which operates the JET Facility on behalf of EFDA. The introduction of tritium into the plasma by gas fuelling and neutral beam injection, even in trace quantities, required the mobilisation of gram-quantities of tritium gas from the Active Gas Handling System (AGHS) product storage units into the supply lines connected to the torus gas valve and the neutral beam injectors. All systems for DT gas handling, recovery and reprocessing were therefore recommissioned and operating procedures re-established, involving extensive operations staff training. The validation of Key Safety Related Equipment (KSRE) is described with reference to specific examples. The differences between requirements for TTE and full DT operations are shown to be relatively small. The scientific motivation for TTE, such as the possibility to obtain high-quality measurements in key areas such as fuel-ion transport and fast ion dynamics, is described, and the re-establishment and development of JET's 14MeV neutron diagnostic capability for TTE and future DT campaigns are outlined. Some scientific highlights from the TTE campaign are presented

  4. Tritium handling facility at KMS Fusion Inc

    International Nuclear Information System (INIS)

    Bowman, C.C.; Vis, V.A.

    1990-01-01

    The tritium facility at KMS Fusion, Inc. supports the inertial confinement fusion research program. The main function of the facility is to fill glass and polymer Microshell (TM) capsules (small fuel containers) to a maximum pressure of 100 atm with tritium (T 2 ) or deuterium--tritium (DT). The recent upgrade of the facility allows us to fill Microshell capsules to a maximum pressure of 200 atm. A second fill port allows us to run long term fills of Macroshell (TM) capsules (large fuel containers) concurrently. The principle processes of the system are: (1) storage of the tritium as a uranium hydride; (2) pressure intensification using cryogenics; and (3) filling of the shells by permeation at elevated temperatures. The design of the facility was centered around a NRC license limit of 6000 Ci

  5. Tritium proof-of-principle injector experiment

    International Nuclear Information System (INIS)

    Fisher, P.W.; Milora, S.L.; Combs, S.K.; Carlson, R.V.; Coffin, D.O.

    1988-01-01

    The Tritium Proof-of-Principle (TPOP) pellet injector was designed and built by Oak Ridge National Laboratory (ORNL) to evaluate the production and acceleration of tritium pellets for fueling future fision reactors. The injector uses the pipe-gun concept to form pellets directly in a short liquid-helium-cooled section of the barrel. Pellets are accelerated by using high-pressure hydrogen supplied from a fast solenoid valve. A versatile, tritium-compatible gas-handling system provides all of the functions needed to operate the gun, including feed gas pressure control and flow control, plus helium separation and preparation of mixtures. These systems are contained in a glovebox for secondary containment of tritium Systems Test Assembly (TSTA) at Los Alamos National Laboratory (LANL). 18 refs., 3 figs

  6. Review of recent japanese activities on tritium accountability in fusion reactors

    Energy Technology Data Exchange (ETDEWEB)

    Fukada, Satoshi, E-mail: sfukada@nucl.kyushu-u.ac.jp [Dept. Advanced Energy Engineering Science, Kyushu University, 6-1 Kasuga-Koen, Kasuga, 816-8580 (Japan); Oya, Yasuhisa [College of Science, Academic Institute, Shizuoka University, 836 Otani, Suruga-ku, Shizuoka 422-8529 (Japan); Hatano, Yuji [Hydrogen Isotope Research Center, Organization for Promotion Research, University of Toyama, 3190 Gofuku, Toyama 930-8555 (Japan)

    2016-12-15

    Highlights: • Review of Japanese tritium-safety research is given from several viewpoints. • The keywords are tritium accountability and self sufficiency. • Tritium-relating history, tritium facilities and legal regulation are introduced. - Abstract: After introduction of Japanese history or recent topics on tritium (T)-relating research and T-handling capacity in facilities or universities, present activities on T engineering research in Japan are summarized in short in terms of T accountability on safety. The term of safety includes wide processes from T production, assay, storing, confinement, transfer through safety handling finally to shipment of its waste. In order to achieve reliable operation of fusion reactors, several unit processes included in the T cycle of fusion reactors are investigated. Especially, the following recent advances are focused: T retention in plasma facing materials, emergency detritiation system including fire case, T leak through metal tube walls, oxide coating and water detritiation. Strict control, storing and accurate measurement are especially demanded for T accountability depending on various molecular species. Since kg-order T of vaporable radioisotope (RI) will be handled in a fuel cycle or breeding system of a fusion reactor, the accuracy of <0.1% is demanded far over the conventional technology status. Necessity to control T balance within legal restrictions is always kept in mind for operation of the future reactor.

  7. Review of recent japanese activities on tritium accountability in fusion reactors

    International Nuclear Information System (INIS)

    Fukada, Satoshi; Oya, Yasuhisa; Hatano, Yuji

    2016-01-01

    Highlights: • Review of Japanese tritium-safety research is given from several viewpoints. • The keywords are tritium accountability and self sufficiency. • Tritium-relating history, tritium facilities and legal regulation are introduced. - Abstract: After introduction of Japanese history or recent topics on tritium (T)-relating research and T-handling capacity in facilities or universities, present activities on T engineering research in Japan are summarized in short in terms of T accountability on safety. The term of safety includes wide processes from T production, assay, storing, confinement, transfer through safety handling finally to shipment of its waste. In order to achieve reliable operation of fusion reactors, several unit processes included in the T cycle of fusion reactors are investigated. Especially, the following recent advances are focused: T retention in plasma facing materials, emergency detritiation system including fire case, T leak through metal tube walls, oxide coating and water detritiation. Strict control, storing and accurate measurement are especially demanded for T accountability depending on various molecular species. Since kg-order T of vaporable radioisotope (RI) will be handled in a fuel cycle or breeding system of a fusion reactor, the accuracy of <0.1% is demanded far over the conventional technology status. Necessity to control T balance within legal restrictions is always kept in mind for operation of the future reactor.

  8. Initial experience of tritium exposure control at JET

    International Nuclear Information System (INIS)

    Patel, B.; Campling, D.C.; Schofield, P.A.; Macheta, P.; Sandland, K.

    1998-01-01

    Some of the safety procedures and controls in place for work with tritium are described, and initial operational experience of handling tritium is discussed. A description is given of work to rectify a water leak in a JET neutral beam heating component, which involved man-access to a confined volume to perform repairs, at tritium levels about 100 DAC (80 MBq/m 3 . HTO). Control measures involving use of purge and extract ventilation, and of personal protection using air-fed pressurized suits are described. Results are given of the internal doses to project staff and of atmospheric discharges of tritium during the repair outage. (P.A.)

  9. Tritium practices past and present

    International Nuclear Information System (INIS)

    Gede, V.P.; Gildea, P.D.

    1980-01-01

    History of the production and use of tritium, as well as handling techniques, are reviewed. Handling techniques first used at Lawrence Livermore National Laboratory made use of glass vacuum systems and relatively crude ion chambers for monitoring airborne activity. The first use of inert atmosphere glove boxes demonstrated that uptake through the skin could be a serious personnel exposure problem. Growing environmental concerns in the early 1970's resulted in the implementation by the Atomic Energy Commission of a new criteria to limit atmospheric tritium releases to levels as low as practicable. An important result of the new criteria was the development of containment and recovery systems to capture tritium rather than vent it to the atmosphere. The Sandia National Laboratories, Livermore, Tritium Research Laboratory containment and decontamination systems are presented as a typical example of this technology. The application of computers to control systems is expected to provide the greatest potential for change in future tritium handling practices

  10. Little tritium goes a long way

    International Nuclear Information System (INIS)

    Albright, D.; Taylor, T.B.

    1988-01-01

    Faced with mounting safety problems in its military production reactors, the Energy Department will soon ask Congress to fund the construction of at least one new multibillion dollar tritium production reactor. Energy estimates that building such a reactor could take ten years, and it says that in the interim it needs to continue producing tritium at the Savannah River reactors. In fact, it plans to resume operating its Savannah River reactors at full power as soon as possible. The United States must keep producing tritium if the US-Soviet nuclear arms race continues its present course. If the arms race continues, the Energy Department has two basic options: it could run the Savannah River reactors for several more decades or it could use these reactors until it has built a new one. Operating the Savannah River reactors at full or low power may be risky, even if they undergo extensive safety modifications, since no one knows at what power these reactors can be operated safely. Despite these pressing issues, most of the substantive debate about the role of tritium in nuclear weapons and the requirement for more tritium production is taking place in secret. The public debate largely ignores the broader questions of whether the United States needs to produce tritium and what impact possible agreements reducing nuclear arsenals might have on US tritium requirements

  11. Modification and testing of the Sandia Laboratories Livermore tritium decontamination systems

    International Nuclear Information System (INIS)

    Gildea, P.D.; Birnbaum, H.G.; Wall, W.R.

    1978-08-01

    Sandia Laboratories, Livermore, has put into operation a new facility, the Tritium Research Laboratory. The laboratory incorporates containment and cleanup facilities such that any tritium accidentally released is captured rather than vented to the atmosphere. This containment is achieved with hermetically sealed glove boxes that are connected on demand by manifolds to two central decontamination systems called the Gas Purification System (GPS) and the Vacuum Effluent Recovery System (VERS). The primary function of the GPS is to remove tritium and tritiated water vapor from the glove box atmosphere. The primary function of the VERS is to decontaminate the gas exhausted from the glove box pressure control systems and vacuum pumps in the building before venting the gas to the stack. Both of these systems are designed to remove tritium to the few parts per billion range. Acceptance tests at the manufacturer's plant and preoperational testing at Livermore demonstrated that the systems met their design specifications. After preoperational testing the Gas Purification System was modified to enhance the safety of maintanance operations. Both the Gas Purification System and the Vacuum Effluent Recovery System were performance tested with tritium. Results show that concentraion reduction factors (ratio of inlet to exhaust concentrations) much in excess of 1000 per pass have been achieved for both systems at inlet concentrations of 1 ppM or less

  12. Modification and testing of the Sandia Laboratories Livermore tritium decontamination systems

    International Nuclear Information System (INIS)

    Gildea, P.D.; Birnbaum, H.G.; Wall, W.R.

    1979-01-01

    Sandia Laboratories, Livermore, has put into operation a new facility, the Tritium Research Laboratory. The laboratory incorporates containment and cleanup facilities such that any tritium accidentally released is captured rather than vented to the atmosphere. This containment is achieved with hermetically sealed glove boxes that are connected on demand by manifolds to two central decontamination systems called the Gas Purification System (GPS) and the Vacuum Effluent Recovery System (VERS). The primary function of the GPS is to remove tritium and tritiated water vapor from the glove box atmosphere. The primary function of the VERS is to decontaminate the gas exhausted from the glove box pressure control systems and vacuum pumps in the building before venting the gas to the stack. Both of these systems are designed to remove tritium to the few parts per billion range. Acceptance tests at the manufacturer's plant and preoperational testing at Livermore demonstrated that the systems met their design specifications. After preoperational testing the Gas Purification System was modified to enhance the safety of maintanance operations. Both the Gas Purification System and the Vacuum Effluent Recovery System were performance tested with tritium. Results show that concentration reduction factors (ratio of inlet to exhaust concentrations) much in excess of 1000 per pass have been achieved for both systems at inlet concentrations of 1 ppM or less

  13. Tritium effluent removal system

    International Nuclear Information System (INIS)

    Lamberger, P.H.; Gibbs, G.E.

    1978-01-01

    An air detritiation system has been developed and is in routine use for removing tritium and tritiated compounds from glovebox effluent streams before they are released to the atmosphere. The system is also used, in combination with temporary enclosures, to contain and decontaminate airborne releases resulting from the opening of tritium containment systems during maintenance and repair operations. This detritiation system, which services all the tritium handling areas at Mound Facility, has played an important role in reducing effluents and maintaining them at 2 percent of the level of 8 y ago. The system has a capacity of 1.7 m 3 /min and has operated around the clock for several years. A refrigerated in-line filtration system removes water, mercury, or pump oil and other organics from gaseous waste streams. The filtered waste stream is then heated and passed through two different types of oxidizing beds; the resulting tritiated water is collected on molecular sieve dryer beds. Liquids obtained from regenerating the dryers and from the refrigerated filtration system are collected and transferred to a waste solidification and packaging station. Component redundancy and by-pass capabilities ensure uninterrupted system operation during maintenance. When processing capacity is exceeded, an evacuated storage tank of 45 m 3 is automatically opened to the inlet side of the system. The gaseous effluent from the system is monitored for tritium content and recycled or released directly to the stack. The average release is less than 1 Ci/day. The tritium effluent can be reduced by isotopically swamping the tritium; this is accomplished by adding hydrogen prior to the oxidizer beds, or by adding water to the stream between the two final dryer beds

  14. Tritium in HTR systems

    International Nuclear Information System (INIS)

    Steinwarz, W.

    1987-07-01

    Starting from the basis of the radiological properties of tritium, the provisions of present-day radiation protection legislation are discussed in the context of the handling of this radionuclide in HTR plants. Tritium transportation is then followed through from the place of its creation up until the sink, i.e. disposal and/or environmental route, and empirical values obtained in experiments and in plant operation translated into guidelines for plant design and planning. The use of the example of modular HTR plants permits indication that environmental contamination via the 'classical' routes of air and water emissions, and contamination of products, and resulting consumer exposure, are extremely low even on the assumption of extreme conditions. This leads finally to a requirement that the expenditure for implementation of measures for further reduction of tritium activity rates be measured against low radiological effect. (orig.) [de

  15. Operational experience with two tritium-effluent-monitoring systems

    International Nuclear Information System (INIS)

    Haynie, J.S.; Gutierrez, J.A.

    1982-01-01

    Two new tritium stack monitoring systems were designed and built. The operational experience of a wide-range detector with a useful range of a few μCi/m 3 to 10 8 μCi/m 3 , and a second monitoring system using an improved Kanne chamber and a new electrometer, called a Model 39 Electrometer-Chargemeter are discussed. Both tritium chambers have been designed to have a reduced sensitivity to tritium contamination, a fast response, and an integrating chargemeter with digital readout for easy conversion to microcuries. The calibration of these monitors and advantages of using these chambers over conventional systems are discussed

  16. Tritium-management requirements for D-T fusion reactors (ETF, INTOR, FED)

    International Nuclear Information System (INIS)

    Finn, P.A.; Clemmer, R.G.; Misra, B.

    1981-10-01

    The successful operation of D-T fusion reactors will depend on the development of safe and reliable tritium-containment and fuel-recycle systems. The tritium handling requirements for D-T reactors were analyzed. The reactor facility was then designed from the viewpoint of tritium management. Recovery scenarios after a tritium release were generated to show the relative importance of various scenarios. A fusion-reactor tritium facility was designed which would be appropriate for all types of plants from the Engineering Test Facility (ETF), the International Tokamak Reactor (INTOR), and the Fusion Engineering Device (FED) to the full-scale power plant epitomized by the STARFIRE design

  17. Japanese university program on tritium radiobiology and environmental tritium

    International Nuclear Information System (INIS)

    Okada, Shigefumi

    1989-01-01

    The university program of the tritium study in the Special Research Project of Nuclear Fusion (1980-1989) is now on its 9th year. The study's aim is to assess tritium risk on man and environment for development of Japanese Nuclear Fusion Program. The tritium study begun by establishing various tritium safe-handling devices and methods to protect scientists from tritium contamination. Then, the tritium studies were initiated in three areas: The first was the studies on biological effects of tritiated water, where their RBE values, their modifying factors and mechanisms were investigated. Also, several human monitoring systems for detection of tritium-induced damage were developed. The second was the metabolic studies of tritium, including a daily tritium monitoring system, methods to enhance excretion of tritiated water from body and means to prevent oxidation of tritium gas in the body. The third was the study of environmental tritium. Tritium levels in environmental waters of various types were estimated all-over in Japan and their seasonal or regional variation were analyzed. Last two years, the studies were extended to estimate tritium activities of plants, foods and man in Japan. (author)

  18. The ITER tritium systems

    International Nuclear Information System (INIS)

    Glugla, M.; Antipenkov, A.; Beloglazov, S.; Caldwell-Nichols, C.; Cristescu, I.R.; Cristescu, I.; Day, C.; Doerr, L.; Girard, J.-P.; Tada, E.

    2007-01-01

    ITER is the first fusion machine fully designed for operation with equimolar deuterium-tritium mixtures. The tokamak vessel will be fuelled through gas puffing and pellet injection, and the Neutral Beam heating system will introduce deuterium into the machine. Employing deuterium and tritium as fusion fuel will cause alpha heating of the plasma and will eventually provide energy. Due to the small burn-up fraction in the vacuum vessel a closed deuterium-tritium loop is required, along with all the auxiliary systems necessary for the safe handling of tritium. The ITER inner fuel cycle systems are designed to process considerable and unprecedented deuterium-tritium flow rates with high flexibility and reliability. High decontamination factors for effluent and release streams and low tritium inventories in all systems are needed to minimize chronic and accidental emissions. A multiple barrier concept assures the confinement of tritium within its respective processing components; atmosphere and vent detritiation systems are essential elements in this concept. Not only the interfaces between the primary fuel cycle systems - being procured through different Participant Teams - but also those to confinement systems such as Atmosphere Detritiation or those to fuelling and pumping - again procured through different Participant Teams - and interfaces to buildings are calling for definition and for detailed analysis to assure proper design integration. Considering the complexity of the ITER Tritium Plant configuration management and interface control will be a challenging task

  19. Tritium accountancy and unmeasurable inventories in fusion reactors

    International Nuclear Information System (INIS)

    Avenhaus, R.; Spannagel, G.

    1997-12-01

    For the time being fusion technology development involves relatively small quantities of tritium. Consequently, it is sufficient to apply so-called ''conventional'' accountancy tools. However, it is foreseeable that tritium operations - and thus the amount of tritium - will increase substantially. An advanced accountancy methodology will satisfy the resulting new requirements. In this study such an advanced accountancy methodolody is developed and applied to the situation envisaged with idealized experiments of the Karlsruhe Tritium Laboratory (TLK) as well as an idealized ITER-type fuel cycle. Firstly, this task comprises modeling of fuel cycle operations, providing the ''true'' data of the in-process inventories. As both the fuel cycle subsystems and networking themselves are susceptible to changes, a measurement model takes care of the true data, handles data reduction, and applies mathematical methods to confirm the final inventories on a statistical basis. Then, in a third step, the test statistics might verify whether or not a tritium anomaly, e.g. a tritium loss has occurred. Since the statistical analysis generates problems the solutions of which are not part of the standard statistical literature in the Annex the results of the related original work is presented in mathematical-abstract form. (orig.)

  20. Tritium Systems Test Facility

    International Nuclear Information System (INIS)

    Cafasso, F.A.; Maroni, V.A.; Smith, W.H.; Wilkes, W.R.; Wittenberg, L.J.

    1978-01-01

    This TSTF proposal has two principal objectives. The first objective is to provide by mid-FY 1981 a demonstration of the fuel cycle and tritium containment systems which could be used in a Tokamak Experimental Power Reactor for operation in the mid-1980's. The second objective is to provide a capability for further optimization of tritium fuel cycle and environmental control systems beyond that which is required for the EPR. The scale and flow rates in TSTF are close to those which have been projected for a prototype experimental power reactor (PEPR/ITR) and will permit reliable extrapolation to the conditions found in an EPR. The fuel concentrations will be the same as in an EPR. Demonstrations of individual components of the deuterium-tritium fuel cycle and of monitoring, accountability and containment systems and of a maintenance methodology will be achieved at various times in the FY 1979-80 time span. Subsequent to the individual component demonstrations--which will proceed from tests with hydrogen (and/or deuterium) through tracer levels of tritium to full operational concentrations--a complete test and demonstration of the integrated fuel processing and tritium containment facility will be performed. This will occur near the middle of FY 1981. Two options were considered for the TSTF: (1) The modification of an existing building and (2) the construction of a new facility

  1. Tritium

    International Nuclear Information System (INIS)

    Anon.

    1975-01-01

    The role played the large amount supply of tritium and its effects are broadly reviewed. This report is divided into four parts. The introductory part includes the history of tritium research. The second part deals with the physicochemical properties of tritium and the compounds containing tritium such as tritium water and labeled compounds, and with the isotope effects and self radiation effects of tritium. The third part deals with the tritium production by artificial reaction. Attention is directed to the future productivity of tritium from B, Be, N, C, O, etc. by using the beams of high energy protons or neutrons. The problems of the accepting market and the accuracy of estimating manufacturing cost are discussed. The expansion of production may bring upon the reduction of cost but also a large possibility of social impact. The irradiation problem and handling problem in view of environmental preservation are discussed. The fourth part deals with the use of tritium as a target, as a source of radiation or light, and its utilization for geochemistry. The future development of the solid tritium target capable of elongating the life of neutron sources is expected. The rust thickness of the surface of iron can be measured with the X-ray of Ti-T or Zr-T. The tritium can substitute self-light emission paint or lamp. The tritium is suitable for tracing the movement of sea water and land surface water because of its long half life. (Iwakiri, K.)

  2. Tritium sorption by cement and subsequent release

    International Nuclear Information System (INIS)

    Ono, F.; Yamawaki, M.

    1995-01-01

    In a fusion reactor or tritium-handling facilities, contamination of concrete by tritium and subsequent release from it to the reator or experimental room is a matter of problem for safe control of tritium and management of operational environment. In order to evaluate this tritium behavior, interaction of tritiated water with concrete or cement should be clarified. In the present study, HTO sorption and subsequent release from cement were experimentally studied.(1)Sorption experiments were conducted using columns packed with cement particles of different sizes. From the analysis of the breakthrough curve, tritium diffusivity in macropores and microparticles were evaluated.(2)From the short-term tritium release experiments, effective desorption rate constants were evaluated and the effects of temperature and moisture were studied.(3)In the long-term tritium release experiments to 6000h, the tritium release mechanism was found to be composed of three kinds of water: initially from capillary water, and in the second stage from gel water and from the water in the cement crystal.(4)Tritium release behavior by heat treatment to 800 C was studied. A high temperature above 600 C was required for the tritium trapped in the crystal water to be released. (orig.)

  3. Exposure Control for Operations and Maintenance at the Accelerator Production of Tritium

    International Nuclear Information System (INIS)

    McGuire, D.H.

    1998-09-01

    The APT will be designed and operated to support continuous tritium production. Tritium is an essential ingredient in U.S. nuclear weapons. The APT will be designed and staffed to support continuous production of tritium by trained, qualified, and certified personnel

  4. Design, fabrication and testing of the gas analysis system for the tritium recovery experiment, TRIO-01

    International Nuclear Information System (INIS)

    Finn, P.A.; Reedy, G.T.; Homa, M.I.; Clemmer, R.G.; Pappas, G.; Slawecki, M.A.; Graczyk, D.G.; Bowers, D.L.; Clemmer, E.D.

    1983-01-01

    The tritium recovery experiment, TRIO-01, required a gas analysis system which detected the form of tritium, the amount of tritium (differential and integral), and the presence and amount of other radioactive species. The system had to handle all contingencies and function for months at a time unattended during weekend operation. The designed system, described herein, consisted of a train of components which could be grouped as desired to match tritium release behavior

  5. Design and operational experience with a portable tritium cleanup system

    International Nuclear Information System (INIS)

    Maienschein, J.L.; Wilson, S.W.; Garcia, F.

    1991-06-01

    We built a portable tritium cleanup system to scavenge tritium from contaminated gases in any tritium-containing system in the LLNL Tritium Facility. The cleanup system uses standard catalytic oxidation of tritium to water followed by water removal with a molecular sieve dryer. The cleanup unit, complete with instrumentation, is contained in a portable cart that is rolled into place and connected to the apparatus to be cleaned. The cleanup systems is effective, low-tech, simple, and reliable. The nominal flow rate of the system is 30 liters/minute, and the decontamination factor is > 1000. In this paper we will show design information on our portable cleanup system, and will discuss our operational experience with it over the past several years

  6. Transfer operations with tritium: a review

    International Nuclear Information System (INIS)

    Folkers, C.L.; Gede, V.P.

    1975-01-01

    Controlled thermonuclear reactors will involve pumping operations with tritium that may involve pressures ranging from submillipascals to megapascals. A variety of pumps are available that can cover portions of this range, and these can be staged to cover the entire pressure range. Some of these pumps can be adapted to virtually any size requirement currently anticipated. Special attention must be paid to operating features and construction materials. (U.S.)

  7. Operational Readiness Review: Savannah River Replacement Tritium Facility

    International Nuclear Information System (INIS)

    1993-02-01

    The Operational Readiness Review (ORR) is one of several activities to be completed prior to introducing tritium into the Replacement Tritium Facility (RTF) at the Savannah River Site (SRS). The Secretary of Energy will rely in part on the results of this ORR in deciding whether the startup criteria for RTF have been met. The RTF is a new underground facility built to safely service the remaining nuclear weapons stockpile. At RTF, tritium will be unloaded from old components, purified and enriched, and loaded into new or reclaimed reservoirs. The RTF will replace an aging facility at SRS that has processed tritium for more than 35 years. RTF has completed construction and is undergoing facility startup testing. The final stages of this testing will require the introduction of limited amounts of tritium. The US Department of Energy (DOE) ORR was conducted January 19 to February 4, 1993, in accordance with an ORR review plan which was developed considering previous readiness reviews. The plan also considered the Defense Nuclear Facilities Safety Board (DNFSB) Recommendations 90-4 and 92-6, and the judgements of experienced senior experts. The review covered three major areas: (1) Plant and Equipment Readiness, (2) Personnel Readiness, and (3) Management Systems. The ORR Team was comprised of approximately 30 members consisting of a Team Leader, Senior Safety Experts, and Technical Experts. The ORR objectives and criteria were based on DOE Orders, industry standards, Institute of Nuclear Power Operations guidelines, recommendations of external oversight groups, and experience of the team members

  8. Current CTR-related tritium handling studies at ORNL

    International Nuclear Information System (INIS)

    Watson, J.S.; Bell, J.T.; Clinton, S.D.; Fisher, P.W.; Redman, J.D.; Smith, F.J.; Talbot, J.B.; Tung, C.P.

    1976-01-01

    The Oak Ridge National Laboratory has a comprehensive program concerned with plasma fuel recycle, tritium recovery from blankets, and tritium containment in fusion reactors. Two studies of most current interest are investigations of cryosorption pumping of hydrogen isotopes and measurements of tritium permeation rates through steam generator materials. Cryosorption pumping speeds have been measured for hydrogen, deuterium, and helium at pressures from 10 -8 torr to 3 x 10 -3 torr. Permeation rates through Incoloy 800 have been shown to be drastically reduced when the low pressure side of permeation tubes are exposed to steam. These results will be important considerations in the design of fusion reactor steam generators

  9. Survey of tritiated oil sources and handling practices

    International Nuclear Information System (INIS)

    Miller, J.M.

    1994-08-01

    Tritium interactions with oil sources (primarily associated with pumps) in tritium-handling facilities can lead to the incorporation of tritium in the oil and the production of tritiated hydrocarbons. This results in a source of radiological hazard and the need for special handling considerations during maintenance, decontamination, decommissioning and waste packaging and storage. The results of a general survey of tritiated-oil sources and their associated characteristics, handling practices, analysis techniques and waste treatment/storage methods are summarized here. Information was obtained from various tritium-handling laboratories, fusion devices, and CANDU plants. 38 refs., 1 fig

  10. TSTA Piping and Flame Arrestor Operating Experience Data

    Energy Technology Data Exchange (ETDEWEB)

    Cadwallader, Lee C.; Willms, R. Scott

    2014-10-01

    The Tritium Systems Test Assembly (TSTA) was a facility dedicated to tritium handling technology and experiment research at the Los Alamos National Laboratory. The facility operated from 1984 to 2001, running a prototype fusion fuel processing loop with ~100 grams of tritium as well as small experiments. There have been several operating experience reports written on this facility’s operation and maintenance experience. This paper describes analysis of two additional components from TSTA, small diameter gas piping that handled small amounts of tritium in a nitrogen carrier gas, and the flame arrestor used in this piping system. The operating experiences and the component failure rates for these components are discussed in this paper. Comparison data from other applications are also presented.

  11. Comparison of Tritium Component Failure Rate Data

    International Nuclear Information System (INIS)

    Lee C. Cadwallader

    2004-01-01

    Published failure rate values from the US Tritium Systems Test Assembly, the Japanese Tritium Process Laboratory, the German Tritium Laboratory Karlsruhe, and the Joint European Torus Active Gas Handling System have been compared. This comparison is on a limited set of components, but there is a good variety of data sets in the comparison. The data compared reasonably well. The most reasonable failure rate values are recommended for use on next generation tritium handling system components, such as those in the tritium plant systems for the International Thermonuclear Experimental Reactor and the tritium fuel systems of inertial fusion facilities, such as the US National Ignition Facility. These data and the comparison results are also shared with the International Energy Agency cooperative task on fusion component failure rate data

  12. Tritium issues in plasma wall interactions

    International Nuclear Information System (INIS)

    Tanabe, T.

    2009-01-01

    In order to establish a D-T fusion reactor as an energy source, it is not enough to have a DT burning plasma, and economical conversion of fusion energy to electricity and/or heat, a large enough margin of tritium breeding and tritium safety must be simultaneously achieved. In particular, handling of huge amount of tritium needs a significant effort to ensure that the radiation dose of radiological workers and of the public is below the limits specified by the International Commission on Radiological Protection. For the safety reasons, tritium in a reactor will be limited to only a few kg orders in weight, with radioactivity up to 10 17 Bq. Since public exposure to tritium is regulated at a level as tiny as a few Bq/cm 2 , tritium must be strictly confined in a reactor system with accountancy of an order of pg (pico-gram). Generally qualitative analysis with the accuracy of more than 3 orders of magnitude is hardly possible. We are facing to lots of safety concerns in the handling of huge amounts of radioactive tritium as a fuel and to be bred in a blanket. In addition, tritium resources are very limited. Not only for the safety reason but also for the saving of tritium resources, tritium retention in a reactor must be kept as small as possible. In the present tokamaks, however, hydrogen retention is significantly large, i.e. more than 20% of fueled hydrogen is continuously piled up in the vacuum vessel, which must not be allowed in a reactor. After the introduction of tritium as a hydrogen radioisotope, this lecture will present tritium issues in plasma wall interactions, in particular, fueling, retention and recovering, considering the handling of large amounts of tritium, i.e. confinement, leakage, contamination, permeation, regulations and tritium accountancy. Progress in overcoming such problems will be also presented. This document is made of the slides of the presentation. (author)

  13. Operating Experience Review of Tritium-in-Water Monitors

    Energy Technology Data Exchange (ETDEWEB)

    S. A. Bruyere; L. C. Cadwallader

    2011-09-01

    Monitoring tritium facility and fusion experiment effluent streams is an environmental safety requirement. This paper presents data on the operating experience of a solid scintillant monitor for tritium in effluent water. Operating experiences were used to calculate an average monitor failure rate of 4E-05/hour for failure to function. Maintenance experiences were examined to find the active repair time for this type of monitor, which varied from 22 minutes for filter replacement to 11 days of downtime while waiting for spare parts to arrive on site. These data support planning for monitor use; the number of monitors needed, allocating technician time for maintenance, inventories of spare parts, and other issues.

  14. The design, fabrication and testing of the gas analysis system for the tritium recovery experiment, TRIO-01

    International Nuclear Information System (INIS)

    Finn, P.A.; Bowers, D.L.; Clemmer, E.D.; Clemmer, R.G.; Graczyk, D.G.; Homa, M.I.; Pappas, G.; Reedy, G.T.; Slawecki, M.A.

    1983-01-01

    The tritium recovery experiment, TRIO-01, required a gas analysis system which detected the form of tritium, the amount of tritium (differential and integral), and the presence and amount of other radioactive species. The system had to handle all contingencies and function for months at a time; unattended during weekend operation. The designed system, described herein, consisted of a train of components which could be grouped as desired to match tritium release behavior

  15. Tritium operating safety seminar, Los Alamos, New Mexico, July 30, 1975

    International Nuclear Information System (INIS)

    1976-03-01

    A seminar for the exchange of information on tritium operating and safety problems was held at the Los Alamos Scientific Laboratory. The topics discussed are: (1) material use (tubing, lubricants, valves, seals, etc.); (2) hardware selection (valves, fittings, pumps, etc.); (3) biological effects; (4) high pressure; (5) operating procedures (high pressure tritium experiment at LLL); (6) incidents; and (7) emergency planning

  16. ITER Dynamic Tritium Inventory Modeling Code

    International Nuclear Information System (INIS)

    Cristescu, Ioana-R.; Doerr, L.; Busigin, A.; Murdoch, D.

    2005-01-01

    A tool for tritium inventory evaluation within each sub-system of the Fuel Cycle of ITER is vital, with respect to both the process of licensing ITER and also for operation. It is very likely that measurements of total tritium inventories may not be possible for all sub-systems, however tritium accounting may be achieved by modeling its hold-up within each sub-system and by validating these models in real-time against the monitored flows and tritium streams between the systems. To get reliable results, an accurate dynamic modeling of the tritium content in each sub-system is necessary. In order to optimize the configuration and operation of the ITER fuel cycle, a dynamic fuel cycle model was developed progressively in the decade up to 2000-2001. As the design for some sub-systems from the fuel cycle (i.e. Vacuum pumping, Neutral Beam Injectors (NBI)) have substantially progressed meanwhile, a new code developed under a different platform to incorporate these modifications has been developed. The new code is taking over the models and algorithms for some subsystems, such as Isotope Separation System (ISS); where simplified models have been previously considered, more detailed have been introduced, as for the Water Detritiation System (WDS). To reflect all these changes, the new code developed inside EU participating team was nominated TRIMO (Tritium Inventory Modeling), to emphasize the use of the code on assessing the tritium inventory within ITER

  17. Management of tritium contaminated wastes national strategies and practices at some European countries, USA and Canada

    International Nuclear Information System (INIS)

    Mannone, F.

    1992-01-01

    The European Tritium Handling Experiment Laboratory (ETHEL) is the Commission of European Communities facility designed for handling multigram quantities of tritium for safety inherent R and D purposes. Tritium contamined wastes in gaseous, liquid and solid forms will be generated in ETHEL during the experiments as well as during the maintenance operations. All such wastes must be adequately managed under the safest operating conditions to minimize the releases of tritium to the environment and the consequent radiological risks to workers and general population. This safety requirement can be met by carefully defining strategies and practices to be applied for the safe management of these wastes. To this end an adequate background information must be collected which is the intent of this report. Through an exhaustive literature survey current strategies and practices applied in Europe, USA and Canada for managing tritiated wastes from specific tritium handling laboratories and plant have been assessed. For some countries, where only tritium bearing wastes simultaneously contaminated with nuclear fission products are generated, the attention has been focused on the strategies and practices currently applied for managing fission wastes. Operational criteria for waste collection, sorting, classification, conditioning and packaging as well as acceptance criteria for their storage or disposal have been identified. Waste storage or disposal options already applied in various countries or still being investigated in terms of safety have also been considered. Even if the radwaste management strategy is submitted to a nearly continuing process of review, some general comments resulting from the assessment of the present waste management scenario are presented. 60 refs., 16 figs., 13 tabs

  18. Protecting worker health and safety using remote handling systems

    International Nuclear Information System (INIS)

    Dennison, D.K.; Merrill, R.D.; Reed, R.K.

    1995-03-01

    Lawrence Livermore National Laboratory (LLNL) is currently developing and installing two large-scale, remotely controlled systems for use in improving worker health and safety by minimizing exposure to hazardous and radioactive materials. The first system is a full-scale liquid feed system for use in delivering chemical reagents to LLNL's existing aqueous low-level radioactive and mixed waste treatment facility (Tank Farm). The Tank Farm facility is used to remove radioactive and toxic materials in aqueous wastes prior to discharge to the City of Livermore Water Reclamation Plant (LWRP), in accordance with established discharge limits. Installation of this new reagent feed system improves operational safety and process efficiency by eliminating the need to manually handle reagents used in the treatment processes. This was done by installing a system that can inject precisely metered amounts of various reagents into the treatment tanks and can be controlled either remotely or locally via a programmable logic controller (PLC). The second system uses a robotic manipulator to remotely handle, characterize, process, sort, and repackage hazardous wastes containing tritium. This system uses an IBM-developed gantry robot mounted within a special glove box enclosure designed to isolate tritiated wastes from system operators and minimize the potential for release of tritium to the atmosphere. Tritiated waste handling is performed remotely, using the robot in a teleoperational mode for one-of-a-kind functions and in an autonomous mode for repetitive operations. The system is compatible with an existing portable gas cleanup unit designed to capture any gas-phase tritium inadvertently released into the glove box during waste handling

  19. Coal handling system structural analysis for modifications or plant life extension

    International Nuclear Information System (INIS)

    Dufault, A.; Weider, F.; Doyle, P.

    1989-01-01

    One neglected aspect of plant modification or life extension is the extent to which previous projects may have affected the integrity of existing structures. During the course of a project to backfit fire protection facilities to existing coal handling systems, it was found that past modifications had added loads to existing coal handling structures which exceeded the available design margin. This paper describes the studies that discovered the original problem areas, as well as the detailed analysis and design considerations used to repair these structures

  20. Systems for the safe operation of the JET tokamak with tritium

    International Nuclear Information System (INIS)

    Stork, D.; Ageladarakis, P.; Bell, A.C.

    1999-01-01

    In 1997, the JET device was operated for an extensive campaign with deuterium-tritium (D-T) plasmas (the DTE1 campaign). A comprehensive network of machine protection systems was necessary so that this experimental campaign could be executed safely without damage to the machine or release of activated material. This network had been developed over many years of JET deuterium plasma operation and therefore the modifications for D-T operation was not a significant problem. The DTE1 campaign was executed successfully and safely and the machine protection systems proved reliable and robust and, in the limited cases where they were required to act, functioned correctly. The machine protection systems at JET are described and their categorisation and development over time are summarised. The management, commissioning and operational experience during DTE1 are discussed and some examples of fault scenarios are described. The experience with protection systems at JET highlights the importance of correct design and philosophy decisions being taken at an early stage. It is shown that this experience will be invaluable data input to the safe operation of future large fusion machines. (orig.)

  1. Lifetime and shelf life of sealed tritium-filled plasma focus chambers with gas generator

    Directory of Open Access Journals (Sweden)

    B.D. Lemeshko

    2017-11-01

    Full Text Available The paper describes the operation features of plasma focus chambers using deuterium–tritium mixture. Handling tritium requires the use of sealed, vacuum-tight plasma focus chambers. In these chambers, there is an accumulation of the impurity gases released from the inside surfaces of the electrodes and the insulator while moving plasma current sheath inside chambers interacting with β-electrons generated due to the decay of tritium. Decay of tritium is also accompanied by the accumulation of helium. Impurities lead to a decreased yield of neutron emission from plasma focus chambers, especially for long term operation. The paper presents an option of absorption type gas generator in the chamber based on porous titanium, which allows to significantly increase the lifetime and shelf life of tritium chambers. It also shows the results of experiments on the comparison of the operation of sealed plasma focus chambers with and without the gas generator. Keywords: Plasma focus, Neutron yield, Tritium-filled plasma focus chambers, PACS Codes: 29.25.-v, 52.58.Lq

  2. TSTA piping and flame arrestor operating experience data

    Energy Technology Data Exchange (ETDEWEB)

    Cadwallader, Lee C., E-mail: Lee.Cadwallader@inl.gov [Idaho National Laboratory, Idaho Falls, ID (United States); Willms, R. Scott [ITER International Organization, Cadarache (France)

    2015-10-15

    Highlights: • Experiences from the Tritium Systems Test Assembly were examined. • Failure rates of copper piping and a flame arrestor were calculated. • The calculated failure rates compared well to similar data from the literature. • Tritium component failure rate data support fusion safety assessment. - Abstract: The Tritium Systems Test Assembly (TSTA) was a facility dedicated to tritium handling technology and experiment research at the Los Alamos National Laboratory. The facility was operated with tritium for its research and development program from 1984 to 2001, running a prototype fusion fuel processing loop with ∼100 g of tritium as well as small experiments. There have been several operating experience reports written on this facility's operation and maintenance experience. This paper describes reliability analysis of two additional components from TSTA, small diameter copper gas piping that handled tritium in a nitrogen carrier gas, and the flame arrestor used in this piping system. The component failure rates for these components are discussed in this paper. Comparison data from other applications are also presented.

  3. Tritium in metals: Techniques of preparation

    International Nuclear Information System (INIS)

    Laesser, R.; Klatt, K.H.; Mecking, P.; Wenzl, H.

    1982-08-01

    In order to study the behavior of tritium in metals, an all metal apparatus has been built for the safe handling of 100 mg of tritium. Samples of palladium, vanadium, niobium, and tantalum were loaded with tritium, deuterium or hydrogen. Some details of the phase diagrams could be established by DTA and by measurement of the lattice parameters. The diffusion of tritium in V, Nb, and Ta was studied with the Gorsky-effect. (TWO)

  4. A new Disruption Mitigation System for deuterium–tritium operation at JET

    Energy Technology Data Exchange (ETDEWEB)

    Kruezi, Uron, E-mail: uron.kruezi@ccfe.ac.uk [CCFE, Culham Science Centre, Abingdon, Oxon OX14 3DB (United Kingdom); Jachmich, Stefan [Laboratory for Plasma Physic, ERM/KMS, B-1000 Brussels (Belgium); Koslowski, Hans Rudolf [Forschungszentrum Jülich GmbH, IEK-4, 52425 Jülich (Germany); Lehnen, Michael [ITER Organization, Route de Vinon-sur-Verdon, CS90046, 13067 St. Paul Lez Durance Cedex (France); Brezinsek, Sebastijan [Forschungszentrum Jülich GmbH, IEK-4, 52425 Jülich (Germany); Matthews, Guy [CCFE, Culham Science Centre, Abingdon, Oxon OX14 3DB (United Kingdom)

    2015-10-15

    Highlights: • A Disruption Mitigation System based on massive gas injections has been designed. • The DMS has been installed at the JET-tokamak for routine machine protection. • The DMS is capable of a throughput of up to 4.6 kPa m{sup 3}. • The new DMS is compatible with the deuterium–tritium operation at JET. - Abstract: Disruptions, the fast accidental losses of plasma current and stored energy in tokamaks, represent a significant risk to the mechanical structure as well as the plasma facing components of reactor-scale fusion facilities like ITER. At JET, the tokamak experiment closest to ITER in terms of operating parameters and size, massive gas injection has been established as a disruption mitigation method. As a “last resort” measure it reduces thermal and electromagnetic loads during disruptions which can potentially have a serious impact on the beryllium and tungsten plasma-facing materials of the main chamber and divertor. For the planned deuterium–tritium experiments, a new Disruption Mitigation System (DMS) has been designed and installed and is presented in this article. The new DMS at JET consists of an all metal gate valve compatible with gas injections, a fast high pressure eddy current driven valve, a high voltage power supply and a gas handling system providing six supply lines for pure and mixed noble and flammable gases (Ar, Ne, Kr, D{sub 2}, etc.). The valve throughput varies with the injection pressure and gas type (efficiency – injected/charged gas 50–97%); the maximum injected amount of gas is approximately 4.6 kPa m{sup 3} (at maximum system pressure of 5.0 MPa).

  5. A new Disruption Mitigation System for deuterium–tritium operation at JET

    International Nuclear Information System (INIS)

    Kruezi, Uron; Jachmich, Stefan; Koslowski, Hans Rudolf; Lehnen, Michael; Brezinsek, Sebastijan; Matthews, Guy

    2015-01-01

    Highlights: • A Disruption Mitigation System based on massive gas injections has been designed. • The DMS has been installed at the JET-tokamak for routine machine protection. • The DMS is capable of a throughput of up to 4.6 kPa m"3. • The new DMS is compatible with the deuterium–tritium operation at JET. - Abstract: Disruptions, the fast accidental losses of plasma current and stored energy in tokamaks, represent a significant risk to the mechanical structure as well as the plasma facing components of reactor-scale fusion facilities like ITER. At JET, the tokamak experiment closest to ITER in terms of operating parameters and size, massive gas injection has been established as a disruption mitigation method. As a “last resort” measure it reduces thermal and electromagnetic loads during disruptions which can potentially have a serious impact on the beryllium and tungsten plasma-facing materials of the main chamber and divertor. For the planned deuterium–tritium experiments, a new Disruption Mitigation System (DMS) has been designed and installed and is presented in this article. The new DMS at JET consists of an all metal gate valve compatible with gas injections, a fast high pressure eddy current driven valve, a high voltage power supply and a gas handling system providing six supply lines for pure and mixed noble and flammable gases (Ar, Ne, Kr, D_2, etc.). The valve throughput varies with the injection pressure and gas type (efficiency – injected/charged gas 50–97%); the maximum injected amount of gas is approximately 4.6 kPa m"3 (at maximum system pressure of 5.0 MPa).

  6. Tritium monitoring techniques

    International Nuclear Information System (INIS)

    DeVore, J.R.; Buckner, M.A.

    1996-05-01

    As part of their operations, the U.S. Navy is required to store or maintain operational nuclear weapons on ships and at shore facilities. Since these weapons contain tritium, there are safety implications relevant to the exposure of personnel to tritium. This is particularly important for shipboard operations since these types of environments can make low-level tritium detection difficult. Some of these ships have closed systems, which can result in exposure to tritium at levels that are below normally acceptable levels but could still cause radiation doses that are higher than necessary or could hamper ship operations. This report describes the state of the art in commercial tritium detection and monitoring and recommends approaches for low-level tritium monitoring in these environments

  7. Management of tritium at nuclear facilities

    International Nuclear Information System (INIS)

    1984-01-01

    This report presents extending summaries of the works of the participants to an IAEA co-ordinated research programme, ''Handling Tritium - bearing effluents and wastes''. The subjects covered include production of tritium in nuclear power plants (mainly heavy water and light water reactors), as well as at reprocessing plants; removal and enrichment of tritium at nuclear facilities; conditioning methods and characteristics of immobilized tritium of low and high concentration; some potential methods of storage and disposal of tritium. In addition to the conclusions of this three-years work, possible activities in the field are recommended

  8. JET experiments with tritium and deuterium–tritium mixtures

    Energy Technology Data Exchange (ETDEWEB)

    Horton, Lorne, E-mail: Lorne.Horton@jet.uk [JET Exploitation Unit, Culham Science Centre, Abingdon OX14 3DB (United Kingdom); European Commission, B-1049 Brussels (Belgium); EUROfusion Consortium, JET, Culham Science Centre, Abingdon OX14 3DB (United Kingdom); Batistoni, P. [Unità Tecnica Fusione - ENEA C. R. Frascati - via E. Fermi 45, Frascati (Roma), 00044, Frascati (Italy); EUROfusion Consortium, JET, Culham Science Centre, Abingdon OX14 3DB (United Kingdom); Boyer, H.; Challis, C.; Ćirić, D. [CCFE, Culham Science Centre, Abingdon OX14 3DB, Oxon (United Kingdom); EUROfusion Consortium, JET, Culham Science Centre, Abingdon OX14 3DB (United Kingdom); Donné, A.J.H. [EUROfusion Programme Management Unit, Culham Science Centre, Abingdon OX14 3DB (United Kingdom); FOM Institute DIFFER, PO Box 1207, NL-3430 BE Nieuwegein (Netherlands); EUROfusion Consortium, JET, Culham Science Centre, Abingdon OX14 3DB (United Kingdom); Eriksson, L.-G. [European Commission, B-1049 Brussels (Belgium); EUROfusion Consortium, JET, Culham Science Centre, Abingdon OX14 3DB (United Kingdom); Garcia, J. [CEA, IRFM, F-13108 Saint Paul Lez Durance (France); EUROfusion Consortium, JET, Culham Science Centre, Abingdon OX14 3DB (United Kingdom); Garzotti, L.; Gee, S. [CCFE, Culham Science Centre, Abingdon OX14 3DB, Oxon (United Kingdom); EUROfusion Consortium, JET, Culham Science Centre, Abingdon OX14 3DB (United Kingdom); Hobirk, J. [Max-Planck-Institut für Plasmaphysik, D-85748 Garching (Germany); EUROfusion Consortium, JET, Culham Science Centre, Abingdon OX14 3DB (United Kingdom); Joffrin, E. [CEA, IRFM, F-13108 Saint Paul Lez Durance (France); EUROfusion Consortium, JET, Culham Science Centre, Abingdon OX14 3DB (United Kingdom); and others

    2016-11-01

    Highlights: • JET is preparing for a series of experiments with tritium and deuterium–tritium mixtures. • Physics objectives include integrated demonstration of ITER operating scenarios, isotope and alpha physics. • Technology objectives include neutronics code validation, material studies and safety investigations. • Strong emphasis on gaining experience in operation of a nuclear tokamak and training scientists and engineers for ITER. - Abstract: Extensive preparations are now underway for an experiment in the Joint European Torus (JET) using tritium and deuterium–tritium mixtures. The goals of this experiment are described as well as the progress that has been made in developing plasma operational scenarios and physics reference pulses for use in deuterium–tritium and full tritium plasmas. At present, the high performance plasmas to be tested with tritium are based on either a conventional ELMy H-mode at high plasma current and magnetic field (operation at up to 4 MA and 4 T is being prepared) or the so-called improved H-mode or hybrid regime of operation in which high normalised plasma pressure at somewhat reduced plasma current results in enhanced energy confinement. Both of these regimes are being re-developed in conjunction with JET's ITER-like Wall (ILW) of beryllium and tungsten. The influence of the ILW on plasma operation and performance has been substantial. Considerable progress has been made on optimising performance with the all-metal wall. Indeed, operation at the (normalised) ITER reference confinement and pressure has been re-established in JET albeit not yet at high current. In parallel with the physics development, extensive technical preparations are being made to operate JET with tritium. The state and scope of these preparations is reviewed, including the work being done on the safety case for DT operation and on upgrading machine infrastructure and diagnostics. A specific example of the latter is the planned calibration at

  9. Low-level tritium research facility for the University of Toronto Institute for Aerospace Studies

    International Nuclear Information System (INIS)

    Kherani, N.P.; Shmayda, W.T.

    1984-06-01

    The objective of the Low-level Tritium Research Facility for the University of Toronto Institute for Aerospace Studies (UTIAS) is to investigate tritium-material interactions and how they differ with respect to protium and deuterium. The tritium laboratory will also be employed to study tritium retention, tritium imaging, and the effect of tritium on diagnostic devices. This report is a preliminary design document of the UTIAS Low-Level Tritium Research Facility including the fundamentals of tritium, a description of the facility, tritium laboratory requirements and the safety analysis of the laboratory. The facility is designed to handle a total elemental tritium inventory of 10 Ci, though it will initially commence operation with 1 Ci and later increased to the maximum value. In the event of an instantaneous emission of the total tritium inventory within the laboratory, the working personnel would be exposed to an airborne tritium concentration less than the maximum permissible. Moreover, with all the safety features included in this design the likelihood of such an accident is very remote. Thus, the tritium laboratory design is intrinsically safe

  10. Tritium pellet injector for TFTR

    International Nuclear Information System (INIS)

    Gouge, M.J.; Baylor, L.R.; Cole, M.J.; Combs, S.K.; Dyer, G.R.; Fehling, D.T.; Fisher, P.W.; Foust, C.R.; Langley, R.A.; Milora, S.L.; Qualls, A.L.; Wilgen, J.B.; Schmidt, G.L.; Barnes, G.W.; Persing, R.G.

    1992-01-01

    The tritium pellet injector (TPI) for the Tokamak Fusion Test Reactor (TFTR) will provide a tritium pellet fueling capability with pellet speeds in the 1- to 3-km/s range for the TFTR deuterium-tritium (D-T) phase. The existing TFTR deuterium pellet injector (DPI) has been modified at Oak Ridge National Laboratory (ORNL) to provide a four-shot, tritium-compatible, pipe-gun configuration with three upgraded single-stage pneumatic guns and a two-stage light gas gun driver. The TPI was designed to provide pellets ranging from 3.3 to 4.5 mm in diameter in arbitrarily programmable firing sequences at speeds up to approximately 1.5 km/s for the three single-stage drivers and 2.5 to 3 km/s for the two-stage driver. Injector operation is controlled by a programmable logic controller. The new pipe-gun injector assembly was installed in the modified DPI guard vacuum box, and modifications were made to the internals of the DPI vacuum injection line, including a new pellet diagnostics package. Assembly of these modified parts with existing DPI components was then completed, and the TPI was tested at ORNL with deuterium pellet. Results of the limited testing program at ORNL are described. The TPI is being installed on TFTR to support the D-D run period in 1992. In 1993, the tritium pellet injector will be retrofitted with a D-T fuel manifold and secondary tritium containment systems and integrated into TFTR tritium processing systems to provide full tritium pellet capability

  11. Quick management of accidental tritium exposure cases

    International Nuclear Information System (INIS)

    Singh, V. P.; Badiger, N. M.; Managanvi, S. S.; Bhat, H. R.

    2008-01-01

    Removal half-life (RHL) of tritium is one of the best means for optimising medical treatment, reduction of committed effective dose (CED) and quick/easy handling of a large group of workers for medical treatment reference. The removal of tritium from the body depends on age, temperature, relative humidity and daily rainfall; so tritium removal rate, its follow-up and proper data analysis and recording are the best techniques for management of accidental acute tritium exposed cases. The decision of referring for medical treatment or medical intervention (MI) would be based on workers' tritium RHL history taken from their bodies at the facilities. The workers with tritium intake up to 1 ALI shall not be considered for medical treatment as it is a derived limit of annual total effective dose. The short-term MI may be considered for tritium intake of 1-10 ALI; however, if the results show intake ≥100 ALI, extended strong medical/therapeutic intervention may be recommended based on the severity of exposure for maximum CED reduction requirements and annual total effective dose limit. The methodology is very useful for pressurized heavy water reactors (PHWRs) which are mainly operated by Canada and India and future fusion reactor technologies. Proper management will optimise the cases for medical treatment and enhance public acceptance of nuclear fission and fusion reactor technologies. (authors)

  12. Quick management of accidental tritium exposure cases.

    Science.gov (United States)

    Singh, Vishwanath P; Badiger, N M; Managanvi, S S; Bhat, H R

    2012-07-01

    Removal half-life (RHL) of tritium is one of the best means for optimising medical treatment, reduction of committed effective dose (CED) and quick/easy handling of a large group of workers for medical treatment reference. The removal of tritium from the body depends on age, temperature, relative humidity and daily rainfall; so tritium removal rate, its follow-up and proper data analysis and recording are the best techniques for management of accidental acute tritium exposed cases. The decision of referring for medical treatment or medical intervention (MI) would be based on workers' tritium RHL history taken from their bodies at the facilities. The workers with tritium intake up to 1 ALI shall not be considered for medical treatment as it is a derived limit of annual total effective dose. The short-term MI may be considered for tritium intake of 1-10 ALI; however, if the results show intake ≥100 ALI, extended strong medical/therapeutic intervention may be recommended based on the severity of exposure for maximum CED reduction requirements and annual total effective dose limit. The methodology is very useful for pressurized heavy water reactors (PHWRs) which are mainly operated by Canada and India and future fusion reactor technologies. Proper management will optimise the cases for medical treatment and enhance public acceptance of nuclear fission and fusion reactor technologies.

  13. Tritium decontamination of machine components and walls

    International Nuclear Information System (INIS)

    Hircq, B.; Wong, K.Y.; Jalbert, R.A.; Shmayda, W.T.

    1991-01-01

    Tritium decontamination techniques for machine components and their application at tritium handling facilities are reviewed. These include commonly used methods such as vacuuming, purging, thermal desorption and isotopic exchange as well as less common methods such as chemical/electrochemical etching, plasma discharge cleaning, and destructive methods. Problems associated with tritium contamination of walls and use of protective coatings are reviewed. Tritium decontamination considerations at fusion facilities are discussed

  14. Analysis on tritium permeation in tritium storage bed with gas flowing calorimetry

    Energy Technology Data Exchange (ETDEWEB)

    Nakamura, Hirofumi; Hayashi, Takumi; Suzuki, Takumi; Nishi, Masataka [Japan Atomic Energy Research Inst., Naka Fusion Research Establishment, Department of Fusion Engineering Research, Naka, Ibaraki (Japan); Yoshida, Hiroshi [Japan Atomic Energy Research Inst., Naka Fusion Research Establishment, ITER-Joint Centeral Team, Naka, Ibaraki (Japan)

    2000-10-01

    Tritium permeation amount in a tritium storage bed with gas flowing calorimetric was evaluated under a condition of new operation mode for International Thermonuclear Experimental Reactor (ITER). As a result, tritium permeation under the new operation mode was estimated to be about twice of that under the practical operation mode. This result show that it would be regardless in a view point of material control of tritium, however, it was suggested to be required additional tritium removal or evacuate system in a view points of safety control or performance of accountability or thermal insulating of the tritium storage bed. (author)

  15. Tritium pellet injector for the Tokamak Fusion Test Reactor

    International Nuclear Information System (INIS)

    Gouge, M.J.; Baylor, L.R.; Combs, S.K.; Fisher, P.W.; Foust, C.R.; Milora, S.L.

    1992-01-01

    The tritium pellet injector (TPI) for the Tokamak Fusion Test Reactor (TFTR) will provide a tritium pellet fueling capability with pellet speeds in the 1- to 3-km/s range for the TFTR deuterium-tritium (D-T) plasma phase. An existing deuterium pellet injector (DPI) was modified at Oak Ridge National Laboratory (ORNL) to provide a four-shot, tritium-compatible, pipe-gun configuration with three upgraded single-stage pneumatic guns and a two-stage light gas gun driver. The TPI was designed for frozen pellets ranging in size from 3 to 4 mm in diameter in arbitrarily programmable firing sequences at tritium pellet speeds up to approximately 1.5 km/s for the three single-stage drivers and 2.5 to 3 km/s for the two-stage driver. Injector operation is controlled by a programmable logic controller (PLC). The new pipe-gun injector assembly was installed in the modified DPI guard vacuum box, and modifications were also made to the internals of the DPI vacuum injection line, including a new pellet diagnostics package. Assembly of these modified parts with existing DPI components was then completed and the TPI was tested at ORNL with deuterium pellets. Results of the testing program at ORNL are described. The TPI has been installed and operated on TFTR in support of the CY-92 deuterium plasma run period. In 1993, the tritium pellet injector will be retrofitted with a D-T fuel manifold and tritium gloveboxes and integrated into TFTR tritium processing systems to provide full tritium pellet capability

  16. Tritium monitoring at the Sandia Tritium Research Laboratory

    International Nuclear Information System (INIS)

    Devlin, T.K.

    1978-10-01

    Sandia Laboratories at Livermore, California, is presently beginning operation of a Tritium Research Laboratory (TRL). The laboratory incorporates containment and cleanup facilities such that any unscheduled tritium release is captured rather than vented to the atmosphere. A sophisticated tritium monitoring system is in use at the TRL to protect operating personnel and the environment, as well as ensure the safe and effective operation of the TRL decontamination systems. Each monitoring system has, in addition to a local display, a display in a centralized control room which, when coupled room which, when coupled with the TRL control computer, automatically provides an immediate assessment of the status of the entire facility. The computer controls a complex alarm array status of the entire facility. The computer controls a complex alarm array and integrates and records all operational and unscheduled tritium releases

  17. Tritium inventories and tritium safety design principles for the fuel cycle of ITER

    International Nuclear Information System (INIS)

    Cristescu, I.R.; Cristescu, I.; Doerr, L.; Glugla, M.; Murdoch, D.

    2007-01-01

    Within the tritium plant of ITER a total inventory of about 2-3 kg will be necessary to operate the machine in the DT phase. During plasma operation, tritium will be distributed in the different sub-systems of the fuel cycle. A tool for tritium inventory evaluation within each sub-system of the fuel cycle is important with respect to both the process of licensing ITER and also for operation. It is very likely that measurements of total tritium inventories may not be possible for all sub-systems; however, tritium accounting may be achieved by modelling its hold-up within each sub-system and by validating these models in real-time against the monitored flows and tritium streams between the sub-systems. To get reliable results, an accurate dynamic modelling of the tritium content in each sub-system is necessary. A dynamic model (TRIMO) for tritium inventory calculation reflecting the design of each fuel cycle sub-systems was developed. The amount of tritium needed for ITER operation has a direct impact on the tritium inventories within the fuel cycle sub-systems. As ITER will function in pulses, the main characteristics that influence the rapid tritium recovery from the fuel cycle as necessary for refuelling are discussed. The confinement of tritium within the respective sub-systems of the fuel cycle is one of the most important safety objectives. The design of the deuterium/tritium fuel cycle of ITER includes a multiple barrier concept for the confinement of tritium. The buildings are equipped with a vent detritiation system and re-circulation type room atmosphere detritiation systems, required for tritium confinement barrier during possible tritium spillage events. Complementarily to the atmosphere detritiation systems, in ITER a water detritiation system for tritium recovery from various sources will also be operated

  18. Tritium handling and vacuum considerations for the STARFIRE commercial tokamak reactor

    International Nuclear Information System (INIS)

    Finn, P.A.; Clemmer, R.G.; Maroni, V.A.; Dillow, C.

    1979-01-01

    Tritium processing and vacuum pumping requirements were analyzed for the STARFIRE commercial fusion reactor design. It was found that vacuum pumps having a helium capture probability of 0.5 (total helium pump speed 1.2 x 10 4 m 3 /s) in combination with the proposed STARFIRE limiter-vacuum concept is sufficient to achieve plasma impurity control and, simultaneously, high fractional burnup (11%). The high fractional burnup and minimum fuel recycle time result in a very low fuel cycle tritium inventory, approx. 1300 g. A Lean-T burn method that can further reduce the fuel cycle inventory by 30 to 50% is discussed. D 2 O is proposed as a first wall coolant from considerations of plasma contamination (due to hydrogen isotope permeation through coolant tubes) and enrichment of recycled tritium from the coolant circuit. Tritium recovery from solid breeders, under realistic structural and breeder materials constraints, appears to represent a formidable task. The tritium inventory in the solid breeder is estimated to be as high as 10 kg, which would make the blanket the largest single hold-up point for tritium in the plant

  19. Present status of tritium research activities at universities in Japan

    International Nuclear Information System (INIS)

    Kawamura, K.

    1983-01-01

    The behaviours of tritium towards various materials are very similar to those of hydrogen, since tritium is one of the hydrogen isotope. In addition to those properties, tritium shows the radiochemical and radiological reactivities due to an emitted #betta#-ray. The permeability of tritium through various materials is the example of the former. The formation of tritiated methane in tritium stored in stainless steel vessels and the increase of helium content in tritium-bearing metallic materials are the examples of the latter. For these reasons, advanced and somewhat more complicated techniques are required for handling tritium. After the Ministry of Education, Science and Culture (MOE) made an appropriation on Grant-in-Aid for Fusion Research in 1975 year's budget, development of tritium handling technology for fusion reactors have been actively pursued. The specific experiments to be embodied in present research activities are: 1. Measurements of tritium permeation rate through various materials. 2. Fundamental studies on tritium containment materials. 3. Fundamental studies of tritium waste treatment and storage. In this paper, the works achieved under the above research activities are described and some results obtained from experiments are reported. (author)

  20. The tokamak fusion test reactor tritium systems test contractor operational readiness review

    International Nuclear Information System (INIS)

    Gentile, C.A.; Levine, J.; Norris, M.; Rehill, F.; Such, C.

    1993-01-01

    In preparation for D-T operations at TFTR, the TFTR project has successfully completed the C-ORR process which has led to the introduction of 200 curies of tritium to the site. Preparations for the C-ORR began approximately 2 years ago. During July 1992 a one-week Site Assistance Review was conducted by the C-ORR , and C-ORR Team consisting of 12 persons, all of whom were outside experts, many of whom were from other facilities within the DOE complex. During the July 1992 Site Assistance Review 201 findings were documented which fell into one of three categories. All of the 109 category one findings which were generated were required to be resolved prior to the introduction of tritium to the TFTR site. On April 5, 1993, the TFTR Tritium System Test C-ORR commenced. The results of the C-ORR as documented in the final report by the C-ORR was that category 1 findings were resolved, and it was the recommendation of the C-ORR Team to the PPPL ES ampersand H Board that TFTR initiate the Tritium Systems Test. DOE (Chicago Operations, Princeton Area Office) concurred with the C-ORR final report and on April 29, 1993, at 12:15 pm tritium was introduced to the TFTR site

  1. Tritium research and technology facilities at the JRC-Ispra

    International Nuclear Information System (INIS)

    Dworschak, H.; Mannone, F.; Perujo, A.; Pierini, G.; Reiter, F.; Vassallo, G.; Viola, A.; Camposilvan, J.; Douglas, K.; Grassi, G.; Lolli Ceroni, P.; Simonetta, A.; Spelta, B.

    1990-01-01

    A set of experiments which are of prominent interest for the development of nuclear fusion technology in Europe are planned by the JRC-Ispra for the near future, in the frame of experimental activities to be performed in ETHEL, the European Tritium Handling Experimental Laboratory under construction at the Ispra site. These experiments already included for the most part as JRC-Task Action Sheets in the 1989-1991 European Technology Programme Actions will initiate in ETHEL on a fully active laboratory scale starting mid-1991. They will concern the following research areas: Recycling of tritium from first wall materials; Tritium recovery from water cooled Pb-17Li blankets; Detritiation of ventilation atmospheres; Plasma exhaust processing; Tritiazed waste management. In view of fully active tritium experiments in ETHEL and to obtain information of the basic processes involved, since 1985 preparatory experimental studies are being performed at the JRC-Ispra laboratories using hydrogen and deuterium. Furthermore, always with regard to ETHEL experiments, particular attention is given to possible technical and managerial problems which potentially may arise in this context. To identify at an early stage such problems a questionnaire has been developed and distributed to researchers in conjunction with an ETHEL information packet. The questionnaire demands information regarding the scope, design and operation of the intended experiment as well as planning and required support to be supplied by ETHEL. A brief description of experimental preparatory studies and future tritium handling experiments in ETHEL as well of the ETHEL facility is here presented. (orig.)

  2. Handling of tritium contaminated effluents and wastes: Final Report

    International Nuclear Information System (INIS)

    Varghese, C.; Singh, I.; Agarwal, R.P.; Ramani, M.P.S.; Khan, A.A.

    1983-01-01

    This report deals with the work on: (1) applicability of cotton, woodpulp, sawdust and certian cellulosic derivatives for the removal of tritium from aqueous medium, (2) containment and fixation of tritiated water in nonleachable matrices. The absorption studies on cotton, woodpulp, sawdust, and cellulose acetates were carried out with a view to assess their potentialities as concentration media and also to choose a matrix which can concentrate tritium to the maximum extent possible. The experiments on water hyacinth plants were designed to see the applicability of concentrating tritium and also for providing a via medium for slow release of tritium into the atmosphere. The immobilisation of tritiated water in cement matrices was studied with combinations of portland cement and five filler materials namely sand, silica, vermiculite, portland cement aggregate and accoproof. If cement blocks come in contact with aqueous media as it may happen when the tritium bearing blocks are disposed to the ground, a considerable portion of the contained activity is likely to diffuse and leach out. In order to prevent this, it was proposed to try several coating materials as diffusion barriers over cement blocks. Screening of locally available coating materials was done using a diffusion cell. Shalismatic HD, Anticor and epoxy paint were found to be promising among the screened materials. Tritiated cement blocks with 29% vermiculite loading were coated with the above coating materials, and were subjected to leaching, both in sea water and distilled water. The cumulative leaching data for tritiated cement blocks over a period of 400 days show that Shalimastic HD, when used as a coating material, retards the leaching to the maximum extent. Further leaching studies were started on Shalimastic HD blocks in one ground water formulation, which is continued to this date. (author)

  3. Tritium Systems Test Assembly: design for major device fabrication review

    International Nuclear Information System (INIS)

    Anderson, J.L.; Sherman, R.H.

    1977-06-01

    This document has been prepared for the Major Device Fabrication Review for the Tritium Systems Test Assembly (TSTA). The TSTA is dedicated to the development, demonstration, and interfacing of technologies related to the deuterium-tritium fuel cycle for fusion reactor systems. The principal objectives for TSTA are: (a) demonstrate the fuel cycle for fusion reactor systems; (b) develop test and qualify equipment for tritium service in the fusion program; (c) develop and test environmental and personnel protective systems; (d) evaluate long-term reliability of components; (e) demonstrate long-term safe handling of tritium with no major releases or incidents; and (f) investigate and evaluate the response of the fuel cycle and environmental packages to normal, off-normal, and emergency situations. This document presents the current status of a conceptual design and cost estimate for TSTA. The total cost to design, construct, and operate TSTA through FY-1981 is estimated to be approximately $12.2 M

  4. Technological exploitation of Deuterium–Tritium operations at JET in support of ITER design, operation and safety

    Energy Technology Data Exchange (ETDEWEB)

    Batistoni, P., E-mail: paola.batistoni@enea.it [ENEA, Dipartimento Fusione e Sicurezza Nucleare, Via E. Fermi 45, 00044 Frascati, Roma (Italy); Campling, D. [CCFE, Culham Science Centre, Abingdon, Oxon OX14 3DB (United Kingdom); Conroy, S. [Department of Physics and Astronomy, Uppsala University, SE-75120 Uppsala (Sweden); Croft, D. [CCFE, Culham Science Centre, Abingdon, Oxon OX14 3DB (United Kingdom); Giegerich, T. [Karlsruhe Institute of Technology, P.O.Box 3640, D-76021 Karlsruhe (Germany); Huddleston, T.; Lefebvre, X. [CCFE, Culham Science Centre, Abingdon, Oxon OX14 3DB (United Kingdom); Lengar, I. [Jozef Stefan Institute, Reactor Physics Department, Jamova 39, SI-1000 Ljubljana (Slovenia); Lilley, S. [CCFE, Culham Science Centre, Abingdon, Oxon OX14 3DB (United Kingdom); Peacock, A. [JET Exploitation Unit, Culham Science Centre, Abingdon, Oxon OX14 3DB (United Kingdom); Pillon, M. [ENEA, Dipartimento Fusione e Sicurezza Nucleare, Via E. Fermi 45, 00044 Frascati, Roma (Italy); Popovichev, S.; Reynolds, S. [CCFE, Culham Science Centre, Abingdon, Oxon OX14 3DB (United Kingdom); Vila, R. [Laboratorio Nacional de Fusión, CIEMAT, Madrid (Spain); Villari, R. [ENEA, Dipartimento Fusione e Sicurezza Nucleare, Via E. Fermi 45, 00044 Frascati, Roma (Italy); Bekris, N. [ITER Physics Department, EUROfusion Consortium, Culham Science Centre, Abingdon, Oxon OX14 3DB (United Kingdom)

    2016-11-01

    Highlights: • Within the framework of the EUROfusion programme, a work-package of technology projects (WPJET3) is being carried out in conjunction with the planned Deuterium–Tritium experiment on JET (DTE2). • The objective is to maximise the scientific and technological return of DT operations at JET in support of ITER. • Preparatory experiments, analyses and studies are carried out in several fusion nuclear technology areas. • These are: neutronics, neutron induced activation and damage in ITER materials, nuclear safety, tritium retention, permeation and outgassing, and waste production. • This paper presents the progress since the start of the project in 2014. - Abstract: Within the framework of the EUROfusion programme, a work-package of technology projects (WPJET3) is being carried out in conjunction with the planned Deuterium–Tritium experiment on JET (DTE2) with the objective of maximising the scientific and technological return of DT operations at JET in support of ITER. This paper presents the progress since the start of the project in 2014 in the preparatory experiments, analyses and studies in the areas of neutronics, neutron induced activation and damage in ITER materials, nuclear safety, tritium retention, permeation and outgassing, and waste production in preparation of DTE2.

  5. Timing tests: automatic valve closure for tritium leaks

    International Nuclear Information System (INIS)

    Hanel, S.

    1976-01-01

    How fast can an automotive valve be closed after a tritium leak occurs in a system. Tests described found that a valve can be closed within fifteen seconds of leakage. In one practical example considered, this delay would limit loss of tritium from a plumbing leak in a tritium system to 1 1 / 4 g. The tests were made in a typical LLL air-flush hood in which a tritium handling system had been installed. Incidental observations suggest that further study be made of a possible leak-actuated recovery system for an entire tritium facility

  6. Some recent changes in tritium handling and control at Mound Laboratory

    International Nuclear Information System (INIS)

    Rhinehammer, T.B.

    1976-01-01

    Significant reductions in tritium effluents and personnel exposures at Mound Laboratory have been made during the past 5 yr. Yearly effluents are less than 3 percent of former levels and personnel exposures have been reduced by a factor of 300. Several recent changes which have contributed to these reductions include lowered tritium levels in gloveboxes, and the efficiency and capacity of Mound's new effluent removal system. Personnel exposures have been reduced dramatically by changing to precious metal catalytic converters or oxidizers for use with the glovebox gas purification system. Unlike some former systems using hot copper or proprietary reactants for oxygen removal, a catalyst provides very effective removal of both oxygen and tritium. Both oxygen and tritium can be monitored and, if necessary, increments of hydrogen in argon can be added until the oxygen level is brought down to the desired value

  7. Results of dose calculations for NET accidental and normal operation releases of tritium and activation products

    International Nuclear Information System (INIS)

    Raskob, W.; Hasemann, I.

    1992-08-01

    This report documents conditions, data and results of dose calculations for accidental and normal operation releases of tritium and activation products, performed within the NET subtask SEP2.2 ('NET-Benchmark') of the European Fusion Technology Programme. For accidental releases, the computer codes UFOTRI and COSYMA for assessing the radiological consequences, have been applied for both deterministic and probabilistic calculations. The influence on dose estimates of different release times (2 minutes / 1 hour), two release heights (10 m / 150 m), two chemical forms of tritium (HT/HTO), and two different model approaches for the deposition velocity of HTO on soil was investigated. The dose calculations for normal operation effluents were performed using the tritium model of the German regulatory guidelines, parts of the advanced dose assessment model NORMTRI still under development, and the statistical atmospheric dispersion model ISOLA. Accidental and normal operation source terms were defined as follows: 10g (3.7 10 15 Bq) for accidental tritium releases, 10 Ci/day (3.7 10 11 Bq/day) for tritium releases during normal operation and unit releases of 10 9 Bq for accidental releases of activation products and fission products. (orig./HP) [de

  8. A new combination of membranes and membrane reactors for improved tritium management in breeder blanket of fusion machines

    International Nuclear Information System (INIS)

    Demange, D.; Staemmler, S.; Kind, M.

    2011-01-01

    Tritium used as fuel in future fusion machines will be produced within the breeder blanket. The tritium extraction system recovers the tritium to be routed into the inner-fuel cycle of the machine. Accurate and precise tritium accountancy between both systems is mandatory to ensure a reliable operation. Handling in the blanket huge helium flow rates containing tritium as traces in molecular and oxide forms is challenging both for the process and the accountancy. Alternative tritium processes based on combinations of membranes and membrane reactors are proposed to facilitate the tritium management. The PERMCAT process is based on counter-current isotope swamping in a palladium membrane reactor. It allows recovering tritium efficiently from any chemical species. It produces a pure hydrogen stream enriched in tritium of advantage for integration upstream of the accountancy stage. A pre-separation and pre-concentration stage using new zeolite membranes has been studied to optimize the whole process. Such a combination could improve the tritium processes and facilitate accountancy in DEMO.

  9. Construction and operation of a tritium extraction facility at the Savannah River Site. Final environmental impact statement

    International Nuclear Information System (INIS)

    1999-03-01

    DOE proposes to construct and operate a Tritium Extraction Facility (TEF) at H Area on the Savannah River Site (SRS) to provide the capability to extract tritium from commercial light water reactor (CLWR) targets and from targets of similar design. The proposed action is also DOE's preferred alternative. An action alternative is to construct and operate TEF at the Allied General Nuclear Services facility, which is adjacent to the eastern side of the SRS. Under the no-action alternative DOE could incorporate tritium extraction capabilities in the accelerator for production of tritium. This EIS is linked to the Final Programmatic Environmental Impact Statement for Tritium Supply and Recycling, from which DOE determined that it would produce tritium either in an accelerator or in a commercial light water reactor. The purpose of the proposed action and alternatives evaluated in this EIS is to provide tritium extraction capability to support either tritium production technology. The EIS assesses the environmental impacts from the proposed action and the alternatives, including the no action alternative

  10. Computer aided accountancy for tritium handling systems

    International Nuclear Information System (INIS)

    Spannagel, G.; Schmid, C.

    1993-03-01

    A program is presented which can be used in tritium bearing systems for inventory taking and accountancy purposes. In particular, a detailed description is given of the environment in which this program has been integrated. It is explained in which way a high user friendliness has been attained and which structures contribute to achieving the flexibility required. (orig.) [de

  11. Evaluation of design and operation of fuel handling systems for 25 MW biomass fueled CFB power plants

    International Nuclear Information System (INIS)

    Precht, D.

    1991-01-01

    Two circulating fluidized bed, biomass fueled, 25MW power plants were placed into operation by Thermo Electron Energy Systems in California during late 1989. This paper discusses the initial fuel and system considerations, system design, actual operating fuel characterisitics, system operation during the first year and modifications. Biomass fuels handled by the system include urban/manufacturing wood wastes and agricultural wastes in the form of orchard prunings, vineyard prunings, pits, shells, rice hulls and straws. Equipment utilized in the fuel handling system are described and costs are evaluated. Lessons learned from the design and operational experience are offered for consideration on future biomass fueled installations where definition of fuel quality and type is subject to change

  12. STAR facility tritium accountancy

    International Nuclear Information System (INIS)

    Pawelko, R. J.; Sharpe, J. P.; Denny, B. J.

    2008-01-01

    The Safety and Tritium Applied Research (STAR) facility has been established to provide a laboratory infrastructure for the fusion community to study tritium science associated with the development of safe fusion energy and other technologies. STAR is a radiological facility with an administrative total tritium inventory limit of 1.5 g (14,429 Ci) [1]. Research studies with moderate tritium quantities and various radionuclides are performed in STAR. Successful operation of the STAR facility requires the ability to receive, inventory, store, dispense tritium to experiments, and to dispose of tritiated waste while accurately monitoring the tritium inventory in the facility. This paper describes tritium accountancy in the STAR facility. A primary accountancy instrument is the tritium Storage and Assay System (SAS): a system designed to receive, assay, store, and dispense tritium to experiments. Presented are the methods used to calibrate and operate the SAS. Accountancy processes utilizing the Tritium Cleanup System (TCS), and the Stack Tritium Monitoring System (STMS) are also discussed. Also presented are the equations used to quantify the amount of tritium being received into the facility, transferred to experiments, and removed from the facility. Finally, the STAR tritium accountability database is discussed. (authors)

  13. The Tokamak Fusion Test Reactor D-T modifications and operations

    International Nuclear Information System (INIS)

    1992-01-01

    This Environmental Assessment (EA) was prepared in accordance with the National Environmental Policy Act (NEPA) of 1969, as amended, in support of the Department of Energy's proposal for the Tokamak Fusion Test Reactor (TFTR) D-T program. The objective of the proposed D-T program is to take the initial step in studying the effects of alpha particle heating and transport in a magnetic fusion device. These studies would enable the successful completion of the original TFTR program objectives, and would support the research and development needs of the Burning Plasma Experiment, BPX (formerly the Compact Ignition Tokamak (CIT)) and International Thermonuclear Experimental Reactor (ITER) in the areas of alpha particle physics, tritium retention, alpha particle diagnostic development, and tritium handling

  14. Swords into plowshares -- Tritium waste minimization (training development project)

    International Nuclear Information System (INIS)

    Hehmeyer, J.; Sienkiewicz, C.; Kent, L.; Gill, J.; Schmitz, W.; Mills, T.; Wurstner, R.; Adams, F.; Seabaugh, P.

    1995-01-01

    A concentrated emphasis of Mound's historical mission has been working with tritium. As the phase out of defense work begins and the increase on environmental technology strengthens, so too must a shift occur in applying one's focus. Mound's longstanding efforts in Tritium Training have proven fruitful to them and the Complex. It is this emphasis for which a new generation of worker training is being developed, one which reflects a new mission; Tritium Waste Minimization. The efforts of previous training, particularly under Accreditation, have given a solid base on which to launch the Waste Minimization program. Typical operations consider the impact on the varying levels of containment and the tools and agents used to achieve those levels. D and D and system modifications are bringing new light to such things as floor tile, oils, mole sieves, and rust. Of financial interest is the amount of savings which have been obtained through review and modification, rather than developing a new program. The authors are learning not to reinvent the wheel. The presentation will compare and contrast the methodologies used in creating and implementing this training program. Emphasis will be placed on lessons learned, costs saved, and program enhancement

  15. R and D of tritium technology as SHI (Sumitomo Heavy Industries)

    International Nuclear Information System (INIS)

    Yokogawa, N.

    1997-01-01

    Sumitomo Heavy Industries (SHI) participated in an R and D programme on tritium processing for the first time in 1967 by joining the advanced thermal reactor project. (The thermal reactor is cooled by light water and moderated by heavy water.) From that time SHI has developed various kind of tritium handling technologies. On the basis of cooperation with Sulzer (Sulzer Chemtech Ltd. Switzerland), SHI developed a system for removing waste water for fuel reprocessing plants by water distillation technology. In the field of fusion technology, SHI has developed a hydrogen isotope separation system by cryogenic distillation and thermal diffusion methods, and a tritium storage bed. Fundamental data required for the system design were obtained through the production and operation of the above prototype systems. Recently, SHI has also been taking part in the design and planning of ITER. In the future, along with ITER design, SHI will aim at developing tritium measuring technology. (author)

  16. Handling, assessment, transport and disposal of tritiated waste materials at JET

    International Nuclear Information System (INIS)

    Newbert, G.; Haigh, A.; Atkins, G.

    1995-01-01

    All types of JET radioactive wastes are received for disposal at the Waste Handling Facility (WHF) which features a waste sorting and sampling station, a glove box, a compactor, and packaging and transfer systems. The WHF is operated as a contamination control area with monitored tritium discharges. Two main types of tritium monitors used are liquid scintillation counters and ionization chambers, and samples of various components and materials have now been assessed for tritium. The results so far indicate a widespread of tritium levels from 2Bq/g for cold gas transfer lines to 200kBq/g for in-vessel tiles. General soft housekeeping waste is assessed by a sniffing technique which has a limit of detection corresponding to 120Bq/g. Investigation of improved methods of tritium measurement and of component detritiation was made to facilitate future waste disposal. 8 refs., 6 figs., 2 tabs

  17. Long-term investigation of biosphere contamination by tritium

    International Nuclear Information System (INIS)

    Trnovec, T.; Kollar, J.; Tatara, M.; Chorvat, D.

    1974-03-01

    An apparatus was designed and built for isotope enrichment by electrolysis of water samples (taken in several localities in the vicinity of the Jaslovske Bohunice nuclear power plant) and a method was elaborated of measuring tritium using liquid scintillators, serving the determination of natural tritium concentrations. Operating experience showed that the degree of enrichment may easily be controlled and that the reproducibility of the enrichment coefficient value is conditional on the skill of personnel handling the apparatus. The apparatus constraints include a limited capacity of isotope enrichment (given by the number of electrolytic columns), demands on time, and sensitivity to secondary contamination. In addition to isotope enrichment of samples prior to measurement, also the feasibility of direct determination of natural tritium concentration without previous enrichment was tested. Tests were carried out of commercial products by Packard, INSTA-GEL and MONOPHASE-40. It was verified that the above method may be used in direct measuring tritium levels of several hundred TU. The preparation of a representative background sample was found to be the main problem involved in the type of determination described. The detection limit was mainly determined by the measurement statistics. (B.S.)

  18. Universal tritium transmitter

    International Nuclear Information System (INIS)

    Cordaro, J. V.; Wood, M.

    2008-01-01

    At the Savannah River Site and throughout the National Nuclear Security Agency (NNSA) tritium is measured using Ion or Kanne Chambers. Tritium flowing through an Ion Chamber emits beta particles generating current flow proportional to tritium radioactivity. Currents in the 1 x 10 -15 A to 1 x 10 -6 A are measured. The distance between the Ion Chamber and the electrometer in NNSA facilities can be over 100 feet. Currents greater than a few micro-amperes can be measured with a simple modification. Typical operating voltages of 500 to 1000 Volts and piping designs require that the Ion Chamber be connected to earth ground. This grounding combined with long cable lengths and low currents requires a very specialized preamplifier circuit. In addition, the electrometer must be able to supply 'fail safe' alarm signals which are used to alert personnel of a tritium leak, trigger divert systems preventing tritium releases to the environment and monitor stack emissions as required by the United States federal Government and state governments. Ideally the electrometer would be 'self monitoring'. Self monitoring would reduce the need for constant checks by maintenance personnel. For example at some DOE facilities monthly calibration and alarm checks must be performed to ensure operation. NNSA presently uses commercially available electrometers designed specifically for this critical application. The problems with these commercial units include: ground loops, high background currents, inflexibility and susceptibility to Electromagnetic Interference (EMI) which includes RF and Magnetic fields. Existing commercial electrometers lack the flexibility to accommodate different Ion Chamber designs required by the gas pressure, type of gas and range. Ideally the electrometer could be programmed for any expected gas, range and high voltage output. Commercially available units do not have 'fail safe' self monitoring capability. Electronics used to measure extremely low current must have

  19. Overview of tritium processing development at the tritium systems test assembly

    International Nuclear Information System (INIS)

    Anderson, J.L.

    1986-01-01

    The Tritium Systems Test Assembly (TSTA) at the Los Alamos National Laboratory has been operating with tritium since June 1984. Presently there are some 50 g of tritium in the main processing loop. This 50 g has been sufficient to do a number of experiments involving the cryogenic distillation isotope separation system and to integrate the fuel cleanup system into the main fuel processing loop. In January 1986 two major experiments were conducted. During these experiments the fuel cleanup system was integrated, through the transfer pumping system, with the isotope separation system, thus permitting testing on the integrated fuel processing loop. This integration of these systems leaves only the main vacuum system to be integrated into the TSTA fuel processing loop. In September 1986 another major tritium experiment was performed in which the integrated loop was operated, the tritium inventory increased to 50 g and additional measurements on the performance of the distillation system were taken. In the period June 1984 through September 1986 the TSTA system has processed well over 10 8 Ci of tritium. Total tritium emissions to the environment over this period have been less than 15 Ci. Personnel exposures during this period have totaled less than 100 person-mRem. To date, the development of tritium technology at TSTA has proceeded in progressive and orderly steps. In two years of operation with tritium, no major design flows have been uncovered

  20. Management of tritium-contaminated wastes a survey of alternative options

    International Nuclear Information System (INIS)

    Mannone, F.

    1990-01-01

    The European Tritium Handling Experimental Laboratory (ETHEL) under construction on the site of Ispra Joint Research Centre of the Commission of European Communities has been commissioned to experimentally develop operational and environmental safety aspects related to the tritium technology in fusion, i.e. dealing with the behaviour and reliability of materials, equipment and containment systems under tritium impact. For this reason a part of the experimental activities to be performed in ETHEL will be devoted to laboratory research on tritiated waste management. However, since all experimental activities planned for the execution in ETHEL will by itselves generate tritiated wastes, current strategies and practices to be applied for the routine management of these wastes need also to be defined. To attain this target an adequate background information must be provided, which is the intent of this report. Through an exhaustive literature survey tritiated waste management options till now investigated or currently applied in several countries have been assessed. A particular importance has been attached to the tritium leach test programmes, whose results enable to assess the tritium retention efficiency of the various waste immobilization options. The conclusions resulting from the overall assessment are presented

  1. Tritium calorimeter setup and operation

    CERN Document Server

    Rodgers, D E

    2002-01-01

    The LBNL tritium calorimeter is a stable instrument capable of measuring tritium with a sensitivity of 25 Ci. Measurement times range from 8-hr to 7-days depending on the thermal conductivity and mass of the material being measured. The instrument allows accurate tritium measurements without requiring that the sample be opened and subsampled, thus reducing personnel exposure and radioactive waste generation. The sensitivity limit is primarily due to response shifts caused by temperature fluctuation in the water bath. The fluctuations are most likely a combination of insufficient insulation from ambient air and precision limitations in the temperature controller. The sensitivity could probably be reduced to below 5 Ci if the following improvements were made: (1) Extend the external insulation to cover the entire bath and increase the top insulation. (2) Improve the seal between the air space above the bath and the outside air to reduce evaporation. This will limit the response drift as the water level drops. (...

  2. Design Package for Fuel Retrieval System Fuel Handling Tool Modification

    International Nuclear Information System (INIS)

    TEDESCHI, D.J.

    2000-01-01

    This is a design package that contains the details for a modification to a tool used for moving fuel elements during loading of MCO Fuel Baskets for the Fuel Retrieval System. The tool is called the fuel handling tool (or stinger). This document contains requirements, development design information, tests, and test reports

  3. 327 Building liquid waste handling options modification project plan

    International Nuclear Information System (INIS)

    Ham, J.E.

    1998-01-01

    This report evaluates the modification options for handling radiological liquid waste (RLW) generated during decontamination and cleanout of the 327 Building. The overall objective of the 327 Facility Stabilization Project is to establish a passively safe and environmentally secure configuration of the 327 Facility. The issue of handling of RLW from the 327 Facility (assuming the 34O Facility is not available to accept the RLW) has been conceptually examined in at least two earlier engineering studies (Parsons 1997a and Hobart l997). Each study identified a similar preferred alternative that included modifying the 327 Facility RLWS handling systems to provide a truck load-out station, either within the confines of the facility or exterior to the facility. The alternatives also maximized the use of existing piping, tanks, instrumentation, controls and other features to minimize costs and physical changes. An issue discussed in each study involved the anticipated volume of the RLW stream. Estimates ranged between 113,550 and 387,500 liters in the earlier studies. During the development of the 324/327 Building Stabilization/Deactivation Project Management Plan, the lower estimate of approximately 113,550 liters was confirmed and has been adopted as the baseline for the 327 Facility RLW stream. The goal of this engineering study is to reevaluate the existing preferred alternative and select a new preferred alternative, if appropriate. Based on the new or confirmed preferred alternative, this study will also provide a conceptual design and cost estimate for required modifications to the 327 Facility to allow removal of RLWS and treatment of the RLW generated during deactivation

  4. Tritium processing and containment technology for fusion reactors: perspective and status

    International Nuclear Information System (INIS)

    Maroni, V.A.

    1976-01-01

    This paper reviews the status of selected tritium processing and containment technologies that will be required to support the development of the fusion energy program. Considered in order are the fuel conditioning and recycle systems, the containment and cleanup systems, the blanket processing systems, and two unique problems relating to tritium interactions in neutral beam injectors and first wall coolant circuits. The major technical problem areas appear to lie in the development of (1) high-capacity, rapid recycle plasma chamber evacuation systems; (2) large-capacity (greater than or equal to 100,000 cfm) air handling and processing systems for atmospheric detritiation; (3) tritium recovery technology for liquid lithium blanket concepts; (4) tritium compatible neutral injector systems; and (5) an overall approach to tritium handling and containment that guarantees near zero release to the environment at a bearable cost

  5. Water metabolism and modification of tritium excretion in the rat

    International Nuclear Information System (INIS)

    Ichimasa, Y.; Akita, Y.

    1982-01-01

    1. The intake and excretion of tritium were studied in rats exposed to tritiated water vapor. The metabolism of tritium was also investigated in rats given single administrations of tritiated water and in rats given daily administrations (per os or i.p.). The results were essentially in accord with those reported previously. 2. Amounts of drinking water consumed and urine excreted by rats drinking water with 0.15% saccharin were 1.5 to 2 times higher than in rats drinking tap water. The tritium activity in various tissues of rats drinking water with 0.15% saccharin decreased to about half of that of rats drinking tap water. A similar tendency was observed also in rats drinking beer. The diuretic agent sodium acetazolamide also enhanced the urinary excretion of tritium. (author)

  6. Tritium emissions from a detritiation facility

    International Nuclear Information System (INIS)

    Rodrigo, L.; El-Behairy, O.; Boniface, H.; Hotrum, C.; McCrimmon, K.

    2010-01-01

    Tritium is produced in heavy-water reactors through neutron capture by the deuterium atom. Annual production of tritium in a CANDU reactor is typically 52-74 TBq/MW(e). Some CANDU reactor operators have implemented detritiation technology to reduce both tritium emissions and dose to workers and the public from reactor operations. However, tritium removal facilities also have the potential to emit both elemental tritium and tritiated water vapor during operation. Authorized releases to the environment, in Canada, are governed by Derived Release Limits (DRLs). DRLs represent an estimate of a release that could result in a dose of 1 mSv to an exposed member of the public. For the Darlington Nuclear Generating Station, the DRLs for airborne elemental tritium and tritiated water emissions are ~15.6 PBq/week and ~825 TBq/week respectively. The actual tritium emissions from Darlington Tritium Removal Facility (DTRF) are below 0.1% of the DRL for elemental tritium and below 0.2% of the DRL for tritiated water vapor. As part of an ongoing effort to further reduce tritium emissions from the DTRF, we have undertaken a review and assessment of the systems design, operating performance, and tritium control methods in effect at the DTRF on tritium emissions. This paper discusses the results of this study. (author)

  7. Tritium fuel cycle modeling and tritium breeding analysis for CFETR

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Hongli; Pan, Lei; Lv, Zhongliang; Li, Wei; Zeng, Qin, E-mail: zengqin@ustc.edu.cn

    2016-05-15

    Highlights: • A modified tritium fuel cycle model with more detailed subsystems was developed. • The mean residence time method applied to tritium fuel cycle calculation was updated. • Tritium fuel cycle analysis for CFETR was carried out. - Abstract: Attaining tritium self-sufficiency is a critical goal for fusion reactor operated on the D–T fuel cycle. The tritium fuel cycle models were developed to describe the characteristic parameters of the various elements of the tritium cycle as a tool for evaluating the tritium breeding requirements. In this paper, a modified tritium fuel cycle model with more detailed subsystems and an updated mean residence time calculation method was developed based on ITER tritium model. The tritium inventory in fueling system and in plasma, supposed to be important for part of the initial startup tritium inventory, was considered in the updated mean residence time method. Based on the model, the tritium fuel cycle analysis of CFETR (Chinese Fusion Engineering Testing Reactor) was carried out. The most important two parameters, the minimum initial startup tritium inventory (I{sub m}) and the minimum tritium breeding ratio (TBR{sub req}) were calculated. The tritium inventories in steady state and tritium release of subsystems were obtained.

  8. A new method for tritium labelling of neuraminidase from Vibrio cholerae

    International Nuclear Information System (INIS)

    Keune, D.

    1981-01-01

    This research work related to the radioactive labelling with tritium of the enzyme neuraminidase from Vibrio cholerae by an easily handled method. The reactive compound N-propionyloxysuccinimide, the ester of propionic acid and N-hydroxysuccinimide, offered a suitable labelling reagent. For comparison purposes an already known method of labelling neuraminidase with tritium by the oxidation of hydroxyl groups of the hydrocarbon chain of the enzymal protein and subsequent reduction of the aldehyde groups formed with tritiated sodium borhydride, was also carried out. The advantages and disadvantages of both methods are described in detail, in particular with regard to yields of radioactivity and the influence on enzyme activity. The fact that only 1 mg enzymal protein was available for each modification of the enzyme molecule posed particular problems and, as a consequence, extensive preliminary experiments had to be carried with another protein (beef serum album) in the same concentration range. (orig./MG) [de

  9. Development of tritium plant system for fusion reactors. Achievements in the 14-year US-Japan collaboration

    International Nuclear Information System (INIS)

    Nishi, Masataka; Yamanishi, Toshihiko; Shu, Wataru

    2003-01-01

    Fuel processing technology and tritium safe-handling technology have been developed through US/DOE-JAERI collaboration from 1987 till 2001, and the technologies to construct the tritium plant system of ITER have been made currently available. This paper overviews the major achievements of this collaborative researches over fourteen years, which were performed mainly at the Tritium Systems Test Assembly (TSTA) of the Los Alamos National Laboratory (LANL). The tritium plant system consists mainly of a fuel processing system, which includes a fuel cycle system and a blanket tritium recovery system, and a tritium confinement/removal system. The fuel cycle system recovers fuel from plasma exhaust gas and recycles it. In the collaboration, major key components and subsystems were developed, and the performance of the integrated system was successfully demonstrated over its one-month operation in which plasma exhaust model gas was processed at a processing rate of up to 1/6 level of the ITER. The technological basis of the fuel cycle system was thus established. Blanket tritium recovery technology was also successfully demonstrated using the TSTA system. Through the successful safe-operation of the TSTA, reliability of tritium confinement/removal system was verified basically. In addition, much data to confirm or enhance safety were accumulated by experiments such as intentional tritium release in a large room. Furthermore, distribution of tritium contamination in the vacuum vessel of the TFTR, a large tokamak of the Princeton Plasma Physics Laboratory (PPPL), was investigated in this work. (author)

  10. Tritium-assisted fusion breeders

    International Nuclear Information System (INIS)

    Greenspan, E.; Miley, G.H.

    1983-08-01

    This report undertakes a preliminary assessment of the prospects of tritium-assisted D-D fuel cycle fusion breeders. Two well documented fusion power reactor designs - the STARFIRE (D-T fuel cycle) and the WILDCAT (Cat-D fuel cycle) tokamaks - are converted into fusion breeders by replacing the fusion electric blankets with 233 U producing fission suppressed blankets; changing the Cat-D fuel cycle mode of operation by one of the several tritium-assisted D-D-based modes of operation considered; adjusting the reactor power level; and modifying the resulting plant cost to account for the design changes. Three sources of tritium are considered for assisting the D-D fuel cycle: tritium produced in the blankets from lithium or from 3 He and tritium produced in the client fission reactors. The D-D-based fusion breeders using tritium assistance are found to be the most promising economically, especially the Tritium Catalyzed Deuterium mode of operation in which the 3 He exhausted from the plasma is converted, by neutron capture in the blanket, into tritium which is in turn fed back to the plasma. The number of fission reactors of equal thermal power supported by Tritium Catalyzed Deuterium fusion breeders is about 50% higher than that of D-T fusion breeders, and the profitability is found to be slightly lower than that of the D-T fusion breeders

  11. The development of a versatile field program for measuring tritium in real-time

    International Nuclear Information System (INIS)

    Rego, J.H.; Smith, D.K.

    1994-04-01

    Robust sample handling and liquid scintillation counting procedures have been developed to routinely monitor tritium in the field relative to the 20,000 pCi/L drinking water standard. This procedure allows tritium to be monitored hourly during 24 hour drilling operations at depths in the saturated zone potentially contaminated by sub-surface nuclear weapons testing at the Nevada Test Site. Using retrofitted shock hardened and vibration damped counters and strict analytical protocols, tritium may be measured rapidly in the field under hostile conditions. Concentration standards and ''dead'' tritium backgrounds are prepared weekly in a central laboratory and delivered to remote monitoring locations where they are recounted daily as a check on counter efficiency and calibration. Portable counters are located in trailers and powered off a battery pack and line filter fed by mobile generator. Samples are typically ground-waters mixed with drilling fluids returned after circulation through a drill string. Fluids are aerated and ''de-foamed,'' filtered, mixed with scintillation cocktail and subsequently dark-adapted before counting. Besides meeting regulatory requirements, ''real-time'' monitoring affords drilling and field personnel maximum protection against potential exposure to radionuclides; for routine operations, tritium activities may not exceed a 10,000 pCi/L threshold

  12. Tritium processing in JT-60U

    International Nuclear Information System (INIS)

    Miya, Naoyuki; Masaki, Kei

    1997-01-01

    Tritium retention analysis and tritium concentration measurement have been made during the large Tokamak JT-60U deuterium operations. This work has been carried out to evaluate the tritium retention for graphite tiles inside the vacuum vessel and tritium release characteristics in the tritium cleanup operations. JT-60U has carried out D-D experiments since July 1991. In the deuterium operations during the first two years, about 1.7 x 10 19 D-D fusion neutrons were produced by D (d, p) T reactions in plasma, which are expected to produce ∼31 GBq of tritium. The tritium produced is evacuated by a pumping system. A part of tritium is, however, trapped in the graphite tiles. Several sample tiles were removed from the vessel and the retained tritium Distribution in the tiles was measured using a liquid scintillator. The results of poloidal distribution showed that the tritium concentration in the divertor tiles was higher than that in the first wall tiles and it peaked in the tiles between two strike points of divertor magnetic lines. Tritium concentration in the exhaust gas from the vessel have also been measured with an ion chamber during the tritium cleanup operations with hydrogen divertor discharges and He-GDC. Total of recovered tritium during the cleanup operations was ∼ 7% of that generated. The results of these measurements showed that the tritium of 16-23 GBq still remained in the graphite tiles, which corresponded to about 50-70% of the tritium generated in plasma. The vessel is ventilated during the in-vessel maintenance works, then the atmosphere is always kept lower than the legal concentration guide level of 0.7 Bq/cm 3 for radiation work permit requirements. (author)

  13. Procedures for the retention of gaseous tritium released from a tritium enrichment plant

    International Nuclear Information System (INIS)

    Gutowski, H.; Bracha, M.

    1987-01-01

    General aim of the study is the comparison of two alternative processes for the retention of gaseous tritium which is released during normal operation and emergency operation in a tritium-enrichment-plant. Two processes for the retention of tritium were compared: 1. Oxidation-process. The hydrogen-gas containing HT will be burnt on an oxidation catalyst to H 2 O and HTO. In a subsequent step the water will be removed from the process by condensation, freezing and adsorption. 2. TROC-process (Tritium Removal by Organic Compounds). The tritium is added to an organic compound (acid) via catalyst. This reaction is irreversible and leads to solid products. (orig./RB) [de

  14. Tritium calorimeter setup and operation

    International Nuclear Information System (INIS)

    Rodgers, David E.

    2002-01-01

    The LBNL tritium calorimeter is a stable instrument capable of measuring tritium with a sensitivity of 25 Ci. Measurement times range from 8-hr to 7-days depending on the thermal conductivity and mass of the material being measured. The instrument allows accurate tritium measurements without requiring that the sample be opened and subsampled, thus reducing personnel exposure and radioactive waste generation. The sensitivity limit is primarily due to response shifts caused by temperature fluctuation in the water bath. The fluctuations are most likely a combination of insufficient insulation from ambient air and precision limitations in the temperature controller. The sensitivity could probably be reduced to below 5 Ci if the following improvements were made: (1) Extend the external insulation to cover the entire bath and increase the top insulation. (2) Improve the seal between the air space above the bath and the outside air to reduce evaporation. This will limit the response drift as the water level drops. (3) Install an improved temperature controller, preferably with a built in chiller, capable of temperature control to ±0.001 C

  15. Description of the new version 4.0 of the tritium model UFOTRI including user guide

    International Nuclear Information System (INIS)

    Raskob, W.

    1993-08-01

    In view of the future operation of fusion reactors the release of tritium may play a dominant role during normal operation as well as after accidents. Because of its physical and chemical properties which differ significantly from those of other radionuclides, the model UFOTRI for assessing the radiological consequences of accidental tritium releases has been developed. It describes the behaviour of tritium in the biosphere and calculates the radiological impact on individuals and the population due to the direct exposure and by the ingestion pathways. Processes such as the conversion of tritium gas into tritiated water (HTO) in the soil, re-emission after deposition and the conversion of HTO into organically bound tritium, are considered. The use of UFOTRI in its probabilistic mode shows the spectrum of the radiological impact together with the associated probability of occurrence. A first model version was established in 1991. As the ongoing work on investigating the main processes of the tritium behaviour in the environment shows up new results, the model has been improved in several points. The report describes the changes incorporated into the model since 1991. Additionally provides the up-dated user guide for handling the revised UFOTRI version which will be distributed to interested organizations. (orig.) [de

  16. Tritium recovery and separation from CTR plasma exhausts and secondary containment atmospheres

    International Nuclear Information System (INIS)

    Forrester, R.C. III; Watson, J.S.

    1975-01-01

    Recent experimental successes have generated increased interest in the development of thermonuclear reactors as power sources for the future. This paper examines tritium containment problems posed by an operating CTR and sets forth some processing schemes currently being evaluated at the Oak Ridge National Laboratory. An appreciation of the CTR tritium management problem can best be realized by recalling that tritium production rates for various fission reactors range from 2 x 10 4 to 9 x 10 5 Ci/yr per 1000 MW(e). Present estimates of tritium production in a CTR blanket exceed 10 9 Ci/yr for the same level of power generation, and tritium process systems may handle 10 to 20 times that amount. Tritium's high permeability through most materials of construction at high temperatures makes secondary containment mandatory for most piping. Processing of these containment atmospheres will probably involve conversion of the tritium to a nonpermeating form (T 2 O) followed by trapping on conventional beds of desiccant material. In a similar fashion, all purge streams and process fluid vent gases will be subjected to tritium recovery prior to atmospheric release. Two tritium process systems will be required, one to recover tritium produced by breeding in the blanket and another to recover unburned tritium in the plasma exhaust. Plasma exhaust processing will be unconventional since the exhaust gas pressure will lie between 10 -3 and 10 -6 torr. Treatment of this gas stream will entail the removal of small quantities of protium and helium from a much larger deuterium-tritium mixture which will be recycled. (U.S.)

  17. Water detritiation processing of JET purified waste water using the TRENTA facility at Tritium Laboratory Karlsruhe

    Energy Technology Data Exchange (ETDEWEB)

    Michling, R., E-mail: robert.michling@kit.edu; Bekris, N.; Cristescu, I.; Lohr, N.; Plusczyk, C.; Welte, S.; Wendel, J.

    2013-10-15

    Highlights: • Operation of a water detritiation facility under optimized conditions for high detritiation performances. • Improvement of operational procedures to process tritiated waste water. • Handling and reduction of tritiated waste water to achieve enriched low volume tritiated water for sufficient storage. • Demonstration of the efficient availability of the TRENTA WDS facility for technical scale operation. -- Abstract: A Water Detritiation System (WDS) is required for any Fusion machine in order to process tritiated waste water, which is accumulated in various subsystems during operation and maintenance. Regarding the European procurement packages for the ITER tritium fuel cycle, the WDS test facility TRENTA applying the Combined Electrolysis Catalytic Exchange (CECE) process was developed, installed and is currently in operation at the Tritium Laboratory Karlsruhe (TLK). Besides the on-going R and D work for the design of ITER WDS, the current status of the TRENTA facility provides the option to utilize the WDS for processing tritiated water. Therefore, in the framework of the EFDA JET Fusion Technology Work Programme 2011, the TLK was able to offer the capability on a representative scale to process tritiated water, which was produced during normal operation at JET. The task should demonstrate the availability of the CECE process to handle and detritiate the water in terms of tritium enrichment and volume reduction. The operational program comprised the processing of purified tritiated water from JET, with a total volume of 180 l and an activity of 74 GBq. The paper will give an introduction to the TRENTA WDS facility and an overview of the operational procedure regarding tritiated water reduction. Data concerning required operation time, decontamination and enrichment performances and different operating procedures will be presented as well. Finally, a preliminary study on a technical implementation of processing the entire stock of JET

  18. Water detritiation processing of JET purified waste water using the TRENTA facility at Tritium Laboratory Karlsruhe

    International Nuclear Information System (INIS)

    Michling, R.; Bekris, N.; Cristescu, I.; Lohr, N.; Plusczyk, C.; Welte, S.; Wendel, J.

    2013-01-01

    Highlights: • Operation of a water detritiation facility under optimized conditions for high detritiation performances. • Improvement of operational procedures to process tritiated waste water. • Handling and reduction of tritiated waste water to achieve enriched low volume tritiated water for sufficient storage. • Demonstration of the efficient availability of the TRENTA WDS facility for technical scale operation. -- Abstract: A Water Detritiation System (WDS) is required for any Fusion machine in order to process tritiated waste water, which is accumulated in various subsystems during operation and maintenance. Regarding the European procurement packages for the ITER tritium fuel cycle, the WDS test facility TRENTA applying the Combined Electrolysis Catalytic Exchange (CECE) process was developed, installed and is currently in operation at the Tritium Laboratory Karlsruhe (TLK). Besides the on-going R and D work for the design of ITER WDS, the current status of the TRENTA facility provides the option to utilize the WDS for processing tritiated water. Therefore, in the framework of the EFDA JET Fusion Technology Work Programme 2011, the TLK was able to offer the capability on a representative scale to process tritiated water, which was produced during normal operation at JET. The task should demonstrate the availability of the CECE process to handle and detritiate the water in terms of tritium enrichment and volume reduction. The operational program comprised the processing of purified tritiated water from JET, with a total volume of 180 l and an activity of 74 GBq. The paper will give an introduction to the TRENTA WDS facility and an overview of the operational procedure regarding tritiated water reduction. Data concerning required operation time, decontamination and enrichment performances and different operating procedures will be presented as well. Finally, a preliminary study on a technical implementation of processing the entire stock of JET

  19. Development of a wetproofed catalyst recombiner for removal of airborne tritium

    International Nuclear Information System (INIS)

    Chuang, K.T.; Quaiattini, R.J.; Thatcher, D.R.P.; Puissant, L.J.

    1985-01-01

    For cleanup of airborne tritium at tritium handling facilities, it is generally agreed that the most reliable method is to convert the tritium in a recombiner into water vapor followed by adsorption of the vapor in a molecular sieve drier. Decontamination factors of 10 3 to 10 6 have been reported. Wetproofed catalysts developed at Chalk River Nuclear Laboratories have been shown to maintain their activities when exposed to liquid water or air at 100% relative humidity. When a wetproofed catalyst recombiner is used, operation can be carried out at room temperatures thus greatly simplifying the system. Two catalysts, Pt/carbon and Pt/silica, were prepared for this study. The activity of Pt/carbon was measured with hydrogen and found to be comparable to the published results for conventional Pt/alumina catalysts at similar conditions. Experiments were carried out for the following range of operating conditions: flows from 0.3 to 3.0 m/s, pressure from 100 to 500 kPa. Tritium was added to the air stream at 1-5 MBq.m -3 (30-140 μCi.m -3 ). No significant isotope and/or pressure effects were observed. To date lifetime data of greater than four months have been obtained

  20. Development of dose assessment code for release of tritium during normal operation of nuclear power plants

    International Nuclear Information System (INIS)

    Duran, J.; Malatova, I.

    2009-01-01

    A computer code PTM H TO has been developed to assess tritium doses to the general public. The code enables to simulate the behavior of tritium in the environment released into the atmosphere under normal operation of nuclear power plants. Code can calculate the doses for the three chemical and physical forms: tritium gas (HT), tritiated water vapor and water drops (HTO). The models in this code consist of the tritium transfer model including oxidation of HT to HTO and reemission of HTO from soil to the atmosphere, and the dose calculation model

  1. JET experiments with tritium and deuterium–tritium mixtures

    NARCIS (Netherlands)

    Horton, L.; Batistoni, P.; Boyer, H.; Challis, C.; Ciric, D.; Donne, A. J. H.; Eriksson, L. G.; Garcia, J.; Garzotti, L.; Gee, S.; Hobirk, J.; Joffrin, E.; Jones, T.; King, D. B.; Knipe, S.; Litaudon, X.; Matthews, G. F.; Monakhov, I.; Murari, A.; Nunes, I.; Riccardo, V.; Sips, A. C. C.; Warren, R.; Weisen, H.; Zastrow, K. D.

    2016-01-01

    Extensive preparations are now underway for an experiment in the Joint European Torus (JET) using tritium and deuterium–tritium mixtures. The goals of this experiment are described as well as the progress that has been made in developing plasma operational scenarios and physics reference pulses for

  2. Key processes and input parameters for environmental tritium models

    International Nuclear Information System (INIS)

    Bunnenberg, C.; Taschner, M.; Ogram, G.L.

    1994-01-01

    The primary objective of the work reported here is to define key processes and input parameters for mathematical models of environmental tritium behaviour adequate for use in safety analysis and licensing of fusion devices like NET and associated tritium handling facilities. (author). 45 refs., 3 figs

  3. Key processes and input parameters for environmental tritium models

    Energy Technology Data Exchange (ETDEWEB)

    Bunnenberg, C; Taschner, M [Niedersaechsisches Inst. fuer Radiooekologie, Hannover (Germany); Ogram, G L [Ontario Hydro, Toronto, ON (Canada)

    1994-12-31

    The primary objective of the work reported here is to define key processes and input parameters for mathematical models of environmental tritium behaviour adequate for use in safety analysis and licensing of fusion devices like NET and associated tritium handling facilities. (author). 45 refs., 3 figs.

  4. Tritium behavior in the Caisson, a simulated fusion reactor room

    International Nuclear Information System (INIS)

    Hayashi, Takumi; Kobayashi, Kazuhiro; Iwai, Yasunori; Yamada, Masayuki; Suzuki, Takumi; O'hira, Shigeru; Nakamura, Hirofumi; Shu, Weimin; Yamanishi, Toshihiko; Kawamura, Yoshinori; Isobe, Kanetsugu; Konishi, Satoshi; Nishi, Masataka

    2000-01-01

    In order to confirm tritium confinement ability in the deuterium-tritium (DT) fusion reactor, intentional tritium release experiments have been started in a specially fabricated test stand called 'Caisson', at Tritium Process Laboratory in Japan Atomic Energy Research Institute. The Caisson is a stainless steel leak-tight vessel of 12 m 3 , simulating a reactor room or a tritium handling room. In the first stage experiments, about 260 MBq of pure tritium was put into the Caisson under simulated constant ventilation of four times air exchanges per h. The tritium mixing and migration in the Caisson was investigated with tritium contamination measurement and detritiation behavior measurement. The experimental tritium migration and removal behavior was almost perfectly reproduced and could almost be simulated by a three-dimensional flow analysis code

  5. Subsystem software for TSTA [Tritium Systems Test Assembly

    International Nuclear Information System (INIS)

    Mann, L.W.; Claborn, G.W.; Nielson, C.W.

    1987-01-01

    The Subsystem Control Software at the Tritium System Test Assembly (TSTA) must control sophisticated chemical processes through the physical operation of valves, motor controllers, gas sampling devices, thermocouples, pressure transducers, and similar devices. Such control software has to be capable of passing stringent quality assurance (QA) criteria to provide for the safe handling of significant amounts of tritium on a routine basis. Since many of the chemical processes and physical components are experimental, the control software has to be flexible enough to allow for trial/error learning curve, but still protect the environment and personnel from exposure to unsafe levels of radiation. The software at TSTA is implemented in several levels as described in a preceding paper in these proceedings. This paper depends on information given in the preceding paper for understanding. The top level is the Subsystem Control level

  6. Radiation protection monitoring board of the tritium building at Valduc

    International Nuclear Information System (INIS)

    Herve, J.Y.; Constantin, E.; Cordier, C.; Hudelot, F.

    1990-01-01

    The paper describes briefly the radiation protection in a building where a large amount of tritium is handled. A network of detectors (ionization chambers) gives locally acoustic signals and luminous signals. Data are centralized for tritium management, ventilation and waste disposal [fr

  7. Tritium monitor calibration at Los Alamos National Laboratory

    International Nuclear Information System (INIS)

    Bjork, C.J.; Aikin, D.J.; Houlton, T.W.

    1997-08-01

    Tritium in air is monitored at Los Alamos National Laboratory (LANL) with air breathing instruments based on ionization chambers. Stack emissions are continuously monitored from sample tubes which each connect to a Tritium bubble which differentially collects HTO and HT. A set of glass vials of glycol capture the HTO. The HT is oxidized with a palladium catalyst and the resultant HTO is captured in a second set of vials of glycol. The glycol is counted with a liquid scintillation counter. All calibrations are performed with tritium containing gas. The Radiation Instrumentation and Calibration (RIC) Team has constructed and maintains two closed loop gas handling systems based on femto TECH model U24 tritium ion chamber monitors: a fixed system housed in a fume hood and a portable system mounted on two two wheeled hand trucks. The U24 monitors are calibrated against tritium in nitrogen gas standards. They are used as standard transfer instruments to calibrate other ion chamber monitors with tritium in nitrogen, diluted with air. The gas handling systems include a circulation pump which permits a closed circulation loop to be established among the U24 monitor and typically two to four other monitors of a given model during calibration. Fixed and portable monitors can be calibrated. The stack bubblers are calibrated in the field by: blending a known concentration of tritium in air within the known volume of the two portable carts, coupled into a common loop; releasing that gas mixture into a ventilation intake to the stack; collecting oxidized tritium in the bubbler; counting the glycol; and using the stack and bubbler flow rates, computing the bubbler's efficiency. Gas calibration has become a convenient and quality tool in maintaining the tritium monitors at LANL

  8. A Perspective on Remote Handling Operations and Human Machine Interface for Remote Handling in Fusion

    International Nuclear Information System (INIS)

    Haist, B.; Hamilton, D.; Sanders, St.

    2006-01-01

    A large-scale fusion device presents many challenges to the remote handling operations team. This paper is based on unique operational experience at JET and gives a perspective on remote handling task development, logistics and resource management, as well as command, control and human-machine interface systems. Remote operations require an accurate perception of a dynamic environment, ideally providing the operators with the same unrestricted knowledge of the task scene as would be available if they were actually at the remote work location. Traditional camera based systems suffer from a limited number of viewpoints and also degrade quickly when exposed to high radiation. Virtual Reality and Augmented Reality software offer great assistance. The remote handling system required to maintain a tokamak requires a large number of different and complex pieces of equipment coordinating to perform a large array of tasks. The demands on the operator's skill in performing the tasks can escalate to a point where the efficiency and safety of operations are compromised. An operations guidance system designed to facilitate the planning, development, validation and execution of remote handling procedures is essential. Automatic planning of motion trajectories of remote handling equipment and the remote transfer of heavy loads will be routine and need to be reliable. This paper discusses the solutions developed at JET in these areas and also the trends in management and presentation of operational data as well as command, control and HMI technology development offering the potential to greatly assist remote handling in future fusion machines. (author)

  9. Evaluation of replacement tritium facility (RTF) compliance with DOE safety goals using probabilistic consequence assessment methodology

    International Nuclear Information System (INIS)

    O'Kula, K.R.; East, J.M.; Moore, M.L.

    1993-01-01

    The Savannah River Site (SRS), operated by the Westinghouse Savannah River Company (WSRC) for the US Department of Energy (DOE), is a major center for the processing of nuclear materials for national defense, deep-space exploration, and medical treatment applications in the United States. As an integral part of the DOE's effort to modernize facilities, implement improved handling and processing technology, and reduce operational risk to the general public and onsite workers, transition of tritium processing at SRS from the Consolidated Tritium Facility to the Replacement Tritium Facility (RTF) began in 1993. To ensure that operation of new DOE facilities such as RTF present minimum involuntary and voluntary risks to the neighboring public and workers, indices of risk have been established to serve as target levels or safety goals of performance for assessing nuclear safety. These goals are discussed from a historical perspective in the initial part of this paper. Secondly, methodologies to quantify risk indices are briefly described. Lastly, accident, abnormal event, and normal operation source terms from RTF are evaluated for consequence assessment purposes relative to the safety targets

  10. 78 FR 35743 - Irish Potatoes Grown in Colorado; Modification of the General Cull and Handling Regulation for...

    Science.gov (United States)

    2013-06-14

    ... IR] Irish Potatoes Grown in Colorado; Modification of the General Cull and Handling Regulation for.... SUMMARY: This interim rule modifies the size requirements for potatoes handled under the Colorado potato marketing order, Area No. 2 (order). The order regulates the handling of Irish potatoes grown in Colorado...

  11. Tritium and helium-3 in metals

    International Nuclear Information System (INIS)

    Lasser, R.

    1989-01-01

    The book surveys recent results on the behaviour of tritium and its decay product helium-3 metals. In contrast to many earlier books which discuss the properties of the stable hydrogen isotopes without mentioning tritium, this book reviews mainly the results on tritium in metals. Due to the difficulties in preparing metal tritide samples, very important quantities such as diffusivity, superconductivity, solubility, etc. have only been determined very recently. The book not only presents the measured tritium data, but also the isotopic dependency of the different physical properties by comparing H, D and T results. A chapter is devoted to helium-3 in metals. Aspects such as helium release, generation of helium bubbles, swelling, and change of the lattice parameter upon aging are discussed. The book provides the reader with up-to-date information and deep insight into the behaviour of H, D, T and He-3 in metals. Further important topics such a tritium production, its risks, handling and discharge to the environment are also addressed

  12. Health Physics aspects of the use of tritium

    International Nuclear Information System (INIS)

    Martin, E.B.M.

    1982-01-01

    The health physics aspects of the use of tritium in university laboratories and similar establishments are considered. These aspects include discussion on the behaviour and hazards of tritium in the body, derived limits for contamination, monitoring methods, designation of workers, medical and dosimetric supervision, classification of laboratories, safety precautions, accidents and decontamination, and waste disposal. The radiation hazards from some special uses of tritium, e.g. tritium foil sources, luminous devices, gaseous light sources, are also considered. It was concluded that little harm is likely to come from careful handling of tritium labelled compounds at the millicurie level in a research laboratory. It would, however, be most unwise to be complacent about the use of tritium at the curie level, particularly when high specific activities, organic compounds and chronic exposure over long periods are involved. (U.K.)

  13. Overview of the performance of the JET active gas handling system during and after DTE1

    International Nuclear Information System (INIS)

    Laesser, R.; Atkins, G.; Bell, A.

    1999-02-01

    The JET Active Gas Handling System (AGHS) was designed, built and commissioned to handle safely radioactive tritium gas mixtures, to supply tritium (T 2 ) and deuterium (D 2 ) to the JET torus, to process the exhaust gases with the main purpose to enrich and re-use T 2 and D 2 , to detritiate tritiated impurities and to keep discharges far below the approved daily release limits. In addition, the AGHS had to supply the necessary ventilation air streams during maintenance or repair inside or outside of the AGHS building. During the first Deuterium-Tritium Experiment (DTE1) at JET in 1997 the AGHS fulfilled all these tasks in an excellent manner. No unauthorised or unplanned tritium releases occurred and no operational delays were caused by the AGHS. In fact, this was the first true demonstration that quantities of tritium in the tens of grams range can be processed and recycled safely and efficiently in a large fusion device. At the start of DTE1 20 g of tritium were available on the JET site. About 100 g of tritium were supplied from the AGHS to the users which necessitated the recycling of tritium at least five times. Approximately 220 tritium plasma shots were performed during DTE1. Large amounts of tritium were temporarily trapped in the torus. This overview presents the performance of the whole AGHS during DTE1 as well as general aspects such as the preparation for DTE1; the quantities of gases supplied from the AGHS to the users and pumped back to the AGHS; tritium accountancy; interlock systems; failure of equipment; and gives detailed information of the gas processing in each subsystem of the AGHS. As a consequence of the performance of the AGHS during DTE1 we can state confidently that the AGHS is ready for further Deuterium-Tritium Experiments. (author)

  14. Maintenance and waste treatment of tritium existing in and out of the fusion reactor systems. 6. Study of tritium confinement in the facility of a fusion reactor

    International Nuclear Information System (INIS)

    Kobayashi, Kazuhiro

    2000-01-01

    In a future fusion reactor, tritium confinement is one of the key issues for safety. Large amount of tritium (a few grams to a hundred grams level) has been handled safely at the several facilities in the world for fusion research under the multiple confinement concept. In this chapter, the study of tritium behavior in large space such as the building is described using the Caisson Assembly for Tritium Safety (CATS) study such as the final confinement and the present R and D status concerning the tritium confinement is reviewed. (author)

  15. Tritium behavior intentionally released in the room

    International Nuclear Information System (INIS)

    Kobayashi, K.; Hayashi, T.; Iwai, Y.; Yamanishi, T.; Willms, R. S.; Carlson, R. V.

    2008-01-01

    To construct a fusion reactor with high safety and acceptability, it is necessary to establish and to ensure tritium safe handling technology. Tritium should be well-controlled not to be released to the environment excessively and to prevent workers from excess exposure. It is especially important to grasp tritium behavior in the final confinement area, such as the room and/or building. In order to obtain data for actual tritium behavior in a room and/or building, a series of intentional Tritium Release Experiments (TREs) were planned and carried out within a radiologically controlled area (main cell) at Tritium System Test Assembly (TSTA) in Los Alamos National Laboratory (LANL) under US-JAPAN collaboration program. These experiments were carried out three times. In these experiments, influence of a difference in the tritium release point and the amount of hydrogen isotope for the initial tritium behavior in the room were suggested. Tritium was released into the main cell at TSTA/LANL. The released tritium reached a uniform concentration about 30 - 40 minutes in all the experiments. The influence of the release point and the amount of hydrogen isotope were not found to be important in these experiments. The experimental results for the initial tritium behavior in the room were also simulated well by the modified three-dimensional eddy flow analysis code FLOW-3D. (authors)

  16. 78 FR 23829 - Irish Potatoes Grown in Colorado; Modification of the Handling Regulation for Area No. 2

    Science.gov (United States)

    2013-04-23

    ... FIR] Irish Potatoes Grown in Colorado; Modification of the Handling Regulation for Area No. 2 AGENCY... the grade requirements for potatoes handled under the Colorado potato marketing order, Area No. 2. The..., red- skinned potatoes handled under the marketing order from U.S. No. 1 to U.S. Commercial. This...

  17. 78 FR 3 - Irish Potatoes Grown in Colorado; Modification of the Handling Regulation for Area No. 2

    Science.gov (United States)

    2013-01-02

    ...; FV12-948-1 IR] Irish Potatoes Grown in Colorado; Modification of the Handling Regulation for Area No. 2...: This rule modifies the grade requirements for potatoes handled under the Colorado potato marketing order, Area No. 2 (order). The order regulates the handling of Irish potatoes grown in Colorado and is...

  18. Tritium release from lithium titanate, a low-activation tritium breeding material

    International Nuclear Information System (INIS)

    Kopasz, J.P.; Miller, J.M.; Johnson, C.E.

    1994-01-01

    The goals for fusion power are to produce energy in as safe, economical, and environmentally benign a manner as possible. To ensure environmentally sound operation low-activation materials should be used where feasible. The ARIES Tokamak Reactor Study has based reactor designs on the concept of using low-activation materials throughout the fusion reactor. For the tritium breeding blanket, the choices for low activation tritium breeding materials are limited. Lithium titanate is an alternative low-activation ceramic material for use in the tritium breeding blanket. To date, very little work has been done on characterizing the tritium release for lithium titanate. We have thus performed laboratory studies of tritium release from irradiated lithium titanate. The results indicate that tritium is easily removed from lithium titanate at temperatures as low as 600 K. The method of titanate preparation was found to affect the tritium release, and the addition of 0.1% H 2 to the helium purge gas did not improve tritium recovery. ((orig.))

  19. Two investigations concerning the release of tritium. I. Tritium leakage from 3H(Sc) EC-detectors

    International Nuclear Information System (INIS)

    Bergman, C.; Wesslen, E.

    1977-01-01

    Recently the manufacturers of EC-detectors for gas chromatographs introduced a new type of 3 H EC-detector where the tritium is bound to scandium instead of to titanium and has an activity up to 1 Ci. It is expected that the scandium-based detector will take a great part of the Swedish EC-detector market. The Swedish National Institute of Radiation Protection is anxious to make sure that the introduction of the new detector, which will be used at higher temperature, will not give rise to any increased risk of tritium intake to the personnel handling the chromatographs. The leakage of tritium from commercially available 3 H(Sc) EC-detectors containing 1 Ci of tritium was measured as a function of the detector temperature. Tritium appears both in the form of tritium gas dissolved in the scandium and in the form of tritide. The gas evaporates rather easily with increasing temperature while the dissociation of the tritide is a slower process. The evaporation of tritium due to the dissociation of the tritide was found to be negligible, less than 0.2 μCi/h at temperatures less than 100 0 C, but rises rapidly with temperature. The study also showed that even when the detector is stored at room temperature, a re-distribution of the tritium occures, from the tritide to the dissolved tritium gas, which then easily evaporates even at moderately elevated temperatures

  20. Operations and maintenance plans for the TFTR

    International Nuclear Information System (INIS)

    Allen, H.L.; Fedor, B.J.

    1978-01-01

    Princeton University Plasma Physics Laboratory (PPPL) is constructing a Tokamak Fusion Test Reactor (TFTR) scheduled to begin operation for fusion research experiments in late 1981, first with hydrogen and deuterium plasmas and later, in the second phase, using tritium for high power fusion studies. This latter mode will introduce considerable complexity to operation and maintenance of the TFTR in terms of meeting requirements for tritium handling, adequate radiation shielding, and corrective and preventive maintenance procedures. In this paper we discuss plans for the installation and preoperational testing of the major subsystems of TFTR, proposed start-up and operating scenarios for the device and the system of operational control. In addition, the TFTR Maintenance Plan and related procedures for specific major maintenance tasks are described, including the use of remote handling equipment and remote manipulators. Each of these topics is addressed in terms of the current status of planning and development

  1. Dynamic tritium inventory of a NET/ITER fuel cycle with lithium salt solution blanket

    International Nuclear Information System (INIS)

    Spannagel, G.; Gierszewski, P.

    1991-01-01

    At the Karlsruhe Nuclear Research Center (KfK) a flexible tool is being developed to simulate the dynamics of tritium inventories. This tool can be applied to any tritium handling system, especially to the fuel cycle components of future nuclear fusion devices. This instrument of simulation will be validated in equipment to be operated at the Karlsruhe Tritium Laboratory. In this study tritium inventories in a NET/ITER type fuel cycle involving a lithium salt solution blanket are investigated. The salt solution blanket serves as an example because it offers technological properties which are attractive in modeling the process; the example does not impair the general validity of the tool. Usually, the operation strategy of complex structures will deteriorate due to failures of the subsystems involved. These failures together with the reduced availability ensuing from them will be simulated. The example of this study is restricted to reduced availabilities of two subsystems, namely the reactor and the tritium recovery system. For these subsystems the influence of statistically varying intervals of operation is considered. Strategies we selected which are representative of expected modes of operation. In the design of a fuel cycle, care will be taken that prescribed availabilities of the subsystems can be achieved; however, the description of reactor operation is a complex task since operation breaks down into several campaigns for which rules have been specified which enable determination of whether a campaign has been successful and can be stopped. Thus, it is difficult to predict the overall behavior prior to a simulation which includes stochastic elements. Using the example mentioned above the capabilities of the tool will be illustrated; besides the presentation of results of inventory simulation, the applicability of these data will be discussed. (orig.)

  2. Using the Tritium Plasma Experiment to evaluate ITER PFC safety

    International Nuclear Information System (INIS)

    Longhurst, G.R.; Anderl, R.A.; Bartlit, J.R.; Causey, R.A.; Haines, J.R.

    1993-01-01

    The Tritium Plasma Experiment was assembled at Sandia National Laboratories, Livermore to investigate interactions between dense plasmas at low energies and plasma-facing component materials. This apparatus has the unique capability of replicating plasma conditions in a tokamak divertor with particle flux densities of 2 x 10 19 ions/cm 2 · s and a plasma temperature of about 15 eV using a plasma that includes tritium. With the closure of the Tritium Research Laboratory at Livermore, the experiment was moved to the Tritium Systems Test Assembly facility at Los Alamos National Laboratory. An experimental program has been initiated there using the Tritium Plasma Experiment to examine safety issues related to tritium in plasma-facing components, particularly the ITER divertor. Those issues include tritium retention and release characteristics, tritium permeation rates and transient times to coolant streams, surface modification and erosion by the plasma, the effects of thermal loads and cycling, and particulate production. A considerable lack of data exists in these areas for many of the materials, especially beryllium, being considered for use in ITER. Not only will basic material behavior with respect to safety issues in the divertor environment be examined, but innovative techniques for optimizing performance with respect to tritium safety by material modification and process control will be investigated. Supplementary experiments will be carried out at the Idaho National Engineering Laboratory and Sandia National Laboratory to expand and clarify results obtained on the Tritium Plasma Experiment

  3. Tokamak fusion reactors with less than full tritium breeding

    International Nuclear Information System (INIS)

    Evans, K. Jr.; Gilligan, J.G.; Jung, J.

    1983-05-01

    A study of commercial, tokamak fusion reactors with tritium concentrations and tritium breeding ratios ranging from full deuterium-tritium operation to operation with no tritium breeding is presented. The design basis for these reactors is similar to those of STARFIRE and WILDCAT. Optimum operating temperatures, sizes, toroidal field strengths, and blanket/shield configurations are determined for a sequence of reactor designs spanning the range of tritium breeding, each having the same values of beta, thermal power, and first-wall heat load. Additional reactor parameters, tritium inventories and throughputs, and detailed costs are calculated for each reactor design. The disadvantages, advantages, implications, and ramifications of tritium-depleted operation are presented and discussed

  4. Operating experience with TFTR's Tritium Storage and Delivery System

    International Nuclear Information System (INIS)

    Voorhees, D.R.

    1995-01-01

    The Tritium Storage and Delivery System (TSDS) at TFTR was fabricated at Monsanto Mound Lab in the late 1970's and delivered to PPPL in the early 1980's. Commissioning progressed slowly and was finally completed in 1992 following a series of Preoperational tests and Integrated Systems tests. Those tests included thorough leak testing of glove boxes and process piping, electrical interlocks and controls, instrumentation calibrations, volume determinations and verification of uranium bed capacity. The system accepted tritium in dilute form in May of 1993 and began serious usage of pure tritium in November 1993. As the throughput of high purity tritium increased, shortcomings of the system became evident and extensive repairs were implemented. System leakage and material compatibility were the primary causes of the problems. To date, the system has received, stored and delivered over 500 kCi of tritium and is performing very well. The dedicated quadrupole mass spectrometer and beta scintillator system has been analyzing tritium bearing and pure gas streams for over 3 years with minimal downtime

  5. Design of a Cryogenic Distillation Column for JET Water Detritiation System for Tritium Recovery

    International Nuclear Information System (INIS)

    Parracho, A.I.; Camp, P.; Dalgliesh, P.; Hollingsworth, A.; Lefebvre, X.; Lesnoj, S.; Sacks, R.; Shaw, R.; Smith, R.; Wakeling, B.

    2015-01-01

    A Water Detritiation System (WDS) is currently being designed and manufactured to be installed in the Active Gas Handling System (AGHS) of JET, currently the largest magnetic fusion experiment in the world. JET has been designed and built to study fusion operating conditions with the plasma fuelling done by means of a deuterium-tritium gas mixture. AGHS is a plant designed and built to safely process gas mixtures and impurities containing tritium recovered from the JET torus exhaust gases. Tritium is removed from these gas mixtures and recycled. Tritium depleted gases are sent to Exhaust Detritiation System (EDS) for final tritium removal prior to discharge into the environment. In EDS, tritium and tritiated species are catalytically oxidized into water, this tritiated water is then adsorbed onto molecular sieve beds (MSB). After saturation the MSBs are heated and the water is desorbed and collected for tritium recovery. The WDS facility is designed to recover tritium from water with an average activity of 1.9 GBq/l, and is able to process water with activities of 85 GBq/l and higher. Tritiated water is filtered and supplied to the electrolyser where the water is converted into gaseous oxygen and tritiated hydrogen. The hydrogen stream is first purified by selective diffusion through membranes of palladium alloy and then is fed to two cryogenic distillation columns (CD). These operate in parallel or in series depending on the water activity. In the CD columns, hydrogen isotopes containing tritium are recovered as the bottom product and hydrogen, the top product, is safely discarded to a stack. The CD columns are foreseen to have a throughput between 200 and 300 mole/h of hydrogen isotopes vapour and they operate at approximately ≈21.2K and 105 kPa. The design of the CD columns will be presented in this work. This work has been carried out within the framework of the Contract for the Operation of the JET Facilities and has received funding from the European Union

  6. Gaseous Tritium Light Sources in armament and watches industries

    International Nuclear Information System (INIS)

    Amme, Marcus; Siegenthaler, Roger

    2015-01-01

    The industrial application of Tritium gas enclosed in glass tubes is a modern way illuminating instruments and items wherever instant and independent readability is prerequisite. The GTLS (Gaseous Tritium Light Sources) technology follows the principle of radiation-induced luminescence and supersedes the luminous radioactive paints and their hazards such as particles erasure or heavy isotope use. Enclosure of tritium in glass is a demanding micro technology process and work needs to be performed in controlled areas due to handling of open sources. The storage and transport of the Tritium is done via licensed B(U)-containers coming from heavy water reactor sites, and disposal of radioactive Tritium wastes has to be compliant with national and international regulations for transport and waste management.

  7. Tritium containment and blanket design challenges for a 1 GWe mirror fusion central power station

    International Nuclear Information System (INIS)

    Galloway, T.R.

    1976-06-01

    Tritium containment and removal problems associated with the blanket and power-systems for a mirror fusion reactor are identified and conceptual process designs are devised to reduce emissions to the environment below 1 Ci/day. The blanket concept development proceeds by starting with this emission goal of 1 Ci/day and working inward to the blanket. At each decision point, worker safety, operational labor costs, and capital cost tradeoffs are contrasted. The conceptual design uses air for the reactor hall with a continuous catalytic oxidizer-molecular sieve adsorber cleanup system to maintain a 40 μCi/m 3 tritium level (5 μCi/m 3 HTO) against 180 Ci/day leakage from reactor components, energy recovery systems, and process piping. This blanket contains submodules with Li 2 Be 2 O 3 --Be for tritium breeding and submodules with Be for mostly energy production. Tritium production in both is handled by separately containing this breeding material and scavenging this container with lithium vapor-doped helium gas stream

  8. Tritium inventory and recovery in next-step fusion devices

    International Nuclear Information System (INIS)

    Causey, R.A.; Brooks, J.N.; Federici, G.

    2002-01-01

    Future fusion devices will use tritium and deuterium fuel. Because tritium is both radioactive and expensive, it is absolutely necessary that there be an understanding of the tritium retention characteristics of the materials used in these devices as well as how to recover the tritium. There are three materials that are strong candidates for plasma-facing-material use in next-step fusion devices. These are beryllium, tungsten, and carbon. While beryllium has the disadvantage of high sputtering and low melting point (which limits its power handling capabilities in divertor areas), it has the advantages of being a low-Z material with a good thermal conductivity and the ability to get oxygen from the plasma. Due to beryllium's very low solubility for hydrogen, implantation of beryllium with deuterium and tritium results in a saturated layer in the very near-surface with limited inventory (J. Nucl. Mater. 273 (1999) 1). Unfortunately, there are nuclear reactions generated by neutrons that will breed tritium and helium in the material bulk (J. Nucl. Mater. 179 (1991) 329). This process will lead to a substantial tritium inventory in the bulk of the beryllium after long-term neutron exposure (i.e. well beyond the operation life time of a next-step reactor like ITER). Tungsten is a high-Z material that will be used in the divertor region of next-step devices (e.g. ITER) and possibly as a first wall material in later devices. The divertor is the preferred location for tungsten use because net erosion is very low there due to low sputtering and high redeposition. While experiments are still continuing on tritium retention in tungsten, present data suggest that relatively low tritium inventories will result with this material (J. Nucl. Mater. 290-293 (2001) 505). For tritium inventories, carbon is the problem material. Neutron damage to the graphite can result in substantial bulk tritium retention (J. Nucl. Mater. 191-194 (1992) 368), and codeposition of the sputtered carbon

  9. The JET gas baking plant for DT operation and analysis of tritium permeation and baking gas activation in DTE1

    Energy Technology Data Exchange (ETDEWEB)

    Pearce, R.J.H.; Andrew, P.; Bryan, S.; Hemmrich, J.L. [JET Joint Undertaking, Abingdon, Oxon (United Kingdom)

    1998-07-01

    The JET gas baking plant allows the vacuum vessel to be heated for conditioning and plasma operations. The vessel was maintained at 320 deg. C for the JET DT experiments (DTE 1). The design of the plant is outlined with particular reference to the features to provide compatibility with tritium operations. The experience of baking gas activation and tritium permeation into the plant are given, Developmentsto reduce the tritium permeation out of the vessel are considered. (authors)

  10. Environmental monitoring for tritium in tritium separation facility

    International Nuclear Information System (INIS)

    Varlam, Carmen; Stefanescu, Ioan; Steflea, Dumitru; Lazar, Roxana Elena

    2001-01-01

    The Cryogenic Pilot is an experimental project in the nuclear energy national research program, which has the aim of developing technologies for tritium and deuterium separation by cryogenic distillation. The experimental installation is located 15 km near the highest city of the area and 1 km near Olt River. An important chemical activity is developed in the area and chemical plants make up almost entire neighborhood of the Experimental Cryogenic Pilot. It is necessary to emphasize this aspect because the hall sewage system of the pilot is connected with the one of other three chemical plants from vicinity. This is the reason why we progressively established elements of an environmental monitoring program well in advance of tritium operation in order to determine baseline levels. The first step was the tritium level monitoring in environmental water and sewage from neighboring industrial activity. In this work, a low background liquid scintillation was used to determine tritium activity concentration according to ISO 9698/1998 standard. We measured drinking water, precipitation, river water, underground water and wastewater. The tritium level was between 10 TU and 27 TU what indicates that there is no source of tritium contamination in the neighborhood of Cryogenic Pilot. In order to determine baseline levels we decided to monitor monthly each location. In this paper it is presented a standard method used for tritium determination in water samples, the precautions needed to achieve reliable results and the evolution of tritium level in different location near the Experimental Pilot for Tritium and Deuterium Cryogenic Separation. (authors)

  11. Environmental monitoring for tritium at tritium separation facility

    International Nuclear Information System (INIS)

    Varlam, C.; Stefanescu, I.; Steflea, D.; Lazar, R.E.

    2001-01-01

    The Cryogenic Pilot is an experimental project in the nuclear energy national research program, which has the aim of developing technologies for tritium and deuterium separation by cryogenic distillation. The experimental installation is located 15 km near the highest city of the area and 1 km near Olt River. An important chemical activity is developed in the area and the Experimental Cryogenic Pilot's, almost the entire neighborhood are chemical plants. It is necessary to emphasize this aspect because the sewerage system is connected with the other three chemical plants from the neighborhood. This is the reason that we progressively established elements of an environmental monitoring program well in advance of tritium operation in order to determine baseline levels. The first step was the tritium level monitoring in environmental water and waste water of industrial activity from neighborhood. In this work, a low background liquid scintillation is used to determine tritium activity concentration according to ISO 9698/1998. We measured drinking water, precipitation, river water, underground water and waste water. The tritium level was between 10 TU and 27 TU that indicates there is no source of tritium contamination in the neighborhood of Cryogenic Pilot. In order to determine baseline levels we decide to monitories monthly each location. In this paper a standard method is presented which it is used for tritium determination in water sample, the precautions needed in order to achieve reliable results, and the evolution of tritium level in different location near the Experimental Pilot Tritium and Deuterium Cryogenic Separation.(author)

  12. An analysis of repository waste-handling operations

    International Nuclear Information System (INIS)

    Dennis, A.W.

    1990-09-01

    This report has been prepared to document the operational analysis of waste-handling facilities at a geologic repository for high-level nuclear waste. The site currently under investigation for the geologic repository is located at Yucca Mountain, Nye County, Nevada. The repository waste-handling operations have been identified and analyzed for the year 2011, a steady-state year during which the repository receives spent nuclear fuel containing the equivalent of 3000 metric tons of uranium (MTU) and defense high-level waste containing the equivalent of 400 MTU. As a result of this analysis, it has been determined that the waste-handling facilities are adequate to receive, prepare, store, and emplace the projected quantity of waste on an annual basis. In addition, several areas have been identified where additional work is required. The recommendations for future work have been divided into three categories: items that affect the total waste management system, operations within the repository boundary, and the methodology used to perform operational analyses for repository designs. 7 refs., 48 figs., 11 tabs

  13. Tritium systems test assembly stabilization

    International Nuclear Information System (INIS)

    Jasen, William G.; Michelotti, Roy A.; Anast, Kurt R.; Tesch, Charles

    2004-01-01

    The Tritium Systems Test Assembly (TSTA) was a facility dedicated to tritium technology Research and Development (R and D) primarily for future fusion power reactors. The facility was conceived in mid 1970's, operations commenced in early 1980's, stabilization and deactivation began in 2000 and were completed in 2003. The facility will remain in a Surveillance and Maintenance (S and M) mode until the Department of Energy (DOE) funds demolition of the facility, tentatively in 2009. A safe and stable end state was achieved by the TSTA Facility Stabilization Project (TFSP) in anticipation of long term S and M. At the start of the stabilization project, with an inventory of approximately 140 grams of tritium, the facility was designated a Hazard Category (HC) 2 Non-Reactor Nuclear facility as defined by US Department of Energy standard DOE-STD-1027-92 (1997). The TSTA facility comprises a laboratory area, supporting rooms, offices and associated laboratory space that included more than 20 major tritium handling systems. The project's focus was to reduce the tritium inventory by removing bulk tritium, tritiated water wastes, and tritium-contaminated high-inventory components. Any equipment that remained in the facility was stabilized in place. All of the gloveboxes and piping were rendered inoperative and vented to atmosphere. All equipment, and inventoried tritium contamination, remaining in the facility was left in a safe-and-stable state. The project used the End Points process as defined by the DOE Office of Environmental Management (web page http://www.em.doe.- gov/deact/epman.htmtlo) document and define the end state required for the stabilization of TSTA Facility. The End Points process added structure that was beneficial through virtually all phases of the project. At completion of the facility stabilization project the residual tritium inventory was approximately 3,000 curies, considerably less than the 1.6-gram threshold for a HC 3 facility. TSTA is now

  14. Plasma wall interaction and tritium retention in TFTR

    International Nuclear Information System (INIS)

    Skinner, C.H.; Amarescu, E.; Ascione, G.

    1996-01-01

    The Tokamak Fusion Test Reactor (TFTR) has been operating safely and routinely with deuterium-tritium fuel for more than two years. In this time, TFTR has produced an impressive number of record breaking results including core fusion power, ∼ 2 MW/m 3 , comparable to that expected for ITER. Advances in wall conditioning via lithium pellet injection have played an essential role in achieving these results. Deuterium-tritium operation has also provided a special opportunity to address the issues of tritium recycling and retention. Tritium retention over two years of operation was approximately 40%. Recently, the in-torus tritium inventory was reduced by half through a combination of glow discharge cleaning, moist-air soaks, and plasma discharge cleaning. The tritium inventory is not a constraint in continued operations. The authors present recent results from TFTR in the context of plasma wall interactions and deuterium-tritium issues

  15. Plasma wall interaction and tritium retention in TFTR

    International Nuclear Information System (INIS)

    Skinner, C.H.; Amarescu, E.; Ascione, G.

    1997-01-01

    The Tokamak Fusion Test Reactor (TFTR) has been operating safely and routinely with deuterium-tritium fuel for more than two years. In this time, TFTR has produced a number of record breaking results including core fusion power, ∝2 MW/m 3 , comparable to that expected for ITER. Advances in wall conditioning via lithium pellet injection have played an essential role in achieving these results. Deuterium-tritium operation has also provided a special opportunity to address the issues of tritium recycling and retention. Tritium retention over two years of operation was approximately 40%. Recently the in-torus tritium inventory was reduced by half through a combination of glow discharge cleaning, moist-air soaks, and plasma discharge cleaning. The tritium inventory is not a constraint in continued operations. Recent results from TFTR in the context of plasma wall interactions and deuterium-tritium issues are presented. (orig.)

  16. Tritium release experiments with CATS and numerical simulation

    International Nuclear Information System (INIS)

    Munakata, Kenzo; Wajima, Takaaki; Hara, Keisuke; Wada, Kohei; Takeishi, Toshiharu; Shinozaki, Yohei; Mochizuki, Kazuhiro; Katekari, Kenichi; Kobayashi, Kazuhiro; Iwai, Yasunori; Hayashi, Takumi; Yamanishi, Toshihiko

    2010-01-01

    In D-T fusion power plants, large amounts of tritium would be handled. Tritium is the radioisotope of protium, and is easily taken into the human body, and thus the behavior of tritium accidentally released in fusion power plants should be studied for the safety design and radioprotection of workers. Therefore, it is necessary to investigate the behavior of tritium released into large rooms with objectives, since complex flow fields should exist in such rooms and they could influence the ventilation of the air containing released tritium. Thus, tritium release experiments were conducted using Caisson Assembly for Tritium Safety Study (CATS) in TPL/JAEA. Some data were taken for tritium behavior in the ventilated area and response of tritium monitors. In the experiments, approximately 17 GBq of tritium was released into Caisson with the total volume of 12 m 3 , and the room was ventilated at the rate of 12 m 3 /h after release of tritium. It was found that placement of an objective in the vessel substantially affects decontamination efficiency. With regard to an experimental result, numerical calculation was performed and the experimental result and the result of numerical calculation were compared, which indicates that experimental results are qualitatively reproduced by numerical calculation. However, further R and D needs to be carried out for quantitative reproduction of the experimental results.

  17. Tritium release experiments with CATS and numerical simulation

    Energy Technology Data Exchange (ETDEWEB)

    Munakata, Kenzo, E-mail: kenzo@gipc.akita-u.ac.jp [Faculty of Engineering and Resource Sciences, Akita University, Tegata-gakuen-cho 1-1, Akita 010-8502 (Japan); Wajima, Takaaki; Hara, Keisuke; Wada, Kohei [Faculty of Engineering and Resource Sciences, Akita University, Tegata-gakuen-cho 1-1, Akita 010-8502 (Japan); Takeishi, Toshiharu; Shinozaki, Yohei; Mochizuki, Kazuhiro; Katekari, Kenichi [Interdisciplinary Graduate School of Engineering Science, Kyushu University, Hakozaki 6-10-1, Higashi-ku, Fukuoka 812-8581 (Japan); Kobayashi, Kazuhiro; Iwai, Yasunori; Hayashi, Takumi; Yamanishi, Toshihiko [Tritium Technology Group, Japan Atomic Energy Agency, Tokai, Ibaraki 319-1195 (Japan)

    2010-12-15

    In D-T fusion power plants, large amounts of tritium would be handled. Tritium is the radioisotope of protium, and is easily taken into the human body, and thus the behavior of tritium accidentally released in fusion power plants should be studied for the safety design and radioprotection of workers. Therefore, it is necessary to investigate the behavior of tritium released into large rooms with objectives, since complex flow fields should exist in such rooms and they could influence the ventilation of the air containing released tritium. Thus, tritium release experiments were conducted using Caisson Assembly for Tritium Safety Study (CATS) in TPL/JAEA. Some data were taken for tritium behavior in the ventilated area and response of tritium monitors. In the experiments, approximately 17 GBq of tritium was released into Caisson with the total volume of 12 m{sup 3}, and the room was ventilated at the rate of 12 m{sup 3}/h after release of tritium. It was found that placement of an objective in the vessel substantially affects decontamination efficiency. With regard to an experimental result, numerical calculation was performed and the experimental result and the result of numerical calculation were compared, which indicates that experimental results are qualitatively reproduced by numerical calculation. However, further R and D needs to be carried out for quantitative reproduction of the experimental results.

  18. Dependence of CuO particle size and diameter of reaction tubing on tritium recovery for tritium safety operation

    Energy Technology Data Exchange (ETDEWEB)

    Hu, Cui, E-mail: cdxohc10000@163.com [Shizuoka University, 836 Ohya, Suruga-ku Shizuoka 422-8529 (Japan); Uemura, Yuki; Yuyama, Kenta; Fujita, Hiroe; Sakurada, Shodai; Azuma, Keisuke [Shizuoka University, 836 Ohya, Suruga-ku Shizuoka 422-8529 (Japan); Taguchi, Akira; Hara, Masanori; Hatano, Yuji [University of Toyama, 3190 Gofuku, Toyama 939-8555 (Japan); Chikada, Takumi; Oya, Yasuhisa [Shizuoka University, 836 Ohya, Suruga-ku Shizuoka 422-8529 (Japan)

    2016-12-15

    Highlights: • Influence of CuO particle size and diameter of reaction tubing on the tritium recovery was evaluated. • Reaction rate constant of tritium with CuO particle has been calculated by the combination of experimental results and a simulation code. • Dependence of reaction tubing length on tritium conversion ratio has been explored. - Abstract: Usage of CuO and water bubbler is one of the conventional and convenient methods for tritium recovery. In present work, influence of CuO particle size and diameter of reaction tubing on the tritium recovery was evaluated. Reaction rate constant of tritium with CuO particle has been calculated by the combination of experimental results and a simulation code. Then, these results were applied for exploring the dependence of reaction tubing length on tritium conversion ratio. The results showed that the surface area of CuO has a great influence on the oxidation rate constant. The frequency factor of the reaction would be approximately doubled by reducing the CuO particle size from 1.0 mm to 0.2 mm. Cross section of reaction tubing mainly affected on the duration of tritium at the temperature below 600 K. Reaction tubing with length of 1 m at temperature of 600 K would be suitable for keeping the tritium conversion ratio above 99.9%. The length of reaction tubing can be reduced by using the smaller CuO particle or increasing the CuO temperature.

  19. Tritium handling, breeding, and containment in two conceptual fusion reactor designs: UWMAK-II and UWMAK-III

    International Nuclear Information System (INIS)

    Clemmer, R.G.; Larsen, E.M.

    1976-01-01

    Tritium is an essential component of near-term controlled thermonuclear reactor systems. Since tritium is not likely to be available on a large scale at a modest cost, fusion reactor designs must incorporate blanket systems which will be capable of breeding tritium. Because of the radiological activity and capability of assimilation into living tissues, tritium release to the environment must be strictly controlled. The University of Wisconsin has completed three conceptual designs of fusion reactors, UWMAK-I, UWMAK-II, and UWMAK-III. This report discusses the tritium systems for UWMAK-II, a reactor design with a helium cooled solid breeder blanket, and UWMAK-III, a reactor design with a high-temperature liquid breeder blanket. Tritium systems for fueling and recycling, breeding and recovery, and plant containment and control are discussed. (Auth.)

  20. Pebble fabrication and tritium release properties of an advanced tritium breeder

    Energy Technology Data Exchange (ETDEWEB)

    Hoshino, Tsuyoshi, E-mail: hoshino.tsuyoshi@jaea.go.jp [Breeding Functional Materials Development Group, Department of Blanket Systems Research, Rokkasho Fusion Institute, Sector of Fusion Research and Development, Japan Atomic Energy Agency, 2-166 Obuch, Omotedate, Rokkasho-mura, Kamikita-gun, Aomori 039-3212 (Japan); Edao, Yuki [Tritium Technology Group, Department of Blanket Systems Research, Rokkasho Fusion Institute, Sector of Fusion Research and Development, Japan Atomic Energy Agency, 2-4 Shirakata, Shirane, Tokai-mura, Naka-gun, Ibaraki 319-1195 (Japan); Kawamura, Yoshinori [Blanket Technology Group, Department of Blanket Systems Research, Rokkasho Fusion Institute, Sector of Fusion Research and Development, Japan Atomic Energy Agency, 801-1 Mukoyama, Naka, Ibaraki 311-0193 (Japan); Ochiai, Kentaro [BA Project Coordination Group, Department of Fusion Power Systems Research, Rokkasho Fusion Institute, Sector of Fusion Research and Development, Japan Atomic Energy Agency, 2-166 Obuch, Omotedate, Rokkasho-mura, Kamikita-gun, Aomori 039-3212 (Japan)

    2016-11-01

    Highlights: • Li{sub 2}TiO{sub 3} with excess Li (Li{sub 2+x}TiO{sub 3+y}) pebble as an advanced tritium breeders was fabricated using emulsion method. • Grain size of Li{sub 2+x}TiO{sub 3+y} pebbles was controlled to be less than 5 μm. • Li{sub 2+x}TiO{sub 3+y} pebbles exhibited good tritium release properties similar to that of Li{sub 2}TiO{sub 3} pebbles. - Abstract: Li{sub 2}TiO{sub 3} with excess Li (Li{sub 2+x}TiO{sub 3+y}) has been developed as an advanced tritium breeder. With respect to the tritium release characteristics of the blanket, the optimum grain size after sintering was less than 5 μm. Therefore, an emulsion method was developed to fabricate pebbles with this target grain size. The predominant factor affecting grain growth was assumed to be the presence of binder in the gel particles; this remaining binder was hypothesized to react with the excess Li, thereby generating Li{sub 2}CO{sub 3}, which promotes grain growth. To inhibit the generation of Li{sub 2}CO{sub 3}, calcined Li{sub 2+x}TiO{sub 3+y} pebbles were sintered under vacuum and subsequently under a 1% H{sub 2}–He atmosphere. The average grain size of the sintered Li{sub 2+x}TiO{sub 3+y} pebbles was less than 5 μm. Furthermore, the tritium release properties of Li{sub 2+x}TiO{sub 3+y} pebbles were evaluated, and deuterium–tritium (DT) neutron irradiation experiments were performed at the Fusion Neutronics Source facility in the Japan Atomic Energy Agency. To remove the tritium produced by neutron irradiation, 1% H{sub 2}–He purge gas was passed through the Li{sub 2+x}TiO{sub 3+y} pebbles. The Li{sub 2+x}TiO{sub 3+y} pebbles exhibited good tritium release properties, similar to those of Li{sub 2}TiO{sub 3} pebbles. In particular, the released amount of tritiated hydrogen gas for easier tritium handling was greater than the released amount of tritiated water.

  1. Tritium management in fusion synfuel designs

    International Nuclear Information System (INIS)

    Galloway, T.R.

    1980-01-01

    Two blanket types are being studied: a lithium-sodium pool boiler and a lithium-oxide- or lithium-sodium pool boiler and a lithium-oxide- or aluminate-microsphere moving bed. For each, a wide variety of current technology was considered in handling the tritium. Here, we show the pool boiler with the sulfur-iodine thermochemical cycle first developed and now being piloted by the General Atomic Company. The tritium (T 2 ) will be generated in the lithium-sodium mixture where the concentration is approx. 10 ppM and held constant by a scavenging system consisting mainly of permeators. An intermediate sodium loop carries the blanket heat to the thermochemical cycle, and the T 2 in this loop is held to 1 ppM by a similar scavenging system. With this design, we have maintained blanket inventory at 1 kg of tritium, kept thermochemical cycle losses to 5 Ci/d and environmental loss to 10 Ci/d, and held total plant risk inventory at 7 kg tritium

  2. ARIES-I tritium system

    International Nuclear Information System (INIS)

    Sze, D.K.; Tam, S.W.; Billone, M.C.; Hassanein, A.M.; Martin, R.

    1990-09-01

    A key safety concern in a D-T fusion reactor is the tritium inventory. There are three components in a fusion reactor with potentially large inventories, i.e., the blanket, the fuel processing system and the plasma facing components. The ARIES team selected the material combinations, decided the operating conditions and refined the processing systems, with the aiming of minimizing the tritium inventories and leakage. The total tritium inventory for the ARIES-I reactor is only 700 g. This paper discussed the calculations and assumptions we made for the low tritium inventory. We also addressed the uncertainties about the tritium inventory. 13 refs., 2 figs., 3 tabs

  3. Design of remote handling equipment for the ITER NBI

    Energy Technology Data Exchange (ETDEWEB)

    Oka, Kiyoshi; Tada, Eisuke [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment

    1999-08-01

    The ITER machine has three Neutral Beam Injectors (NBIs) placed tangential to the plasma at a minimum radius of 6.25 m. During operation, neutrons produced by the D-T reactions will irradiate the NBI structure and it will become radioactive. Radiation levels will be such that all subsequent maintenance of the NBIs must be carried out remotely. The presence of tritium and possibly radioactive dust requires that precautions be taken during maintenance to prevent the escape of these contaminants beyond the prescribed boundaries. The scope of this task is both the development of remote maintenance procedures and the design of the remote handling equipment to handle the NBIs. This report describes the design of remote handling tools for the ion source and its filaments, transfer cask, maintenance time, manufacturing schedule and cost estimation. (author)

  4. Development of Tritium Plant System for Fusion Reactors - Achievements in the 14-year US-Japan Collaboration -

    Science.gov (United States)

    Nishi, Masataka; Yamanishi, Toshihiko; Shu, Wataru

    Fuel processing technology and tritium safe-handling technology have been developed through US/DOE-JAERI collaboration from 1987 till 2001, and the technologies to construct the tritium plant system of ITER have been made currently available. This paper overviews the major achievements of this collaborative researches over fourteen years, which were performed mainly at the Tritium Systems Test Assembly (TSTA) of the Los Alamos National Laboratory (LANL). The tritium plant system consists mainly of a fuel processing system, which includes a fuel cycle system and a blanket tritium recovery system, and a tritium confinement/removal system. The fuel cycle system recovers fuel from plasma exhaust gas and recycles it. In the collaboration, major key components and subsystems were developed, and the performance of the integrated system was successfully demonstrated over its one-month operation in which plasma exhaust model gas was processed at a processing rate of up to 1/6 level of the ITER. The technological basis of the fuel cycle system was thus established. Blanket tritium recovery technology was also successfully demonstrated using the TSTA system. Through the successful safeoperation of the TSTA, reliability of tritium confinement/removal system was verified basically. In addition, much data to confirm or enhance safety were accumulated by experiments such as intentional tritium release in a large room. Furthermore,distribution of tritium contamination in the vacuum vessel of the TFTR, a large tokamak of the Princeton Plasma Physics Laboratory (PPPL), was investigated in this work.

  5. 75 FR 3333 - Irish Potatoes Grown in Colorado; Modification of the Handling Regulation for Area No. 2

    Science.gov (United States)

    2010-01-21

    ... FR] Irish Potatoes Grown in Colorado; Modification of the Handling Regulation for Area No. 2 AGENCY... requirement under the Colorado potato marketing order, Area No. 2. The marketing order regulates the handling of Irish potatoes grown in Colorado, and is administered locally by the Colorado Potato...

  6. Conditioning and handling of tritiated wastes at Canadian nuclear power facilities

    International Nuclear Information System (INIS)

    Krochmalnek, L.S.; Krasznai, J.P.; Carney, M.

    1987-04-01

    Ontario Hydro operates a 10,000 MW capacity nuclear power system utilizing the CANDU pressurized heavy water reactor design. The use of D 2 O as moderator and coolant results in the production of about 2400 Ci of tritium per MWe-yr. As a result, there is significant Canadian experience in the treatment, handling, transport and storage of tritiated wastes. Ontario Hydro operates its own reactor waste storage site which includes systems for volume reduction, immobilization and packaging of wastes. In addition, a facility to remove tritium from heavy water is presently being commissioned at the Darlington nuclear site. This facility will generate tritiated liquid and solid waste that will have to be properly conditioned prior to storage or disposal. The nature of these various wastes and the processes/packaging required to meet storage/disposal criteria are judged to have relevance to investigations in fusion facility waste arisings. Experience to date, planned operational procedures and ongoing R and D in this area are described

  7. SRV-automatic handling device

    International Nuclear Information System (INIS)

    Yamada, Koji

    1987-01-01

    Automatic handling device for the steam relief valves (SRV's) is developed in order to achieve a decrease in exposure of workers, increase in availability factor, improvement in reliability, improvement in safety of operation, and labor saving. A survey is made during a periodical inspection to examine the actual SVR handling operation. An SRV automatic handling device consists of four components: conveyor, armed conveyor, lifting machine, and control/monitoring system. The conveyor is so designed that the existing I-rail installed in the containment vessel can be used without any modification. This is employed for conveying an SRV along the rail. The armed conveyor, designed for a box rail, is used for an SRV installed away from the rail. By using the lifting machine, an SRV installed away from the I-rail is brought to a spot just below the rail so that the SRV can be transferred by the conveyor. The control/monitoring system consists of a control computer, operation panel, TV monitor and annunciator. The SRV handling device is operated by remote control from a control room. A trial equipment is constructed and performance/function testing is carried out using actual SRV's. As a result, is it shown that the SRV handling device requires only two operators to serve satisfactorily. The required time for removal and replacement of one SRV is about 10 minutes. (Nogami, K.)

  8. Safety management of a high energy accelerator used in the production of tritium

    International Nuclear Information System (INIS)

    Stark, R.M.; Brown, N.W.; Allen C.L.

    1997-01-01

    Interest in a high energy accelerator for producing tritium raises considerations regarding facility Safety Management. Accelerator facility hazards require safety analysis to consider factors such as: safe management of a large flux of very high energy neutrons, sustained operation in a very high energy proton and neutron field, neutron irradiation of a variety of materials, and handling and processing of significant quantities of tritium. Safety considerations of support systems and potential effects of magnetic fields must also be included. Existing Safety Management techniques, safety standards, and criteria for operation of high energy accelerators provide considerable guidance. These must, however, be reviewed to determine their appropriate use for safe operation of a very large, tritium-producing accelerator. New or revised safety standards may be required to establish and maintain the safe operating-envelope. The goal will be to develop a set of tailored standards and criteria that provide a reasonable operational envelope and assure adequate public, worker, and environmental safety. The generation of an appropriate set of safety standards and criteria will include several activities. One activity will involve evaluation of proposed facility designs to determine possible hazards. Another activity will involve a detailed review of existing accelerator safety management systems. A third activity will involve the review of operating histories of existing facilities. Facilities approximating the characteristics of the anticipated tritium production facility will be considered. Following completion of these activities a proposed Safety Management System and criteria for application to these facilities will be drafted. The need for new analytical methods and for additional safety standards will be identified. The draft document will then be reviewed and revised to establish the standards and criteria within the appropriate Department of Energy framework

  9. A system dynamics model for tritium cycle of pulsed fusion reactor

    International Nuclear Information System (INIS)

    Zhu, Zuolong; Nie, Baojie; Chen, Dehong

    2017-01-01

    As great challenges and uncertainty exist in achieving steady plasma burning, pulsed plasma burning may be a potential scenario for fusion engineering test reactor, even for fusion DEMOnstration reactor. In order to analyze dynamic tritium inventory and tritium self-sufficiency for pulsed fusion systems, a system dynamics model of tritium cycle was developed on the basis of earlier version of Tritium Analysis program for fusion System (TAS). The model was verified with TRIMO, which was developed by KIT in Germany. Tritium self-sufficiency and dynamic tritium inventory assessment were performed for a typical fusion engineering test reactor. The verification results show that the system dynamics model can be used for tritium cycle analysis of pulsed fusion reactor with sufficient reliability. The assessment results of tritium self-sufficiency indicate that the fusion reactor might only need several hundred gram tritium to startup if achieved high efficient tritium handling ability (Referred ITER: 1 h). And the initial tritium startup inventory in pulsed fusion reactor is determined by the combined influence of pulse length, burn availability, and tritium recycle time. Meanwhile, tritium self-sufficiency can be achieved under the defined condition.

  10. A system dynamics model for tritium cycle of pulsed fusion reactor

    Energy Technology Data Exchange (ETDEWEB)

    Zhu, Zuolong; Nie, Baojie [Key Laboratory of Neutronics and Radiation Safety, Institute of Nuclear Energy Safety Technology, Chinese Academy of Sciences, Hefei, Anhui, 230031 (China); University of Science and Technology of China, Hefei, Anhui, 230027 (China); Chen, Dehong, E-mail: dehong.chen@fds.org.cn [Key Laboratory of Neutronics and Radiation Safety, Institute of Nuclear Energy Safety Technology, Chinese Academy of Sciences, Hefei, Anhui, 230031 (China)

    2017-05-15

    As great challenges and uncertainty exist in achieving steady plasma burning, pulsed plasma burning may be a potential scenario for fusion engineering test reactor, even for fusion DEMOnstration reactor. In order to analyze dynamic tritium inventory and tritium self-sufficiency for pulsed fusion systems, a system dynamics model of tritium cycle was developed on the basis of earlier version of Tritium Analysis program for fusion System (TAS). The model was verified with TRIMO, which was developed by KIT in Germany. Tritium self-sufficiency and dynamic tritium inventory assessment were performed for a typical fusion engineering test reactor. The verification results show that the system dynamics model can be used for tritium cycle analysis of pulsed fusion reactor with sufficient reliability. The assessment results of tritium self-sufficiency indicate that the fusion reactor might only need several hundred gram tritium to startup if achieved high efficient tritium handling ability (Referred ITER: 1 h). And the initial tritium startup inventory in pulsed fusion reactor is determined by the combined influence of pulse length, burn availability, and tritium recycle time. Meanwhile, tritium self-sufficiency can be achieved under the defined condition.

  11. Tritium release from lithium ceramics at constant temperature

    International Nuclear Information System (INIS)

    Verrall, R.A.; Miller, J.M.

    1992-02-01

    Analytic methods for post-irradiation annealing tests to measure tritium release from lithium ceramics at constant temperature are examined. Modifications to the Bertone (1) relations for distinguishing diffusion-controlled release from desorption-controlled release are shown. The methods are applied to tests on sintered LiA10 2 ; first-order desorption is shown to control tritium release for these tests

  12. Tritium and ignition target management at the National Ignition Facility.

    Science.gov (United States)

    Draggoo, Vaughn

    2013-06-01

    Isotopic mixtures of hydrogen constitute the basic fuel for fusion targets of the National Ignition Facility (NIF). A typical NIF fusion target shot requires approximately 0.5 mmoles of hydrogen gas and as much as 750 GBq (20 Ci) of 3H. Isotopic mix ratios are specified according to the experimental shot/test plan and the associated test objectives. The hydrogen isotopic concentrations, absolute amounts, gas purity, configuration of the target, and the physical configuration of the NIF facility are all parameters and conditions that must be managed to ensure the quality and safety of operations. An essential and key step in the preparation of an ignition target is the formation of a ~60 μm thick hydrogen "ice" layer on the inner surface of the target capsule. The Cryogenic Target Positioning System (Cryo-Tarpos) provides gas handling, cyro-cooling, x-ray imaging systems, and related instrumentation to control the volumes and temperatures of the multiphase (solid, liquid, and gas) hydrogen as the gas is condensed to liquid, admitted to the capsule, and frozen as a single spherical crystal of hydrogen in the capsule. The hydrogen fuel gas is prepared in discrete 1.7 cc aliquots in the LLNL Tritium Facility for each ignition shot. Post-shot hydrogen gas is recovered in the NIF Tritium Processing System (TPS). Gas handling systems, instrumentation and analytic equipment, material accounting information systems, and the shot planning systems must work together to ensure that operational and safety requirements are met.

  13. Tritium in nuclear power plants

    International Nuclear Information System (INIS)

    Badyaev, V.V.; Egorov, Yu.A.; Sklyarov, V.P.; Stegachev, G.V.

    1981-01-01

    The problem of tritium formation during NPP operation is considered on the basis of available published data. Tritium characteristics are given, sources of the origin of natural and artificial tritium are described. NPP contribution to the total tritium amount in the environment is determined, as well as contribution of each process in the reactor to the quantity of tritium, produced at the NPP. Thermal- and fast-neutron reactions with tritium production are shown, their contribution to the total amount of tritium in a coolant is estimated, taking into account the type of reactor. Data on tritium content in NPP wastes and in the air of working premises are presented. Methods for sampling and sample preparation to measurements as well as the appropriate equipment are considered. Design of the gas-discharge counter of internal filling, used for measuring tritium activity in samples is described [ru

  14. Introduction to Wolsong Tritium Removal Facility (WTRF)

    International Nuclear Information System (INIS)

    Song, K. M.; Sohn, S. H.; Kang, D. W.; Chung, H. S.

    2005-01-01

    Four CANDU 6 reactors have been operated at Wolsong site. Tritium is primarily produced in heavywater-moderated-power reactors by neutron capture of deuterium nuclei in the heavy water moderator and coolant. The concentration of tritium in the reactor moderator and coolant systems increases with time of reactor operation. For CANDU 6 reactors, the estimated equilibrium values are ∼3 TBq/kg-D 2 O in the moderator and ∼74 GBq/kg-D 2 O in the coolant, where the production rate is balanced by tritium decay and water makeup and loss process. The tritium level in the moderator heavy water of Wolsong Unit-1 is getting higher for about 20-year operation and is over 2.22x10 12 Bq/kg at the end of 2003. It was known that the tritium levels in the moderators of the other units would be also steadily increased. In order to reduce the tritium activity, KHNP has committed to construct a Tritium Removal Facility (TRF) at the Wolsong site

  15. Levels of tritium concentration in the environmental samples around JAERI TOKAI

    International Nuclear Information System (INIS)

    Matsuura, K.; Sasa, Y.; Nakamura, C.; Katagiri, H.

    1995-01-01

    By the operation of research reactors, tritium-handling facilities, nuclear power plants, and a reprocessing facility around JAERI TOKAI, tritium is released into the environment in compliance with the regulatory standards. To investigate the levels of tritium concentration in environmental samples around JAERI, rain, air (vapor and hydrogen gas), and tissue-free water of pine needles were measured and analyzed from 1984 to 1993. Sampling locations were determined by taking into consideration wind direction, distance from nuclear facilities, and population distribution. The NAKA site (about 6 km west-northwest from the Tokai site) was also selected as a reference point. Rain and tissue-free water of pine needles were sampled monthly. For air samples, sampling was carried out for two weeks by using the continuous tritium sampler. After the pretreatment of samples, tritium concentrations were measured by a low background liquid scintillation counter (detection limit 0.8 Bq/l). Annual mean tritium concentrations in rain observed at six points for 10 years was 0.8 to 8.9 Bq/l, which decreased with distance from the nuclear facilities. Tritium concentrations in rain obtained at Chiba City were around 0.8 Bq/l (1987-1988) and those at the NAKA site were 0.8 to 3.8 Bq/l. Annual mean HTO concentrations in air at three points for 10 years were 9.2 x 10 -2 to 1.1 Bq/m 3 , although HT concentrations in air, ranging from 1.7 x 10 -2 to 5.8 x 10 -2 Bq/m 3 , were not influenced by the operation of the nuclear facilities. Annual mean tritium concentrations in tissue-free water of pine needles at four points for 10 years were 1.4 to 31 Bq/l. Those at the NAKA site ranging from 1.4 to 6.2 Bq/l were in good agreement with the reported value by Takashima of 0.78 to 3.0 Bq/l at twenty-one locations in Japan. Monthly mean HTO concentrations in air for 10 years showed a good correlation with absolute humidity, while other samples showed no seasonal variation. Higher level tritium

  16. Improved iodine and tritium control in reprocessing plants

    International Nuclear Information System (INIS)

    Henrich, E.; Schmieder, H.; Roesch, W.; Weirich, F.

    1981-01-01

    During spent fuel processing, iodine and tritium are distributed in many aqueous, organic and gaseous process streams, which complicates their control. Small modifications of conventional purex flow sheets, compatible with processing in the headend and the first extraction cycle are necessary to confine the iodine and the tritium to smaller plant areas. The plant area connected to the dissolver off-gas (DOG) system is suited to confine the iodine and the plant area connected to the first aqueous cycle is suited to confine the tritium. A more clear and convenient iodine and tritium control will be achieved. Relevant process steps have been studied on a lab or a pilot plant scale using I-123 and H-3 tracer

  17. Tritium and heat management in ITER Test Blanket Systems port cell for maintenance operations

    Energy Technology Data Exchange (ETDEWEB)

    Giancarli, L.M., E-mail: luciano.giancarli@iter.org [ITER Organization, Route de Vinon sur Verdon, 13115 Saint Paul Lez Durance (France); Cortes, P.; Iseli, M.; Lepetit, L.; Levesy, B. [ITER Organization, Route de Vinon sur Verdon, 13115 Saint Paul Lez Durance (France); Livingston, D. [Frazer-Nash Consultancy Ltd., Stonebridge House, Dorking Business Park, Dorking, Surrey RH4 1HJ (United Kingdom); Nevière, J.C. [Comex-Nucleaire, 13115 Saint Paul Lez Durance (France); Pascal, R. [ITER Organization, Route de Vinon sur Verdon, 13115 Saint Paul Lez Durance (France); Ricapito, I. [Fusion for Energy, Josep Pla, 2, Torres Diagonal Litoral B3, Barcelona E-08019 (Spain); Shu, W. [ITER Organization, Route de Vinon sur Verdon, 13115 Saint Paul Lez Durance (France); Wyse, S. [Frazer-Nash Consultancy Ltd., Stonebridge House, Dorking Business Park, Dorking, Surrey RH4 1HJ (United Kingdom)

    2014-10-15

    Highlights: •The ITER TBM Program is one of the ITER missions. •We model a TBM port cell with CFD to optimize the design choices. •The heat and tritium releases management in TBM port cells has been optimized. •It is possible to reduce the T-concentration below one DAC in TBM port cells. •The TBM port cells can have human access within 12 h after shutdown. -- Abstract: Three ITER equatorial port cells are dedicated to the assessment of six different designs of breeding blankets, known as Test Blanket Modules (TBMs). Several high temperature components and pipework will be present in each TBM port cell and will release a significant quantity of heat that has to be extracted in order to avoid the ambient air and concrete wall temperatures to exceed allowable limits. Moreover, from these components and pipes, a fraction of the contained tritium permeates and/or leaks into the port cell. This paper describes the optimization of the heat extraction management during operation, and the tritium concentration control required for entry into the port cell to proceed with the required maintenance operations after the plasma shutdown.

  18. Tritium release of titan-tritium layers in air, aqueous solutions and living organisms of animals

    International Nuclear Information System (INIS)

    Biro, J.; Feher, I.; Mate, L.; Varga, L.

    1978-01-01

    Samples containing 400-1100 MBq (10-30 mCi) tritium were prepared and the effect of storage time on tritium release was followed. In 250 days one thousandth of the tritium was released in aqueous solution; in air the ratio of release per hour fell in the range of 10 -6 -10 -7 . Ti-T plates with different storage times were surgically placed in the abdomen of rats. Their tritium release dropped with time and the activity appearing in the circulation was lower than that of plates with 5-6 orders of magnitude. Checking the tritium incorporation of neutron generator operators it must be held in mind that only a minor part of tritium can be detected by the measurement of the tritium content of urine. (author)

  19. 78 FR 70191 - Irish Potatoes Grown in Colorado; Modification of the General Cull and Handling Regulation for...

    Science.gov (United States)

    2013-11-25

    ...-FV-13-0001; FV13-948-1 FIR] Irish Potatoes Grown in Colorado; Modification of the General Cull and..., without change, an interim rule that modified the size requirements for potatoes handled under the Colorado potato marketing order, Area No. 2 (order). The order regulates the handling of Irish potatoes...

  20. Tritium transport and release from lithium ceramic breeder materials

    International Nuclear Information System (INIS)

    Johnson, C.E.; Kopasz, J.P.; Tam, S.W.

    1994-01-01

    In an operating fusion reactor,, the tritium breeding blanket will reach a condition in which the tritium release rate equals the production rate. The tritium release rate must be fast enough that the tritium inventory in the blanket does not become excessive. Slow tritium release will result in a large tritium inventory, which is unacceptable from both economic and safety viewpoints As a consequence, considerable effort has been devoted to understanding the tritium release mechanism from ceramic breeders and beryllium neutron multipliers through theoretical, laboratory, and in-reactor studies. This information is being applied to the development of models for predicting tritium release for various blanket operating conditions

  1. Tritium management in fusion reactors

    International Nuclear Information System (INIS)

    Galloway, T.R.

    1978-05-01

    This is a review paper covering the key environmental and safety issues and how they have been handled in the various magnetic and inertial confinement concepts and reference designs. The issues treated include: tritium accident analyses, tritium process control, occupational safety, HTO formation rate from the gas-phase, disposal of tritium contaminated wastes, and environmental impact--each covering the Joint European Tokamak (J.E.T. experiment), Tokamak Fusion Test Reactor (TFTR), Russian T-20, The Next Step (TNS) designs by Westinghouse/ORNL and General Atomic/ANL, the ANL and ORNL EPR's, the G.A. Doublet Demonstration Reactor, the Italian Fintor-D and the ORNL Demo Studies. There are also the following full scale plant reference designs: UWMAK-III, LASL's Theta Pinch Reactor Design (RTPR), Mirror Fusion Reactor (MFR), Tandem Mirror Reactor (TMR), and the Mirror Hybrid Reactor (MHR). There are four laser device breakeven experiments, SHIVA-NOVA, LLL reference designs, ORNL Laser Fusion power plant, the German ''Saturn,'' and LLL's Laser Fusion EPR I and II

  2. Filbe molten salt research for tritium breeder applications

    International Nuclear Information System (INIS)

    Anderl, R.A.; Petti, D.A.; Smolik, G.R.

    2004-01-01

    This paper presents an overview of Flibe (2Lif·BeF 2 ) molten salt research activities conducted at the INEEL as part of the Japan-US JUPITER-II joint research program. The research focuses on tritium/chemistry issues for self-cooled Flibe tritium breeder applications and includes the following activities: (1) Flibe preparation, purification, characterization and handling, (2) development and testing of REDOX strategies for containment material corrosion control, (3) tritium behavior and management in Flibe breeder systems, and (4) safety testing (e.g., mobilization of Flibe during accident scenarios). This paper describes the laboratory systems developed to support these research activities and summarizes key results of this work to date. (author)

  3. Storage and Assay of Tritium in STAR

    International Nuclear Information System (INIS)

    Longhurst, Glen R.; Anderl, Robert A.; Pawelko, Robert J.; Stoots, Carl J.

    2005-01-01

    The Safety and Tritium Applied Research (STAR) facility at the Idaho National Engineering and Environmental Laboratory (INEEL) is currently being commissioned to investigate tritium-related safety questions for fusion and other technologies. The tritium inventory for the STAR facility will be maintained below 1.5 g to avoid the need for STAR to be classified as a Category 3 nuclear facility. A key capability in successful operation of the STAR facility is the ability to receive, inventory, and dispense tritium to the various experiments underway there. The system central to that function is the Tritium Storage and Assay System (SAS).The SAS has four major functions: (1) receiving and holding tritium, (2) assaying, (3) dispensing, and (4) purifying hydrogen isotopes from non-hydrogen species.This paper describes the design and operation of the STAR SAS and the procedures used for tritium accountancy in the STAR facility

  4. Computer aided design of operational units for tritium recovery from Li17Pb83 blanket of a DEMO fusion reactor

    International Nuclear Information System (INIS)

    Malara, C.; Viola, A.

    1995-01-01

    The problem of tritium recovery from Li 17 Pb 83 blanket of a DEMO fusion reactor is analyzed with the objective of limiting tritium permeation into the cooling water to acceptable levels. To this aim, a mathematical model describing the tritium behavior in blanket/recovery unit circuit has been formulated. By solving the model equations, tritium permeation rate into the cooling water and tritium inventory in the blanket are evaluated as a function of dimensionless parameters describing the combined effects of overall resistance for tritium transfer from Li 17 Pb 83 alloy to cooling water, circulating rate of the molten alloy in blanket/recovery unit circuit and extraction efficiency of tritium recovery unit. The extraction efficiency is, in turn, evaluated as a function of the operating conditions of recovery unit. The design of tritium recovery unit is then optimized on the basis of the above parametric analysis and the results are herein reported and discussed for a tritium permeation limit of 10 g/day into the cooling water. 14 refs., 9 figs., 2 tabs

  5. ITER SAFETY TASK NID-5D: Operational tritium loss and accident investigation for heat transport and water detritiation systems

    International Nuclear Information System (INIS)

    Kalyanam, K.M.; Fong, C.; Moledina, M.; Natalizio, A.

    1995-02-01

    The task objectives are to: a) determine major pathways for tritium loss during normal operation of the cooling systems and water detritiation system, b) estimate operational losses and environmental tritium releases from the heat transport and water detritiation systems of ITER, and c) prepare a preliminary Failure Modes and Effects Analysis (FMEA) for the ITER Water Detritiation System. The analysis will be used to estimate chronic environmental tritium releases (airborne and waterborne) for the ITER Cooling Systems and Water Detritiation System. The assessment will form the basis for demonstrating the acceptability of ITER for siting in the Early Safety and Environmental Characterization Study (ESECS), to be issued in early 1995. (author). 7 refs., 10 tabs., 11 figs

  6. History of 232-F, tritium extraction processing

    International Nuclear Information System (INIS)

    Blackburn, G.W.

    1994-08-01

    In 1950 the Atomic Energy Commission authorized the Savannah River Project principally for the production of tritium and plutonium-239 for use in thermonuclear weapons. 232-F was built as an interim facility in 1953--1954, at a cost of $3.9M. Tritium extraction operations began in October, 1955, after the reactor and separations startups. In July, 1957 a larger tritium facility began operation in 232-H. In 1958 the capacity of 232-H was doubled. Also, in 1957 a new task was assigned to Savannah River, the loading of tritium into reservoirs that would be actual components of thermonuclear weapons. This report describes the history of 232-F, the process for tritium extraction, and the lessons learned over the years that were eventually incorporated into the new Replacement Tritium Facility

  7. Investigation of the tritium release from Building 324 in which the stack tritium sampler was off, April 14 through 17, 1998

    International Nuclear Information System (INIS)

    Brown, D.H.

    1998-01-01

    On April 14, 1998, a Pacific Northwest National Laboratory (PNNL) researcher performing work in the Building 324 facility approached facility management and asked if facility management could turn off the tritium sampler in the main exhaust stack. The researcher was demonstrating the feasibility of treating components from dismantled nuclear weapons in a device called a plasma arc furnace and was concerned that the sampler would compromise classified information. B and W Hanford Company (BWHC) operated the facility, and PNNL conducted research as a tenant in the facility. The treatment of 200 components in the furnace would result in the release of up to about 20 curies of tritium through the facility stack. The exact quantity of tritium was calculated from the manufacturing data for the weapons components and was known to be less than 20 curies. The Notice of Construction (NOC) approved by the Washington State Department of Health (WDOH) had been modified to allow releasing 20 curies of tritium through the stack in support of this research. However, there were irregularities in the way the NOC modification was processed. The researcher was concerned that data performed on the sampler could be used to back-calculate the tritium content of the components, revealing classified information about the design of nuclear weapons. He had discussed this with the PNNZ security organization, and they had told him that data from the sampler would be classified. He was also concerned that if he could not proceed with operation of the plasma arc furnace, the furnace would be damaged. The researcher told BWHC management that the last time the furnace was shut down and restarted it had cost $0.5 million and caused a six month delay in the project's schedule. He had already begun heating up the furnace before recognizing the security problem and was concerned that stopping the heatup could damage the furnace. The NOC that allowed the research did not have an explicit requirement to

  8. Modifications at operating nuclear power plants

    International Nuclear Information System (INIS)

    Duffy, T.J.; Gazda, P.A.

    1985-01-01

    Modifications at operating nuclear power plants offer the structural engineer many challenges in the areas of scheduling of work, field adjustments, and engineering staff planning. The scheduling of structural modification work for operating nuclear power plants is normally closely tied to planned or unplanned outages of the plant. Coordination between the structural engineering effort, the operating plant staff, and the contractor who will be performing the modifications is essential to ensure that all work can be completed within the allotted time. Due to the inaccessibility of some areas in operating nuclear power plants or the short time available to perform the structural engineering in the case of an unscheduled outrage, field verification of a design is not always possible prior to initiating the construction of the modification. This requires the structural engineer to work closely with the contractor to promptly resolve problems due to unanticipated interferences or material procurement problems that may arise during the course of construction. The engineering staff planning for structural modifications at an operating nuclear power plant must be flexible enough to permit rapid response to the common ''fire drills,'' but controlled enough to ensure technically correct designs and to minimize the expenditure of man-hours and the resulting engineering cost

  9. In-situ Tritium Measurements of the Tokamak Fusion Test Reactor Bumper Limiter Tiles Post D-T Operations

    International Nuclear Information System (INIS)

    C.A. Gentile; C.H. Skinner; K.M. Young; M. Nishi; S. Langish; et al

    1999-01-01

    The Princeton Plasma Physics Laboratory (PPPL) Engineering and Research Staff in collaboration with members of the Japan Atomic Energy Research Institute (JAERI), Tritium Engineering Laboratory have commenced in-situ tritium measurements of the TFTR bumper limiter. The Tokamak Fusion Test Reactor (TFTR) operated with tritium from 1993 to 1997. During this time ∼ 53,000 Ci of tritium was injected into the TFTR vacuum vessel. After the cessation of TFTR plasma operations in April 1997 an aggressive tritium cleanup campaign lasting ∼ 3 months was initiated. The TFTR vacuum vessel was subjected to a regimen of glow discharge cleaning (GDC) and dry nitrogen and ''moist air'' purges. Currently ∼ 7,500 Ci of tritium remains in the vacuum vessel largely contained in the limiter tiles. The TFTR limiter is composed of 1,920 carbon tiles with an average weight of ∼ 600 grams each. The location and distribution of tritium on the TFTR carbon tiles are of considerable interest. Future magnetically confined fusion devices employing carbon as a limiter material may be considerably constrained due to potentially large tritium inventories being tenaciously held on the surface of the tiles. In-situ tritium measurements were conducted in TFTR bay L during August and November 1998. During the bay L measurement campaign open wall ion chambers and ultra thin thermoluminscent dosimeters (TLD) affixed to a boom and end effector were deployed into the vacuum vessel. The detectors were designed to make contact with the surface of the bumper limiter tile and to provide either real time (ion chamber) or passive (TLD) indication of the surface tritium concentration. The open wall ion chambers were positioned onto the surface of the tile in a manner which employed the surface of the tile as one of the walls of the chamber. The ion chambers, which are (electrically) gamma insensitive, were landed at four positions per tile. The geometry for landing the TLD's provided measurement at 24

  10. Operating experiences in fuel handling system at KGS

    International Nuclear Information System (INIS)

    Reddy, G.P.; Nagabhushanam

    2006-01-01

    Refuelling operations were started at KGS in August, 2000. Rich and varied experience was gained during this period through internal discussion/Quality circles/Procedural reviews and analysis of various incidents that have taken place in KGS and other units of NPCIL Some of the unique jobs carried out at KGS include-Development of tools for in-situ replacement of FM front end cover in FM service area (which was done for the first time in NPCIL history), Modification of FM magazine rear end plate mounting screws to avoid the possibility of magazine rotation stalling, The incident of Stalling of B-Ram during installation of upstream shield plug in KGS - 1 has brought out many weakness that were existing in the system in a dormant manner. Review of maintenance procedures was carried out and a special underwater operated sensor was developed and installed in Transfer Magazine to sense the presence and proper positioning of fuel bundles in the Transfer magazine tube during fuel loading operation. Numerous modifications were carried out in the system to increase equipment reliability, ease of operation and maintenance, to reduce man-rem consumption. Most notable among these modifications include -zig saw panel modification, EFCV O-ring modification, Ram BF switch modification, provision for increase in SFSB level provision, snout clamp oil circuit modification, ball valve actuator modification, installation of additional switch for sensing STS carriage UP position etc, This paper focuses on the challenges tackled in achieving near perfect performance, innovations and improvements carried out in the system to strive for this goal and development of procedures for reducing man-rem consumption and life extension of critical components. (author)

  11. Improvement of tritium accountancy technology for the ITER fuel cycle safety enhancement

    International Nuclear Information System (INIS)

    O'hira, Shigeru; Hayashi, T.; Nakamura, H.

    1999-01-01

    In order to improve the safe handling and control of tritium for ITER fuel cycle, effective 'in-situ' tritium accounting methods have been developed at Tritium Process Laboratory in Japan Atomic Energy Research Institute under one of the ITER-EDA R and D Tasks. A remote and multi-location analysis of process gases by an application of laser Raman spectroscopy developed and tested could provide a measurement of hydrogen isotope gases with a detection limit of 0.3 kPa for 120 seconds analytical periods. An 'in-situ' tritium inventory measurement by application of a 'self assaying' storage bed with 25 g tritium capacity could provide a measurement with a required detection limit less than 1% and a design proof of a bed with 100 g tritium capacity. (author)

  12. Improvement of tritium accountancy technology for the ITER fuel cycle safety enhancement

    International Nuclear Information System (INIS)

    O'Hira, S.; Hayashi, T.; Nakamura, H.

    2001-01-01

    In order to improve the safe handling and control of tritium for ITER fuel cycle, effective ''in-situ'' tritium accounting methods have been developed at Tritium Process Laboratory in Japan Atomic Energy Research Institute under one of the ITER-EDA R and D Tasks. A remote and multi-location analysis of process gases by an application of laser Raman spectroscopy developed and tested could provide a measurement of hydrogen isotope gases with a detection limit of 0.3 kPa for 120 seconds analytical periods. An ''in-situ'' tritium inventory measurement by application of a ''self assaying'' storage bed with 25 g tritium capacity could provide a measurement with a required detection limit less than 1 % and a design proof of a bed with 100 g tritium capacity. (author)

  13. A uranium bed with ceramic body for tritium storage

    Energy Technology Data Exchange (ETDEWEB)

    Khapov, A.S.; Grishechkin, S.K.; Kiselev, V.G. [' All Russia Research Institute of Automatics' - FSUE VNIIA, Moscow (Russian Federation)

    2015-03-15

    It is widely recognized that ceramic coatings provide an attractive solution to lower tritium permeation in structural materials. Alumina based ceramic coatings have the highest permeation reduction factor for hydrogen. For this reason an attempt was made to apply crack-free low porous ceramics as a structural material of a bed body for tritium storage in a setup used for hydrogenating neutron tube targets at VNIIA. The present article introduces the design of the bed. This bed possesses essentially a lower hydrogen permeation factor than traditionally beds with stainless steel body. Bed heating in order to recover hydrogen from the bed is suggested to be implemented by high frequency induction means. Inductive heating allows decreasing the time necessary for tritium release from the bed as well as power consumption. Both of these factors mean less thermal power release into glove box where a setup for tritium handling is installed and thus causes fewer problems with pressure regulations inside the glove box. Inductive heating allows raising tritium sorbent material temperature up to melting point. The latter allows achieving nearly full tritium recovery.

  14. Tritium systems concepts for the next European torus (NET)

    International Nuclear Information System (INIS)

    Sood, S.K.; Bagli, K.S.; Busigin, A.; Kveton, O.K.; Dombra, A.H.; Miller, A.I.

    1986-09-01

    The study deals with the design of the various tritium processing facilities that will be required for the Next European Torus (NET) design. The reference data for the design of the NET Tritium Systems was provided by the NET team. Significant achievements of this study were: (a) Identification of new ways of handling some problems for example: 1) Recovery of tritium from the helium purge of the lithium-ceramic blanket using a novel Adsoprtion and Catalytic Exchange Process, 2) A new way of combining fuel component separation and coolant water detritiation using cryogenic distillation, 3) The use of parasitic refrigeration for the cryogenic isotope separation, 4) Tritium extraction from effluent gas streams at their respective sources, 5) Attempt to eliminate the need for Air Cleanup Systems. (b) Identification of uncertainties, for example: composition of plasma exhaust, required helium purge rate of Li-Pb for tritium recovery, uncertainty in requirements for decontaminating blanket sectors, etc. (c) Review of ways to limit tritium permeation into steam by swamping with hydrogen and to provide quantitative estimates for this permeation

  15. Overview of the tritium system of Ignitor

    International Nuclear Information System (INIS)

    Rizzello, C.; Tosti, S.

    2008-01-01

    Among the recent design activities of the Ignitor program, the analysis of the tritium system has been carried out with the aim to describe the main equipments and the operations needed for supplying the deuterium-tritium mixtures and recovering the plasma exhaust. In fact, the tritium system of Ignitor provides for injecting deuterium-tritium mixtures into the vacuum chamber in order to sustain the fusion reaction: furthermore, it generally manages and controls the tritium and the tritiated materials of the machine fuel cycle. Main functions consist of tritium storage and delivery, tritium injection, tritium recovery from plasma exhaust, treatment of the tritiated wastes, detritiation of the contaminated atmospheres, tritium analysis and accountability. In this work an analysis of the designed tritium system of Ignitor is summarized

  16. Tritium Issues in Next Step Devices

    Energy Technology Data Exchange (ETDEWEB)

    C.H. Skinner; G. Federici

    2001-09-05

    Tritium issues will play a central role in the performance and operation of next-step deuterium-tritium (DT) burning plasma tokamaks and the safety aspects associated with tritium will attract intense public scrutiny. The orders-of-magnitude increase in duty cycle and stored energy will be a much larger change than the increase in plasma performance necessary to achieve high fusion gain and ignition. Erosion of plasma-facing components will scale up with the pulse length from being barely measurable on existing machines to centimeter scale. Magnetic Fusion Energy (MFE) devices with carbon plasma-facing components will accumulate tritium by co-deposition with the eroded carbon and this will strongly constrain plasma operations. We report on a novel laser-based method to remove co-deposited tritium from carbon plasma-facing components in tokamaks. A major fraction of the tritium trapped in a co-deposited layer during the deuterium-tritium (DT) campaign on the Tokamak Fusion Test Reactor (TFTR) was released by heating with a scanning laser beam. This technique offers the potential for tritium removal in a next-step DT device without the use of oxidation and the associated deconditioning of the plasma-facing surfaces and expense of processing large quantities of tritium oxide. The operational lifetime of alternative materials such as tungsten has significant uncertainties due to melt layer loss during disruptions. Production of dust and flakes will need careful monitoring and minimization, and control and accountancy of the tritium inventory will be critical issues. Many of the tritium issues in Inertial Fusion Energy (IFE) are similar to MFE, but some, for example those associated with the target factory, are unique to IFE. The plasma-edge region in a tokamak has greater complexity than the core due to lack of poloidal symmetry and nonlinear feedback between the plasma and wall. Sparse diagnostic coverage and low dedicated experimental run time has hampered the

  17. Tritium Issues in Next Step Devices

    International Nuclear Information System (INIS)

    C.H. Skinner; G. Federici

    2001-01-01

    Tritium issues will play a central role in the performance and operation of next-step deuterium-tritium (DT) burning plasma tokamaks and the safety aspects associated with tritium will attract intense public scrutiny. The orders-of-magnitude increase in duty cycle and stored energy will be a much larger change than the increase in plasma performance necessary to achieve high fusion gain and ignition. Erosion of plasma-facing components will scale up with the pulse length from being barely measurable on existing machines to centimeter scale. Magnetic Fusion Energy (MFE) devices with carbon plasma-facing components will accumulate tritium by co-deposition with the eroded carbon and this will strongly constrain plasma operations. We report on a novel laser-based method to remove co-deposited tritium from carbon plasma-facing components in tokamaks. A major fraction of the tritium trapped in a co-deposited layer during the deuterium-tritium (DT) campaign on the Tokamak Fusion Test Reactor (TFTR) was released by heating with a scanning laser beam. This technique offers the potential for tritium removal in a next-step DT device without the use of oxidation and the associated deconditioning of the plasma-facing surfaces and expense of processing large quantities of tritium oxide. The operational lifetime of alternative materials such as tungsten has significant uncertainties due to melt layer loss during disruptions. Production of dust and flakes will need careful monitoring and minimization, and control and accountancy of the tritium inventory will be critical issues. Many of the tritium issues in Inertial Fusion Energy (IFE) are similar to MFE, but some, for example those associated with the target factory, are unique to IFE. The plasma-edge region in a tokamak has greater complexity than the core due to lack of poloidal symmetry and nonlinear feedback between the plasma and wall. Sparse diagnostic coverage and low dedicated experimental run time has hampered the

  18. Tritium conference days; Journees tritium

    Energy Technology Data Exchange (ETDEWEB)

    Garnier-Laplace, J.; Lebaron-Jacobs, L.; Sene, M.; Devin, P.; Chretien, V.; Le Guen, B.; Guetat, Ph.; Baglan, N.; Ansoborlo, E.; Boyer, C.; Masson, M.; Bailly-Du-Bois, P.; Jenkinson, St.; Wakeford, R.; Saintigny, Y.; Romeo, P.H.; Thompson, P.; Leterq, D.; Chastagner, F.; Cortes, P.; Philippe, M.; Paquet, F.; Fournier, M.

    2009-07-01

    This document gathers the slides of the available presentations given during this conference day. Twenty presentations out of 21 are assembled in the document and deal with: 1 - tritium in the environment (J. Garnier-Laplace); 2 - status of knowledge about tritium impact on health (L. Lebaron-Jacobs); 3 - tritium, discrete but present everywhere (M. Sene); 4 - management of tritium effluents from Areva NC La Hague site - related impact and monitoring (P. Devin); 5 - tritium effluents and impact in the vicinity of EDF's power plants (V. Chretien and B. Le Guen); 6 - contribution of CEA-Valduc centre monitoring to the knowledge of atmospheric tritiated water transfers to the different compartments of the environment (P. Guetat); 7 - tritium analysis in environment samples: constraints and means (N. Baglan); 8 - organically-linked tritium: the analyst view (E. Ansoborlo); 9 - study of tritium transfers to plants via OBT/HTO{sub air} and OBT/HTO{sub free} (C. Boyer); 10 - tritium in the British Channel (M. Masson and P. Bailly-Du-Bois); 11 - tritium in British coastal waters (S. Jenkinson); 12 - recent results from epidemiology (R. Wakeford); 13 - effects of tritiated thymidine on hematopoietic stem cells (P.H. Romeo); 14 - tritium management issue in Canada: the point of view from authorities (P. Thompson); 15 - experience feedback of the detritiation process of Valduc centre (D. Leterq); 16 - difficulties linked with tritiated wastes confinement (F. Chastagner); 17 - optimisation of tritium management in the ITER project (P. Cortes); 18 - elements of thought about the management of tritium generated by nuclear facilities (M. Philippe); 19 - CIPR's position about the calculation of doses and risks linked with tritium exposure (F. Paquet); 20 - tritium think tanks (M. Fournier). (J.S.)

  19. Tritium in the Savannah River Site environment

    Energy Technology Data Exchange (ETDEWEB)

    Murphy, C.E. Jr.; Bauer, L.R.; Hayes, D.W.; Marter, W.L.; Zeigler, C.C.; Stephenson, D.E.; Hoel, D.D.; Hamby, D.M.

    1991-05-01

    Tritium is released to the environment from many of the operations at the Savannah River Site. The releases from each facility to the atmosphere and to the soil and streams, both from normal operations and inadvertent releases, over the period of operation from the early 1950s through 1988 are presented. The fate of the tritium released is evaluated through environmental monitoring, special studies, and modeling. It is concluded that approximately 91% of the tritium remaining after decay is now in the oceans. A dose and risk assessment to the population around the site is presented. It is concluded that about 0.6 fatal cancers may be associated with the tritium released during all the years of operation to the population of about 625,000. This same population (based on the overall US cancer statistics) is expected to experience about 105,000 cancer fatalities from all types of cancer. Therefore, it is considered unlikely that a relationship between any of the cancer deaths occurring in this population and releases of tritium from the SRS will be found.

  20. Tritium in the Savannah River Site environment

    International Nuclear Information System (INIS)

    Murphy, C.E. Jr.; Bauer, L.R.; Hayes, D.W.; Marter, W.L.; Zeigler, C.C.; Stephenson, D.E.; Hoel, D.D.; Hamby, D.M.

    1991-05-01

    Tritium is released to the environment from many of the operations at the Savannah River Site. The releases from each facility to the atmosphere and to the soil and streams, both from normal operations and inadvertent releases, over the period of operation from the early 1950s through 1988 are presented. The fate of the tritium released is evaluated through environmental monitoring, special studies, and modeling. It is concluded that approximately 91% of the tritium remaining after decay is now in the oceans. A dose and risk assessment to the population around the site is presented. It is concluded that about 0.6 fatal cancers may be associated with the tritium released during all the years of operation to the population of about 625,000. This same population (based on the overall US cancer statistics) is expected to experience about 105,000 cancer fatalities from all types of cancer. Therefore, it is considered unlikely that a relationship between any of the cancer deaths occurring in this population and releases of tritium from the SRS will be found

  1. Tritium in fusion reactor components

    International Nuclear Information System (INIS)

    Watson, J.S.; Fisher, P.W.; Talbot, J.B.

    1980-01-01

    When tritium is used in a fusion energy experiment or reactor, several implications affect and usually restrict the design and operation of the system and involve questions of containment, inventory, and radiation damage. Containment is expected to be particularly important both for high-temperature components and for those components that are prone to require frequent maintenance. Inventory is currently of major significance in cases where safety and environmental considerations limit the experiments to very low levels of tritium. Fewer inventory restrictions are expected as fusion experiments are placed in more-remote locations and as the fusion community gains experience with the use of tritium. However, the advent of power-producing experiments with high-duty cycle will again lead to serious difficulties based principally on tritium availability; cyclic operations with significant regeneration times are the principal problems

  2. Tritium pellet injection sequences for TFTR

    International Nuclear Information System (INIS)

    Houlberg, W.A.; Milora, S.L.; Attenberger, S.E.; Singer, C.E.; Schmidt, G.L.

    1983-01-01

    Tritium pellet injection into neutral deuterium, beam heated deuterium plasmas in the Tokamak Fusion Test Reactor (TFTR) is shown to be an attractive means of (1) minimizing tritium use per tritium discharge and over a sequence of tritium discharges; (2) greatly reducing the tritium load in the walls, limiters, getters, and cryopanels; (3) maintaining or improving instantaneous neutron production (Q); (4) reducing or eliminating deuterium-tritium (D-T) neutron production in non-optimized discharges; and (5) generally adding flexibility to the experimental sequences leading to optimal Q operation. Transport analyses of both compression and full-bore TFTR plasmas are used to support the above observations and to provide the basis for a proposed eight-pellet gas gun injector for the 1986 tritium experiments

  3. Tritium Management Loop Design Status

    Energy Technology Data Exchange (ETDEWEB)

    Rader, Jordan D. [ORNL; Felde, David K. [ORNL; McFarlane, Joanna [ORNL; Greenwood, Michael Scott [ORNL; Qualls, A L. [ORNL; Calderoni, Pattrick [Idaho National Laboratory (INL)

    2017-12-01

    This report summarizes physical, chemical, and engineering analyses that have been done to support the development of a test loop to study tritium migration in 2LiF-BeF2 salts. The loop will operate under turbulent flow and a schematic of the apparatus has been used to develop a model in Mathcad to suggest flow parameters that should be targeted in loop operation. The introduction of tritium into the loop has been discussed as well as various means to capture or divert the tritium from egress through a test assembly. Permeation was calculated starting with a Modelica model for a transport through a nickel window into a vacuum, and modifying it for a FLiBe system with an argon sweep gas on the downstream side of the permeation interface. Results suggest that tritium removal with a simple tubular permeation device will occur readily. Although this system is idealized, it suggests that rapid measurement capability in the loop may be necessary to study and understand tritium removal from the system.

  4. Tritium control and accountability instructions

    International Nuclear Information System (INIS)

    Wall, W.R.; Cruz, S.L.

    1985-08-01

    This instruction describes the tritium accountability procedures practiced by the Tritium Research Laboratory, at Sandia National Laboratories, Livermore. The accountability procedures are based upon the Sandia National Laboratories, Livermore, Nuclear Materials Operations Manual, SAND83-8036. The Nuclear Materials Operations Manual describes accountability techniques which are in compliance with the Department of Energy 5630 series Orders, Code of Federal Regulations, and Sandia National Laboratories Instructions

  5. Tritium control and accountability instructions

    International Nuclear Information System (INIS)

    Wall, W.R.

    1981-03-01

    This instruction describes the tritium accountability procedures practiced by the Tritium Research Laboratory, Building 968 at Sandia National Laboratories, Livermore. The accountability procedures are based upon the Sandia National Laboratories, Livermore, Nuclear Materials Operations Manual, SAND78-8018. The Nuclear Materials Operations Manual describes accountability techniques which are in compliance with the Department of Energy Manual, Code of Federal Regulations, and Sandia National Laboratories Instructions

  6. Pre-operational HTO/HT surveys in the vicinity of the Chalk River Laboratories tritium extraction plant

    International Nuclear Information System (INIS)

    Workman, W.J.G.; Brown, R.M.

    1993-08-01

    Surveys of the concentrations of HT and HTO in the atmosphere downwind of the Chalk River Laboratories reactor facilities were carried out in 1986 November, and in 1989 March, April and September under different conditions of air temperature, wind direction, and snow or vegetative cover. HT usually amounted to 1-5% of total tritium, but values up to 20% were observed, probably resulting from preferential removal of HTO. In all of the surveys, the greater persistence in the atmosphere of HT than of HTO was evident. The existing levels of HT are such that they will not be augmented significantly by chronic releases from the Tritium Extraction Plant (TEP) when it comes into operation. Hence, operation of the TEP will not facilitate studies of the environmental behaviour of chronically released HT. However, longer term studies of the distribution of HT from the existing facilities would be worthwhile. Soil and vegetation HTO levels in the study area are reported. Further studies of the distribution of tritium between the air, soil and vegetation in areas subjected to chronic exposure would be valuable

  7. Using the Tritium Plasma Experiment to evaluate ITER PFC safety

    International Nuclear Information System (INIS)

    Longhurst, G.R.; Anderl, R.A.; Bartlit, J.R.; Causey, R.A.; Haines, J.R.

    1993-01-01

    The Tritium Plasma Experiment was assembled at Sandia National Labs., Livermore and is being moved to the Tritium Systems Test Assembly facility at Los Alamos National Lab. to investigate interactions between dense plasmas at low energies and plasma-facing component materials. This apparatus has the unique capability of replicating plasma conditions in a tokamak divertor with particle flux densities of 2 x 10 23 ions/m 2 .s and a plasma temperature of about 15 eV using a plasma that includes tritium. An experimental program has been initiated using the Tritium Plasma Experiment to examine safety issues related to tritium in plasma-facing components, particularly the ITER divertor. Those issues include tritium retention and release characteristics, tritium permeation rates and transient times to coolant streams, surface modification and erosion by the plasma, the effects of thermal loads and cycling, and particulate production. An industrial consortium led by McDonnell Douglas will design and fabricate the test fixtures

  8. Distribution of tritium in a chronically contaminated lake

    International Nuclear Information System (INIS)

    Blaylock, B.G.; Frank, M.L.

    1978-01-01

    White Oak Lake located on the U.S. Department of Energy's Oak Ridge Reservation receives a continuous input of tritium from operating facilities and waste disposal operations at the Oak Ridge National Laboratory. The purpose of this paper was (1) to determine the distribution and concentration of tritium in an aquatic environment which has received releases of tritium significantly greater than expected releases from nuclear power plants, and (2) to determine the effect of fluctuating tritium concentrations in ambient water on the concentration of tritium in fish. Aquatic biota from White Oak Lake were analyzed for tissue water tritium and tissue bound tritium. Except for one plant species, the ratio of tissue water tritium to lake water tritium ranged from 0.80 to 1.02. The tissue water tritium in Gambusia affinis, the mosquito fish, followed closely the significant changes in tritium concentration in lake water. The turnover of tissue water tritium was very rapid; Gambusia from White Oak Lake eliminated 50% of their tissue water tritium in 14 min. The ratio of the specific activity of the tissue bound tritium to the specific activity of the lake water was greatest for the larger species of fish but never exceeded unity. The radiation dose to man from tritium which could be acquired through the aquatic food chain was relatively small when compared to other pathways. The whole body dose to a hypothetical individual taking in concentrations of tritium measured in White Oak Lake was 1.8 mrem/yr from eating fish and 10.0 mrem/yr from drinking water

  9. Wind tunnel investigations on tritium reemission from soil

    International Nuclear Information System (INIS)

    Taeschner, M.; Bunnenberg, C.

    1993-01-01

    Future fusion plants and tritium handling facilities will contain large amounts of tritium. Following chronical or accidental releases to the atmosphere a secondary HTO source is established in the downwind sector of the tritium release point as a result of deposition processes. To investigate HTO reemission rates, experiments were performed with a special wind tunnel, in which the air flows across the surface of soil columns under controlled conditions. In order to measure the HTO content of an air sample that was experimentally contaminated by reemission of HTO from a labeled soil column, a fast method is used. The air sample is bubbled through a flask filled with a definite volume of low-tritium water. At the end of the sampling period, the volume and the specific activity of the flask water are measured. With the help of a simple mathematical formula, that is presented in this report, the HTO activity of the air sample can be calculated. (orig.) [de

  10. Hypothetical operation model for the multi-bed system of the Tritium plant based on the scheduling approach

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Jae-Uk, E-mail: eslee@dongguk.edu [Department of Chemical Engineering, Pohang University of Science and Technology, San 31, Hyoja-Dong, Pohang 790-784 (Korea, Republic of); Chang, Min Ho; Yun, Sei-Hun [National Fusion Research Institute, 169-148-gil Kwahak-ro, Yusong-gu, Daejon 34133 (Korea, Republic of); Lee, Euy Soo [Department of Chemical & Biochemical Engineering, Dongguk University, Seoul 100-715 (Korea, Republic of); Lee, In-Beum [Department of Chemical Engineering and Graduate School of Engineering Mastership, Pohang University of Science and Technology, San 31, Hyoja-Dong, Pohang 790-784 (Korea, Republic of); Lee, Kun-Hong [Department of Chemical Engineering, Pohang University of Science and Technology, San 31, Hyoja-Dong, Pohang 790-784 (Korea, Republic of)

    2016-11-01

    Highlights: • We introduce a mathematical model for the multi-bed storage system in the tritium plant. • We obtain details of operation by solving the model. • The model assesses diverse operation scenarios with respect to risk. - Abstract: In this paper, we describe our hypothetical operation model (HOM) for the multi-bed system of the storage and delivery system (SDS) of the ITER tritium plant. The multi-bed system consists of multiple getter beds (i.e., for batch operation) and buffer vessels (i.e., for continuous operation). Our newly developed HOM is formulated as a mixed-integer linear programming (MILP) model and has been extensively investigated to optimize chemical and petrochemical production planning and scheduling. Our model determines the timing, duration, and size of tasks corresponding to each set of equipment. Further, inventory levels for each set of equipment are calculated. Our proposed model considers the operation of one cycle of one set of getter beds and is implemented and assessed as a case study problem.

  11. Tritium retention and clean-up in JET

    International Nuclear Information System (INIS)

    Andrew, P.; Brennan, P.D.; Coad, J.P.

    1999-01-01

    During 1997 JET operation with D-T plasmas, 35 g of tritium were introduced into the torus, mainly by gas puffing. It was found that during this period, the torus tritium inventory would accumulate at a rate of about 40% of the input. After tritium operation ceased, the experimental program continued with deuterium- and hydrogen-fuelled experiments, during which time the tritium inventory decreased to about 17% of the total input. Techniques aimed at detritiation of the torus included methods using deuterium gas (such as deuterium pulsing) which were used in the middle of the experimental campaign, and methods which could adversely affect the torus vacuum conditions (such as air purges) which were reserved for the period after the experimental campaign. Whilst it was found that the plasma tritium fraction could be reduced to below the 1% level in a few days, the tritium inventory reached a virtually steady level of about 6 g by the end of the campaign. (orig.)

  12. Tritium labeling for bio-med research

    International Nuclear Information System (INIS)

    Lemmon, R.M.

    1980-01-01

    A very large fraction of what we know about biochemical pathways in the living cell has resulted from the use of radioactively-labeled tracer compounds; the use of tritium-labeled compounds has been particularly important. As research in biochemistry and biology has progressed the need has arisen to label compounds of higher specific activity and of increasing molecular complexity - for example, oligo-nucleotides, polypeptides, hormones, enzymes. Our laboratory has gradually developed special facilities for handling tritium at the kilocurie level. These facilities have already proven extremely valuable in producing labeled compounds that are not available from commercial sources. The principal ways employed for compound labeling are: (1) microwave discharge labeling, (2) catalytic tritio-hydrogenation, (3) catalytic exchange with T 2 O, and (4) replacement of halogen atoms by T. Studies have also been carried out on tritiation by the replacement of halogen atoms with T atoms. These results indicate that carrier-free tritium-labeled products, including biomacromolecules, can be produced in this way

  13. Metabolism of tritium uptake due to handling of metal surfaces exposed to tritiated hydrogen gas

    International Nuclear Information System (INIS)

    Johnson, J.R.; Peterman, B.F.

    1987-08-01

    Hairless rats were exposed to tritium by rubbing HT contaminated stainless steel planchets on them. The pattern of tritium excretion in the urine (n=4), shows the OBT (organically bound tritium) retention curve to be approximated by the sum of 2 exponential curves, one with a half-life of 0.4 days and another with a half-life of 1.4 days. The retention of HTO fit a single exponential curve with a half-life of 3.1 days. Exposed skin, unexposed skin, liver, muscle and blood (n=6) were assayed for HBO, and free HTO. Highest activity was found in the exposed skin, other organs with high activity are the unexposed skin and liver. Examination of the exposed skin showed HTO to be concentrated in the uppermost layers. The distribution of OBT was similar but was incorporated at a faster rate. The basal layer is exposed to a tritium concentration between 70-90% of that of the surface. The two macromolecule fractions with the highest amount of radioactivity were lipid and insoluble protein (mainly collagen)

  14. Controlling fugitive dust emissions in material handling operations

    Energy Technology Data Exchange (ETDEWEB)

    Tooker, G E

    1992-05-01

    The primary mechanism of fugitive dust generation in bulk material handling transfer operations is by dispersion of dust in turbulent air induced to flow with falling or projected material streams. This paper returns to basic theories of particle dynamics and fluid mechanics to quantify the dust generating mechanism by rational analysis. Calculations involving fluid mechanisms are made easier by the availability of the personal computer and the many math manipulating programs. Rational analysis is much more cost effective when estimating collection air volumes to control fugitive emissions; especially in enclosed material handling transfers transporting large volumes of dusty material. Example calculations, using a typical enclosed conveyor-to-conveyor transfer operation are presented to illustrate and highlight the key parameters that determine the magnitude of induced air flow that must be controlled. The methods presented in this paper for estimating collection air volumes apply only enclosed material handling transfers, exhausted to a dust collector. Since some assistance to the control of dust emissions must be given by the material handling transfer chute design, a discussion of good transfer chute design practice is presented. 4 refs., 2 figs., 2 tabs.

  15. Turkey Point tritium. Progress report

    International Nuclear Information System (INIS)

    Ostlund, H.G.; Dorsey, H.G.

    1976-01-01

    In 1972-73 the Florida Power and Light Company (FPL) began operation of two nuclear reactors at Turkey Point on lower Biscayne Bay. One radioactive by-product resulting from the operation of the nuclear reactors, tritium, provides a unique opportunity to study transport and exchange processes on a local scale. Since the isotope in the form of water is not removed from the liquid effluent, it is discharged to the cooling canal system. By studying its residence time in the canal and the pathways by which it leaves the canals, knowledge of evaporative process, groundwater movement, and bay exchange with the ocean can be obtained. Preliminary results obtained from measurement of tritium levels, both in the canal system and in the surrounding environment are discussed. Waters in lower Biscayne Bay and Card and Barnes Sounds receive only a small portion of the total tritium produced by the nuclear plant. The dominating tritium loss most likely is through evaporation from the canals. The capability of measuring extremely low HTO levels allows the determination of the evaporation rate experimentally by measuring the tritium levels of air after having passed over the canals

  16. Techniques for tritium recovery from carbon flakes and dust at the JET active gas handling system

    International Nuclear Information System (INIS)

    Gruenhagen, S.; Perevezentsev, A.; Brennan, P. D.; Camp, P.; Knipe, S.; Miller, A.; Yorkshades, J.

    2008-01-01

    Detritiation of highly tritium contaminated carbon and metal material used as first wall armour is a key issue for fusion machines like JET and ITER. Re-deposited carbon and hydrogen in the form of flakes and dust can lead to a build-up of the tritium inventory and therefore this material must be removed and processed. The high tritium concentration of the flake and dust material collected from the JET vacuum vessel makes it unsuitable for direct waste disposal without detritiation. A dedicated facility to process the tritiated carbon flake material and recover the tritium has been designed and built. In several test runs active material was successfully processed and de-tritiated in the new facility. Samples containing only carbon and hydrogen isotopes have been completely oxidized without any residue. Samples containing metallic impurities, e.g. beryllium, require longer processing times, adjusted processing parameters and yield an oxide residue. The detritiation factor was 2x10 4 . In order to simulate in-vessel and ex-vessel detritiation techniques, the detritiation of a carbon flake sample by isotopic exchange in a hydrogen atmosphere was investigated. 2.8% of tritium was recovered by this means. (authors)

  17. Fusion reactor start-up without an external tritium source

    Energy Technology Data Exchange (ETDEWEB)

    Zheng, S., E-mail: Shanliang.Zheng@ccfe.ac.uk; King, D.B.; Garzotti, L.; Surrey, E.; Todd, T.N.

    2016-02-15

    Highlights: • Investigated the feasibility (including plasma physics, neutronics and economics) of starting a fusion reactor from running pure D–D fusion reactor to gradually move towards the D–T operation. • Proposed building up tritium from making use of neutrons generated by D–D fusion reactions. • Studied plasma physics feasibility for pure D–D operation and provided consistent fusion power and neutron yield in the plasma with different mixture of deuterium and tritium. • Discussed the economics aspect for operating a pure D–D fusion reactor towards a full-power D–T fusion reactor. - Abstract: It has long been recognised that the shortage of external tritium sources for fusion reactors using D–T, the most promising fusion fuel, requires all such fusion power plants (FPP) to breed their own tritium. It is also recognised that the initial start-up of a fusion reactor will require several kilograms of tritium within a scenario in which radioactive decay, ITER and subsequent demonstrator reactors are expected to have consumed most of the known tritium stockpile. To circumvent this tritium fuel shortage and ultimately achieve steady-state operation for a FPP, it is essential to first accumulate sufficient tritium to compensate for loss due to decay and significant retention in the materials in order to start a new FPP. In this work, we propose to accumulate tritium starting from D–D fusion reactions, since D exists naturally in water, and to gradually build up the D–T plasma targeted in fusion reactor designs. There are two likely D–D fusion reaction channels, (1) D + D → T + p, and (2) D + D → He3 + n. The tritium can be generated via the reaction channel ‘(1)’ and the 2.45 MeV neutrons from ‘(2)’ react with lithium-6 in the breeding blanket to produce more tritium to be fed back into plasma fuel. Quantitative evaluations are conducted for two blanket concepts to assess the feasibility and suitability of this approach to FPP

  18. Selection of fluids for tritium pumping systems

    International Nuclear Information System (INIS)

    Chastagner, P.

    1984-02-01

    The degradation characteristics of three types of vacuum pump fluids, polyphenyl ethers, perfluoropolyethers and hydrocarbon oils were reviewed. Fluid selection proved to be a critical factor in the long-term performance of tritium pumping systems and subsequent tritium recovery operations. Thermal degradation and tritium radiolysis of pump fluids produce contaminants which can damage equipment and interfere with tritium recovery operations. General characteristics of these fluids are as follows: polyphenyl ether has outstanding radiation resistance, is very stable under normal diffusion pump conditions, but breaks down in the presence of oxygen at anticipated operating temperatures. Perfluoropolyether fluids are very stable and do not react chemically with most gases. Thermal and mechanical degradation products are inert, but the radiolysis products are very corrosive. Most of the degradation products of hydrogen oils are volatile and the principal radiolysis product is methane. Our studies show that polyphenyl ethers and hydrocarbon oils are the preferred fluids for use in tritium pumping systems. No corrosive materials are formed and most of the degradation products can be removed with suitable filter systems

  19. An assembly of tritium production experiment

    International Nuclear Information System (INIS)

    Abe, Toshihiko

    1981-01-01

    An assembly for tritium production experiment, i.e. Tritium Extraction System (TREX) constructed as a small scale test facility for tritium production, and Tritium Removal System (TRS) attached to TREX, and the preliminary results of the experiments with them are described. The radiological safety of the process and operation is also an important consideration. Lithium-aluminum alloy was selected as the most promising target material. The following matters are involved in the scope of production technology: the selection of a target material and target preparation, reactor irradiation, the construction of a facility for the extraction of tritium from the irradiated target, the establishment of the optimum conditions of extraction, the purification, collection and storage of tritium, and the inspection of the product. The tritium production experiment at JAERI is yet on the initial stage; the development is to be continued with the stepwise increase of the scale of tritium production. (J.P.N.)

  20. Radiation protection data sheets for the use of Tritium in unsealed sources

    International Nuclear Information System (INIS)

    Anon.

    1993-01-01

    This radiation protection data sheet is intended for supervisors and staff in the different medical, hospital, pharmaceutical, university and industrial laboratories and departments where Tritium is handled, and also for all those involved in risk prevention in this field. It provides essential data on radiation protection measures during the use of Tritium in unsealed sources: physical characteristics, risk assessment, administrative procedures, recommendations, regulations and bibliography

  1. Conceptual design of an emergency tritium clean-up system

    International Nuclear Information System (INIS)

    Muller, M.E.

    1978-01-01

    The Los Alamos Scientific Laboratory (LASL) has been selected by the Department of Energy (DOE) to design, build, and operate a facility to demonstrate the operability of the tritium-related subsystems that would be required to successfully develop fusion reactor systems. An emergency tritium clean-up subsystem (ETC) for this facility will be designed to remove tritium from the cell atmosphere if an accident causes the primary and secondary tritium containment to be breached. Conceptually, the ETC will process cell air at the rate of 0.65 actual m 3 /s and will achieve an overall decontamination factor of 10 6 per tritium oxide (T 2 O). Following the maximum credible release of 100 g of tritium, the ETC will restore the cell to opertional status within 24 h without a significant release of tritium to the environment

  2. Tritium interactions of potential importance to fusion reactor systems: technology requirements

    International Nuclear Information System (INIS)

    Wilkes, W.R.

    1976-01-01

    The tritium technology requirements created by the controlled thermonuclear research program to develop a demonstration fusion power reactor by the year 2000 are reviewed. It is found that the majority of the technological advances which are needed to ensure adequate tritium containment in a tritium breeding power reactor need to be demonstrated on a pilot scale by approximately 1983, so that they may be incorporated into EPR-II, the second of two planned experimental power reactors. The most important advances include development of containment materials with permeabilities to tritium well below measured values for stainless steel; large scale, low inventory deuterium-tritium separation systems; and improved monitoring and assay systems. There are less critical requirements for information about the effects of tritium and helium on the mechanical properties of materials, the effects of tritium on biological systems, and data on physical and chemical properties of tritium. Substantial progress needs to be made on these problems early enough to permit possible solutions to be tested on EPR-I. In addition, major improvements in tritium handling equipment are required for EPR-I. Those technological problems for which solutions have not yet been demonstrated by EPR-II must be solved by 1989 if they are to be assured successful application in the demonstration reactor

  3. Repository waste-handling operations, 1998

    International Nuclear Information System (INIS)

    Cottam, A.E.; Connell, L.

    1986-04-01

    The Civilian Radioactive Waste Management Program Mission Plan and the Generic Requirements for a Mined Geologic Disposal System state that beginning in 1998, commercial spent fuel not exceeding 70,000 metric tons of heavy metal, or a quantity of solidified high-level radioactive waste resulting from the reprocessing of such a quantity of spent fuel, will be shipped to a deep geologic repository for permanent storage. The development of a waste-handling system that can process 3000 metric tons of heavy metal annually will require the adoption of a fully automated approach. The safety and minimum exposure of personnel will be the prime goals of the repository waste handling system. A man-out-of-the-loop approach will be used in all operations including the receipt of spent fuel in shipping casks, the inspection and unloading of the spent fuel into automated hot-cell facilities, the disassembly of spent fuel assemblies, the consolidation of fuel rods, and the packaging of fuel rods into heavy-walled site-specific containers. These containers are designed to contain the radionuclides for up to 1000 years. The ability of a repository to handle more than 6000 pressurized water reactor spent-fuel rods per day on a production basis for approximately a 23-year period will require that a systems approach be adopted that combines space-age technology, robotics, and sophisticated automated computerized equipment. New advanced inspection techniques, maintenance by robots, and safety will be key factors in the design, construction, and licensing of a repository waste-handling facility for 1998

  4. JOYO operation support system 'JOYCAT' based on intelligent alarm handling

    International Nuclear Information System (INIS)

    Tamaoki, Tetsuo; Yamamoto, Hiroki; Sato, Masuo; Yoshida, Megumu; Kaneko, Tomoko; Terunuma, Seiichi; Takatsuto, Hiroshi; Morimoto, Makoto.

    1992-01-01

    An operation support system for the experimental fast reactor 'JOYO' was developed based on an intelligent alarm-handling. A specific feature of this system, called JOYCAT (JOYO Consulting and Analyzing Tool), is in its sequential processing structure that a uniform treatment by using design knowledge base is firstly applied for all activated alarms, and an exceptional treatment by using heuristic knowledge base is then applied only for the former results. This enables us to achieve real-time and flexible alarm-handling. The first alarm-handling determines the candidates of causal alarms, important alarms with which the operator should firstly cope, through identifying the cause-consequence relations among alarms based on the design knowledge base in which importance and activating conditions are described for each of 640 alarms in a frame format. The second alarm-handling makes the final judgement with the candidates by using the heuristic knowledge base described as production rules. Then, operation manuals concerning the most important alarms are displayed to operators. JOYCAT has been in commission since September of 1990, after a wide scope of validation tests by using an on-site full-scope training simulator. (author)

  5. Tritium behavior in ITER beryllium

    International Nuclear Information System (INIS)

    Longhurst, G.R.

    1990-10-01

    The beryllium neutron multiplier in the ITER breeding blanket will generate tritium through transmutations. That tritium constitutes a safety hazard. Experiments evaluating tritium storage and release mechanisms have shown that most of the tritium comes out in a burst during thermal ramping. A small fraction of retained tritium is released by thermally activated processes. Analysis of recent experimental data shows that most of the tritium resides in helium bubbles. That tritium is released when the bubbles undergo swelling sufficient to develop porosity that connects with the surface. That appears to occur when swelling reaches about 10--15%. Other tritium appears to be stored chemically at oxide inclusions, probably as Be(OT) 2 . That component is released by thermal activation. There is considerable variation in published values for tritium diffusion through the beryllium and solubility in it. Data from experiments using highly irradiated beryllium from the Idaho National Engineering Laboratory showed diffusivity generally in line with the most commonly accepted values for fully dense material. Lower density material, planned for use in the ITER blanket may have very short diffusion times because of the open structure. The beryllium multiplier of the ITER breeding blanket was analyzed for tritium release characteristics using temperature and helium production figures at the midplane generated in support of the ITER Summer Workshop, 1990 in Garching. Ordinary operation, either in Physics or Technology phases, should not result in the release of tritium trapped in the helium bubbles. Temperature excursions above 600 degree C result in large-scale release of that tritium. 29 refs., 10 figs., 3 tabs

  6. Tritium processing and management during D-T experiments on TFTR

    International Nuclear Information System (INIS)

    La Marche, P.H.; Anderson, J.L.; Gentile, C.A.; Hawryluk, R.J.; Hosea, J.; Kalish, M.; Kozub, T.; Murray, H.; Nagy, A.; Raftopoulos, S.

    1994-11-01

    TFTR performance has surpassed many of the previous tokamak records. This has been made possible by the use of tritium as fuel for DT plasma discharges. Stable operations of tritium systems provide for safe, routine DT operation of TFTR. In the preparation for DT operation, in the commissioning of the tritium systems and in the operation of the Nuclear Facility several key lessons have been learned. They include: the facility must take the lead in interpreting the applicable regulations and orders and then seek regulator approval; the use of ultra high vacuum technology in tritium system design and construction simplifies and enhances operations and maintenance; and central facility control under a single supervisory position is crucial to safely orchestrate operational and maintenance activities

  7. Implantation measurements to determine tritium permeation in first wall structures

    International Nuclear Information System (INIS)

    Holland, D.F.; Causey, R.A.

    1983-01-01

    A principal safety concern for a D-T burning fusion reactor is release of tritium during routine operation. Tritium implantation into first wall structures, and subsequent permeation into coolants, is potentially an important source of tritium loss. This paper reports on an experiment in which an ion accelerator was used to implant deuterium atoms in a stainless steel disk to simulate tritium implantation in first wall structures. The permeation rate was measured under various operating conditions. These results were used in the TMAP computer code to determine potential tritium loss rates for fusion reactors

  8. Implantation measurements to determine tritium permeation in first-wall structures

    International Nuclear Information System (INIS)

    Holland, D.F.; Causey, R.A.; Sattler, M.L.

    1983-01-01

    A principal safety concern for a D-T burning fusion reactor is release of tritium during routine operation. Tritium implantation into first-wall structures, and subsequent permeation into coolants, is potentially an important source of tritium loss. This paper reports on an experiment in which an ion accelerator was used to implant deuterium atoms in a stainless steel disk to simulate tritium implantation in first-wall structures. The permeation rate was measured under various operating conditions. These results were used in the TMAP computer code to determine potential tritium loss rates for fusion reactors

  9. Application of the Microwave Discharge Modification of the Wilzbach Technique for the Tritium Labelling of some Organics of Biological Interest

    International Nuclear Information System (INIS)

    Gosztonyi, T.

    1969-01-01

    The modification of the Wilzbach technique using microwave discharge has been routinely used in our laboratory for rapid tritium labellings. The applicability of the method and the effects of some of the reaction parameters were studied and published previously. The main advantage of the method is its simplicity and rapidity and the low extent of decomposition of the compound to be labelled during the reaction. Specific activities obtained, however, are not high enough for some investigations. In this paper the labelling of dihydrostreptomycine, tetracycline and antipyrine will be described

  10. Application of the Microwave Discharge Modification of the Wilzbach Technique for the Tritium Labelling of some Organics of Biological Interest

    Energy Technology Data Exchange (ETDEWEB)

    Gosztonyi, T

    1969-01-15

    The modification of the Wilzbach technique using microwave discharge has been routinely used in our laboratory for rapid tritium labellings. The applicability of the method and the effects of some of the reaction parameters were studied and published previously. The main advantage of the method is its simplicity and rapidity and the low extent of decomposition of the compound to be labelled during the reaction. Specific activities obtained, however, are not high enough for some investigations. In this paper the labelling of dihydrostreptomycine, tetracycline and antipyrine will be described.

  11. Tritium pollution in the Swiss luminous compound industry

    International Nuclear Information System (INIS)

    Krejci, K.; Zeller, Jr.

    1979-01-01

    The Swiss luminous compound industry is an important consumer of tritium. About 350kCi go into production of tritium gas-filled light sources and 40kCi into production of tritium luminous compound annually. To illustrate the pollution problem, a factory is mentioned that handles 200kCi annually and a chain of luminizers, processing 20kCi over the same period as tritium luminous compound. This material is manufactured by coating phosphors with tritiated polystyrene having a specific activity up to 200Ci/g. Because of the high specific activity, the radiation damage produces an average activity release of 5.2% annually, which is one of the main reasons for public and occupational exposure. The processing of large quantities of tritium gas requires special equipment, such as units made entirely of stainless steel for purification and hydrogenation, oxidation systems for highly contaminated air, glove boxes, ventilation and monitoring systems. Nevertheless, contamination of air, surfaces, water and workers cannot be avoided. Only in a few cases were MPC-values for tritium content in urine of workers exceeded. From these results, biological half-lives between 5-15 days were estimated. Regular medical examinations showed no significant influence in blood picture parameters, except in one single case with a tritium concentration in urine of 2.8mCi/litre. Entirely different problems arise in most luminizing factories where luminous paint is processed as an open radioactive source. (author)

  12. Estimating cancer risk in relation to tritium exposure from routine operation of a nuclear-generating station in Pickering, Ontario.

    Science.gov (United States)

    Wanigaratne, S; Holowaty, E; Jiang, H; Norwood, T A; Pietrusiak, M A; Brown, P

    2013-09-01

    Evidence suggests that current levels of tritium emissions from CANDU reactors in Canada are not related to adverse health effects. However, these studies lack tritium-specific dose data and have small numbers of cases. The purpose of our study was to determine whether tritium emitted from a nuclear-generating station during routine operation is associated with risk of cancer in Pickering, Ontario. A retrospective cohort was formed through linkage of Pickering and north Oshawa residents (1985) to incident cancer cases (1985-2005). We examined all sites combined, leukemia, lung, thyroid and childhood cancers (6-19 years) for males and females as well as female breast cancer. Tritium estimates were based on an atmospheric dispersion model, incorporating characteristics of annual tritium emissions and meteorology. Tritium concentration estimates were assigned to each cohort member based on exact location of residence. Person-years analysis was used to determine whether observed cancer cases were higher than expected. Cox proportional hazards regression was used to determine whether tritium was associated with radiation-sensitive cancers in Pickering. Person-years analysis showed female childhood cancer cases to be significantly higher than expected (standardized incidence ratio [SIR] = 1.99, 95% confidence interval [CI]: 1.08-3.38). The issue of multiple comparisons is the most likely explanation for this finding. Cox models revealed that female lung cancer was significantly higher in Pickering versus north Oshawa (HR = 2.34, 95% CI: 1.23-4.46) and that tritium was not associated with increased risk. The improved methodology used in this study adds to our understanding of cancer risks associated with low-dose tritium exposure. Tritium estimates were not associated with increased risk of radiationsensitive cancers in Pickering.

  13. Low technology high tritium breeding blanket concept

    International Nuclear Information System (INIS)

    Gohar, Y.; Baker, C.C.; Smith, D.L.

    1987-10-01

    The main function of this low technology blanket is to produce the necessary tritium for INTOR operation with minimum first wall coverage. The INTOR first wall, blanket, and shield are constrained by the dimensions of the reference design and the protection criteria required for different reactor components and dose equivalent after shutdown in the reactor hall. It is assumed that the blanket operation at commercial power reactor conditions and the proper temperature for power generation can be sacrificed to achieve the highest possible tritium breeding ratio with minimum additional research and developments and minimal impact on reactor design and operation. A set of blanket evaluation criteria has been used to compare possible blanket concepts. Six areas: performance, operating requirements, impact on reactor design and operation, safety and environmental impact, technology assessment, and cost have been defined for the evaluation process. A water-cooled blanket was developed to operate with a low temperature and pressure. The developed blanket contains a 24 cm of beryllium and 6 cm of solid breeder both with a 0.8 density factor. This blanket provides a local tritium breeding ratio of ∼2.0. The water coolant is isolated from the breeder material by several zones which eliminates the tritium buildup in the water by permeation and reduces the changes for water-breeder interaction. This improves the safety and environmental aspects of the blanket and eliminates the costly process of the tritium recovery from the water. 12 refs., 13 tabs

  14. Disposal of tritium-exposed metal hydrides

    International Nuclear Information System (INIS)

    Nobile, A.; Motyka, T.

    1991-01-01

    A plan has been established for disposal of tritium-exposed metal hydrides used in Savannah River Site (SRS) tritium production or Materials Test Facility (MTF) R ampersand D operations. The recommended plan assumes that the first tritium-exposed metal hydrides will be disposed of after startup of the Solid Waste Disposal Facility (SWDF) Expansion Project in 1992, and thus the plan is consistent with the new disposal requiremkents that will be in effect for the SWDF Expansion Project. Process beds containing tritium-exposed metal hydride powder will be disposed of without removal of the powder from the bed; however, disposal of tritium-exposed metal hydride powder that has been removed from its process vessel is also addressed

  15. Tritium Assay and Dispensing of KEPRI Tritium Lab

    International Nuclear Information System (INIS)

    Sohn, S. H.; Song, K. M.; Lee, S. K.; Lee, K.W.; Ko, B. W.

    2009-01-01

    The Wolsong Tritium Removal Facility(WTRF) has been constructed to reduce tritium levels in the heavy water systems and environmental emissions at the site. The WTRF was designed to process 100 kg/h of heavy water with the overall tritium extraction efficiency of 97% per single pass and to produce ∼700 g of tritium as T2 per year at the feed concentration of 0.37 TBq/kg. The high purity tritium greater than 99% is immobilized as a metal hydride to secure its long term storage. The recovered tritium will be made available for industrial uses and some research applications in the future. Then KEPRI is constructing the tritium lab. to build-up infrastructure to support tritium research activities and to support tritium control and accountability systems for tritium export. This paper describes the initial phases of the tritium application program including the laboratory infrastructure to support the tritium related R and D activities and the tritium controls in Korea

  16. Design of a tritium pellet injector for TFTR

    International Nuclear Information System (INIS)

    Milora, S.L.; Gouge, M.J.; Fisher, P.W.; Combs, S.K.; Cole, M.J.; Wysor, R.B.; Fehling, D.T.; Foust, C.R.; Baylor, L.R.; Schmidt, G.L.; Barnes, G.W.; Persing, R.G.

    1991-01-01

    The TFTR tritium pellet injector (TPI) is designed to provide a tritium pellet fueling capability with pellet speeds in the 1- to 3 km/s-range for the TFTR D-T phase. The existing TFTR deuterium pellet injector is being modified at Oak Ridge National Laboratory to provide a fourshot, tritium-compatible, pipe-gun configuration with three upgraded single-stage pneumatic guns a two -stage light gas gun driver. The pipe gun concept has been qualified for tritium operation by the tritium proof-of-principle injector experiments conducted on the Tritium Systems Test Assembly at Los Alamos National Laboratory. In these experiments, tritium and D-T pellets were accelerated to speeds near 1.5 km/s. The TPI is being designed for pellet sizes in the range from 3.43 to 4.0 mm in diameter in arbitrarily programmable firing sequences at speeds up to approximately 1.5 km/s for the three single-stage drivers and 2.5 to 3 km/s for the two-stage driver. Injector operation will be controlled by a programmable logic controller. 7 refs., 4 figs

  17. Permeability of protective coatings to tritium

    International Nuclear Information System (INIS)

    Braun, J.M.

    1987-10-01

    The permeability of four protective coatings to tritium gas and tritiated water was investigated. The coatings, including two epoxies, one vinyl and one urethane, were selected for their suitability in CANDU plant service in Ontario Hydro. Sorption rates of tritium gas into the coatings were considerably larger than for tritiated water, by as much as three to four orders of magnitude. However, as a result of the very large solubility of tritiated water in the coatings, the overall permeability to tritium gas and tritiated water are comparable, being somewhat larger for HTO. Marked differences were also evident among the four coatings, the vinyl proving to be unique in behaviour and morphology. Because of a highly porous surface structure water condensation takes place at high relative humidities, leading to an abnormally high retention of free water. Desorption rates from the four coatings were otherwise quite similar. Of practical importance was the observation that more effective desorption of tritiated water could be carried out at relatively high humidities, in this case 60%. It was believed that isotopic exchange was responsible for this phenomenon. It appears that epoxy coatings having a high pigment-to-binder ratio are most suited for coating concrete in tritium handling facilities

  18. Issues Associated with Tritium Legacy Materials

    International Nuclear Information System (INIS)

    Mills, Michael

    2008-01-01

    This paper highlights some of the issues associated with the treatment of legacy materials linked to research into tritium over many years and also of materials used to contain or store tritium. The aim of the work is to recover tritium where practicable, and to leave the residual materials passively safe, either for disposal or for continued storage. A number of materials are currently stored at AWE which either contain tritium or have been used in tritium processing. It is essential that these materials are characterised such that a strategy may be developed for their safe stewardship, and ultimately for their treatment and disposal. Treatment processes for such materials are determined by the application of best practicable means (BPM) studies in accordance with the requirements of the Environment Agency of England and Wales. Clearly, it is necessary to understand the objectives of legacy material treatment / processing and the technical options available before a definitive BPM study is implemented. The majority of tritium legacy materials with which we are concerned originate from the decommissioning of a facility that was operational from the late 1950's through to the late 1990's when, on post-operative clear-out (POCO), the entire removable and transportable tritium inventory was moved to new, purpose built facilities. One of the principle tasks to be undertaken in the new facilities is the treatment of the legacy materials to recover tritium wherever practicable, and render the residual materials passively safe for disposal or continued storage. Where tritium recovery was not reasonably or technically feasible, then a means to assure continued safe storage was to be devised and implemented. The legacy materials are in the following forms: - Uranium beds which may or may not contain adsorbed tritium gas; - Tritium gas stored in containers; - Tritide targets for neutron generation; - Tritides of a broad spectrum of metals manufactured for research / long

  19. Stack and area tritium monitoring systems for the tokamak fusion test reactor (TFTR)

    International Nuclear Information System (INIS)

    Pearson, G.G.; Meixler, L.D.; Sirsingh, R.A.P.

    1992-01-01

    This paper reports on the TFTR Tritium Stack and Area Monitoring Systems which have been developed to provide the required level of reliability in a cost effective manner consistent with the mission of the Tritium Handling System on TFTR. Personnel protection, environmental responsibility, and tritium containing system integrity have been the considerations in system design. During the Deuterium-Tritium (D-T) experiments on TFTR, tritium will be used for the first time as one of the fuels. Area monitors provide surveillance of the air in various rooms at TFTR. Stack monitors monitor the air at the TFTR test site that is exhausted through the HVAC systems, from the room exhaust stacks and the tritium systems process vents. The philosophies for the implementation of the Stack and Area Tritium Monitoring Systems at TFTR are to use hardwired controls wherever personnel protection is involved, and to take advantage of modern intelligent controllers to provide a distributed system to support the functions of tracking, displaying, and archiving concentration levels of tritium for all of the monitored areas and stacks

  20. Tritium. Today's and tomorrow's developments

    International Nuclear Information System (INIS)

    Gazal, S.; Amiard, J.C.; Caussade, Bernard; Chenal, Christian; Hubert, Francoise; Sene, Monique

    2010-01-01

    Radioactive hydrogen isotope, tritium is one of the radionuclides which is the most released in the environment during the normal operation of nuclear facilities. The increase of nuclear activities and the development of future generations of reactors, like the EPR and ITER, would lead to a significant increase of tritium effluents in the atmosphere and in the natural waters, thus raising many worries and questions. Aware about the importance of this question, the national association of local information commissions (ANCLI) wished to make a status of the existing knowledge concerning tritium and organized in 2008 a colloquium at Orsay (France) with an inquiring approach. The scientific committee of the ANCLI, renowned for its expertise skills, mobilized several nuclear specialists to carry out this thought. This book represents a comprehensive synthesis of today's knowledge about tritium, about its management and about its impact on the environment and on human health. Based on recent scientific data and on precise examples, it treats of the overall questions raised by this radionuclide: 1 - tritium properties and different sources (natural and anthropic), 2 - the problem of tritiated wastes management; 3 - the bio-availability and bio-kinetics of the different tritium species; 4 - the tritium labelling of environments; 5 - tritium measurement and modeling of its environmental circulation; 6 - tritium radio-toxicity and its biological and health impacts; 7 - the different French and/or international regulations concerning tritium. (J.S.)

  1. Conceptual design report for a remotely operated cask handling system

    International Nuclear Information System (INIS)

    Yount, J.A.; Berger, J.D.

    Recent advances in remote handling utilizing commercial robotics are conceptually applied to the problem of lowering operator cumulative dose and increasing throughput during cask handling operations in proposed nuclear waste container shipping and receiving facilities. The functional criteria for each subsystem are defined, and candidate systems are described. The report also contains a generic description of a waste receiving facility, to show possible deployment configurations for the equipment

  2. Tritium environmental transport studies at TFTR

    International Nuclear Information System (INIS)

    Ritter, P.D.; Dolan, T.J.; Longhurst, G.R.

    1993-01-01

    Environmental tritium concentrations will be measured near the Tokamak Fusion Test Reactor (TFTR) to help validate dynamic models of tritium transport in the environment. For model validation the database must contain sequential measurements of tritium concentrations in key environmental compartments. Since complete containment of tritium is an operational goal, the supplementary monitoring program should be able to glean useful data from an unscheduled acute release. Portable air samplers will be used to take samples automatically every 4 hours for a weak after an acute release, thus obtaining the time resolution needed for code validation. Samples of soil, vegetation, and foodstuffs will be gathered daily at the same locations as the active air monitors. The database may help validate the plant/soil/air part of tritium transport models and enhance environmental tritium transport understanding for the International Thermonuclear Experimental Reactor (ITER)

  3. Tritium environmental transport studies at TFTR

    Science.gov (United States)

    Ritter, P. D.; Dolan, T. J.; Longhurst, G. R.

    1993-06-01

    Environmental tritium concentrations will be measured near the Tokamak Fusion Test Reactor (TFTR) to help validate dynamic models of tritium transport in the environment. For model validation the database must contain sequential measurements of tritium concentrations in key environmental compartments. Since complete containment of tritium is an operational goal, the supplementary monitoring program should be able to glean useful data from an unscheduled acute release. Portable air samplers will be used to take samples automatically every 4 hours for a week after an acute release, thus obtaining the time resolution needed for code validation. Samples of soil, vegetation, and foodstuffs will be gathered daily at the same locations as the active air monitors. The database may help validate the plant/soil/air part of tritium transport models and enhance environmental tritium transport understanding for the International Thermonuclear Experimental Reactor (ITER).

  4. Tritium accountancy in fusion systems

    Energy Technology Data Exchange (ETDEWEB)

    Klein, J.E.; Clark, E.A.; Harvel, C.D.; Farmer, D.A.; Tovo, L.L.; Poore, A.S. [Savannah River National Laboratory, Aiken, SC (United States); Moore, M.L. [Savannah River Nuclear Solutions, Aiken, SC (United States)

    2015-03-15

    The US Department of Energy (DOE) has clearly defined requirements for nuclear material control and accountability (MCA) of tritium whereas the International Atomic Energy Agency (IAEA) does not since tritium is not a fissile material. MCA requirements are expected for tritium fusion machines and will be dictated by the host country or regulatory body where the machine is operated. Material Balance Areas (MBA) are defined to aid in the tracking and reporting of nuclear material movements and inventories. Material sub-accounts (MSA) are established along with key measurement points (KMP) to further subdivide a MBA to localize and minimize uncertainties in the inventory difference (ID) calculations for tritium accountancy. Fusion systems try to minimize tritium inventory which may require continuous movement of material through the MSA. The ability of making meaningful measurements of these material transfers is described in terms of establishing the MSA structure to perform and reconcile ID calculations. For fusion machines, changes to the traditional ID equation will be discussed which includes breeding, burn-up, and retention of tritium in the fusion device. The concept of 'net' tritium quantities consumed or lost in fusion devices is described in terms of inventory taking strategies and how it is used to track the accumulation of tritium in components or fusion machines. (authors)

  5. Tritium proof-of-principle pellet injector

    International Nuclear Information System (INIS)

    Fisher, P.W.

    1991-07-01

    The tritium proof-of-principle (TPOP) experiment was designed and built by Oak Ridge National Laboratory (ORNL) to demonstrate the formation and acceleration of the world's first tritium pellets for fueling of future fusion reactors. The experiment was first used to produce hydrogen and deuterium pellets at ORNL. It was then moved to the Tritium Systems Test Assembly at Los Alamos National Laboratory for the production of tritium pellets. The injector used in situ condensation to produce cylindrical pellets in a 1-m-long, 4-mm-ID barrel. A cryogenic 3 He separator, which was an integral part of the gun assembly, was capable of lowering 3 He levels in the feed gas to <0.005%. The experiment was housed to a glovebox for tritium containment. Nearly 1500 pellets were produced during the course of the experiment, and about a third of these were pure tritium or mixtures of deuterium and tritium. Over 100 kCi of tritium was processed through the experiment without incident. Tritium pellet velocities of 1400 m/s were achieved with high-pressure hydrogen propellant. The design, operation, and results of this experiment are summarized. 34 refs., 44 figs., 3 tabs

  6. Temporal sealing material of tritium-contaminated stainless steel

    International Nuclear Information System (INIS)

    Wen Wei; Dan Guiping; Zhang Dong; Qiu Yongmei; Zhang Li

    2010-01-01

    Tritium can be released from the exterior of tritium-contaminated stainless steel by slight stirring while decontaminating and disassembling. In order to avoid secondary tritium contamination to environment and operators, it is necessary to cover with an effective coating to tritium on the exterior of tritium-contaminated stainless steel and fill an effective substance to tritium inside. The results of tritium sealed experiments show that sealing efficiency of neutral silicone rubber is more than 85% for condition of static state and more than 99% for foam concrete condition of dynamic state. Neutral silicone rubber and foam concrete which have finer sealing efficiency can be used as temporal sealed material for the decontamination and disassembly of tritium-contaminated stainless steel. (authors)

  7. Tritium processing using metal hydrides

    International Nuclear Information System (INIS)

    Mallett, M.W.

    1986-01-01

    E.I. duPont de Nemours and Company is commissioned by the US Department of Energy to operate the Savannah River Plant and Laboratory. The primary purpose of the plant is to produce radioactive materials for national defense. In keeping with current technology, new processes for the production of tritium are being developed. Three main objectives of this new technology are to ease the processing of, ease the storage of, and to reduce the operating costs of the tritium production facility. Research has indicated that the use of metal hydrides offers a viable solution towards satisfying these objectives. The Hydrogen and Fuels Technology Division has the responsibility to conduct research in support of the tritium production process. Metal hydride technology and its use in the storage and transportation of hydrogen will be reviewed

  8. Final programmatic environmental impact statement for tritium supply and recycling

    International Nuclear Information System (INIS)

    1995-10-01

    Tritium, a radioactive gas used in all of the Nation's nuclear weapons, has a short half-life and must be replaced periodically in order for the weapon to operate as designed. Currently, there is no capability to produce the required amounts of tritium within the Nuclear Weapons Complex. The PEIS for Tritium Supply and Recycling evaluates the alternatives for the siting, construction, and operation of tritium supply and recycling facilities at each of five candidate sites: the Idaho National Engineering Laboratory, the Nevada Test Site, the Oak Ridge Reservation, the Pantex Plant, and the Savannah River Site. Alternatives for new tritium supply and recycling facilities consist of four different tritium supply technologies: Heavy Water Reactor, Modular High Temperature Gas-Cooled Reactor, Advanced Light Water Reactor, and Accelerator Production of Tritium. The PEIS also evaluates the impacts of the DOE purchase of an existing operating or partially completed commercial light water reactor or the DOE purchase of irradiation services contracted from commercial power reactors. Additionally, the PEIS includes an analysis of multipurpose reactors that would produce tritium, dispose of plutonium, and produce electricity. Evaluation of impacts on land resources, site infrastructure, air quality and acoustics, water resources, geology and soils, biotic resources, cultural and paleontological resources, socioeconomics, radiological and hazardous chemical impacts during normal operation and accidents to workers and the public, waste management, and intersite transport are included in the assessment

  9. Study of Tritium Behavior in Cement Paste

    International Nuclear Information System (INIS)

    Takata, H.; Motoshima, T.; Satake, S.; Nishikawa, M.

    2005-01-01

    The concrete materials are used as the partition wall of the tritium handling facilities. It is important to grasp the tritium behavior in the concrete wall for radiation safety. It is considered in this study that the surface water on the concrete materials consists of physically adsorbed water, chemically adsorbed water and structural water as in the case of porous adsorption materials. The adsorption capacity due to physically and chemically adsorption isotherms observed in this study shows that the amount of water adsorption on the cement paste is a quarter of the amount adsorbed onto the surface of activated alumina or molecular sieves 5A (MS-5A). It shows that concrete is easily contaminated with tritiated water

  10. Tritium system design studies of fusion experimental breeder

    International Nuclear Information System (INIS)

    Deng Baiquan; Huang Jinhua

    2003-01-01

    A summary of the tritium system design studies for the engineering outline design of a fusion experimental breeder (FEB-E) is presented. This paper is divided into three sections. In first section, the geometry, loading features and tritium concentrations in liquid lithium of tritium breeding zones of blanket are described. The tritium flow chart corresponding to the tritium fuel cycle system has been constructed, and the inventories in ten subsystems are calculated using SWITRIM code in section 2. Results show that the necessary initial tritium storage to start up FEB-E with fusion power of 143 MW is about 319 g. In final section, the tritium leakage issues under different operation circumstances have been analyzed. It was found that the potential danger of tritium leakage could be resulted from the exhausted gas of the diverter system. It is important to elevate the tritium burnup fraction and reduce the tritium throughput. (authors)

  11. Model improvements for tritium transport in DEMO fuel cycle

    Energy Technology Data Exchange (ETDEWEB)

    Santucci, Alessia, E-mail: alessia.santucci@enea.it [Unità Tecnica Fusione – ENEA C. R. Frascati, Via E. Fermi 45, 00044 Frascati (Roma) (Italy); Tosti, Silvano [Unità Tecnica Fusione – ENEA C. R. Frascati, Via E. Fermi 45, 00044 Frascati (Roma) (Italy); Franza, Fabrizio [Karlsruhe Institute of Technology (KIT), Hermann-von-Helmholtz-Platz 1, D-76344 Eggenstein-Leopoldshafen (Germany)

    2015-10-15

    Highlights: • T inventory and permeation of DEMO blankets have been assessed under pulsed operation. • 1-D model for T transport has been developed for the HCLL DEMO blanket. • The 1-D model evaluated T partial pressure and T permeation rate radial profiles. - Abstract: DEMO operation requires a large amount of tritium, which is directly produced inside the reactor by means of Li-based breeders. During its production, recovering and purification, tritium comes in contact with large surfaces of hot metallic walls, therefore it can permeate through the blanket cooling structure, reach the steam generator and finally the environment. The development of dedicated simulation tools able to predict tritium losses and inventories is necessary to verify the accomplishment of the accepted tritium environmental releases as well as to guarantee a correct machine operation. In this work, the FUS-TPC code is improved by including the possibility to operate in pulsed regime: results in terms of tritium inventory and losses for three pulsed scenarios are shown. Moreover, the development of a 1-D model considering the radial profile of the tritium generation is described. By referring to the inboard segment on the equatorial axis of the helium-cooled lithium–lead (HCLL) blanket, preliminary results of the 1-D model are illustrated: tritium partial pressure in Li–Pb and tritium permeation in the cooling and stiffening plates by assuming several permeation reduction factor (PRF) values. Future improvements will consider the application of the model to all segments of different blanket concepts.

  12. Tritium Removal from Carbon Plasma Facing Components

    International Nuclear Information System (INIS)

    Skinner, C.H.; Coad, J.P.; Federici, G.

    2003-01-01

    Tritium removal is a major unsolved development task for next-step devices with carbon plasma-facing components. The 2-3 order of magnitude increase in duty cycle and associated tritium accumulation rate in a next-step tokamak will place unprecedented demands on tritium removal technology. The associated technical risk can be mitigated only if suitable removal techniques are demonstrated on tokamaks before the construction of a next-step device. This article reviews the history of codeposition, the tritium experience of TFTR (Tokamak Fusion Test Reactor) and JET (Joint European Torus) and the tritium removal rate required to support ITER's planned operational schedule. The merits and shortcomings of various tritium removal techniques are discussed with particular emphasis on oxidation and laser surface heating

  13. ITER task title - source term data, modelling, and analysis. ITER subtask no. S81TT05/5 (SEP 1-1). Global tritium source term analysis basis document. Subtask 1: operational tritium effluents and releases. Final report (1995 TASK)

    International Nuclear Information System (INIS)

    Kalyanam, K.M.

    1996-06-01

    This document represents the final report for the global tritium source term analysis task initiated in 1995. The report presents a room-by-room map/table at the subsystem level for the ITER tritium systems, identifying the major equipment, secondary containments, tritium release sources, duration/frequency of tritium releases and the release pathways. The chronic tritium releases during normal operation, as well as tritium releases due to routine maintenance of the Water Distillation Unit, Isotope Separation System and Primary and Secondary Heat Transport Systems, have been estimated for most of the subsystems, based on the IDR design, the Design Description Documents (April - Jun 1995 issues) and the design updates up to December 1995. The report also outlines the methodology and the key assumptions that are adopted in preparing the tritium release estimates. The design parameters for the ITER Basic Performance Phase (BPP) have been used in estimating the tritium releases shown in the room-by-room map/table. The tritium release calculations and the room-by-room map/table have been prepared in EXCEL, so that the estimates can be refined easily as the design evolves and more detailed information becomes available. (author). 23 refs., tabs

  14. Commissioning of a DT fusion reactor without external supply of tritium

    International Nuclear Information System (INIS)

    Asaoka, Y.; Konishi, S.; Nishio, S.; Hiwatari, R.; Okano, K.; Yoshida, T.; Tomabechi, K.

    2001-01-01

    Commissioning of a DT fusion reactor without external supply of tritium is discussed. The DD reactions in a DT-oriented fusion reactor with external power injection by neutral beams produce tritium and neutrons. Tritium produced by the DD reaction together with that produced in the blanket by the 2.45 MeV neutron is re-circulated into the plasma. Then, the DT reaction rate increases gradually, as tritium concentration in plasma builds up towards the level of nominal operation. Time required to reach the nominal operational condition, i.e. 50 % tritium in plasma, is estimated with assumptions based on a model of fusion power plant. As a result, the start-up period of a DT fusion reactor without external supply of tritium is estimated to be approximately 55 days, with the plasma parameters of CREST having a high performance blanket and tritium processing systems. Major factors to determine the start-up period are DD and DT reaction rates, net tritium breeding gain of the plant and dead inventory in/on facing materials. Elimination of a constraint for fusion reactor deployment and operation without any tritium transportation in and out of plant through its entire life may be possible. (author)

  15. Tritium in the Savannah River Site environment. Revision 1

    Energy Technology Data Exchange (ETDEWEB)

    Murphy, C.E. Jr.; Bauer, L.R.; Hayes, D.W.; Marter, W.L.; Zeigler, C.C.; Stephenson, D.E.; Hoel, D.D.; Hamby, D.M.

    1991-05-01

    Tritium is released to the environment from many of the operations at the Savannah River Site. The releases from each facility to the atmosphere and to the soil and streams, both from normal operations and inadvertent releases, over the period of operation from the early 1950s through 1988 are presented. The fate of the tritium released is evaluated through environmental monitoring, special studies, and modeling. It is concluded that approximately 91% of the tritium remaining after decay is now in the oceans. A dose and risk assessment to the population around the site is presented. It is concluded that about 0.6 fatal cancers may be associated with the tritium released during all the years of operation to the population of about 625,000. This same population (based on the overall US cancer statistics) is expected to experience about 105,000 cancer fatalities from all types of cancer. Therefore, it is considered unlikely that a relationship between any of the cancer deaths occurring in this population and releases of tritium from the SRS will be found.

  16. Analysis of tritium mission FMEF/FAA fuel handling accidents

    Energy Technology Data Exchange (ETDEWEB)

    Van Keuren, J.C.

    1997-11-18

    The Fuels Material Examination Facility/Fuel Assembly Area is proposed to be used for fabrication of mixed oxide fuel to support the Fast Flux Test Facility (FFTF) tritium/medical isotope mission. The plutonium isotope mix for the new mission is different than that analyzed in the FMEF safety analysis report. A reanalysis was performed of three representative accidents for the revised plutonium mix to determine the impact on the safety analysis. Current versions computer codes and meterology data files were used for the analysis. The revised accidents were a criticality, an explosion in a glovebox, and a tornado. The analysis concluded that risk guidelines were met with the revised plutonium mix.

  17. EBR-II fuel handling console digital upgrade

    International Nuclear Information System (INIS)

    Peters, G.G.; Wiege, D.D.; Christensen, L.J.

    1995-01-01

    The main fuel handling console and control system at the Experimental Breeder Reactor II (EBR-II) are being upgraded to a computerized system using high-end workstations for the operator interface and a programmable logic controller (PLC) for the control system. Two-dimensional (2D) and three-dimensional (3D) computer graphics will be provided for the operator which will show the relative position of under-sodium fuel handling equipment. This equipment is operated remotely with no means of directly viewing the transfer. This paper describes various aspects of the modification including reasons for the upgrade, capabilities the new system provides over the old control system, philosophies and rationale behind the new design, testing and simulation work, diagnostic features, and the advanced graphics techniques used to display information to the operator

  18. Engineerig of structural modifications for operating nuclear plants

    International Nuclear Information System (INIS)

    Duffy, T.J.; Gazda, P.A.

    1983-01-01

    The engineering of structural modifications for operating nuclear plants offers many challenges in the areas of scheduling of work, field adjustments, and engineering staff planning. The scheduling of structural modification work for operating nuclear plants is normally closely tied to planned or unplanned outages of the plant. Coordination between the structural engineering effort, the operating plant staff, and the contractor who will be performing the modifications is essential to ensure that all work can be completed within the allotted time. Due to the inaccessibility of areas in operating plants or the short time available to perform the structural engineering in the case of an unscheduled outage, field verification of a design is not always possible prior to initiating the construction of the modification. This requires the structural engineer to work closely with the contractor to promptly resolve problems due to unanticipated interferences or material procurement that may arise during the course of construction. The engineering staff planning for structural modifications at an operating nuclear plant must be flexible enough to permit rapid response to the common 'fire drills', but controlled enough to assure technically correct designs and minimize the expenditure of man-hours and resulting engineering cost. (orig.)

  19. HYLIFE-II tritium management system

    International Nuclear Information System (INIS)

    Longhurst, G.R.; Dolan, T.J.

    1993-06-01

    The tritium management system performs seven functions: (1) tritium gas removal from the blast chamber, (2) tritium removal from the Flibe, (3) tritium removal from helium sweep gas, (4) tritium removal from room air, (5) hydrogen isotope separation, (6) release of non-hazardous gases through the stack, (7) fixation and disposal of hazardous effluents. About 2 TBq/s (5 MCi/day) of tritium is bred in the Flibe (Li 2 BeF 4 ) molten salt coolant by neutron absorption. Tritium removal is accomplished by a two-stage vacuum disengager in each of three steam generator loops. Each stage consists of a spray of 0.4 mm diameter, hot Flibe droplets into a vacuum chamber 4 m in diameter and 7 m tall. As droplets fall downward into the vacuum, most of the tritium diffuses out and is pumped away. A fraction Φ∼10 -5 of the tritium remains in the Flibe as it leaves the second stage of the vacuum disengager, and about 24% of the remaining tritium penetrates through the steam generator tubes, per pass, so the net leakage into the steam system is about 4.7 MBq/s (11 Ci/day). The required Flibe pumping power for the vacuum disengager system is 6.6 MW. With Flibe primary coolant and a vacuum disengager, an intermediate coolant loop is not needed to prevent tritium from leaking into the steam system. An experiment is needed to demonstrate vacuum disengager operation with Flibe. A secondary containment shell with helium sweep gas captures the tritium permeating out of the Flibe ducts, limiting leaks there to about 1 Ci/day. The tritium inventory in the reactor is about 190 g, residing mostly in the large Flibe recirculation duct walls. The total cost of the tritium management system is 92 M$, of which the vacuum disengagers cost = 56%, the blast chamber vacuum system = 15%, the cryogenic plant = 9%, the emergency air cleanup and waste treatment systems each = 6%, the protium removal system = 3%, and the fuel storage system and inert gas system each = 2%

  20. Tritium Systems Test Facility. Volume I

    International Nuclear Information System (INIS)

    Anderson, G.W.; Battleson, K.W.; Bauer, W.

    1976-10-01

    Sandia Laboratories proposes to build and operate a Tritium Systems Test Facility (TSTF) in its newly completed Tritium Research Laboratory at Livermore, California (see frontispiece). The facility will demonstrate at a scale factor of 1:200 the tritium fuel cycle systems for an Experimental Power Reactor (EPR). This scale for each of the TSTF subsystems--torus, pumping system, fuel purifier, isotope separator, and tritium store--will allow confident extrapolation to EPR dimensions. Coolant loop and reactor hall cleanup facilities are also reproduced, but to different scales. It is believed that all critical details of an EPR tritium system will be simulated correctly in the facility. Tritium systems necessary for interim devices such as the Ignition Test Reactor (ITR) or The Next Step (TNS) can also be simulated in TSTF at other scale values. The active tritium system will be completely enclosed in an inert atmosphere glove box which will be connected to the existing Gas Purification System (GPS) of the Tritium Research Laboratory. In effect, the GPS will become the scaled environmental control system which otherwise would have to be built especially for the TSTF

  1. ITER - torus vacuum pumping system remote handling issues

    International Nuclear Information System (INIS)

    Stringer, J.

    1992-11-01

    This report describes design issues concerning remote maintenance of the ITER torus vacuum pumping system. Key issues under investigation in this report are bearings for inert gas operation, transporter integration options, cryopump access, gate valve maintenance frequency, tritium effects on materials, turbomolecular pump design, and remote maintenance. Alternative bearing materials are explored for inert gas operation. Encapsulated motors and rotary feedthroughs offer an alternative option where space requirements are restrictive. A number of transporter options are studied. The preferred scheme depends on the shielded reconfigured ducts to prevent streaming and activation of RH (remote handling) equipment. A radiation mapping of the cell is required to evaluate this concept. Valve seal and bellow life are critical issues and need to be evaluated, as they have a direct bearing on the provision of adequate RH equipment to meet scheduled and unscheduled maintenance outages. The limited space on the inboard side of the cryopumps for RH equipment access requires a reconfigured duct and manifold. A modified shielded duct arrangement is proposed, which would provide more access space, reduced activation of components, and the potential for improved valve seal life. Work at Mound Laboratories has shown the adverse effects of tritium on some bearing lubricants. Silicone-based lubricants should be avoided. (11 refs., 2 tabs., 31 figs.)

  2. Effects of interfering constituents on tritium smears

    International Nuclear Information System (INIS)

    Levi, G.D. Jr.; Cheeks, K.E.

    1993-01-01

    Tritium smears are performed by Health Protection Operations (HPO) to assess transferable contamination on work place surfaces, materials for movement outside Radiologically Controlled Areas (RCA), and product containers being shipped between facilities. Historically, gas proportional counters were used to detect transferable tritium contamination collected by smearing. Because tritium is a low-energy beta emitter, gas proportional counters do not provide the sensitivity or the counting efficiency to accurately measure the tritium activity on the smear. Liquid Scintillation Counters (LSC) provide greater counting efficiency for the low-energy beta particles along with greater reliability and reproducibility compared to gas flow proportional counters. The purpose of this technical evaluation was to determine the effects of interfering constituents such as filters, dirt and oil on the counting efficiency and tritium recoveries of tritium smears by LSC

  3. Radiation doses to lungs and whole body from use of tritium in luminous paint industry

    International Nuclear Information System (INIS)

    Rudran, K.

    1988-01-01

    The radiation dose to persons exposed to tritium in the luminous paint industry is reported. The biological half-life of labile tritium is observed to be 7 to 10 days. There is evidence of exposure of lung tissue from tritium labelled polystyrene deposited in the pulmonary region and of soft tissue from organically bound tritium. Delayed excretion of labile tritium in urine following removal of the individuals from tritium handling, presence of tritium in organic constituents of blood and urine, and presence of non-volatile tritium in faecal excretion have been verified. From in vitro studies using fresh bovine serum, solubilisation half-life of tritium from the labelled paint is estimated to be 35 to 70 days after the initial fast clearance. Probable annual doses to the whole body, soft tissue and lungs under the prevailing working conditions have been estimated from the urinary and faecal excretion data. It is revealed that the actual values thus estimated are likely to exceed the values estimated by the conventional technique based on urine analysis for tritiated water. (author)

  4. Remote handling needs of the Princeton Plasma Physics Laboratory

    International Nuclear Information System (INIS)

    Smiltnieks, V.

    1982-07-01

    This report is the result of a Task Force study commissioned by the Canadian Fusion Fuels Technology Project (CFFTP) to investigate the remote handling requirements at the Princeton Plasma Physics Laboratory (PPPL) and identify specific areas where CFFTP could offer a contractual or collaborative participation, drawing on the Canadian industrial expertise in remote handling technology. The Task Force reviewed four areas related to remote handling requirements; the TFTR facility as a whole, the service equipment required for remote maintenance, the more complex in-vessel components, and the tritium systems. Remote maintenance requirements both inside the vacuum vessel and around the periphery of the machine were identified as the principal areas where Canadian resources could effectively provide an input, initially in requirement definition, concept evaluation and feasibility design, and subsequently in detailed design and manufacture. Support requirements were identified in such areas as the mock-up facility and a variety of planning studies relating to reliability, availability, and staff training. Specific tasks are described which provide an important data base to the facility's remote handling requirements. Canadian involvement in the areas is suggested where expertise exists and support for the remote handling work is warranted. Reliability, maintenance operations, inspection strategy and decommissioning are suggested for study. Several specific components are singled out as needing development

  5. Conceptual design of tritium accountancy system for LLCB TBM

    International Nuclear Information System (INIS)

    Patel, Rudreksh; Sircar, Amit

    2017-01-01

    Lead Lithium Ceramic Breeder (LLCB) Test Blanket Module (TBM) will be tested in ITER for performance evaluation of high grade of heat extraction and tritium breeding. The bred tritium in the breeder materials is extracted and recovered by Tritium Extraction System (TES), whereas tritium permeated from breeder materials to helium coolants, viz., primary coolant and secondary coolant, is recovered by Coolant Purification System (CPS). This recovered tritium has to be accounted before transferring it to tritium plant (i.e., ITER inner fuel). This tritium accountancy is performed by Tritium Accountancy System (TAS). In addition to tritium accountancy, TAS also provides necessary data for the validation of design and modelling tools.In this work, we have presented conceptual design of TAS. It also describes operational philosophy, process parameters, process flow diagram, and interface details with ITER tritium plant. (author)

  6. Separation of tritium from gaseous and aqueous effluent systems

    International Nuclear Information System (INIS)

    Kobisk, E.H.

    1977-01-01

    Removal or reduction of tritium content in a wide variety of effluent streams has been extensively studied in the United States. This paper specifically reviews three processes involving tritium separation in the gaseous phase and the aqueous phase. Diffusion through a selective Pd-25Ag alloy membrane at temperatures up to 600 0 C and at pressures up to 700 kg/cm 2 has resulted in successful separation of hydrogen-deuterium mixtures with an associated separation factor of 1.65 (and gives a calculated separation factor for hydrogen-tritium mixtures of 2.0). Use of a single palladium bipolar membrane in an electrolysis system has been found to yield a hydrogen-deuterium separation factor of 4 and a hydrogen-tritium factor of 6 to 11 without the production of gaseous hydrogen. Finally, countercurrent catalytic exchange between tritium-containing hydrogen gas and water has yielded a separation factor of 6.3. The specific advantages of each of these systems will be discussed in terms of their potential applications. In all cases, further investigations are necessary to scale the systems to handle large quantities of feed material in a continuous mode and to minimize energy requirements. Such separative systems must necessarily be cascaded to yield gaseous or aqueous product streams suitable for recycling to the tritium producing systems, for storage or for discharge to the environment. (orig./HP) [de

  7. Tritium recycling and inventory in eroded debris of plasma-facing materials

    International Nuclear Information System (INIS)

    Hassanein, A.

    1999-01-01

    Damage to plasma-facing components (PFCs) and structural materials due to loss of plasma confinement in magnetic fusion reactors remains one of the most serious concerns for safe, successful, and reliable tokamak operation. High erosion losses due to surface vaporization, spallation, and melt-layer splashing are expected during such an event. The eroded debris and dust of the PFCs, including trapped tritium, will be contained on the walls or within the reactor chamber therefore, they can significantly influence plasma behavior and tritium inventory during subsequent operations. Tritium containment and behavior in PFCS and in the dust and debris is an important factor in evaluating and choosing the ideal plasma-facing materials (PFMs). Tritium buildup and release in the debris of candidate materials is influenced by the effect of material porosity on diffusion and retention processes. These processes have strong nonlinear behavior due to temperature, volubility, and existing trap sites. A realistic model must therefore account for the nonlinear and multidimensional effects of tritium diffusion in the porous-redeposited and neutron-irradiated materials. A tritium-transport computer model, TRAPS (Tritium Accumulation in Porous Structure), was developed and used to evaluate and predict the kinetics of tritium transport in porous media. This model is coupled with the TRICS (Tritium In Compound Systems) code that was developed to study the effect of surface erosion during normal and abnormal operations on tritium behavior in PFCS

  8. Tritium experience in the Tokamak Fusion Test Reactor

    International Nuclear Information System (INIS)

    Skinner, C.H.; Blanchard, W.; Hosea, J.; Mueller, D.; Nagy, A.; Hogan, J.

    1998-01-01

    Tritium management is a key enabling element in fusion technology. Tritium fuel was used in 3.5 years of successful deuterium-tritium (D-T) operations in the Tokamak Fusion Test Reactor (TFTR) at the Princeton Plasma Physics Laboratory. The D-T campaign enabled TFTR to explore the transport, alpha physics, and MHD stability of a reactor core. It also provided experience with tritium retention and removal that highlighted the importance of these issues in future D-T machines. In this paper, the authors summarize the tritium retention and removal experience in TFTR and its implications for future reactors

  9. Tritium inventory prediction in a CANDU plant

    International Nuclear Information System (INIS)

    Song, M.J.; Son, S.H.; Jang, C.H.

    1995-01-01

    The flow of tritium in a CANDU nuclear power plant was modeled to predict tritium activity build-up. Predictions were generally in good agreement with field measurements for the period 1983--1994. Fractional contributions of coolant and moderator systems to the environmental tritium release were calculated by least square analysis using field data from the Wolsong plant. From the analysis, it was found that: (1) about 94% of tritiated heavy water loss came from the coolant system; (2) however, about 64% of environmental tritium release came from the moderator system. Predictions of environmental tritium release were also in good agreement with field data from a few other CANDU plants. The model was used to calculate future tritium build-up and environmental tritium release at Wolsong site, Korea, where one unit is operating and three more units are under construction. The model predicts the tritium inventory at Wolsong site to increase steadily until it reaches the maximum of 66.3 MCi in the year 2026. The model also predicts the tritium release rate to reach a maximum of 79 KCi/yr in the year 2012. To reduce the tritium inventory at Wolsong site, construction of a tritium removal facility (TRF) is under consideration. The maximum needed TRF capacity of 8.7 MCi/yr was calculated to maintain tritium concentration effectively in CANDU reactors

  10. BEATRIX-II: In-situ tritium recovery data correction

    International Nuclear Information System (INIS)

    Slagle, O.D.; Hollenberg, G.W.; Kurasawa, T.; Verrall, R.A.

    1993-09-01

    BEATRIX-II was an in-situ tritium recovery experiment in a fast reactor to characterize the irradiation behavior of fusion ceramic breeder materials. Correcting and compiling the in-situ tritium recovery data involved correcting the ion chamber response for the effect of sweep gas composition or amount of hydrogen in the helium sweep gas and for the buildup of background. The effect of sweep gas composition was addressed in the previous workshop. During the operation of Phase I of the experiment the backgrounds of the ion chambers were found to reach significant levels relative to the tritium recovery concentrations in the sweep gas from the specimen canisters. The measured tritium concentrations were corrected for background by comparing the tritium recovery rate during reference conditions with the predicted tritium generation rate. Background increases were found to be associated with tritium recovery peaks and elevated levels of moisture in the sweep gas. These conditions typically occurred when the hydrogen concentration in the sweep gas was increased to 0.1% after extended operation in He or He-0.01% H 2 . Three examples of this increase in ionization chamber background are described. The final corrected BEATRIX-II, Phase I tritium recovery data provide a valuable resource to be used for predicting the performance of Li 2 O in a fusion blanket application

  11. Tritium research activities in Korea

    Energy Technology Data Exchange (ETDEWEB)

    Jung, Ki Jung, E-mail: kjjung@nfri.re.kr [National Fusion Research Institute, Yusung-gu, Daejeon 305-333 (Korea, Republic of); Yun, Sei-Hun, E-mail: shyun@nfri.re.kr [National Fusion Research Institute, Yusung-gu, Daejeon 305-333 (Korea, Republic of); Chang, Min Ho; Kang, Hyun-Goo; Chung, Dongyou; Cho, Seungyon; Lee, Hyeon Gon [National Fusion Research Institute, Yusung-gu, Daejeon 305-333 (Korea, Republic of); Chung, Hongsuk; Choi, Woo-Seok [Korea Atomic Energy Research Institute, Yusung-gu, Daejeon 305-353 (Korea, Republic of); Song, Kyu-Min; Moon, Chang-Bae [Korea Hydro & Nuclear Power Central Research Institute, Yusung-gu, Daejeon 305-343 (Korea, Republic of); Lee, Euy Soo [Dongguk University, Jung-gu, Seoul, 100-715 (Korea, Republic of); Cho, Jungho; Kim, Dong-Sun [Kongju National University, Cheonan, Chungnam, 330-717 (Korea, Republic of); Moon, Hung-Man [Daesung Industrial Gases Co., Ltd., Danwon-gu, Ansan-si, Gyeonggi-do, 425-090 (Korea, Republic of); Noh, Seung Jeong [Dankook University, Suji-gu, Yongin-si, Gyeonggi-do, 448-701 (Korea, Republic of); Ju, Hyunchul [Inha University, Nam-gu, Incheon, 402-751 (Korea, Republic of); Hong, Tae-Whan [Korea National University of Transportation, Chungju, Chungbuk, 380-702 (Korea, Republic of)

    2016-12-15

    Highlights: • NFRI, KAERI and KHNP CRI are major leading group for the ITER tritium SDS design; studying engineering, simulation of hydride bed, risk analysis (on safety, HAZOP), basic study, control logic & sequential operation, and others. KHNP has WTRF which gives favorable experiences for collaboration researchers. • Supplementary research partners: Five Universities (Dongguk University and POSTECH, Inha University, Dankook University, Korea National Transport University, and Kongju National University) and one industrial company (Daesung Industrial Gases Co., Ltd.); studying on basic and engineering, programming & simulation on the various topics for ITER tritium SDS, TEP, ISS, ADS, and etc. - Abstract: Major progress in tritium research in the Republic of Korea began when Korea became responsible for ITER tritium Storage and Delivery System (SDS) procurement package which is part of the ITER Fuel Cycle. To deliver the tritium SDS package, a variety of research institutes, universities and industry have respectively taken roles and responsibilities in developing technologies that have led to significant progress. This paper presents the current work and status of tritium related technological research and development (R&D) in Korea and introduces future R&D plans in the area of fuel cycle systems for fusion power generation.

  12. An overview of process instrumentation, protective safety interlocks and alarm system at the JET facilities active gas handling system

    International Nuclear Information System (INIS)

    Skinner, N.; Brennan, P.; Brown, K.; Gibbons, C.; Jones, G.; Knipe, S.; Manning, C.; Perevezentsev, A.; Stagg, R.; Thomas, R.; Yorkshades, J.

    2003-01-01

    The Joint European Torus (JET) Facilities Active Gas Handling System (AGHS) comprises ten interconnected processing sub-systems that supply, process and recover tritium from gases used in the JET Machine. Operations require a diverse range of process instrumentation to carry out a multiplicity of monitoring and control tasks and approximately 500 process variables are measured. The different types and application of process instruments are presented with specially adapted or custom-built versions highlighted. Forming part of the Safety Case for tritium operations, a dedicated hardwired interlock and alarm system provides an essential safety function. In the event of failure modes, each hardwired interlock will back-up software interlocks and shutdown areas of plant to a failsafe condition. Design of the interlock and alarm system is outlined and general methodology described. Practical experience gained during plant operations is summarised and the methods employed for routine functional testing of essential instrument systems explained

  13. Separation of tritium from other hydrogen isotopes

    International Nuclear Information System (INIS)

    Roth, E.

    1988-01-01

    The paper describes a plant that has been operated at Marcoule for tritium production and used thermal diffusion enrichment, a facility that was built in Saclay to enrich hydrogen in tritium for low level measurements, and the Laue Langevin Institute tritium extraction plant. Details are given on the project under construction for the tritium separation facility at JET using Gas Chromatography, and on proposals for circuits for NET. Studies on catalysers for liquid phase catalytic exchange, on electrolysers, or different gas chromatography arrangements, are described. Systems designed for reprocessing plants, for detritiation of heavy water by distillation are briefly accounted for

  14. Management of Tritium in ITER Waste

    International Nuclear Information System (INIS)

    Rosanvallon, S.; Benchikhoune, M.; Ciattaglia, S.; Uzan, J. Elbez; Na, B. C.; Taylor, N.; Gastaldi, O.

    2011-01-01

    ITER will use tritium as fuel. Procedures and processes are thus put in place in order to recover the tritium that is not used in the fusion reaction, including from waste and effluents. The tritium thus recovered can be re-injected into the fuel cycle. Moreover, tritium content and thus outgassing may be a safety concern, because of the potential for releases to the environment, both from the facility and from the final disposal (subjected to stringent acceptance criteria in the current waste final disposal). The aim of this paper is to present the measures considered to deal with the specific case of tritium in the liquid and solid waste that will arise from ITER operation and decommissioning. It concerns the processes that are considered from the waste production to its final disposal and in particular: the tritium removal stages (in-situ divertor baking at 350 C and tritium removal from solid waste and liquid and gaseous effluents), the removal of dust contamination (dust containing tritium produced by plasma-wall interaction and by the maintenance/ refurbishment processes) and the measures to enable safe processing and storage of the waste (wall-liner in the hot cell facility to limit concrete contamination and interim storage enabling tritium decay for waste that could not be directly accepted in the host-country final disposal facilities). (authors)

  15. TFTR neutral beam D-T gas injection system operational experiences of the first two years

    International Nuclear Information System (INIS)

    Oldaker, M.E.; Lawson, J.E.; Stevenson, T.N.; Kamperschroer, J.H.

    1995-01-01

    The TFTR Neutral Beam Tritium Gas Injection System (TGIS) has successfully performed tritium operations since December 1993. TGIS operation has been reliable, with no leaks to the secondary containment to date. Notable operational problems include throughput leaks on fill, exit and piezoelectric valves. Repair of a TGIS requires replacement of the assembly, involving TFTR downtime and extensive purging, since the TGIS assembly is highly contaminated with residual tritium, and is located within secondary containment. Modifications to improve reliability and operating range include adjustable reverse bias voltage to the piezoelectric valves, timing and error calculation changes to tune the PLC and hardwired timing control, and exercising piezoelectric valves without actually pulsing gas prior to use after extended inactivity. A pressure sensor failure required the development of an open loop piezoelectric valve drive control scheme, using a simple voltage ramp to partially compensate for declining plenum pressure. Replacement of TGIS's have been performed, maintaining twelve system tritium capability as part of scheduled project maintenance activity

  16. 76 FR 53842 - Irish Potatoes Grown in Colorado; Modification of the Handling Regulation for Area No. 3

    Science.gov (United States)

    2011-08-30

    ...; Modification of the Handling Regulation for Area No. 3 AGENCY: Agricultural Marketing Service, USDA. ACTION... Flexibility Act (RFA) (5 U.S.C. 601-612), the Agricultural Marketing Service (AMS) has considered the economic.... * * * * * Dated: August 19, 2011. David R. Shipman, Acting Administrator, Agricultural Marketing Service. [FR Doc...

  17. Tritium means of detection and of protection; Le tritium moyens de detection et de protection

    Energy Technology Data Exchange (ETDEWEB)

    Sutra-Fourcade, Y [Commissariat a l' Energie Atomique, Marcoule (France). Centre d' Etudes Nucleaires

    1967-07-01

    The report is an attempt to correlate present data concerning tritium, especially from the health physics points of view. The various detection and measurement methods are reviewed in turn: measurement of tritium in the atmosphere, in liquids and on surfaces. The operation of various types of apparatus is analyzed and the sensitivity limits deduced from laboratory tests are given. Otter sections are devoted to the means of protection which can be used against inhalation of tritium (ventilation, protective clothing) and to calculations of the changes in atmospheric pollution in a given place and of the time spent in a contaminated zone. The last part deals with the decontamination of equipment contaminated with tritium. (author) [French] Le rapport represente un essai de synthese des connaissances actuelles sur le tritium, essentiellement du point de vue de la radioprotection. Les differents moyens de detection et de mesure sont successivement passes en revue: mesure du tritium dans l'atmosphere, dans les liquides, sur les surfaces. Le fonctionnement de differents types d'appareils est analyse et les limites de sensibilite sont donnees d'apres les essais effectues en laboratoire. D'autres paragraphes sont consacres aux moyens de protection contre l'inhalation du tritium (ventilation, vetements de protection), a des calculs d'evolution de pollution atmospherique dans les locaux et de temps de presence en atmosphere contaminee. La derniere partie se rapporte a la de contamination de materiel contamine par du tritium. (auteur)

  18. Tritium monitor for fusion reactors

    Energy Technology Data Exchange (ETDEWEB)

    Jalbert, R.A.

    1982-08-01

    This report describes the design, operation, and performance of a flow-through ion-chamber instrument designed to measure tritium concentrations in air containing /sup 13/N, /sup 16/N, and /sup 41/Ar produced by neutrons generated by D-T fusion devices. The instrument employs a chamber assembly consisting of two coaxial ionization chambers. The inner chamber is the flow-through measuring chamber and the outer chamber is used for current subtraction. A thin wall common to both chambers is opaque to the tritium betas. Currents produced in the two chambers by higher energy radiation are automatically subtracted, leaving only the current due to tritium.

  19. Tritium behaviour in ceramic breeder blankets

    International Nuclear Information System (INIS)

    Miller, J.M.

    1989-01-01

    Tritium release from the candidate ceramic materials, Li 2 O, LiA10 2 , Li 2 SiO 3 , Li 4 SiO 4 and Li 2 ZrO 3 , is being investigated in many blanket programs. Factors that affect tritium release from the ceramic into the helium sweep gas stream include operating temperature, ceramic microstructure, tritium transport and solubility in the solid. A review is presented of the material properties studied and of the irradiation programs and the results are summarized. The ceramic breeder blanket concept is briefly reviewed

  20. Tritium permeation evaluation through vertical target of divertor based on recent tritium transport properties

    OpenAIRE

    中村 博文; 西 正孝

    2003-01-01

    Re-evaluation of tritium permeation through vertical target of divertor under the ITER operation condition was carried out using tritium transport properties in the candidate materials such as the diffusion coefficient and the trapping factors in tungsten for armor, and the surface recombination coefficient on copper for the heat sink obtained by authors' recent investigation (authors' data), which simulated the plasma-facing conditions of ITER. Evaluation with the data set of previous evalua...

  1. Monsanto Mound Laboratory tritium waste control technology development program

    International Nuclear Information System (INIS)

    Bixel, J.C.; Kershner, C.J.; Rhinehammer, T.B.

    1975-01-01

    Over the past four years, implementation of tritium waste control programs has resulted in a 30-fold reduction in the gaseous tritium effluents from Mound Laboratory. However, to reduce tritium waste levels to the ''as low as practicable'' guideline poses problems that are beyond ready solution with state-of-the-art tritium control technology. To meet this advanced technology need, a tritium waste control technology program was initiated. Although the initial thrust of the work under this program was oriented toward development of gaseous effluent treatment systems, its natural evolution has been toward the liquid waste problem. It is thought that, of all the possible approaches to disposal of tritiated liquid wastes, recovery offers the greatest advantages. End products of the recovery processes would be water detritiated to a level below the Radioactivity Concentration Guide (RCG) or detritiated to a level that would permit safe recycle in a closed loop operation and enriched tritium. The detritiated water effluent could be either recycled in a closed loop operation such as in a fuel reprocessing plant or safely released to the biosphere, and the recovered tritium could be recycled for use in fusion reactor studies or other applications

  2. Methane generated from graphite--tritium interaction

    International Nuclear Information System (INIS)

    Coffin, D.O.; Walthers, C.R.

    1979-01-01

    When hydrogen isotopes are separated by cryogenic distillation, as little as 1 ppM of methane will eventually plug the still as frost accumulates on the column packings. Elemental carbon exposed to tritium generates methane spontaneously, and yet some dry transfer pumps, otherwise compatible with tritium, convey the gas with graphite rotors. This study was to determine the methane production rate for graphite in tritium. A pump manufacturer supplied graphite samples that we exposed to tritium gas at 0.8 atm. After 137 days we measured a methane synthesis rate of 6 ng/h per cm 2 of graphite exposed. At this rate methane might grow to a concentration of 0.01 ppM when pure tritium is transferred once through a typical graphite--rotor transfer pump. Such a low methane level will not cause column blockage, even if the cryogenic still is operated continuously for many years

  3. Tritium interactions with steel and construction materials in fusion devices

    International Nuclear Information System (INIS)

    Dickson, R.S.

    1990-11-01

    The literature on the interactions of tritium and tritiated water with metals, glasses, ceramics, concrete, paints, polymers and other organic materials is reviewed in this report Some of the processes affecting the amount of tritium found on various materials, such as permeation, sorption and the conversion of tritium found on various materials, such as permeation, sorption and conversion of elemental tritium (T 2 ) to tritiated water (HTO), are also briefly outlined. Tritium permeation in steels is fairly well understood, but effects of surface preparation and coatings on sorption are not yet clear. Permeation of T 2 into other metals with cleaned surfaces has been studied thoroughly at high temperature, and the effect of surface oxidation has also been explored. The room-temperature permeation rates of low-permeability metals with cleaned surfaces are much faster than indicated by high-temperature results, because of grain-boundary diffusion. Elastomers have been studied to a certain extent, but some mechanisms of interaction with tritium gas and sorbed tritium are unclear. Ceramics have some of the lowest sorption and permeation rates, but ceramic coatings on stainless steels do not lower permeation or tritium as effectively as coatings obtained by oxidation of the steel, probably because of cracking caused by differences in thermal expansion coefficient. Studies on concrete are in their early stages; they show that sorption of tritiated water on concrete is a major concern in cleanup of releases of elemental tritium into air in tritium handling facilities. Some of the codes for modelling releases and sorption of T 2 and HTO contain unproven assumptions about sorption and T 2 → HTO conversion. Several experimental programs will be required in order to clear up ambiguities in previous work and to determine parameters for materials which have not yet been investigated. (146 refs., tab.)

  4. Mass transfer behavior of tritium from air to water through the water surface

    International Nuclear Information System (INIS)

    Takata, Hiroki; Nishikawa, Masabumi; Kamimae, Kozo

    2005-01-01

    It is anticipated that a certain amount of tritiated water exists in the atmosphere of tritium handling facilities, and it is recognized that the hazardous potential of tritiated water is rather high. Then, it is important to grasp the behavior of tritiated water for preserving of the radiation safety. The mass transfer behavior of tritium from air to water through the water surface was discussed in this study. The evaporation rate of water and the condensation rate of water were experimentally examined from measurement of change of the weight of distilled water. The tritium transfer rate from the tritiated water in air to the distilled water was also experimentally examined by using a liquid scintillation counter. Experimental results about change of tritium level in a small beaker placed in the atmosphere with tritiated water showed that diffusion of tritium in water and gas flow in the atmosphere gives considerable effect on tritium transfer. The estimation method of the tritium transfer made in this study was applied to explain the data at The Japan Atomic Power Company second power station at Tsuruga and good agreement was obtained. (author)

  5. Tritium and radon risks for humans

    International Nuclear Information System (INIS)

    Mauna, Traian; Mauna, Andriesica

    2008-01-01

    Full text: The gaseous and liquid releases into environment from the two CANDU type units of Cernavoda NPP now in operation has more tritium contents than other kind of western power reactors. CANDU type reactor uses heavy water as moderator and primary circuit heat transfer agent. In normal operation deuterium go to tritium by neutron capture, the molecule of tritiated heavy water can escape from nuclear systems in very small amounts and so it is released into environment. After release the tritium follows the way of water into environment. One year ago the antinuclear NGO led a hard attack against Units 3 and 4 during the procedure of public acceptance request. This attack tried to demonstrate the great risk for humans of the tritium released by Cernavoda NPP. Obviously this risk is very low as demonstrated by many years reactor operation. SNN as owner of Cernavoda NPP ensures by all kind of information channels about the radioactive potential risk for humans. By the other hand, ironically, the antinuclear NGO makes nothing to inform the people about radon risk magnitude in some areas. This is a well-known fact but the radon concentration in dwellings can be decreased by some improved building procedures. The radon is the first natural cause of lung cancer. The environmental NGO and Romanian authorities do not have an information service about radon hazard data neither in dwellings or in uranium mining areas. The paper compares the properties and risks for tritium and radon. (authors)

  6. Conceptual design report for a remotely operated cask handling system. Revision 1

    International Nuclear Information System (INIS)

    Yount, J.A.; Berger, J.D.

    1984-09-01

    Recent advances in remote handling utilizing commercial robotics are conceptually applied to lowering operator cumulative radiation exposure and increasing throughput during cask handling operations in nuclear shipping and receiving facilities. Revision 1 incorporates functional criteria for facility equipment, equipment technical outline specifications, and interface control drawings to assist Architect Engineers in the application of remote handling to waste shipping and receiving facilities. The document has also been updated to show some of the equipment used in proof-of-principle testing during fiscal year 1984. 10 references, 50 figures, 1 table

  7. Tritium monitoring in environment at ICIT Tritium Separation Facility

    International Nuclear Information System (INIS)

    Varlam, Carmen; Stefanescu, I.; Vagner, Irina; Faurescu, I.; Toma, A.; Dulama, C.; Dobrin, R.

    2008-01-01

    Full text: The Cryogenic Pilot is an experimental project developed within the national nuclear energy research program, which is designed to develop the required technologies for tritium and deuterium separation by cryogenic distillation of heavy water. The process used in this installation is based on a combination between liquid-phase catalytic exchange (LPCE) and cryogenic distillation. Basically, there are two ways that the Cryogenic Pilot could interact with the environment: by direct atmospheric release and through the sewage system. This experimental installation is located 15 km near the region biggest city and in the vicinity - about 1 km, of Olt River. It must be specified that in the investigated area there is an increased chemical activity; almost the entire Experimental Cryogenic Pilot's neighborhood is full of active chemical installations. This aspect is really essential for our study because the sewerage system is connected with the other three chemical plants from the neighborhood. For that reason we progressively established elements of an environmental monitoring program well in advance of tritium operation in order to determine baseline levels. The first step was the tritium level monitoring in environmental water and wastewater of industrial activity from neighborhood. In order to establish the base level of tritium concentration in the environment around the nuclear facilities, we investigated the sample preparation treatment for different types of samples: onion, green beams, grass, apple, garden lettuce, tomato, cabbage, strawberry and grapes. We used azeotropic distillation of all types of samples, the carrier solvent being toluene from different Romanian providers. All measurements for the determination of environmental tritium concentration were performed using liquid scintillation counting (LSC), with the Quantulus 1220 spectrometer. (authors)

  8. Tritium Systems Test Facility. Volume II. Appendixes

    International Nuclear Information System (INIS)

    Anderson, G.W.; Battleson, K.W.; Bauer, W.

    1976-10-01

    This document includes the following appendices: (1) vacuum pumping, (2) tritium migration into the power cycle, (3) separation of hydrogen isotopes, (4) tritium research laboratory, (5) TSTF containment and cleanup, (6) instrumentation and control, (7) gas heating in torus, and (8) TSTF fuel loop operating procedures

  9. Conceptual design of an emergency tritium clean-up system

    International Nuclear Information System (INIS)

    Muller, M.E.

    1978-01-01

    The Los Alamos Scientific Laboratory (LASL) has been selected to design, build, and operate a facility to demonstrate the operability of the tritium-related subsystems that would be required to successfully develop fusion reactor systems. Basically, these subsystems would consist of the deuterium-tritium fuel cycle and associated environmental control systems. An emergency tritium clean-up subsystem (ETC) for this facility will be designed to remove tritium from the cell atmosphere if an accident causes the primary and secondary tritium containment to be breached. Conceptually, the ETC will process cell air at the rate of 0.65 actual m 3 /s (1385 ACFM) and will achieve an overall decontamination factor of 10 6 for tritium oxide (T 2 O). Following the maximum credible release of 100 g of tritium, the ETC will restore the cell to operational status within 24 h without a significant release of tritium to the environment. The basic process will include compression of the air to 0.35 MPa (3.5 atm) in a reciprocating compressor followed by oxidation of the tritium to T 2 O in a catalytic reactor. The air will be cooled to 275 K (350 0 F) to remove most of the moisture, including T 2 O, as a condensate. The remaining moisture will be removed by molecular sieve dryer beds that incorporate a water-swamping step between beds, allowing greater T 2 O removal. A portion of the detritiated air will be recirculated to the cell; the remainder will be exhausted to the building ventilation stack to maintain a slight negative pressure in the cell. The ETC will be designed for maximum flexibility so that studies can be performed that involve various aspects of room air detritiation

  10. Draft programmatic environmental impact statement for tritium supply and recycling

    International Nuclear Information System (INIS)

    1995-02-01

    Tritium, a radioactive gas used in all of the Nation's nuclear weapons, has a short half-life and must be replaced periodically in order for the weapon to operate as designed. Currently, the Nation has no tritium production capability. The Tritium Supply and Recycling PEIS evaluates the alternatives for the siting, construction, and operation of tritium supply and recycling facilities at each of five candidate sites: the Idaho Engineering Laboratory, the Nevada Test Site, the Oak Ridge Reservation, the Pantex Plant, and the Savannah River Site. Alternatives for new tritium supply and recycling facilities consist of four different tritium supply technologies; Heavy Water Reactor, Modular High Temperature Gas-cooled Reactor, Advanced Light Water Reactor, and Accelerator Production of Tritium. The PEIS also evaluates the impacts of using a commercial light water reactor, either as a contingency in the event of a national emergency or if purchased by the DOE and converted to defense purposes. Additionally, the PEIS includes an analysis of multi-purpose reactors which would produce tritium, dispose of plutonium and produce electricity. Volume I contains the findings of these analyses, Volume II contains the Appendices and supporting data

  11. Tritium analysis at TFTR

    International Nuclear Information System (INIS)

    Voorhees, D.R.; Rossmassler, R.L.; Zimmer, G.

    1995-01-01

    The tritium analytical system at TFRR is used to determine the purity of tritium bearing gas streams in order to provide inventory and accountability measurements. The system includes a quadrupole mass spectrometer and beta scintillator originally configured at Monsanto Mound Research Laboratory in the late 1970's and early 1980's. The system was commissioned and tested between 1991 and 1992 and is used daily for analysis of calibration standards, incoming tritium shipments, gases evolved from uranium storage beds and measurement of gases returned to gas holding tanks. The low resolution mass spectrometer is enhanced by the use of a metal getter pump to aid in resolving the mass 3 and 4 species. The beta scintillator complements the analysis as it detects tritium bearing species that often are not easily detected by mass spectrometry such as condensable species or hydrocarbons containing tritium. The instruments are controlled by a personal computer with customized software written with a graphical programming system designed for data acquisition and control. A discussion of the instrumentation, control systems, system parameters, procedural methods, algorithms, and operational issues will be presented. Measurements of gas holding tanks and tritiated water waste streams using ion chamber instrumentation are discussed elsewhere

  12. Measurement of tritium concentration in urine

    International Nuclear Information System (INIS)

    Sekiyama, Shigenobu; Deshimaru, Takehide

    1979-01-01

    Concerning the safety management of the advanced thermal reactor ''Fugen'', the internal exposure management for tritium is important, because heavy water is used as the moderator in the reactor, and tritium is produced in the heavy water. Tritium is the radioactive nuclide with the maximum β-ray energy of 18 keV, and the radiation exposure is limited to the internal exposure in human bodies, as tritium is taken in through the skin and by breathing. The tritium concentration in urine of the operators of the Fugen plant was measured. As for tritium measurement, the analysis of raw urine, the analysis after passing through mixed ion exchange resin and the analysis after distillation are applied. The scintillator, the liquid scintillation counter, the ion exchange resin and the distillator are introduced. The preliminary survey was conducted on the urine sample, the scintillator the calibration, etc. The measuring condition, the measurement of efficiency, and the limitation of detection with various background are explained, with the many experimental data and the calculating formula. Concerning the measured tritium concentration in urine, the tritium concentrations in distilled urine, raw urine and the urine refined with ion exchange resin were compared, and the correlation formulae are presented. The actual tritium concentration value in urine was less than 50 pci/ml. The measuring methods of raw urine and the urine refined with ion exchange resin are adequate as they are quick and accurate. (Nakai, Y.)

  13. Tritium dynamics in soils and plants grown under three irrigation regimes at a tritium processing facility in Canada

    International Nuclear Information System (INIS)

    Mihok, S.; Wilk, M.; Lapp, A.; St-Amant, N.; Kwamena, N.-O.A.; Clark, I.D.

    2016-01-01

    The dynamics of tritium released from nuclear facilities as tritiated water (HTO) have been studied extensively with results incorporated into regulatory assessment models. These models typically estimate organically bound tritium (OBT) for calculating public dose as OBT itself is rarely measured. Higher than expected OBT/HTO ratios in plants and soils are an emerging issue that is not well understood. To support the improvement of models, an experimental garden was set up in 2012 at a tritium processing facility in Pembroke, Ontario to characterize the circumstances under which high OBT/HTO ratios may arise. Soils and plants were sampled weekly to coincide with detailed air and stack monitoring. The design included a plot of native grass/soil, contrasted with sod and vegetables grown in barrels with commercial topsoil under natural rain and either low or high tritium irrigation water. Air monitoring indicated that the plume was present infrequently at concentrations of up to about 100 Bq/m"3 (the garden was not in a major wind sector). Mean air concentrations during the day on workdays (HTO 10.3 Bq/m"3, HT 5.8 Bq/m"3) were higher than at other times (0.7–2.6 Bq/m"3). Mean Tissue Free Water Tritium (TFWT) in plants and soils and OBT/HTO ratios were only very weakly or not at all correlated with releases on a weekly basis. TFWT was equal in soils and plants and in above and below ground parts of vegetables. OBT/HTO ratios in above ground parts of vegetables were above one when the main source of tritium was from high tritium irrigation water (1.5–1.8). Ratios were below one in below ground parts of vegetables when irrigated with high tritium water (0.4–0.6) and above one in vegetables rain-fed or irrigated with low tritium water (1.3–2.8). In contrast, OBT/HTO ratios were very high (9.0–13.5) when the source of tritium was mainly from the atmosphere. TFWT varied considerably through time as a result of SRBT's operations; OBT/HTO ratios showed no clear

  14. Internal dose from tritium at Wolsung nuclear power plant

    International Nuclear Information System (INIS)

    Hee Geun Kim; Jeong Yull Dho; Myung Jae Song

    1995-01-01

    Tritium is produced in large quantities at heavy water nuclear power reactors via the neutron activation reaction 2 H(n,γ) 3 H. At Wolsung nuclear power plant which has a CANDU reactor, the tritium concentrations in coolant and in moderator systems are 1.5 Ci/Kg-D 2 O and 35 Ci/kg-D 2 O, respectively, after 12 years of operation. The airborne tritium concentration in main access area is normally less than 5 MPCa except short-term peaks. The average tritium concentrations in main access controlled areas are normally less than 100 MPCa. Tritium is mainly present in the air of workplace of CANDU reactors as a tritiated water vapour. Airborne tritiated water vapour enters the workers body via inhalation and absorption through skin and can result in a significant dose. The occupational doses from tritium at Wolsung NPP have been maintained below 1 man-Sv per year so far. The tritium contribution to the total plant man-Sv changes between 30 percent and 50 percent. For the mitigation of tritium inhalation, various protective equipment are being used at Wolsung NPP. The respirator system was devised at Wolsung NPP in order to remove tritiated water vapours from the inhaled air. A respirator is connected to a small plastic bottle filled with ice cubes. The system devised shows a good tritium removal efficiency. The air pressure drop through the ice cubes is minimal. The operation cost of the system is also very cheap. Further mitigation of tritium inhalation is heavily dependant on the source term reduction. One of the ultimate solutions is to introduce a tritium removal facility. (author). 7 figs., 3 tabs

  15. Final programmatic environmental impact statement for tritium supply and recycling. Volume III

    International Nuclear Information System (INIS)

    1995-10-01

    Tritium, a radioactive gas used in all of the Nation's nuclear weapons, has a short half-life and must be replaced periodically in order for the weapon to operate as designed. Currently, there is no capability to produce the required amounts of tritium within the Nuclear Weapons Complex. The PEIS for Tritium Supply and Recycling evaluates the alternatives for the siting, construction, and operation of tritium supply and recycling facilities at each of five candidate sites: the Idaho National Engineering Laboratory, the Nevada Test Site, the Oak Ridge Reservation, the Pantex Plant, and the Savannah River Site. Alternatives for new tritium supply and recycling facilities consist of four different tritium supply technologies: Heavy Water Reactor, Modular High Temperature Gas-Cooled Reactor, Advanced Light Water Reactor, and Accelerator Production of Tritium. The PEIS also evaluates the impacts of the DOE purchase of an existing operating or partially completed commercial light water reactor or the DOE purchase of irradiation services contracted from commercial power reactors. Additionally, the PEIS includes an analysis of multipurpose reactors that would produce tritium, dispose of plutonium, and produce electricity. Evaluation of impacts on land resources, site infrastructure, air quality and acoustics, water resources, geology and soils, biotic resources, cultural and paleontological resources, socioeconomics, radiological and hazardous chemical impacts during normal operation and accidents to workers and the public, waste management, and intersite transport are included in the assessment

  16. Tritium pellet injector design for tokamak fusion test reactor

    International Nuclear Information System (INIS)

    Fisher, P.W.; Baylor, L.R.; Bryan, W.E.

    1985-01-01

    A tritium pellet injector (TPI) system has been designed for the Tokamak Fusion Test Reactor (TFTR) Q approx. 1 phase of operation. The injector gun utilizes a radial design with eight independent barrels and a common extruder to minimize tritium inventory. The injection line contains guide tubes with intermediate vacuum pumping stations and fast valves to minimize propellant leakage to the torus. The vacuum system is designed for tritium compatibility. The entire injector system is contained in a glove box for secondary containment protection against tritium release. Failure modes and effects have been analyzed, and structural analysis has been performed for most intense predicted earthquake conditions. Details of the design and operation of this system are presented in this paper

  17. Critical element development of double seal door for tritium containment

    International Nuclear Information System (INIS)

    Kanamori, Naokazu; Kakudate, Satoshi; Oka, Kiyoshi; Nakahira, Masataka; Taguchi, Kou; Obara, Kenjiro; Tada, Eisuke; Shibanuma, Kiyoshi; Seki, Masahiro

    1994-08-01

    In fusion experimental reactors, the in-vessel components such as blanket are activated due to D-T operation and they have to be assembled and replaced by remote operation through port penetration of plasma vacuum vessel. A double seal door is inevitably required at an interface between vacuum vessel port and maintenance cask in order to avoid the dispersion of tritium and activated dust during in-vessel component handling. The double seal door should have two open/close doors with four seal surfaces so as to keep leak tightness both of the vacuum vessel and the maintenance cask when doors closed, and to provide access space for handling in-vessel components when doors opened. A prototype compact double seal door with an attractive kinematics of parabolic trajectory has been proposed so as to minimize dead space for the door open/close operation, compared with ordinary slide or hinge type door. Based on this design concept, a sub-scaled model of double seal door with trapezoidal cross-section of around 0.2 m 2 has been fabricated. Through the preliminary experiments such as open/close performance, the double seal door mechanism with parabolic trajectory has been successfully demonstrated. As for leak tightness, seal characteristics of a polyimide ring irradiated up to 10 MGy have been measured. (author)

  18. Effectiveness Monitoring Report, MWMF Tritium Phytoremediation Interim Measures.

    Energy Technology Data Exchange (ETDEWEB)

    Hitchcock, Dan; Blake, John, I.

    2003-02-10

    This report describes and presents the results of monitoring activities during irrigation operations for the calendar year 2001 of the MWMF Interim Measures Tritium Phytoremediation Project. The purpose of this effectiveness monitoring report is to provide the information on instrument performance, analysis of CY2001 measurements, and critical relationships needed to manage irrigation operations, estimate efficiency and validate the water and tritium balance model.

  19. Tritium in the DIII-D carbon tiles

    International Nuclear Information System (INIS)

    Taylor, P.L.; Kellman, A.G.; Lee, R.L.

    1993-06-01

    The amount of tritium in the carbon tiles used as a first wall in the DIII-D tokamak was measured recently when the tiles were removed and cleaned. The measurements were made as part of the task of developing the appropriate safety procedures for processing of the tiles. The surface tritium concentration on the carbon tiles was surveyed and the total tritium released from tile samples was measured in test bakes. The total tritium in all the carbon tiles at the time the tiles were removed for cleaning is estimated to be 15 mCi and the fraction of tritium retained in the tiles from DIII-D operations has a lower bound of 10%. The tritium was found to be concentrated in a narrow surface layer on the plasma facing side of the tile, was fully released when baked to 1,000 degree C, and was released in the form of tritiated gas (DT) as opposed to tritiated water (DTO) when baked

  20. A sub-boiling distillation method for the preparation of low carbon content water from urine samples for tritium measurement by liquid scintillation counting

    International Nuclear Information System (INIS)

    Nogawa, Norio; Makide, Yoshihiro

    1999-01-01

    A new preparation method was developed for obtaining low carbon content water from urine samples for the measurement of tritium by a liquid scintillation counter. The method uses a simple and convenient subboiling distillation bottle. Many urine samples have been purified by this method and the change of tritium level in a tritium-handling radiation-worker was observed

  1. Physical inventory by use of modeling for the tritium aqueous waste recovery system

    International Nuclear Information System (INIS)

    Sienkiewicz, C.J.; Lentz, J.E.; Wiggins, D.V.

    1988-01-01

    Physical inventory requirements for the Tritium Aqueous Waste Recovery System (TAWRS) presented constraints that required unique solutions. Available analytical techniques for which sound measurement control practices existed could not be readily adapted to the system without significant modifications and expense. Based on the assumption that would accurately estimate total system inventory given a few key measurements, a model was developed for TAWRS. Tritium concentrations in two streams, the tritiated feed stream to the process and the tritiated hydrogen stream generated by the electrolysis cells, provided the key values to the model. The proposed mathematical model relates the tritium concentration throughout the system to the tritium concentration in these two streams. Testing of the system using low-level tritiated feed water was conducted to characterize tritium distribution in the system and to relate key values to total inventory. 4 refs., 2 figs.,

  2. Cooling tower modification for intermittent operation

    International Nuclear Information System (INIS)

    Midkiff, W.S.

    1975-03-01

    One of the cooling towers at Los Alamos Scientific Laboratory is being operated intermittently. The cooling tower has been modified to restrict air flow and to keep the tower from drying out. The modifications are relatively inexpensive, simple to operate, and have proved effective. (U.S.)

  3. Surface erosion and tritium inventory analysis for CIT [Compact Ignition Tokamak

    International Nuclear Information System (INIS)

    Brooks, J.N.; Dylla, H.F.

    1990-09-01

    The expected buildup of co-deposited tritium on the CIT carbon divertor and first wall surfaces and operational methods of minimizing the inventory have been examined. The analysis uses impurity transport computer codes, and associated plasma and tritium retention models, to compute the thickness of redeposited sputtered carbon and the resulting co-deposited tritium inventory on the divertor plates and first wall. Predicted erosion/growth rates are dominated by the effect of gaps between carbon tiles. The overall results appear favorable, showing stable operation (finite self-sputtering) and acceptably low (∼25 Ci/pulse) co-deposited tritium rates, at high surface temperature (1700 degree C) design conditions. These results, however, are highly speculative due to serious model inadequacies at the high sputtering rates predicted. If stable operation is obtainable, the prospects appear good for adequate tritium inventory control via helium-oxygen glow discharge cleaning. 25 refs

  4. Tritium inventory measurements using calorimetry

    International Nuclear Information System (INIS)

    Kapulla, H.; Kraemer, R.; Heine, R.

    1992-01-01

    In the past calorimetry has been developed as a powerful tool in radiometrology. Calorimetric methods have been applied for the determination of activities, half lives and mean energies released during the disintegration of radioactive isotopes. The fundamental factors and relations which determine the power output of radioactive samples are presented and some basic calorimeter principles are discussed in this paper. At the Kernforschungszentrum Karlsruhe (KfK) a family of 3 calorimeters has been developed to measure the energy release from radiative waste products arising from reprocessing operations. With these calorimeters, radiative samples with sizes from a few cm 3 to 2 ·10 5 cm 3 and heat ratings ranging from a few nW to kW can be measured. After modifications of tits inner part the most sensitive calorimeter among the three calorimeters mentioned above would be best suited for measuring the tritium inventory in T-getters of the Amersham-type

  5. Influence of start up and pulsed operation on tritium release and inventory of NET ceramic blanket

    International Nuclear Information System (INIS)

    Iseli, M.; Esser, B.

    1989-01-01

    A first estimate for the tritium release behaviour of a ceramic breeder blanket in pulsed operation is obtained by assuming a linear steady state temperature distribution and taking into account the time constant of the thermal behaviour. The release behaviour of the breeder exposed to consecutive periods of tritium generation is described with an analytical solution of the diffusion equation. The results are compared with a simple exponential approach valid for surfacte desorption controlled release. The exponential model is used to simulate a blanket with aluminate as breeder material, which takes longest to reach steady state. The simulation demonstrates that a significant fraction (>67%) of steady state can be achieved after a testing time of about one day. (author). 7 refs.; 8 figs.; 3 tabs

  6. Experience of remote under water handling operations at Tarapur Atomic Power Station

    International Nuclear Information System (INIS)

    Agarwal, S.K.

    1990-01-01

    Each Refuelling outage of Tarapur Atomic Power Station Reactors involves a great deal of remote underwater handling operations using special remote handling tools, working deep down in the reactor vessel under about sixty feet of water and in the narrow confines of highly radioactive core. The remote underwater handling operations include incore and out of core sipping operations, fuel reloading or shuffling, uncoupling of control rod drives, replacement and shuffling of control blades, replacement of local power range monitors, spent fuel shipment in casks, retrieval of fallen or displaced fuel top guide spacers, orifices and their installation, underwater CCTV inspection of reactor internals, core verification, channelling and dechannelling of fuel bundles, inspection of fuel bundles and channels, unbolting and removal of old racks, installation of high density racks, removal and reinstallation of fuel support plugs and guide tubes, underwater cutting of irradiated hardware material and their disposal, fuel reconstitution, removal and reinstallation of system dryer separator etc.. The paper describes in brief the salient experience of remote underwater handling operations at TAPS especially the unusual problems faced and solved, by using special tools, employing specific techniques and by repeated efforts, patience, ingenuity and skills. (author). 10 figs

  7. Advanced operator interface design for CANDU-3 fuel handling system

    Energy Technology Data Exchange (ETDEWEB)

    Arapakota, D [Atomic Energy of Canada Ltd., Saskatoon, SK (Canada)

    1996-12-31

    The Operator Interface for the CANDU 3 Fuel Handling (F/H) System incorporates several improvements over the existing designs. A functionally independent sit-down CRT (cathode-ray tube) based Control Console is provided for the Fuel Handling Operator in the Main Control Room. The Display System makes use of current technology and provides a user friendly operator interface. Regular and emergency control operations can be carried out from this control console. A stand-up control panel is provided as a back-up with limited functionality adequate to put the F/H System in a safe state in case of an unlikely non-availability of the Plant Display System or the F/H Control System`. The system design philosophy, hardware configuration and the advanced display system features are described in this paper The F/H Operator Interface System developed for CANDU 3 can be adapted to CANDU 9 as well as to the existing stations. (author).

  8. Advanced operator interface design for CANDU-3 fuel handling system

    International Nuclear Information System (INIS)

    Arapakota, D.

    1995-01-01

    The Operator Interface for the CANDU 3 Fuel Handling (F/H) System incorporates several improvements over the existing designs. A functionally independent sit-down CRT (cathode-ray tube) based Control Console is provided for the Fuel Handling Operator in the Main Control Room. The Display System makes use of current technology and provides a user friendly operator interface. Regular and emergency control operations can be carried out from this control console. A stand-up control panel is provided as a back-up with limited functionality adequate to put the F/H System in a safe state in case of an unlikely non-availability of the Plant Display System or the F/H Control System'. The system design philosophy, hardware configuration and the advanced display system features are described in this paper The F/H Operator Interface System developed for CANDU 3 can be adapted to CANDU 9 as well as to the existing stations. (author)

  9. Tritium in surface water of the Yenisei river Basin

    International Nuclear Information System (INIS)

    Bondareva, L.G.; Bolsunovsky, A.Ya.

    2005-01-01

    The paper reports an investigation of the tritium content in the surface waters of the Yenisei River basin near the Mining-and-Chemical Combine (MCC). In 2001-2003 the maximum tritium concentration in the Yenisei River did not exceed 4±1 Bq/L. It has been found that there are surface waters containing enhanced tritium, up to 168 Bq/L, as compared with the background values for the Yenisei River. There are two possible sources of tritium input. First, the last operating reactor of the MCC, which still uses the Yenisei water as coolant. Second, tritium may come from the deep aquifers at the Severny testing site. For the first time tritium has been found in two aquatic plant species of the Yenisei River with maximal tritium concentration 304 Bq/Kg wet weight. Concentration factors of tritium for aquatic plants are much higher than 1

  10. The tritium and the controlled fusion reactors

    International Nuclear Information System (INIS)

    Leger, D.; Rouyer, J.L.

    1986-04-01

    It is shown how tritium is used how it is circulating in a fusion reactor. The great functions of tritium circuits are detailed: reprocessing of burnt gases, reprocessing of gases coming from neutral injectors, reprocessing from gaseous wastes, detritiation of cooling fluids. Current technologic developments are quoted. Then tritium confinement and containment, in normal or accidental situations, are displayed. Limitation devices of effluents and release for normal operating (noticeably the reprocessing systems of atmosphere) and safety and protection systems in case of accident are described [fr

  11. Review of tritium behavior in HTGR systems

    International Nuclear Information System (INIS)

    Gainey, B.W.

    1976-01-01

    The available experimental evidence from laboratory and reactor studies pertaining to tritium production, capture, release, and transport within an HTGR leading to release to the environment is reviewed. Possible mechanisms for release, capture, and transport are considered and a simple model was used to calculate the expected tritium release from HTGRs. Comparison with Federal regulations governing tritium release confirm that expected HTGR releases will be well within the allowable release limits. Releases from HTGRs are expected to be somewhat less than from LWRs based on the published LWR operating data. Areas of research deserving further study are defined but it is concluded that a tritium surveillance at Fort St. Vrain is the most immediate need

  12. Tritium means of detection and of protection

    International Nuclear Information System (INIS)

    Sutra-Fourcade, Y.

    1967-01-01

    The report is an attempt to correlate present data concerning tritium, especially from the health physics points of view. The various detection and measurement methods are reviewed in turn: measurement of tritium in the atmosphere, in liquids and on surfaces. The operation of various types of apparatus is analyzed and the sensitivity limits deduced from laboratory tests are given. Otter sections are devoted to the means of protection which can be used against inhalation of tritium (ventilation, protective clothing) and to calculations of the changes in atmospheric pollution in a given place and of the time spent in a contaminated zone. The last part deals with the decontamination of equipment contaminated with tritium. (author) [fr

  13. In-vessel tritium retention and removal in ITER

    International Nuclear Information System (INIS)

    Federici, G.; Anderl, R.A.

    1998-01-01

    The International Thermonuclear Experimental Reactor (ITER) is envisioned to be the next major step in the world's fusion program from the present generation of tokamaks and is designed to study fusion plasmas with a reactor relevant range of plasma parameters. During normal operation, it is expected that a fraction of the unburned tritium, that is used to routinely fuel the discharge, will be retained together with deuterium on the surfaces and in the bulk of the plasma facing materials (PFMs) surrounding the core and divertor plasma. The understanding of he basic retention mechanisms (physical and chemical) involved and their dependence upon plasma parameters and other relevant operation conditions is necessary for the accurate prediction of the amount of tritium retained at any given time in the ITER torus. Accurate estimates are essential to assess the radiological hazards associated with routine operation and with potential accident scenarios which may lead to mobilization of tritium that is not tenaciously held. Estimates are needed to establish the detritiation requirements for coolant water, to determine the plasma fueling and tritium supply requirements, and to establish the needed frequency and the procedures for tritium recovery and clean-up. The organization of this paper is as follows. Section 2 provides an overview of the design and operating conditions of the main components which define the plasma boundary of ITER. Section 3 reviews the erosion database and the results of recent relevant experiments conducted both in laboratory facilities and in tokamaks. These data provide the experimental basis and serve as an important benchmark for both model development (discussed in Section 4) and calculations (discussed in Section 5) that are required to predict tritium inventory build-up in ITER. Section 6 emphasizes the need to develop and test methods to remove the tritium from the codeposited C-based films and reviews the status and the prospects of the

  14. In-vessel tritium retention and removal in ITER

    Energy Technology Data Exchange (ETDEWEB)

    Federici, G. [ITER JWS Garching Co-Center (Germany); Anderl, R.A. [Lockheed Martin Idaho Technologies Co., Idaho Falls, ID (United States). Idaho National Engineering and Environmental Lab.; Andrew, P. [JET Joint Undertaking, Abingdon (United Kingdom)] [and others

    1998-06-01

    The International Thermonuclear Experimental Reactor (ITER) is envisioned to be the next major step in the world`s fusion program from the present generation of tokamaks and is designed to study fusion plasmas with a reactor relevant range of plasma parameters. During normal operation, it is expected that a fraction of the unburned tritium, that is used to routinely fuel the discharge, will be retained together with deuterium on the surfaces and in the bulk of the plasma facing materials (PFMs) surrounding the core and divertor plasma. The understanding of he basic retention mechanisms (physical and chemical) involved and their dependence upon plasma parameters and other relevant operation conditions is necessary for the accurate prediction of the amount of tritium retained at any given time in the ITER torus. Accurate estimates are essential to assess the radiological hazards associated with routine operation and with potential accident scenarios which may lead to mobilization of tritium that is not tenaciously held. Estimates are needed to establish the detritiation requirements for coolant water, to determine the plasma fueling and tritium supply requirements, and to establish the needed frequency and the procedures for tritium recovery and clean-up. The organization of this paper is as follows. Section 2 provides an overview of the design and operating conditions of the main components which define the plasma boundary of ITER. Section 3 reviews the erosion database and the results of recent relevant experiments conducted both in laboratory facilities and in tokamaks. These data provide the experimental basis and serve as an important benchmark for both model development (discussed in Section 4) and calculations (discussed in Section 5) that are required to predict tritium inventory build-up in ITER. Section 6 emphasizes the need to develop and test methods to remove the tritium from the codeposited C-based films and reviews the status and the prospects of the

  15. Tritium transport calculations for the IFMIF Tritium Release Test Module

    Energy Technology Data Exchange (ETDEWEB)

    Freund, Jana, E-mail: jana.freund@kit.edu; Arbeiter, Frederik; Abou-Sena, Ali; Franza, Fabrizio; Kondo, Keitaro

    2014-10-15

    Highlights: • Delivery of material data for the tritium balance in the IFMIF Tritium Release Test Module. • Description of the topological models in TMAP and the adapted fusion-devoted Tritium Permeation Code (FUS-TPC). • Computation of release of tritium from the breeder solid material into the purge gas. • Computation of the loss of tritium over the capsule wall, rig hull, container wall and purge gas return line. - Abstract: The IFMIF Tritium Release Test Module (TRTM) is projected to measure online the tritium release from breeder ceramics and beryllium pebble beds under high energy neutron irradiation. Tritium produced in the pebble bed of TRTM is swept out continuously by a purge gas flow, but can also permeate into the module's metal structures, and can be lost by permeation to the environment. According analyses on the tritium inventory are performed to support IFMIF plant safety studies, and to support the experiment planning. This paper describes the necessary elements for calculation of the tritium transport in the Tritium Release Test Module as follows: (i) applied equations for the tritium balance, (ii) material data from literature and (iii) the topological models and the computation of the five different cases; namely release of tritium from the breeder solid material into the purge gas, loss of tritium over the capsule wall, rig hull, container wall and purge gas return line in detail. The problem of tritium transport in the TRTM has been studied and analyzed by the Tritium Migration Analysis Program (TMAP) and the adapted fusion-devoted Tritium Permeation Code (FUS-TPC). TMAP has been developed at INEEL and now exists in Version 7. FUS-TPC Code was written in MATLAB with the original purpose to study the tritium transport in Helium Cooled Lead Lithium (HCLL) blanket and in a later version the Helium Cooled Pebble Bed (HCPB) blanket by [6] (Franza, 2012). This code has been further modified to be applicable to the TRTM. Results from the

  16. Tritium transport calculations for the IFMIF Tritium Release Test Module

    International Nuclear Information System (INIS)

    Freund, Jana; Arbeiter, Frederik; Abou-Sena, Ali; Franza, Fabrizio; Kondo, Keitaro

    2014-01-01

    Highlights: • Delivery of material data for the tritium balance in the IFMIF Tritium Release Test Module. • Description of the topological models in TMAP and the adapted fusion-devoted Tritium Permeation Code (FUS-TPC). • Computation of release of tritium from the breeder solid material into the purge gas. • Computation of the loss of tritium over the capsule wall, rig hull, container wall and purge gas return line. - Abstract: The IFMIF Tritium Release Test Module (TRTM) is projected to measure online the tritium release from breeder ceramics and beryllium pebble beds under high energy neutron irradiation. Tritium produced in the pebble bed of TRTM is swept out continuously by a purge gas flow, but can also permeate into the module's metal structures, and can be lost by permeation to the environment. According analyses on the tritium inventory are performed to support IFMIF plant safety studies, and to support the experiment planning. This paper describes the necessary elements for calculation of the tritium transport in the Tritium Release Test Module as follows: (i) applied equations for the tritium balance, (ii) material data from literature and (iii) the topological models and the computation of the five different cases; namely release of tritium from the breeder solid material into the purge gas, loss of tritium over the capsule wall, rig hull, container wall and purge gas return line in detail. The problem of tritium transport in the TRTM has been studied and analyzed by the Tritium Migration Analysis Program (TMAP) and the adapted fusion-devoted Tritium Permeation Code (FUS-TPC). TMAP has been developed at INEEL and now exists in Version 7. FUS-TPC Code was written in MATLAB with the original purpose to study the tritium transport in Helium Cooled Lead Lithium (HCLL) blanket and in a later version the Helium Cooled Pebble Bed (HCPB) blanket by [6] (Franza, 2012). This code has been further modified to be applicable to the TRTM. Results from the

  17. Remotely-operated equipment for inspection, measurement and handling

    CERN Document Server

    Bertone, C; CERN. Geneva. TS Department

    2008-01-01

    As part of the application of ALARA radiation dose reduction principles at CERN, inspection, measurement and handling interventions in controlled areas are being studied in detail. A number of activities which could be carried out as remote operations have already been identified and equipment is being developed. Example applications include visual inspection to check for ice formation on LHC components or water leaks, measurement of radiation levels before allowing personnel access, measurement of collimator or magnet alignment, visual inspection or measurements before fire service access in the event of fire, gas leak or oxygen deficiency. For these applications, a modular monorail train, TIM, has been developed with inspection and measurement wagons. In addition TIM provides traction, power and data communication for lifting and handling units such as the remote collimator exchange module and vision for other remotely operated units such as the TAN detector exchange mini-cranes. This paper describes the eq...

  18. Spent fuel cask handling at an operating nuclear power plant

    International Nuclear Information System (INIS)

    Pal, A.C.

    1988-01-01

    The importance of spent fuel handling at operating nuclear power plants cannot be overstated. Because of its highly radioactive nature, however, spent fuel must be handled in thick, lead-lined containers or casks. Thus, all casks for spent fuel handling are heavy loads by the US Nuclear Regulatory Commission's definition, and any load-drop must be evaluated for its potential to damage safety-related equipment. Nuclear Regulatory Guide NUREG-0612 prescribes the regulatory requirements of alternative heavy-load-handling methodologies such as (a) by providing cranes that meet the requirements of NUREG-0554, which shall be called the soft path, or (b) by providing protective devices at all postulated load-drop areas to prevent any damage to safety-related equipment, which shall be called the hard path. The work reported in this paper relates to cask handling at New York Power Authority's James A. FitzPatrick (JAF) plant

  19. Final programmatic environmental impact statement for tritium supply and recycling. Volume 1

    International Nuclear Information System (INIS)

    1995-10-01

    Tritium, a radioactive gas used in all of the Nation's nuclear weapons, has a short half-life and must be replaced periodically in order for the weapon to operate as designed. Currently, there is no capability to produce the required amounts of tritium within the Nuclear Weapons Complex. The PEIS for Tritium Supply and Recycling evaluates the alternatives for the siting, construction, and operation of tritium supply and recycling facilities at each of five candidate sites: the Idaho National Engineering Laboratory, the Nevada Test Site, the Oak Ridge Reservation, the Pantex Plant, and the Savannah River Site. Alternatives for new tritium supply and recycling facilities consist of four different tritium supply technologies: Heavy Water Reactor, Modular High Temperature Gas-Cooled Reactor, Advanced Light Water Reactor, and Accelerator Production of Tritium. The PEIS also evaluates the impacts of the DOE purchase of an existing operating or partially completed commercial light water reactor or the DOE purchase of irradiation services contracted from commercial power reactors. Additionally, the PEIS includes an analysis of multipurpose reactors that would produce tritium, dispose of plutonium, and produce electricity. Evaluation of impacts on land resources, site infrastructure, air quality and acoustics, water resources, geology and soils, biotic resources, cultural and paleontological resources, socioeconomics, radiological and hazardous chemical impacts during normal operation and accidents to workers and the public, waste management, and intersite transport are included in the assessment. 550 refs

  20. Maintenance of the JET active gas handling system

    International Nuclear Information System (INIS)

    Brennan, P.D.; Bell, A.C.; Brown, K.; Cole, C.; Cooper, B.; Gibbons, C.; Harris, M.; Jones, G.; Knipe, S.; Lewis, J.; Manning, C.; Miller, A.; Perevezentsev, A.; Skinner, N.; Stagg, R.; Stead, M.; Thomas, R.; Yorkshades, J.

    2003-01-01

    The JET active gas handling system (AGHS) has been in operation in conjunction with the JET machine since Spring 1997. The tritium levels within the vessel have remained sufficiently high, 6.2 g at the end of the DTE1 experiment and currently 1.5 g, such that the AGHS has been required to operate continuously to detritiate gases liberated during D-D operations and to maintain discharges to the environment to ALARP. Maintaining the system to ensure continued operation has been a key factor in guaranteeing the continued availability of the essential sub-systems. The operational history of the JET AGHS has been previously documented in a number of papers [R. Laesser, et al. Proc. of the 19th SOFT Conf. 1 (1996) 227; R. Laesser, et al., Fusion Eng. Des. 46 (1999) 307; P.D. Brennan, et al., 18th Symp. on Fusion Eng., 1999]. Operational downtime is minimised through well-engineered sub-systems that use high integrity components. Outage, contamination and operator dosage are minimised through pre-planned and prepared maintenance operations. The reliability of sub-system critical condition fault detection is demonstrated through routine testing of hard-wired alarms and interlocks

  1. Installation and operation of a chain of detection of tritium for groundwater dating at Madagascar-INSTN

    International Nuclear Information System (INIS)

    ANDRIAMIHARITSOA, G.

    2008-01-01

    The present study aims at installing and operating the Madagascar -INSTN tritium line for groundwater dating. The laboratory was first installed in July 2007 and is operational since January 2008. The objective of the laboratory is to determine the tritium activity in water sample by electrolytic enrichment prior to Liquid Scintillation Counting. The spike analyses showed that the mean value of the enrichment factor is 23.78 and that of the enrichment parameter is 0.88 for the first analysis. Such factor value is much higher than the usual determined value of 18 for a first enrichment run and shows that the electrolytic cells are working properly. the standard deviations are 1.6 and 0.02 for the enrichment factor and parameter, respectively. This indicates that the cells performance is approximately the same. The dead water activity is very low, with a value of 1.07cpm, while the inside and outside contamination control water activities are 0.5 cpm and 0.4 cpm, respectively. These values indicate that the laboratory is free of any contamination. [fr

  2. Tritium migration studies at the Nevada Test Site

    International Nuclear Information System (INIS)

    Schulz, R.K.; Weaver, M.O.

    1993-05-01

    Emanation of tritium from waste containers is a commonly known phenomenon. Release of tritium from buried waste packages was anticipated; therefore, a research program was developed to study both the rate of tritium release from buried containers and subsequent migration of tritium through soil. Migration of tritium away from low-level radioactive wastes buried in Area 5 of the Nevada Test Site was studied. Four distinct disposal events were investigated. The oldest burial event studied was a 1976 emplacement of 3.5 million curies of tritium in a shallow land burial trench. In another event, 248 thousand curies of tritium was disposed of in an overpack emplaced 6 m below the floor of a low-level waste disposal pit. Measurement of the emanation rate of tritium out of 55 gallon drums to the overpack was studied, and an annual doubling of the emanation rate over a seven year period, ending in 1990, was found. In a third study, upward tritium migration in the soil, resulting in releases in the atmosphere were observed in a greater confinement disposal test. Releases of tritium to the atmosphere were found to be insignificant. The fourth event consisted of burial of 2.2 million curies of tritium in a greater confinement disposal operation. Emanation of tritium from the buried containers has been increasing since disposal, but no significant migration was found four years following backfilling of the disposal hole

  3. Behaviour of tritium in the environment

    International Nuclear Information System (INIS)

    1979-01-01

    Full text: There is considerable interest in the behaviour of radionuclides of global character that may be released to the environment through the development of nuclear power. Tritium is of particular interest due to its direct incorporation into water and organic tissue. Although there has been a large decrease (more than ten times) in tritium concentration since the stopping of nuclear weapons tests in the atmosphere, the construction in the near future of many water reactors and in the far future of fusion reactors could increase the present levels. Progress has been made during recent years in the assessment of tritium distribution, in detection methods and in biological studies While several meetings have given scientists an opportunity to present papers on tritium, no specific symposium on this topic has been organized by the IAEA since 1961. Thus the purpose of the meeting was to review recent advances and to report on the practical aspects of tritium utilization and monitoring. The symposium was jointly organized with OECD/NEA, in co-operation with the US Department of Energy and the Lawrence Livermore Laboratory. Papers were presented on distribution of tritium, evaluation of future discharges, measurement of tritium, tritium in the aquatic environment, tritium in the terrestrial environment, tritium in man and monitoring of tritium Very interesting papers were given on distribution of tritium and participants got a good idea of the circulation of this radionuclide Some new data were provided on tritium pollution from luminous compounds and we learnt that the tritium release of the Swiss luminous compounds industry is of the same order of magnitude as the tritium release of Windscale. Projections indicate that, in the USA, the total quantity of tritium contained in discarded digital watches will be equal, approximately ten years in the future, to the release of nuclear power reactors Whereas nuclear reactor discharges are controlled there is no control

  4. Development of organic tritium light technology at Ontario Hydro

    International Nuclear Information System (INIS)

    Mullins, D.F.; Krasznai, J.P.; Mueller, D.A.

    1992-01-01

    Tritium is a by-product of CANDU heavy water reactor operations and is the major contributor to internal dose for plant workers. The Darlington Tritium Removal Facility (DTRF) is decontaminating heavy water by removing tritium and storing it as a metal hydride. In view of the large tritium separation capacity, (24 MCi/a, 888 PBq/a). This paper reports that Ontario Hydro is interested in pursuing markets for the peaceful uses of tritium. One of these peaceful uses is in self-luminous lighting. The state of the art at present is a phosphor coated tube filled with tritium gas. However, safety considerations have restricted the use of these lights to outdoor or essential safety applications. Binding the tritium to a solid non-volatile matrix would increase the safety of tritium lights and allow the use of other phosphors, matrices and construction geometries. Solid, organic based tritium lights were produced using two different polymer matrices. While both these materials produced visible light, the intensity was low and radiolytic damage to the polymers was evident

  5. Tritium processing and containment technology for fusion reactors. Annual report, July 1975--June 1976

    International Nuclear Information System (INIS)

    Maroni, V.A.; Calaway, W.F.; Misra, B.; Van Deventer, E.H.; Weston, J.R.; Yonco, R.M.; Cafasso, F.A.; Burris, L.

    1976-01-01

    The hydrogen permeabilities of selected metals, alloys, and multiplex preparations that are of interest to fusion reactor technology are being characterized. A high-vacuum hydrogen-permeation apparatus has been constructed for this purpose. A program of studies has been initiated to develop design details for the tritium-handling systems of near-term fusion reactors. This program has resulted in a better definition of reactor-fuel-cycle and enrichment requirements and has helped to identify major research and development problems in the tritium-handling area. The design and construction of a 50-gallon lithium-processing test loop (LPTL) is well under way. Studies in support of this project are providing important guidance in the selection of hardware for the LPTL and in the design of a molten-salt processing test section

  6. Modeling tritium behavior in Li{sub 2}ZrO{sub 3}

    Energy Technology Data Exchange (ETDEWEB)

    Billone, M C [Argonne National Lab., IL (United States). Fusion Power Program

    1998-03-01

    Lithium metazirconate (Li{sub 2}ZrO{sub 3}) is a promising tritium breeder material for fusion reactors because of its excellent tritium release characteristics. In particular, for water-cooled breeding blankets (e.g., ITER), Li{sub 2}ZrO{sub 3} is appealing from a design perspective because of its good tritium release at low operating temperatures. The steady-state and transient tritium release/retention database for Li{sub 2}ZrO{sub 3} is reviewed, along with conventional diffusion and first-order surface desorption models which have been used to match the database. A first-order surface desorption model is recommended in the current work both for best-estimate and conservative (i.e., inventory upper-bound) predictions. Model parameters are determined and validated for both types of predictions, although emphasis is placed on conservative design predictions. The effects on tritium retention of ceramic microstructure, protium partial pressure in the purge gas and purge gas flow rate are discussed, along with other mechanisms for tritium retention which may not be dominant in the experiments, but may be important in blanket design analyses. The proposed tritium retention/release model can be incorporated into a transient thermal performance code to enable whole-blanket predictions of tritium retention/release during cyclic reactor operation. Parameters for the ITER driver breeding blanket are used to generate a numerical set of model predictions for steady-state operation. (author)

  7. Tritium breeding materials

    International Nuclear Information System (INIS)

    Hollenberg, G.W.; Johnson, C.E.; Abdou, M.

    1984-03-01

    Tritium breeding materials are essential to the operation of D-T fusion facilities. Both of the present options - solid ceramic breeding materials and liquid metal materials are reviewed with emphasis not only on their attractive features but also on critical materials issues which must be resolved

  8. Tritium breeding materials

    International Nuclear Information System (INIS)

    Hollenberg, G.W.; Johnson, C.E.; Abdou, M.A.

    1984-01-01

    Tritium breeding materials are essential to the operation of D-T fusion facilities. Both of the present options - solid ceramic breeding materials and liquid metal materials are reviewed with emphasis not only on their attractive features but also on critical materials issues which must be resolved

  9. Tritium storage

    International Nuclear Information System (INIS)

    Hircq, B.

    1990-01-01

    This document represents a synthesis relative to tritium storage. After indicating the main storage particularities as regards tritium, storages under gaseous and solid form are after examined before establishing choices as a function of the main criteria. Finally, tritium storage is discussed regarding tritium devices associated to Fusion Reactors and regarding smaller devices [fr

  10. Radiation risk analysis of tritium in PWR plants

    International Nuclear Information System (INIS)

    Yang Maochun; Wang Shimin

    1999-03-01

    Tritium is a common radionuclide in PWR nuclear power plant. In the normal operation conditions, its radiation risk to plant workers is the internal radiation exposure when tritium existing in air as HTO (hydrogen tritium oxide) is breathed in. As the HTO has the same physical and chemical characteristics as water, the main way that HTO entering the air is by evaporation. There are few opening systems in Nuclear Power Plant, the radiation risk of tritium mainly exists near the area of spent fuel pit and reactor pit. The highest possible radiation risk it may cause--the maximum concentration in air is the level when equilibrium is established between water and air phases for tritium. The author analyzed the relationship among the concentration of HTO in water, in air and the water temperature when equilibrium is established, the equilibrated HTO concentration in air increases with HTO concentration in water and water temperature. The analysis revealed that at 30 degree C, the equilibrated HTO concentration in air might reach 1 DAC (derived air concentration) when the HTO concentration in water is 28 GBq/m 3 . Owing to the operation of plant ventilation systems and the existence of moisture in the input air of the ventilation, the practical tritium concentration in air is much lower than its equilibrated levels, the radiation risk of tritium in PWR plant is quite limited. In 1997, Daya Bay Nuclear Power Plant's practical monitoring result of the HTO concentration in the air of the nuclear island and the urine of workers supported this conclusion. Based on this analysis, some suggestions to the reduction of tritium radiation risk were made

  11. Robotics development for the accelerator production of tritium

    International Nuclear Information System (INIS)

    Ward, C.R.

    2000-01-01

    The Accelerator Production of Tritium (APT) has been proposed as the source of tritium for the United States in the next century. The APT will accelerate protons that will strike replaceable tungsten target modules. The tungsten target modules generate neutrons that interact with blanket modules and other modules where 3 He gas is turned into tritium. The target and blanket modules are predicted to require replacement every one to ten years, depending on their location. The target modules may weigh as much as 85 tons (77 metric tons) each. All of the modules will be contained in a target/blanket vessel, which is in a shielded facility. The spent modules will be radioactive, so that remote replacement of the modules will be required. The modules will be 27 feet (8.23 m) high and the top of the modules, where most of the remote operations will occur, will be approximately 20 feet (6.1 m) down into the target/blanket vessel. The immense weights of the modules, the long reaches required and the requirement for completely remote operation of at least part of the operation, make this a unique and challenging task. Initially, manual fastening and unfastening of the jumper flanges on the modules as well as manual valve operation was proposed followed by remote replacement of the modules. This manual/remote operation was demonstrated with a computer-generated, dynamic, 3-D simulation. After review of the simulation, this operation was changed to be a complete remote operation. Complete remote operation brought about the concept of a remotely operated bridge crane and a remotely operated, bridge-mounted, manipulator to perform the entire replacement operation. A second simulation showed the intended operation of the remote concept and was instrumental in developing the requirements for the equipment and end effectors for this concept. The concept included development of end effectors for the following tasks: flange nut fastening and unfastening, flange lifting and latch

  12. The modelling of tritium behaviour in the environment

    International Nuclear Information System (INIS)

    Raskob, W.

    1991-01-01

    In view of the operation of reprocessing plants and fusion reactors the release of tritium may play a dominant role during normal operation as well as after accidents. Tritium, however, is chemically identical to hydrogen and thus interacts directly with water and organic substances, making processes like conversion of HT to HTO, re-emission after deposition, and the conversion of HTO into organically bound tritium (OBT) relevant, all of which may modify the total balance of the available HT or HTO inventories. Because of these physical and chemical properties which differ significantly from those of other radionuclides, the model UFOTRI for assessing the radiological consequences of accidental tritium releases has been developed. It describes the behaviour of tritium in the biosphere and calculates the radiological impact on individuals and the population due to inhalation and skin absorption and by ingestion pathways. The significance of the re-emission process in dose assessments - especially for HT-releases - has been clearly demonstrated in example calculations and applications of UFOTRI. The results of a comparison between an HT-release experiment in Canada 1987 and calculations of UFOTRI can be taken as a first validation of the model

  13. Performance Evaluation and Suggestion of Upgraded Fuel Handling Equipment for Operating OPR1000

    International Nuclear Information System (INIS)

    Chang, Sang Gyoon; Hwang, Jeung Ki; Choi, Taek Sang; Na, Eun Seok; Lee, Myung Lyul; Baek, Seung Jin; Kim, Man Su; Kunik, Jack

    2011-01-01

    The purpose of this study is to evaluate the performance of upgraded FHE (Fuel Handling Equipment) for operating OPR 1000 (Optimized Power Reactor) by using data measured during the fuel reloading, and make some suggestions on enhancing the performance of the FHE. The fuel handling equipment, which serves critical processes in the refueling outage, has been upgraded to increase and improve the operational availability of the plant. The evaluation and suggestion of this study can be a beneficial tool related to the performance of the fuel handling equipment

  14. Release of tritium from fuel and collection for storage

    International Nuclear Information System (INIS)

    Burger, L.L.; Trevorrow, L.E.

    1976-04-01

    Recent work is reviewed on the technology that has been suggested as applicable to collection and storage of tritium in anticipation of the necessity of that course of action. Collection technology and procedures must be adapted to the tritium-bearing effluent and to the facility from which it emerges. Therefore, this discussion of tritium collection technology includes some information on the processes from which release is expected to occur, the amounts, the nature of the effluent media, and the form in which tritium appears. Recent work on collection and storage concepts has explored, both by experimentation and by feasibility analyses, the operations generally aimed at producing recycle, collection, or storage of tritium from these streams. Storage concepts aimed specifically at tritium involve plans to store volumes ranging from that of the entire effluent stream to only that of a small volume of a concentrate. Decisions between storage of unconcentrated streams and storage of concentrates are expected to be made largely by weighing the cost of storage space against the cost of concentration. The storage of tritium concentrate requires the selection of a form of tritium possessing physical and chemical properties appropriate for the expected storage conditions. This selection of an appropriate storage form has occupied a major portion of recent work concerned with tritium storage concepts. In summary, within the context of present regulations and expected amounts of waste tritium; this waste can be disposed of by dilution and dispersal to the environment. In the future, however, more restrictive regulations might be introduced that could be satisfied only by some collection and storage operations. Technology for this practice is not now available, and the present discussion reviews recent activities devoted to its development

  15. Tritium Facilities Modernization and Consolidation Project Process Waste Assessment (Project S-7726)

    Energy Technology Data Exchange (ETDEWEB)

    Hsu, R.H. [Westinghouse Savannah River Company, AIKEN, SC (United States); Oji, L.N.

    1997-11-14

    Under the Tritium Facility Modernization {ampersand} Consolidation (TFM{ampersand}C) Project (S-7726) at the Savannah River Site (SS), all tritium processing operations in Building 232-H, with the exception of extraction and obsolete/abandoned systems, will be reestablished in Building 233-H. These operations include hydrogen isotopic separation, loading and unloading of tritium shipping and storage containers, tritium recovery from zeolite beds, and stripping of nitrogen flush gas to remove tritium prior to stack discharge. The scope of the TFM{ampersand}C Project also provides for a new replacement R&D tritium test manifold in 233-H, upgrading of the 233- H Purge Stripper and 233-H/234-H building HVAC, a new 234-H motor control center equipment building and relocating 232-H Materials Test Facility metallurgical laboratories (met labs), flow tester and life storage program environment chambers to 234-H.

  16. Tritium dynamics in soils and plants at a tritium processing facility in Canada

    Energy Technology Data Exchange (ETDEWEB)

    Mihok, S.; St-Amanat, N.; Kwamena, N.O. [Canadian Nuclear Safety Commission (Canada); Clark, I.; Wilk, M.; Lapp, A. [University of Ottawa (Canada)

    2014-07-01

    The dynamics of tritium released as tritiated water (HTO) have been studied extensively with results incorporated into environmental models such as CSA N288.1 used for regulatory purposes in Canada. The dispersion of tritiated gas (HT) and rates of oxidation to HTO have been studied under controlled conditions, but there are few studies under natural conditions. HT is a major component of the tritium released from a gaseous tritium light manufacturing facility in Canada (CNSC INFO-0798). To support the improvement of models, a garden was set up in one summer near this facility in a spot with tritium in air averaging ∼ 5 Bq/m{sup 3} HTO (passive diffusion monitors). Atmospheric stack releases (575 GBq/week) were recorded weekly. HT releases occur mainly during working hours with an HT:HTO ratio of 2.6 as measured at the stack. Soils and plants (leaves/stems and roots/tubers) were sampled for HTO and organically-bound tritium (OBT) weekly. Active day-night monitoring of air was conducted to interpret tritium dynamics relative to weather and solar radiation. The experimental design included a plot of natural grass/soil, contrasted with grass (sod) and Swiss chard, pole beans and potatoes grown in barrels under different irrigation regimes (in local topsoil at 29 Bq/L HTO, 105 Bq/L OBT). All treatments were exposed to rain (80 Bq/L) and atmospheric releases of tritium (weekdays), and reflux of tritium from soils (initial conditions of 284 Bq/L HTO, 3,644 Bq/L OBT) from 20 years of operations. Three irrigation regimes were used for barrel plants to mimic home garden management: rain only, low tritium tap water (5 Bq/L), and high tritium well water (mean 10,013 Bq/L). This design provided a range of plants and starting conditions with contrasts in initial HTO/OBT activity in soils, and major tritium inputs from air versus water. Controls were two home gardens far from any tritium sources. Active air monitoring indicated that the plume was only occasionally present for

  17. Assessment of tritium breeding requirements for fusion power reactors

    International Nuclear Information System (INIS)

    Jung, J.

    1983-12-01

    This report presents an assessment of tritium-breeding requirements for fusion power reactors. The analysis is based on an evaluation of time-dependent tritium inventories in the reactor system. The method presented can be applied to any fusion systems in operation on a steady-state mode as well as on a pulsed mode. As an example, the UWMAK-I design was analyzed and it has been found that the startup inventory requirement calculated by the present method significantly differs from those previously calculated. The effect of reactor-parameter changes on the required tritium breeding ratio is also analyzed for a variety of reactor operation scenarios

  18. The synthesis of a tritium, carbon-14, and stable isotope-labeled cathepsin C inhibitors.

    Science.gov (United States)

    Allen, Paul; Bragg, Ryan A; Caffrey, Moya; Ericsson, Cecilia; Hickey, Michael J; Kingston, Lee P; Elmore, Charles S

    2017-02-01

    As part of a medicinal chemistry program aimed at developing a highly potent and selective cathepsin C inhibitor, tritium, carbon-14, and stable isotope-labeled materials were required. The synthesis of tritium-labeled methanesulfonate 5 was achieved via catalytic tritiolysis of a chloro precursor, albeit at a low radiochemical purity of 67%. Tritium-labeled AZD5248 was prepared via a 3-stage synthesis, utilizing amide-directed hydrogen isotope exchange. Carbon-14 and stable isotope-labeled AZD5248 were successfully prepared through modifications of the medicinal chemistry synthetic route, enabling the use of available labeled intermediates. Copyright © 2016 John Wiley & Sons, Ltd.

  19. Laser Fusion: status, future, and tritium control

    International Nuclear Information System (INIS)

    Coyle, P.E.

    1978-11-01

    At Livermore the 10 kJ, 20 to 30 TW Shiva facility is now operational and producing regular new fusion results. Design work has begun on a 200 to 300 TW laser designed to carry the program through the first breakeven demonstration experiments in the mid-1980's. Confidence in reaching this goal is based on the significant progress we have made in state-of-the-art, high-power Nd:glass laser technology, in experimental laser fusion and laser plasma interaction physics, and in theoretical and analytical computer codes which reliably model and predict experimental results. For all of these experiments, a variety of fusion targets are being fabricated in the laboratory, and the control and handling of tritium is now a regular and routine part of ongoing inertial fusion experiments. Target design with gains of about 1000 have been studied and the means to mass produce such pellets at low cost are also being developed

  20. Tritium conference days

    International Nuclear Information System (INIS)

    Garnier-Laplace, J.; Lebaron-Jacobs, L.; Sene, M.; Devin, P.; Chretien, V.; Le Guen, B.; Guetat, Ph.; Baglan, N.; Ansoborlo, E.; Boyer, C.; Masson, M.; Bailly-Du-Bois, P.; Jenkinson, St.; Wakeford, R.; Saintigny, Y.; Romeo, P.H.; Thompson, P.; Leterq, D.; Chastagner, F.; Cortes, P.; Philippe, M.; Paquet, F.; Fournier, M.

    2009-01-01

    This document gathers the slides of the available presentations given during this conference day. Twenty presentations out of 21 are assembled in the document and deal with: 1 - tritium in the environment (J. Garnier-Laplace); 2 - status of knowledge about tritium impact on health (L. Lebaron-Jacobs); 3 - tritium, discrete but present everywhere (M. Sene); 4 - management of tritium effluents from Areva NC La Hague site - related impact and monitoring (P. Devin); 5 - tritium effluents and impact in the vicinity of EDF's power plants (V. Chretien and B. Le Guen); 6 - contribution of CEA-Valduc centre monitoring to the knowledge of atmospheric tritiated water transfers to the different compartments of the environment (P. Guetat); 7 - tritium analysis in environment samples: constraints and means (N. Baglan); 8 - organically-linked tritium: the analyst view (E. Ansoborlo); 9 - study of tritium transfers to plants via OBT/HTO air and OBT/HTO free (C. Boyer); 10 - tritium in the British Channel (M. Masson and P. Bailly-Du-Bois); 11 - tritium in British coastal waters (S. Jenkinson); 12 - recent results from epidemiology (R. Wakeford); 13 - effects of tritiated thymidine on hematopoietic stem cells (P.H. Romeo); 14 - tritium management issue in Canada: the point of view from authorities (P. Thompson); 15 - experience feedback of the detritiation process of Valduc centre (D. Leterq); 16 - difficulties linked with tritiated wastes confinement (F. Chastagner); 17 - optimisation of tritium management in the ITER project (P. Cortes); 18 - elements of thought about the management of tritium generated by nuclear facilities (M. Philippe); 19 - CIPR's position about the calculation of doses and risks linked with tritium exposure (F. Paquet); 20 - tritium think tanks (M. Fournier). (J.S.)

  1. Large-scale distribution of tritium in a commercial product

    International Nuclear Information System (INIS)

    Combs, F.; Doda, R.J.

    1979-01-01

    Tritium enters the environment from various sources including nuclear reactor operations, weapons testing, natural production, and from the manufacture, use and ultimate disposal of commercial products containing tritium. A recent commercial application of tritium in the United States of America involves the backlighting of liquid crystal displays (LCD) in digital electronic watches. These watches are distributed through normal commercial channels to the general public. One million curies (MCi) of tritium were distributed in 1977 in this product. This is a significant quantity of tritium compared with power reactor-produced tritium (3MCi yearly) or with naturally produced tritium (6MCi yearly). This is the single largest commercial application involving tritium to date. The final disposition of tritium from large quantities of this product, after its useful life, must be estimated by considering the means of disposal and the possibility of dispersal of tritium concurrent with disposal. The most likely method of final disposition of this product will be disposal in solid refuse; this includes burial in land fills and incineration. Burial in land fills will probably contain the tritium for its effective lifetime, whereas incineration will release all the tritium gas (as the oxide) to the atmosphere. The use and disposal of this product will be studied as part of an environmental study that is at present being prepared for the U.S. Nuclear Regulatory Commission. (author)

  2. Tritium Research Laboratory safety analysis report

    Energy Technology Data Exchange (ETDEWEB)

    Wright, D.A.

    1979-03-01

    Design and operational philosophy has been evolved to keep radiation exposures to personnel and radiation releases to the environment as low as reasonably achievable. Each experiment will be doubly contained in a glove box and will be limited to 10 grams of tritium gas. Specially designed solid-hydride storage beds may be used to store temporarily up to 25 grams of tritium in the form of tritides. To evaluate possible risks to the public or the environment, a review of the Sandia Laboratories Livermore (SLL) site was carried out. Considered were location, population, land use, meteorology, hydrology, geology, and seismology. The risks and the extent of damage to the TRL and vital systems were evaluated for flooding, lightning, severe winds, earthquakes, explosions, and fires. All of the natural phenomena and human error accidents were considered credible, although the extent of potential damage varied. However, rather than address the myriad of specific individual consequences of each accident scenario, a worst-case tritium release caused indirectly by an unspecified natural phenomenon or human error was evaluated. The maximum credible radiological accident is postulated to result from the release of the maximum quantity of gas from one experiment. Thus 10 grams of tritium gas was used in the analysis to conservatively estimate the maximum whole-body dose of 1 rem at the site boundary and a maximum population dose of 600 man-rem. Accidental release of this amount of tritium implies simultaneous failure of two doubly contained systems, an occurrence considered not credible. Nuclear criticality is impossible in this facility. Based upon the analyses performed for this report, we conclude that the Tritium Research Laboratory can be operated without undue risk to employees, the general public, or the environment. (ERB)

  3. Tritium Research Laboratory safety analysis report

    International Nuclear Information System (INIS)

    Wright, D.A.

    1979-03-01

    Design and operational philosophy has been evolved to keep radiation exposures to personnel and radiation releases to the environment as low as reasonably achievable. Each experiment will be doubly contained in a glove box and will be limited to 10 grams of tritium gas. Specially designed solid-hydride storage beds may be used to store temporarily up to 25 grams of tritium in the form of tritides. To evaluate possible risks to the public or the environment, a review of the Sandia Laboratories Livermore (SLL) site was carried out. Considered were location, population, land use, meteorology, hydrology, geology, and seismology. The risks and the extent of damage to the TRL and vital systems were evaluated for flooding, lightning, severe winds, earthquakes, explosions, and fires. All of the natural phenomena and human error accidents were considered credible, although the extent of potential damage varied. However, rather than address the myriad of specific individual consequences of each accident scenario, a worst-case tritium release caused indirectly by an unspecified natural phenomenon or human error was evaluated. The maximum credible radiological accident is postulated to result from the release of the maximum quantity of gas from one experiment. Thus 10 grams of tritium gas was used in the analysis to conservatively estimate the maximum whole-body dose of 1 rem at the site boundary and a maximum population dose of 600 man-rem. Accidental release of this amount of tritium implies simultaneous failure of two doubly contained systems, an occurrence considered not credible. Nuclear criticality is impossible in this facility. Based upon the analyses performed for this report, we conclude that the Tritium Research Laboratory can be operated without undue risk to employees, the general public, or the environment

  4. Mapping of tritium in drinking water from various Indian states

    International Nuclear Information System (INIS)

    Shah, Chirag A.; Baburajan, A.; Ravi, P.M.; Tripathi, R.M.

    2015-01-01

    The tritium in fresh water used for drinking purpose across five state of India was analyzed for tritium activity. The tritium data obtained were compared with the monitoring data of tritium in drinking water sources at Tarapur site, which houses a number of nuclear facilities. It is observed that the tritium activity in the water sample from various out station locations were in the range of < 0.48 to 1.33 Bq/l. The tritium value obtained in the drinking water sources at Tarapur was found to be in the range of 0.91 to 3.10 Bq/l. The monitoring of tritium in drinking water from Tarapur and from various out station location indicate that the level is negligible compared to the USEPA limit of 10000 Bq/l and the contribution of operation nuclear facilities to the tritium activity in drinking water source at Tarapur is insignificant. (author)

  5. Tritium issues in commercial pressurized water reactors

    International Nuclear Information System (INIS)

    Jones, G.

    2008-01-01

    Tritium has become an important radionuclide in commercial Pressurized Water Reactors because of its mobility and tendency to concentrate in plant systems as tritiated water during the recycling of reactor coolant. Small quantities of tritium are released in routine regulated effluents as liquid water and as water vapor. Tritium has become a focus of attention at commercial nuclear power plants in recent years due to inadvertent, low-level, chronic releases arising from routine maintenance operations and from component failures. Tritium has been observed in groundwater in the vicinity of stations. The nuclear industry has undertaken strong proactive corrective measures to prevent recurrence, and continues to eliminate emission sources through its singular focus on public safety and environmental stewardship. This paper will discuss: production mechanisms for tritium, transport mechanisms from the reactor through plant, systems to the environment, examples of routine effluent releases, offsite doses, basic groundwater transport and geological issues, and recent nuclear industry environmental and legal ramifications. (authors)

  6. Desactivation of tritium waters by rectification methods

    International Nuclear Information System (INIS)

    Egorov, A.I.; Tyunis, V.M.

    2002-01-01

    Results of experiments into the basic rectification processes dedicated to tritium separation from reactor, technological and waste waters are presented. Coefficients of separation for rectification of water (1.028), ammonia (1.05), azeotrope H 2 O - HTO - HNO 3 (1.098) and D 2 O - DTO - DNO 3 (1.039) are performed. Operating schemes of tritium separating units are reviewed [ru

  7. Measurement of tritium with plastic scintillator surface improvement with plasma treatment

    Energy Technology Data Exchange (ETDEWEB)

    Yoshihara, Y.; Furuta, E. [Ochanomizu University, Bunkyo-ku, Tokyo (Japan); Ohyama, R.I.; Yokota, S. [Tokai University, Hiratsuka-shi, Kanagawa (Japan); Kato, Y.; Yoshimura, T.; Ogiwara, K. [Hitachi Aloka Medical, Mure, Mitaka-shi, Tokyo (Japan)

    2015-03-15

    Tritium is usually measured by using a liquid scintillation counter. However, liquid scintillator used for measurement will become radioactive waste fluid. To solve this issue, we have developed a method of measuring tritium samples with plasma-treated plastic scintillator (PS)sheets (Plasma method). The radioactive sample is held between 2 PS sheets and the whole is enclosed in a a low-potassium glass vial. With the Plasma method of 2-min plasma treatment, we have obtained measurement efficiency of 48 ± 2 % for 2 min measurement of tritium except for tritiated water. The plasma treatment makes the PS surface rough and hydrophilic which contributes to improve the contact between tritium and PS. On the other hand, it needed almost 6 hours to obtain constant measurement efficiency. The reason was that the dry-up handling in the vial needed longer time to vaporize H{sub 2}O molecules than in the air. We tried putting silica gel beads into vials to remove H{sub 2}O molecules from PS sheet surface quickly. The silica gel beads worked well and we got constant measurement efficiency within 1-3 hours. Also, we tried using other kinds of PS treated with plasma to obtain higher measurement efficiencies of tritium samples.

  8. A programmable autosampler for a field deployable tritium analysis system

    International Nuclear Information System (INIS)

    Hofstetter, K.J.; Cable, P.R.; Beals, D.M.; Jones, J.

    1996-01-01

    Researchers in the Environmental Technology Section of the Savannah River Technology Center, in cooperation with Sampling Systems, Inc. are developing a fully programmable, remotely operated, fixed volume, automatic sampler for use with the field deployable tritium analysis system currently under development at U. of GA's Center for Applied Isotope Studies. The sampler will collect a limited-volume sample and perform on-line sample purification for tritium analyses from multiple collection sites. Pneumatically operated stainless steel samplers operate satisfactorily upon remote activation. The one-step purification system removes all impurities with interfere with tritium analysis by liquid scintillation. Field testing has confirmed system operation. The autosampler may act as a stand-alone device and is enclosed in a rugged, field-portable case with wheels. The system weighs about 40 lbs

  9. Tritium system for a tokamak reactor with a self-pumped limiter

    International Nuclear Information System (INIS)

    Hassanein, A.M.; Sze, D.K.

    1986-01-01

    Benefits of the self-pumping system are the elimination of vacuum ducts, pumps, and penetration shielding (except for a very small startup system), and the reduction of tritium recycle and refueling. In addition, a self-pumped system may perform better and last longer than alternative systems such as a pumped limiter. The reference case here is a self-cooled lithium/vanadium blanket with a first wall/limiter. This concept combines the functions of first wall and limiter into a single first-wall structure. The wall is shaped in accordance with the outermost plasma flux surface. Trapping material is added to the plasma scrape-off or edge region where it is transported to the wall. The entire wall area is used for helium trapping. The tritium inventory, tritium permeation rate, and plasma protium concentration for the vanadium wall as a function of the number of years of operation are calculated. The tritium inventory is acceptable, the protium concentration in the plasma is acceptably small, and the tritium permeation rate is moderate. At the start of operation, it is equal to about five times the tritium burnup rate. This tritium will enter the coolant and the cost of the blanket tritium recovery system will be higher

  10. Tritium permeation evaluation through vertical target of divertor based on recent tritium transport properties

    International Nuclear Information System (INIS)

    Nakamura, Hirofumi; Nishi, Masataka

    2003-11-01

    Re-evaluation of tritium permeation through vertical target of divertor under the ITER operation condition was carried out using tritium properties in the candidate materials such as the diffusion coefficient and the trapping factors in tungsten for armor, and the surface recombination coefficient on copper for the heat sink obtained by authours' recent investigation (authors' data), which simulated the plasma-facing conditions of ITER. Evaluation with the data set of previous evaluation was also carried out for comparison (previous data). The permeation analysis was carried out individually by classifying into the armor region (Carbon Fiber Composites and tungsten) and the slit region without armor (3% of armor surface area) assuming the incident flux and temperature for each region. As the results of the permeation analysis, estimated permeation amount with the authors' data was one order less than that with the previous data at the end of lifetime of the divertor due to authors' small diffusion coefficient of tritium in tungsten. It also indicated the possibility that permeation through the slit region of the armor tiles could dominate total permeation through the vertical target, since tritium permeation amount through tungsten armor with the authors' data was estimated to be reduced drastically smaller than that with the previous evaluation data. The result of a little tritium permeation amount through the vertical target with the authors' data ensured the conservatism of the current evaluation of tritium concentration in the primary cooling water in ITER divertor, as it indicated the possibility of direct drainage of the divertor primary cooling water. (author)

  11. Investigation of non-magnetic alloys for the suppression of tritium permeation

    International Nuclear Information System (INIS)

    1980-07-01

    The present work was aimed at identification of alloys which might combine low tritium permeation with other properties desired in fusion reactor vessels, heat exchangers, lithium-handling plumbing and other components likely to contain tritium. These properties include low radiation damage, low magnetic permeability, high temperature strength, and compatibility with potential heat transfer and blanket materials. The work consisted of two tasks: problem definition, and literature search and analysis. Task I was complicated by the incomplete status of fusion reactor development, particularly with respect to selection of coolant and blanket materials and temperatures. The approach taken was to establish a probable range of requirements

  12. Tritium Facilities Modernization and Consolidation Project Process Waste Assessment (Project S-7726)

    International Nuclear Information System (INIS)

    Hsu, R.H.; Oji, L.N.

    1997-01-01

    Under the Tritium Facility Modernization ampersand Consolidation (TFM ampersand C) Project (S-7726) at the Savannah River Site (SS), all tritium processing operations in Building 232-H, with the exception of extraction and obsolete/abandoned systems, will be reestablished in Building 233-H. These operations include hydrogen isotopic separation, loading and unloading of tritium shipping and storage containers, tritium recovery from zeolite beds, and stripping of nitrogen flush gas to remove tritium prior to stack discharge. The scope of the TFM ampersand C Project also provides for a new replacement R ampersand D tritium test manifold in 233-H, upgrading of the 233- H Purge Stripper and 233-H/234-H building HVAC, a new 234-H motor control center equipment building and relocating 232-H Materials Test Facility metallurgical laboratories (met labs), flow tester and life storage program environment chambers to 234-H

  13. Tritium permeation losses in HYLIFE-II heat exchanger tubes

    International Nuclear Information System (INIS)

    Longhurst, G.R.; Dolan, T.J.

    1990-01-01

    Tritium permeation through the intermediate heat exchanger of the HYLIFE-II inertial fusion design concept is evaluated for routine operating conditions. The permeation process is modelled using the Lewis analogy combined with surface recombination. It is demonstrated that at very low driving potentials, permeation becomes proportional to the first power of the driving potential. The model predicts that under anticipated conditions the primary cooling loop will pass about 6% of the tritium entering it to the intermediate coolant. Possible approached to reducing tritium permeation are explored. Permeation is limited by turbulent diffusion transport through the molten salt. Hence, surface barriers with impendance factors typical of present technology can do very little to reduce permeation. Low Flibe viscosity is desirable. An efficient tritium removal system operating on the Flibe before it gets to the intermediate heat exchanger is required. Needs for further research are highlighted. 9 refs., 2 figs., 1 tab

  14. Tritium supply assessment for ITER and DEMOnstration power plant

    International Nuclear Information System (INIS)

    Ni, Muyi; Wang, Yongliang; Yuan, Baoxin; Jiang, Jieqiong; Wu, Yican

    2013-01-01

    Highlights: • The tritium production rate in CANDU reactor was simulated and estimated. • Possible routes, including APT, CLWR and tritium production schemes of ADS, were evaluated in feasibility and economy. • The possible tritium consumption of ITER and initial supply for DEMO was assessed. • Result of supply and demand showed that after ITER retired in 2038, the tritium production in CANDU reactor might not be enough for a FDS-II scale DEMO reactor startup if without additional tritium resource. -- Abstract: The International Thermonuclear Experimental Reactor (ITER) and next generation DEMOnstration fusion reactor need amounts of tritium for test/initial startup and will consume kilograms tritium for operation per year. The available supply of tritium for fusion reactor is man-made sources. Now most of commercial tritium resource is extracted from moderator and coolant of CANada Deuterium Uranium (CANDU) type Heavy Water Reactor (HWR), in the Ontario Hydro Darlington facility of Canada and Wolsong facility of Korea. In this study, the tritium production rate in CANDU reactor was simulated and estimated. And other possible routes, including Accelerator Production of Tritium (APT), tritium production in Commercial Light Water Reactor (CLWR) and Accelerator Driven Subcritical system (ADS), were also evaluated in feasibility and economy. Based on the tritium requirement investigated according to ITER test schedule and startup inventory required for a FDS-II-scale DEMO calculated by TAS1.0, the assessment results showed that after ITER retired in 2038, the tritium inventory of CANDU reactor could not afford DEMO reactor startup without extra resource

  15. Tritium supply assessment for ITER and DEMOnstration power plant

    Energy Technology Data Exchange (ETDEWEB)

    Ni, Muyi, E-mail: muyi.ni@fds.org.cn; Wang, Yongliang; Yuan, Baoxin; Jiang, Jieqiong; Wu, Yican

    2013-10-15

    Highlights: • The tritium production rate in CANDU reactor was simulated and estimated. • Possible routes, including APT, CLWR and tritium production schemes of ADS, were evaluated in feasibility and economy. • The possible tritium consumption of ITER and initial supply for DEMO was assessed. • Result of supply and demand showed that after ITER retired in 2038, the tritium production in CANDU reactor might not be enough for a FDS-II scale DEMO reactor startup if without additional tritium resource. -- Abstract: The International Thermonuclear Experimental Reactor (ITER) and next generation DEMOnstration fusion reactor need amounts of tritium for test/initial startup and will consume kilograms tritium for operation per year. The available supply of tritium for fusion reactor is man-made sources. Now most of commercial tritium resource is extracted from moderator and coolant of CANada Deuterium Uranium (CANDU) type Heavy Water Reactor (HWR), in the Ontario Hydro Darlington facility of Canada and Wolsong facility of Korea. In this study, the tritium production rate in CANDU reactor was simulated and estimated. And other possible routes, including Accelerator Production of Tritium (APT), tritium production in Commercial Light Water Reactor (CLWR) and Accelerator Driven Subcritical system (ADS), were also evaluated in feasibility and economy. Based on the tritium requirement investigated according to ITER test schedule and startup inventory required for a FDS-II-scale DEMO calculated by TAS1.0, the assessment results showed that after ITER retired in 2038, the tritium inventory of CANDU reactor could not afford DEMO reactor startup without extra resource.

  16. Retention and release of tritium in aluminum clad, Al-Li alloys

    International Nuclear Information System (INIS)

    Louthan, M.R. Jr.

    1991-01-01

    Tritium retention in and release from aluminum clad, aluminum-lithium alloys is modeled from experimental and operational data developed during the thirty plus years of tritium production at the Savannah River Site. The model assumes that tritium atoms, formed by the 6 Li(n,α) 3 He reaction, are produced in solid solution in the Al-Li alloy. Because of the low solubility of hydrogen isotopes in aluminum alloys, the irradiated Al-Li rapidly becomes supersaturated in tritium. Newly produced tritium atoms are trapped by lithium atoms to form a lithium tritide. The effective tritium pressure required for trap or tritide stability is the equilibrium decomposition pressure of tritium over a lithium tritide-aluminum mixture. The temperature dependence of tritium release is determined by the permeability of the cladding to tritium and the local equilibrium at the trap sites. This model is used to calculate tritium release from aluminum clad, aluminum-lithium alloys. 9 refs., 3 figs

  17. Design and test about de tritium system to filling tritium glove box

    International Nuclear Information System (INIS)

    Lei, Jiarong; Du, Yang; Yang, Yong

    2008-01-01

    In order to deal tritium permeated from inflating tritium system at the scene of inflating tritium, dealing waste tritium gas system was designed according to demand and action of dealing waste tritium gas from inflating tritium, and the data of character and volume about appliance of catalyst reaction and drying agent was calculated. Through the test at the scene of inflating tritium, it is result that dealing waste tritium gas system's efficiency reaches above 85% average in circulatory system, so that it can be used in practice extensively. (author)

  18. Technical solutions for tritium removal from Cernavoda NPP heavy water systems

    International Nuclear Information System (INIS)

    Barariu, Gheorghe; Panait, Adrian

    2002-01-01

    In CANDU nuclear plants 2400 KCi/GW(e) - year tritium is generated. At a CANDU - 600 reactor similar to Cernavoda NPP Unit 1, 1500 KCi/year of tritium is generated 95% being in the D 2 O moderator, which can achieve a radioactivity level of 80 - 100 Ci/kg. Tritium in heavy water contributes with 30 - 50% to the doses received by operation personnel and with 20% to the radioactivity released to the environment. The extraction of tritium heavy water at CANDU reactors implies the following possibilities: - the radioactivity level reduction in the operation area; - the maintenance and repair cost reduction due to reduction of personnel protection measures and increased labor productivity; - the increase of NPP utilization factor by shutdown time reduction for maintenance and repair; - tritium concentration reduction from technological systems, ensuring thus the possibility of redesigning the systems in order to lower the cost of investment; - profitable use of extracted tritium. Technical measures provided by AECL project for CANDU 600 at Cernavoda make possible to satisfy the current standards concerning tritium concentration in the operation area atmosphere of 5 x 10 -6 Ci/m 3 . The regulations recommend that the radioactivity level should be maintained as low as possible in conformity with ALARA principles. Also, it is possible that norms will become more restrictive in the future, so the tritium removal technology is a good preventive measure which may become very necessary. The methods, which currently reached the industrial or pilot stages, are based on catalyzed chemical exchange, the heavy water electrolysis, and deuterium distillation. They are known as: VPCE - Vapour Phase Catalytic Exchange; LPCE - Liquid Phase Catalytic Exchange; DE - Direct Electrolysis; CD - Cryogenic Distillation. As transfer processes the catalyzed chemical exchange and heavy water electrolysis are used while concentration of tritium gas is done by cryogenic distillation. At present the

  19. Experiments on tritium behavior in beryllium, (1)

    International Nuclear Information System (INIS)

    Kawamura, Hiroshi; Ishizuka, Etsuo; Matsumoto, Mikio; Inada, Seiji; Sezaki, Katsuji; Saito, Minoru; Kato, Mineo.

    1989-06-01

    In JMTR, it was observed that the tritium concentration of the primary coolant increases with the reactor operation at 50 MW. As one of the tritium generation sources, we paid attention to a neutron reflector made of beryllium because the tritium generation rate in the beryllium is bigger than other components in the reactor core. On the other hand, the irradiation test of blanket materials (i.e. tritium breeding materials and neutron multipling materials) are planned for development of the fusion reactor in JMTR and the beryllium will be also irradiated as a neutron multiplier with tritium breeding materials. Therefore, as the irradiated specimens, we used a hot-pressed beryllium disk fabricated by the same method as the neutron reflector or the neutron multiplier and conducted the irradiation tests in JMTR. The purpose of these tests are to clarify the tritium behavior in the hot-pressed beryllium. In this paper, from a viewpoint of the fabrication of capsules for neutron irradiation, the specifications of the irradiated specimens and capsules are summarized. Additionally, the results on the puncture test of the container of the irradiation specimens are described. (author)

  20. A study on the primary requirement for the safety of the Wolsong tritium removal facility

    International Nuclear Information System (INIS)

    Hwang, K. H.; Lee, K. J.; Jeong, C. W.

    2001-01-01

    Owing to the using a heavy water as a moderator and a coolant in Heavy water reactor, A large mount of tritium is produced due to a reaction of deuterium with neutron in the reactor and some of tritium is released to the environment. In Wolsong, 4 units (CANDU-600 type) Heavy water reactor is in operation. And the generated amount of tritium is increased with the increase of operational year of the Wolsong nuclear reactor. Decommissioning of the Wolsong unit 1 is expected to start at 2013. Before 2013, to reduce the workers internal radiation doses and environmental release of tritium, Tritium Removal Facility (TRF) is required and should be operated. Wolsong TRF (WTRF) is under developing stage by Korea Electric Power Corporation(KEPCO)and scheduled to start operation about 2006. Once the facility begins operation it can be contributed to the greatly reduction of tritium release to the environment and worker's expose. In this situation, study about the safety assessment method and regulatory requirement is essential for safety insurance of WTRF. And this helps the safety acquirement, successful operation and reliance of WTRF

  1. Study about sorption of protium and mixture protium–tritium on sponge titanium

    Energy Technology Data Exchange (ETDEWEB)

    Vasut, Felicia, E-mail: feliciavasut@yahoo.com; Stefanescu, Ioan; Bornea, Anisia Mihaela; Zamfirache, Marius; Sofalca, Nicolae; David, Claudia

    2013-10-15

    The Nuclear Power Plant Cernavoda is equipped with a CANDU reactor and is one of the most powerful tritium sources from Europe. The reactor is moderated and cooled with heavy water that is continuous enriched with tritium. The presence of the tritium decreases the capacity of the heavy water to moderate the nuclear reactions. For this reason, I.C.I.T. Ramnicu Valcea developed a detritiation technology based on catalytic isotopic exchange and cryogenic distillation. At the end of the detritiation process, heavy water is produced with low concentration of tritium (that could be introduced back for the moderation process) and tritium (that have to be stored into a stable form). Tritium is a radioactive material and one of the basic conditions for the operation of the nuclear installations is the security for the operating personnel and for the environment [1]. At I.C.I.T. Ramnicu Valcea were tested materials with high capacity for storage of tritium, like titanium sponge and powder. The first experimental study was made using protium because it was assumed that tritium behaves similar with protium. In addition, it was made experiments of sorption on sponge titanium using a mixture protium–tritium. The result was similar but not identical, titanium sponge absorbing better protium than mixture protium–tritium, resulting different atomic ratios. The paper presents a study about sorption of protium and mixture of protium and tritium on sponge titanium.

  2. FDNH - the tritium module in RODOS

    International Nuclear Information System (INIS)

    Galeriu, D.; Melintescu, A.; Turcanu, C. O.; Raskob, W.

    2001-01-01

    Under the auspices of its RTD (Research and Technological Development) Framework Programmes, the European Commission has supported the development of the RODOS (Real-time On-line Decision Support) system for off-site emergency management. The project started in 1989 focusing on PWR/LWR type accidents and using experience from the Chernobyl accident. In 1997 it was realised that tritium should be included in the list of radionuclides, as large tritium sources exists in Europe and to allow a potential expansion of the RODOS system for application on future fusion reactor accidents. The National Institute for Physics and Nuclear Engineering (IFIN-HH) in Romania - in close co-operation with the Research Centre Karlsruhe (FZK) - was charged to develop the tritium module, based on previous experience in environmental tritium modelling and the operation of CANDU reactors in Romania (with potential tritium accidents). At present, the Food and Dose Module Hydrogen -(FDMH) - for tritium applications - is integrated and documented in the RODOS system. It calculates the time dependent tritium concentration (as tritiated water or organically bound tritium) in crops (as much as 22 different species) and up to 12 animal products, inhalation doses and ingestion dose from up to 34 diet items for various groups of the population and for up to 2520 locations around the source, following an accidental emission of tritiated water. FDMH incorporates many improved techniques in radiological assessment and makes intensively use of interdisciplinary research. It is developed in a modular structure with a variable time grid according to the physical processes. Differing from other models, using generic transfer parameters or parameters fitted on individual experiments, FDMH derives tritium transfer rates based on physical and physiological process analysis, using scientifically accepted results from interdisciplinary research on, among others, land-atmosphere interaction, water cycle in the

  3. Tritium permeation through helium-heated steam generators of ceramic breeder blankets for DEMO

    International Nuclear Information System (INIS)

    Fuetterer, M.A.; Raepsaet, X.; Proust, E.

    1994-01-01

    The specifications of permeation barriers, tritium recovery process maintaining a very low tritium activity in the coolant, and control of the coolant chemistry, required the evaluation of the tritium losses through the steam generators and include the definition of its operating conditions by thermodynamic cycle calculations and its thermal-hydraulic design. For both tasks specific computer tools were developed. The obtained geometry, surface area, and temperature profiles along the heat exchanger tubes were then used to estimate the daily tritium permeation into the steam cycle. Steam oxidized Incoloy 800 austenitic stainless steel was identified as the best suited existing material; in nominal steady-state operation, the tritium escape into the steam cycle could be restricted to less than 10 Ci/d. Tritium permeation during temperature and pressure transients in the steam generator (destruction and possible self-healing of the permeation barrier) is identified to bear a large tritium release potential. Solutions are proposed. (from authors). 4 figs., 1 tab

  4. Tritium permeation through helium-heated steam generators of ceramic breeder blankets for DEMO

    Energy Technology Data Exchange (ETDEWEB)

    Fuetterer, M A; Raepsaet, X; Proust, E

    1994-12-31

    The specifications of permeation barriers, tritium recovery process maintaining a very low tritium activity in the coolant, and control of the coolant chemistry, required the evaluation of the tritium losses through the steam generators and include the definition of its operating conditions by thermodynamic cycle calculations and its thermal-hydraulic design. For both tasks specific computer tools were developed. The obtained geometry, surface area, and temperature profiles along the heat exchanger tubes were then used to estimate the daily tritium permeation into the steam cycle. Steam oxidized Incoloy 800 austenitic stainless steel was identified as the best suited existing material; in nominal steady-state operation, the tritium escape into the steam cycle could be restricted to less than 10 Ci/d. Tritium permeation during temperature and pressure transients in the steam generator (destruction and possible self-healing of the permeation barrier) is identified to bear a large tritium release potential. Solutions are proposed. (from authors). 4 figs., 1 tab.

  5. A novel atmospheric tritium sampling system

    Science.gov (United States)

    Qin, Lailai; Xia, Zhenghai; Gu, Shaozhong; Zhang, Dongxun; Bao, Guangliang; Han, Xingbo; Ma, Yuhua; Deng, Ke; Liu, Jiayu; Zhang, Qin; Ma, Zhaowei; Yang, Guo; Liu, Wei; Liu, Guimin

    2018-06-01

    The health hazard of tritium is related to its chemical form. Sampling different chemical forms of tritium simultaneously becomes significant. Here a novel atmospheric tritium sampling system (TS-212) was developed to collect the tritiated water (HTO), tritiated hydrogen (HT) and tritiated methane (CH3T) simultaneously. It consisted of an air inlet system, three parallel connected sampling channels, a hydrogen supply module, a methane supply module and a remote control system. It worked at air flow rate of 1 L/min to 5 L/min, with temperature of catalyst furnace at 200 °C for HT sampling and 400 °C for CH3T sampling. Conversion rates of both HT and CH3T to HTO were larger than 99%. The collecting efficiency of the two-stage trap sets for HTO was larger than 96% in 12 h working-time without being blocked. Therefore, the collected efficiencies of TS-212 are larger than 95% for tritium with different chemical forms in environment. Besides, the remote control system made sampling more intelligent, reducing the operator's work intensity. Based on the performance parameters described above, the TS-212 can be used to sample atmospheric tritium in different chemical forms.

  6. Microcomputer simulation model for facility performance assessment: a case study of nuclear spent fuel handling facility operations

    International Nuclear Information System (INIS)

    Chockie, A.D.; Hostick, C.J.; Otis, P.T.

    1985-10-01

    A microcomputer based simulation model was recently developed at the Pacific Northwest Laboratory (PNL) to assist in the evaluation of design alternatives for a proposed facility to receive, consolidate and store nuclear spent fuel from US commercial power plants. Previous performance assessments were limited to deterministic calculations and Gantt chart representations of the facility operations. To insure that the design of the facility will be adequate to meet the specified throughput requirements, the simulation model was used to analyze such factors as material flow, equipment capability and the interface between the MRS facility and the nuclear waste transportation system. The simulation analysis model was based on commercially available software and application programs designed to represent the MRS waste handling facility operations. The results of the evaluation were used by the design review team at PNL to identify areas where design modifications should be considered. 4 figs

  7. Development of a tritium recovery system from CANDU tritium removal facility

    International Nuclear Information System (INIS)

    Draghia, M.; Pasca, G.; Porcariu, F.

    2015-01-01

    The main purpose of the Tritium Recovery System (TRS) is to reduce to a maximum possible extent the release of tritium from the facility following a tritium release in confinement boundaries and also to have provisions to recover both elemental and vapors tritium from the purging gases during maintenance and components replacement from various systems processing tritium. This work/paper proposes a configuration of Tritium Recovery System wherein elemental tritium and water vapors are recovered in a separated, parallel manner. The proposed TRS configuration is a combination of permeators, a platinum microreactor (MR) and a trickle bed reactor (TBR) and consists of two branches: one branch for elemental tritium recovery from tritiated deuterium gas and the second one for tritium recovery from streams containing a significant amount of water vapours but a low amount, below 5%, of tritiated gas. The two branches shall work in a complementary manner in such a way that the bleed stream from the permeators shall be further processed in the MR and TBR in view of achieving the required decontamination level. A preliminary evaluation of the proposed TRS in comparison with state of the art tritium recovery system from tritium processing facilities is also discussed. (authors)

  8. Development of a tritium recovery system from CANDU tritium removal facility

    Energy Technology Data Exchange (ETDEWEB)

    Draghia, M.; Pasca, G.; Porcariu, F. [SC.IS.TECH SRL, Timisoara (Romania)

    2015-03-15

    The main purpose of the Tritium Recovery System (TRS) is to reduce to a maximum possible extent the release of tritium from the facility following a tritium release in confinement boundaries and also to have provisions to recover both elemental and vapors tritium from the purging gases during maintenance and components replacement from various systems processing tritium. This work/paper proposes a configuration of Tritium Recovery System wherein elemental tritium and water vapors are recovered in a separated, parallel manner. The proposed TRS configuration is a combination of permeators, a platinum microreactor (MR) and a trickle bed reactor (TBR) and consists of two branches: one branch for elemental tritium recovery from tritiated deuterium gas and the second one for tritium recovery from streams containing a significant amount of water vapours but a low amount, below 5%, of tritiated gas. The two branches shall work in a complementary manner in such a way that the bleed stream from the permeators shall be further processed in the MR and TBR in view of achieving the required decontamination level. A preliminary evaluation of the proposed TRS in comparison with state of the art tritium recovery system from tritium processing facilities is also discussed. (authors)

  9. Tritium safety study using Caisson Assembly (CATS) at TPL/JAEA

    International Nuclear Information System (INIS)

    Hayashi, T.; Kobayashi, K.; Iwai, Y.; Isobe, K.; Nakamura, H.; Kawamura, Y.; Shu, W.; Suzuki, T.; Yamada, M.; Yamanishi, T.

    2008-01-01

    Tritium confinement is required as the most important safety Junction for a fusion reactor. In order to demonstrate the confinement performance experimentally, an unique equipment, called CATS: Caisson Assembly for Tritium Safety study, was installed in Tritium Process Laboratory of Japan Atomic Energy Agency and operated for about 10 years. Tritium confinement and migration data in CATS have been accumulated and dynamic simulation code was accumulated using these data. Contamination and decontamination behavior on various materials and new safety equipment functions have been investigated under collaborations with a lot of laboratories and universities. (authors)

  10. Results of tritium tests performed on Sandia Laboratories decontamination system

    International Nuclear Information System (INIS)

    Gildea, P.D.; Wall, W.R.; Gede, V.P.

    1978-05-01

    The Tritium Research Laboratory (TRL), a facility for performing experiments using gram amounts of tritium, became operational on October 1, 1977. As secondary containment, the TRL employs sealed glove boxes connected on demand to two central decontamination systems, the Gas Purification System and the Vacuum Effluent Recovery System. Performance tests on these systems show the tritium removal systems can achieve concentration reduction factors (ratio of inlet to exhaust concentrations) much in excess of 1000 per pass at inlet concentrations of 1 part per million or less for both tritium and tritiated methane

  11. Initial testing of the tritium systems at the Tokamak Fusion Test Reactor

    International Nuclear Information System (INIS)

    Anderson, J.L.; Sissingh, R.A.P.; Gentile, C.A.; Rossmassler, R.L.; Walters, R.T.; Voorhees, D.R.

    1993-01-01

    The Tokamak Fusion Test Reactor (TFTR) at Princeton will start its D-T experiments in late 1993, introducing and operating the tokamak with tritium in order to begin the study of burning plasma physics in D-T. Trace tritium injection experiments, using small amounts of tritium will begin in the fall of 1993. In preparation for these experiments, a series of tests with low concentrations of tritium inn deuterium have been performed as an initial qualification of the tritium systems. These tests began in April 1993. This paper describes the initial testing of the equipment in the TFTR tritium facility

  12. Preparation of paraherquamide labeled with deueterium or tritium

    Energy Technology Data Exchange (ETDEWEB)

    Blizzard, T.A.; Rosegay, A.; Mrozik, H.; Fisher, M.H. (Merck Sharp and Dohme Research Labs., Rahway, NJ (United States))

    1990-04-01

    Deprotonation of paraherquamide (1a) at C-24 and subsequent deuteration (or tritiation) is described. The procedure afforded 24-[sup 2]H-paraherquamide (1b) with 66% deuterium incorporation at C-24. Modification of the deuteration procedure to allow the introduction of tritium resulted in the preparation of 24-[sup 3]H-paraherquamide (1c) with specific activity 3.7Ci/mmol. (author).

  13. Recovery of tritium from CANDU reactors, its storage and monitoring of its migration in the environment

    International Nuclear Information System (INIS)

    Holtslander, W.J.; Osborne, R.V.

    1979-07-01

    Tritium is produced in CANDU heavy water reactors mainly by neutron activation of deuterium. The typical production rate is 2.4 kCi per megawatt-year (89 TBq. per megawatt-year. In Pickering Generating Station the average concentration of tritium in the moderators has reached 16 Ci.kg -1 (0.6 TBq.kg -1 ) and in coolants, 0.5 Ci.kg -1 (0.02 TBq.kg -1 ). Concentrations will continue to increase towards an equilibrium determined by the production rate, the tritium decay rate and heavy water replacement. Tritium removal methods that are being considered for a pilot plant design are catalytic exchange of DTO with D 2 and electrolysis of D 2 O/DTO to provide feed for cryogenic distillation of D 2 /DT/T 2 . Storage methods for the removed tritium - as elemental gas, as metal hydrides and in cements - are also being investigated. Transport of tritiated wastes should not be a particularly difficult problem in light of extensive experience in transporting tritiated heavy water. Methods for determining the presence of tritium in the environment of any tritium handling facility are well established and have the capability of measuring concentrations of tritium down to current ambient values. (author)

  14. User's manual for remote-handled transuranic waste container welding and inspection fixture

    International Nuclear Information System (INIS)

    Hauptmann, J.P.

    1985-09-01

    Rockwell Hanford Operations (Rockwell) has designed built, and tested a prototype remotely operated welding and inspection fixture to be used in making the closure weld on the remote-handled transuranic (RH-TRU) waste container. The RH-TRU waste container has an average TRU concentration in excess of 100 nCi/gm, and a surface radiation dose rate in excess of 200 mrem/h, but not exceeding 100 rem/h. The RH-TRU waste container is to be used by defense waste generator sites in the United States for final packaging of RH-TRU wastes and is compatible with the requirements of the Waste Isolation Pilot Plant (WIPP) and the WIPP handling system. Standard and stacked RH-TRU container designs are available. The standard container is 26 in. in dia. by 121 in. high; the stacked containers are 26 in. in dia. by 61.25 in. high. After loading, two stacked containers are fitted and welded together to form the identical measurements of the standard 121-in. container. The prototype RH-TRU waste container welding and inspection fixture was intended for test and evaluation only, and not for installation in an operating facility. The final RH-TRU waste container welding and inspection fixture drawings (see appendix) incorporate several changes made following operational testing of the original fixture. These modifications are identified in this manual. However, not all modifications have been functionally tested. The purpose of this manual is to aid waste generator sites in designing a remotely operated welding and inspection fixture that will conform to their own requirements. Modifications to the Rockwell design must be evaluated for structural and WIPP handling requirements. This manual also provides design philosophy, component vendor information, and cost estimates

  15. Tritium incorporation in corn and bean after an accute contamination with tritiated water

    International Nuclear Information System (INIS)

    Silva, H.A.; Archundia, C.; Bravo, G.; Nulman, R.; Ortiz Magana, J.R.

    1979-01-01

    Tritium produced by natural or artificial processes is set free in the environment, generally as tritiated water, which the plants use to produce organic compounds such as proteins, fats and carbohidrates. The metabolism of tritium depends on the chemical form in which it is found, transport studies of tritium in different ecosystems, and in particular in food chains, gradually have become more important as a result of the tritium increase in the environment. In Mexico, corn and beans have been studied due to their great importance in the human food chain. The determination of tritium in organic compounds (bound tritium) requires an efficient conversion to tritiated water. For this reason, in this work we have detailed a dry oxidation method, which is a modification of the method of Schoniger, which consists of combustion in oxygen initiated by a simple electrical device using a disposable nichrome resistance, which is also used as a sample carrier. Tritium determination is done by a liquid scintillation counter with quenching correction using an internal standard. Graphs of tritium activity are shown plotted against the time between the application of tritiated water and the time of harvest. The highest activity is found about the 18th day for corn and the 16th day for beans. The calculated values for the half-lives for corn and beans are approximately 56 and 43 days respectively. (author)

  16. FDMH - The tritium model in RODOS

    International Nuclear Information System (INIS)

    Galeriu, D.; Mateescu, G.; Melintescu, A.; Turcanu, C.; Raskob, W.

    2000-01-01

    Under the auspices of its RTD (Research and Technological Development) Framework Programmes, the European Commission has supported the development of the RODOS (Real-time On-line DecisiOn Support) system for off-site emergency management. The project started in 1989 focusing on PWR/LWR type accidents and using experience from the Chernobyl accident. In 1996 it was realised that tritium should be included in the list of radionuclides, as large tritium sources exist in Europe and to allow a potential expansion of the RODOS system for application on future fusion reactor accidents. The National Institute for Physics and Nuclear Engineering (IFIN-HH) in Romania - in close co-operation with the Research Centre Karlsruhe (FZK) - was charged to develop the tritium module, based on previous experience in environmental tritium modelling and the operation of CANDU reactor-based NPP in Romania (with potential tritium accidents). Tritium, being an isotope of hydrogen, is incorporated immediately in the life cycle and its transport into the biosphere differs considerably from other radionuclides treated by the RODOS system. Concentrations in the individual compartments may change very rapidly (hours) under varying environmental conditions and conversion to organic forms by biochemical and metabolic processes takes place in plants and animals. Consequently, the tritium code in RODOS was developed as a separate module and harmonisation in data sets and interfaces with other food chain modules integrated in RODOS was ensured. Presently, the tritium module - FDMH- is integrated and documented in the RODOS system, delivering time dependent tritium concentration (as tritiated water or organically bound tritium) in plant and animal products, inhalation dose and ingestion dose for various groups of population, after an accident emitting tritiated water and for up to 2520 locations around the source. FDMH incorporates many improved techniques in radiological assessment and makes

  17. Advancement in tritium transport simulations for solid breeding blanket system

    Energy Technology Data Exchange (ETDEWEB)

    Ying, Alice, E-mail: ying@fusion.ucla.edu [Mechanical and Aerospace Engineering Department, UCLA, Los Angeles, CA 90095 (United States); Zhang, Hongjie [Mechanical and Aerospace Engineering Department, UCLA, Los Angeles, CA 90095 (United States); Merrill, Brad J. [Idaho National Laboratory, Idaho Falls, ID 83415 (United States); Ahn, Mu-Young [National Fusion Research Institute, Daejeon (Korea, Republic of)

    2016-11-01

    In this paper, advancement on tritium transport simulations was demonstrated for a solid breeder blanket HCCR TBS, where multi-physics and detailed engineering descriptions are considered using a commercial simulation code. The physics involved includes compressible purge gas fluid flow, heat transfer, chemical reaction, isotope swamping effect, and tritium isotopes mass transport. The strategy adopted here is to develop numerical procedures and techniques that allow critical details of material, geometric and operational heterogeneity in a most complete engineering description of the TBS being incorporated into the simulation. Our application focuses on the transient assessment in view of ITER being pulsed operations. An immediate advantage is a more realistic predictive and design analysis tool accounting pulsed operations induced temperature variations which impact helium purge gas flow as well as Q{sub 2} composition concentration time and space evolutions in the breeding regions. This affords a more accurate prediction of tritium permeation into the He coolant by accounting correct temperature and partial pressure effects and realistic diffusion paths. The analysis also shows that by introducing by-pass line to accommodate ITER pulsed operations in the TES loop allows tritium extraction design being more cost effective.

  18. Tritium transfer process using the CRNL wetproof catalyst

    International Nuclear Information System (INIS)

    Chuang, K.T.; Holtslander, W.J.

    1980-01-01

    The recovery of tritium from heavy water in CANDU reactor systems requires the transfer of the tritium atoms from water to hydrogen molecules prior to tritium concentration by cryogenic distillation. Isotopic exchange between liquid water and hydrogen using the CRNL-developed wetproof catalyst provides an effective method for the tritium transfer process. The development of this process has required the translation of the technology from a laboratory demonstration of catalyst activity for the exchange reaction to proving and demonstration that the process will meet the practical restraints in a full-scale tritium recovery plant. This has led to a program to demonstrate acceptable performance of the catalyst at operating conditions that will provide data for design of large plants. Laboratory and pilot plant work has shown adequate catalyst lifetimes, demonstrated catalyst regeneration techniques and defined and required feedwater purification systems to ensure optimum catalyst performance. The ability of the catalyst to promote the exchange of hydrogen isotopes between water and hydrogen has been shown to be technically feasible for the tritium transfer process

  19. The tritium systems test assembly: Overview and recent results

    International Nuclear Information System (INIS)

    Bartlit, J.R.; Anderson, J.L.

    1988-01-01

    The fusion technology development program for tritium in the US is centered around the Tritium Systems Test Assembly (TSTA) at Los Alamos National Laboratory. The TSTA is a full-scale system of reactor exhaust gas reprocessing for an ITER-sized machine. That is, TSTA has the capacity to process tritium in a closed loop mode at the rate of 1 kg per day, requiring a tritium inventory of about 100 g. The TSTA program also interacts with all other tritium-related fusion technology programs in the US and all major programs abroad. This report summarizes the current status, results and interactions of the TSTA. Special emphasis is given to operations in May/June using large compound cryopumps that completed the fuel loop integration of all TSTA subsystems for the first time. 6 refs., 2 figs

  20. Preliminary definition of the remote handling system for the current IFMIF Test Facilities

    Energy Technology Data Exchange (ETDEWEB)

    Queral, V., E-mail: vicentemanuel.queral@ciemat.es [Laboratorio Nacional de Fusion, EURATOM-CIEMAT, 28040 Madrid (Spain); Urbon, J. [Laboratorio Nacional de Fusion, EURATOM-CIEMAT, 28040 Madrid (Spain); Instituto de Fusion Nuclear, Universidad Politecnica de Madrid, 28006 Madrid (Spain); Garcia, A.; Cuarental, I.; Mota, F. [Laboratorio Nacional de Fusion, EURATOM-CIEMAT, 28040 Madrid (Spain); Micciche, G. [CR ENEA Brasimone, I-40035 Camugnano (BO) (Italy); Ibarra, A. [Laboratorio Nacional de Fusion, EURATOM-CIEMAT, 28040 Madrid (Spain); Rapisarda, D. [Laboratorio Nacional de Fusion, EURATOM-CIEMAT, 28040 Madrid (Spain); Instituto de Fusion Nuclear, Universidad Politecnica de Madrid, 28006 Madrid (Spain); Casal, N. [Laboratorio Nacional de Fusion, EURATOM-CIEMAT, 28040 Madrid (Spain)

    2011-10-15

    A coherent design of the remote handling system with the design of the components to be manipulated is vital for reliable, safe and fast maintenance, having a decisive impact on availability, occupational exposures and operational cost of the facility. Highly activated components in the IFMIF facility are found at the Test Cell, a shielded pit where the samples are accurately located. The remote handling system for the Test Cell reference design was outlined in some past IFMIF studies. Currently a new preliminary design of the Test Cell in the IFMIF facility is being developed, introducing important modifications with respect to the reference one. This recent design separates the previous Vertical Test Assemblies in three functional components: Test Modules, shielding plugs and conduits. Therefore, it is necessary to adapt the previous design of the remote handling system to the new maintenance procedures and requirements. This paper summarises such modifications of the remote handling system, in particular the assessment of the feasibility of a modified commercial multirope crane for the handling of the weighty shielding plugs for the new Test Cell and a quasi-commercial grapple for the handling of the new Test Modules.

  1. Preliminary definition of the remote handling system for the current IFMIF Test Facilities

    International Nuclear Information System (INIS)

    Queral, V.; Urbon, J.; Garcia, A.; Cuarental, I.; Mota, F.; Micciche, G.; Ibarra, A.; Rapisarda, D.; Casal, N.

    2011-01-01

    A coherent design of the remote handling system with the design of the components to be manipulated is vital for reliable, safe and fast maintenance, having a decisive impact on availability, occupational exposures and operational cost of the facility. Highly activated components in the IFMIF facility are found at the Test Cell, a shielded pit where the samples are accurately located. The remote handling system for the Test Cell reference design was outlined in some past IFMIF studies. Currently a new preliminary design of the Test Cell in the IFMIF facility is being developed, introducing important modifications with respect to the reference one. This recent design separates the previous Vertical Test Assemblies in three functional components: Test Modules, shielding plugs and conduits. Therefore, it is necessary to adapt the previous design of the remote handling system to the new maintenance procedures and requirements. This paper summarises such modifications of the remote handling system, in particular the assessment of the feasibility of a modified commercial multirope crane for the handling of the weighty shielding plugs for the new Test Cell and a quasi-commercial grapple for the handling of the new Test Modules.

  2. Behaviour of tritium in the vacuum vessel of JT-60U

    International Nuclear Information System (INIS)

    Kobayashi, K.; Miya, N.; Ikeda, Y.; Torikai, Y.; Saito, M.; Alimov, V.

    2015-01-01

    The disassembly of the JT-60U torus started in 2010 after 18 years of deuterium plasma operations. The vessel is made of Inconel 625. Therefore, it was very important to study the hydrogen isotope (particularly tritium) behavior in Inconel 625 from the viewpoint of the clearance procedure. Inconel 625 specimen was exposed to the D 2 (92.8 %) - T 2 (7.2 %) gas mixture at 573 K for 5 hours. The tritium release from the specimen at 298 K was controlled for about 1 year. After that a part of tritium remaining in the specimen was released by heating up to 1073 K. Other part of tritium trapped in the specimen was measured by chemical etching method. Most of the chemical form of the released tritium was HTO. The contaminated specimen by tritium was released continuously the diffusible tritium under the ambient condition. In the tritium release experiment, the amount of desorbed tritium was about 99% during 1 year. It was considered that the tritium in Inconel 625 was released easily

  3. Behaviour of tritium in the vacuum vessel of JT-60U

    Energy Technology Data Exchange (ETDEWEB)

    Kobayashi, K.; Miya, N.; Ikeda, Y. [JT-60 Safety Assessment Group, JAEA, Mukoyama (Japan); Torikai, Y. [Hydrogen Isotope Research Center, University of Toyama, Gofuku (Japan); Saito, M.; Alimov, V. [ITER Project Management Group, JAEA, Mukoyama (Japan)

    2015-03-15

    The disassembly of the JT-60U torus started in 2010 after 18 years of deuterium plasma operations. The vessel is made of Inconel 625. Therefore, it was very important to study the hydrogen isotope (particularly tritium) behavior in Inconel 625 from the viewpoint of the clearance procedure. Inconel 625 specimen was exposed to the D{sub 2} (92.8 %) - T{sub 2} (7.2 %) gas mixture at 573 K for 5 hours. The tritium release from the specimen at 298 K was controlled for about 1 year. After that a part of tritium remaining in the specimen was released by heating up to 1073 K. Other part of tritium trapped in the specimen was measured by chemical etching method. Most of the chemical form of the released tritium was HTO. The contaminated specimen by tritium was released continuously the diffusible tritium under the ambient condition. In the tritium release experiment, the amount of desorbed tritium was about 99% during 1 year. It was considered that the tritium in Inconel 625 was released easily.

  4. Computer control of the TFTR tritium storage and delivery system

    International Nuclear Information System (INIS)

    Youssef, N.; Phillips, H.; Yemin, L.; Dong, J.; Pierce, C.

    1980-01-01

    The Tritium Storage and Delivery System (TSDS) will deliver to the torus the required tritium gas in precisely controlled injection profiles. This system will utilize advanced Central Instrumentation, Control and Data Acquisition (CICADA) computer-control techniques, in normal and malfunction-recovery modes of operation. The control scheme of the TSDS is built of three main control scenarios. An operating mode defines the permissives, sequence and path of a process during each scenario. The computerized control of the TSDS has four distinct advantages: (1) versatile control with fast response times both for tritium gas generation and for gas injection into the torus; (2) ease of selecting the proper operating modes of a control scenario, (3) ease of operation without disturbing the multiple levels of containment, and (4) simple fast trouble shooting of system malfunction utilizing programmed procedures and on-line diagnosis. The TSDS has both remote nd local control capability

  5. TFTR neutral beam control and monitoring for DT operations

    International Nuclear Information System (INIS)

    O'Connor, T.; Kamperschroer, J.; Chu, J.

    1995-01-01

    Record fusion power output has recently been obtained in TFTR with the injection of deuterium and tritium neutral beams. This significant achievement was due in part to the controls, software, and data processing capabilities added to the neutral beam system for DT operations. Chief among these improvements was the addition of SUN workstations and large dynamic data storage to the existing Central Instrumentation Control and Data Acquisition (CICADA) system. Essentially instantaneous look back over the recent shot history has been provided for most beam waveforms and analysis results. Gas regulation controls allowing remote switchover between deuterium and tritium were also added. With these tools, comparison of the waveforms and data of deuterium and tritium for four test conditioning pulses quickly produced reliable tritium setpoints. Thereafter, all beam conditioning was performed with deuterium, thus saving the tritium supply for the important DT injection shots. The lookback capability also led to modifications of the gas system to improve reliability and to control ceramic valve leakage by backbiasing. Other features added to improve the reliability and availability of DT neutral beam operations included master beamline controls and displays, a beamline thermocouple interlock system, a peak thermocouple display, automatic gas inventory and cryo panel gas loading monitoring, beam notching controls, a display of beam/plasma interlocks, and a feedback system to control beam power based on plasma conditions

  6. Tritium stripping in a nitrogen glovebox using SAES St 198

    International Nuclear Information System (INIS)

    Klein, J.E.; Wermer, J.R.

    1994-01-01

    SAES metal getter material St 198 was chosen for glovebox stripper tests to evaluate its effectiveness of removing tritium from a nitrogen atmosphere. The St 198 material is unique from a number of other metal hydride-based getter materials in that it is relatively inert to nitrogen and can thus be used in nitrogen glovebox atmospheres. Six tritium stripper experiments which mock-up the use of a SAES St 198 stripper bed for a full-scale (10,500 liter) nitrogen glovebox have been completed. Experiments consisted of a release of small quantity of protium/deuterium spiked with tritium which were scaled to simulate tritium releases of 0.1 g., 1.0 g., and 10 g. into the glovebox. The tritium spike allows detection using tritium ion chambers. The St 198 stripper system produced a reduction in tritium activity of approximately two orders of magnitude in 24 hours (6--8 atmosphere turn-overs) of stripper operation

  7. Organically bound tritium

    International Nuclear Information System (INIS)

    Diabate, S.; Strack, S.

    1993-01-01

    Tritium released into the environment may be incorporated into organic matter. Organically bound tritium in that case will show retention times in organisms that are considerably longer than those of tritiated water which has significant consequences on dose estimates. This article reviews the most important processes of organically bound tritium production and transport through food networks. Metabolic reactions in plant and animal organisms with tritiated water as a reaction partner are of great importance in this respect. The most important production process, in quantitative terms, is photosynthesis in green plants. The translocation of organically bound tritium from the leaves to edible parts of crop plants should be considered in models of organically bound tritium behavior. Organically bound tritium enters the human body on several pathways, either from the primary producers (vegetable food) or at a higher tropic level (animal food). Animal experiments have shown that the dose due to ingestion of organically bound tritium can be up to twice as high as a comparable intake of tritiated water in gaseous or liquid form. In the environment, organically bound tritium in plants and animals is often found to have higher specific tritium concentrations than tissue water. This is not due to some tritium enrichment effects but to the fact that no equilibrium conditions are reached under natural conditions. 66 refs

  8. A Survey of Tritium in Irish Seawater

    International Nuclear Information System (INIS)

    Currivan, L.; Kelleher, K.; McGinnity, P.; Wong, J.; McMahon, C.

    2013-07-01

    This report provides a comprehensive record of the study and measurements of tritium in Irish seawater undertaken by the Radiological Protection Institute of Ireland RPII. The majority of the samples analysed were found to have tritium concentrations below the limit of detection and a conservative assessment of radiation dose arising showed a negligible impact to the public. Tritium is discharged in large quantities from various nuclear facilities, and mostly in liquid form. For this reason it is included in the list of radioactive substances of interest to the OSPAR (Oslo-Paris) Convention to protect the marine environment of the North-East Atlantic. To fulfil its role within OSPAR, to provide technical support to the Irish Government, RPII carried out a project to determine the levels of tritium in seawater from around the Irish coast to supplement its routine marine monitoring programme. A total of 85 seawater samples were collected over a three year period and analysed at the RPII's laboratory. Given that the operational discharges for tritium from the nuclear fuel reprocessing plant at Sellafield, UK, are expected to increase due to current and planned decommissioning activities RPII will continue to monitor tritium levels in seawater around the Irish coast, including the Irish Sea, as part of its routine marine monitoring programme

  9. Tritium breeders and tritium permeation barrier coatings for fusion reactor

    International Nuclear Information System (INIS)

    Yamawaki, Michio; Kawamura, Hiroshi; Tsuchiya, Kunihiko

    2004-01-01

    A state of R and D of tritium breeders and tritium permeation barrier coatings for fusion reactor is explained. A list of candidate for tritium breeders consists of ceramics containing lithium, for examples, Li 2 O, Li 2 TiO 3 , Li 2 ZrO 3 , Li 4 SiO 4 and LiAlO 2 . The characteristics and form are described. The optimum particle size is from 1 to 10 μm. The production technologies of tritium breeders in the world are stated. Characteristics of ceramics with lithium as tritium breeders are compared. TiC, TiN/TiC, Al 2 O 3 and Cr 2 O 3 -SiO 2 -P 2 O 5 are tritium permeation barrier coating materials. These production methods and evaluation of characteristics are explained. (S.Y.)

  10. Investigation of non-magnetic alloys for the suppression of tritium permeation. Final report

    International Nuclear Information System (INIS)

    1980-07-01

    This report describes a small (300 man hour) literature survey relating to the suppression of tritium loss by permeation through the walls of fusion reactors. The program was based on prior in-house Thermacore work to suppress hydrogen permeation into high temperature (800 0 C) heat pipes. The Thermacore approach involves selection of a steel with a small (.5 to 5%) aluminum content. The aluminum is diffused to the surface and oxidized. The present work was aimed at identification of alloys which might combine low tritium permeation with other properties desired in fusion reactor vessels, heat exchangers, lithium-handling plumbing and other components likely to contain tritium. These properties include low radiation damage, low magnetic permeability, high temperature strength, and compatibility with potential heat transfer and blanket materials. The work consisted of two tasks: Problem Definition and Literature Search and Analysis

  11. The use of virtual reality for preparation and implementation of JET remote handling operations

    International Nuclear Information System (INIS)

    Sanders, S.; Rolfe, A.C.

    2003-01-01

    The use of real time 3-D computer graphic models for preparation and support of remote handling operations on JET has been in use since the mid 1980s. A complete review has been undertaken of the functional requirements and benefits of VR for remote handling and a subsequent market survey of the present state-of-the-art of VR systems has resulted in the implementation of a new system for JET. The VR system is used in two discrete modes: in on-line mode the remote handling equipment Electro-mechanical hardware is connected to the VR system and provides input for the VR system to update a real time 3-D display of the equipment inside the torus. This mode supplements the video camera system and assists with camera control and warnings of impending or potential collisions. In Off-line mode the operator manipulates the VR system model with no connections to the remote handling equipment. This mode is used during preparation of RH operational strategies, checking of operational feasibility and operations procedures. Various VR systems were evaluated against a detailed technical specification that covered visualisation function and performance, user interface design and base model input/creation capabilities. The cheapest of those systems that satisfied the technical requirements was selected

  12. Review of tritium confinement and atmosphere detritiation system in hot cells complex

    International Nuclear Information System (INIS)

    Rizzello, Claudio; Borgognoni, Fabio; Pinna, Tonio; Tosti, Silvano

    2010-01-01

    The tritium confinement strategy adopted during the past years in the ITER hot cell building is compared to the safety requirements given by the standard ISO-17873 'Nuclear facilities - criteria for the design and operation of ventilation systems for nuclear installations other than nuclear reactors'. In fact, this is the reference safety guideline recommended by French licensing authorities. Several features of the considered design of the hot cell building are not in agreement with these guidelines. Main discrepancies concern the zoning of the hot cell complex, the flow rates of ventilation, and the possibility to recycle the room atmosphere and to detritiate the effluent air. These aspects are discussed together with some proposed modifications of the design.

  13. Effect of surface water on tritium release behavior from Li4SiO4

    International Nuclear Information System (INIS)

    Hanada, T.; Fukada, S.; Nishikawa, M.; Suematsu, K.; Yamashita, N.; Kanazawa, T.

    2010-01-01

    The tritium release model to represent the release behavior of bred tritium from solid breeder materials has been developed by the blanket group of Kyushu University. It has been found that water is released to the purge gas from solid breeder materials and that this water affects the tritium release behavior. In this study, the amount of surface water released from Li 4 SiO 4 is quantified by the experiment. In addition, the tritium release behavior from Li 4 SiO 4 are estimated based on the tritium release model using parameters obtained in our studies under conditions of commercial reactor operation and ITER test blanket module operation. The effect of the surface water on tritium release behavior is discussed from the obtained results. Moreover, the tritium inventory of Li 4 SiO 4 is discussed based on calculation under the unsteady state condition. Further, the effects of grain size and temperature on distribution of tritium inventory under the steady state condition are evaluated, and the optimal grain size is discussed from the view point of tritium release from Li 4 SiO 4 .

  14. Studies on chemical phenomena of high concentration tritium water and organic compounds of tritium from viewpoint of the tritium confinement

    International Nuclear Information System (INIS)

    Yamanishi, Toshihiko; Hayashi, Takumi; Iwai, Yasunori; Isobe, Kanetsugu; Hara, Masanori; Sugiyama, Takahiko; Okuno, Kenji

    2009-01-01

    As a part of the grant-in-aid for scientific research on priority areas entitled 'frontiers of tritium researches toward fusion reactors', coordinated two research programs on chemical phenomena of high concentration tritium water and organic compounds of tritium from view point of the tritium confinement have been conducted by the C01 team. The results are summarized as follows: (1) Chemical effects of the high concentration tritium water on stainless steels as structural materials of fusion reactors were investigated. Basic data on tritium behaviors at the metal-water interface and corrosion of metal in tritium water were obtained. (2) Development of the tritium confinement and extraction system for the circulating cooling water in the fusion reactor was studied. Improvement was obtained in the performance of a chemical exchange column and catalysts as major components of the water processing system. (J.P.N.)

  15. Tritium inventory differences: I. Sampling and U-getter pump holdup

    International Nuclear Information System (INIS)

    Ellefson, R.E.; Gill, J.T.

    1986-01-01

    Inventory differences (ID) in tritium material balance accounts (MBA) can occur with unmeasured transfers from the process or unmeasured holdup in the system. Small but cumulatively significant quantities of tritium can leave the MBA by normal capillary sampling of process gas operation. A predictor model for estimating the quantity of tritium leaving the MBA by sampling has been developed and implemented. The model calculates the gas transferred per sample; using the tritium concentration in the process and the number of samples, a quantity of tritium transferred is predicted. Verification of the model is made by PVT measurement of process transfer from multiple samplings. Comparison of predicted sample transfers with IDs from several MBA's reveals that sampling typically represents 50% of unmeasured transfers for regularly sampled processes

  16. Thermal fatigue and creep evaluation for the bed in tritium SDS

    Energy Technology Data Exchange (ETDEWEB)

    Choi, Woo-seok, E-mail: wschoi@kaeri.re.kr [Korea Atomic Energy Research Institute, Yuseong, Daejeon (Korea, Republic of); Park, Chang-gyu [Korea Atomic Energy Research Institute, Yuseong, Daejeon (Korea, Republic of); Ju, Yong-sun [KOASIS, Yuseong, Daejeon (Korea, Republic of); Kang, Hyun-goo; Jang, Min-ho; Yun, Sei-hun [National Fusion Research Institute, Yuseong, Daejeon (Korea, Republic of)

    2016-11-01

    Highlights: • To evaluate the integrity of the ITER tritium SDS bed, three kinds of assessments were conducted. • The structural analysis showed that the stress induced from the thermal load and the internal pressure is within the design stress intensity. • The combined fatigue and creep assessment was also performed according to the procedure of ASME code Subsection NH. • A new operation procedure to obtain more integrity margin was recommended. • The other operation procedure could be considered which makes the rapid operation possible giving up the marginal integrity. - Abstract: The primary vessel of ITER tritium SDS bed is made of stainless steel. It is heated beyond 500 °C to desorb tritium. During this process the primary vessel is subject to thermal stress. And it is also subject to thermal fatigue by the iterative process of absorption and desorption. In addition, its operation temperature range is in the thermal creep temperature region. Therefore, the tritium SDS bed should have sufficient design stress intensity under the high temperature operating conditions. It should also be free of damage due to fatigue during the design life. Thermal analysis and structural analysis was performed using a finite element method to calculate the temperature and the stress distribution of the ITER tritium SDS bed due to the internal pressure and thermal loads. The thermal fatigue and creep effects were also evaluated since the tritium SDS bed was heated to hot temperature region where creep occurs. Based on the distribution of the primary stress and secondary stress results, two evaluation cross-sections were selected. The evaluation showed that the calculated value on the cross-sections satisfied all of the limits of the design code requirements.

  17. Experience with fuel damage caused by abnormal conditions in handling and transporting operations

    International Nuclear Information System (INIS)

    Bailey, W.J.

    1983-01-01

    Pacific Northwest Laboratory (PNL) conducted a study to determine the expected condition of spent USA light-water reactor (LWR) fuel upon arrival at interim storage or fuel reprocessing facilities or, if fuel is declared a waste, at disposal facilities. Initial findings were described in an earlier PNL paper at PATRAM '80 and in a report. Updated findings are described in this paper, which includes an evaluation of information obtained from the literature and a compilation of cases of known or suspected damage to fuel as a result of handling and/or transporting operations. To date, PNL has evaluated 123 actual cases (98 USA and 25 non-USA). Irradiated fuel was involved in all but 10 of the cases. From this study, it is calculated that the frequency of unusual occurrences involving fuel damage from handling and transporting operations has been low. The damage that did occur was generally minor. The current base of experience with fuel handling and transporting operations indicates that nearly all of these unusual occurrences had only a minor or negligible effect on spent fuel storage facility operations

  18. Tritium-related fusion technology programmes under EFDA-JET

    International Nuclear Information System (INIS)

    Coad, J. P.; Ciattaglia, S.; Piazza, G.; Rosanvallon, S.; Grisolia, Ch.; Laesser, R.

    2003-01-01

    The Fusion Technology Task Force (TFFT) has a wide-ranging series of programmes in the areas of waste management and safety, tritium recovery, tritium analysis and accounting, and testing components under development for ITER at JET. Examples have been presented here in the fields of waste management and safety. In waste management, the largest effort is currently on water de-tritiation, which is considered to be the most urgent and important topic affecting JET operations, and plant design is also required for ITER. It is also the most technically challenging of the waste detritiation issues. A complete design for a water de-tritiation plant for JET (a prototype for ITER), including optimised and tested catalysts, is expected within the next 2 years. TFFT safety programmes support the on-going work on safety in preparation for ITER, including tritium spreading and dust inhalation effects for worse-case accident scenarios. Effort is also going into documenting the operational experience of the JET machine with respect to reliability of mechanical components within the tritium boundary and radiation exposure, and inferring what lessons should be learnt for ITER

  19. Development of tritium technology at the Tritium Systems Test Assembly

    International Nuclear Information System (INIS)

    Anderson, J.L.; Bartlit, J.R.

    1982-01-01

    The Tritium Systems Test Assembly (TSTA) at the Los Alamos National Laboratory is dedicated to the development, demonstration, and interfacing of technologies related to the deuterium-tritium fuel cycle for large scale fusion reactor systems starting with the Fusion Engineering Device (FED) or the International Tokamak Reactor (INTOR). This paper briefly describes the fuel cycle and safety systems at TSTA including the Vacuum Facility, Fuel Cleanup, Isotope Separation, Transfer Pumping, Emergency Tritium Cleanup, Tritium Waste Treatment, Tritium Monitoring, Data Acquisition and Control, Emergency Power and Gas Analysis systems. Discussed in further detail is the experimental program proposed for the startup and testing of these systems

  20. Development of a compact tritium activity monitor and first tritium measurements

    Energy Technology Data Exchange (ETDEWEB)

    Röllig, M., E-mail: marco.roellig@kit.edu; Ebenhöch, S.; Niemes, S.; Priester, F.; Sturm, M.

    2015-11-15

    Highlights: • We report about experimental results of a new tritium activity monitoring system using the BIXS method. • The system is compact and easy to implement. It has a small dead volume of about 28 cm{sup 3} and can be used in a flow-through mode. • Gold coated surfaces are used to improve significantly count rate stability of the system and to reduce stored inventory. - Abstract: To develop a convenient tool for in-line tritium gas monitoring, the TRitium Activity Chamber Experiment (TRACE) was built and commissioned at the Tritium Laboratory Karlsruhe (TLK). The detection system is based on beta-induced X-ray spectrometry (BIXS), which observes the bremsstrahlung X-rays generated by tritium decay electrons in a gold layer. The setup features a measuring chamber with a gold-coated beryllium window and a silicon drift detector. Such a detection system can be used for accountancy and process control in tritium processing facilities like the Karlsruhe Tritium Neutrino Experiment (KATRIN). First characterization measurements with tritium were performed. The system demonstrates a linear response between tritium partial pressure and the integral count rate in a pressure range of 1 Pa up to 60 Pa. Within 100 s measurement time the lower detection limit for tritium is (143.63 ± 5.06) · 10{sup 4} Bq. The system stability of TRACE is limited by a linear decrease of integral count rate of 0.041 %/h. This decrease is most probably due to exchange interactions between tritium and the stainless steel walls. By reducing the interaction surface with stainless steel, the decrease of the integral count rate was reduced to 0.008 %/h. Based on the first results shown in this paper it can be concluded that TRACE is a promising complement to existing tritium monitoring tools.

  1. Methods of detecting tritium in gases and liquids

    Energy Technology Data Exchange (ETDEWEB)

    Petr, I

    1977-07-01

    Tritium mainly occurs in gases in two chemical forms, i.e., as water vapour (HTO) or elemental hydrogen (HT). Two methods for tritium gas measuring are described. The first consists in the use of an ionization chamber or a proportional counter with the sample sucked in through a filter to the detector working volume. The second consists in the separation of tritium (in the form of HTO) from the gas sample by sorption on silica gel or on molecular sieves and its detection using a liquid or a plastic scintillation detector. Tritium in the form of HT and gaseous organic tritium compounds are determined using the same measuring method after oxidation of the gaseous samples to HTO by burning. A description is given of detectors and measuring methods. Tritium in liquids mainly occurs in the form of tritiated water (HTO). The most commonly used method of tritium detection in liquids is the application of liquid scintillation detectors in which the sample is dissolved or suspended and measured with two photomultipliers in time-coincidence connection. The main advantage of liquid scintillators is the possibility to achieve the 4..pi.. measurement geometry. The methods of calibration and of checking the stability of a measuring system with liquid scintillators are described as are the applications of plastic scintillators in measuring tritium in liquids. Plastic scintillators are less costly in operation and show a more rapid response but their sensitivity is lower. The threshold values of activity are shown in dependence on the detector applied, the chemical form of tritium and the sampling method.

  2. Tritium retention in next step devices and the requirements for mitigation and removal techniques

    International Nuclear Information System (INIS)

    Counsell, G; Coad, P; Grisola, C; Hopf, C

    2006-01-01

    Mechanisms underlying the retention of fuel species in tokamaks with carbon plasma-facing components are presented, together with estimates for the corresponding retention of tritium in ITER. The consequential requirement for new and improved schemes to reduce the tritium inventory is highlighted and the results of ongoing studies into a range of techniques are presented, together with estimates of the tritium removal rate in ITER in each case. Finally, an approach involving the integration of many tritium removal techniques into the ITER operational schedule is proposed as a means to extend the period of operations before major intervention is required

  3. Wet scrubber technology for tritium confinement at ITER

    Energy Technology Data Exchange (ETDEWEB)

    Perevezentsev, A.N., E-mail: alexander.perevezentsev@iter.org [ITER Organization, CS 90 046, 13067 St Paul lez Durance Cedex (France); Andreev, B.M.; Rozenkevich, M.B.; Pak, Yu.S.; Ovcharov, A.V.; Marunich, S.A. [Mendeleev University of Chemical Technology, 125047 Miusskaya Sq. 9, Moscow (Russian Federation)

    2010-12-15

    Operation of the ITER machine with tritium plasma requires tritium confinement systems to protect workers and the environment. Tritium confinement at ITER is based on multistage approach. The final stage provides tritium confinement in building sectors and consists of building's walls as physical barriers and control of sub-atmospheric pressure in those volumes as a dynamic barrier. The dynamic part of the confinement function shall be provided by safety important components that are available all the time when required. Detritiation of air prior to its release to the environment is based on catalytic conversion of tritium containing gaseous species to water vapour followed by their isotopic exchange with liquid water in scrubber column of packed bed type. Wet scrubber technology has been selected because of its advantages over conventional air detritiation technique based on gas drying by water adsorption. The most important design target of system availability was very difficult to meet with conventional water adsorption driers. This paper presents results of experimental trial for validation of wet scrubber technology application in the ITER tritium confinement system and process evaluation using developed simulation computer code.

  4. Tritium contamination and monitoring at Frascati Neutron Generator

    Energy Technology Data Exchange (ETDEWEB)

    Lucci, F.; Sandri, S.; Ianni, A. [ENEA, Frascati (Italy). Dipartimento Ambiente; Vasselli, R. [ANPA, Roma (Italy); Pillon, M.; Bettinali, L. [ENEA, Frascati (Italy). Dipartimento Energia

    1994-11-01

    The Frascati Neutron Generator (FGN) is a specialised 300 keV, 3 mA direct electrostatic deuteron accelerator which produces about 5-10{sup 1}1 14 MeV neutrons per second by D-T reactions on a tritium-titanium fixed target. This paper concerns the tritium contamination control and monitoring aspects after some months of testing and a preliminary period of operation of the plant. The tritium monitoring system is composed of both on-line and off-line devices to control the tritium concentration in the atmosphere measured from different parts of the plant: vacuum exhaust clean up (VECU) system, stack, etc. The on-line devices are three flux monitors, that sample continuosly the air from up to eight different points in the plant. The passive sampling system is designed to select the chemical form of tritium and to collect respectively HTO and HT in two different cartridges filled with an appropriate drying material. The response of the on-line tritium monitor system are exposed and discussed: some measurements performed with atmosphere dehumidifying apparatus of this system are described and the relevant results are analysed.

  5. Tritium contamination and monitoring at Frascati Neutron Generator

    International Nuclear Information System (INIS)

    Lucci, F.; Sandri, S.; Ianni, A.; Pillon, M.; Bettinali, L.

    1994-11-01

    The Frascati Neutron Generator (FGN) is a specialised 300 keV, 3 mA direct electrostatic deuteron accelerator which produces about 5-10 1 1 14 MeV neutrons per second by D-T reactions on a tritium-titanium fixed target. This paper concerns the tritium contamination control and monitoring aspects after some months of testing and a preliminary period of operation of the plant. The tritium monitoring system is composed of both on-line and off-line devices to control the tritium concentration in the atmosphere measured from different parts of the plant: vacuum exhaust clean up (VECU) system, stack, etc. The on-line devices are three flux monitors, that sample continuosly the air from up to eight different points in the plant. The passive sampling system is designed to select the chemical form of tritium and to collect respectively HTO and HT in two different cartridges filled with an appropriate drying material. The response of the on-line tritium monitor system are exposed and discussed: some measurements performed with atmosphere dehumidifying apparatus of this system are described and the relevant results are analysed

  6. Analysis of tritium releases to the atmosphere by a CTR

    International Nuclear Information System (INIS)

    Renne, D.S.; Sandusky, W.F.; Dana, M.T.

    1975-08-01

    Removal by atmospheric processes of routinely and accidentally released tritium from a controlled thermonuclear reactor (CTR) was investigated. Based on previous studies, the assumed form of the tritium for this analysis was HTO or tritiated water vapor. Assuming a CTR operation in Morris, Illinois, surface water and ground-level air concentration values of tritium were computed for three space (or time) scales: local (50 Km of a plant), regional (up to 1000 Km of the plant), and global

  7. Tritium dynamics in soils and plants grown under three irrigation regimes at a tritium processing facility in Canada.

    Science.gov (United States)

    Mihok, S; Wilk, M; Lapp, A; St-Amant, N; Kwamena, N-O A; Clark, I D

    2016-03-01

    The dynamics of tritium released from nuclear facilities as tritiated water (HTO) have been studied extensively with results incorporated into regulatory assessment models. These models typically estimate organically bound tritium (OBT) for calculating public dose as OBT itself is rarely measured. Higher than expected OBT/HTO ratios in plants and soils are an emerging issue that is not well understood. To support the improvement of models, an experimental garden was set up in 2012 at a tritium processing facility in Pembroke, Ontario to characterize the circumstances under which high OBT/HTO ratios may arise. Soils and plants were sampled weekly to coincide with detailed air and stack monitoring. The design included a plot of native grass/soil, contrasted with sod and vegetables grown in barrels with commercial topsoil under natural rain and either low or high tritium irrigation water. Air monitoring indicated that the plume was present infrequently at concentrations of up to about 100 Bq/m(3) (the garden was not in a major wind sector). Mean air concentrations during the day on workdays (HTO 10.3 Bq/m(3), HT 5.8 Bq/m(3)) were higher than at other times (0.7-2.6 Bq/m(3)). Mean Tissue Free Water Tritium (TFWT) in plants and soils and OBT/HTO ratios were only very weakly or not at all correlated with releases on a weekly basis. TFWT was equal in soils and plants and in above and below ground parts of vegetables. OBT/HTO ratios in above ground parts of vegetables were above one when the main source of tritium was from high tritium irrigation water (1.5-1.8). Ratios were below one in below ground parts of vegetables when irrigated with high tritium water (0.4-0.6) and above one in vegetables rain-fed or irrigated with low tritium water (1.3-2.8). In contrast, OBT/HTO ratios were very high (9.0-13.5) when the source of tritium was mainly from the atmosphere. TFWT varied considerably through time as a result of SRBT's operations; OBT/HTO ratios showed no clear temporal

  8. Measurement assurance program for LSC analyses of tritium samples

    International Nuclear Information System (INIS)

    Levi, G.D. Jr.; Clark, J.P.

    1997-01-01

    Liquid Scintillation Counting (LSC) for Tritium is done on 600 to 800 samples daily as part of a contamination control program at the Savannah River Site's Tritium Facilities. The tritium results from the LSCs are used: to release items as radiologically clean; to establish radiological control measures for workers; and to characterize waste. The following is a list of the sample matrices that are analyzed for tritium: filter paper smears, aqueous, oil, oily rags, ethylene glycol, ethyl alcohol, freon and mercury. Routine and special causes of variation in standards, counting equipment, environment, operators, counting times, samples, activity levels, etc. produce uncertainty in the LSC measurements. A comprehensive analytical process measurement assurance program such as JTIPMAP trademark has been implemented. The process measurement assurance program is being used to quantify and control many of the sources of variation and provide accurate estimates of the overall measurement uncertainty associated with the LSC measurements. The paper will describe LSC operations, process improvements, quality control and quality assurance programs along with future improvements associated with the implementation of the process measurement assurance program

  9. Tritium dosimetry and standardization

    International Nuclear Information System (INIS)

    Balonov, M.I.

    1983-01-01

    Actual problem of radiation hygiene such as an evaluation of human irradiation hazard due to a contact with tritium compounds both in industrial and public spheres is under discussion. Sources of tritium release to environment are characterized. Methods of tritium radiation monitoring are discussed. Methods of dosimetry of internal human exposure resulted from tritium compounds are developed on the base of modern representations on metbolism and tritium radiobiological effect. A system of standardization of permissible intake of tritium compounds for personnel and persons of population is grounded. Some protection measures are proposed as applied to tritium overdosage

  10. Tritium production distribution in the accelerator production of tritium device

    International Nuclear Information System (INIS)

    Kidman, R.B.

    1997-11-01

    Helium-3 ( 3 He) gas is circulated throughout the accelerator production of tritium target/blanket (T/B) assembly to capture neutrons and convert 3 He to tritium. Because 3 He is very expensive, it is important to know the tritium producing effectiveness of 3 He at all points throughout the T/B. The purpose of this paper is to present estimates of the spatial distributions of tritium production, 3 He inventory, and the 3 He FOM

  11. Atmospheric tritium 1968-1984. Tritium Laboratory data report No. 14

    International Nuclear Information System (INIS)

    Oestlund, H.G.; Mason, A.S.

    1985-04-01

    Tritium in the form of water, HTO, from the atmospheric testing of nuclear devices in the 60s has now mainly disappeared from the atmosphere and entered the ocean. The additions of such tritium from Chinese and French tests in the 70s were observed but did not make a big impression on the diminishing inventory of atmospheric HTO. Tritium in elemental form, HT, went through a maximum in the mid 70s, apparently primarily as a results of some underground testing of large nuclear devices and releases from civilian and military nuclear industry. The mid 70s maximum was 1.3 kg of tritium in this form, and in 1984 0.5 kg remain. The disappearance is slower than the decay rate of tritium, so sources must still have been present during this time. The global distribution shows, not unexpectedly, smaller inventory in the Southern Hemisphere across the equator and thus southward transport of HT. The chemical lifetime of hydrogen gas in the atmosphere, assuming the elemental tritium being in the form of HT, not T 2 , has been estimated between 6 and 10 years. It is to be expected that increasing activity of nuclear fuel reprocessing would in the near future again increase the global tritium gas inventory. Tritium in the form of light hydrocarbons, primarily methane, has also been measured, and in this form a quantity of 200 g of tritium resided in the global atmosphere 1956 to 1976. By 1982 it had decreased to 50 g. 25 refs., 5 figs., 11 tabs

  12. Tritium Management In HCLL-PPCS Model AB Blanket

    International Nuclear Information System (INIS)

    Ricapito, I.; Aiello, A.; Benamati, G.; Utili, M.; Ciampichetti, A.; Zucchetti, M.

    2006-01-01

    One the main issues in the HCLL blanket development for a prototype fusion reactor is the technical feasibility of the bred tritium processing system. The basis of such concern lies in the very low tritium-Pb17Li Sieverts' constant, as measured by different scientists in the past years. In the PPCS reactor 650 g/d of tritium must be generated in the breeding blanket while less than 1 g/y of tritium has to be released to the environment through the secondary cooling circuit. As a consequence, CPS (Coolant Purification System) plays a fundamental role because it has to keep at an acceptable level the tritium partial pressure in the primary HCS (Helium Cooling Circuit) limiting, therefore, the tritium environmental release through leakage and permeation into the secondary cooling circuit. On the other hand, the He mass flow-rate to be processed by CPS is linear with the tritium permeation rate from the breeder into HCS. Therefore, with the above mentioned low Sieverts' constant values and the consequent high tritium partial pressure in the liquid metal, the possibility to keep acceptable the CPS capacity depends on a highly efficient and stable performance of tritium permeation barriers, to be applied not only on the blanket cooling plates but also on the steam generator walls. However, the experimental results on the tritium permeation barriers under relevant operative conditions were so far quite disappointing. The new data on the Sieverts' constant achieved at ENEA CR Brasimone, one order of magnitude higher than those founding the past, have a big impact in relaxing the above mentioned requirements for the tritium management in PPCS model AB reactor. Besides presenting and discussing these recent experimental results, an updated assessment of the tritium permeation rate from the liquid breeder into HCS through the cooling plates and from HCS into the environment through the steam generators is given in this paper. The consequent new constraints in terms of tritium

  13. Comparison and Evaluation of Various Tritium Decontamination Techniques and Processes

    International Nuclear Information System (INIS)

    Gentile, C.A.; Langish, S.W.; Skinner, C.H.; Ciebiera, L.P.

    2004-01-01

    In support of fusion energy development, various techniques and processes have been developed over the past two decades for the removal and decontamination of tritium from a variety of items, surfaces, and components. Tritium decontamination, by chemical, physical, mechanical, or a combination of these methods, is driven by two underlying motivational forces. The first of these motivational forces is safety. Safety is paramount to the established culture associated with fusion energy. The second of these motivational forces is cost. In all aspects, less tritium contamination equals lower operational and disposal costs. This paper will discuss and evaluate the various processes employed for tritium removal and decontamination

  14. Comparison and Evaluation of Various Tritium Decontamination Techniques and Processes

    International Nuclear Information System (INIS)

    Gentile, C.A.; Langish, S.W.; Skinner, C.H.; Ciebiera, L.P.

    2005-01-01

    In support of fusion energy development, various techniques and processes have been developed over the past two decades for the removal and decontamination of tritium from a variety of items, surfaces, and components. The motivational force for tritium decontamination by chemical, physical, mechanical, or a combination of these methods, is driven by two underlying forces. The first of these motivational forces is safety. Safety is paramount to the established culture associated with fusion energy. The second of these motivational forces is cost. In all aspects, less tritium contamination equals lower operational and disposal costs. This paper will discuss and evaluate the various processes employed for tritium removal and decontamination

  15. Automated handling for SAF batch furnace and chemistry analysis operations

    International Nuclear Information System (INIS)

    Bowen, W.W.; Sherrell, D.L.; Wiemers, M.J.

    1981-01-01

    The Secure Automated Fabrication Program is developing a remotely operated breeder reactor fuel pin fabrication line. The equipment will be installed in the Fuels and Materials Examination Facility being constructed at Hanford, Washington. Production is scheduled to start in mid-1986. The application of small pneumatically operated industrial robots for loading and unloading product into and out of batch furnaces and for distribution and handling of chemistry samples is described

  16. Tritium transport in HCLL and WCLL DEMO blankets

    Energy Technology Data Exchange (ETDEWEB)

    Candido, Luigi [DENERG, Politecnico di Torino, Corso Duca degli Abruzzi 24, 10129 Torino (Italy); Utili, Marco [ENEA UTIS- C.R. Brasimone, Bacino del Brasimone, Camugnano, BO (Italy); Nicolotti, Iuri [DENERG, Politecnico di Torino, Corso Duca degli Abruzzi 24, 10129 Torino (Italy); Zucchetti, Massimo, E-mail: massimo.zucchetti@polito.it [DENERG, Politecnico di Torino, Corso Duca degli Abruzzi 24, 10129 Torino (Italy)

    2016-11-01

    Highlights: • Tritium inventories and tritium losses are the main output of the presented model for HCLL and WCLL. • A parametric study has been performed, to show the behavior of the two systems when certain parameters are changed, in order to minimize inventories and/or losses. • An improved design is needed, in order to reduce the radiological hazard related to tritium activity. According to test number 7, HCLL-BB could be able to have a tritium inventory of 33.05 g and losses of 19.55 Ci/d. • WCLL-BB shows a very low radiological risk, much lower than that suggested (inventory: 17.48 g, losses: 3.2 Ci/d). An ptimization study has been performed aiming to minimize the water flow rate for an upgraded design. • Both for HCLL and WCLL, the most critical parameters able to produce relevant variations in inventories and losses are the helium/water fraction, the CPS/WDS and the permeation reduction factors. - Abstract: The Helium-Cooled Lithium Lead (HCLL) and Water-Cooled Lithium Lead (WCLL) Breeding Blankets are two of the four blanket designs proposed for DEMO reactor. The study of tritium transport inside the blankets is fundamental to assess their preliminary design and safety features. A mathematical model has been derived, in a new form making makes easier to determine the most critical components as far as tritium losses and tritium inventories are concerned, and to model the tritium performance of the whole system. Two cases have been studied, the former with tritium generation rate constant in time and the latter considering a typical pulsed operation for a time span of 100 h. Tritium inventories and tritium losses are the main output of the model. Tritium concentrations, inventories and losses are initially calculated and compared for the two blankets, in a reference case without permeation barriers or cold traps. A parametric study to show the behavior of the two systems when certain parameters are changed, in order to minimize inventories and

  17. Tritium Decay Helium-3 Effects in Tungsten

    Energy Technology Data Exchange (ETDEWEB)

    Shimada, M. [Idaho National Lab. (INL), Idaho Falls, ID (United States); Merrill, B. J. [Idaho National Lab. (INL), Idaho Falls, ID (United States)

    2016-06-01

    A critical challenge for long-term operation of ITER and beyond to a Demonstration reactor (DEMO) and future fusion reactor will be the development of plasma-facing components (PFCs) that demonstrate erosion resistance to steady-state/transient heat fluxes and intense neutral/ion particle fluxes under the extreme fusion nuclear environment, while at the same time minimizing in-vessel tritium inventories and permeation fluxes into the PFC’s coolant. Tritium will diffuse in bulk tungsten at elevated temperatures, and can be trapped in radiation-induced trap site (up to 1 at. % T/W) in tungsten [1,2]. Tritium decay into helium-3 may also play a major role in microstructural evolution (e.g. helium embrittlement) in tungsten due to relatively low helium-4 production (e.g. He/dpa ratio of 0.4-0.7 appm [3]) in tungsten. Tritium-decay helium-3 effect on tungsten is hardly understood, and its database is very limited. Two tungsten samples (99.99 at. % purity from A.L.M.T. Co., Japan) were exposed to high flux (ion flux of 1.0x1022 m-2s-1 and ion fluence of 1.0x1026 m-2) 0.5%T2/D2 plasma at two different temperatures (200, and 500°C) in Tritium Plasma Experiment (TPE) at Idaho National Laboratory. Tritium implanted samples were stored at ambient temperature in air for more than 3 years to investigate tritium decay helium-3 effect in tungsten. The tritium distributions on plasma-exposed was monitored by a tritium imaging plate technique during storage period [4]. Thermal desorption spectroscopy was performed with a ramp rate of 10°C/min up to 900°C to outgas residual deuterium and tritium but keep helium-3 in tungsten. These helium-3 implanted samples were exposed to deuterium plasma in TPE to investigate helium-3 effect on deuterium behavior in tungsten. The results show that tritium surface concentration in 200°C sample decreased to 30 %, but tritium surface concentration in 500°C sample did not alter over the 3 years storage period, indicating possible tritium

  18. Tritium storage

    International Nuclear Information System (INIS)

    Hircq, B.

    1989-01-01

    A general synthesis about tritium storage is achieved in this paper and a particular attention is given to practical application in the Fusion Technology Program. Tritium, storage under gaseous form and solid form are discussed (characteristics, advantages, disadvantages and equipments). The way of tritium storage is then discussed and a choice established as a function of a logic which takes into account the main working parameters

  19. Computerised programming of the Dragon reactor fuel handling operations

    International Nuclear Information System (INIS)

    Butcher, P.

    1976-11-01

    Two suites of FORTRAN IV computer programs have been written to produce check lists for the operation of the two remote control fuel handling machines of the Dragon Reactor. This document describes the advantages of these programs over the previous manual system of writing check lists, and provides a detailed guide to the programs themselves. (author)

  20. Accelerator Production of Tritium Programmatic Environmental Impact Statement Input Submittal

    International Nuclear Information System (INIS)

    Miller, L.A.; Greene, G.A.; Boyack, B.E.

    1996-02-01

    The Programmatic Environmental Impact Statement for Tritium Supply and Recycling considers several methods for the production of tritium. One of these methods is the Accelerator Production of Tritium. This report summarizes the design characteristics of APT including the accelerator, target/blanket, tritium extraction facility, and the balance of plant. Two spallation targets are considered: (1) a tungsten neutron-source target and (2) a lead neutron-source target. In the tungsten target concept, the neutrons are captured by the circulating He-3, thus producing tritium; in the lead target concept, the tritium is produced by neutron capture by Li-6 in a surrounding lithium-aluminum blanket. This report also provides information to support the PEIS including construction and operational resource needs, waste generation, and potential routine and accidental releases of radioactive material. The focus of the report is on the impacts of a facility that will produce 3/8th of the baseline goal of tritium. However, some information is provided on the impacts of APT facilities that would produce smaller quantities

  1. Oxidative Tritium Decontamination System

    International Nuclear Information System (INIS)

    Gentile, Charles A.; Parker, John J.; Guttadora, Gregory L.; Ciebiera, Lloyd P.

    2002-01-01

    The Princeton Plasma Physics Laboratory, Tritium Systems Group has developed and fabricated an Oxidative Tritium Decontamination System (OTDS), which is designed to reduce tritium surface contamination on various components and items. The system is configured to introduce gaseous ozone into a reaction chamber containing tritiated items that require a reduction in tritium surface contamination. Tritium surface contamination (on components and items in the reaction chamber) is removed by chemically reacting elemental tritium to tritium oxide via oxidation, while purging the reaction chamber effluent to a gas holding tank or negative pressure HVAC system. Implementing specific concentrations of ozone along with catalytic parameters, the system is able to significantly reduce surface tritium contamination on an assortment of expendable and non-expendable items. This paper will present the results of various experimentation involving employment of this system

  2. Pre-Conceptual Design for Northstar ⁹⁹Mo Process Tritium Removal System

    Energy Technology Data Exchange (ETDEWEB)

    Nobile, Arthur [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Reichert, Heidi [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Hollis, William Kirk [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Taylor, Craig Michael [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Gordon, John Cameron [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Dale, Gregory E. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2016-01-12

    In this report we describe a preliminary concept for a Tritium Removal System (TRS) to remove tritium that is generated in the ⁹⁹Mo production process. Preliminary calculations have been performed to evaluate an approximate size for the system. The concept described utilizes well-established detritiation technology based on catalytic oxidation of tritium and tritiated hydrocarbons to water in a high temperature (400 °C) reactor and capture of water in a molecular sieve bed. The TRS concept involves use of a single system that would cycle through each of the seven online target systems and remove tritium that has been accumulated after one week’s run time. The TRS would perform cleanup operations on each target system for a period of approximately 24 hours. This would occur while the system is still online and just prior to target replacement, so tritium levels would at their minimum values for target replacement. In the concept, during normal operation a small fraction (1%) of the helium recirculating in the system would be diverted through the TRS and returned to the flow loop. With this approach sufficient levels of detritiation can be accomplished in a 24 hour period. In the study it was found that because of the need to maintain low oxygen levels in the system (<100 ppm) this increases the size of the catalytic reactor. As a result of this finding, consideration should be given to other methods for removing tritium from the system. Other methods such as catalytic exchange of tritium with an unsaturated organic compound and subsequent trapping on activated carbon or molecular sieve could offer advantages of reducing reactor size and operation at lower reactor temperature. However the most significant advantage of such an approach would be the ability to operate in very low oxygen environments, which would eliminate any concerns for oxidation of the target.

  3. Description of NORMTRI: a computer program for assessing the off-site consequences from air-borne releases of tritium during normal operation of nuclear facilities

    International Nuclear Information System (INIS)

    Raskob, W.

    1994-10-01

    The computer program NORMTRI has been developed to calculate the behaviour of tritium in the environment released into the atmosphere under normal operation of nuclear facilities. It is possible to investigate the two chemical forms tritium gas and tritiated water vapour. The conversion of tritium gas into tritiated water followed by its reemission back to the atmosphere as well as the conversion into organically bound tritium is considered. NORMTRI is based on the statistical Gaussian dispersion model ISOLA, which calculates the activity concentration in air near the ground contamination due to dry and wet deposition at specified locations in a polar grid system. ISOLA requires a four-parametric meteorological statistics derived from one or more years synoptic recordings of 1-hour-averages of wind speed, wind direction, stability class and precipitation intensity. Additional features of NORMTRI are the possibility to choose several dose calculation procedures, ranging from the equations of the German regulatory guidelines to a pure specific equilibrium approach. (orig.)

  4. Conceptual design of a test facility for the remote handling operations of the ITER Test Blanker Modules

    International Nuclear Information System (INIS)

    Marqueta, A.; Garcia, I.; Gomez, A.; Garcia, L.; Sedano, E.; Fernandez, I.

    2012-01-01

    Conceptual Design of a test facility for the remote handling operations of the ITER Test Blanket Modules. Conditions inside a fusion reactor are incompatible with conventional manual maintenance tasks. the same applies for ancillary equipment. As a consequence, it will become necessary to turn to remote visualization and remote handling techniques, which will have in consideration the extreme conditions, both physical and operating, of ITER. Main goal of the project has been the realization of the conceptual design for the test facility for the Test Blanket Modules of ITER and their associated systems, related to the Remote Handling operations regarding the Port Cell area. Besides the definition of the operations and the specification of the main components and ancillary systems of the TBM graphical simulation have been used for the design, verification and validation of the remote handling operations. (Author)

  5. Accelerator production of tritium plant design and supporting engineering development and demonstration work

    International Nuclear Information System (INIS)

    Lisowski, P.W.

    1997-11-01

    Tritium is an isotope of hydrogen with a half life of 12.3 years. Because it is essential for US thermonuclear weapons to function, tritium must be periodically replenished. Since K reactor at Savannah River Site stopped operating in 1988, tritium has been recycled from dismantled nuclear weapons. This process is possible only as long as many weapons are being retired. Maintaining the stockpile at the level called for in the present Strategic Arms Reduction Treaty (START-I) will require the Department of Energy to have an operational tritium production capability in the 2005--2007 time frame. To make the required amount of tritium using an accelerator based system (APT), neutrons will be produced through high energy proton reactions with tungsten and lead. Those neutrons will be moderated and captured in 3 He to make tritium. The APT plant design will use a 1,700 MeV linear accelerator operated at 100 mA. In preparation for engineering design, starting in October 1997 and subsequent construction, a program of engineering development and demonstration is underway. That work includes assembly and testing of the first 20 MeV of the low energy plant linac at 100 mA, high-energy linac accelerating structure prototyping, radiofrequency power system improvements, neutronic efficiency measurements, and materials qualifications

  6. Correlation of rates of tritium migration through porous concrete

    Energy Technology Data Exchange (ETDEWEB)

    Fukada, S.; Katayama, K.; Takeishi, T. [Kyushu University, Fukuoka (Japan); Edao, Y.; Kawamura, Y.; Hayashi, T.; Yamanishi, T. [JAEA-TPL, Muramatsu, Tokai-mura (Japan)

    2015-03-15

    In a nuclear facility when tritium leaks from a glovebox to room accidentally, an atmosphere detritiation system (ADS) starts operating, and HTO released is recovered by ADS. ADS starts when tritium activity in air becomes higher than its controlled level. Before ADS operates, the laboratory walls are the final enclosure facing tritium and are usually made of porous concrete coated with a hydrophobic paint. In the present study, previous data on the diffusivity and adsorption coefficient of concrete and paints are reviewed. Tritium penetrates and migrates into concrete by following 3 ways. First, gaseous HT or T{sub 2} easily penetrates into porous concrete. Its diffusivity is almost equal to that of H{sub 2}. When a gaseous molecule diffuses through pores with a smaller diameter than a mean free path, its migration rate is described by the Knudsen diffusion formula. The second mechanism is H{sub 2}O vapor diffusion in pores. Concrete holds a lot of structural water. Therefore, H{sub 2}O or HTO vapor can diffuse inside concrete pores along with adsorption-desorption and isotopic exchange with structural water, which is the third mechanism. Literature shows that the diffusivity of HTO through the epoxy-resin paint is determined as D(HTO)=1.0*10{sup -16} m{sup 2}/s. We have used this data to set a model and we have applied it to estimate residual tritium in laboratory walls. We have considered 2 accidental cases and a normal case: first, ADS starts operating 1 hour after 100 Ci HTO is released in the room, secondly, ADS starts 24 hours after 100 Ci HTO release and thirdly, when the walls are exposed to HTO for 10 years of normal operation. It appears that the immediate start up of ADS is indispensable for safety.

  7. Tritium levels in milk in the vicinity of chronic tritium releases

    International Nuclear Information System (INIS)

    Le Goff, P.; Guétat, Ph.; Vichot, L.; Leconte, N.; Badot, P.M.; Gaucheron, F.; Fromm, M.

    2016-01-01

    Tritium is the radioactive isotope of hydrogen. It can be integrated into most biological molecules. Even though its radiotoxicity is weak, the effects of tritium can be increased following concentration in critical compartments of living organisms. For a better understanding of tritium circulation in the environment and to highlight transfer constants between compartments, we studied the tritiation of different agricultural matrices chronically exposed to tritium. Milk is one of the most frequently monitored foodstuffs in the vicinity of points known for chronic release of radionuclides firstly because dairy products find their way into most homes but also because it integrates deposition over large areas at a local scale. It is a food which contains all the main nutrients, especially proteins, carbohydrates and lipids. We thus studied the tritium levels of milk in chronic exposure conditions by comparing the tritiation of the main hydrogenated components of milk, first, component by component, then, sample by sample. Significant correlations were found between the specific activities of drinking water and free water of milk as well as between the tritium levels of cattle feed dry matter and of the main organic components of milk. Our findings stress the importance of the metabolism on the distribution of tritium in the different compartments. Overall, dilution of hydrogen in the environmental compartments was found to play an important role dimming possible isotopic effects even in a food chain chronically exposed to tritium. - Highlights: • Tritium can be incorporated in all the hydrogenated components of milk. • Components' isotopic ratios T/H of chronically exposed milk remain in the same range. • In environmental conditions, distribution of tritium in milk components varies. • Metabolism plays a role in the distribution of tritium in the components of milk. • In environmental conditions, dilution of hydrogen dims possible isotopic effects.

  8. Computer code for calculating personnel doses due to tritium exposures

    International Nuclear Information System (INIS)

    Graham, C.L.; Parlagreco, J.R.

    1977-01-01

    This report describes a computer code written in LLL modified Fortran IV that can be used on a CDC 7600 for calculating personnel doses due to internal exposures to tritium. The code is capable of handling various exposure situations and is also capable of detecting a large variety of data input errors that would lead to errors in the dose assessment. The critical organ is the body water

  9. Tritium waste control: April--September 1977

    International Nuclear Information System (INIS)

    1978-01-01

    A pilot scale system was used in an initial experiment to investigate the combined-electrolysis-catalytic-exchange process (CECE) for the detritiation of water. Data taken during the experiment indicate the process does indeed strip tritium from gaseous hydrogen at the top and concentrate it in water at the bottom of the catalyst-filled column. A high activity tritiated water electrolysis system was designed and built using a solid polymer electrolyte (SPE) cell. The system was successfully operated at currents up to 50 A using deionized tap water. Triplicate samples of cement, cement-plaster (1:1 ratio by weight), and cement-plaster (1:1 ratio by volume) were injected with 386 Ci of tritium. Preliminary results indicate Type III Portland cement retains the tritium slightly better than the cement-plaster mixtures. The tritium release study of actual waste burial packages is continuing. The fractional release is 1 x 10 -5 on a 4-y old package, only 4 x 10 -7 on 3-y old packages, and 1 x 10 -9 on a 1-y old package. Pressure increase and gas composition determinations were repeated for octane (activity = 1000 Ci/liter) with and without tritium fixation using argon as the initial overgas. Pressure buildup measurements for octane without fixation were repeated a third time using hydrogen gas. The rate of pressure increase did not change significantly from previously determined values. Four elemental tritium samples were released into a laboratory to determine the efficiency of the Emergency Containment System. The ventilation system was modified during the fourth experiment to minimize leakage

  10. Characterization, minimization and disposal of radioactive, hazardous, and mixed wastes during cleanup and rransition of the Tritium Research Laboratory (TRL) at Sandia National Laboratories/California (SNL/CA)

    International Nuclear Information System (INIS)

    Garcia, T.B.; Gorman, T.P.

    1996-12-01

    This document provides an outline of waste handling practices used during the Sandia National Laboratory/California (SNL/CA), Tritium Research Laboratory (TRL) Cleanup and Transition project. Here we provide background information concerning the history of the TRL and the types of operations that generated the waste. Listed are applicable SNL/CA site-wide and TRL local waste handling related procedures. We describe personnel training practices and outline methods of handling and disposal of compactible and non-compactible low level waste, solidified waste water, hazardous wastes and mixed wastes. Waste minimization, reapplication and recycling practices are discussed. Finally, we provide a description of the process followed to remove the highly contaminated decontamination systems. This document is intended as both a historical record and as a reference to other facilities who may be involved in similar work

  11. Metabolism and dosimetry of tritium

    International Nuclear Information System (INIS)

    Hill, R.L.; Johnson, J.R.

    1993-01-01

    This document was prepared as a review of the current knowledge of tritium metabolism and dosimetry. The physical, chemical, and metabolic characteristics of various forms of tritium are presented as they pertain to performing dose assessments for occupational workers and for the general public. For occupational workers, the forms of tritium discussed include tritiated water, elemental tritium gas, skin absorption from elemental tritium gas-contaminated surfaces, organically bound tritium in pump oils, solvents and other organic compounds, metal tritides, and radioluminous paints. For the general public, age-dependent tritium metabolism is reviewed, as well as tritiated water, elemental tritium gas, organically bound tritium, organically bound tritium in food-stuffs, and tritiated methane. 106 refs

  12. The Tritium Systems Test Assembly applicability to ITER

    International Nuclear Information System (INIS)

    Anderson, J.L.

    1988-01-01

    The Tritium Systems Test Assembly (TSTA), is operated by the Los Alamos National Laboratory (LANL) under the sponsorship of the US Department of Energy (DOE) and the Japan Atomic Energy Research Institute (JAERI). The objectives of the TSTA project are to develop, demonstrate, and evaluate the exhaust gas processing and tritium related safety systems for the magnetic fusion energy program. The applicability of these processes for the ITER Tokamak is discussed

  13. Consideration of disposal alternatives for tritium-contaminated wastewater streams at Hanford

    International Nuclear Information System (INIS)

    Waters, E.D.

    1988-03-01

    Small quantities of tritium are produced as an undesirable by-product of the operation of light-water reactors. At the US Department of Energy Hanford Site in Washington State, some tritium has been discharged to the environment in low-level liquid and gaseous wastes from the N Reactor plant, but more than 97% of the tritium stays typically within the irradiated fuel as it is delivered for reprocessing. During fuel reprocessing, the tritium is distributed in the process streams, and most of the tritium is presently released to the soil column with excess process condensates from the Plutonium-Uranium Extraction (PUREX) Plant. On an annual basis, approximately 1 g of tritium is discharged in more than 1 x 10 6 L of process condensate water. Principal tritium release points and quantities are presented in section 4.0. The present study is intended to identify and evaluate alternate methods of tritium control and disposal that might merit additional study or development for potential application to Hanford Site effluents. 30 refs., 15 figs., 5 tabs

  14. Sources of tritium

    International Nuclear Information System (INIS)

    Phillips, J.E.; Easterly, C.E.

    1980-12-01

    A review of tritium sources is presented. The tritium production and release rates are discussed for light water reactors (LWRs), heavy water reactors (HWRs), high temperature gas cooled reactors (HTGRs), liquid metal fast breeder reactors (LMFBRs), and molten salt breeder reactors (MSBRs). In addition, release rates are discussed for tritium production facilities, fuel reprocessing plants, weapons detonations, and fusion reactors. A discussion of the chemical form of the release is included. The energy producing facilities are ranked in order of increasing tritium production and release. The ranking is: HTGRs, LWRs, LMFBRs, MSBRs, and HWRs. The majority of tritium has been released in the form of tritiated water

  15. A system dynamics model for stock and flow of tritium in fusion power plant

    Energy Technology Data Exchange (ETDEWEB)

    Kasada, Ryuta, E-mail: r-kasada@iae.kyoto-u.ac.jp [Institute of Advanced Energy, Kyoto University, Gokasho, Uji, Kyoto 611-0011 (Japan); Kwon, Saerom [Institute of Advanced Energy, Kyoto University, Gokasho, Uji, Kyoto 611-0011 (Japan); Japan Atomic Energy Agency, Tokai-mura, Naka-gun, Ibaraki-ken 319-1195 (Japan); Konishi, Satoshi [Institute of Advanced Energy, Kyoto University, Gokasho, Uji, Kyoto 611-0011 (Japan); Sakamoto, Yoshiteru; Yamanishi, Toshihiko; Tobita, Kenji [Japan Atomic Energy Agency, Rokkasho-mura, Kamikita-gun, Aomori-ken 039-3212 (Japan)

    2015-10-15

    Highlights: • System dynamics model of tritium fuel cycle was developed for analyzing stock and flow of tritium in fusion power plants. • Sensitivity of tritium build-up to breeding ratio parameters has been assessed to two plant concepts having 3 GW and 1.5 GW fusion power. • D-D start-up absolutely without initial loading of tritium is possible for both of the 3 GW and 1.5 GW fusion power plant concepts. • Excess stock of tritium is generated by the steady state operation with the value of tritium breeding ratio over unity. - Abstract: In order to analyze self-efficiency of tritium fuel cycle (TFC) and share the systems thinking of TFC among researchers and engineers in the vast area of fusion reactor technology, we develop a system dynamics (SD) TFC model using a commercial software STELLA. The SD-TFC model is illustrated as a pipe diagram which consists of tritium stocks, such as plasma, fuel clean up, isotope separation, fueling with storage and blanket, and pipes connecting among them. By using this model, we survey a possibility of D-D start-up without initial loading of tritium on two kinds of fusion plant having different plasma parameters. The D-D start-up scenario can reduce the necessity of initial loading of tritium through the production in plasma by D-D reaction and in breeding blanket by D-D neutron. The model is also used for considering operation scenario to avoid excess stock of tritium which must be produced at tritium breeding ratio over unity.

  16. Evaluation of a nonevaporable getter pump for tritium handling in the Tokamak Fusion Test Reactor

    International Nuclear Information System (INIS)

    Singleton, M.F.; Griffith, C.M.

    1978-01-01

    Lawrence Livermore Laboratory has tested and evaluated a commercially available getter pump for use with tritium in the Tokamak Fusion Test Reactor (TFTR). The pump contains Zr(84%)--Al in cartridge form with a concentric heating unit. It performed well in all tests, except for frequent heater failures

  17. Tritium recovery from co-deposited layers using 193-nm laser

    Science.gov (United States)

    Shu, W. M.; Kawakubo, Y.; Nishi, M. F.

    Recovery of tritium from co-deposited layers formed in deuterium-tritium plasma operations of the TFTR (Tokamak Fusion Test Reactor) was investigated by the use of an ArF excimer laser operating at the wavelength of 193 nm. At the laser energy density of 0.1 J/cm2, a transient spike of the tritium-release rate was observed at initial irradiation. Hydrogen isotopes were released in the form of hydrogen-isotope molecules during the laser irradiation in vacuum, suggesting that tritium can be recovered readily from the released gases. In a second experiment, hydrogen (tritium) recovery from the co-deposited layers on JT-60 tiles that had experienced hydrogen-plasma operations was investigated by laser ablation with a focused beam of the excimer laser. The removal rate of the co-deposited layers was quite low when the laser energy density was smaller than the ablation threshold (1.0 J/cm2), but reached 1.1 μm/pulse at the laser energy density of 7.6 J/cm2. The effective absorption coefficient in the co-deposited layers at the laser wavelength was determined to be 1.9 μm-1. The temperature of the surface during the irradiation at the laser energy density of 0.5 J/cm2 was measured on the basis of Planck's law of radiation, and the maximum temperature during the irradiation decreased from 3570 K at the initial irradiation to 2550 K at the 1000th pulse of the irradiation.

  18. Tritium permeation behavior through pyrolytic carbon in tritium production using high-temperature gas-cooled reactor for fusion reactors

    Directory of Open Access Journals (Sweden)

    H. Ushida

    2016-12-01

    Full Text Available Under tritium production method using a high-temperature gas-cooled reactor loaded Li compound, Li compound has to be coated by ceramic materials in order to suppress the spreading of tritium to the whole reactor. Pyrolytic carbon (PyC is a candidate of the coating material because of its high resistance for gas permeation. In this study, hydrogen permeation experiments using a PyC-coated isotropic graphite tube were conducted and hydrogen diffusivity, solubility and permeability were evaluated. Tritium permeation behavior through PyC-coated Li compound particles was simulated by using obtained data. Hydrogen permeation flux through PyC in a steady state is proportional to the hydrogen pressure and is larger than that through Al2O3 which is also candidate coating material. However, total tritium leak within the supposed reactor operation period through the PyC-coated Li compound particles is lower than that through the Al2O3-coated ones because the hydrogen absorption capacity in PyC is considerably larger than that in Al2O3.

  19. Results of tritium measurement in environmental samples and drainage

    International Nuclear Information System (INIS)

    Koike, Ryoji; Hirai, Yasuo

    1983-01-01

    In Ibaraki prefecture, the tritium concentration in the drainage from the nuclear facilities has been measured since 1974. Then, with the start of operation of the fuel reprocessing plant in 1977, the tritium concentration in environmental samples was to be measured also in order to examine the effect of the drainage on the environment. The results of the tritium measurement in Ibaraki prefecture up to about 1980 are described: sampling points, sampling and measuring methods, the tritium concentration in the drainage, air, inland water and seawater, respectively. The drainages have been taken from Japan Atomic Power Company, Japan Atomic Energy Research Institute, and Power Reactor and Nuclear Fuel Development Corporation (with the fuel reprocessing plant). The samples of air, inland water and seawater have been taken in the areas concerned. The tritium concentration was measured by a low-background liquid scintillation counter. The measured values in the environment have been generally at low level, not different from other areas. (Mori, K.)

  20. Tritium confinement in a new tritium processing facility at the Savannah River Site

    International Nuclear Information System (INIS)

    Heung, L.K.; Owen, J.H.; Hsu, R.H.; Hashinger, R.F.; Ward, D.E.; Bandola, P.E.

    1991-01-01

    A new tritium processing facility, named the Replacement Tritium Facility (RTF), has been completed and is being prepared for startup at the Savannah River Site (SRS). The RTF has the capability to recover, purify and separate hydrogen isotopes from recycled gas containers. A multilayered confinement system is designed to reduce tritium losses to the environment. This confinement system is expected to confine and recover any tritium that might escape the process equipment, and to maintain the tritium concentration in the nitrogen glovebox atmosphere to less than 10 -2 μCi/cc tritium