WorldWideScience

Sample records for modern canonical quantum

  1. Modern canonical quantum general relativity

    CERN Document Server

    Thiemann, Thomas

    2007-01-01

    This is an introduction to the by now fifteen years old research field of canonical quantum general relativity, sometimes called "loop quantum gravity". The term "modern" in the title refers to the fact that the quantum theory is based on formulating classical general relativity as a theory of connections rather than metrics as compared to in original version due to Arnowitt, Deser and Misner. Canonical quantum general relativity is an attempt to define a mathematically rigorous, non-perturbative, background independent theory of Lorentzian quantum gravity in four spacetime dimensions in the continuum. The approach is minimal in that one simply analyzes the logical consequences of combining the principles of general relativity with the principles of quantum mechanics. The requirement to preserve background independence has lead to new, fascinating mathematical structures which one does not see in perturbative approaches, e.g. a fundamental discreteness of spacetime seems to be a prediction of the theory provi...

  2. Modern Canonical Quantum General Relativity

    Science.gov (United States)

    Thiemann, Thomas

    2008-11-01

    Preface; Notation and conventions; Introduction; Part I. Classical Foundations, Interpretation and the Canonical Quantisation Programme: 1. Classical Hamiltonian formulation of general relativity; 2. The problem of time, locality and the interpretation of quantum mechanics; 3. The programme of canonical quantisation; 4. The new canonical variables of Ashtekar for general relativity; Part II. Foundations of Modern Canonical Quantum General Relativity: 5. Introduction; 6. Step I: the holonomy-flux algebra [P]; 7. Step II: quantum-algebra; 8. Step III: representation theory of [A]; 9. Step IV: 1. Implementation and solution of the kinematical constraints; 10. Step V: 2. Implementation and solution of the Hamiltonian constraint; 11. Step VI: semiclassical analysis; Part III. Physical Applications: 12. Extension to standard matter; 13. Kinematical geometrical operators; 14. Spin foam models; 15. Quantum black hole physics; 16. Applications to particle physics and quantum cosmology; 17. Loop quantum gravity phenomenology; Part IV. Mathematical Tools and their Connection to Physics: 18. Tools from general topology; 19. Differential, Riemannian, symplectic and complex geometry; 20. Semianalytical category; 21. Elements of fibre bundle theory; 22. Holonomies on non-trivial fibre bundles; 23. Geometric quantisation; 24. The Dirac algorithm for field theories with constraints; 25. Tools from measure theory; 26. Elementary introduction to Gel'fand theory for Abelean C* algebras; 27. Bohr compactification of the real line; 28. Operatir -algebras and spectral theorem; 29. Refined algebraic quantisation (RAQ) and direct integral decomposition (DID); 30. Basics of harmonic analysis on compact Lie groups; 31. Spin network functions for SU(2); 32. + Functional analytical description of classical connection dynamics; Bibliography; Index.

  3. Modern Canonical Quantum General Relativity;

    International Nuclear Information System (INIS)

    Kiefer, Claus

    2008-01-01

    The open problem of constructing a consistent and experimentally tested quantum theory of the gravitational field has its place at the heart of fundamental physics. The main approaches can be roughly divided into two classes: either one seeks a unified quantum framework of all interactions or one starts with a direct quantization of general relativity. In the first class, string theory (M-theory) is the only known example. In the second class, one can make an additional methodological distinction: while covariant approaches such as path-integral quantization use the four-dimensional metric as an essential ingredient of their formalism, canonical approaches start with a foliation of spacetime into spacelike hypersurfaces in order to arrive at a Hamiltonian formulation. The present book is devoted to one of the canonical approaches-loop quantum gravity. It is named modern canonical quantum general relativity by the author because it uses connections and holonomies as central variables, which are analogous to the variables used in Yang-Mills theories. In fact, the canonically conjugate variables are a holonomy of a connection and the flux of a non-Abelian electric field. This has to be contrasted with the older geometrodynamical approach in which the metric of three-dimensional space and the second fundamental form are the fundamental entities, an approach which is still actively being pursued. It is the author's ambition to present loop quantum gravity in a way in which every step is formulated in a mathematically rigorous form. The formal Leitmotiv of loop quantum gravity is background independence. Non-gravitational theories are usually quantized on a given non-dynamical background. In contrast, due to the geometrical nature of gravity, no such background exists in quantum gravity. Instead, the notion of a background is supposed to emerge a posteriori as an approximate notion from quantum states of geometry. As a consequence, the standard ultraviolet divergences of

  4. Canonical quantum gravity and consistent discretizations

    Indian Academy of Sciences (India)

    Abstract. This paper covers some developments in canonical quantum gravity that ... derstanding the real Ashtekar variables four dimensionally [4], or the recent work ... Traditionally, canonical formulations of general relativity considered as canonical variables the metric on a spatial slice qab and a canonically conjugate.

  5. Conformal constraint in canonical quantum gravity

    NARCIS (Netherlands)

    t Hooft, G.

    2010-01-01

    Perturbative canonical quantum gravity is considered, when coupled to a renormalizable model for matter fields. It is proposed that the functional integral over the dilaton field should be disentangled from the other integrations over the metric fields. This should generate a conformally invariant

  6. Quantum canonical ensemble: A projection operator approach

    Science.gov (United States)

    Magnus, Wim; Lemmens, Lucien; Brosens, Fons

    2017-09-01

    Knowing the exact number of particles N, and taking this knowledge into account, the quantum canonical ensemble imposes a constraint on the occupation number operators. The constraint particularly hampers the systematic calculation of the partition function and any relevant thermodynamic expectation value for arbitrary but fixed N. On the other hand, fixing only the average number of particles, one may remove the above constraint and simply factorize the traces in Fock space into traces over single-particle states. As is well known, that would be the strategy of the grand-canonical ensemble which, however, comes with an additional Lagrange multiplier to impose the average number of particles. The appearance of this multiplier can be avoided by invoking a projection operator that enables a constraint-free computation of the partition function and its derived quantities in the canonical ensemble, at the price of an angular or contour integration. Introduced in the recent past to handle various issues related to particle-number projected statistics, the projection operator approach proves beneficial to a wide variety of problems in condensed matter physics for which the canonical ensemble offers a natural and appropriate environment. In this light, we present a systematic treatment of the canonical ensemble that embeds the projection operator into the formalism of second quantization while explicitly fixing N, the very number of particles rather than the average. Being applicable to both bosonic and fermionic systems in arbitrary dimensions, transparent integral representations are provided for the partition function ZN and the Helmholtz free energy FN as well as for two- and four-point correlation functions. The chemical potential is not a Lagrange multiplier regulating the average particle number but can be extracted from FN+1 -FN, as illustrated for a two-dimensional fermion gas.

  7. Canonical Quantum Teleportation of Two-Particle Arbitrary State

    Institute of Scientific and Technical Information of China (English)

    HAO Xiang; ZHU Shi-Qun

    2005-01-01

    The canonical quantum teleportation of two-particle arbitrary state is realized by means of phase operator and number operator. The maximally entangled eigenstates between the difference of phase operators and the sum of number operators are considered as the quantum channels. In contrast to the standard quantum teleportation, the different unitary local operation of canonical teleportation can be simplified by a general expression.

  8. Kato expansion in quantum canonical perturbation theory

    Energy Technology Data Exchange (ETDEWEB)

    Nikolaev, Andrey, E-mail: Andrey.Nikolaev@rdtex.ru [Institute of Computing for Physics and Technology, Protvino, Moscow Region, Russia and RDTeX LTD, Moscow (Russian Federation)

    2016-06-15

    This work establishes a connection between canonical perturbation series in quantum mechanics and a Kato expansion for the resolvent of the Liouville superoperator. Our approach leads to an explicit expression for a generator of a block-diagonalizing Dyson’s ordered exponential in arbitrary perturbation order. Unitary intertwining of perturbed and unperturbed averaging superprojectors allows for a description of ambiguities in the generator and block-diagonalized Hamiltonian. We compare the efficiency of the corresponding computational algorithm with the efficiencies of the Van Vleck and Magnus methods for high perturbative orders.

  9. Kato expansion in quantum canonical perturbation theory

    International Nuclear Information System (INIS)

    Nikolaev, Andrey

    2016-01-01

    This work establishes a connection between canonical perturbation series in quantum mechanics and a Kato expansion for the resolvent of the Liouville superoperator. Our approach leads to an explicit expression for a generator of a block-diagonalizing Dyson’s ordered exponential in arbitrary perturbation order. Unitary intertwining of perturbed and unperturbed averaging superprojectors allows for a description of ambiguities in the generator and block-diagonalized Hamiltonian. We compare the efficiency of the corresponding computational algorithm with the efficiencies of the Van Vleck and Magnus methods for high perturbative orders.

  10. Canonical transformations in problems of quantum statistical mechanics

    International Nuclear Information System (INIS)

    Sankovich, D.P.

    1985-01-01

    The problem of general canonical transformations in quantum systems possessing a classical analog is considered. The main role plays the Weyl representation of dynamic variables of the quantum system considered. One managed to build a general diagram of canonical transformations in a quantum case and to develop a method for reducing one or another operator to the simplest canonical form. In this case the procedure, being analogous to the Poincare-Birkhof normalization based on the Lie series theory, occurs

  11. Canonical methods in classical and quantum gravity: An invitation to canonical LQG

    Science.gov (United States)

    Reyes, Juan D.

    2018-04-01

    Loop Quantum Gravity (LQG) is a candidate quantum theory of gravity still under construction. LQG was originally conceived as a background independent canonical quantization of Einstein’s general relativity theory. This contribution provides some physical motivations and an overview of some mathematical tools employed in canonical Loop Quantum Gravity. First, Hamiltonian classical methods are reviewed from a geometric perspective. Canonical Dirac quantization of general gauge systems is sketched next. The Hamiltonian formultation of gravity in geometric ADM and connection-triad variables is then presented to finally lay down the canonical loop quantization program. The presentation is geared toward advanced undergradute or graduate students in physics and/or non-specialists curious about LQG.

  12. Canonical quantum theory of gravitational field with higher derivatives, 3

    International Nuclear Information System (INIS)

    Kawasaki, Shoichiro; Kimura, Tadahiko

    1983-01-01

    A formulation which is invariant under an additional BRS transformation with nilpotency of order two is presented for the canonical theory of the renormalizable quantum gravity with higher derivatives. The canonical quantization is carried out and various equal time (anti-) commutation relations are derived. The asymptotic fields are reanalyzed. The physical particle contents are just the same as those obtained in previous papers. (author)

  13. Canonical ensembles and nonzero density quantum chromodynamics

    International Nuclear Information System (INIS)

    Hasenfratz, A.; Toussaint, D.

    1992-01-01

    We study QCD with nonzero chemical potential on 4 4 lattices by averaging over the canonical partition functions, or sectors with fixed quark number. We derive a condensed matrix of size 2x3xL 3 whose eigenvalues can be used to find the canonical partition functions. We also experiment with a weight for configuration generation which respects the Z(3) symmetry which forces the canonical partition function to be zero for quark numbers that are not multiples of three. (orig.)

  14. Modern logic and quantum mechanics

    International Nuclear Information System (INIS)

    Garden, R.W.

    1984-01-01

    The book applies the methods of modern logic and probabilities to ''interpreting'' quantum mechanics. The subject is described and discussed under the chapter headings: classical and quantum mechanics, modern logic, the propositional logic of mechanics, states and measurement in mechanics, the traditional analysis of probabilities, the probabilities of mechanics and the model logic of predictions. (U.K.)

  15. Canonical partition functions: ideal quantum gases, interacting classical gases, and interacting quantum gases

    Science.gov (United States)

    Zhou, Chi-Chun; Dai, Wu-Sheng

    2018-02-01

    In statistical mechanics, for a system with a fixed number of particles, e.g. a finite-size system, strictly speaking, the thermodynamic quantity needs to be calculated in the canonical ensemble. Nevertheless, the calculation of the canonical partition function is difficult. In this paper, based on the mathematical theory of the symmetric function, we suggest a method for the calculation of the canonical partition function of ideal quantum gases, including ideal Bose, Fermi, and Gentile gases. Moreover, we express the canonical partition functions of interacting classical and quantum gases given by the classical and quantum cluster expansion methods in terms of the Bell polynomial in mathematics. The virial coefficients of ideal Bose, Fermi, and Gentile gases are calculated from the exact canonical partition function. The virial coefficients of interacting classical and quantum gases are calculated from the canonical partition function by using the expansion of the Bell polynomial, rather than calculated from the grand canonical potential.

  16. Geometry of real and complex canonical transformations in quantum mechanics

    International Nuclear Information System (INIS)

    Grossmann, A.

    1977-08-01

    Quantum mechanics of finitely many particles involves the group of linear (and affine) canonical transformations. A well-defined ray representation of this group acts in the space of states of any quantum-mechanical system with finitely many degrees of freedom and plays a central role in many different contexts. This representation appears quite naturally in quantum mechanics over phase space (Weyl-Wigner correspondence), that it becomes, when suitably written, just a matter of looking at one object from different symplectic reference frames. This is particularly interesting for complex canonical transformations which are represented by unbounded operators. The list of references gives an idea of the variety of motivations and points of view in the subject

  17. Quantum oscillators in the canonical coherent states

    Energy Technology Data Exchange (ETDEWEB)

    Rodrigues, R. de Lima [Centro Brasileiro de Pesquisas Fisicas (CBPF), Rio de Janeiro, RJ (Brazil); Lima, A.F. de; Ferreira, K. de Araujo [Paraiba Univ., Campina Grande, PB (Brazil). Dept. de Fisica; Vaidya, A.N. [Universidade Federal, Rio de Janeiro, RJ (Brazil). Inst. de Fisica

    2001-11-01

    The main characteristics of the quantum oscillator coherent states including the two-particle Calogero interaction are investigated. We show that these Calogero coherent states are the eigenstates of the second-order differential annihilation operator which is deduced via Wigner-Heisenberg algebraic technique and correspond exactly to the pure uncharged-bosonic states. They posses the important properties of non-orthogonality and completeness. The minimum uncertainty relation for the Wigner oscillator coherent states are investigated. New sets of even and odd coherent states are point out. (author)

  18. Canonical Drude Weight for Non-integrable Quantum Spin Chains

    Science.gov (United States)

    Mastropietro, Vieri; Porta, Marcello

    2018-03-01

    The Drude weight is a central quantity for the transport properties of quantum spin chains. The canonical definition of Drude weight is directly related to Kubo formula of conductivity. However, the difficulty in the evaluation of such expression has led to several alternative formulations, accessible to different methods. In particular, the Euclidean, or imaginary-time, Drude weight can be studied via rigorous renormalization group. As a result, in the past years several universality results have been proven for such quantity at zero temperature; remarkably, the proofs work for both integrable and non-integrable quantum spin chains. Here we establish the equivalence of Euclidean and canonical Drude weights at zero temperature. Our proof is based on rigorous renormalization group methods, Ward identities, and complex analytic ideas.

  19. Quantum correction and ordering parameter for systems connected by a general point canonical transformation

    International Nuclear Information System (INIS)

    Yeon, Kyu Hwang; Hong, Suc Kyoung; Um, Chung In; George, Thomas F.

    2006-01-01

    With quantum operators corresponding to functions of the canonical variables, Schroedinger equations are constructed for systems corresponding to classical systems connected by a general point canonical transformation. Using the operator connecting quantum states between systems before and after the transformation, the quantum correction term and ordering parameter are obtained

  20. Modern Quantum Technologies of Information Security

    OpenAIRE

    Korchenko, Oleksandr; Vasiliu, Yevhen; Gnatyuk, Sergiy

    2010-01-01

    In this paper, the systematisation and classification of modern quantum technologies of information security against cyber-terrorist attack are carried out. The characteristic of the basic directions of quantum cryptography from the viewpoint of the quantum technologies used is given. A qualitative analysis of the advantages and disadvantages of concrete quantum protocols is made. The current status of the problem of practical quantum cryptography use in telecommunication networks is consider...

  1. Symmetry groups of state vectors in canonical quantum gravity

    International Nuclear Information System (INIS)

    Witt, D.M.

    1986-01-01

    In canonical quantum gravity, the diffeomorphisms of an asymptotically flat hypersurface S, not connected to the identity, but trivial at infinity, can act nontrivially on the quantum state space. Because state vectors are invariant under diffeomorphisms that are connected to the identity, the group of inequivalent diffeomorphisms is a symmetry group of states associated with S. This group is the zeroth homotopy group of the group of diffeomorphisms fixing a frame of infinity on S. It is calculated for all hypersurfaces of the form S = S 3 /G-point, where the removed point is thought of as infinity on S and the symmetry group S is the zeroth homotopy group of the group of diffeomorphisms of S 3 /G fixing a point and frame, denoted π 0 Diff/sub F/(S 3 /G). Before calculating π 0 Diff/sub F/ (S 3 /G), it is necessary to find π 0 of the group of diffeomorphisms. Once π 0 Diff(S 3 /G) is known, π 0 Diff/sub x/ 0 (S 3 /G) is calculated using a fiber bundle involving Diff(S 3 /G), Diff/sub x/ 0 (S 3 /G), and S 3 /G. Finally, a fiber bundle involving Diff/sub F/(S 3 /G), Diff(S 3 /G), and the bundle of frames over S 3 /G is used along with π 0 Diff/sub x/ 0 (S 3 /G) to calculate π 0 Diff/sub F/(S 3 /G)

  2. BOOK REVIEW: Canonical Gravity and Applications: Cosmology, Black Holes, and Quantum Gravity Canonical Gravity and Applications: Cosmology, Black Holes, and Quantum Gravity

    Science.gov (United States)

    Husain, Viqar

    2012-03-01

    researchers in other areas who wish to learn about the canonical approach to gravity. However, given the brief chapter on quantization, the book would go well with a review paper, or parts of the other three quantum gravity books cited above. References [1] Kiefer C 2006 Quantum Gravity 2nd ed. (Oxford University Press) [2] Rovelli C 2007 Quantum Gravity (Cambridge University Press) [3] Thiemann T 2008 Modern Canonical Quantum Gravity (Cambridge University Press) [4] Posson E 2004 A Relativist's Toolkit: The Mathematics of Black-Hole Mechanics (Cambridge University Press) [5] Ryan M P and Shepley L C 1975 Homogeneous Relativistic Cosmology (Princeton University Press)

  3. Study on linear canonical transformation in a framework of a phase space representation of quantum mechanics

    International Nuclear Information System (INIS)

    Raoelina Andriambololona; Ranaivoson, R.T.R.; Rakotoson, H.; Solofoarisina, W.C.

    2015-04-01

    We present a study on linear canonical transformation in the framework of a phase space representation of quantum mechanics that we have introduced in our previous work. We begin with a brief recall about the so called phase space representation. We give the definition of linear canonical transformation with the transformation law of coordinate and momentum operators. We establish successively the transformation laws of mean values, dispersions, basis state and wave functions.Then we introduce the concept of isodispersion linear canonical transformation.

  4. Quantum mechanics a modern development

    CERN Document Server

    Ballentine, Leslie E

    2015-01-01

    Although there are many textbooks that deal with the formal apparatus of quantum mechanics (QM) and its application to standard problems, none take into account the developments in the foundations of the subject which have taken place in the last few decades. There are specialized treatises on various aspects of the foundations of QM, but none that integrate those topics with the standard material. This book aims to remove that unfortunate dichotomy, which has divorced the practical aspects of the subject from the interpretation and broader implications of the theory. In this edition a new chapter on quantum information is added. As the topic is still in a state of rapid development, a comprehensive treatment is not feasible. The emphasis is on the fundamental principles and some key applications, including quantum cryptography, teleportation of states, and quantum computing. The impact of quantum information theory on the foundations of quantum mechanics is discussed. In addition, there are minor revisions ...

  5. Quantum Field Theory A Modern Perspective

    CERN Document Server

    Parameswaran Nair, V

    2005-01-01

    Quantum field theory, which started with Paul Dirac’s work shortly after the discovery of quantum mechanics, has produced an impressive and important array of results. Quantum electrodynamics, with its extremely accurate and well-tested predictions, and the standard model of electroweak and chromodynamic (nuclear) forces are examples of successful theories. Field theory has also been applied to a variety of phenomena in condensed matter physics, including superconductivity, superfluidity and the quantum Hall effect. The concept of the renormalization group has given us a new perspective on field theory in general and on critical phenomena in particular. At this stage, a strong case can be made that quantum field theory is the mathematical and intellectual framework for describing and understanding all physical phenomena, except possibly for a quantum theory of gravity. Quantum Field Theory: A Modern Perspective presents Professor Nair’s view of certain topics in field theory loosely knit together as it gr...

  6. Practical quantum mechanics modern tools and applications

    CERN Document Server

    Manousakis, Efstratios

    2016-01-01

    Quantum mechanics forms the foundation of all modern physics, including atomic, nuclear, and molecular physics, the physics of the elementary particles, condensed matter physics. Modern astrophysics also relies heavily on quantum mechanics. Quantum theory is needed to understand the basis for new materials, new devices, the nature of light coming from stars, the laws which govern the atomic nucleus, and the physics of biological systems. As a result the subject of this book is a required course for most physics graduate students. While there are many books on the subject, this book targets specifically graduate students and it is written with modern advances in various fields in mind. Many examples treated in the various chapters as well as the emphasis of the presentation in the book are designed from the perspective of such problems. For example, the book begins by putting the Schrodinger equation on a spatial discrete lattice and the continuum limit is also discussed, inspired by Hamiltonian lattice gauge ...

  7. A modern approach to quantum mechanics

    CERN Document Server

    Townsend, John S

    2012-01-01

    Using an innovative approach that students find both accessible and exciting, A Modern Approach to Quantum Mechanics, Second Edition lays out the foundations of quantum mechanics through the physics of intrinsic spin. Written to serve as the primary textbook for an upper-division course in quantum mechanics, Townsend's text gives professors and students a refreshing alternative to the old style of teaching, by allowing the basic physics of spin systems to drive the introduction of concepts such as Dirac notation, operators, eigenstates and eigenvalues, time evolution in quantum mechanics, and entanglement. Chapters 6 through 10 cover the more traditional subjects in wave mechanics-the Schrodinger equation in position space, the harmonic oscillator, orbital angular momentum, and central potentials-but they are motivated by the foundations developed in the earlier chapters. Students using this text will perceive wave mechanics as an important aspect of quantum mechanics, but not necessarily the core of the subj...

  8. Black-hole horizons in modified spacetime structures arising from canonical quantum gravity

    International Nuclear Information System (INIS)

    Bojowald, Martin; Paily, George M; Reyes, Juan D; Tibrewala, Rakesh

    2011-01-01

    Several properties of canonical quantum gravity modify spacetime structures, sometimes to the degree that no effective line elements exist to describe the geometry. An analysis of solutions, for instance in the context of black holes, then requires new insights. In this paper, standard definitions of horizons in spherical symmetry are first reformulated canonically, and then evaluated for solutions of equations and constraints modified by inverse-triad corrections of loop quantum gravity. When possible, a spacetime analysis is performed which reveals a mass threshold for black holes and small changes to Hawking radiation. For more general conclusions, canonical perturbation theory is developed to second order to include back-reaction from matter. The results shed light on the questions of whether renormalization of Newton's constant or other modifications of horizon conditions should be taken into account in computations of black-hole entropy in loop quantum gravity.

  9. Canonical quantum theory of gravitational field with higher derivatives, 2

    International Nuclear Information System (INIS)

    Kawasaki, Shoichiro; Kimura, Tadahiko

    1982-01-01

    The asymptotic fields in a canonically quantized graviational field with higher derivatives are analyzed. A possible mechanism of the recovery of the physical S-matrix unitarity is discussed. The constraint nabla sub(μ)(B sup(μν) + (Beta /α)g sup(μν)B) = 0 due to the Bianchi identity on R sub(μν) is treated by Dirac's method. (author)

  10. Canonical quantum theory of gravitational field with higher derivatives

    International Nuclear Information System (INIS)

    Kawasaki, Shoichiro; Kimura, Tadahiko; Kitago, Koichi.

    1981-01-01

    A renormalizable gravitational theory with higher derivatives is canonically quantized in the Landau gauge. Field equations and various equal-time commutation relations are explicitly given. The main results obtained in this work are 1) the equal-time commutation relations involving b sub(μ) exhibit the tensor-like behaviour and 2) the theory has the 16-dimensional Poincare-like superalgebra. These results are just the same as those discovered by Nakanishi in the Einstein case. (author)

  11. Clifford Algebras and Spinorial Representation of Linear Canonical Transformations in Quantum Theory

    International Nuclear Information System (INIS)

    Raoelina Andriambololona; Ranaivoson, R.T.R.; Rakotoson, H.

    2017-11-01

    This work is a continuation of previous works that we have done concerning linear canonical transformations and a phase space representation of quantum theory. It is mainly focused on the description of an approach which permits to establish spinorial representation of linear canonical transformations. It begins with an introduction section in which the reason and context of the content are discussed. The introduction section is followed by a brief recall about Clifford algebra and spin group. The description of the approach is started with the presentation of an adequate parameterization of linear canonical transformations which permits to represent them with special pseudo-orthogonal transformations in an operators space. The establishment of the spinorial representation is deduced using relation between special pseudo-orthogonal groups and spin groups. The cases of one dimension quantum mechanics and general multidimensional theory are both studied. The case of linear canonical transformation related to Minkowski space is particularly studied and it is shown that Lorentz transformation may be considered as particular case of linear canonical transformation. Some results from the spinorial representation are also exploited to define operators which may be used to establish equations for fields if one considers the possibility of envisaging a field theory which admits as main symmetry group the group constituted by linear canonical transformations.

  12. The canonical quantization of local scalar fields over quantum space-time

    International Nuclear Information System (INIS)

    Banai, M.

    1983-05-01

    Canonical quantization of a classical local field theory (CLFT) consisting of N real scalar fields is formulated in the Hilbert space over the sup(*)-algebra A of linear operators of L 2 (R 3 ). The canonical commutation relations (CCR) have an irreducible solution, unique up to A-unitary equivalence. The canonical equations as operator equations are equivalent to the classical (c) field equations. The interaction picture can be introduced in a well-defined manner. The main adventage of this treatment is that the corresponding S-matrix is free of divergences. The Feynman's graph technique is adaptable in a straightforward manner. This approach is a natural extension of the conventional canonical quantization method of quantum mechanics. (author)

  13. Wigner Distribution Functions and the Representation of Canonical Transformations in Time-Dependent Quantum Mechanics

    Directory of Open Access Journals (Sweden)

    Marcos Moshinsky

    2008-07-01

    Full Text Available For classical canonical transformations, one can, using the Wigner transformation, pass from their representation in Hilbert space to a kernel in phase space. In this paper it will be discussed how the time-dependence of the uncertainties of the corresponding time-dependent quantum problems can be incorporated into this formalism.

  14. From Classical to Quantum: New Canonical Tools for the Dynamics of Gravity

    NARCIS (Netherlands)

    Höhn, P.A.

    2012-01-01

    In a gravitational context, canonical methods offer an intuitive picture of the dynamics and simplify an identification of the degrees of freedom. Nevertheless, extracting dynamical information from background independent approaches to quantum gravity is a highly non-trivial challenge. In this

  15. Implementation problem for the canonical commutation relation in terms of quantum white noise derivatives

    International Nuclear Information System (INIS)

    Ji, Un Cig; Obata, Nobuaki

    2010-01-01

    The implementation problem for the canonical commutation relation is reduced to a system of differential equations for Fock space operators containing new type of derivatives. We solve these differential equations systematically by means of quantum white noise calculus, and obtain the solution to the implementation problem.

  16. Modernizing quantum annealing using local searches

    International Nuclear Information System (INIS)

    Chancellor, Nicholas

    2017-01-01

    I describe how real quantum annealers may be used to perform local (in state space) searches around specified states, rather than the global searches traditionally implemented in the quantum annealing algorithm (QAA). Such protocols will have numerous advantages over simple quantum annealing. By using such searches the effect of problem mis-specification can be reduced, as only energy differences between the searched states will be relevant. The QAA is an analogue of simulated annealing, a classical numerical technique which has now been superseded. Hence, I explore two strategies to use an annealer in a way which takes advantage of modern classical optimization algorithms. Specifically, I show how sequential calls to quantum annealers can be used to construct analogues of population annealing and parallel tempering which use quantum searches as subroutines. The techniques given here can be applied not only to optimization, but also to sampling. I examine the feasibility of these protocols on real devices and note that implementing such protocols should require minimal if any change to the current design of the flux qubit-based annealers by D-Wave Systems Inc. I further provide proof-of-principle numerical experiments based on quantum Monte Carlo that demonstrate simple examples of the discussed techniques. (paper)

  17. Building the image of modern art : the rhetoric of two museums and the representation and canonization of modern art (1935-1975) : the Stedelijk Museum in Amsterdam and the Museum of Modern Art in New York

    NARCIS (Netherlands)

    Leigh, Nana

    2008-01-01

    The Rhetoric of Two Museums and the Representation and Canonization of Modern Art (1935-1975): The Stedelijk Museum in Amsterdam and the Museum of Modern Art in New York Museums of modern art have determined the course of modern art history. Their contributions to the representation and

  18. A new quantum representation for canonical gravity and SU(2) Yang-Mills theory

    International Nuclear Information System (INIS)

    Loll, R.

    1990-04-01

    Starting from Rovelli-Smolin's infinite-dimensional graded Poisson-bracket algebra of loop variables, we propose a new way of constructing a corresponding quantum representation. After eliminating certain quadratic constraints, we 'integrate' an infinite-dimensional subalgebra of loop variables, using a formal group law expansion. With the help of techniques from the representation theory of semidirect-product groups, we find an exact quantum representation of the full classical Poisson-bracket algebra of loop variables, without any higher-order correction terms. This opens new ways of tackling the quantum dynamics for both canonical gravity and Yang-Mills theory. (orig.)

  19. A new quantum representation for canonical gravity and SU(2) Yang-Mills theory

    International Nuclear Information System (INIS)

    Loll, R.

    1991-01-01

    Starting from Rovelli-Smolin's infinite-dimensional graded Poisson-bracket algebra of loop variables, we propose a new way of constructing a corresponding quantum representation. After eliminating certain quadratic constraints, we 'integrate' an infinite-dimensional subalgebra of loop variables, using a formal group law expansion. With the help of techniques from the representation theory of semidirect-product groups, we find an exact quantum representation of the full classical Poisson-bracket algebra of loop variables, without any higher-order correction terms. This opens new ways of tackling the quantum dynamics for both canonical gravity and Yang-Mills theory. (orig.)

  20. From Classical to Quantum: New Canonical Tools for the Dynamics of Gravity

    Science.gov (United States)

    Höhn, P. A.

    2012-05-01

    In a gravitational context, canonical methods offer an intuitive picture of the dynamics and simplify an identification of the degrees of freedom. Nevertheless, extracting dynamical information from background independent approaches to quantum gravity is a highly non-trivial challenge. In this thesis, the conundrum of (quantum) gravitational dynamics is approached from two different directions by means of new canonical tools. This thesis is accordingly divided into two parts: In the first part, a general canonical formalism for discrete systems featuring a variational action principle is developed which is equivalent to the covariant formulation following directly from the action. This formalism can handle evolving phase spaces and is thus appropriate for describing evolving lattices. Attention will be devoted to a characterization of the constraints, symmetries and degrees of freedom appearing in such discrete systems which, in the case of evolving phase spaces, is time step dependent. The advantage of this formalism is that it does not depend on the particular discretization and, hence, is suitable for coarse graining procedures. This formalism is applicable to discrete mechanics, lattice field theories and discrete gravity models---underlying some approaches to quantum gravity---and, furthermore, may prove useful for numerical imple mentations. For concreteness, these new tools are employed to formulate Regge Calculus canonically as a theory of the dynamics of discrete hypersurfaces in discrete spacetimes, thereby removing a longstanding obstacle to connecting covariant simplicial gravity models with canonical frameworks. This result is interesting in view of several background independent approaches to quantum gravity. In addition, perturbative expansions around symmetric background solutions of Regge Calculus are studied up to second order. Background gauge modes generically become propagating at second order as a consequence of a symmetry breaking. In the

  1. Development of quantum perspectives in modern physics

    Directory of Open Access Journals (Sweden)

    Charles Baily

    2009-03-01

    Full Text Available Introductory undergraduate courses in classical physics stress a perspective that can be characterized as realist; from this perspective, all physical properties of a classical system can be simultaneously specified and thus determined at all future times. Such a perspective can be problematic for introductory quantum physics students, who must develop new perspectives in order to properly interpret what it means to have knowledge of quantum systems. We document this evolution in student thinking in part through pre- and post-instruction evaluations using the Colorado Learning Attitudes about Science Survey. We further characterize variations in student epistemic and ontological commitments by examining responses to two essay questions, coupled with responses to supplemental quantum attitude statements. We find that, after instruction in modern physics, many students are still exhibiting a realist perspective in contexts where a quantum-mechanical perspective is needed. We further find that this effect can be significantly influenced by instruction, where we observe variations for courses with differing learning goals. We also note that students generally do not employ either a realist or a quantum perspective in a consistent manner.

  2. Study of interacting fields in a canonical formalism in Heisenberg picture of quantum field theory

    International Nuclear Information System (INIS)

    RANAIVOSON, R.T.R.

    2011-01-01

    In this work, we have made a study on the canonical formalism of the quantum field theory. Our contribution has been the development of a study using the Heisenberg picture. We showed that this approach may be useful for the description of quantum dynamics of interacting fields in bounded states. Our approach is to start from the lagrangian density of a classical theory from which one deduce the classical evolution equations of the fields via Euler-Lagrange equation for fields and establish the expression of conserved quantities characterizing the dynamics using the Noether theorem. Passing to the canonical quantization, fields and quantities characterizing the dynamics become quantum operators and evolution equations become operatorial evolution equations in Heisenberg picture. Expressions of quantum observable are also deduced from the expressions of classical conserved quantities. After, we showed that using the properties of fields operators and quantum states vectors, one can deduce from the operatorial evolution equations, the evolution equations for the wave functions of fermions and the evolution equations of expectation values of boson fields. For the illustration, various studies were conducted: the case of electrodynamics, the case of a general gauge theory and the case of the Standard Model. [fr

  3. Teaching and Understanding of Quantum Interpretations in Modern Physics Courses

    Science.gov (United States)

    Baily, Charles; Finkelstein, Noah D.

    2010-01-01

    Just as expert physicists vary in their personal stances on interpretation in quantum mechanics, instructors vary on whether and how to teach interpretations of quantum phenomena in introductory modern physics courses. In this paper, we document variations in instructional approaches with respect to interpretation in two similar modern physics…

  4. Multireference quantum chemistry through a joint density matrix renormalization group and canonical transformation theory.

    Science.gov (United States)

    Yanai, Takeshi; Kurashige, Yuki; Neuscamman, Eric; Chan, Garnet Kin-Lic

    2010-01-14

    We describe the joint application of the density matrix renormalization group and canonical transformation theory to multireference quantum chemistry. The density matrix renormalization group provides the ability to describe static correlation in large active spaces, while the canonical transformation theory provides a high-order description of the dynamic correlation effects. We demonstrate the joint theory in two benchmark systems designed to test the dynamic and static correlation capabilities of the methods, namely, (i) total correlation energies in long polyenes and (ii) the isomerization curve of the [Cu(2)O(2)](2+) core. The largest complete active spaces and atomic orbital basis sets treated by the joint DMRG-CT theory in these systems correspond to a (24e,24o) active space and 268 atomic orbitals in the polyenes and a (28e,32o) active space and 278 atomic orbitals in [Cu(2)O(2)](2+).

  5. Time as a Quantum Observable, Canonically Conjugated to Energy, and Foundations of Self-Consistent Time Analysis of Quantum Processes

    Directory of Open Access Journals (Sweden)

    V. S. Olkhovsky

    2009-01-01

    Full Text Available Recent developments are reviewed and some new results are presented in the study of time in quantum mechanics and quantum electrodynamics as an observable, canonically conjugate to energy. This paper deals with the maximal Hermitian (but nonself-adjoint operator for time which appears in nonrelativistic quantum mechanics and in quantum electrodynamics for systems with continuous energy spectra and also, briefly, with the four-momentum and four-position operators, for relativistic spin-zero particles. Two measures of averaging over time and connection between them are analyzed. The results of the study of time as a quantum observable in the cases of the discrete energy spectra are also presented, and in this case the quasi-self-adjoint time operator appears. Then, the general foundations of time analysis of quantum processes (collisions and decays are developed on the base of time operator with the proper measures of averaging over time. Finally, some applications of time analysis of quantum processes (concretely, tunneling phenomena and nuclear processes are reviewed.

  6. Relating covariant and canonical approaches to triangulated models of quantum gravity

    International Nuclear Information System (INIS)

    Arnsdorf, Matthias

    2002-01-01

    In this paper we explore the relation between covariant and canonical approaches to quantum gravity and BF theory. We will focus on the dynamical triangulation and spin-foam models, which have in common that they can be defined in terms of sums over spacetime triangulations. Our aim is to show how we can recover these covariant models from a canonical framework by providing two regularizations of the projector onto the kernel of the Hamiltonian constraint. This link is important for the understanding of the dynamics of quantum gravity. In particular, we will see how in the simplest dynamical triangulation model we can recover the Hamiltonian constraint via our definition of the projector. Our discussion of spin-foam models will show how the elementary spin-network moves in loop quantum gravity, which were originally assumed to describe the Hamiltonian constraint action, are in fact related to the time-evolution generated by the constraint. We also show that the Immirzi parameter is important for the understanding of a continuum limit of the theory

  7. Structure of multiphoton quantum optics. I. Canonical formalism and homodyne squeezed states

    Science.gov (United States)

    dell'Anno, Fabio; de Siena, Silvio; Illuminati, Fabrizio

    2004-03-01

    We introduce a formalism of nonlinear canonical transformations for general systems of multiphoton quantum optics. For single-mode systems the transformations depend on a tunable free parameter, the homodyne local-oscillator angle; for n -mode systems they depend on n heterodyne mixing angles. The canonical formalism realizes nontrivial mixing of pairs of conjugate quadratures of the electromagnetic field in terms of homodyne variables for single-mode systems, and in terms of heterodyne variables for multimode systems. In the first instance the transformations yield nonquadratic model Hamiltonians of degenerate multiphoton processes and define a class of non-Gaussian, nonclassical multiphoton states that exhibit properties of coherence and squeezing. We show that such homodyne multiphoton squeezed states are generated by unitary operators with a nonlinear time evolution that realizes the homodyne mixing of a pair of conjugate quadratures. Tuning of the local-oscillator angle allows us to vary at will the statistical properties of such states. We discuss the relevance of the formalism for the study of degenerate (up-)down-conversion processes. In a companion paper [ F. Dell’Anno, S. De Siena, and F. Illuminati, 69, 033813 (2004) ], we provide the extension of the nonlinear canonical formalism to multimode systems, we introduce the associated heterodyne multiphoton squeezed states, and we discuss their possible experimental realization.

  8. Structure of multiphoton quantum optics. I. Canonical formalism and homodyne squeezed states

    International Nuclear Information System (INIS)

    Dell'Anno, Fabio; De Siena, Silvio; Illuminati, Fabrizio

    2004-01-01

    We introduce a formalism of nonlinear canonical transformations for general systems of multiphoton quantum optics. For single-mode systems the transformations depend on a tunable free parameter, the homodyne local-oscillator angle; for n-mode systems they depend on n heterodyne mixing angles. The canonical formalism realizes nontrivial mixing of pairs of conjugate quadratures of the electromagnetic field in terms of homodyne variables for single-mode systems, and in terms of heterodyne variables for multimode systems. In the first instance the transformations yield nonquadratic model Hamiltonians of degenerate multiphoton processes and define a class of non-Gaussian, nonclassical multiphoton states that exhibit properties of coherence and squeezing. We show that such homodyne multiphoton squeezed states are generated by unitary operators with a nonlinear time evolution that realizes the homodyne mixing of a pair of conjugate quadratures. Tuning of the local-oscillator angle allows us to vary at will the statistical properties of such states. We discuss the relevance of the formalism for the study of degenerate (up-)down-conversion processes. In a companion paper [F. Dell'Anno, S. De Siena, and F. Illuminati, 69, 033813 (2004)], we provide the extension of the nonlinear canonical formalism to multimode systems, we introduce the associated heterodyne multiphoton squeezed states, and we discuss their possible experimental realization

  9. Quantum statistical model of nuclear multifragmentation in the canonical ensemble method

    International Nuclear Information System (INIS)

    Toneev, V.D.; Ploszajczak, M.; Parvant, A.S.; Toneev, V.D.; Parvant, A.S.

    1999-01-01

    A quantum statistical model of nuclear multifragmentation is proposed. The recurrence equation method used the canonical ensemble makes the model solvable and transparent to physical assumptions and allows to get results without involving the Monte Carlo technique. The model exhibits the first order phase transition. Quantum statistics effects are clearly seen on the microscopic level of occupation numbers but are almost washed out for global thermodynamic variables and the averaged observables studied. In the latter case, the recurrence relations for multiplicity distributions of both intermediate-mass and all fragments are derived and the specific changes in the shape of multiplicity distributions in the narrow region of the transition temperature is stressed. The temperature domain favorable to search for the HBT effect is noted. (authors)

  10. Quantum statistical model of nuclear multifragmentation in the canonical ensemble method

    Energy Technology Data Exchange (ETDEWEB)

    Toneev, V.D.; Ploszajczak, M. [Grand Accelerateur National d' Ions Lourds (GANIL), 14 - Caen (France); Parvant, A.S. [Institute of Applied Physics, Moldova Academy of Sciences, MD Moldova (Ukraine); Parvant, A.S. [Joint Institute for Nuclear Research, Bogoliubov Lab. of Theoretical Physics, Dubna (Russian Federation)

    1999-07-01

    A quantum statistical model of nuclear multifragmentation is proposed. The recurrence equation method used the canonical ensemble makes the model solvable and transparent to physical assumptions and allows to get results without involving the Monte Carlo technique. The model exhibits the first order phase transition. Quantum statistics effects are clearly seen on the microscopic level of occupation numbers but are almost washed out for global thermodynamic variables and the averaged observables studied. In the latter case, the recurrence relations for multiplicity distributions of both intermediate-mass and all fragments are derived and the specific changes in the shape of multiplicity distributions in the narrow region of the transition temperature is stressed. The temperature domain favorable to search for the HBT effect is noted. (authors)

  11. A Langevin Canonical Approach to the Study of Quantum Stochastic Resonance in Chiral Molecules

    Directory of Open Access Journals (Sweden)

    Germán Rojas-Lorenzo

    2016-09-01

    Full Text Available A Langevin canonical framework for a chiral two-level system coupled to a bath of harmonic oscillators is used within a coupling scheme different from the well-known spin-boson model to study the quantum stochastic resonance for chiral molecules. This process refers to the amplification of the response to an external periodic signal at a certain value of the noise strength, being a cooperative effect of friction, noise, and periodic driving occurring in a bistable system. Furthermore, from this stochastic dynamics within the Markovian regime and Ohmic friction, the competing process between tunneling and the parity violating energy difference present in this type of chiral systems plays a fundamental role. This mechanism is finally proposed to observe the so-far elusive parity-violating energy difference in chiral molecules.

  12. Canonical Naimark extension for generalized measurements involving sets of Pauli quantum observables chosen at random

    Science.gov (United States)

    Sparaciari, Carlo; Paris, Matteo G. A.

    2013-01-01

    We address measurement schemes where certain observables Xk are chosen at random within a set of nondegenerate isospectral observables and then measured on repeated preparations of a physical system. Each observable has a probability zk to be measured, with ∑kzk=1, and the statistics of this generalized measurement is described by a positive operator-valued measure. This kind of scheme is referred to as quantum roulettes, since each observable Xk is chosen at random, e.g., according to the fluctuating value of an external parameter. Here we focus on quantum roulettes for qubits involving the measurements of Pauli matrices, and we explicitly evaluate their canonical Naimark extensions, i.e., their implementation as indirect measurements involving an interaction scheme with a probe system. We thus provide a concrete model to realize the roulette without destroying the signal state, which can be measured again after the measurement or can be transmitted. Finally, we apply our results to the description of Stern-Gerlach-like experiments on a two-level system.

  13. Quantum theory. Foundations of modern physics. 5. upd. ed.

    International Nuclear Information System (INIS)

    Ingold, Gert-Ludwig

    2015-01-01

    In the december of the year 1900n the famous physicist Max Planck gave a lecture, which should be later called as the birth hour of quantum physics. Their statements and knowledges should revolutionize our picture of the world in a hardly thought possible radicality and form meanwhile a central base for our understanding of nature. This book mediates an experienced, compact survey about the most important elements of modern quantum physics and their amazing, our common experience seemingly contradicting consequences.

  14. Modern quantum kinetic theory and spectral line shapes

    International Nuclear Information System (INIS)

    Monchick, L.

    1991-01-01

    The modern quantum kinetic theory of spectral line shapes is outlined and a typical calculation of a Raman scattered line shape described. The distinguishing feature of this calculation is that it was completely ab initio and therefore constituted a test of modern quantum kinetic theory, the state of the art in computing molecular-scattering cross sections, and novel methods of solving kinetic equations. The computation employed a large assortment of tools: group theory, finite-element methods, classic methods of solving coupled sets of ordinary differential equations, graph methods of combining angular momenta, and matrix methods of solving integral equations. Agreement with experimental results was excellent. 13 refs

  15. Singularity, initial conditions and quantum tunneling in modern cosmology

    International Nuclear Information System (INIS)

    Khalatnikov, I M; Kamenshchik, A Yu

    1998-01-01

    The key problems of modern cosmology, such as the cosmological singularity, initial conditions, and the quantum tunneling hypothesis, are discussed. The relationship between the latest cosmological trends and L D Landau's old ideas is analyzed. Particular attention is given to the oscillatory approach to singularity; quantum tunneling processes determining wave function of the Universe in the presence of a compex scalar field; and the role of quantum corrections in these processes. The classical dynamics of closed models with a real scalar field is investigated from the standpoint of chaotic, fractal, and singularity-avoiding properties. (special issue)

  16. Cubism translated? The Western Canon of Modernism and Central/Eastern European Art History

    Czech Academy of Sciences Publication Activity Database

    Lahoda, Vojtěch

    2010-01-01

    Roč. 2, č. 2 (2010), s. 223-238 ISSN 1756-1310 Institutional research plan: CEZ:AV0Z80330511 Keywords : painting * furniture * applied arts * Czech Cubism * Modernism * Riga Artists´group Subject RIV: AL - Art, Architecture, Cultural Heritage http://www.ingentaconnect.com/content/berg/aitj/2010/00000002/00000002/art00007

  17. From Canon to Chaos Management: Blogging as a Learning Tool in a Modern Finnish Literature Course

    Science.gov (United States)

    Jokinen, Elina; Vaarala, Heidi

    2015-01-01

    This article is based on the teaching experiment implemented in summer 2013 in a modern Finnish literature course organised by the Centre for International Mobility (CIMO) and the University of Jyväskylä Language Centre. In order to break away from the traditional conception of literature and text, students' independent blogging was chosen as the…

  18. Photophysics and Photochemistry of Canonical Nucleobases’ Thioanalogs: From Quantum Mechanical Studies to Time Resolved Experiments

    Directory of Open Access Journals (Sweden)

    Serra Arslancan

    2017-06-01

    Full Text Available Interest in understanding the photophysics and photochemistry of thiated nucleobases has been awakened because of their possible involvement in primordial RNA or their potential use as photosensitizers in medicinal chemistry. The interpretation of the photodynamics of these systems, conditioned by their intricate potential energy surfaces, requires the powerful interplay between experimental measurements and state of the art molecular simulations. In this review, we provide an overview on the photophysics of natural nucleobases’ thioanalogs, which covers the last 30 years and both experimental and computational contributions. For all the canonical nucleobase’s thioanalogs, we have compiled the main steady state absorption and emission features and their interpretation in terms of theoretical calculations. Then, we revise the main topographical features, including stationary points and interstate crossings, of their potential energy surfaces based on quantum mechanical calculations and we conclude, by combining the outcome of different spectroscopic techniques and molecular dynamics simulations, with the mechanism by which these nucleobase analogs populate their triplet excited states, which are at the origin of their photosensitizing properties.

  19. The traditional and modern in church music: A study in canon and creativity

    Directory of Open Access Journals (Sweden)

    Peno Vesna

    2006-01-01

    Full Text Available Definitions of the terms "traditional" and "modern", relating to the chanting tradition of the Eastern Church, sprang from research into so-called kalophony – a specific compositional method that established melismatic melody. Despite differing academic opinions about the origins of this melody in the liturgical practice of the Eastern Church, it is evident that very embellished and elaborate kalophonic melodies appeared frequently from the mid-13th century onwards. The compositional treatment of various genres of these melodies began historically with partial respect for the established hymnographic text. This was followed by a more liberal arrangement, ending in a total departure from any textual base (kratema. The fact that the melody in melismatic mode superseded the text suggests that kalophony represented a certain kind of modernity. Even though musical manuscripts in neumatic notation had no written rules about methods of composition or how to balance tones and words, in the tradition of the Easternchanting practice, melody was always recognized as a helpful addition, an exegesis of the textus receptus. In order to fully comprehend the introduction of this "new sound" and "new style", this study focuses on the work of a major protagonist of them, a monk from the Great Lavra, blessed John Koukouzeles. I consider the following questions: 1 The purpose and function of chant in the art of Byzantium in general 2 The role of the composer/ artist and his creative freedom 3 Evaluating criteria for church-related arts/composition 4 Criteria which immortalized or buried artwork/composition of the time Allowing for what possibly motivated John Koukouzeles and his contemporaries to compose kalophonic melodies or to kalophonically modify old, traditional melodies this study focuses on the effects that hesychasm had on the chanting practice of the time. Considering the theological validation of kalophonic modifications of some liturgical hymns, an

  20. A modern course in the quantum theory of solids

    CERN Document Server

    Han, Fuxiang

    2013-01-01

    This book contains advanced subjects in solid state physics with emphasis on the theoretical exposition of various physical phenomena in solids using quantum theory, hence entitled "A modern course in the quantum theory of solids". The use of the adjective "modern" in the title is to reflect the fact that some of the new developments in condensed matter physics have been included in the book. The new developments contained in the book are mainly in experimental methods (inelastic neutron scattering and photoemission spectroscopy), in magnetic properties of solids (the itinerant magnetism, the superexchange, the Hubbard model, and giant and colossal magnetoresistance), and in optical properties of solids (Raman scattering). Besides the new developments, the Green's function method used in many-body physics and the strong-coupling theory of superconductivity are also expounded in great details.

  1. An unconventional canonical quantization of local scalar fields over quantum space-time

    International Nuclear Information System (INIS)

    Banai, M.

    1985-12-01

    An unconventional extension of the canonical quantization method is presented for a classical local field theory. The proposed canonical commutation relations have a solution in the A-valued Hilbert space where A is the algebra of the bounded operators of the Hilbert space Lsup(2) (IRsup(3)). The canonical equations as operator equations are equivalent formally with the classical field equations, and are well defined for interacting systems, too. This model of quantized field lacks some of the difficulties of the conventional approach. Examples satisfying the asymptotic condition provide examples for Haag-Kastler's axioms, however, they satisfy Wightman's axioms only partially. (author)

  2. Applications of Canonical transformations and nontrivial vacuum solutions to flavor mixing and critical phenomena in quantum field theory

    International Nuclear Information System (INIS)

    Mishchenko, Yuriy

    2004-01-01

    MISHCHENKO, YURIY. Applications of Canonical Transformations and Nontrivial Vacuum Solutions to flavor mixing and critical phenomena in Quantum Field Theory. (Under the direction of Chueng-Ryong Ji.) In this dissertation we consider two recent applications of Bogoliubov Transformation to the phenomenology of quantum mixing and the theory of critical phenomena. In recent years quantum mixing got in the focus of the searches for New Physics due to its unparalleled sensitivity to SM parameters and indications of neutrino mixing. It was recently suggested that Bogoliubov Transformation may be important in proper definition of the flavor states that otherwise results in problems in perturbative treatment. As first part of this dissertation we investigate this conjecture and develop a complete formulation of such a mixing field theory involving introduction of general formalism, analysis of space-time conversion and phenomenological implications. As second part of this dissertati

  3. Applications of Canonical transformations and nontrivial vacuum solutions to flavor mixing and critical phenomena in quantum field theory

    Energy Technology Data Exchange (ETDEWEB)

    Mishchenko, Yuriy [North Carolina State Univ., Raleigh, NC (United States)

    2004-12-01

    MISHCHENKO, YURIY. Applications of Canonical Transformations and Nontrivial Vacuum Solutions to flavor mixing and critical phenomena in Quantum Field Theory. (Under the direction of Chueng-Ryong Ji.) In this dissertation we consider two recent applications of Bogoliubov Transformation to the phenomenology of quantum mixing and the theory of critical phenomena. In recent years quantum mixing got in the focus of the searches for New Physics due to its unparalleled sensitivity to SM parameters and indications of neutrino mixing. It was recently suggested that Bogoliubov Transformation may be important in proper definition of the flavor states that otherwise results in problems in perturbative treatment. As first part of this dissertation we investigate this conjecture and develop a complete formulation of such a mixing field theory involving introduction of general formalism, analysis of space-time conversion and phenomenological implications. As second part of this dissertati

  4. Dissipative quantum mechanics: The generalization of the canonical quantization and von Neumann equation

    International Nuclear Information System (INIS)

    Tarasov, V.E.

    1994-07-01

    Sedov variational principle, which is the generalization of the least actional principle for the dissipative processes is used to generalize the canonical quantization and von Neumann equation for dissipative systems (particles and strings). (author). 66 refs, 1 fig

  5. Quantum correlations of ideal Bose and Fermi gases in the canonical ensemble

    International Nuclear Information System (INIS)

    Tsutsui, Kazumasa; Kita, Takafumi

    2016-01-01

    We derive an expression for the reduced density matrices of ideal Bose and Fermi gases in the canonical ensemble, which corresponds to the Bloch-De Dominicis (or Wick's) theorem in the grand canonical ensemble for normal-ordered products of operators. Using this expression, we study one- and two-body correlations of homogeneous ideal gases with N particles. The pair distribution function g (2) (r) of fermions clearly exhibits antibunching with g (2) (0) = 0 due to the Pauli exclusion principle at all temperatures, whereas that of normal bosons shows bunching with g (2) (0) ≈ 2, corresponding to the Hanbury Brown-Twiss effect. For bosons below the Bose-Einstein condensation temperature T 0 , an off-diagonal long-range order develops in the one-particle density matrix to reach g (1) (r) = 1 at T = 0, and the pair correlation starts to decrease towards g (2) (r) ≈ 1 at T = 0. The results for N → ∞ are seen to converge to those of the grand canonical ensemble obtained by assuming the average <ψ(r)> of the field operator ψ(r) below T 0 . This fact justifies the introduction of the 'anomalous' average <ψ(r)> ≠ 0 below T 0 in the grand canonical ensemble as a mathematical means of removing unphysical particle-number fluctuations to reproduce the canonical results in the thermodynamic limit. (author)

  6. Refined tropical curve counts and canonical bases for quantum cluster algebras

    DEFF Research Database (Denmark)

    Mandel, Travis

    We express the (quantizations of the) Gross-Hacking-Keel-Kontsevich canonical bases for cluster algebras in terms of certain (Block-Göttsche) weighted counts of tropical curves. In the process, we obtain via scattering diagram techniques a new invariance result for these Block-Göttsche counts....

  7. The quantum mechanics solver. How to apply quantum theory to modern physics. 2. ed.

    International Nuclear Information System (INIS)

    Basdevant, J.L.; Dalibard, J.

    2006-01-01

    The Quantum Mechanics Solver uniquely illustrates the application of quantum mechanical concepts to various fields of modern physics. It aims at encouraging the reader to apply quantum mechanics to research problems in fields such as molecular physics, condensed matter physics or laser physics. Advanced undergraduates and graduate students will find a rich and challenging source of material for further exploration. This book consists of a series of problems concerning present-day experimental or theoretical questions on quantum mechanics. All of these problems are based on actual physical examples, even if sometimes the mathematical structure of the models under consideration is simplified intentionally in order to get hold of the physics more rapidly. The new edition features new themes, such as the progress in measuring neutrino oscillations, quantum boxes, the quantum thermometer etc. Secondly, it includes a brief summary on the basics of quantum mechanics and the formalism we use. Finally, the problems under three main themes: Elementary Particles, Nuclei and Atoms; Quantum Entanglement and Measurement; and Complex Systems. (orig.)

  8. Towards canonical quantum gravity for 3+1 geometries admitting maximally symmetric two-dimensional surfaces

    International Nuclear Information System (INIS)

    Christodoulakis, T; Doulis, G; Terzis, Petros A; Melas, E; Grammenos, Th; Papadopoulos, G O; Spanou, A

    2010-01-01

    The canonical decomposition of all 3+1 geometries admitting two-dimensional space-like surfaces is exhibited as a generalization of a previous work. A proposal, consisting of a specific renormalization Assumption and an accompanying Requirement, which has been put forward in the 2+1 case is now generalized to 3+1 dimensions. This enables the canonical quantization of these geometries through a generalization of Kuchar's quantization scheme in the case of infinite degrees of freedom. The resulting Wheeler-DeWitt equation is based on a renormalized manifold parameterized by three smooth scalar functionals. The entire space of solutions to this equation is analytically given, a fact that is entirely new to the present case. This is made possible through the exploitation of the residual freedom in the choice of the third functional, which is left by the imposition of the Requirement, and is proven to correspond to a general coordinate transformation in the renormalized manifold.

  9. Quantum Mechanics from Newton's Second Law and the Canonical Commutation Relation [X,P]=i

    OpenAIRE

    Palenik, Mark C.

    2014-01-01

    Despite the fact that it has been known since the time of Heisenberg that quantum operators obey a quantum version of Newton's laws, students are often told that derivations of quantum mechanics must necessarily follow from the Hamiltonian or Lagrangian formulations of mechanics. Here, we first derive the existing Heisenberg equations of motion from Newton's laws and the uncertainty principle using only the equations $F=\\frac{dP}{dt}$, $P=m\\frac{dV}{dt}$, and $\\left[X,P\\right]=i$. Then, a new...

  10. Quantum mechanics from Newton's second law and the canonical commutation relation [X, P] = i

    International Nuclear Information System (INIS)

    Palenik, Mark C

    2014-01-01

    Despite the fact that it has been known since the time of Heisenberg that quantum operators obey a quantum version of Newton's laws, students are often told that derivations of quantum mechanics must necessarily follow from the Hamiltonian or Lagrangian formulations of mechanics. Here, we first derive the existing Heisenberg equations of motion from Newton's laws and the uncertainty principle using only the equations F=((dP)/(dt)), P=m((dV)/(dt)), and [X, P] = i. Then, a new expression for the propagator is derived that makes a connection between time evolution in quantum mechanics and the motion of a classical particle under Newton's laws. The propagator is solved for three cases where an exact solution is possible: (1) the free particle; (2) the harmonic oscillator; and (3) a constant force, or linear potential in the standard interpretation. We then show that for a general for a general force F(X), by Taylor expanding X(t) in time, we can use this methodology to reproduce the Feynman path integral formula for the propagator. Such a picture may be useful for students as they make the transition from classical to quantum mechanics and help solidify the equivalence of the Hamiltonian, Lagrangian, and Newtonian pictures of physics in their minds. (paper)

  11. Proceedings of the international colloquium on modern quantum field theory II

    International Nuclear Information System (INIS)

    Das, S.R.; Mandal, G.; Mukhi, S.; Wadia, S.R.

    1995-01-01

    In the second International Colloquium on Modern Quantum Field Theory an attempt was made to cover a broad spectrum of topics in theoretical physics that included string theory, quantum gravity, statistical mechanics, condensed matter theory, complexity, lattice gauge theory and epistemological aspects of quantum mechanics. Papers relevant to INIS in the published proceedings are indexed separately

  12. Towards canonical quantum gravity for G1 geometries in 2+1 dimensions with a Λ-term

    International Nuclear Information System (INIS)

    Christodoulakis, T; Doulis, G; Terzis, Petros A; Melas, E; Grammenos, Th; Papadopoulos, G O; Spanou, A

    2008-01-01

    The canonical analysis and subsequent quantization of the (2+1)-dimensional action of pure gravity plus a cosmological constant term is considered, under the assumption of the existence of one spacelike Killing vector field. The proper imposition of the quantum analogues of two linear (momentum) constraints reduces an initial collection of state vectors, consisting of all smooth functionals of the components (and/or their derivatives) of the spatial metric, to particular scalar smooth functionals. The demand that the midi-superspace metric (inferred from the kinetic part of the quadratic (Hamiltonian) constraint) must define on the space of these states an induced metric whose components are given in terms of the same states, which is made possible through an appropriate re-normalization assumption, severely reduces the possible state vectors to three unique (up to general coordinate transformations) smooth scalar functionals. The quantum analogue of the Hamiltonian constraint produces a Wheeler-DeWitt equation based on this reduced manifold of states, which is completely integrated

  13. A quantum retrograde canon: complete population inversion in n 2-state systems

    Science.gov (United States)

    Padan, Alon; Suchowski, Haim

    2018-04-01

    We present a novel approach for analytically reducing a family of time-dependent multi-state quantum control problems to two-state systems. The presented method translates between {SU}(2)× {SU}(2) related n 2-state systems and two-state systems, such that the former undergo complete population inversion (CPI) if and only if the latter reach specific states. For even n, the method translates any two-state CPI scheme to a family of CPI schemes in n 2-state systems. In particular, facilitating CPI in a four-state system via real time-dependent nearest-neighbors couplings is reduced to facilitating CPI in a two-level system. Furthermore, we show that the method can be used for operator control, and provide conditions for producing several universal gates for quantum computation as an example. In addition, we indicate a basis for utilizing the method in optimal control problems.

  14. Operators and representation theory canonical models for algebras of operators arising in quantum mechanics

    CERN Document Server

    Jorgensen, Palle E T

    1987-01-01

    Historically, operator theory and representation theory both originated with the advent of quantum mechanics. The interplay between the subjects has been and still is active in a variety of areas.This volume focuses on representations of the universal enveloping algebra, covariant representations in general, and infinite-dimensional Lie algebras in particular. It also provides new applications of recent results on integrability of finite-dimensional Lie algebras. As a central theme, it is shown that a number of recent developments in operator algebras may be handled in a particularly e

  15. Signature change from Schutz's canonical quantum cosmology and its classical analogue

    International Nuclear Information System (INIS)

    Pedram, Pouria; Jalalzadeh, Shahram

    2008-01-01

    We study the signature change in a perfect fluid Friedmann-Robertson-Walker quantum cosmological model. In this work the Schutz's variational formalism is applied to recover the notion of time. This gives rise to a Schroedinger-Wheeler-DeWitt equation with arbitrary ordering for the scale factor. We use the eigenfunctions in order to construct wave packets and evaluate the time-dependent expectation value of the scale factor which coincides with the ontological interpretation. We show that these solutions exhibit signature transitions from a finite Euclidean to a Lorentzian domain. Moreover, such models are equivalent to a classical system where, besides the perfect fluid, a repulsive fluid is present

  16. Quantum Mechanics A Modern and Concise Introductory Course

    CERN Document Server

    Bes, Daniel R

    2007-01-01

    Starting from basic principles, the book systematically covers both Heisenberg and Schrödinger realizations of quantum mechanics (in this order). The material traditionally presented in quantum textbooks is illustrated with applications which are (or will become) cornestones of future technologies. The emphasis in the matrix formulation focus the atention on the spin, the most important quantum observable, and paves the way to chapters on quantum information (including crytography, teleportation and computation), on recent tests of quantum physics and on decoherence. Additions and changes found in the second edition include; a more friendly presentation to Hilbert spaces; more practical applications e.g. scanning tunneling microscope (potential barrier); quantum dots (single-particle states in semiconductors); lasers and masers (induced emission); real experiments that have recently provided a qualitative change in the foundations of quantum physics; and an outline of the density matrix formalism as applied ...

  17. An approach for generating trajectory-based dynamics which conserves the canonical distribution in the phase space formulation of quantum mechanics. II. Thermal correlation functions.

    Science.gov (United States)

    Liu, Jian; Miller, William H

    2011-03-14

    We show the exact expression of the quantum mechanical time correlation function in the phase space formulation of quantum mechanics. The trajectory-based dynamics that conserves the quantum canonical distribution-equilibrium Liouville dynamics (ELD) proposed in Paper I is then used to approximately evaluate the exact expression. It gives exact thermal correlation functions (of even nonlinear operators, i.e., nonlinear functions of position or momentum operators) in the classical, high temperature, and harmonic limits. Various methods have been presented for the implementation of ELD. Numerical tests of the ELD approach in the Wigner or Husimi phase space have been made for a harmonic oscillator and two strongly anharmonic model problems, for each potential autocorrelation functions of both linear and nonlinear operators have been calculated. It suggests ELD can be a potentially useful approach for describing quantum effects for complex systems in condense phase.

  18. Quantum mechanics. A modern and concise introductory course. 3. ed.

    Energy Technology Data Exchange (ETDEWEB)

    Bes, Daniel R. [Comision Nacional de Energia Atomica, Buenos Aires (Argentina)

    2012-07-01

    The presentation in the new edition of this well-reviewed textbook is clear and goes to the core of the questions. The balance between principles, concepts and applications is optimal. The material presented is touching active areas of physics. Supplies new views on decoherence, entanglement and path integral formulation of quantum mechanics. Gives background needed to understand quantum cryptography, teleportation and computation. Starting from basic principles, the book covers a wide variety of topics, ranging from Heisenberg, Schroedinger, second quantization, density matrix and path integral formulations of quantum mechanics, to applications that are (or will be) corner stones of present and future technologies. The emphasis is on spin waves, quantum information, recent tests of quantum physics and decoherence. The book provides a large amount of information without unbalancing the flow of the main ideas by laborious detail.

  19. Quantum mechanics. A modern and concise introductory course. 3. ed.

    International Nuclear Information System (INIS)

    Bes, Daniel R.

    2012-01-01

    The presentation in the new edition of this well-reviewed textbook is clear and goes to the core of the questions. The balance between principles, concepts and applications is optimal. The material presented is touching active areas of physics. Supplies new views on decoherence, entanglement and path integral formulation of quantum mechanics. Gives background needed to understand quantum cryptography, teleportation and computation. Starting from basic principles, the book covers a wide variety of topics, ranging from Heisenberg, Schroedinger, second quantization, density matrix and path integral formulations of quantum mechanics, to applications that are (or will be) corner stones of present and future technologies. The emphasis is on spin waves, quantum information, recent tests of quantum physics and decoherence. The book provides a large amount of information without unbalancing the flow of the main ideas by laborious detail.

  20. Modern quantum magnetism by means of neutron scattering

    International Nuclear Information System (INIS)

    Grenier, B.; Ziman, T.

    2007-01-01

    We review a selection of recent applications of neutron scattering to the field of quantum magnetism. We focus on systems where, because of quantum fluctuations enhanced by frustration and low dimension, there is no long range magnetic order in the ground state. We select two examples that we treat in more depth to show how neutron studies, in conjunction with the results of other experimental techniques, can give new insights. The first is the case of the spin ladder NaV 2 O 5 , where the origin of the spin gap at low temperature is now understood in detail. Apparent contradictions between quantitative measures of the charge order from neutron inelastic scattering, resonant X-ray scattering and NMR have been resolved giving interesting insights into the correlations. The second case is that of spin dimer system Cs 3 Cr 2 X 9 (X = Br, Cl), undergoing transitions to field induced transverse magnetic order. The Br compound is attractive as the critical fields are sufficiently low that a complete study, in different field directions, is possible. In addition, it is noteworthy in that the magnon that softens and condenses is incommensurable with the lattice. The common description in terms of Bose-Einstein condensation must be extended to include a continuous degeneracy and single ion anisotropy, and conclusions can be drawn by comparison with the Cl compound. (authors)

  1. Einstein's Materialism and Modern Tests of Quantum Mechanics

    Science.gov (United States)

    Vigier, J. P.

    After a presentation of Einstein's and Bohr's antagonistic point of view on the interpretation of Quantum Mechanics an illustration of their conflicting positions in the particular case of Young's double slit experiment is presented. It is then shown that in their most recent form (i. e. time dependent neutron interferometry) these experiments suggest (if one accepts absolute energymomentum conservation in all individual microprocesses) that Einstein was right in the Bohr-Einstein controversy.Translated AbstractEinsteins Materialismus und heutige Tests der QuantenmechanikNach einer Darstellung von Einsteins und Bohrs antagonistischen Standpunkten in der Interpretation der Quantenmechanik werden ihre widersprüchlichen Positionen im speziellen Fall des Youngschen Doppelspaltexperiments dargestellt. Es wird dann gezeigt, daß diese Experimente in ihrer neuesten Form (d. h. zeitabhängige Neutroneninterferometrie) Einstein in der Bohr-Einsteinkontroverse recht gaben (wenn man absolute Energie-Impulserhaltung bei allen individuellen Mikroprozessen annimmt).

  2. Surrealism, art, and modern science relativity, quantum mechanics, epistemology

    CERN Document Server

    Parkinson, Gavin

    2008-01-01

    During the same period that Surrealism originated and flourished between the wars, great advances were being made in the field of physics. This book offers the first full history, analysis and interpretation of Surrealism's engagement with the theory of relativity and quantum mechanics, and its reception of the philosophical consequences of those two major turning points in our understanding of the physical world. After surveying the revolution in physics in the early twentieth century and the discoveries of Planck, Bohr, Einstein, Schrodinger, and others, Gavin Parkinson explores the diverse uses of physics by individuals in and around the Surrealist group in Paris. In so doing, he offers exciting new readings of the art and writings of such key figures of the Surrealist milieu as André Breton, Georges Bataille, Salvador Dalí, Roger Caillois, Max Ernst, and Tristan Tzara.

  3. The Quantum Mechanics Solver How to Apply Quantum Theory to Modern Physics

    CERN Document Server

    Basdevant, Jean-Louis

    2006-01-01

    The Quantum Mechanics Solver grew from topics which are part of the final examination in quantum theory at the Ecole Polytechnique at Palaiseau near Paris, France. The aim of the text is to guide the student towards applying quantum mechanics to research problems in fields such as atomic and molecular physics, condensed matter physics, and laser physics. Advanced undergraduates and graduate students will find a rich and challenging source for improving their skills in this field.

  4. A field theoretic generalization of Hajicek and Kuchar's quantization scheme in 3+1 canonical quantum gravity

    International Nuclear Information System (INIS)

    Melas, Evangelos

    2011-01-01

    The 3+1 (canonical) decomposition of all geometries admitting two-dimensional space-like surfaces is exhibited as a generalization of a previous work. A proposal, consisting of a specific re-normalization Assumption and an accompanying Requirement, which has been put forward in the 2+1 case is now generalized to 3+1 dimensions. This enables the canonical quantization of these geometries through a generalization of Kuchar's quantization scheme in the case of infinite degrees of freedom. The resulting Wheeler-deWitt equation is based on a re-normalized manifold parameterized by three smooth scalar functionals. The entire space of solutions to this equation is analytically given, a fact that is entirely new to the present case. This is made possible by exploiting the freedom left by the imposition of the Requirement and contained in the third functional.

  5. Modern integral equation techniques for quantum reactive scattering theory

    International Nuclear Information System (INIS)

    Auerbach, S.M.

    1993-11-01

    Rigorous calculations of cross sections and rate constants for elementary gas phase chemical reactions are performed for comparison with experiment, to ensure that our picture of the chemical reaction is complete. We focus on the H/D+H 2 → H 2 /DH + H reaction, and use the time independent integral equation technique in quantum reactive scattering theory. We examine the sensitivity of H+H 2 state resolved integral cross sections σ v'j',vj (E) for the transitions (v = 0,j = 0) to (v' = 1,j' = 1,3), to the difference between the Liu-Siegbahn-Truhlar-Horowitz (LSTH) and double many body expansion (DMBE) ab initio potential energy surfaces (PES). This sensitivity analysis is performed to determine the origin of a large discrepancy between experimental cross sections with sharply peaked energy dependence and theoretical ones with smooth energy dependence. We find that the LSTH and DMBE PESs give virtually identical cross sections, which lends credence to the theoretical energy dependence

  6. Moving Targets: Constructing Canons, 2013–2014

    OpenAIRE

    Hirsch, BD

    2015-01-01

    This review essay considers early modern dramatic authorship and canons in the context of two recent publications: an anthology of plays -- William Shakespeare and Others: Collaborative Plays (2013), edited by Jonathan Bate and Eric Rasmussen as a companion volume to the RSC Complete Works -- and a monograph study -- Jeremy Lopez's Constructing the Canon of Early Modern Drama (2014).

  7. Genetic algorithms coupled with quantum mechanics for refinement of force fields for RNA simulation: a case study of glycosidic torsions in the canonical ribonucleosides.

    Science.gov (United States)

    Kato, Rodrigo B; Silva, Frederico T; Pappa, Gisele L; Belchior, Jadson C

    2015-01-28

    We report the use of genetic algorithms (GA) as a method to refine force field parameters in order to determine RNA energy. Quantum-mechanical (QM) calculations are carried out for the isolated canonical ribonucleosides (adenosine, guanosine, cytidine and uridine) that are taken as reference data. In this particular study, the dihedral and electrostatic energies are reparametrized in order to test the proposed approach, i.e., GA coupled with QM calculations. Overall, RMSE comparison with recent published results for ribonucleosides energies shows an improvement, on average, of 50%. Finally, the new reparametrized potential energy function is used to determine the spatial structure of RNA (PDB code ) that was not taken into account in the parametrization process. This structure was improved about 82% comparable with previously published results.

  8. Bucharest PhD Training School : Modern Aspects of Quantum Field Theory and Applications

    CERN Document Server

    2015-01-01

    Bucharest 2015 – Modern Aspects of Quantum Field Theory is part of the CERN – SEENET-MTP PhD Training Program, which consists of a number of seminars in theoretical high energy Physics. This is the second seminar organized by this Program. Here are some photos from this event held in Bucharest between 8-14 November 2015. The previous seminar was organized in Belgrade, under the name Belgrade 2015 - Supergravity.

  9. Introduction to the basic concepts of modern physics special relativity, quantum and statistical physics

    CERN Document Server

    Becchi, Carlo Maria

    2016-01-01

    This is the third edition of a well-received textbook on modern physics theory. This book provides an elementary but rigorous and self-contained presentation of the simplest theoretical framework that will meet the needs of undergraduate students. In addition, a number of examples of relevant applications and an appropriate list of solved problems are provided.Apart from a substantial extension of the proposed problems, the new edition provides more detailed discussion on Lorentz transformations and their group properties, a deeper treatment of quantum mechanics in a central potential, and a closer comparison of statistical mechanics in classical and in quantum physics. The first part of the book is devoted to special relativity, with a particular focus on space-time relativity and relativistic kinematics. The second part deals with Schrödinger's formulation of quantum mechanics. The presentation concerns mainly one-dimensional problems, but some three-dimensional examples are discussed in detail. The third...

  10. A unified thermostat scheme for efficient configurational sampling for classical/quantum canonical ensembles via molecular dynamics

    Science.gov (United States)

    Zhang, Zhijun; Liu, Xinzijian; Chen, Zifei; Zheng, Haifeng; Yan, Kangyu; Liu, Jian

    2017-07-01

    We show a unified second-order scheme for constructing simple, robust, and accurate algorithms for typical thermostats for configurational sampling for the canonical ensemble. When Langevin dynamics is used, the scheme leads to the BAOAB algorithm that has been recently investigated. We show that the scheme is also useful for other types of thermostats, such as the Andersen thermostat and Nosé-Hoover chain, regardless of whether the thermostat is deterministic or stochastic. In addition to analytical analysis, two 1-dimensional models and three typical real molecular systems that range from the gas phase, clusters, to the condensed phase are used in numerical examples for demonstration. Accuracy may be increased by an order of magnitude for estimating coordinate-dependent properties in molecular dynamics (when the same time interval is used), irrespective of which type of thermostat is applied. The scheme is especially useful for path integral molecular dynamics because it consistently improves the efficiency for evaluating all thermodynamic properties for any type of thermostat.

  11. The Quantum Mechanics Solver: How to Apply Quantum Theory to Modern Physics, 2nd edition

    International Nuclear Information System (INIS)

    Robbin, J M

    2007-01-01

    he hallmark of a good book of problems is that it allows you to become acquainted with an unfamiliar topic quickly and efficiently. The Quantum Mechanics Solver fits this description admirably. The book contains 27 problems based mainly on recent experimental developments, including neutrino oscillations, tests of Bell's inequality, Bose-Einstein condensates, and laser cooling and trapping of atoms, to name a few. Unlike many collections, in which problems are designed around a particular mathematical method, here each problem is devoted to a small group of phenomena or experiments. Most problems contain experimental data from the literature, and readers are asked to estimate parameters from the data, or compare theory to experiment, or both. Standard techniques (e.g., degenerate perturbation theory, addition of angular momentum, asymptotics of special functions) are introduced only as they are needed. The style is closer to a non-specialist seminar rather than an undergraduate lecture. The physical models are kept simple; the emphasis is on cultivating conceptual and qualitative understanding (although in many of the problems, the simple models fit the data quite well). Some less familiar theoretical techniques are introduced, e.g. a variational method for lower (not upper) bounds on ground-state energies for many-body systems with two-body interactions, which is then used to derive a surprisingly accurate relation between baryon and meson masses. The exposition is succinct but clear; the solutions can be read as worked examples if you don't want to do the problems yourself. Many problems have additional discussion on limitations and extensions of the theory, or further applications outside physics (e.g., the accuracy of GPS positioning in connection with atomic clocks; proton and ion tumor therapies in connection with the Bethe-Bloch formula for charged particles in solids). The problems use mainly non-relativistic quantum mechanics and are organised into three

  12. Introduction to the basic concepts of modern physics special relativity, quantum and statistical physics

    CERN Document Server

    Becchi, Carlo Maria

    2007-01-01

    These notes are designed as a text book for a course on the Modern Physics Theory for undergraduate students. The purpose is providing a rigorous and self-contained presentation of the simplest theoretical framework using elementary mathematical tools. A number of examples of relevant applications and an appropriate list of exercises and answered questions are also given. The first part is devoted to Special Relativity concerning in particular space-time relativity and relativistic kinematics. The second part deals with Schroedinger's formulation of quantum mechanics. The presentation concerns mainly one dimensional problems, in particular tunnel effect, discrete energy levels and band spectra. The third part concerns the application of Gibbs statistical methods to quantum systems and in particular to Bose and Fermi gasses.

  13. Modern

    Directory of Open Access Journals (Sweden)

    A.V. Bagrov

    2014-06-01

    Full Text Available The article gives an overview of the most important problems of modern meteoric astronomy and briefly describes ways and methods of their solutions. Particular attention is paid to the construction and arrangement of meteoric video cameras intended for registration of the meteoric phenomena as the main method of obtaining reliable and objective observational data on the basis of which the solution of the described tasks is possible.

  14. Students' flexible use of ontologies and the value of tentative reasoning: Examples of conceptual understanding in three canonical topics of quantum mechanics

    Science.gov (United States)

    Hoehn, Jessica R.; Finkelstein, Noah D.

    2018-06-01

    As part of a research study on student reasoning in quantum mechanics, we examine students' use of ontologies, or the way students' categorically organize entities they are reasoning about. In analyzing three episodes of focus group discussions with modern physics students, we present evidence of the dynamic nature of ontologies, and refine prior theoretical frameworks for thinking about dynamic ontologies. We find that in a given reasoning episode ontologies can be dynamic in construction (referring to when the reasoner constructs the ontologies) or application (referring to which ontologies are applied in a given reasoning episode). In our data, we see instances of students flexibly switching back and forth between parallel stable structures as well as constructing and negotiating new ontologies in the moment. Methodologically, we use a collective conceptual blending framework as an analytic tool for capturing student reasoning in groups. In this research, we value the messiness of student reasoning and argue that reasoning in a tentative manner can be productive for students learning quantum mechanics. As such, we shift away from a binary view of student learning which sees students as either having the correct answer or not.

  15. Lectures on quantum mechanics

    CERN Document Server

    Weinberg, Steven

    2013-01-01

    Nobel Laureate Steven Weinberg combines his exceptional physical insight with his gift for clear exposition to provide a concise introduction to modern quantum mechanics. Ideally suited to a one-year graduate course, this textbook is also a useful reference for researchers. Readers are introduced to the subject through a review of the history of quantum mechanics and an account of classic solutions of the Schrödinger equation, before quantum mechanics is developed in a modern Hilbert space approach. The textbook covers many topics not often found in other books on the subject, including alternatives to the Copenhagen interpretation, Bloch waves and band structure, the Wigner–Eckart theorem, magic numbers, isospin symmetry, the Dirac theory of constrained canonical systems, general scattering theory, the optical theorem, the 'in-in' formalism, the Berry phase, Landau levels, entanglement and quantum computing. Problems are included at the ends of chapters, with solutions available for instructors at www.cam...

  16. Fan fiction, early Greece, and the historicity of canon

    Directory of Open Access Journals (Sweden)

    Ahuvia Kahane

    2016-03-01

    Full Text Available The historicity of canon is considered with an emphasis on contemporary fan fiction and early Greek oral epic traditions. The essay explores the idea of canon by highlighting historical variance, exposing wider conceptual isomorphisms, and formulating a revised notion of canonicity. Based on an analysis of canon in early Greece, the discussion moves away from the idea of canon as a set of valued works and toward canon as a practice of containment in response to inherent states of surplus. This view of canon is applied to the practice of fan fiction, reestablishing the idea of canonicity in fluid production environments within a revised, historically specific understanding in early oral traditions on the one hand and in digital cultures and fan fiction on the other. Several examples of early epigraphic Greek texts embedded in oral environments are analyzed and assessed in terms of their implications for an understanding of fan fiction and its modern contexts.

  17. Introduction to modern theoretical physics. Volume II. Quantum theory and statistical physics

    International Nuclear Information System (INIS)

    Harris, E.G.

    1975-01-01

    The topics discussed include the history and principles, some solvable problems, and symmetry in quantum mechanics, interference phenomena, approximation methods, some applications of nonrelativistic quantum mechanics, relativistic wave equations, quantum theory of radiation, second quantization, elementary particles and their interactions, thermodynamics, equilibrium statistical mechanics and its applications, the kinetic theory of gases, and collective phenomena

  18. The Emergence of a Root Metaphor in Modern Physics: Max Planck's "Quantum" Metaphor.

    Science.gov (United States)

    Johnson-Sheehan, Richard D.

    1997-01-01

    Uses metaphorical analysis to determine whether or not Max Planck invented the quantum postulate. Demonstrates how metaphorical analysis can be used to analyze the rhetoric of revolutionary texts in science. Concludes that, in his original 1900 quantum paper, Planck considered the quantum postulate to be important, but not revolutionary. (PA)

  19. Covariant canonical quantization of fields and Bohmian mechanics

    International Nuclear Information System (INIS)

    Nikolic, H.

    2005-01-01

    We propose a manifestly covariant canonical method of field quantization based on the classical De Donder-Weyl covariant canonical formulation of field theory. Owing to covariance, the space and time arguments of fields are treated on an equal footing. To achieve both covariance and consistency with standard non-covariant canonical quantization of fields in Minkowski spacetime, it is necessary to adopt a covariant Bohmian formulation of quantum field theory. A preferred foliation of spacetime emerges dynamically owing to a purely quantum effect. The application to a simple time-reparametrization invariant system and quantum gravity is discussed and compared with the conventional non-covariant Wheeler-DeWitt approach. (orig.)

  20. Quantum mechanics. A modern and concise introductory course. 2. rev. ed.

    International Nuclear Information System (INIS)

    Bes, D.R.

    2007-01-01

    Starting from basic principles, the book systematically covers both Heisenberg and Schroedinger realizations of quantum mechanics (in this order). The material traditionally presented in quantum textbooks is illustrated with applications which are (or will become) cornerstones of future technologies. The emphasis in the matrix formulation focus the attention on the spin, the most important quantum observable, and paves the way to chapters on quantum information (including crytography, teleportation and computation), on recent tests of quantum physics and on decoherence. Additions and changes found in the second edition include; a more friendly presentation to Hilbert spaces; more practical applications e.g. scanning tunneling microscope (potential barrier); quantum dots (single-particle states in semiconductors); lasers and masers (induced emission); real experiments that have recently provided a qualitative change in the foundations of quantum physics; and an outline of the density matrix formalism as applied to a simple model of decoherence. (orig.)

  1. Three dimensional canonical transformations

    International Nuclear Information System (INIS)

    Tegmen, A.

    2010-01-01

    A generic construction of canonical transformations is given in three-dimensional phase spaces on which Nambu bracket is imposed. First, the canonical transformations are defined as based on cannonade transformations. Second, it is shown that determination of the generating functions and the transformation itself for given generating function is possible by solving correspondent Pfaffian differential equations. Generating functions of type are introduced and all of them are listed. Infinitesimal canonical transformations are also discussed as the complementary subject. Finally, it is shown that decomposition of canonical transformations is also possible in three-dimensional phase spaces as in the usual two-dimensional ones.

  2. Multiphoton quantum optics and quantum state engineering

    Energy Technology Data Exchange (ETDEWEB)

    Dell' Anno, Fabio [Dipartimento di Fisica ' E. R. Caianiello' , Universita degli Studi di Salerno, CNISM and CNR-INFM Coherentia, and INFN Sezione di Napoli, Gruppo Collegato di Salerno, Via S. Allende, I-84081 Baronissi (Saudi Arabia) (Italy)]. E-mail: dellanno@sa.infn.it; De Siena, Silvio [Dipartimento di Fisica ' E. R. Caianiello' , Universita degli Studi di Salerno, CNISM and CNR-INFM Coherentia, and INFN Sezione di Napoli, Gruppo Collegato di Salerno, Via S. Allende, I-84081 Baronissi (SA) (Italy)]. E-mail: desiena@sa.infn.it; Illuminati, Fabrizio [Dipartimento di Fisica ' E. R. Caianiello' , Universita degli Studi di Salerno, CNISM and CNR-INFM Coherentia, and INFN Sezione di Napoli, Gruppo Collegato di Salerno, Via S. Allende, I-84081 Baronissi (SA) (Italy)]. E-mail: illuminati@sa.infn.it

    2006-05-15

    We present a review of theoretical and experimental aspects of multiphoton quantum optics. Multiphoton processes occur and are important for many aspects of matter-radiation interactions that include the efficient ionization of atoms and molecules, and, more generally, atomic transition mechanisms; system-environment couplings and dissipative quantum dynamics; laser physics, optical parametric processes, and interferometry. A single review cannot account for all aspects of such an enormously vast subject. Here we choose to concentrate our attention on parametric processes in nonlinear media, with special emphasis on the engineering of nonclassical states of photons and atoms that are relevant for the conceptual investigations as well as for the practical applications of forefront aspects of modern quantum mechanics. We present a detailed analysis of the methods and techniques for the production of genuinely quantum multiphoton processes in nonlinear media, and the corresponding models of multiphoton effective interactions. We review existing proposals for the classification, engineering, and manipulation of nonclassical states, including Fock states, macroscopic superposition states, and multiphoton generalized coherent states. We introduce and discuss the structure of canonical multiphoton quantum optics and the associated one- and two-mode canonical multiphoton squeezed states. This framework provides a consistent multiphoton generalization of two-photon quantum optics and a consistent Hamiltonian description of multiphoton processes associated to higher-order nonlinearities. Finally, we discuss very recent advances that by combining linear and nonlinear optical devices allow to realize multiphoton entangled states of the electromagnetic field, either in discrete or in continuous variables, that are relevant for applications to efficient quantum computation, quantum teleportation, and related problems in quantum communication and information.

  3. Multiphoton quantum optics and quantum state engineering

    International Nuclear Information System (INIS)

    Dell'Anno, Fabio; De Siena, Silvio; Illuminati, Fabrizio

    2006-01-01

    We present a review of theoretical and experimental aspects of multiphoton quantum optics. Multiphoton processes occur and are important for many aspects of matter-radiation interactions that include the efficient ionization of atoms and molecules, and, more generally, atomic transition mechanisms; system-environment couplings and dissipative quantum dynamics; laser physics, optical parametric processes, and interferometry. A single review cannot account for all aspects of such an enormously vast subject. Here we choose to concentrate our attention on parametric processes in nonlinear media, with special emphasis on the engineering of nonclassical states of photons and atoms that are relevant for the conceptual investigations as well as for the practical applications of forefront aspects of modern quantum mechanics. We present a detailed analysis of the methods and techniques for the production of genuinely quantum multiphoton processes in nonlinear media, and the corresponding models of multiphoton effective interactions. We review existing proposals for the classification, engineering, and manipulation of nonclassical states, including Fock states, macroscopic superposition states, and multiphoton generalized coherent states. We introduce and discuss the structure of canonical multiphoton quantum optics and the associated one- and two-mode canonical multiphoton squeezed states. This framework provides a consistent multiphoton generalization of two-photon quantum optics and a consistent Hamiltonian description of multiphoton processes associated to higher-order nonlinearities. Finally, we discuss very recent advances that by combining linear and nonlinear optical devices allow to realize multiphoton entangled states of the electromagnetic field, either in discrete or in continuous variables, that are relevant for applications to efficient quantum computation, quantum teleportation, and related problems in quantum communication and information

  4. Probing the small distance structure of canonical

    NARCIS (Netherlands)

    t Hooft, G.

    2010-01-01

    In canonical quantum gravity, the formal functional integral includes an integration over the local conformal factor, and we propose to perform the functional integral over this factor before doing any of the other functional integrals. By construction, the resulting effective theory would be

  5. El canon literario peruano

    Directory of Open Access Journals (Sweden)

    Carlos García-Bedoya Maguiña

    2011-05-01

    Full Text Available Canon es un concepto clave en la historia literaria. En el presente artículo,se revisa la evolución histórica del canon literario peruano. Es solo con la llamada República Aristocrática, en las primeras décadas del siglo XX, que cabe hablar en el caso peruano de la formación de un auténtico canon nacional. El autor denomina a esta primera versión del canon literario peruano como canon oligárquico y destaca la importancia de la obra de Riva Agüero y de Ventura García Calderón en su configuración. Es solo más tarde, desde los años 20 y de modo definitivo desde los años 50, que puede hablarse de la emergencia de un nuevo canon literarioal que el autor propone determinar canon posoligárquico.

  6. Canonical Information Analysis

    DEFF Research Database (Denmark)

    Vestergaard, Jacob Schack; Nielsen, Allan Aasbjerg

    2015-01-01

    is replaced by the information theoretical, entropy based measure mutual information, which is a much more general measure of association. We make canonical information analysis feasible for large sample problems, including for example multispectral images, due to the use of a fast kernel density estimator......Canonical correlation analysis is an established multivariate statistical method in which correlation between linear combinations of multivariate sets of variables is maximized. In canonical information analysis introduced here, linear correlation as a measure of association between variables...... for entropy estimation. Canonical information analysis is applied successfully to (1) simple simulated data to illustrate the basic idea and evaluate performance, (2) fusion of weather radar and optical geostationary satellite data in a situation with heavy precipitation, and (3) change detection in optical...

  7. Shor's factoring algorithm and modern cryptography. An illustration of the capabilities inherent in quantum computers

    Science.gov (United States)

    Gerjuoy, Edward

    2005-06-01

    The security of messages encoded via the widely used RSA public key encryption system rests on the enormous computational effort required to find the prime factors of a large number N using classical (conventional) computers. In 1994 Peter Shor showed that for sufficiently large N, a quantum computer could perform the factoring with much less computational effort. This paper endeavors to explain, in a fashion comprehensible to the nonexpert, the RSA encryption protocol; the various quantum computer manipulations constituting the Shor algorithm; how the Shor algorithm performs the factoring; and the precise sense in which a quantum computer employing Shor's algorithm can be said to accomplish the factoring of very large numbers with less computational effort than a classical computer. It is made apparent that factoring N generally requires many successive runs of the algorithm. Our analysis reveals that the probability of achieving a successful factorization on a single run is about twice as large as commonly quoted in the literature.

  8. Classifying Linear Canonical Relations

    OpenAIRE

    Lorand, Jonathan

    2015-01-01

    In this Master's thesis, we consider the problem of classifying, up to conjugation by linear symplectomorphisms, linear canonical relations (lagrangian correspondences) from a finite-dimensional symplectic vector space to itself. We give an elementary introduction to the theory of linear canonical relations and present partial results toward the classification problem. This exposition should be accessible to undergraduate students with a basic familiarity with linear algebra.

  9. Quantum non-locality and relativity metaphysical intimations of modern physics

    CERN Document Server

    Maudlin, Tim

    2011-01-01

    The third edition of Quantum Non-Locality and Relativity has been carefully updated to reflect significant developments, including a new chapter covering important recent work in the foundations of physics. A new edition of the premier philosophical study of Bell's Theorem and its implication for the relativistic account of space and timeDiscusses Roderich Tumiulka's explicit, relativistic theory that can reproduce the quantum mechanical violation of Bell's inequality. Discusses the "Free Will Theorem" of John Conway and Simon KochenIntroduces philosophers to the relevant physics and demonstra

  10. Obtention of the pressed states by canonic transformations in the quantum space phase; Obtencion de estados comprimidos mediante transformaciones canonicas en el espacio fase cuantico

    Energy Technology Data Exchange (ETDEWEB)

    Zuniga Segundo, A. [Instituto Politecnico Nacional, Mexico, D.F. (Mexico)

    2001-10-01

    In this work we introduce squeezed states with real and complex squeezing parameters directly obtained in the coherent-representation of the harmonic oscillator in quantum phase space. By means of the Fourier transform, we recover the usual coordinate states and compare these states with those obtained by another method in the coordinate representation. In addition we also describe numerically its time evolution in quantum phase space and the variances Q and P. [Spanish] En este trabajo presentamos estados comprimidos con parametros de compresion reales y complejos, obtenidos directamente en la representacion de estado coherente del oscilador armonico en el espacio fase cuantico. Por medio de una transformada de Fourier recuperamos los estados en la representacion de coordenadas y los comparamos con aquellos obtenidos por otro metodo. Ademas describimos numericamente sus evoluciones temporales en el espacio fase cuantico y calculamos las varianzas de Q y P.

  11. Introductive backgrounds of modern quantum mathematics with application to nonlinear dynamical systems

    International Nuclear Information System (INIS)

    Prykarpatsky, A.K.; Bogoliubov, N.N. Jr.; Golenia, J.; Taneri, U.

    2007-09-01

    Introductive backgrounds of a new mathematical physics discipline - Quantum Mathematics - are discussed and analyzed both from historical and analytical points of view. The magic properties of the second quantization method, invented by V. Fock in 1934, are demonstrated, and an impressive application to the nonlinear dynamical systems theory is considered. (author)

  12. Relations between canonical and non-canonical inflation

    Energy Technology Data Exchange (ETDEWEB)

    Gwyn, Rhiannon [Max-Planck-Institut fuer Gravitationsphysik (Albert-Einstein-Institut), Potsdam (Germany); Rummel, Markus [Hamburg Univ. (Germany). 2. Inst. fuer Theoretische Physik; Westphal, Alexander [Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany). Theory Group

    2012-12-15

    We look for potential observational degeneracies between canonical and non-canonical models of inflation of a single field {phi}. Non-canonical inflationary models are characterized by higher than linear powers of the standard kinetic term X in the effective Lagrangian p(X,{phi}) and arise for instance in the context of the Dirac-Born-Infeld (DBI) action in string theory. An on-shell transformation is introduced that transforms non-canonical inflationary theories to theories with a canonical kinetic term. The 2-point function observables of the original non-canonical theory and its canonical transform are found to match in the case of DBI inflation.

  13. Structural studies of crystals of organic and organoelement compounds using modern quantum chemical calculations within the framework of the density functional theory

    International Nuclear Information System (INIS)

    Korlyukov, Alexander A; Antipin, Mikhail Yu

    2012-01-01

    The review generalizes the results of structural studies of crystals of organic and organometallic compounds by modern quantum chemical calculations within the framework of the density functional theory reported in the last decade. Features of the software for such calculations are discussed. Examples of the use of quantum chemical calculations for the studies of the electronic structure, spectroscopic and other physicochemical properties of molecular crystals are presented. The bibliography includes 223 references.

  14. Path integrals for arbitrary canonical transformations

    International Nuclear Information System (INIS)

    Oliveira, L.A.R. de.

    1980-01-01

    Some aspects of the path integral formulation of quantum mechanics are studied. This formalism is generalized to arbitrary canonical transformations, by means of an association between path integral probalility amplitudes and classical generators of transformations, analogous to the usual Hamiltonian time development phase space expression. Such association turns out to be equivalent to the Weyl quantization rule, and it is also shown that this formalism furnishes a path integral representation for a Lie algebra of a given set of classical generators. Some physical considerations about the path integral quantization procedure and about the relationship between classical and quantum dynamical structures are also discussed. (Author) [pt

  15. Introduction to modern methods of quantum many-body theory and their applications

    CERN Document Server

    Fantoni, Stefano; Krotscheck, Eckhard S

    2002-01-01

    This invaluable book contains pedagogical articles on the dominant nonstochastic methods of microscopic many-body theories - the methods of density functional theory, coupled cluster theory, and correlated basis functions - in their widest sense. Other articles introduce students to applications of these methods in front-line research, such as Bose-Einstein condensates, the nuclear many-body problem, and the dynamics of quantum liquids. These keynote articles are supplemented by experimental reviews on intimately connected topics that are of current relevance. The book addresses the striking l

  16. Canonical formulation of general-relativistic theories

    International Nuclear Information System (INIS)

    Bergmann, P.G.

    1987-01-01

    With the birth of quantum field theory in the late twenties physicists decided that nature could not be half classical and half quantum, and that the gravitational field ought to be quanticized, just as the electromagnetic field had been. One could accept the group of differomorphisms as a fundamental characteristic of general relativity (and indeed of all general-relativistic theories), and proceed to construct a quantum field-theory that was adapted to that group. Quantization would be attempted by way of a Hamiltonian formulation of the (classical) theory, and quantum commutation relations be patterned after the Poisson brackets arising in that formulation. This program is usually called the canonical quantization program, whereas the weak-field approach is known as covariant quantization. The first steps, conceived entirely within the framework of the classical theory, turned out to be beset with technical and conceptual difficulties, which today are essentially resolved. In this paper the author traces out these initial steps

  17. Canonizing certain Borel equivalences for Silver forcing

    Czech Academy of Sciences Publication Activity Database

    Doucha, Michal

    2012-01-01

    Roč. 159, č. 13 (2012), s. 2973-2979 ISSN 0166-8641. [Prague Symposium on General Topology and its Relations to Modern Analysis and Algebra /11./. Prague, 07.08.2011-12.08.2011] Institutional research plan: CEZ:AV0Z10190503 Keywords : Borel equivalence relations * silver ideal * canonical Ramsey theorem Subject RIV: BA - General Mathematics Impact factor: 0.562, year: 2012 http://www.sciencedirect.com/science/article/pii/S0166864112002180#

  18. Unified correspondence and canonicity

    NARCIS (Netherlands)

    Zhao, Z.

    2018-01-01

    Correspondence theory originally arises as the study of the relation between modal formulas and first-order formulas interpreted over Kripke frames. We say that a modal formula and a first-order formula correspond to each other if they are valid on the same class of Kripke frames. Canonicity theory

  19. Canonical variate regression.

    Science.gov (United States)

    Luo, Chongliang; Liu, Jin; Dey, Dipak K; Chen, Kun

    2016-07-01

    In many fields, multi-view datasets, measuring multiple distinct but interrelated sets of characteristics on the same set of subjects, together with data on certain outcomes or phenotypes, are routinely collected. The objective in such a problem is often two-fold: both to explore the association structures of multiple sets of measurements and to develop a parsimonious model for predicting the future outcomes. We study a unified canonical variate regression framework to tackle the two problems simultaneously. The proposed criterion integrates multiple canonical correlation analysis with predictive modeling, balancing between the association strength of the canonical variates and their joint predictive power on the outcomes. Moreover, the proposed criterion seeks multiple sets of canonical variates simultaneously to enable the examination of their joint effects on the outcomes, and is able to handle multivariate and non-Gaussian outcomes. An efficient algorithm based on variable splitting and Lagrangian multipliers is proposed. Simulation studies show the superior performance of the proposed approach. We demonstrate the effectiveness of the proposed approach in an [Formula: see text] intercross mice study and an alcohol dependence study. © The Author 2016. Published by Oxford University Press. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  20. Deviations from Wick's theorem in the canonical ensemble

    Science.gov (United States)

    Schönhammer, K.

    2017-07-01

    Wick's theorem for the expectation values of products of field operators for a system of noninteracting fermions or bosons plays an important role in the perturbative approach to the quantum many-body problem. A finite-temperature version holds in the framework of the grand canonical ensemble, but not for the canonical ensemble appropriate for systems with fixed particle number such as ultracold quantum gases in optical lattices. Here we present formulas for expectation values of products of field operators in the canonical ensemble using a method in the spirit of Gaudin's proof of Wick's theorem for the grand canonical case. The deviations from Wick's theorem are examined quantitatively for two simple models of noninteracting fermions.

  1. Canonical transformations method in the potential scattering problem

    International Nuclear Information System (INIS)

    Pavlenko, Yu.G.

    1984-01-01

    Canonical formalism of the first order is used in the present paper to solve the problem of scattering and other problems of quantum mechanics. The theory of canonical transformations (CT) being the basis of hamiltonian approach permits to develop several methods of integration being beyond the scope of the standard theory of perturbations. In this case it is essential for numerical counting that the theory permits to obtain algorithm for plotting highest approximations

  2. Perspectives in Quantum Physics: Epistemological, Ontological and Pedagogical--An Investigation into Student and Expert Perspectives on the Physical Interpretation of Quantum Mechanics, with Implications for Modern Physics Instruction

    Science.gov (United States)

    Baily, Charles Raymond

    2011-01-01

    A common learning goal for modern physics instructors is for students to recognize a difference between the experimental uncertainty of classical physics and the fundamental uncertainty of quantum mechanics. Our studies suggest this notoriously difficult task may be frustrated by the intuitively "realist" perspectives of introductory…

  3. The canonical and grand canonical models for nuclear ...

    Indian Academy of Sciences (India)

    Many observables seen in intermediate energy heavy-ion collisions can be explained on the basis of statistical equilibrium. Calculations based on statistical equilibrium can be implemented in microcanonical ensemble, canonical ensemble or grand canonical ensemble. This paper deals with calculations with canonical ...

  4. Intramolecular CH···O hydrogen bonds in the AI and BI DNA-like conformers of canonical nucleosides and their Watson-Crick pairs. Quantum chemical and AIM analysis.

    Science.gov (United States)

    Yurenko, Yevgen P; Zhurakivsky, Roman O; Samijlenko, Svitlana P; Hovorun, Dmytro M

    2011-08-01

    The aim of this work is to cast some light on the H-bonds in double-stranded DNA in its AI and BI forms. For this purpose, we have performed the MP2 and DFT quantum chemical calculations of the canonical nucleoside conformers, relative to the AI and BI DNA forms, and their Watson-Crick pairs, which were regarded as the simplest models of the double-stranded DNA. Based on the atoms-in-molecules analysis (AIM), five types of the CH···O hydrogen bonds, involving bases and sugar, were detected numerically from 1 to 3 per a conformer: C2'H···O5', C1'H···O2, C6H···O5', C8H···O5', and C6H···O4'. The energy values of H-bonds occupy the range of 2.3-5.6 kcal/mol, surely exceeding the kT value (0.62 kcal/mol). The nucleoside CH···O hydrogen bonds appeared to "survive" turns of bases against the sugar, sometimes in rather large ranges of the angle values, pertinent to certain conformations, which points out to the source of the DNA lability, necessary for the conformational adaptation in processes of its functioning. The calculation of the interactions in the dA·T nucleoside pair gives evidence, that additionally to the N6H···O4 and N1···N3H canonical H-bonds, between the bases adenine and thymine the third one (C2H···O2) is formed, which, though being rather weak (about 1 kcal/mol), satisfies the AIM criteria of H-bonding and may be classified as a true H-bond. The total energy of all the CH···O nontraditional intramolecular H-bonds in DNA nucleoside pairs appeared to be commensurable with the energy of H-bonds between the bases in Watson-Crick pairs, which implies their possible important role in the DNA shaping.

  5. Quaternion Linear Canonical Transform Application

    OpenAIRE

    Bahri, Mawardi

    2015-01-01

    Quaternion linear canonical transform (QLCT) is a generalization of the classical linear canonical transfom (LCT) using quaternion algebra. The focus of this paper is to introduce an application of the QLCT to study of generalized swept-frequency filter

  6. Canonical transformations and generating functionals

    NARCIS (Netherlands)

    Broer, L.J.F.; Kobussen, J.A.

    1972-01-01

    It is shown that canonical transformations for field variables in hamiltonian partial differential equations can be obtained from generating functionals in the same way as classical canonical transformations from generating functions. A simple proof of the relation between infinitesimal invariant

  7. Canonical transformations of Kepler trajectories

    International Nuclear Information System (INIS)

    Mostowski, Jan

    2010-01-01

    In this paper, canonical transformations generated by constants of motion in the case of the Kepler problem are discussed. It is shown that canonical transformations generated by angular momentum are rotations of the trajectory. Particular attention is paid to canonical transformations generated by the Runge-Lenz vector. It is shown that these transformations change the eccentricity of the orbit. A method of obtaining elliptic trajectories from the circular ones with the help of canonical trajectories is discussed.

  8. Contextuality in canonical systems of random variables

    Science.gov (United States)

    Dzhafarov, Ehtibar N.; Cervantes, Víctor H.; Kujala, Janne V.

    2017-10-01

    Random variables representing measurements, broadly understood to include any responses to any inputs, form a system in which each of them is uniquely identified by its content (that which it measures) and its context (the conditions under which it is recorded). Two random variables are jointly distributed if and only if they share a context. In a canonical representation of a system, all random variables are binary, and every content-sharing pair of random variables has a unique maximal coupling (the joint distribution imposed on them so that they coincide with maximal possible probability). The system is contextual if these maximal couplings are incompatible with the joint distributions of the context-sharing random variables. We propose to represent any system of measurements in a canonical form and to consider the system contextual if and only if its canonical representation is contextual. As an illustration, we establish a criterion for contextuality of the canonical system consisting of all dichotomizations of a single pair of content-sharing categorical random variables. This article is part of the themed issue `Second quantum revolution: foundational questions'.

  9. Canonical group quantization and boundary conditions

    International Nuclear Information System (INIS)

    Jung, Florian

    2012-01-01

    In the present thesis, we study quantization of classical systems with non-trivial phase spaces using the group-theoretical quantization technique proposed by Isham. Our main goal is a better understanding of global and topological aspects of quantum theory. In practice, the group-theoretical approach enables direct quantization of systems subject to constraints and boundary conditions in a natural and physically transparent manner -- cases for which the canonical quantization method of Dirac fails. First, we provide a clarification of the quantization formalism. In contrast to prior treatments, we introduce a sharp distinction between the two group structures that are involved and explain their physical meaning. The benefit is a consistent and conceptually much clearer construction of the Canonical Group. In particular, we shed light upon the 'pathological' case for which the Canonical Group must be defined via a central Lie algebra extension and emphasise the role of the central extension in general. In addition, we study direct quantization of a particle restricted to a half-line with 'hard wall' boundary condition. Despite the apparent simplicity of this example, we show that a naive quantization attempt based on the cotangent bundle over the half-line as classical phase space leads to an incomplete quantum theory; the reflection which is a characteristic aspect of the 'hard wall' is not reproduced. Instead, we propose a different phase space that realises the necessary boundary condition as a topological feature and demonstrate that quantization yields a suitable quantum theory for the half-line model. The insights gained in the present special case improve our understanding of the relation between classical and quantum theory and illustrate how contact interactions may be incorporated.

  10. Canonical group quantization and boundary conditions

    Energy Technology Data Exchange (ETDEWEB)

    Jung, Florian

    2012-07-16

    In the present thesis, we study quantization of classical systems with non-trivial phase spaces using the group-theoretical quantization technique proposed by Isham. Our main goal is a better understanding of global and topological aspects of quantum theory. In practice, the group-theoretical approach enables direct quantization of systems subject to constraints and boundary conditions in a natural and physically transparent manner -- cases for which the canonical quantization method of Dirac fails. First, we provide a clarification of the quantization formalism. In contrast to prior treatments, we introduce a sharp distinction between the two group structures that are involved and explain their physical meaning. The benefit is a consistent and conceptually much clearer construction of the Canonical Group. In particular, we shed light upon the 'pathological' case for which the Canonical Group must be defined via a central Lie algebra extension and emphasise the role of the central extension in general. In addition, we study direct quantization of a particle restricted to a half-line with 'hard wall' boundary condition. Despite the apparent simplicity of this example, we show that a naive quantization attempt based on the cotangent bundle over the half-line as classical phase space leads to an incomplete quantum theory; the reflection which is a characteristic aspect of the 'hard wall' is not reproduced. Instead, we propose a different phase space that realises the necessary boundary condition as a topological feature and demonstrate that quantization yields a suitable quantum theory for the half-line model. The insights gained in the present special case improve our understanding of the relation between classical and quantum theory and illustrate how contact interactions may be incorporated.

  11. Whose Canon? Culturalization versus Democratization

    Directory of Open Access Journals (Sweden)

    Erling Bjurström

    2012-06-01

    Full Text Available Current accounts – and particularly the critique – of canon formation are primarily based on some form of identity politics. In the 20th century a representational model of social identities replaced cultivation as the primary means to democratize the canons of the fine arts. In a parallel development, the discourse on canons has shifted its focus from processes of inclusion to those of exclusion. This shift corresponds, on the one hand, to the construction of so-called alternative canons or counter-canons, and, on the other hand, to attempts to restore the authority of canons considered to be in a state of crisis or decaying. Regardless of the democratic stance of these efforts, the construction of alternatives or the reestablishment of decaying canons does not seem to achieve their aims, since they break with the explicit and implicit rules of canon formation. Politically motivated attempts to revise or restore a specific canon make the workings of canon formation too visible, transparent and calculated, thereby breaking the spell of its imaginary character. Retracing the history of the canonization of the fine arts reveals that it was originally tied to the disembedding of artists and artworks from social and worldly affairs, whereas debates about canons of the fine arts since the end of the 20th century are heavily dependent on their social, cultural and historical reembedding. The latter has the character of disenchantment, but has also fettered the canon debate in notions of “our” versus “their” culture. However, by emphasizing the dedifferentiation of contemporary processes of culturalization, the advancing canonization of popular culture seems to be able to break with identity politics that foster notions of “our” culture in the present thinking on canons, and push it in a more transgressive, syncretic or hybrid direction.

  12. Quantum mechanics with quantum time

    International Nuclear Information System (INIS)

    Kapuscik, E.

    1984-01-01

    Using a non-canonical Lie structure of classical mechanics a new algebra of quantum mechanical observables is constructed. The new algebra, in addition to the notion of classical time, makes it possible to introduce the notion of quantum time. A new type of uncertainty relation is derived. (author)

  13. Generalized Canonical Time Warping.

    Science.gov (United States)

    Zhou, Feng; De la Torre, Fernando

    2016-02-01

    Temporal alignment of human motion has been of recent interest due to its applications in animation, tele-rehabilitation and activity recognition. This paper presents generalized canonical time warping (GCTW), an extension of dynamic time warping (DTW) and canonical correlation analysis (CCA) for temporally aligning multi-modal sequences from multiple subjects performing similar activities. GCTW extends previous work on DTW and CCA in several ways: (1) it combines CCA with DTW to align multi-modal data (e.g., video and motion capture data); (2) it extends DTW by using a linear combination of monotonic functions to represent the warping path, providing a more flexible temporal warp. Unlike exact DTW, which has quadratic complexity, we propose a linear time algorithm to minimize GCTW. (3) GCTW allows simultaneous alignment of multiple sequences. Experimental results on aligning multi-modal data, facial expressions, motion capture data and video illustrate the benefits of GCTW. The code is available at http://humansensing.cs.cmu.edu/ctw.

  14. Application of Canonical Effective Methods to Background-Independent Theories

    Science.gov (United States)

    Buyukcam, Umut

    Effective formalisms play an important role in analyzing phenomena above some given length scale when complete theories are not accessible. In diverse exotic but physically important cases, the usual path-integral techniques used in a standard Quantum Field Theory approach seldom serve as adequate tools. This thesis exposes a new effective method for quantum systems, called the Canonical Effective Method, which owns particularly wide applicability in backgroundindependent theories as in the case of gravitational phenomena. The central purpose of this work is to employ these techniques to obtain semi-classical dynamics from canonical quantum gravity theories. Application to non-associative quantum mechanics is developed and testable results are obtained. Types of non-associative algebras relevant for magnetic-monopole systems are discussed. Possible modifications of hypersurface deformation algebra and the emergence of effective space-times are presented. iii.

  15. Canonically conjugate pairs and phase operators

    International Nuclear Information System (INIS)

    Schoenhammer, K.

    2002-01-01

    For quantum mechanics on a lattice the position ('particle number') operator and the quasimomentum ('phase') operator obey canonical commutation relations (CCRs) only on a dense set of the Hilbert space. We compare exact numerical results for a particle in a linear and a quadratic potential on the lattice with the expectations, when the CCRs are assumed to be strictly obeyed. Only for sufficiently smooth eigenfunctions does this lead to reasonable results. In the long time limit the use of the CCRs can lead to a qualitatively wrong dynamics even if the initial state is in the dense set

  16. Canonical transformations and hamiltonian path integrals

    International Nuclear Information System (INIS)

    Prokhorov, L.V.

    1982-01-01

    Behaviour of the Hamiltonian path integrals under canonical transformations produced by a generator, is investigated. An exact form is determined for the kernel of the unitary operator realizing the corresponding quantum transformation. Equivalence rules are found (the Hamiltonian formalism, one-dimensional case) enabling one to exclude non-standard terms from the action. It is shown that the Hamiltonian path integral changes its form under cononical transformations: in the transformed expression besides the classical Hamiltonian function there appear some non-classical terms

  17. Is Quantum Gravity a Super-Quantum Theory?

    OpenAIRE

    Chang, Lay Nam; Lewis, Zachary; Minic, Djordje; Takeuchi, Tatsu

    2013-01-01

    We argue that quantum gravity should be a super-quantum theory, that is, a theory whose non-local correlations are stronger than those of canonical quantum theory. As a super-quantum theory, quantum gravity should display distinct experimentally observable super-correlations of entangled stringy states.

  18. Groups of automorphisms of the canonical commutation and anticommutation relations

    International Nuclear Information System (INIS)

    Grosse, H.; Pittner, L.

    1987-01-01

    Observables of supersymmetric quantum mechanics are coded by taking the antisymmetric tensor product with anticommuting parameters. Next we define superunitary transformations, which mix bosonic and fermionic degrees of freedom, in order to construct automorphisms of the canonical (anti-) commutation relations. Conversely, every automorphism of the C(A)CR is implemented by an essentially unique superunitary transformation. 12 refs. (Author)

  19. IUS CONNUBII: Canonical Dimension

    Directory of Open Access Journals (Sweden)

    Silma Mendes Berti

    2018-03-01

    Full Text Available anon Law, in regulating under Can.1058 the "ius connubii", lays down that: "All those who are not prohibited from doing so by law may contract matrimony." This disposition, although apparently simple, has a wide and deep range of implications, questionings and possibilities for investigation, especially as it involves an extremely delicate relationship. A perfect combination of law and sacrament, the "ius connubii", in its close relationship with the constitution of the family, which is the sanctuary of Love, is an important problem, which faces the legislator, both in the legislation of the State, specifically in Civil Law, and in that of the Church. As the general principle of the canonical matrimonial system, "ius connubii' is the source of interpretation of all rules concerning matrimony, especially when it comes to the distinction between sacramental reality and liturgical ceremony. This is the fact, which is the basis of our reflections.

  20. Quantum group gauge theory on quantum spaces

    International Nuclear Information System (INIS)

    Brzezinski, T.; Majid, S.

    1993-01-01

    We construct quantum group-valued canonical connections on quantum homogeneous spaces, including a q-deformed Dirac monopole on the quantum sphere of Podles quantum differential coming from the 3-D calculus of Woronowicz on SU q (2). The construction is presented within the setting of a general theory of quantum principal bundles with quantum group (Hopf algebra) fiber, associated quantum vector bundles and connection one-forms. Both the base space (spacetime) and the total space are non-commutative algebras (quantum spaces). (orig.)

  1. The Meridians of Reference of Indian Astronomical Canons

    Science.gov (United States)

    Mercier, R.

    The canons of Sanskrit astronomy depend on mean motions which are normally postulated to refer to the central meridian of Ujjain. The present work is a statistical analysis of these mean motions designed to discover the optimum position of the meridian, by comparison with modern mean motions. This follows earlier work done by Billard in determining the optimum year.

  2. The Canonical Alfred Hitchcock

    Science.gov (United States)

    Lewis, Michael J.

    2010-01-01

    Alfred Hitchcock is a major figure of popular culture. He was one of the founding fathers of the cinematic art and, together with Eisenstein and Murnau, helped define its visual language. So fruitful was he that a single film could spawn an entire genre, as "Psycho" helped create the modern horror film and "North by Northwest" the style and tone…

  3. New constraints for canonical general relativity

    International Nuclear Information System (INIS)

    Reisenberger, M.P.

    1995-01-01

    Ashtekar's canonical theory of classical complex Euclidean GR (no Lorentzian reality conditions) is found to be invariant under the full algebra of infinitesimal 4-diffeomorphisms, but non-invariant under some finite proper 4-diffeos when the densitized dreibein, E a i , is degenerate. The breakdown of 4-diffeo invariance appears to be due to the inability of the Ashtekar Hamiltonian to generate births and deaths of E flux loops (leaving open the possibility that a new 'causality condition' forbidding the birth of flux loops might justify the non-invariance of the theory).A fully 4-diffeo invariant canonical theory in Ashtekar's variables, derived from Plebanski's action, is found to have constraints that are stronger than Ashtekar's for rank E< 2. The corresponding Hamiltonian generates births and deaths of E flux loops.It is argued that this implies a finite amplitude for births and deaths of loops in the physical states of quantum GR in the loop representation, thus modifying this (partly defined) theory substantially.Some of the new constraints are second class, leading to difficulties in quantization in the connection representation. This problem might be overcome in a very nice way by transforming to the classical loop variables, or the 'Faraday line' variables of Newman and Rovelli, and then solving the offending constraints.Note that, though motivated by quantum considerations, the present paper is classical in substance. (orig.)

  4. Symmetric minimally entangled typical thermal states for canonical and grand-canonical ensembles

    Science.gov (United States)

    Binder, Moritz; Barthel, Thomas

    2017-05-01

    Based on the density matrix renormalization group (DMRG), strongly correlated quantum many-body systems at finite temperatures can be simulated by sampling over a certain class of pure matrix product states (MPS) called minimally entangled typical thermal states (METTS). When a system features symmetries, these can be utilized to substantially reduce MPS computation costs. It is conceptually straightforward to simulate canonical ensembles using symmetric METTS. In practice, it is important to alternate between different symmetric collapse bases to decrease autocorrelations in the Markov chain of METTS. To this purpose, we introduce symmetric Fourier and Haar-random block bases that are efficiently mixing. We also show how grand-canonical ensembles can be simulated efficiently with symmetric METTS. We demonstrate these approaches for spin-1 /2 X X Z chains and discuss how the choice of the collapse bases influences autocorrelations as well as the distribution of measurement values and, hence, convergence speeds.

  5. Canonical symmetry of a constrained Hamiltonian system and canonical Ward identity

    International Nuclear Information System (INIS)

    Li, Zi-ping

    1995-01-01

    An algorithm for the construction of the generators of the gauge transformation of a constrained Hamiltonian system is given. The relationships among the coefficients connecting the first constraints in the generator are made clear. Starting from the phase space generating function of the Green function, the Ward identity in canonical formalism is deduced. We point out that the quantum equations of motion in canonical form for a system with singular Lagrangian differ from the classical ones whether Dirac's conjecture holds true or not. Applications of the present formulation to the Abelian and non-Abelian gauge theories are given. The expressions for PCAC and generalized PCAC of the AVV vertex are derived exactly from another point of view. A new form of the Ward identity for gauge-ghost proper vertices is obtained which differs from the usual Ward-Takahashi identity arising from the BRS invariance

  6. Quantum

    CERN Document Server

    Al-Khalili, Jim

    2003-01-01

    In this lively look at quantum science, a physicist takes you on an entertaining and enlightening journey through the basics of subatomic physics. Along the way, he examines the paradox of quantum mechanics--beautifully mathematical in theory but confoundingly unpredictable in the real world. Marvel at the Dual Slit experiment as a tiny atom passes through two separate openings at the same time. Ponder the peculiar communication of quantum particles, which can remain in touch no matter how far apart. Join the genius jewel thief as he carries out a quantum measurement on a diamond without ever touching the object in question. Baffle yourself with the bizzareness of quantum tunneling, the equivalent of traveling partway up a hill, only to disappear then reappear traveling down the opposite side. With its clean, colorful layout and conversational tone, this text will hook you into the conundrum that is quantum mechanics.

  7. Canonical Labelling of Site Graphs

    Directory of Open Access Journals (Sweden)

    Nicolas Oury

    2013-06-01

    Full Text Available We investigate algorithms for canonical labelling of site graphs, i.e. graphs in which edges bind vertices on sites with locally unique names. We first show that the problem of canonical labelling of site graphs reduces to the problem of canonical labelling of graphs with edge colourings. We then present two canonical labelling algorithms based on edge enumeration, and a third based on an extension of Hopcroft's partition refinement algorithm. All run in quadratic worst case time individually. However, one of the edge enumeration algorithms runs in sub-quadratic time for graphs with "many" automorphisms, and the partition refinement algorithm runs in sub-quadratic time for graphs with "few" bisimulation equivalences. This suite of algorithms was chosen based on the expectation that graphs fall in one of those two categories. If that is the case, a combined algorithm runs in sub-quadratic worst case time. Whether this expectation is reasonable remains an interesting open problem.

  8. Backlund transformations as canonical transformations

    International Nuclear Information System (INIS)

    Villani, A.; Zimerman, A.H.

    1977-01-01

    Toda and Wadati as well as Kodama and Wadati have shown that the Backlund transformations, for the exponential lattice equation, sine-Gordon equation, K-dV (Korteweg de Vries) equation and modifies K-dV equation, are canonical transformation. It is shown that the Backlund transformation for the Boussinesq equation, for a generalized K-dV equation, for a model equation for shallow water waves and for the nonlinear Schroedinger equation are also canonical transformations [pt

  9. Emergent symmetries in the canonical tensor model

    Science.gov (United States)

    Obster, Dennis; Sasakura, Naoki

    2018-04-01

    The canonical tensor model (CTM) is a tensor model proposing a classically and quantum mechanically consistent description of gravity, formulated as a first-class constraint system with structural similarities to the ADM formalism of general relativity. The classical CTM produces a general relativistic system in a formal continuum limit, the emergence of which should be explained by the quantum CTM. In this paper we study the symmetry properties of a wave function that exactly solves the quantum constraints of the CTM. We have found that it has strong peaks at configurations invariant under some Lie groups, as predicted by a mechanism described in our previous paper. A surprising result is the preference for configurations invariant not only under Lie groups with positive definite signature, but also with Lorentzian signature. Such symmetries could characterize the global structures of spacetimes, and our results are encouraging towards showing spacetime emergence in the CTM. To verify the asymptotic convergence of the wave function we have also analyzed the asymptotic behavior, which for the most part seems to be well under control.

  10. Quantum physics of light and matter a modern introduction to photons, atoms and many-body systems

    CERN Document Server

    Salasnich, Luca

    2014-01-01

    The book gives an introduction to the field quantization (second quantization) of light and matter with applications to atomic physics. The first chapter briefly reviews the origins of special relativity and quantum mechanics and the basic notions of quantum information theory and quantum statistical mechanics. The second chapter is devoted to the second quantization of the electromagnetic field, while the third chapter shows the consequences of the light field quantization in the description of electromagnetic transitions.In the fourth chapter it is analyzed the spin of the electron, and in particular its derivation from the Dirac equation, while the fifth chapter investigates the effects of external electric and magnetic fields on the atomic spectra (Stark and Zeeman effects). The sixth chapter describes the properties of systems composed by many interacting identical particles by introducing the Hartree-Fock variational method, the density functional theory, and the Born-Oppenheimer approximation. Finally,...

  11. Taylor-expansion Monte Carlo simulations of classical fluids in the canonical and grand canonical ensemble

    International Nuclear Information System (INIS)

    Schoen, M.

    1995-01-01

    In this article the Taylor-expansion method is introduced by which Monte Carlo (MC) simulations in the canonical ensemble can be speeded up significantly, Substantial gains in computational speed of 20-40% over conventional implementations of the MC technique are obtained over a wide range of densities in homogeneous bulk phases. The basic philosophy behind the Taylor-expansion method is a division of the neighborhood of each atom (or molecule) into three different spatial zones. Interactions between atoms belonging to each zone are treated at different levels of computational sophistication. For example, only interactions between atoms belonging to the primary zone immediately surrounding an atom are treated explicitly before and after displacement. The change in the configurational energy contribution from secondary-zone interactions is obtained from the first-order term of a Taylor expansion of the configurational energy in terms of the displacement vector d. Interactions with atoms in the tertiary zone adjacent to the secondary zone are neglected throughout. The Taylor-expansion method is not restricted to the canonical ensemble but may be employed to enhance computational efficiency of MC simulations in other ensembles as well. This is demonstrated for grand canonical ensemble MC simulations of an inhomogeneous fluid which can be performed essentially on a modern personal computer

  12. Consistency of canonical formulation of Horava gravity

    International Nuclear Information System (INIS)

    Soo, Chopin

    2011-01-01

    Both the non-projectable and projectable version of Horava gravity face serious challenges. In the non-projectable version, the constraint algebra is seemingly inconsistent. The projectable version lacks a local Hamiltonian constraint, thus allowing for an extra graviton mode which can be problematic. A new formulation (based on arXiv:1007.1563) of Horava gravity which is naturally realized as a representation of the master constraint algebra (instead of the Dirac algebra) studied by loop quantum gravity researchers is presented. This formulation yields a consistent canonical theory with first class constraints; and captures the essence of Horava gravity in retaining only spatial diffeomorphisms as the physically relevant non-trivial gauge symmetry. At the same time the local Hamiltonian constraint is equivalently enforced by the master constraint.

  13. Consistency of canonical formulation of Horava gravity

    Energy Technology Data Exchange (ETDEWEB)

    Soo, Chopin, E-mail: cpsoo@mail.ncku.edu.tw [Department of Physics, National Cheng Kung University, Tainan, Taiwan (China)

    2011-09-22

    Both the non-projectable and projectable version of Horava gravity face serious challenges. In the non-projectable version, the constraint algebra is seemingly inconsistent. The projectable version lacks a local Hamiltonian constraint, thus allowing for an extra graviton mode which can be problematic. A new formulation (based on arXiv:1007.1563) of Horava gravity which is naturally realized as a representation of the master constraint algebra (instead of the Dirac algebra) studied by loop quantum gravity researchers is presented. This formulation yields a consistent canonical theory with first class constraints; and captures the essence of Horava gravity in retaining only spatial diffeomorphisms as the physically relevant non-trivial gauge symmetry. At the same time the local Hamiltonian constraint is equivalently enforced by the master constraint.

  14. Linear canonical transforms theory and applications

    CERN Document Server

    Kutay, M; Ozaktas, Haldun; Sheridan, John

    2016-01-01

    This book provides a clear and accessible introduction to the essential mathematical foundations of linear canonical transforms from a signals and systems perspective. Substantial attention is devoted to how these transforms relate to optical systems and wave propagation. There is extensive coverage of sampling theory and fast algorithms for numerically approximating the family of transforms. Chapters on topics ranging from digital holography to speckle metrology provide a window on the wide range of applications. This volume will serve as a reference for researchers in the fields of image and signal processing, wave propagation, optical information processing and holography, optical system design and modeling, and quantum optics. It will be of use to graduate students in physics and engineering, as well as for scientists in other areas seeking to learn more about this important yet relatively unfamiliar class of integral transformations.

  15. Power, Gender, and Canon Formation in Mexico

    Directory of Open Access Journals (Sweden)

    Cynthia Steele

    1996-01-01

    Full Text Available I propose to analyze Castellanos's trajectory from marginalized ethnographer and critic of "latino" society, to presidential insider and ambassador, and the first modern Mexican woman writer to be accepted into the literary canon. I will explore the intersection of politics, gender, and the (self- creation of a literary persona with regard to the following issues: 1 the tension between self-exposure and self-censorship in Castellanos's literary work; 2 Castellanos's intense and problematic relationship with her illegitimate, mestizo half-brother; 3 the coincidences and contradictions between Castellanos's journalistic account of her relationship with her servant Maria Escandon, and Maria's own oral history twenty years later; 4 the tension between depression and dependency, on the one hand, and self-assertiveness and audacity, on the other; 5 the relation between Castellanos's role as ambassador and the personal, apolitical, often frivolous character of her journalistic articles written in Israel; 6 the contradictory readings of Castellanos's death, and the respective implications for her place in the canon; and 7 the implications, for their reception, of the love letters published in Cartas a Ricardo 1994, as opposed to 1974.

  16. Some reference formulas for the generating functions of canonical transformations

    Energy Technology Data Exchange (ETDEWEB)

    Anselmi, Damiano [Universita di Pisa, Dipartimento di Fisica ' ' Enrico Fermi' ' , Pisa (Italy); INFN, Sezione di Pisa, Pisa (Italy)

    2016-02-15

    We study some properties of the canonical transformations in classical mechanics and quantum field theory and give a number of practical formulas concerning their generating functions. First, we give a diagrammatic formula for the perturbative expansion of the composition law around the identity map. Then we propose a standard way to express the generating function of a canonical transformation by means of a certain ''componential'' map, which obeys the Baker-Campbell-Hausdorff formula. We derive the diagrammatic interpretation of the componential map, work out its relation with the solution of the Hamilton-Jacobi equation and derive its time-ordered version. Finally, we generalize the results to the Batalin-Vilkovisky formalism, where the conjugate variables may have both bosonic and fermionic statistics, and describe applications to quantum field theory. (orig.)

  17. Canonical action-angle formalism for quantized nonlinear fields

    International Nuclear Information System (INIS)

    Garbaczewki, P.

    1987-01-01

    The canonical quantizations of field and action-angle coordinates which (locally) parameterize the phase manifold for the same nonlinear field theory model (e.g. sine-Gordon and nonlinear Schrodinger with the attractive coupling) are reconciled on the common for both cases state space. The classical-quantum relationship is maintained in the mean: coherent state expectation values of operators give rise to classical objects

  18. Puzzles in studies of quantum chaos

    International Nuclear Information System (INIS)

    Xu Gongou

    1994-01-01

    Puzzles in studies of quantum chaos are discussed. From the view of global properties of quantum states, it is clarified that quantum chaos originates from the break-down of invariant properties of quantum canonical transformations. There exist precise correspondences between quantum and classical chaos

  19. Periodicity, the Canon and Sport

    Directory of Open Access Journals (Sweden)

    Thomas F. Scanlon

    2015-10-01

    Full Text Available The topic according to this title is admittedly a broad one, embracing two very general concepts of time and of the cultural valuation of artistic products. Both phenomena are, in the present view, largely constructed by their contemporary cultures, and given authority to a great extent from the prestige of the past. The antiquity of tradition brings with it a certain cachet. Even though there may be peripheral debates in any given society which question the specifics of periodization or canonicity, individuals generally accept the consensus designation of a sequence of historical periods and they accept a list of highly valued artistic works as canonical or authoritative. We will first examine some of the processes of periodization and of canon-formation, after which we will discuss some specific examples of how these processes have worked in the sport of two ancient cultures, namely Greece and Mesoamerica.

  20. Quaternionic quantum field theory

    International Nuclear Information System (INIS)

    Adler, S.L.

    1986-01-01

    In this paper the author describes a new kind of quantum mechanics or quantum field theory based on quaternions. Quaternionic quantum mechanics has a Schrodinger equation, a Dirac transformation theory, and a functional integral. Quaternionic quantum mechanics does not seem to have (except in the complex quantum mechanics specialization): A correspondence principle, and beyond this a commuting tensor product, asymptotic states, an S-matrix, a canonical formalism, coherent states or a Euclidean continuation. A new kind of quantum mechanics exists. There are many interesting formal questions to study, which should enable one to decide whether quaternionic quantum field theory is relevant for particle physics

  1. Canonical commutation relations - historical aspect and new results

    International Nuclear Information System (INIS)

    Mnatsakanova, M.N.; Vernov, Yu.S.

    1997-01-01

    The aim of the paper is to describe the historical aspects of the canonical commutation relations (CCR) and to analyse the new results. The CCR are the algebraic structure (Heisenberg algebra) on the basis of quantum mechanics and quantum field theory. The following results are discussed: the Weyl form of CCR, Von Neumann's uniqueness theorem, regularity conditions, CCR representation in standard and Weyl forms, CCR in an indefinite metric space, class of CCR regular representations and CCR in the case of infinite number of degrees of freedom [ru

  2. Canonical Authors in Consumption Theory

    DEFF Research Database (Denmark)

    Canonical Authors in Consumption Theory is the first work to compile the contributions of the greatest social thinkers in the global conversation about consumption and consumer culture. A prestigious reference work, it offers original chapters by the world's most prominent thought leaders and sur...

  3. Romanticism, Sexuality, and the Canon.

    Science.gov (United States)

    Rowe, Kathleen K.

    1990-01-01

    Traces the Romanticism in the work and persona of film director Jean-Luc Godard. Examines the contradictions posed by Godard's politics and representations of sexuality. Asserts, that by bringing an ironic distance to the works of such canonized directors, viewers can take pleasure in those works despite their contradictions. (MM)

  4. CANONICAL BACKWARD DIFFERENTIATION SCHEMES FOR ...

    African Journals Online (AJOL)

    This paper describes a new nonlinear backward differentiation schemes for the numerical solution of nonlinear initial value problems of first order ordinary differential equations. The schemes are based on rational interpolation obtained from canonical polynomials. They are A-stable. The test problems show that they give ...

  5. Realizations of the canonical representation

    Indian Academy of Sciences (India)

    Traditionally, the canonical representation is realized on the Hilbert space ... Fix a decomposition R2n = Rn × Rn ..... to an orthonormal basis {ψ1,ψ2,. ..... [7] Vemuri M K, A non-commutative Sobolev inequality and its application to spectral.

  6. Physics of quantum computation

    International Nuclear Information System (INIS)

    Belokurov, V.V.; Khrustalev, O.A.; Sadovnichij, V.A.; Timofeevskaya, O.D.

    2003-01-01

    In the paper, the modern status of the theory of quantum computation is considered. The fundamental principles of quantum computers and their basic notions such as quantum processors and computational basis states of the quantum Turing machine as well as the quantum Fourier transform are discussed. Some possible experimental realizations on the basis of NMR methods are given

  7. Canonization in early twentieth-century Chinese art history’

    Directory of Open Access Journals (Sweden)

    Guo Hui

    2014-06-01

    Full Text Available Since the 1980s, the discussion of canons has been a dominant theme in the discipline of Western art history. Various concerns have emerged regarding ‘questions of artistic judgment’, ‘the history genesis of masterpieces’, ‘variations in taste’, ‘the social instruments of canonicity’, and ‘how canons disappear’. Western art historians have considered how the canon’s appearance in Western visual art embodies aesthetic, ideological, cultural, social, and symbolic values. In Chinese art history, the idea of a canon including masterpieces, important artists, and forms of art, dates back to the mid ninth century when Zhang Yanyuan wrote his painting history Record of Famous Painters of All the Dynasties. Faced with quite different political, economic, and social conditions amid the instability of the early twentieth century, Chinese scholars attempted to discover new canons for cultural orthodoxy and authority. Modern means for canonization, such as museums and exhibition displays, cultural and academic institutions, and massive art publications with image reproduction in good quality, brought the process up to an unprecedented speed. It is true that most of these means have comparable counterparts in pre-modern times. However, their enormous scope and overwhelming influence are far beyond the reach of their imperial counterparts. Through an inter-textual reading of the publications on Chinese art history in early twentieth-century China, this paper explores the transformation of canons in order to shed light on why and how canonical formation happened during the Republican period of China. Despite the diverse styles and strategies which Chinese writers used in their narratives, Chinese art historical books produced during the Republican period canonized and de-canonized artworks. In this paper, the discussion of these texts, with reference to other art historical works, comprises three parts: 1 canon formation of artistic forms

  8. Constructing canonical bases of quantized enveloping algebras

    OpenAIRE

    Graaf, W.A. de

    2001-01-01

    An algorithm for computing the elements of a given weight of the canonical basis of a quantized enveloping algebra is described. Subsequently, a similar algorithm is presented for computing the canonical basis of a finite-dimensional module.

  9. Generalized canonical correlation analysis with missing values

    NARCIS (Netherlands)

    M. van de Velden (Michel); Y. Takane

    2012-01-01

    textabstractGeneralized canonical correlation analysis is a versatile technique that allows the joint analysis of several sets of data matrices. The generalized canonical correlation analysis solution can be obtained through an eigenequation and distributional assumptions are not required. When

  10. Lectures on Quantum Mechanics

    Science.gov (United States)

    Weinberg, Steven

    2015-09-01

    Preface; Notation; 1. Historical introduction; 2. Particle states in a central potential; 3. General principles of quantum mechanics; 4. Spin; 5. Approximations for energy eigenstates; 6. Approximations for time-dependent problems; 7. Potential scattering; 8. General scattering theory; 9. The canonical formalism; 10. Charged particles in electromagnetic fields; 11. The quantum theory of radiation; 12. Entanglement; Author index; Subject index.

  11. Titchmarsh-Weyl theory for canonical systems

    Directory of Open Access Journals (Sweden)

    Keshav Raj Acharya

    2014-11-01

    Full Text Available The main purpose of this paper is to develop Titchmarsh- Weyl theory of canonical systems. To this end, we first observe the fact that Schrodinger and Jacobi equations can be written into canonical systems. We then discuss the theory of Weyl m-function for canonical systems and establish the relation between the Weyl m-functions of Schrodinger equations and that of canonical systems which involve Schrodinger equations.

  12. Statistical hadronization and hadronic micro-canonical ensemble II

    International Nuclear Information System (INIS)

    Becattini, F.; Ferroni, L.

    2004-01-01

    We present a Monte Carlo calculation of the micro-canonical ensemble of the ideal hadron-resonance gas including all known states up to a mass of about 1.8 GeV and full quantum statistics. The micro-canonical average multiplicities of the various hadron species are found to converge to the canonical ones for moderately low values of the total energy, around 8 GeV, thus bearing out previous analyses of hadronic multiplicities in the canonical ensemble. The main numerical computing method is an importance sampling Monte Carlo algorithm using the product of Poisson distributions to generate multi-hadronic channels. It is shown that the use of this multi-Poisson distribution allows for an efficient and fast computation of averages, which can be further improved in the limit of very large clusters. We have also studied the fitness of a previously proposed computing method, based on the Metropolis Monte Carlo algorithm, for event generation in the statistical hadronization model. We find that the use of the multi-Poisson distribution as proposal matrix dramatically improves the computation performance. However, due to the correlation of subsequent samples, this method proves to be generally less robust and effective than the importance sampling method. (orig.)

  13. Functional Multiple-Set Canonical Correlation Analysis

    Science.gov (United States)

    Hwang, Heungsun; Jung, Kwanghee; Takane, Yoshio; Woodward, Todd S.

    2012-01-01

    We propose functional multiple-set canonical correlation analysis for exploring associations among multiple sets of functions. The proposed method includes functional canonical correlation analysis as a special case when only two sets of functions are considered. As in classical multiple-set canonical correlation analysis, computationally, the…

  14. Extending canonical Monte Carlo methods

    International Nuclear Information System (INIS)

    Velazquez, L; Curilef, S

    2010-01-01

    In this paper, we discuss the implications of a recently obtained equilibrium fluctuation-dissipation relation for the extension of the available Monte Carlo methods on the basis of the consideration of the Gibbs canonical ensemble to account for the existence of an anomalous regime with negative heat capacities C α with α≈0.2 for the particular case of the 2D ten-state Potts model

  15. On the relationship between modifications to the Raychaudhuri equation and the canonical Hamiltonian structures

    International Nuclear Information System (INIS)

    Singh, Parampreet; Soni, S K

    2016-01-01

    The problem of obtaining canonical Hamiltonian structures from the equations of motion, without any knowledge of the action, is studied in the context of the spatially flat Friedmann, ‘Robertson’, and Walker models. Modifications to the Raychaudhuri equation are implemented independently as quadratic and cubic terms of energy density without introducing additional degrees of freedom. Depending on their sign, modifications make gravity repulsive above a curvature scale for matter satisfying strong energy conditions, or more attractive than in the classical theory. The canonical structure of the modified theories is determined by demanding that the total Hamiltonian be a linear combination of gravity and matter Hamiltonians. In the quadratic repulsive case, the modified canonical phase space of gravity is a polymerized phase space with canonical momentum as inverse a trigonometric function of the Hubble rate; the canonical Hamiltonian can be identified with the effective Hamiltonian in loop quantum cosmology. The repulsive cubic modification results in a ‘generalized polymerized’ canonical phase space. Both the repulsive modifications are found to yield singularity avoidance. In contrast, the quadratic and cubic attractive modifications result in a canonical phase space in which canonical momentum is nontrigonometric and singularities persist. Our results hint at connections between the repulsive/attractive nature of modifications to gravity arising from the gravitational sector and polymerized/non polymerized gravitational phase space. (paper)

  16. Canonical formalism for relativistic dynamics

    International Nuclear Information System (INIS)

    Penafiel-Nava, V.M.

    1982-01-01

    The possibility of a canonical formalism appropriate for a dynamical theory of isolated relativistic multiparticle systems involving scalar interactions is studied. It is shown that a single time-parameter structure satisfying the requirements of Poincare invariance and simultaneity of the constituents (global tranversality) can not be derived from a homogeneous Lagrangian. The dynamics is deduced initially from a non-homogeneous but singular Lagrangian designed to accommodate the global tranversality constraints with the equaltime plane associated to the total momentum of the system. An equivalent standard Lagrangian is used to generalize the parametrization procedure which is referred to an arbitrary geodesic in Minkowski space. The equations of motion and the definition of center of momentum are invariant with respect to the choice of geodesic and the entire formalism becomes separable. In the original 8N-dimensional phase-space, the symmetries of the Lagrangian give rise to a canonical realization of a fifteen-generator Lie algebra which is projected in the 6N dimensional hypersurface of dynamical motions. The time-component of the total momentum is thus reduced to a neutral element and the canonical Hamiltonian survives as the only generator for time-translations so that the no-interaction theorem becomes inapplicable

  17. Derivation of Mayer Series from Canonical Ensemble

    International Nuclear Information System (INIS)

    Wang Xian-Zhi

    2016-01-01

    Mayer derived the Mayer series from both the canonical ensemble and the grand canonical ensemble by use of the cluster expansion method. In 2002, we conjectured a recursion formula of the canonical partition function of a fluid (X.Z. Wang, Phys. Rev. E 66 (2002) 056102). In this paper we give a proof for this formula by developing an appropriate expansion of the integrand of the canonical partition function. We further derive the Mayer series solely from the canonical ensemble by use of this recursion formula. (paper)

  18. Derivation of Mayer Series from Canonical Ensemble

    Science.gov (United States)

    Wang, Xian-Zhi

    2016-02-01

    Mayer derived the Mayer series from both the canonical ensemble and the grand canonical ensemble by use of the cluster expansion method. In 2002, we conjectured a recursion formula of the canonical partition function of a fluid (X.Z. Wang, Phys. Rev. E 66 (2002) 056102). In this paper we give a proof for this formula by developing an appropriate expansion of the integrand of the canonical partition function. We further derive the Mayer series solely from the canonical ensemble by use of this recursion formula.

  19. Canonical trivialization of gravitational gradients

    International Nuclear Information System (INIS)

    Niedermaier, Max

    2017-01-01

    A one-parameter family of canonical transformations is constructed that reduces the Hamiltonian form of the Einstein–Hilbert action to its strong coupling limit where dynamical spatial gradients are absent. The parameter can alternatively be viewed as the overall scale of the spatial metric or as a fractional inverse power of Newton’s constant. The generating function of the canonical transformation is constructed iteratively as a powerseries in the parameter to all orders. The algorithm draws on Lie–Deprit transformation theory and defines a ‘trivialization map’ with several bonus properties: (i) Trivialization of the Hamiltonian constraint implies that of the action while the diffeomorphism constraint is automatically co-transformed. (ii) Only a set of ordinary differential equations needs to be solved to drive the iteration via a homological equation where no gauge fixing is required. (iii) In contrast to (the classical limit of) a Lagrangian trivialization map the algorithm also produces series solutions of the field equations. (iv) In the strong coupling theory temporal gauge variations are abelian, nevertheless the map intertwines with the respective gauge symmetries on the action, the field equations, and their solutions. (paper)

  20. Canonical trivialization of gravitational gradients

    Science.gov (United States)

    Niedermaier, Max

    2017-06-01

    A one-parameter family of canonical transformations is constructed that reduces the Hamiltonian form of the Einstein-Hilbert action to its strong coupling limit where dynamical spatial gradients are absent. The parameter can alternatively be viewed as the overall scale of the spatial metric or as a fractional inverse power of Newton’s constant. The generating function of the canonical transformation is constructed iteratively as a powerseries in the parameter to all orders. The algorithm draws on Lie-Deprit transformation theory and defines a ‘trivialization map’ with several bonus properties: (i) Trivialization of the Hamiltonian constraint implies that of the action while the diffeomorphism constraint is automatically co-transformed. (ii) Only a set of ordinary differential equations needs to be solved to drive the iteration via a homological equation where no gauge fixing is required. (iii) In contrast to (the classical limit of) a Lagrangian trivialization map the algorithm also produces series solutions of the field equations. (iv) In the strong coupling theory temporal gauge variations are abelian, nevertheless the map intertwines with the respective gauge symmetries on the action, the field equations, and their solutions.

  1. Canonical quantization of spinning relativistic particle in external backgrounds

    Energy Technology Data Exchange (ETDEWEB)

    Gavrilov, S.P. [Universidade Federal de Sergipe (UFS), Aracaju, SE (Brazil); Gitman, D.M. [Sao Paulo Univ. (USP), SP (Brazil). Inst. de Fisica

    2000-07-01

    Full text follows: We revise the problem of the quantization of spinning relativistic particle pseudoclassical model, using a modified consistent canonical scheme. It allows one not only to include arbitrary electromagnetic and gravitational backgrounds in the consideration but to get in course of the quantization a consistent relativistic quantum mechanics, which reproduces literally the behavior of the one-particle sector of quantized spinor field. In particular, in a physical sector of the Hilbert space a complete positive spectrum of energies of relativistic particles and antiparticles is reproduced. Requirement to maintain all classical symmetries under the coordinate transformations and under U(1) transformations allows one to realize operator algebra without any ambiguities. (author)

  2. Canonical quantization of general relativity in discrete space-times.

    Science.gov (United States)

    Gambini, Rodolfo; Pullin, Jorge

    2003-01-17

    It has long been recognized that lattice gauge theory formulations, when applied to general relativity, conflict with the invariance of the theory under diffeomorphisms. We analyze discrete lattice general relativity and develop a canonical formalism that allows one to treat constrained theories in Lorentzian signature space-times. The presence of the lattice introduces a "dynamical gauge" fixing that makes the quantization of the theories conceptually clear, albeit computationally involved. The problem of a consistent algebra of constraints is automatically solved in our approach. The approach works successfully in other field theories as well, including topological theories. A simple cosmological application exhibits quantum elimination of the singularity at the big bang.

  3. Parametric potential determination by the canonical function method

    International Nuclear Information System (INIS)

    Tannous, C.; Fakhreddine, K.; Langlois, J.

    1999-01-01

    The canonical function method (CFM) is a powerful means for solving the radial Schroedinger equation (RSE). The mathematical difficulty of the RSE lies in the fact it is a singular boundary value problem. The CFM turns it into a regular initial value problem and allows the full determination of the spectrum of the Schroedinger operator without calculating the eigenfunctions. Following the parametrisation suggested by Klapisch and Green-Sellin-Zachor we develop a CFM to optimise the potential parameters in order to reproduce the experimental quantum defect results for various Rydberg series of He, Ne and Ar as evaluated from Moore's data. (orig.)

  4. From quantum gravity to quantum field theory via noncommutative geometry

    International Nuclear Information System (INIS)

    Aastrup, Johannes; Grimstrup, Jesper Møller

    2014-01-01

    A link between canonical quantum gravity and fermionic quantum field theory is established in this paper. From a spectral triple construction, which encodes the kinematics of quantum gravity, we construct semi-classical states which, in a semi-classical limit, give a system of interacting fermions in an ambient gravitational field. The emergent interaction involves flux tubes of the gravitational field. In the additional limit, where all gravitational degrees of freedom are turned off, a free fermionic quantum field theory emerges. (paper)

  5. Quantum Gravity (2nd edn)

    International Nuclear Information System (INIS)

    Husain, Viqar

    2008-01-01

    There has been a flurry of books on quantum gravity in the past few years. The first edition of Kiefer's book appeared in 2004, about the same time as Carlo Rovelli's book with the same title. This was soon followed by Thomas Thiemann's 'Modern Canonical Quantum General Relativity'. Although the main focus of each of these books is non-perturbative and non-string approaches to the quantization of general relativity, they are quite orthogonal in temperament, style, subject matter and mathematical detail. Rovelli and Thiemann focus primarily on loop quantum gravity (LQG), whereas Kiefer attempts a broader introduction and review of the subject that includes chapters on string theory and decoherence. Kiefer's second edition attempts an even wider and somewhat ambitious sweep with 'new sections on asymptotic safety, dynamical triangulation, primordial black holes, the information-loss problem, loop quantum cosmology, and other topics'. The presentation of these current topics is necessarily brief given the size of the book, but effective in encapsulating the main ideas in some cases. For instance the few pages devoted to loop quantum cosmology describe how the mini-superspace reduction of the quantum Hamiltonian constraint of LQG becomes a difference equation, whereas the discussion of 'dynamical triangulations', an approach to defining a discretized Lorentzian path integral for quantum gravity, is less detailed. The first few chapters of the book provide, in a roughly historical sequence, the covariant and canonical metric variable approach to the subject developed in the 1960s and 70s. The problem(s) of time in quantum gravity are nicely summarized in the chapter on quantum geometrodynamics, followed by a detailed and effective introduction of the WKB approach and the semi-classical approximation. These topics form the traditional core of the subject. The next three chapters cover LQG, quantization of black holes, and quantum cosmology. Of these the chapter on LQG is

  6. Robust canonical correlations: A comparative study

    OpenAIRE

    Branco, JA; Croux, Christophe; Filzmoser, P; Oliveira, MR

    2005-01-01

    Several approaches for robust canonical correlation analysis will be presented and discussed. A first method is based on the definition of canonical correlation analysis as looking for linear combinations of two sets of variables having maximal (robust) correlation. A second method is based on alternating robust regressions. These methods axe discussed in detail and compared with the more traditional approach to robust canonical correlation via covariance matrix estimates. A simulation study ...

  7. An asymptotic formula for the free energy density of ideal quantum gases

    International Nuclear Information System (INIS)

    Mackowiak, J.

    1988-01-01

    It is shown that the expressions for the free energy density of ideal quantum gases in the canonical and grand canonical ensembles, are identical up to additive terms which vanish in the thermodynamic limit. (orig.)

  8. Landau and modern physics

    International Nuclear Information System (INIS)

    Pokrovsky, Valery L

    2009-01-01

    This article describes the history of the creation and further development of Landau's famous works on phase transitions, diamagnetism of electron gas (Landau levels), and quantum transitions at a level crossing (the Landau-Zener phenomenon), and its role in modern physics. (methodological notes)

  9. Log canonical thresholds of smooth Fano threefolds

    International Nuclear Information System (INIS)

    Cheltsov, Ivan A; Shramov, Konstantin A

    2008-01-01

    The complex singularity exponent is a local invariant of a holomorphic function determined by the integrability of fractional powers of the function. The log canonical thresholds of effective Q-divisors on normal algebraic varieties are algebraic counterparts of complex singularity exponents. For a Fano variety, these invariants have global analogues. In the former case, it is the so-called α-invariant of Tian; in the latter case, it is the global log canonical threshold of the Fano variety, which is the infimum of log canonical thresholds of all effective Q-divisors numerically equivalent to the anticanonical divisor. An appendix to this paper contains a proof that the global log canonical threshold of a smooth Fano variety coincides with its α-invariant of Tian. The purpose of the paper is to compute the global log canonical thresholds of smooth Fano threefolds (altogether, there are 105 deformation families of such threefolds). The global log canonical thresholds are computed for every smooth threefold in 64 deformation families, and the global log canonical thresholds are computed for a general threefold in 20 deformation families. Some bounds for the global log canonical thresholds are computed for 14 deformation families. Appendix A is due to J.-P. Demailly.

  10. The Current Canon in British Romantics Studies.

    Science.gov (United States)

    Linkin, Harriet Kramer

    1991-01-01

    Describes and reports on a survey of 164 U.S. universities to ascertain what is taught as the current canon of British Romantic literature. Asserts that the canon may now include Mary Shelley with the former standard six major male Romantic poets, indicating a significant emergence of a feminist perspective on British Romanticism in the classroom.…

  11. Introduction to quantum statistical mechanics

    International Nuclear Information System (INIS)

    Bogolyubov, N.N.; Bogolyubov, N.N.

    1980-01-01

    In a set of lectures, which has been delivered at the Physical Department of Moscow State University as a special course for students represented are some basic ideas of quantum statistical mechanics. Considered are in particular, the Liouville equations in classical and quantum mechanics, canonical distribution and thermodynamical functions, two-time correlation functions and Green's functions in the theory of thermal equilibrium

  12. Modernity after Modernity

    Directory of Open Access Journals (Sweden)

    Marin Dinu

    2007-08-01

    Full Text Available A strategy for the second modernization raises, beyond objectives, a series of epistemicresponsibilities. It is known that modernization stemming from the Enlightment had, among other things,the pretense that it is a project which is self-legitimating. Its profound rationales are the only justification.Referential self-centering proved to be the one that made possible a practice of the new. Modernizationhaving the function of renouncing myth – meaning an eliminatory formula for the past – and thefixation in the opportunity and potentiality of the present, seemed to close an insoluble but extremelyengrossing problem: that of a propensity towards utopia, of the risky escape towards the future. Thetraditionalization of the new constitutes a support for the daring to break out of the captivity of themoment.Modernization becomes the experience of combining the new which, thus, creates a succession ofpresent times. The future is no longer the result of fantasy, but a system’s direct expression to combine thenew. Therefore the future is an option for one or another model of the present, often tested previouslysomewhere else. In a non-metaphysical way, the future can be seen, touched, tried, lived by simplegeographical movement. The sense of evolution has de-temporalized taking the form of the concomitant,parallel, enclosed, neighboring space. We just have to be in the trend, to evolve in the context.Globalization defines the context and its conception – as a project of the second modernity – showsus the trends. The problem is how to understand the context in order to find the sense of the trend. Are wethe load the sense with the values of the first modernity or will we have to turn to the values of anothermodernity? Why do we have to move away from the significance of the processes which made up the firstmodernity? How do we relate to the content of the new context in which the structural trends of today’sworld are taking place? What is the

  13. Demonstration of a Quantum Nondemolition Sum Gate

    DEFF Research Database (Denmark)

    Yoshikawa, J.; Miwa, Y.; Huck, Alexander

    2008-01-01

    The sum gate is the canonical two-mode gate for universal quantum computation based on continuous quantum variables. It represents the natural analogue to a qubit C-NOT gate. In addition, the continuous-variable gate describes a quantum nondemolition (QND) interaction between the quadrature...

  14. A canonical approach to forces in molecules

    Energy Technology Data Exchange (ETDEWEB)

    Walton, Jay R. [Department of Mathematics, Texas A& M University, College Station, TX 77843-3368 (United States); Rivera-Rivera, Luis A., E-mail: rivera@chem.tamu.edu [Department of Chemistry, Texas A& M University, College Station, TX 77843-3255 (United States); Lucchese, Robert R.; Bevan, John W. [Department of Chemistry, Texas A& M University, College Station, TX 77843-3255 (United States)

    2016-08-02

    Highlights: • Derivation of canonical representation of molecular force. • Correlation of derivations with accurate results from Born–Oppenheimer potentials. • Extension of methodology to Mg{sub 2}, benzene dimer, and water dimer. - Abstract: In previous studies, we introduced a generalized formulation for canonical transformations and spectra to investigate the concept of canonical potentials strictly within the Born–Oppenheimer approximation. Data for the most accurate available ground electronic state pairwise intramolecular potentials in H{sub 2}{sup +}, H{sub 2}, HeH{sup +}, and LiH were used to rigorously establish such conclusions. Now, a canonical transformation is derived for the molecular force, F(R), with H{sub 2}{sup +} as molecular reference. These transformations are demonstrated to be inherently canonical to high accuracy but distinctly different from those corresponding to the respective potentials of H{sub 2}, HeH{sup +}, and LiH. In this paper, we establish the canonical nature of the molecular force which is key to fundamental generalization of canonical approaches to molecular bonding. As further examples Mg{sub 2}, benzene dimer and to water dimer are also considered within the radial limit as applications of the current methodology.

  15. Modern teaching for modern education

    OpenAIRE

    Mirascieva, Snezana

    2016-01-01

    Carrying the epithet of being contemporary education today means modern teaching. If modern education is a state in the field of education of all its elements, then teaching will also be a state with its own special features defining it as modern. The main issues of concern in this paper relate to what constitutes modern teaching, which features determine it as being modern, and how much is teaching today following the trend of modernization.

  16. Quantum group and quantum symmetry

    International Nuclear Information System (INIS)

    Chang Zhe.

    1994-05-01

    This is a self-contained review on the theory of quantum group and its applications to modern physics. A brief introduction is given to the Yang-Baxter equation in integrable quantum field theory and lattice statistical physics. The quantum group is primarily introduced as a systematic method for solving the Yang-Baxter equation. Quantum group theory is presented within the framework of quantum double through quantizing Lie bi-algebra. Both the highest weight and the cyclic representations are investigated for the quantum group and emphasis is laid on the new features of representations for q being a root of unity. Quantum symmetries are explored in selected topics of modern physics. For a Hamiltonian system the quantum symmetry is an enlarged symmetry that maintains invariance of equations of motion and allows a deformation of the Hamiltonian and symplectic form. The configuration space of the integrable lattice model is analyzed in terms of the representation theory of quantum group. By means of constructing the Young operators of quantum group, the Schroedinger equation of the model is transformed to be a set of coupled linear equations that can be solved by the standard method. Quantum symmetry of the minimal model and the WZNW model in conformal field theory is a hidden symmetry expressed in terms of screened vertex operators, and has a deep interplay with the Virasoro algebra. In quantum group approach a complete description for vibrating and rotating diatomic molecules is given. The exact selection rules and wave functions are obtained. The Taylor expansion of the analytic formulas of the approach reproduces the famous Dunham expansion. (author). 133 refs, 20 figs

  17. On the 'near to minimal' canonical realizations of the Lie algebra Csub(n)

    International Nuclear Information System (INIS)

    Havlicek, M.; Lassner, W.

    1975-01-01

    It is proved that canonical realizations of the Lie algebra Csub(n) in the quotient division ring Dsub(2(2n-2)) of the Weyl algebra Wsub(2(2n-2)) in 2n-2 quantum canonical pairs are, in a definite sense, related to the standard minimal one in Dsub(2n) contains Dsub(2(2n-2)). Further, in any realization of Csub(n) in Wsub(2(2n-1)) all Casimir operators are realized by multiples of identity element

  18. Canonical pseudotensors, Sparling's form and Noether currents

    International Nuclear Information System (INIS)

    Szabados, L.B.

    1991-09-01

    The canonical energy - momentum and spin pseudotensors of the Einstein theory are studied in two ways. First they are studied in the framework of Lagrangian formalism. It is shown, that for first order Lagrangian and rigid basis description the canonical energy - momentum, the canonical spin, and the Noether current are tensorial quantities, and the canonial energy - momentum and spin tensors satisfy the tensorial Belinfante-Rosenfeld equations. Then the differential geometric unification and reformulation of the previous different pseudotensorial approaches is given. Finally, for any vector field on the spacetime an (m-1) form, called the Noether form is defined. (K.A.) 34 refs

  19. Radiation from quantum weakly dynamical horizons in loop quantum gravity.

    Science.gov (United States)

    Pranzetti, Daniele

    2012-07-06

    We provide a statistical mechanical analysis of quantum horizons near equilibrium in the grand canonical ensemble. By matching the description of the nonequilibrium phase in terms of weakly dynamical horizons with a local statistical framework, we implement loop quantum gravity dynamics near the boundary. The resulting radiation process provides a quantum gravity description of the horizon evaporation. For large black holes, the spectrum we derive presents a discrete structure which could be potentially observable.

  20. The linear canonical transformation : definition and properties

    NARCIS (Netherlands)

    Bastiaans, Martin J.; Alieva, Tatiana; Healy, J.J.; Kutay, M.A.; Ozaktas, H.M.; Sheridan, J.T.

    2016-01-01

    In this chapter we introduce the class of linear canonical transformations, which includes as particular cases the Fourier transformation (and its generalization: the fractional Fourier transformation), the Fresnel transformation, and magnifier, rotation and shearing operations. The basic properties

  1. 37 CFR 10.21 - Canon 1.

    Science.gov (United States)

    2010-07-01

    ... REPRESENTATION OF OTHERS BEFORE THE PATENT AND TRADEMARK OFFICE Patent and Trademark Office Code of Professional Responsibility § 10.21 Canon 1. A practitioner should assist in maintaining the integrity and competence of the...

  2. Semiotic Analysis of Canon Camera Advertisements

    OpenAIRE

    INDRAWATI, SUSAN

    2015-01-01

    Keywords: Semiotic Analysis, Canon Camera, Advertisement. Advertisement is a medium to deliver message to people with the goal to influence the to use certain products. Semiotics is applied to develop a correlation within element used in an advertisement. In this study, the writer chose the Semiotic analysis of canon camera advertisement as the subject to be analyzed using semiotic study based on Peirce's theory. Semiotic approach is employed in interpreting the sign, symbol, icon, and index ...

  3. The canonical ensemble redefined - 1: Formalism

    International Nuclear Information System (INIS)

    Venkataraman, R.

    1984-12-01

    For studying the thermodynamic properties of systems we propose an ensemble that lies in between the familiar canonical and microcanonical ensembles. We point out the transition from the canonical to microcanonical ensemble and prove from a comparative study that all these ensembles do not yield the same results even in the thermodynamic limit. An investigation of the coupling between two or more systems with these ensembles suggests that the state of thermodynamical equilibrium is a special case of statistical equilibrium. (author)

  4. Modern Supersymmetry

    International Nuclear Information System (INIS)

    Kulish, Petr P

    2006-01-01

    We have spent more than twenty years applying supersymmetry (SUSY) to elementary particle physics and attempting to find an experimental manifestation of this symmetry. Terning's monograph demonstrates the strong influence of SUSY on theoretical elaborations in the field of elementary particles. It gives both an overview of modern supersymmetry in elementary particle physics and calculation techniques. The author, trying to be closer to applications of SUSY in the real world of elementary particles, is also anticipating the importance of supersymmetry for rigorous study of nonperturbative phenomena in quantum field theory. In particular, he presents the 'exact' SUSY β function using instanton methods, phenomena of anomalies and dualities. Supersymmetry algebra is introduced by adding two anticommuting spinor generators to Poincare algebra and by presenting massive and massless supermultiplets of its representations. The author prefers to use mostly the component description of field contents of the theories in question rather than the superfield formalism. Such a style makes the account closer to physical characteristics. Relations required by SUSY among β functions of the gauge, Yukawa and quartic interactions are checked by direct calculations as well as to all orders in perturbation theory, thus demonstrating that SUSY survives quantization. A discussion is included of the hierarchy problem of different scales of weak and strong interactions and its possible solution by the minimal supersymmetric standard model. Different SUSY breaking mechanisms are presented corresponding to a realistic phenomenology. The monograph can also be considered as a guide to 'duality' relations connecting different SUSY gauge theories, supergravities and superstrings. This is demonstrated referring to the particular properties and characteristics of these theories (field contents, scaling dimensions of appropriate operators etc). In particular, the last chapter deals with the Ad

  5. The dark sector from interacting canonical and non-canonical scalar fields

    International Nuclear Information System (INIS)

    De Souza, Rudinei C; Kremer, Gilberto M

    2010-01-01

    In this work general models with interactions between two canonical scalar fields and between one non-canonical (tachyon type) and one canonical scalar field are investigated. The potentials and couplings to the gravity are selected through the Noether symmetry approach. These general models are employed to describe interactions between dark energy and dark matter, with the fields being constrained by the astronomical data. The cosmological solutions of some cases are compared with the observed evolution of the late Universe.

  6. Both canonical and non-canonical Wnt signaling independently promote stem cell growth in mammospheres.

    Directory of Open Access Journals (Sweden)

    Alexander M Many

    Full Text Available The characterization of mammary stem cells, and signals that regulate their behavior, is of central importance in understanding developmental changes in the mammary gland and possibly for targeting stem-like cells in breast cancer. The canonical Wnt/β-catenin pathway is a signaling mechanism associated with maintenance of self-renewing stem cells in many tissues, including mammary epithelium, and can be oncogenic when deregulated. Wnt1 and Wnt3a are examples of ligands that activate the canonical pathway. Other Wnt ligands, such as Wnt5a, typically signal via non-canonical, β-catenin-independent, pathways that in some cases can antagonize canonical signaling. Since the role of non-canonical Wnt signaling in stem cell regulation is not well characterized, we set out to investigate this using mammosphere formation assays that reflect and quantify stem cell properties. Ex vivo mammosphere cultures were established from both wild-type and Wnt1 transgenic mice and were analyzed in response to manipulation of both canonical and non-canonical Wnt signaling. An increased level of mammosphere formation was observed in cultures derived from MMTV-Wnt1 versus wild-type animals, and this was blocked by treatment with Dkk1, a selective inhibitor of canonical Wnt signaling. Consistent with this, we found that a single dose of recombinant Wnt3a was sufficient to increase mammosphere formation in wild-type cultures. Surprisingly, we found that Wnt5a also increased mammosphere formation in these assays. We confirmed that this was not caused by an increase in canonical Wnt/β-catenin signaling but was instead mediated by non-canonical Wnt signals requiring the receptor tyrosine kinase Ror2 and activity of the Jun N-terminal kinase, JNK. We conclude that both canonical and non-canonical Wnt signals have positive effects promoting stem cell activity in mammosphere assays and that they do so via independent signaling mechanisms.

  7. Modern physics for scientists and engineers

    CERN Document Server

    Morrison, John C

    2010-01-01

    Intended for a first course in modern physics, following an introductory course in physics with calculus, Modern Physics for Scientists and Engineers begins with a brief and focused account of the historical events leading to the formulation of modern quantum theory, while later chapters delve into the underlying physics. Streamlined content, chapters on semiconductors, Dirac Equation and Quantum Field Theory, and a robust pedagogy and ancillary package including an accompanying website with computer applets assists students in learning the essential material.

  8. Quantum magnetism

    CERN Document Server

    Richter, Johannes; Farnell, Damian; Bishop, Raymod

    2004-01-01

    The investigation of magnetic systems where quantum effects play a dominant role has become a very active branch of solid-state-physics research in its own right. The first three chapters of the "Quantum Magnetism" survey conceptual problems and provide insights into the classes of systems considered, namely one-dimensional, two-dimensional and molecular magnets. The following chapters introduce the methods used in the field of quantum magnetism, including spin wave analysis, exact diagonalization, quantum field theory, coupled cluster methods and the Bethe ansatz. The book closes with a chapter on quantum phase transitions and a contribution that puts the wealth of phenomena into the context of experimental solid-state physics. Closing a gap in the literature, this volume is intended both as an introductory text at postgraduate level and as a modern, comprehensive reference for researchers in the field.

  9. Gauge invariance and canonical quantization applied in the study of internal structure of gauge field systems

    International Nuclear Information System (INIS)

    Wang Fan; Chen Xiangsong; Lue Xiaofu; Sun Weiming; Goldman, T.

    2010-01-01

    It is unavoidable to deal with the quark and gluon momentum and angular momentum contributions to the nucleon momentum and spin in the study of nucleon internal structure. However, we never have the quark and gluon momentum, orbital angular momentum and gluon spin operators which satisfy both the gauge invariance and the canonical momentum and angular momentum commutation relations. The conflicts between the gauge invariance and canonical quantization requirement of these operators are discussed. A new set of quark and gluon momentum, orbital angular momentum and spin operators, which satisfy both the gauge invariance and canonical momentum and angular momentum commutation relations, are proposed. The key point to achieve such a proper decomposition is to separate the gauge field into the pure gauge and the gauge covariant parts. The same conflicts also exist in QED and quantum mechanics and have been solved in the same manner. The impacts of this new decomposition to the nucleon internal structure are discussed.

  10. Transforming differential equations of multi-loop Feynman integrals into canonical form

    Energy Technology Data Exchange (ETDEWEB)

    Meyer, Christoph [Institut für Physik, Humboldt-Universität zu Berlin,12489 Berlin (Germany)

    2017-04-03

    The method of differential equations has been proven to be a powerful tool for the computation of multi-loop Feynman integrals appearing in quantum field theory. It has been observed that in many instances a canonical basis can be chosen, which drastically simplifies the solution of the differential equation. In this paper, an algorithm is presented that computes the transformation to a canonical basis, starting from some basis that is, for instance, obtained by the usual integration-by-parts reduction techniques. The algorithm requires the existence of a rational transformation to a canonical basis, but is otherwise completely agnostic about the differential equation. In particular, it is applicable to problems involving multiple scales and allows for a rational dependence on the dimensional regulator. It is demonstrated that the algorithm is suitable for current multi-loop calculations by presenting its successful application to a number of non-trivial examples.

  11. Stabilizing canonical-ensemble calculations in the auxiliary-field Monte Carlo method

    Science.gov (United States)

    Gilbreth, C. N.; Alhassid, Y.

    2015-03-01

    Quantum Monte Carlo methods are powerful techniques for studying strongly interacting Fermi systems. However, implementing these methods on computers with finite-precision arithmetic requires careful attention to numerical stability. In the auxiliary-field Monte Carlo (AFMC) method, low-temperature or large-model-space calculations require numerically stabilized matrix multiplication. When adapting methods used in the grand-canonical ensemble to the canonical ensemble of fixed particle number, the numerical stabilization increases the number of required floating-point operations for computing observables by a factor of the size of the single-particle model space, and thus can greatly limit the systems that can be studied. We describe an improved method for stabilizing canonical-ensemble calculations in AFMC that exhibits better scaling, and present numerical tests that demonstrate the accuracy and improved performance of the method.

  12. Transforming differential equations of multi-loop Feynman integrals into canonical form

    Science.gov (United States)

    Meyer, Christoph

    2017-04-01

    The method of differential equations has been proven to be a powerful tool for the computation of multi-loop Feynman integrals appearing in quantum field theory. It has been observed that in many instances a canonical basis can be chosen, which drastically simplifies the solution of the differential equation. In this paper, an algorithm is presented that computes the transformation to a canonical basis, starting from some basis that is, for instance, obtained by the usual integration-by-parts reduction techniques. The algorithm requires the existence of a rational transformation to a canonical basis, but is otherwise completely agnostic about the differential equation. In particular, it is applicable to problems involving multiple scales and allows for a rational dependence on the dimensional regulator. It is demonstrated that the algorithm is suitable for current multi-loop calculations by presenting its successful application to a number of non-trivial examples.

  13. Transforming differential equations of multi-loop Feynman integrals into canonical form

    International Nuclear Information System (INIS)

    Meyer, Christoph

    2017-01-01

    The method of differential equations has been proven to be a powerful tool for the computation of multi-loop Feynman integrals appearing in quantum field theory. It has been observed that in many instances a canonical basis can be chosen, which drastically simplifies the solution of the differential equation. In this paper, an algorithm is presented that computes the transformation to a canonical basis, starting from some basis that is, for instance, obtained by the usual integration-by-parts reduction techniques. The algorithm requires the existence of a rational transformation to a canonical basis, but is otherwise completely agnostic about the differential equation. In particular, it is applicable to problems involving multiple scales and allows for a rational dependence on the dimensional regulator. It is demonstrated that the algorithm is suitable for current multi-loop calculations by presenting its successful application to a number of non-trivial examples.

  14. Introduction to modern physics

    International Nuclear Information System (INIS)

    Pfeffer, J.; Nir, S.

    1993-01-01

    The modern physics and its uses changed our world of concepts and ways of life. This book explains the basics of modern physics in a simple and extensive form. The main subjects included in the book are: The relativistic theory, quantum theory, the structure of the atom, the interaction of radiation with matter and nuclear physics. The book elaborates on some advanced subjects: The laser, Moessbauer effect, Nuclear magnetic Resonance and solids electric conductivity. The book is for natural sciences students, whose main subject is not physics. The book can be used also in high schools. (authors)

  15. Modern physics for engineers

    CERN Document Server

    Singh, Jasprit

    1999-01-01

    Linking physics fundamentals to modern technology-a highly applied primer for students and engineersReminding us that modern inventions-new materials, information technologies, medical technological breakthroughs-are based on well-established fundamental principles of physics, Jasprit Singh integrates important topics from quantum mechanics, statistical thermodynamics, and materials science, as well as the special theory of relativity. He then goes a step farther and applies these fundamentals to the workings of electronic devices-an essential leap for anyone interested in developing n

  16. A short walk in quantum probability

    Science.gov (United States)

    Hudson, Robin

    2018-04-01

    This is a personal survey of aspects of quantum probability related to the Heisenberg commutation relation for canonical pairs. Using the failure, in general, of non-negativity of the Wigner distribution for canonical pairs to motivate a more satisfactory quantum notion of joint distribution, we visit a central limit theorem for such pairs and a resulting family of quantum planar Brownian motions which deform the classical planar Brownian motion, together with a corresponding family of quantum stochastic areas. This article is part of the themed issue `Hilbert's sixth problem'.

  17. A short walk in quantum probability.

    Science.gov (United States)

    Hudson, Robin

    2018-04-28

    This is a personal survey of aspects of quantum probability related to the Heisenberg commutation relation for canonical pairs. Using the failure, in general, of non-negativity of the Wigner distribution for canonical pairs to motivate a more satisfactory quantum notion of joint distribution, we visit a central limit theorem for such pairs and a resulting family of quantum planar Brownian motions which deform the classical planar Brownian motion, together with a corresponding family of quantum stochastic areas.This article is part of the themed issue 'Hilbert's sixth problem'. © 2018 The Author(s).

  18. Introduction to quantum field theory

    CERN Document Server

    Alvarez-Gaumé, Luís

    1994-01-01

    The purpose of this lecture is to review some elementary aspects of Quantum Field Theory. From the necessity to introduce quantum fields once quantum mechanics and special relativity are put together, to some of the basic practical computational tools in the subject, including the canonical quantization of simple field theories, the derivation of Feynman rules, computation of cross sections and decay rates, some introductory remarks on the treatment of unstable states and the possible realization of symmetries in a general field theory. The audience is required to have a working knowledge of quantum mechanics and special relativity and it would also be desirable to know the rudiments of relativistic quantum mechanics.

  19. Engineering quantum mechanics

    CERN Document Server

    Ahn, Doyeol

    2011-01-01

    A clear introduction to quantum mechanics concepts Quantum mechanics has become an essential tool for modern engineering, particularly due to the recent developments in quantum computing as well as the rapid progress in optoelectronic devices. Engineering Quantum Mechanics explains the fundamentals of this exciting field, providing broad coverage of both traditional areas such as semiconductor and laser physics as well as relatively new yet fast-growing areas such as quantum computation and quantum information technology. The book begins with basic quantum mechanics, reviewing measurements and probability, Dirac formulation, the uncertainty principle, harmonic oscillator, angular momentum eigenstates, and perturbation theory. Then, quantum statistical mechanics is explored, from second quantization and density operators to coherent and squeezed states, coherent interactions between atoms and fields, and the Jaynes-Cummings model. From there, the book moves into elementary and modern applications, discussing s...

  20. Quantum relativity theory

    International Nuclear Information System (INIS)

    Banai, M.

    1983-11-01

    A quantum relativity theory formulated in terms of Davis' quantum relativity principle is outlined. The first task in this theory as in classical relativity theory is to model space-time, the arena of natural processes. It is argued that the quantum space-time models of Banai introduced in an earlier paper is formulated in terms of Davis' quantum relativity. Then it is shown that the recently proposed classical relativistic quantum theory of Prugovecki and his corresponding classical relativistic quantum model of space-time open the way to introduce in a consistent way the quantum space-time model (the 'canonically quantized Minkowski space') proposed by Banai earlier. The main new aspect of the quantum mechanics of the quantum relativistic particles is, in this model of space-time, that it provides a true mass eigenvalue problem and, that the excited mass states of such particles can be interpreted as classifically relativistic (massive) quantum particles ('elementary particles'). The question of field theory over quantum relativistic models of space-time is also discussed. Finally, it is suggested that 'quarks' should be considered as quantum relativistic particles. (author)

  1. The quantum universe

    Science.gov (United States)

    Hey, Anthony J. G.; Walters, Patrick

    This book provides a descriptive, popular account of quantum physics. The basic topics addressed include: waves and particles, the Heisenberg uncertainty principle, the Schroedinger equation and matter waves, atoms and nuclei, quantum tunneling, the Pauli exclusion principle and the elements, quantum cooperation and superfluids, Feynman rules, weak photons, quarks, and gluons. The applications of quantum physics to astrophyics, nuclear technology, and modern electronics are addressed.

  2. On the coupling of statistic sum of canonical and large canonical ensemble of interacting particles

    International Nuclear Information System (INIS)

    Vall, A.N.

    2000-01-01

    Potentiality of refining the known result based on analytic properties of a great statistical sum, as a function of the absolute activity of the boundary integral contribution into statistical sum, is considered. A strict asymptotic ratio between statistical sums of canonical and large canonical ensemble of interacting particles was derived [ru

  3. Multicollinearity in canonical correlation analysis in maize.

    Science.gov (United States)

    Alves, B M; Cargnelutti Filho, A; Burin, C

    2017-03-30

    The objective of this study was to evaluate the effects of multicollinearity under two methods of canonical correlation analysis (with and without elimination of variables) in maize (Zea mays L.) crop. Seventy-six maize genotypes were evaluated in three experiments, conducted in a randomized block design with three replications, during the 2009/2010 crop season. Eleven agronomic variables (number of days from sowing until female flowering, number of days from sowing until male flowering, plant height, ear insertion height, ear placement, number of plants, number of ears, ear index, ear weight, grain yield, and one thousand grain weight), 12 protein-nutritional variables (crude protein, lysine, methionine, cysteine, threonine, tryptophan, valine, isoleucine, leucine, phenylalanine, histidine, and arginine), and 6 energetic-nutritional variables (apparent metabolizable energy, apparent metabolizable energy corrected for nitrogen, ether extract, crude fiber, starch, and amylose) were measured. A phenotypic correlation matrix was first generated among the 29 variables for each of the experiments. A multicollinearity diagnosis was later performed within each group of variables using methodologies such as variance inflation factor and condition number. Canonical correlation analysis was then performed, with and without the elimination of variables, among groups of agronomic and protein-nutritional, and agronomic and energetic-nutritional variables. The canonical correlation analysis in the presence of multicollinearity (without elimination of variables) overestimates the variability of canonical coefficients. The elimination of variables is an efficient method to circumvent multicollinearity in canonical correlation analysis.

  4. The Bargmann transform and canonical transformations

    International Nuclear Information System (INIS)

    Villegas-Blas, Carlos

    2002-01-01

    This paper concerns a relationship between the kernel of the Bargmann transform and the corresponding canonical transformation. We study this fact for a Bargmann transform introduced by Thomas and Wassell [J. Math. Phys. 36, 5480-5505 (1995)]--when the configuration space is the two-sphere S 2 and for a Bargmann transform that we introduce for the three-sphere S 3 . It is shown that the kernel of the Bargmann transform is a power series in a function which is a generating function of the corresponding canonical transformation (a classical analog of the Bargmann transform). We show in each case that our canonical transformation is a composition of two other canonical transformations involving the complex null quadric in C 3 or C 4 . We also describe quantizations of those two other canonical transformations by dealing with spaces of holomorphic functions on the aforementioned null quadrics. Some of these quantizations have been studied by Bargmann and Todorov [J. Math. Phys. 18, 1141-1148 (1977)] and the other quantizations are related to the work of Guillemin [Integ. Eq. Operator Theory 7, 145-205 (1984)]. Since suitable infinite linear combinations of powers of the generating functions are coherent states for L 2 (S 2 ) or L 2 (S 3 ), we show finally that the studied Bargmann transforms are actually coherent states transforms

  5. Characterizing multiple solutions to the time-energy canonical commutation relation via internal symmetries

    International Nuclear Information System (INIS)

    Caballar, Roland Cristopher F.; Ocampo, Leonard R.; Galapon, Eric A.

    2010-01-01

    Internal symmetries can be used to classify multiple solutions to the time-energy canonical commutation relation (TE-CCR). The dynamical behavior of solutions to the TE-CCR possessing particular internal symmetries involving time reversal differ significantly from solutions to the TE-CCR without those particular symmetries, implying a connection between the internal symmetries of a quantum system, its internal unitary dynamics, and the TE-CCR.

  6. Global quantal canonical symmetry properties for a system with a singular Lagrangian

    International Nuclear Information System (INIS)

    Li Ziping

    1996-01-01

    Starting from the quantization formalism of the phase-space path integral for a system with a singular Lagrangian, the generalized canonical Ward identities and conserved charged at quantum level are deduced under the global transformation in extended phase space. In general, the quantal conserved charges are different from classical ones. We give a preliminary application to Yang-Mills theory, the new quantal conserved charges are found

  7. Canonical realizations of the Lie algebra sp(2n,R)

    International Nuclear Information System (INIS)

    Havlicek, M.; Lassner, W.

    1975-01-01

    The generators of the Lie algebra of the symplectic group sp(2n,R) are, rezcurently, realied by means of polynomials in the quantum canonical variables qsub(i) and psub(i), i=1,...,d(2n-d);d=1,...,n. These realisations are skew-hermitean, the Casimir operators are realised by constant multiples of identity element and they depend on d free real parameters

  8. Towards a quantum internet

    Science.gov (United States)

    Dür, Wolfgang; Lamprecht, Raphael; Heusler, Stefan

    2017-07-01

    A long-range quantum communication network is among the most promising applications of emerging quantum technologies. We discuss the potential of such a quantum internet for the secure transmission of classical and quantum information, as well as theoretical and experimental approaches and recent advances to realize them. We illustrate the involved concepts such as error correction, teleportation or quantum repeaters and consider an approach to this topic based on catchy visualizations as a context-based, modern treatment of quantum theory at high school.

  9. Dictionary-Based Tensor Canonical Polyadic Decomposition

    Science.gov (United States)

    Cohen, Jeremy Emile; Gillis, Nicolas

    2018-04-01

    To ensure interpretability of extracted sources in tensor decomposition, we introduce in this paper a dictionary-based tensor canonical polyadic decomposition which enforces one factor to belong exactly to a known dictionary. A new formulation of sparse coding is proposed which enables high dimensional tensors dictionary-based canonical polyadic decomposition. The benefits of using a dictionary in tensor decomposition models are explored both in terms of parameter identifiability and estimation accuracy. Performances of the proposed algorithms are evaluated on the decomposition of simulated data and the unmixing of hyperspectral images.

  10. Teaching Introductory Quantum Physics and Chemistry: Caveats from the History of Science and Science Teaching to the Training of Modern Chemists

    Science.gov (United States)

    Greca, Ileana M.; Freire, Olival, Jr.

    2014-01-01

    Finding the best ways to introduce quantum physics to undergraduate students in all scientific areas, in particular for chemistry students, is a pressing, but hardly a simple task. In this paper, we discuss the relevance of taking into account lessons from the history of the discipline and the ongoing controversy over its interpretations and…

  11. Proceedings of the symposium on the foundations of modern physics, 1987

    International Nuclear Information System (INIS)

    Lahti, P.

    1987-01-01

    This book discusses the following subjects: The Quantum Postulate and atomic theory; modern mathematics in formulation of basic laws of physics; uncertainty principles, Quantum systems; Niels Bohr's concept of reality; Quantum theory; language and reality in Quantum physics; Wolfgang Pauli's conception of reality; interpretation of Quantum mechanics; varieties of realism; and many-Hilbert-spaces theory of Quantum measurements

  12. Tradition and Modernity: India's Quantum Leap into the 21st Century. Independent Curriculum Project. Fulbright-Hays Summer Seminars Abroad 1998 (India).

    Science.gov (United States)

    Stewart, Elise

    This lesson on India is suggested as a culminating activity to bring together previously taught units about infrastructure, Islam, Buddhism, Hinduism, ancient India, and contemporary India. The lesson's goals are to examine how a country's cultural background can influence change and to study the development of modern infrastructure. The students…

  13. Canonical vs. micro-canonical sampling methods in a 2D Ising model

    International Nuclear Information System (INIS)

    Kepner, J.

    1990-12-01

    Canonical and micro-canonical Monte Carlo algorithms were implemented on a 2D Ising model. Expressions for the internal energy, U, inverse temperature, Z, and specific heat, C, are given. These quantities were calculated over a range of temperature, lattice sizes, and time steps. Both algorithms accurately simulate the Ising model. To obtain greater than three decimal accuracy from the micro-canonical method requires that the more complicated expression for Z be used. The overall difference between the algorithms is small. The physics of the problem under study should be the deciding factor in determining which algorithm to use. 13 refs., 6 figs., 2 tabs

  14. Infants' Recognition of Objects Using Canonical Color

    Science.gov (United States)

    Kimura, Atsushi; Wada, Yuji; Yang, Jiale; Otsuka, Yumiko; Dan, Ippeita; Masuda, Tomohiro; Kanazawa, So; Yamaguchi, Masami K.

    2010-01-01

    We explored infants' ability to recognize the canonical colors of daily objects, including two color-specific objects (human face and fruit) and a non-color-specific object (flower), by using a preferential looking technique. A total of 58 infants between 5 and 8 months of age were tested with a stimulus composed of two color pictures of an object…

  15. Canonical sampling of a lattice gas

    International Nuclear Information System (INIS)

    Mueller, W.F.

    1997-01-01

    It is shown that a sampling algorithm, recently proposed in conjunction with a lattice-gas model of nuclear fragmentation, samples the canonical ensemble only in an approximate fashion. A residual weight factor has to be taken into account to calculate correct thermodynamic averages. Then, however, the algorithm is numerically inefficient. copyright 1997 The American Physical Society

  16. DNA pattern recognition using canonical correlation algorithm

    Indian Academy of Sciences (India)

    2015-09-28

    Sep 28, 2015 ... were considered as the two views, and statistically significant relationships were established between these two ... Canonical correlation analysis is to find two sets of basis ..... Jing XY, Li S, Lan C, Zhang D, Yang JY and Liu Q 2011 Color ... Yu S, Yu K, Tresp V and Kriegel HP 2006 Multi-output regularized.

  17. Universal canonical entropy for gravitating systems

    Indian Academy of Sciences (India)

    Similar to this is the case of ref. [12] which also uses the saddle point approximation to express the microcanonical entropy in terms of the canonical entropy [12a]. Recalling that there is at least 'circumstantial' evidence that the microcanonical entropy has a 'universal' form [13–15], identical to that obtained in ref. [6] quoted.

  18. Canonical analysis based on mutual information

    DEFF Research Database (Denmark)

    Nielsen, Allan Aasbjerg; Vestergaard, Jacob Schack

    2015-01-01

    combinations with the information theoretical measure mutual information (MI). We term this type of analysis canonical information analysis (CIA). MI allows for the actual joint distribution of the variables involved and not just second order statistics. While CCA is ideal for Gaussian data, CIA facilitates...

  19. Generalized canonical correlation analysis with missing values

    NARCIS (Netherlands)

    M. van de Velden (Michel); Y. Takane

    2009-01-01

    textabstractTwo new methods for dealing with missing values in generalized canonical correlation analysis are introduced. The first approach, which does not require iterations, is a generalization of the Test Equating method available for principal component analysis. In the second approach,

  20. On the canonical treatment of Lagrangian constraints

    International Nuclear Information System (INIS)

    Barbashov, B.M.

    2001-01-01

    The canonical treatment of dynamic systems with manifest Lagrangian constraints proposed by Berezin is applied to concrete examples: a special Lagrangian linear in velocities, relativistic particles in proper time gauge, a relativistic string in orthonormal gauge, and the Maxwell field in the Lorentz gauge

  1. Kuidas Canon suureks kasvas / Andres Eilart

    Index Scriptorium Estoniae

    Eilart, Andres

    2004-01-01

    Jaapani kaamerate ja büroomasinate tootja Canon Groupi arengust, tegevusest kolmes regioonis - USA-s, Euroopas ja Aasias ning ettevõtte pikaajalise edu põhjustest - ärifilosoofiast ning ajastatud tootearendusest. Vt. samas: Firma esialgne nimi oli Kwanon; Konkurendid koonduvad

  2. On the canonical treatment of Lagrangian constraints

    International Nuclear Information System (INIS)

    Barbashov, B.M.

    2001-01-01

    The canonical treatment of dynamic systems with manifest Lagrangian constraints proposed by Berezin is applied to concrete examples: a specific Lagrangian linear in velocities, relativistic particles in proper time gauge, a relativistic string in orthonormal gauge, and the Maxwell field in the Lorentz gauge

  3. The Literary Canon in the Age of New Media

    DEFF Research Database (Denmark)

    Backe, Hans-Joachim

    2015-01-01

    and mediality of the canon. In a development that has largely gone unnoticed outside German speaking countries, new approaches for discussing current and future processes of canonization have been developed in recent years. One pivotal element of this process has been a thorough re-evaluation new media......The article offers a comparative overview of the diverging courses of the canon debate in Anglophone and Germanophone contexts. While the Anglophone canon debate has focused on the politics of canon composition, the Germanophone canon debate has been more concerned with the malleability...

  4. Quantum Physics

    Science.gov (United States)

    Le Bellac, Michel

    2006-03-01

    Quantum physics allows us to understand the nature of the physical phenomena which govern the behavior of solids, semi-conductors, lasers, atoms, nuclei, subnuclear particles and light. In Quantum Physics, Le Bellac provides a thoroughly modern approach to this fundamental theory. Throughout the book, Le Bellac teaches the fundamentals of quantum physics using an original approach which relies primarily on an algebraic treatment and on the systematic use of symmetry principles. In addition to the standard topics such as one-dimensional potentials, angular momentum and scattering theory, the reader is introduced to more recent developments at an early stage. These include a detailed account of entangled states and their applications, the optical Bloch equations, the theory of laser cooling and of magneto-optical traps, vacuum Rabi oscillations, and an introduction to open quantum systems. This is a textbook for a modern course on quantum physics, written for advanced undergraduate and graduate students. Completely original and contemporary approach, using algebra and symmetry principles Introduces recent developments at an early stage, including many topics that cannot be found in standard textbooks. Contains 130 physically relevant exercises

  5. Bookshelf (The Quantum Theory of Fields, La lumiere des neutrinos)

    Energy Technology Data Exchange (ETDEWEB)

    Anon.

    1995-10-15

    The Quantum Theory of Fields Volume 1: Foundations by Steven Weinberg, Cambridge University Press, 1995: Steven Weinberg is celebrated for his many contributions to quantum field theory and its applications to elementary particle physics - most notably, for developing the electroweak theory, the unified model of the electromagnetic and weak forces that forms part of the Standard Model that has explained essentially all accelerator data on the behaviour of elementary particles. This is the culmination of the developments in quantum field theory that started in the early days of quantum mechanics and came to maturity with the development of quantum electrodynamics in the late 1940s. Quantum field theory is the basic theoretical framework for research in particle physics as well as in many areas of condensed matter physics. No wonder the community has been waiting with anticipation for Weinberg's exposition of the subject in the form of a two-volume textbook - the more so since, despite the existence of many textbooks, few of them are written with the insight and detail that are needed for a thorough understanding. The community will not be disappointed, at least on the basis of this first volume - Volume 2 is due to appear next year. Volume 1 is 600 pages of meticulous exposition of the fundamentals of the subject, starting from a historical introduction and the canonical formulation of quantum field theory to modern path integral methods applied to the quantization of electrodynamics and a first discussion of renormaiization. In addition to a superb treatment of all the conventional topics there are numerous sections covering areas that are not normally emphasized, such as the subject of field redefinitions, higher-rank tensor fields and an unusually clear and thorough treatment of infrared effects. This is only the basics - Volume 2 promises to develop the subjects at the cutting edge of modern research such as Yang-Mills theory, the renormalization group, symmetry

  6. Bookshelf (The Quantum Theory of Fields, La lumiere des neutrinos)

    International Nuclear Information System (INIS)

    Anon.

    1995-01-01

    The Quantum Theory of Fields Volume 1: Foundations by Steven Weinberg, Cambridge University Press, 1995: Steven Weinberg is celebrated for his many contributions to quantum field theory and its applications to elementary particle physics - most notably, for developing the electroweak theory, the unified model of the electromagnetic and weak forces that forms part of the Standard Model that has explained essentially all accelerator data on the behaviour of elementary particles. This is the culmination of the developments in quantum field theory that started in the early days of quantum mechanics and came to maturity with the development of quantum electrodynamics in the late 1940s. Quantum field theory is the basic theoretical framework for research in particle physics as well as in many areas of condensed matter physics. No wonder the community has been waiting with anticipation for Weinberg's exposition of the subject in the form of a two-volume textbook - the more so since, despite the existence of many textbooks, few of them are written with the insight and detail that are needed for a thorough understanding. The community will not be disappointed, at least on the basis of this first volume - Volume 2 is due to appear next year. Volume 1 is 600 pages of meticulous exposition of the fundamentals of the subject, starting from a historical introduction and the canonical formulation of quantum field theory to modern path integral methods applied to the quantization of electrodynamics and a first discussion of renormaiization. In addition to a superb treatment of all the conventional topics there are numerous sections covering areas that are not normally emphasized, such as the subject of field redefinitions, higher-rank tensor fields and an unusually clear and thorough treatment of infrared effects. This is only the basics - Volume 2 promises to develop the subjects at the cutting edge of modern research such as Yang-Mills theory, the renormalization group

  7. Modernity: Are Modern Times Different?

    Directory of Open Access Journals (Sweden)

    Lynn Hunt

    2014-12-01

    Full Text Available “Modernity” has recently been the subject of considerable discussion among historians. This article reviews some of the debates and argues that modernity is a problematic concept because it implies a complete rupture with “traditional” ways of life. Studies of key terms are undertaken with the aid of Google Ngrams. These show that “modernity,” “modern times,” and “traditional” —in English and other languages— have a history of their own. A brief analysis of the shift from a self oriented toward equilibrium to a self oriented toward stimulation demonstrates that modernity is not necessary to historical analysis.

  8. Statistical ensembles in quantum mechanics

    International Nuclear Information System (INIS)

    Blokhintsev, D.

    1976-01-01

    The interpretation of quantum mechanics presented in this paper is based on the concept of quantum ensembles. This concept differs essentially from the canonical one by that the interference of the observer into the state of a microscopic system is of no greater importance than in any other field of physics. Owing to this fact, the laws established by quantum mechanics are not of less objective character than the laws governing classical statistical mechanics. The paradoxical nature of some statements of quantum mechanics which result from the interpretation of the wave functions as the observer's notebook greatly stimulated the development of the idea presented. (Auth.)

  9. A primitive of Scandinavian Modern?

    DEFF Research Database (Denmark)

    Christensen, Line Hjorth

    2018-01-01

    In the web of publications, exhibitions etc. that outlines a Danish design history, Knud V. Engelhardt (1882-1931) takes up a paradoxical position: proclaimed a pioneer, who turned aside historicism and partly the national romanticism of ‘Skønvirke’, his work is said to inhabit a simplicity...... on the Cultural Canon; in this politically initiated context his “tight functionality and soft humanism” was regarded as “characteristic of Scandinavian Modern, the style that Denmark would later become so famous for”. Further, the sparse records and modest research carried out on Engelhardt’s work, are often...

  10. Quantum signatures of chaos or quantum chaos?

    Energy Technology Data Exchange (ETDEWEB)

    Bunakov, V. E., E-mail: bunakov@VB13190.spb.edu [St. Petersburg State University (Russian Federation)

    2016-11-15

    A critical analysis of the present-day concept of chaos in quantum systems as nothing but a “quantum signature” of chaos in classical mechanics is given. In contrast to the existing semi-intuitive guesses, a definition of classical and quantum chaos is proposed on the basis of the Liouville–Arnold theorem: a quantum chaotic system featuring N degrees of freedom should have M < N independent first integrals of motion (good quantum numbers) specified by the symmetry of the Hamiltonian of the system. Quantitative measures of quantum chaos that, in the classical limit, go over to the Lyapunov exponent and the classical stability parameter are proposed. The proposed criteria of quantum chaos are applied to solving standard problems of modern dynamical chaos theory.

  11. Quantum signatures of chaos or quantum chaos?

    International Nuclear Information System (INIS)

    Bunakov, V. E.

    2016-01-01

    A critical analysis of the present-day concept of chaos in quantum systems as nothing but a “quantum signature” of chaos in classical mechanics is given. In contrast to the existing semi-intuitive guesses, a definition of classical and quantum chaos is proposed on the basis of the Liouville–Arnold theorem: a quantum chaotic system featuring N degrees of freedom should have M < N independent first integrals of motion (good quantum numbers) specified by the symmetry of the Hamiltonian of the system. Quantitative measures of quantum chaos that, in the classical limit, go over to the Lyapunov exponent and the classical stability parameter are proposed. The proposed criteria of quantum chaos are applied to solving standard problems of modern dynamical chaos theory.

  12. Canonical sound speed profile for the central Bay of Bengal

    Digital Repository Service at National Institute of Oceanography (India)

    Murty, T.V.R.; PrasannaKumar, S.; Somayajulu, Y.K.; Sastry, J.S.; De Figueiredo, R.J.P.

    Following Munk's canonical theory, an algorithm has been presented for computing sound channel parameters in the western and southern Bay of Bengal. The estimated canonical sound speed profile using these parameters has been compared with computed...

  13. Quantum Gravity

    International Nuclear Information System (INIS)

    Giribet, G E

    2005-01-01

    Claus Kiefer presents his book, Quantum Gravity, with his hope that '[the] book will convince readers of [the] outstanding problem [of unification and quantum gravity] and encourage them to work on its solution'. With this aim, the author presents a clear exposition of the fundamental concepts of gravity and the steps towards the understanding of its quantum aspects. The main part of the text is dedicated to the analysis of standard topics in the formulation of general relativity. An analysis of the Hamiltonian formulation of general relativity and the canonical quantization of gravity is performed in detail. Chapters four, five and eight provide a pedagogical introduction to the basic concepts of gravitational physics. In particular, aspects such as the quantization of constrained systems, the role played by the quadratic constraint, the ADM decomposition, the Wheeler-de Witt equation and the problem of time are treated in an expert and concise way. Moreover, other specific topics, such as the minisuperspace approach and the feasibility of defining extrinsic times for certain models, are discussed as well. The ninth chapter of the book is dedicated to the quantum gravitational aspects of string theory. Here, a minimalistic but clear introduction to string theory is presented, and this is actually done with emphasis on gravity. It is worth mentioning that no hard (nor explicit) computations are presented, even though the exposition covers the main features of the topic. For instance, black hole statistical physics (within the framework of string theory) is developed in a pedagogical and concise way by means of heuristical arguments. As the author asserts in the epilogue, the hope of the book is to give 'some impressions from progress' made in the study of quantum gravity since its beginning, i.e., since the end of 1920s. In my opinion, Kiefer's book does actually achieve this goal and gives an extensive review of the subject. (book review)

  14. Grand Canonical adaptive resolution simulation for molecules with electrons: A theoretical framework based on physical consistency

    Science.gov (United States)

    Delle Site, Luigi

    2018-01-01

    A theoretical scheme for the treatment of an open molecular system with electrons and nuclei is proposed. The idea is based on the Grand Canonical description of a quantum region embedded in a classical reservoir of molecules. Electronic properties of the quantum region are calculated at constant electronic chemical potential equal to that of the corresponding (large) bulk system treated at full quantum level. Instead, the exchange of molecules between the quantum region and the classical environment occurs at the chemical potential of the macroscopic thermodynamic conditions. The Grand Canonical Adaptive Resolution Scheme is proposed for the treatment of the classical environment; such an approach can treat the exchange of molecules according to first principles of statistical mechanics and thermodynamic. The overall scheme is build on the basis of physical consistency, with the corresponding definition of numerical criteria of control of the approximations implied by the coupling. Given the wide range of expertise required, this work has the intention of providing guiding principles for the construction of a well founded computational protocol for actual multiscale simulations from the electronic to the mesoscopic scale.

  15. An introduction to the theory of canonical matrices

    CERN Document Server

    Turnbull, H W

    2004-01-01

    Thorough and self-contained, this penetrating study of the theory of canonical matrices presents a detailed consideration of all the theory's principal features. Topics include elementary transformations and bilinear and quadratic forms; canonical reduction of equivalent matrices; subgroups of the group of equivalent transformations; and rational and classical canonical forms. The final chapters explore several methods of canonical reduction, including those of unitary and orthogonal transformations. 1952 edition. Index. Appendix. Historical notes. Bibliographies. 275 problems.

  16. Minimal canonical comprehensive Gröbner systems

    OpenAIRE

    Manubens, Montserrat; Montes, Antonio

    2009-01-01

    This is the continuation of Montes' paper "On the canonical discussion of polynomial systems with parameters''. In this paper, we define the Minimal Canonical Comprehensive Gröbner System of a parametric ideal and fix under which hypothesis it exists and is computable. An algorithm to obtain a canonical description of the segments of the Minimal Canonical CGS is given, thus completing the whole MCCGS algorithm (implemented in Maple and Singular). We show its high utility for applications, suc...

  17. Scalable optical quantum computer

    Energy Technology Data Exchange (ETDEWEB)

    Manykin, E A; Mel' nichenko, E V [Institute for Superconductivity and Solid-State Physics, Russian Research Centre ' Kurchatov Institute' , Moscow (Russian Federation)

    2014-12-31

    A way of designing a scalable optical quantum computer based on the photon echo effect is proposed. Individual rare earth ions Pr{sup 3+}, regularly located in the lattice of the orthosilicate (Y{sub 2}SiO{sub 5}) crystal, are suggested to be used as optical qubits. Operations with qubits are performed using coherent and incoherent laser pulses. The operation protocol includes both the method of measurement-based quantum computations and the technique of optical computations. Modern hybrid photon echo protocols, which provide a sufficient quantum efficiency when reading recorded states, are considered as most promising for quantum computations and communications. (quantum computer)

  18. Scalable optical quantum computer

    International Nuclear Information System (INIS)

    Manykin, E A; Mel'nichenko, E V

    2014-01-01

    A way of designing a scalable optical quantum computer based on the photon echo effect is proposed. Individual rare earth ions Pr 3+ , regularly located in the lattice of the orthosilicate (Y 2 SiO 5 ) crystal, are suggested to be used as optical qubits. Operations with qubits are performed using coherent and incoherent laser pulses. The operation protocol includes both the method of measurement-based quantum computations and the technique of optical computations. Modern hybrid photon echo protocols, which provide a sufficient quantum efficiency when reading recorded states, are considered as most promising for quantum computations and communications. (quantum computer)

  19. A geometric form of the canonical commutation

    International Nuclear Information System (INIS)

    Guz, W.

    1987-01-01

    Some aspects of a geometric approach to quantum theory, in which the quantum-mechanical position and momentum operators are represented by covariant derivatives, are here developed. Here, the previously estabilished formalism of Caianiello and his co-workers is extended to the case of an integrable almost complex Hermitian manifold. The general theory is then applied to the two-dimensional case, where the structure of the 'quantum geometry' induced in the manifold by the quantum-mechanical CCR can be explicitly determined

  20. Symmetric minimally entangled typical thermal states, grand-canonical ensembles, and the influence of the collapse bases

    Science.gov (United States)

    Binder, Moritz; Barthel, Thomas

    Based on DMRG, strongly correlated quantum many-body systems at finite temperatures can be simulated by sampling over a certain class of pure matrix product states (MPS) called minimally entangled typical thermal states (METTS). Here, we show how symmetries of the system can be exploited to considerably reduce computation costs in the METTS algorithm. While this is straightforward for the canonical ensemble, we introduce a modification of the algorithm to efficiently simulate the grand-canonical ensemble under utilization of symmetries. In addition, we construct novel symmetry-conserving collapse bases for the transitions in the Markov chain of METTS that improve the speed of convergence of the algorithm by reducing autocorrelations.

  1. DNA pattern recognition using canonical correlation algorithm.

    Science.gov (United States)

    Sarkar, B K; Chakraborty, Chiranjib

    2015-10-01

    We performed canonical correlation analysis as an unsupervised statistical tool to describe related views of the same semantic object for identifying patterns. A pattern recognition technique based on canonical correlation analysis (CCA) was proposed for finding required genetic code in the DNA sequence. Two related but different objects were considered: one was a particular pattern, and other was test DNA sequence. CCA found correlations between two observations of the same semantic pattern and test sequence. It is concluded that the relationship possesses maximum value in the position where the pattern exists. As a case study, the potential of CCA was demonstrated on the sequence found from HIV-1 preferred integration sites. The subsequences on the left and right flanking from the integration site were considered as the two views, and statistically significant relationships were established between these two views to elucidate the viral preference as an important factor for the correlation.

  2. Normalization as a canonical neural computation

    Science.gov (United States)

    Carandini, Matteo; Heeger, David J.

    2012-01-01

    There is increasing evidence that the brain relies on a set of canonical neural computations, repeating them across brain regions and modalities to apply similar operations to different problems. A promising candidate for such a computation is normalization, in which the responses of neurons are divided by a common factor that typically includes the summed activity of a pool of neurons. Normalization was developed to explain responses in the primary visual cortex and is now thought to operate throughout the visual system, and in many other sensory modalities and brain regions. Normalization may underlie operations such as the representation of odours, the modulatory effects of visual attention, the encoding of value and the integration of multisensory information. Its presence in such a diversity of neural systems in multiple species, from invertebrates to mammals, suggests that it serves as a canonical neural computation. PMID:22108672

  3. Spanish Literature and Spectrality : Notes on a Haunted Canon

    NARCIS (Netherlands)

    Valdivia, Pablo

    In Spanish Literature, Crisis and Spectrality: Notes on a Haunted Canon, Prof. Dr. Pablo Valdivia analyses the contradictions and complexities of the Spanish traditional canon from a transnational approach. Valdivia explores this particular canon as a 'haunted house' by focusing on the specific

  4. Modern cosmology

    International Nuclear Information System (INIS)

    Zeldovich, Y.B.

    1983-01-01

    This paper fives a general review of modern cosmology. The following subjects are discussed: hot big bang and periodization of the evolution; Hubble expansion; the structure of the universe (pancake theory); baryon asymmetry; inflatory universe. (Auth.)

  5. Canonical ward identities in generalized QCD

    International Nuclear Information System (INIS)

    Li Ziping

    1995-01-01

    The canonical Ward identities for a system with singular higher-order Lagrangian are derived and some application to the generalized QCD are given. The new relations of the Ward identities for gauge ghost field proper vertices are obtained which differ from the usual Ward-Takahashi identities arising from BRS invariance. The expressions for PCAC and generalized PCAC of AVV vertices are also obtained

  6. Are Young Children's Drawings Canonically Biased?

    Science.gov (United States)

    Picard, Delphine; Durand, Karine

    2005-01-01

    In a between-subjects design, 4-to 6-year-olds were asked to draw from three-dimensional (3D) models, two-and-a-half-dimensional (212D) models with or without depth cues, or two-dimensional (2D) models of a familiar object (a saucepan) in noncanonical orientations (handle at the back or at the front). Results showed that canonical errors were…

  7. Canonical Duality Theory for Topology Optimization

    OpenAIRE

    Gao, David Yang

    2016-01-01

    This paper presents a canonical duality approach for solving a general topology optimization problem of nonlinear elastic structures. By using finite element method, this most challenging problem can be formulated as a mixed integer nonlinear programming problem (MINLP), i.e. for a given deformation, the first-level optimization is a typical linear constrained 0-1 programming problem, while for a given structure, the second-level optimization is a general nonlinear continuous minimization pro...

  8. Il canone linguistico boccacciano, non senza dissenso

    Directory of Open Access Journals (Sweden)

    Cecilia Casini

    2015-06-01

    Full Text Available Author of prose’s greatest masterpiece of medieval literature in the vernacular, Giovanni Boccaccio was crucial to defining the Italian language canon, especially since Pietro Bembo proposed its coding in the sixteenth century. Not without controversy, however, since shortly after the publication of Prose Della Volgar Language, Bembo presents the first contrasting theories that support the linguistic model presented by Machiavelli

  9. Generalized operator canonical formalism and gauge invariance

    International Nuclear Information System (INIS)

    Fradkina, T.E.

    1988-01-01

    A direct proof is given in the functional representation of the invariance of the S-matrix constructed in the framework of the generalized operator canonical formalism. We find the traditional functional expression for the S-matrix (without point-splitting in the time factor) in the generalized phase space, as well as in the ghost configuration space. An explicit expression is obtained for the effective unitarizing Hamiltonian for gauge theories with constraints of arbitrary rank

  10. Principles of modern physics

    CERN Document Server

    Saxena, A K

    2014-01-01

    Principles of Modern Physics, divided into twenty one chapters, begins with quantum ideas followed by discussions on special relativity, atomic structure, basic quantum mechanics, hydrogen atom (and Schrodinger equation) and periodic table, the three statistical distributions, X-rays, physics of solids, imperfections in crystals, magnetic properties of materials, superconductivity, Zeeman-, Stark- and Paschen Back- effects, Lasers, Nuclear physics (Yukawa's meson theory and various nuclear models), radioactivity and nuclear reactions, nuclear fission, fusion and plasma, particle accelerators and detectors, the universe, Elementary particles (classification, eight fold way and quark model, standard model and fundamental interactions), cosmic rays, deuteron problem in nuclear physics, and cathode ray oscilloscope. NEW TO THE FOURTH EDITION: The CO2 Laser Theory of magnetic moments on the basis of shell model Geological dating Laser Induced fusion and laser fusion reactor. Hawking radiation The cosmological red ...

  11. Zeno Meets Modern Science

    Science.gov (United States)

    Silagadze, Z. K.

    2005-10-01

    ``No one has ever touched Zeno without refuting him''. We will not refute Zeno in this paper. Instead we review some unexpected encounters of Zeno with modern science. The paper begins with a brief biography of Zeno of Elea followed by his famous paradoxes of motion. Reflections on continuity of space and time lead us to Banach and Tarski and to their celebrated paradox, which is in fact not a paradox at all but a strict mathematical theorem, although very counterintuitive. Quantum mechanics brings another flavour in Zeno paradoxes. Quantum Zeno and anti-Zeno effects are really paradoxical but now experimental facts. Then we discuss supertasks and bifurcated supertasks. The concept of localisation leads us to Newton and Wigner and to interesting phenomenon of quantum revivals. At last we note that the paradoxical idea of timeless universe, defended by Zeno and Parmenides at ancient times, is still alive in quantum gravity. The list of references that follows is necessarily incomplete but we hope it will assist interested reader to fill in details.

  12. Gauge-invariant factorization and canonical quantization of topologically massive gauge theories in any dimension

    International Nuclear Information System (INIS)

    Bertrand, Bruno; Govaerts, Jan

    2007-01-01

    Abelian topologically massive gauge theories (TMGT) provide a topological mechanism to generate mass for a bosonic p-tensor field in any spacetime dimension. These theories include the (2+1)-dimensional Maxwell-Chern-Simons and (3+1)-dimensional Cremmer-Scherk actions as particular cases. Within the Hamiltonian formulation, the embedded topological field theory (TFT) sector related to the topological mass term is not manifest in the original phase space. However, through an appropriate canonical transformation, a gauge-invariant factorization of phase space into two orthogonal sectors is feasible. The first of these sectors includes canonically conjugate gauge-invariant variables with free massive excitations. The second sector, which decouples from the total Hamiltonian, is equivalent to the phase-space description of the associated non-dynamical pure TFT. Within canonical quantization, a likewise factorization of quantum states thus arises for the full spectrum of TMGT in any dimension. This new factorization scheme also enables a definition of the usual projection from TMGT onto topological quantum field theories in a most natural and transparent way. None of these results rely on any gauge-fixing procedure whatsoever

  13. Learning quantum field theory from elementary quantum mechanics

    International Nuclear Information System (INIS)

    Gosdzinsky, P.; Tarrach, R.

    1991-01-01

    The study of the Dirac delta potentials in more than one dimension allows the introduction within the framework of elementary quantum mechanics of many of the basic concepts of modern quantum field theory: regularization, renormalization group, asymptotic freedom, dimensional transmutation, triviality, etc. It is also interesting, by itself, as a nonstandard quantum mechanical problem

  14. Max Planck and modern physics

    International Nuclear Information System (INIS)

    Hoffmann, Dieter

    2010-01-01

    Max Planck (1858-1947) is according to the words of Max von Laue the ''father of quantum physics''. This characteristic has until today continuance, although Planck stood for long time sceptically in front of his quantum hypothesis and so became a revolutionary in spite of his wishes. Eclipted by this pioneer role of the scholar for the foundation of the quantum theory are the numerous further works of the scholer, by which he has in many other fields provided eminent things. Starting with his fundamental contribution to thermodynamics, which make him to an excellent researcher of the field, until the works in the early history of relativity theory and the promotion of the young Einstein, which let him become also to a pioneer of the second central pillar of modern physics. The present collection attempts to show the whole spectrum of the physical works of Max Planck and his role in the formation of modern physics. [de

  15. Quantum set theory and applications

    International Nuclear Information System (INIS)

    Rodriguez, E.

    1984-01-01

    The work of von Neumann tells us that the logic of quantum mechanics is not Boolenan. This suggests the formulation of a quantum theory of sets based on quantum logic much as modern set theory is based on Boolean logic. In the first part of this dissertation such a quantum set theory is developed. In the second part, quantum set theory is proposed as a universal language for physics. A quantum topology and the beginnings of a quantum geometry are developed in this language. Finally, a toy model is studied. It gives indications of possible lines for progress in this program

  16. Quantum network theory

    International Nuclear Information System (INIS)

    Yurke, B.; Denker, J.S.

    1984-01-01

    A general approach, within the framework of canonical quantization, is described for analyzing the quantum behavior of complicated electronic circuits. This approach is capable of dealing with electrical networks having nonlinear or dissipative elements. The techniques are used to analyze a degenerate parametric amplifier, a device capable of generating squeezed coherent state signals. A circuit capable of performing back-action-evading electrical measurements is also discussed. (author)

  17. The Canonical Black Body: Alternative African American Religions and the Disruptive Politics of Sacrality

    Directory of Open Access Journals (Sweden)

    Joseph L. Tucker Edmonds

    2018-01-01

    Full Text Available “The Canonical Black Body” argues that central to the study of African American religions is a focus on the black body and the production and engagement of canons on the sacred black body within the black public sphere. Furthermore, this essay suggests that, by paying attention to alternative African American religions in the twentieth century, we can better engage the relationship between African American religion and the long history of creating these canons on the black body, debating their relationship to black freedom, and circulating the canons to contest the oppressive, exclusive practices of modern democracy. Through a critical engagement of the fields of Black Theology and New Religious Movements and using the resources offered by Delores Williams’ accounts of variety and experience and Vincent Wimbush’s category of signifying, this essay will argue for how a return to the body provides resources and tools for not only theorizing African American religions but thinking about the production and creation of competing black publics, including the important role of alternative black sacred publics.

  18. Modern Physics Simulations

    Science.gov (United States)

    Brandt, Douglas; Hiller, John R.; Moloney, Michael J.

    1995-10-01

    The Consortium for Upper Level Physics Software (CUPS) has developed a comprehensive series of Nine Book/Software packages that Wiley will publish in FY `95 and `96. CUPS is an international group of 27 physicists, all with extensive backgrounds in the research, teaching, and development of instructional software. The project is being supported by the National Science Foundation (PHY-9014548), and it has received other support from the IBM Corp., Apple Computer Corp., and George Mason University. The Simulations being developed are: Astrophysics, Classical Mechanics, Electricity & Magnetism, Modern Physics, Nuclear and Particle Physics, Quantum Mechanics, Solid State, Thermal and Statistical, and Wave and Optics.

  19. Dialogues on modern physics

    CERN Document Server

    Sachs, Mendel

    1998-01-01

    In this book, important conceptual developments of the two major revolutions of modern physics - the quantum and relativity theories - are presented in a nonmathematical, dialectical form of dialogue. The implications of conflicting philosophical attitudes of these revolutions in physics and applications to topics such as cosmology/astrophysics and high energy physics are emphasized. It is argued that for any substantial progress in our understanding of 21st century physics, it will be necessary to resolve these 20th century conflicts. These richly rewarding dialogues provide a starting point

  20. Relativity in modern physics

    CERN Document Server

    Deruelle, Nathalie

    2018-01-01

    This comprehensive textbook on relativity integrates Newtonian physics, special relativity and general relativity into a single book that emphasizes the deep underlying principles common to them all, yet explains how they are applied in different ways in these three contexts. Newton's ideas about how to represent space and time, his laws of dynamics, and his theory of gravitation established the conceptual foundation from which modern physics developed. Book I in this volume offers undergraduates a modern view of Newtonian theory, emphasizing those aspects needed for understanding quantum and relativistic contemporary physics. In 1905, Albert Einstein proposed a novel representation of space and time, special relativity. Book II presents relativistic dynamics in inertial and accelerated frames, as well as a detailed overview of Maxwell's theory of electromagnetism. This provides undergraduate and graduate students with the background necessary for studying particle and accelerator physics, astrophysics and ...

  1. Thermodynamics of quantum strings

    CERN Document Server

    Morgan, M J

    1994-01-01

    A statistical mechanical analysis of an ideal gas of non-relativistic quantum strings is presented, in which the thermodynamic properties of the string gas are calculated from a canonical partition function. This toy model enables students to gain insight into the thermodynamics of a simple 'quantum field' theory, and provides a useful pedagogical introduction to the more complicated relativistic string theories. A review is also given of the thermodynamics of the open bosonic string gas and the type I (open) superstring gas. (author)

  2. Quantum Kinematics of Bosonic Vortex Loops

    International Nuclear Information System (INIS)

    Goldin, G.A.; Owczarek, R.; Sharp, D.H.

    1999-01-01

    Poisson structure for vortex filaments (loops and arcs) in 2D ideal incompressible fluid is analyzed in detail. Canonical coordinates and momenta on coadjoint orbits of the area-preserving diffeomorphism group, associated with such vortices, are found. The quantum space of states in the simplest case of ''bosonic'' vortex loops is built within a geometric quantization approach to the description of a quantum fluid. Fock-like structure and non-local creation and annihilation operators of quantum vortex filaments are introduced

  3. Quantum field theory

    CERN Document Server

    Sadovskii, Michael V

    2013-01-01

    This book discusses the main concepts of the Standard Model of elementary particles in a compact and straightforward way. The work illustrates the unity of modern theoretical physics by combining approaches and concepts of the quantum field theory and modern condensed matter theory. The inductive approach allows a deep understanding of ideas and methods used for solving problems in this field.

  4. Canonical forms for single-qutrit Clifford+T operators

    OpenAIRE

    Glaudell, Andrew N.; Ross, Neil J.; Taylor, Jacob M.

    2018-01-01

    We introduce canonical forms for single qutrit Clifford+T circuits and prove that every single-qutrit Clifford+T operator admits a unique such canonical form. We show that our canonical forms are T-optimal in the sense that among all the single-qutrit Clifford+T circuits implementing a given operator our canonical form uses the least number of T gates. Finally, we provide an algorithm which inputs the description of an operator (as a matrix or a circuit) and constructs the canonical form for ...

  5. Quantum gravity and quantum cosmology

    CERN Document Server

    Papantonopoulos, Lefteris; Siopsis, George; Tsamis, Nikos

    2013-01-01

    Quantum gravity has developed into a fast-growing subject in physics and it is expected that probing the high-energy and high-curvature regimes of gravitating systems will shed some light on how to eventually achieve an ultraviolet complete quantum theory of gravity. Such a theory would provide the much needed information about fundamental problems of classical gravity, such as the initial big-bang singularity, the cosmological constant problem, Planck scale physics and the early-time inflationary evolution of our Universe.   While in the first part of this book concepts of quantum gravity are introduced and approached from different angles, the second part discusses these theories in connection with cosmological models and observations, thereby exploring which types of signatures of modern and mathematically rigorous frameworks can be detected by experiments. The third and final part briefly reviews the observational status of dark matter and dark energy, and introduces alternative cosmological models.   ...

  6. A model of individualized canonical microcircuits supporting cognitive operations.

    Directory of Open Access Journals (Sweden)

    Tim Kunze

    Full Text Available Major cognitive functions such as language, memory, and decision-making are thought to rely on distributed networks of a large number of basic elements, called canonical microcircuits. In this theoretical study we propose a novel canonical microcircuit model and find that it supports two basic computational operations: a gating mechanism and working memory. By means of bifurcation analysis we systematically investigate the dynamical behavior of the canonical microcircuit with respect to parameters that govern the local network balance, that is, the relationship between excitation and inhibition, and key intrinsic feedback architectures of canonical microcircuits. We relate the local behavior of the canonical microcircuit to cognitive processing and demonstrate how a network of interacting canonical microcircuits enables the establishment of spatiotemporal sequences in the context of syntax parsing during sentence comprehension. This study provides a framework for using individualized canonical microcircuits for the construction of biologically realistic networks supporting cognitive operations.

  7. Rational reconstructions of modern physics

    CERN Document Server

    Mittelstaedt, Peter

    2013-01-01

    Newton’s classical physics and its underlying ontology are loaded with several metaphysical hypotheses that cannot be justified by rational reasoning nor by experimental evidence. Furthermore, it is well known that some of these hypotheses are not contained in the great theories of Modern Physics, such as the theory of Special Relativity and Quantum Mechanics. This book shows that, on the basis of Newton’s classical physics and by rational reconstruction, the theory of Special Relativity as well as Quantum Mechanics can be obtained by partly eliminating or attenuating the metaphysical hypotheses. Moreover, it is shown that these reconstructions do not require additional hypotheses or new experimental results. In the second edition the rational reconstructions are completed with respect to General Relativity and Cosmology. In addition, the statistics of quantum objects is elaborated in more detail with respect to the rational reconstruction of quantum mechanics. The new material completes the approach of t...

  8. Probabilistic and Statistical Aspects of Quantum Theory

    CERN Document Server

    Holevo, Alexander S

    2011-01-01

    This book is devoted to aspects of the foundations of quantum mechanics in which probabilistic and statistical concepts play an essential role. The main part of the book concerns the quantitative statistical theory of quantum measurement, based on the notion of positive operator-valued measures. During the past years there has been substantial progress in this direction, stimulated to a great extent by new applications such as Quantum Optics, Quantum Communication and high-precision experiments. The questions of statistical interpretation, quantum symmetries, theory of canonical commutation re

  9. Canonical formulation of IIB D-branes

    International Nuclear Information System (INIS)

    Kamimura, K.

    1998-01-01

    We find Wess-Zumino actions for kappa invariant type IIB D-branes in explicit forms. A simple and compact expression is obtained by the use of spinor variables which are defined as power series of differential forms. Using the Wess-Zumino actions we develop the canonical formulation and find the complete set of the constraint equations for generic type IIB Dp-branes. The conserved global supersymmetry charges are determined and the algebra containing the central charges can be obtained explicitly. (orig.)

  10. Canonical formalism for coupled beam optics

    International Nuclear Information System (INIS)

    Kheifets, S.A.

    1989-09-01

    Beam optics of a lattice with an inter-plane coupling is treated using canonical Hamiltonian formalism. The method developed is equally applicable both to a circular (periodic) machine and to an open transport line. A solution of the equation of a particle motion (and correspondingly transfer matrix between two arbitrary points of the lattice) are described in terms of two amplitude functions (and their derivatives and corresponding phases of oscillations) and four coupling functions, defined by a solution of the system of the first-order nonlinear differential equations derived in the paper. Thus total number of independent parameters is equal to ten. 8 refs

  11. Grand Canonical Ensembles in General Relativity

    International Nuclear Information System (INIS)

    Klein, David; Yang, Wei-Shih

    2012-01-01

    We develop a formalism for general relativistic, grand canonical ensembles in space-times with timelike Killing fields. Using that, we derive ideal gas laws, and show how they depend on the geometry of the particular space-times. A systematic method for calculating Newtonian limits is given for a class of these space-times, which is illustrated for Kerr space-time. In addition, we prove uniqueness of the infinite volume Gibbs measure, and absence of phase transitions for a class of interaction potentials in anti-de Sitter space.

  12. Canonical particle tracking in undulator fields

    International Nuclear Information System (INIS)

    Wuestefeld, G.; Bahrdt, J.

    1991-01-01

    A new algebraic mapping routine for particle tracking across wiggler and undulator fields in presented. It is based on a power series expansion of the generating function to guarantee fully canonical transformations. This method is 10 to 100 times faster than integration routines, applied in tracking codes like BETA or RACETRACK. The tracking method presented is not restricted to wigglers and undulators, it can be applied to other magnetic fields as well such as fringing fields of quadrupoles or dipoles if the suggested expansion converges

  13. Convergence analysis of canonical genetic algorithms.

    Science.gov (United States)

    Rudolph, G

    1994-01-01

    This paper analyzes the convergence properties of the canonical genetic algorithm (CGA) with mutation, crossover and proportional reproduction applied to static optimization problems. It is proved by means of homogeneous finite Markov chain analysis that a CGA will never converge to the global optimum regardless of the initialization, crossover, operator and objective function. But variants of CGA's that always maintain the best solution in the population, either before or after selection, are shown to converge to the global optimum due to the irreducibility property of the underlying original nonconvergent CGA. These results are discussed with respect to the schema theorem.

  14. Italian Modernities

    DEFF Research Database (Denmark)

    Thomassen, Bjørn; Forlenza, Rosario

    assumptions that have substituted for thought and that have perpetuated prejudices both within and outside Italy’s borders. Grounded in meticulous historical and ethnological research, Italian Modernities deserves as wide an audience as its scholarship is deep.” (Michael Herzfeld, Ernest E. Monrad Professor...

  15. Montreal Modern

    DEFF Research Database (Denmark)

    Handberg, Kristian

    2015-01-01

    , and the space age modernism of the 1960s following the Expo 67 and Quebec’s Quiet Revolution. This is reflected in the city’s thriving retro culture through the study of two groups of retro shops. In circulating specific memories and objects in a specific context, retro is an important negotiation of the past...

  16. Are neoclassical canons valid for southern Chinese faces?

    Directory of Open Access Journals (Sweden)

    Yasas S N Jayaratne

    Full Text Available BACKGROUND: Proportions derived from neoclassical canons, initially described by Renaissance sculptors and painters, are still being employed as aesthetic guidelines during the clinical assessment of the facial morphology. OBJECTIVE: 1. to determine the applicability of neoclassical canons for Southern Chinese faces and 2. to explore gender differences in relation to the applicability of the neoclassical canons and their variants. METHODOLOGY: 3-D photographs acquired from 103 young adults (51 males and 52 females without facial dysmorphology were used to test applicability of four neoclassical canons. Standard anthropometric measurements that determine the facial canons were made on these 3-D images. The validity of the canons as well as their different variants were quantified. PRINCIPAL FINDINGS: The neoclassical cannons seldom applied to these individuals, and facial three-section and orbital canons did not apply at all. The orbitonasal canon was most frequently applicable, with a frequency of 19%. Significant sexual dimorphism was found relative to the prevalence of the variants of facial three-section and orbitonasal canons. CONCLUSION: The neoclassical canons did not appear to apply to our sample when rigorous quantitative measurements were employed. Thus, they should not be used as esthetic goals for craniofacial surgical interventions.

  17. In praise of quantum fields

    International Nuclear Information System (INIS)

    Shirkov, D.V.

    1989-08-01

    A comprehensive discussion of several topics vital for the structure of a modern Quantum Field Theory are discussed, namely: physical content of the notion of a Quantum Field; meaning of infinite renormalization; renormalizability as quantizability; the influence of several principles of quantum nature (quantizability, gauge dynamics, supersymmetry) on quantum fields dynamics; main trends of QFT evolution; present status of QFT and its frontier role in physics. (author). 15 refs, 1 fig

  18. Turbulent transport across invariant canonical flux surfaces

    International Nuclear Information System (INIS)

    Hollenberg, J.B.; Callen, J.D.

    1994-07-01

    Net transport due to a combination of Coulomb collisions and turbulence effects in a plasma is investigated using a fluid moment description that allows for kinetic and nonlinear effects via closure relations. The model considered allows for ''ideal'' turbulent fluctuations that distort but preserve the topology of species-dependent canonical flux surfaces ψ number-sign,s triple-bond ∫ dF · B number-sign,s triple-bond ∇ x [A + (m s /q s )u s ] in which u s is the flow velocity of the fluid species. Equations for the net transport relative to these surfaces due to ''nonideal'' dissipative processes are found for the total number of particles and total entropy enclosed by a moving canonical flux surface. The corresponding particle transport flux is calculated using a toroidal axisymmetry approximation of the ideal surfaces. The resulting Lagrangian transport flux includes classical, neoclassical-like, and anomalous contributions and shows for the first time how these various contributions should be summed to obtain the total particle transport flux

  19. Canonical quantization of the generalized axial gauge

    International Nuclear Information System (INIS)

    Haller, K.

    1990-01-01

    The incompatibility of the constraint A 3 =0 with canonical commutation rules is discussed. A canonical formulation is given of QED and QCD in the axial gauge with n 1 =n 2 =0, n 3 =α and n 0 =β, where α and β are arbitrary real numbers. A Hilbert space is established for the perturbative theory, and a propagator is derived by obtaining an expression for the interaction picture gauge fields, and evaluating the vacuum expectation value of its time-ordered products in the perturbative vacuum. The propagator is expressed in terms of the parameter γ=α/β and is shown to reproduce the light cone gauge propagator when γ=1, and the temporal gauge propagator when γ=0, accommodating various prescriptions for the spurious propagator pole, including the Mandelstam-Leibbrandt and principal value prescriptions. When γ→∞, the generalized axial gauge propagator leads to an expression for the propagator in the A 3 =0 gauge, though in that case the order in which the integration over k 0 is performed, and the limit γ→∞ is taken, affects the resulting expression. Another Hilbert space is established, in which the constraints that include all interactions are implemented in a time independent fashion. It is pointed out that this Hilbert space, and the Hilbert space of the perturbative theory are unitarily equivalent in QED, but that they cannot be unitarily equivalent in QCD. Implications of this fact for the nonperturbative states of QCD are discussed. (orig.)

  20. Correcting quantum errors with entanglement.

    Science.gov (United States)

    Brun, Todd; Devetak, Igor; Hsieh, Min-Hsiu

    2006-10-20

    We show how entanglement shared between encoder and decoder can simplify the theory of quantum error correction. The entanglement-assisted quantum codes we describe do not require the dual-containing constraint necessary for standard quantum error-correcting codes, thus allowing us to "quantize" all of classical linear coding theory. In particular, efficient modern classical codes that attain the Shannon capacity can be made into entanglement-assisted quantum codes attaining the hashing bound (closely related to the quantum capacity). For systems without large amounts of shared entanglement, these codes can also be used as catalytic codes, in which a small amount of initial entanglement enables quantum communication.

  1. Canonical field quantization in an external time-dependent gravitational field

    International Nuclear Information System (INIS)

    Il'yn, S.B.; Tagirov, E.A.

    1975-01-01

    The Green functions of the quantum scalar fiels interacting with gravitation of the homogeneous isotropic closed Universe are studied. They have been determined as an expectation value of the time-ordered product of two field operators in the cyclic states of various, in general, unitary-nonequivalent representations of canonical commutation relations. The reqularity properties of these functions are shown to be the same as of the Feynman propagator obtained for arbitrary Riemannian space-time only in the representations that from a class unitary equivalence

  2. Methods of Weyl representation of the phase space and canonical transformations

    International Nuclear Information System (INIS)

    Budanov, V.G.

    1986-01-01

    The author studies nonlinear canonical transformations realized in the space of Weyl symbols of quantum operators. The kernels of the transformations, the symbol of the intertwining operator of the group of inhomogeneous point transformations, an the group characters are constructed. The group of PL transformations, which is the free produce of the group of point, p, and linear, L, transformations is considered. The simplest PL complexes relating problems with different potentials, in particular, containing a general Darboux transformation of the factorization method, are constructed. The kernel of an arbitrary element of the group PL is found

  3. Observations on finite quantum mechanics

    International Nuclear Information System (INIS)

    Balian, R.; Itzykson, C.

    1986-01-01

    We study the canonical transformations of the quantum mechanics on a finite phase space. For simplicity we assume that the configuration variable takes an odd prime number 4 K±1 of distinct values. We show that the canonical group is unitarily implemented. It admits a maximal abelian subgroup of order 4 K, commuting with the finite Fourier transform F, a finite analogue of the harmonic oscillator group. This provides a natural construction of F 1/K and of an orthogonal basis of eigenstates of F [fr

  4. Introduction to quantum groups

    CERN Document Server

    Chaichian, Masud

    1996-01-01

    In the past decade there has been an extemely rapid growth in the interest and development of quantum group theory.This book provides students and researchers with a practical introduction to the principal ideas of quantum groups theory and its applications to quantum mechanical and modern field theory problems. It begins with a review of, and introduction to, the mathematical aspects of quantum deformation of classical groups, Lie algebras and related objects (algebras of functions on spaces, differential and integral calculi). In the subsequent chapters the richness of mathematical structure

  5. Introduction to quantum mechanics

    CERN Document Server

    Phillips, A C

    2003-01-01

    Introduction to Quantum Mechanics is an introduction to the power and elegance of quantum mechanics. Assuming little in the way of prior knowledge, quantum concepts are carefully and precisely presented, and explored through numerous applications and problems. Some of the more challenging aspects that are essential for a modern appreciation of the subject have been included, but are introduced and developed in the simplest way possible.Undergraduates taking a first course on quantum mechanics will find this text an invaluable introduction to the field and help prepare them for more adv

  6. Modern Cosmology

    CERN Document Server

    Zhang Yuan Zhong

    2002-01-01

    This book is one of a series in the areas of high-energy physics, cosmology and gravitation published by the Institute of Physics. It includes courses given at a doctoral school on 'Relativistic Cosmology: Theory and Observation' held in Spring 2000 at the Centre for Scientific Culture 'Alessandro Volta', Italy, sponsored by SIGRAV-Societa Italiana di Relativita e Gravitazione (Italian Society of Relativity and Gravitation) and the University of Insubria. This book collects 15 review reports given by a number of outstanding scientists. They touch upon the main aspects of modern cosmology from observational matters to theoretical models, such as cosmological models, the early universe, dark matter and dark energy, modern observational cosmology, cosmic microwave background, gravitational lensing, and numerical simulations in cosmology. In particular, the introduction to the basics of cosmology includes the basic equations, covariant and tetrad descriptions, Friedmann models, observation and horizons, etc. The ...

  7. Modern bureaucracy

    OpenAIRE

    Toye, John

    2006-01-01

    Max Weber believed that bureaucracy could be understood by analysing its ideal-typical characteristics, and that these characteristics would become more pervasive as the modern age advanced. Weber’s horizontal account of bureaucracy can be criticised on various grounds, including its unrealistic notion of bureaucratic rationality. An alternative view is proposed, namely, that the development of state bureaucracies is driven by the trajectory of the highpower politics in which they are nested....

  8. Modern Biology

    OpenAIRE

    ALEKSIC, Branko

    2014-01-01

    The purpose of this course is to learn the philosophy, principles, and techniques of modern biology. The course is particularly designed for those who have not learned biology previously or whose major is other than biology, and who may think that they do not need to know any biology at all. The topics are covered in a rather general, overview manner, but certain level of diligence in grasping concepts and memorizing the terminology is expected.

  9. Modern maths

    CERN Multimedia

    Thom,R

    1974-01-01

    Le Prof. R. Thom expose ses vues sur l'enseignement des mathématiques modernes et des mathémathiques de toujours. Il est un grand mathématicien et était professeur à Strasbourg; maintenant il est professeur de hautes études scientifiques et était invité par le Prof. Piaget à Genève

  10. Quantum optics

    National Research Council Canada - National Science Library

    Agarwal, G. S

    2013-01-01

    .... Focusing on applications of quantum optics, the textbook covers recent developments such as engineering of quantum states, quantum optics on a chip, nano-mechanical mirrors, quantum entanglement...

  11. Islamic Canon law encounters South African financing and banking ...

    African Journals Online (AJOL)

    Islamic Canon law encounters South African financing and banking institutions: Prospects and possibilities for Islamic economic empowerment and Black Economic Empowerment in a Democratic South Africa.

  12. THE TOPOLOGY OF CANONICAL FLUX TUBES IN FLARED JET GEOMETRY

    Energy Technology Data Exchange (ETDEWEB)

    Lavine, Eric Sander; You, Setthivoine, E-mail: Slavine2@uw.edu, E-mail: syou@aa.washington.edu [University of Washington, 4000 15th Street, NE Aeronautics and Astronautics 211 Guggenheim Hall, Box 352400, Seattle, WA 98195 (United States)

    2017-01-20

    Magnetized plasma jets are generally modeled as magnetic flux tubes filled with flowing plasma governed by magnetohydrodynamics (MHD). We outline here a more fundamental approach based on flux tubes of canonical vorticity, where canonical vorticity is defined as the circulation of the species’ canonical momentum. This approach extends the concept of magnetic flux tube evolution to include the effects of finite particle momentum and enables visualization of the topology of plasma jets in regimes beyond MHD. A flared, current-carrying magnetic flux tube in an ion-electron plasma with finite ion momentum is thus equivalent to either a pair of electron and ion flow flux tubes, a pair of electron and ion canonical momentum flux tubes, or a pair of electron and ion canonical vorticity flux tubes. We examine the morphology of all these flux tubes for increasing electrical currents, different radial current profiles, different electron Mach numbers, and a fixed, flared, axisymmetric magnetic geometry. Calculations of gauge-invariant relative canonical helicities track the evolution of magnetic, cross, and kinetic helicities in the system, and show that ion flow fields can unwind to compensate for an increasing magnetic twist. The results demonstrate that including a species’ finite momentum can result in a very long collimated canonical vorticity flux tube even if the magnetic flux tube is flared. With finite momentum, particle density gradients must be normal to canonical vorticities, not to magnetic fields, so observations of collimated astrophysical jets could be images of canonical vorticity flux tubes instead of magnetic flux tubes.

  13. Principles of quantum computation and information volume II

    International Nuclear Information System (INIS)

    Kok, P

    2007-01-01

    ', 'Decoherence', 'Quantum Error Correction', and 'First Experimental Implementations'. The first volume covers the basics of classical computation, quantum mechanics, quantum computation, and quantum communication. Chapter five starts with the density matrix formalism, and proceeds with the development of the Kraus representation, POVMs, von Neuman entropy, quantum data compression, the Holevo bound, the partial transpose criterion, and it ends with a very nice section on the various entropies that play a role in modern physics. This includes not only the thermodynamical and statistical entropy, but also the dynamical Kolmogorov-Sinai entropy, which is used in quantum chaos in chapter 6. On the whole, I think that this is a really clear and well-presented chapter. A minor drawback is that the concept of CP maps is not explained as well as it could have been, for example by relating it to the partial transpose criterion. Chapter six continues with the high standard set in chapter five, and presents a very thorough exposition of decoherence in general. It introduces the different decoherence channels, and gives truly excellent explanations of the master equation (tied in with the Kraus representation), quantum jumps, and the quantum trajectory formalism. It also has an elegant explanation for the sensitivity of Schroedinger cats to decoherence. The chapter ends with two sections on quantum chaos. Since the authors are experts in this fascinating area, this is a welcome addition to the canon of topics typically covered in quantum information. Unfortunately, the section is quite hard to follow, and as a result it is a bit of a missed opportunity. There is a section on chaos in the first volume of this series, and this may provide the required background. Chapter seven on quantum error correction is disappointing, and I have the feeling that the authors went through the motions without a real passion for the subject matter. The chapter describes various error correction codes

  14. Transition probability spaces in loop quantum gravity

    Science.gov (United States)

    Guo, Xiao-Kan

    2018-03-01

    We study the (generalized) transition probability spaces, in the sense of Mielnik and Cantoni, for spacetime quantum states in loop quantum gravity. First, we show that loop quantum gravity admits the structures of transition probability spaces. This is exemplified by first checking such structures in covariant quantum mechanics and then identifying the transition probability spaces in spin foam models via a simplified version of general boundary formulation. The transition probability space thus defined gives a simple way to reconstruct the discrete analog of the Hilbert space of the canonical theory and the relevant quantum logical structures. Second, we show that the transition probability space and in particular the spin foam model are 2-categories. Then we discuss how to realize in spin foam models two proposals by Crane about the mathematical structures of quantum gravity, namely, the quantum topos and causal sites. We conclude that transition probability spaces provide us with an alternative framework to understand various foundational questions of loop quantum gravity.

  15. Canonical formulation of supergravity and the quantization of the ultralocal theory of gravity

    International Nuclear Information System (INIS)

    Pilati, M.L.

    1980-01-01

    This thesis consists of two parts whose only common feature is that they are Hamiltonian field theories of geometric interest. The first part is concerned with the canonical formulation of supergravity and other geometrical, supersymmetric theories. The Hamiltonian for supergravity and the spinning membrane are computed, and the possible usefulness of the Hamiltonian formalism for finding the underlying geometry described. The second part attempts to give the quantization of the ultralocal theory of gravity. Classically the ultralocal theory corresponds to dropping g/sup 1/2//sup (3)/R from the Hamiltonian. The speed of light in this theory is zero; there is no propagation of information. It is desired to have the quantum version of this theory play the role that Fock space plays in ordinary quantum field theory, i.e., to the theory about which perturbations are made to obtain the full quantum theory of gravity. The quantum theory is begun by choosing variables consistent with the three-dimensional metric's having positive-definite spectrum. The representation of these operators is then given; it is an exponential representation. The operators script-H/sub perpendicular/ and script-H/sub i/ are constructed in this representation, the properties of script-H/sub i/ implying that the theory is coordinate invariant. It is found that script-H/sub perpendicular/ cannot be realized as a constraint in this theory in the way that one expects of a quantum theory of gravity

  16. S-matrix equivalence theorem evasion and dimensional regularisation with the canonical MHV lagrangian

    International Nuclear Information System (INIS)

    Ettle, James H.; Fu, C.-H.; Fudger, Jonathan P.; Mansfield, Paul R.W.; Morris, Tim R.

    2007-01-01

    We demonstrate that the canonical change of variables that yields the MHV lagrangian, also provides contributions to scattering amplitudes that evade the equivalence theorem. This 'ET evasion' in particular provides the tree-level (-++) amplitude, which is non-vanishing off shell, or on shell with complex momenta or in (2,2) signature, and is missing from the MHV (/aka CSW) rules. At one loop there are ET-evading diagrammatic contributions to the amplitudes with all positive helicities. We supply the necessary regularisation in order to define these contributions (and quantum MHV methods in general) by starting from the light-cone Yang-Mills lagrangian in D dimensions and making a canonical change of variables for all D-2 transverse degrees of freedom of the gauge field. In this way, we obtain dimensionally regularised three- and four-point MHV amplitudes. Returning to the one-loop (++++) amplitude, we demonstrate that its quadruple cut coincides with the known result, and show how the original light-cone Yang-Mills contributions can in fact be algebraically recovered from the ET-evading contributions. We conclude that the canonical MHV lagrangian, supplemented with the extra terms brought to correlation functions by the non-linear field transformation, provide contributions which are just a rearrangement of those from light-cone Yang-Mills and thus coincide with them both on and off shell

  17. Grand canonical electronic density-functional theory: Algorithms and applications to electrochemistry

    International Nuclear Information System (INIS)

    Sundararaman, Ravishankar; Goddard, William A. III; Arias, Tomas A.

    2017-01-01

    First-principles calculations combining density-functional theory and continuum solvation models enable realistic theoretical modeling and design of electrochemical systems. When a reaction proceeds in such systems, the number of electrons in the portion of the system treated quantum mechanically changes continuously, with a balancing charge appearing in the continuum electrolyte. A grand-canonical ensemble of electrons at a chemical potential set by the electrode potential is therefore the ideal description of such systems that directly mimics the experimental condition. We present two distinct algorithms: a self-consistent field method and a direct variational free energy minimization method using auxiliary Hamiltonians (GC-AuxH), to solve the Kohn-Sham equations of electronic density-functional theory directly in the grand canonical ensemble at fixed potential. Both methods substantially improve performance compared to a sequence of conventional fixed-number calculations targeting the desired potential, with the GC-AuxH method additionally exhibiting reliable and smooth exponential convergence of the grand free energy. Lastly, we apply grand-canonical density-functional theory to the under-potential deposition of copper on platinum from chloride-containing electrolytes and show that chloride desorption, not partial copper monolayer formation, is responsible for the second voltammetric peak.

  18. Grand canonical electronic density-functional theory: Algorithms and applications to electrochemistry

    Science.gov (United States)

    Sundararaman, Ravishankar; Goddard, William A.; Arias, Tomas A.

    2017-03-01

    First-principles calculations combining density-functional theory and continuum solvation models enable realistic theoretical modeling and design of electrochemical systems. When a reaction proceeds in such systems, the number of electrons in the portion of the system treated quantum mechanically changes continuously, with a balancing charge appearing in the continuum electrolyte. A grand-canonical ensemble of electrons at a chemical potential set by the electrode potential is therefore the ideal description of such systems that directly mimics the experimental condition. We present two distinct algorithms: a self-consistent field method and a direct variational free energy minimization method using auxiliary Hamiltonians (GC-AuxH), to solve the Kohn-Sham equations of electronic density-functional theory directly in the grand canonical ensemble at fixed potential. Both methods substantially improve performance compared to a sequence of conventional fixed-number calculations targeting the desired potential, with the GC-AuxH method additionally exhibiting reliable and smooth exponential convergence of the grand free energy. Finally, we apply grand-canonical density-functional theory to the under-potential deposition of copper on platinum from chloride-containing electrolytes and show that chloride desorption, not partial copper monolayer formation, is responsible for the second voltammetric peak.

  19. Canonical Wnt signaling in diabetic retinopathy.

    Science.gov (United States)

    Chen, Qian; Ma, Jian-Xing

    2017-10-01

    Diabetic retinopathy (DR) is a common eye complication of diabetes, and the pathogenic mechanism of DR is still under investigation. The canonical Wnt signaling pathway is an evolutionarily conserved pathway that plays fundamental roles in embryogenesis and adult tissue homeostasis. Wnt signaling regulates expression of multiple genes that control retinal development and eye organogenesis, and dysregulated Wnt signaling plays pathophysiological roles in many ocular diseases, including DR. This review highlights recent progress in studies of Wnt signaling in DR. We discuss Wnt signaling regulation in the retina and dysregulation of Wnt signaling associated with ocular diseases with an emphasis on DR. We also discuss the therapeutic potential of modulating Wnt signaling in DR. Continued studies in this field will advance our current understanding on DR and contribute to the development of new treatments. Copyright © 2017 Elsevier Ltd. All rights reserved.

  20. Improved effective potential by nonlinear canonical transformations

    International Nuclear Information System (INIS)

    Ritschel, U.

    1990-01-01

    We generalize the familiar gaussian-effective-potential formalism to a class of non-gaussian trial states. With the help of exact nonlinear canonical transformations, expectation values can be calculated analytically and in closed form. A detailed description of our method, particularly for quadratic and cubic transformations, and of the related renormalization procedure is given. Applications to φ 4 -models in various dimensionalities are treated. We find the expected critical behaviour in two space-time dimensions. In three and four dimensions we observe instabilities which go back the incompleteness of the gaussian-based renormalization. In the appendices it is shown that the quadratic transformation leads to a coherent state in a certain limiting case, and the generalization to systems at finite temperature is performed. (orig.)

  1. A simple algorithm for computing canonical forms

    Science.gov (United States)

    Ford, H.; Hunt, L. R.; Renjeng, S.

    1986-01-01

    It is well known that all linear time-invariant controllable systems can be transformed to Brunovsky canonical form by a transformation consisting only of coordinate changes and linear feedback. However, the actual procedures for doing this have tended to be overly complex. The technique introduced here is envisioned as an on-line procedure and is inspired by George Meyer's tangent model for nonlinear systems. The process utilizes Meyer's block triangular form as an intermedicate step in going to Brunovsky form. The method also involves orthogonal matrices, thus eliminating the need for the computation of matrix inverses. In addition, the Kronecker indices can be computed as a by-product of this transformation so it is necessary to know them in advance.

  2. Discrete canonical transforms that are Hadamard matrices

    International Nuclear Information System (INIS)

    Healy, John J; Wolf, Kurt Bernardo

    2011-01-01

    The group Sp(2,R) of symplectic linear canonical transformations has an integral kernel which has quadratic and linear phases, and which is realized by the geometric paraxial optical model. The discrete counterpart of this model is a finite Hamiltonian system that acts on N-point signals through N x N matrices whose elements also have a constant absolute value, although they do not form a representation of that group. Those matrices that are also unitary are Hadamard matrices. We investigate the manifolds of these N x N matrices under the Sp(2,R) equivalence imposed by the model, and find them to be on two-sided cosets. By means of an algorithm we determine representatives that lead to collections of mutually unbiased bases.

  3. Quantum Hamilton mechanics: Hamilton equations of quantum motion, origin of quantum operators, and proof of quantization axiom

    International Nuclear Information System (INIS)

    Yang, C.-D.

    2006-01-01

    This paper gives a thorough investigation on formulating and solving quantum problems by extended analytical mechanics that extends canonical variables to complex domain. With this complex extension, we show that quantum mechanics becomes a part of analytical mechanics and hence can be treated integrally with classical mechanics. Complex canonical variables are governed by Hamilton equations of motion, which can be derived naturally from Schroedinger equation. Using complex canonical variables, a formal proof of the quantization axiom p → p = -ih∇, which is the kernel in constructing quantum-mechanical systems, becomes a one-line corollary of Hamilton mechanics. The derivation of quantum operators from Hamilton mechanics is coordinate independent and thus allows us to derive quantum operators directly under any coordinate system without transforming back to Cartesian coordinates. Besides deriving quantum operators, we also show that the various prominent quantum effects, such as quantization, tunneling, atomic shell structure, Aharonov-Bohm effect, and spin, all have the root in Hamilton mechanics and can be described entirely by Hamilton equations of motion

  4. Modern Cosmology

    Energy Technology Data Exchange (ETDEWEB)

    Zhang Yuanzhong

    2002-06-21

    This book is one of a series in the areas of high-energy physics, cosmology and gravitation published by the Institute of Physics. It includes courses given at a doctoral school on 'Relativistic Cosmology: Theory and Observation' held in Spring 2000 at the Centre for Scientific Culture 'Alessandro Volta', Italy, sponsored by SIGRAV-Societa Italiana di Relativita e Gravitazione (Italian Society of Relativity and Gravitation) and the University of Insubria. This book collects 15 review reports given by a number of outstanding scientists. They touch upon the main aspects of modern cosmology from observational matters to theoretical models, such as cosmological models, the early universe, dark matter and dark energy, modern observational cosmology, cosmic microwave background, gravitational lensing, and numerical simulations in cosmology. In particular, the introduction to the basics of cosmology includes the basic equations, covariant and tetrad descriptions, Friedmann models, observation and horizons, etc. The chapters on the early universe involve inflationary theories, particle physics in the early universe, and the creation of matter in the universe. The chapters on dark matter (DM) deal with experimental evidence of DM, neutrino oscillations, DM candidates in supersymmetry models and supergravity, structure formation in the universe, dark-matter search with innovative techniques, and dark energy (cosmological constant), etc. The chapters about structure in the universe consist of the basis for structure formation, quantifying large-scale structure, cosmic background fluctuation, galaxy space distribution, and the clustering of galaxies. In the field of modern observational cosmology, galaxy surveys and cluster surveys are given. The chapter on gravitational lensing describes the lens basics and models, galactic microlensing and galaxy clusters as lenses. The last chapter, 'Numerical simulations in cosmology', deals with spatial and

  5. Modern plasmonics

    CERN Document Server

    Maradudin, Alexei A; Barnes, William L

    2014-01-01

    Plasmonics is entering the curriculum of many universities, either as a stand alone subject, or as part of some course or courses. Nanotechnology institutes have been, and are being, established in universities, in which plasmonics is a significant topic of research. Modern Plasmonics book offers a comprehensive presentation of the properties of surface plasmon polaritons, in systems of different structures and various natures, e.g. active, nonlinear, graded, theoretical/computational and experimental techniques for studying them, and their use in a variety of applications. Contains materia

  6. Modern spectroscopy

    CERN Document Server

    Hollas, J Michael

    2013-01-01

    The latest edition of this highly acclaimed title introduces the reader to a wide range of spectroscopies, and includes both the background theory and applications to structure determination and chemical analysis.  It covers rotational, vibrational, electronic, photoelectron and Auger spectroscopy, as well as EXAFs and the theory of lasers and laser spectroscopy. A  revised and updated edition of a successful, clearly written book Includes the latest developments in modern laser techniques, such as cavity ring-down spectroscopy and femtosecond lasers Provides numerous worked examples, calculations and questions at the end of chapters.

  7. Fundamentals of quantum information

    International Nuclear Information System (INIS)

    Zeilinger, A.

    1998-01-01

    The fact that information is physical means that the laws of quantum mechanics can be used to process and transmit it in ways that are not possible with existing systems. Ever since its invention in the 1920s, quantum physics has given rise to countless discussions about its meaning and about how to interpret the theory correctly. These discussions focus on issues like the Einstein-Podolsky-Rosen paradox, quantum non-locality and the role of measurement in quantum physics. In recent years, however, research into the very foundations of quantum mechanics has also led to a new field quantum information technology. The use of quantum physics could revolutionize the way we communicate and process information. The important new observation is that information is not independent of the physical laws used to store and processes it (see Landauer in further reading). Although modern computers rely on quantum mechanics to operate, the information itself is still encoded classically. A new approach is to treat information as a quantum concept and to ask what new insights can be gained by encoding this information in individual quantum systems. In other words, what happens when both the transmission and processing of information are governed by quantum laws? (UK)

  8. Elements of quantum information

    International Nuclear Information System (INIS)

    Schleich, W.P.

    2007-01-01

    Elements of Quantum Information introduces the reader to the fascinating field of quantum information processing, which lives on the interface between computer science, physics, mathematics, and engineering. This interdisciplinary branch of science thrives on the use of quantum mechanics as a resource for high potential modern applications. With its wide coverage of experiments, applications, and specialized topics - all written by renowned experts - Elements of Quantum Information provides and indispensable, up-to-date account of the state of the art of this rapidly advancing field and takes the reader straight up to the frontiers of current research. The articles have first appeared as a special issue of the journal 'Fortschritte der Physik / Progress of Physics'. Since then, they have been carefully updated. The book will be an inspiring source of information and insight for anyone researching and specializing in experiments and theory of quantum information. Topics addressed in Elements of Quantum Information include - Cavity Quantum Electrodynamics - Segmented Paul Traps - Cold Atoms and Bose-Einstein Condensates in Microtraps, Optical Lattices, and on Atom Chips - Rydberg Gases - Factorization of Numbers with Physical Systems - Entanglement of Continuous Variables - NMR and Solid State Quantum Computation - Quantum Algorithms and Quantum Machines - Complexity Theory - Quantum Crytography. (orig.)

  9. Physics of quantum rings

    International Nuclear Information System (INIS)

    Fomin, Vladimir M.

    2014-01-01

    Presents the new class of materials of quantum rings. Provides an elemental basis for low-cost high-performance devices promising for electronics, optoelectronics, spintronics and quantum information processing. Explains the physical properties of quantum rings to cover a gap in scientific literature. Presents the application of most advanced nanoengineering and nanocharacterization techniques. This book deals with a new class of materials, quantum rings. Innovative recent advances in experimental and theoretical physics of quantum rings are based on the most advanced state-of-the-art fabrication and characterization techniques as well as theoretical methods. The experimental efforts allow to obtain a new class of semiconductor quantum rings formed by capping self-organized quantum dots grown by molecular beam epitaxy. Novel optical and magnetic properties of quantum rings are associated with non-trivial topologies at the nanoscale. An adequate characterization of quantum rings is possible on the basis of modern characterization methods of nanostructures, such as Scanning Tunneling Microscopy. A high level of complexity is demonstrated to be needed for a dedicated theoretical model to adequately represent the specific features of quantum rings. The findings presented in this book contribute to develop low-cost high-performance electronic, spintronic, optoelectronic and information processing devices based on quantum rings.

  10. Quantum cluster algebras and quantum nilpotent algebras

    Science.gov (United States)

    Goodearl, Kenneth R.; Yakimov, Milen T.

    2014-01-01

    A major direction in the theory of cluster algebras is to construct (quantum) cluster algebra structures on the (quantized) coordinate rings of various families of varieties arising in Lie theory. We prove that all algebras in a very large axiomatically defined class of noncommutative algebras possess canonical quantum cluster algebra structures. Furthermore, they coincide with the corresponding upper quantum cluster algebras. We also establish analogs of these results for a large class of Poisson nilpotent algebras. Many important families of coordinate rings are subsumed in the class we are covering, which leads to a broad range of applications of the general results to the above-mentioned types of problems. As a consequence, we prove the Berenstein–Zelevinsky conjecture [Berenstein A, Zelevinsky A (2005) Adv Math 195:405–455] for the quantized coordinate rings of double Bruhat cells and construct quantum cluster algebra structures on all quantum unipotent groups, extending the theorem of Geiß et al. [Geiß C, et al. (2013) Selecta Math 19:337–397] for the case of symmetric Kac–Moody groups. Moreover, we prove that the upper cluster algebras of Berenstein et al. [Berenstein A, et al. (2005) Duke Math J 126:1–52] associated with double Bruhat cells coincide with the corresponding cluster algebras. PMID:24982197

  11. Canonical three-body angular basis

    International Nuclear Information System (INIS)

    Matveenko, A.V.

    2001-01-01

    Three-body problems are basic for the quantum mechanics of molecular, atomic, or nuclear systems. We demonstrate that their variational solution for rotational states can be greatly simplified. A special choice of coordinates (hyperspherical) and of the kinematics (body-fixed coordinate frame) allows one to choose basis functions in a form that makes the angular coupling trivial. (author)

  12. The quantum labyrinth

    International Nuclear Information System (INIS)

    Hoekzema, D.J.

    1993-01-01

    This volume deals with the question whether quantum mechanics can provide a picture of physical reality. This question is investigated from physical, philosophical, and logical perspectives on the basis of modern views on measurement and open quantum systems. New ways are found of respecting the rules of classical logic in quantum mechanics, by developing a formalization of the concept of 'context' within modularized version of modal logic. Various applications of this are given, also outside quantum theory. A 'contextual quantum process theory' is presented as a general framework for further interpretation. Several such interpretations are outlined, and ensuing problems of completeness and (non)locality are discussed. A special chapter is devoted to a manifestly covariant relativistic interpretation in terms of 'quantum events'. (author). refs

  13. Quantum theory of plasmon

    International Nuclear Information System (INIS)

    Nguyen, Van Hieu; Nguyen, Bich Ha

    2014-01-01

    Since very early works on plasma oscillations in solids, it was known that in collective excitations (fluctuations of the charge density) of the electron gas there exists the resonance appearing as a quasiparticle of a special type called the plasmon. The elaboration of the quantum theory of plasmon in the framework of the canonical formalism is the purpose of the present work. We start from the establishment of the Lagrangian of the system of itinerant electrons in metal and the definition of the generalized coordinates and velocities of this system. Then we determine the expression of the Hamiltonian and perform the quantization procedure in the canonical formalism. By means of this rigorous method we can derive the expressions of the Hamiltonians of the interactions of plasmon with photon and all quasiparticles in solid from the first principles. (papers)

  14. CERN Photo Club (CPC) / Canon Contest - My View of CERN

    CERN Multimedia

    Steyaert, Didier

    2016-01-01

    The CERN Photo Club has organized in collaboration with Canon Switzerland a photo contest open to all members of the CERN (Persons with a CERN access card). The only restriction is that the photos must have been taken with a CANON camera (DSLR, bridge or compact) between 1 and 31 October 2016.

  15. LCPT: a program for finding linear canonical transformations

    International Nuclear Information System (INIS)

    Char, B.W.; McNamara, B.

    1979-01-01

    This article describes a MACSYMA program to compute symbolically a canonical linear transformation between coordinate systems. The difficulties in implementation of this canonical small physics problem are also discussed, along with the implications that may be drawn from such difficulties about widespread MACSYMA usage by the community of computational/theoretical physicists

  16. A canonical-literary reading of Lamentations 5 | Kang | HTS ...

    African Journals Online (AJOL)

    This article presents a canonical and literary reading of Lamentations 5 in the context of the book of Lamentations as a whole. Following the approach by Vanhoozer (1998, 2002) based on speech-act theory, the meaning of Scripture is sought at canonical level, supervening the basic literary level. In Lamentations, as ...

  17. Further results on geometric operators in quantum gravity

    NARCIS (Netherlands)

    Loll, R.

    1996-01-01

    We investigate some properties of geometric operators in canonical quantum gravity in the connection approach `a la Ashtekar, which are associated with volume, area and length of spatial regions. We motivate the construction of analogous discretized lattice quantities, compute various quantum

  18. Microcanonical quantum field theory

    International Nuclear Information System (INIS)

    Strominger, A.

    1983-01-01

    Euclidean quantum field theory is equivalent to the equilibrium statistical mechanics of classical fields in 4+1 dimensions at temperature h. It is well known in statistical mechanics that the theory of systems at fixed temperature is embedded within the more general and fundamental theory of systems at fixed energy. We therefore develop, in precise analogy, a fixed action (macrocanonical) formulation of quantum field theory. For the case of ordinary renormalizable field theories, we show (with one exception) that the microcanonical is entirely equivalent to the canonical formulation. That is, for some particular fixed value of the total action, the Green's functions of the microcanonical theory are equal, in the bulk limit, to those of the canonical theory. The microcanonical perturbation expansion is developed in some detail for lambdaphi 4 . The particular value of the action for which the two formulations are equivalent can be calculated to all orders in perturbation theory. We prove, using Lehmann's Theorem, that this value is one-half Planck unit per degree of freedom, if fermionic degrees of freedom are counted negatively. This is the 4+1 dimensional analog of the equipartition theorem. The one exception to this is supersymmetric theories. A microcanonical formulation exists if and only if supersymmetry is broken. In statistical mechanics and in field theory there are systems for which the canonical description is pathological, but the microcanonical is not. An example of such a field theory is found in one dimension. A semiclassical expansion of the microcanonical theory is well defined, while an expansion of the canonical theory is hoplessly divergent

  19. A Immirzi-like parameter for 3D quantum gravity

    International Nuclear Information System (INIS)

    Bonzom, Valentin; Livine, Etera R

    2008-01-01

    We study an Immirzi-like ambiguity in three-dimensional quantum gravity. It shares some features with the Immirzi parameter of four-dimensional loop quantum gravity: it does not affect the equations of motion, but modifies the Poisson brackets and the constraint algebra at the canonical level. We focus on the length operator and show how to define it through non-commuting fluxes. We compute its spectrum and show the effect of this Immirzi-like ambiguity. Finally, we extend these considerations to 4D gravity and show how the different topological modifications of the action affect the canonical structure of loop quantum gravity

  20. Canonical correlations between chemical and energetic characteristics of lignocellulosic wastes

    Directory of Open Access Journals (Sweden)

    Thiago de Paula Protásio

    2012-09-01

    Full Text Available Canonical correlation analysis is a statistical multivariate procedure that allows analyzing linear correlation that may exist between two groups or sets of variables (X and Y. This paper aimed to provide canonical correlation analysis between a group comprised of lignin and total extractives contents and higher heating value (HHV with a group of elemental components (carbon, hydrogen, nitrogen and sulfur for lignocellulosic wastes. The following wastes were used: eucalyptus shavings; pine shavings; red cedar shavings; sugar cane bagasse; residual bamboo cellulose pulp; coffee husk and parchment; maize harvesting wastes; and rice husk. Only the first canonical function was significant, but it presented a low canonical R². High carbon, hydrogen and sulfur contents and low nitrogen contents seem to be related to high total extractives contents of the lignocellulosic wastes. The preliminary results found in this paper indicate that the canonical correlations were not efficient to explain the correlations between the chemical elemental components and lignin contents and higher heating values.

  1. A Canonical Approach to the Argument/Adjunct Distinction

    Directory of Open Access Journals (Sweden)

    Diana Forker

    2014-01-01

    Full Text Available This paper provides an account of the argument/adjunct distinction implementing the 'canonical approach'. I identify five criteria (obligatoriness, latency, co-occurrence restrictions, grammatical relations, and iterability and seven diagnostic tendencies that can be used to distinguish canonical arguments from canonical adjuncts. I then apply the criteria and tendencies to data from the Nakh-Daghestanian language Hinuq. Hinuq makes extensive use of spatial cases for marking adjunct-like and argument-like NPs. By means of the criteria and tendencies it is possible to distinguish spatial NPs that come close to canonical arguments from those that are canonical adjuncts, and to place the remaining NPs bearing spatial cases within the argument-adjunct continuum.

  2. Towards topological quantum computer

    Science.gov (United States)

    Melnikov, D.; Mironov, A.; Mironov, S.; Morozov, A.; Morozov, An.

    2018-01-01

    Quantum R-matrices, the entangling deformations of non-entangling (classical) permutations, provide a distinguished basis in the space of unitary evolutions and, consequently, a natural choice for a minimal set of basic operations (universal gates) for quantum computation. Yet they play a special role in group theory, integrable systems and modern theory of non-perturbative calculations in quantum field and string theory. Despite recent developments in those fields the idea of topological quantum computing and use of R-matrices, in particular, practically reduce to reinterpretation of standard sets of quantum gates, and subsequently algorithms, in terms of available topological ones. In this paper we summarize a modern view on quantum R-matrix calculus and propose to look at the R-matrices acting in the space of irreducible representations, which are unitary for the real-valued couplings in Chern-Simons theory, as the fundamental set of universal gates for topological quantum computer. Such an approach calls for a more thorough investigation of the relation between topological invariants of knots and quantum algorithms.

  3. Towards topological quantum computer

    Directory of Open Access Journals (Sweden)

    D. Melnikov

    2018-01-01

    Full Text Available Quantum R-matrices, the entangling deformations of non-entangling (classical permutations, provide a distinguished basis in the space of unitary evolutions and, consequently, a natural choice for a minimal set of basic operations (universal gates for quantum computation. Yet they play a special role in group theory, integrable systems and modern theory of non-perturbative calculations in quantum field and string theory. Despite recent developments in those fields the idea of topological quantum computing and use of R-matrices, in particular, practically reduce to reinterpretation of standard sets of quantum gates, and subsequently algorithms, in terms of available topological ones. In this paper we summarize a modern view on quantum R-matrix calculus and propose to look at the R-matrices acting in the space of irreducible representations, which are unitary for the real-valued couplings in Chern–Simons theory, as the fundamental set of universal gates for topological quantum computer. Such an approach calls for a more thorough investigation of the relation between topological invariants of knots and quantum algorithms.

  4. Modern thermodynamics

    CERN Document Server

    Ben-Naim, Arieh

    2017-01-01

    This textbook introduces thermodynamics with a modern approach, starting from four fundamental physical facts (the atomic nature of matter, the indistinguishability of atoms and molecules of the same species, the uncertainty principle, and the existence of equilibrium states) and analyzing the behavior of complex systems with the tools of information theory, in particular with Shannon's measure of information (or SMI), which can be defined on any probability distribution. SMI is defined and its properties and time evolution are illustrated, and it is shown that the entropy is a particular type of SMI, i.e. the SMI related to the phase-space distribution for a macroscopic system at equilibrium. The connection to SMI allows the reader to understand what entropy is and why isolated systems follow the Second Law of Thermodynamics. The Second Llaw is also formulated for other systems, not thermally isolated and even open with respect to the transfer of particles. All the fundamental aspects of thermodynamics are d...

  5. Modern electrodynamics

    CERN Document Server

    Zangwill, Andrew

    2013-01-01

    An engaging writing style and a strong focus on the physics make this comprehensive, graduate-level textbook unique among existing classical electromagnetism textbooks. Charged particles in vacuum and the electrodynamics of continuous media are given equal attention in discussions of electrostatics, magnetostatics, quasistatics, conservation laws, wave propagation, radiation, scattering, special relativity and field theory. Extensive use of qualitative arguments similar to those used by working physicists makes Modern Electrodynamics a must-have for every student of this subject. In 24 chapters, the textbook covers many more topics than can be presented in a typical two-semester course, making it easy for instructors to tailor courses to their specific needs. Close to 120 worked examples and 80 applications boxes help the reader build physical intuition and develop technical skill. Nearly 600 end-of-chapter homework problems encourage students to engage actively with the material. A solutions manual is availa...

  6. The canon as text for a biblical theology

    Directory of Open Access Journals (Sweden)

    James A. Loader

    2005-10-01

    Full Text Available The novelty of the canonical approach is questioned and its fascination at least partly traced to the Reformation, as well as to the post-Reformation’s need for a clear and authoritative canon to perform the function previously performed by the church. This does not minimise the elusiveness and deeply contradictory positions both within the canon and triggered by it. On the one hand, the canon itself is a centripetal phenomenon and does play an important role in exegesis and theology. Even so, on the other hand, it not only contains many difficulties, but also causes various additional problems of a formal as well as a theological nature. The question is mooted whether the canonical approach alleviates or aggravates the dilemma. Since this approach has become a major factor in Christian theology, aspects of the Christian canon are used to gauge whether “canon” is an appropriate category for eliminating difficulties that arise by virtue of its own existence. Problematic uses and appropriations of several Old Testament canons are advanced, as well as evidence in the New Testament of a consciousness that the “old” has been surpassed(“Überbietungsbewußtsein”. It is maintained that at least the Childs version of the canonical approach fails to smooth out these and similar difficulties. As a method it can cater for the New Testament’s (superior role as the hermeneutical standard for evaluating the Old, but flounders on its inability to create the theological unity it claims can solve religious problems exposed by Old Testament historical criticism. It is concluded that canon as a category cannot be dispensed with, but is useful for the opposite of the purpose to which it is conventionally put: far from bringing about theological “unity” or producing a standard for “correct” exegesis, it requires different readings of different canons.

  7. On Spectral Triples in Quantum Gravity I

    DEFF Research Database (Denmark)

    Aastrup, Johannes; M. Grimstrup, Jesper; Nest, Ryszard

    2009-01-01

    This paper establishes a link between Noncommutative Geometry and canonical quantum gravity. A semi-finite spectral triple over a space of connections is presented. The triple involves an algebra of holonomy loops and a Dirac type operator which resembles a global functional derivation operator....... The interaction between the Dirac operator and the algebra reproduces the Poisson structure of General Relativity. Moreover, the associated Hilbert space corresponds, up to a discrete symmetry group, to the Hilbert space of diffeomorphism invariant states known from Loop Quantum Gravity. Correspondingly......, the square of the Dirac operator has, in terms of canonical quantum gravity, the form of a global area-squared operator. Furthermore, the spectral action resembles a partition function of Quantum Gravity. The construction is background independent and is based on an inductive system of triangulations...

  8. El Escritor y las Normas del Canon Literario (The Writer and the Norms of the Literary Canon).

    Science.gov (United States)

    Policarpo, Alcibiades

    This paper speculates about whether a literary canon exists in contemporary Latin American literature, particularly in the prose genre. The paper points to Carlos Fuentes, Gabriel Garcia Marquez, and Mario Vargas Llosa as the three authors who might form this traditional and liberal canon with their works "La Muerte de Artemio Cruz"…

  9. Bolatu's pharmacy theriac in early modern China.

    Science.gov (United States)

    Nappi, Carla

    2009-01-01

    In early modem China, natural history and medicine were shifting along with the boundaries of the empire. Naturalists struggled to cope with a pharmacy's worth of new and unfamiliar substances, texts, and terms, as plants, animals, and the drugs made from them travelled into China across land and sea. One crucial aspect of this phenomenon was the early modern exchange between Islamic and Chinese medicine. The history of theriac illustrates the importance of the recipe for the naturalization of foreign objects in early modem Chinese medicine. Theriac was a widely sought-after and hotly debated product in early modern European pharmacology and arrived into the Chinese medical canon via Arabic and Persian texts. The dialogue between language and material objects was critical to the Silk Road drug trade, and transliteration was ultimately a crucial technology used to translate drugs and texts about them in the early modern world.

  10. The quantum cookbook

    International Nuclear Information System (INIS)

    Gribbin, John.

    1985-01-01

    The paper traces the development of quantum physics, from the early past of this century to modern applications including solid-state devices. The early quantum studies on the model of the atom, carried out by Niels Bohr, are described, as well as the work by Heisenberg and colleagues on matrix mechanics. De Broglie wavelength; particles and waves; uncertainty principles; lasers; and semiconductor systems; are all briefly discussed. (U.K.)

  11. Canonical cortical circuits: current evidence and theoretical implications

    Directory of Open Access Journals (Sweden)

    Capone F

    2016-04-01

    Full Text Available Fioravante Capone,1,2 Matteo Paolucci,1,2 Federica Assenza,1,2 Nicoletta Brunelli,1,2 Lorenzo Ricci,1,2 Lucia Florio,1,2 Vincenzo Di Lazzaro1,2 1Unit of Neurology, Neurophysiology, Neurobiology, Department of Medicine, Università Campus Bio-Medico di Roma, Rome, Italy; 2Fondazione Alberto Sordi – Research Institute for Aging, Rome, ItalyAbstract: Neurophysiological and neuroanatomical studies have found that the same basic structural and functional organization of neuronal circuits exists throughout the cortex. This kind of cortical organization, termed canonical circuit, has been functionally demonstrated primarily by studies involving visual striate cortex, and then, the concept has been extended to different cortical areas. In brief, the canonical circuit is composed of superficial pyramidal neurons of layers II/III receiving different inputs and deep pyramidal neurons of layer V that are responsible for cortex output. Superficial and deep pyramidal neurons are reciprocally connected, and inhibitory interneurons participate in modulating the activity of the circuit. The main intuition of this model is that the entire cortical network could be modeled as the repetition of relatively simple modules composed of relatively few types of excitatory and inhibitory, highly interconnected neurons. We will review the origin and the application of the canonical cortical circuit model in the six sections of this paper. The first section (The origins of the concept of canonical circuit: the cat visual cortex reviews the experiments performed in the cat visual cortex, from the origin of the concept of canonical circuit to the most recent developments in the modelization of cortex. The second (The canonical circuit in neocortex and third (Toward a canonical circuit in agranular cortex sections try to extend the concept of canonical circuit to other cortical areas, providing some significant examples of circuit functioning in different cytoarchitectonic

  12. Finite canonical measure for nonsingular cosmologies

    International Nuclear Information System (INIS)

    Page, Don N.

    2011-01-01

    The total canonical (Liouville-Henneaux-Gibbons-Hawking-Stewart) measure is finite for completely nonsingular Friedmann-Lemaître-Robertson-Walker classical universes with a minimally coupled massive scalar field and a positive cosmological constant. For a cosmological constant very small in units of the square of the scalar field mass, most of the measure is for nearly de Sitter solutions with no inflation at a much more rapid rate. However, if one restricts to solutions in which the scalar field energy density is ever more than twice the equivalent energy density of the cosmological constant, then the number of e-folds of rapid inflation must be large, and the fraction of the measure is low in which the spatial curvature is comparable to the cosmological constant at the time when it is comparable to the energy density of the scalar field. The measure for such classical FLRWΛ-φ models with both a big bang and a big crunch is also finite. Only the solutions with a big bang that expand forever, or the time-reversed ones that contract from infinity to a big crunch, have infinite measure

  13. The Anonymous Jane Austen: Duelling Canons

    Directory of Open Access Journals (Sweden)

    Edward Copeland

    2017-12-01

    Full Text Available This essay initially addresses some theoretical concepts such as adaptation and appropriation. I intend to analyze how Jane Austen herself indulged in her own appropriations from the woman’s canon, in particular through a story entitled Guilt Pursued by Conscience, a tale she found in the “Lady’s Magazine” of 1802. I will show that this tale that claimed Austen’s particular attention was re-appropriated in Emma (although in the broadest sense of parody and, to a lesser extent, in Sense and Sensibility. The second part of the essay, instead, will move on to analyze how novelists of the generation that followed Austen felt free to import dialogue, characters, and plots from Austen’s works, showing no obligation to their source, just as she had done with the “Lady’s” tale. I will mention and comment on a series of novels, especially from the silver fork school, that draw from Austen’s plot, characters and happenings without acknowledging their legacy to their predecessor.

  14. The Schroedinger equation and canonical perturbation theory

    International Nuclear Information System (INIS)

    Graffi, S.; Paul, T.

    1987-01-01

    Let T 0 (ℎ,ω)+εV be the Schroedinger operator corresponding to the classical Hamiltonian H 0 (ω)+εV, where H 0 (ω) is the d-dimensional harmonic oscillator with non-resonant frequencies ω=(ω 1 ..., ω d ) and the potential V(q 1 , ..., q d ) is an entire function of order (d+l) -1 . We prove that the algorithm of classical, canonical perturbation theory can be applied to the Schroedinger equation in the Bargmann representation. As a consequence, each term of the Rayleigh-Schroedinger series near any eigenvalue of T 0 (ℎ,ω) admits a convergent expansion in powers of ℎ of initial point the corresponding term of the classical Birkhoff expansion. Moreover if V is an even polynomial, the above result and the KAM theorem show that all eigenvalues λ n (ℎ,ε) of T 0 +εV such that nℎ coincides with a KAM torus are given, up to order ε ∞ , by a quantization formula which reduces to the Bohr-Sommerfeld one up to first order terms in ℎ. (orig.)

  15. Some considerations about literary canon books

    Directory of Open Access Journals (Sweden)

    Jorge Gregorio Posada Ramírez

    2017-06-01

    Full Text Available El siguiente texto muestra que las obras clásicas de la literatura, también conocidas como libros del canon, amplían la vida interior de quienes los leen. La permanencia y expansión en tiempo y espacio que hace de un libro una obra clásica se irradia en el lector extendiendo su yo hacia vivencias que van más allá de sus confines biográficos, sociales y culturales. Tomando como ejemplo cuatro obras de la literatura: Edipo Rey de Sófocles, La muerte en Venecia de Thomas Mann, El laberinto de la soledad de Octavio Paz, y Altazor de Vicente Huidobro se expone una interpretación de la manera cómo las obras clásicas de la literatura tienen el poder de profundizar y enriquecer las experiencias corrientes de sus lectores, extendiendo los confines y posibilidades del pensamiento.

  16. Dissolution of Marriage According to Canon Law

    Directory of Open Access Journals (Sweden)

    MSc. Sulejman Ahmedi

    2013-12-01

    Full Text Available In the Canon law, dissolution of marriage is not allowed since it was considered sacred and as such cannot break until the two spouses are alive, except only if one of the spouses passes away. But throughout history we find cases when allowed dissolution of the marriage and causes specific conditions set by the church. Thus, according to the Old Testament, if, a man married to a woman, didn’t like something about his wife, should write a request for divorce and allow her to leave his home. Meanwhile according to the New Testament records, divorce is prohibited. Although most Protestants continue to espouse the view that marriage was sacred and as such should not be divorced, from those who had supported the idea of granting the divorce. One of them was Luther, who in his remarks before his preachers said: "In my opinion, the issue of divorce belongs to the law, are not they to whom called for regulation of parental relationships, why not have they the authority to regulate the relations between spouses". Protestant churches allow the dissolution of marriage: a Because of adultery by the wife; allowed by Jesus, b Unjustified abandonment of the marital community; c If there were other reasons: if one spouse refuses to have sexual marriage, if the husband abuses his wife     repeatedly and without cause, severe illness of one spouse.

  17. Scalable Quantum Simulation of Molecular Energies

    Directory of Open Access Journals (Sweden)

    P. J. J. O’Malley

    2016-07-01

    Full Text Available We report the first electronic structure calculation performed on a quantum computer without exponentially costly precompilation. We use a programmable array of superconducting qubits to compute the energy surface of molecular hydrogen using two distinct quantum algorithms. First, we experimentally execute the unitary coupled cluster method using the variational quantum eigensolver. Our efficient implementation predicts the correct dissociation energy to within chemical accuracy of the numerically exact result. Second, we experimentally demonstrate the canonical quantum algorithm for chemistry, which consists of Trotterization and quantum phase estimation. We compare the experimental performance of these approaches to show clear evidence that the variational quantum eigensolver is robust to certain errors. This error tolerance inspires hope that variational quantum simulations of classically intractable molecules may be viable in the near future.

  18. Quantum Erasure: Quantum Interference Revisited

    OpenAIRE

    Walborn, Stephen P.; Cunha, Marcelo O. Terra; Pádua, Sebastião; Monken, Carlos H.

    2005-01-01

    Recent experiments in quantum optics have shed light on the foundations of quantum physics. Quantum erasers - modified quantum interference experiments - show that quantum entanglement is responsible for the complementarity principle.

  19. Bananaworld quantum mechanics for primates

    CERN Document Server

    Bub, Jeffrey

    2016-01-01

    What on earth do bananas have to do with quantum mechanics? From a modern perspective, quantum mechanics is about strangely counterintuitive correlations between separated systems, which can be exploited in feats like quantum teleportation, unbreakable cryptographic schemes, and computers with enormously enhanced computing power. Schro?dinger coined the term "entanglement" to describe these bizarre correlations. Bananaworld -- an imaginary island with "entangled" bananas -- brings to life the fascinating discoveries of the new field of quantum information without the mathematical machinery of quantum mechanics. The connection with quantum correlations is fully explained in sections written for the non-physicist reader with a serious interest in understanding the mysteries of the quantum world. The result is a subversive but entertaining book that is accessible and interesting to a wide range of readers, with the novel thesis that quantum mechanics is about the structure of information. What we have discovered...

  20. Quantum mechanics theory and experiment

    CERN Document Server

    Beck, Mark

    2012-01-01

    This textbook presents quantum mechanics at the junior/senior undergraduate level. It is unique in that it describes not only quantum theory, but also presents five laboratories that explore truly modern aspects of quantum mechanics. These laboratories include "proving" that light contains photons, single-photon interference, and tests of local realism. The text begins by presenting the classical theory of polarization, moving on to describe the quantum theory of polarization. Analogies between the two theories minimize conceptual difficulties that students typically have when first presented with quantum mechanics. Furthermore, because the laboratories involve studying photons, using photon polarization as a prototypical quantum system allows the laboratory work to be closely integrated with the coursework. Polarization represents a two-dimensional quantum system, so the introduction to quantum mechanics uses two-dimensional state vectors and operators. This allows students to become comfortable with the mat...

  1. Quantum distribution function of nonequilibrium system

    International Nuclear Information System (INIS)

    Sogo, Kiyoshi; Fujimoto, Yasushi.

    1990-03-01

    A path integral representation is derived for the Wigner distribution function of a nonequilibrium system coupled with heat bath. Under appropriate conditions, the Wigner distribution function approaches an equilibrium distribution, which manifests shifting and broadening of spectral lines due to the interaction with heat bath. It is shown that the equilibrium distribution becomes the quantum canonical distribution in the vanishing coupling constant limit. (author)

  2. Diamagnetism of quantum gases with singular potentials

    DEFF Research Database (Denmark)

    Briet, Philippe; Cornean, Horia; Savoie, Baptiste

    2010-01-01

    We consider a gas of quasi-free quantum particles confined to a finite box, subjected to singular magnetic and electric fields. We prove in great generality that the finite volume grand-canonical pressure is analytic with respect to the chemical potential and the intensity of the external magnetic...

  3. On total noncommutativity in quantum mechanics

    Science.gov (United States)

    Lahti, Pekka J.; Ylinen, Kari

    1987-11-01

    It is shown within the Hilbert space formulation of quantum mechanics that the total noncommutativity of any two physical quantities is necessary for their satisfying the uncertainty relation or for their being complementary. The importance of these results is illustrated with the canonically conjugate position and momentum of a free particle and of a particle closed in a box.

  4. Canonical quantization of gravity and a problem of scattering

    International Nuclear Information System (INIS)

    Rubakov, V.A.

    1980-01-01

    Linearized theory of gravity is quantized both in a naive way and as a proper limit of the Dirac-Wheeler-De Witt approach to the quantization of the full theory. The equivalence between the two approaches is established. The problem of scattering in the canonically quantized theory of gravitation is investigated. The concept of the background metric naturally appears in the canonical formalism for this case. The equivalence between canonical and path-integral approaches is established for the problem of scattering. Some kinetical properties of functionals in Wheeler superspace are studied in an appendix. (author)

  5. Quantum field theory

    International Nuclear Information System (INIS)

    Ryder, L.H.

    1985-01-01

    This introduction to the ideas and techniques of quantum field theory presents the material as simply as possible and is designed for graduate research students. After a brief survey of particle physics, the quantum theory of scalar and spinor fields and then of gauge fields, is developed. The emphasis throughout is on functional methods, which have played a large part in modern field theory. The book concludes with a bridge survey of ''topological'' objects in field theory and assumes a knowledge of quantum mechanics and special relativity

  6. Axiomation of quantum mechanics

    International Nuclear Information System (INIS)

    Kotecky, R.

    1975-01-01

    Deeper understanding of the basic structure of the formalism of the modern quantum theory (as has been established during its 50 years' stormy development) has been brought about by its axiomatization - by founding the formalism merely on experimentally directly accountable postulates without referring to historical development, without any a priori nonessential or empirically nonexplicable assumptions. A summary is given of the common formalism of quantum mechanics and its most significant axiomatizations. The assumptions are discussed under which respective axiomatically described abstract structures may be modelled by means of the common formalisn of quantum theory (established on the theory of Hilbert spaces). (author)

  7. Density operators in quantum mechanics

    International Nuclear Information System (INIS)

    Burzynski, A.

    1979-01-01

    A brief discussion and resume of density operator formalism in the way it occurs in modern physics (in quantum optics, quantum statistical physics, quantum theory of radiation) is presented. Particularly we emphasize the projection operator method, application of spectral theorems and superoperators formalism in operator Hilbert spaces (Hilbert-Schmidt type). The paper includes an appendix on direct sums and direct products of spaces and operators, and problems of reducibility for operator class by using the projection operators. (author)

  8. Spin Entanglement Witness for Quantum Gravity

    NARCIS (Netherlands)

    Bose, Sougato; Mazumdar, Anupam; Morley, Gavin W.; Ulbricht, Hendrik; Toros, Marko; Paternostro, Mauro; Geraci, Andrew A.; Barker, Peter F.; Kim, M. S.; Milburn, Gerard

    2017-01-01

    Understanding gravity in the framework of quantum mechanics is one of the great challenges in modern physics. However, the lack of empirical evidence has lead to a debate on whether gravity is a quantum entity. Despite varied proposed probes for quantum gravity, it is fair to say that there are no

  9. Towards quantum chemistry on a quantum computer.

    Science.gov (United States)

    Lanyon, B P; Whitfield, J D; Gillett, G G; Goggin, M E; Almeida, M P; Kassal, I; Biamonte, J D; Mohseni, M; Powell, B J; Barbieri, M; Aspuru-Guzik, A; White, A G

    2010-02-01

    Exact first-principles calculations of molecular properties are currently intractable because their computational cost grows exponentially with both the number of atoms and basis set size. A solution is to move to a radically different model of computing by building a quantum computer, which is a device that uses quantum systems themselves to store and process data. Here we report the application of the latest photonic quantum computer technology to calculate properties of the smallest molecular system: the hydrogen molecule in a minimal basis. We calculate the complete energy spectrum to 20 bits of precision and discuss how the technique can be expanded to solve large-scale chemical problems that lie beyond the reach of modern supercomputers. These results represent an early practical step toward a powerful tool with a broad range of quantum-chemical applications.

  10. Towards conformal loop quantum gravity

    International Nuclear Information System (INIS)

    Wang, Charles H-T

    2006-01-01

    A discussion is given of recent developments in canonical gravity that assimilates the conformal analysis of gravitational degrees of freedom. The work is motivated by the problem of time in quantum gravity and is carried out at the metric and the triad levels. At the metric level, it is shown that by extending the Arnowitt-Deser-Misner (ADM) phase space of general relativity (GR), a conformal form of geometrodynamics can be constructed. In addition to the Hamiltonian and Diffeomorphism constraints, an extra first class constraint is introduced to generate conformal transformations. This phase space consists of York's mean extrinsic curvature time, conformal three-metric and their momenta. At the triad level, the phase space of GR is further enlarged by incorporating spin-gauge as well as conformal symmetries. This leads to a canonical formulation of GR using a new set of real spin connection variables. The resulting gravitational constraints are first class, consisting of the Hamiltonian constraint and the canonical generators for spin-gauge and conformorphism transformations. The formulation has a remarkable feature of being parameter-free. Indeed, it is shown that a conformal parameter of the Barbero-Immirzi type can be absorbed by the conformal symmetry of the extended phase space. This gives rise to an alternative approach to loop quantum gravity that addresses both the conceptual problem of time and the technical problem of functional calculus in quantum gravity

  11. Canonical and non-canonical barriers facing antimiR cancer therapeutics.

    Science.gov (United States)

    Cheng, Christopher J; Saltzman, W Mark; Slack, Frank J

    2013-01-01

    Once considered genetic "oddities", microRNAs (miRNAs) are now recognized as key epigenetic regulators of numerous biological processes, including some with a causal link to the pathogenesis, maintenance, and treatment of cancer. The crux of small RNA-based therapeutics lies in the antagonism of potent cellular targets; the main shortcoming of the field in general, lies in ineffective delivery. Inhibition of oncogenic miRNAs is a relatively nascent therapeutic concept, but as with predecessor RNA-based therapies, success hinges on delivery efficacy. This review will describes the canonical (e.g. pharmacokinetics and clearance, cellular uptake, endosome escape, etc.) and non-canonical (e.g. spatial localization and accessibility of miRNA, technical limitations of miRNA inhibition, off-target impacts, etc.) challenges to the delivery of antisense-based anti-miRNA therapeutics (i.e. antimiRs) for the treatment of cancer. Emphasis will be placed on how the current leading antimiR platforms-ranging from naked chemically modified oligonucleotides to nanoscale delivery vehicles-are affected by and overcome these barriers. The perplexity of antimiR delivery presents both engineering and biological hurdles that must be overcome in order to capitalize on the extensive pharmacological benefits of antagonizing tumor-associated miRNAs.

  12. Canonical Methods in the Solution of Variable-Coefficient Lanchester-Type Equations of Modern Warfare

    National Research Council Canada - National Science Library

    Taylor, James G; Brown, Gerald G

    1976-01-01

    This paper develops a mathematical theory for solving deterministic, Lanchester-type, 'square-law' attrition equations for combat between two homogeneous forces with temporal variations in fire effectivenesses...

  13. Positivism, Impressionism and Magic: modifying the modern canon in America and France from the 1940s

    Directory of Open Access Journals (Sweden)

    Gavin Parkinson

    2017-12-01

    Full Text Available This article narrates for the first time the competing views over Impressionism in America and France in the 1940s and 1950s, between modernist art history led by Clement Greenberg, on the one hand, and Surrealism led by André Breton, on the other. It argues that the sustained critique of Surrealism against positivism in the early 1940s helped to determine accidentally the modernist reconstitution of Impressionism – a movement that had suffered some neglect historiographically due to the emergence and rise of the utterly dissimilar Surrealism in the 1920s and 1930s – that was continued into the 1950s. The observation of and resistance to the triumph of American abstraction and revival of Impressionism in that decade by a now thoroughly esoteric Surrealism are shown to be another facet of this chapter forgotten by art history.

  14. Quantum frames of reference

    International Nuclear Information System (INIS)

    Kaufherr, T.

    1981-01-01

    The idea that only relative variables have physical meaning came to be known as Mach's principle. Carrying over this idea to quantum theory, has led to the consideration of finite mass, macroscopic reference frames, relative to which all physical quantities are measured. During the process of measurement, a finite mass observer receives a kickback, and this reaction of the measuring device is not negligible in quantum theory because of the quantization of the action. Hence, the observer himself has to be included in the system that is being considered. Using this as the starting point, a number of thought experiments involving finite mass observers is discussed which have quantum uncertainties in their time or in their position. These thought experiments serve to elucidate in a qualitative way some of the difficulties involved, as well as pointing out a direction to take in seeking solutions to them. When the discussion is extended to include more than one observer, the question of the covariance of the theory immediately arises. Because none of the frames of reference should be preferred, the theory should be covariant. This demand expresses an equivalence principle which here is extended to include reference frames which are in quantum uncertainties relative to each other. Formulating the problem in terms of canonical variables, the ensueing free Hamiltonian contains vector and scalar potentials which represent the kick that the reference frame receives during measurement. These are essentially gravitational type potentials, resulting, as it were, from the extension of the equivalence principle into the quantum domain

  15. An Analysis of Historical Vignettes by Ibn Sina in the Canon of Medicine on the Structure and Function of the Cardiorespiratory Apparatus.

    Science.gov (United States)

    Mazengenya, Pedzisai; Bhikha, Rashid

    2017-06-01

    Ibn Sina is regarded as one of the greatest physicians, thinkers and medical scholars in the history of medicine. Ibn Sina, a Persian scholar in the medieval era, wrote a famous book of medicine, the Canon of Medicine. The book was adopted as the main textbook of medicine in most Western and Persian universities. In the present critique, we analyzed the functional and anatomic descriptions of the heart, airways and the lungs as viewed by Ibn Sina in volume three of the Canon of Medicine textbook, and compared them to modern anatomy texts.

  16. Interrelations between different canonical descriptions of dissipative systems

    International Nuclear Information System (INIS)

    Schuch, D; Guerrero, J; López-Ruiz, F F; Aldaya, V

    2015-01-01

    There are many approaches for the description of dissipative systems coupled to some kind of environment. This environment can be described in different ways; only effective models are being considered here. In the Bateman model, the environment is represented by one additional degree of freedom and the corresponding momentum. In two other canonical approaches, no environmental degree of freedom appears explicitly, but the canonical variables are connected with the physical ones via non-canonical transformations. The link between the Bateman approach and those without additional variables is achieved via comparison with a canonical approach using expanding coordinates, as, in this case, both Hamiltonians are constants of motion. This leads to constraints that allow for the elimination of the additional degree of freedom in the Bateman approach. These constraints are not unique. Several choices are studied explicitly, and the consequences for the physical interpretation of the additional variable in the Bateman model are discussed. (paper)

  17. Canonical and D-transformations in Theories with Constraints

    OpenAIRE

    Gitman, Dmitri M.

    1995-01-01

    A class class of transformations in a super phase space (we call them D-transformations) is described, which play in theories with second-class constraints the role of ordinary canonical transformations in theories without constraints.

  18. On a canonical formulation of field theories with singular Lagrangians

    International Nuclear Information System (INIS)

    Mal'tsev, V.K.

    1978-01-01

    An attempt is made to introduce the Routh function formalism into the field theory: only ''nondegenerated'' field components are considered as canonical variables. Electrodynamics and general relativity are considered. The formalism appears to be quite simple and gauge-independent

  19. Interrelations between different canonical descriptions of dissipative systems

    Science.gov (United States)

    Schuch, D.; Guerrero, J.; López-Ruiz, F. F.; Aldaya, V.

    2015-04-01

    There are many approaches for the description of dissipative systems coupled to some kind of environment. This environment can be described in different ways; only effective models are being considered here. In the Bateman model, the environment is represented by one additional degree of freedom and the corresponding momentum. In two other canonical approaches, no environmental degree of freedom appears explicitly, but the canonical variables are connected with the physical ones via non-canonical transformations. The link between the Bateman approach and those without additional variables is achieved via comparison with a canonical approach using expanding coordinates, as, in this case, both Hamiltonians are constants of motion. This leads to constraints that allow for the elimination of the additional degree of freedom in the Bateman approach. These constraints are not unique. Several choices are studied explicitly, and the consequences for the physical interpretation of the additional variable in the Bateman model are discussed.

  20. An efficient algorithm for calculation of the Luenberger canonical form.

    Science.gov (United States)

    Jordan, D.; Sridhar, B.

    1973-01-01

    A new algorithm is presented to obtain the Luenberger canonical form for multivariable systems. A distinct feature of the method is that the canonical form is obtained directly and, if necessary, the similarity transformation can be computed. There is a substantial reduction in the amount of computation compared to Luenberger's method. The reduced computations along with Gaussian techniques lend greater inherent accuracy and the ability to refine the solution with additional computations. An example is presented to illustrate the technique.

  1. Canonical algorithms for numerical integration of charged particle motion equations

    Science.gov (United States)

    Efimov, I. N.; Morozov, E. A.; Morozova, A. R.

    2017-02-01

    A technique for numerically integrating the equation of charged particle motion in a magnetic field is considered. It is based on the canonical transformations of the phase space in Hamiltonian mechanics. The canonical transformations make the integration process stable against counting error accumulation. The integration algorithms contain a minimum possible amount of arithmetics and can be used to design accelerators and devices of electron and ion optics.

  2. Canonical forms of tensor representations and spontaneous symmetry breaking

    International Nuclear Information System (INIS)

    Cummins, C.J.

    1986-01-01

    An algorithm for constructing canonical forms for any tensor representation of the classical compact Lie groups is given. This method is used to find a complete list of the symmetry breaking patterns produced by Higgs fields in the third-rank antisymmetric representations of U(n), SU(n) and SO(n) for n<=7. A simple canonical form is also given for kth-rank symmetric tensor representations. (author)

  3. Border mythology: Turner and modernity

    Directory of Open Access Journals (Sweden)

    Jorge E. Brenna B.

    2011-07-01

    Full Text Available Modernity has been creating spaces, new boundaries and borders, as metaphysical, mythological and symbolic marks of physical and imaginary territories. Modern space and its borders are metaphors, boundaries that are created, walls that rise to identify with some and categorize others. In this short paper we want to approach the problem of the transformation of the idea of border (geographical, cultural, symbolic, etc., for a reflection on the transformations of that civilized obsession called border. The border has always been a reference in facing the identities, names, symbols, different imaginary: it is more confrontational line between two otherness. From the previous framework, we reflect on Turnerian mythology, as we believe that behind the creation of the imagination of the northern border is the mythical vision of the American frontier as ideological canon that explains and confirms the presence of the white race in a border re–made in the image and likeness of the “American Dream”. Frederick Turner’s reflection on the role of the frontier in American history is not only the study of the importance of progress towards the West but –even more so, is the analysis of meaning that had the American frontier as a historical process that ended in 1893, as Turner said, but rather extended into the twentieth century and continues to constantly shaping the process of territorialization of the border.

  4. Quantum mechanics in coherent algebras on phase space

    International Nuclear Information System (INIS)

    Lesche, B.; Seligman, T.H.

    1986-01-01

    Quantum mechanics is formulated on a quantum mechanical phase space. The algebra of observables and states is represented by an algebra of functions on phase space that fulfills a certain coherence condition, expressing the quantum mechanical superposition principle. The trace operation is an integration over phase space. In the case where the canonical variables independently run from -infinity to +infinity the formalism reduces to the representation of quantum mechanics by Wigner distributions. However, the notion of coherent algebras allows to apply the formalism to spaces for which the Wigner mapping is not known. Quantum mechanics of a particle in a plane in polar coordinates is discussed as an example. (author)

  5. Restoring canonical partition functions from imaginary chemical potential

    Science.gov (United States)

    Bornyakov, V. G.; Boyda, D.; Goy, V.; Molochkov, A.; Nakamura, A.; Nikolaev, A.; Zakharov, V. I.

    2018-03-01

    Using GPGPU techniques and multi-precision calculation we developed the code to study QCD phase transition line in the canonical approach. The canonical approach is a powerful tool to investigate sign problem in Lattice QCD. The central part of the canonical approach is the fugacity expansion of the grand canonical partition functions. Canonical partition functions Zn(T) are coefficients of this expansion. Using various methods we study properties of Zn(T). At the last step we perform cubic spline for temperature dependence of Zn(T) at fixed n and compute baryon number susceptibility χB/T2 as function of temperature. After that we compute numerically ∂χ/∂T and restore crossover line in QCD phase diagram. We use improved Wilson fermions and Iwasaki gauge action on the 163 × 4 lattice with mπ/mρ = 0.8 as a sandbox to check the canonical approach. In this framework we obtain coefficient in parametrization of crossover line Tc(µ2B) = Tc(C-ĸµ2B/T2c) with ĸ = -0.0453 ± 0.0099.

  6. Quantum cosmological models

    International Nuclear Information System (INIS)

    Coule, D H

    2005-01-01

    We contrast the initial condition requirements of various contemporary cosmological models including inflationary and bouncing cosmologies. Canonical quantization of general relativity is used, as a first approximation to full quantum gravity, to determine whether suitable initial conditions are present. Various proposals such as Hartle-Hawking's 'no boundary' or tunnelling boundary conditions are assessed on grounds of naturalness and fine tuning. Alternatively, a quiescent initial state or an initial closed timelike curve 'time machine' is considered. Possible extensions to brane models are also addressed. Further ideas about universe creation from a meta-universe are outlined. Semiclassical and time asymmetry requirements of cosmology are briefly discussed and contrasted with the black-hole final-state proposal. We compare the recent loop quantum cosmology of Bojowald and co-workers with these earlier schemes. A number of possible difficulties and limitations are outlined. (topical review)

  7. Symmetry and symmetry breaking in modern physics

    International Nuclear Information System (INIS)

    Barone, M; Theophilou, A K

    2008-01-01

    In modern physics, the theory of symmetry, i.e. group theory, is a basic tool for understanding and formulating the fundamental principles of Physics, like Relativity, Quantum Mechanics and Particle Physics. In this work we focus on the relation between Mathematics, Physics and objective reality

  8. Process modelling on a canonical basis[Process modelling; Canonical modelling

    Energy Technology Data Exchange (ETDEWEB)

    Siepmann, Volker

    2006-12-20

    Based on an equation oriented solving strategy, this thesis investigates a new approach to process modelling. Homogeneous thermodynamic state functions represent consistent mathematical models of thermodynamic properties. Such state functions of solely extensive canonical state variables are the basis of this work, as they are natural objective functions in optimisation nodes to calculate thermodynamic equilibrium regarding phase-interaction and chemical reactions. Analytical state function derivatives are utilised within the solution process as well as interpreted as physical properties. By this approach, only a limited range of imaginable process constraints are considered, namely linear balance equations of state variables. A second-order update of source contributions to these balance equations is obtained by an additional constitutive equation system. These equations are general dependent on state variables and first-order sensitivities, and cover therefore practically all potential process constraints. Symbolic computation technology efficiently provides sparsity and derivative information of active equations to avoid performance problems regarding robustness and computational effort. A benefit of detaching the constitutive equation system is that the structure of the main equation system remains unaffected by these constraints, and a priori information allows to implement an efficient solving strategy and a concise error diagnosis. A tailor-made linear algebra library handles the sparse recursive block structures efficiently. The optimisation principle for single modules of thermodynamic equilibrium is extended to host entire process models. State variables of different modules interact through balance equations, representing material flows from one module to the other. To account for reusability and encapsulation of process module details, modular process modelling is supported by a recursive module structure. The second-order solving algorithm makes it

  9. On the consistency of quantum geometrodynamics and quantum field theories in the Bohm-de Broglie Interpretation

    Energy Technology Data Exchange (ETDEWEB)

    Pinto-Neto, N.; Santini, E. Sergio. E-mail: nelsonpn@lafex.cbpf.br; santini@lafex.cbpf.br

    2000-12-01

    We consider quantum geometrodynamics and parametrized quantum field theories in the frame-work of the Bohm-de Broglie interpretation. In the first case, and following the lines of our previous work, where a Hamiltonian formalism for the bohmian trajectories was constructed, we show the consistency of the theory for any quantum potential, completing the scenarios for canonical quantum cosmology presented there. In the latter case, we prove the consistency of scalar field theory in Minkowski spacetime for any quantum potential, and we show, using this alternative Hamiltonian method, a concrete example already known in the literature where Lorentz invariance of individual events is broken. (author)

  10. Quantum optics

    National Research Council Canada - National Science Library

    Agarwal, G. S

    2013-01-01

    ..., quantum metrology, spin squeezing, control of decoherence and many other key topics. Readers are guided through the principles of quantum optics and their uses in a wide variety of areas including quantum information science and quantum mechanics...

  11. A New Perspective on Relativistic Quantum Mechanics

    International Nuclear Information System (INIS)

    Kong, Otto C W

    2011-01-01

    Based on a linear realization formulation of a quantum relativity, - proposed relativity for 'quantum space-time', we introduce the new Poincare-Snyder relativity and Snyder relativity as relativities in between the latter and the well known Galilean and Einstein cases. While there is supposed to be not separate notion of classical and quantum mechanics at the level of the very unconventional quantum relativity, the Poincare-Snyder relativity is more like a mathematically extended form of Einstein relativity on which we can write down a formal canonical classical and quantum mechanics. We discuss how the Poincare-Snyder relativity may provide a stronger framework for the description of the usual (Einstein) relativistic quantum mechanics and present a first look of the interesting picture from the new perspective.

  12. Polymer quantum mechanics and its continuum limit

    International Nuclear Information System (INIS)

    Corichi, Alejandro; Vukasinac, Tatjana; Zapata, Jose A.

    2007-01-01

    A rather nonstandard quantum representation of the canonical commutation relations of quantum mechanics systems, known as the polymer representation, has gained some attention in recent years, due to its possible relation with Planck scale physics. In particular, this approach has been followed in a symmetric sector of loop quantum gravity known as loop quantum cosmology. Here we explore different aspects of the relation between the ordinary Schroedinger theory and the polymer description. The paper has two parts. In the first one, we derive the polymer quantum mechanics starting from the ordinary Schroedinger theory and show that the polymer description arises as an appropriate limit. In the second part we consider the continuum limit of this theory, namely, the reverse process in which one starts from the discrete theory and tries to recover back the ordinary Schroedinger quantum mechanics. We consider several examples of interest, including the harmonic oscillator, the free particle, and a simple cosmological model

  13. Secure quantum key distribution using squeezed states

    International Nuclear Information System (INIS)

    Gottesman, Daniel; Preskill, John

    2001-01-01

    We prove the security of a quantum key distribution scheme based on transmission of squeezed quantum states of a harmonic oscillator. Our proof employs quantum error-correcting codes that encode a finite-dimensional quantum system in the infinite-dimensional Hilbert space of an oscillator, and protect against errors that shift the canonical variables p and q. If the noise in the quantum channel is weak, squeezing signal states by 2.51 dB (a squeeze factor e r =1.34) is sufficient in principle to ensure the security of a protocol that is suitably enhanced by classical error correction and privacy amplification. Secure key distribution can be achieved over distances comparable to the attenuation length of the quantum channel

  14. Far-red fluorescent probes for canonical and non-canonical nucleic acid structures: current progress and future implications.

    Science.gov (United States)

    Suseela, Y V; Narayanaswamy, Nagarjun; Pratihar, Sumon; Govindaraju, Thimmaiah

    2018-02-05

    The structural diversity and functional relevance of nucleic acids (NAs), mainly deoxyribonucleic acid (DNA) and ribonucleic acid (RNA), are indispensable for almost all living organisms, with minute aberrations in their structure and function becoming causative factors in numerous human diseases. The standard structures of NAs, termed canonical structures, are supported by Watson-Crick hydrogen bonding. Under special physiological conditions, NAs adopt distinct spatial organisations, giving rise to non-canonical conformations supported by hydrogen bonding other than the Watson-Crick type; such non-canonical structures have a definite function in controlling gene expression and are considered as novel diagnostic and therapeutic targets. Development of molecular probes for these canonical and non-canonical DNA/RNA structures has been an active field of research. Among the numerous probes studied, probes with turn-on fluorescence in the far-red (600-750 nm) region are highly sought-after due to minimal autofluorescence and cellular damage. Far-red fluorescent probes are vital for real-time imaging of NAs in live cells as they provide good resolution and minimal perturbation of the cell under investigation. In this review, we present recent advances in the area of far-red fluorescent probes of DNA/RNA and non-canonical G-quadruplex structures. For the sake of continuity and completeness, we provide a brief overview of visible fluorescent probes. Utmost importance is given to design criteria, characteristic properties and biological applications, including in cellulo imaging, apart from critical discussion on limitations of the far-red fluorescent probes. Finally, we offer current and future prospects in targeting canonical and non-canonical NAs specific to cellular organelles, through sequence- and conformation-specific far-red fluorescent probes. We also cover their implications in chemical and molecular biology, with particular focus on decoding various disease

  15. Analytical mechanics for relativity and quantum mechanics

    CERN Document Server

    Johns, Oliver Davis

    2011-01-01

    Analytical Mechanics for Relativity and Quantum Mechanics is an innovative and mathematically sound treatment of the foundations of analytical mechanics and the relation of classical mechanics to relativity and quantum theory. It is intended for use at the introductory graduate level. A distinguishing feature of the book is its integration of special relativity into teaching of classical mechanics. After a thorough review of the traditional theory, Part II of the book introduces extended Lagrangian and Hamiltonian methods that treat time as a transformable coordinate rather than the fixed parameter of Newtonian physics. Advanced topics such as covariant Langrangians and Hamiltonians, canonical transformations, and Hamilton-Jacobi methods are simplified by the use of this extended theory. And the definition of canonical transformation no longer excludes the Lorenz transformation of special relativity. This is also a book for those who study analytical mechanics to prepare for a critical exploration of quantum...

  16. Two-dimensional quantum electrodynamics as a model in the constructive quantum field theory

    International Nuclear Information System (INIS)

    Ito, K.R.

    1976-01-01

    We investigate two-dimensional quantum electrodynamics((QED) 2 ) type models on the basis of the Hamiltonian formalism of a vector field. The transformation into a sine-Gordon equation is clarified as a generalized mass-shift transformation through canonical linear transformations. (auth.)

  17. The multivariable Alexander polynomial and modern knot theory

    International Nuclear Information System (INIS)

    Saleur, H.; Yale Univ., New Haven, CT

    1991-01-01

    This note is a summary of several recent works (by the author and collaborators) that study the Conway Alexander link invariant in the light of quantum groups and topological quantum field theories. Their purpose is to understand connections between ''modern'' knot theory and more classical topological concepts. (author)

  18. The multivariable Alexander polynomial and modern knot theory

    International Nuclear Information System (INIS)

    Saleur, H.

    1992-01-01

    This paper is a summary of several recent works (by the author and collaborators) that study the Conway-Alexander link invariant in the light of quantum groups and topological quantum field theories. Their purpose is to understand connections between modern knot theory and more classical topological concepts

  19. Symplectic quantum structure

    Energy Technology Data Exchange (ETDEWEB)

    Voit, Kay-Michael

    2008-06-16

    In the first part we considered the quantum phase space in terms of noncommutative differential geometry. Following relevant literature, a short introduction to vector fields and differential forms on the differential vector space M{sub N}(C) was given. Special emphasis has been laid on the construction of a canonical symplectic form analogous to the one known from classical mechanics. The canonical choice of this form has been shown to be just the (scaled) commutator of two matrices. Using the Schwinger basis, the symplectic form derived in the first sections has been further examined by calculating concrete expressions for products of general matrices and their commutators which are, as we remember, just the symplectic form. Subsequently, a discrete analog to the continuous theory has been developed, in which the lattice of the quantum phase space forms the base space, and the Heisenberg group including the Schwinger elements is identified with the fiber space. In the continuum limit it could be shown that the discrete theory seamlessly passed into the commonly known continuous theory of connection forms on fiber bundles. The connection form and its exterior covariant derivation, the curvature form, have been calculated. It has been found that the curvature form can even be pulled back to the symplectic form by the section defined by the Schwinger elements. (orig.)

  20. Double-partition Quantum Cluster Algebras

    DEFF Research Database (Denmark)

    Jakobsen, Hans Plesner; Zhang, Hechun

    2012-01-01

    A family of quantum cluster algebras is introduced and studied. In general, these algebras are new, but sub-classes have been studied previously by other authors. The algebras are indexed by double parti- tions or double flag varieties. Equivalently, they are indexed by broken lines L. By grouping...... together neighboring mutations into quantum line mutations we can mutate from the cluster algebra of one broken line to another. Compatible pairs can be written down. The algebras are equal to their upper cluster algebras. The variables of the quantum seeds are given by elements of the dual canonical basis....

  1. Modern Thermodynamics with Statistical Mechanics

    CERN Document Server

    Helrich, Carl S

    2009-01-01

    With the aim of presenting thermodynamics in as simple and as unified a form as possible, this textbook starts with an introduction to the first and second laws and then promptly addresses the complete set of the potentials in a subsequent chapter and as a central theme throughout. Before discussing modern laboratory measurements, the book shows that the fundamental quantities sought in the laboratory are those which are required for determining the potentials. Since the subjects of thermodynamics and statistical mechanics are a seamless whole, statistical mechanics is treated as integral part of the text. Other key topics such as irreversibility, the ideas of Ilya Prigogine, chemical reaction rates, equilibrium of heterogeneous systems, and transition-state theory serve to round out this modern treatment. An additional chapter covers quantum statistical mechanics due to active current research in Bose-Einstein condensation. End-of-chapter exercises, chapter summaries, and an appendix reviewing fundamental pr...

  2. Modern physics for scientists and engineers

    CERN Document Server

    Morrison, John C

    2015-01-01

    The second edition of Modern Physics for Scientists and Engineers is intended for a first course in modern physics. Beginning with a brief and focused account of the historical events leading to the formulation of modern quantum theory, later chapters delve into the underlying physics. Streamlined content, chapters on semiconductors, Dirac equation and quantum field theory, as well as a robust pedagogy and ancillary package, including an accompanying website with computer applets, assist students in learning the essential material. The applets provide a realistic description of the energy levels and wave functions of electrons in atoms and crystals. The Hartree-Fock and ABINIT applets are valuable tools for studying the properties of atoms and semiconductors.

  3. Quantum Instantons and Quantum Chaos

    OpenAIRE

    Jirari, H.; Kröger, H.; Luo, X. Q.; Moriarty, K. J. M.; Rubin, S. G.

    1999-01-01

    Based on a closed form expression for the path integral of quantum transition amplitudes, we suggest rigorous definitions of both, quantum instantons and quantum chaos. As an example we compute the quantum instanton of the double well potential.

  4. Physical states in the canonical tensor model from the perspective of random tensor networks

    Energy Technology Data Exchange (ETDEWEB)

    Narain, Gaurav [The Institute for Fundamental Study “The Tah Poe Academia Institute”,Naresuan University, Phitsanulok 65000 (Thailand); Sasakura, Naoki [Yukawa Institute for Theoretical Physics,Kyoto University, Kyoto 606-8502 (Japan); Sato, Yuki [National Institute for Theoretical Physics,School of Physics and Centre for Theoretical Physics,University of the Witwartersrand, WITS 2050 (South Africa)

    2015-01-07

    Tensor models, generalization of matrix models, are studied aiming for quantum gravity in dimensions larger than two. Among them, the canonical tensor model is formulated as a totally constrained system with first-class constraints, the algebra of which resembles the Dirac algebra of general relativity. When quantized, the physical states are defined to be vanished by the quantized constraints. In explicit representations, the constraint equations are a set of partial differential equations for the physical wave-functions, which do not seem straightforward to be solved due to their non-linear character. In this paper, after providing some explicit solutions for N=2,3, we show that certain scale-free integration of partition functions of statistical systems on random networks (or random tensor networks more generally) provides a series of solutions for general N. Then, by generalizing this form, we also obtain various solutions for general N. Moreover, we show that the solutions for the cases with a cosmological constant can be obtained from those with no cosmological constant for increased N. This would imply the interesting possibility that a cosmological constant can always be absorbed into the dynamics and is not an input parameter in the canonical tensor model. We also observe the possibility of symmetry enhancement in N=3, and comment on an extension of Airy function related to the solutions.

  5. Canonical phase diagrams of the 1D Falicov-Kimball model at T = O

    Science.gov (United States)

    Gajek, Z.; Jȩdrzejewski, J.; Lemański, R.

    1996-02-01

    The Falicov-Kimball model of spinless quantum electrons hopping on a 1-dimensional lattice and of immobile classical ions occupying some lattice sites, with only intrasite coupling between those particles, have been studied at zero temperature by means of well-controlled numerical procedures. For selected values of the unique coupling parameter U the restricted phase diagrams (based on all the periodic configurations of localized particles (ions) with period not greater than 16 lattice constants, typically) have been constructed in the grand-canonical ensemble. Then these diagrams have been translated into the canonical ensemble. Compared to the diagrams obtained in other studies our ones contain more details, in particular they give better insight into the way the mixtures of periodic phases are formed. Our study has revealed several families of new characteristic phases like the generalized most homogeneous and the generalized crenel phases, a first example of a structural phase transition and a tendency to build up an additional symmetry - the hole-particle symmetry with respect to the ions (electrons) only, as U decreases.

  6. Canonical Yang-Mills field theory with invariant gauge-families

    International Nuclear Information System (INIS)

    Yokoyama, Kan-ichi

    1978-01-01

    A canonical Yang-Mills field theory with indefinite metric is presented on the basis of a covariant gauge formalism for quantum electrodynamics. As the first step of the formulation, a many-gauge-field problem, in which many massless Abelian-gauge fields coexist, is treated from a new standpoint. It is shown that only a single pair of a gaugeon field and its associated one can govern the gauge structure of the whole system. The result obtained is further extended to cases of non-Abelian gauge theories. Gauge parameters for respective components of the Yang-Mills fields are introduced as a group vector. There exists a q-number local gauge transformation which connects relevant fields belonging to the same invariant gauge family with one another in a manifestly covariant way. In canonical quantization, the Faddeev-Popov ghosts are introduced in order to guarantee the existence of a desirable physical subspace with positive semi-definite metric. As to treatment of the Faddeev-Popov ghosts, Kugo and Ojima's approach is adopted. Three supplementary conditions which are consistent with one another constrain the physical subspace. (author)

  7. Quantum metrology

    International Nuclear Information System (INIS)

    Xiang Guo-Yong; Guo Guang-Can

    2013-01-01

    The statistical error is ineluctable in any measurement. Quantum techniques, especially with the development of quantum information, can help us squeeze the statistical error and enhance the precision of measurement. In a quantum system, there are some quantum parameters, such as the quantum state, quantum operator, and quantum dimension, which have no classical counterparts. So quantum metrology deals with not only the traditional parameters, but also the quantum parameters. Quantum metrology includes two important parts: measuring the physical parameters with a precision beating the classical physics limit and measuring the quantum parameters precisely. In this review, we will introduce how quantum characters (e.g., squeezed state and quantum entanglement) yield a higher precision, what the research areas are scientists most interesting in, and what the development status of quantum metrology and its perspectives are. (topical review - quantum information)

  8. Multiple modernities, modern subjectivities and social order

    DEFF Research Database (Denmark)

    Jung, Dietrich; Sinclair, Kirstine

    2015-01-01

    to modern subjectivity formation. In combining conceptual tools from these strands of social theory, we argue that the emergence of multiple modernities should be understood as a historical result of idiosyncratic social constructions combining global social imaginaries with religious and other cultural......Taking its point of departure in the conceptual debate about modernities in the plural, this article presents a heuristic framework based on an interpretative approach to modernity. The article draws on theories of multiple modernities, successive modernities and poststructuralist approaches...... traditions. In the second part of the article we illustrate this argument with three short excursions into the history of Islamic reform in the 19th and 20th centuries. In this way we interpret the modern history of Muslim societies as based on cultural conflicts between different forms of social order...

  9. On the possible types of elementary particles compatible with the canonical formulation

    International Nuclear Information System (INIS)

    Cheng Kaijia

    1988-12-01

    In a paper D erivation of Dirac's Equation for a Free Particle , it was shown by the author that Dirac's equation can be deduced from a canonical formulation on the ground of relativity and quantum mechanics only. This idea will be further developed to a criterion on the possible forms of particles compatible with these formalism. It is shown in the text that only two types can exist in conformity with the criterion, namely fermions with spin 1/2 and scalars with spin zero. An example is given for a particle with spin unity to show that they do not fall into the present category. Particles that play roles in vector fields belong to different categories. Discussions are made for particles coupled with an external electronmagnetic field, preliminary results show that the essential features for the free particles still retain

  10. Physical foundations of quantum electronics

    CERN Document Server

    Klyshko, David; Kulik, Sergey

    2011-01-01

    This concise textbook introduces a graduate student to the various fields of physics related to the interaction between radiation and matter. The scope of the book is very broad, ranging from nonlinear to quantum optics and from quantum transitions in atoms to the dispersion of polaritons in continuous media. The author, Professor David Klyshko (1929-2000), is one of the founders of modern quantum optics, renowned for his theory of Spontaneous Parametric Down-Conversion (SPDC) and its applications in quantum metrology and the optics of nonclassical light. Most parts of the book contain the lec

  11. Quantum Mechanics for Electrical Engineers

    CERN Document Server

    Sullivan, Dennis M

    2011-01-01

    The main topic of this book is quantum mechanics, as the title indicates.  It specifically targets those topics within quantum mechanics that are needed to understand modern semiconductor theory.   It begins with the motivation for quantum mechanics and why classical physics fails when dealing with very small particles and small dimensions.  Two key features make this book different from others on quantum mechanics, even those usually intended for engineers:   First, after a brief introduction, much of the development is through Fourier theory, a topic that is at

  12. Quantum Distinction: Quantum Distinctiones!

    OpenAIRE

    Zeps, Dainis

    2009-01-01

    10 pages; How many distinctions, in Latin, quantum distinctiones. We suggest approach of anthropic principle based on anthropic reference system which should be applied equally both in theoretical physics and in mathematics. We come to principle that within reference system of life subject of mathematics (that of thinking) should be equated with subject of physics (that of nature). For this reason we enter notions of series of distinctions, quantum distinction, and argue that quantum distinct...

  13. From quantum dots to quantum circuits

    International Nuclear Information System (INIS)

    Ensslin, K.

    2008-01-01

    the quantum circuit. These experiments demonstrate the technological control over modern semiconductor nanostructures which enables measurements in the quantum realm where issues of coherence, back action, correlations and statistics can be investigated. (author)

  14. Canonical, stable, general mapping using context schemes.

    Science.gov (United States)

    Novak, Adam M; Rosen, Yohei; Haussler, David; Paten, Benedict

    2015-11-15

    Sequence mapping is the cornerstone of modern genomics. However, most existing sequence mapping algorithms are insufficiently general. We introduce context schemes: a method that allows the unambiguous recognition of a reference base in a query sequence by testing the query for substrings from an algorithmically defined set. Context schemes only map when there is a unique best mapping, and define this criterion uniformly for all reference bases. Mappings under context schemes can also be made stable, so that extension of the query string (e.g. by increasing read length) will not alter the mapping of previously mapped positions. Context schemes are general in several senses. They natively support the detection of arbitrary complex, novel rearrangements relative to the reference. They can scale over orders of magnitude in query sequence length. Finally, they are trivially extensible to more complex reference structures, such as graphs, that incorporate additional variation. We demonstrate empirically the existence of high-performance context schemes, and present efficient context scheme mapping algorithms. The software test framework created for this study is available from https://registry.hub.docker.com/u/adamnovak/sequence-graphs/. anovak@soe.ucsc.edu Supplementary data are available at Bioinformatics online. © The Author 2015. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  15. Quantum self-gravitating collapsing matter in a quantum geometry

    International Nuclear Information System (INIS)

    Campiglia, Miguel; Gambini, Rodolfo; Olmedo, Javier; Pullin, Jorge

    2016-01-01

    The problem of how space–time responds to gravitating quantum matter in full quantum gravity has been one of the main questions that any program of quantization of gravity should address. Here we analyze this issue by considering the quantization of a collapsing null shell coupled to spherically symmetric loop quantum gravity. We show that the constraint algebra of canonical gravity is Abelian both classically and when quantized using loop quantum gravity techniques. The Hamiltonian constraint is well defined and suitable Dirac observables characterizing the problem were identified at the quantum level. We can write the metric as a parameterized Dirac observable at the quantum level and study the physics of the collapsing shell and black hole formation. We show how the singularity inside the black hole is eliminated by loop quantum gravity and how the shell can traverse it. The construction is compatible with a scenario in which the shell tunnels into a baby universe inside the black hole or one in which it could emerge through a white hole. (letter)

  16. The degeneracy problem in non-canonical inflation

    International Nuclear Information System (INIS)

    Easson, Damien A.; Powell, Brian A.

    2013-01-01

    While attempting to connect inflationary theories to observational physics, a potential difficulty is the degeneracy problem: a single set of observables maps to a range of different inflaton potentials. Two important classes of models affected by the degeneracy problem are canonical and non-canonical models, the latter marked by the presence of a non-standard kinetic term that generates observables beyond the scalar and tensor two-point functions on CMB scales. The degeneracy problem is manifest when these distinguishing observables go undetected. We quantify the size of the resulting degeneracy in this case by studying the most well-motivated non-canonical theory having Dirac-Born-Infeld Lagrangian. Beyond the scalar and tensor two-point functions on CMB scales, we then consider the possible detection of equilateral non-Gaussianity at Planck-precision and a measurement of primordial gravitational waves from prospective space-based laser interferometers. The former detection breaks the degeneracy with canonical inflation but results in poor reconstruction prospects, while the latter measurement enables a determination of n T which, while not breaking the degeneracy, can be shown to greatly improve the non-canonical reconstruction

  17. Extension of Kirkwood-Buff theory to the canonical ensemble

    Science.gov (United States)

    Rogers, David M.

    2018-02-01

    Kirkwood-Buff (KB) integrals are notoriously difficult to converge from a canonical simulation because they require estimating the grand-canonical radial distribution. The same essential difficulty is encountered when attempting to estimate the direct correlation function of Ornstein-Zernike theory by inverting the pair correlation functions. We present a new theory that applies to the entire, finite, simulation volume, so that no cutoff issues arise at all. The theory gives the direct correlation function for closed systems, while smoothness of the direct correlation function in reciprocal space allows calculating canonical KB integrals via a well-posed extrapolation to the origin. The present analysis method represents an improvement over previous work because it makes use of the entire simulation volume and its convergence can be accelerated using known properties of the direct correlation function. Using known interaction energy functions can make this extrapolation near perfect accuracy in the low-density case. Because finite size effects are stronger in the canonical than in the grand-canonical ensemble, we state ensemble correction formulas for the chemical potential and the KB coefficients. The new theory is illustrated with both analytical and simulation results on the 1D Ising model and a supercritical Lennard-Jones fluid. For the latter, the finite-size corrections are shown to be small.

  18. 'Ma mère l’oye' and the misfortunes of the musical canon

    Directory of Open Access Journals (Sweden)

    Maurizio Giani

    2014-05-01

    Full Text Available This essay introduces and discusses a series of viewpoints on the Western musical canon, selected from the most representative of those that can be found on the web. The focus is almost exclusively on Italian websites, from Wikipedia entries to various forums. I have deliberately given more room to statements of modest cultural and intellectual value, for their documentary value as evidence of widespread opinions, and real attitudes, that give us a vivid picture of how serious the situation is. One of the worrying aspects in this survey of mostly negative judgments is the fact that, among these boorish critics of the Musical Canon, there are also esteemed musicologists, who seem to enthusiastically support the primitivism of so many immature critics of “classical stuff”, mimicking their jargon and hostility towards highbrow culture. Their purpose in doing so may be to ingratiate themselves with their dialogue partners, but it is unclear whether, after successfully applying this ‘entryist’ tactic, they intend to carry out targeted educational actions (a sort of modern take on Horace’s castigare ridendo mores, or correcting customs by laughing at them – or whether, as seems more likely, they just want to climb on the bandwagon.

  19. The significance of classical structures in quantum theories

    International Nuclear Information System (INIS)

    Lowe, M.J.

    1978-09-01

    The implications for the quantum theory of the presence of non-linear classical solutions of the equations of motion are investigated in various model systems under the headings: (1) Canonical quantisation of the soliton in lambdaphi 4 theory in two dimensions. (2) Bound for soliton masses in two dimensional field theories. (3) The canonical quantisation of a soliton like solution in the non-linear schrodinger equation. (4) The significance of the instanton classical solution in a quantum mechanical system. (U.K.)

  20. Beyond quantum microcanonical statistics

    International Nuclear Information System (INIS)

    Fresch, Barbara; Moro, Giorgio J.

    2011-01-01

    Descriptions of molecular systems usually refer to two distinct theoretical frameworks. On the one hand the quantum pure state, i.e., the wavefunction, of an isolated system is determined to calculate molecular properties and their time evolution according to the unitary Schroedinger equation. On the other hand a mixed state, i.e., a statistical density matrix, is the standard formalism to account for thermal equilibrium, as postulated in the microcanonical quantum statistics. In the present paper an alternative treatment relying on a statistical analysis of the possible wavefunctions of an isolated system is presented. In analogy with the classical ergodic theory, the time evolution of the wavefunction determines the probability distribution in the phase space pertaining to an isolated system. However, this alone cannot account for a well defined thermodynamical description of the system in the macroscopic limit, unless a suitable probability distribution for the quantum constants of motion is introduced. We present a workable formalism assuring the emergence of typical values of thermodynamic functions, such as the internal energy and the entropy, in the large size limit of the system. This allows the identification of macroscopic properties independently of the specific realization of the quantum state. A description of material systems in agreement with equilibrium thermodynamics is then derived without constraints on the physical constituents and interactions of the system. Furthermore, the canonical statistics is recovered in all generality for the reduced density matrix of a subsystem.

  1. Canons and Heroes: The Reception of the Complete Works Translation Project in Finland, 2002-13

    Directory of Open Access Journals (Sweden)

    Keinänen Nely

    2017-12-01

    Full Text Available This essay examines the reception of the ten-year Complete Works translation project undertaken by the Finnish publishing company Werner Söderström Oy (WSOY in 2004-13. Focusing on reviews published in the first and last years of the project, the essay details ongoing processes of Shakespeare (re-canonization in Finland, as each new generation explains to itself what Shakespeare means to them, and why it continues to read, translate and perform Shakespeare. These processes are visible in comments from the series editors and translators extolling the importance of Shakespeare’s work and the necessity of creating new, modern translations so Finns can read Shakespeare in their mother tongue; in discussions of the literary qualities of a good Shakespeare translation, e.g. whether it is advisable to use iambic pentameter in Finnish, a trochaic language; and in the creation of publisher and translator “heroes,” who at significant cost to themselves, whether in money in terms of the publisher, or time and effort in terms of the translators, labour to provide the public with their Shakespeare in modern Finnish. While on the whole reviewers celebrated the new translations, there was some resistance to changes in familiar lines from older translations, such as Macbeth’s “tomorrow” speech, suggesting that there are nevertheless some limits on modernizing “classic” translations.

  2. Quantum decoherence of phonons in Bose-Einstein condensates

    Science.gov (United States)

    Howl, Richard; Sabín, Carlos; Hackermüller, Lucia; Fuentes, Ivette

    2018-01-01

    We apply modern techniques from quantum optics and quantum information science to Bose-Einstein condensates (BECs) in order to study, for the first time, the quantum decoherence of phonons of isolated BECs. In the last few years, major advances in the manipulation and control of phonons have highlighted their potential as carriers of quantum information in quantum technologies, particularly in quantum processing and quantum communication. Although most of these studies have focused on trapped ion and crystalline systems, another promising system that has remained relatively unexplored is BECs. The potential benefits in using this system have been emphasized recently with proposals of relativistic quantum devices that exploit quantum states of phonons in BECs to achieve, in principle, superior performance over standard non-relativistic devices. Quantum decoherence is often the limiting factor in the practical realization of quantum technologies, but here we show that quantum decoherence of phonons is not expected to heavily constrain the performance of these proposed relativistic quantum devices.

  3. Classical and quantum cosmology

    CERN Document Server

    Calcagni, Gianluca

    2017-01-01

    This comprehensive textbook is devoted to classical and quantum cosmology, with particular emphasis on modern approaches to quantum gravity and string theory and on their observational imprint. It covers major challenges in theoretical physics such as the big bang and the cosmological constant problem. An extensive review of standard cosmology, the cosmic microwave background, inflation and dark energy sets the scene for the phenomenological application of all the main quantum-gravity and string-theory models of cosmology. Born of the author's teaching experience and commitment to bridging the gap between cosmologists and theoreticians working beyond the established laws of particle physics and general relativity, this is a unique text where quantum-gravity approaches and string theory are treated on an equal footing. As well as introducing cosmology to undergraduate and graduate students with its pedagogical presentation and the help of 45 solved exercises, this book, which includes an ambitious bibliography...

  4. Coprocessors for quantum devices

    Science.gov (United States)

    Kay, Alastair

    2018-03-01

    Quantum devices, from simple fixed-function tools to the ultimate goal of a universal quantum computer, will require high-quality, frequent repetition of a small set of core operations, such as the preparation of entangled states. These tasks are perfectly suited to realization by a coprocessor or supplementary instruction set, as is common practice in modern CPUs. In this paper, we present two quintessentially quantum coprocessor functions: production of a Greenberger-Horne-Zeilinger state and implementation of optimal universal (asymmetric) quantum cloning. Both are based on the evolution of a fixed Hamiltonian. We introduce a technique for deriving the parameters of these Hamiltonians based on the numerical integration of Toda-like flows.

  5. An efficient parallel algorithm for the calculation of canonical MP2 energies.

    Science.gov (United States)

    Baker, Jon; Pulay, Peter

    2002-09-01

    We present the parallel version of a previous serial algorithm for the efficient calculation of canonical MP2 energies (Pulay, P.; Saebo, S.; Wolinski, K. Chem Phys Lett 2001, 344, 543). It is based on the Saebo-Almlöf direct-integral transformation, coupled with an efficient prescreening of the AO integrals. The parallel algorithm avoids synchronization delays by spawning a second set of slaves during the bin-sort prior to the second half-transformation. Results are presented for systems with up to 2000 basis functions. MP2 energies for molecules with 400-500 basis functions can be routinely calculated to microhartree accuracy on a small number of processors (6-8) in a matter of minutes with modern PC-based parallel computers. Copyright 2002 Wiley Periodicals, Inc. J Comput Chem 23: 1150-1156, 2002

  6. Rabies in medieval Persian literature - the Canon of Avicenna (980-1037 AD).

    Science.gov (United States)

    Dalfardi, Behnam; Esnaashary, Mohammad Hosein; Yarmohammadi, Hassan

    2014-02-17

    Ibn Sina (980-1037 AD), known by his full name Abu Ali al-Hussain ibn Abdallah ibn Sina and the Latin name 'Avicenna', was a Persian scholar who is primarily remembered for his contributions to the science of medicine. He authored Al-Qanun fi al-Tibb (The Canon of Medicine). Sections of his work are devoted to detailed descriptions of a number of infectious illnesses, particularly rabies. Avicenna described rabies in humans and animals and explained its clinical manifestations, route of transmission, and treatment methods. In this article, our goal is to discuss Avicenna's 11th-century points of view on rabies and compare them with modern medical knowledge.

  7. Rabies in medieval Persian literature – the Canon of Avicenna (980–1037 AD)

    Science.gov (United States)

    2014-01-01

    Ibn Sina (980–1037 AD), known by his full name Abu Ali al-Hussain ibn Abdallah ibn Sina and the Latin name ‘Avicenna’, was a Persian scholar who is primarily remembered for his contributions to the science of medicine. He authored Al-Qanun fi al-Tibb (The Canon of Medicine). Sections of his work are devoted to detailed descriptions of a number of infectious illnesses, particularly rabies. Avicenna described rabies in humans and animals and explained its clinical manifestations, route of transmission, and treatment methods. In this article, our goal is to discuss Avicenna’s 11th-century points of view on rabies and compare them with modern medical knowledge. PMID:24533686

  8. From Quantum Mechanics to Quantum Field Theory: The Hopf route

    Energy Technology Data Exchange (ETDEWEB)

    Solomon, A I [Physics and Astronomy Department, Open University, Milton Keynes MK7 6AA (United Kingdom); Duchamp, G H E [Institut Galilee, LIPN, CNRS UMR 7030 99 Av. J.-B. Clement, F-93430 Villetaneuse (France); Blasiak, P; Horzela, A [H. Niewodniczanski Institute of Nuclear Physics, Polish Academy of Sciences, Division of Theoretical Physics, ul. Eliasza-Radzikowskiego 152, PL 31-342 Krakow (Poland); Penson, K A, E-mail: a.i.solomon@open.ac.uk, E-mail: gduchamp2@free.fr, E-mail: pawel.blasiak@ifj.edu.pl, E-mail: andrzej.horzela@ifj.edu.pl, E-mail: penson@lptl.jussieu.fr [Lab.de Phys.Theor. de la Matiere Condensee, University of Paris VI (France)

    2011-03-01

    We show that the combinatorial numbers known as Bell numbers are generic in quantum physics. This is because they arise in the procedure known as Normal ordering of bosons, a procedure which is involved in the evaluation of quantum functions such as the canonical partition function of quantum statistical physics, inter alia. In fact, we shall show that an evaluation of the non-interacting partition function for a single boson system is identical to integrating the exponential generating function of the Bell numbers, which is a device for encapsulating a combinatorial sequence in a single function. We then introduce a remarkable equality, the Dobinski relation, and use it to indicate why renormalisation is necessary in even the simplest of perturbation expansions for a partition function. Finally we introduce a global algebraic description of this simple model, giving a Hopf algebra, which provides a starting point for extensions to more complex physical systems.

  9. A canonical-literary reading of Lamentations 5

    Directory of Open Access Journals (Sweden)

    Shinman Kang

    2009-08-01

    Full Text Available This article presents a canonical and literary reading of Lamentations 5 in the context of the book of Lamentations as a whole. Following the approach by Vanhoozer (1998, 2002 based on speech-act theory, the meaning of Scripture is sought at canonical level, supervening the basic literary level. In Lamentations, as polyphonic poetic text, the speaking voices form a very important key for the interpretation of the text. In the polyphonic text of Lamentations, the shifting of the speaking voices occurs between Lamentations 1 and 4. Lamentations 5 is monologic. The theories of Bakhtin (1984 are also used to understand the book of Lamentations. In this book, chapter 5 forms the climax where Jerusalem cries to God. We cannot, however, find God’s answer to this call in Lamentations; we can find it only within the broader text of the Christian canon.

  10. Canonical sectors of five-dimensional Chern-Simons theories

    International Nuclear Information System (INIS)

    Miskovic, Olivera; Troncoso, Ricardo; Zanelli, Jorge

    2005-01-01

    The dynamics of five-dimensional Chern-Simons theories is analyzed. These theories are characterized by intricate self couplings which give rise to dynamical features not present in standard theories. As a consequence, Dirac's canonical formalism cannot be directly applied due to the presence of degeneracies of the symplectic form and irregularities of the constraints on some surfaces of phase space, obscuring the dynamical content of these theories. Here we identify conditions that define sectors where the canonical formalism can be applied for a class of non-Abelian Chern-Simons theories, including supergravity. A family of solutions satisfying the canonical requirements is explicitly found. The splitting between first and second class constraints is performed around these backgrounds, allowing the construction of the charge algebra, including its central extension

  11. Escort entropies and divergences and related canonical distribution

    International Nuclear Information System (INIS)

    Bercher, J.-F.

    2011-01-01

    We discuss two families of two-parameter entropies and divergences, derived from the standard Renyi and Tsallis entropies and divergences. These divergences and entropies are found as divergences or entropies of escort distributions. Exploiting the nonnegativity of the divergences, we derive the expression of the canonical distribution associated to the new entropies and a observable given as an escort-mean value. We show that this canonical distribution extends, and smoothly connects, the results obtained in nonextensive thermodynamics for the standard and generalized mean value constraints. -- Highlights: → Two-parameter entropies are derived from q-entropies and escort distributions. → The related canonical distribution is derived. → This connects and extends known results in nonextensive statistics.

  12. Canonical duality theory unified methodology for multidisciplinary study

    CERN Document Server

    Latorre, Vittorio; Ruan, Ning

    2017-01-01

    This book on canonical duality theory provides a comprehensive review of its philosophical origin, physics foundation, and mathematical statements in both finite- and infinite-dimensional spaces. A ground-breaking methodological theory, canonical duality theory can be used for modeling complex systems within a unified framework and for solving a large class of challenging problems in multidisciplinary fields in engineering, mathematics, and the sciences. This volume places a particular emphasis on canonical duality theory’s role in bridging the gap between non-convex analysis/mechanics and global optimization.  With 18 total chapters written by experts in their fields, this volume provides a nonconventional theory for unified understanding of the fundamental difficulties in large deformation mechanics, bifurcation/chaos in nonlinear science, and the NP-hard problems in global optimization. Additionally, readers will find a unified methodology and powerful algorithms for solving challenging problems in comp...

  13. Canonical Entropy and Phase Transition of Rotating Black Hole

    International Nuclear Information System (INIS)

    Ren, Zhao; Yue-Qin, Wu; Li-Chun, Zhang

    2008-01-01

    Recently, the Hawking radiation of a black hole has been studied using the tunnel effect method. The radiation spectrum of a black hole is derived. By discussing the correction to spectrum of the rotating black hole, we obtain the canonical entropy. The derived canonical entropy is equal to the sum of Bekenstein–Hawking entropy and correction term. The correction term near the critical point is different from the one near others. This difference plays an important role in studying the phase transition of the black hole. The black hole thermal capacity diverges at the critical point. However, the canonical entropy is not a complex number at this point. Thus we think that the phase transition created by this critical point is the second order phase transition. The discussed black hole is a five-dimensional Kerr-AdS black hole. We provide a basis for discussing thermodynamic properties of a higher-dimensional rotating black hole. (general)

  14. QCD phase transition at real chemical potential with canonical approach

    Energy Technology Data Exchange (ETDEWEB)

    Nakamura, Atsushi [RCNP, Osaka University,Osaka, 567-0047 (Japan); Nishina Center, RIKEN,Wako, Saitama 351-0198 (Japan); School of Biomedicine, Far Eastern Federal University,Vladivostok, 690950 (Russian Federation); Oka, Shotaro [Institute of Theoretical Physics, Department of Physics, Rikkyo University,Toshima-ku, Tokyo 171-8501 (Japan); Taniguchi, Yusuke [Graduate School of Pure and Applied Sciences, University of Tsukuba,Tsukuba, Ibaraki 305-8571 (Japan)

    2016-02-08

    We study the finite density phase transition in the lattice QCD at real chemical potential. We adopt a canonical approach and the canonical partition function is constructed for N{sub f}=2 QCD. After derivation of the canonical partition function we calculate observables like the pressure, the quark number density, its second cumulant and the chiral condensate as a function of the real chemical potential. We covered a wide range of temperature region starting from the confining low to the deconfining high temperature; 0.65T{sub c}≤T≤3.62T{sub c}. We observe a possible signal of the deconfinement and the chiral restoration phase transition at real chemical potential below T{sub c} starting from the confining phase. We give also the convergence range of the fugacity expansion.

  15. Lectures on quantum mechanics

    International Nuclear Information System (INIS)

    Weinberg, Steven

    2015-01-01

    Quantum mechanics represents the central revolution of modern natural science and reaches in its importance farely beyond physics. Neither chemistry nor biology on the molecular scale would be understandable without it. Modern information technology from the laptop over the mobile telephone and the flat screen until the supercomputer would be unthinkable without quantum-mechanical effects. It desribes the world on the atomic and subatomic scale and is by this the starting point of our modern worldview. The Nobel-prize carrier Steven Weinberg has done ever among others by his theory of the unification of the weak and the electromagnetic interaction one of the most important contributions to this revolution. In this book he reproduces his personal view of quantum mechanics, which captivates by its strictly logic construction, precise linguistic representation, and mathematical clearness and completeness. This book appeals to studyings of natural sciences, especially of physics. Accompanied is the test by exercise problems, which allow the studying to apply immediately the knowledge, but also test their understanding. Because of its precision and clearness ''Lectures on Quantum Mechanics'' by Weinberg is also essentially suited for the self-study.

  16. The affine quantum gravity programme

    CERN Document Server

    Klauder, J R

    2002-01-01

    The central principle of affine quantum gravity is securing and maintaining the strict positivity of the matrix left brace g-hat sub a sub b (x)right brace composed of the spatial components of the local metric operator. On spectral grounds, canonical commutation relations are incompatible with this principle, and they must be replaced by noncanonical, affine commutation relations. Due to the partial second-class nature of the quantum gravitational constraints, it is advantageous to use the recently developed projection operator method, which treats all quantum constraints on an equal footing. Using this method, enforcement of regularized versions of the gravitational operator constraints is formulated quite naturally by means of a novel and relatively well-defined functional integral involving only the same set of variables that appears in the usual classical formulation. It is anticipated that skills and insight to study this formulation can be developed by studying special, reduced-variable models that sti...

  17. Canonical representations of the Lie superalgebra osp(1,4)

    International Nuclear Information System (INIS)

    Blank, J.; Havlicek, M.; Lassner, W.; Bednar, M.

    1981-06-01

    The method for constructing infinite dimensional representations of Lie superalgebras proposed by the authors recently is applied to the superalgebra osp(1,4). Explicit formulae for its generators in terms of two or three pairs of operators fulfilling the canonical commutation relations, at most one pair of operators fulfilling the canonical anticommutation relations and at most one real parameter are obtained. The generators of the Lie subalgebra sp(4,IR) contains osp(1,4) are represented skew-symmetrically and both Casimir operators are equal to multiples of the unity operator. (author)

  18. Towards a conceptual history of canonization in totalitarian societies

    DEFF Research Database (Denmark)

    Postoutenko, Kirill

    2016-01-01

    a reference to his slogans and speeches. The article compares such a canonization in Soviet Union with parallel processes in Nazi Germany (where Adolf Hitler and his texts are revered to a much lesser degree) and United States of America (where this development is missing altogether despite Franklin D....... Roosevelt unprecedented media exposure). It turns out that Stalin’s discursive canonization has multiple reasons including his reliance on rigid radial networks of power and communication (as opposed to rotation of political and social roles in democracies), his interactional detachment from listeners and...

  19. Canonical correlation analysis of course and teacher evaluation

    DEFF Research Database (Denmark)

    Sliusarenko, Tamara; Ersbøll, Bjarne Kjær

    2010-01-01

    At the Technical University of Denmark course evaluations are performed by the students on a questionnaire. On one form the students are asked specific questions regarding the course. On a second form they are asked specific questions about the teacher. This study investigates the extent to which...... information obtained from the course evaluation form overlaps with information obtained from the teacher evaluation form. Employing canonical correlation analysis it was found that course and teacher evaluations are correlated. However, the structure of the canonical correlation is subject to change...

  20. Canonical extensions of the Johnson homomorphisms to the Torelli groupoid

    DEFF Research Database (Denmark)

    Bene, Alex; Kawazumi, Nariya; Penner, Robert

    2009-01-01

    We prove that every trivalent marked bordered fatgraph comes equipped with a canonical generalized Magnus expansion in the sense of Kawazumi. This Magnus expansion is used to give canonical extensions of the higher Johnson homomorphisms τm , for m 1 , to the Torelli groupoid, and we provide...... a recursive combinatorial formula for tensor representatives of these extensions. In particular, we give an explicit 1-cocycle in the dual fatgraph complex which extends τ2 and thus answer affirmatively a question of Morita and Penner. To illustrate our techniques for calculating higher Johnson homomorphisms...

  1. A Nonlinear GMRES Optimization Algorithm for Canonical Tensor Decomposition

    OpenAIRE

    De Sterck, Hans

    2011-01-01

    A new algorithm is presented for computing a canonical rank-R tensor approximation that has minimal distance to a given tensor in the Frobenius norm, where the canonical rank-R tensor consists of the sum of R rank-one components. Each iteration of the method consists of three steps. In the first step, a tentative new iterate is generated by a stand-alone one-step process, for which we use alternating least squares (ALS). In the second step, an accelerated iterate is generated by a nonlinear g...

  2. Structural Basis for the Canonical and Non-canonical PAM Recognition by CRISPR-Cpf1.

    Science.gov (United States)

    Yamano, Takashi; Zetsche, Bernd; Ishitani, Ryuichiro; Zhang, Feng; Nishimasu, Hiroshi; Nureki, Osamu

    2017-08-17

    The RNA-guided Cpf1 (also known as Cas12a) nuclease associates with a CRISPR RNA (crRNA) and cleaves the double-stranded DNA target complementary to the crRNA guide. The two Cpf1 orthologs from Acidaminococcus sp. (AsCpf1) and Lachnospiraceae bacterium (LbCpf1) have been harnessed for eukaryotic genome editing. Cpf1 requires a specific nucleotide sequence, called a protospacer adjacent motif (PAM), for target recognition. Besides the canonical TTTV PAM, Cpf1 recognizes suboptimal C-containing PAMs. Here, we report four crystal structures of LbCpf1 in complex with the crRNA and its target DNA containing either TTTA, TCTA, TCCA, or CCCA as the PAM. These structures revealed that, depending on the PAM sequences, LbCpf1 undergoes conformational changes to form altered interactions with the PAM-containing DNA duplexes, thereby achieving the relaxed PAM recognition. Collectively, the present structures advance our mechanistic understanding of the PAM-dependent, crRNA-guided DNA cleavage by the Cpf1 family nucleases. Copyright © 2017 Elsevier Inc. All rights reserved.

  3. Quantum walks, quantum gates, and quantum computers

    International Nuclear Information System (INIS)

    Hines, Andrew P.; Stamp, P. C. E.

    2007-01-01

    The physics of quantum walks on graphs is formulated in Hamiltonian language, both for simple quantum walks and for composite walks, where extra discrete degrees of freedom live at each node of the graph. It is shown how to map between quantum walk Hamiltonians and Hamiltonians for qubit systems and quantum circuits; this is done for both single-excitation and multiexcitation encodings. Specific examples of spin chains, as well as static and dynamic systems of qubits, are mapped to quantum walks, and walks on hyperlattices and hypercubes are mapped to various gate systems. We also show how to map a quantum circuit performing the quantum Fourier transform, the key element of Shor's algorithm, to a quantum walk system doing the same. The results herein are an essential preliminary to a Hamiltonian formulation of quantum walks in which coupling to a dynamic quantum environment is included

  4. Quantum decoherence and interlevel relations

    Science.gov (United States)

    Crull, Elise M.

    Quantum decoherence is a dynamical process whereby a system's phase relations become delocalized due to interaction and subsequent entanglement with its environment. This delocalization, or decoherence, forces the quantum system into a state that is apparently classical (or apparently an eigenstate) by prodigiously suppressing features that typically give rise to so-called quantum behavior. Thus it has been frequently proposed by physicists and philosophers alike that decoherence explains the dynamical transition from quantum behavior to classical behavior. Statements like this assume the existence of distinct realms, however, and the present thesis is an exploration of the metaphysical consequences of quantum decoherence motivated by the question of the quantum-to-classical transition and interlevel relations: if there are in-principle "classical" and "quantum" levels, what are the relations between them? And if there are no such levels, what follows? Importantly, the following philosophical investigations are carried out by intentionally leaving aside the measurement problem and concerns about particular interpretations of quantum mechanics. Good philosophical work, it is argued, can be done without adopting a specific interpretational framework and without recourse to the measurement problem. After introducing the physics of decoherence and exploring the four canonical models applied to system-environment interactions, it is argued that, ontologically speaking, there exist no levels. This claim---called the "nontological thesis"---exposes as ill-posed questions regarding the transition from the quantum regime to the classical regime and reveals the inappropriateness of interlevel relations (like reduction, supervenience and emergence) operating within metaphysical frameworks. The nontological thesis has further important consequences regarding intralevel relations: not only are there no meaningful ways to carve the world into levels, but there are no meaningful

  5. Topics in string theory and quantum gravity

    CERN Document Server

    Alvarez-Gaume, Luis

    1992-01-01

    These are the lecture notes for the Les Houches Summer School on Quantum Gravity held in July 1992. The notes present some general critical assessment of other (non-string) approaches to quantum gravity, and a selected set of topics concerning what we have learned so far about the subject from string theory. Since these lectures are long (133 A4 pages), we include in this abstract the table of contents, which should help the user of the bulletin board in deciding whether to latex and print the full file. 1-FIELD THEORETICAL APPROACH TO QUANTUM GRAVITY: Linearized gravity; Supergravity; Kaluza-Klein theories; Quantum field theory and classical gravity; Euclidean approach to Quantum Gravity; Canonical quantization of gravity; Gravitational Instantons. 2-CONSISTENCY CONDITIONS: ANOMALIES: Generalities about anomalies; Spinors in 2n dimensions; When can we expect to find anomalies?; The Atiyah-Singer Index Theorem and the computation of anomalies; Examples: Green-Schwarz cancellation mechanism and Witten's SU(2) ...

  6. Fundamentals of Quantum Mechanics

    Science.gov (United States)

    Tang, C. L.

    2005-06-01

    Quantum mechanics has evolved from a subject of study in pure physics to one with a wide range of applications in many diverse fields. The basic concepts of quantum mechanics are explained in this book in a concise and easy-to-read manner emphasising applications in solid state electronics and modern optics. Following a logical sequence, the book is focused on the key ideas and is conceptually and mathematically self-contained. The fundamental principles of quantum mechanics are illustrated by showing their application to systems such as the hydrogen atom, multi-electron ions and atoms, the formation of simple organic molecules and crystalline solids of practical importance. It leads on from these basic concepts to discuss some of the most important applications in modern semiconductor electronics and optics. Containing many homework problems and worked examples, the book is suitable for senior-level undergraduate and graduate level students in electrical engineering, materials science and applied physics. Clear exposition of quantum mechanics written in a concise and accessible style Precise physical interpretation of the mathematical foundations of quantum mechanics Illustrates the important concepts and results by reference to real-world examples in electronics and optoelectronics Contains homeworks and worked examples, with solutions available for instructors

  7. Quantum memory Quantum memory

    Science.gov (United States)

    Le Gouët, Jean-Louis; Moiseev, Sergey

    2012-06-01

    Interaction of quantum radiation with multi-particle ensembles has sparked off intense research efforts during the past decade. Emblematic of this field is the quantum memory scheme, where a quantum state of light is mapped onto an ensemble of atoms and then recovered in its original shape. While opening new access to the basics of light-atom interaction, quantum memory also appears as a key element for information processing applications, such as linear optics quantum computation and long-distance quantum communication via quantum repeaters. Not surprisingly, it is far from trivial to practically recover a stored quantum state of light and, although impressive progress has already been accomplished, researchers are still struggling to reach this ambitious objective. This special issue provides an account of the state-of-the-art in a fast-moving research area that makes physicists, engineers and chemists work together at the forefront of their discipline, involving quantum fields and atoms in different media, magnetic resonance techniques and material science. Various strategies have been considered to store and retrieve quantum light. The explored designs belong to three main—while still overlapping—classes. In architectures derived from photon echo, information is mapped over the spectral components of inhomogeneously broadened absorption bands, such as those encountered in rare earth ion doped crystals and atomic gases in external gradient magnetic field. Protocols based on electromagnetic induced transparency also rely on resonant excitation and are ideally suited to the homogeneous absorption lines offered by laser cooled atomic clouds or ion Coulomb crystals. Finally off-resonance approaches are illustrated by Faraday and Raman processes. Coupling with an optical cavity may enhance the storage process, even for negligibly small atom number. Multiple scattering is also proposed as a way to enlarge the quantum interaction distance of light with matter. The

  8. BOOK REVIEW: Modern Supersymmetry

    Science.gov (United States)

    Kulish, Petr P.

    2006-12-01

    We have spent more than twenty years applying supersymmetry (SUSY) to elementary particle physics and attempting to find an experimental manifestation of this symmetry. Terning's monograph demonstrates the strong influence of SUSY on theoretical elaborations in the field of elementary particles. It gives both an overview of modern supersymmetry in elementary particle physics and calculation techniques. The author, trying to be closer to applications of SUSY in the real world of elementary particles, is also anticipating the importance of supersymmetry for rigorous study of nonperturbative phenomena in quantum field theory. In particular, he presents the `exact' SUSY β function using instanton methods, phenomena of anomalies and dualities. Supersymmetry algebra is introduced by adding two anticommuting spinor generators to Poincaré algebra and by presenting massive and massless supermultiplets of its representations. The author prefers to use mostly the component description of field contents of the theories in question rather than the superfield formalism. Such a style makes the account closer to physical chartacteristics. Relations required by SUSY among β functions of the gauge, Yukawa and quartic interactions are checked by direct calculations as well as to all orders in perturbation theory, thus demonstrating that SUSY survives quantization. A discussion is included of the hierarchy problem of different scales of weak and strong interactions and its possible solution by the minimal supersymmetric standard model. Different SUSY breaking mechanisms are presented corresponding to a realistic phenomenology. The monograph can also be considered as a guide to `duality' relations connecting different SUSY gauge theories, supergravities and superstrings. This is demonstrated referring to the particular properties and characteristics of these theories (field contents, scaling dimensions of appropriate operators etc). In particular, the last chapter deals with the Ad

  9. Entangled states in quantum mechanics

    Science.gov (United States)

    Ruža, Jānis

    2010-01-01

    In some circles of quantum physicists, a view is maintained that the nonseparability of quantum systems-i.e., the entanglement-is a characteristic feature of quantum mechanics. According to this view, the entanglement plays a crucial role in the solution of quantum measurement problem, the origin of the “classicality” from the quantum physics, the explanation of the EPR paradox by a nonlocal character of the quantum world. Besides, the entanglement is regarded as a cornerstone of such modern disciplines as quantum computation, quantum cryptography, quantum information, etc. At the same time, entangled states are well known and widely used in various physics areas. In particular, this notion is widely used in nuclear, atomic, molecular, solid state physics, in scattering and decay theories as well as in other disciplines, where one has to deal with many-body quantum systems. One of the methods, how to construct the basis states of a composite many-body quantum system, is the so-called genealogical decomposition method. Genealogical decomposition allows one to construct recurrently by particle number the basis states of a composite quantum system from the basis states of its forming subsystems. These coupled states have a structure typical for entangled states. If a composite system is stable, the internal structure of its forming basis states does not manifest itself in measurements. However, if a composite system is unstable and decays onto its forming subsystems, then the measurables are the quantum numbers, associated with these subsystems. In such a case, the entangled state has a dynamical origin, determined by the Hamiltonian of the corresponding decay process. Possible correlations between the quantum numbers of resulting subsystems are determined by the symmetries-conservation laws of corresponding dynamical variables, and not by the quantum entanglement feature.

  10. Variations on the planar Landau problem: canonical transformations, a purely linear potential and the half-plane

    International Nuclear Information System (INIS)

    Govaerts, Jan; Hounkonnou, M Norbert; Mweene, Habatwa V

    2009-01-01

    The ordinary Landau problem of a charged particle in a plane subjected to a perpendicular homogeneous and static magnetic field is reconsidered from different points of view. The role of phase space canonical transformations and their relation to a choice of gauge in the solution of the problem is addressed. The Landau problem is then extended to different contexts, in particular the singular situation of a purely linear potential term being added as an interaction, for which a complete purely algebraic solution is presented. This solution is then exploited to solve this same singular Landau problem in the half-plane, with as motivation the potential relevance of such a geometry for quantum Hall measurements in the presence of an electric field or a gravitational quantum well.

  11. Non-canonical distribution and non-equilibrium transport beyond weak system-bath coupling regime: A polaron transformation approach

    Science.gov (United States)

    Xu, Dazhi; Cao, Jianshu

    2016-08-01

    The concept of polaron, emerged from condense matter physics, describes the dynamical interaction of moving particle with its surrounding bosonic modes. This concept has been developed into a useful method to treat open quantum systems with a complete range of system-bath coupling strength. Especially, the polaron transformation approach shows its validity in the intermediate coupling regime, in which the Redfield equation or Fermi's golden rule will fail. In the polaron frame, the equilibrium distribution carried out by perturbative expansion presents a deviation from the canonical distribution, which is beyond the usual weak coupling assumption in thermodynamics. A polaron transformed Redfield equation (PTRE) not only reproduces the dissipative quantum dynamics but also provides an accurate and efficient way to calculate the non-equilibrium steady states. Applications of the PTRE approach to problems such as exciton diffusion, heat transport and light-harvesting energy transfer are presented.

  12. Variations on the planar Landau problem: canonical transformations, a purely linear potential and the half-plane

    Energy Technology Data Exchange (ETDEWEB)

    Govaerts, Jan [Center for Particle Physics and Phenomenology (CP3), Institut de Physique Nucleaire, Universite catholique de Louvain (UCL), 2, Chemin du Cyclotron, B-1348 Louvain-la Neuve (Belgium); Hounkonnou, M Norbert [International Chair in Mathematical Physics and Applications (ICMPA-UNESCO Chair), University of Abomey-Calavi, 072 BP 50, Cotonou (Benin); Mweene, Habatwa V [Physics Department, University of Zambia, PO Box 32379, Lusaka (Zambia)], E-mail: Jan.Govaerts@uclouvain.be, E-mail: hounkonnou@yahoo.fr, E-mail: norbert.hounkonnou@cipma.uac.bj, E-mail: habatwamweene@yahoo.com, E-mail: hmweene@unza.zm

    2009-12-04

    The ordinary Landau problem of a charged particle in a plane subjected to a perpendicular homogeneous and static magnetic field is reconsidered from different points of view. The role of phase space canonical transformations and their relation to a choice of gauge in the solution of the problem is addressed. The Landau problem is then extended to different contexts, in particular the singular situation of a purely linear potential term being added as an interaction, for which a complete purely algebraic solution is presented. This solution is then exploited to solve this same singular Landau problem in the half-plane, with as motivation the potential relevance of such a geometry for quantum Hall measurements in the presence of an electric field or a gravitational quantum well.

  13. From Quantum Deformations of Relativistic Symmetries to Modified Kinematics and Dynamics

    International Nuclear Information System (INIS)

    Lukierski, J.

    2010-01-01

    We present a short review describing the use of noncommutative spacetime in quantum-deformed dynamical theories: classical and quantum mechanics as well as classical and quantum field theory. We expose the role of Hopf algebras and their realizations (noncommutative modules) as important mathematical tool describing quantum-deformed symmetries: quantum Lie groups and quantum Lie algebras. We consider in some detail the most studied examples of noncommutative space-time geometry: the canonical and κ-deformed cases. Finally, we briefly describe the modifications of Einstein gravity obtained by introduction of noncommutative space-time coordinates. (author)

  14. Reviews Book: SEP Communications: Transmitting and Receiving Signals Book: Gliding for Gold Book: Radioactivity: A History of a Mysterious Science Book: The New Quantum Age Books: The Art of Science and The Oxford Book of Modern Science Writing Equipment: SEP Analogue/digital transmission unit Equipment: SEP Optical signal transmission set Book: Stars and their Spectra Book: Voicebox: The Physics and Evolution of Speech Web Watch

    Science.gov (United States)

    2012-03-01

    WE RECOMMEND Transmitting and Receiving Signals SEP booklet transmits knowledge The New Quantum Age Understanding modern quantum theory The Art of Science and The Oxford Book of Modern Science Writing Anthologies bring science to life SEP Analogue/digital transmission unit Kit transmits signal between two points SEP Optical signal transmission set Optical kit shows light transmission Stars and their Spectra New book for teaching astrophysics WORTH A LOOK Gliding for Gold Take a journey through the physics of winter sports Radioactivity: A History of a Mysterious Science Book looks at history of radioactivity Voicebox: The Physics and Evolution of Speech TExploring the evolution of the voice WEB WATCH An interactive program with promise?

  15. Quantum Noether identities for non-local transformations in higher-order derivatives theories

    International Nuclear Information System (INIS)

    Li, Z.P.; Long, Z.W.

    2003-01-01

    Based on the phase-space generating functional of the Green function for a system with a regular/singular higher-order Lagrangian, the quantum canonical Noether identities (NIs) under a local and non-local transformation in phase space have been deduced, respectively. For a singular higher-order Lagrangian, one must use an effective canonical action I eff P in quantum canonical NIs instead of the classical I P in classical canonical NIs. The quantum NIs under a local and non-local transformation in configuration space for a gauge-invariant system with a higher-order Lagrangian have also been derived. The above results hold true whether or not the Jacobian of the transformation is equal to unity or not. It has been pointed out that in certain cases the quantum NIs may be converted to conservation laws at the quantum level. This algorithm to derive the quantum conservation laws is significantly different from the quantum first Noether theorem. The applications of our formulation to the Yang-Mills fields and non-Abelian Chern-Simons (CS) theories with higher-order derivatives are given, and the conserved quantities at the quantum level for local and non-local transformations are found, respectively. (orig.)

  16. A Quantum Groups Primer

    Science.gov (United States)

    Majid, Shahn

    2002-05-01

    Here is a self-contained introduction to quantum groups as algebraic objects. Based on the author's lecture notes for the Part III pure mathematics course at Cambridge University, the book is suitable as a primary text for graduate courses in quantum groups or supplementary reading for modern courses in advanced algebra. The material assumes knowledge of basic and linear algebra. Some familiarity with semisimple Lie algebras would also be helpful. The volume is a primer for mathematicians but it will also be useful for mathematical physicists.

  17. Supersymmetric quantum mechanics on n-dimensional manifolds

    International Nuclear Information System (INIS)

    O'Connor, M.

    1990-01-01

    In this thesis the author investigates the properties of the supersymmetric path integral on Riemannian manifolds. Chapter 1 is a brief introduction to supersymmetric path integral can be defined as the continuum limit of a discrete supersymmetric path integral. In Chapter 3 he shows that point canonical transformations in the path integral for ordinary quantum mechanics can be performed naively provided one uses the supersymmetric path integral. Chapter 4 generalizes the results of chapter 3 to include the propagation of all the fermion sectors in supersymmetric quantum mechanics. In Chapter 5 he shows how the properties of supersymmetric quantum mechanics can be used to investigate topological quantum mechanics

  18. Intersecting Quantum Gravity with Noncommutative Geometry - a Review

    Directory of Open Access Journals (Sweden)

    Johannes Aastrup

    2012-03-01

    Full Text Available We review applications of noncommutative geometry in canonical quantum gravity. First, we show that the framework of loop quantum gravity includes natural noncommutative structures which have, hitherto, not been explored. Next, we present the construction of a spectral triple over an algebra of holonomy loops. The spectral triple, which encodes the kinematics of quantum gravity, gives rise to a natural class of semiclassical states which entail emerging fermionic degrees of freedom. In the particular semiclassical approximation where all gravitational degrees of freedom are turned off, a free fermionic quantum field theory emerges. We end the paper with an extended outlook section.

  19. Quantum stochastics

    CERN Document Server

    Chang, Mou-Hsiung

    2015-01-01

    The classical probability theory initiated by Kolmogorov and its quantum counterpart, pioneered by von Neumann, were created at about the same time in the 1930s, but development of the quantum theory has trailed far behind. Although highly appealing, the quantum theory has a steep learning curve, requiring tools from both probability and analysis and a facility for combining the two viewpoints. This book is a systematic, self-contained account of the core of quantum probability and quantum stochastic processes for graduate students and researchers. The only assumed background is knowledge of the basic theory of Hilbert spaces, bounded linear operators, and classical Markov processes. From there, the book introduces additional tools from analysis, and then builds the quantum probability framework needed to support applications to quantum control and quantum information and communication. These include quantum noise, quantum stochastic calculus, stochastic quantum differential equations, quantum Markov semigrou...

  20. An introduction to relativistic quantum field theory

    CERN Document Server

    Schweber, Silvan S

    1961-01-01

    Complete, systematic, and self-contained, this text introduces modern quantum field theory. "Combines thorough knowledge with a high degree of didactic ability and a delightful style." - Mathematical Reviews. 1961 edition.

  1. Connecting the Canon to Current Young Adult Literature

    Science.gov (United States)

    Rybakova, Katie; Roccanti, Rikki

    2016-01-01

    In this article we discuss the respective roles of young adult literature and literary texts in the secondary level English Language Arts classroom and explore the connections that can be made between popular young adult books and the traditional canon. We provide examples showing how young adult literature bestsellers such as "The Book…

  2. Intermediate inflation from a non-canonical scalar field

    Energy Technology Data Exchange (ETDEWEB)

    Rezazadeh, K.; Karami, K. [Department of Physics, University of Kurdistan, Pasdaran St., Sanandaj (Iran, Islamic Republic of); Karimi, P., E-mail: rezazadeh86@gmail.com, E-mail: KKarami@uok.ac.ir, E-mail: parvin.karimi67@yahoo.com [Center for Excellence in Astronomy and Astrophysics (CEAA-RIAAM), P.O. Box 55134-441, Maragha (Iran, Islamic Republic of)

    2015-09-01

    We study the intermediate inflation in a non-canonical scalar field framework with a power-like Lagrangian. We show that in contrast with the standard canonical intermediate inflation, our non-canonical model is compatible with the observational results of Planck 2015. Also, we estimate the equilateral non-Gaussianity parameter which is in well agreement with the prediction of Planck 2015. Then, we obtain an approximation for the energy scale at the initial time of inflation and show that it can be of order of the Planck energy scale, i.e. M{sub P} ∼ 10{sup 18}GeV. We will see that after a short period of time, inflation enters in the slow-roll regime that its energy scale is of order M{sub P}/100 ∼ 10{sup 16}GeV and the horizon exit takes place in this energy scale. We also examine an idea in our non-canonical model to overcome the central drawback of intermediate inflation which is the fact that inflation never ends. We solve this problem without disturbing significantly the nature of the intermediate inflation until the time of horizon exit.

  3. Comments on the charge-monopole canonical formalism

    International Nuclear Information System (INIS)

    Comay, C.

    1988-01-01

    A recently published canonical formalism of a charge-monopole system written by means of Clifford algebras is discussed. It is shown that the introduction of the Lorentz force must be accompanied by the removal of the pseudo-scalar terms from the lagrangian. Several conclusions follow. (orig.)

  4. The roles of theory in canonical action research

    NARCIS (Netherlands)

    Davison, R.M.; Martinsons, M.G.; Ou, C.X.J.

    2012-01-01

    Canonical action research (CAR) aims to address real-world problems and improve organizational performance by combining scholarly observations with practical interventions. However, efforts to conduct CAR have revealed challenges that reflect a significant research–practice gap. We examine these

  5. Canonical realizations of B2 approximately C2 Lie algebras

    International Nuclear Information System (INIS)

    Iosifescu, M.; Scutaru, H.

    1982-12-01

    Canonical realizations associated to subrepresentations of ad x ad, for B 2 apppoximately C 2 semisimple Lie algebras, have been determined. An algebraic foundation has been obtained for the constraints satisfied by the dinamical variables of the classical limit of the generalized Helium problem. (authors)

  6. Canonical understanding of the sacrifice of Isaac: The influence of ...

    African Journals Online (AJOL)

    2016-07-08

    Jul 8, 2016 ... Martyrdom has granted benefits to the people of ... Testament, as the authoritative text and understands the text primarily in the canonical context ... This is more significant in terms of ..... This image of the Father-Son relation recurs in the NT, ..... this passage is Abraham's obedience, not Isaac's self-sacrifice.

  7. Publication bias and the canonization of false facts

    DEFF Research Database (Denmark)

    Nissen, Silas Boye; Magidson, Tali; Gross, Kevin

    2016-01-01

    canonized as fact. Data-dredging, p-hacking, and similar behaviors exacerbate the problem. Should negative results become easier to publish as a claim approaches acceptance as a fact, however, true and false claims would be more readily distinguished. To the degree that the model reflects the real world...

  8. Canonical wnt signaling regulates atrioventricular junction programming and electrophysiological properties

    NARCIS (Netherlands)

    Gillers, Benjamin S.; Chiplunkar, Aditi; Aly, Haytham; Valenta, Tomas; Basler, Konrad; Christoffels, Vincent M.; Efimov, Igor R.; Boukens, Bastiaan J.; Rentschler, Stacey

    2015-01-01

    Proper patterning of the atrioventricular canal (AVC) is essential for delay of electrical impulses between atria and ventricles, and defects in AVC maturation can result in congenital heart disease. To determine the role of canonical Wnt signaling in the myocardium during AVC development. We used a

  9. Canonical transformations and exact invariants for dissipative systems

    International Nuclear Information System (INIS)

    Pedrosa, I.A.

    1986-01-01

    A simple treatment to the problem of finding exact invariants and related auxiliary equations for time-dependent oscillators with friction is presented. The treatment is based on the use of a time-dependent canonical transformation and an auxiliary transformation. (Author) [pt

  10. The Canon, the Web, and the Long Tail

    DEFF Research Database (Denmark)

    Sanderhoff, Merete

    2017-01-01

    This article argues that releasing images of artworks into the public domain creates a new possibility for the public to challenge the canon or create their own, based on access to previously inaccessible images. Through the dissemination of openly licensed artworks across the Internet, museums c...

  11. Correspondence and canonicity in non-classical logic

    NARCIS (Netherlands)

    Sourabh, S.

    2015-01-01

    In this thesis we study correspondence and canonicity for non-classical logic using algebraic and order-topological methods. Correspondence theory is aimed at answering the question of how precisely modal, first-order, second-order languages interact and overlap in their shared semantic environment.

  12. A QQ→QQ planar double box in canonical form

    Directory of Open Access Journals (Sweden)

    Marco S. Bianchi

    2018-02-01

    Full Text Available We consider a planar double box with four massive external momenta and two massive internal propagators. We derive the system of differential equations for the relevant master integrals, cast it in canonical form, write it as a dlog form and solve it in terms of iterated integrals up to depth four.

  13. A Problem-Centered Approach to Canonical Matrix Forms

    Science.gov (United States)

    Sylvestre, Jeremy

    2014-01-01

    This article outlines a problem-centered approach to the topic of canonical matrix forms in a second linear algebra course. In this approach, abstract theory, including such topics as eigenvalues, generalized eigenspaces, invariant subspaces, independent subspaces, nilpotency, and cyclic spaces, is developed in response to the patterns discovered…

  14. Uncertainty relations, zero point energy and the linear canonical group

    Science.gov (United States)

    Sudarshan, E. C. G.

    1993-01-01

    The close relationship between the zero point energy, the uncertainty relations, coherent states, squeezed states, and correlated states for one mode is investigated. This group-theoretic perspective enables the parametrization and identification of their multimode generalization. In particular the generalized Schroedinger-Robertson uncertainty relations are analyzed. An elementary method of determining the canonical structure of the generalized correlated states is presented.

  15. Nonlinear canonical correlation analysis with k sets of variables

    NARCIS (Netherlands)

    van der Burg, Eeke; de Leeuw, Jan

    1987-01-01

    The multivariate technique OVERALS is introduced as a non-linear generalization of canonical correlation analysis (CCA). First, two sets CCA is introduced. Two sets CCA is a technique that computes linear combinations of sets of variables that correlate in an optimal way. Two sets CCA is then

  16. Testing the significance of canonical axes in redundancy analysis

    NARCIS (Netherlands)

    Legendre, P.; Oksanen, J.; Braak, ter C.J.F.

    2011-01-01

    1. Tests of significance of the individual canonical axes in redundancy analysis allow researchers to determine which of the axes represent variation that can be distinguished from random. Variation along the significant axes can be mapped, used to draw biplots or interpreted through subsequent

  17. Canonical Ensemble Model for Black Hole Horizon of Schwarzschild ...

    Indian Academy of Sciences (India)

    Abstract. In this paper, we use the canonical ensemble model to discuss the radiation of a Schwarzschild–de Sitter black hole on the black hole horizon. Using this model, we calculate the probability distribution from function of the emission shell. And the statistical meaning which compare with the distribution function is ...

  18. Non‐Canonical Replication Initiation: You’re Fired!

    Directory of Open Access Journals (Sweden)

    Bazilė Ravoitytė

    2017-01-01

    Full Text Available The division of prokaryotic and eukaryotic cells produces two cells that inherit a perfect copy of the genetic material originally derived from the mother cell. The initiation of canonical DNA replication must be coordinated to the cell cycle to ensure the accuracy of genome duplication. Controlled replication initiation depends on a complex interplay of cis‐acting DNA sequences, the so‐called origins of replication (ori, with trans‐acting factors involved in the onset of DNA synthesis. The interplay of cis‐acting elements and trans‐acting factors ensures that cells initiate replication at sequence‐specific sites only once, and in a timely order, to avoid chromosomal endoreplication. However, chromosome breakage and excessive RNA:DNA hybrid formation can cause breakinduced (BIR or transcription‐initiated replication (TIR, respectively. These non‐canonical replication events are expected to affect eukaryotic genome function and maintenance, and could be important for genome evolution and disease development. In this review, we describe the difference between canonical and non‐canonical DNA replication, and focus on mechanistic differences and common features between BIR and TIR. Finally, we discuss open issues on the factors and molecular mechanisms involved in TIR.

  19. AFP Algorithm and a Canonical Normal Form for Horn Formulas

    OpenAIRE

    Majdoddin, Ruhollah

    2014-01-01

    AFP Algorithm is a learning algorithm for Horn formulas. We show that it does not improve the complexity of AFP Algorithm, if after each negative counterexample more that just one refinements are performed. Moreover, a canonical normal form for Horn formulas is presented, and it is proved that the output formula of AFP Algorithm is in this normal form.

  20. Universal critical wrapping probabilities in the canonical ensemble

    Directory of Open Access Journals (Sweden)

    Hao Hu

    2015-09-01

    Full Text Available Universal dimensionless quantities, such as Binder ratios and wrapping probabilities, play an important role in the study of critical phenomena. We study the finite-size scaling behavior of the wrapping probability for the Potts model in the random-cluster representation, under the constraint that the total number of occupied bonds is fixed, so that the canonical ensemble applies. We derive that, in the limit L→∞, the critical values of the wrapping probability are different from those of the unconstrained model, i.e. the model in the grand-canonical ensemble, but still universal, for systems with 2yt−d>0 where yt=1/ν is the thermal renormalization exponent and d is the spatial dimension. Similar modifications apply to other dimensionless quantities, such as Binder ratios. For systems with 2yt−d≤0, these quantities share same critical universal values in the two ensembles. It is also derived that new finite-size corrections are induced. These findings apply more generally to systems in the canonical ensemble, e.g. the dilute Potts model with a fixed total number of vacancies. Finally, we formulate an efficient cluster-type algorithm for the canonical ensemble, and confirm these predictions by extensive simulations.

  1. A grand-canonical ensemble of randomly triangulated surfaces

    International Nuclear Information System (INIS)

    Jurkiewicz, J.; Krzywicki, A.; Petersson, B.

    1986-01-01

    An algorithm is presented generating the grand-canonical ensemble of discrete, randomly triangulated Polyakov surfaces. The algorithm is used to calculate the susceptibility exponent, which controls the existence of the continuum limit of the considered model, for the dimensionality of the embedding space ranging from 0 to 20. (orig.)

  2. Canonical analysis of non-relativistic particle and superparticle

    Energy Technology Data Exchange (ETDEWEB)

    Kluson, Josef [Masaryk University, Department of Theoretical Physics and Astrophysics, Faculty of Science, Brno (Czech Republic)

    2018-02-15

    We perform canonical analysis of non-relativistic particle in Newton-Cartan Background. Then we extend this analysis to the case of non-relativistic superparticle in the same background. We determine constraints structure of this theory and find generator of κ-symmetry. (orig.)

  3. Canonical quantization of the Bateman-Morse-Feshbach damped oscillator

    International Nuclear Information System (INIS)

    Rideau, G.; Anderson, R.L.; Hebda, P.W.

    1991-01-01

    The Bateman-Morse-Feshbach classical formulation of the damped oscillator is canonically quantized. The spectrum of the Hamiltonian is given. It is shown that the wavefunctions behave asymptotically as a superposition of damped oscillators when their initial values belong to an appropriately-selected dense subset of the Hilbert space. (orig.)

  4. Catechistic Teaching, National Canons, and the Regimentation of Students' Voice

    Science.gov (United States)

    Kroon, Sjaak

    2013-01-01

    Drawing on key incident analysis of classroom transcripts from Bashkortostan, France, North Korea, and Suriname, this article discusses the relationship between an increasingly canonical content of education and the discursive organization of teaching processes at the expense of both teachers' and students' voice. It argues that canonical…

  5. Quasiperiodic canonical-cell tiling with pseudo icosahedral symmetry

    Science.gov (United States)

    Fujita, Nobuhisa

    2017-10-01

    Icosahedral quasicrystals and their approximants are generally described as packing of icosahedral clusters. Experimental studies show that clusters in various approximants are orderly arranged, such that their centers are located at the nodes (or vertices) of a periodic tiling composed of four basic polyhedra called the canonical cells. This so called canonical-cell geometry is likely to serve as a common framework for modeling how clusters are arranged in approximants, while its applicability seems to extend naturally to icosahedral quasicrystals. To date, however, it has not been proved yet if the canonical cells can tile the space quasiperiodically, though we usually believe that clusters in icosahedral quasicrystals are arranged such that quasiperiodic long-range order as well as icosahedral point symmetry is maintained. In this paper, we report for the first time an iterative geometrical transformation of the canonical cells defining a so-called substitution rule, which we can use to generate a class of quasiperiodic canonical-cell tilings. Every single step of the transformation proceeds as follows: each cell is first enlarged by a magnification ratio of τ3 (τ = golden mean) and then subdivided into cells of the original size. Here, cells with an identical shape can be subdivided in several distinct manners depending on how their adjacent neighbors are arranged, and sixteen types of cells are identified in terms of unique subdivision. This class of quasiperiodic canonical-cell tilings presents the first realization of three-dimensional quasiperiodic tilings with fractal atomic surfaces. There are four distinct atomic surfaces associated with four sub-modules of the primitive icosahedral module, where a representative of the four submodules corresponds to the Σ = 4 coincidence site module of the icosahedral module. It follows that the present quasiperiodic tilings involve a kind of superlattice ordering that manifests itself in satellite peaks in the

  6. Quantum Computing

    OpenAIRE

    Scarani, Valerio

    1998-01-01

    The aim of this thesis was to explain what quantum computing is. The information for the thesis was gathered from books, scientific publications, and news articles. The analysis of the information revealed that quantum computing can be broken down to three areas: theories behind quantum computing explaining the structure of a quantum computer, known quantum algorithms, and the actual physical realizations of a quantum computer. The thesis reveals that moving from classical memor...

  7. Quantum Malware

    OpenAIRE

    Wu, Lian-Ao; Lidar, Daniel A.

    2005-01-01

    When quantum communication networks proliferate they will likely be subject to a new type of attack: by hackers, virus makers, and other malicious intruders. Here we introduce the concept of "quantum malware" to describe such human-made intrusions. We offer a simple solution for storage of quantum information in a manner which protects quantum networks from quantum malware. This solution involves swapping the quantum information at random times between the network and isolated, distributed an...

  8. Canonical path integral measures for Holst and Plebanski gravity: I. Reduced phase space derivation

    International Nuclear Information System (INIS)

    Engle, Jonathan; Han Muxin; Thiemann, Thomas

    2010-01-01

    An important aspect in defining a path integral quantum theory is the determination of the correct measure. For interacting theories and theories with constraints, this is non-trivial, and is normally not the heuristic 'Lebesgue measure' usually used. There have been many determinations of a measure for gravity in the literature, but none for the Palatini or Holst formulations of gravity. Furthermore, the relations between different resulting measures for different formulations of gravity are usually not discussed. In this paper we use the reduced phase technique in order to derive the path-integral measure for the Palatini and Holst formulation of gravity, which is different from the Lebesgue measure up to local measure factors which depend on the spacetime volume element and spatial volume element. From this path integral for the Holst formulation of general relativity we can also give a new derivation of the Plebanski path integral and discover a discrepancy with the result due to Buffenoir, Henneaux, Noui and Roche whose origin we resolve. This paper is the first in a series that aims at better understanding the relation between canonical loop quantum gravity and the spin-foam approach.

  9. Canonical simulations with worldlines: An exploratory study in ϕ24 lattice field theory

    Science.gov (United States)

    Orasch, Oliver; Gattringer, Christof

    2018-01-01

    In this paper, we explore the perspectives for canonical simulations in the worldline formulation of a lattice field theory. Using the charged ϕ4 field in two dimensions as an example, we present the details of the canonical formulation based on worldlines and outline the algorithmic strategies for canonical worldline simulations. We discuss the steps for converting the data from the canonical approach to the grand canonical picture which we use for cross-checking our results. The canonical approach presented here can easily be generalized to other lattice field theories with a worldline representation.

  10. Limitations on continuous variable quantum algorithms with Fourier transforms

    International Nuclear Information System (INIS)

    Adcock, Mark R A; Hoeyer, Peter; Sanders, Barry C

    2009-01-01

    We study quantum algorithms implemented within a single harmonic oscillator, or equivalently within a single mode of the electromagnetic field. Logical states correspond to functions of the canonical position, and the Fourier transform to canonical momentum serves as the analogue of the Hadamard transform for this implementation. This continuous variable version of quantum information processing has widespread appeal because of advanced quantum optics technology that can create, manipulate and read Gaussian states of light. We show that, contrary to a previous claim, this implementation of quantum information processing has limitations due to a position-momentum trade-off of the Fourier transform, analogous to the famous time-bandwidth theorem of signal processing.

  11. Quantumness beyond quantum mechanics

    International Nuclear Information System (INIS)

    Sanz, Ángel S

    2012-01-01

    Bohmian mechanics allows us to understand quantum systems in the light of other quantum traits than the well-known ones (coherence, diffraction, interference, tunnelling, discreteness, entanglement, etc.). Here the discussion focusses precisely on two of these interesting aspects, which arise when quantum mechanics is thought within this theoretical framework: the non-crossing property, which allows for distinguishability without erasing interference patterns, and the possibility to define quantum probability tubes, along which the probability remains constant all the way. Furthermore, taking into account this hydrodynamic-like description as a link, it is also shown how this knowledge (concepts and ideas) can be straightforwardly transferred to other fields of physics (for example, the transmission of light along waveguides).

  12. Management of pediatric radiation dose using Canon digital radiography

    International Nuclear Information System (INIS)

    Arreola, M.; Rill, L.

    2004-01-01

    A Canon CXDI-11 digital radiography (DR) system has been in use at Shands Hospital at the University of Florida for the past 2 1/2 years. A first clinical implementation phase was utilized to develop imaging protocols for adult patients, with a second phase incorporating pediatric chest and abdominal studies a few months later. This paper describes some of the steps taken during the modality implementation stages, as well as the methodologies and procedures utilized to monitor compliance by the technologists. The Canon DR system provides the technologist with an indication of the radiation exposure received by the detector (and thus of the patient dose) by means of an indirect exposure level number called the reached exposure (REX) value. The REX value is calculated by the system based on the default grayscale curve preselected for a given anatomical view and used by the system to optimize the appearance of the image. The brightness and contrast of the image can be modified by the user at the QC/control screen for the purpose of improving the appearance of the image. Such changes modify the actual grayscale curve (position and slope, respectively) and thus the calculated REX value. Thus, undisciplined use of the brightness and contrast functions by the technologist can render the REX value meaningless as an exposure indicator. The paper also shows how it is possible to calibrate AEC (phototimer) systems for use with the Canon DR system, and utilize the REX value as a valuable dose indicator through proper training of technologists and strict, disciplined QC of studies. A team consisting of the site's medical physicist, radiologists, and technologists, as well as Canon engineers, can work together in properly calibrating and setting up the system for the purposes of monitoring patient doses (especially pediatric) in DR studies performed in a Canon DR system. (orig.)

  13. Nonlinear Dynamics In Quantum Physics -- Quantum Chaos and Quantum Instantons

    OpenAIRE

    Kröger, H.

    2003-01-01

    We discuss the recently proposed quantum action - its interpretation, its motivation, its mathematical properties and its use in physics: quantum mechanical tunneling, quantum instantons and quantum chaos.

  14. Quantum Entanglements: Selected Papers

    International Nuclear Information System (INIS)

    Giannetto, E

    2005-01-01

    This book is a sort of tribute to Rob Clifton (1964-2002), Associate Professor of Philosophy and Associate Director of the Center for Philosophy of Science at the University of Pittsburgh, philosopher of physics and editor of the journal Studies in the History and Philosophy of Modern Physics, who tragically died of cancer. It contains fourteen papers by Clifton, for the most part written in collaboration with other authors (Jeffrey Bub (2), Sheldon Goldstein, Michael Dickson, Hans Halvorson (6), Adrian Kent (2)), published between 1995 and 2002. The choice of papers made by the editors is very impressive. They concern the foundations of quantum mechanics and quantum field theory. Among the issues discussed are the modal interpretations of quantum mechanics, the problems of hidden variables theories, non-locality, Bell's inequality, the Einstein-Podolsky-Rosen paradox, Lorentz invariance, de-coherence, non-contextuality, complementarity, entanglement and quantum information. A consequence of such investigations is that non-separability is a more complex issue than violation of Bell's inequality. Apart from the perspective one can follow-whether one agrees or not with Clifton-these papers are effective contributions to an understanding of the problems involved in the foundations of quantum mechanics. The most interesting parts, in my opinion, are related to the extension of the discussion of foundational problems to quantum field theory: on the algebraic approach, and on the twin concepts of particle and vacuum. Non-locality appears to be 'worse' in relativistic quantum field theory than in non-relativistic quantum mechanics. All the papers deal with relevant epistemological and even historical aspects of quantum mechanics interpretations, but all the issues are discussed from a technical, logical and mathematical approach. A complete bibliography of Clifton's papers is given at the end of the volume. (book review)

  15. Association Study between Lead and Zinc Accumulation at Different Physiological Systems of Cattle by Canonical Correlation and Canonical Correspondence Analyses

    Science.gov (United States)

    Karmakar, Partha; Das, Pradip Kumar; Mondal, Seema Sarkar; Karmakar, Sougata; Mazumdar, Debasis

    2010-10-01

    Pb pollution from automobile exhausts around highways is a persistent problem in India. Pb intoxication in mammalian body is a complex phenomenon which is influence by agonistic and antagonistic interactions of several other heavy metals and micronutrients. An attempt has been made to study the association between Pb and Zn accumulation in different physiological systems of cattles (n = 200) by application of both canonical correlation and canonical correspondence analyses. Pb was estimated from plasma, liver, bone, muscle, kidney, blood and milk where as Zn was measured from all these systems except bone, blood and milk. Both statistical techniques demonstrated that there was a strong association among blood-Pb, liver-Zn, kidney-Zn and muscle-Zn. From observations, it can be assumed that Zn accumulation in cattles' muscle, liver and kidney directs Pb mobilization from those organs which in turn increases Pb pool in blood. It indicates antagonistic activity of Zn to the accumulation of Pb. Although there were some contradictions between the observations obtained from the two different statistical methods, the overall pattern of Pb accumulation in various organs as influenced by Zn were same. It is mainly due to the fact that canonical correlation is actually a special type of canonical correspondence analyses where linear relationship is followed between two groups of variables instead of Gaussian relationship.

  16. Association Study between Lead and Zinc Accumulation at Different Physiological Systems of Cattle by Canonical Correlation and Canonical Correspondence Analyses

    International Nuclear Information System (INIS)

    Karmakar, Partha; Das, Pradip Kumar; Mondal, Seema Sarkar; Karmakar, Sougata; Mazumdar, Debasis

    2010-01-01

    Pb pollution from automobile exhausts around highways is a persistent problem in India. Pb intoxication in mammalian body is a complex phenomenon which is influence by agonistic and antagonistic interactions of several other heavy metals and micronutrients. An attempt has been made to study the association between Pb and Zn accumulation in different physiological systems of cattles (n = 200) by application of both canonical correlation and canonical correspondence analyses. Pb was estimated from plasma, liver, bone, muscle, kidney, blood and milk where as Zn was measured from all these systems except bone, blood and milk. Both statistical techniques demonstrated that there was a strong association among blood-Pb, liver-Zn, kidney-Zn and muscle-Zn. From observations, it can be assumed that Zn accumulation in cattles' muscle, liver and kidney directs Pb mobilization from those organs which in turn increases Pb pool in blood. It indicates antagonistic activity of Zn to the accumulation of Pb. Although there were some contradictions between the observations obtained from the two different statistical methods, the overall pattern of Pb accumulation in various organs as influenced by Zn were same. It is mainly due to the fact that canonical correlation is actually a special type of canonical correspondence analyses where linear relationship is followed between two groups of variables instead of Gaussian relationship.

  17. Canonical and Non-Canonical NF-κB Signaling Promotes Breast Cancer Tumor-Initiating Cells

    Science.gov (United States)

    Kendellen, Megan F.; Bradford, Jennifer W.; Lawrence, Cortney L.; Clark, Kelly S.; Baldwin, Albert S.

    2014-01-01

    Tumor-initiating cells (TICs) are a sub-population of cells that exhibit a robust ability to self-renew and contribute to the formation of primary tumors, the relapse of previously treated tumors, and the development of metastases. TICs have been identified in various tumors, including those of the breast, and are particularly enriched in the basal-like and claudin-low subtypes of breast cancer. The signaling pathways that contribute to the function and maintenance of TICs are under intense study. We explored the potential involvement of the NF-κB family of transcription factors in TICs in cell lines that are representative of basal-like and claudin-low breast cancer. NF-κB was found to be activated in breast cancer cells that form tumorspheres efficiently. Moreover, both canonical and non-canonical NF-κB signaling is required for these cells to self-renew in vitro and to form xenograft tumors efficiently in vivo using limiting dilutions of cells. Consistent with this, canonical and non-canonical NF-κB signaling is activated in TICs isolated from breast cancer cell lines. Experimental results indicate that NF-κB promotes the function of TICs by stimulating epithelial-to-mesenchymal transition (EMT) and by upregulating the expression of the inflammatory cytokines IL-1β and IL-6. The results suggest the use of NF-κB inhibitors for clinical therapy of certain breast cancers. PMID:23474754

  18. Quantum behaviour of measuring apparatus

    International Nuclear Information System (INIS)

    Amri, T.

    2011-05-01

    This thesis explores the quantum behavior of measurement apparatus with illustrations in quantum optics. This is the first study of quantum properties of measurements performed by any kind of devices. We show that the quantum properties of a measurement, such as its projective or non-classical character, are revealed only by the quantum states of an unusual approach of quantum physics: the retrodictive approach. This approach involves retro-predictions about state preparations leading to a given measurement result, contrary to the predictive approach with which we usually make predictions about the results of an experiment. By clarifying the mathematical foundations of the retrodictive approach, we propose a general procedure for reconstructing the quantum states of this approach: the retrodicted states. We have realized these reconstructions for single-photon detectors, widely used in quantum cryptography for instance. This is the first tomography of quantum states totally based on the retrodictive approach and preparation choices, contrary to usual reconstructions based on measurement results. These tomographies enabled us to study experimentally the noise influence on the quantum properties of measurements performed by these detectors, in particular their transition from a strongly quantum behavior into a more classical behavior. Finally, we propose a detector of Schroedinger's Cat states of light, which are superpositions of incompatible quasi-classical states of light. In a modern version of a thought experiment proposed by Eugene Wigner in 1961, such a device could allow the Wigner's Friend to detect a Schroedinger's Cat, contrary to human eyes for which we specify some quantum properties. We generalize the use of such a non-classical detector to an estimation protocol, totally based on the retrodictive approach and preparation choices. Such a procedure could enable optimal estimations, by reaching the quantum Cramer-Rao bound, which is a very topical issue

  19. Quasi Hopf quantum symmetry in quantum theory

    International Nuclear Information System (INIS)

    Mack, G.; Schomerus, V.

    1991-05-01

    In quantum theory, internal symmetries more general than groups are possible. We show that quasitriangular quasi Hopf algebras G * as introduced by Drinfeld permit a consistent formulation of a transformation law of states in the physical Hilbert space H, of invariance of the ground state, and of a transformation law of field operators which is consistent with local braid relations of field operators as proposed by Froehlich. All this remains true when Drinfelds axioms are suitably weakened in order to build in truncated tensor products. Conversely, all the axioms of a weak quasitriangular quasi Hopf algebra are motivated from what physics demands of a symmetry. Unitarity requires in addition that G * admits a * -operation with certain properties. Invariance properties of Greens functions follow from invariance of the ground state and covariance of field operators as usual. Covariant adjoints and covariant products of field operators can be defined. The R-matrix elements in the local braid relations are in general operators in H. They are determined by the symmetry up to a phase factor. Quantum group algebras like U q (sl 2 ) with vertical strokeqvertical stroke=1 are examples of symmetries with special properties. We show that a weak quasitriangular quasi Hopf algebra G * is canonically associated with U q (sl 2 ) if q P =-1. We argue that these weak quasi Hopf algebras are the true symmetries of minimal conformal models. Their dual algebras G ('functions on the group') are neither commutative nor associative. (orig.)

  20. How many 'times' do we have in quantum gravity?

    International Nuclear Information System (INIS)

    Hosoya, Akio; Soda, Jiro.

    1990-07-01

    Apparently, there are infinite number of time-like variables in the Wheeler-DeWitt equation in quantum gravity. This gives rise to an obvious conceptual difficulty and further becomes an obstacle if one wants to canonically third quantize the universe. In this paper, adopting York's gauge in the path-integral approach, we formulate quantum geometrodynamics so that it contains only a single time-like variable corresponding to the total volume of the universe. (author)