Fundamental study on thermo-hydraulic behaviors during power transient, 2
International Nuclear Information System (INIS)
Shinano, M.; Inoue, A.
1988-01-01
Thermo-hydraulic behaviors during power transient of nuclear reactors are studied. Boiling around test rod heated transiently forces to flow out liquid in the test section and generates high pressure pulse. In this study, it is investigated experimentally and analytically that magnitude of pressure pulse and energy conversion efficiency to the mechanical works in cases of fragmentation and non-fragmentation. In analysis, effects of increasing of heat transfer and of interaction area due to fragmentation is considered. Consequently, 1) magnitude of pressure pulse on fragmentation is about 10 times greater than that on non-fragmentation. 2) analytical model can show characteristics of fragmentation processes qualitatively. (author)
Thermohydraulic modeling and simulation of breeder reactors
International Nuclear Information System (INIS)
Agrawal, A.K.; Khatib-Rahbar, M.; Curtis, R.T.; Hetrick, D.L.; Girijashankar, P.V.
1982-01-01
This paper deals with the modeling and simulation of system-wide transients in LMFBRs. Unprotected events (i.e., the presumption of failure of the plant protection system) leading to core-melt are not considered in this paper. The existing computational capabilities in the area of protected transients in the US are noted. Various physical and numerical approximations that are made in these codes are discussed. Finally, the future direction in the area of model verification and improvements is discussed
THYDE-P, PWR LOCA Thermohydraulic Transient Analysis
International Nuclear Information System (INIS)
Asahi, Yoshiro
2001-01-01
1 - Description of problem or function: THYDE-P1 analyzes the behaviour of LWR plants in response to various disturbances, including the thermal hydraulic transient following a break of the primary coolant pipe system, generally referred to as a loss-of-coolant-accident (LOCA). LOCA can be considered as the most critical condition for testing the methods and models for plant dynamics, since thermal hydraulic conditions in the system change drastically during the transient. THYDE-P is capable of a complete LOCA calculation from start to complete reflooding of the core by subcooled water. The program performs steady-state adjustment, which is complete in the sense that the steady state obtained is a set of exact solutions of all the transient equations without time derivatives, not only for plant hydraulics but also for all the other phenomena in the simulation of a PWR plant. THYDE-P2 contains among others the following improvements over THYDE-P1: (1) not only the mass and momentum equations but also the energy equation are included in the non-linear implicit scheme; (2) the valve model is implemented; (3) the relaxation equation for void fraction is theoretically derived; (4) vectorized programming is implemented; (5) both EM (evaluation mode) and BE (best estimate) calculations are possible. THYDE-W is an improved version of THYDE-P2 and contains the following additional features: (a) analysis of multiple number of disjoint loops is possible; (b) a control system simulation model is included; (c) the trip model has been improved; (d) heavy water is allowed as coolant; (e) the effect of drift flux is accounted for in the steady state calculation; (f) boron transport is included; (g) to obtain steady state loop heat balance, the option of adjusting the enthalpy distribution is prepared included in addition to that of adjusting heat exchanger areas; (h) to obtain steady state pressure distribution, three other options are prepared in addition to the original ones
Modelling of thermohydraulic emergency core cooling phenomena
International Nuclear Information System (INIS)
Yadigaroglu, G.; Andreani, M.; Lewis, M.J.
1990-10-01
The codes used in the early seventies for safety analysis and licensing were based either on the homogeneous model of two-phase flow or on the so-called separate-flow models, which are mixture models accounting, however, for the difference in average velocity between the two phases. In both cases the behavior of the mixture is prescribed a priori as a function of local parameters such as the mass flux and the quality. The modern best-estimate codes used for analyzing LWR LOCA's and transients are often based on a two-fluid or 6-equation formulation of the conservation equations. In this case the conservation equations are written separately for each phase; the mixture is allowed to evolve on its own, governed by the interfacial exchanges of mass, momentum and energy between the phases. It is generally agreed that such relatively sophisticated 6-equation formulations of two-phase flow are necessary for the correct modelling of a number of phenomena and situations arising in LWR accidental situations. They are in particular indispensible for the analysis of stratified or countercurrent flows and of situations in which large departures from thermal and velocity equilibrium exist. This report will be devoted to a discussion of the need for, the capacity and the limitations of the two-phase flow models (with emphasis on the 6-equation formulations) in modelling these two-phase flow and heat transfer phenomena and/or different core cooling situations. 18 figs., 1 tab., 72 refs
International Nuclear Information System (INIS)
Wulff, W.
1977-01-01
A review is presented on the development of analyses and computer codes for the prediction of thermohydraulic transients in nuclear reactor systems. Models for the dynamics of two-phase mixtures are summarized. Principles of process, reactor component and reactor system modeling are presented, as well as the verification of these models by comparing predicted results with experimental data. Codes of major importance are described, which have recently been developed or are presently under development. The characteristics of these codes are presented in terms of governing equations, solution techniques and code structure. Current efforts and problems of code verification are discussed. A summary is presented of advances which are necessary for reducing the conservatism currently implied in reactor hydraulics codes for safety assessment
Thermo-Hydraulic Modelling of Buffer and Backfill
International Nuclear Information System (INIS)
Pintado, X.; Rautioaho, E.
2013-09-01
The temporal evolution of saturation, liquid pressure and temperature in the components of the engineered barrier system was studied using numerical methods. A set of laboratory tests was conducted to calibrate the parameters employed in the models. The modelling consisted of thermal, hydraulic and thermo-hydraulic analysis in which the significant thermo-hydraulic processes, parameters and features were identified. CODE B RIGHT was used for the finite element modelling and supplementary calculations were conducted with analytical methods. The main objective in this report is to improve understanding of the thermo-hydraulic processes and material properties that affect buffer behaviour in the Olkiluoto repository and to determine the parametric requirements of models for the accurate prediction of this behaviour. The analyses consisted of evaluating the influence of initial canister temperature and gaps in the buffer, and the role played by fractures and the rock mass located between fractures in supplying water for buffer and backfill saturation. In the thermo-hydraulic analysis, the primary processes examined were the effects of buffer drying near the canister on temperature evolution and the manner in which heat flow affects the buffer saturation process. Uncertainties in parameters and variations in the boundary conditions, modelling geometry and thermo-hydraulic phenomena were assessed with a sensitivity analysis. The material parameters, constitutive models, and assumptions made were carefully selected for all the modelling cases. The reference parameters selected for the simulations were compared and evaluated against laboratory measurements. The modelling results highlight the importance of understanding groundwater flow through the rock mass and from fractures in the rock in order to achieve reliable predictions regarding buffer saturation, since saturation times could range from a few years to tens of thousands of years depending on the hydrogeological
International Nuclear Information System (INIS)
Miettinen, Jaakko; Hamalainen, Anitta; Pekkarinen, Esko
2002-01-01
Thermal hydraulic simulation capability for accident conditions is needed at present in VTT in several programs. Traditional thermal hydraulic models are too heavy for simulation in the analysis tasks, where the main emphasis is the rapid neutron dynamics or the core melting. The GENFLO thermal hydraulic model has been developed at VTT for special applications in the combined codes. The basic field equations in GENFLO are for the phase mass, the mixture momentum and phase energy conservation equations. The phase separation is solved with the drift flux model. The basic variables to be solved are the pressure, void fraction, mixture velocity, gas enthalpy, liquid enthalpy, and concentration of non-condensable gas fractions. The validation of the thermohydraulic solution alone includes large break LOCA reflooding experiments and in specific for the severe accident conditions QUENCH tests. In the recriticality analysis the core neutronics is simulated with a two-dimensional transient neutronics code TWODIM. The recriticality with one rapid prompt peak is expected during a severe accident scenario, where the control rods have been melted and ECCS reflooding is started after the depressurization. The GENFLO module simulates the BWR thermohydraulics in this application. The core melting module has been developed for the real time operator training by using the APROS engineering simulators. The core heatup, oxidation, metal and fuel pellet relocation and corium pool formation into the lower plenum are calculated. In this application the GENFLO model simulates the PWR vessel thermohydraulics. In the fuel performance analysis the fuel rod transient behavior is simulated with the FRAPTRAN code. GENFLO simulates the subchannel around a single fuel rod and delivers the heat transfer on the cladding surface for the FRAPTRAN. The transient boundary conditions for the subchannel are transmitted from the system code for operational transient, loss of coolant accidents and
Proceedings of the 6. National Meeting of Reactor Physics and Thermohydraulic
International Nuclear Information System (INIS)
1986-01-01
The proceedings of the 6. National Meeting of Reactor Physics and Thermohydraulic - 6. ENFIR - allow to evaluate the present status of development in reactor physics and thermohydraulic fields. The mathematical models and methods for calculating neutronic of nuclear reactors, safety reactor analysis, measuring methods of neutronic parameters, computerized simulation of accidents, transients and thermohydraulic analysis are presented. (M.C.K.) [pt
Simulation of thermohydraulic phenomena and model test for FBR
International Nuclear Information System (INIS)
Satoh, Kazuziro
1994-01-01
This paper summarizes the major thermohydraulic phenomena of FBRs and the conventional ways of their model tests, and introduces the recent findings regarding measurement technology and computational science. In the future commercial stage of FBRs, the design optimization will becomes important to improve economy and safety more and more. It is indispensable to use computational science to the plant design and safety evaluation. The most of the model tests will be replaced by the simulation analyses based on computational science. The measurement technology using ultrasonic and the numerical simulation with super parallel computing are considered to be the key technology to realize the design by analysis method. (author)
Fine numerical modelling of thermohydraulic phenomena in EDF PWR reactors
International Nuclear Information System (INIS)
Boulot, F.
1993-01-01
Over the last 20 years, EDF has developed a family of 2D and 3D industrial thermohydraulics software to solve problems encountered in existing PWR power plants and to design new reactors for the future. The equations used in the models are the averaged Navier-Stokes and energy equations. A brief description is given of the four main codes developed for single-phase and two-phase water-steam flows, some of which use finite differences or finite volumes methods, while others make use of finite elements methods. An example of application is given for each code. (author). 4 figs., 4 refs
Thermohydraulic feedback of the socalled 'Lupen-Problem' with a one-dimensional model
International Nuclear Information System (INIS)
Ehrhard, W.D.; Elzmann, J.
1981-11-01
In order to perform a detailled nuclear study in the vicinity of the topmost end of a control element in a BWR the socalled Lupenverfahren was developped. Because of the strong coupling between fluid density and power generation in the fuel element, an iterative correction between the nuclear and the thermohydraulic calculations is necessary. Therefore the nuclear code LUPE was coupled with the very complex subchannel analysis COBRA III C. In order to reduce the cost of the thermohydraulic calculations a very simple one-dimensional thermohydraulic model was used together with LUPE. The differences between this simple version and LUPE-COBRA III C calculations were investigated. In addition a study was performed to what extent a subdivision of the considered region into several regions, eachone treated with the one-channel model, influenced the results of the coupled calculations and to what extent calculations with this subdivision approached the LUPE-COBRA III C results. (orig.) [de
Numerical modeling of secondary side thermohydraulics of horizontal steam generator
Energy Technology Data Exchange (ETDEWEB)
Melikhov, V.I.; Melikhov, O.I.; Nigmatulin, B.I. [Research and Engineering Centre of LWR Nuclear Plants Safety, Moscow (Russian Federation)
1995-12-31
A mathematical model for the transient three-dimensional secondary side thermal hydraulics of the horizontal steam generator has been developed. The calculations of the steam generator PGV-1000 and PGV-4 nominal regimes and comparison of numerical and experimental results have been carried out. 7 refs.
Development of a model for the primary system CAREM reactor's stationary thermohydraulic calculation
International Nuclear Information System (INIS)
Gaspar, C.; Abbate, P.
1990-01-01
The ESCAREM program oriented to CAREM reactors' stationary thermohydraulic calculation is presented. As CAREM gives variations in relation to models for BWR (Boiling Water Reactors)/PWR (Pressurized Water Reactors) reactors, it was decided to develop a suitable model which allows to calculate: a) if the Steam Generator design is adequate to transfer the power required; b) the circulation flow that occurs in the Primary System; c) the temperature at the entrance (cool branch) and d) the contribution of each component to the pressure drop in the circulation connection. Results were verified against manual calculations and alternative numerical models. An experimental validation at the Thermohydraulic Essays Laboratory is suggested. A parametric analysis series is presented on CAREM 25 reactor, demonstrating operating conditions, at different power levels, as well as the influence of different design aspects. (Author) [es
Thermohydraulics in rod bundles and critical heat flux in transient conditions in a tube
International Nuclear Information System (INIS)
Courtaud, M.; Roumy, R.
1975-01-01
After the determination of the scaling factor of Stevens's similitude for the pressure range of pressurized water vectors by comparison of critical heat flux data in from and in water, some examples of studies performed with freon are shown. The efficiency of the mixing vanes of spacer grids has been determined on the mixing phenomenon in single phase on critical heat flux. A calculation performed with the code FLICA using subchannel analysis on freon data transposed in water is in good agreement with the experiment. The influence of the number of spacer grids has been also shown. Critical heat fluxes have been determined in water at 140 bar in steady state and transient conditions on two tubular test sections. During the transient tests the flow rate was reduced by half in 0.5 seconds and the reincreased heat flux and inlet temperature remaining constant. These tests have shown the validity of the method which consists in using a critical heat flux correlation determined in steady state conditions applied with local transient conditions of enthalpy and mass velocity computed with the FLICA code [fr
Solving linear systems in FLICA-4, thermohydraulic code for 3-D transient computations
International Nuclear Information System (INIS)
Allaire, G.
1995-01-01
FLICA-4 is a computer code, developed at the CEA (France), devoted to steady state and transient thermal-hydraulic analysis of nuclear reactor cores, for small size problems (around 100 mesh cells) as well as for large ones (more than 100000), on, either standard workstations or vector super-computers. As for time implicit codes, the largest time and memory consuming part of FLICA-4 is the routine dedicated to solve the linear system (the size of which is of the order of the number of cells). Therefore, the efficiency of the code is crucially influenced by the optimization of the algorithms used in assembling and solving linear systems: direct methods as the Gauss (or LU) decomposition for moderate size problems, iterative methods as the preconditioned conjugate gradient for large problems. 6 figs., 13 refs
Energy Technology Data Exchange (ETDEWEB)
Arbeiter, F. [Forschungszentrum Karlsruhe GmbH, Postfach 3640, D-76021 Karlsruhe (Germany); Gordeev, S. [Forschungszentrum Karlsruhe GmbH, Postfach 3640, D-76021 Karlsruhe (Germany)]. E-mail: gordeev@irs.fzk.de; Heinzel, V. [Forschungszentrum Karlsruhe GmbH, Postfach 3640, D-76021 Karlsruhe (Germany); Slobodtchouk, V. [Forschungszentrum Karlsruhe GmbH, Postfach 3640, D-76021 Karlsruhe (Germany)
2006-02-15
The aim of the present work is to choose an optimal use of CFD codes for thermohydraulic calculation of the helium cooled fusion reactor components, such as divertor module, test blanket module and International Fusion Materials Irradiation Facility (IFMIF) test modules. In spite of common features (intense heat flux, nuclear heating of the structure, helium-cooling), all these components have different boundary conditions, such as helium temperature, pressure and heating rate and different geometries. It is the reason for the appearance of some effects in the flow influencing significantly the heat transfer. A number of turbulence models offered by the commercial STAR-CD code were tested on the experiments carried out in the Forschungszentrum Karlsruhe (FZK) and on the experimental data from the scientific publications. Results of different turbulence models are compared and analysed. For geometrically simple channel flows with significant gas property variation low-Re number k-{epsilon} models with damping functions give more accurate results and are more appropriate for the conditions of the IFMIF HFTM. The heat transfer in regions with flow impingement is well predicted by turbulence models, which include different limiters in the turbulence production. Most reliable turbulence models were chosen for the thermohydraulic analysis.
Development of a model of a NSSS of the PWR reactor with thermo-hydraulic code GOTHIC
International Nuclear Information System (INIS)
Gomez Garcia-Torano, I.; Jimenez, G.
2013-01-01
The Thermo-hydraulic code GOTHIC is often used in the nuclear industry for licensing transient analysis inside containment of generation II (PWR, BWR) plants as Gen III and III + (AP1000, ESBWR, APWR). After entering the mass and energy released to the containment, previously calculated by other codes (basis, TRACE), GOTHIC allows to calculate in detail the evolution of basic parameters in the containment.
Thermohydraulic modeling of nuclear thermal rockets: The KLAXON code
International Nuclear Information System (INIS)
Hall, M.L.; Rider, W.J.; Cappiello, M.W.
1992-01-01
The hydrogen flow from the storage tanks, through the reactor core, and out the nozzle of a Nuclear Thermal Rocket is an integral design consideration. To provide an analysis and design tool for this phenomenon, the KLAXON code is being developed. A shock-capturing numerical methodology is used to model the gas flow (the Harten, Lax, and van Leer method, as implemented by Einfeldt). Preliminary results of modeling the flow through the reactor core and nozzle are given in this paper
Tang, Jiajing; Yang, Xiaodong
2017-09-01
A novel thermo-hydraulic coupling model was proposed in this study to investigate the crater formation in electrical discharge machining (EDM). The temperature distribution of workpiece materials was included, and the crater formation process was explained from the perspective of hydrodynamic characteristics of the molten region. To better track the morphology of the crater and the movement of debris, the level-set method was introduced in this study. Simulation results showed that the crater appears shortly after the ignition of the discharge, and the molten material is removed by vaporizing in the initial stage, then by splashing at the following time. The driving force for the detachment of debris in the splashing removal stage comes from the extremely large pressure difference in the upper part of the molten region, and the morphology of the crater is also influenced by the shearing flow of molten material. It was found that the removal ratio of molten material is only about 7.63% under the studied conditions, leaving most to form the re-solidification layer on the surface of the crater. The size of the crater reaches the maximum at the end of discharge duration then experiences a slight reduction because of the reflux of molten material after the discharge. The results of single pulse discharge experiments showed that the morphologies and sizes between the simulation crater and actual crater are good at agreement, verifying the feasibility of the proposed thermo-hydraulic coupling model in explaining the mechanisms of crater formation in EDM.
An analytical thermohydraulic model for discretely fractured geothermal reservoirs
Fox, Don B.; Koch, Donald L.; Tester, Jefferson W.
2016-09-01
In discretely fractured reservoirs such as those found in Enhanced/Engineered Geothermal Systems (EGS), knowledge of the fracture network is important in understanding the thermal hydraulics, i.e., how the fluid flows and the resulting temporal evolution of the subsurface temperature. The purpose of this study was to develop an analytical model of the fluid flow and heat transport in a discretely fractured network that can be used for a wide range of modeling applications and serve as an alternative analysis tool to more computationally intensive numerical codes. Given the connectivity and structure of a fracture network, the flow in the system was solved using a linear system of algebraic equations for the pressure at the nodes of the network. With the flow determined, the temperature in the fracture was solved by coupling convective heat transport in the fracture with one-dimensional heat conduction perpendicular to the fracture, employing the Green's function derived solution for a single discrete fracture. The predicted temperatures along the fracture surfaces from the analytical solution were compared to numerical simulations using the TOUGH2 reservoir code. Through two case studies, we showed the capabilities of the analytical model and explored the effect of uncertainty in the fracture apertures and network structure on thermal performance. While both sources of uncertainty independently produce large variations in production temperature, uncertainty in the network structure, whenever present, had a predominant influence on thermal performance.
PSH Transient Simulation Modeling
Energy Technology Data Exchange (ETDEWEB)
Muljadi, Eduard [National Renewable Energy Laboratory (NREL), Golden, CO (United States)
2017-12-21
PSH Transient Simulation Modeling presentation from the WPTO FY14 - FY16 Peer Review. Transient effects are an important consideration when designing a PSH system, yet numerical techniques for hydraulic transient analysis still need improvements for adjustable-speed (AS) reversible pump-turbine applications.
Thermohydraulic modeling of very high temperature reactors in regimes with loss of coolant using CFD
Energy Technology Data Exchange (ETDEWEB)
Moreira, Uebert G.; Dominguez, Dany S. [Universidade Estadual de Santa Cruz (UESC), Ilh´eus, BA (Brazil). Programa de P´os-Graduacao em Modelagem Computacional em Ciencia e Tecnologia; Mazaira, Leorlen Y.R.; Lira, Carlos A.B.O. [Universidade Federal de Pernambuco (UFPE), Recife, PE (Brazil). Departamento de Energia Nuclear; Hernandez, Carlos R.G., E-mail: uebert.gmoreira@gmail.com, E-mail: dsdominguez@gmail.com, E-mail: leored1984@gmail.com, E-mail: cabol@ufpe.br, E-mail: cgh@instec.cu [Instituto Superior de Tecnologas y Ciencias Aplicadas (InSTEC), La Habana (Cuba)
2017-07-01
The nuclear energy is a good alternative to meet the continuous increase in world energy demand. In this perspective, VHTRs (Very High Temperature Reactors) are serious candidates for energy generation due to its inherently safe performance, low power density and high conversion efficiency. However, the viability of these reactors depends on an efficient safety system in the operation of nuclear plants. The HTR (High Temperature Reactor)-10 model, an experimental reactor of the pebble bed type, is used as a case study in this work to perform the thermohydraulic simulation. Due to the complex patterns flow that appear in the pebble bed reactor core, and advances in computational capacity, CFD (Computational Fluid Dynamics) techniques are used to simulate these reactors. A realistic approach is adopted to simulate the central annular column of the reactor core, which each pebble bed element is modeled in detail. As geometrical model of the fuel elements was selected the BCC (Body Centered Cubic) arrangement. Previous works indicate this arrangement as the configuration that obtain higher fuel temperatures inside the core. Parameters considered for reactor design are available in the technical report of benchmark issues by IAEA (TECDOC-1694). Among the results obtained, we obtained the temperature profiles with different mass flow rates for the coolant. In general, the temperature distributions calculated are consistent with phenomenological behaviour. Even without consider the reactivity changes to reduce the reactor power or other safety procedures, the maximum temperatures do not exceed the recommended limits for fuel elements. (author)
Energy Technology Data Exchange (ETDEWEB)
Nam, Seung Hyun; Choi, Jae Young; Venneria, Paolo F.; Jeong, Yong Hoon; Chang, Soon Heung [KAIST, Daejeon (Korea, Republic of)
2015-05-15
NTR engines have continued as a main stream based on the mature technology. The typical core design of the NERVA derived engines uses hexagonal shaped fuel elements with circular cooling channels and structural tie-tube elements for supporting the fuel elements, housing moderator and regeneratively cooling the moderator. The state-of-the-art NTR designs mostly use a fast or epithermal neutron spectrum core utilizing a HEU fuel to make a high power reactor with small and simple core geometry. Nuclear propulsion is the most promising and viable option to achieve challenging deep space missions. Particularly, the attractions of a NTR include excellent thrust and propellant efficiency, bimodal capability, proven technology, and safe and reliable performance. The KANUTER-HEU and -LEU are the innovative and futuristic NTR engines to reduce the reactor size and to implement a LEU fuel in the reactor by using thermal neutron spectrum. The KANUTERs have some features in the reactor design such as the integrated fuel element and the regeneratively cooling channels to increase room for moderator and heat transfer in the core, and ensuing rocket performance. To study feasible design points in terms of thermo-hydraulics and to estimate rocket performance of the KANUTERs, the NSES is under development. The model of the NSES currently focuses on thermo-hydraulic analysis of the peculiar and complex EHTGR design during the propulsion mode in steady-state. The results indicate comparable performance for future applications, even though it uses the heavier LEU fuel. In future, the NSES will be modified to obtain temperature distribution of the entire reactor components and then more extensive design analysis of neutronics, thermohydraulics and their coupling will be conducted to validate design feasibility and to optimize the reactor design enhancing the rocket performance.
International Nuclear Information System (INIS)
Graf, L.; Mohammadian, S.; Slegers, L.
1986-01-01
The safe design of piping systems in a nuclear power plant requires structural analysis for all specified static and dynamic loads, including fluid dynamic forces due to operational and loss-of-coolant accident (LOCA) transients. For the reliable prediction of fluid forces, boundary conditions such as the characterisation of a closing isolation valve with the proper friction coefficient need to be carefully chosen. A valve model is described which implicitly determines the downstroke of the valve piston. Pre- and postcalculations were performed for the valve closure tests carried out during start-up at the BWR nuclear power plant at Kruemmel, West Germany. The dynamic friction coefficient in a valve is introduced and its influence on the fluid dynamic forcing function in piping systems is examined. (author)
International Nuclear Information System (INIS)
Bragt, D.D.B. van.
1995-10-01
A theoretical model for out-of-phase power oscillations in BWRs is proposed. This model describes the dynamic behavior of the neutronic and thermohydraulic subsystems during out-of-phase oscillations, and the coupling of these subsystems via the fuel temperature dynamics and void- and Doppler feedback effects. The zero-power neutron kinetics of the out-of-phase flux density mode is derived by expanding the (time- and space-dependent) neutron flux density in the static solutions of the neutron transport equation. This procedure yields the modal point-kinetic equations for the (first-harmonic) out-of-phase mode. The fuel temperature dynamics is described by a lumped parameter first-order process, characterized by a typical fuel time constant. Using the quasistatic approach, the basic equations of the channel thermohydraulics are derived from the conservation laws of mass and energy and the momentum equation. The momentum equation is coupled with the appropriate boundary condition (constant core pressure drop) for out-of phase oscillations. This procedure yields a set of nonlinear equations describing the dynamic behavior of the boiling boundary, void fraction and mass flux density in the cooling channel. A frequency-domain parametric study confirms that if the out-of-phase mode has a more negative subcriticality, reactor stability increases. On the other hand, a more negative void reactivity coefficient has a destabilizing effect. Besides these two parameters, the fuel time constant was found to be an important parameter determining stability. Where possible, the linearized equations describing the channel thermohydraulics were compare with exact solutions of the governing partial-differential channel equations. This comparison shows that in the frequency range of interest, discrepancies between the proposed quasi-static model and more complicated exact solutions are to be expected. (orig.)
International Nuclear Information System (INIS)
Conti, C.F.S.; Silva Galetti, M.R. da.
1990-02-01
As Furnas intends to assume in the future the responsibility of performing Safety Analyses associated to Reload and Operation questions to Angra 1, it was figured out the necessity of qualifying its methodology by CNEN. The Methodology Qualification Process is based on guidelines proposed by CNEN at NT-DR-N o 02/87, where it was divided in four steps. This Technical Note aims to present the follow up of FURNAS Methodology Qualification Process and to bring it up to date in the areas of Core Physics (Neutronics), Core Thermal-Hydraulics, Fuel Rod Behaviour, Transient and Large Break Loss of Coolant Accident Analyses (LBLOCA). (author)
Energy Technology Data Exchange (ETDEWEB)
Gamez, Abel; Rojas, Leorlen; Rosales, Jesus; Castro, Landy Y.; Gonzalez, Daniel; Garcia, Carlos, E-mail: agamezgmf@gmail.com, E-mail: leored1984@gmail.com, E-mail: jrosales@instec.cu, E-mail: lcastro@instec.cu, E-mail: danielgonro@gmail.com, E-mail: cgr@instec.cu [Instituto Superior de Tecnologias y Ciencias Aplicadas (InSTEC), La Habana (Cuba); Universidade Federal de Pernambuco (UFPE), Recife, PE (Brazil); Oliveira, Carlos B. de, E-mail: cabol@ufpe.br [Universidade Federal de Pernambuco (UFPE), Recife, PE (Brazil); Dominguez, Dany S., E-mail: dsdominguez@gmail.com [Universidade Estadual de Santa Cruz (UESC), Ilheus, BA (Brazil)
2015-07-01
The high temperature gas cooled reactor (HTGR) is one of candidates of next generation of nuclear reactor according to IAEA report 2013. Evaluation of thermohydraulic performance and an experimental comparison results were proposed to the international research community. In this article, the tree dimensional CFD thermohydraulic modelation of steady state of HTR-10 modular reactor, using ANSYS CFX v14.0, has been done. Code-to-code and Code-to-experiment benchmark analyses, related to the testing program of the HTR-10 plant including steady state temperature distribution with the reactor at full power, were developed. The 3D real scale representation of reflector zone and fluid path flow inner and outer reflector blocks and cold helium cavity were carried out. The porous medium model was used to simulate the core zone in the reactor. The power distribution of the initial core published by IAEA-TECDOC-1694 obtained by Chief Scientific Investigators (CSIs) from China was used as heat sources in the core zone. (author)
International Nuclear Information System (INIS)
Gamez, Abel; Rojas, Leorlen; Rosales, Jesus; Castro, Landy Y.; Gonzalez, Daniel; Garcia, Carlos; Oliveira, Carlos B. de; Dominguez, Dany S.
2015-01-01
The high temperature gas cooled reactor (HTGR) is one of candidates of next generation of nuclear reactor according to IAEA report 2013. Evaluation of thermohydraulic performance and an experimental comparison results were proposed to the international research community. In this article, the tree dimensional CFD thermohydraulic modelation of steady state of HTR-10 modular reactor, using ANSYS CFX v14.0, has been done. Code-to-code and Code-to-experiment benchmark analyses, related to the testing program of the HTR-10 plant including steady state temperature distribution with the reactor at full power, were developed. The 3D real scale representation of reflector zone and fluid path flow inner and outer reflector blocks and cold helium cavity were carried out. The porous medium model was used to simulate the core zone in the reactor. The power distribution of the initial core published by IAEA-TECDOC-1694 obtained by Chief Scientific Investigators (CSIs) from China was used as heat sources in the core zone. (author)
LMFR core thermohydraulics: Status and prospects
International Nuclear Information System (INIS)
2000-06-01
One of the fundamental steps for a successful reactor core thermohydraulic design is the capability to predict, reliably and accurately, the temperature distribution in the core assemblies. A detailed knowledge of the assembly and fuel pin thermohydraulic behaviour in the steady state and transient conditions is an indispensable prerequisite to safe and stable operation of the reactor. Considerable experimental and theoretical studies on various aspects of LMFR core thermohydraulics are necessary to acquire such knowledge. During the last decade, there have been substantial advances in fast reactor core thermohydraulic design and operation in several countries with fast reactor programmes (notably in France, the Russian Federation, Japan, the United Kingdom, Germany and the United States of America). Chief among these has been the demonstration of reliable operation of reactor cores at a high burnup. During the last years, some additional countries such as China, India and the Republic of Korea have launched new fast reactor programmes. International exchange of information and experience on LMFR development including core thermohydraulic design is becoming of increasing importance to these countries. It is with this focus that the IAEA convened the Technical Committee on 'Methods and Codes for Calculations of Thermohydraulic Parameters for Fuel, Absorber Pins and Assemblies of LMFR's with Traditional and Burner Cores'. This meeting, attended by participants from seven countries, brought together a group of international experts to review and discuss the thermohydraulic advances and design approaches providing a reliable, safe and robust reactor core, as well as to exchange the experience accumulated in different countries of using the codes for thermohydraulic calculations and to discuss the issues requiring further research and development. A total of thirty technical papers presented covered theoretical and computational issues as well as experiments under
Directory of Open Access Journals (Sweden)
Farkas Istvan
2017-01-01
Full Text Available This paper focuses on the validation and applicability of CFD to simulate and analyze the thermo-hydraulic consequences of a main steam line break. Extensive validation data come from experiments performed using the Rossendorf coolant mixing model facility. For the calculation, the range of 9 to 12 million hexahe¬dral cells was constructed to capture all details in the interrogation domain in the system. The analysis was performed by running a time-dependent calculation, Detailed analyses were made at different cross-sections in the system to evaluate not only the value of the maximum and minimum temperature, but also the loca¬tion and the time at which it occurs during the transient which is considered to be indicator for the quality of mixing in the system. CFD and experimental results were qualitatively compared; mixing in the cold legs with emergency core cooling systems was overestimated. This could be explained by the sensitivity to the bound¬ary conditions. In the downcomer, the experiments displayed higher mixing: by our assumption this related to the dense measurement grid (they were not modelled. The temperature distribution in the core inlet plane agreed with the measurement results. Minor deviations were seen in the quantitative comparisons: the maximum temperature difference was 2ºC.
Thermohydraulic analysis of pressurized water reactors
International Nuclear Information System (INIS)
Veloso, M.A.
1980-01-01
The computer program PANTERA is applied in the thermo-hydraulic analysis of Pressurized Water Reactor Cores (PWR). It is a version of COBRA-IIIC in which a new thermal conduction model for fuel rods was introduced. The results calculated by this program are compared with experimental data obtained from bundles of fuel rods, simulating reactor conditions. The validity of the new thermal model is checked too. The PANTERA code, through a simplified procedure of calculation, is used in the thermo-hydraulic analysis of Indian Point, Unit 2, reactor core, in stationary conditions. The results are discussed and compared with design data. (Autor) [pt
Simulation Model of a Transient
DEFF Research Database (Denmark)
Jauch, Clemens; Sørensen, Poul; Bak-Jensen, Birgitte
2005-01-01
This paper describes the simulation model of a controller that enables an active-stall wind turbine to ride through transient faults. The simulated wind turbine is connected to a simple model of a power system. Certain fault scenarios are specified and the turbine shall be able to sustain operati...
Energy Technology Data Exchange (ETDEWEB)
Gomez Garcia-Torano, I.; Jimenez, G.
2013-07-01
The Thermo-hydraulic code GOTHIC is often used in the nuclear industry for licensing transient analysis inside containment of generation II (PWR, BWR) plants as Gen III and III + (AP1000, ESBWR, APWR). After entering the mass and energy released to the containment, previously calculated by other codes (basis, TRACE), GOTHIC allows to calculate in detail the evolution of basic parameters in the containment.
THERMOSS: A thermohydraulic model of flow stagnation in a horizontal fuel channel
International Nuclear Information System (INIS)
Gulshani, P.; Caplan, M.Z.; Spinks, N.J.
1984-01-01
A model, called THERMOSS, is developed to compute the duration of stagnation in a CANDU reactor fuel channel with subcooled, stagnant initial conditions. The model solves, in closed form, the one dimensional, two-fluid conservation equations. In the computation of the duration of stagnation, the channel water level is an important intermediate variable because it determines the amount of steam production. A feature of the model is that water level is determined by a momentum balance between frictional pressure drop in the steam phase and hydrostatic head in the liquid phase. This is in contrast to an ealier model in which the level was determined from mass balance considerations. A satisfactory agreement between the predicted and experimentally observed channel water level and duration of stagnation is obtained. (orig.)
Braun, M. J.; Wheeler, R. L., III; Hendricks, R. C.
1986-01-01
The goal set forth here is to continue the work started by Braun et al. (1984-1985) and present an integrated analysis of the behavior of the two row, 20 staggered pockets, hydrostatic cryogenic bearing used by the turbopumps of the Space Shuttle main engine. The variable properties Reynolds equation is fully coupled with the two-dimensional fluid film energy equation. The three-dimensional equations of the shaft and bushing model the boundary conditions of the fluid film energy equation. The effects of shaft eccentricity, angular velocity, and inertia pressure drops at pocket edge are incorporated in the model. Their effects on the bearing fluid properties, load carrying capacity, mass flow, pressure, velocity, and temperature form the ultimate object of this paper.
Dynamic equation-based thermo-hydraulic pipe model for district heating and cooling systems
van der Heijde, Bram; Fuchs, Marcus; Ribas Tugores, Carles; Schweiger, Gerald; Sartor, Kevin; Basciotti, Daniele; Müller, Dirk; Nytsch-Geusen, Christoph; Wetter, Michael; Helsen, Lieve
2017-01-01
Simulation and optimisation of district heating and cooling networks requires efficient and realistic models of the individual network elements in order to correctly represent heat losses or gains, temperature propagation and pressure drops. Due to more recent thermal networks incorporating meshing decentralised heat and cold sources, the system often has to deal with variable temperatures and mass flow rates, with flow reversal occurring more frequently. This paper presents the mathematical ...
CAREM reactor thermohydraulic essays laboratory
International Nuclear Information System (INIS)
Horro, R.; Mazzi, R.; Rossini, A.
1990-01-01
The main characteristics, essays projected and the present state of the Thermohydraulic Essays Laboratory -under construction at present- prepared to meet the experimental needs resulting from a power reactor design of the CAREM type, are herein described. (Author) [es
Library thermohydraulic components for training simulators
International Nuclear Information System (INIS)
Castelao Caruana, M. J.; Di Benedetto, A.; Pierini, J.P.
2013-01-01
The thermohydraulic components Library was modeled in MatLab/Simulink®. This library owns Pipe type components (pump, control valve and / or heaters), storage tanks (Open, Closed and Equilibrium Water Vapor-Air) and Heat Exchangers (Co-Current, Counter-Current and U-tubes). Each component can be attached to other components through the component library Header, in order to create a more complex thermal-hydraulic system which in turn can interact with other thermal-hydraulic systems. (author)
Energy Technology Data Exchange (ETDEWEB)
Vianna Neto, Armando M.; Santos, Arnaldo M.; Mercon, Eduardo G. [TRANSPETRO - PETROBRAS Transportes, Rio de Janeiro, RJ (Brazil)
2003-07-01
This paper presents the development of an integrated simulation model, for the numerical calculation of thermal-hydraulic behaviors in the Brazilian southeast onshore gas pipeline flow system, remotely operated by TRANSPETRO's Gas Pipeline Control Centre (CCG). In its final application, this model is supposed to provide simulated results at the closer range to reality, in order to improve gas pipeline simulation studies and evaluations for the system in question. Considering the fact that numerical thermo-hydraulic simulation becomes the CCG's most important tool to analyze the boundary conditions to adjust the mentioned gas flow system, this paper seeks and takes aim to the optimization of the following prime attributions of a gas pipeline control centre: verification of system behaviors, face to some unit maintenance stop or procedure, programmed or not, or to some new gas outlet or inlet connection to the system; daily operational compatibility analysis between programmed and realized gas volumes; gas technical expedition and delivery analysis. Finally, all this work was idealized and carried out within the one-phase flow domain (dry gas) (author)
The TOPFLOW multi-purpose thermohydraulic test facility
International Nuclear Information System (INIS)
Schaffrath, Andreas; Kruessenberg, A.-K.; Weiss, F.-P.; Prasser, H.-M.
2002-01-01
The TOPFLOW (Transient Two Phase Flow Test Facility) multi-purpose thermohydraulic test facility is being built for studies of steady-state and transient flow phenomena in two-phase flows, and for the development and validation of the models contained in CFD (Computational Fluid Dynamics) codes. The facility is under construction at the Institute for Safety Research of the Rossendorf Research Center (FZR). It will be operated together with the Dresden Technical University and the Zittau/Goerlitz School for Technology, Economics and Social Studies within the framework of the Nuclear Technology Competence Preservation Program. TOPFLOW, with its test sections and its flexible concept, is available as an attractive facility also to users from all European countries. Experiments are planned in these fields, among others: - Transient two-phase flows in vertical and horizontal pipes and pipes of any inclination as well as in geometries typical of nuclear reactors (annulus, hot leg). - Boiling in large vessels and water pools (measurements of steam generation, 3D steam content distribution, turbulence, temperature stratification). - Test of passive components and safety systems. - Condensation in horizontal pipes in the absence and presence of non-condensable gases. The construction phase of TOPFLOW has been completed more or less on schedule. Experiments can be started after a commissioning phase in the 3rd quarter of 2002. (orig.) [de
Containment severe accident thermohydraulic phenomena
International Nuclear Information System (INIS)
Frid, W.
1991-08-01
This report describes and discusses the containment accident progression and the important severe accident containment thermohydraulic phenomena. The overall objective of the report is to provide a rather detailed presentation of the present status of phenomenological knowledge, including an account of relevant experimental investigations and to discuss, to some extent, the modelling approach used in the MAAP 3.0 computer code. The MAAP code has been used in Sweden as the main tool in the analysis of severe accidents. The dependence of the containment accident progression and containment phenomena on the initial conditions, which in turn are heavily dependent on the in-vessel accident progression and phenomena as well as associated uncertainties, is emphasized. The report is in three parts dealing with: * Swedish reactor containments, the severe accident mitigation programme in Sweden and containment accident progression in Swedish PWRs and BWRs as predicted by the MAAP 3.0 code. * Key non-energetic ex-vessel phenomena (melt fragmentation in water, melt quenching and coolability, core-concrete interaction and high temperature in containment). * Early containment threats due to energetic events (hydrogen combustion, high pressure melt ejection and direct containment heating, and ex-vessel steam explosions). The report concludes that our understanding of the containment severe accident progression and phenomena has improved very significantly over the parts ten years and, thereby, our ability to assess containment threats, to quantify uncertainties, and to interpret the results of experiments and computer code calculations have also increased. (au)
DYNREL - the reference calculation (coupled code utilization on analysis of RIA-transient)
International Nuclear Information System (INIS)
Strmensky, C.; Darilek, P.
2003-01-01
DYNREL is coupled code, comprising DYN3D and RELAP5 programs. The coupled code has been developed during four years. Now DYNREL is tested on selected RIA and thermo-hydraulic transient calculations. This material describes some results from selected RIA transient calculation (initiated by control rod movement). DYNREL modelled the whole nuclear reactors. The core is modeled as 313 or 349 independent thermo-hydraulic channels with 10 or 20 axial layers. Thermo-hydraulic part contains about 700 components that covered the six loops' model of nuclear power plant in detail. The calculated results are compared with DYN3D/M3, DYN3D/H1.1 results (Authors)
Modeling of Transients in an Enrichment Circuit
International Nuclear Information System (INIS)
Fernandino, Maria; Delmastro, Dario; Brasnarof, Daniel
2003-01-01
In the present work a mathematical model is presented in order to describe the dynamic behavior inside a closed enrichment loop, the latter representing a single stage of an uranium gaseous diffusion enrichment cascade.The analytical model is turned into a numerical model, and implemented through a computational code.Transients of two species separation were numerically analyzed, including setting times of each magnitude, behavior of each one of them during different transients, and redistribution of concentrations along the closed loop
Study of Transients in an Enrichment Closed Loop
International Nuclear Information System (INIS)
Fernandino, M.
2002-06-01
In the present thesis a mathematic model is presented in order to describe the dynamic behavior inside a closed enrichment loop, the latter representing a single stage of an uranium gaseous diffusion enrichment cascade.The analytical model is turned into a numerical model, and implemented through a computational code.For the verification of the model, measurements were taken in an experimental circuit using air as the process fluid.This circuit was instrumented so as to register its characteristic thermohydraulic variables.The measured transients were simulated, comparing the numerical results with the experimental measurements.A good agreement between the characteristic setting times and the thermohydraulic parameters evolution was observed.Besides, other transients of two species separation were numerically analyzed, including setting times of each magnitude, behavior of each one of them during different transients, and redistribution of concentrations
Thermohydraulic analysis for power increase of IEAR-1 reactor
International Nuclear Information System (INIS)
Umbehaun, Pedro E.; Bastos, Jose L.F.
1996-01-01
In this work has been presented the reactor core thermohydraulic model of IEAR-1, aiming its power operation increase from 2MW to 5MW. The design criteria adopted have been established in Safety Series 35. Three configurations of reactor core were analysed: fuel elements 20, 25 and 30
Transient Modeling and Simulation of Compact Photobioreactors
Ribeiro, Robert Luis Lara; Mariano, André Bellin; Souza, Jeferson Avila; Vargas, Jose Viriato Coelho
2008-01-01
In this paper, a mathematical model is developed to make possible the simulation of microalgae growth and its dependency on medium temperature and light intensity. The model is utilized to simulate a compact photobioreactor response in time with physicochemical parameters of the microalgae Phaeodactylum tricornutum. The model allows for the prediction of the transient and local evolution of the biomass concentration in the photobioreactor with low computational time. As a result, the model is...
Frick, Maximilian; Scheck-Wenderoth, Magdalena; Cacace, Mauro; Schneider, Michael
2017-04-01
This study aims at a better understanding of the present-day thermal and hydraulic configuration below the major urban center of Berlin, capital city of Germany. The study area is located in the Northeast German Basin, showing an infill of several kilometers of sediments. Herein, the shallow sedimentary succession is made up of a sequence of alternating aquifers and aquitards, most importantly the local aquitard of the Rupelian clay. This geological unit represents a natural barrier between the deeper saline aquifers and the shallow fresh water aquifers from whom Berlin produces 100% of its drinking water. Additionally, the shallow thermal and hydraulic configuration has been anthropogenically overprinted which may also influence deeper domains to some extent. In this study we make use of 3D thermohydraulic models of the subsurface, focusing on the coupling of surface water bodies to the underground, based on newly available hydraulic data integrated into a 3D hydrogeological model. The results of the study show, that the coupling of surface water bodies and groundwater might lead to significant modifications of predicted subsurface temperatures and fluid flow field. These modifications are most prominent, where differences in hydraulic head between surface water bodies and the adjacent aquifers are highest. Consequently, the predicted surface to groundwater flow field differs most in these areas and it also results in differences in predicted temperatures as a consequence of advective heat transport. Quantitatively, the presence of major lakes may account for temperature differences up to 5°C, while considering rivers only accounts for modifications up to 1°C. Additionally, the models created in this study set up a basis for future thermohaline simulations as saline groundwater may represent a threat to drinking water supply. First results from the models run in this study already indicate, that uprising heated water from deeper domains may rise to shallow
International Nuclear Information System (INIS)
Bobkov, V.P.; Vinogradov, V.N.; Efanov, A.D.; Sergeev, V.V.; Smogalev, I.P.
2003-01-01
The results of verifying the model for calculating the heat exchange crisis in the uniformly heated rod bundles, realized in the calculation code of the improved evaluation KORSAR, are presented. The model for calculating the critical heat fluxes in this code is based on the tabular method. The experimental data bank of the Branch base center of the thermophysical data GNTs RF - FEhI for the rod bundles, structurally similar to the WWER fuel assemblies, was used by the verification within the wide range of parameters: pressure from 0.11 up to 20 MPa and mass velocity from 5- up to 5000 kg/(m 2 s) [ru
Wertelaers, P
2010-01-01
The current design foresees a central heat exchanger followed by a controlled post heater, for all ECAL. We discuss the scheme and try to assess its performance, from a Barrel viewpoint. This is based on computational work. The coolant transfer pipes play an essential role in building a dynamical model. After some studies on the behaviour of the cooling circuit itself, a strong yet simple controller is proposed. Then, the system with feedback control is scrutinized, with emphasis on disturbance rejection. The most relevant disturbances are cooling ripple, pipe heat attack, and electronics’ switching.
Aeroelastic Modeling of a Nozzle Startup Transient
Wang, Ten-See; Zhao, Xiang; Zhang, Sijun; Chen, Yen-Sen
2014-01-01
Lateral nozzle forces are known to cause severe structural damage to any new rocket engine in development during test. While three-dimensional, transient, turbulent, chemically reacting computational fluid dynamics methodology has been demonstrated to capture major side load physics with rigid nozzles, hot-fire tests often show nozzle structure deformation during major side load events, leading to structural damages if structural strengthening measures were not taken. The modeling picture is incomplete without the capability to address the two-way responses between the structure and fluid. The objective of this study is to develop a tightly coupled aeroelastic modeling algorithm by implementing the necessary structural dynamics component into an anchored computational fluid dynamics methodology. The computational fluid dynamics component is based on an unstructured-grid, pressure-based computational fluid dynamics formulation, while the computational structural dynamics component is developed under the framework of modal analysis. Transient aeroelastic nozzle startup analyses at sea level were performed, and the computed transient nozzle fluid-structure interaction physics presented,
Point kinetics improvements to evaluate three-dimensional effects in transients calculation
International Nuclear Information System (INIS)
Castellotti, U.
1987-01-01
A calculation method, which considers the flux axial perturbations in the parameters related to the reactivity within a point kinetics model, is described. The method considered uses axial factors of consideration which act on the thermohydraulic variables included in the reactivity calculation. The PUMA three-dimensional code as reference model for the comparisons, is used. The limitations inherent to the reactivity balance of the point models used in the transients calculation, are given. (Author)
MODELLING OF NON-ROAD TRANSIENT CYCLE
Directory of Open Access Journals (Sweden)
Martin Kotus
2013-12-01
Full Text Available The paper describes the modeling of NRTC (Non-Road Transient Cycle test procedure based on previously measured characteristics of fuel consumption, carbon monoxide (CO, carbon dioxide (CO2, hydrocarbons (HC, nitrogen oxides (NOx and particulates (PM production. It makes possible to compare the current technical condition of an internal combustion engine of an agricultural tractor with its previous state or other tractor’s engine. Based on measured characteristics, it is also possible to model any other cycle without further measurements (NRSC test procedure, cycle for specific conditions – mountain tractor, etc.. The result may thus contribute to improving the environment by reducing the production of harmful substances emitted into the air and save money due to reduced fuel consumption.
Energy Technology Data Exchange (ETDEWEB)
Grundmann, U.; Kliem, S.; Krepper, E.; Mittag, S; Rohde, U.; Schaefer, F.; Seidel, A.
1998-03-01
The nuclear reactor core model DYN3D with 3D neutron kinetics has been coupled to the thermohydraulic system code ATHLET. In the report, activities on qualification of the coupled code complex ATHLET-DYN3D as a validated tool for the accident analysis of russian VVER type reactors are described. That includes: - Contributions to the validation of the single codes ATHLET and DYN3D by the analysis of experiments on natural circulation behaviour in thermohydraulic test facilities and solution of benchmark tasks on reactivity initiated transients, - the acquisition and evaluation of measurement data on transients in nuclear power plants, the validation of ATHLET-DYN3D by calculating an accident with delayed scram and a pump trip in VVER plants, - the complementary improvement of the code DYN3D by extension of the neutron physical data base, implementation of an improved coolant mixing model, consideration of decay heat release and xenon transients, - the analysis of steam leak scenarios for VVER-440 type reactors with failure of different safety systems, investigation of different model options. The analyses showed, that with realistic coolant mixing modelling in the downcomer and the lower plenum, recriticality of the scramed reactor due to overcooling can be reached. The application of the code complex ATHLET-DYN3D in Czech Republic, Bulgaria and the Ukraine has been started. Future work comprises the verification of ATHLET-DYN3D with a DYN3D version for the square fuel element geometry of western PWR. (orig.) [Deutsch] Das Reaktorkernmodell DYN3D mit 3D Neutronenkinetik wurde an den Thermohydraulik-Systemcode ATHLET angekoppelt. Im vorliegenden Bericht werden Arbeiten zur Qualifizierung des gekoppelten Codekomplexes zu einem validierten Hilfsmittel fuer Stoerfallablaufanalysen zu Reaktoren des russischen Typs WWER dargestellt. Diese umfassten im einzelnen: - Beitraege zur Validierung der Einzelcodes ATHLET und DYN3D anhand der Nachrechnung von Experimenten zum
Thermohydraulic relationships for advanced water cooled reactors
International Nuclear Information System (INIS)
2001-04-01
This report was prepared in the context of the IAEA's Co-ordinated Research Project (CRP) on Thermohydraulic Relationships for Advanced Water Cooled Reactors, which was started in 1995 with the overall goal of promoting information exchange and co-operation in establishing a consistent set of thermohydraulic relationships which are appropriate for use in analyzing the performance and safety of advanced water cooled reactors. For advanced water cooled reactors, some key thermohydraulic phenomena are critical heat flux (CHF) and post CHF heat transfer, pressure drop under low flow and low pressure conditions, flow and heat transport by natural circulation, condensation of steam in the presence of non-condensables, thermal stratification and mixing in large pools, gravity driven reflooding, and potential flow instabilities. The objectives of the CRP are (1) to systematically list the requirements for thermohydraulic relationships in support of advanced water cooled reactors during normal and accident conditions, and provide details of their database where possible and (2) to recommend and document a consistent set of thermohydraulic relationships for selected thermohydraulic phenomena such as CHF and post-CHF heat transfer, pressure drop, and passive cooling for advanced water cooled reactors. Chapter 1 provides a brief discussion of the background for this CRP, the CRP objectives and lists the participating institutes. Chapter 2 provides a summary of important and relevant thermohydraulic phenomena for advanced water cooled reactors on the basis of previous work by the international community. Chapter 3 provides details of the database for critical heat flux, and recommends a prediction method which has been established through international co-operation and assessed within this CRP. Chapter 4 provides details of the database for film boiling heat transfer, and presents three methods for predicting film boiling heat transfer coefficients developed by institutes
International Nuclear Information System (INIS)
Grange, J.L.; Caremoli, C.; Eddi, M.
1988-01-01
This paper presents improvements performed on SICLE numerical model in order to analyse the condensation front that occurs in the moisture separator reheaters (MSR) of nuclear power plants. Modifications of SICLE numerical model architecture and a fine modelling of reheater have allowed to correctly simulate the MSR thermohydraulic behaviour during a severe transient (plant islanding) [fr
Heinrich events modeled in transient glacial simulations
Ziemen, Florian; Kapsch, Marie; Mikolajewicz, Uwe
2017-04-01
Heinrich events are among the most prominent events of climate variability recorded in proxies across the northern hemisphere. They are the archetype of ice sheet — climate interactions on millennial time scales. Nevertheless, the exact mechanisms that cause Heinrich events are still under debate, and their climatic consequences are far from being fully understood. We address open questions by studying Heinrich events in a coupled ice sheet model (ISM) atmosphere-ocean-vegetation general circulation model (AOVGCM) framework, where this variability occurs as part of the model generated internal variability. The framework consists of a northern hemisphere setup of the modified Parallel Ice Sheet Model (mPISM) coupled to the global AOVGCM ECHAM5/MPIOM/LPJ. The simulations were performed fully coupled and with transient orbital and greenhouse gas forcing. They span from several millennia before the last glacial maximum into the deglaciation. To make these long simulations feasible, the atmosphere is accelerated by a factor of 10 relative to the other model components using a periodical-synchronous coupling technique. To disentangle effects of the Heinrich events and the deglaciation, we focus on the events occurring before the deglaciation. The modeled Heinrich events show a peak ice discharge of about 0.05 Sv and raise the sea level by 2.3 m on average. The resulting surface water freshening reduces the Atlantic meridional overturning circulation and ocean heat release. The reduction in ocean heat release causes a sub-surface warming and decreases the air temperature and precipitation regionally and downstream into Eurasia. The surface elevation decrease of the ice sheet enhances moisture transport onto the ice sheet and thus increases precipitation over the Hudson Bay area, thereby accelerating the recovery after an event.
Thermo-Hydraulic behaviour of dual-channel superconducting Cable-In-Conduit Conductors for ITER
International Nuclear Information System (INIS)
Renard, B.
2006-09-01
In an effort to optimise the cryogenics of large superconducting coils for fusion applications (ITER), dual channel Cable-In-Conduit Conductors (CICC) are designed with a central channel spiral to provide low hydraulic resistance and faster helium circulation. The qualitative and economic rationale of the conductor central channel is here justified to limit the superconductor temperature increase, but brings more complexity to the conductor cooling characteristics. The pressure drop of spirals is experimentally evaluated in nitrogen and water and an explicit hydraulic friction model is proposed. Temperatures in the cable must be quantified to guarantee superconductor margin during coil operation under heat disturbance and set adequate inlet temperature. Analytical one-dimensional thermal models, in steady state and in transient, allow to better understand the thermal coupling of CICC central and annular channels. The measurement of a heat transfer characteristic space and time constants provides cross-checking experimental estimations of the internal thermal homogenization. A simple explicit model of global inter-channel heat exchange coefficient is proposed. The risk of thermosyphon between the two channels is considered since vertical portions of fusion coils are subject to gravity. The new hydraulic model, heat exchange model and gravitational risk ratio allow the thermohydraulic improvement of CICC central spirals. (author)
Thermohydraulic study of a MTR fuel element aimed at the construction of an irradiation facility
International Nuclear Information System (INIS)
Coragem, Helio Boemer de Oliveira
1980-01-01
A thermohydraulic study of MTR fuel element is presented as a basic requirement for the development of an irradiation facility for testing fuel elements. A computer code named 'Thermo' has been developed for this purpose, which can stimulate different working conditions, such as, cooling, power elements and neutron flux, performing all pertinent thermohydraulic calculations. Thermocouples were used to measure the temperature gradients of the cooling fluid throughout the IEAR-1 reactor core. All experimental data are in good agreement with the theoretical model applied in this work. Finally, a draft of the proposed facility and its safety system is presented. (author)
Cable system transients theory, modeling and simulation
Ametani, Akihiro; Nagaoka, Naoto
2015-01-01
A systematic and comprehensive introduction to electromagnetic transient in cable systems, written by the internationally renowned pioneer in this field Presents a systematic and comprehensive introduction to electromagnetic transient in cable systems Written by the internationally renowned pioneer in the field Thorough coverage of the state of the art on the topic, presented in a well-organized, logical style, from fundamentals and practical applications A companion website is available
The state of art of the methods for thermohydraulics design of LMFBR fuel elements
International Nuclear Information System (INIS)
Fernandez y Fernandez, E.; Carajilescov, P.
1981-09-01
The present (experimental and analytical) state of art of the methods for thermohydraulics design of LMFBR fuel elements is analyzed. A development program is suggested, in order to obtain a computer code for modelling the distribution of coolant enthalpy in reactor core. This computer code is in development. (Author) [pt
Asymptotic and transient analysis of stochastic core ecosystem models
Directory of Open Access Journals (Sweden)
Thomas C. Gard
2000-07-01
Full Text Available General results on ultimate boundedness and exit probability estimates for stochastic differential equations are applied to investigate asymptotic and transient properties of models of plankton-fish dynamics in uncertain environments
IBIS, FBR 3-D Steady-State and Kinetics with Thermohydraulic Feedback
International Nuclear Information System (INIS)
Konomura, Mamoru; Tada, Nobuo; Oka, Yoshiaki; An, Shigehiro
1987-01-01
1 - Description of program or function: The IBIS code performs steady state and kinetics calculations based on a three-dimensional nuclear diffusion kinetics with thermal hydraulic feedback. It can calculate the following values in hexagonal-Z geometry of a fast breeder reactor core through the progress of transient: (1) Net reactivity; (2) Total and group-wise delayed neutron fraction; (3) Group-wise delayed neutron precursor concentration; (4) Total power and energy; (5) Space dependent neutron flux in each energy group; (6) Space dependent temperature of each material; (7) Maximum temperature of each material and its location. 2 - Method of solution: The quasi-static method is adopted to solve the three-dimensional nuclear diffusion kinetics problem. The method is the same as employed in the code QX1. The shape function equation is solved with the finite difference treatment as used in the codes CITATION and HONEYCOMB. One-dimensional thermo-hydraulics is solved with a model similar to that given in the code SASLA. Sodium boiling can be taken into account. 3 - Restrictions on the complexity of the problem: The number of neutron energy groups is fixed to 3 groups in the present version of the code
Analytic models for fuel pin transient performance
International Nuclear Information System (INIS)
Bard, F.E.; Fox, G.L.; Washburn, D.F.; Hanson, J.E.
1976-09-01
HEDL's ability to analyze various mechanisms that operate within a fuel pin has progressed substantially through development of codes such as PECTCLAD, which solves cladding response, and DSTRESS, which solves fuel response. The PECTCLAD results show good correlation with a variety of mechanical tests on cladding material and also demonstrate the significance of cladding strength when applying the life fraction rule. The DSTRESS results have shown that fuel deforms sufficiently during overpower transient tests that available volumes are filled, whether in the form of a central cavity or start-up cracks
Thermohydraulic calculations of PWR primary circuits
International Nuclear Information System (INIS)
Botelho, D.A.
1984-01-01
Some mathematical and numerical models from Retran computer codes aiming to simulate reactor transients, are presented. The equations used for calculating one-dimensional flow are integrated using mathematical methods from Flash code, with steam code to correlate the variables from thermodynamic state. The algorithm obtained was used for calculating a PWR reactor. (E.G.) [pt
Complete wind farm electromagnetic transient modelling for grid integration studies
International Nuclear Information System (INIS)
Zubia, I.; Ostolaza, X.; Susperregui, A.; Tapia, G.
2009-01-01
This paper presents a modelling methodology to analyse the impact of wind farms in surrounding networks. Based on the transient modelling of the asynchronous generator, the multi-machine model of a wind farm composed of N generators is developed. The model incorporates step-up power transformers, distribution lines and surrounding loads up to their connection to the power network. This model allows the simulation of symmetric and asymmetric short-circuits located in the distribution network and the analysis of transient stability of wind farms. It can be also used to study the islanding operation of wind farms
Performance of neutron kinetics models for ADS transient analyses
International Nuclear Information System (INIS)
Rineiski, A.; Maschek, W.; Rimpault, G.
2002-01-01
Within the framework of the SIMMER code development, neutron kinetics models for simulating transients and hypothetical accidents in advanced reactor systems, in particular in Accelerator Driven Systems (ADSs), have been developed at FZK/IKET in cooperation with CE Cadarache. SIMMER is a fluid-dynamics/thermal-hydraulics code, coupled with a structure model and a space-, time- and energy-dependent neutronics module for analyzing transients and accidents. The advanced kinetics models have also been implemented into KIN3D, a module of the VARIANT/TGV code (stand-alone neutron kinetics) for broadening application and for testing and benchmarking. In the paper, a short review of the SIMMER and KIN3D neutron kinetics models is given. Some typical transients related to ADS perturbations are analyzed. The general models of SIMMER and KIN3D are compared with more simple techniques developed in the context of this work to get a better understanding of the specifics of transients in subcritical systems and to estimate the performance of different kinetics options. These comparisons may also help in elaborating new kinetics models and extending existing computation tools for ADS transient analyses. The traditional point-kinetics model may give rather inaccurate transient reaction rate distributions in an ADS even if the material configuration does not change significantly. This inaccuracy is not related to the problem of choosing a 'right' weighting function: the point-kinetics model with any weighting function cannot take into account pronounced flux shape variations related to possible significant changes in the criticality level or to fast beam trips. To improve the accuracy of the point-kinetics option for slow transients, we have introduced a correction factor technique. The related analyses give a better understanding of 'long-timescale' kinetics phenomena in the subcritical domain and help to evaluate the performance of the quasi-static scheme in a particular case. One
Model for transient creep of southeastern New Mexico rock salt
International Nuclear Information System (INIS)
Herrmann, W.; Wawersik, W.R.; Lauson, H.S.
1980-11-01
In a previous analysis, existing experimental data pertaining to creep tests on rock salt from the Salado formation of S.E. New Mexico were fitted to an exponential transient creep law. While very early time portions of creep strain histories were not fitted very well for tests at low temperatures and stresses, initial creep rates in particular generally being underestimated, the exponential creep law has the property that the transient creep strain approaches a finite limit with time, and is therefore desirable from a creep modelling point of view. In this report, an analysis of transient creep is made. It is found that exponential transient creep can be related to steady-state creep through a universal creep curve. The resultant description is convenient for creep analyses where very early time behavior is not important
Transient finite element modeling of functional electrical stimulation.
Filipovic, Nenad D; Peulic, Aleksandar S; Zdravkovic, Nebojsa D; Grbovic-Markovic, Vesna M; Jurisic-Skevin, Aleksandra J
2011-03-01
Transcutaneous functional electrical stimulation is commonly used for strengthening muscle. However, transient effects during stimulation are not yet well explored. The effect of an amplitude change of the stimulation can be described by static model, but there is no differency for different pulse duration. The aim of this study is to present the finite element (FE) model of a transient electrical stimulation on the forearm. Discrete FE equations were derived by using a standard Galerkin procedure. Different tissue conductive and dielectric properties are fitted using least square method and trial and error analysis from experimental measurement. This study showed that FE modeling of electrical stimulation can give the spatial-temporal distribution of applied current in the forearm. Three different cases were modeled with the same geometry but with different input of the current pulse, in order to fit the tissue properties by using transient FE analysis. All three cases were compared with experimental measurements of intramuscular voltage on one volunteer.
Computational model for transient studies of IRIS pressurizer behavior
International Nuclear Information System (INIS)
Rives Sanz, R.; Montesino Otero, M.E.; Gonzalez Mantecon, J.; Rojas Mazaira, L.
2014-01-01
International Reactor Innovative and Secure (IRIS) excels other Small Modular Reactor (SMR) designs due to its innovative characteristics regarding safety. IRIS integral pressurizer makes the design of larger pressurizer system than the conventional PWR, without any additional cost. The IRIS pressurizer volume of steam can provide enough margins to avoid spray requirement to mitigate in-surge transient. The aim of the present research is to model the IRIS pressurizer's dynamic using the commercial finite volume Computational Fluid Dynamic code CFX 14. A symmetric tridimensional model equivalent to 1/8 of the total geometry was adopted to reduce mesh size and minimize processing time. The model considers the coexistence of three phases: liquid, steam, and vapor bubbles in liquid volume. Additionally, it takes into account the heat losses between the pressurizer and primary circuit. The relationships for interfacial mass, energy, and momentum transport are programmed and incorporated into CFX by using expressions in CFX Command Language (CCL) format. Moreover, several additional variables are defined for improving the convergence and allow monitoring of boron dilution sequences and condensation-evaporation rate in different control volumes. For transient states a non - equilibrium stratification in the pressurizer is considered. This paper discusses the model developed and the behavior of the system for representative transients sequences such as the in/out-surge transients and boron dilution sequences. The results of analyzed transients of IRIS can be applied to the design of pressurizer internal structures and components. (author)
Thermohydraulic stability coupled to the neutronic in a BWR
International Nuclear Information System (INIS)
Calleros M, G.; Zapata Y, M.; Gomez H, R.A.; Mendez M, A.; Castlllo D, R.
2006-01-01
In a BWR type reactor the phenomenon of the nuclear fission is presented, in which are liberated in stochastic form neutrons, originating that the population of the same ones varies in statistic form around a mean value. This variation will cause that when the neutron flow impacts on the neutron detectors, its are had as a result neutron flow signals with fluctuations around an average value. In this article it is shown that it conforms it lapses the time, this variations in the neutron flow (and therefore, in the flow signal due only to the fission), they presented oscillations inside a stable range, which won't be divergent. Considering that the BWR is characterized because boiling phenomena are presented, which affect the moderation of the neutrons, additional variations will be had in the signal coming from the neutron detectors, with relationship to the fission itself, which will be influenced by the feedback of the moderator's reactivity and of the temperature of the fuel pellet. Also, as the BWR it has coupled control systems to maintain the coolant level one and of the thermal power of the reactor, for each control action it was affected the neutron population. This means that the reactor could end up straying of a stable state condition. By it previously described, the study of the thermohydraulic stability coupled to the neutronic is complex. In this work it is shown the phenomenology, the mathematical models and the theoretical behavior associated to the stability of the BWR type reactor; the variables that affect it are identified, the models that reproduce the behavior of the thermohydraulic stability coupled to the neutronic, the way to maintain stable the reactor and the instrumentation that can settle to detect and to suppress uncertainties is described. In particular, is make reference to the evolution of the methods to maintain the stability of the reactor and the detection system and suppression of uncertainties implemented in the Laguna Verde
Deformation modeling and the strain transient dip test
International Nuclear Information System (INIS)
Jones, W.B.; Rohde, R.W.; Swearengen, J.C.
1980-01-01
Recent efforts in material deformation modeling reveal a trend toward unifying creep and plasticity with a single rate-dependent formulation. While such models can describe actual material deformation, most require a number of different experiments to generate model parameter information. Recently, however, a new model has been proposed in which most of the requisite constants may be found by examining creep transients brought about through abrupt changes in creep stress (strain transient dip test). The critical measurement in this test is the absence of a resolvable creep rate after a stress drop. As a consequence, the result is extraordinarily sensitive to strain resolution as well as machine mechanical response. This paper presents the design of a machine in which these spurious effects have been minimized and discusses the nature of the strain transient dip test using the example of aluminum. It is concluded that the strain transient dip test is not useful as the primary test for verifying any micromechanical model of deformation. Nevertheless, if a model can be developed which is verifiable by other experimentts, data from a dip test machine may be used to generate model parameters
Parametric Thermal Models of the Transient Reactor Test Facility (TREAT)
Energy Technology Data Exchange (ETDEWEB)
Bradley K. Heath
2014-03-01
This work supports the restart of transient testing in the United States using the Department of Energy’s Transient Reactor Test Facility at the Idaho National Laboratory. It also supports the Global Threat Reduction Initiative by reducing proliferation risk of high enriched uranium fuel. The work involves the creation of a nuclear fuel assembly model using the fuel performance code known as BISON. The model simulates the thermal behavior of a nuclear fuel assembly during steady state and transient operational modes. Additional models of the same geometry but differing material properties are created to perform parametric studies. The results show that fuel and cladding thermal conductivity have the greatest effect on fuel temperature under the steady state operational mode. Fuel density and fuel specific heat have the greatest effect for transient operational model. When considering a new fuel type it is recommended to use materials that decrease the specific heat of the fuel and the thermal conductivity of the fuel’s cladding in order to deal with higher density fuels that accompany the LEU conversion process. Data on the latest operating conditions of TREAT need to be attained in order to validate BISON’s results. BISON’s models for TREAT (material models, boundary convection models) are modest and need additional work to ensure accuracy and confidence in results.
International Nuclear Information System (INIS)
Nikonov, S.; Velkov, K.
2008-01-01
The ATHLET-BIPR-VVER coupled system code is applied for performing of safety analysis for different WWER reactors. During the last years its validation matrix is continuously being enlarged. The measurements performed during the commissioning phase of NPP Kalinin Unit 3 for the transient 'Switching-off of one Main Circulation Pump at nominal power' are very well documented and have a variety of recorded integral and local thermo-hydraulic and neutron-physic parameters including the measurements' errors. This data is being used for further validation of the coupled code system ATHLET-BIPR-VVER. In the paper are discussed the problems and our solutions by the correct interpretation of the measured thermocouples' records at NPP Kalinin-3 and the comparison with the predicted results by the coupled thermal-hydraulic/neutron-kinetic code ATHLET-BIPR-VVER. Of primary importance by such comparisons is the correct accounting of the fluid mixing process that take place in the surrounding of the measuring sensors and also the consideration of the time delay (inertia term) of the measuring devices. On the bases of previous experience and many simulations of the defined transient a method is discussed and proposed to consider correctly the inertia term of the thermocouples' measurements. The new modelling is implemented in the coupled system code ATHLET-BIPR-VVER for further validation. (Author)
TRANSFORM - TRANsient Simulation Framework of Reconfigurable Models
Energy Technology Data Exchange (ETDEWEB)
2017-09-01
Existing development tools for early stage design and scoping of energy systems are often time consuming to use, proprietary, and do not contain the necessary function to model complete systems (i.e., controls, primary, and secondary systems) in a common platform. The Modelica programming language based TRANSFORM tool (1) provides a standardized, common simulation environment for early design of energy systems (i.e., power plants), (2) provides a library of baseline component modules to be assembled into full plant models using available geometry, design, and thermal-hydraulic data, (3) defines modeling conventions for interconnecting component models, and (4) establishes user interfaces and support tools to facilitate simulation development (i.e., configuration and parameterization), execution, and results display and capture.
International Nuclear Information System (INIS)
Daverio, H; Juanico, L
2000-01-01
Comparative analysis of thermohydraulic margins were studied of the CANDU 37 and CARA fuel bundles (FB) in Embalse power station with COBRA IV-HW code ., the geometry of the bundle laying on the channel was particularly modeled and discussing the results in comparison with former calculations with 1/6 simetry .The CARA design with enriched uranium (0.9 %) and extended burn up lets maintain the current thermohydraulic nominal margins , while compared with CANDU 37 rods FB enriched , the CARA design permits widely improve the current margins
Transient analysis models for nuclear power plants
International Nuclear Information System (INIS)
Agapito, J.R.
1981-01-01
The modelling used for the simulation of the Angra-1 start-up reactor tests, using the RETRAN computer code is presented. Three tests are simulated: a)nuclear power plant trip from 100% of power; b)great power excursions tests and c)'load swing' tests.(E.G.) [pt
Directory of Open Access Journals (Sweden)
Li Zhang
2017-12-01
Full Text Available In recent years, with the rapid development of offshore wind turbines (WTs, the problem of lightning strikes has become more and more prominent. In order to reduce the failure rate caused by the transient overvoltage of lightning struck offshore WTs, the influencing factors and the response rules of transient overvoltage are analyzed. In this paper, a new integrated electromagnetic transient model of offshore WTs is established by using the numerical calculation method of the electromagnetic field first. Then, based on the lightning model and considering the impedance of the lightning channel, the transient overvoltage of lightning is analyzed. Last, the electromagnetic transient model of offshore WTs is simulated and analyzed by using the alternative transients program electro-magnetic transient program (ATP-EMTP software. The influence factors of lightning transient overvoltage are studied. The main influencing factors include the sea depth, the blade length, the tower height, the lightning flow parameters, the lightning strike point, and the blade rotation position. The simulation results show that the influencing factors mentioned above have different effects on the lightning transient overvoltage. The results of the study have some guiding significance for the design of the lightning protection of the engine room.
Energy Technology Data Exchange (ETDEWEB)
Wiles, L.E.; McCann, R.A.
1981-09-01
The numerical modeling capability that has been developed at the Pacific Northwest Laboratory (PNL) for the prediction of the thermohydraulic performance of porous media reservoirs for compressed air energy storage (CAES) is described. The capability of the numerical models was demonstrated by application to a variety of parametric analyses and the support analyses for the CAES porous media field demonstration program. The demonstration site analyses include calculations for the displacement of aquifer water to develop the air storage zone, the potential for water coning, thermal development in the reservoir, and the dehydration of the near-wellbore region. Unique features of the demonstration site reservoir that affect the thermohydraulic performance are identified and contrasted against the predicted performance for conditions that would be considered more typical of a commercial CAES site.
International Nuclear Information System (INIS)
Zhukov, A.V.; Sorokin, A.P.
2000-01-01
The problems of numerical modeling of thermohydraulics in assembly of fuel elements of fast reactors with the partial blockage of cross-section under the coolant are considered. The information about existing codes constructed on use of subchannel technique and model of porous body are presented. The results of calculation obtained by these codes are presented. (author)
Modeling of the transient mobility in disordered organic semiconductors
Germs, W.C.; Van der Holst, J.M.M.; Van Mensfoort, S.L.M.; Bobbert, P.A.; Coehoorn, R.
2011-01-01
In non-steady-state experiments, the electrical response of devicesbased on disordered organic semiconductors often shows a large transient contribution due to relaxation of the out-of-equilibrium charge-carrier distribution. We have developed a model describing this process, based only on the
Models for GRBs and diverse transients.
Woosley, S E; Zhang, Weiqun
2007-05-15
The observational diversity of gamma-ray bursts (GRBs) has been increasing, and the natural inclination is a proliferation of models. We explore the possibility that at least part of this diversity is a consequence of a single basic model for the central engine operating in a massive star of variable mass, differential rotation rate and mass loss rate. Whatever that central engine may be-and here the collapsar is used as a reference point-it must be capable of generating both a narrowly collimated, highly relativistic jet to make the GRB and a wide angle, sub-relativistic outflow responsible for exploding the star and making the supernova bright. To some extent, the two components may vary independently; therefore, it is possible to produce a variety of jet energies and supernova luminosities. We explore, in particular, the production of low-energy bursts and find a lower limit of approximately 10(48)ergs(-1) to the power required for a jet to escape a massive star before that star either explodes or is accreted. Lower energy bursts and 'suffocated' bursts may be particularly prevalent when the metallicity is high, i.e. in the modern universe at low red shift.
Application of CFD methods in research of SCWR thermo-hydraulics
International Nuclear Information System (INIS)
Zeng Xiaokang; Li Yongliang; Yan Xiao; Xiao Zejun; Huang Yanping
2013-01-01
The CFD method has been an important tool in the research of SCWR thermo- hydraulics. Currently, the CFD methods uses commonly the subcritical turbulence models, which can not accurately simulate the gravity and thermal expansion acceleration effect, and CFD numerical method is not applicable when the heat flux is large. The paper summarizes the application status of the CFD methods in the research of SCWR thermo-hydraulics in RETH. (authors)
Neutronics and thermohydraulics of the reactor C.E.N.E. Part II
International Nuclear Information System (INIS)
Caro, R.
1976-01-01
In this report the analysis of neutronics thermohydraulics and shielding of the 10 HWt swimming pool reactor C.E.N.E is included. In each of these chapters is given a short description of the theoretical model used, along with the theoretical versus experimental checking carried out, whenever possible, with the reactors JEN-I and JEN-II of Junta de Energia Nuclear. (Author) 11 refs
International Nuclear Information System (INIS)
Bujan, A.; Adamik, V.; Misak, J.
1986-01-01
A brief description is presented of the expansion of the SICHTA-83 computer code for the analysis of the thermal history of the fuel channel for large LOCAs by modelling the mechanical behaviour of fuel element cladding. The new version of the code has a more detailed treatment of heat transfer in the fuel-cladding gap because it also respects the mechanical (plastic) deformations of the cladding and the fuel-cladding interaction (magnitude of contact pressure). Also respected is the change in pressure of the gas filling of the fuel element, the mechanical criterion is considered of a failure of the cladding and the degree is considered of the blockage of the through-flow cross section for coolant flow in the fuel channel. The LOCA WWER-440 model computation provides a comparison of the new SICHTA-85/MOD 1 code with the results of the original 83 version of SICHTA. (author)
International Nuclear Information System (INIS)
Lazaro, A.; Ammirabile, L.; Martorell, S.
2014-01-01
The article describes the changes implemented in the TRACE code to include thermodynamic tables of liquid lead drawn from experimental results. He then explains the process for developing a thermohydraulic model for the prototype ALFRED and analysis of a selection of representative transient conducted within the framework of international research projects. The study demonstrates the applicability of TRACE code to simulate designs of cooled lead fast reactors and exposes the high safety margins are there in this technology to accommodate the most severe transients identified in their security study. (Author)
Accelerating transient simulation of linear reduced order models.
Energy Technology Data Exchange (ETDEWEB)
Thornquist, Heidi K.; Mei, Ting; Keiter, Eric Richard; Bond, Brad
2011-10-01
Model order reduction (MOR) techniques have been used to facilitate the analysis of dynamical systems for many years. Although existing model reduction techniques are capable of providing huge speedups in the frequency domain analysis (i.e. AC response) of linear systems, such speedups are often not obtained when performing transient analysis on the systems, particularly when coupled with other circuit components. Reduced system size, which is the ostensible goal of MOR methods, is often insufficient to improve transient simulation speed on realistic circuit problems. It can be shown that making the correct reduced order model (ROM) implementation choices is crucial to the practical application of MOR methods. In this report we investigate methods for accelerating the simulation of circuits containing ROM blocks using the circuit simulator Xyce.
Computer simulation of WWER - 440 normal and emergency transient operating conditions
International Nuclear Information System (INIS)
Izbeshesku, M.; Rajka, V.; Untaru, S.; Dumitresku, A.; Paneh, M.; Turku, I.
1976-01-01
Results of computer realization of a model for studying transient process in the nuclear system of vapour production at the WWER - 40 peactor nuclear power plant are presented. The first circuit model consists of a number of modules, corresponding to its main parts: for each module derived were the equations describing neutron and thermohydraulic parameters. The second circuit effect is taken into account by heat quantity accepted from a steam generator. The equations are mostly differential with constant coefficients. Coefficient values and initial values of physical quantities are evaluated according to the technical literature. Both manual and automatic operations are modelled [ru
Transient behaviour of main coolant pump in nuclear power plants
International Nuclear Information System (INIS)
Delja, A.
1986-01-01
A basic concept of PWR reactor coolant pump thermo-hydraulic modelling in transient and accident operational condition is presented. The reactor coolant pump is a component of the nuclear steam supply system which forces the coolant through the reactor and steam generator, maintaining design heat transfer condition. The pump operating conditions have strong influence on the flow and thermal behaviour of NSSS, both in the stationary and nonstationary conditions. A mathematical model of the reactor coolant pump is formed by using dimensionless homologous relations in the four-quadrant regimes: normal pump, turbine, dissipation and reversed flow. Since in some operational regimes flow of mixture, liquid and steam may occur, the model has additional correction members for two-phase homologous relations. Modular concept has been used in developing computer program. The verification is performed on the simulation loss of offsite power transient and obtained results are presented. (author)
International Nuclear Information System (INIS)
2014-02-01
The integral pressurized water reactor (PWR) concept, which incorporates the nuclear steam supply systems within the reactor vessel, is one of the innovative reactor types with high potential for near term deployment. An International Collaborative Standard Problem (ICSP) on Integral PWR Design, Natural Circulation Flow Stability and Thermohydraulic Coupling of Primary System and Containment during Accidents was established in 2010. Oregon State University, which made available the use of its experimental facility built to demonstrate the feasibility of the Multi-application Small Light Water Reactor (MASLWR) design, and sixteen institutes from seven Member States participated in this ICSP. The objective of the ICSP is to assess computer codes for reactor system design and safety analysis. This objective is achieved through the production of experimental data and computer code simulation of experiments. A loss of feedwater transient with subsequent automatic depressurization system blowdown and long term cooling was selected as the reference event since many different modes of natural circulation phenomena, including the coupling of primary system, high pressure containment and cooling pool are expected to occur during this transient. The power maneuvering transient is also tested to examine the stability of natural circulation during the single and two phase conditions. The ICSP was conducted in three phases: pre-test (with designed initial and boundary conditions established before the experiment was conducted), blind (with real initial and boundary conditions after the experiment was conducted) and open simulation (after the observation of real experimental data). Most advanced thermohydraulic system analysis codes such as TRACE, RELAPS and MARS have been assessed against experiments conducted at the MASLWR test facility. The ICSP has provided all participants with the opportunity to evaluate the strengths and weaknesses of their system codes in the transient
Thermohydraulic behavior of liquid metal pool submitted to electronic bombardment
International Nuclear Information System (INIS)
Brun, Patrice
1998-01-01
This thesis deals with the thermohydraulics of liquid metal molten by an electron beam. We study the relationship between the liquid metal pool and the vapor rate. The aim is to find good conditions increasing the metal vapor rate. In first place, energy losses are identified. Mains are convection (buoyancy and thermo-capillary) strengthen by the deformation of the molten pool. The first action is to reduce the liquid interface deformation with a transient spot realized by scanning the electron beam. I find that in this case, the optimum vapor rate is obtained when the crossing time of the beam is smaller than characteristic time of formation of the cavity, but greater than the heating time of the surface. Secondly, I impose forces to change the morphology of the flow. Two actions are tried: magnetic field application and rotating motion of the crucible. External magnetic field application may reduce convective flow, by the creation of a magnetic brake. But in my experiment, magnetic field deteriorates electron beam before to be effective. Results obtained by the rotating motion of the crucible approve this choice to reduce energy losses and increase vapor rate. This growth of vapor rate is due to an expansion of the emitted vapor source and an increase of the central temperature of the molten pool. Nevertheless with the increase of the rotation velocity and after the optimum vapor rate, I note that the flow is not axisymmetric. My observation give to think about instabilities that are developed by baroclinic waves. The comparison of my works with the Eady's linear theory gives good results. (author) [fr
Computer Models for IRIS Control System Transient Analysis
International Nuclear Information System (INIS)
Gary D Storrick; Bojan Petrovic; Luca Oriani
2007-01-01
This report presents results of the Westinghouse work performed under Task 3 of this Financial Assistance Award and it satisfies a Level 2 Milestone for the project. Task 3 of the collaborative effort between ORNL, Brazil and Westinghouse for the International Nuclear Energy Research Initiative entitled 'Development of Advanced Instrumentation and Control for an Integrated Primary System Reactor' focuses on developing computer models for transient analysis. This report summarizes the work performed under Task 3 on developing control system models. The present state of the IRIS plant design--such as the lack of a detailed secondary system or I and C system designs--makes finalizing models impossible at this time. However, this did not prevent making considerable progress. Westinghouse has several working models in use to further the IRIS design. We expect to continue modifying the models to incorporate the latest design information until the final IRIS unit becomes operational. Section 1.2 outlines the scope of this report. Section 2 describes the approaches we are using for non-safety transient models. It describes the need for non-safety transient analysis and the model characteristics needed to support those analyses. Section 3 presents the RELAP5 model. This is the highest-fidelity model used for benchmark evaluations. However, it is prohibitively slow for routine evaluations and additional lower-fidelity models have been developed. Section 4 discusses the current Matlab/Simulink model. This is a low-fidelity, high-speed model used to quickly evaluate and compare competing control and protection concepts. Section 5 describes the Modelica models developed by POLIMI and Westinghouse. The object-oriented Modelica language provides convenient mechanisms for developing models at several levels of detail. We have used this to develop a high-fidelity model for detailed analyses and a faster-running simplified model to help speed the I and C development process. Section
Reactivity transient calculatios in research reactor
International Nuclear Information System (INIS)
Santos, R.S. dos
1986-01-01
A digital program for reactivity transient analysis in research reactor and cylindrical geometry was showed quite efficient when compared with methods and programs of the literature, as much in the solution of the neutron kinetics equation as in the thermohydraulic. An improvement in the representation of the feedback reactivity adopted on the program reduced markedly the computation time, with some accuracy. (Author) [pt
SPICE modelling of the transient response of irradiated MOSFETs
International Nuclear Information System (INIS)
Pouget, V.; Lapuyade, H.; Lewis, D.; Deval, Y.; Fouillat, P.; Sarger, L.
1999-01-01
A new SPICE model of irradiated MOSFET taking into account the real response of the 4 electrodes is proposed. The component that has been simulated is an NMOS transistor issued from the AMS BiCMOS 0.8 μm technology. A comparison between SPICE-generated transients and PISCES device simulation demonstrates the accuracy benefits when used in complex electronic architectures. This model could be used when designing electronic circuits able to sustain hardening due to SEE (single event effect), it will be an efficient complement to the physical simulations
Three-dimensional reactor model for the Paks NPP full-scope simulator
International Nuclear Information System (INIS)
Gyori, C.; Hegyi, G.; Hozer, Z.; Kereszturi, A.; Maraczy, C.
1993-01-01
The reactor model includes thermohydraulic and neutron-physical components. The thermohydraulic model is based on the SMABRE code developed at the Technical Research Centre of Finland for the analysis of loss-of-coolant transients in PWRs. The fuel rod model will be replaced by a new software module providing a comprehensive description of the behavior of fuel rods during reactor transients and hypothetical accidents. The calculation is performed in four individual models: fuel rod temperature model, fuel rod internal pressure model, fuel rod deformation model and fuel rod failure model. In the neutron-physical model the core is calculated with nodes for all of the 349 fuel assemblies, and each assembly is calculated in ten layers. (Z.S.) 1 fig., 5 refs
Analysis of forced convective transient boiling by homogeneous model of two-phase flow
International Nuclear Information System (INIS)
Kataoka, Isao
1985-01-01
Transient forced convective boiling is of practical importance in relation to the accident analysis of nuclear reactor etc. For large length-to-diameter ratio, the transient boiling characteristics are predicted by transient two-phase flow calculations. Based on homogeneous model of two-phase flow, the transient forced convective boiling for power and flow transients are analysed. Analytical expressions of various parameters of transient two-phase flow have been obtained for several simple cases of power and flow transients. Based on these results, heat flux, velocity and time at transient CHF condition are predicted analytically for step and exponential power increases, and step, exponential and linear velocity decreases. The effects of various parameters on heat flux, velocity and time at transient CHF condition have been clarified. Numerical approach combined with analytical method is proposed for more complicated cases. Solution method for pressure transient are also described. (author)
Comparison of Transient Behaviors of Wind Turbines with DFIG Considering the Shaft Flexible Models
DEFF Research Database (Denmark)
Chen, Zhe; Ye, Ren-jie; Hui, Li
2008-01-01
on the electrical transient performances of doubly fed induction generator (DFIG) wind turbines with different operationally states is investigated. In order to compare the transient performances of DFIG wind turbines during electrical transients, a DFIG model with simple one-mass lumped model and a two-mass shaft...
Observation and control system of the thermohydraulic assays laboratory
International Nuclear Information System (INIS)
Santome, D.; Hualde, R.
1990-01-01
The Thermohydraulic Assays Laboratory (L.E.T.) is an installation whose purpose will be the components testing and the CAREM-25 reactor thermohydraulic processes operation dynamics. This plant is located at Pilcaniyeu, province of Rio Negro. Part of the tests which will be carried out consist in the use of different control strategies. The control of the systems by digital processors (control by software) has been decided to proceed with a maximum flexibility and capacity to make changes in the algorithms. This work describes the design and implementation of a digital control system to command the three circuits of the installation. (Author) [es
Thermohydraulic tests of 3x3-rod bundle maquette
International Nuclear Information System (INIS)
Ladeira, L.C.D.
1986-10-01
The results of a 3x3-rod bundle thermohydraulic research program, performed in the Thermohydraulics Laboratory of NUCLEBRAS' Nuclear Technology Development Center, are briefly described. This program included measurements of pressure drops in one and two-phase flows, heat transfer coefficients, mixing between interconnected subchannels in one-phase flow conditions and critical heat fluxes. The measurements covered the following parameter ranges: heat fluxes from zero to the critical values, pressure ranging from 1 to 15 ata, inlet temperature from 25 to 150 sup(0)C and flow rate from 20 to 300l/min. (author)
Utilization of Relap 5 computer code for analyzing thermohydraulic projects
International Nuclear Information System (INIS)
Silva Filho, E.
1987-01-01
This work deals with the design of a scaled test facility of a typical pressurized water reactor plant of the 1300 MW (electric) class. A station blackout has been choosen to investigate the thermohydraulic behaviour of the the test facility in comparison to the reactor plant. The computer code RELAPS/MOD1 has been utilized to simulate the blackout and to compare the test facility behaviour with the reactor plant one. The results demonstrate similar thermohydraulic behaviours of the two systems. (author) [pt
Physical modelling of a rapid boron dilution transient
Energy Technology Data Exchange (ETDEWEB)
Anderson, N.G.; Hemstroem, B.; Karlsson, R. [Vattenfall Utveckling AB, Aelvkarleby (Sweden); Jacobson, S. [Vattenfall AB, Ringhals, Vaeroebacka (Sweden)
1995-09-01
The analysis of boron dilution accidents in pressurised water reactors has traditionally assumed that mixing is instantaneous and complete everywhere, eliminating in this way the possibility of concentration inhomogeneities. Situations can nevertheless arise where a volume of coolant with a low boron concentration may eventually enter the core and generate a severe reactivity transient. The work presented in this paper deals with a category of Rapid Boron Dilution Events characterised by a rapid start of a Reactor Coolant Pump (RCP) with a plug of relatively unborated water present in the RCS pipe. Model tests have been made at Vattenfall Utveckling AB in a simplified 1:5 scale model of a Westinghouse PWR. Conductivity measurements are used to determine dimensionless boron concentration. The main purpose of this experimental work is to define an experimental benchmark against which a mathematical model can be tested. The final goal is to be able to numerically predict Boron Dilution Transients. This work has been performed as a part of a Co-operative Agreement with Electricite` de France (EDF).
FDTD modelling of induced polarization phenomena in transient electromagnetics
Commer, Michael; Petrov, Peter V.; Newman, Gregory A.
2017-04-01
The finite-difference time-domain scheme is augmented in order to treat the modelling of transient electromagnetic signals containing induced polarization effects from 3-D distributions of polarizable media. Compared to the non-dispersive problem, the discrete dispersive Maxwell system contains costly convolution operators. Key components to our solution for highly digitized model meshes are Debye decomposition and composite memory variables. We revert to the popular Cole-Cole model of dispersion to describe the frequency-dependent behaviour of electrical conductivity. Its inversely Laplace-transformed Debye decomposition results in a series of time convolutions between electric field and exponential decay functions, with the latter reflecting each Debye constituents' individual relaxation time. These function types in the discrete-time convolution allow for their substitution by memory variables, annihilating the otherwise prohibitive computing demands. Numerical examples demonstrate the efficiency and practicality of our algorithm.
Modeling transient streaming potentials in falling-head permeameter tests.
Malama, Bwalya; Revil, André
2014-01-01
We present transient streaming potential data collected during falling-head permeameter tests performed on samples of two sands with different physical and chemical properties. The objective of the work is to estimate hydraulic conductivity (K) and the electrokinetic coupling coefficient (Cl ) of the sand samples. A semi-empirical model based on the falling-head permeameter flow model and electrokinetic coupling is used to analyze the streaming potential data and to estimate K and Cl . The values of K estimated from head data are used to validate the streaming potential method. Estimates of K from streaming potential data closely match those obtained from the associated head data, with less than 10% deviation. The electrokinetic coupling coefficient was estimated from streaming potential vs. (1) time and (2) head data for both sands. The results indicate that, within limits of experimental error, the values of Cl estimated by the two methods are essentially the same. The results of this work demonstrate that a temporal record of the streaming potential response in falling-head permeameter tests can be used to estimate both K and Cl . They further indicate the potential for using transient streaming potential data as a proxy for hydraulic head in hydrogeology applications. © 2013, National Ground Water Association.
Transient Heating and Thermomechanical Stress Modeling of Ceramic HEPA Filters
Energy Technology Data Exchange (ETDEWEB)
Bogle, Brandon [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Kelly, James [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Haslam, Jeffrey [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)
2017-09-29
The purpose of this report is to showcase an initial finite-element analysis model of a ceramic High-Efficiency Particulate (HEPA) Air filter design. Next generation HEPA filter assemblies are being developed at LLNL to withstand high-temperature fire scenarios by use of ceramics and advanced materials. The filters are meant for use in radiological and nuclear facilities, and are required to survive 500°C fires over an hour duration. During such conditions, however, collecting data under varying parameters can be challenging; therefore, a Finite Element Analysis model of the filter was conducted using COMSOL ® Multiphysics to analyze the effects of fire. Finite Element Analysis (FEA) modelling offers several opportunities: researchers can quickly and easily consider impacts of potential design changes, material selection, and flow characterization on filter performance. Specifically, this model provides stress references for the sealant at high temperatures. Modeling of full filter assemblies was deemed inefficient given the computational requirements, so a section of three tubes from the assembly was modeled. The model looked at the transient heating and thermomechanical stress development during a 500°C air flow at 6 CFM. Significant stresses were found at the ceramic-metal interfaces of the filter, and conservative temperature profiles at locations of interest were plotted. The model can be used for the development of sealants that minimize stresses at the ceramic-metal interface. Further work on the model would include the full filter assembly and consider heat losses to make more accurate predictions.
Atucha I nuclear power plant transients analysis
International Nuclear Information System (INIS)
Castano, J.; Schivo, M.
1987-01-01
A program for the transients simulation thermohydraulic calculation without loss of coolant (KWU-ENACE development) to evaluate Atucha I nuclear power plant behaviour is used. The program includes systems simulation and nuclear power plants control bonds with real parameters. The calculation results show a good agreement with the output 'protocol' of various transients of the nuclear power plant, keeping the error, in general, lesser than ± 10% from the variation of the nuclear power plant's state variables. (Author)
Modeling of Transient Nectar Flow in Hummingbird Tongues
Rico-Guevara, Alejandro; Fan, Tai-Hsi; Rubega, Margaret
2015-11-01
We demonstrate that hummingbirds do not pick up floral nectar via capillary action. The long believed capillary rise models were mistaken and unable to predict the dynamic nectar intake process. Instead, hummingbird's tongue acts as an elastic micropump. Nectar is drawn into the tongue grooves during elastic expansion after the grooves are squeezed flat by the beak. The new model is compared with experimental data from high-speed videos of 18 species and tens of individuals of wild hummingbirds. Self-similarity and transitions of short-to-long time behaviours have been resolved for the nectar flow driven by expansive filling. The transient dynamics is characterized by the relative contributions of negative excess pressure and the apparent area modulus of the tongue grooves.
Systems for neutronic, thermohydraulic and shielding calculation in personal computers
International Nuclear Information System (INIS)
Villarino, E.A.; Abbate, P.; Lovotti, O.; Santini, M.
1990-01-01
The MTR-PC (Materials Testing Reactors-Personal Computers) system has been developed by the Nuclear Engineering Division of INVAP S.E. with the aim of providing working conditions integrated with personal computers for design and neutronic, thermohydraulic and shielding analysis for reactors employing plate type fuel. (Author) [es
An Effective Distributed Model for Power System Transient Stability Analysis
Directory of Open Access Journals (Sweden)
MUTHU, B. M.
2011-08-01
Full Text Available The modern power systems consist of many interconnected synchronous generators having different inertia constants, connected with large transmission network and ever increasing demand for power exchange. The size of the power system grows exponentially due to increase in power demand. The data required for various power system applications have been stored in different formats in a heterogeneous environment. The power system applications themselves have been developed and deployed in different platforms and language paradigms. Interoperability between power system applications becomes a major issue because of the heterogeneous nature. The main aim of the paper is to develop a generalized distributed model for carrying out power system stability analysis. The more flexible and loosely coupled JAX-RPC model has been developed for representing transient stability analysis in large interconnected power systems. The proposed model includes Pre-Fault, During-Fault, Post-Fault and Swing Curve services which are accessible to the remote power system clients when the system is subjected to large disturbances. A generalized XML based model for data representation has also been proposed for exchanging data in order to enhance the interoperability between legacy power system applications. The performance measure, Round Trip Time (RTT is estimated for different power systems using the proposed JAX-RPC model and compared with the results obtained using traditional client-server and Java RMI models.
Fuel rod modelling during transients: The TOUTATIS code
International Nuclear Information System (INIS)
Bentejac, F.; Bourreau, S.; Brochard, J.; Hourdequin, N.; Lansiart, S.
2001-01-01
The TOUTATIS code is devoted to the PCI local phenomena simulation, in correlation with the METEOR code for the global behaviour of the fuel rod. More specifically, the TOUTATIS objective is to evaluate the mechanical constraints on the cladding during a power transient thus predicting its behaviour in term of stress corrosion cracking. Based upon the finite element computation code CASTEM 2000, TOUTATIS is a set of modules written in a macro language. The aim of this paper is to present both code modules: The axisymmetric bi-dimensional module, modeling a unique block pellet; The tri dimensional module modeling a radially fragmented pellet. Having shown the boundary conditions and the algorithms used, the application will be illustrated by: A short presentation of the bidimensional axisymmetric modeling performances as well as its limits; The enhancement due to the three dimensional modeling will be displayed by sensitivity studies to the geometry, in this case the pellet height/diameter ratio. Finally, we will show the easiness of the development inherent to the CASTEM 2000 system by depicting the process of a modeling enhancement by adding the possibility of an axial (horizontal) fissuration of the pellet. As conclusion, the future improvements planned for the code are depicted. (author)
Transient modelling of a natural circulation loop under variable pressure
Energy Technology Data Exchange (ETDEWEB)
Vianna, Andre L.B.; Faccini, Jose L.H.; Su, Jian, E-mail: avianna@nuclear.ufrj.br, E-mail: sujian@nuclear.ufrj.br, E-mail: faccini@ien.gov.br [Coordenacao de Pos-Graduacao e Pesquisa de Engenharia (COPPE/UFRJ), Rio de Janeiro, RJ (Brazil). Programa de Engenharia Nuclear; Instituto de Engenharia Nuclear (IEN/CNEN-RJ), Rio de Janeiro, RJ (Brazil). Lab. de Termo-Hidraulica Experimental
2017-07-01
The objective of the present work is to model the transient operation of a natural circulation loop, which is one-tenth scale in height to a typical Passive Residual Heat Removal system (PRHR) of an Advanced Pressurized Water Nuclear Reactor and was designed to meet the single and two-phase flow similarity criteria to it. The loop consists of a core barrel with electrically heated rods, upper and lower plena interconnected by hot and cold pipe legs to a seven-tube shell heat exchanger of countercurrent design, and an expansion tank with a descending tube. A long transient characterized the loop operation, during which a phenomenon of self-pressurization, without self-regulation of the pressure, was experimentally observed. This represented a unique situation, named natural circulation under variable pressure (NCVP). The self-pressurization was originated in the air trapped in the expansion tank and compressed by the loop water dilatation, as it heated up during each experiment. The mathematical model, initially oriented to the single-phase flow, included the heat capacity of the structure and employed a cubic polynomial approximation for the density, in the buoyancy term calculation. The heater was modelled taking into account the different heat capacities of the heating elements and the heater walls. The heat exchanger was modelled considering the coolant heating, during the heat exchanging process. The self-pressurization was modelled as an isentropic compression of a perfect gas. The whole model was computationally implemented via a set of finite difference equations. The corresponding computational algorithm of solution was of the explicit, marching type, as for the time discretization, in an upwind scheme, regarding the space discretization. The computational program was implemented in MATLAB. Several experiments were carried out in the natural circulation loop, having the coolant flow rate and the heating power as control parameters. The variables used in the
Improved Flow Modeling in Transient Reactor Safety Analysis Computer Codes
International Nuclear Information System (INIS)
Holowach, M.J.; Hochreiter, L.E.; Cheung, F.B.
2002-01-01
A method of accounting for fluid-to-fluid shear in between calculational cells over a wide range of flow conditions envisioned in reactor safety studies has been developed such that it may be easily implemented into a computer code such as COBRA-TF for more detailed subchannel analysis. At a given nodal height in the calculational model, equivalent hydraulic diameters are determined for each specific calculational cell using either laminar or turbulent velocity profiles. The velocity profile may be determined from a separate CFD (Computational Fluid Dynamics) analysis, experimental data, or existing semi-empirical relationships. The equivalent hydraulic diameter is then applied to the wall drag force calculation so as to determine the appropriate equivalent fluid-to-fluid shear caused by the wall for each cell based on the input velocity profile. This means of assigning the shear to a specific cell is independent of the actual wetted perimeter and flow area for the calculational cell. The use of this equivalent hydraulic diameter for each cell within a calculational subchannel results in a representative velocity profile which can further increase the accuracy and detail of heat transfer and fluid flow modeling within the subchannel when utilizing a thermal hydraulics systems analysis computer code such as COBRA-TF. Utilizing COBRA-TF with the flow modeling enhancement results in increased accuracy for a coarse-mesh model without the significantly greater computational and time requirements of a full-scale 3D (three-dimensional) transient CFD calculation. (authors)
Variable thickness transient groundwater flow model theory and numerical implementation
International Nuclear Information System (INIS)
Kipp, K.L.; Reisenauer, A.E.; Cole, C.R.; Bryan, C.A.
1976-01-01
Modeling of radionuclide movement in the groundwater system beneath the Hanford Reservation requires mathematical simulation of the two-dimensional flow in the unconfined aquifer. This was accomplished using the nonlinear, transient Boussinesq equation with appropriate initial and boundary conditions, including measured Columbia River stages and rates of wastewater disposal to the ground. The heterogeneous permeability (hydraulic conductivity) distribution was derived by solution of the Boussinesq equation along instantaneous streamtubes of flow employing a measured water table surface and a limited number of field-measured hydraulic conductivity values. Use of a successive line over-relaxation technique with unequal time steps resulted in a more rapid convergence of the numerical solution than with previous techniques. The model was used to simulate the water table changes for the period 1968 through 1973 using known inputs and boundary conditions. A comparison of calculated and measured water table elevations was made at specific well locations and the quality of the verification simulation was evaluated using a data retrieval and display system. Agreement between the model results and measured data was good over two-thirds of the Hanford Reservation. The capability of the model to simulate flow with time-varying boundary conditions, complex boundary shapes, and a heterogeneous distribution of aquifer properties was demonstrated
Viscoelastic modelling of Zircaloy cladding in-pile transient creep
Energy Technology Data Exchange (ETDEWEB)
Tulkki, Ville, E-mail: ville.tulkki@vtt.fi; Ikonen, Timo
2015-02-15
In fuel behaviour modelling accurate description of the cladding stress response is important for both operational and safety considerations. The cladding creep determines in part the width of the gas gap, the duration to pellet-cladding contact and the stresses to the cladding due to the pellet expansion. Conventionally the strain hardening rule has been used to describe the creep response to transient loads in engineering applications. However, it has been well documented that the strain hardening rule does not describe well results of tests with load drops or reversals. In our earlier work we have developed a model for primary creep which can be used to simulate the in- and out-of-pile creep tests. Since then several creep experiments have entered into public domain. In this paper we develop the model formulation based on the theory of viscoelasticity, and show that this model can reproduce the new experimental results. We also show that the creep strain recovery encountered in experimental measurements can be explained by viscoelastic behaviour.
Branch companion modeling for diverse simulation of electromagnetic and electromechanical transients
Energy Technology Data Exchange (ETDEWEB)
Shintaku, Rachel; Strunz, Kai [SESAME Laboratory, Department of Electrical Engineering, University of Washington, Seattle (United States)
2007-09-15
Simulators of the Electromagnetic Transients Program (EMTP) type are widely used for the study of high-frequency transients in power electric systems. For the study of electromechanical transients, where the main interest is to focus only on deviations from the ac waveform, the EMTP approach is not efficient. In this paper, a branch companion model that is suitable for both electromagnetic and electromechanical transients simulation is proposed. It processes analytic signals whose Fourier spectrum can be shifted in accordance with the objective of the study. The proposed method opens the way for a unified description of electromagnetic and electromechanical transients simulation. (author)
Three-dimensional transient electromagnetic modeling in the Laplace Domain
International Nuclear Information System (INIS)
Mizunaga, H.; Lee, Ki Ha; Kim, H.J.
1998-01-01
In modeling electromagnetic responses, Maxwell's equations in the frequency domain are popular and have been widely used (Nabighian, 1994; Newman and Alumbaugh, 1995; Smith, 1996, to list a few). Recently, electromagnetic modeling in the time domain using the finite difference (FDTD) method (Wang and Hohmann, 1993) has also been used to study transient electromagnetic interactions in the conductive medium. This paper presents a new technique to compute the electromagnetic response of three-dimensional (3-D) structures. The proposed new method is based on transforming Maxwell's equations to the Laplace domain. For each discrete Laplace variable, Maxwell's equations are discretized in 3-D using the staggered grid and the finite difference method (FDM). The resulting system of equations is then solved for the fields using the incomplete Cholesky conjugate gradient (ICCG) method. The new method is particularly effective in saving computer memory since all the operations are carried out in real numbers. For the same reason, the computing speed is faster than frequency domain modeling. The proposed approach can be an extremely useful tool in developing an inversion algorithm using the time domain data
RAP-2A Computer code for transients analysis in fast reactors
International Nuclear Information System (INIS)
Iftode, I.; Popescu, C.; Turcu, I.; Biro, L.
1975-10-01
The RAP-2A computer code is designed for analyzing thermohydraulic transients and/or steady state problems for large LMFBR cores. Physical and mathematical models, main input-output data, the flow chart of the code and a sample problem are given. RAP-2A calculates the power and the thermoydraulic transients initiated by a flow or reactivity changes, from a normal operating state of the reactor up to core disassembly. In this analysis a representative fuel pin is considered: a one-group space-independent (point) kinetics model to describe the neutron kinetics and a one-dimensional model describing the heat transfer (radial in the fuel and axial in the coolant) are used. Mechanical deformations due to temperature gradient, pressure losses, fuel melting, etc., are also calculated. The code is written in FORTRAN-4 language and is running on a IBM-370/135 computer
Modeling transient heat transfer in nuclear waste repositories.
Yang, Shaw-Yang; Yeh, Hund-Der
2009-09-30
The heat of high-level nuclear waste may be generated and released from a canister at final disposal sites. The waste heat may affect the engineering properties of waste canisters, buffers, and backfill material in the emplacement tunnel and the host rock. This study addresses the problem of the heat generated from the waste canister and analyzes the heat distribution between the buffer and the host rock, which is considered as a radial two-layer heat flux problem. A conceptual model is first constructed for the heat conduction in a nuclear waste repository and then mathematical equations are formulated for modeling heat flow distribution at repository sites. The Laplace transforms are employed to develop a solution for the temperature distributions in the buffer and the host rock in the Laplace domain, which is numerically inverted to the time-domain solution using the modified Crump method. The transient temperature distributions for both the single- and multi-borehole cases are simulated in the hypothetical geological repositories of nuclear waste. The results show that the temperature distributions in the thermal field are significantly affected by the decay heat of the waste canister, the thermal properties of the buffer and the host rock, the disposal spacing, and the thickness of the host rock at a nuclear waste repository.
Three-Component Forward Modeling for Transient Electromagnetic Method
Directory of Open Access Journals (Sweden)
Bin Xiong
2010-01-01
Full Text Available In general, the time derivative of vertical magnetic field is considered only in the data interpretation of transient electromagnetic (TEM method. However, to survey in the complex geology structures, this conventional technique has begun gradually to be unsatisfied with the demand of field exploration. To improve the integrated interpretation precision of TEM, it is necessary to study the three-component forward modeling and inversion. In this paper, a three-component forward algorithm for 2.5D TEM based on the independent electric and magnetic field has been developed. The main advantage of the new scheme is that it can reduce the size of the global system matrix to the utmost extent, that is to say, the present is only one fourth of the conventional algorithm. In order to illustrate the feasibility and usefulness of the present algorithm, several typical geoelectric models of the TEM responses produced by loop sources at air-earth interface are presented. The results of the numerical experiments show that the computation speed of the present scheme is increased obviously and three-component interpretation can get the most out of the collected data, from which we can easily analyze or interpret the space characteristic of the abnormity object more comprehensively.
Modelling the transient emission from a twin conductor cable
Directory of Open Access Journals (Sweden)
Ian Brook Darney
2016-03-01
Full Text Available Using the equations of transmission line theory, a programme is developed to simulate the response of an open-circuit line to a step pulse. This is compared with the observed response of a twin-conductor cable. It is deduced that not all of the current delivered to the send conductor arrives back via the return conductor. Some of it departs in the form of radiated emission. A virtual capacitor is used to simulate this, with limited success. However, by adding a second virtual capacitor to simulate transient current being delivered from the return conductor back to the send conductor, a fair correlation is achieved between theoretical and actual results. This analysis demonstrates that the return conductor plays an active role in propagating any signal along the cable. This study also demonstrates that a circuit model can be created to simulate the mechanisms involved in the radiation of interference from power supply cables. This is but one example of the use of circuit models to analyse electromagnetic interference (EMI. The key relationship between electromagnetic theory and circuit theory which enables this technique to be used to analyse any EMI problem is identified. A dramatic simplification in the mathematics can be achieved.
MODELING OF TRANSIENT HEAT TRANSFER IN FOAMED CONCRETE SLAB
Directory of Open Access Journals (Sweden)
MD AZREE OTHUMAN MYDIN
2013-06-01
Full Text Available This paper reports the basis of one-dimensional Finite Difference method to obtain thermal properties of foamed concrete in order to solve transient heat conduction problems in multi-layer panels. In addition, this paper also incorporates the implementation of the method and the validation of thermal properties model of foamed concrete. A one-dimensional finite difference heat conduction programme has been developed to envisage the temperature development through the thickness of the foamed concrete slab, based on an initial estimate of the thermal conductivity-temperature relationship as a function of porosity and radiation within the voids. The accuracy of the model was evaluated by comparing predicted and experimental temperature profiles obtained from small scale heat transfer test on foamed concrete slabs, so that the temperature history of the specimen calculated by the programme closely matches those recorded during the experiment. Using the thermal properties of foamed concrete, the validated heat transfer program predicts foamed concrete temperatures in close agreement with experimental results obtained from a number of high temperature tests. The proposed numerical and thermal properties are simple yet efficient and can be utilised to aid manufacturers to develop their products without having to conduct numerous large-scale fire tests.
Transient thermal modeling of permafrost conditions in Southern Norway
Directory of Open Access Journals (Sweden)
S. Westermann
2013-04-01
Full Text Available Thermal modeling is a powerful tool to infer the temperature regime of the ground in permafrost areas. We present a transient permafrost model, CryoGrid 2, that calculates ground temperatures according to conductive heat transfer in the soil and in the snowpack. CryoGrid 2 is forced by operational air temperature and snow-depth products for potential permafrost areas in Southern Norway for the period 1958 to 2009 at 1 km2 spatial resolution. In total, an area of about 80 000 km2 is covered. The model results are validated against borehole temperatures, permafrost probability maps from "bottom temperature of snow" measurements and inventories of landforms indicative of permafrost occurrence. The validation demonstrates that CryoGrid 2 can reproduce the observed lower permafrost limit to within 100 m at all validation sites, while the agreement between simulated and measured borehole temperatures is within 1 K for most sites. The number of grid cells with simulated permafrost does not change significantly between the 1960s and 1990s. In the 2000s, a significant reduction of about 40% of the area with average 2 m ground temperatures below 0 °C is found, which mostly corresponds to degrading permafrost with still negative temperatures in deeper ground layers. The thermal conductivity of the snow is the largest source of uncertainty in CryoGrid 2, strongly affecting the simulated permafrost area. Finally, the prospects of employing CryoGrid 2 as an operational soil-temperature product for Norway are discussed.
Commercial second-generation PFBC plant transient model: Task 15
Energy Technology Data Exchange (ETDEWEB)
White, J.S.; Getty, R.T.; Torpey, M.R.
1995-04-01
The advanced pressurized fluidized bed combustor (APFBC) power plant combines an efficient gas-fired combined cycle, a low-emission PFB combustor, and a coal pyrolysis unit (carbonizer) that converts coal, America`s most plentiful fuel, into the gas turbine fuel. From an operation standpoint, the APFBC plant is similar to an integrated gasification combined cycle (IGCC) plant, except that the PFBC and fluid bed heat exchanger (FBHE) allow a considerable fraction of coal energy to be shunted around the gas turbine and sent directly to the steam turbine. By contrast, the fuel energy in IGCC plants and most other combined cycles is primarily delivered to the gas turbine and then to the steam turbine. Another characteristic of the APFBC plant is the interaction among three large thermal inertias--carbonizer, PFBC, and FBHE--that presents unique operational challenges for modeling and operation of this type of plant. This report describes the operating characteristics and dynamic responses of the APFBC plant and discusses the advantages and shortcomings of several alternative control strategies for the plant. In particular, interactions between PFBC, FBHE, and steam bottoming cycle are analyzed and the effect of their interactions on plant operation is discussed. The technical approach used in the study is described in Section 2. The dynamic model is introduced in Section 3 and described is detail in the appendices. Steady-state calibration and transient simulations are presented in Sections 4 and 5. The development of the operating philosophy is discussed in Section 6. Potential design changes to the dynamic model and trial control schemes are listed in Sections 7 and 8. Conclusions derived from the study are presented in Section 9.
Application of an estimation model to predict future transients at US nuclear power plants
International Nuclear Information System (INIS)
Hallbert, B.P.; Blackman, H.S.
1987-01-01
A model developed by R.A. Fisher was applied to a set of Licensee Event Reports (LERs) summarizing transient initiating events at US commercial nuclear power plants. The empirical Bayes model was examined to study the feasibility of estimating the number of categories of transients which have not yet occurred at nuclear power plants. An examination of the model's predictive ability using an existing sample of data provided support for use of the model to estimate future transients. The estimate indicates that an approximate fifteen percent increase in the number of categories of transient initiating events may be expected during the period 1983--1993, assuming a stable process of transients. Limitations of the model and other possible applications are discussed. 10 refs., 1 fig., 3 tabs
A simple dynamic model and transient simulation of the nuclear power reactor on microcomputers
Energy Technology Data Exchange (ETDEWEB)
Han, Yang Gee; Park, Cheol [Korea Atomic Energy Research Institute, Taejon (Korea, Republic of)
1997-12-31
A simple dynamic model is developed for the transient simulation of the nuclear power reactor. The dynamic model includes the normalized neutron kinetics model with reactivity feedback effects and the core thermal-hydraulics model. The main objective of this paper demonstrates the capability of the developed dynamic model to simulate various important variables of interest for a nuclear power reactor transient. Some representative results of transient simulations show the expected trends in all cases, even though no available data for comparison. In this work transient simulations are performed on a microcomputer using the DESIRE/N96T continuous system simulation language which is applicable to nuclear power reactor transient analysis. 3 refs., 9 figs. (Author)
Application of a qualified RETRAN model to plant transient evaluation support
International Nuclear Information System (INIS)
Sedano, P.G.; Mata, P.; Alcantud, F.; Serra, J.; Castrillo, F.
1989-01-01
This paper presents the applicability and usefulness of a complete and well qualified plant transient code and model to support in depth evaluation of anomalous plant transients. Analyses of several operational and abnormal transients that ocurred during the first three cycles of Cofrentes (BWR-6) NPP are presented. This application demonstrated the need of a very detailed and adjusted simulation of the control systems as well as the convenience of having as complete as possible data adquisition system. (orig.)
Application of a qualified RETRAN model to plant transient evaluation support
International Nuclear Information System (INIS)
Sedano, P.G.; Mata, P.; Alcantud, F.; Serra, J.
1989-01-01
This paper presents the applicability and usefulness of a complete and well qualified plant transient code and model to support in depth evaluation of anomalous plant transients. Analyses of several operational and abnormal transients occurred during the first three cycles of Cofrentes (BWR-6) NPP are presented. This application remarked the need of a very detailed and adjusted simulation of the control systems as well as the convenience of having an as complete as possible data acquisition system
Nonlinear time-domain cochlear model for transient stimulation and human otoacoustic emission
DEFF Research Database (Denmark)
Verhulst, Sarah; Dau, Torsten; Shera, Christopher A.
2012-01-01
This paper describes the implementation and performance of a nonlinear time-domain model of the cochlea for transient stimulation and human otoacoustic emission generation. The nonlinearity simulates compressive growth of measured basilar-membrane impulse responses. The model accounts for reflect......This paper describes the implementation and performance of a nonlinear time-domain model of the cochlea for transient stimulation and human otoacoustic emission generation. The nonlinearity simulates compressive growth of measured basilar-membrane impulse responses. The model accounts...
Simplified drive system models for power system transient studies in industrial plants
DEFF Research Database (Denmark)
Chen, Peiyuan; Sannino, Ambra
2007-01-01
In order to simulate industrial plants for different power system transient studies, simplified adjustable speed drive (ASD) models are needed. For power system transient studies such as assessing the voltage dip ride-through capability of ASDs, detailed representation of semiconductor valve...
Sobrero, F. S.; Bevis, M. G.; Bedford, J. R.; Gomez, D.; Brown, A.; Wang, F.
2017-12-01
Simple or multiple timescale transient models for postseismic transient displacements can be formulated using logarithmic and exponential decay formulas. The logarithmic form is associated with rate and state friction theory and afterslip, while the exponential form is associated with bulk viscoelastic relaxation of coseismic stresses. Many theorists have suggested that afterslip will be the dominant driver of postseismic displacement transients in the months and perhaps even years following an earthquake, but viscoelastic relaxation will eventually dominate. It is now quite widely understood that one can model GPS time series manifesting postseismic transient displacements almost equally well using trajectory models constructed using logarithmic or exponential transients. This is consistent with the consensus established by the late 1970's that it is difficult to use geodetic observations to distinguish between deep aseismic afterslip and more diffuse viscoelastic relaxation as the primary mechanism of postseismic deformation. We assess the relative explanatory value of both logarithmic and exponential forms by focusing on GPS time series measured with better than typical signal-to-noise ratios. We find that the logarithmic transient typically provides slightly better fits than exponential transients, when both models are given equal degrees of freedom. We will also discuss the relative utility of the hybrid transient formulas in which the logarithmic component is assigned shorter decay time scale parameters than the exponential component.
Analytical model of transient thermal effect on convectional cooled ...
Indian Academy of Sciences (India)
Abstract. The transient analytical solutions of temperature distribution, stress, strain and optical path difference in convectional cooled end-pumped laser rod are derived. The results are compared with other works and good agreements are found. The effects of increasing the edge cooling and face cooling are studied.
Perturbation analysis of transient population dynamics using matrix projection models
DEFF Research Database (Denmark)
Stott, Iain
2016-01-01
to different applications: choosing a method to use may be challenging. Here, I review existing methods for prospective transient perturbation analysis, and identify a number of key considerations for ecologists when choosing a method. These include the approach taken in calculating the perturbation, the type...
Transient Model of Hybrid Concentrated Photovoltaic with Thermoelectric Generator
DEFF Research Database (Denmark)
Mahmoudi Nezhad, Sajjad; Qing, Shaowei; Rezaniakolaei, Alireza
2017-01-01
and performance of the hybrid module. This investigation is carried out by using a numerical simulation approach with MATLAB software. The governing equations for CPV-TEG hybrid system in transient state is derived and discretized. The results are consisting of the variation of the temperatures, power generation...
Investigation of transient models and performances for a doubly fed wind turbine under a grid fault
DEFF Research Database (Denmark)
Wang, M.; Zhao, B.; Li, H.
2011-01-01
of the grid-side converter and the rotor-side converter of DFIG. Secondly, the transient performances of the presented doubly fed wind turbine under a grid fault were compared and evaluated with different equivalent models, parameters and initial operational conditions. And thirdly, the effects of the active......In order to investigate the impacts of the integration of wind farms into utilities network, it is necessary to analyze the transient performances of wind turbine generation systems (WTGS) with the appropriate transient models. According to the grid code requirements for a wind turbine with doubly...... trip time. Firstly, the different mathematical models of the doubly fed wind turbine were presented, including the electromagnetic transient models of DFIG, a one-mass lumped model, a two-mass shaft flexible model of the wind turbine drive train system, and the power decoupling control strategies...
A framework for studying transient dynamics of population projection matrix models
DEFF Research Database (Denmark)
Stott, Iain; Townley, Stuart; Hodgson, David James
2011-01-01
Empirical models are central to effective conservation and population management, and should be predictive of real-world dynamics. Available modelling methods are diverse, but analysis usually focuses on long-term dynamics that are unable to describe the complicated short-term time series that ca...... of transient population density, but criticises the utility of established indices of convergence times. Our findings should guide further development of analyses of transient population dynamics using PPMs or other empirical modelling techniques....
Scopolamine intoxication as a model of transient global amnesia.
Ardila, A; Moreno, C
1991-03-01
In Colombia (South America) during recent decades the administration of scopolamine, extracted from plants belonging to the Datura or Brugmansia genus, has become an important neurologic and toxicologic phenomenon. These extracts have been popularly known as "Burundanga." Chemical characteristics and clinical features of scopolamine intoxication are described. Anterograde amnesia and submissive behavior found in patients intoxicated with scopolamine are analyzed. Burundanga intoxication is related to other toxic phenomena found in different countries and similitudes with transient global amnesia are emphasized.
Pressure Transient Model of Water-Hydraulic Pipelines with Cavitation
Directory of Open Access Journals (Sweden)
Dan Jiang
2018-03-01
Full Text Available Transient pressure investigation of water-hydraulic pipelines is a challenge in the fluid transmission field, since the flow continuity equation and momentum equation are partial differential, and the vaporous cavitation has high dynamics; the frictional force caused by fluid viscosity is especially uncertain. In this study, due to the different transient pressure dynamics in upstream and downstream pipelines, the finite difference method (FDM is adopted to handle pressure transients with and without cavitation, as well as steady friction and frequency-dependent unsteady friction. Different from the traditional method of characteristics (MOC, the FDM is advantageous in terms of the simple and convenient computation. Furthermore, the mechanism of cavitation growth and collapse are captured both upstream and downstream of the water-hydraulic pipeline, i.e., the cavitation start time, the end time, the duration, the maximum volume, and the corresponding time points. By referring to the experimental results of two previous works, the comparative simulation results of two computation methods are verified in experimental water-hydraulic pipelines, which indicates that the finite difference method shows better data consistency than the MOC.
International Nuclear Information System (INIS)
Massoud, M.
1987-01-01
Natural Circulation phenomena in a simulated PWR was investigated experimentally and analytically. The experimental investigation included determination of system characteristics as well as system response to the imposed transient under symmetric and asymmetric operations. System characteristics were used to obtain correlation for heat transfer coefficient in heat exchangers, system flow resistance, and system buoyancy heat. Asymmetric transients were imposed to study flow oscillation and possible instability. The analytical investigation encompassed development of mathematical model for single-phase, steady-state and transient natural circulation as well as modification of existing model for two-phase flow analysis of phenomena such as small break LOCA, high pressure coolant injection and pump coast down. The developed mathematical model for single-phase analysis was computer coded to simulate the imposed transients. The computer program, entitled ''Symmetric and Asymmetric Analysis of Single-Phase Flow (SAS),'' were employed to simulate the imposed transients. It closely emulated the system behavior throughout the transient and subsequent steady-state. Modifications for two-phase flow analysis included addition of models for once-through steam generator and electric heater rods. Both programs are faster than real time. Off-line, they can be used for prediction and training applications while on-line they serve for simulation and signal validation. The programs can also be used to determine the sensitivity of natural circulation behavior to variation of inputs such as secondary distribution and power transients
Energy Technology Data Exchange (ETDEWEB)
Massoud, M
1987-01-01
Natural Circulation phenomena in a simulated PWR was investigated experimentally and analytically. The experimental investigation included determination of system characteristics as well as system response to the imposed transient under symmetric and asymmetric operations. System characteristics were used to obtain correlation for heat transfer coefficient in heat exchangers, system flow resistance, and system buoyancy heat. Asymmetric transients were imposed to study flow oscillation and possible instability. The analytical investigation encompassed development of mathematical model for single-phase, steady-state and transient natural circulation as well as modification of existing model for two-phase flow analysis of phenomena such as small break LOCA, high pressure coolant injection and pump coast down. The developed mathematical model for single-phase analysis was computer coded to simulate the imposed transients. The computer program, entitled ''Symmetric and Asymmetric Analysis of Single-Phase Flow (SAS),'' were employed to simulate the imposed transients. It closely emulated the system behavior throughout the transient and subsequent steady-state. Modifications for two-phase flow analysis included addition of models for once-through steam generator and electric heater rods. Both programs are faster than real time. Off-line, they can be used for prediction and training applications while on-line they serve for simulation and signal validation. The programs can also be used to determine the sensitivity of natural circulation behavior to variation of inputs such as secondary distribution and power transients.
Identifying the optimal supply temperature in district heating networks - A modelling approach
DEFF Research Database (Denmark)
Mohammadi, Soma; Bojesen, Carsten
2014-01-01
dynamically while the flow and pressure are calculated on the basis of steady state conditions. The implicit finite element method is applied to simulate the transient temperature behaviour in the network. Pipe network heat losses, pressure drop in the network and return temperature to the plant...... of this study is to develop a model for thermo-hydraulic calculation of low temperature DH system. The modelling is performed with emphasis on transient heat transfer in pipe networks. The pseudo-dynamic approach is adopted to model the District Heating Network [DHN] behaviour which estimates the temperature...
COBRA-WC model and predictions for a fast-reactor natural-circulation transient
International Nuclear Information System (INIS)
George, T.L.; Basehore, K.L.; Prather, W.A.
1980-01-01
The COBRA-WC (Whole Core) code has been used to predict the core-wide coolant and rod temperature distribution in a liquid metal fast reactor during the early part (first 220 seconds) of a natural circulation transient. Approximately one-sixth of the core was modeled including bypass flows and the pressure losses above and below the core region. Detailed temperature and flow distributions were obtained for the two test fuel assemblies. The COBRA-WC model, the approach, and predictions of core-wide transient coolant and rod temperatures during a natural circulation transient are presented in this paper
Thermohydraulic design of the CAREM reactor's containment
International Nuclear Information System (INIS)
Abbate, P.
1990-01-01
The analysis made for the calculation of the temperature and pressure basic charges affecting the CAREM 25 reactor's contention system is presented. The case of a primary cooler loss, with simultaneous loss of electric supply, is analyzed. Different aspects of the numerical model used, are discussed. (Author) [es
PUMP: analog-hybrid reactor coolant hydraulic transient model
International Nuclear Information System (INIS)
Grandia, M.R.
1976-03-01
The PUMP hybrid computer code simulates flow and pressure distribution; it is used to determine real time response to starting and tripping all combinations of PWR reactor coolant pumps in a closed, pressurized, four-pump, two-loop primary system. The simulation includes the description of flow, pressure, speed, and torque relationships derived through pump affinity laws and from vendor-supplied pump zone maps to describe pump dynamic characteristics. The program affords great flexibility in the type of transients that can be simulated
Comparison of the Accuracy and Speed of Transient Mobile A/C System Simulation Models: Preprint
Energy Technology Data Exchange (ETDEWEB)
Kiss, T.; Lustbader, J.
2014-03-01
The operation of air conditioning (A/C) systems is a significant contributor to the total amount of fuel used by light- and heavy-duty vehicles. Therefore, continued improvement of the efficiency of these mobile A/C systems is important. Numerical simulation has been used to reduce the system development time and to improve the electronic controls, but numerical models that include highly detailed physics run slower than desired for carrying out vehicle-focused drive cycle-based system optimization. Therefore, faster models are needed even if some accuracy is sacrificed. In this study, a validated model with highly detailed physics, the 'Fully-Detailed' model, and two models with different levels of simplification, the 'Quasi-Transient' and the 'Mapped- Component' models, are compared. The Quasi-Transient model applies some simplifications compared to the Fully-Detailed model to allow faster model execution speeds. The Mapped-Component model is similar to the Quasi-Transient model except instead of detailed flow and heat transfer calculations in the heat exchangers, it uses lookup tables created with the Quasi-Transient model. All three models are set up to represent the same physical A/C system and the same electronic controls. Speed and results of the three model versions are compared for steady state and transient operation. Steady state simulated data are also compared to measured data. The results show that the Quasi-Transient and Mapped-Component models ran much faster than the Fully-Detailed model, on the order of 10- and 100-fold, respectively. They also adequately approach the results of the Fully-Detailed model for steady-state operation, and for drive cycle-based efficiency predictions
One component, volume heated, boiling pool thermohydraulics
International Nuclear Information System (INIS)
Bede, M.; Perret, C.; Pretrel, H.; Seiler, J.M.
1993-01-01
Prior work on boiling pools provided heat exchange correlations valid for bubbly flow with laminar or turbulent boundary layers. New experiments performed with water (SEBULON) and UO 2 (SCARABEE BF2) in a churn-turbulent flow configuration show unexpected heat flux distributions for which the maximum heat flux may be situated well below the pool surface. The origin of this behaviour is attributed to condensation effects, very unstable boundary layer flow and surface oscillation. A calculation model is discussed which permits to approach the experimental heat flux distribution with reasonable accuracy. (authors). 7 figs., 2 appendix., 14 refs
A transient fuel cell model to simulate HTPEM fuel cell impedance spectra
DEFF Research Database (Denmark)
Vang, Jakob Rabjerg; Andreasen, Søren Juhl; Kær, Søren Knudsen
2011-01-01
This paper presents a spatially resolved transient fuel cell model applied to the simulation of high temperature PEM fuel cell impedance spectra. The model is developed using a 2D finite volume method approach. The model is resolved along the channel and across the membrane. The model considers...
Directory of Open Access Journals (Sweden)
Yanli Xin
2016-12-01
Full Text Available This paper presents a comprehensive investigation on high frequency (HF switching transients due to energization of vacuum circuit breakers (VCBs in offshore wind farms (OWFs. This research not only concerns the modeling of main components in collector grids of an OWF for transient analysis (including VCBs, wind turbine transformers (WTTs, submarine cables, but also compares the effectiveness between several mainstream switching overvoltage (SOV protection methods and a new mitigation method called smart choke. In order to accurately reproduce such HF switching transients considering the current chopping, dielectric strength (DS recovery capability and HF quenching capability of VCBs, three models are developed, i.e., a user–defined VCB model, a HF transformer terminal model and a three-core (TC frequency dependent model of submarine cables, which are validated through simulations and compared with measurements. Based on the above models and a real OWF configuration, a simulation model is built and several typical switching transient cases are investigated to analyze the switching transient process and phenomena. Subsequently, according to the characteristics of overvoltages, appropriate parameters of SOV mitigation methods are determined to improve their effectiveness. Simulation results indicate that the user–defined VCB model can satisfactorily simulate prestrikes and the proposed component models display HF characteristics, which are consistent with onsite measurement behaviors. Moreover, the employed protection methods can suppress induced SOVs, which have a steep front, a high oscillation frequency and a high amplitude, among which the smart choke presents a preferable HF damping effect.
DEFF Research Database (Denmark)
Gong, M.; Zhang, Y.; Weschler, Charles J.
2014-01-01
A transient model is developed to predict dermal absorption of gas-phase chemicals via direct air-to-skin-to-blood transport under non-steady-state conditions. It differs from published models in that it considers convective mass-transfer resistance in the boundary layer of air adjacent to the skin....... Results calculated with this transient model are in good agreement with the limited experimental results that are available for comparison. The sensitivity of the modeled estimates to key parameters is examined. The model is then used to estimate air-to-skin-to-blood absorption of six phthalate esters...
International Nuclear Information System (INIS)
Asad, Usman; Tjong, Jimi; Zheng, Ming
2014-01-01
Highlights: • Zero-dimensional EGR model for transient diesel combustion control. • Detailed analysis of EGR effects on intake, cylinder charge and exhaust properties. • Intake oxygen validated as an operating condition-independent measure of EGR. • Quantified EGR effectiveness in terms of NOx emission reduction. • Twin lambda sensor technique for estimation of EGR/in-cylinder parameters. - Abstract: The application of exhaust gas recirculation (EGR) during transient engine operation is a challenging task since small fluctuations in EGR may cause larger than acceptable spikes in NOx/soot emissions or deterioration in the combustion efficiency. Moreover, the intake charge dilution at any EGR ratio is a function of engine load and intake pressure, and typically changes during transient events. Therefore, the management of EGR during transient engine operation or advanced combustion cycles (that are inherently less stable) requires a fundamental understanding of the transient EGR behaviour and its impact on the intake charge development. In this work, a zero-dimensional EGR model is described to estimate the transient (cycle-by-cycle) progression of EGR and the time (engine cycles) required for its stabilization. The model response is tuned to a multi-cylinder engine by using an overall engine system time-constant and shown to effectively track the transient EGR changes. The impact of EGR on the actual air–fuel ratio of the cylinder charge is quantified by defining an in-cylinder excess-air ratio that accounts for the oxygen in the recycled exhaust gas. Furthermore, a twin lambda sensor (TLS) technique is implemented for tracking the intake dilution and in-cylinder excess-air ratio in real-time. The modelling and analysis results are validated against a wide range of engine operations, including transient and steady-state low temperature combustion tests
Transient Model Validation of Fixed-Speed Induction Generator Using Wind Farm Measurements
DEFF Research Database (Denmark)
Rogdakis, Georgios; Garcia-Valle, Rodrigo; Arana Aristi, Iván
2012-01-01
In this paper, an electromagnetic transient model for fixed-speed wind turbines equipped with induction generators is developed and implemented in PSCAD/EMTDC. The model is comprised by: an induction generator, aerodynamic rotor, and a two-mass representation of the shaft system. Model validation...
Aggregated Modelling for Wind Farms for Power System Transient Stability Studies
DEFF Research Database (Denmark)
Liu, Hongzhi; Chen, Zhe
2012-01-01
to detailed modelling that models every wind turbines individually and the interconnections among them. In this paper, three aggregated modelling techniques, namely, multi-machine equivalent aggregation, full aggregation and semi-aggregation are presented for power system transient stability studies based...
Energy Technology Data Exchange (ETDEWEB)
Coragem, Helio Boemer de Oliveira
1980-07-01
A thermohydraulic study of MTR fuel element is presented as a basic requirement for the development of an irradiation facility for testing fuel elements. A computer code named 'Thermo' has been developed for this purpose, which can stimulate different working conditions, such as, cooling, power elements and neutron flux, performing all pertinent thermohydraulic calculations. Thermocouples were used to measure the temperature gradients of the cooling fluid throughout the IEAR-1 reactor core. All experimental data are in good agreement with the theoretical model applied in this work. Finally, a draft of the proposed facility and its safety system is presented. (author)
Wang, Xi; Yang, Bintang; Yu, Hu; Gao, Yulong
2017-04-01
The impulse excitation of mechanism causes transient vibration. In order to achieve adaptive transient vibration control, a method which can exactly model the response need to be proposed. This paper presents an analytical model to obtain the response of the primary system attached with dynamic vibration absorber (DVA) under impulse excitation. The impulse excitation which can be divided into single-impulse excitation and multi-impulse excitation is simplified as sinusoidal wave to establish the analytical model. To decouple the differential governing equations, a transform matrix is applied to convert the response from the physical coordinate to model coordinate. Therefore, the analytical response in the physical coordinate can be obtained by inverse transformation. The numerical Runge-Kutta method and experimental tests have demonstrated the effectiveness of the analytical model proposed. The wavelet of the response indicates that the transient vibration consists of components with multiple frequencies, and it shows that the modeling results coincide with the experiments. The optimizing simulations based on genetic algorithm and experimental tests demonstrate that the transient vibration of the primary system can be decreased by changing the stiffness of the DVA. The results presented in this paper are the foundations for us to develop the adaptive transient vibration absorber in the future.
Static and transient modeling of fast moving ball actuator as a display device
Lee, Jongmo; Yoon, Ho Won; Hong, MunPyo; Jhun, Chul Gyu; Bae, Byung Seong; Han, Seungoh
2016-04-01
FMBA(Fast Moving Ball Actuator), developed as novel electronic-paper display, has already proven its operability and functionality. However, optimization issues related with low operating voltage, high refresh rate, fine pixel and higher display resolution, etc. are still remaining to be improved for a successful commercialization. In order to optimize such issues effectively, static and transient model were developed and verified by comparing the calculated results to the measured. The static model is based on the force balancing equation between the driving and the holding forces while the transient model is developed from Newton's 2nd law by adding the inertia as well as the resistive damping forces caused by the surroundings. With the simplified static model, driving voltage of 30.71 V was obtained, which is reasonably matched to the measured voltage of 40 V. Based on the transient model, also, the transient response of the device can be estimated within reasonable margin. Considering the absence of reliable key parameters of surface roughness, static and dynamic frictional coefficient, and refractive indices, the developed static and transient models account well the experimental results and thus they are expected to contribute further improvements in FMBA.
Nuclear reactors transients identification and classification system
International Nuclear Information System (INIS)
Bianchi, Paulo Henrique
2008-01-01
This work describes the study and test of a system capable to identify and classify transients in thermo-hydraulic systems, using a neural network technique of the self-organizing maps (SOM) type, with the objective of implanting it on the new generations of nuclear reactors. The technique developed in this work consists on the use of multiple networks to do the classification and identification of the transient states, being each network a specialist at one respective transient of the system, that compete with each other using the quantization error, that is a measure given by this type of neural network. This technique showed very promising characteristics that allow the development of new functionalities in future projects. One of these characteristics consists on the potential of each network, besides responding what transient is in course, could give additional information about that transient. (author)
Energy Technology Data Exchange (ETDEWEB)
Caro, R.
1976-07-01
In this report the analysis of neutronics thermohydraulics and shielding of the 10 HWt swimming pool reactor C.E.N.E is included. In each of these chapters is given a short description of the theoretical model used, along with the theoretical versus experimental checking carried out, whenever possible, with the reactors JEN-I and JEN-II of Junta de Energia Nuclear. (Author) 11 refs.
Deshpande, K.; Zettergren, M. D.; Datta-Barua, S.
2017-12-01
Fluctuations in the Global Navigation Satellite Systems (GNSS) signals observed as amplitude and phase scintillations are produced by plasma density structures in the ionosphere. Phase scintillation events in particular occur due to structures at Fresnel scales, typically about 250 meters at ionospheric heights and GNSS frequency. Likely processes contributing to small-scale density structuring in auroral and polar regions include ionospheric gradient-drift instability (GDI) and Kelvin-Helmholtz instability (KHI), which result, generally, from magnetosphere-ionosphere interactions (e.g. reconnection) associated with cusp and auroral zone regions. Scintillation signals, ostensibly from either GDI or KHI, are frequently observed in the high latitude ionosphere and are potentially useful diagnostics of how energy from the transient forcing in the cusp or polar cap region cascades, via instabilities, to small scales. However, extracting quantitative details of instabilities leading to scintillation using GNSS data drastically benefits from both a model of the irregularities and a model of GNSS signal propagation through irregular media. This work uses a physics-based model of the generation of plasma density irregularities (GEMINI - Geospace Environment Model of Ion-Neutral Interactions) coupled to an ionospheric radio wave propagation model (SIGMA - Satellite-beacon Ionospheric-scintillation Global Model of the upper Atmosphere) to explore the cascade of density structures from medium to small (sub-kilometer) scales. Specifically, GEMINI-SIGMA is used to simulate expected scintillation from different instabilities during various stages of evolution to determine features of the scintillation that may be useful to studying ionospheric density structures. Furthermore we relate the instabilities producing GNSS scintillations to the transient space and time-dependent magnetospheric phenomena and further predict characteristics of scintillation in different geophysical
SLOWKIN: a simplified model for the simulation of reactor transients in SLOWPOKE-2
International Nuclear Information System (INIS)
Rozon, D.; Kavih, S.
1997-01-01
This paper will describe the model used to analyse reactor transients in the SLOWPOKE-2 reactor at Polytechnique. The model is intended to simulate reactor transients which will be induced by control rod displacements during commissioning of the new LEU core to be installed in the SLOWPOKE-2 reactor in 1997, in replacement of the original HEU core. A simplified treatment is justified since our objective is mainly to provide a physical interpretation for any difference observed in the transient behaviour of the new core, as opposed to the current HEU core. The SLOWKIN model used point kinetics to predict neutron power with time. The reactor physics codes DRAGON/DONJON were used to provide some reactor physics insight on the strong neutronic/thermalhydraulic coupling in the reactor and to generate the necessary reactivity coefficients to be used in SLOWKIN. (DM)
Impact of Model Detail of Synchronous Machines on Real-time Transient Stability Assessment
DEFF Research Database (Denmark)
Weckesser, Johannes Tilman Gabriel; Jóhannsson, Hjörtur; Østergaard, Jacob
2013-01-01
In this paper, it is investigated how detailed the model of a synchronous machine needs to be in order to assess transient stability using a Single Machine Equivalent (SIME). The results will show how the stability mechanism and the stability assessment are affected by the model detail. In order ...
Transient combustion modeling of an oscillating lean premixed methane/air flam
Withag, J.A.M.; Kok, Jacobus B.W.; Syed, Khawar
2009-01-01
The main objective of the present study is to demonstrate accurate low frequency transient turbulent combustion modeling. For accurate flame dynamics some improvements were made to the standard TFC combustion model for lean premixed combustion. With use of a 1D laminar flamelet code, predictions
Equilibrium and kinetic models for colloid release under transient solution chemistry conditions
We present continuum models to describe colloid release in the subsurface during transient physicochemical conditions. Our modeling approach relates the amount of colloid release to changes in the fraction of the solid surface area that contributes to retention. Equilibrium, kinetic, equilibrium and...
Yavorovsky, Y. V.; Romanov, D. O.; Sennikov, V. V.; Sultanguzin, I. A.; Malenkov, A. S.; Zhigulina, E. V.; Lulaev, A. V.
2017-11-01
Low pressure district heating systems have low breakdown rate and allow decreasing heat carrier transportation energy cost by means of avoiding throttling of available water head. One of the basic elements of such systems is thermohydraulic dispatcher (THD) which separates primary circuit and secondary circuit (or circuits) that allows avoiding mutual hydraulic influence of circuits on each other and reducing water heads of network pumps. Analysis of perspective ways of using thermohydraulic dispatcher (THD) in low temperature district heating systems is made in this paper. Principal scheme and mathematical model of low pressure and temperature district heating system based on CHP generation with THD are considered. The main advantages of such systems are pointed out.
Mathematical modeling of an industrial firm in transient economy
Directory of Open Access Journals (Sweden)
I. G. Pospelov
2001-01-01
Full Text Available A behavior model of an industrial firm with a possibility of merchandising and purchasing of production on two channels, traditional and commercial, is given. The former is stable, but less profitable due to non-payments. The latter is profitable, but risky. The model describes different modes of firm operation depending on economic parameters. In such a model, firms have incentives to integrate in financial and industrial groups.
Modeling auditory evoked brainstem responses to transient stimuli
DEFF Research Database (Denmark)
Rønne, Filip Munch; Dau, Torsten; Harte, James
2012-01-01
A quantitative model is presented that describes the formation of auditory brainstem responses (ABR) to tone pulses, clicks and rising chirps as a function of stimulation level. The model computes the convolution of the instantaneous discharge rates using the “humanized” nonlinear auditory......-nerve (AN) model of Zilany and Bruce (2007) and an empirically derived unitary response function which is assumed to reflect contributions from different cell populations within the auditory brainstem, recorded at a given pair of electrodes on the scalp. It is shown that the model accounts for the decrease...
Models for simulation of transient events in a wind farm
DEFF Research Database (Denmark)
Sørensen, P.; Hansen, A. D.; Bindner, H.
2002-01-01
with different tools with each other and with measurements. This present paper limits to describe the models including our reflections on which effects we expect to be essential for obtaining useful simulation results. The models comprise the substation, where the wind farm is connected, the power collection...
Numerical modeling for transient electromagnetic responses on a 2.5-dimension model
Chang, Y.; Xiao, M.
2009-12-01
The transient electromagnetic method (TEM) is widely used in mineral and oil exploration as well as water exploration, engineering and environment geophysics exploration. Numerical modeling for transient electromagnetic responses of a 3-D source over 2-D geoelectric model is so-called 2.5-D problem, in which the conductivity σ, dielectric permittivity ɛ and magnetic permeability μ of the 3-D geoelectric model are invariant along the strike direction. The 3-D problem can be converting into 2-D problem in Fourier domain by applying the Fourier transform to the electromagnetic field with respect to the strike direction. Thus the computing time is reduced compare with the real 3-D problem. And it is more accurate than pure 2-D problem since the source are three-dimensional. This paper deals with the forward numerical modeling for central-loop electromagnetic method on a 2.5-D problem using finite element method. Basic procedures of the 2.5-D forward modeling algorithmare: firstly, carry out the Laplace transform and the Fourier transform to the partial differential equations of E and H vectors in the 3-D spatial field, converting the problem into 2-D partial differential equations for scalar E and H; secondly, turn 2-D boundary-value problems into 2-D problem of calculus of variations, and use finite element technique to seek for numerical solution; and thirdly, take the inverse Fourier transform and the inverse Laplace transform to obtain transient responses of the electric field. In order to check up the algorithm’s validity, we apply it to compute the three-layer models (H-type section and K-type section) and four-layer model (HK-type section), and compare with corresponding analytical solution on the layered earth. Relative errors are less than 3%. In addition, we implement computation for several typical 2-D plate models. Results show the algorithm in this paper is valid. Main characteristics of the algorithm established in this paper are as following: (1
Transient electro-thermal modeling of bipolar power semiconductor devices
Gachovska, Tanya Kirilova; Du, Bin
2013-01-01
This book presents physics-based electro-thermal models of bipolar power semiconductor devices including their packages, and describes their implementation in MATLAB and Simulink. It is a continuation of our first book Modeling of Bipolar Power Semiconductor Devices. The device electrical models are developed by subdividing the devices into different regions and the operations in each region, along with the interactions at the interfaces, are analyzed using the basic semiconductor physics equations that govern device behavior. The Fourier series solution is used to solve the ambipolar diffusio
Predictive modeling of transient storage and nutrient uptake: Implications for stream restoration
O'Connor, Ben L.; Hondzo, Miki; Harvey, Judson W.
2010-01-01
This study examined two key aspects of reactive transport modeling for stream restoration purposes: the accuracy of the nutrient spiraling and transient storage models for quantifying reach-scale nutrient uptake, and the ability to quantify transport parameters using measurements and scaling techniques in order to improve upon traditional conservative tracer fitting methods. Nitrate (NO3–) uptake rates inferred using the nutrient spiraling model underestimated the total NO3– mass loss by 82%, which was attributed to the exclusion of dispersion and transient storage. The transient storage model was more accurate with respect to the NO3– mass loss (±20%) and also demonstrated that uptake in the main channel was more significant than in storage zones. Conservative tracer fitting was unable to produce transport parameter estimates for a riffle-pool transition of the study reach, while forward modeling of solute transport using measured/scaled transport parameters matched conservative tracer breakthrough curves for all reaches. Additionally, solute exchange between the main channel and embayment surface storage zones was quantified using first-order theory. These results demonstrate that it is vital to account for transient storage in quantifying nutrient uptake, and the continued development of measurement/scaling techniques is needed for reactive transport modeling of streams with complex hydraulic and geomorphic conditions.
Predictive Modeling of Transient Storage and Nutrient Uptake: Implications for Stream Restoration
Energy Technology Data Exchange (ETDEWEB)
O’Connor, Ben L.; Hondzo, Miki; Harvey, Judson W.
2010-12-01
This study examined two key aspects of reactive transport modeling for stream restoration purposes: the accuracy of the nutrient spiraling and transient storage models for quantifying reach-scale nutrient uptake, and the ability to quantify transport parameters using measurements and scaling techniques in order to improve upon traditional conservative tracer fitting methods. Nitrate (NO-3)(NO3-) uptake rates inferred using the nutrient spiraling model underestimated the total NO-3NO3- mass loss by 82%, which was attributed to the exclusion of dispersion and transient storage. The transient storage model was more accurate with respect to the NO-3NO3- mass loss (±20%) and also demonstrated that uptake in the main channel was more significant than in storage zones. Conservative tracer fitting was unable to produce transport parameter estimates for a riffle-pool transition of the study reach, while forward modeling of solute transport using measured/scaled transport parameters matched conservative tracer breakthrough curves for all reaches. Additionally, solute exchange between the main channel and embayment surface storage zones was quantified using first-order theory. These results demonstrate that it is vital to account for transient storage in quantifying nutrient uptake, and the continued development of measurement/scaling techniques is needed for reactive transport modeling of streams with complex hydraulic and geomorphic conditions.
Energy Technology Data Exchange (ETDEWEB)
Moura, Fabricio A.M.; Camacho, Jose R. [Universidade Federal de Uberlandia, School of Electrical Engineering, Rural Electricity and Alternative Sources Lab, PO Box 593, 38400.902 Uberlandia, MG (Brazil); Chaves, Marcelo L.R.; Guimaraes, Geraldo C. [Universidade Federal de Uberlandia, School of Electrical Engineering, Power Systems Dynamics Group, PO Box: 593, 38400.902 Uberlandia, MG (Brazil)
2010-02-15
The main task in this paper is to present a performance analysis of a distribution network in the presence of an independent power producer (IP) synchronous generator with its speed governor and voltage regulator modeled using TACS -Transient Analysis of Control Systems, for distributed generation studies. Regulators were implemented through their transfer functions in the S domain. However, since ATP-EMTP (Electromagnetic Transient Program) works in the time domain, a discretization is necessary to return the TACS output to time domain. It must be highlighted that this generator is driven by a steam turbine, and the whole system with regulators and the equivalent of the power authority system at the common coupling point (CCP) are modeled in the ''ATP-EMTP -Alternative Transients Program''. (author)
Characterizing and Modeling Transient Photoconductivity in Amorphous In-Ga-Zn-O Thin Films
Luo, Jiajun
capturing the initial transients in all samples with high time-resolution. While many previous reports analyzed non-exponential transients by assuming the transients to follow certain function forms, this work introduces a distributed time constant analysis that can be applied to any relaxation response. By transferring the transient response as a function of log-scale time, any relaxation response can be represented as the convolution of a time constant distribution. Therefore, the minimum measurement duration to correctly characterize the response is identified as the inflection point on a semi-log plot versus log-scale time. With the visual features on the semi-log plot, a method to estimate the entire distribution spectrum is also introduced. This allows reasonable estimation of the asymptotic response value, which cannot be directly measured in systems involving large time constants. In the a-IGZO system, the transient photoresponse fits best to a stretched exponential function. This work discusses the applications and properties of the stretched exponential function. Two contrasting physical explanations to the stretched exponential behavior, the distributed activation energy model and the continuous-time random walk model, are discussed. While the distributed activation energy model fails to explain why an asymmetric activation energy distribution appears universally in many distinct systems, the continuous-time random walk model explains the stretched exponential behavior as arising from an exponential tail of activation energies, which fits the disordered nature of amorphous materials. Based on the continuous-time random walk model, a microscopic photoresponse mechanism compatible with the observed stretched exponential transient is proposed for the a-IGZO system.
Experimental Verification of the Transient Model in an Enrichment Circuit
International Nuclear Information System (INIS)
Fernandino, Maria; Brasnarof, Daniel; Delmastro, Dario
2003-01-01
In the present work an experimental closed loop representing a single stage of an uranium gaseous diffusion enrichment cascade is described, loop that is used to experimentally validate an analytical model that describes the dynamics inside such a loop.The conditions established inside the experimental loop after a few working hours were reproduced by the analytical model, leaving the slower thermal phenomena taking place for future studies.Two kinds of perturbations were experimentally introduced: a change in the range of operation of one of the compressors and the addition of mass into the loop.Numerical and experimental results are compared and presented in this work. The analytical model proposed was verified against these two changes, with very good agreement in the time response and measured values.This analytical model allows us to determine the characteristic time response of the system
Transient thermal modelling of ball bearing using finite element method
Sibilli, Thierry; Igie, Uyioghosa
2017-01-01
Gas turbines are fitted with rolling element bearings, which transfer loads and supports the shafts. The interaction between the rotating and stationary parts in the bearing causes a conversion of some of the power into heat, influencing the thermal behaviour of the entire bearing chamber. To improve thermal modelling of bearing chambers, this work focused on modelling of the heat generated and dissipated around the bearings, in terms of magnitude and location, and the interaction with the co...
Axisymmetric transient modelling of a suction caisson in dense sand
Cerfontaine, Benjamin; Levasseur, Séverine; Collin, Frédéric; Charlier, Robert
2014-01-01
Suction caisson are hollow cylinders open towards the bottom that are currently used as anchors for deep water offshore facilities. They recently turned out to be advantageously exploited as foundation for offshore wind turbines in shallow water (Senders 2009). The Prevost model for cohesionless soils (Prevost 1985) is currently used for the modelling of their cyclic behaviour. It’s able to reproduce plastic deformation in both loading and unloading, contractancy of the soil and p...
Modelling and transient stability of large wind farms
DEFF Research Database (Denmark)
Akhmatov, Vladislav; Knudsen, Hans; Nielsen, Arne Hejde
2003-01-01
by a physical model of grid-connected windmills. The windmill generators ate conventional induction generators and the wind farm is ac-connected to the power system. Improvements-of short-term voltage stability in case of failure events in the external power system are treated with use of conventional generator...... technology. This subject is treated as a parameter study with respect to the windmill electrical and mechanical parameters and with use of control strategies within the conventional generator technology. Stability improvements on the wind farm side of the connection point lead to significant reduction......The paper is dealing-with modelling and short-term Voltage stability considerations of large wind farms. A physical model of a large offshore wind farm consisting of a large number of windmills is implemented in the dynamic simulation tool PSS/E. Each windmill in the wind farm is represented...
BR2 reactor core steady state transient modeling
International Nuclear Information System (INIS)
Makarenko, A.; Petrova, T.
2000-01-01
A coupled neutronics/hydraulics/heat-conduction model of the BR2 reactor core is under development at SCK-CEN. The neutron transport phenomenon has been implemented as steady state and time dependent nodal diffusion. The non-linear heat conduction equation in-side fuel elements is solved with a time dependent finite element method. To allow coupling between functional modules and to simulate subcooled regimes, a simple single-phase hydraulics has been introduced, while the two-phase hydraulics is under development. Multiple tests, general benchmark cases as well as calculation/experiment comparisons demonstrated a good accuracy of both neutronic and thermal hydraulic models, numerical reliability and full code portability. A refinement methodology has been developed and tested for better neutronic representation in hexagonal geometry. Much effort is still needed to complete the development of an extended cross section library with kinetic data and two-phase flow representation. (author)
Transient Changes in Molecular Geometries and How to Model Them
DEFF Research Database (Denmark)
Dohn, Asmus Ougaard
by the solvent. The simulations has also served as benchmarks on this newly developed implementation First, we establish that the chosen model provides a trustworthy description of the systems; since transition metals are heavier than purely organic systems, we test a range of approximations to relativistic...... changes in molecular structure, vibrations and solvation. In this thesis, we employ our recently developed Quantum-/Molecular -Mechanical Direct Dynamics method to do simulations of transition metal complexes in solution, to uncover their energy dissipation channels, and how they are affected...... quantum mechanic descriptions, to ascertain the accuracy of the quantum model in the Direct Dynamics simulations. We then test - and improve - the framework for calculating the experimental X-ray Diffuse Scattering Difference signal from (any kind of) Molecular Dynamics (MD) simulations. Comparisons...
Model for transient simulation in a PWR steam circuit
International Nuclear Information System (INIS)
Mello, L.A. de.
1982-11-01
A computer code (SURF) was developed and used to simulate pressure losses along the tubes of the main steam circuit of a PWR nuclear power plant, and the steam flow through relief and safety valves when pressure reactors its thresholds values. A thermodynamic model of turbines (high and low pressure), and its associated components are simulated too. The SURF computer code was coupled to the GEVAP computer code, complementing the simulation of a PWR nuclear power plant main steam circuit. (Author) [pt
International Nuclear Information System (INIS)
Limnios, N.
1983-01-01
The APACHE code (Automatic Analysis of Failures of Hydraulic and Thermohydraulic Circuits more particularly of Water) situates in an important program of computer codes development in the field of studies on reliability and safety of systems in nuclear power plants. APACHE is an automatic generation code of failure pattern and of their effects. After a presentation of the theoretical basis, the methodological principles of the theory of networks are developed. Then, the model of the code is developed: model of individual behavior of each classical model component of normal behavior and model of failure pattern with specifications. The global model of hydraulic systems and the resolution systems are then developed. More particularly, some aspects of the theory of graphs, and the algorithms developed for the automatic construction of the equation systems and especially the algorithm of the research of meshes are presented. The computer aspect of the code and the programming of the code with its limits and some specifications are described. The practical aspect of utilization is finally presented [fr
International Nuclear Information System (INIS)
2002-11-01
This report is a summary of the work performed under a co-ordinated research project (CRP) entitled Harmonization and Validation of Fast Reactor Thermomechanical and Thermo-Hydraulic Codes and Relations using Experimental Data. The project was organized by the IAEA on the recommendation of the IAEA's Technical Working Group on Fast Reactors (TWGFR) and carried out from 1996 to 1999. In certain conditions, temperature fluctuations in the coolant close to a structure caused by thermal striping can lead to thermomechanical damage to structures. Institutes from a number of Member States have an interest in improving engineering tools and prediction techniques concerning the characterization of the thermal striping effects, in which numerical models have a major role. Therefore, the IAEA through its advanced reactor technology development programme supports the activities of Member States in this area. Design analyses applied to thermal striping phenomena need to be firmly established, and the CRP provided a valuable tool in assessing their reliability. Eleven institutes from France, India, Italy, Japan, the Republic of Korea, the Russian Federation and the United Kingdom co-operated in this CRP. This report documents the CRP activities, provides the main results and recommendations and includes the work carried out by the research groups at the participating institutes within the CRP on harmonization and validation of fast reactor thermomechanical and thermohydraulic codes and relations
International Nuclear Information System (INIS)
Kim, Jong Tae; Kim, Sang Baik; Kim, Hee Dong
2002-03-01
LILAC-meltpool has been developed to study thermo-hydraulic behavior of molten pool and thermal behavior of vessel wall during severe accident. To validate LILAC-meltpool code several two and three dimensional thermo-hydraulic problems were selected and solved. The benchmark problems have experimental results or verified numerical results. Through the validation it was found that LILAC-meltpool reproduces very accurate numerical results. Two-layered semicircular pool was solved to study thermal and hydraulic characteristics of pool stratification. The LAVA experiment using alumina/ferrite molten pool was calculated and compared with computed results. Cooling of alumina/ferrite two-layered pool was affected by stratification. In the numerical results temperature of vessel inner was highest at a location below the interface. Crust was developed from upper surface and lower outer surface, but in the area near the interface corium simulant existed as molten state for long time. LAVA-4 experiment was studied using gap-cooling model in LILAC-meltpool code. Temperature increase of LAVA vessel after alumina melt relocation was strongly dependent on gap formation mechanism. Calculated cooling rates of the vessel were very similar to experimental results. For LAVA experiments which do not have heat generation coolant penetrates easily into a gap and it is found that gap-cooling is very effective for cooling of vessel, but it is thought that coolant penetration could be limited near upper part of gap because of decay heat and high temperature of corium crust
A large deviations approach to the transient of the Erlang loss model
Mandjes, M.R.H.; Ridder, Annemarie
2001-01-01
This paper deals with the transient behavior of the Erlang loss model. After scaling both arrival rate and number of trunks, an asymptotic analysis of the blocking probability is given. Apart from that, the most likely path to blocking is given. Compared to Shwartz and Weiss [Large Deviations for
Two-dimensional and transient thermal model of the continuous tape laying process
Skandali, M.; Jansen, K.M.B.; Koussios, S.; Sinke, J.; Benedictus, R.
2015-01-01
The purpose of this study is to simulate the two-dimensional, transient and continuous heat transfer during the thermoset Automated Tape Laying (ATL) process. The heat transfer analysis is coupled with a cure kinetics model of the thermoset prepreg tapes used for the process. Unlike most studies,
Transient modelling of loss and thermal dynamics in power semiconductor devices
DEFF Research Database (Denmark)
Ma, Ke; Yang, Yongheng; Blaabjerg, Frede
2014-01-01
. It is well understood that the loading of power devices are disturbed by many factors of the converter system like grid, control, environment, etc., which emerge at various time-constants. However, the corresponding thermal response to these disturbances is still unclear, especially the transient behaviors...... on the proposed models, the bandwidths of the loss or thermal response to major disturbances in the converter system can be analytically mapped, enabling more advanced tools to investigate the transient characteristics of loss and thermal dynamics in the power electronics devices....
Lumped-parameter fuel rod model for rapid thermal transients
International Nuclear Information System (INIS)
Perkins, K.R.; Ramshaw, J.D.
1975-07-01
The thermal behavior of fuel rods during simulated accident conditions is extremely sensitive to the heat transfer coefficient which is, in turn, very sensitive to the cladding surface temperature and the fluid conditions. The development of a semianalytical, lumped-parameter fuel rod model which is intended to provide accurate calculations, in a minimum amount of computer time, of the thermal response of fuel rods during a simulated loss-of-coolant accident is described. The results show good agreement with calculations from a comprehensive fuel-rod code (FRAP-T) currently in use at Aerojet Nuclear Company
A simple heat transfer model for a heat flux plate under transient conditions
International Nuclear Information System (INIS)
Ryan, L.; Dale, J.D.
1985-01-01
Heat flux plates are used for measuring rates of heat transfer through surfaces under steady state and transient conditions. Their usual construction is to have a resistive layer bounded by thermopiles and an exterior layer for protection. If properly designed and constructed a linear relationship between the thermopile generated voltage and heat flux results and calibration under steady state conditions is straight forward. Under transient conditions however the voltage output from a heat flux plate cannot instantaneously follow the heat flux because of the thermal capacitance of the plate and the resulting time lag. In order to properly interpret the output of a heat flux plate used under transient conditions a simple heat transfer model was constructed and tested. (author)
Modelling transient 3D multi-phase criticality in fluidised granular materials - the FETCH code
International Nuclear Information System (INIS)
Pain, C.C.; Gomes, J.L.M.A.; Eaton, M.D.; Ziver, A.K.; Umpleby, A.P.; Oliveira, C.R.E. de; Goddard, A.J.H.
2003-01-01
The development and application of a generic model for modelling criticality in fluidised granular materials is described within the Finite Element Transient Criticality (FETCH) code - which models criticality transients in spatial and temporal detail from fundamental principles, as far as is currently possible. The neutronics model in FETCH solves the neutron transport in full phase space with a spherical harmonics angle of travel representation, multi-group in neutron energy, Crank Nicholson based in time stepping, and finite elements in space. The fluids representation coupled with the neutronics model is a two-fluid-granular-temperature model, also finite element fased. A separate fluid is used to represent the liquid/vapour gas and the solid fuel particle phases, respectively. Particle-particle, particle-wall interactions are modelled using a kinetic theory approach on an analogy between the motion of gas molecules subject to binary collisions and granular flows. This model has been extensively validated by comparison with fluidised bed experimental results. Gas-fluidised beds involve particles that are often extremely agitated (measured by granular temperature) and can thus be viewed as a particularly demanding application of the two-fluid model. Liquid fluidised systems are of criticality interest, but these can become demanding with the production of gases (e.g. radiolytic and water vapour) and large fluid/particle velocities in energetic transients. We present results from a test transient model in which fissile material ( 239 Pu) is presented as spherical granules subsiding in water, located in a tank initially at constant temperature and at two alternative over-pressures in order to verify the theoretical model implemented in FETCH. (author)
Modeling transient response of forests to climate change.
Dale, Virginia H; Tharp, M Lynn; Lannom, Karen O; Hodges, Donald G
2010-03-15
Our hypothesis is that a high diversity of dominant life forms in Tennessee forests conveys resilience to disturbance such as climate change. Because of uncertainty in climate change and their effects, three climate change scenarios for 2030 and 2080 from three General Circulation Models (GCMs) were used to simulate a range of potential climate conditions for the state. These climate changes derive from the Intergovernmental Panel on Climate Change (IPCC) "A1B" storyline that assumes rapid global economic growth. The precipitation and temperature projections from the three GCMs for 2030 and 2080 were related to changes in five ecological provinces using the monthly record of temperature and precipitation from 1980 to 1997 for each 1km cell across the state as aggregated into the provinces. Temperatures are projected to increase in all ecological provinces in all months for all three GCMs for both 2030 and 2080. Precipitation differences from the long-term average are more complex but less striking. The forest ecosystem model LINKAGES was used to simulate conditions for five ecological provinces from 1989 to 2300. Average output projects changes in tree diversity and species composition in all ecological provinces in Tennessee with the greatest changes in the Southern Mixed Forest province. Projected declines in total tree biomass are followed by biomass recovery as species replacement occurs in stands. The Southern Mixed Forest province results in less diversity in dominant trees as well as lower overall biomass than projections for the other four provinces. The biomass and composition changes projected in this study differ from forest dynamics expected without climate change. These results suggest that biomass recovery following climate change is linked to dominant tree diversity in the southeastern forest of the US. The generality of this observation warrants further investigation, for it relates to ways that forest management may influence climate change effects.
ITER transient consequences for material damage: modelling versus experiments
Bazylev, B.; Janeschitz, G.; Landman, I.; Pestchanyi, S.; Loarte, A.; Federici, G.; Merola, M.; Linke, J.; Zhitlukhin, A.; Podkovyrov, V.; Klimov, N.; Safronov, V.
2007-03-01
Carbon-fibre composite (CFC) and tungsten macrobrush armours are foreseen as PFC for the ITER divertor. In ITER the main mechanisms of metallic armour damage remain surface melting and melt motion erosion. In the case of CFC armour, due to rather different heat conductivities of CFC fibres a noticeable erosion of the PAN bundles may occur at rather small heat loads. Experiments carried out in the plasma gun facilities QSPA-T for the ITER like edge localized mode (ELM) heat load also demonstrated significant erosion of the frontal and lateral brush edges. Numerical simulations of the CFC and tungsten (W) macrobrush target damage accounting for the heat loads at the face and lateral brush edges were carried out for QSPA-T conditions using the three-dimensional (3D) code PHEMOBRID. The modelling results of CFC damage are in a good qualitative and quantitative agreement with the experiments. Estimation of the droplet splashing caused by the Kelvin-Helmholtz (KH) instability was performed.
ITER transient consequences for material damage: modelling versus experiments
International Nuclear Information System (INIS)
Bazylev, B; Janeschitz, G; Landman, I; Pestchanyi, S; Loarte, A; Federici, G; Merola, M; Linke, J; Zhitlukhin, A; Podkovyrov, V; Klimov, N; Safronov, V
2007-01-01
Carbon-fibre composite (CFC) and tungsten macrobrush armours are foreseen as PFC for the ITER divertor. In ITER the main mechanisms of metallic armour damage remain surface melting and melt motion erosion. In the case of CFC armour, due to rather different heat conductivities of CFC fibres a noticeable erosion of the PAN bundles may occur at rather small heat loads. Experiments carried out in the plasma gun facilities QSPA-T for the ITER like edge localized mode (ELM) heat load also demonstrated significant erosion of the frontal and lateral brush edges. Numerical simulations of the CFC and tungsten (W) macrobrush target damage accounting for the heat loads at the face and lateral brush edges were carried out for QSPA-T conditions using the three-dimensional (3D) code PHEMOBRID. The modelling results of CFC damage are in a good qualitative and quantitative agreement with the experiments. Estimation of the droplet splashing caused by the Kelvin-Helmholtz (KH) instability was performed
Nonlinear Modeling of Forced Magnetic Reconnection with Transient Perturbations
Beidler, Matthew T.; Callen, James D.; Hegna, Chris C.; Sovinec, Carl R.
2017-10-01
Externally applied 3D magnetic fields in tokamaks can penetrate into the plasma and lead to forced magnetic reconnection, and hence magnetic islands, on resonant surfaces. Analytic theory has been reasonably successful in describing many aspects of this paradigm with regard to describing the time asymptotic-steady state. However, understanding the nonlinear evolution into a low-slip, field-penetrated state, especially how MHD events such as sawteeth and ELMs precipitate this transition, is in its early development. We present nonlinear computations employing the extended-MHD code NIMROD, building on previous work by incorporating a temporally varying external perturbation as a simple model for an MHD event that produces resonant magnetic signals. A parametric series of proof-of-principle computations and accompanying analytical theory characterize the transition into a mode-locked state with an emphasis on detailing the temporal evolution properties. Supported by DOE OFES Grants DE-FG02-92ER54139, DE-FG02-86ER53218, and the U.S. DOE FES Postdoctoral Research program administered by ORISE and managed by ORAU under DOE contract DE-SC0014664.
Hu, Guilin; Fan, Jianren
The proton exchange membrane fuel cell (PEMFC) has become a promising candidate for the power source of electrical vehicles because of its low pollution, low noise and especially fast startup and transient responses at low temperatures. A transient, three-dimensional, non-isothermal and single-phase mathematical model based on computation fluid dynamics has been developed to describe the transient process and the dynamic characteristics of a PEMFC with a serpentine fluid channel. The effects of water phase change and heat transfer, as well as electrochemical kinetics and multicomponent transport on the cell performance are taken into account simultaneously in this comprehensive model. The developed model was employed to simulate a single laboratory-scale PEMFC with an electrode area about 20 cm 2. The dynamic behavior of the characteristic parameters such as reactant concentration, pressure loss, temperature on the membrane surface of cathode side and current density during start-up process were computed and are discussed in detail. Furthermore, transient responses of the fuel cell characteristics during step changes and sinusoidal changes in the stoichiometric flow ratio of the cathode inlet stream, cathode inlet stream humidity and cell voltage are also studied and analyzed and interesting undershoot/overshoot behavior of some variables was found. It was also found that the startup and transient response time of a PEM fuel cell is of the order of a second, which is similar to the simulation results predicted by most models. The result is an important guide for the optimization of PEMFC designs and dynamic operation.
STEADY STATE MODELING OF THE MINIMUM CRITICAL CORE OF THE TRANSIENT REACTOR TEST FACILITY
Energy Technology Data Exchange (ETDEWEB)
Anthony L. Alberti; Todd S. Palmer; Javier Ortensi; Mark D. DeHart
2016-05-01
With the advent of next generation reactor systems and new fuel designs, the U.S. Department of Energy (DOE) has identified the need for the resumption of transient testing of nuclear fuels. The DOE has decided that the Transient Reactor Test Facility (TREAT) at Idaho National Laboratory (INL) is best suited for future testing. TREAT is a thermal neutron spectrum, air-cooled, nuclear test facility that is designed to test nuclear fuels in transient scenarios. These specific scenarios range from simple temperature transients to full fuel melt accidents. DOE has expressed a desire to develop a simulation capability that will accurately model the experiments before they are irradiated at the facility. It is the aim for this capability to have an emphasis on effective and safe operation while minimizing experimental time and cost. The multi physics platform MOOSE has been selected as the framework for this project. The goals for this work are to identify the fundamental neutronics properties of TREAT and to develop an accurate steady state model for future multiphysics transient simulations. In order to minimize computational cost, the effect of spatial homogenization and angular discretization are investigated. It was found that significant anisotropy is present in TREAT assemblies and to capture this effect, explicit modeling of cooling channels and inter-element gaps is necessary. For this modeling scheme, single element calculations at 293 K gave power distributions with a root mean square difference of 0.076% from those of reference SERPENT calculations. The minimum critical core configuration with identical gap and channel treatment at 293 K resulted in a root mean square, total core, radial power distribution 2.423% different than those of reference SERPENT solutions.
Thermohydraulic design of saturated temperature capsule for IASCC irradiation test
International Nuclear Information System (INIS)
Ide, Hiroshi; Matsui, Yoshinori; Itabashi, Yukio
2002-10-01
An advanced water chemistry controlled irradiation research device is being developed in JAERI, to perform irradiation tests for irradiation assisted stress corrosion cracking (IASCC) research concerned with aging of LWR. This device enables the irradiation tests under the water chemistry condition and the temperature, which simulate the conditions for BWR core internals. The advanced water chemistry controlled irradiation research device is composed of saturated temperature capsule inserted into the JMTR core and the water chemistry control unit installed in the reactor building. Regarding the saturated temperature capsule, the Thermohydraulic design of capsule structure was done, aimed at controlling the specimen's temperature, feeding water velocity on specimen's surface to the environment of BWR nearer. As the result of adopting the new capsule structure based on the design study, it was found out that feeding water velocity at the surface of specimen's is increased to about 10 times as much as before, and nuclear heat generated in the capsule components can be removed safely even in the abnormal event such as the case of loss of feeding water. (author)
Thermohydraulic design of saturated temperature capsule for IASCC irradiation test
Energy Technology Data Exchange (ETDEWEB)
Ide, Hiroshi; Matsui, Yoshinori; Itabashi, Yukio [Japan Atomic Energy Research Inst., Oarai, Ibaraki (Japan). Oarai Research Establishment] [and others
2002-10-01
An advanced water chemistry controlled irradiation research device is being developed in JAERI, to perform irradiation tests for irradiation assisted stress corrosion cracking (IASCC) research concerned with aging of LWR. This device enables the irradiation tests under the water chemistry condition and the temperature, which simulate the conditions for BWR core internals. The advanced water chemistry controlled irradiation research device is composed of saturated temperature capsule inserted into the JMTR core and the water chemistry control unit installed in the reactor building. Regarding the saturated temperature capsule, the Thermohydraulic design of capsule structure was done, aimed at controlling the specimen's temperature, feeding water velocity on specimen's surface to the environment of BWR nearer. As the result of adopting the new capsule structure based on the design study, it was found out that feeding water velocity at the surface of specimen's is increased to about 10 times as much as before, and nuclear heat generated in the capsule components can be removed safely even in the abnormal event such as the case of loss of feeding water. (author)
International Nuclear Information System (INIS)
Crosby, Tamer; Ghoniem, Nasr M.
2013-01-01
A combination of transient heating and bombardment by helium and hydrogen atoms has been experimentally proven to lead to severe surface and sub-surface damage. We developed a computational model to determine the relationship between the thermomechanical loading conditions and the onset of damage and failure of tungsten surfaces. The model is based on a thermoelasticity fracture damage approach that was developed using the phase field method. The model simulates the distribution of helium bubbles inside the grains and on grain boundaries using space-dependent rate theory. In addition, the model is coupled with a transient heat conduction analysis for temperature distributions inside the material. The results show the effects of helium bubbles on reducing tungsten surface energy. Further, a temperature gradient in the material equals to 10 K/μm, resulted in deep cracks propagating from the tungsten surface
Transient thermal hydraulic modeling and analysis of ITER divertor plate system
International Nuclear Information System (INIS)
El-Morshedy, Salah El-Din; Hassanein, Ahmed
2009-01-01
A mathematical model has been developed/updated to simulate the steady state and transient thermal-hydraulics of the International Thermonuclear Experimental Reactor (ITER) divertor module. The model predicts the thermal response of the armour coating, divertor plate structural materials and coolant channels. The selected heat transfer correlations cover all operating conditions of ITER under both normal and off-normal situations. The model also accounts for the melting, vaporization, and solidification of the armour material. The developed model is to provide a quick benchmark of the HEIGHTS multidimensional comprehensive simulation package. The present model divides the coolant channels into a specified axial regions and the divertor plate into a specified radial zones, then a two-dimensional heat conduction calculation is created to predict the temperature distribution for both steady and transient states. The model is benchmarked against experimental data performed at Sandia National Laboratory for both bare and swirl tape coolant channel mockups. The results show very good agreements with the data for steady and transient states. The model is then used to predict the thermal behavior of the ITER plasma facing and structural materials due to plasma instability event where 60 MJ/m 2 plasma energy is deposited over 500 ms. The results for ITER divertor response is analyzed and compared with HEIGHTS results.
Transient thermal hydraulic modeling and analysis of ITER divertor plate system
Energy Technology Data Exchange (ETDEWEB)
El-Morshedy, Salah El-Din [Argonne National Laboratory, Argonne, IL (United States); Atomic Energy Authority, Cairo (Egypt)], E-mail: selmorshedy@etrr2-aea.org.eg; Hassanein, Ahmed [Purdue University, West Lafayette, IN (United States)], E-mail: hassanein@purdue.edu
2009-12-15
A mathematical model has been developed/updated to simulate the steady state and transient thermal-hydraulics of the International Thermonuclear Experimental Reactor (ITER) divertor module. The model predicts the thermal response of the armour coating, divertor plate structural materials and coolant channels. The selected heat transfer correlations cover all operating conditions of ITER under both normal and off-normal situations. The model also accounts for the melting, vaporization, and solidification of the armour material. The developed model is to provide a quick benchmark of the HEIGHTS multidimensional comprehensive simulation package. The present model divides the coolant channels into a specified axial regions and the divertor plate into a specified radial zones, then a two-dimensional heat conduction calculation is created to predict the temperature distribution for both steady and transient states. The model is benchmarked against experimental data performed at Sandia National Laboratory for both bare and swirl tape coolant channel mockups. The results show very good agreements with the data for steady and transient states. The model is then used to predict the thermal behavior of the ITER plasma facing and structural materials due to plasma instability event where 60 MJ/m{sup 2} plasma energy is deposited over 500 ms. The results for ITER divertor response is analyzed and compared with HEIGHTS results.
Thermo-hydraulic consequence of pressure suppression containment vessel during blowdown, 2
International Nuclear Information System (INIS)
Aya, Izuo; Nariai, Hideki; Kobayashi, Michiyuki
1980-01-01
As a part of the safety research works for the integral-type marine reactor, an analytical code SUPPAC-2V was developed to simulate the thermo-hydraulic consequence of a pressure suppression containment system during blowdown and the code was applied to the Model Experimental Facility of the Safety of Integral Type Marine Reactors (explained already in Part 1). SUPPAC-2V is much different from existing codes in the following points. A nonhomogeneous model for the gaseous region in the drywell, a new correlation for condensing heat transfer coefficient at drywell wall based on existing data and approximation of air bubbles in wetwell water by one dimensional bubble rising model are adopted in this code. In comparing calculational results with experimental results, values of predominant input parameters were evaluated and discussed. Moreover, the new code was applied also to the NSR-7 marine reactor, conceptually designed at the Shipbuilding Research Association in Japan, of which suppression system had been already analysed by CONTEMPT-PS. (author)
Simulation model of a transient fault controller for an active-stall wind turbine
Energy Technology Data Exchange (ETDEWEB)
Jauch, C.; Soerensen, P.; Bak Jensen, B.
2005-01-01
This paper describes the simulation model of a controller that enables an active-stall wind turbine to ride through transient faults. The simulated wind turbine is connected to a simple model of a power system. Certain fault scenarios are specified and the turbine shall be able to sustain operation in case of such faults. The design of the controller is described and its performance assessed by simulations. The control strategies are explained and the behaviour of the turbine discussed. (author)
Modeling the effect of transient populations on epidemics in Washington DC
Parikh, Nidhi; Youssef, Mina; Swarup, Samarth; Eubank, Stephen
2013-11-01
Large numbers of transients visit big cities, where they come into contact with many people at crowded areas. However, epidemiological studies have not paid much attention to the role of this subpopulation in disease spread. We evaluate the effect of transients on epidemics by extending a synthetic population model for the Washington DC metro area to include leisure and business travelers. A synthetic population is obtained by combining multiple data sources to build a detailed minute-by-minute simulation of population interaction resulting in a contact network. We simulate an influenza-like illness over the contact network to evaluate the effects of transients on the number of infected residents. We find that there are significantly more infections when transients are considered. Since much population mixing happens at major tourism locations, we evaluate two targeted interventions: closing museums and promoting healthy behavior (such as the use of hand sanitizers, covering coughs, etc.) at museums. Surprisingly, closing museums has no beneficial effect. However, promoting healthy behavior at the museums can both reduce and delay the epidemic peak. We analytically derive the reproductive number and perform stability analysis using an ODE-based model.
Kanyanta, V; Ivankovic, A; Karac, A
2009-08-07
Fluid-structure interaction (FSI) numerical models are now widely used in predicting blood flow transients. This is because of the importance of the interaction between the flowing blood and the deforming arterial wall to blood flow behaviour. Unfortunately, most of these FSI models lack rigorous validation and, thus, cannot guarantee the accuracy of their predictions. This paper presents the comprehensive validation of a two-way coupled FSI numerical model, developed to predict flow transients in compliant conduits such as arteries. The model is validated using analytical solutions and experiments conducted on polyurethane mock artery. Flow parameters such as pressure and axial stress (and precursor) wave speeds, wall deformations and oscillating frequency, fluid velocity and Poisson coupling effects, were used as the basis of this validation. Results show very good comparison between numerical predictions, analytical solutions and experimental data. The agreement between the three approaches is generally over 95%. The model also shows accurate prediction of Poisson coupling effects in unsteady flows through flexible pipes, which up to this stage have only being predicted analytically. Therefore, this numerical model can accurately predict flow transients in compliant vessels such as arteries.
Classification of transient behaviours in a time-dependent toggle switch model.
Verd, Berta; Crombach, Anton; Jaeger, Johannes
2014-04-04
Waddington's epigenetic landscape is an intuitive metaphor for the developmental and evolutionary potential of biological regulatory processes. It emphasises time-dependence and transient behaviour. Nowadays, we can derive this landscape by modelling a specific regulatory network as a dynamical system and calculating its so-called potential surface. In this sense, potential surfaces are the mathematical equivalent of the Waddingtonian landscape metaphor. In order to fully capture the time-dependent (non-autonomous) transient behaviour of biological processes, we must be able to characterise potential landscapes and how they change over time. However, currently available mathematical tools focus on the asymptotic (steady-state) behaviour of autonomous dynamical systems, which restricts how biological systems are studied. We present a pragmatic first step towards a methodology for dealing with transient behaviours in non-autonomous systems. We propose a classification scheme for different kinds of such dynamics based on the simulation of a simple genetic toggle-switch model with time-variable parameters. For this low-dimensional system, we can calculate and explicitly visualise numerical approximations to the potential landscape. Focussing on transient dynamics in non-autonomous systems reveals a range of interesting and biologically relevant behaviours that would be missed in steady-state analyses of autonomous systems. Our simulation-based approach allows us to identify four qualitatively different kinds of dynamics: transitions, pursuits, and two kinds of captures. We describe these in detail, and illustrate the usefulness of our classification scheme by providing a number of examples that demonstrate how it can be employed to gain specific mechanistic insights into the dynamics of gene regulation. The practical aim of our proposed classification scheme is to make the analysis of explicitly time-dependent transient behaviour tractable, and to encourage the wider
Hirai, Takao; Miyazaki, Teru; Okabe, Shigemitsu; Aiba, Kiyoshi; Yoshinaga, Jun
Lightning performance of grounding electrode is one of the most important lightning-protection features of power distribution lines. It is well known that ground resistance has current-dependent characteristic due to soil ionization. Moreover, it also has time-dependent characteristic. But especially transient behavior has not been represented by EMTP models well because its mechanism is not cleared. In order to clarify the transient behaviors of the grounding electrode, experiments were conducted with full-scale grounding systems. In this study, the paper describes a grounding electrode model that can be easily used in the EMTP analysis. The proposed model considers both current-dependent and time-dependent characteristics. It is verified by comparing calculated results with the experimental results.
Directory of Open Access Journals (Sweden)
Masaru Ishizuka
2011-01-01
Full Text Available In recent years, there is a growing demand to have smaller and lighter electronic circuits which have greater complexity, multifunctionality, and reliability. High-density multichip packaging technology has been used in order to meet these requirements. The higher the density scale is, the larger the power dissipation per unit area becomes. Therefore, in the designing process, it has become very important to carry out the thermal analysis. However, the heat transport model in multichip modules is very complex, and its treatment is tedious and time consuming. This paper describes an application of the thermal network method to the transient thermal analysis of multichip modules and proposes a simple model for the thermal analysis of multichip modules as a preliminary thermal design tool. On the basis of the result of transient thermal analysis, the validity of the thermal network method and the simple thermal analysis model is confirmed.
Seymour, David C.; Martin, Michael A.; Nguyen, Huy H.; Greene, William D.
2005-01-01
The subject of mathematical modeling of the transient operation of liquid rocket engines is presented in overview form from the perspective of engineers working at the NASA Marshall Space Flight Center. The necessity of creating and utilizing accurate mathematical models as part of liquid rocket engine development process has become well established and is likely to increase in importance in the future. The issues of design considerations for transient operation, development testing, and failure scenario simulation are discussed. An overview of the derivation of the basic governing equations is presented along with a discussion of computational and numerical issues associated with the implementation of these equations in computer codes. Also, work in the field of generating usable fluid property tables is presented along with an overview of efforts to be undertaken in the future to improve the tools use for the mathematical modeling process.
Mathematical Model of Electromagnetic Transient for Superconducting Short-Circuit Current Limiter
Directory of Open Access Journals (Sweden)
Manusov V.Z.
2017-08-01
Full Text Available At present on the basis of significant achievements in the field of high-temperature superconductivity more and more applications of this phenomenon appear in the electric power industry, in particular superconducting current limiters. To investigate current limitation process in electrical networks containing superconducting current limiter it is extremely important to evaluate the electrodynamic and thermal effects of the short-circuit current at any time. The existing superconducting current limiters mathematical models don't consider the inertia of the device transition from the superconducting state to the conducting one. It is necessary to develop the mathematical model for the electromagnetic transient process that can adequately simulate the superconducting current limiter at any time point, taking into account its parameters in the normal and emergency modes and also to describe these parameters dynamics during the process of current limitation. The proposed mathematical model allows to simulate the changing inertia of the superconducting current limiter inductive reactance, to analytically describe the electromagnetic transient process, and also to evaluate the electrodynamic and thermal effects of short-circuit current in networks with superconducting current limiter. The important feature of the mathematical model is the consideration of the increase rate (inertia of the inductive reactance with respect to the external network. Also the model allows taking into account the initial and final values of the inductance of a superconducting current limiter before and after the end of the electromagnetic transient respectively.
Transient Thermo-fluid Model of Meniscus Behavior and Slag Consumption in Steel Continuous Casting
Jonayat, A. S. M.; Thomas, Brian G.
2014-10-01
The behavior of the slag layer between the oscillating mold wall, the slag rim, the slag/liquid steel interface, and the solidifying steel shell, is of immense importance for the surface quality of continuous-cast steel. A computational model of the meniscus region has been developed, that includes transient heat transfer, multi-phase fluid flow, solidification of the slag, and movement of the mold during an oscillation cycle. First, the model is applied to a lab experiment done with a "mold simulator" to verify the transient temperature-field predictions. Next, the model is verified by matching with available literature and plant measurements of slag consumption. A reasonable agreement has been observed for both temperature and flow-field. The predictions show that transient temperature behavior depends on the location of the thermocouple during the oscillation relative to the meniscus. During an oscillation cycle, heat transfer variations in a laboratory frame of reference are more severe than experienced by the moving mold thermocouples, and the local heat transfer rate is increased greatly when steel overflows the meniscus. Finally, the model is applied to conduct a parametric study on the effect of casting speed, stroke, frequency, and modification ratio on slag consumption. Slag consumption per unit area increases with increase of stroke and modification ratio, and decreases with increase of casting speed while the relation with frequency is not straightforward. The match between model predictions and literature trends suggests that this methodology can be used for further investigations.
Parareal in time 3D numerical solver for the LWR Benchmark neutron diffusion transient model
Energy Technology Data Exchange (ETDEWEB)
Baudron, Anne-Marie, E-mail: anne-marie.baudron@cea.fr [Laboratoire de Recherche Conventionné MANON, CEA/DEN/DANS/DM2S and UPMC-CNRS/LJLL (France); CEA-DRN/DMT/SERMA, CEN-Saclay, 91191 Gif sur Yvette Cedex (France); Lautard, Jean-Jacques, E-mail: jean-jacques.lautard@cea.fr [Laboratoire de Recherche Conventionné MANON, CEA/DEN/DANS/DM2S and UPMC-CNRS/LJLL (France); CEA-DRN/DMT/SERMA, CEN-Saclay, 91191 Gif sur Yvette Cedex (France); Maday, Yvon, E-mail: maday@ann.jussieu.fr [Sorbonne Universités, UPMC Univ Paris 06, UMR 7598, Laboratoire Jacques-Louis Lions and Institut Universitaire de France, F-75005, Paris (France); Laboratoire de Recherche Conventionné MANON, CEA/DEN/DANS/DM2S and UPMC-CNRS/LJLL (France); Brown Univ, Division of Applied Maths, Providence, RI (United States); Riahi, Mohamed Kamel, E-mail: riahi@cmap.polytechnique.fr [Laboratoire de Recherche Conventionné MANON, CEA/DEN/DANS/DM2S and UPMC-CNRS/LJLL (France); CMAP, Inria-Saclay and X-Ecole Polytechnique, Route de Saclay, 91128 Palaiseau Cedex (France); Salomon, Julien, E-mail: salomon@ceremade.dauphine.fr [CEREMADE, Univ Paris-Dauphine, Pl. du Mal. de Lattre de Tassigny, F-75016, Paris (France)
2014-12-15
In this paper we present a time-parallel algorithm for the 3D neutrons calculation of a transient model in a nuclear reactor core. The neutrons calculation consists in numerically solving the time dependent diffusion approximation equation, which is a simplified transport equation. The numerical resolution is done with finite elements method based on a tetrahedral meshing of the computational domain, representing the reactor core, and time discretization is achieved using a θ-scheme. The transient model presents moving control rods during the time of the reaction. Therefore, cross-sections (piecewise constants) are taken into account by interpolations with respect to the velocity of the control rods. The parallelism across the time is achieved by an adequate use of the parareal in time algorithm to the handled problem. This parallel method is a predictor corrector scheme that iteratively combines the use of two kinds of numerical propagators, one coarse and one fine. Our method is made efficient by means of a coarse solver defined with large time step and fixed position control rods model, while the fine propagator is assumed to be a high order numerical approximation of the full model. The parallel implementation of our method provides a good scalability of the algorithm. Numerical results show the efficiency of the parareal method on large light water reactor transient model corresponding to the Langenbuch–Maurer–Werner benchmark.
Research on Model-Based Fault Diagnosis for a Gas Turbine Based on Transient Performance
Directory of Open Access Journals (Sweden)
Detang Zeng
2018-01-01
Full Text Available It is essential to monitor and to diagnose faults in rotating machinery with a high thrust–weight ratio and complex structure for a variety of industrial applications, for which reliable signal measurements are required. However, the measured values consist of the true values of the parameters, the inertia of measurements, random errors and systematic errors. Such signals cannot reflect the true performance state and the health state of rotating machinery accurately. High-quality, steady-state measurements are necessary for most current diagnostic methods. Unfortunately, it is hard to obtain these kinds of measurements for most rotating machinery. Diagnosis based on transient performance is a useful tool that can potentially solve this problem. A model-based fault diagnosis method for gas turbines based on transient performance is proposed in this paper. The fault diagnosis consists of a dynamic simulation model, a diagnostic scheme, and an optimization algorithm. A high-accuracy, nonlinear, dynamic gas turbine model using a modular modeling method is presented that involves thermophysical properties, a component characteristic chart, and system inertial. The startup process is simulated using this model. The consistency between the simulation results and the field operation data shows the validity of the model and the advantages of transient accumulated deviation. In addition, a diagnostic scheme is designed to fulfill this process. Finally, cuckoo search is selected to solve the optimization problem in fault diagnosis. Comparative diagnostic results for a gas turbine before and after washing indicate the improved effectiveness and accuracy of the proposed method of using data from transient processes, compared with traditional methods using data from the steady state.
Thermohydraulics of emergency core cooling in light water reactors
International Nuclear Information System (INIS)
1989-10-01
This report, by a group of experts of the OECD-NEA Committee on the Safety of Nuclear Installations, reviews the current state-of-knowledge in the field of emergency core cooling (ECC) for design-basis, loss-of-coolant accidents (LOCA) and core uncover transients in pressurized- and boiling-water reactors. An overview of the LOCA scenarios and ECC phenomenology is provided for each type of reactor, together with a brief description of their ECC systems. Separate-effects and integral-test facilities, which contribute to understanding and assessing the phenomenology, are reviewed together with similarity and scaling compromises. All relevant LOCA phenomena are then brought together in the form of tables. Each phenomenon is weighted in terms of its importance to the course of a LOCA, and appraised for the adequacy of its data base and analytical modelling. This qualitative procedure focusses attention on the modelling requirements of dominant LOCA phenomena and the current capabilities of the two-fluid models in two-phase flows. This leads into the key issue with ECC: quantitative code assessment and the application of system codes to predict with a well defined uncertainty the behaviour of a nuclear power plant. This issue, the methodologies being developed for code assessment and the question of how good is good enough are discussed in detail. Some general conclusions and recommendations for future research activities are provided
Modeling of boron control during power transients in a pressurized water reactor
International Nuclear Information System (INIS)
Mathieu, P.; Distexhe, E.
1986-01-01
Accurate control instructions in a reactor control aid computer are included in order to realize the boron makeup throughput, which is required to obtain the boron concentration in the primary coolant loop, predicted by a neutronic code. A modeling of the transfer function between the makeup and the primary loop is proposed. The chemical and volumetric control system, the pressurizer, and the primary loop are modeled as instantaneous diffusion cells. The pipes are modeled as time lag lines. The model provides the unstationary boron distributions in the different elements of the setup. A numerical code is developed to calculate the time evolutions of the makeup throughput during power transients
Transient Thermal Model and Analysis of the Lunar Surface and Regolith for Cryogenic Fluid Storage
Christie, Robert J.; Plachta, David W.; Yasan, Mohammad M.
2008-01-01
A transient thermal model of the lunar surface and regolith was developed along with analytical techniques which will be used to evaluate the storage of cryogenic fluids at equatorial and polar landing sites. The model can provide lunar surface and subsurface temperatures as a function of latitude and time throughout the lunar cycle and season. It also accounts for the presence of or lack of the undisturbed fluff layer on the lunar surface. The model was validated with Apollo 15 and Clementine data and shows good agreement with other analytical models.
A model for transient analysis of a multiple-medium confinement filter system
International Nuclear Information System (INIS)
Hyder, M.L.; Ellison, P.G.; Leonard, M.T.; Louie, D.L.Y.; Donbroski, E.L.; Wagner, K.C.
1990-01-01
A computational model is described that calculates the transient behavior of aerosol and vapor (adsorption) filter compartments such as those used in the Savannah River Site (SRS) production reactor confinement system. The principal application of the model is in the analysis of confinement response to hypothetical severe (core melt) accidents. Under these conditions, aerosol and radio-iodine deposition on filter compartments may be substantial. Attendant filter degradation mechanisms are modeled. Sample calculations are included to illustrate model performance. 6 refs., 14 figs., 1 tab
Transient modeling of an air conditioner with a rapid cycling compressor and multi-indoor units
International Nuclear Information System (INIS)
Zhang Weijiang; Zhang Chunlu
2011-01-01
Rapid cycling the compressor is an alternative of the variable speed compressor to modulate the capacity of refrigeration systems for the purpose of energy saving at part-load conditions. The multi-evaporator air conditioner combined with the rapid cycling compressor brings difficulties in control design because of the sophisticated system physics and dynamics. In this paper the transient model of a multi-split air conditioner with a digital scroll compressor is developed for predicting the system transients under performance modulations. The predicted cycling dynamics are in good agreement with the experimental data. Based on the validated model, the impact of compressor idle power and cycle period to the part load performance is discussed.
Thermohydraulic simulation of HTR-10 nuclear reactor core using realistic CFD approach
International Nuclear Information System (INIS)
Silva, Alexandro S.; Dominguez, Dany S.; Mazaira, Leorlen Y. Rojas; Hernandez, Carlos R.G.; Lira, Carlos Alberto Brayner de Oliveira
2015-01-01
High-temperature gas-cooled reactors (HTGRs) have the potential to be used as possible energy generation sources in the near future, owing to their inherently safe performance by using a large amount of graphite, low power density design, and high conversion efficiency. However, safety is the most important issue for its commercialization in nuclear energy industry. It is very important for safety design and operation of an HTGR to investigate its thermal–hydraulic characteristics. In this article, it was performed the thermal–hydraulic simulation of compressible flow inside the core of the pebble bed reactor HTR (High Temperature Reactor)-10 using Computational Fluid Dynamics (CFD). The realistic approach was used, where every closely packed pebble is realistically modelled considering a graphite layer and sphere of fuel. Due to the high computational cost is impossible simulate the full core; therefore, the geometry used is a column of FCC (Face Centered Cubic) cells, with 41 layers and 82 pebbles. The input data used were taken from the thermohydraulic IAEA Benchmark (TECDOC-1694). The results show the profiles of velocity and temperature of the coolant in the core, and the temperature distribution inside the pebbles. The maximum temperatures in the pebbles do not exceed the allowable limit for this type of nuclear fuel. (author)
International Nuclear Information System (INIS)
Hampel, G.; Poss, G.; Frohlich, H.K.
1989-10-01
The objective of the project was to draw up an instrumentation plan for the French core melting programme PHEBUS FP. This instrumentation plan essentially was to include proven and reliable instruments for recording various thermohydraulic, aerosol and hydrogen phenomena. The candidate measuring methods, which are known mainly from reactor safety programmes, have been described and examined for their usefulness in PHEBUS. Each method and instrument has been described in detail under various aspects such as measuring principle, measuring range, technical design, evaluation model, calibration procedure, accuracy, previous experience, commercial availability, etc. Special attention has been paid to the behaviour of the measuring transducers when exposed to radiation. First, the performance of the instruments was compared with the requirements of PHEBUS. The results of this comparison served as the basis for a measuring concept in tabular form, giving the locations of the measurements, the measuring tasks, and the number and kind of instruments that are recommended. Redundancy and cost-benefit aspects have been taken into account in qualitative terms
Hextran-Smabre calculation of the VVER-1000 coolant transient benchmark
Energy Technology Data Exchange (ETDEWEB)
Elina Syrjaelahti; Anitta Haemaelaeinen [VTT Processes, P.O.Box 1604, FIN-02044 VTT (Finland)
2005-07-01
Full text of publication follows: The VVER-1000 Coolant Transient benchmark is intended for validation of couplings of the thermal hydraulic codes and three dimensional neutron kinetic core models. It concerns a switching on a main coolant pump when the other three main coolant pumps are in operation. Problem is based on experiment performed in Kozloduy NPP in Bulgaria. In addition to the real plant transient, two extreme scenarios concerning control rod ejection after switching on a main coolant pump were calculated. In VTT the three-dimensional advanced nodal code HEXTRAN is used for the core kinetics and dynamics, and thermohydraulic system code SMABRE as a thermal hydraulic model for the primary and secondary loop. Parallelly coupled HEXTRAN-SMABRE code has been in production use since early 90's, and it has been extensively used for analysis of VVER NPPs. The SMABRE input model is based on the standard VVER-1000 input used in VTT. Last plant specific modifications to the input model have been made in EU projects. The whole core calculation is performed in the core with HEXTRAN. Also the core model is based on earlier VVER-1000 models. Nuclear data for the calculation was specified in the benchmark. The paper outlines the input models used for both codes. Calculated results are introduced both for the coupled core system with inlet and outlet boundary conditions and for the whole plant model. Sensitivity studies have been performed for selected parameters. (authors)
Hextran-Smabre calculation of the VVER-1000 coolant transient benchmark
International Nuclear Information System (INIS)
Elina Syrjaelahti; Anitta Haemaelaeinen
2005-01-01
Full text of publication follows: The VVER-1000 Coolant Transient benchmark is intended for validation of couplings of the thermal hydraulic codes and three dimensional neutron kinetic core models. It concerns a switching on a main coolant pump when the other three main coolant pumps are in operation. Problem is based on experiment performed in Kozloduy NPP in Bulgaria. In addition to the real plant transient, two extreme scenarios concerning control rod ejection after switching on a main coolant pump were calculated. In VTT the three-dimensional advanced nodal code HEXTRAN is used for the core kinetics and dynamics, and thermohydraulic system code SMABRE as a thermal hydraulic model for the primary and secondary loop. Parallelly coupled HEXTRAN-SMABRE code has been in production use since early 90's, and it has been extensively used for analysis of VVER NPPs. The SMABRE input model is based on the standard VVER-1000 input used in VTT. Last plant specific modifications to the input model have been made in EU projects. The whole core calculation is performed in the core with HEXTRAN. Also the core model is based on earlier VVER-1000 models. Nuclear data for the calculation was specified in the benchmark. The paper outlines the input models used for both codes. Calculated results are introduced both for the coupled core system with inlet and outlet boundary conditions and for the whole plant model. Sensitivity studies have been performed for selected parameters. (authors)
International Nuclear Information System (INIS)
Wu, S.T.; Steinolfson, R.S.; Dryer, M.; Tandberg-Hanssen, E.
1981-01-01
A two-dimensional, time-dependenct magnetohydrodynamic model in the meridional plane with and without an ambient solar wind in an ambient radial magnetic field has been used to investigate mass motions associated with coronal transients. We show that that solar wind does not significantly affect the general dynamic characteristics of the mass motion. The ambient solar wind, however, increases the velocity of the mass motion and produces a moderate change in the thermodynamic properties of the coronal plasma
Development of the MARS input model for Kori nuclear units 1 transient analyzer
International Nuclear Information System (INIS)
Hwang, M.; Kim, K. D.; Lee, S. W.; Lee, Y. J.; Lee, W. J.; Chung, B. D.; Jeong, J. J.
2004-11-01
KAERI has been developing the 'NSSS transient analyzer' based on best-estimate codes for Kori Nuclear Units 1 plants. The MARS and RETRAN codes have been used as the best-estimate codes for the NSSS transient analyzer. Among these codes, the MARS code is adopted for realistic analysis of small- and large-break loss-of-coolant accidents, of which break size is greater than 2 inch diameter. So it is necessary to develop the MARS input model for Kori Nuclear Units 1 plants. This report includes the input model (hydrodynamic component and heat structure models) requirements and the calculation note for the MARS input data generation for Kori Nuclear Units 1 plant analyzer (see the Appendix). In order to confirm the validity of the input data, we performed the calculations for a steady state at 100 % power operation condition and a double-ended cold leg break LOCA. The results of the steady-state calculation agree well with the design data. The results of the LOCA calculation seem to be reasonable and consistent with those of other best-estimate calculations. Therefore, the MARS input data can be used as a base input deck for the MARS transient analyzer for Kori Nuclear Units 1
Transient analysis of rod drop accident for third fuel cycle for Angra-1 reactor using SACI2/MOD0
International Nuclear Information System (INIS)
Atayde, P.A. de.
1989-01-01
The rod drop accident for 3 0 fuel cycle of Angra-1 reactor is analysed, evaluating de position effect of detectors on the measurement of reactor power. The transient calculation was done using SAC12/MOD0 code for thermo-hydraulic analysis of reactor core, aiming to evaluate safe conditions during the accident. (M.C.K.)
Utilization of fuzzy mathematics method in thermohydraulic analysis of power water reactor
International Nuclear Information System (INIS)
Zhou Tao; Qiu Shuizheng; Jia Dounan; Shu Guanghui
2001-01-01
The basic principles of fuzzy mathematic method were described. According to the general requirement of the analysis of power water reactor (PWR), two examples about utilization of fuzzy mathematic method for thermohydraulic analysis of PWR have been given. These two examples include the determination of the engineering hot tube factor and hot point factor, and the selection of CHF formula. This is an exploration of the way of the utilization of fuzzy mathematic method in thermohydraulic analysis of PWR. The present results show the feasibility and potential of this method
International Nuclear Information System (INIS)
Ma Jian; Li Longjian; Huang Yanping; Huang Jun; Wang Yanlin
2011-01-01
The thermo-hydraulic characteristics of ship nuclear reactors are very important to the safety and reliability of ship voyage under the ocean conditions. Therefore, many countries have carried out plentiful investigations. This paper is based on some Asia open literature of investigations on thermo-hydraulic characteristics of ship nuclear reactors under the ocean conditions, reviews and sums up those main progresses such as the method, contents and typical results in this field, analyzes their insufficiency, and puts forward advices on the future investigation based on the known research findings. (authors)
A mathematical model for the simulation of thermal transients in the water loop of IPEN
International Nuclear Information System (INIS)
Pontedeiro, A.C.
1980-01-01
A mathematical model for simulation of thermal transients in the water loop at the Instituto de Pesquisas Energeticas e Nucleares, Sao Paulo, Brasil, is developed. The model is based on energy equations applied to the components of the experimental water loop. The non-linear system of first order diferencial equations and of non-linear algebraic equations obtained through the utilization of the IBM 'System/360-Continous System Modeling Program' (CSMP) is resolved. An optimization of the running time of the computer is made and a typical simulation of the water loop is executed. (Author) [pt
Mountain scale modeling of transient, coupled gas flow, heat transfer and carbon-14 migration
International Nuclear Information System (INIS)
Lu, Ning; Ross, B.
1993-01-01
We simulate mountain-scale coupled heat transfer and gas flow at Yucca Mountain. A coupled rock-gas flow and heat transfer model, TGIF2, is used to simulate mountain-scale two-dimensional transient heat transfer and gas flow. The model is first verified against an analytical solution for the problem of an infinite horizontal layer of fluid heated from below. Our numerical results match very well with the analytical solution. Then, we obtain transient temperature and gas flow distributions inside the mountain. These distributions are used by a transient semianalytical particle tracker to obtain carbon-14 travel times for particles starting at different locations within the repository. Assuming that the repository is filled with 30-year-old waste at an initial areal power density of 57 kw/acre, we find that repository temperatures remain above 60 degrees C for more than 10,000 years. Carbon-14 travel times to the surface are mostly less than 1000 years, for particles starting at any time within the first 10,000 years
Phase-field modeling of thermomechanical damage in tungsten under severe plasma transients
Crosby, Tamer; Ghoniem, Nasr
2012-08-01
Tungsten is now a primary candidate for plasma facing components in fusion energy systems because of its numerous superior thermophysical properties. International efforts are currently focused on the development of tungsten surfaces that can intercept ionized plasma and pulsed high heat flux in magnetic fusion confinement devices. Thermal shock under transient operating conditions, such as edge localized modes, have experimentally been shown to lead to severe surface and sub-surface damage. We present here a computational multiphysics model to determine the relationship between the thermomechanical loading conditions and the onset of damage and failure of tungsten surfaces. The model is based on thermo-elasto-plasticity constitutive relations, and is developed within the framework of the phase-field method. A coupled set of partial differential equations is solved for the temperature, displacement, and a damage phase fields under severe plasma transient loads. The results clearly show the initiation and propagation of surface and sub-surface cracks as a result of the transient high heat flux. The severity of surface cracking is found to correlate primarily with the magnitude of the near-surface temperature gradient.
International Nuclear Information System (INIS)
Costa, J.R.
1978-12-01
An analysis is done of the core behavior for a 1861 MW(th) pressurized water reactor with two coolant loops, during the blowdown phase of a double-ended cold leg rupture, between the main feedwater pump, and the pressure vessel. The analysis is done through a detailed thermohydraulic study of the hot pin channel with RELAP4/MOD 5 code, including the Evaluatin Model options. The problem is solved separately for two values of discharge coefficient (C sub(D)= 1,0 and 0,4). The results show that the maximum clad temperature is lower than the limit value for licensing purposes. Concerning clad material oxidation, the maximum value obtained is also under the limit of acceptance. (author) [pt
Loss of feed flow, steam generator tube rupture and steam line break thermohydraulic experiments
Energy Technology Data Exchange (ETDEWEB)
Mendler, O J; Takeuchi, K; Young, M Y
1986-10-01
The Westinghouse Model Boiler No. 2 (MB-2) steam generator test model at the Engineering Test Facility in Tampa, Florida, was reinstrumented and modified for performing a series of tests simulating steam generator accident transients. The transients simulated were: loss of feed flow, steam generator tube rupture, and steam line break events. This document presents a description of (1) the model boiler and the associated test facility, (2) the tests performed, and (3) the analyses of the test results.
Loss of feed flow, steam generator tube rupture and steam line break thermohydraulic experiments
International Nuclear Information System (INIS)
Mendler, O.J.; Takeuchi, K.; Young, M.Y.
1986-10-01
The Westinghouse Model Boiler No. 2 (MB-2) steam generator test model at the Engineering Test Facility in Tampa, Florida, was reinstrumented and modified for performing a series of tests simulating steam generator accident transients. The transients simulated were: loss of feed flow, steam generator tube rupture, and steam line break events. This document presents a description of (1) the model boiler and the associated test facility, (2) the tests performed, and (3) the analyses of the test results
Directory of Open Access Journals (Sweden)
Orie Sakamoto
2016-01-01
Full Text Available In remote site power systems with small diesel generators, weak distribution feeders with diesel generators may suffer from voltage and power fluctuations due to misfiring of the engine cylinder. An electromagnetic transient (EMT program named XTAP is considered to be useful to analyze these phenomena. In this study, a new diesel generator model with example fluctuating engine torque has been developed using XTAP for analyses of small power systems with those diesel engines. The configuration and verification results of the developed model are presented in the paper.
Design base transient analysis using the real-time nuclear reactor simulator model
International Nuclear Information System (INIS)
Tien, K.K.; Yakura, S.J.; Morin, J.P.; Gregory, M.V.
1987-01-01
A real-time simulation model has been developed to describe the dynamic response of all major systems in a nuclear process reactor. The model consists of a detailed representation of all hydraulic components in the external coolant circulating loops consisting of piping, valves, pumps and heat exchangers. The reactor core is described by a three-dimensional neutron kinetics model with detailed representation of assembly coolant and moderator thermal hydraulics. The models have been developed to support a real-time training simulator, therefore, they reproduce system parameters characteristic of steady state normal operation with high precision. The system responses for postulated severe transients such as large pipe breaks, loss of pumping power, piping leaks, malfunctions in control rod insertion, and emergency injection of neutron absorber are calculated to be in good agreement with reference safety analyses. Restrictions were imposed by the requirement that the resulting code be able to run in real-time with sufficient spare time to allow interfacing with secondary systems and simulator hardware. Due to hardware set-up and real plant instrumentation, simplifications due to symmetry were not allowed. The resulting code represents a coarse-node engineering model in which the level of detail has been tailored to the available computing power of a present generation super-minicomputer. Results for several significant transients, as calculated by the real-time model, are compared both to actual plant data and to results generated by fine-mesh analysis codes
Energy Technology Data Exchange (ETDEWEB)
Calleros M, G.; Zapata Y, M.; Gomez H, R.A.; Mendez M, A. [Comision Federal de Electricidad, Central Nucleoelectrica de Laguna Verde, Carretera Cardel-Nautla Km. 42.5, Mpio. Alto Lucero, Veracruz (Mexico); Castlllo D, R. [ININ, Carretera Mexico-Toluca Km 36.5, La Marquesa, Estado de Mexico (Mexico)]. e-mail: gcm9acpp@cfe.gob.mx
2006-07-01
In a BWR type reactor the phenomenon of the nuclear fission is presented, in which are liberated in stochastic form neutrons, originating that the population of the same ones varies in statistic form around a mean value. This variation will cause that when the neutron flow impacts on the neutron detectors, its are had as a result neutron flow signals with fluctuations around an average value. In this article it is shown that it conforms it lapses the time, this variations in the neutron flow (and therefore, in the flow signal due only to the fission), they presented oscillations inside a stable range, which won't be divergent. Considering that the BWR is characterized because boiling phenomena are presented, which affect the moderation of the neutrons, additional variations will be had in the signal coming from the neutron detectors, with relationship to the fission itself, which will be influenced by the feedback of the moderator's reactivity and of the temperature of the fuel pellet. Also, as the BWR it has coupled control systems to maintain the coolant level one and of the thermal power of the reactor, for each control action it was affected the neutron population. This means that the reactor could end up straying of a stable state condition. By it previously described, the study of the thermohydraulic stability coupled to the neutronic is complex. In this work it is shown the phenomenology, the mathematical models and the theoretical behavior associated to the stability of the BWR type reactor; the variables that affect it are identified, the models that reproduce the behavior of the thermohydraulic stability coupled to the neutronic, the way to maintain stable the reactor and the instrumentation that can settle to detect and to suppress uncertainties is described. In particular, is make reference to the evolution of the methods to maintain the stability of the reactor and the detection system and suppression of uncertainties implemented in the
Lobanov, P. D.; Usov, E. V.; Butov, A. A.; Pribaturin, N. A.; Mosunova, N. A.; Strizhov, V. F.; Chukhno, V. I.; Kutlimetov, A. E.
2017-10-01
Experiments with impulse gas injection into model coolants, such as water or the Rose alloy, performed at the Novosibirsk Branch of the Nuclear Safety Institute, Russian Academy of Sciences, are described. The test facility and the experimental conditions are presented in details. The dependence of coolant pressure on the injected gas flow and the time of injection was determined. The purpose of these experiments was to verify the physical models of thermohydraulic codes for calculation of the processes that could occur during the rupture of tubes of a steam generator with heavy liquid metal coolant or during fuel rod failure in water-cooled reactors. The experimental results were used for verification of the HYDRA-IBRAE/LM system thermohydraulic code developed at the Nuclear Safety Institute, Russian Academy of Sciences. The models of gas bubble transportation in a vertical channel that are used in the code are described in detail. A two-phase flow pattern diagram and correlations for prediction of friction of bubbles and slugs as they float up in a vertical channel and of two-phase flow friction factor are presented. Based on the results of simulation of these experiments using the HYDRA-IBRAE/LM code, the arithmetic mean error in predicted pressures was calculated, and the predictions were analyzed considering the uncertainty in the input data, geometry of the test facility, and the error of the empirical correlation. The analysis revealed major factors having a considerable effect on the predictions. The recommendations are given on updating of the experimental results and improvement of the models used in the thermohydraulic code.
Wang, Weicheng
2013-11-01
A chemical kinetic model has been developed for the transient stage of the continuous countercurrent hydrolysis of triglycerides to free fatty acids and glycerol. Departure functions and group contribution methods were applied to determine the equilibrium constants of the four reversible reactions in the kinetic model. Continuous countercurrent hydrolysis of canola oil in subcritical water was conducted experimentally in a lab-scale reactor over a range of temperatures and the concentrations of all neutral components were quantified. Several of the rate constants in the model were obtained by modeling this experimental data, with the remaining determined from calculated equilibrium constants. Some reactions not included in the present, or previous, hydrolysis modeling efforts were identified from glycerolysis kinetic studies and may explain the slight discrepancy between model and experiment. The rate constants determined in this paper indicate that diglycerides in the feedstock accelerate the transition from "emulsive hydrolysis" to "rapid hydrolysis". © 2013 Elsevier Ltd.
Modeling of the transient behavior of heat pipes with room-temperature working fluids
Brocheny, Pascal O.
2006-07-01
The heat pipe is a capillary-driven and two-phase flow device, capable of transporting and converting large amounts of energy with minimal losses. As a means of thermal management, uses of heat pipe technology not only include thermal control of satellites and spacecrafts in aerospace applications, but also the cooling of electronic components for ground applications. Recently, there has been a flourishing interest in exploring the use of heat pipe technology in the automotive field. However, in many thermal control applications, heat pipes using room-temperature working fluids, such as water or ammonia, with operating temperatures between 200 K (-73ºC) and 550 K (277ºC), can hardly operate at steady state conditions. The study of transient heat pipe phenomena becomes a significant area of research interests including not only startup and shutdown phases, but also heat redistribution, changes of thermal loading and heat removal. The transient performance is affected by thermal capacity and conductance of the heat pipe, capillary pumping forces, heating and cooling conditions. In the present study, the transient operations of different conventional room-temperature heat pipes were investigated analytically, including the capillary dryout and rewetting behaviors occurring at the evaporator section during startups. The physical model is based on the displacement of a leading-edge front of a thin liquid layer flowing on finite groove uniformly heated with a constant heat flux. A one-dimensional transient heat conduction model along the evaporator wall is coupled with the movement of the fluid layer during startup. Numerical solutions were obtained by a fully implicit Finite Difference Method, accounting for the movement of the liquid and a known time-variable temperature boundary condition at the liquid front. The velocity and position of the liquid front were found to vary with the applied heat flux, the initial conditions, and the thermophysical properties of the
ERP-IV-A program for transient thermal-hydraulic analysis of PWR plant
International Nuclear Information System (INIS)
Dai Anguo; Tang Jiahuan; Qian Huifu; Gao Zhikang
1987-12-01
The author deal with the descriptions of physical model of transient process in PWR plant and the function of ERP-IV (ERR-IV Transient Thermo-Hydraulic Analysis Code). The code has been developed for safety analysis and design transient. The code is characterized by the multi-loop long-term, short term, wide-range plant simulation with the capability to analyze natural circulation condition. The description of ERP-IV includes following parts: reactor, primary coolant loops, pressurizer, steam generators, main steam system, turbine, feedwater system, steam dump, relive valves, and safety valves in secondary side, etc.. The code can use for accident analysis, such as loss of all A.C. power to power plant auxiliaries (a station blackout), loss of normal feedwater, loss of load, loss of condenser vacuum and other events causing a turbine trip, complete loss of forced reactor coolant flow, uncontrolled rod cluster control assembly bank withdrawal. It can also be used for accident analysis of the emergency and limiting conditions, such as feedwater line break and main steam line rupture. It can also be utilized as a tool for system design studies, component design, setpoint studies and design transition studies, etc
A scaling approach for fluid mixing in rapid boron-dilution transients
International Nuclear Information System (INIS)
Gavrilas, Mirela; Palazov, Vesselin
1999-01-01
The issue of rapid-boron dilution transients has been investigated for a decade with few definitive conclusions. The potential reactivity insertion that would result from the transport of a boron-dilute slug to the core region depends on the spatial and temporal concentration of neutron poison in the fluid that penetrates the core. Difficulties in assessing the consequences of a boron-dilution transient lie in the diversity of postulated on-set scenarios, and in the large dependence of the resulting reactivity insertion on plant conditions and geometric features. The University of Maryland (UM) 2 x 4 Thermohydraulic Loop Facility is collecting code validation data for rapid boron-dilution transients. The data has to be representative of the prototype. scaling thus becomes an important consideration. The mixing of the boron-dilute slug with the highly borated coolant present in the primary system is advective-diffusive. Therefore, the scaling approach involves extracting relevant parameters from the advection-diffusion equation. The dimensionless numbers that govern mixing are shown to be the Strouhal and Schmidt numbers. They have to be considered simultaneously to properly scale the flow in the model facility. A closer investigation of the relation between these two numbers reveals that, for fully developed turbulent flows, matching only one of these numbers is sufficient. This conclusion is substantiated by experimental results from Vattenfall. (author)
Parametric analyses of DEMO Divertor using two dimensional transient thermal hydraulic modelling
Domalapally, Phani; Di Caro, Marco
2017-11-01
Among the options considered for cooling of the Plasma facing components of the DEMO reactor, water cooling is a conservative option because of its high heat removal capability. In this work a two-dimensional transient thermal hydraulic code is developed to support the design of the divertor for the projected DEMO reactor with water as a coolant. The mathematical model accounts for transient 2D heat conduction in the divertor section. Temperature-dependent properties are used for more accurate analysis. Correlations for single phase flow forced convection, partially developed subcooled nucleate boiling, fully developed subcooled nucleate boiling and film boiling are used to calculate the heat transfer coefficients on the channel side considering the swirl flow, wherein different correlations found in the literature are compared against each other. Correlation for the Critical Heat Flux is used to estimate its limit for a given flow conditions. This paper then investigates the results of the parametric analysis performed, whereby flow velocity, diameter of the coolant channel, thickness of the coolant pipe, thickness of the armor material, inlet temperature and operating pressure affect the behavior of the divertor under steady or transient heat fluxes. This code will help in understanding the basic parameterś effect on the behavior of the divertor, to achieve a better design from a thermal hydraulic point of view.
Classification of Transient Events of Nuclear Reactor Using Hidden Markov Model
Directory of Open Access Journals (Sweden)
P. Bečvář
2000-01-01
Full Text Available This article describes a part of on-line system for a residual life of a pressure vessel shell. In this system there appears a need for determining of a real history of a pressure vessel described as a sequence of so called transient events. Each event (there are 23 events now is given by its template. It is theoretically necessary to compare data measured in a real history with all possible sequences of transient events. This solution in intractable and that is why a more sophisticated solution had to be used. Because this task is very similar to task of an automatic speech recognition, models and algorithms used to solve speech recognition tasks can be efficiently used to solve our task. Of course there are some different circumstances caused by the fact that the transient events take much longer than words and their number is much smaller than the number of words in speech recognition system's vocabulary. But the inspiration from speech recognition was very useful and the known algorithms rapidly decreased the design time.
Development of the MARS input model for Ulchin 1/2 transient analyzer
International Nuclear Information System (INIS)
Jeong, J. J.; Kim, K. D.; Lee, S. W.; Lee, Y. J.; Chung, B. D.; Hwang, M.
2003-03-01
KAERI has been developing the NSSS transient analyzer based on best-estimate codes for Ulchin 1/2 plants. The MARS and RETRAN code are used as the best-estimate codes for the NSSS transient analyzer. Among the two codes, the MARS code is to be used for realistic analysis of small- and large-break loss-of-coolant accidents, of which break size is greater than 2 inch diameter. This report includes the input model requirements and the calculation note for the Ulchin 1/2 MARS input data generation (see the Appendix). In order to confirm the validity of the input data, we performed the calculations for a steady state at 100 % power operation condition and a double-ended cold leg break LOCA. The results of the steady-state calculation agree well with the design data. The results of the LOCA calculation seem to be reasonable and consistent with those of other best-estimate calculations. Therefore, the MARS input data can be used as a base input deck for the MARS transient analyzer for Ulchin 1/2
Development of the MARS input model for Ulchin 3/4 transient analyzer
International Nuclear Information System (INIS)
Jeong, J. J.; Kim, K. D.; Lee, S. W.; Lee, Y. J.; Lee, W. J.; Chung, B. D.; Hwang, M. G.
2003-12-01
KAERI has been developing the NSSS transient analyzer based on best-estimate codes.The MARS and RETRAN code are adopted as the best-estimate codes for the NSSS transient analyzer. Among these two codes, the MARS code is to be used for realistic analysis of small- and large-break loss-of-coolant accidents, of which break size is greater than 2 inch diameter. This report includes the MARS input model requirements and the calculation note for the MARS input data generation (see the Appendix) for Ulchin 3/4 plant analyzer. In order to confirm the validity of the input data, we performed the calculations for a steady state at 100 % power operation condition and a double-ended cold leg break LOCA. The results of the steady-state calculation agree well with the design data. The results of the LOCA calculation seem to be reasonable and consistent with those of other best-estimate calculations. Therefore, the MARS input data can be used as a base input deck for the MARS transient analyzer for Ulchin 3/4
International Nuclear Information System (INIS)
Al-Kheliewi, A.S.; Klein, A.C.
1994-01-01
A transient code (TFETC) for determining the temperature distribution throughout the radial and axial positions of a thermionic fuel element (TFE) during changes in operating conditions has been successfully developed and tested. A fully implicit method is used to solve the system of equations for temperatures at each time step. Presently, TFETC has the ability to handle the following transients: startup, loss of flow accidents, and shutdown. The code has been applied to the startup of the ATI single cell configuration which appears to start up and shut down in an orderly and reasonable fashion. No unexpected transient features were observed. The TFE also appears to function robustly under loss of flow accident conditions. It appears hat sufficient time is available to shut the reactor down safely without melting point the fuel. The model shows that during a complete loss of flow accident (without shutdown) the coolant reaches its boiling point in approximately 35 seconds. The fuel may exceed its melting point after this time as the NaK coolant will boil if the reactor is not shut down. For 1/2, 1/3, and 1/4 pump failures, the fuel temperatures never exceed the fuel melting point even if the reactor is not shut down
Thermohydraulic tests in the area of reactor safety done in CDTN
International Nuclear Information System (INIS)
Ladeira, L.C.D.
1990-01-01
The main experimental works performed in the last five years at the Thermohydraulics Laboratory of the Nuclear Technology Development Center, in the field of reactor safety are briefly described. This paper cover the performing and analysis of pressure drop, heat transfer and mixing tests in 3X3 rod bundle and rewetting tests in single tube section. (autor) [pt
Thermo-Hydraulic Behaviour of Coolant in Nuclear Reactor VVER-440 Under Refuelling Conditions
Directory of Open Access Journals (Sweden)
Paulech Juraj
2017-04-01
Full Text Available The paper presents the numerical simulation of thermo-hydraulic behaviour of coolant in the VVER- 440 nuclear reactor under standard outage conditions. Heating-up and flow of coolant between the reactor pressure vessel and spent fuel storage pool are discussed.
Non-stationary ETAS to model earthquake occurrences affected by episodic aseismic transients
Kattamanchi, Sasi; Tiwari, Ram Krishna; Ramesh, Durbha Sai
2017-11-01
We present a non-stationary epidemic-type aftershock sequence (ETAS) model in which the usual assumption of stationary background rate is relaxed. Such a model could be used for modeling seismic sequences affected by aseismic transients such as fluid/magma intrusion, slow slip earthquakes (SSEs), etc. The non-stationary background rate is expressed as a linear combination of B-splines, and a method is proposed that allows for simultaneous estimation of background rate as well as other ETAS model parameters. We also present an extension to this non-stationary ETAS model where an adaptive roughness penalty function is used and consequently provides better estimates of rapidly varying background rate functions. The performance of the proposed methods is demonstrated on synthetic catalogs and an application to detect earthquake swarms (possibly associated with SSEs) in Hikurangi margin (North Island, New Zealand) is presented.[Figure not available: see fulltext.
DEFF Research Database (Denmark)
Yang, Jingwei; Zhang, Ning; Kang, Chongqing
2017-01-01
accurately, they are hard to be embedded into the power system scheduling model, which consists of algebraic equations and inequations. This paper addresses this dilemma by proposing an algebraic transient model of natural gas network which is similar to the branch-node model of power network. Based......The rapid deployment of gas-fired generating units makes the power system more vulnerable to failures in the natural gas system. To reduce the risk of gas system failure and to guarantee the security of power system operation, it is necessary to take the security constraints of natural gas...... pipelines into account in the day-ahead power generation scheduling model. However, the minute- and hour-level dynamic characteristics of gas systems prevents an accurate decision-making simply with the steady-state gas flow model. Although the partial differential equations depict the dynamics of gas flow...
Tamma, Kumar K.; D'Costa, Joseph F.
1991-01-01
This paper describes the evaluation of mixed implicit-explicit finite element formulations for hyperbolic heat conduction problems involving non-Fourier effects. In particular, mixed implicit-explicit formulations employing the alpha method proposed by Hughes et al. (1987, 1990) are described for the numerical simulation of hyperbolic heat conduction models, which involves time-dependent relaxation effects. Existing analytical approaches for modeling/analysis of such models involve complex mathematical formulations for obtaining closed-form solutions, while in certain numerical formulations the difficulties include severe oscillatory solution behavior (which often disguises the true response) in the vicinity of the thermal disturbances, which propagate with finite velocities. In view of these factors, the alpha method is evaluated to assess the control of the amount of numerical dissipation for predicting the transient propagating thermal disturbances. Numerical test models are presented, and pertinent conclusions are drawn for the mixed-time integration simulation of hyperbolic heat conduction models involving non-Fourier effects.
Modeling hourly subsurface drainage using steady-state and transient methods
Xian, Changchi; Qi, Zhiming; Tan, Chin S.; Zhang, Tie-Quan
2017-07-01
Computer models have been frequently used to simulate the hydrologic and environmental processes in subsurface-drained cropland. The widely-tested steady-state Hooghoudt (ssH) equation, implemented in the Root Zone Water Quality Model (RZWQM2, version 2.94.00), serves in simulating subsurface drainage. However, transient methods such as the integrated Hooghoudt (inH) and van Schilfgaarde (vanS) equations have seldom been implemented in models. In the present study, RZWQM2's hydrologic component was modified to initiate the soil water redistribution process when rainfall occurred. The three drainage equations (ssH, inH and vanS) were tested in each of two versions of RZWQM2 (original and modified). Field data from Iowa (2007-2008) and Ontario (2009-2010) were used to evaluate different model version × equation combinations' simulation accuracy at both daily and hourly scales, evaluated using the percent of bias (PBIAS), Nash-Sutcliffe efficiency coefficient (NSE), and the Index of Agreement (IoA). On a daily scale and across equations, for the Iowa data the original model (PBIAS ⩽ 14.96, NSE ⩾ 0.40, ⩾ 0.69) was outperformed by the modified model (PBIAS ⩽ 6.48, NSE ⩾ 0.70, IoA ⩾ 0.76). Similarly, for the Ontario data, the original model (PBIAS ⩽ 8.87, NSE ⩾ 0.19, IoA ⩾ 0.65) was outperformed by the modified model (PBIAS ⩽ 3.59, NSE ⩾ 0.31, IoA ⩾ 0.67). However, based on a parity of PBIAS, NSE and IoA values, hourly scale tile drainage computed using the modified model equipped with transient equations did not improve model performance compared with the original ssH equation.
A Thermo-Hydraulic Tool for Automatic Virtual Hazop Evaluation
Directory of Open Access Journals (Sweden)
Pugi L.
2014-12-01
Full Text Available Development of complex lubrication systems in the Oil&Gas industry has reached high levels of competitiveness in terms of requested performances and reliability. In particular, the use of HazOp (acronym of Hazard and Operability analysis represents a decisive factor to evaluate safety and reliability of plants. The HazOp analysis is a structured and systematic examination of a planned or existing operation in order to identify and evaluate problems that may represent risks to personnel or equipment. In particular, P&ID schemes (acronym of Piping and Instrument Diagram according to regulation in force ISO 14617 are used to evaluate the design of the plant in order to increase its safety and reliability in different operating conditions. The use of a simulation tool can drastically increase speed, efficiency and reliability of the design process. In this work, a tool, called TTH lib (acronym of Transient Thermal Hydraulic Library for the 1-D simulation of thermal hydraulic plants is presented. The proposed tool is applied to the analysis of safety relevant components of compressor and pumping units, such as lubrication circuits. Opposed to the known commercial products, TTH lib has been customized in order to ease simulation of complex interactions with digital logic components and plant controllers including their sensors and measurement systems. In particular, the proposed tool is optimized for fixed step execution and fast prototyping of Real Time code both for testing and production purposes. TTH lib can be used as a standard SimScape-Simulink library of components optimized and specifically designed in accordance with the P&ID definitions. Finally, an automatic code generation procedure has been developed, so TTH simulation models can be directly assembled from the P&ID schemes and technical documentation including detailed informations of sensor and measurement system.
Modeling the reversible sink effect in response to transient contaminant sources
Energy Technology Data Exchange (ETDEWEB)
Zhao, Dongye; Little, John C.; Hodgson, Alfred T.
2001-02-01
A physically based diffusion model is used to evaluate the sink effect of diffusion-controlled indoor materials and to predict the transient contaminant concentration in indoor air in response to several time-varying contaminant sources. For simplicity, it is assumed the predominant indoor material is a homogeneous slab, initially free of contaminant, and the air within the room is well mixed. The model enables transient volatile organic compound (VOC) concentrations to be predicted based on the material/air partition coefficient (K) and the material-phase diffusion coefficient (D) of the sink. Model predictions are made for three scenarios, each mimicking a realistic situation in a building. Styrene, phenol, and naphthalene are used as representative VOCs. A styrene butadiene rubber (SBR) backed carpet, vinyl flooring (VF), and a polyurethane foam (PUF) carpet cushion are considered as typical indoor sinks. In scenarios involving a sinusoidal VOC input and a double exponential decaying input, the model predicts the sink has a modest impact for SBR/styrene, but the effect increases for VF/phenol and PUF/naphthalene. In contrast, for an episodic chemical spill, SBR is predicted to reduce the peak styrene concentration considerably. A parametric study reveals for systems involving a large equilibrium constant (K), the kinetic constant (D) will govern the shape of the resulting gas-phase concentration profile. On the other hand, for systems with a relaxed mass transfer resistance, K will dominate the profile.
Ivanović, Vladimir; Deur, Joško; Kostelac, Milan; Pentek, Tibor; Hrovat, Davor
2011-10-01
The paper shows that, during abrupt wheel torque transients for ice surface and low vehicle speeds, the tyre can develop significantly larger longitudinal force than the peak value of the tyre static curve. This so-called dynamic tyre friction potential (DTFP) effect has many influencing factors such as the rate of change of the wheel torque, the vehicle speed, and the tyre dwell time. The paper presents a detailed analysis of the DTFP behaviour based on the experimental data collected by using an in-wheel motor-based tyre test vehicle. The analysis results and an insight into the brush structure of a tyre model lead to the hypothesis that the different influencing factors may be predominantly explained by the bristle dwell time (BDT) effect. Following this hypothesis, the LuGre model of the tyre friction dynamics is extended with a physical BDT sub-model. The experimental validation results show that the proposed model can accurately capture the low-speed tyre-ice friction behaviour during abrupt wheel torque transients.
THALES, Thermohydraulic LOCA Analysis of BWR and PWR
International Nuclear Information System (INIS)
ABE, Kiyoharu
1990-01-01
size. THALES has a lot of models some of which use the forward-explicit method for transient calculations. Even in cases where a more stable method is used in some models, interactions between models are solved with the forward - explicit method. If the time step sizes are too long, the calculated results will be inaccurate, especially for rapid transient
Directory of Open Access Journals (Sweden)
Oramus Piotr
2015-09-01
Full Text Available Electric arc is a complex phenomenon occurring during the current interruption process in the power system. Therefore performing digital simulations is often necessary to analyse transient conditions in power system during switching operations. This paper deals with the electric arc modelling and its implementation in simulation software for transient analyses during switching conditions in power system. Cassie, Cassie-Mayr as well as Schwarz-Avdonin equations describing the behaviour of the electric arc during the current interruption process have been implemented in EMTP-ATP simulation software and presented in this paper. The models developed have been used for transient simulations to analyse impact of the particular model and its parameters on Transient Recovery Voltage in different switching scenarios: during shunt reactor switching-off as well as during capacitor bank current switching-off. The selected simulation cases represent typical practical scenarios for inductive and capacitive currents breaking, respectively.
Axial turbomachine modelling with a quasi-2-D approach. Application to gas cooled reactor transients
International Nuclear Information System (INIS)
Nicolas Tauveron; Manuel Saez; Pascal Ferrand; Francis Leboeuf
2005-01-01
Full text of publication follows: In the frame of the international forum GenIV, CEA has selected two innovative concepts of High Temperature gas cooled Reactor. The first has a fast neutron spectrum, a robust refractory fuel and a direct cycle conversion. The second is a very high temperature reactor with a thermal neutron spectrum. Both concepts make use of technology derived from High Temperature Gas Reactor. Thermal hydraulic performances are a key issue for the design. For transient conditions and decay heat removal situations, the thermal hydraulic performance must remain as high as possible. In this context, all the transient situations, the incidental and accidental scenarios must be evaluated by a validated system code able to correctly describe, in particular, the thermal-hydraulics of the whole plant. With this type of reactor a special emphasis must be laid on turbomachinery modelling. A first step was to compute a HTGR concept using the steady-state characteristics of each element of the turbomachinery with the computer code CATHARE. In a hypothetical transient event (a 10 inches cold duct break of primary loop which causes a rapid depressurization and a decrease of the core mass flow rate) the results seem of great interest (as a forced convection was maintained by the compressors during the entire transient) but not sufficiently justified in the frame of 0D modelling of turbomachinery. A more precise description of the turbomachinery has been developed based on a quasi-two dimensional approach. Although this type of flow analysis is a simplification of a complex three dimensional system, it is able to describe the behaviour of a compressor or a turbine with a better understanding than the models based on component characteristics. This approach consists in the solving of 2D radially averaged Navier-Stokes equations with the hypothesis of circumferentially uniform flow. The assumption of quasi-steady behaviour is made: source terms for the lift and
Application of transient ignition model to multi-canister (MCO) accident analysis
International Nuclear Information System (INIS)
Kummerer, M.
1996-01-01
The potential for ignition of spent nuclear fuel in a Multi-Canister Overpack (MCO) is examined. A transient model is applied to calculate the highest ambient gas temperature outside an MCO wall tube or shipping cask for which a stable temperature condition exists. This integral analysis couples reaction kinetics with a description of the MCO configuration, heat and mass transfer, and fission product phenomena. It thereby allows ignition theory to be applied to various complex scenarios, including MCO water loss accidents and dry MCO air ingression
Modeling startup and shutdown transient of the microlinear piezo drive via ANSYS
Azin, A. V.; Bogdanov, E. P.; Rikkonen, S. V.; Ponomarev, S. V.; Khramtsov, A. M.
2017-02-01
The article describes the construction-design of the micro linear piezo drive intended for a peripheral cord tensioner in the reflecting surface shape regulator system for large-sized transformable spacecraft antenna reflectors. The research target -the development method of modeling startup and shutdown transient of the micro linear piezo drive. This method is based on application software package ANSYS. The method embraces a detailed description of the calculation stages to determine the operating characteristics of the designed piezo drive. Based on the numerical solutions, the time characteristics of the designed piezo drive are determined.
Influence of main variables modifications on accident transient based on AP1000-like MELCOR model
Malicki, M.; Pieńkowski, L.
2016-09-01
Analysis of Severe Accidents (SA) is one of the most important parts of nuclear safety researches. MELCOR is a validated system code for severe accident analysis and as such it was used to obtain presented results. Analysed AP1000 model is based on publicly available data only. Sensitivity analysis was done for the main variables of primary reactor coolant system to find their influence on accident transient. This kind of analysis helps to find weak points of reactor design and the model itself. Performed analysis is a base for creation of Small Modular Reactor (SMR) generic model which will be the next step of the investigation aiming to estimate safety level of different reactors. Results clearly help to establish a range of boundary conditions for main the variables in future SMR model.
Transient modeling of electrochemically assisted CO_{2} capture and release
DEFF Research Database (Denmark)
Singh, Shobhana; Stechel, Ellen B.; Buttry, Daniel A.
2017-01-01
reactions associated with the separation process. For concreteness, we use an ionic liquid (IL) with 2 M thiolate anion (RS−) in 1 M disulfide (RSSR) as an electrolyte in the electrochemical cell to capture, transport and release CO2 under standard operating conditions. We computationally solved the model......The present work aims to develop a model of a new electrochemical CO2 separation and release technology. We present a one-dimensional transient model of an electrochemical cell for point source CO2 capture and release, which mainly focuses on the simultaneous mass transport and complex chemical...... to analyze the time-dependent behavior of CO2 capture and electro-migration transport across the cell length. Given high nonlinearity of the system, we used a finite element method (FEM) to numerically solve the coupled mass transport equations. The model describes the concentration profiles by taking...
Water reactor fuel element computer modelling in steady state, transient and accident conditions
International Nuclear Information System (INIS)
1989-05-01
The present meeting was scheduled by the International Atomic Energy Agency, upon proposal of the Members of the International Working Group on Water Reactor Fuel Performance and Technology (IWGFPT). This meeting was the fifth in the series of IAEA meetings on the topic of Water Reactor Fuel Element Modelling, previous meetings being held in 1978, 1980, 1982 and 1984. Sixty-seven participants from 21 countries attended the meeting, and 35 papers were presented and discussed. These numbers are almost exactly the same as for the 1984 meeting, which demonstrates a continuing interest in the topic. The papers were presented in five sessions under the following headings: Session I - General Modelling (6 papers); Session II - Thermo-Mechanical Modelling and PCI (7 papers); Session III - Fission Gas Release (7 papers); Session IV - Transient Behaviour (8 papers); Session V - Axial Gas Transport and Thermal Modelling (7 papers). A separate abstract was prepared for each of these 35 papers. Refs, figs and tabs
Directory of Open Access Journals (Sweden)
Babak. B. Naghshine
2017-02-01
Full Text Available Laser processing is one of the most popular small-scale patterning methods and has many applications in semiconductor device fabrication and biomedical engineering. Numerical modelling of this process can be used for better understanding of the process, optimization, and predicting the quality of the final product. An accurate 3D model is presented here for short laser pulses that can predict the ablation depth and temperature distribution on any section of the material in a minimal amount of time. In this transient model, variations of thermal properties, plasma shielding, and phase change are considered. Ablation depth was measured using a 3D optical profiler. Calculated depths are in good agreement with measured values on laser treated titanium surfaces. The proposed model can be applied to a wide range of materials and laser systems.
DEFF Research Database (Denmark)
Zhu, Huayang; Ricote, Sandrine; Coors, W. Grover
2014-01-01
the computational implementation of a Nernst–Planck–Poisson (NPP) model to represent and interpret conductivity-relaxation measurements. Defect surface chemistry is represented with both equilibrium and finite-rate kinetic models. The experiments and the models are capable of representing relaxations from strongly......A model-based approach is used to interpret equilibrium and transient conductivity measurements for 10% gadolinium-doped ceria: Ce0.9Gd0.1O1.95 − δ (GDC10). The measurements were carried out by AC impedance spectroscopy on slender extruded GDC10 rods. Although equilibrium conductivity measurements...... provide sufficient information from which to derive material properties, it is found that uniquely establishing properties is difficult. Augmenting equilibrium measurements with conductivity relaxation significantly improves the evaluation of needed physical properties. This paper develops and applies...
Energy Technology Data Exchange (ETDEWEB)
Bianchi, Paulo Henrique
2008-07-01
This work describes the study and test of a system capable to identify and classify transients in thermo-hydraulic systems, using a neural network technique of the self-organizing maps (SOM) type, with the objective of implanting it on the new generations of nuclear reactors. The technique developed in this work consists on the use of multiple networks to do the classification and identification of the transient states, being each network a specialist at one respective transient of the system, that compete with each other using the quantization error, that is a measure given by this type of neural network. This technique showed very promising characteristics that allow the development of new functionalities in future projects. One of these characteristics consists on the potential of each network, besides responding what transient is in course, could give additional information about that transient. (author)
Nonlinear Transient Modeling and Design of Turbocharger Rotor/Semi-Floating Bush Bearing System
Directory of Open Access Journals (Sweden)
Jianming Cao
2017-06-01
Full Text Available This work presents the bearing design and analysis of radial semi-floating bush oil lubricated bearings for a typical industrial turbocharger configuration. Initially, the stability analysis for a linear rotor/bearing system is evaluated through eigenvalues and eigenvectors. The stiffness and damping coefficients of the inner oil film are obtained for the linear modeling process. The operating speed range of the turbocharger is high enough, at 21,000 to 24,000 rpm, to be unstable, indicating that the analysis should be and is carried out with nonlinear transient modeling. The nonlinear transient analysis evaluates the rotor and bush limit cycle orbits, rotor dynamics, the forces acting on the rotor and semi-floating bush surfaces, the oil flow through the bearing, the oil temperatures, and the power loss of the two oil films. The optimum design of a set of semi-floating bush bearings for this application depends strongly upon the clearances of the bush and squeeze film damper, usually expressed as the non-dimensional clearance to radius ratio. A typical clearance is evaluated to determine the bearing performance in terms of orbit size, forces acting on the bush and squeeze damper surfaces, oil flow through the bearing, power loss, and thermal heating. The nonlinear transient orbit values are evaluated for frequency content using the FFT to determine which orbits show both the synchronous and sub-synchronous vibration components and the associated rotor modes excited. These results are compared to the linear analysis over the operating speed range. The oil flow through the bearing component is much larger than the squeeze film damper. The forces acting on the bush and squeeze damper surfaces are related to the fatigue life of the bearing.
Directory of Open Access Journals (Sweden)
Andrzej Rusek
2008-01-01
Full Text Available The mathematical model of cylindrical linear induction motor (C-LIM fed via frequency converter is presented in the paper. The model was developed in order to analyze numerically the transient states. Problems concerning dynamics of ac-machines especially linear induction motor are presented in [1 – 7]. Development of C-LIM mathematical model is based on circuit method and analogy to rotary induction motor. The analogy between both: (a stator and rotor windings of rotary induction motor and (b winding of primary part of C-LIM (inductor and closed current circuits in external secondary part of C-LIM (race is taken into consideration. The equations of C-LIM mathematical model are presented as matrix together with equations expressing each vector separately. A computational analysis of selected transient states of C-LIM fed via frequency converter is presented in the paper. Two typical examples of C-LIM operation are considered for the analysis: (a starting the motor at various static loads and various synchronous velocities and (b reverse of the motor at the same operation conditions. Results of simulation are presented as transient responses including transient electromagnetic force, transient linear velocity and transient phase current.
Extended probit mortality model for zooplankton against transient change of PCO(2).
Sato, Toru; Watanabe, Yuji; Toyota, Koji; Ishizaka, Joji
2005-09-01
The direct injection of CO(2) in the deep ocean is a promising way to mitigate global warming. One of the uncertainties in this method, however, is its impact on marine organisms in the near field. Since the concentration of CO(2), which organisms experience in the ocean, changes with time, it is required to develop a biological impact model for the organisms against the unsteady change of CO(2) concentration. In general, the LC(50) concept is widely applied for testing a toxic agent for the acute mortality. Here, we regard the probit-transformed mortality as a linear function not only of the concentration of CO(2) but also of exposure time. A simple mathematical transform of the function gives a damage-accumulation mortality model for zooplankton. In this article, this model was validated by the mortality test of Metamphiascopsis hirsutus against the transient change of CO(2) concentration.
Identification of relaxation parameter of a physical model of vein from fluid transient experiment
Directory of Open Access Journals (Sweden)
Hromádka David
2014-03-01
Full Text Available This paper presents a new fluid transient inflation experiment applied on a physical model of vein (short latex tube, 5mm diameter. Aim of experiments is assessment of wall viscous behaviour from attenuated pulsation of the tested sample. Experimental data obtained from dynamic test are compared with numerical simulation and a viscoelastic parameter of Haslach constitutive model is identified. It is verified that the viscoelasticity of wall has a greater impact to the damping of pulsation than the viscosity of water filling the sample and the attached capillary. Volume of sample depends on internal pressure measured by a pressure transducer. The maximum dissipation constitutive model of viscoelastic wall sample was employed for description of viscoelastic behaviour. Frequency of natural oscillation of pressure is determined by inertia of water column within the tested sample and attached capillary and by the tested specimen stiffness. The pressure pulsations are initiated by a sudden pressure drop at water surface.
International Nuclear Information System (INIS)
Wang, Lei; Wang, Xiaodong
2014-01-01
Resulting from the nature of anisotropy of coal media, it is a meaningful work to evaluate pressure transient behavior and flow characteristics within coals. In this article, a complete analytical model called the elliptical flow model is established by combining the theory of elliptical flow in anisotropic media and Fick's laws about the diffusion of coalbed methane. To investigate pressure transient behavior, analytical solutions were first obtained through introducing a series of special functions (Mathieu functions), which are extremely complex and are hard to calculate. Thus, a computer program was developed to establish type curves, on which the effects of the parameters, including anisotropy coefficient, storage coefficient, transfer coefficient and rate constant, were analyzed in detail. Calculative results show that the existence of anisotropy would cause great pressure depletion. To validate new analytical solutions, previous results were used to compare with the new results. It is found that a better agreement between the solutions obtained in this work and the literature was achieved. Finally, a case study is used to explain the effects of the parameters, including rock total compressibility coefficient, coal medium porosity and anisotropic permeability, sorption time constant, Langmuir volume and fluid viscosity, on bottom-hole pressure behavior. It is necessary to coordinate these parameters so as to reduce the pressure depletion. (paper)
Lin, Jieqiong; Guan, Liang; Lu, Mingming; Han, Jinguo; Kan, Yudi
2017-12-01
In traditional diamond cutting, the cutting force is usually large and it will affect tool life and machining quality. Elliptical vibration cutting (EVC) as one of the ultra-precision machining technologies has a lot of advantages, such as reduces cutting force, extend tool life and so on. It's difficult to predict the transient cutting force of EVC due to its unique elliptical motion trajectory. Study on chip formation will helpfully to predict cutting force. The geometric feature of chip has important effects on cutting force, however, few scholars have studied the chip formation. In order to investigate the time-varying cutting force of EVC, the geometric feature model of chip is established based on analysis of chip formation, and the effects of cutting parameters on the geometric feature of chip are analyzed. To predict transient force quickly and effectively, the geometric feature of chip is introduced into the cutting force model. The calculated results show that the error between the predicted cutting force in this paper and that in the literature is less than 2%, which proves its feasibility.
Directory of Open Access Journals (Sweden)
Jieqiong Lin
2017-12-01
Full Text Available In traditional diamond cutting, the cutting force is usually large and it will affect tool life and machining quality. Elliptical vibration cutting (EVC as one of the ultra-precision machining technologies has a lot of advantages, such as reduces cutting force, extend tool life and so on. It’s difficult to predict the transient cutting force of EVC due to its unique elliptical motion trajectory. Study on chip formation will helpfully to predict cutting force. The geometric feature of chip has important effects on cutting force, however, few scholars have studied the chip formation. In order to investigate the time-varying cutting force of EVC, the geometric feature model of chip is established based on analysis of chip formation, and the effects of cutting parameters on the geometric feature of chip are analyzed. To predict transient force quickly and effectively, the geometric feature of chip is introduced into the cutting force model. The calculated results show that the error between the predicted cutting force in this paper and that in the literature is less than 2%, which proves its feasibility.
Modelling of rotor speed transient with shaft-to-stator contact
International Nuclear Information System (INIS)
Roques, S.
2007-12-01
This research thesis first reports the development of a one-dimensional model of a rotor where variables to be computed are the displacements of a beam in a three-dimensional space, and the rotor angular position. After a description of the industrial context (the turbo-alternator group which transforms the thermal energy into electrical energy within the secondary circuit of a nuclear plant), and starting with an energy formulation, the rotor movement equations are established for a speed transient. The second part deals with the contact mechanics and the time resolution of a rotor-stator interaction problem. Contactless speed transients on rotor simple models are then presented, where the equation enables the calculation of the shaft rotational speed. The author then explores interaction cases. The reliability of results is assessed by studying their evolution with respect to the time step. The convergence of different interesting quantities such as the rotor rotational speed, shaft line displacements, and stresses (bearings and contact) is shown
Simulation of solute transport in a mountain pool-and-riffle stream: A transient storage model
Bencala, Kenneth E.; Walters, Roy A.
1983-01-01
The physical characteristics of mountain streams differ from the uniform and conceptually well- defined open channels for which the analysis of solute transport has been oriented in the past and is now well understood. These physical conditions significantly influence solute transport behavior, as demonstrated by a transient storage model simulation of solute transport in a very small (0.0125 m3s−1) mountain pool-and-riffle stream. The application is to a carefully controlled and intensively monitored chloride injection experiment. The data from the experiment are not explained by the standard convection-dispersion mechanisms alone. A transient storage model, which couples dead zones with the one-dimensional convection-dispersion equation, simulates the general characteristics of the solute transport behavior and a set of simulation parameters were determined that yield an adequate fit to the data. However, considerable uncertainty remains in determining physically realistic values of these parameters. The values of the simulation parameters used are compared to values used by other authors for other streams. The comparison supports, at least qualitatively, the determined parameter values.
Equilibrium and kinetic models for colloid release under transient solution chemistry conditions.
Bradford, Scott A; Torkzaban, Saeed; Leij, Feike; Simunek, Jiri
2015-10-01
We present continuum models to describe colloid release in the subsurface during transient physicochemical conditions. Our modeling approach relates the amount of colloid release to changes in the fraction of the solid surface area that contributes to retention. Equilibrium, kinetic, equilibrium and kinetic, and two-site kinetic models were developed to describe various rates of colloid release. These models were subsequently applied to experimental colloid release datasets to investigate the influence of variations in ionic strength (IS), pH, cation exchange, colloid size, and water velocity on release. Various combinations of equilibrium and/or kinetic release models were needed to describe the experimental data depending on the transient conditions and colloid type. Release of Escherichia coli D21g was promoted by a decrease in solution IS and an increase in pH, similar to expected trends for a reduction in the secondary minimum and nanoscale chemical heterogeneity. The retention and release of 20nm carboxyl modified latex nanoparticles (NPs) were demonstrated to be more sensitive to the presence of Ca(2+) than D21g. Specifically, retention of NPs was greater than D21g in the presence of 2mM CaCl2 solution, and release of NPs only occurred after exchange of Ca(2+) by Na(+) and then a reduction in the solution IS. These findings highlight the limitations of conventional interaction energy calculations to describe colloid retention and release, and point to the need to consider other interactions (e.g., Born, steric, and/or hydration forces) and/or nanoscale heterogeneity. Temporal changes in the water velocity did not have a large influence on the release of D21g for the examined conditions. This insensitivity was likely due to factors that reduce the applied hydrodynamic torque and/or increase the resisting adhesive torque; e.g., macroscopic roughness and grain-grain contacts. Our analysis and models improve our understanding and ability to describe the amounts
Directory of Open Access Journals (Sweden)
Mojtaba Darabi
2016-06-01
Full Text Available Considering the fact that a large volume of iron reserve in the Sechahoon Iron Mine in Yazd Province has located under the water table, it is necessary to conduct a comprehensive study on water flow within the pit and its surroundings. The conceptual model of the aquifer was created using surface and underground geological information compared with water table data of the area of interest. In the data preparation stages, in order to create the numerical model, Logan and Lufran tests were studied to determine the hydrodynamic coefficients of the layers, precipitation and evaporation were investigated, and fractures and faults of the region, as a medium for flow channels in the hard formation, were also studied. The model was created in a transient state between 2000 and 2014. To validate its results, the water table was measured 4 times in the last 4 months of 2014. Considering the complexities in the heterogeneous fractured aquifer of the study area, numerical modeling results for the basin in a transient state present 90 percent correlation with field studies. Having investigated the water balance in the region, the boundary condition of the model was determined as the input water from the eastern south and the runoff water in the western north of the region. Since the general trend of faults in the area is north-south, variation in the water table is slight on north-south and intense on the east-west direction. On the other hand, due to the fact that the maximum flow is along the faults and fractures, the water table contour lines in different locations over the region are closed.
Busy period analysis, rare events and transient behavior in fluid flow models
Directory of Open Access Journals (Sweden)
Søren Asmussen
1994-01-01
Full Text Available We consider a process {(Jt,Vt}t≥0 on E×[0,∞, such that {Jt} is a Markov process with finite state space E, and {Vt} has a linear drift ri on intervals where Jt=i and reflection at 0. Such a process arises as a fluid flow model of current interest in telecommunications engineering for the purpose of modeling ATM technology. We compute the mean of the busy period and related first passage times, show that the probability of buffer overflow within a busy cycle is approximately exponential, and give conditioned limit theorems for the busy cycle with implications for quick simulation. Further, various inequalities and approximations for transient behavior are given. Also explicit expressions for the Laplace transform of the busy period are found. Mathematically, the key tool is first passage probabilities and exponential change of measure for Markov additive processes.
TOPOLOGICAL TRANSIENT MODELS OF THREE-PHASE FIVE-LIMB TRANSFORMER
Directory of Open Access Journals (Sweden)
S. E. Zirka
2018-02-01
Full Text Available Purpose. To show capabilities of topological models of three-phase, five-limb transformer to correctly represent transformer operation in regimes with high flux densities in the core. As a practically important example, time domain response of transformer subjected to geomagnetically induced currents (GIC is analyzed and compared with results of a comprehensive field experiment.Methodology. Transformer magnetic model, which takes into account geometry of the core and windings, is transformed in a dual electric equivalent scheme, whose transient is calculated by using EMTP-ATP. The results obtained demonstrate the importance of incorporating the positive and zero sequence impedances of power network.Findings. A simple and reliable model of five-limb transformer is proposed. It was found that the presence of the transformer tank can be effectively accounted for by linear inductances representing the paths of the off-core fluxes from yoke to yoke. The modeling of GIC events represented in the paper is the most accurate ever obtained for three-phase, five-leg transformers. The model is validated by close agreement of the predicted values and waveforms of the phase currents and reactive power with those measured in tests performed on two 400 MVA transformers connected back-to-back and to a 400 kV power network. Originality. It is shown that a simplified non-hysteresis model developed portrays the behavior of the of five-limb transformer under GIC condition with the same good accuracy as its hysteresis model. Both the transformer models are well grounded. So, the paper dispels some misconceptions about the influence of the hysteresis properties of the core material and tank in transient modeling of five-leg transformers.Practical value. The practical value and significance of the paper is caused by the fact that the model proposed is a simple and reliable tool for power system studies. The paper warns of using unnecessary complicated models whose
Ocean Heat and Carbon Uptake in Transient Climate Change: Identifying Model Uncertainty
Romanou, Anastasia; Marshall, John
2015-01-01
Global warming on decadal and centennial timescales is mediated and ameliorated by the oceansequestering heat and carbon into its interior. Transient climate change is a function of the efficiency by whichanthropogenic heat and carbon are transported away from the surface into the ocean interior (Hansen et al. 1985).Gregory and Mitchell (1997) and Raper et al. (2002) were the first to identify the importance of the ocean heat uptakeefficiency in transient climate change. Observational estimates (Schwartz 2012) and inferences from coupledatmosphere-ocean general circulation models (AOGCMs; Gregory and Forster 2008; Marotzke et al. 2015), suggest thatocean heat uptake efficiency on decadal timescales lies in the range 0.5-1.5 W/sq m/K and is thus comparable to theclimate feedback parameter (Murphy et al. 2009). Moreover, the ocean not only plays a key role in setting the timing ofwarming but also its regional patterns (Marshall et al. 2014), which is crucial to our understanding of regional climate,carbon and heat uptake, and sea-level change. This short communication is based on a presentation given by A.Romanou at a recent workshop, Oceans Carbon and Heat Uptake: Uncertainties and Metrics, co-hosted by US CLIVARand OCB. As briefly reviewed below, we have incomplete but growing knowledge of how ocean models used in climatechange projections sequester heat and carbon into the interior. To understand and thence reduce errors and biases inthe ocean component of coupled models, as well as elucidate the key mechanisms at work, in the final section we outlinea proposed model intercomparison project named FAFMIP. In FAFMIP, coupled integrations would be carried out withprescribed overrides of wind stress and freshwater and heat fluxes acting at the sea surface.
International Nuclear Information System (INIS)
Magalhaes, Mardson Alencar de Sa; Lira, Carlos Alberto Brayner de Oliveira; Silva, Mario Augusto Bezerra da
2011-01-01
The IRIS project has significantly advanced in the last few years in response to a demand for a new generation reactor, that could fulfill the essential requirements for a future nuclear power plant: better economics, safety-by-design, low proliferation risk and environmental sustainability. IRIS reactor is a integral type PWR in which all primary components are arranged inside the pressure vessel. This configuration involves important changes in relation to a conventional PWR. These changes require several studies to comply with the safe operational limits for the reactor. In this paper, a study has been conducted to develop a dynamic model (named MODIRIS) for transient analysis, implemented in the MATLAB'S software SIMULINK, allowing the analysis of IRIS behavior by considering the neutron point kinetics for power production. The methodology is based on generating a set of differential equations of neutronic and thermal-hydraulic balances which describes the dynamics of the primary circuit, as well as a set of differential equations describing the dynamics of secondary circuit. The equations and initialization parameters at full power were into the SIMULINK and the code was validated by the confrontation with RELAP simulations for a transient of feedwater reduction in the steam generators. (author)
Development of a transient calculation model for a closed sodium natural circulation loop
International Nuclear Information System (INIS)
Chang, Won Pyo; Ha, Kwi Seok; Jeong, Hae Yong; Heo, Sun; Lee, Yong Bum
2003-09-01
A natural circulation loop has usually adopted for a Liquid Metal Reactor (LMR) because of its high reliability. Up-rating of the current KALIMER capacity requires an additional PDRC to the existing PVCS to remove its decay heat under an accident. As the system analysis code currently used for LMR in Korea does not feature a stand alone capability to simulate a closed natural circulation loop, it is not eligible to be applied to PDRC. To supplement its limitation, a steady state calculation model had been developed during the first phase, and development of the transient model has successively carried out to close the present study. The developed model will then be coupled with the system analysis code, SSC-K to assess a long term cooling for the new conceptual design. The incompressibility assumption of sodium which allows the circuit to be modeled with a single loop flow, makes the model greatly simplified comparing with LWR. Some thermal-hydraulic models developed during this study can be effectively applied to other system analysis codes which require such component models, and the present development will also contribute to establishment of a code system for the LMR analysis
International Nuclear Information System (INIS)
Martin, L.; Saenz Tejada, P.
1993-01-01
When performing a level 1 Probabilistic Safety Analysis (PSA) on a standard power plant, in order to model plant response to the potential occurrence of the various initiating events postulated in a PSA, reference documentation applicable to the type of plant in question is frequently consulted. Because of the specific design characteristics of the Jose Cabrera NPP, most of the reference documentation for the W-PWR-type power plants is not applicable to this plant. To fill in these gaps in the documentation and to construct the most realistic model of plant behaviour possible, assistance was sought from Union Fenosa by way of infrastructure, capabilities and thermohydraulic experience of the Nuclear Engineering and Fuel Group, and especially the use of calculations performed with the RELAP5/ MOD2 code. This paper will provide an overview of the general assistance rendered to the PSA by the technical experts in thermohydraulics, the calculations performed with RELAP5/MOD2 and the influence all of this has had on the development, quality and results of the Jose Cabrera NPP level 1 PSA Project. (author)
Influence of the outlet air temperature on the thermohydraulic behaviour of air coolers
Directory of Open Access Journals (Sweden)
Đorđević Emila M.
2003-01-01
Full Text Available The determination of the optimal process conditions for the operation of air coolers demands a detailed analysis of their thermohydraulic behaviour on the one hand, and the estimation of the operating costs, on the other. One of the main parameters of the thermohydraulic behaviour of this type of equipment, is the outlet air temperature. The influence of the outlet air temperature on the performance of air coolers (heat transfer coefficient overall heat transfer coefficient, required surface area for heat transfer air-side pressure drop, fan power consumption and sound pressure level was investigated in this study. All the computations, using AirCooler software [1], were applied to cooling of the process fluid and the condensation of a multicomponent vapour mixture on two industrial devices of known geometries.
Westermann, Sebastian; Peter, Maria; Langer, Moritz; Schwamborn, Georg; Schirrmeister, Lutz; Etzelmüller, Bernd; Boike, Julia
2017-06-01
Permafrost is a sensitive element of the cryosphere, but operational monitoring of the ground thermal conditions on large spatial scales is still lacking. Here, we demonstrate a remote-sensing-based scheme that is capable of estimating the transient evolution of ground temperatures and active layer thickness by means of the ground thermal model CryoGrid 2. The scheme is applied to an area of approximately 16 000 km2 in the Lena River delta (LRD) in NE Siberia for a period of 14 years. The forcing data sets at 1 km spatial and weekly temporal resolution are synthesized from satellite products and fields of meteorological variables from the ERA-Interim reanalysis. To assign spatially distributed ground thermal properties, a stratigraphic classification based on geomorphological observations and mapping is constructed, which accounts for the large-scale patterns of sediment types, ground ice and surface properties in the Lena River delta. A comparison of the model forcing to in situ measurements on Samoylov Island in the southern part of the study area yields an acceptable agreement for the purpose of ground thermal modeling, for surface temperature, snow depth, and timing of the onset and termination of the winter snow cover. The model results are compared to observations of ground temperatures and thaw depths at nine sites in the Lena River delta, suggesting that thaw depths are in most cases reproduced to within 0.1 m or less and multi-year averages of ground temperatures within 1-2 °C. Comparison of monthly average temperatures at depths of 2-3 m in five boreholes yielded an RMSE of 1.1 °C and a bias of -0.9 °C for the model results. The highest ground temperatures are calculated for grid cells close to the main river channels in the south as well as areas with sandy sediments and low organic and ice contents in the central delta, where also the largest thaw depths occur. On the other hand, the lowest temperatures are modeled for the eastern part, which is an
Sensitivity calculation of the coolant temperature regarding the thermohydraulic parameters
International Nuclear Information System (INIS)
Andrade Lima, F.R. de; Silva, F.C. da; Thome Filho, Z.D.; Alvim, A.C.M.; Oliveira Barroso, A.C. de.
1985-01-01
It's studied the application of the Generalized Perturbation Theory (GPT) in the sensitivity calculation of thermalhydraulic problems, aiming at verifying the viability of the extension of the method. For this, the axial distribution, transient, of the coolant temperature in a PWR channel are considered. Perturbation expressions are developed using the GPT formalism, and a computer code (Tempera) is written, to calculate the channel temperature distribution and the associated importance function, as well as the effect of the thermalhydraulic parameters variations in the coolant temperature (sensitivity calculation). The results are compared with those from the direct calculation. (E.G.) [pt
Modeling the behavior of metallic fast reactor fuels during extended transients
International Nuclear Information System (INIS)
Kramer, J.M.; Liu, Y.Y.; Billone, M.C.; Tsai, H.C.
1993-01-01
Passive safety features in metal-fueled reactors utilizing the Integral Fast Reactor (IFR) fuel system make it possible to avoid core damage for extended time periods even when automatic scram system fail to operate or heat removal systems are severely degraded. The time scale for these transients are intermediate between those that have traditionally been analyzed in fast reactor safety assessments and those of normal operation. Consequently, it has been necessary to validate models and computer codes (FPIN2 and LIFE-METAL) for application to this intermediate time regime. Results from out-of-reactor Whole Pin Furnace tests are being used for this purpose. Pretest predictions for tests FM-1 through FM-6 have been performed and calculations have been compared with the experimental measurements. (orig.)
Memory effects, transient growth, and wave breakup in a model of paced atrium
Garzón, Alejandro; Grigoriev, Roman O.
2017-09-01
The mechanisms underlying cardiac fibrillation have been investigated for over a century, but we are still finding surprising results that change our view of this phenomenon. The present study focuses on the transition from normal rhythm to spiral wave chaos associated with a gradual increase in the pacing rate. While some of our findings are consistent with existing experimental, numerical, and theoretical studies of this problem, one result appears to contradict the accepted picture. Specifically we show that, in a two-dimensional model of paced homogeneous atrial tissue, transition from discordant alternans to conduction block, wave breakup, reentry, and spiral wave chaos is associated with the transient growth of finite amplitude disturbances rather than a conventional instability. It is mathematically very similar to subcritical, or bypass, transition from laminar fluid flow to turbulence, which allows many of the tools developed in the context of fluid turbulence to be used for improving our understanding of cardiac arrhythmias.
Modeling the behavior of metallic fast reactor fuels during extended transients
International Nuclear Information System (INIS)
Kramer, J.M.; Liu, Y.Y.; Billone, M.C.; Tsai, H.C.
1992-01-01
Passive safety features in the metal-fueled Integral Fast Reactor (IFR) make it possible to avoid core damage for extended time periods even when automatic scram systems fail to operate or heat removal systems are severely degraded. The time scale for these transients are intermediate between those that have traditionally been analyzed in fast reactor safety assessments and those of normal operation. Consequently, it has been necessary to validate models and computer codes (FPIN2 and LIFE-METAL) for application to this time regime. Results from out-of-reactor Whole Pin Furnace tests are being used for this purpose. Pretest predictions for tests FM-1 through FM-6 have been performed and calculations have been compared with the experimental measurements
Kamphuis, H.; Jongschaap, R.J.J.
1985-01-01
The transient-network model for concentrated dispersions, described in a previous paper, is used to describe the rheological behaviour of dispersions of glyceryl tristearate crystals in paraffin oil. The model prediction of the storage modulus of this system is compared with corresponding
Zhu, L.; Zhang, H. P.; Zhang, J. G.; Meng, X. C.; Lu, L.
2012-11-01
In this paper, a bulb turbine, with unit specific speed of nq=223.1 min-1 suitable for low prototype head was studied from aspect of its performance. Hydraulic model of the turbine was developed firstly, and then model turbine was designed and manufactured. Performance tests were carried out on high-accuracy hydraulic machinery model universal test rig located at IWHR, including energy, cavitation and pressure fluctuation tests, etc. In order to investigate internal flow field, three-dimensional transient turbulence numerical simulation was conducted on the tested turbine, adopting Reynolds-averaged Navier-Stocks control equations and RNG k-ɛ turbulence model. Test and simulation results show that: (1) hydraulic efficiency of model turbine ηM is up to 91.7%, at the optimum operating point of n11o=165.54 r/min versus Q11o=1.93 m3/s; (2) numerical results agree well with experimental resultsby comparing pressure fluctuation, which shows that pressure amplitude is very low at the optimum operating point; (3) hydraulic loss in Outflow domain accounts for more than 50% total hydraulic loss due to flow separation and secondary flow.
Directory of Open Access Journals (Sweden)
Nikolić Radovan H.
2014-01-01
Full Text Available This paper is the result of research and operation modeling of the new systems for cooling of cutting tools based on thermoelectric module. A copper inlay with thermoelectric module on the back side was added to a standard turning tool for metal processing. For modeling and simulating the operation of thermoelectric module, finite element method was used as a method for successful solving the problems of inhomogeneous transient temperature field on the cutting tip of lathe knives. Developed mathematical model is implemented in the software package PAK-T through which numerical results are obtained. Experimental research was done in different conditions of thermoelectric module operation. Cooling of the hot module side was done by a heat exchanger based on fluid using automatic temperature regulator. After the calculation is done, numerical results are in good agreement with experimental. It can be concluded that developed mathematical model can be used successfully for modeling of cooling of cutting tools. [Projekat Ministarstva nauke Republike Srbije, br. TR32036
Nascent RNA kinetics: Transient and steady state behavior of models of transcription
Choubey, Sandeep
2018-02-01
Regulation of transcription is a vital process in cells, but mechanistic details of this regulation still remain elusive. The dominant approach to unravel the dynamics of transcriptional regulation is to first develop mathematical models of transcription and then experimentally test the predictions these models make for the distribution of mRNA and protein molecules at the individual cell level. However, these measurements are affected by a multitude of downstream processes which make it difficult to interpret the measurements. Recent experimental advancements allow for counting the nascent mRNA number of a gene as a function of time at the single-inglr cell level. These measurements closely reflect the dynamics of transcription. In this paper, we consider a general mechanism of transcription with stochastic initiation and deterministic elongation and probe its impact on the temporal behavior of nascent RNA levels. Using techniques from queueing theory, we derive exact analytical expressions for the mean and variance of the nascent RNA distribution as functions of time. We apply these analytical results to obtain the mean and variance of nascent RNA distribution for specific models of transcription. These models of initiation exhibit qualitatively distinct transient behaviors for both the mean and variance which further allows us to discriminate between them. Stochastic simulations confirm these results. Overall the analytical results presented here provide the necessary tools to connect mechanisms of transcription initiation to single-cell measurements of nascent RNA.
International Nuclear Information System (INIS)
Iváncsy, T; Kiss, I; Tamus, Z Á; Szücs, L
2015-01-01
The lightning current generates time-varying magnetic field near the down-conductor and the down-conductors are mounted on the wall of the buildings where residential places might be situated. It is well known that the rapidly changing magnetic fields can generate dangerous eddy currents in the human body.The higher duration and gradient of the magnetic field can cause potentially life threatening cardiac stimulation. The coupling mechanism between the electromagnetic field and the human body is based on a well-known physical phenomena (e.g. Faradays law of induction). However, the calculation of the induced current is very complicated because the shape of the organs is complex and the determination of the material properties of living tissues is difficult, as well. Our previous study revealed that the cardiac stimulation is independent of the rising time of the lightning current and only the peak of the current counts.In this study, the authors introduce an improved model of the interaction of electromagnetic fields of lighting current near down-conductor and human body. Our previous models are based on the quasi stationer field calculations, the new improved model is a transient model. This is because the magnetic field around the down-conductor and in the human body can be determined more precisely, therefore the dangerous currents in the body can be estimated. (paper)
Three-Dimensional Transient Electromagnetic Modeling Based on Fictitious Wave Domain Methods
Ji, Yanju; Hu, Yanpu; Imamura, Naoto
2017-05-01
Finite-difference time domain (FDTD) methods, which have been widely employed in three-dimensional transient electromagnetic (TEM) modeling, require very small time steps to simulate the electromagnetic fields and this will be time consuming. We present an efficient numerical method for three-dimensional TEM forward modeling. Its key features are based on a correspondence principle between the diffusive and fictitious wave fields. The diffusive Maxwell's equations are transformed and solved in a so-called fictitious wave domain. This scheme allows larger time steps than conventional FDTD methods, allows including air layers, and allows simulating topography. The need for initial field calculations is avoided by including an electric current source in the governing equations. This also avoids a traditional assumption of a flat earth surface in TEM modeling. We test the accuracy of the electromagnetic fields' responses using our method with the spectral differential difference (SLDM) solutions. The results show good agreement even under the existence of air layers and topography in the model.
Freedom: a transient fission-product release model for radioactive and stable species
International Nuclear Information System (INIS)
Macdonald, L.D.; Lewis, B.J.; Iglesias, F.C.
1989-05-01
A microstructure-dependent fission-gas release and swelling model (FREEDOM) has been developed for UO 2 fuel. The model describes the transient release behaviour for both the radioactive and stable fission-product species. The model can be applied over the full range of operating conditions, as well as for accident conditions that result in high fuel temperatures. The model accounts for lattice diffusion and grain-boundary sweeping of fusion products to the grain boundaries, where the fission gases accumulate in grain-face bubbles as a result of vacancy diffusion. Release of fission-gas to the free void of the fuel element occurs through the interlinkage of bubbles and cracks on the grain boundaries. This treatment also accounts for radioactive chain decay and neutron-induced transmutation effects. These phenomena are described by mass balance equations which are numerically solved using a moving-boundary, finite-element method with mesh refinement. The effects of grain-face bubbles on fuel swelling and fuel thermal conductivity are included in the ELESIM fuel performance code. FREEDOM has an accuracy of better than 1% when assessed against an analytic solution for diffusional release. The code is being evaluated against a fuel performance database for stable gas release, and against sweep-gas and in-cell fission-product release experiments at Chalk River for active species
Three dimensional computation of PWR reactivity accidents by thermal-hydraulic transients
International Nuclear Information System (INIS)
Raymond, P.; Paik, H.J.
1994-01-01
Reactivity accidents due to thermohydraulic transients as steam line break or boron dilution accidents in a Pressurized Water Reactor are characterized by a large asymmetric reactivity effects in the reactor core. A best estimate calculation of the consequences of such accidents require the coupling of three dimensional and time dependent neutronic and thermohydraulic computations in the reactor core. Furthermore in order to compute the time variation of the core inlet and outlet boundary conditions, the thermohydraulic transient in the reactor coolant primary loop and in the reactor vessel has to be also computed. This paper describes the possibilities of the SAPHYR system (Reactor Physics Analysis computer code System) to calculate these transients, by coupling neutron kinetics and thermal hydraulics in the reactor core and primary system. The first part of this paper gives the description of the CRONSO-2, FLICA-4 and FLICA-S computer codes and coupling methods. The second part of the communication deals with a steam line break calculation performed with the SAPHYR system. (authors). 6 refs., 15 figs
Directory of Open Access Journals (Sweden)
Xiao-Hua Tan
2014-01-01
Full Text Available This work studies the pressure transient of power-law fluids in porous media embedded with a tree-shaped fractal network. A pressure transient model was created based on the fractal properties of tree-shaped capillaries, generalized Darcy’s law and constitutive equation for power-law fluids. The dimensionless pressure model was developed using the Laplace transform and Stehfest numerical inversion method. According to the model’s solution, the bi-logarithmic type curves of power-law fluids in porous media embedded with a tree-shaped fractal network are illustrated. The influences of different fractal factors and Power-law fluids parameters on pressure transient responses are discussed.
Geng, X.; Boufadel, M.; Saleh, F. S.
2014-12-01
It has been found that evaporation over bare soil plays an important role in subsurface solute transport processes. A numerical study, based on a density-dependent variably saturated groundwater flow model MARUN, was conducted to investigate subsurface flow and salt transport in bare saline aquifers subjected to transient evaporation. The bulk aerodynamic formulation was adopted to simulate transient evaporation rate at ground surface. Subsurface flow pattern, moisture distribution, and salt migration were quantified. Key factors likely affecting this process, including saturated hydraulic conductivity, capillary drive, air humidity, and surrounding water supply, were examined. The results showed that evaporation induced an upward flow pattern, which led to a high saline plume formed beneath the evaporation zone. In absence of surrounding water supply, as the humidity between the ground surface and air tended to equilibrium, evaporation-induced density gradient generated pore water circulations around the plume edge and caused the salt to migrate downwards with "finger" shapes. It was found that capillary properties and atmospheric condition had significant impacts on subsurface moisture distribution and salt migration in response to the evaporation. Larger capillary fringe and/or lower air humidity would allow evaporation to extract more water from the ground. It would induce a larger and denser saline plume formed beneath the evaporation zone. The results also suggested that the presence of the surrounding water supply (represented as a constant water table herein) could provide a steady evaporation rate at the ground surface; meanwhile, in response to the evaporation, a hydraulic gradient was formed from the water supply boundary, which induced an inclined upper saline plume with greater density far from the supply boundary.
International Nuclear Information System (INIS)
2014-08-01
The supercritical water cooled reactor (SCWR) is an innovative water cooled reactor concept which uses water pressurized above its thermodynamic critical pressure as the reactor coolant. This concept offers high thermal efficiencies and a simplified reactor system, and is hence expected to help to improve economic competitiveness. Various kinds of SCWR concepts have been developed, with varying combinations of reactor type (pressure vessel or pressure tube) and core spectrum (thermal, fast or mixed). There is great interest in both developing and developed countries in the research and development (R&D) and conceptual design of SCWRs. Considering the high interest shown in a number of Member States, the IAEA established in 2008 the Coordinated Research Project (CRP) on Heat Transfer Behaviour and Thermo-hydraulics Code Testing for SCWRs. The aim was to foster international collaboration in the R&D of SCWRs in support of Member States’ efforts and under the auspices of the IAEA Nuclear Energy Department’s Technical Working Groups on Advanced Technologies for Light Water Reactors (TWG-LWR) and Heavy Water Reactors (TWG-HWR). The two key objectives of the CRP were to establish accurate databases on the thermohydraulics of supercritical pressure fluids and to test analysis methods for SCWR thermohydraulic behaviour to identify code development needs. In total, 16 institutes from nine Member States and two international organizations were involved in the CRP. The thermohydraulics phenomena investigated in the CRP included heat transfer and pressure loss characteristics of supercritical pressure fluids, development of new heat transfer prediction methods, critical flow during depressurization from supercritical conditions, flow stability and natural circulation in supercritical pressure systems. Two code testing benchmark exercises were performed for steady state heat transfer and flow stability in a heated channel. The CRP was completed with the planned outputs in
3-D Forward modeling of Induced Polarization Effects of Transient Electromagnetic Method
Wu, Y.; Ji, Y.; Guan, S.; Li, D.; Wang, A.
2017-12-01
In transient electromagnetic (TEM) detection, Induced polarization (IP) effects are so important that they cannot be ignored. The authors simulate the three-dimensional (3-D) induced polarization effects in time-domain directly by applying the finite-difference time-domain method (FDTD) based on Cole-Cole model. Due to the frequency dispersion characteristics of the electrical conductivity, the computations of convolution in the generalized Ohm's law of fractional order system makes the forward modeling particularly complicated. Firstly, we propose a method to approximate the fractional order function of Cole-Cole model using a lower order rational transfer function based on error minimum theory in the frequency domain. In this section, two auxiliary variables are introduced to transform nonlinear least square fitting problem of the fractional order system into a linear programming problem, thus avoiding having to solve a system of equations and nonlinear problems. Secondly, the time-domain expression of Cole-Cole model is obtained by using Inverse Laplace transform. Then, for the calculation of Ohm's law, we propose an e-index auxiliary equation of conductivity to transform the convolution to non-convolution integral; in this section, the trapezoid rule is applied to compute the integral. We then substitute the recursion equation into Maxwell's equations to derive the iterative equations of electromagnetic field using the FDTD method. Finally, we finish the stimulation of 3-D model and evaluate polarization parameters. The results are compared with those obtained from the digital filtering solution of the analytical equation in the homogeneous half space, as well as with the 3-D model results from the auxiliary ordinary differential equation method (ADE). Good agreements are obtained across the three methods. In terms of the 3-D model, the proposed method has higher efficiency and lower memory requirements as execution times and memory usage were reduced by 20
Comparison of high pressure transient PVT measurements and model predictions. Part I.
Energy Technology Data Exchange (ETDEWEB)
Felver, Todd G.; Paradiso, Nicholas Joseph; Evans, Gregory Herbert; Rice, Steven F.; Winters, William Stanley, Jr.
2010-07-01
A series of experiments consisting of vessel-to-vessel transfers of pressurized gas using Transient PVT methodology have been conducted to provide a data set for optimizing heat transfer correlations in high pressure flow systems. In rapid expansions such as these, the heat transfer conditions are neither adiabatic nor isothermal. Compressible flow tools exist, such as NETFLOW that can accurately calculate the pressure and other dynamical mechanical properties of such a system as a function of time. However to properly evaluate the mass that has transferred as a function of time these computational tools rely on heat transfer correlations that must be confirmed experimentally. In this work new data sets using helium gas are used to evaluate the accuracy of these correlations for receiver vessel sizes ranging from 0.090 L to 13 L and initial supply pressures ranging from 2 MPa to 40 MPa. The comparisons show that the correlations developed in the 1980s from sparse data sets perform well for the supply vessels but are not accurate for the receivers, particularly at early time during the transfers. This report focuses on the experiments used to obtain high quality data sets that can be used to validate computational models. Part II of this report discusses how these data were used to gain insight into the physics of gas transfer and to improve vessel heat transfer correlations. Network flow modeling and CFD modeling is also discussed.
Directory of Open Access Journals (Sweden)
Andreas Hackl
2016-12-01
Full Text Available Developing functions for advanced driver assistance systems requires very accurate tyre models, especially for the simulation of transient conditions. In the past, parametrisation of a given tyre model based on measurement data showed shortcomings, and the globally optimal solution obtained did not appear to be plausible. In this article, an optimisation strategy is presented, which is able to find plausible and physically feasible solutions by detecting many local outcomes. The firefly algorithm mimics the natural behaviour of fireflies, which use a kind of flashing light to communicate with other members. An algorithm simulating the intensity of the light of a single firefly, diminishing with increasing distances, is implicitly able to detect local solutions on its way to the best solution in the search space. This implicit clustering feature is stressed by an additional explicit clustering step, where local solutions are stored and terminally processed to obtain a large number of possible solutions. The enhanced firefly algorithm will be first applied to the well-known Rastrigin functions and then to the tyre parametrisation problem. It is shown that the firefly algorithm is qualified to find a high number of optimisation solutions, which is required for plausible parametrisation for the given tyre model.
One-Dimensional Fast Transient Simulator for Modeling Cadmium Sulfide/Cadmium Telluride Solar Cells
Guo, Da
Solar energy, including solar heating, solar architecture, solar thermal electricity and solar photovoltaics, is one of the primary alternative energy sources to fossil fuel. Being one of the most important techniques, significant research has been conducted in solar cell efficiency improvement. Simulation of various structures and materials of solar cells provides a deeper understanding of device operation and ways to improve their efficiency. Over the last two decades, polycrystalline thin-film Cadmium-Sulfide and Cadmium-Telluride (CdS/CdTe) solar cells fabricated on glass substrates have been considered as one of the most promising candidate in the photovoltaic technologies, for their similar efficiency and low costs when compared to traditional silicon-based solar cells. In this work a fast one dimensional time-dependent/steady-state drift-diffusion simulator, accelerated by adaptive non-uniform mesh and automatic time-step control, for modeling solar cells has been developed and has been used to simulate a CdS/CdTe solar cell. These models are used to reproduce transients of carrier transport in response to step-function signals of different bias and varied light intensity. The time-step control models are also used to help convergence in steady-state simulations where constrained material constants, such as carrier lifetimes in the order of nanosecond and carrier mobility in the order of 100 cm2/Vs, must be applied.
Experimental validation of Pu-Sm evolution model for CANDU-6 power transients
International Nuclear Information System (INIS)
Coutsiers, Eduardo E.; Pomerantz, Marcelo E.; Moreno, Carlos A.
2000-01-01
Development of a methodology to evaluate the reactivity produced by Pu-Sm transient, effect displayed after power transients. This methodology allows to predict the behavior of liquid zones with which the fine control of CANDU reactor power is made. With this information, it is easier to foresee the refueling demand after power movements. The comparison with experimental results showed good agreement. (author)
Cassandre : a two-dimensional multigroup diffusion code for reactor transient analysis
International Nuclear Information System (INIS)
Arien, B.; Daniels, J.
1986-12-01
CASSANDRE is a two-dimensional (x-y or r-z) finite element neutronics code with thermohydraulics feedback for reactor dynamics prior to the disassembly phase. It uses the multigroup neutron diffusion theory. Its main characteristics are the use of a generalized quasistatic model, the use of a flexible multigroup point-kinetics algorithm allowing for spectral matching and the use of a finite element description. The code was conceived in order to be coupled with any thermohydraulics module, although thermohydraulics feedback is only considered in r-z geometry. In steady state criticality search is possible either by control rod insertion or by homogeneous poisoning of the coolant. This report describes the main characterstics of the code structure and provides all the information needed to use the code. (Author)
Energy Technology Data Exchange (ETDEWEB)
Vermeul, Vincent R.; Cole, Charles R.; Bergeron, Marcel P.; Thorne, Paul D.; Wurstner, Signe K.
2001-08-29
The baseline three-dimensional transient inverse model for the estimation of site-wide scale flow parameters, including their uncertainties, using data on the transient behavior of the unconfined aquifer system over the entire historical period of Hanford operations, has been modified to account for the effects of basalt intercommunication between the Hanford unconfined aquifer and the underlying upper basalt confined aquifer. Both the baseline and alternative conceptual models (ACM-1) considered only the groundwater flow component and corresponding observational data in the 3-Dl transient inverse calibration efforts. Subsequent efforts will examine both groundwater flow and transport. Comparisons of goodness of fit measures and parameter estimation results for the ACM-1 transient inverse calibrated model with those from previous site-wide groundwater modeling efforts illustrate that the new 3-D transient inverse model approach will strengthen the technical defensibility of the final model(s) and provide the ability to incorporate uncertainty in predictions related to both conceptual model and parameter uncertainty. These results, however, indicate that additional improvements are required to the conceptual model framework. An investigation was initiated at the end of this basalt inverse modeling effort to determine whether facies-based zonation would improve specific yield parameter estimation results (ACM-2). A description of the justification and methodology to develop this zonation is discussed.
Ramadasan-Nair, Renjini; Gayathri, Narayanappa; Mishra, Sudha; Sunitha, Balaraju; Mythri, Rajeswara Babu; Nalini, Atchayaram; Subbannayya, Yashwanth; Harsha, Hindalahalli Chandregowda; Kolthur-Seetharam, Ullas; Bharath, Muchukunte Mukunda Srinivas
2014-01-01
Muscular dystrophies (MDs) and inflammatory myopathies (IMs) are debilitating skeletal muscle disorders characterized by common pathological events including myodegeneration and inflammation. However, an experimental model representing both muscle pathologies and displaying most of the distinctive markers has not been characterized. We investigated the cardiotoxin (CTX)-mediated transient acute mouse model of muscle degeneration and compared the cardinal features with human MDs and IMs. The CTX model displayed degeneration, apoptosis, inflammation, loss of sarcolemmal complexes, sarcolemmal disruption, and ultrastructural changes characteristic of human MDs and IMs. Cell death caused by CTX involved calcium influx and mitochondrial damage both in murine C2C12 muscle cells and in mice. Mitochondrial proteomic analysis at the initial phase of degeneration in the model detected lowered expression of 80 mitochondrial proteins including subunits of respiratory complexes, ATP machinery, fatty acid metabolism, and Krebs cycle, which further decreased in expression during the peak degenerative phase. The mass spectrometry (MS) data were supported by enzyme assays, Western blot, and histochemistry. The CTX model also displayed markers of oxidative stress and a lowered glutathione reduced/oxidized ratio (GSH/GSSG) similar to MDs, human myopathies, and neurogenic atrophies. MS analysis identified 6 unique oxidized proteins from Duchenne muscular dystrophy samples (n = 6) (versus controls; n = 6), including two mitochondrial proteins. Interestingly, these mitochondrial proteins were down-regulated in the CTX model thereby linking oxidative stress and mitochondrial dysfunction. We conclude that mitochondrial alterations and oxidative damage significantly contribute to CTX-mediated muscle pathology with implications for human muscle diseases. PMID:24220031
Nemś, Magdalena; Nemś, Artur; Kasperski, Jacek; Pomorski, Michał
2017-08-12
This article presents the results of a study into a packed bed filled with ceramic bricks. The designed storage installation is supposed to become part of a heating system installed in a single-family house and eventually to be integrated with a concentrated solar collector adapted to climate conditions in Poland. The system's working medium is air. The investigated temperature ranges and air volume flow rates in the ceramic bed were dictated by the planned integration with a solar air heater. Designing a packed bed of sufficient parameters first required a mathematical model to be constructed and heat exchange to be analyzed, since heat accumulation is a complex process influenced by a number of material properties. The cases discussed in the literature are based on differing assumptions and different formulas are used in calculations. This article offers a comparison of various mathematical models and of system operating parameters obtained from these models. The primary focus is on the Nusselt number. Furthermore, in the article, the thermo-hydraulic efficiency of the investigated packed bed is presented. This part is based on a relationship used in solar air collectors with internal storage.
International Nuclear Information System (INIS)
Arul Peter, A.; Murugesan, K.; Mamidi, Ganesh; Sharma, Umesh Kumar; Sharma, D. Akanshu; Arora, Puneet
2010-01-01
barrier will be subjected to in real situations. When either the temperature or heat flux is increased at the canister side, the saturation corresponding to that side decreases because of increase in temperature and pressure gradients. The comparisons of the results obtained from the present numerical simulation with the available experimental results shows that the present model can simulate the thermo-hydraulic behaviour of unsaturated porous media according to the physics underlying the problem. (author)
A surgical model of permanent and transient middle cerebral artery stroke in the sheep.
Directory of Open Access Journals (Sweden)
Adam J Wells
Full Text Available BACKGROUND: Animal models are essential to study the pathophysiological changes associated with focal occlusive stroke and to investigate novel therapies. Currently used rodent models have yielded little clinical success, however large animal models may provide a more suitable alternative to improve clinical translation. We sought to develop a model of acute proximal middle cerebral artery (MCA ischemic stroke in sheep, including both permanent occlusion and transient occlusion with reperfusion. MATERIALS AND METHODS: 18 adult male and female Merino sheep were randomly allocated to one of three groups (n = 6/gp: 1 sham surgery; 2 permanent proximal MCA occlusion (MCAO; or 3 temporary MCAO with aneurysm clip. All animals had invasive arterial blood pressure, intracranial pressure and brain tissue oxygen monitoring. At 4 h following vessel occlusion or sham surgery animals were killed by perfusion fixation. Brains were processed for histopathological examination and infarct area determination. 6 further animals were randomized to either permanent (n = 3 or temporary MCAO (n = 3 and then had magnetic resonance imaging (MRI at 4 h after MCAO. RESULTS: Evidence of ischemic injury in an MCA distribution was seen in all stroke animals. The ischemic lesion area was significantly larger after permanent (28.8% compared with temporary MCAO (14.6%. Sham animals demonstrated no evidence of ischemic injury. There was a significant reduction in brain tissue oxygen partial pressure after permanent vessel occlusion between 30 and 210 mins after MCAO. MRI at 4 h demonstrated complete proximal MCA occlusion in the permanent MCAO animals with a diffusion deficit involving the whole right MCA territory, whereas temporary MCAO animals demonstrated MRA evidence of flow within the right MCA and smaller predominantly cortical diffusion deficits. CONCLUSIONS: Proximal MCAO can be achieved in an ovine model of stroke via a surgical approach. Permanent
Siergieiev, D.; Ehlert, L.; Reimann, T.; Lundberg, A.; Liedl, R.
2015-01-01
Understanding the effects of major hydrogeological controls on hyporheic exchange and bank storage is essential for river water management, groundwater abstraction, restoration and ecosystem sustainability. Analytical models cannot adequately represent complex settings with, for example, transient boundary conditions, varying geometry of surface water-groundwater interface, unsaturated and overland flow, etc. To understand the influence of parameters such as (1) sloping river banks, (2) varying hydraulic conductivity of the riverbed and (3) different river discharge wave scenarios on hyporheic exchange characteristics such as (a) bank storage, (b) return flows and (c) residence time, a 2-D hydrogeological conceptual model and, subsequently, an adequate numerical model were developed. The numerical model was calibrated against observations in the aquifer adjacent to the hydropower-regulated Lule River, northern Sweden, which has predominantly diurnal discharge fluctuations during summer and long-lasting discharge peaks during autumn and winter. Modelling results revealed that bank storage increased with river wave amplitude, wave duration and smaller slope of the river bank, while maximum exchange flux decreased with wave duration. When a homogeneous clogging layer covered the entire river-aquifer interface, hydraulic conductivity positively affected bank storage. The presence of a clogging layer with hydraulic conductivity bank storage. The bank storage return/fill time ratio was positively related to wave amplitude and the hydraulic conductivity of the interface and negatively to wave duration and bank slope. Discharge oscillations with short duration and small amplitude decreased bank storage and, therefore, the hyporheic exchange, which has implications for solute fluxes, redox conditions and the potential of riverbeds as fish-spawning locations. Based on these results, river regulation strategies can be improved by considering the effect of certain wave event
Bronuzzi, J.; Mapelli, A.; Sallese, J. M.
2016-12-01
A silicon wafer bonding technique has been recently proposed for the fabrication of monolithic silicon radiation detectors. This new process would enable direct bonding of a read-out electronic chip wafer on a highly resistive silicon substrate wafer. Therefore, monolithic silicon detectors could be fabricated in this way which would allow the free choice of electronic chips and high resistive silicon bulk, even from different providers. Moreover, a monolithic detector with a high resistive bulk would also be available. Electrical properties of the bonded interface are then critical for this application. Indeed, mobile charges generated by radiation inside the bonded bulk are expected to transit through the interface to be collected by the read-out electronics. In order to characterize this interface, the concept of Transient Current Technique (TCT) has been explored by means of numerical simulations combined with a physics based analytical model. In this work, the analytical model giving insight into the physics behind the TCT dependence upon interface traps is validated using both TCAD simulations and experimental measurements.
Two-dimensional computational modeling of high-speed transient flow in gun tunnel
Mohsen, A. M.; Yusoff, M. Z.; Hasini, H.; Al-Falahi, A.
2018-03-01
In this work, an axisymmetric numerical model was developed to investigate the transient flow inside a 7-meter-long free piston gun tunnel. The numerical solution of the gun tunnel was carried out using the commercial solver Fluent. The governing equations of mass, momentum, and energy were discretized using the finite volume method. The dynamic zone of the piston was modeled as a rigid body, and its motion was coupled with the hydrodynamic forces from the flow solution based on the six-degree-of-freedom solver. A comparison of the numerical data with the theoretical calculations and experimental measurements of a ground-based gun tunnel facility showed good agreement. The effects of parameters such as working gases and initial pressure ratio on the test conditions in the facility were examined. The pressure ratio ranged from 10 to 50, and gas combinations of air-air, helium-air, air-nitrogen, and air-CO2 were used. The results showed that steady nozzle reservoir conditions can be maintained for a longer duration when the initial conditions across the diaphragm are adjusted. It was also found that the gas combination of helium-air yielded the highest shock wave strength and speed, but a longer test time was achieved in the test section when using the CO2 test gas.
Construction of a carbonate reservoir model using pressure transient data : field case study
Energy Technology Data Exchange (ETDEWEB)
Taheri, S. [Petro-Iran, (Iran, Islamic Republic of); Ghanizadeh, M. [Tehran Energy, (Iran, Islamic Republic of); Haghighi, M. [Tehran Univ., (Iran, Islamic Republic of)
2004-07-01
Pressure transient data was integrated with other reservoir information to create a geological model of a carbonate reservoir in the Salaman offshore field in Iran. The model was created using seismic and well log data as well as the interpretation of 99 well tests performed in this field. Several features such as sealing faults, aquifer, fracturing and layering systems were observed. Two faults were identified in the northern part of the reservoir. The distance between the major fault and well number 27 was less than predicted from seismic data. An active aquifer and minor fault were also identified near well number 6. A fracture system was identified around well number 22. Most well tests showed communication between different layers of the reservoirs, suggesting interconnected layers in terms of geology. All calculated permeabilities from the well tests were found to be significantly higher than those from core analysis, suggesting that discrete fractures exist throughout the reservoir. The northern region of the reservoir has the highest permeability values and the lowest values are observed in the central part of the reservoir. 18 refs., 6 figs.
Vapor shielding models and the energy absorbed by divertor targets during transient events
International Nuclear Information System (INIS)
Skovorodin, D. I.; Arakcheev, A. S.; Pshenov, A. A.; Eksaeva, E. A.; Marenkov, E. D.; Krasheninnikov, S. I.
2016-01-01
The erosion of divertor targets caused by high heat fluxes during transients is a serious threat to ITER operation, as it is going to be the main factor determining the divertor lifetime. Under the influence of extreme heat fluxes, the surface temperature of plasma facing components can reach some certain threshold, leading to an onset of intense material evaporation. The latter results in formation of cold dense vapor and secondary plasma cloud. This layer effectively absorbs the energy of the incident plasma flow, turning it into its own kinetic and internal energy and radiating it. This so called vapor shielding is a phenomenon that may help mitigating the erosion during transient events. In particular, the vapor shielding results in saturation of energy (per unit surface area) accumulated by the target during single pulse of heat load at some level E max . Matching this value is one of the possible tests to verify complicated numerical codes, developed to calculate the erosion rate during abnormal events in tokamaks. The paper presents three very different models of vapor shielding, demonstrating that E max depends strongly on the heat pulse duration, thermodynamic properties, and evaporation energy of the irradiated target material. While its dependence on the other shielding details such as radiation capabilities of material and dynamics of the vapor cloud is logarithmically weak. The reason for this is a strong (exponential) dependence of the target material evaporation rate, and therefore the “strength” of vapor shield on the target surface temperature. As a result, the influence of the vapor shielding phenomena details, such as radiation transport in the vapor cloud and evaporated material dynamics, on the E max is virtually completely masked by the strong dependence of the evaporation rate on the target surface temperature. However, the very same details define the amount of evaporated particles, needed to provide an effective shielding to the target
Zarifakis, Marios; Coffey, William T.; Kalmykov, Yuri P.; Titov, Sergei V.
2017-06-01
An ever-increasing requirement to integrate greater amounts of electrical energy from renewable sources especially from wind turbines and solar photo-voltaic installations exists and recent experience in the island of Ireland demonstrates that this requirement influences the behaviour of conventional generating stations. One observation is the change in the electrical power output of synchronous generators following a transient disturbance especially their oscillatory behaviour accompanied by similar oscillatory behaviour of the grid frequency, both becoming more pronounced with reducing grid inertia. This behaviour cannot be reproduced with existing mathematical models indicating that an understanding of the behaviour of synchronous generators, subjected to various disturbances especially in a system with low inertia requires a new modelling technique. Thus two models of a generating station based on a double pendulum described by a system of coupled nonlinear differential equations and suitable for analysis of its stability corresponding to infinite or finite grid inertia are presented. Formal analytic solutions of the equations of motion are given and compared with numerical solutions. In particular the new finite grid model will allow one to identify limitations to the operational range of the synchronous generators used in conventional power generation and also to identify limits, such as the allowable Rate of Change of Frequency which is currently set to ± 0.5 Hz/s and is a major factor in describing the volatility of a grid as well as identifying requirements to the total inertia necessary, which is currently provided by conventional power generators only, thus allowing one to maximise the usage of grid connected non-synchronous generators, e.g., wind turbines and solar photo-voltaic installations.
Merlis, Timothy M.
2014-10-01
Coupled climate model simulations of volcanic eruptions and abrupt changes in CO2 concentration are compared in multiple realizations of the Geophysical Fluid Dynamics Laboratory Climate Model, version 2.1 (GFDL CM2.1). The change in global-mean surface temperature (GMST) is analyzed to determine whether a fast component of the climate sensitivity of relevance to the transient climate response (TCR; defined with the 1%yr-1 CO2-increase scenario) can be estimated from shorter-time-scale climate changes. The fast component of the climate sensitivity estimated from the response of the climate model to volcanic forcing is similar to that of the simulations forced by abrupt CO2 changes but is 5%-15% smaller than the TCR. In addition, the partition between the top-of-atmosphere radiative restoring and ocean heat uptake is similar across radiative forcing agents. The possible asymmetry between warming and cooling climate perturbations, which may affect the utility of volcanic eruptions for estimating the TCR, is assessed by comparing simulations of abrupt CO2 doubling to abrupt CO2 halving. There is slightly less (~5%) GMST change in 0.5 × CO2 simulations than in 2 × CO2 simulations on the short (~10 yr) time scales relevant to the fast component of the volcanic signal. However, inferring the TCR from volcanic eruptions is more sensitive to uncertainties from internal climate variability and the estimation procedure. The response of the GMST to volcanic eruptions is similar in GFDL CM2.1 and GFDL Climate Model, version 3 (CM3), even though the latter has a higher TCR associated with a multidecadal time scale in its response. This is consistent with the expectation that the fast component of the climate sensitivity inferred from volcanic eruptions is a lower bound for the TCR.
International Nuclear Information System (INIS)
Bente, H.
1983-01-01
The main points of this investigation consists of: Production of a new model for treating thermo-hydraulics, particularly on an open grid of rods, a corresponding numerical algorithm solution, particularly regarding the analysis of the initial phase of an exemplary serious hypothetical accident and the conceptual assessment of the risk of an accident. There was no possibility of falling back on tried and tested methods of analysis to analyse the open core, bearing in mind the requirement for permitting transverse flow in the grid of rods. Rather the so-called quasi-continuum model representation had to be theoretically formulated and prepared for a numerical solution for the requirements of the open core. Boiling sodium is the dominant phenomenon of early phases of faults. The special feature of the open core can be seen to lie in the fact that the expansion of a sodium vapour bubble has a further degree of freedom. Also, one cannot expect incoherent boiling of individual fuel elements. Using the American NATOF code, which also uses a form of quasi-continuum, aspects of boiling are worked out in an open arrangement. (orig./GL) [de
Rampidis, I.; Nikolopoulos, A.; Koukouzas, N.; Grammelis, P.; Kakaras, E.
2007-09-01
This work aims to present a pure 3-D CFD model, accurate and efficient, for the simulation of a pilot scale CFB hydrodynamics. The accuracy of the model was investigated as a function of the numerical parameters, in order to derive an optimum model setup with respect to computational cost. The necessity of the in depth examination of hydrodynamics emerges by the trend to scale up CFBCs. This scale up brings forward numerous design problems and uncertainties, which can be successfully elucidated by CFD techniques. Deriving guidelines for setting a computational efficient model is important as the scale of the CFBs grows fast, while computational power is limited. However, the optimum efficiency matter has not been investigated thoroughly in the literature as authors were more concerned for their models accuracy and validity. The objective of this work is to investigate the parameters that influence the efficiency and accuracy of CFB computational fluid dynamics models, find the optimum set of these parameters and thus establish this technique as a competitive method for the simulation and design of industrial, large scale beds, where the computational cost is otherwise prohibitive. During the tests that were performed in this work, the influence of turbulence modeling approach, time and space density and discretization schemes were investigated on a 1.2 MWth CFB test rig. Using Fourier analysis dominant frequencies were extracted in order to estimate the adequate time period for the averaging of all instantaneous values. The compliance with the experimental measurements was very good. The basic differences between the predictions that arose from the various model setups were pointed out and analyzed. The results showed that a model with high order space discretization schemes when applied on a coarse grid and averaging of the instantaneous scalar values for a 20 sec period, adequately described the transient hydrodynamic behaviour of a pilot CFB while the
International Nuclear Information System (INIS)
Lee, Hoseong; Hwang, Yunho; Song, Ilguk; Jang, Kilsang
2015-01-01
A transient thermal model of a passenger car's cabin is developed to investigate the dynamic behavior of cabin thermal conditions. The model is developed based on a lumped-parameter model and solved using integral methods. Solar radiation, engine heat through the firewall, and engine heat to the air ducts are all considered. Using the thermal model, transient temperature profiles of the interior mass and cabin air are obtained. This model is used to investigate the transient behavior of the cabin under various operating conditions: the recirculation mode in the idling state, the fresh air mode in the idling state, the recirculation mode in the driving state, and fresh air mode in the driving state. The developed model is validated by comparing with experimental data and is within 5% of deviation. The validated model is then applied for evaluating the mobile air conditioning system's design. The study found that a saturation cycle concept (four-stage cycle with two-phase refrigerant injection) could improve the system efficiency by 23.9% and reduce the power consumption by 19.3%. Lastly, several alternative refrigerants are applied and their performance is discussed. When the saturation cycle concept is applied, R1234yf MAC (mobile air conditioning) shows the largest COP (coefficient of performance) improvement and power consumption reduction. - Highlights: • The transient thermal model of the passenger car cabin is developed. • The developed model is validated with experimental data and showed 5% deviation. • Saturation cycle concept is applied to the developed cabin model. • There is 24% COP improvement by applying the saturation cycle concept. • R1234yf showed the highest potential when it is applied to the saturation cycle.
International Nuclear Information System (INIS)
Gulshani, P.; So, C.B.
1986-10-01
In a number of postulated accident scenarios in a CANDU reactor, some of the horizontal fuel channels are predicted to experience periods of stratified channel coolant condition which can lead to a circumferential temperature gradient around the pressure tube. To study pressure tube strain and integrity under stratified flow channel conditions, it is, necessary to determine the pressure tube circumferential temperature distribution. This paper presents an algebraic model, called AMPTRACT (Algebraic Model for Pressure Tube TRAnsient Circumferential Temperature), developed to give the transient temperature distribution in a closed form. AMPTRACT models the following modes of heat transfer: radiation from the outermost elements to the pressure tube and from the pressure to calandria tube, convection between the fuel elements and the pressure tube and superheated steam, and circumferential conduction from the exposed to submerged part of the pressure tube. An iterative procedure is used to solve the mass and energy equations in closed form for axial steam and fuel-sheath transient temperature distributions. The one-dimensional conduction equation is then solved to obtain the pressure tube circumferential transient temperature distribution in a cosine series expansion. In the limit of large times and in the absence of convection and radiation to the calandria tube, the predicted pressure tube temperature distribution reduces identically to a parabolic profile. In this limit, however, radiation cannot be ignored because the temperatures are generally high. Convection and radiation tend to flatten the parabolic distribution
International Nuclear Information System (INIS)
Rhee, B.W.; Park, J.H.
2006-01-01
To form a licensing bases for the new methodology of fuel channel safety analysis code system for CANDU-6, a CATHENA model for the post-blowdown fuel channel analysis has been developed, and tested for a high temperature thermal-chemical experiment CS28-1. Pursuant to the objective of this study the current study has focused on understanding the involved phenomena, their interrelations, and how to maintain good accuracy in the temperature and H 2 generation rate prediction without losing the important physics of the involved phenomena. The transient simulation results for the FESs of three fuel rings and the pressure tube were quite good as proven in the Figs. 3∼6. However this raises a question how the transient FES and pressure tube temperature can be predicted so well in spite of the insufficient justification of using the 'non-participating medium assumption' for the CO 2 gas gap. Through this study, it was found that the radiation heat transfer model of CATHENA among FES of three rings and the pressure tube as well as the exothermic metal-water reaction model based on the Urbanic-Heidrick correlation are quite accurate and sound. Also it was found that an accurate prediction of the initial condition of the experiment is very important for the accurate prediction of the whole transient as it serves as the starting point of the transient. (author)
Deng, Baoqing; Si, Yinbing; Wang, Jia
2017-12-01
Transient storages may vary along the stream due to stream hydraulic conditions and the characteristics of storage. Analytical solutions of transient storage models in literature didn't cover the spatially non-uniform storage. A novel integral transform strategy is presented that simultaneously performs integral transforms to the concentrations in the stream and in storage zones by using the single set of eigenfunctions derived from the advection-diffusion equation of the stream. The semi-analytical solution of the multiple-zone transient storage model with the spatially non-uniform storage is obtained by applying the generalized integral transform technique to all partial differential equations in the multiple-zone transient storage model. The derived semi-analytical solution is validated against the field data in literature. Good agreement between the computed data and the field data is obtained. Some illustrative examples are formulated to demonstrate the applications of the present solution. It is shown that solute transport can be greatly affected by the variation of mass exchange coefficient and the ratio of cross-sectional areas. When the ratio of cross-sectional areas is big or the mass exchange coefficient is small, more reaches are recommended to calibrate the parameter.
Energy Technology Data Exchange (ETDEWEB)
Baptista, Renan Martins [PETROBRAS, Rio de Janeiro, RJ (Brazil). Centro de Pesquisas. Div. de Explotacao]. E-mail: renan@cenpes.petrobras.com.br
2000-07-01
This paper describes a technical procedure to assess a software based leak detection system (LDS), by deciding between a simpler low cost, less effective product, having a fast installation and tuning, and a complex one with high cost and efficiency, which however takes a long time to be properly installed. This is a common decision among the pipeline operating companies, considering that the majority of the lines are short, with single phase liquid flow (which may include batches), basic communication system and instrumentation. Service companies offer realistic solutions for liquid flow, but usually designed to big pipeline networks, flowing multiple batches and allowing multiple fluid entrances and deliveries. Those solutions are sometimes impractical to short pipelines, due to its high cost, as well as long tuning procedures, complex instrumentation, communication and computer requirements. It is intended to approach here the best solution according to its cost. In a practical sense, it means to differentiate the various LDS techniques. Those techniques are available in a considerable number, and they are still spreading, according to the different scenarios. However, two most known and worldwide implemented techniques hold the majority of the market: the Compensated Volume Balance (CVB), which is less accurate, reliable and robust, but cheaper, simpler and faster to install, and the Real Time Transient Model (RTTM), which is very reliable, accurate and robust, but expensive and complex. This work will describe a way to define whether one can use or not a CVB in a pipeline. (author)
Kammoun, Soulaymen; Sallem, Souhir; Ben Ali Kammoun, Mohamed
2017-11-01
The aim of this study is to enhance DFIG based Wind Energy Conversion Systems (WECS) dynamics during grid coupling. In this paper, a system modelling and a starting/coupling procedure for this generator to the grid are proposed. The proposed non-linear system is a variable structure system (VSS) and has two different states, before and after coupling. So, two different state models are given to the system to analyse transient stability during the coupling. The given model represents well the transient state of the machine, through which, a behaviour assessment of the generator before, during and after connection is given based on simulation results. For this, a 300 kW DFIG based wind generation system model was simulated on the Matlab/SIMULINK environment. We judge the proposed procedure to be practical, smooth and stability improved.
Jazebi, Saeed
This thesis is a step forward toward achieving the final objective of creating a fully dual model for transformers including eddy currents and nonlinearities of the iron core using the fundamental electrical components already available in the EMTP-type programs. The model is effective for the study of the performance of transformers during power system transients. This is very important for transformer designers, because the insulation of transformers is determined with the overvoltages caused by lightning or switching operations. There are also internally induced transients that occur when a switch is actuated. For example switching actions for reconfiguration of distribution systems that offers economic advantages, or protective actions to clear faults and large short-circuit currents. Many of the smart grid concepts currently under development by many utilities rely heavily on switching to optimize resources that produce transients in the system. On the other hand, inrush currents produce mechanical forces which deform transformer windings and cause malfunction of the differential protection. Also, transformer performance under ferroresonance and geomagnetic induced currents are necessary to study. In this thesis, a physically consistent dual model applicable to single-phase two-winding transformers is proposed. First, the topology of a dual electrical equivalent circuit is obtained from the direct application of the principle of duality. Then, the model parameters are computed considering the variations of the transformer electromagnetic behavior under various operating conditions. Current modeling techniques use different topological models to represent diverse transient situations. The reversible model proposed in this thesis unifies the terminal and topological equivalent circuits. The model remains invariable for all low-frequency transients including deep saturation conditions driven from any of the two windings. The very high saturation region of the
The STATCOM equivalent model research of the ADPSS/ETSDAC electromagnetic transient simulation model
Yuan, Qianguang; Tang, Aihong
2017-05-01
STATCOM-(static synchronous compensator) is the newest technology representative of Reactive power compensation field today, which is one of the important parts of the Flexible AC output system. In order to intensive study the system power controlling properties of STATCOM deployment; avoid the problem caused by detailed physical model and equaling model, it will equal the power electronics segments on the detailed physical model of STATCOM in the system and stimulate both the steady-state stimulating and fault-temporary stimulating which based on the ADPSS/ETSDAC.
Forcada, J.; Royle, J. Andrew; Staniland, I.J.
2009-01-01
Correctly quantifying the impacts of rare apex marine predators is essential to ecosystem-based approaches to fisheries management, where harvesting must be sustainable for targeted species and their dependent predators. This requires modelling the uncertainty in such processes as predator life history, seasonal abundance and movement, size-based predation, energetic requirements, and prey vulnerability. We combined these uncertainties to evaluate the predatory impact of transient leopard seals on a community of mesopredators (seals and penguins) and their prey at South Georgia, and assess the implications for an ecosystem-based management. The mesopredators are highly dependent on Antarctic krill and icefish, which are targeted by regional fisheries. We used a state-space formulation to combine (1) a mark-recapture open-population model and individual identification data to assess seasonally variable leopard seal arrival and departure dates, numbers, and residency times; (2) a size-based bioenergetic model; and (3) a size-based prey choice model from a diet analysis. Our models indicated that prey choice and consumption reflected seasonal changes in leopard seal population size and structure, size-selective predation and prey vulnerability. A population of 104 (90?125) leopard seals, of which 64% were juveniles, consumed less than 2% of the Antarctic fur seal pup production of the area (50% of total ingested energy, IE), but ca. 12?16% of the local gentoo penguin population (20% IE). Antarctic krill (28% IE) were the only observed food of leopard seal pups and supplemented the diet of older individuals. Direct impacts on krill and fish were negligible, but the ?escapement? due to leopard seal predation on fur seal pups and penguins could be significant for the mackerel icefish fishery at South Georgia. These results suggest that: (1) rare apex predators like leopard seals may control, and may depend on, populations of mesopredators dependent on prey species
Thermohydraulic calculations in rectangular channels for RA-6 type reactors with transition regime
International Nuclear Information System (INIS)
Sillin, N; Vertullo, A.; Masson, V.; Hilal, R
2009-01-01
In August 2000 and within the framework of the RA-6 core conversion from high to low enrichment (20%), a preliminary analysis was performed to evaluate the maximum power that the reactor could operate with the new kernel without makeing substantial changes. This meant keeping intact, for example, the concrete shield of the pool and the nucleus inlet and outlet pipes embedded in the walls. Preliminary results indicated that for these boundary conditions a maximum power of about 3 MWt could be achieved. In August 2005 the project was resumed and new calculations performed taking as a starting point the ECBE plate fuel element(U3O8-Al). A core was developed with cooling channle widths of 2.6 mm for the control fuel elements and 2.7 mm for standard fuel elements. The thermo-hydraulic calculation puts in evidence that coolant flow into the core was in the transitional regime for the vast majority of configurations. While TERMIC code, used for thermo-hydraulic design, has been extensively tested and validated for use in research reactors under turbulent and laminar flows, this is not so for transition conditions. The transition regime is strongly dependent on conditions such as flow inlet characteristics, channel geometry, etc.. and therefore there are no reliable correlations for general use. For this reason we found it convenient to carry out experiments simulating the working conditions in order to adjust the code results with experimental data. In the present work we show the experimental results, the simulation of the experiences using the TERMIC code, and the adjustments made to the correlations used by the code so that it can be applied to the thermo-hydraulic design of the new core. [es
Transient modelling of heat loading of phase change material for energy storage
Directory of Open Access Journals (Sweden)
Asyraf W.M.
2017-01-01
Full Text Available As the development of solar energy is getting advance from time to time, the concentration solar technology also get the similar attention from the researchers all around the globe. This technology concentrate a large amount of energy into main spot. To collect all the available energy harvest from the solar panel, a thermal energy storage is required to convert the heat energy to one of the purpose such as electrical energy. With the idea of energy storage application that can be narrow down to commercial application such as cooking stove. Using latent heat type energy storage seem to be appropriate with the usage of phase change material (PCM that can release and absorb heat energy at nearly constant temperature by changing its state. Sodium nitrate (NaNO3 and potassium nitrate (KNO3 was selected to use as PCM in this project. This paper focus on the heat loading process and the melting process of the PCM in the energy storage using a computer simulation. The model of the energy storage was created as solid three dimensional modelling using computer aided software and the geometry size of it depend on how much it can apply to boil 1 kg of water in cooking application. The materials used in the tank, heat exchanger and the heat transfer fluid are stainless steel, copper and XCELTHERM MK1, respectively. The analysis was performed using a commercial simulation software in a transient state. The simulation run on different value of velocity but kept controlled under laminar state only, then the relationship of velocity and heat distribution was studied and the melting process of the PCM also has been analyzed. On the effect of heat transfer fluid velocity, the higher the velocity resulted in higher the rate of heat transfer. The comparison between the melting percentages of the PCMs under test conditions show that NaNO3 melts quite faster than KNO3.
Validation of thermohydraulic codes by comparison of experimental results with computer simulations
International Nuclear Information System (INIS)
Madeira, A.A.; Galetti, M.R.S.; Pontedeiro, A.C.
1989-01-01
The results obtained by simulation of three cases from CANON depressurization experience, using the TRAC-PF1 computer code, version 7.6, implanted in the VAX-11/750 computer of Brazilian CNEN, are presented. The CANON experience was chosen as first standard problem in thermo-hydraulic to be discussed at ENFIR for comparing results from different computer codes with results obtained experimentally. The ability of TRAC-PF1 code to prevent the depressurization phase of a loss of primary collant accident in pressurized water reactors is evaluated. (M.C.K.) [pt
Reliability analysis of PWR thermohydraulic design by the Monte Carlo method
International Nuclear Information System (INIS)
Silva Junior, H.C. da; Berthoud, J.S.; Carajilescov, P.
1977-01-01
The operating power level of a PWR is limited by the occurence of DNB. Without affecting the safety and performance of the reactor, it is possible to admit failure of a certain number of core channels. The thermohydraulic design, however, is affect by a great number of uncertainties of deterministic or statistical nature. In the present work, the Monte Carlo method is applied to yield the probability that a number F of channels submitted to boiling crises will not exceed a number F* previously given. This probability is obtained as function of the reactor power level. (Author) [pt
International Nuclear Information System (INIS)
Watanabe, Noriyuki; Subki, M.H.; Kikura, Hiroshige; Aritomi, Masanori
2003-01-01
Reduced-moderation natural circulation BWR has been promoted to solve the recent challenges in BWR nuclear power technology problems as one of advanced small and medium-sized reactors equipped with the passive safety features in conformity with the natural law. However, the elimination of recirculation pumps and a high-density core due to the increase of conversion ratio could cause various thermo-hydraulic instabilities especially during the start-up stage. The occurrences of the thermo-hydraulic instabilities are not desirable and it is one of the main challenges in establishing reduced-moderation natural circulation BWR as a commercial reactor. The purpose of this present study is to experimentally investigate the driving mechanism of the thermo-hydraulic instabilities and the effect of system pressure on the unstable flow patterns. Hence, as the fundamental research for this study, a natural circulation loop that carries boiling fluid with parallel boiling channel has been constructed. Channel gap that has been set at 2 mm in order to simulate reduced-moderation reactor core. Pressure ranges of 0.1 up to 0.7 MPa, input heat flux range of 0 ou to 577 kW/m 2 , and inlet subcooling temperatures of 5, 10, and 15 K respectively, are imposed in the experiments. This experiment clarifies that changes in unstable flow patterns with increase in heat flux can be classified into two in response to system pressure range. In case of atmospheric pressure, unstable flow patters has been classified in beyond order, (1) in-phase geysering, (2) transition oscillation combined with both features of in-phase geysering and natural circulation oscillation, (3) natural circulation oscillation induced by hydrostatic head fluctuation, (4) density wave oscillation, and finally (5) stable boiling two-phase flow. On the other hand, in the system pressure range from 0.2 to 0.7 MPa, unstable patters have been dramatically changed in the following order (1) out-of-phase geysering, (2
International Nuclear Information System (INIS)
Reyes F, M. C.; Del Valle G, E.; Gomez T, A. M.; Sanchez E, V.
2015-09-01
A methodology was implemented to carry out a sensitivity and uncertainty analysis for cross sections used in a coupled model for Trace/Parcs in a transient of control rod fall of a BWR-5. A model of the reactor core for the neutronic code Parcs was used, in which the assemblies located in the core are described. Thermo-hydraulic model in Trace was a simple model, where only a component type Chan was designed to represent all the core assemblies, which it was within a single vessel and boundary conditions were established. The thermo-hydraulic part was coupled with the neutron part, first for the steady state and then a transient of control rod fall was carried out for the sensitivity and uncertainty analysis. To carry out the analysis of cross sections used in the coupled model Trace/Parcs during the transient, the Probability Density Functions for 22 parameters selected from the total of neutronic parameters that use Parcs were generated, obtaining 100 different cases for the coupled model Trace/Parcs, each one with a database of different cross sections. All these cases were executed with the coupled model, obtaining in consequence 100 different output files for the transient of control rod fall doing emphasis in the nominal power, for which an uncertainty analysis was realized at the same time generate the band of uncertainty. With this analysis is possible to observe the ranges of results of the elected responses varying the selected uncertainty parameters. The sensitivity analysis complements the uncertainty analysis, identifying the parameter or parameters with more influence on the results and thus focuses on these parameters in order to better understand their effects. Beyond the obtained results, because is not a model with real operation data, the importance of this work is to know the application of the methodology to carry out the sensitivity and uncertainty analyses. (Author)
Thermo-hydraulic stability study of a steam generator
International Nuclear Information System (INIS)
Magni, M C; Marcel, C P; Delmastro, D F
2012-01-01
In this work a mathematical model developed to investigate the thermalhydraulic stability of a helically coiled steam generator is presented. Such a steam generator is prone to experiment density wave oscillations. The model is therefore used to analyze the stability of the CAREM-25 reactor steam generators. The model is linear, numerically non-diffusive and nodal. In addition, it is able to represent non-uniform heat transfer fluxes between the primary and secondary coolant circuits. By using this model the marginal stability condition is found by varying the inlet friction coefficient for different conditions. The results are then compared with those obtained with a different model for which a simple uniform heat flux profiled is assumed. It is found that with such simplification the density waves instability mechanism is overestimated in a wide range of operating powers. For very low powers, in the contrary, the so-called uniform model underestimates the stabilizing inlet friction and therefore it gives non-conservative results. With the use of the more realistic non-uniform power profile model, it was possible to determine that, for a CAREM-25 steam generator, the most stable conditions is found at 60MW when the reactor operates at nominal pressure. Moreover, it is found that at high power levels the stability performance is dominated by the two-phase friction component while at low power levels the friction component originated in the over heated steam region prevail (author)
STRATEG - an incident training system for thermohydraulic effects and principles
International Nuclear Information System (INIS)
Rehn, H.; Majohr, N.
1993-01-01
STRATEG is a 1:10 scale glass model of a PWR (Biblis B reactor coolant circuit) built by RWE in 1986 on the site of the Biblis plant as a training model. The model can be used for training of normal operation and incident situations since all important operating and incident sequences of a PWR can be simulated. Thermodynamic phenomena can also be demonstrated occurring under various operating situations and in particular associated with malfunctions. (Z.S.) 1 tab., 3 figs., 1 ref
A transient one-dimensional numerical model for kinetic Stirling engine
International Nuclear Information System (INIS)
Wang, Kai; Dubey, Swapnil; Choo, Fook Hoong; Duan, Fei
2016-01-01
Highlights: • A non-equilibrium thermal mode with considering loses is adopted in Stirling engine. • Good agreements are achieved for predicting various critical system parameters. • Differences between helium and hydrogen systems are highlighted and analyzed. • Pressure drop of helium system is much larger and more sensitive to frequency. - Abstract: A third-order numerical model based on one-dimensional computational fluid dynamics is developed for kinetic Stirling engines. Various loss mechanisms in Stirling engines, including gas spring hysteresis loss, shuttle loss, appendix displacer gap loss, gas leakage loss, finite speed loss, piston friction loss, pressure drop loss, heat conduction loss, mechanical loss and imperfect heat transfer, are considered and embedded into the basic control equations. The non-equilibrium thermal model is adopted for the regenerator to capture the oscillating features of the gas and solid temperatures. To improve the numerical stability and accuracy, the implicit second-order time difference scheme and the second-order upwind scheme are adopted for discretizing the time differential terms and convective terms, respectively. Experimental validations are then conducted on a beta-type Stirling engine with the extensive experimental data for diverse working conditions. The results show that the developed model has better accuracies than the previous second-order models. Good agreements are achieved for predicting various critical system parameters, including pressure-volume diagram, indicated power, brake power, indicated efficiency, brake efficiency and mechanical efficiency. In particular, both the experiments and simulations show that the Stirling engine charged with helium tends to have much lower optimal working frequencies and poorer performances compared to the hydrogen system. Based on the analyses of the losses, it reveals that the pressure drop in the flow channels plays a critical role in shaping the different
Transient behavior of natural circulation for boiling two-phase flow, 2
International Nuclear Information System (INIS)
Aritomi, Masanori; Chiang, Jing-Hsien; Mori, Michitugu.
1991-01-01
In this set of experiments, natural circulation in boiling two-phase flow has been investigated for power transients, simulating the start-up process in a natural circulation BWR. This was done in order to understand the underlying mechanism of thermo-hydraulic instability which may appear during a start-up. In this paper, geysering is dealt with especially and the driving mechanism is clarified by investigating the stability related to effects of inlet velocity, subcooling, temperature in an outlet plenum and non-heated length between heated section and the outlet plenum. Furthermore, by considering these results and the operational experience in the Dodewaard reactor, recommendations on how the thermo-hydraulic instabilities can be prevented from occurring are proposed concerning a reactor configuration and start-up procedure for natural circulation BWRs. (author)
Eakins, D. E.; Thadhani, N. N.
2006-10-01
Instrumented Taylor anvil-on-rod impact tests have been conducted on oxygen-free electronic copper to validate the accuracy of current strength models for predicting transient states during dynamic deformation events. The experiments coupled the use of high-speed digital photography to record the transient deformation states and laser interferometry to monitor the sample back (free surface) velocity as a measure of the elastic/plastic wave propagation through the sample length. Numerical continuum dynamics simulations of the impact and plastic wave propagation employing the Johnson-Cook [Proceedings of the Seventh International Symposium on Ballistics, 1983, The Netherlands (Am. Def. Prep. Assoc. (ADPA)), pp. 541-547], Zerilli-Armstrong [J. Appl. Phys. C1, 1816 (1987)], and Steinberg-Guinan [J. Appl. Phys. 51, 1498 (1980)] constitutive equations were used to generate transient deformation profiles and the free surface velocity traces. While these simulations showed good correlation with the measured free surface velocity traces and the final deformed sample shape, varying degrees of deviations were observed between the photographed and calculated specimen profiles at intermediate deformation states. The results illustrate the usefulness of the instrumented Taylor anvil-on-rod impact technique for validating constitutive equations that can describe the path-dependent deformation response and can therefore predict the transient and final deformation states.
Energy Technology Data Exchange (ETDEWEB)
Cole, Charles R.; Bergeron, Marcel P.; Wurstner, Signe K.; Thorne, Paul D.; Orr, Samuel; Mckinley, Mathew I.
2001-05-31
This report describes a new initiative to strengthen the technical defensibility of predictions made with the Hanford site-wide groundwater flow and transport model. The focus is on characterizing major uncertainties in the current model. PNNL will develop and implement a calibration approach and methodology that can be used to evaluate alternative conceptual models of the Hanford aquifer system. The calibration process will involve a three-dimensional transient inverse calibration of each numerical model to historical observations of hydraulic and water quality impacts to the unconfined aquifer system from Hanford operations since the mid-1940s.
Modeling the transient response of saline intrusion to rising sea-levels.
Webb, Matt D; Howard, Ken W F
2011-01-01
Sea levels are expected to rise as a result of global temperature increases, one implication of which is the potential exacerbation of sea water intrusion into coastal aquifers. Given that approximately 70% of the world's population resides in coastal regions, it is imperative to understand the interaction between fresh groundwater and sea water intrusion in order to best manage available resources. For this study, controlled investigation has been carried out concerning the temporal variation in sea water intrusion as a result of rising sea levels. A series of fixed inland head two-dimensional sea water intrusion models were developed with SEAWAT in order to assess the impact of rising sea levels on the transient migration of saline intrusion in coastal aquifers under a range of hydrogeological property conditions. A wide range of responses were observed for typical hydrogeological parameter values. Systems with a high ratio of hydraulic conductivity to recharge and high effective porosity lagged behind the equilibrium sea water toe positions during sea-level rise, often by many hundreds of meters, and frequently taking several centuries to equilibrate following a cease in sea-level rise. Systems with a low ratio of hydraulic conductivity to recharge and low effective porosity did not develop such a large degree of disequilibrium and generally stabilized within decades following a cease in sea-level rise. This study provides qualitative initial estimates for the expected rate of intrusion and predicted degree of disequilibrium generated by sea-level rise for a range of hydrogeological parameter values. Copyright © 2010 The Author(s). Journal compilation © 2010 National Ground Water Association.
Thermophysics modeling of an infrared detector cryochamber for transient operational scenario
Singhal, Mayank; Singhal, Gaurav; Verma, Avinash C.; Kumar, Sushil; Singh, Manmohan
2016-05-01
An infrared detector (IR) is essentially a transducer capable of converting radiant energy in the infrared regime into a measurable form. The benefit of infrared radiation is that it facilitates viewing objects in dark or through obscured conditions by detecting the infrared energy emitted by them. One of the most significant applications of IR detector systems is for target acquisition and tracking of projectile systems. IR detectors also find widespread applications in the industry and commercial market. The performance of infrared detector is sensitive to temperatures and performs best when cooled to cryogenic temperatures in the range of nearly 120 K. However, the necessity to operate in such cryogenic regimes increases the complexity in the application of IR detectors. This entails a need for detailed thermophysics analysis to be able to determine the actual cooling load specific to the application and also due to its interaction with the environment. This will enable design of most appropriate cooling methodologies suitable for specific scenarios. The focus of the present work is to develop a robust thermo-physical numerical methodology for predicting IR cryochamber behavior under transient conditions, which is the most critical scenario, taking into account all relevant heat loads including radiation in its original form. The advantage of the developed code against existing commercial software (COMSOL, ANSYS, etc.), is that it is capable of handling gas conduction together with radiation terms effectively, employing a ubiquitous software such as MATLAB. Also, it requires much smaller computational resources and is significantly less time intensive. It provides physically correct results enabling thermal characterization of cryochamber geometry in conjunction with appropriate cooling methodology. The code has been subsequently validated experimentally as the observed cooling characteristics are found to be in close agreement with the results predicted using
Transient Kinetics Define a Complete Kinetic Model for Protein Arginine Methyltransferase 1*
Hu, Hao; Luo, Cheng; Zheng, Y. George
2016-01-01
Protein arginine methyltransferases (PRMTs) are the enzymes responsible for posttranslational methylation of protein arginine residues in eukaryotic cells, particularly within the histone tails. A detailed mechanistic model of PRMT-catalyzed methylation is currently lacking, but it is essential for understanding the functions of PRMTs in various cellular pathways and for efficient design of PRMT inhibitors as potential treatments for a range of human diseases. In this work, we used stopped-flow fluorescence in combination with global kinetic simulation to dissect the transient kinetics of PRMT1, the predominant type I arginine methyltransferase. Several important mechanistic insights were revealed. The cofactor and the peptide substrate bound to PRMT1 in a random manner and then followed a kinetically preferred pathway to generate the catalytic enzyme-cofactor-substrate ternary complex. Product release proceeded in an ordered fashion, with peptide dissociation followed by release of the byproduct S-adenosylhomocysteine. Importantly, the dissociation rate of the monomethylated intermediate from the ternary complex was much faster than the methyl transfer. Such a result provided direct evidence for distributive arginine dimethylation, which means the monomethylated substrate has to be released to solution and rebind with PRMT1 before it undergoes further methylation. In addition, cofactor binding involved a conformational transition, likely an open-to-closed conversion of the active site pocket. Further, the histone H4 peptide bound to the two active sites of the PRMT1 homodimer with differential affinities, suggesting a negative cooperativity mechanism of substrate binding. These findings provide a new mechanistic understanding of how PRMTs interact with their substrates and transfer methyl groups. PMID:27834681
International Nuclear Information System (INIS)
Ren Zhihao; Kong Xiangyin; Tsai Chiungwen; Ruan Jialei; Li Jinggang; Ma Zhongying; Yan Jianxing; Ma Yinxiang
2015-01-01
A system transient thermal-hydraulic analysis code for PWRs named GINKGO is being developed as part of the indigenous effort of China General Nuclear Power Corp. (CGN) to develop a full-spectrum software package for reactor design and safety analysis. Implemented using the Object-Oriented programming technology, GINKGO is designed to be used for simulating all PWR transients except LBLOCA. The primary physical models and key algorithms applied in GINKGO and also the preliminary validation with the phenomena cases are introduced in the paper. To account for reactor coolant transients, the separated phase model under thermal equilibrium is used in the code. The three governing mixture balance equations augmented with Chexal-Lellouche drift-flux model to determine phase velocities are solved at each time step. Thermal equilibrium between the vapor and liquid phases is assumed with the exception of the upper head volume and pressurizer. And two-region non-equilibrium model and multi-region non-equilibrium model are available for the pressurizer simulation. The reactor point kinetics model with six groups of delayed neutrons, the partial derivative approximation of the DNBR model and decay heat model are combined to give a full description for the reactor core. The additional component model, engineered safety system model and models for other auxiliary systems in GINKGO demonstrate a complete capability for PWR safety analysis and thermal-hydraulic design. A fully implicit solution algorithm involving pressure search is applied in GINKGO to improve the stability of the solution method, especially when two-phase conditions with unequal phase velocities exist. Different phenomena cases are set up to demonstrate the capability of GINKGO used in different boundary conditions, steady state achievement, reverse and branch flow, etc. The GINKGO code uses the C/C++ programming language to take advantage of the language's inherent Object Oriented characteristic and to
Latest improvements on TRACPWR six-equations thermohydraulic code
International Nuclear Information System (INIS)
Rivero, N.; Batuecas, T.; Martinez, R.; Munoz, J.; Lenhardt, G.; Serrano, P.
1999-01-01
The paper presents the latest improvements on TRACPWR aimed at adapting the code to present trends on computer platforms, architectures and training requirements as well as extending the scope of the code itself and its applicability to other technologies different from Westinghouse PWR one. Firstly major features of TRACPWR as best estimate and real time simulation code are summed, then the areas where TRACPWR is being improved are presented. These areas comprising: (1) Architecture: integrating TRACPWR and RELAP5 codes, (2) Code scope enhancement: modelling the Mid-Loop operation, (3) Code speed-up: applying parallelization techniques, (4) Code platform downswing: porting to Windows N1 platform, (5) On-line performance: allowing simulation initialisation from a Plant Process Computer, and (6) Code scope extension: using the code for modelling VVER and PHWR technology. (author)
Baum, Rex L.; Godt, Jonathan W.; Savage, William Z.
2010-01-01
Shallow rainfall-induced landslides commonly occur under conditions of transient infiltration into initially unsaturated soils. In an effort to predict the timing and location of such landslides, we developed a model of the infiltration process using a two-layer system that consists of an unsaturated zone above a saturated zone and implemented this model in a geographic information system (GIS) framework. The model links analytical solutions for transient, unsaturated, vertical infiltration above the water table to pressure-diffusion solutions for pressure changes below the water table. The solutions are coupled through a transient water table that rises as water accumulates at the base of the unsaturated zone. This scheme, though limited to simplified soil-water characteristics and moist initial conditions, greatly improves computational efficiency over numerical models in spatially distributed modeling applications. Pore pressures computed by these coupled models are subsequently used in one-dimensional slope-stability computations to estimate the timing and locations of slope failures. Applied over a digital landscape near Seattle, Washington, for an hourly rainfall history known to trigger shallow landslides, the model computes a factor of safety for each grid cell at any time during a rainstorm. The unsaturated layer attenuates and delays the rainfall-induced pore-pressure response of the model at depth, consistent with observations at an instrumented hillside near Edmonds, Washington. This attenuation results in realistic estimates of timing for the onset of slope instability (7 h earlier than observed landslides, on average). By considering the spatial distribution of physical properties, the model predicts the primary source areas of landslides.
Wu, Guangxi; Yu, Xiong
2015-06-01
Thermoelectric power generator has potential for small-scale and distributed power generation because of its high durability and scalability. It is very important to realize that the transient behavior of thermoelectric modules (TEM) affects a thermoelectric generator's response to dynamic working environments. Traditionally, researchers have used simplified models to describe the behavior of thermoelectric modules. In this paper we propose a comprehensive mathematical model that considers the effect of variations of chemical potential and carrier density, which are ignored by traditional models. Finite element models based on this new model are used to simulate the transient behavior of a thermoelectric module subjected to rapid changes in boundary temperature or working load. Simulation results show that transition times of thermoelectric modules affected by temperature change are much longer than those of modules affected by changes in electrical load resistance. Sudden changes in working temperature cause voltage overshoot of the TEM output, which, however, is not observed in responses to sudden changes of load resistance. Comparisons also show there are significant differences between the behavior of TEM predicted by use of this new comprehensive model and that predicted by use of traditional models, particularly for the high-temperature intrinsic ionization region and the low-temperature weak ionization region. This implies that chemical potential and carrier density variations, which are taken into account by this new model but ignored by traditional models, have major effects on the performance of TEM.
Transient expression of heterologous model gene in plants using Potato virusX-based vector
Czech Academy of Sciences Publication Activity Database
Čeřovská, Noemi; Pečenková, Tamara; Moravec, Tomáš; Velemínský, Jiří
2004-01-01
Roč. 79, č. 2 (2004), s. 147-152 ISSN 0167-6857 R&D Projects: GA ČR GA310/00/0381 Institutional research plan: CEZ:AV0Z5038910 Keywords : plant virus * based vector * transient expression Subject RIV: EB - Genetics ; Molecular Biology Impact factor: 1.028, year: 2004
A neural model for transient identification in dynamic processes with 'don't know' response
International Nuclear Information System (INIS)
Mol, Antonio C. de A.; Martinez, Aquilino S.; Schirru, Roberto
2003-01-01
This work presents an approach for neural network based transient identification which allows either dynamic identification or a 'don't know' response. The approach uses two 'jump' multilayer neural networks (NN) trained with the backpropagation algorithm. The 'jump' network is used because it is useful to dealing with very complex patterns, which is the case of the space of the state variables during some abnormal events. The first one is responsible for the dynamic identification. This NN uses, as input, a short set (in a moving time window) of recent measurements of each variable avoiding the necessity of using starting events. The other one is used to validate the instantaneous identification (from the first net) through the validation of each variable. This net is responsible for allowing the system to provide a 'don't know' response. In order to validate the method, a Nuclear Power Plant (NPP) transient identification problem comprising 15 postulated accidents, simulated for a pressurized water reactor (PWR), was proposed in the validation process it has been considered noisy data in order to evaluate the method robustness. Obtained results reveal the ability of the method in dealing with both dynamic identification of transients and correct 'don't know' response. Another important point studied in this work is that the system has shown to be independent of a trigger signal which indicates the beginning of the transient, thus making it robust in relation to this limitation
Prediction of steady state thermohydraulic conditions in water reactor systems
International Nuclear Information System (INIS)
Srikantiah, G.
1975-08-01
A method developed for the automatic prediction of the initial steady state conditions in reactor systems and a computer code based on this method are described. The reactor system is considered as a hydraulic network made up of the system components and their interconnections. Generalized network methods based on Graph Theory are applied to establish a set of independent equations in terms of the driving potentials and fluxes of the network. The terminal equations relating the ''across'' and ''through'' variables in the system components are derived by applying the one-dimensional drift-flux model. The resulting equations are solved by an appropriate numerical technique. Sample problems have been worked out to illustrate the advantages and the efficiency of this method. The basic advantages are: the component modeling is independent of the method of deriving the final balance equations for the system; the formulation procedure is independent of the numerical technique applied to solve the resulting set of equations, and the entire problem formulation and solution procedure requires a small amount of computer time
Numerical Diffusion Effect in Dynamic Simulation of Thermohydraulic Systems
International Nuclear Information System (INIS)
Zanocco, Pablo; Gimenez, Marcelo; Delmastro, Dario
2003-01-01
In this work, the behavior of the explicit - up-wind method is studied in two phase natural convection circuit, near the instabilities boundaries.The effect of the numerical diffusion of the scheme upon the system stability is evaluated by means of linearization by small perturbations.The results are compared with a non-diffusive method, in the frequency domain, that solves analytically the linearized equations around a steady state condition.Moreover, a conservation equation transport model using the method of characteristics is implemented and studied.This method is compared with the explicit - up-wind scheme and it is found that it significantly reduces numerical diffusion in the equations solution. Several advantages are visualized for particular cases
Thermohydraulic analysis of nuclear power plant accidents by computer codes
International Nuclear Information System (INIS)
Petelin, S.; Stritar, A.; Istenic, R.; Gregoric, M.; Jerele, A.; Mavko, B.
1982-01-01
RELAP4/MOD6, BRUCH-D-06, CONTEMPT-LT-28, RELAP5/MOD1 and COBRA-4-1 codes were successful y implemented at the CYBER 172 computer in Ljubljana. Input models of NPP Krsko for the first three codes were prepared. Because of the high computer cost only one analysis of double ended guillotine break of the cold leg of NPP Krsko by RELAP4 code has been done. BRUCH code is easier and cheaper for use. Several analysis have been done. Sensitivity study was performed with CONTEMPT-LT-28 for double ended pump suction break. These codes are intended to be used as a basis for independent safety analyses. (author)
International Nuclear Information System (INIS)
Aritomi, Masanori; Chiang Jing-Hsien; Takahashi, Tohru; Wataru, Masumi; Mori, Michitsugu.
1992-01-01
Recently, many concepts, in which passive and simplified functions are actively adapted, have been proposed for the next generation LWRs. The natural circulation BWR is one such considered from the requirements for next generation LWRs as compared with current BWRs. It is pointed out from this consideration that a thermo-hydraulic instability, which may appear during start-up, greatly influences concept feasibility because its occurence makes operation for raising power output difficult. Thermo-hydraulic instabilities are investigated experimentally under conditions simulating normal and abnormal start-up processes. It is clarified that three kinds of thermo-hydraulic instabilities may occur during start-up in the natural circulation BWR according to its procedure and reactor configuration, which are (1) geysering induced by condensation, (2) natural circulation instability induced by hydrostatic head fluctuation in steam separators and (3) density wave instability. Driving mechanisms of the geysering and the natural circulation instability, which have never understood enough, are inferred from the results. Finally, the difference of thermo-hydraulic behavior during start-up processes between thermal natural circulation boilers and the Dodewaard reactor is discussed. (author)
Energy Technology Data Exchange (ETDEWEB)
Pradhan, Santosh K., E-mail: santosh@aerb.gov.in [Nuclear Safety Analysis Division, Atomic Energy Regulatory Board, Mumbai 400094 (India); Obaidurrahman, K. [Nuclear Safety Analysis Division, Atomic Energy Regulatory Board, Mumbai 400094 (India); Iyer, Kannan N. [Department of Mechanical Engineering, IIT Bombay, Mumbai 400076 (India); Gaikwad, Avinash J. [Nuclear Safety Analysis Division, Atomic Energy Regulatory Board, Mumbai 400094 (India)
2016-04-15
Highlights: • A multi-point kinetics model is developed for RELAP5 system thermal hydraulics code. • Model is validated against extensive 3D kinetics code. • RELAP5 multi-point kinetics formulation is used to investigate critical break for LOCA in PHWR. - Abstract: Point kinetics approach in system code RELAP5 limits its use for many of the reactivity induced transients, which involve asymmetric core behaviour. Development of fully coupled 3D core kinetics code with system thermal-hydraulics is the ultimate requirement in this regard; however coupling and validation of 3D kinetics module with system code is cumbersome and it also requires access to source code. An intermediate approach with multi-point kinetics is appropriate and relatively easy to implement for analysis of several asymmetric transients for large cores. Multi-point kinetics formulation is based on dividing the entire core into several regions and solving ODEs describing kinetics in each region. These regions are interconnected by spatial coupling coefficients which are estimated from diffusion theory approximation. This model offers an advantage that associated ordinary differential equations (ODEs) governing multi-point kinetics formulation can be solved using numerical methods to the desired level of accuracy and thus allows formulation based on user defined control variables, i.e., without disturbing the source code and hence also avoiding associated coupling issues. Euler's method has been used in the present formulation to solve several coupled ODEs internally at each time step. The results have been verified against inbuilt point-kinetics models of RELAP5 and validated against 3D kinetics code TRIKIN. The model was used to identify the critical break in RIH of a typical large PHWR core. The neutronic asymmetry produced in the core due to the system induced transient was effectively handled by the multi-point kinetics model overcoming the limitation of in-built point kinetics model
Directory of Open Access Journals (Sweden)
Der-Sheng Chan
2010-04-01
Full Text Available Most of the voltage losses of proton exchange membrane fuel cells (PEMFC are due to the sluggish kinetics of oxygen reduction on the cathode and the low oxygen diffusion rate inside the flooded cathode. To simulate the transient flooding in the cathode of a PEMFC, a transient model was developed. This model includes the material conservation of oxygen, vapor, water inside the gas diffusion layer (GDL and micro-porous layer (MPL, and the electrode kinetics in the cathode catalyst layer (CL. The variation of hydrophobicity of each layer generated a wicking effect that moves water from one layer to the other. Since the GDL, MPL, and CL are made of composite materials with different hydrophilic and hydrophobic properties, a linear function of saturation was used to calculate the wetting contact angle of these composite materials. The balance among capillary force, gas/liquid pressure, and velocity of water in each layer was considered. Therefore, the dynamic behavior of PEMFC, with saturation transportation taken into account, was obtained in this study. A step change of the cell voltage was used to illustrate the transient phenomena of output current, water movement, and diffusion of oxygen and water vapor across the entire cathode.
DEFF Research Database (Denmark)
Johansen, Per; Rømer, Daniel; Andersen, Torben Ole
2014-01-01
The increasing interest in hydraulic transmissions in wind and wave energy applications has created an incentive for the development of high efficiency fluid power machinery. Modeling and analysis of fluid power machinery loss mechanisms are necessary in order to accommodate this demand. At present...... fully coupled thermo-elastic models has been used to simulate and study loss mechanisms in various tribological interfaces. Consequently, a reasonable focus of further development is to couple the interface models and the rigid body mechanics of fluid power machinery. The focus of the current paper...... is a multibody dynamics model of a radial piston fluid power motor, which connects the rigid bodies through models of the transient hydrodynamic lubrication pressure in the joint clearance. A finite volume approach is used to model the pressure dynamics of the fluid film lubrication. The model structure...
Model tests in RAMONA and NEPTUN
International Nuclear Information System (INIS)
Hoffmann, H.; Ehrhard, P.; Weinberg, D.; Carteciano, L.; Dres, K.; Frey, H.H.; Hayafune, H.; Hoelle, C.; Marten, K.; Rust, K.; Thomauske, K.
1995-01-01
In order to demonstrate passive decay heat removal (DHR) in an LMR such as the European Fast Reactor, the RAMONA and NEPTUN facilities, with water as a coolant medium, were used to measure transient flow data corresponding to a transition from forced convection (under normal operation) to natural convection under DHR conditions. The facilities were 1:20 and 1:5 models, respectively, of a pool-type reactor including the IHXs, pumps, and immersed coolers. Important results: The decay heat can be removed from all parts of the primary system by natural convection, even if the primary fluid circulation through the IHX is interrupted. This result could be transferred to liquid metal cooling by experiments in models with thermohydraulic similarity. (orig.)
International Nuclear Information System (INIS)
Raffray, A.R.; Federici, G.
1997-01-01
For pt.II see ibid., p.101-30, 1997. RACLETTE (Rate Analysis Code for pLasma Energy Transfer Transient Evaluation), a comprehensive but relatively simple and versatile model, was developed to help in the design analysis of plasma facing components (PFCs) under 'slow' high power transients, such as those associated with plasma vertical displacement events. The model includes all the key surface heat transfer processes such as evaporation, melting, and radiation, and their interaction with the PFC block thermal response and the coolant behaviour. This paper represents part I of two sister and complementary papers. It covers the model description, calibration and validation, and presents a number of parametric analyses shedding light on and identifying trends in the PFC armour block response to high plasma energy deposition transients. Parameters investigated include the plasma energy density and deposition time, the armour thickness and the presence of vapour shielding effects. Part II of the paper focuses on specific design analyses of ITER plasma facing components (divertor, limiter, primary first wall and baffle), including improvements in the thermal-hydraulic modeling required for better understanding the consequences of high energy deposition transients in particular for the ITER limiter case. (orig.)
Raffray, A. René; Federici, Gianfranco
1997-04-01
RACLETTE (Rate Analysis Code for pLasma Energy Transfer Transient Evaluation), a comprehensive but relatively simple and versatile model, was developed to help in the design analysis of plasma facing components (PFCs) under 'slow' high power transients, such as those associated with plasma vertical displacement events. The model includes all the key surface heat transfer processes such as evaporation, melting, and radiation, and their interaction with the PFC block thermal response and the coolant behaviour. This paper represents part I of two sister and complementary papers. It covers the model description, calibration and validation, and presents a number of parametric analyses shedding light on and identifying trends in the PFC armour block response to high plasma energy deposition transients. Parameters investigated include the plasma energy density and deposition time, the armour thickness and the presence of vapour shielding effects. Part II of the paper focuses on specific design analyses of ITER plasma facing components (divertor, limiter, primary first wall and baffle), including improvements in the thermal-hydraulic modeling required for better understanding the consequences of high energy deposition transients in particular for the ITER limiter case.
TRAWA, a transient analysis code for water reactions
International Nuclear Information System (INIS)
Rajamaeki, M.
1976-06-01
TRAWA is a transient analysis code for water reactors. It solves the two-group neutron diffusion equations simultaneously with the heat conduction equations and the two-phase hydraulic equations for one or more channels. At most one-dimensional submodels are used. Neither thermal nor hydraulic mixing appear between channels. Doppler, coolant density, coolant temperature, and soluble poison density feedbacks due to the thermohydraulics of the channels are described by using polynomial expansions for the group constants. The hydraulic circuit outside the reactor core consists of by-pass channel and risers with two-phase flow and of pump lines with incompressible flow. Nontrivial implicit methods are employed in the discretization of the equations to allow for sparse spatial mesh and flexible choice of time steps. Various transients can be calculated by applying external disturbances. The code is extensively supplied by input and output capabilities. TRAWA is written in FORTRAN V for UNIVAC 1108 computer. (author)
Modeling the Transient Effects of High Energy Subsystems on High-Performance Aerospace Systems
Gvozdich, Grant Gregory
2011-01-01
As directed energy technology continues to evolve and become a viable weapon alternative, a need exists to investigate the impacts of these applications without a â plug-and-checkâ method, but rather with an analysis governed by fundamental principles. This thesis examines the transient thermal loads that a high-energy weapon system introduces into a high performance aircraft using fundamental thermodynamic and heat transfer analyses. The high-energy weapon system employed in this resea...
Transient modelling of a diesel engine and air-path control
Cheng, Li
2015-01-01
Due to the inherent nonlinearity of the diesel engine, real-time control of the variable geometry turbocharger (VGT) and exhaust gas recirculation (EGR) valve still remains a challenging task. A controller has to be capable of coping with the transient operating condition of the engine, the interactions between the VGT and EGR, and also the trade-off effect in this control problem. In this work, novel real-time fuzzy logic controllers (RFLC) were developed and tested. Firstly, the proposed co...
Energy Technology Data Exchange (ETDEWEB)
Reyes F, M. C.; Del Valle G, E. [IPN, Escuela Superior de Fisica y Matematicas, Av. IPN s/n, Col. Lindavista, 07738 Ciudad de Mexico (Mexico); Gomez T, A. M. [ININ, Departamento de Sistemas Nucleares, Carretera Mexico-Toluca s/n, 52750 Ocoyoacac, Estado de Mexico (Mexico); Sanchez E, V., E-mail: rf.melisa@gmail.com [Karlsruhe Institute of Technology, Institute for Neutron Physics and Reactor Technology, Hermann-von-Helmholtz-Platz 1, D-76344 Eggenstein-Leopoldshafen (Germany)
2015-09-15
A methodology was implemented to carry out a sensitivity and uncertainty analysis for cross sections used in a coupled model for Trace/Parcs in a transient of control rod fall of a BWR-5. A model of the reactor core for the neutronic code Parcs was used, in which the assemblies located in the core are described. Thermo-hydraulic model in Trace was a simple model, where only a component type Chan was designed to represent all the core assemblies, which it was within a single vessel and boundary conditions were established. The thermo-hydraulic part was coupled with the neutron part, first for the steady state and then a transient of control rod fall was carried out for the sensitivity and uncertainty analysis. To carry out the analysis of cross sections used in the coupled model Trace/Parcs during the transient, the Probability Density Functions for 22 parameters selected from the total of neutronic parameters that use Parcs were generated, obtaining 100 different cases for the coupled model Trace/Parcs, each one with a database of different cross sections. All these cases were executed with the coupled model, obtaining in consequence 100 different output files for the transient of control rod fall doing emphasis in the nominal power, for which an uncertainty analysis was realized at the same time generate the band of uncertainty. With this analysis is possible to observe the ranges of results of the elected responses varying the selected uncertainty parameters. The sensitivity analysis complements the uncertainty analysis, identifying the parameter or parameters with more influence on the results and thus focuses on these parameters in order to better understand their effects. Beyond the obtained results, because is not a model with real operation data, the importance of this work is to know the application of the methodology to carry out the sensitivity and uncertainty analyses. (Author)
Energy Technology Data Exchange (ETDEWEB)
Pouget, V.; Lapuyade, H.; Lewis, D.; Deval, Y.; Fouillat, P. [Bordeaux-1 Univ., IXL, 33 - Talence (France); Sarger, L. [Bordeaux-1 Univ., CPMOH, 33 - Talence (France)
1999-07-01
A new SPICE model of irradiated MOSFET taking into account the real response of the 4 electrodes is proposed. The component that has been simulated is an NMOS transistor issued from the AMS BiCMOS 0.8 {mu}m technology. A comparison between SPICE-generated transients and PISCES device simulation demonstrates the accuracy benefits when used in complex electronic architectures. This model could be used when designing electronic circuits able to sustain hardening due to SEE (single event effect), it will be an efficient complement to the physical simulations.
Gregoire, Lauren; Valdes, Paul; Payne, Tony; Kahana, Ron
2010-05-01
Climate-ice sheet interactions played an important role during the last deglaciation. To better understand these interactions, coupling between a 3D ice sheet model and an intermediate complexity model has been used to simulate the transient evolution of climate and ice sheets over the deglaciation (Charbit et al. 2005; Bonelli et al. 2009). As pointed out by these studies the geographical distribution of ice sheets obtained could be improved by having a better spatial distribution of precipitation. This could be achieved by using a General circulation model. It is only recently, however, that fully coupled GCM's can provide us with a continuous simulation of the climate during the last deglaciation and made it possible to simulate the transient evolution of climate and ice sheets. We use a transient climate simulation of the last deglaciation (21000 to 9000 years ago) realised with FAMOUS (a low resolution version of HadCM3) to force the 3D ice sheet model Glimmer, set up to simulate the Laurentide and Fennoscandian ice sheets. The climate model was forced with continuous changes in insolation, greenhouse gases concentration and realistic freshwater fluxes. The land sea mask, bathymetry, orography and ice sheets extent were updated every 1000 years following Ice-5G reconstruction. Evolving temperature and precipitation fields from this climate simulation were then used to force Glimmer using a standard PDD mass balance scheme. The simulated evolution of Northern hemisphere ice sheets through the deglaciation is presented. We investigate the causes of change in the ice sheet geometry by comparing the role of internal ice dynamic against climate forcing.
Damiano, Emilia; Greco, Roberto; Guida, Andrea; Olivares, Lucio; Picarelli, Luciano
2017-04-01
Layered pyroclastic deposits covering steep slopes, characteristic of large mountainous areas of Campania (southern Italy), are often affected by shallow landslides triggered by heavy rainfall events. In fact, the equilibrium of such deposits is usually guaranteed by the contribution to soil shear strength offered by soil suction, which decreases during wetting. As the return period of the triggering events has been in many cases not extreme, other factors concur to establish triggering conditions. In this respect, heterogeneities, strongly affecting transient infiltration, may in some cases play a crucial role. In this study, the effect of the presence of soil layers, characterized by markedly different hydraulic properties, on the rainwater infiltration process is investigated. In fact, the pyroclastic covers of Campania, being the result of the deposition of materials originated by several eruptions of the nearby volcanic complexes, usually consist of alternating layers of ashes (silty sands) and pumices (gravel with sand). The presence of coarse-textured pumices between finer ashes strongly affects the infiltration process. In fact, the pumices, which are characterized by saturated hydraulic conductivity larger than ashes, are capable of retaining less water than ashes in unsaturated conditions, so that their unsaturated hydraulic conductivity is usually very small. Hence, depending on the water potential distribution throughout the cover at the onset of rainfall, pumices may act as a barrier to the propagation of the wet front (the so-called capillary barrier effect), or, approaching saturation, let the water pass through them very quickly. Such a complex behavior has been studied by means of a series of infiltration experiments carried out in an instrumented flume in the Geotechnical Laboratory of the University of Campania (http://www.dicdea.unina2.it/it/dipartimento/laboratori/laboratorio-di-geotecnica). Starting from different initial moisture conditions
Luo, Xianwu; Huang, Renfang; Ji, Bin
2016-01-01
For accurate simulations of wall-bounded turbulent cavitating flows, the present paper proposed a partially averaged Navier-Stokes (PANS) method derived from the k-ω turbulence model. Transient cavitating vortical flows around a NACA66 hydrofoil were simulated by using the k-ω PANS model with various filter parameters (fk = 0.2, 0.5 and 1, while fω = 1/fk) and a mass transfer cavitation model based on the Rayleigh-Plesset equation. Compared with the available experimental data, the k-ω PANS model with fk = 0.2 can accurately reproduce the cavitation evolution with more complicated structures due to the reduction in the predicted eddy viscosity. Further analyses, using the vorticity transport equation, indicate that the transition of cavitation structure from two dimension to three dimension is associated with strong vortex-cavitation interaction, where vortex stretching and dilation may play a major role. Therefore, the k-ω PANS model with the filter parameter of fk = 0.2 is an effective method to numerically predict the transient cavitating vortical flows around hydrofoils. The results obtained in this paper are helpful to provide a physical insight into the mechanisms of cavitation shedding dynamics.
Energy Technology Data Exchange (ETDEWEB)
Joan B. Blainey; Claudia C. Faunt, and Mary C. Hill
2006-05-16
This report is a guide for executing numerical simulations with the transient ground-water flow model of the Death Valley regional ground-water flow system, Nevada and California using the U.S. Geological Survey modular finite-difference ground-water flow model, MODFLOW-2000. Model inputs, including observations of hydraulic head, discharge, and boundary flows, are summarized. Modification of the DVRFS transient ground-water model is discussed for two common uses of the Death Valley regional ground-water flow system model: predictive pumping scenarios that extend beyond the end of the model simulation period (1998), and model simulations with only steady-state conditions.
Directory of Open Access Journals (Sweden)
D. J. Lunt
2006-01-01
Full Text Available We examine several aspects of the ocean-atmosphere system over the last 30 000 years, by carrying out simulations with prescribed ice sheets, atmospheric CO2 concentration, and orbital parameters. We use the GENIE-1 model with a frictional geostrophic ocean, dynamic sea ice, an energy balance atmosphere, and a land-surface scheme with fixed vegetation. A transient simulation, with boundary conditions derived from ice-core records and ice sheet reconstructions, is compared with equilibrium snapshot simulations, including the Last Glacial Maximum (21 000 years before present; 21 kyrBP, mid-Holocene (6 kyrBP and pre-industrial. The equilibrium snapshot simulations are all very similar to their corresponding time period in the transient simulation, indicating that over the last 30 000 years, the model's ocean-atmosphere system is close to equilibrium with its boundary conditions. However, our simulations neglect the transfer of fresh water from and to the ocean, resulting from the growth and decay of ice sheets, which would, in reality, lead to greater disequilibrium. Additionally, the GENIE-1 model exhibits a rather limited response in terms of its Atlantic Meridional Overturning Circulation (AMOC over the 30 000 years; a more sensitive AMOC would also be likely to lead to greater disequilibrium. We investigate the method of accelerating the boundary conditions of a transient simulation and find that the Southern Ocean is the region most affected by the acceleration. The Northern Hemisphere, even with a factor of 10 acceleration, is relatively unaffected. The results are robust to changes to several tunable parameters in the model. They also hold when a higher vertical resolution is used in the ocean.
International Nuclear Information System (INIS)
Muir, M.D.
1975-01-01
The design and design philosophy of a high performance, extremely versatile transient analyzer is described. This sub-system was designed to be controlled through the data acquisition computer system which allows hands off operation. Thus it may be placed on the experiment side of the high voltage safety break between the experimental device and the control room. This analyzer provides control features which are extremely useful for data acquisition from PPPL diagnostics. These include dynamic sample rate changing, which may be intermixed with multiple post trigger operations with variable length blocks using normal, peak to peak or integrate modes. Included in the discussion are general remarks on the advantages of adding intelligence to transient analyzers, a detailed description of the characteristics of the PPPL transient analyzer, a description of the hardware, firmware, control language and operation of the PPPL transient analyzer, and general remarks on future trends in this type of instrumentation both at PPPL and in general
Energy Technology Data Exchange (ETDEWEB)
Pereira, Marco Polo [FURNAS Centrais Eletricas S.A., Rio de Janeiro, RJ (Brazil); Fonseca, Claudio S. [Marte Engenharia Ltda (Brazil); Carvalho, Dourival S.; Dube, Laurent
1995-12-31
The digital program called Alternative Transients Program (ATP) which is generally used to simulate electromagnets transients in electric power systems presents two basic alternatives for the simulation of control and modelling of non conventional elements. The main objective of this work is to present the potential utilization of one routine of such program, called MODELS, compared to another routine, called TACS. A case study is presented 4 figs., 6 refs.
Thermo-hydraulic Quench Propagation at the LHC Superconducting Magnet String
Rodríguez-Mateos, F; Serio, L
1998-01-01
The superconducting magnets of the LHC are protected by heaters and cold by-pass diodes. If a magnet quenches, the heaters on this magnet are fired and the magnet chain is de-excited in about two minu tes by opening dump switches in parallel to a resistor. During the time required for the discharge, adjacent magnets might quench due to thermo-hydraulic propagation in the helium bath and/or heat con duction via the bus bar. The number of quenching magnets depends on the mechanisms for the propagation. In this paper we report on quench propagation experiments from a dipole magnet to an adjacent ma gnet. The mechanism for the propagation is hot helium gas expelled from the first quenching magnet. The propagation changes with the pressure opening settings of the quench relief valves.
Modifications in Compacted MX-80 Bentonite Due to Thermo-Hydraulic Treatment
International Nuclear Information System (INIS)
Gomez-Espina, R.; Villar, M. V.
2013-01-01
The thermo-hydraulic tests reproduce the thermal and hydraulic conditions to which bentonite is subjected in the engineered barrier of a deep geological repository of radioactive waste. The results of thermo-hydraulic test TBT1500, which was running for approximately 1500 days, are presented. This is a continuation to the Technical Report Ciemat 1199, which presented results of test TBT500, performed under similar conditions but with duration of 500 days. In both tests the MX-80 bentonite was used with initial density and water content similar to those of the large-scale test TBT. The bentonite column was heated at the bottom at 140 degree centigrade and hydrated on top with deionized water. At the end of the test a sharp water content gradient was observed along the column, as well as an inverse dry density gradient. Hydration modified also the bentonite microstructure. Besides, an overall decrease of the smectite content with respect to the initial value took place, especially in the most hydrated areas where the percentage of interest ratified illite increased and in the longer test. On the other hand, the content of cristobalite, feldspars and calcite increased. Smectite dissolution processes (probably colloidal) occurred, particularly in the more hydrated areas and in the longer test. Due to the dissolution of low-solubility species and to the loss of exchangeable positions in the smectite, the content of soluble salts in the pore water increased with respect to the original one, especially in the longer test. The solubilized ions were transported; sodium, calcium, magnesium and sulphate having a similar mobility, which was in turn lower than that of potassium and chloride. The cationic exchange complex was also modified. (Author)
International Nuclear Information System (INIS)
Nie, Ren-Shi; Guo, Jian-Chun; Jia, Yong-Lu; Zhu, Shui-Qiao; Rao, Zheng; Zhang, Chun-Guang
2011-01-01
The no-type curve with negative skin of a horizontal well has been found in the current research. Negative skin is very significant to transient well test and rate decline analysis. This paper first presents the negative skin problem where the type curves with negative skin of a horizontal well are oscillatory. In order to solve the problem, we propose a new model of transient well test and rate decline analysis for a horizontal well in a multiple-zone composite reservoir. A new dimensionless definition of r D is introduced in the dimensionless mathematical modelling under different boundaries. The model is solved using the Laplace transform and separation of variables techniques. In Laplace space, the solutions for both constant rate production and constant wellbore pressure production are expressed in a unified formula. We provide graphs and thorough analysis of the new standard type curves for both well test and rate decline analysis; the characteristics of type curves are the reflections of horizontal well production in a multiple-zone reservoir. An important contribution of our paper is that our model removed the oscillation in type curves and thus solved the negative skin problem. We also show that the characteristics of type curves depend heavily on the properties of different zones, skin factor, well length, formation thickness, etc. Our research can be applied to a real case study
Directory of Open Access Journals (Sweden)
Youwei He
2018-02-01
Full Text Available Although technical advances in hydraulically fracturing and drilling enable commercial production from tight reservoirs, oil/gas recovery remains at a low level. Due to the technical and economic limitations of well-testing operations in tight reservoirs, rate-transient analysis (RTA has become a more attractive option. However, current RTA models hardly consider the effect of the non-uniform production on rate decline behaviors. In fact, PLT results demonstrate that production profile is non-uniform. To fill this gap, this paper presents an improved RTA model of multi-fractured horizontal wells (MFHWs to investigate the effects of non-uniform properties of hydraulic fractures (production of fractures, fracture half-length, number of fractures, fracture conductivity, and vertical permeability on rate transient behaviors through the diagnostic type curves. Results indicate obvious differences on the rate decline curves among the type curves of uniform properties of fractures (UPF and non-uniform properties of fractures (NPF. The use of dimensionless production integral derivative curve magnifies the differences so that we can diagnose the phenomenon of non-uniform production. Therefore, it’s significant to incorporate the effects of NPF into the RDA models of MFHWs, and the model proposed in this paper enables us to better evaluate well performance based on long-term production data.
Liu, Fang; Shen, Changqing; He, Qingbo; Zhang, Ao; Liu, Yongbin; Kong, Fanrang
2014-01-01
A fault diagnosis strategy based on the wayside acoustic monitoring technique is investigated for locomotive bearing fault diagnosis. Inspired by the transient modeling analysis method based on correlation filtering analysis, a so-called Parametric-Mother-Doppler-Wavelet (PMDW) is constructed with six parameters, including a center characteristic frequency and five kinematic model parameters. A Doppler effect eliminator containing a PMDW generator, a correlation filtering analysis module, and a signal resampler is invented to eliminate the Doppler effect embedded in the acoustic signal of the recorded bearing. Through the Doppler effect eliminator, the five kinematic model parameters can be identified based on the signal itself. Then, the signal resampler is applied to eliminate the Doppler effect using the identified parameters. With the ability to detect early bearing faults, the transient model analysis method is employed to detect localized bearing faults after the embedded Doppler effect is eliminated. The effectiveness of the proposed fault diagnosis strategy is verified via simulation studies and applications to diagnose locomotive roller bearing defects. PMID:24803197
International Nuclear Information System (INIS)
Díaz-Ibarra, Oscar; Abad, Pablo; Molina, Alejandro
2013-01-01
To design day tanks with energy efficiency and good operation standards, a detailed transient model that considers the melting, refining, cooling and working stages of the glass production process was developed. With the model, the required power input was determined, with glass coverage with batch (β) as parameter, for a furnace with a daily production of 1130 kg of soda-lime glass and 14 h for melting/refining. A detailed analysis of the energy balance with the model showed that during the daily cycle about 70% of the energy input is released with the flue gas. During the working stage most of the energy escapes through the doors. As the peak of energy consumption is during the refining process, the power requirement for this stage defines the global power requirement. Calculated energy efficiencies vary between 13% and 16% for β = 70% and 30% respectively. A steady state CFD simulation of the combustion chamber and glass tank shows that a side-fired burner configuration allows for lower gas velocities and temperatures close to the glass and the furnace walls while guaranteeing the same heat transfer characteristics to the glass than the more traditional end-fired (U-type) furnaces. -- Highlights: ► A transient model of a day tank glass furnace captures main process characteristics. ► Heat loss through doors during working stage impacts thermal efficiency. ► A side-fired burner configuration should be preferred to an end-fired approach
Callaghan, David P.; Ahmadi, Afshin; Nielsen, Peter
2011-12-01
Flume measurements of a one-dimensional sliding hump starting from rest in quiescence fresh water indicate that when the hump travels at speed less than the shallow-water wave celerity, three waves emerge, travelling in two directions. One wave travels in the opposite direction to the sliding hump at approximately the shallow-water wave celerity (backward free wave). Another wave travels approximately in step with the hump (forced wave), and the remaining wave travels in the direction of the hump at approximately the shallow-water wave celerity (forward free wave). These experiments were completed for a range of sliding hump speed relative to the shallow-water wave celerity, up to unity of this ratio, to investigate possible derivation from solutions of the Euler equation with non-linear and non-hydrostatic terms being included or excluded. For the experimental arrangements tested, the forced waves were negative (depression or reduced water surface elevation) waves while the free waves were positive (bulges or increased water surface elevation). For experiments where the sliding hump travelled at less than 80% of the shallow-water wave celerity did not include transient behaviour measurements (i.e. when the three waves still overlapped). The three wave framework was partially supported by these measurements in that the separated forward and forced waves were compared to measurements. For the laboratory scale experiments, the forward free wave height was predicted reasonably by the long-wave equation (ignoring non-linear and non-hydrostatic terms) when the sliding hump speed was less than 80% of the shallow-water wave celerity. The forced wave depression magnitude required the Euler equations for all hump speed tested. The long-wave solution, while being valid in a limited parameter range, does predict the existence of the three waves as found in these experiments (forward travelling waves measured quantitatively while the backward travelling waves visually by video
Energy Technology Data Exchange (ETDEWEB)
Callaghan, David P.; Nielsen, Peter [The University of Queensland, School of Civil Engineering, Brisbane (Australia); Ahmadi, Afshin [Kellogg Brown and Root Pty Ltd, Brisbane, QLD (Australia)
2011-12-15
Flume measurements of a one-dimensional sliding hump starting from rest in quiescence fresh water indicate that when the hump travels at speed less than the shallow-water wave celerity, three waves emerge, travelling in two directions. One wave travels in the opposite direction to the sliding hump at approximately the shallow-water wave celerity (backward free wave). Another wave travels approximately in step with the hump (forced wave), and the remaining wave travels in the direction of the hump at approximately the shallow-water wave celerity (forward free wave). These experiments were completed for a range of sliding hump speed relative to the shallow-water wave celerity, up to unity of this ratio, to investigate possible derivation from solutions of the Euler equation with non-linear and non-hydrostatic terms being included or excluded. For the experimental arrangements tested, the forced waves were negative (depression or reduced water surface elevation) waves while the free waves were positive (bulges or increased water surface elevation). For experiments where the sliding hump travelled at less than 80% of the shallow-water wave celerity did not include transient behaviour measurements (i.e. when the three waves still overlapped). The three wave framework was partially supported by these measurements in that the separated forward and forced waves were compared to measurements. For the laboratory scale experiments, the forward free wave height was predicted reasonably by the long-wave equation (ignoring non-linear and non-hydrostatic terms) when the sliding hump speed was less than 80% of the shallow-water wave celerity. The forced wave depression magnitude required the Euler equations for all hump speed tested. The long-wave solution, while being valid in a limited parameter range, does predict the existence of the three waves as found in these experiments (forward travelling waves measured quantitatively while the backward travelling waves visually by video
DEFF Research Database (Denmark)
Bak, Claus Leth; Borghetti, Alberto; Glasdam, Jakob Bærholm
2018-01-01
Vacuum circuit breakers (VCBs) are widely used for medium voltage applications when low maintenance, long operating life, and large number of allowable switching cycles are required. The accurate estimation of the transient recovery voltages (TRVs) associated with their manoeuvres is indispensable...... capabilities of simulating TRVs due to opening/closing manoeuvres, namely the switching of large electrical motors and the switching of cables collecting offshore wind farms (OWFs). Data from digital fault recorder (DFR) in a water-pumping plant and from a measurement campaign in an OWF using a high...
Directory of Open Access Journals (Sweden)
H Rahmati Aidinlou
2017-05-01
Full Text Available Introduction Increasing the area of absorber plate between the flowed air through the duct can be accomplished by corrugating the absorber plate or by using the artificial roughness underside of the absorber plate as the commercial methods for enhancing the thermohydraulic performance of the flat plate solar air heaters. Evaluation of this requires the construction of separated solar air heater which is costly and time consuming. The constructed solar flat-plate collector simulator can be a sufficient solution for obtaining the heat transfer and thermodynamic parameters for evaluating the absorber plate. The inclined broken roughness was chosen as the optimum roughness which is surrounded by three aluminum smooth walls. Materials and Methods The duct for both smooth and roughened plate have been constructed based on the ASHRAE 93-2010 standard. In order to achieve a fully thermal and hydraulic developed flow, the plenum is constructed. The centrifugal fan is considered by applying the required air volume at the pressure drop obtained by the duct, plenum and the orifice meter. The TSI velocity-meter 8355 is used to measure the velocity of air crossing through the pipe connected to the centrifugal fan. The micro manometer Kimo CPE310-s with the resolution of 0.1 Pa is used to measure the pressure drop across the test section of the smooth and roughened duct. The LM35 sensors are used to measure the absorber plate and air temperature through the test section. Obtained parameters are used to calculate the Nusselt number and friction factor across the test section for smooth and roughened absorber plate. The Nusselt number and friction factor parameters which is obtained for smooth absorber plate based on experimental set-up, is compared with Dittus-Bolter and Blasius equations, respectively, for validating the simulator. By calculating the Nusselt number and friction factor, Stanton number is obtained based on the equation (6, and thermohydraulic
Black, Dolores A.; Robinson, William H.; Wilcox, Ian Z.; Limbrick, Daniel B.; Black, Jeffrey D.
2015-08-01
Single event effects (SEE) are a reliability concern for modern microelectronics. Bit corruptions can be caused by single event upsets (SEUs) in the storage cells or by sampling single event transients (SETs) from a logic path. An accurate prediction of soft error susceptibility from SETs requires good models to convert collected charge into compact descriptions of the current injection process. This paper describes a simple, yet effective, method to model the current waveform resulting from a charge collection event for SET circuit simulations. The model uses two double-exponential current sources in parallel, and the results illustrate why a conventional model based on one double-exponential source can be incomplete. A small set of logic cells with varying input conditions, drive strength, and output loading are simulated to extract the parameters for the dual double-exponential current sources. The parameters are based upon both the node capacitance and the restoring current (i.e., drive strength) of the logic cell.
Debus, Bruno; Orio, Maylis; Rehault, Julien; Burdzinski, Gotard; Ruckebusch, Cyril; Sliwa, Michel
2017-08-03
Ultrafast photoisomerization reactions generally start at a higher excited state with excess of internal vibrational energy and occur via conical intersections. This leads to ultrafast dynamics which are difficult to investigate with a single transient absorption spectroscopy technique, be it in the ultraviolet-visible (UV-vis) or infrared (IR) domain. On one hand, the information available in the UV-vis domain is limited as only slight spectral changes are observed for different isomers. On the other hand, the interpretation of vibrational spectra is strongly hindered by intramolecular relaxation and vibrational cooling. These limitations can be circumvented by fusing UV-vis and IR transient absorption spectroscopy data in a multiset multivariate curve resolution analysis. We apply this approach to describe the spectrodynamics of the ultrafast cis-trans photoisomerization around the C-N double bond observed for aromatic Schiff bases. Twisted intermediate states could be elucidated, and isomerization was shown to occur through a continuous complete rotation. More broadly, data fusion can be used to rationalize a vast range of ultrafast photoisomerization processes of interest in photochemistry.
Current status of models for transient phenomena in dopant diffusion and activation
International Nuclear Information System (INIS)
Pichler, P.; Stiebel, D.
2002-01-01
Transient phenomena caused by ion-implantation processes have been studied for more than 25 years now with a continuously increasing number of research articles published in this field per year. One driving force of this research is the ongoing miniaturization of ULSI MOS and bipolar technology which uses extensively the capabilities of technology-computer-aided-design (TCAD). The other driving force which attracts also academic institutions and research institutes is the high complexity of the phenomena, involving the interaction of dopants, intrinsic point defects, extended defects and impurities like carbon as well as the interactions of mobile defects with surfaces and interfaces and their redistribution in multilayer structures. This paper outlines some recent advances towards a quantitative description of such phenomena
Ocular injury by transient formaldehyde exposure in a rabbit eye model.
Directory of Open Access Journals (Sweden)
Li-Ju Lai
Full Text Available Formaldehyde (FA is frequently used in sterilizing surgical instruments and materials. Exposure to FA is highly concerned for eye tissues. Rabbit corneal epithelial cells were examined for changes after FA exposure. Our results showed that cell survival decreased 7 days after transient 3 min exposure to more than 100 ppm FA by trypan blue staining while MTT assay detected significant decrease at 20 ppm at 24 hours observation. The decrease of cell survival rate was concentration (up to 600 ppm- and observation time (1-7 day- dependent. The cell number decreased after 100 ppm FA exposure for more than 10 min at 7-day observation. The FA treated cells showed increased apoptosis/necrosis and cell cycle accumulation at sub G1 phase as well as mitochondria clustering around nucleus. The in vivo rabbit eye exposure for tear production by Schirmer's test revealed that the FA-induced overproduction of tear also exhibited observation time (1-10 day- and FA concentration (20-300 ppm for 5 min exposure-dependent. Activated extracellular signal-regulated kinase (pERK2 in cornea explants by western blotting was reduced and increased c-Jun amino - terminal kinase (JNK activation (pJNK in cornea and conjunctiva was evident at 2 month after exposure to 50-200 ppm FA for 5 min. In conclusion, injury to the eye with transient exposure of up to 100 ppm FA for 3 min decreased corneal cell survival while a more sensitive MTT test detected the cell decrease at 20 ppm FA exposure. Morphology changes can be observed even at 5 ppm FA exposure for 3 min at 7 days after. The FA exposure also increased apoptotic/necrotic cells and sub-G1 phase in cell cycle. Long term effect (2 months after exposure on the eye tissues even after the removal of FA can be observed with persistent JNK activation in cornea and conjunctiva.
International Nuclear Information System (INIS)
De Windt, Laurent; Marsal, François; Corvisier, Jérôme; Pellegrini, Delphine
2014-01-01
Highlights: • This paper deals with the geochemistry of underground HLW disposals. • The oxic transient is a key issue in performance assessment (e.g. corrosion, redox). • A reactive transport model is explicitly coupled to gas diffusion and reactivity. • Application to in situ experiment (Tournemire laboratory) and HLW disposal cell. • Extent of the oxidizing/reducing front is investigated by sensitivity analysis. - Abstract: The oxic transient in geological radioactive waste disposals is a key issue for the performance of metallic components that may undergo high corrosion rates under such conditions. A previous study carried out in situ in the argillite formation of Tournemire (France) has suggested that oxic conditions could have lasted several years. In this study, a multiphase reactive transport model is performed with the code HYTEC to analyze the balance between the kinetics of pyrite oxidative dissolution, the kinetics of carbon steel corrosion and oxygen gas diffusion when carbon steel components are emplaced in the geological medium. Two cases were modeled: firstly, the observations made in situ have been reproduced, and the model established was then applied to a disposal cell for high-level waste (HLW) in an argillaceous formation, taking into account carbon steel components and excavated damaged zones (EDZ). In a closed system, modeling leads to a complete and fast consumption of oxygen in both cases. Modeling results are more consistent with the in situ test while considering residual voids between materials and/or a water unsaturated state allowing for oxygen gas diffusion (open conditions). Under similar open conditions and considering ventilation of the handling drifts, a redox contrast occurs between reducing conditions at the back of the disposal cell (with anoxic corrosion of steel and H 2 production) and oxidizing conditions at the front of the cell (with oxic corrosion of steel). The extent of the oxidizing/reducing front in the
Directory of Open Access Journals (Sweden)
Hamid R. Sadeghnia
2017-09-01
Full Text Available Safranal is a monoterpene aldehyde found in saffron (Crocus sativus L. petals. It has been previously reported that safranal has a wide range of activities such as antioxidant and anti-inflammatory effects. In this study, we examined the effect of safranal on brain injuries in a transient model of focal cerebral ischemia. Transient focal cerebral ischemia was induced by middle cerebral artery occlusion for 30 min, followed by 24 h of reperfusion. Safranal in the doses of 72.5 and 145 mg/kg was administered intraperitoneally at 0, 3, and 6 h after reperfusion. Neurobehavioral deficit, infarct volume, hippocampal cell loss and markers of oxidative stress including thiobarbituric acid reactive substances (TBARS, total sulfhydryl (SH content, and antioxidant capacity (using FRAP assay were also assessed. The focal cerebral ischemia induced a significant increase in the neurological score, infarct volume and neuronal cell loss in the ipsilateral hippocampal CA1 and CA3 subfields (p < 0.001 and also oxidative stress markers (p < 0.01. Following safranal administration, the total SH content and antioxidant capacity significantly increased, while marked decreases were observed in the neurological score, infarct volume and hippocampal cell loss, as well as TBARS level. This study concluded that safranal had protective effects on ischemic reperfusion injury in the rat model of stroke. Such effects of safranal may have been exerted mainly by suppressing the production of free radicals and increasing antioxidant activity.
International Nuclear Information System (INIS)
2013-06-01
In recent years the demands on 'fuel duties' have increased, including transient regimes, higher burnups and longer fuel cycles. To satisfy these demands, fuel vendors have developed and introduced new cladding and fuel material designs to provide sufficient margins for safe operation of the fuel components. National and international experimental programmes have been launched, and models have been developed or adapted to take into account the changed conditions. These developments enable water cooled reactors, which contribute about 95% of the nuclear power in the world today, to operate safely under all operating conditions; moreover, even under severe transient or accident conditions, such as reactivity initiated accidents (RIAs) or loss of coolant accidents (LOCAs), the behaviour of the fuel can be adequately predicted and the consequences of such events can be safely contained. In 2010 the IAEA Technical Working Group on Fuel Performance and Technology (TWGFPT) recommended that a technical meeting on ''Fuel Behaviour and Modelling under Severe Transient and LOCA Conditions'' be held in Japan. The accident at the Fukushima Daiichi nuclear power plant in March 2011 highlighted the need to address this subject, and despite the difficult situation in Japan at the time, the recommended plan was confirmed, and the Japan Atomic Energy Agency (JAEA) hosted the technical meeting in Mito, Ibaraki Prefecture, Japan, from 18 to 21 October 2011. This meeting was the eighth in a series of IAEA meetings, which reflects Member States' continuing interest in the above issues. The previous meetings were held in 1980 (jointly with OECD Nuclear Energy Agency, Helsinki, Finland), 1983 (Riso, Denmark), 1986 (Vienna, Austria), 1988 (Preston, United Kingdom), 1992 (Pembroke, Canada), 1995 (Dimitrovgrad, Russian Federation) and 2001 (Halden, Norway). The purpose of the technical meeting was to provide a forum for international experts to review the current situation and the state of
Energy Technology Data Exchange (ETDEWEB)
Wada, K.; Tsutsui, T.; Saito, A. [Mitsui Mineral Development Engineering Co. Ltd., Tokyo (Japan); Hara, T. [Toda Corp., Tokyo, (Japan); Zhdanov, M. [University of Utah, UT (United States)
1996-10-01
In order to apply TEM model to fracture prediction at tunnel face, 3-D TEM model computation by FEM was conducted by installing a transmission loop on a tunnel face. MT field responses diffusing into the 3-D model were computed by time-domain difference calculus, and analytical precision was improved by introducing a staggered grid method. In the case where a low resistive zone exists before a tunnel face, time variance in diffused eddy current and induction current in the low resistive zone could be obtained. The difference in tunnel-axial transient curve (transient phenomenon curve in magnetic field) between uniform medium and low resistive zone models was based on the absorption process of diffused eddy current into the low resistive zone, and the expanding process of it toward the outside. Change in background condition could be predicted from the background and the ratio of transient curves every measurement. The detection limit of the low resistive zone was dependent on resistivity contrast, distance and geometry. Fluctuation in measurement due to noises and S/N ratio were also essential. 3 refs., 10 figs.
Clamens, Olivier; Lecerf, Johann; Hudelot, Jean-Pascal; Duc, Bertrand; Cadiou, Thierry; Blaise, Patrick; Biard, Bruno
2018-01-01
CABRI is an experimental pulse reactor, funded by the French Nuclear Safety and Radioprotection Institute (IRSN) and operated by CEA at the Cadarache research center. It is designed to study fuel behavior under RIA conditions. In order to produce the power transients, reactivity is injected by depressurization of a neutron absorber (3He) situated in transient rods inside the reactor core. The shapes of power transients depend on the total amount of reactivity injected and on the injection speed. The injected reactivity can be calculated by conversion of the 3He gas density into units of reactivity. So, it is of upmost importance to properly master gas density evolution in transient rods during a power transient. The 3He depressurization was studied by CFD calculations and completed with measurements using pressure transducers. The CFD calculations show that the density evolution is slower than the pressure drop. Surrogate models were built based on CFD calculations and validated against preliminary tests in the CABRI transient system. Studies also show that it is harder to predict the depressurization during the power transients because of neutron/3He capture reactions that induce a gas heating. This phenomenon can be studied by a multiphysics approach based on reaction rate calculation thanks to Monte Carlo code and study the resulting heating effect with the validated CFD simulation.
Energy Technology Data Exchange (ETDEWEB)
Higuchi, A. [Toyota Motor Corp., Aichi (Japan); Pacejka, H.
1997-10-01
The objective of this study is to understand the transient force and moment characteristics of tires involving side slip and camber and to develop the tire model which is capable of describing those characteristics. Some particular characteristics are found such as non-lagging part in side force response and an apparent peak in aligning torque response to a stepwise camber change. Some aspects on the analogy of turn slip to camber are also discussed. The tire model combines a dynamic part based on the physical aspect using the relaxation length concept, and a steady state part. In combined situations of side slip and camber, an estimation method to determine the transient slip quantities is introduced. 12 refs., 14 figs.
VALIDATION OF FULL CORE GEOMETRY MODEL OF THE NODAL3 CODE IN THE PWR TRANSIENT BENCHMARK PROBLEMS
Directory of Open Access Journals (Sweden)
Tagor Malem Sembiring
2015-10-01
Full Text Available ABSTRACT VALIDATION OF FULL CORE GEOMETRY MODEL OF THE NODAL3 CODE IN THE PWR TRANSIENT BENCHMARK PROBLEMS. The coupled neutronic and thermal-hydraulic (T/H code, NODAL3 code, has been validated in some PWR static benchmark and the NEACRP PWR transient benchmark cases. However, the NODAL3 code have not yet validated in the transient benchmark cases of a control rod assembly (CR ejection at peripheral core using a full core geometry model, the C1 and C2 cases. By this research work, the accuracy of the NODAL3 code for one CR ejection or the unsymmetrical group of CRs ejection case can be validated. The calculations by the NODAL3 code have been carried out by the adiabatic method (AM and the improved quasistatic method (IQS. All calculated transient parameters by the NODAL3 code were compared with the reference results by the PANTHER code. The maximum relative difference of 16% occurs in the calculated time of power maximum parameter by using the IQS method, while the relative difference of the AM method is 4% for C2 case. All calculation results by the NODAL3 code shows there is no systematic difference, it means the neutronic and T/H modules are adopted in the code are considered correct. Therefore, all calculation results by using the NODAL3 code are very good agreement with the reference results. Keywords: nodal method, coupled neutronic and thermal-hydraulic code, PWR, transient case, control rod ejection. ABSTRAK VALIDASI MODEL GEOMETRI TERAS PENUH PAKET PROGRAM NODAL3 DALAM PROBLEM BENCHMARK GAYUT WAKTU PWR. Paket program kopel neutronik dan termohidraulika (T/H, NODAL3, telah divalidasi dengan beberapa kasus benchmark statis PWR dan kasus benchmark gayut waktu PWR NEACRP. Akan tetapi, paket program NODAL3 belum divalidasi dalam kasus benchmark gayut waktu akibat penarikan sebuah perangkat batang kendali (CR di tepi teras menggunakan model geometri teras penuh, yaitu kasus C1 dan C2. Dengan penelitian ini, akurasi paket program
International Nuclear Information System (INIS)
Reisenauer, A.E.
1979-12-01
A system of computer codes to aid in the preparation and evaluation of ground-water model input, as well as in the computer codes and auxillary programs developed and adapted for use in modeling major ground-water aquifers is described. The ground-water model is interactive, rather than a batch-type model. Interactive models have been demonstrated to be superior to batch in the ground-water field. For example, looking through reams of numerical lists can be avoided with the much superior graphical output forms or summary type numerical output. The system of computer codes permits the flexibility to develop rapidly the model-required data files from engineering data and geologic maps, as well as efficiently manipulating the voluminous data generated. Central to these codes is the Ground-water Model, which given the boundary value problem, produces either the steady-state or transient time plane solutions. A sizeable part of the codes available provide rapid evaluation of the results. Besides contouring the new water potentials, the model allows graphical review of streamlines of flow, travel times, and detailed comparisons of surfaces or points at designated wells. Use of the graphics scopes provide immediate, but temporary displays which can be used for evaluation of input and output and which can be reproduced easily on hard copy devices, such as a line printer, Calcomp plotter and image photographs
Anibas, Christian; Debele Tolche, Abebe; Ghysels, Gert; Schneidewind, Uwe; Nossent, Jiri; Touhidul Mustafa, Syed Md; Huysmans, Marijke; Batelaan, Okke
2017-04-01
The quantification of groundwater-surface water interaction is an important challenge for hydrologists and ecologists. Within the last decade, many new analytical and numerical estimation methods have been developed, including heat tracer techniques. In a number of publications, their sources of errors were investigated, and future directions for the research in groundwater-surface water exchange were discussed. To improve our respective knowledge of the Belgian lowland Aa River we reinvestigate temperature data which was gathered in the river bed and used for the quantification of the 1D vertical groundwater-surface water exchange. By assuming a thermal steady state of the river bed temperature distribution, Anibas et al. (2011) were unable to use the full potential of the entire large data set. The analysis tool STRIVE is modified to use the river water temperature time series as the upper model boundary. This transient thermal set up overcomes many of the limitations of the steady state assumption and allows for the analysis of vertical 1D exchange fluxes in space and time. Results of about 380 transient simulations covering a period of more than 1.5 years show high absolute changes in exchange fluxes in the upstream part of the river. However, in the downstream part, the relative changes in fluxes are larger. The 26 spatially distributed thermal profiles along the river reach are interpolated using kriging based on variograms calculated from the temperature dataset. Results indicate gaining conditions for most locations and most of the time. Few places in the downstream part show losing conditions in late winter and early spring. While in autumn and winter the mean exchange fluxes can be -90 mmd-1, in spring to early summer fluxes are only -42 mmd-1. The river bed near the banks shows elevated fluxes compared to the center of the river. Probably driven by regional groundwater flow, the river bed near the left and right bank shows fluxes respectively a factor 3
Ortensi, Javier
This investigation is divided into two general topics: (1) a new method for analyzing the safe shutdown earthquake event in a pebble bed reactor core, and (2) the development of an explicit tristructural-isotropic fuel model for high temperature reactors. The safe shutdown earthquake event is one of the design basis accidents for the pebble bed reactor. The new method captures the dynamic geometric compaction of the pebble bed core. The neutronic and thermal-fluids grids are dynamically re-meshed to simulate the re-arrangement of the pebbles in the reactor during the earthquake. Results are shown for the PBMR-400 assuming it is subjected to the Idaho National Laboratory's design basis earthquake. The study concludes that the PBMR-400 can safely withstand the reactivity insertions induced by the slumping of the core and the resulting relative withdrawal of the control rods. This characteristic stems from the large negative Doppler feedback of the fuel. This Doppler feedback mechanism is a major contributor to the passive safety of gas-cooled, graphite-moderated, high-temperature reactors that use fuel based on TRISO particles. The correct prediction of the magnitude and time-dependence of this feedback effect is essential to the conduct of safety analyses for these reactors. An explicit TRISO fuel temperature model named THETRIS has been developed in this work and incorporated in the CYNOD-THERMIX-KONVEK suite of coupled codes. The new model yields similar results to those obtained with more complex methods, requiring multi-TRISO calculations within one control volume. The performance of the code during fast and moderately-slow transients is verified. These analyses show how explicit TRISO models improve the predictions of the fuel temperature, and consequently, of the power escalation. In addition, a brief study of the potential effects on the transient behavior of high-temperature reactors due to the presence of a gap inside the TRISO particles is included
Fracture mechanical analysis of relevant transients in the pressure vessel of Atucha I reactor
International Nuclear Information System (INIS)
Saavedra, Fernando M.
2001-01-01
The evolution of the applied stress intensity factor K I for 10 relevant transients of the nuclear power station Atucha I obtained from thermohydraulic data is analyzed according to the methodology proposed in Section XI of ASME Boiler and Pressure Vessel Code. Vast knowledge was thus obtained about basic concepts of fracture mechanics and its application to remanent life of nuclear components. Basic knowledge which commands the performance of nuclear power stations was also obtained, especially that related to the Atucha I utility [es
Iacomini, Christie; Powers, Aaron; Speight, Garland; Padilla, Sebastian; Paul, Heather L.
2009-01-01
A Metabolic heat-regenerated Temperature Swing Adsorption (MTSA) system is being developed for carbon dioxide, water and thermal control in a lunar and martian portable life support system (PLSS). A previous system analysis was performed to evaluate the impact of MTSA on PLSS design. That effort was Mars specific and assumed liquid carbon dioxide (LCO2) coolant made from martian resources. Transient effects were not considered but rather average conditions were used throughout the analysis. This effort takes into further consideration the transient effects inherent in the cycling MTSA system as well as assesses the use of water as coolant. Standard heat transfer, thermodynamic, and heat exchanger methods are presented to conduct the analysis. Assumptions and model verification are discussed. The tool was used to perform various system studies. Coolant selection was explored and takes into account different operational scenarios as the minimum bed temperature is driven by the sublimation temperature of the coolant (water being significantly higher than LCO2). From this, coolant mass is sized coupled with sorbent bed mass because MTSA adsorption performance decreases with increasing sublimation temperature. Reduction in heat exchanger performance and even removal of certain heat exchangers, like a recuperative one between the two sorbent beds, is also investigated. Finally, the coolant flow rate is varied over the cycle to determine if there is a more optimal means of cooling the bed from a mass perspective. Results of these studies and subsequent recommendations for system design are presented.
Vaas, Markus; Enzmann, Gaby; Perinat, Therese; Siler, Ulrich; Reichenbach, Janine; Licha, Kai; Kipar, Anja; Rudin, Markus; Engelhardt, Britta; Klohs, Jan
2017-08-01
Near-infrared fluorescence (NIRF) imaging enables non-invasive monitoring of molecular and cellular processes in live animals. Here we demonstrate the suitability of NIRF imaging to investigate the neutrophil response in the brain after transient middle cerebral artery occlusion (tMCAO). We established procedures for ex vivo fluorescent labelling of neutrophils without affecting their activation status. Adoptive transfer of labelled neutrophils in C57BL/6 mice before surgery resulted in higher fluorescence intensities over the ischaemic hemisphere in tMCAO mice with NIRF imaging when compared with controls, corroborated by ex vivo detection of labelled neutrophils using fluorescence microscopy. NIRF imaging showed that neutrophils started to accumulate immediately after tMCAO, peaking at 18 h, and were still visible until 48 h after reperfusion. Our data revealed accumulation of neutrophils also in extracranial tissue, indicating damage in the external carotid artery territory in the tMCAO model. Antibody-mediated inhibition of α4-integrins did reduce fluorescence signals at 18 and 24, but not at 48 h after reperfusion, compared with control treatment animals. Antibody treatment reduced cerebral lesion volumes by 19%. In conclusion, the non-invasive nature of NIRF imaging allows studying the dynamics of neutrophil recruitment and its modulation by targeted interventions in the mouse brain after transient experimental cerebral ischaemia.
One-dimensional Numerical Model of Transient Discharges in Air of a Spatial Plasma Ignition Device
Saceleanu, Florin N.
This thesis examines the modes of discharge of a plasma ignition device. Oscilloscope data of the discharge voltage and current are analyzed for various pressures in air at ambient temperature. It is determined that the discharge operates in 2 modes: a glow discharge and a postulated streamer discharge. Subsequently, a 1-dimensional fluid simulation of plasma using the finite volume method (FVM) is developed to gain insight into the particle kinetics. Transient results of the simulation agree with theories of electric discharges; however, quasi-steady state results were not reached due to high diffusion time of ions in air. Next, an ordinary differential equation (ODE) is derived to understand the discharge transition. Simulated results were used to estimate the voltage waveform, which describes the ODE's forcing function; additional simulated results were used to estimate the discharge current and the ODE's non-linearity. It is found that the ODE's non-linearity increases exponentially for capacitive discharges. It is postulated that the non-linearity defines the mode transition observed experimentally. The research is motivated by Spatial Plasma Discharge Ignition (SPDI), an innovative ignition system postulated to increase combustion efficiency in automobile engines for up to 9%. The research thus far can only hypothesize SPDI's benefits on combustion, based on the literature review and the modes of discharge.
Response of Compacted Bentonites to Thermal and Thermo-Hydraulic Loadings at High Temperatures
Directory of Open Access Journals (Sweden)
Snehasis Tripathy
2017-07-01
Full Text Available The final disposal of high-level nuclear waste in many countries is preferred to be in deep geological repositories. Compacted bentonites are proposed for use as the buffer surrounding the waste canisters which may be subjected to both thermal and hydraulic loadings. A significant increase in the temperature is anticipated within the buffer, particularly during the early phase of the repository lifetime. In this study, several non-isothermal and non-isothermal hydraulic tests were carried on compacted MX80 bentonite. Compacted bentonite specimens (water content = 15.2%, dry density = 1.65 Mg/m3 were subjected to a temperature of either 85 or 150 °C at one end, whereas the temperature at the opposite end was maintained at 25 °C. During the non-isothermal hydraulic tests, water was supplied from the opposite end of the heat source. The temperature and relative humidity were monitored along predetermined depths of the specimens. The profiles of water content, dry density, and degree of saturation were established after termination of the tests. The test results showed that thermal gradients caused redistribution of the water content, whereas thermo-hydraulic gradients caused both redistribution and an increase in the water content within compacted bentonites, both leading to development of axial stress of various magnitudes. The applied water injection pressures (5 and 600 kPa and temperature gradients appeared to have very minimal impact on the magnitude of axial stress developed. The thickness of thermal insulation layer surrounding the testing devices was found to influence the temperature and relative humidity profiles thereby impacting the redistribution of water content within compacted bentonites. Under the influence of both the applied thermal and thermo-hydraulic gradients, the dry density of the bentonite specimens increased near the heat source, whereas it decreased at the opposite end. The test results emphasized the influence of
International Nuclear Information System (INIS)
Bazylev, B.
2008-01-01
Operation of ITER at high fusion gain is assumed to be the H-mode. A characteristic feature of this regime is the transient energy release (TE) from the confined plasma onto plasma facing components (PFCs), which can play a determining role in lifetime of these components. The expected fluxes on the ITER PFCs during transients are: Type I ELM Q = 0.5 - 4 MJ/m 2 in timescales t = 0.3 - 0.6 ms, and thermal quench Q = 2 - 13 MJ/m 2 with t = 1 - 3 ms. CFC and tungsten macrobrush armour are foreseen as PFCs for ITER divertor and Be - as FW armour. During the intense TE in ITER the evaporation (CFC, W, Be) and surface melting and melt splashing (W and Be) are seen as the main mechanisms of PFC erosion. A noticeable erosion of CFC PAN fibres and rather intense crack formation for the W targets were observed in plasma gun experiments at rather small heat loads at which the melt damage to W armour is not substantial. The expected erosion of the ITER PFCs TE can be properly estimated by numerical simulations validated against erosion experiments at the plasma gun facilities QSPA-T, MK- 200UG and QSPA-Kh50. Within collaboration between EU fusion programme and Russian Federation, CFC and W macrobrush targets manufactured in EU were exposed to multiple ITER TE-like loads with Q = 0.5 - 2.2 MJ/m 2 and t = 0 .5 ms at the QSPA-T. The measured erosion was used to validate the modelling codes developed in FZK (PEGASUS, MEMOS, and others), which are then applied to model the erosion of the divertor and main chamber ITER PFCs under expected transient loads in ITER. Numerical simulations performed for the expected ITER-like loads predicted: a significant erosion of the CFC target for Q > 0.5 MJ/m 2 was caused by the inhomogeneous structure of the CFC; the W macrobrush structure is effective in preventing gross melt layer displacement. Optimization of macrobrush geometry to minimize melt splashing is done. Different mechanisms of melt splashing are compared with the results obtained in
International Nuclear Information System (INIS)
Watanabe, Y.; Asano, A.; Banno, K.; Yokota, K.; Sugiura, M.
2001-01-01
A model of NO x selective reduction by hydrocarbon (HC) was developed, which takes into account the adsorption and desorption of HC. The model was applied for predicting the performance of a De-NO x catalytic reactor, working under transient conditions such as a legislative driving cycle. Diesel fuel was used as a supplemental reductant. The behavior of HC and NO x reactions and HC adsorption and desorption has been simulated successfully by our numerical approach under the transient conditions of the simulated Japanese 10-15 driving cycle. Our model is expected to optimize the design of selective diesel NO x reduction systems using a diesel fuel as a supplemental reductant
International Nuclear Information System (INIS)
Scheuerer, Martina; Weis, Johannes
2012-01-01
Highlights: ► Pressurized thermal shocks are important phenomena for plant life extension and aging. ► The thermal-hydraulics of PTS have been studied experimentally and numerically. ► In the Large Scale Test Facility a loss of coolant accident was investigated. ► CFD software is validated to simulate the buoyancy driven flow after ECC injection. - Abstract: Within the framework of the European Nuclear Reactor Integrated Simulation Project (NURISP), computational fluid dynamics (CFD) software is validated for the simulation of the thermo-hydraulics of pressurized thermal shocks. A proposed validation experiment is the test series performed within the OECD ROSA V project in the Large Scale Test Facility (LSTF). The LSTF is a 1:48 volume-scaled model of a four-loop Westinghouse pressurized water reactor (PWR). ROSA V Test 1-1 investigates temperature stratification under natural circulation conditions. This paper describes calculations which were performed with the ANSYS CFD software for emergency core cooling injection into one loop at single-phase flow conditions. Following the OECD/NEA CFD Best Practice Guidelines (Mahaffy, 2007) the influence of grid resolution, discretisation schemes, and turbulence models (shear stress transport and Reynolds stress model) on the mixing in the cold leg were investigated. A half-model was used for these simulations. The transient calculations were started from a steady-state solution at natural circulation conditions. The final calculations were obtained in a complete model of the downcomer. The results are in good agreement with data.
International Nuclear Information System (INIS)
Green, W.J.
1987-04-01
Simple theoretical models have been developed which are suitable for predicting the thermal responses of irradiated research fuel elements of markedly different geometries when they are subjected to loss-of-coolant accident conditions. These models have been used to calculate temperature responses corresponding to various non-forced convective conditions. Comparisons between experimentally observed temperatures and calculated values have shown that a suitable value for surface thermal emissivity is 0.35; modelling of the fuel element beyond the region of the fuel plate needs to be included since these areas account for approximately 25 per cent of the thermal power dissipated; general agreement between calculated and experimental temperatures for both transient and steady-state conditions is good - the maximum discrepancy between calculated and experimental temperatures for a HIFAR Mark IV/V fuel element is ∼ 70 deg C, and for an Oak Ridge Reactor (ORR) box-type fuel element ∼ 30 deg C; and axial power distribution does not significantly affect thermal responses for the conditions investigated. Overall, the comparisons have shown that the models evolved can reproduce experimental data to a level of accuracy that provides confidence in the modelling technique and the postulated heat dissipation mechanisms, and that these models can be used to predict thermal responses of fuel elements in accident conditions that are not easily investigated experimentally
Computationally Efficient Transient Stability Modeling of multi-terminal VSC-HVDC
DEFF Research Database (Denmark)
van der Meer, Arjen A; Rueda-Torres, José; Silva, Filipe Miguel Faria da
2016-01-01
This paper studies the inclusion of averaged VSC-based grid interfaces and HVDC networks into stability type simulations, and compares the accuracy and speed of three multi-terminal DC dynamic models: 1) a state-space based model, 2) a multi-rate improved model, and 3) a reduced-order model...... that the reduced-order model is too inaccurate to investigate detailed large-disturbance stability-related dynamics. The multi-rate model shows the best trade-off between simulation accuracy and speed....
Energy Technology Data Exchange (ETDEWEB)
Rives Sanz, R.; Montesino Otero, M.E.; Gonzalez Mantecon, J.; Rojas Mazaira, L., E-mail: mmontesi@instec.cu [Higher Institute of Technology and Applied Science, La Habana (Cuba). Department of Nuclear Engineering; Lira, C.A. Brayner de Oliveira [Universidade Federal de Pernambuco (UFPE), Recife, PE (Brazil)
2014-07-01
International Reactor Innovative and Secure (IRIS) excels other Small Modular Reactor (SMR) designs due to its innovative characteristics regarding safety. IRIS integral pressurizer makes the design of larger pressurizer system than the conventional PWR, without any additional cost. The IRIS pressurizer volume of steam can provide enough margins to avoid spray requirement to mitigate in-surge transient. The aim of the present research is to model the IRIS pressurizer's dynamic using the commercial finite volume Computational Fluid Dynamic code CFX 14. A symmetric tridimensional model equivalent to 1/8 of the total geometry was adopted to reduce mesh size and minimize processing time. The model considers the coexistence of three phases: liquid, steam, and vapor bubbles in liquid volume. Additionally, it takes into account the heat losses between the pressurizer and primary circuit. The relationships for interfacial mass, energy, and momentum transport are programmed and incorporated into CFX by using expressions in CFX Command Language (CCL) format. Moreover, several additional variables are defined for improving the convergence and allow monitoring of boron dilution sequences and condensation-evaporation rate in different control volumes. For transient states a non - equilibrium stratification in the pressurizer is considered. This paper discusses the model developed and the behavior of the system for representative transients sequences such as the in/out-surge transients and boron dilution sequences. The results of analyzed transients of IRIS can be applied to the design of pressurizer internal structures and components. (author)
A three-dimensional transient calculation for the reactor model RAMONA using the COMMIX-2(V) code
International Nuclear Information System (INIS)
Weinberg, D.; Frey, H.H.; Tschoeke, H.
1993-01-01
The safety graded decay heat removal system of the European Fast Reactor needs a high availability. This system operates entirely under natural convection. To guarantee a proper design, experiments are carried out to verify thermal-hydraulic computer codes able to predict precisely local temperature loadings of the components and the reactor tank in the transition region from nominal operation under forced convection to the decay heat removal operation. - With the COMMIX-2 (V) code three-dimensional transient calculations have been performed to simulate experiments in the 360 deg. reactor model RAMONA, scaled 1:20 to the reality with water as simulant fluid for sodium. The computed average and local temperatures as well as the velocity distributions show a good agreement with the experimental results. Further efforts are necessary to reduce the computation time. (orig.)
The model of double-cage induction motor for the analysis of thermal fields in transient operations
Directory of Open Access Journals (Sweden)
Mróz Jan
2017-06-01
Full Text Available Emergency motor switch-on happens occasionally while operating a doublesquirrel- cage motor at full supply voltage with the rotor blocked (e.g., in coal mills. After releasing the blockage, the by now heated motor is started up again. However, the mechanical stress caused by the increased temperature poses considerable hazards to the squirrel-cage winding. This paper presents a double-cage induction motor model for analysis of thermal fields in transient operation. The thermal field for the rotor of a doublesquirrel- cage motor of soldered or cast structure, operating in the conditions described, has been calculated in the present paper using a thermal network method. Measurement results have been presented for the double-squirrel-cage winding temperature for a soldered cage construction in the blocked rotor state.
International Nuclear Information System (INIS)
Zhang Weijiang; Ding Shufu; Zhang Chunlu
2009-01-01
Based on the transient modeling developed in the previous paper, the control design of the air-cooled chiller is studied. The main electronic expansion valve (EXV) controls the suction superheat, the compressor controls the leaving water temperature and the sub EXV regulates the injection superheat. Since the system reliability is sensitive to the control of the suction superheat, it is the focus in this paper. Dynamic simulation cases are built to compare two control algorithms, PID and fuzzy logic. The case studies show that the fuzzy controller has higher reliability and performance. Both the two controllers are fully tested and tuned on a chiller test facility and the experiments indicate that the fuzzy controller works better as well.
Archer, D. E.; McGuire, P. C.; Buffett, B. A.
2010-12-01
Carbon and oxygen isotopic variations through the Paleocene-Eocene thermal maximum event suggest that biogenic methane was not the source of the perturbing carbon, but this does not guarantee that the hydrates on Earth today will not eventually respond to the unique provocation of the global warming climate event. The SpongeBOB ocean methane hydrate model is used to simulate the accumulation of sediment along a passive continental margin over geologic time scales. Fluid motions within the sediment column are driven by compaction and variations in sediment permeability, and they impact the efficiency of methane trapping within hydrate deposits. The equilibrium and transient sensitivity of the methane inventory in the sediments to the temperature of the ocean will be assessed.
Development of a UF{sub 6} cylinder transient heat transfer/stress analysis model
Energy Technology Data Exchange (ETDEWEB)
Williams, W.R. [Martin Marietta Energy Systems, Inc., Oak Ridge, TN (United States)
1991-12-31
A heat transfer/stress analysis model is being developed to simulate the heating to a point of rupture of a cylinder containing UF{sub 6} when it is exposed to a fire. The assumptions underlying the heat transfer portion of the model, which has been the focus of work to date, will be discussed. A key aspect of this model is a lumped parameter approach to modeling heat transfer. Preliminary results and future efforts to develop an integrated thermal/stress model will be outlined.
Directory of Open Access Journals (Sweden)
Asan Mohideen Khansadurai
2014-01-01
Full Text Available The main objective of the paper is to design a model reference adaptive controller (MRAC with improved transient performance. A modification to the standard direct MRAC called fuzzy modified MRAC (FMRAC is used in the paper. The FMRAC uses a proportional control based Mamdani-type fuzzy logic controller (MFLC to improve the transient performance of a direct MRAC. The paper proposes the application of real-coded genetic algorithm (RGA to tune the membership function parameters of the proposed FMRAC offline so that the transient performance of the FMRAC is improved further. In this study, a GA based modified MRAC (GAMMRAC, an FMRAC, and a GA based FMRAC (GAFMRAC are designed for a coupled tank setup in a hybrid tank process and their transient performances are compared. The results show that the proposed GAFMRAC gives a better transient performance than the GAMMRAC or the FMRAC. It is concluded that the proposed controller can be used to obtain very good transient performance for the control of nonlinear processes.
Dynamic modeling and transient studies of a solid-sorbent adsorber for CO{sub 2} capture
Energy Technology Data Exchange (ETDEWEB)
Modekurti, Srinivasarao [WVU; Bhattacharyya, Debangsu [WVU; Zitney, Stephen E. [U.S. DOE
2012-01-01
The U.S. Department of Energy’s Carbon Capture Simulation Initiative (CCSI) is dedicated to accelerating the commercialization of carbon capture technologies from discovery to development, demonstration, and ultimately the widespread deployment to hundreds of power plants. In this multi-lab initiative in partnership with academic and industrial institutions, the National Energy Technology Laboratory (NETL) leads the development of a multi-scale modeling and simulation toolset for rapid evaluation and deployment of carbon capture systems. One element of the CCSI is focused on optimizing the operation and control of carbon capture systems since this can have a significant impact on the extent and the rate at which commercial-scale capture processes will be scaled-up, deployed, and used in the years to come. Capture processes must be capable of operating over a wide range of transient events, malfunctions, and disturbances, as well as under uncertainties. As part of this work, dynamic simulation and control models, methods, and tools are being developed for CO{sub 2} capture and compression processes and their integration with a baseline commercial-scale supercritical pulverized coal (SCPC) power plant. Solid-sorbent-based post-combustion capture technology was chosen as the first industry challenge problem for CCSI because significant work remains to define and optimize the reactors and processes needed for successful sorbent capture systems. Sorbents offer an advantage because they can reduce the regeneration energy associated with CO{sub 2} capture, thus reducing the parasitic load. In view of this, the current paper focuses on development of a dynamic model of a solid-sorbent CO{sub 2} adsorber-reactor and an analysis of its transient performance with respect to several typical process disturbances. A one-dimensional, non-isothermal, pressure-driven dynamic model of a two-stage bubbling fluidized bed (BFB) adsorber-reactor is developed in Aspen Custom Modeler
International Nuclear Information System (INIS)
Dalle Donne, M.; Hame, W.
1982-12-01
A parametric thermohydraulic study for an Advanced Pressurized Light Water Reactor (APWR) with a tight fuel rod lattice has been performed. The APWR improves the uranium utilisation. The APWR core should be placed in a modern German PWR plant. Within this study about 200 different reactors have been calculated. The tightening of the fuel rod lattice implies a decrease of the net electrical output of the plant, which is greater for the heterogeneous reactor than for the homogeneous reactor. APWR cores mean higher core pressure drops and higher water velocities in the core region. The cores tend to be shorter and the number of fuel rods to be higher than for the PWR. At the higher fuel rod pitch to diameter ratios (p/d) the DNB limitation is more stringent than the limitation on the fuel rod linear rating given by the necessity of reflooding after a reactor accident. The contrary is true for the lower p/d ratios. Subcooled boiling in the highest rated coolant channels occurs for the most of the calculated reactors. (orig.) [de
Large-break LOCA studies. Computational analysis of clad ballooning and thermohydraulics in a PWR
International Nuclear Information System (INIS)
Ammirabile, L.; Walker, S.
2002-01-01
A new multi-pin model of the re-flood phase of a large break loss of coolant accident has been created through the dynamic coupling between the thermal-hydraulic code RELAP5 and multiple instances of the single-pin thermal-mechanics code MABEL. After a brief description of the codes and their linkage, a series of tests to assess the capabilities of the linked codes is described, and their results analysed. It is shown that the current coupled multi-pin code is a stable and reliable tool for ballooning transient analysis. A complete validation process with the simulation of the MT-3 test in the NRU reactor at Chalk River is in progress.(author)
DEFF Research Database (Denmark)
Barfod, Adrian; Straubhaar, Julien; Høyer, Anne-Sophie
2017-01-01
hydrostratigraphic model of one area is used as Training Image to create a suite of stochastic hydrostratigraphic models in a new survey area. The advantage of stochastic modelling is that detailed multiple point information from one area can be easily transferred to another area considering uncertainty...... the incorporation of elaborate datasets and provides a framework for stochastic hydrostratigraphic modelling. This paper focuses on comparing three MPS methods: snesim, DS and iqsim. The MPS methods are tested and compared on a real-world hydrogeophysical survey from Kasted in Denmark, which covers an area of 45 km......2. The comparison of the stochastic hydrostratigraphic MPS models is carried out in an elaborate scheme of visual inspection, mathematical similarity and consistency with boreholes. Using the Kasted survey data, a practical example for modelling new survey areas is presented. A cognitive...
A new moving boundary model for transient simulation of dry-expansion evaporators
DEFF Research Database (Denmark)
Jensen, Jakob Munch; Knudsen, Hans-Jørgen Høgaard
2002-01-01
robust to sudden changes in the system. The model is well suited for open loop simulation for system design and model based contol strategies as e.g. optimal LQG (linear quadratic gausian) control. Simulation results for a refrigeration system are shown for different changes in evaporator fan speed......, compressor speed and expansion valve opening. The simulation results show the expected trends, but the model has not yet been validated with experimental data....
DEFF Research Database (Denmark)
Silva, Filipe Miguel Faria da
2016-01-01
is simulated for three different target frequencies: transient’s resonance frequency, 50Hz and an in-between frequency. The results are analysed theoretically using modal propagation theory and the error is quantified for the case under examination. It is concluded that for a realistic case, which requires...... analyses the simulation errors of different Bergeron models to a reference frequency-dependent model for a 150kV cable. The simulations consider flat and trefoil installation, both-ends bonding and cross-bonding, ideal voltage source and modelling of the area around the cable. The Bergeron model...
Optimization of a Monte Carlo Model of the Transient Reactor Test Facility
Energy Technology Data Exchange (ETDEWEB)
Smith, Kristin; DeHart, Mark; Goluoglu, Sedat
2017-03-01
The ultimate goal of modeling and simulation is to obtain reasonable answers to problems that don’t have representations which can be easily evaluated while minimizing the amount of computational resources. With the advances during the last twenty years of large scale computing centers, researchers have had the ability to create a multitude of tools to minimize the number of approximations necessary when modeling a system. The tremendous power of these centers requires the user to possess an immense amount of knowledge to optimize the models for accuracy and efficiency.This paper seeks to evaluate the KENO model of TREAT to optimize calculational efforts.
van Borren, Marcel M. J.; Zegers, Jan G.; Verkerk, Arie O.; Wilders, Ronald
2007-01-01
In the past decades, various computational models of the pacemaker activity of single sinoatrial (SA) nodal cells have been developed, building on data obtained in patch-clamp experiments on isolated SA nodal myocytes. These models show widely different results regarding the contribution of
Rödiger, Tino; Magri, Fabien; Geyer, Stefan; Morandage, Shehan Tharaka; Ali Subah, H. E.; Alraggad, Marwan; Siebert, Christian
2017-11-01
Both increasing aridity and population growth strongly stress freshwater resources in semi-arid areas such as Jordan. The country's second largest governorate, Irbid, with over 1 million inhabitants, is already suffering from an annual water deficit of 25 million cubic meters (MCM). The population is expected to double within the next 20 years. Even without the large number of refugees from Syria, the deficit will likely increase to more then 50 MCM per year by 2035 The Governorate's exclusive resource is groundwater, abstracted by the extensive Al Arab and Kufr Asad well fields. This study presents the first three-dimensional transient regional groundwater flow model of the entire Wadi al Arab to answer important questions regarding the dynamic quality and availability of water within the catchment. Emphasis is given to the calculation and validation of the dynamic groundwater recharge, derived from a multi-proxy approach, including (1) a hydrological model covering a 30-years dataset, (2) groundwater level measurements and (3) information about springs. The model enables evaluation of the impact of abstraction on the flow regime and the groundwater budget of the resource. Sensitivity analyses of controlling parameters indicate that intense abstraction in the southern part of the Wadi al Arab system can result in critical water-level drops of 10 m at a distance of 16 km from the production wells. Moreover, modelling results suggest that observed head fluctuations are strongly controlled by anthropogenic abstraction rather than variable recharge rates due to climate changes.
Simulation of a turbine trip transient at Embalse NPP with full-circuit CATHENA model
Energy Technology Data Exchange (ETDEWEB)
Rabiti, A., E-mail: arabiti@na-sa.com.ar [Nucleoelectrica Argentina S.A., Embalse Nuclear Power Plant, Engineering Management Branch, Embalse (Argentina); Parrondo, A., E-mail: aparrondo@na-sa.com.ar [Nucleoelectrica Argentina S.A., Engineering Management, Buenos Aires (Argentina); Serrano, P., E-mail: pserrano@na-sa.com.ar [Nucleoelectrica Argentina S.A., Licensing Coordination Branch, Atucha II Project Branch (Unidad de Gestion), Buenos Aires (Argentina); Sablayrolles, A.; Damiani, H., E-mail: asablayrolles@na-sa.com.ar, E-mail: hdamiani@na-sa.com.ar [Nucleoelectrica Argentina S.A., Embalse Nuclear Power Plant, Embalse Life Extension Project Management, Embalse (Argentina)
2015-07-01
Embalse NPP is carrying on a Periodic Safety Review to deal with its life extension. This review includes tasks like Deterministic Analysis review for the Final Safety Analysis Report. In 2011, NA-SA (Nucleoelectrica Argentina S.A.) issued a first CATHENA full-circuit model representing the current plant. This model is used in this work. The simulation presented here corresponds to a turbine trip that occurred at Embalse NPP. Consistency between the simulation and the real event is demonstrated. Furthermore, NASA is currently performing Safety Analysis with a new model developed jointly with AECL and Candu Energy which includes post refurbishment changes and other improvements. (author)
Transient validation of RELAP5 model with the DISS facility in once through operation mode
Serrano-Aguilera, J. J.; Valenzuela, L.
2016-05-01
Thermal-hydraulic code RELAP5 has been used to model a Solar Direct Steam Generation (DSG) system. Experimental data from the DISS facility located at Plataforma Solar de Almería is compared to the numerical results of the RELAP5 model in order to validate it. Both the model and the experimental set-up are in once through operation mode where no injection or active control is regarded. Time dependent boundary conditions are taken into account. This work is a preliminary study of further research that will be carried out in order to achieve a thorough validation of RELAP5 models in the context of DSG in line-focus solar collectors.
Perez-Invernon, F. J.; Luque, A.; Gordillo-Vazquez, F. J.
2017-12-01
The electromagnetic field generated by lightning discharges can produce Transient Luminous Events (TLEs) in the lower ionosphere, as previously investigated by many authors. Some recent studies suggest that narrow bipolar pulses (NBP), an impulsive and not well-established type of atmospheric electrical discharge, could also produce TLEs. The characterization and observation of such TLEs could be a source of information about the physics underlying NBP. In this work, we develop two different electrodynamical models to study the impact of lightning-driven electromagnetic fields in the lower ionosphere. The first model calculates the quasi-electrostatic field produced by a single cloud to ground lightning in the terrestrial atmosphere and its influence in the electron transport. This scheme allows us to study halos, a relatively frequent type of TLE. The second model solves the Maxwell equations for the electromagnetic field produced by a lightning discharge coupled with the Langevin's equation for the induced currents in the ionosphere. This model is useful to investigate elves, a fast TLE produced by lightning or by NBP. In addition, both models are coupled with a detailed chemistry of the electronically and vibrationally excited states of molecular nitrogen, allowing us to calculate synthetic spectra of both halos and elves. The models also include a detailed set of kinetic reactions to calculate the temporal evolution of other species. Our results suggest an important enhancement of some molecular species produced by halos, as NOx , N2 O and other metastable species. The quantification of their production could be useful to understand the role of thunderstorms in the climate of our planet. In the case of TLEs produced by NBP, our model confirms the appearance of double elves and allows us to compute their spectral characteristics.
Dimming and Brightening in Europe: Transient Climate Simulations with NASA GISS Climate Model
Nazarenko, L.; Rind, D. H.
2017-12-01
The observed reduction in surface solar radiation from about 1950 to mid-1980s, the so-called "dimming effect", and more recent renewed increase after 1990 are simulated with the NASA GISS ModelE2. A decrease of global mean solar radiation ranges between -0.87 and -1.59 W/m2 with both non-interactive and interactive aerosol-cloud models supporting the "global dimming" phenomenon for the second half of the 20th century. An increase of global mean solar radiation (brightening) ranges between 0.58 and 1.53 W/m2 with both models. Both dimming and brightening are more pronounced for absorbed solar radiation averaged over the European land surface ranging between -1.1 and -2.28 W/m2 for 1971-1986 and between 2.4 and 4.24 W/m2 for 1987-2007. The linear regression is stronger for the brightening than for the dimming. The total cloud cover is decreasing for both "dimming" and "brightening" periods in the interactive model although the negative trends are not significant. In general, the total cloud cover was larger for the "dimming" than for the "brightening". The shortwave cloud radiative forcings that include both the direct and aerosol-cloud albedo effects, do not follow the cloud cover changes, and they reflect the changes in optical depth of clouds. The changes in the cloud properties are significant in the non-interactive model. In conclusion, the cloud cover is not an important factor in "dimming" and "brightening" in both models although some changes in clouds are significant. The analysis shows that both the direct and the first indirect radiative effects of aerosols are playing important roles in both "dimming" and "brightening". Both aerosol effects are contributing more to "dimming" and "brightening" than the cloud radiative effect does.
Directory of Open Access Journals (Sweden)
Kamil Urbanowicz
2015-09-01
Full Text Available Modelling of time-depended hydraulic friction is not an easy issue. As numerous studies have shown, wall shear stress in the pipe can be determined as a sum of the quasi-steady and time-dependent expressions. Time-depended expression is an convolution integral of the local acceleration of the liquid and a weighting function. The weighting function, in general, makes allowance for relation of historic velocity changes and unsteady component of wall shear stress. The original weighting function has usually a very complicated structure, and what is more it makes impossible to do an efficient simulation of dynamical runs. In this paper, in order to enable efficient calculation of unsteady component wall shear stress, new weighting functions are presented as a sum of exponential components. To aim this goal in case of turbulent flow, the scaling procedure proposed by Vitkovsky et al. is used. This method makes very easy the estimation of any new turbulent weighting function. Presented approximated weighting functions are compared with the original counterparts, known from literature in case of laminar and turbulent flows. Using the previously discussed models of cavitation flow CSM, CSMG, CSMA, and the BCM with implemented effective weighting function a series of simulation studies has been made, which showed that the introduced changes in models of unsteady flow with cavitation greatly improve the degree of simulation fit in comparison with experimental results.[b]Keywords[/b]: numerical fluid mechanics, transient flow, cavitation, frequency-dependent friction losses, pipeline, waterhammer
Directory of Open Access Journals (Sweden)
Yan Zeng
2018-01-01
Full Text Available Multistage fractured horizontal wells (MFHWs have become the main technology for shale gas exploration. However, the existing models have neglected the percolation mechanism in nanopores of organic matter and failed to consider the differences among the reservoir properties in different areas. On that account, in this study, a modified apparent permeability model was proposed describing gas flow in shale gas reservoirs by integrating bulk gas flow in nanopores and gas desorption from nanopores. The apparent permeability was introduced into the macroseepage model to establish a dynamic pressure analysis model for MFHWs dual-porosity formations. The Laplace transformation and the regular perturbation method were used to obtain an analytical solution. The influences of fracture half-length, fracture permeability, Langmuir volume, matrix radius, matrix permeability, and induced fracture permeability on pressure and production were discussed. Results show that fracture half-length, fracture permeability, and induced fracture permeability exert a significant influence on production. A larger Langmuir volume results in a smaller pressure and pressure derivative. An increase in matrix permeability increases the production rate. Besides, this model fits the actual field data relatively well. It has a reliable theoretical foundation and can preferably describe the dynamic changes of pressure in the exploration process.
Ding, Zhe; Li, Li; Hu, Yujin
2018-01-01
Sophisticated engineering systems are usually assembled by subcomponents with significantly different levels of energy dissipation. Therefore, these damping systems often contain multiple damping models and lead to great difficulties in analyzing. This paper aims at developing a time integration method for structural systems with multiple damping models. The dynamical system is first represented by a generally damped model. Based on this, a new extended state-space method for the damped system is derived. A modified precise integration method with Gauss-Legendre quadrature is then proposed. The numerical stability and accuracy of the proposed integration method are discussed in detail. It is verified that the method is conditionally stable and has inherent algorithmic damping, period error and amplitude decay. Numerical examples are provided to assess the performance of the proposed method compared with other methods. It is demonstrated that the method is more accurate than other methods with rather good efficiency and the stable condition is easy to be satisfied in practice.
A new control-oriented transient model of variable geometry turbocharger
International Nuclear Information System (INIS)
Bahiuddin, Irfan; Mazlan, Saiful Amri; Imaduddin, Fitrian; Ubaidillah
2017-01-01
The flow input of a variable geometry turbocharger turbine is highly unsteady due to rapid and periodic pressure dynamics in engine combustion chambers. Several VGT control methods have been developed to recover more energy from the highly pulsating exhaust gas flow. To develop a control system for the highly pulsating flow condition, an accurate and valid unsteady model is required. This study focuses on the derivation of governing the unsteady control-oriented model (COM) for a turbine of an actively controlled turbocharger (ACT). The COM has the capability to predict the turbocharger behaviour regarding the instantaneous turbine actual and isentropic powers in different effective throat areas. The COM is a modified version of a conventional mean value model (MVM) with an additional feature to calculate the turbine angular velocity and torque for determining the actual power. The simulation results were further compared with experimental data in two general scenarios. The first scenario was simulations on fixed geometry positions. The second simulation scenario considered the nozzle movement after receiving a signal from the controller in different cases. The comparison between simulation and experimental results showed similarities in the recovered power behaviours the turbine inlet area increases or vice versa. The model also has proved its reliability to replicate general behaviour as in the example of ACT cases presented in this paper. However, the model is incapable to replicate the detailed and complicated phenomena, such as choking effect and hysteresis effect. - Highlights: • A control-oriented model of a variable geometry turbocharger turbine is proposed. • Isentropic and actual power behaviour estimations on turbocharger turbine. • A simulation tool for developing active control systems of turbocharger turbines.
Transient one-dimensional model of coal carbonization in a stagnant packed bed
Polesek-Karczewska, Sylwia; Kardaś, Dariusz; Wardach-Święcicka, Izabela; Grucelski, Arkadiusz; Stelmach, Sławomir
2013-06-01
In the present paper, the one-dimensional model for heat and mass transfer in fixed coal bed was proposed to describe the thermal and flow characteristics in a coke oven chamber. For the purpose of the studied problem, the analysis was limited to the calculations of temperature field and pyrolytic gas yield. In order to verify the model, its theoretical predictions for temperature distribution during wet coal charge carbonization were compared with the measurement results found in the literature. In general, the investigation shows good qualitative agreement between numerical and experimental data. However, some discrepancy regarding the temperature characteristics at the stage of evaporation was observed.
Development of a Transient Model of a Stirling-Based CHP System
Carlos Ulloa; José Luis Míguez; Jacobo Porteiro; Pablo Eguía; Antón Cacabelos
2013-01-01
Although the Stirling engine was invented in 1816, this heat engine still continues to be investigated due to the variety of energy sources that can be used to power it (e.g., solar energy, fossil fuels, biomass, and geothermal energy). To study the performance of these machines, it is necessary to develop and simulate models under different operating conditions. In this paper, we present a one-dimensional dynamic model based on components from Trnsys: principally, a lumped mass and a heat ex...
A Stochastic model for two-station hydraulics exhibiting transient impact
DEFF Research Database (Denmark)
Jacobsen, Judith L.; Madsen, Henrik; Harremoës, Poul
1997-01-01
The objective of the paper is to interpret data on water level variation in a river affected by overflow from a sewer system during rain. The simplest possible, hydraulic description is combined with stochastic methods for data analysis and model parameter estimation. This combination of determin......The objective of the paper is to interpret data on water level variation in a river affected by overflow from a sewer system during rain. The simplest possible, hydraulic description is combined with stochastic methods for data analysis and model parameter estimation. This combination...
A Transient 3D-CFD Model Incorporating Biological Processes for Use in Tissue Engineering
DEFF Research Database (Denmark)
Krühne, Ulrich; Wendt, D.; Martin, I.
2010-01-01
are considered in the model. In a variation of the model the growth of the biomass is influenced by the fluid dynamic induced shear stress level, which the cells are exposed to. In parallel an experimental growth of stem cells has been performed in a 3D perfusion reactor system and the culturing has been stopped...... after 2, 8 and 13 days. The development of the cells is compared to the simulated growth of cells and it is attempted to draw a conclusion about the impact of the shear stress on the cell growth. Keyword: Computational fluid dynamics (CFD),Micro pores,Scaffold,Bioreactor,Fluid structure interaction...
Greskowiak, J.; Hay, M.B.; Prommer, H.; Liu, C.; Post, V.E.A.; Ma, R.; Davis, J.A.; Zheng, C.; Zachara, J.M.
2011-01-01
Coupled intragrain diffusional mass transfer and nonlinear surface complexation processes play an important role in the transport behavior of U(VI) in contaminated aquifers. Two alternative model approaches for simulating these coupled processes were analyzed and compared: (1) the physical nonequilibrium approach that explicitly accounts for aqueous speciation and instantaneous surface complexation reactions in the intragrain regions and approximates the diffusive mass exchange between the immobile intragrain pore water and the advective pore water as multirate first-order mass transfer and (2) the chemical nonequilibrium approach that approximates the diffusion-limited intragrain surface complexation reactions by a set of multiple first-order surface complexation reaction kinetics, thereby eliminating the explicit treatment of aqueous speciation in the intragrain pore water. A model comparison has been carried out for column and field scale scenarios, representing the highly transient hydrological and geochemical conditions in the U(VI)-contaminated aquifer at the Hanford 300A site, Washington, USA. It was found that the response of U(VI) mass transfer behavior to hydrogeochemically induced changes in U(VI) adsorption strength was more pronounced in the physical than in the chemical nonequilibrium model. The magnitude of the differences in model behavior depended particularly on the degree of disequilibrium between the advective and immobile phase U(VI) concentrations. While a clear difference in U(VI) transport behavior between the two models was noticeable for the column-scale scenarios, only minor differences were found for the Hanford 300A field scale scenarios, where the model-generated disequilibrium conditions were less pronounced as a result of frequent groundwater flow reversals. Copyright 2011 by the American Geophysical Union.
Transient vibration phenomena in deep mine hoisting cables. Part 1: Mathematical model
Kaczmarczyk, S.; Ostachowicz, W.
2003-04-01
The classical moving co-ordinate frame approach and Hamilton's principle are employed to derive a distributed-parameter mathematical model to investigate the dynamic behaviour of deep mine hoisting cables. This model describes the coupled lateral-longitudinal dynamic response of the cables in terms of non-linear partial differential equations that accommodate the non-stationary nature of the system. Subsequently, the Rayleigh-Ritz procedure is applied to formulate a discrete mathematical model. Consequently, a system of non-linear non-stationary coupled second order ordinary differential equations arises to govern the temporal behaviour of the cable system. This discrete model with quadratic and cubic non-linear terms describes the modal interactions between lateral oscillations of the catenary cable and longitudinal oscillations of the vertical rope. It is shown that the response of the catenary-vertical rope system may feature a number of resonance phenomena, including external, parametric and autoparametric resonances. The parameters of a typical deep mine winder are used to identify the depth locations of the resonance regions during the ascending cycles with various winding velocities.
Numerical modelling of transient heat and moisture transport in protective clothing
International Nuclear Information System (INIS)
Łapka, P; Furmański, P; Wisniewski, T S
2016-01-01
The paper presents a complex model of heat and mass transfer in a multi-layer protective clothing exposed to a flash fire and interacting with the human skin. The clothing was made of porous fabric layers separated by air gaps. The fabrics contained bound water in the fibres and moist air in the pores. The moist air was also present in the gaps between fabric layers or internal fabric layer and the skin. Three skin sublayers were considered. The model accounted for coupled heat transfer by conduction, thermal radiation and associated with diffusion of water vapour in the clothing layers and air gaps. Heat exchange due to phase transition of the bound water were also included in the model. Complex thermal and mass transfer conditions at internal or external boundaries between fabric layers and air gaps as well as air gap and skin were assumed. Special attention was paid to modelling of thermal radiation which was coming from the fire, penetrated through protective clothing and absorbed by the skin. For the first time non-grey properties as well as optical phenomena at internal or external boundaries between fabric layers and air gaps as well as air gap and skin were accounted for. A series of numerical simulations were carried out and the risk of heat injures was estimated. (paper)
Validation of models for the analysis of the transient behavior of metallic fast reactor fuel
International Nuclear Information System (INIS)
Kramer, J.M.; Hughes, T.H.; Gruber, E.E.
1989-01-01
The Integral Fast Reactor (IFR) concept being developed at Argonne National Laboratory has prompted a renewed interest in U-Pu-Zr metal alloys as a fuel for sodium-cooled fast reactors. Part of the attractiveness of the IFR concept is the improvement in reactor safety margins through inherent features of a metal-fueled LMR core. In order to demonstrate these safety margins it is necessary to have computer codes available to analyze the detailed response of metallic fuel to a wide range of accident initiators. Two of the codes that play a key role in assessing this response are the STARS fission gas behavior code and the FPIN2 fuel pin mechanics code. Verification and validation are two important components in the development of models and computer codes. Verification demonstrates through comparison of calculations with analytical solutions that the methodology and algorithms correctly solve the equations that govern the phenomena being modeled. Validation, on the other hand, demonstrates through comparison with data that the phenomena are being modeled correctly. Both components are necessary in order to have the confidence to extrapolate the calculations to reactor accident conditions. This paper presents the results of recent progress in the validation of models for the analysis of the behavior of metallic fast reactor fuel. 9 refs., 7 figs
Uvin, Pieter; Franken, Jan; Pinto, Silvia; Rietjens, Roma; Grammet, Luc; Deruyver, Yves; Alpizar, Yeranddy A; Talavera, Karel; Vennekens, Rudi; Everaerts, Wouter; De Ridder, Dirk; Voets, Thomas
2015-10-01
Acute exposure of part of the skin to cold stimuli can evoke urinary urgency, a phenomenon termed acute cold-induced urgency (ACIU). Despite its high prevalence, particularly in patients with overactive bladder, little is known about the mechanisms that induce ACIU. To develop an animal model of ACIU and test the involvement of cold-activated ion channels transient receptor potential (TRP) M8 and TRPA1. Intravesical pressure and micturition were monitored in female mice (wild-type C57BL/6J, Trpa1(-/-), Trpm8(+/+), and Trpm8(-/-)) and Sprague Dawley rats. An intravesical catheter was implanted. Localized cooling of the skin was achieved using a stream of air or topical acetone. The TRPM8 antagonist (N-(3-aminopropyl)-2-{[(3-methylphenyl) methyl]oxy}-N-(2-thienylmethyl)benzamide (AMTB) or vehicle was injected intraperitoneally. Frequencies of bladder contractions and voids in response to sensory stimuli were compared using the Mann-Whitney or Kruskal-Wallis test. Brief, innocuously cold stimuli applied to different parts of the skin evoked rapid bladder contractions and voids in anesthetized mice and rats. These responses were strongly attenuated in Trpm8(-/-) mice and in rats treated with AMTB. As rodent bladder physiology differs from that of humans, it is difficult to directly extrapolate our findings to human patients. Our findings indicate that ACIU is an evolutionarily conserved reflex rather than subconscious conditioning, and provide a useful in vivo model for further investigation of the underlying mechanisms. Pharmacological inhibition of TRPM8 may be useful for treating ACIU symptoms in patients. Brief cold stimuli applied to the skin can evoke a sudden desire to urinate, which can be highly bothersome in patients with overactive bladder. We developed an animal model to study this phenomenon, and found that it depends on a specific molecular cold sensor, transient receptor potential M8 (TRPM8). Pharmacological inhibition of TRPM8 may alleviate acute cold
Maillard, Pierre
The purpose of this PhD work has been to investigate, model, test, develop and provide hardening techniques and guidelines for the mitigation of single event transients (SETs) in analog mixed-signal (AMS) delay locked loops (DLLs) for radiation-hardened applications. Delay-locked-loops (DLLs) are circuit substructures that are present in complex ASIC and system-on-a-chip designs. These circuits are widely used in on-chip clock distribution systems to reduce clock skew, to reduce jitter noise, and to recover clock signals at regional points within a global clock distribution system. DLLs are critical to the performance of many clock distribution systems, and in turn, the overall performance of the associated integrated system; as such, complex systems often employ multiple DLLs for clock deskew and distribution tasks. In radiation environments such as on-orbit, these critical circuits represent at-risk points of malfunction for large sections of integrated circuits due to vulnerabilities to radiation-generated transients (i.e. single event transients) that fan out across the system. The analysis of single event effects in analog DLLs has shown that each DLL sub-circuit primitive is vulnerable to single event transients. However, we have identified the voltage controlled delay line (VCDL) sub-circuit as the most sensitive to radiation-induced single event effects generating missing clock pulses that increase with the operating frequency of the circuit. This vulnerability increases with multiple instantiation of DLLs as clock distribution nodes throughout an integrated system on a chip. To our knowledge, no complete work in the rad-hard community regarding the hardening of mixed-signal DLLs against single event effects (missing pulses) has been developed. Most of the work present in the literature applies the "brute force" and well-established digital technique of triple modular redundancy (TMR) to the digital subcomponents. We have developed two novel design
Directory of Open Access Journals (Sweden)
E.M. Matos
2000-06-01
Full Text Available A model is presented for the description of the concentration behavior of organometallic and sulfurated compounds in hydrodemetallation and hydrodesulfurization catalytic processes, where catalyst effectiveness decreases with time. Due to the complexity of the mixture, an approach based on pseudocomponents was adopted. The system is modeled as an isothermal tubular reactor with axial dispersion, where the gas phase (hydrogen in excess flows upward concurrently with the liquid phase (heavy oil while the solid phase (catalyst stays inside the reactor in an expanded (confined bed regime. The catalyst particles are very small and are assumed to be uniformly distributed in the reactor. The heavy oil fractions contain organometallics and sulfurated compounds, from which the metals and sulfur are to be removed, the metals as deposits in the catalyst pores and the sulfur as gas products. Simulations were carried out where the concentration profile inside the reactor was calculated for several residence times.
Directory of Open Access Journals (Sweden)
Igor KOLESNIKOV
2016-12-01
Full Text Available Serviceability of metal-polymeric "dry-friction" sliding bearings depends on many parameters, including the rotational speed, friction coefficient, thermal and mechanical properties of the bearing system and, as a result, the value of contact temperature. The objective of this study is to develop a computational model for the metallic-polymer bearing, determination on the basis of this model temperature distribution, equivalent and contact stresses for elements of the bearing arrangement and selection of the optimal parameters for the bearing system to achieve thermal balance. Static problem for the combined sliding bearing with the account of heat generation due to friction has been studied in [1]; the dynamic thermoelastic problem of the shaft rotation in a single and double layer bronze bearings were investigated in [2, 3].
PSpice modeling of broadband RF cavities for transient and frequency domain simulations
Energy Technology Data Exchange (ETDEWEB)
Harzheim, Jens [Institut fuer Theorie Elektromagnetischer Felder, Fachgebiet Beschleunigertechnik, TU Darmstadt (Germany)
2016-07-01
In the future accelerator facility FAIR, Barrier-Bucket Systems will play an important role for different longitudinal beam manipulations. As the function of this type of system is to provide single sine gap voltages, the components of the system have to operate in a broad frequency range. To investigate the different effects and to design the different system components, the whole Barrier-Bucket System is to be modeled in PSpice. While for low power signals, the system shows linear behavior, nonlinear effects arise at higher amplitudes. Therefore, simulations in both, frequency and time domain are needed. The highly frequency dependent magnetic alloy ring cores of the future Barrier-Bucket cavity have been mod eled in a first step and based on these models, the whole cavity was analyzed in PSpice. The simulation results show good agreement with former measurements.
Nonlinear Transient Modeling and Design of Turbocharger Rotor/Semi-Floating Bush Bearing System
Jianming Cao; Saeid Dousti; Paul Allaire; Tim Dimond
2017-01-01
This work presents the bearing design and analysis of radial semi-floating bush oil lubricated bearings for a typical industrial turbocharger configuration. Initially, the stability analysis for a linear rotor/bearing system is evaluated through eigenvalues and eigenvectors. The stiffness and damping coefficients of the inner oil film are obtained for the linear modeling process. The operating speed range of the turbocharger is high enough, at 21,000 to 24,000 rpm, to be unstable, indicating ...
Models of multi-rod code FRETA-B for transient fuel behavior analysis
International Nuclear Information System (INIS)
Uchida, Masaaki; Otsubo, Naoaki.
1984-11-01
This paper is a final report of the development of FRETA-B code, which analyzes the LWR fuel behavior during accidents, particularly the Loss-of-Coolant Accident (LOCA). The very high temperature induced by a LOCA causes oxidation of the cladding by steam and, as a combined effect with low external pressure, extensive swelling of the cladding. The latter may reach a level that the rods block the coolant channel. To analyze these phenomena, single-rod model is insufficient; FRETA-B has a capability to handle multiple fuel rods in a bundle simultaneously, including the interaction between them. In the development work, therefore, efforts were made for avoiding the excessive increase of calculation time and core memory requirement. Because of the strong dependency of the in-LOCA fuel behavior on the coolant state, FRETA-B has emphasis on heat transfer to the coolant as well as the cladding deformation. In the final version, a capability was added to analyze the fuel behavior under reflooding using empirical models. The present report describes the basic models of FRETA-B, and also gives its input manual in the appendix. (author)
Govers, G.; Campforts, B.; Schwanghart, W.
2016-12-01
Landscape evolution models (LEM) allow studying the earth surface response to a changing climatic and tectonic forcing. While much effort has been devoted to the development of LEMs that simulate a wide range of processes, the numerical accuracy of these models has received much less attention. Most LEMs use first order accurate numerical methods that suffer from substantial numerical diffusion. Numerical diffusion particularly affects the solution of the advection equation and thus the simulation of retreating landforms such as cliffs and river knickpoints with potential unquantified consequences for the integrated response of the simulated landscape. Here we present TTLEM, a spatially explicit, raster based LEM for the study of fluvially eroding landscapes in TopoToolbox 2. TTLEM prevents numerical diffusion by implementing a higher order flux limiting total volume method that is total variation diminishing (TVD-TVM) and solves the partial differential equations of river incision and tectonic displacement. We show that the choice of the TVD-TVM to simulate river incision significantly influences the evolution of simulated landscapes and the spatial and temporal variability of catchment wide erosion rates. Furthermore, a 2D TVD-TVM accurately simulates the evolution of landscapes affected by lateral tectonic displacement, a process whose simulation is hitherto largely limited to LEMs with flexible spatial discretization. By providing accurate numerical schemes on rectangular grids, TTLEM is a widely accessible LEM that is compatible with GIS analysis functions from the TopoToolbox interface. The model code can be downloaded at: https://github.com/wschwanghart/topotoolbox
Energy Technology Data Exchange (ETDEWEB)
Silva, Alexandro S.; Dominguez, Dany S., E-mail: alexandrossilva@gmail.com, E-mail: dsdominguez@gmail.com [Universidade Estadual de Santa Cruz (UESC), Ilheus, BA (Brazil); Mazaira, Leorlen Y. Rojas; Hernandez, Carlos R.G., E-mail: leored1984@gmail.com, E-mail: cgh@instec.cu [Instituto Superior de Tecnologias y Ciencias Aplicadas, La Habana (Cuba); Lira, Carlos Alberto Brayner de Oliveira, E-mail: cabol@ufpe.br [Universidade Federal de Pernambuco (UFPE), Recife, PE (Brazil)
2015-07-01
High-temperature gas-cooled reactors (HTGRs) have the potential to be used as possible energy generation sources in the near future, owing to their inherently safe performance by using a large amount of graphite, low power density design, and high conversion efficiency. However, safety is the most important issue for its commercialization in nuclear energy industry. It is very important for safety design and operation of an HTGR to investigate its thermal–hydraulic characteristics. In this article, it was performed the thermal–hydraulic simulation of compressible flow inside the core of the pebble bed reactor HTR (High Temperature Reactor)-10 using Computational Fluid Dynamics (CFD). The realistic approach was used, where every closely packed pebble is realistically modelled considering a graphite layer and sphere of fuel. Due to the high computational cost is impossible simulate the full core; therefore, the geometry used is a column of FCC (Face Centered Cubic) cells, with 41 layers and 82 pebbles. The input data used were taken from the thermohydraulic IAEA Benchmark (TECDOC-1694). The results show the profiles of velocity and temperature of the coolant in the core, and the temperature distribution inside the pebbles. The maximum temperatures in the pebbles do not exceed the allowable limit for this type of nuclear fuel. (author)
International Nuclear Information System (INIS)
Inada, F.; Furuya, M.; Yasuo, A.; Tabata, H.; Yoshioka, Y.; Kim, H.T.
1995-01-01
In natural circulation BWRs developed for advanced light water reactors with simplified passive safety systems, thermo-hydraulic stability should be confirmed especially at low pressure start-up. In this paper, nondimensional parameters to estimate the hydrodynamic stability to reactors at low pressure start-up were obtained by transformation of the basic equations of drift-flux model in the two-phase region into nondimensional form. A test facility based on these parameters was then constructed. The height of the test facility is 70% of SBWR and many nondimensional test facility parameters are almost the same as those of the reactor. Reactor stability was estimated experimentally. Stability maps below 0.5MPa were obtained on the heat flux - channel inlet subcooling place. It was found that there were two stability boundaries, between which the flow became unstable. Flow was stable in the high and low channel inlet subcooling regions. Typical conditions of SBWR at low pressure start-up were noted in the high channel inlet subcooling stable region. The heat flux at typical SBWR start-up was about one fifth that of the stability boundary. Though some nondimensional parameters of the test facility did not exactly agree with those of SBWR, it was suggested that the flow in SBWR was stable below 0.5MPa because of the large margin. (author)
Genevey, Daniel Bruno
2001-01-01
A transient model of the cathode catalyst layer of a proton exchange membrane fuel cell is presented. The catalyst layer structure can be described as a superposition of the polymer membrane, the backing layer, and some additional platinum particles. The model, which incorporates some of the features of the pseudo-homogeneous models currently present in the literature, considers the kinetics of the electrochemical reaction taking place at the platinum surface, the proton transport through the...
Directory of Open Access Journals (Sweden)
Jin-Zhou Zhao
2015-01-01
Full Text Available This study uses similar construction method of solution (SCMS to solve mathematical models of fluid spherical flow in a fractal reservoir which can avoid the complicated mathematical deduction. The models are presented in three kinds of outer boundary conditions (infinite, constant pressure, and closed. The influence of wellbore storage effect, skin factor, and variable flow rate production is also involved in the inner boundary conditions. The analytical solutions are constructed in the Laplace space and presented in a pattern with one continued fraction—the similar structure of solution. The pattern can bring convenience to well test analysis programming. The mathematical beauty of fractal is that the infinite complexity is formed with relatively simple equations. So the relation of reservoir parameters (wellbore storage effect, the skin factor, fractal dimension, and conductivity index, the formation pressure, and the wellbore pressure can be learnt easily. Type curves of the wellbore pressure and pressure derivative are plotted and analyzed in real domain using the Stehfest numerical invention algorithm. The SCMS and type curves can interpret intuitively transient pressure response of fractal spherical flow reservoir. The results obtained in this study have both theoretical and practical significance in evaluating fluid flow in such a fractal reservoir and embody the convenience of the SCMS.
Directory of Open Access Journals (Sweden)
Fuyou Liang
2013-01-01
Full Text Available The clinical benefits of the Fontan operation in treating single-ventricle defects have been well documented. However, perioperative mortality or morbidity remains a critical problem. The purpose of the present study was to identify the cardiovascular factors that dominate the transient hemodynamic changes upon the change of a bidirectional cavopulmonary (Glenn anastomosis (BCPA into a total cavopulmonary connection (TCPC. For this purpose, two computational models were constructed to represent, respectively, a single-ventricle circulation with a BCPA and that with a TCPC. A series of model-based simulations were carried out to quantify the perioperative hemodynamic changes under various cardiovascular conditions. Obtained results indicated that the presence of a low pulmonary vascular resistance and/or a low lower-body vascular resistance is beneficial to the increase in transpulmonary flow upon the BCPA to TCPC change. Moreover, it was found that ventricular diastolic dysfunction and mitral valve regurgitation, despite being well-known risk factors for poor postoperative outcomes, do not cause a considerable perioperative reduction in transpulmonary flow. The findings may help physicians to assess the perioperative risk of the TCPC surgery based on preoperative measurement of cardiovascular function.
Simmers, T. A.; de Bakker, J. M.; Coronel, R.; Wittkampf, F. H.; van Capelle, F. J.; Janse, M. J.; Hauer, R. N.
1998-01-01
OBJECTIVES: We sought to quantify the effects of electrode-target distance and intracavitary blood flow on radiofrequency (RF) power required to induce transient conduction block, using a Langendorff-perfused canine ablation model. BACKGROUND: Given the thermally mediated nature of RF catheter
He, Xiaoqiang; Yu, Hongxing; Jiang, Guangming; Dang, Gaojian; Wu, Dan; Zhang, Yu
2014-08-01
Zircaloy cladding oxidation is mostly represented by parabolic rate correlation. But the correlation approach is not suitable for long-term isothermal oxidation [4] or oxidation occurs under steam starvation conditions [5] and cannot obtain the detailed oxygen distribution which impacts the detailed mechanical behavior. To obtain the detailed oxygen distribution, a multi-phase diffusion problem with moving boundaries was introduced to simulate the cladding oxidation [9,10]. However, the hysteresis phenomenon related to the coexistence of monoclinic-tetragonal phases of zirconia which are very important to model the cladding oxidation during a LOCA, is not analyzed. In this study, a cladding oxidation model based on diffusion equations in the temperature range from 923 K to 2098 K which contains β-Zr, α-Zr, monoclinic-ZrO2, tetragonal-ZrO2, and cubic-ZrO2 is developed and the detailed oxygen distribution in the cladding could be obtained. It showed that the simulations of short-term and long-term isothermal oxidation, transient oxidation, and oxidation under steam starvation conditions were reasonable through comparing with the experimental data. We found that our model can give a reasonable simulation of the hysteresis phenomenon of monoclinic-tetragonal phase transformation during transient oxidation as well as a much better simulation of the hypothetical LOCA transient oxidation experiments [11] in ORNL than that by the code based on the parabolic rate correlation. This indicates that the developed model can accurately simulate the cladding oxidation during a LOCA transient.
Directory of Open Access Journals (Sweden)
Ralf S Blumenthal
2017-03-01
Full Text Available Non-normal transient growth of energy is a feature encountered in many physical systems. Its observation is intimately related to the norm used to describe the system dynamics. For a multi-physics problem such as thermoacoustics, where a heat source is in feedback with acoustic waves and a flow field, the appropriate metric is an ongoing matter of debate. Adopting a systemic perspective, it is argued in the present paper that an energy norm is, in principle, a matter of choice, but one that is critically tied to the dynamics described by the system model. To illustrate our arguments, it is shown that different norms exhibit the non-normal dynamics of thermoacoustic systems differently, but that this difference is fully explicable by the energy flux and source terms related to the formulation of the model. The non-normal dynamics as such is unaffected by the choice of norm, and transient growth merely results from a maximization of the flux and source terms governing the energy balance associated with the specific model formulation. Investigating transient growth for arbitrary energy norms requires the capability to handle semi-norm optimization problems. In the present study, we propose an approach to do so using the singular value decomposition. Non-normal transient growth around a stable fix point is then investigated for a low-order model of a simple thermoacoustic configuration of a premixed flame enclosed in a duct with non-zero mean temperature jump and bulk mean flow. The corresponding optimal mode shapes and pertinent parameters leading to transient growth are identified and discussed. For transient growth resulting from the interaction of the flame with the acoustic field, it is found that heat sources with a fast response lead to more transient growth than slow heat sources, because the system can bear a larger source term before becoming linearly unstable. Furthermore, the amount of transient energy growth does not increase
Directory of Open Access Journals (Sweden)
S. Yu. Makarov
2014-01-01
Full Text Available The Monte-Carlo method [1] already long ago proved itself as a powerful and universal tool for mathematical modelling in various areas of science and engineering. Researchers often choose this method when it is difficult to find a solution by other ways (or impossible at all, e.g. because of sophisticated analytical dependences, area of modelling or boundary conditions. Certainly, this necessarily statistical and flexible method requires significant computation time, but a continuously increasing computation capability makes it more and more attractive for a choice in specific situation.One of the promising areas to use the method of statistical modelling is description of light propagation in the turbid (scattering media. A high motivation for development of this approach is widely used lasers in biomedicine [3]. Besides, owing to its flexibility, the Monte-Carlo method is also of importance in theoretical researches, in particular, to estimate a degree of adequacy of the offered approximation methods for solving a radiative transfer equation [4].It is known that key parameters of turbid media are an absorption coefficient (characterizes absorption probability of a photon per unit of path length and a scattering coefficient (characterizes scattering probability of a photon per unit of path length. The ratio of each of the coefficients to their sum (extinction defines a probability of "death" or "survival" of a photon, respectively, in interaction with lenses. Generally, in the scattering medium there is a non-coherent radiation component, which in turbid media such as biological tissues, already at the insignificant depth becomes prevailing over the coherent one (residual of the incident laser beam [5].The author used the Monte-Carlo method to simulate optical radiation propagation in the multilayer biological tissues with their optical characteristics corresponding to the skin and subcutaneous tissues. Such a biological tissue is the absorbing
International Nuclear Information System (INIS)
1994-01-01
In a liquid metal fast reactor (LMFR), temperature fluctuations in the fluid close to a structure occur in many areas: core outlet zone, lower part of hot pool, free surface of pool, IHX outlet, secondary circuit, water steam interface in steam generators. In some conditions, these temperature fluctuations can lead to mechanical damage to structures. Consequently, knowledge of temperature fluctuations and induced thermomechanical damage to structures is essential to support design and maintenance during the plant life-time. In response to a recommendation from the IWGFR, the IAEA convened a Specialist Meeting on 'Correlation between material properties and thermohydraulics conditions in LMFRs' in November 1994. The purpose of the meeting was to exchange information on the state of the art on thermalhydraulic aspects of temperature fluctuations (mixing jet phenomena, temperature gradient fluctuations, transfer of fluctuations from the fluid to the wall), and associated thermomechanical studies (thermal striping, thermal ratchetting, high strain fatigue) as well as design criteria to avoid damage. The main areas discussed by the delegates were: thermalhydraulics and thermomechanics. The objective of thermalhydraulic activities is the characterization of the temperature fluctuations on the wall. Three main items can be identified, for which both the experimental and calculational approaches were considered: identification of the areas where the fluctuations may occur; characterization of the fluctuations in the fluid; and transfer of the fluid fluctuations to the walls. For thermomechanical studies, which cover the effect of the fluctuations in the structures, the following subjects are of great importance: determination of the damage modes induced by thermal loadings in structures (thermal striping, ratchetting, high strain fatigue), and study of all damage modes so as to take them into account in the design criteria and to provide rules for avoiding failure of the
Thermo-hydraulic characterization of a self-pumping corrugated wall heat exchanger
International Nuclear Information System (INIS)
Schmidmayer, Kevin; Kumar, Prashant; Lavieille, Pascal; Miscevic, Marc; Topin, Frédéric
2017-01-01
Compactness, efficiency and thermal control of the heat exchanger are of critical significance for many electronic industry applications. In this view, a new concept of heat exchanger at millimeter scale is proposed and numerically studied. It consists in dynamically deforming at least one of its walls by a progressive wave in order to create an active corrugated channel. Systematic studies were performed in single-phase flow on the different deformation parameters that allow obtaining the thermo-hydraulic characteristics of the system. It has been observed the dynamic wall deformation induces a significant pumping effect. Intensification of heat transfer remains very important even for highly degraded waveforms although the pumping efficiency is reduced in this case. The mechanical power applied on the upper wall to deform it dynamically is linked to the wave shape, amplitude, frequency and outlet-inlet pressure difference. The overall performance of the proposed system has been evaluated and compared to existing static channels. The performance of the proposed heat exchanger evolved in two steps for a given wall deformation. It declines slightly up to a critical value of mechanical power applied on the wall. When this critical value is exceeded, it deteriorates significantly, reaching the performance of existing conventional systems. - Highlights: • A new concept of heat exchanger within channel at millimeter scale is proposed. • Upper wall is deformed dynamically by applying external mechanical power. • Pumping effect is observed and is linked to the wave shape, amplitude and frequency. • Efficient proposed system in low Reynolds number range. • Overall performance is significantly high compared to static corrugated and straight channels.
Transient modelling of lacustrine regressions: two case studies from the Andean Altiplano
Condom, Thomas; Coudrain, Anne; Dezetter, Alain; Brunstein, Daniel; Delclaux, François; Jean-Emmanuel, Sicart
2004-09-01
A model was developed for estimating the delay between a change in climatic conditions and the corresponding fall of water level in large lakes. The input data include: rainfall, temperature, extraterrestrial radiation and astronomical mid-month daylight hours. The model uses two empirical coefficients for computing the potential evaporation and one parameter for the soil capacity. The case studies are two subcatchments of the Altiplano (196 000 km2), in which the central low points are Lake Titicaca and a salar corresponding to the desiccation of the Tauca palaeolake. During the Holocene, the two catchments experienced a 100 m fall in water level corresponding to a decrease in water surface area of 3586 km2 and 55 000 km2, respectively. Under modern climatic conditions with a marked rainy season, the model allows simulation of water levels in good agreement with the observations: 3810 m a.s.l. for Lake Titicaca and lack of permanent wide ponds in the southern subcatchment. Simulations were carried out under different climatic conditions that might explain the Holocene fall in water level. Computed results show quite different behaviour for the two subcatchments. For the northern subcatchment, the time required for the 100 m fall in lake-level ranges between 200 and 2000 years when, compared with the present conditions, (i) the rainfall is decreased by 15% (640 mm/year), or (ii) the temperature is increased by 5.5 °C, or (iii) rainfall is distributed equally over the year. For the southern subcatchment (Tauca palaeolake), the time required for a 100 m decrease in water level ranges between 50 and 100 years. This decrease requires precipitation values lower than 330 mm/year.
DEFF Research Database (Denmark)
Mohammadi, Soma; Bojesen, Carsten
2015-01-01
Increasing the building energy efficiency in recent years results in noticeably reduction in their heating demand. Combined with the current trend for utilizing low temperature heat sources, it raises the necessity of introducing a new generation of district heating [DH] systems with lowered...... km pipelines (supply and return pipes). At the first stage, the Studstrup DH system is developed in TERMIS, which is commercial software for district heating system simulation, and then the developed model is validated and compared with the results obtained from TERMIS and measurements. The TERMIS...
Effects of Scrambling trumpet Creeper flavone on transient cerebral ischemia model (TIA in rats
Directory of Open Access Journals (Sweden)
Mingsan Miao
2018-03-01
Full Text Available To investigate the effects of Scrambling Trumpet Creeper flavone on neurological function score, brain tissue lesion and related biochemical indexes in rat TIA model. Methods: TIA model was induced by tail vein injection of t-butanol (t-BHP. The rats in each administration group were given large, medium and low dose of Scrambling Trumpet Creeper flavone 0.1% CMC suspension, nimodipine and Yangxueqingnao particles group 0.1% CMC suspension, model group and blank group fed the same volume 0.1% CMC. Once a day, continuous administration of 7d. On the 3rd and 6th day after administration, t-BHP was injected into the tail vein, and then placed in a sealed 1 L jar. After 10 min of hypoxia, the neurological function score (NDS was performed. After the first 2 days of TIA administration, the hem rheology was measured immediately after 1 h of administration, and blood rheology was measured immediately after the administration of blood, blood clotting, hematocrit, hematocrit and whole blood viscosity. After HE is staining to observe the pathological changes of hippocampus and cortex in the left-brain tissue. (LDH and adenosine triphosphate (ATP were measured. The right brain tissue of the cerebral cortex was observed. The expression of lactate (LD, lactate dehydrogenase (LDH Fibroblast growth factor (FGF and insulin growth factor (IGF were detected by immunohistochemistry. Results: Compared with the blank group, the coagulation time of the model rats was significantly shortened. The red blood cell deformation index was significantly decreased. Erythrocyte sedimentation rate, hematocrit, plasma viscosity, whole blood viscosity, erythrocyte rigidity index and blood sedimentation equation K value were significantly increased; LD content increased significantly, and LDH, ATP enzyme activity decreased significantly. The positive expression of FGF and IGF in the cortical area had a trend of increasing. Conclusion: The Scrambling Trumpet Creeper flavone
Flow and heat transfer thermohydraulic modelisation during the reflooding phase of a P.W.R.'s core
International Nuclear Information System (INIS)
Raymond, Patrick
1978-04-01
Some generalities about L.O.C.A. are first recalled. The French experimental studies about Emergency Core Cooling System are briefly described. The different heat transfer mechanisms to take into account, according to the flow pattern in the dry zone, and the correlations or methods to calculate them, are defined. Then the Thermohydraulic code computer: FLIRA, which describe the reflooding phase, and a modelisation taking into account the different flow patterns are setted. A first interpretation of ERSEC experiments with a tubular test section shows that it is possible, with this modelisation and some classical heat transfer correlations, to describe the reflooding phase. [fr
La Spina, G.; de'Michieli Vitturi, M.; Clarke, A. B.
2017-04-01
Volcanic activity exhibits a wide range of eruption styles, from relatively slow effusive eruptions that produce lava flows and lava domes, to explosive eruptions that can inject large volumes of fragmented magma and volcanic gases high into the atmosphere. Although controls on eruption style and scale are not fully understood, previous research suggests that the dynamics of magma ascent in the shallow subsurface (explosive eruption and variations in eruption style and scale. Here we investigate the initial stages of explosive eruptions using a 1D transient model for magma ascent through a conduit based on the theory of the thermodynamically compatible systems. The model is novel in that it implements finite rates of volatile exsolution and velocity and pressure relaxation between the phases. We validate the model against a simple two-phase Riemann problem, the Air-Water Shock Tube problem, which contains strong shock and rarefaction waves. We then use the model to explore the role of the aforementioned finite rates in controlling eruption style and duration, within the context of two types of eruptions at the Soufrière Hills Volcano, Montserrat: Vulcanian and sub-Plinian eruptions. Exsolution, pressure, and velocity relaxation rates all appear to exert important controls on eruption duration. More significantly, however, a single finite exsolution rate characteristic of the Soufrière Hills magma composition is able to produce both end-member eruption durations observed in nature. The duration therefore appears to be largely controlled by the timescales available for exsolution, which depend on dynamic processes such as ascent rate and fragmentation wave speed.
International Nuclear Information System (INIS)
Kaminaga, Masanori; Watanabe, Shukichi; Ando, Hiroei; Sudo, Yukio; Ikawa, Hiromasa.
1987-03-01
This report describes the results of the steady state thermohydraulic analysis of upgraded JRR-3 core under natural convective cooling mode, using COOLOD-N code. In the code, function to calculate flow-rate under natural convective cooling mode, and a heat transfer package have been newly added to the COOLOD code which has been developed in JAERI. And this report describes outline of the COOLOD-N code. The results of analysis show that the thermohydraulics of upgraded JRR-3 core, under natural convective cooling mode have enough margine to ONB temperature, DNB heat flux and occurance of blisters in fuel meats, which are design criterion of upgraded JRR-3. (author)
Characterizing SI Engine Transient Fuel Consumption in ALPHA
Examine typical transient engine operation encountered over the EPA's vehicle and engine testing drive cycles to characterize that transient fuel usage, and then describe the changes made to ALPHA to better model transient engine operation.
International Nuclear Information System (INIS)
Carvalho, F. de A.T. de.
1985-01-01
Some antecipated transients without scram (ATWS) for a pressurized water cooled reactor, model KWU 1300 MWe, are studied using coupling of the containment code CORAN to the system model code ALMOD, under severe random conditions. This coupling has the objective of including containment model as part of a unified code system. These severe conditions include failure of reactor scram, following a station black-out and emergency power initiation for the burn-up status at the beginning and end of the cycle. Furthermore, for the burn-up status at the end of the cycle a failure in the closure of the pressurizer relief valve was also investigated. For the beginning of the cycle, the containment participates actively during the transient. It is noted that the effect of the burn-up in the fuel is to reduce the seriousness of these transients. On the other hand, the failure in the closure of the pressurized relief valve makes this transients more severe. Moreover, the containment safety or radiological public safety is not affected in any of the cases. (Author) [pt
Jones, Joseph L.; Johnson, Kenneth H.
2013-01-01
A steady-state groundwater-flow model described in Scientific Investigations Report 2013-5160, ”Numerical Simulation of the Groundwater-Flow System in Chimacum Creek Basin and Vicinity, Jefferson County, Washington” was developed to evaluate potential future impacts of growth and of water-management strategies on water resources in the Chimacum Creek Basin. This supplement to that report describes the unsuccessful attempt to perform a calibration to transient conditions on the model. The modeled area is about 64 square miles on the Olympic Peninsula in northeastern Jefferson County, Washington. The geologic setting for the model area is that of unconsolidated deposits of glacial and interglacial origin typical of the Puget Sound Lowlands. The hydrogeologic units representing aquifers are Upper Aquifer (UA, roughly corresponding to recessional outwash) and Lower Aquifer (LA, roughly corresponding to advance outwash). Recharge from precipitation is the dominant source of water to the aquifer system; discharge is primarily to marine waters below sea level and to Chimacum Creek and its tributaries. The model is comprised of a grid of 245 columns and 313 rows; cells are a uniform 200 feet per side. There are six model layers, each representing one hydrogeologic unit: (1) Upper Confining unit (UC); (2) Upper Aquifer unit (UA); (3) Middle Confining unit (MC); (4) Lower Aquifer unit (LA); (5) Lower Confining unit (LC); and (6) Bedrock unit (OE). The transient simulation period (October 1994–September 2009) was divided into 180 monthly stress periods to represent temporal variations in recharge, discharge, and storage. An attempt to calibrate the model to transient conditions was unsuccessful due to instabilities stemming from oscillations in groundwater discharge to and recharge from streamflow in Chimacum Creek. The model as calibrated to transient conditions has mean residuals and standard errors of 0.06 ft ±0.45 feet for groundwater levels and 0.48 ± 0.06 cubic
Grenier, Christophe; Roux, Nicolas; Anbergen, Hauke; Collier, Nathaniel; Costard, Francois; Ferrry, Michel; Frampton, Andrew; Frederick, Jennifer; Holmen, Johan; Jost, Anne; Kokh, Samuel; Kurylyk, Barret; McKenzie, Jeffrey; Molson, John; Orgogozo, Laurent; Rivière, Agnès; Rühaak, Wolfram; Selroos, Jan-Olof; Therrien, René; Vidstrand, Patrik
2015-04-01
The impacts of climate change in boreal regions has received considerable attention recently due to the warming trends that have been experienced in recent decades and are expected to intensify in the future. Large portions of these regions, corresponding to permafrost areas, are covered by water bodies (lakes, rivers) that interact with the surrounding permafrost. For example, the thermal state of the surrounding soil influences the energy and water budget of the surface water bodies. Also, these water bodies generate taliks (unfrozen zones below) that disturb the thermal regimes of permafrost and may play a key role in the context of climate change. Recent field studies and modeling exercises indicate that a fully coupled 2D or 3D Thermo-Hydraulic (TH) approach is required to understand and model the past and future evolution of landscapes, rivers, lakes and associated groundwater systems in a changing climate. However, there is presently a paucity of 3D numerical studies of permafrost thaw and associated hydrological changes, and the lack of study can be partly attributed to the difficulty in verifying multi-dimensional results produced by numerical models. Numerical approaches can only be validated against analytical solutions for a purely thermic 1D equation with phase change (e.g. Neumann, Lunardini). When it comes to the coupled TH system (coupling two highly non-linear equations), the only possible approach is to compare the results from different codes to provided test cases and/or to have controlled experiments for validation. Such inter-code comparisons can propel discussions to try to improve code performances. A benchmark exercise was initialized in 2014 with a kick-off meeting in Paris in November. Participants from USA, Canada, Germany, Sweden and France convened, representing altogether 13 simulation codes. The benchmark exercises consist of several test cases inspired by existing literature (e.g. McKenzie et al., 2007) as well as new ones. They
Wong, B J; Dickinson, M R; Berns, M W; Neev, J
1996-12-01
Laser ablation of hard tissues during neurotologic operations has been accomplished with continuous-wave (CW) lasers in the visible and midinfrared spectrum. The mechanism of ablation at these wavelengths is secondary to photothermal-induced tissue destruction. As a result, significant thermal damage to surrounding tissue may occur. Pulsed ultraviolet (UV) lasers have been suggested as an alternative to the argon, KTP-532, and CO2 lasers currently used in clinical practice. The pulse length of Excimer lasers are considerably shorter than the thermal diffusion time of bone tissue, and as a consequence thermal injury is minimal. This makes pulsed lasers an attractive tool for tissue ablation in the ear: in essence a "cold knife." However, the short pulse width of Excimer lasers (typically 10-150 ns) can create large thermoelastic stresses in the ablation specimen. This study identifies the presence of these photoacoustic waves during the Excimer laser treatment of the cadaveric human temporal bone. A XeCl (lambda = 308 nm, tau p = 12 ns) excimer laser was used to ablate hard tissue surrounding the oval window and facial ridge with energies of 75, 45, 25, and 12 mJ/pulse. Spot size was estimated to be 0.5 mm2. Custom high-frequency polyvinyldifluoride (PVDF) piezoelectric film transducers were fabricated and attached to the promontory, round window niche, and facial ridges. The signals were amplified using a low-noise preamplifier and recorded on a digitizing oscilloscope. Photoacoustic waves were clearly identified. Notably, large acoustic waves were measured on the promontory and on both sides of the facial ridge. The implications and clinical relevance of these findings is discussed and compared to findings obtained from a model system.
Modelling of transient electromagnetics in Tokamaks during off-normal conditions
Schneider, J. H.; Crutzen, Y. R.; Papadopoulos, S.; Richard, N.
1993-03-01
During plasma disruption events in Tokamaks, a considerable amount of magnetic and thermal energy is associated to the transfer of plasma current into eddy and Halo currents. In this paper, a predictive numerical modelling is described concerning plasma-wall interactions during disruptive instabilities. Preliminary results are presented, giving an estimation of heat transfer interaction with electromagnetic phenomena. Eddy currents and heat deposition increase significantly with decreasing disruption time. An estimation of the order of magnitude of Halo currents and associated forces on plasma-facing conducting components is also presented. Durant une disruption de plasma dans les Tokamaks, une quantité considérable d'énergie magnétique et thermique est associée au transfert de courant de plasma sous forme de courants de Foucault et de “Halo”. Cette contribution décrit un modèle numérique capable de prédire les interactions plasma-première paroi durant ces instabilités disruptives. La présentation de résultats préliminaires comprend une estimation de l'interaction entre le phénomène électromagnétique et le transfert de chaleur. Les courants de Foucault et les pertes Joule augmentent fortement quand la durée de disruption devient plus brève. Une évaluation de l'ordre de grandeur des courants de “Halo” et des forces résultantes, appliqués aux composants métalliques placés face au plasma, est également illustrée.
Energy Technology Data Exchange (ETDEWEB)
Navarro-Valenti, S.; Kim, S.H.; Georgevich, V. [Oak Ridge National Lab., TN (United States)] [and others
1995-09-01
The purpose of this paper is to describe the analysis performed to predict the thermal behavior of fuel miniplates under rapid transient heatup conditions. The possibility of explosive boiling was considered, and it was concluded that the heating rates are not large enough for explosive boiling to occur. However, transient boiling effects were pronounced. Because of the complexity of transient pool boiling and the unavailability of experimental data for the situations studied, an approximation was made that predicted the data very well within the uncertainties present. If pool boiling from the miniplates had been assumed to be steady during the heating pulse, the experimental data would have been greatly overestimated. This fact demonstrates the importance of considering the transient nature of heat transfer in the analysis of reactivity excursion accidents. An additional contribution of the present work is that it provided data on highly subcooled steady nulceate boiling from the cooling portion of the thermocouple traces.
Spathis, G.; Kontou, E.
2017-11-01
In the present work, the nonlinear viscoelastic/viscoplastic response of polymeric materials is described by introducing essential modifications on a model developed in previous works. A constitutive equation of viscoelasticity, based on the transient network theory, is introduced in a more generalized form, which takes into account volume changes during deformation. This time-dependent equation accounts for the nonlinearity and viscoplasticity at small elastic and finite plastic strain regime. The present description was proved to be more flexible, given that it contains a relaxation function that has been derived by considering instead of first order kinetics a fractional derivative that controls the rate of molecular chain detachment from their junctions. Therefore, the new equation has a more global character, appropriate for cases where heavy tails are expected. On the basis of the distributed nature of free volume, a new functional form of the rate of plastic deformation is developed, which is combined with a proper kinematic formulation and leads to the separation of the total strain into the elastic and plastic part. A three-dimensional constitutive equation is then derived for an isotropic, compressible medium. This analysis was proved to be capable of capturing the main aspects of inelastic response as well as the instability stage taking place at the tertiary creep, related to the creep failure.
Directory of Open Access Journals (Sweden)
Shaodan Zhang
Full Text Available Lamina cribosa, an astrocyte-rich region, is the origin of axonal degeneration in glaucomatous neuropathy. Astrocytes are particularly activated during optic nerve (ON degeneration and are likely to contribute to the pathogenesis of glaucomatous optic neuropathy. Signalling mechanisms that regulate different aspects of astrocyte reactiviation in response to intraocular hypertensive injury are not well defined. Signal transducer and activator of transcription protein-3 (STAT3 is a transcription factor that participates in many biological processes and has been implicated as activator of reactive astrogliosis. In this study, we investigated the role of STAT3 in regulating the activation of astrocytes to transient intraocular hypertension in vivo by using a rat ocular hypertension model. ON astrocytes hypertrophy was observed early after intraocular hypertensive stress. Morphological changes in glial fibrillary acidic protein (GFAP positive cells coupled with axon loss in the optic nerve was detected at day 7 after the injury. Nestin was significantly upregulated in ON astrocytes as early as day 2 post injury and kept elevated through post injury day 7. Phosphorylated STAT3 (pSTAT3 was markedly upregulated in ON astrocytes at post injury day 1, prior to the reactivation of ON astrocytes. These findings indicate that STAT3 signalling is involved in the initiation of astrocyte reactivation in optic nerve injury.
Modeling Transient Root-zone Soil Moisture Dichotomies in Landscapes with Intermixed Land Covers
Patrignani, A.; Ochsner, T. E.
2015-12-01
Although large-scale in situ soil moisture monitoring networks are becoming increasingly valuable research tools, deficiencies of many existing networks include the small spatial support of each station, the low spatial density of stations, and the almost exclusive deployment of stations in grassland vegetation. These grassland soil moisture observations may not adequately represent the real soil moisture patterns in landscapes with intermixed land cover types. The objectives of this study were i) to compare root-zone soil moisture dynamics of two dominant vegetation types across Oklahoma, grassland (observed) and winter wheat cropland (simulated); ii) to relate the soil moisture dynamics of grassland and cropland vegetation using an artificial neural network (ANN) as a transfer function; and iii) to use the resulting ANN to estimate the soil moisture spatial patterns for a landscape of intermixed grassland and wheat cropland. Root-zone soil moisture was represented by plant available water (PAW) in the top 0.8 m of the soil profile. PAW under grassland was calculated from 18 years of soil moisture observations at 78 stations of the Oklahoma Mesonet, whereas PAW under winter wheat was simulated for the same 78 locations using a soil water balance model. Then, we trained an ANN to reproduce the simulated PAW under winter wheat using only seven inputs: day of the year, latitude and longitude, measured PAW under grassland, and percent sand, silt, and clay. The resulting ANN was used, along with grassland soil moisture observations, to estimate the detailed soil moisture pattern for a 9x9 km2 Soil Moisture Active Passive (SMAP) grid cell. The seasonal dynamics of root-zone PAW for grassland and winter wheat were strongly asynchronous, so grassland soil moisture observations rarely reflect cropland soil moisture conditions in the region. The simple ANN approach facilitated efficient and accurate prediction of the simulated PAW under winter wheat, RMSE = 24 mm, using
Current status of thermohydraulic validation studies at CEA-Grenoble for the SIMMER-III code
International Nuclear Information System (INIS)
Coste, P.; Pigny, S.; Meignen, R.
2000-01-01
SIMMER-III (SIII) is a two-dimensional, three-velocity-field, multiphase, multicomponent, Eulerian, fluid-dynamics code coupled with a space- and energy-dependent neutron kinetics model, to investigate postulated core disruptive accidents in LMFRs. It is developed by PNC, Japan. The paper makes the synthesis of the SIII assessment performed at CEA-Grenoble since 1996, which covers a large variety of multiphase flows, from two-phase flow basic modelling to LMFR accident simulation experiments with real materials. Single bubbles or droplets equilibrium radii and velocities, air/water experiments in tubes, and comparisons with the literature, are used to qualify the interfacial area convection equation and the momentum exchange functions. Using the second order differencing scheme of the Navier-Stokes equation, a turbulence model for two-phase recirculating flows is implemented. It is successfully validated on an adiabatic air/water experiment, and on the Sebulon boiling pool simulation experiment, which is a box of water internally heated, with a cover gas, and cooled at the walls. The successful calculations of the SGI experiment and of a reactor scale case contribute to the code validation for LMFR expansion phase. Besides, the large scale UO2/sodium interactions of the Termos T1 experiment, and the UO2 boiling pool laterally cooled with sodium flow at the wall of the Scarabee BF2 experiment, is also studied with SIM Lastly, satisfying results are obtained with the calculation of the Scarabee APL3 slow pump run down without scram. It is shown that SIII is a state-of-the-art tool to simulate transient multiphase phenomena. The paper also discusses those areas, identified through these assessment calculations, which require further research and development. (author)
Bonzanini, Arianna; Picchi, Davide; Ferrari, Marco; Poesio, Pietro
2017-01-01
In previous works, (Ferrari et al., 2017) have shown that a onedimensional, hyperbolic, transient five equations two-fluid model is able to numerically describe stratified, wavy, and slug flow in horizontal and near-horizontal pipes. Slug statistical characteristics, such as slug velocity, frequency, and length can be numerically predicted with results in good agreement with experimental data and well-known empirical relations. In this model some approximated and simplified assumptions are ad...
1977-08-01
To advice the statt-of-che- art in the combustion of granular prope..lents by forwilating a complete theoretical model describ".•j the Important...d~~+W s (-.1 1-3. Where the vector products of W , W/2 , W/ , W/ and W/ vith I arte •iVn as Wl#’. m II -VVW ,÷I&. -Wig I,÷W,4A+. j IS÷ I-P(/. W/r...beginning of the granular propel.ent bed ZL Left boumdary point - •light boundary point Grek S.2 1k (Ip Thermal diffusivity of pellucsp 1 Erosive burning
Electromagnetic transients in power cables
da Silva, Filipe Faria
2013-01-01
From the more basic concepts to the most advanced ones where long and laborious simulation models are required, Electromagnetic Transients in Power Cables provides a thorough insight into the study of electromagnetic transients and underground power cables. Explanations and demonstrations of different electromagnetic transient phenomena are provided, from simple lumped-parameter circuits to complex cable-based high voltage networks, as well as instructions on how to model the cables.Supported throughout by illustrations, circuit diagrams and simulation results, each chapter contains exercises,
Transient heating of moving objects
Directory of Open Access Journals (Sweden)
E.I. Baida
2014-06-01
Full Text Available A mathematical model of transient and quasistatic heating of moving objects by various heat sources is considered. The mathematical formulation of the problem is described, examples of thermal calculation given.
Joya, Xavier; Garcia-Algar, Oscar; Vall, Oriol; Pujades, Cristina
2014-01-01
The exposure of the human embryo to ethanol results in a spectrum of disorders involving multiple organ systems, including the impairment of the development of the central nervous system (CNS). In spite of the importance for human health, the molecular basis of prenatal ethanol exposure remains poorly understood, mainly to the difficulty of sample collection. Zebrafish is now emerging as a powerful organism for the modeling and the study of human diseases. In this work, we have assessed the sensitivity of specific subsets of neurons to ethanol exposure during embryogenesis and we have visualized the sensitive embryonic developmental periods for specific neuronal groups by the use of different transgenic zebrafish lines. In order to evaluate the teratogenic effects of acute ethanol exposure, we exposed zebrafish embryos to ethanol in a given time window and analyzed the effects in neurogenesis, neuronal differentiation and brain patterning. Zebrafish larvae exposed to ethanol displayed small eyes and/or a reduction of the body length, phenotypical features similar to the observed in children with prenatal exposure to ethanol. When neuronal populations were analyzed, we observed a clear reduction in the number of differentiated neurons in the spinal cord upon ethanol exposure. There was a decrease in the population of sensory neurons mainly due to a decrease in cell proliferation and subsequent apoptosis during neuronal differentiation, with no effect in motoneuron specification. Our investigation highlights that transient exposure to ethanol during early embryonic development affects neuronal differentiation although does not result in defects in early neurogenesis. These results establish the use of zebrafish embryos as an alternative research model to elucidate the molecular mechanism(s) of ethanol-induced developmental toxicity at very early stages of embryonic development.
Directory of Open Access Journals (Sweden)
Xavier Joya
Full Text Available The exposure of the human embryo to ethanol results in a spectrum of disorders involving multiple organ systems, including the impairment of the development of the central nervous system (CNS. In spite of the importance for human health, the molecular basis of prenatal ethanol exposure remains poorly understood, mainly to the difficulty of sample collection. Zebrafish is now emerging as a powerful organism for the modeling and the study of human diseases. In this work, we have assessed the sensitivity of specific subsets of neurons to ethanol exposure during embryogenesis and we have visualized the sensitive embryonic developmental periods for specific neuronal groups by the use of different transgenic zebrafish lines.In order to evaluate the teratogenic effects of acute ethanol exposure, we exposed zebrafish embryos to ethanol in a given time window and analyzed the effects in neurogenesis, neuronal differentiation and brain patterning. Zebrafish larvae exposed to ethanol displayed small eyes and/or a reduction of the body length, phenotypical features similar to the observed in children with prenatal exposure to ethanol. When neuronal populations were analyzed, we observed a clear reduction in the number of differentiated neurons in the spinal cord upon ethanol exposure. There was a decrease in the population of sensory neurons mainly due to a decrease in cell proliferation and subsequent apoptosis during neuronal differentiation, with no effect in motoneuron specification.Our investigation highlights that transient exposure to ethanol during early embryonic development affects neuronal differentiation although does not result in defects in early neurogenesis. These results establish the use of zebrafish embryos as an alternative research model to elucidate the molecular mechanism(s of ethanol-induced developmental toxicity at very early stages of embryonic development.
Koch, Dorothy; Bauer, Susanne E.; Del Genio, Anthony; Faluvegi, Greg; McConnell, Joseph R.; Menon, Surabi; Miller, Ronald L.; Rind, David; Ruedy, Reto; Schmidt, Gavin A.;
2011-01-01
The authors simulate transient twentieth-century climate in the Goddard Institute for Space Studies (GISS) GCM, with aerosol and ozone chemistry fully coupled to one another and to climate including a full dynamic ocean. Aerosols include sulfate, black carbon (BC), organic carbon, nitrate, sea salt, and dust. Direct and BC snow-albedo radiative effects are included. Model BC and sulfur trends agree fairly well with records from Greenland and European ice cores and with sulfur deposition in North America; however, the model underestimates the sulfur decline at the end of the century in Greenland. Global BC effects peak early in the century (1940s); afterward the BC effects decrease at high latitudes of the Northern Hemisphere but continue to increase at lower latitudes. The largest increase in aerosol optical depth occurs in the middle of the century (1940s-80s) when sulfate forcing peaks and causes global dimming. After this, aerosols decrease in eastern North America and northern Eurasia leading to regional positive forcing changes and brightening. These surface forcing changes have the correct trend but are too weak. Over the century, the net aerosol direct effect is -0.41 Watts per square meter, the BC-albedo effect is -0.02 Watts per square meter, and the net ozone forcing is +0.24 Watts per square meter. The model polar stratospheric ozone depletion develops, beginning in the 1970s. Concurrently, the sea salt load and negative radiative flux increase over the oceans around Antarctica. Net warming over the century is modeled fairly well; however, the model fails to capture the dynamics of the observedmidcentury cooling followed by the late century warming.Over the century, 20% of Arctic warming and snow ice cover loss is attributed to the BC albedo effect. However, the decrease in this effect at the end of the century contributes to Arctic cooling. To test the climate responses to sulfate and BC pollution, two experiments were branched from 1970 that removed
Model development and experimental validation for analyzing initial transients of irradiation of tissues during thermal therapy using short pulse lasers.
Ganguly, Mohit; Miller, Stephanie; Mitra, Kunal
2015-11-01
initial stages of the irradiation. The temperature rise due to pulsed and CW laser irradiation converged as the time of irradiation increased. A similar trend was observed when comparing the thermal dose for pulsed and CW laser irradiation in the vascular model. Finite element models (continuum and vascular) were developed that can be used to predict temperature rise and quantify the thermal dose resulting from laser irradiation of excised rat skin samples and live anesthetized mouse tissue. The vascular model incorporating blood perfusion effects predicted temperature rise better in the live animal tissue. The models developed demonstrated that pulsed lasers caused greater temperature rise and delivered a greater thermal dose than CW lasers of equal average power, especially during the initial transients of irradiation. This analysis will be beneficial for thermal therapy applications where maximum delivery of thermal dose over a short period of time is important. © 2015 Wiley Periodicals, Inc.
Albrecht, Kevin J.; Braun, Robert J.
2016-02-01
One- and 'quasi' two-dimensional (2-D) dynamic, interface charge transport models of a solid oxide fuel cell (SOFC) developed previously in a companion paper, are benchmarked against other models and simulated to evaluate the effects of coupled transport and chemistry. Because the reforming reaction can distort the concentration profiles of the species within the anode, a 'quasi' 2-D model that captures porous media mass transport and electrochemistry is required. The impact of a change in concentration at the triple-phase boundary is twofold wherein the local Nernst potential and anode exchange current densities are influenced, thereby altering the current density and temperature distributions of the cell. Thus, the dynamic response of the cell models are compared, and benchmarked against previous channel-level models to gauge the relative importance of capturing in-situ reforming phenomena on cell performance. Simulation results indicate differences in the transient electrochemical response for a step in current density where the 'quasi' 2-D model predicts a slower rise and fall in cell potential due to the additional volume of the porous media and mass transport dynamics. Delays in fuel flow rate are shown to increase the difference observed in the electrochemical response of the cells.
Federici, Gianfranco; Raffray, A. René
1997-04-01
The transient thermal model RACLETTE (acronym of Rate Analysis Code for pLasma Energy Transfer Transient Evaluation) described in part I of this paper is applied here to analyse the heat transfer and erosion effects of various slow (100 ms-10 s) high power energy transients on the actively cooled plasma facing components (PFCs) of the International Thermonuclear Experimental Reactor (ITER). These have a strong bearing on the PFC design and need careful analysis. The relevant parameters affecting the heat transfer during the plasma excursions are established. The temperature variation with time and space is evaluated together with the extent of vaporisation and melting (the latter only for metals) for the different candidate armour materials considered for the design (i.e., Be for the primary first wall, Be and CFCs for the limiter, Be, W, and CFCs for the divertor plates) and including for certain cases low-density vapour shielding effects. The critical heat flux, the change of the coolant parameters and the possible severe degradation of the coolant heat removal capability that could result under certain conditions during these transients, for example for the limiter, are also evaluated. Based on the results, the design implications on the heat removal performance and erosion damage of the variuos ITER PFCs are critically discussed and some recommendations are made for the selection of the most adequate protection materials and optimum armour thickness.
International Nuclear Information System (INIS)
Federici, G.; Raffray, A.R.
1997-01-01
For pt.I see ibid., p.85-100, 1997. The transient thermal model RACLETTE (acronym of Rate Analysis Code for pLasma Energy Transfer Transient Evaluation) described in part I of this paper is applied here to analyse the heat transfer and erosion effects of various slow (100 ms-10 s) high power energy transients on the actively cooled plasma facing components (PFCs) of the International Thermonuclear Experimental Reactor (ITER). These have a strong bearing on the PFC design and need careful analysis. The relevant parameters affecting the heat transfer during the plasma excursions are established. The temperature variation with time and space is evaluated together with the extent of vaporisation and melting (the latter only for metals) for the different candidate armour materials considered for the design (i.e., Be for the primary first wall, Be and CFCs for the limiter, Be, W, and CFCs for the divertor plates) and including for certain cases low-density vapour shielding effects. The critical heat flux, the change of the coolant parameters and the possible severe degradation of the coolant heat removal capability that could result under certain conditions during these transients, for example for the limiter, are also evaluated. Based on the results, the design implications on the heat removal performance and erosion damage of the various ITER PFCs are critically discussed and some recommendations are made for the selection of the most adequate protection materials and optimum armour thickness. (orig.)
Marangoni, Dario; Vijayasarathy, Camasamudram; Bush, Ronald A; Wei, Lisa L; Wen, Rong; Sieving, Paul A
2015-10-01
Ciliary neurotrophic factor (CNTF) was recently shown to augment cone function in CNGB3 mutant achromat dogs. However, testing CNTF-releasing implant in human CNGB3 achromats failed to show benefit. We evaluated the effects of CNTF protein on the retinal function in an additional achromatopsia model, the CNGB3-/- mouse. Fifty-nine CNGB3-/- mice (postnatal day [PD] ± SD = 30 ± 7) received a unilateral intravitreal injection of 1 or 2 μg CNTF protein, and 15 wild-type (WT) mice (PD = 34 ± 3) received 1 μg CNTF. Retinal function was evaluated by flash ERG and photopic flicker ERG (fERG) at 7 and 14 days after treatment. Seven days post CNTF, the photopic b-wave Vmax was significantly increased in CNGB3-/- mice (P < 0.01), whereas it was reduced in WT mice (P < 0.05). Ciliary neurotrophic factor significantly increased the amplitude of photopic fERG and the photopic oscillatory potentials (OPs) in CNGB3-/- mice. Ciliary neurotrophic factor did not alter the scotopic a-wave in either CNGB3-/- or WT mice, but it increased the scotopic b-wave k (P < 0.01) in CNGB3-/- mice, indicating diminished scotopic sensitivity, and reduced the scotopic b-wave Vmax in WT mice (P < 0.05). No difference was found in ERG parameters between 1 or 2 μg CNTF. Fourteen days after CNTF injection the ERG changes in CNGB3-/- mice were lost. Intravitreal bolus CNTF protein caused a small and transient improvement of cone-mediated function in CNGB3-/- mice, whereas it reduced rod-mediated function. The increase in photopic OPs and the lack of changes in scotopic a-wave suggest a CNTF effect on the inner retina.
Li, Xipeng; Liu, Weidong; Pan, Yu; Yang, Leichao; An, Bin; Zhu, Jiajian
2018-03-01
Dual-pulse laser-induced plasma ignition of kerosene in cavity at model scramjet engine is studied. The simulated flight condition is Ma 6 at 30 km, and the isolator entrance has a Mach number of 2.92, a total pressure of 2.6 MPa and a stagnation temperature of 1650 K. Two independent laser pulses at 532 nm with a pulse width of 10 ns, a diameter of 12 mm and a maximum energy of 300 mJ are focused into cavity for ignition. The flame structure and propagation during transient ignition processes are captured by simultaneous CH* and OH* chemiluminescence imaging. The entire ignition process of kerosene can be divided into five stages, which are referred as turbulent dissipation stage, quasi-stable state, combustion enhancement stage, reverting stage and combustion stabilization stage. A local closed loop of propagations of the burning mixtures from the shear layer into the recirculation zone of cavity is revealed, which the large-scale eddy in the shear layer plays a key role. The enhancement of mass exchange between shear layer and the recirculation zone of cavity could promote the flame propagation process and enhance the ignition capability as well as extend the ignition limits. A cavity shear-layer stabilized combustion of kerosene is established in the supersonic flow roughly 3.3 ms after the laser pulse. Chemical reactions mainly occur in the shear layer and the near-wall zone downstream of the cavity. The distribution of OH* is thicker than CH* at stable combustion condition.
THERMOSS: a thermohydraulic model of flow stagnation in a horizontal fuel channel
International Nuclear Information System (INIS)
Gulshani, P.; Caplan, M.Z.; Spinks, N.J.
1984-01-01
Following a postulated inlet-side small break in the CANDU reactor, emergency coolant is injected to refull the horizontal fuel channels and remove the decay heat. As part of the accident analysis, the effects of loss of forced circulation during the accident are predicted. A break size exists for which, at the end of pump rundown, the break force balances the natural circulation force and the channel flow is reduced to near zero. The subcooled, stagnant channel condition is referred to as the standing-start condition. Subsequently, the channel coolant boils and stratifies. Eventually the steam flow from the channel heats up the endfitting to the saturation temperature and reaches the vertical feeder. The resulting buoyancy-induced flow then refills the channel. One dimensional, two-fluid conservation equations are solved in closed form to predict the duration of stagnation. In this calculation the channel water level is an important intermediate variable because it determines the amount of steam production
Energy Technology Data Exchange (ETDEWEB)
Lima Filho, Joao Ferreira de; Pazo Blanco, Flavio A.F.; D`Ajuz, Ary; Nascimento, Lidio F.A. [ELETRONORTE, Brasilia, DF (Brazil)
1994-12-31
Many problems in insulation, devices and equipment have been resulted from switching operations in the 500 kV Gas-Insulated Substation (GIS) of Tucurui power plant. Disconnector closing or opening action can subject the GIS components to great stresses from excessive voltages at high frequencies caused by successive reflections of travelling waves at discontinuities (1,2,3). Field tests were carried out in September 18-23, 1991 to verify the actual GIS stresses at Tucurui. From these results simulations on the Alternative Transients Program (ATP) were performed in order to check the substation modeling. This paper presents and discusses the Tucurui GIS modeling for switching fast transients and its field test validation. (author) 8 refs., 6 figs.
Hwang, Seungtaik
2018-02-21
Through IR microimaging the spatially and temporally resolved development of the CO2 concentration in a ZIF-8@6FDA-DAM mixed matrix membrane was visualized during transient adsorption. By recording the evolution of the CO2 concentration, it is observed that the CO2 molecules propagate from the ZIF-8 filler, which acts as a transport
International Nuclear Information System (INIS)
Hsu, Y.Y.
1974-01-01
The following papers related to two-phase flow are summarized: current assumptions made in two-phase flow modeling; two-phase unsteady blowdown from pipes, flow pattern in Laval nozzle and two-phase flow dynamics; dependence of radial heat and momentum diffusion; transient behavior of the liquid film around the expanding gas slug in a vertical tube; flooding phenomena in BWR fuel bundles; and transient effects in bubble two-phase flow. (U.S.)
Atwell, Matthew J.; Hurlbert, Eric A.; Melcher, J. C.; Morehead, Robert L.
2017-01-01
operating environments. Parallel to the test efforts, a set of transient model development efforts were made to predict RCS performance. The primary effort was aimed at producing a SINDA/FLUINT model to predict propellant conditioning up to the engine inlet as a function of different environmental and operating parameters, with the goal of predicting chamber pressure, TVS performance, and propellant consumption over time. Preliminary results for this effort will be presented in comparison with test data. Additional modeling efforts were made using SINDA/FLUINT to predict waterhammer in the system since the software is capable of handling multiphase transient fluid dynamics. These results will be compared with the high-speed pressure transducer test data for validation purposes.
Energy Technology Data Exchange (ETDEWEB)
Talukdar, Prabal [Department of Mechanical Engineering, Indian Institute of Technology Delhi, Hauz Khas, New Delhi 110016 (India); Osanyintola, Olalekan F. [XXL Engineering Ltd., 101-807 Manning Road NE, Calgary, AB (Canada); Olutimayin, Stephen O.; Simonson, Carey J. [Department of Mechanical Engineering, University of Saskatchewan, 57 Campus Drive, Saskatoon, SK (Canada)
2007-12-15
This paper presents the experimental results on spruce plywood and cellulose insulation using the transient moisture transfer (TMT) facility presented in Part I [P. Talukdar, S.O. Olutmayin, O.F. Osanyintola, C.J. Simonson, An experimental data set for benchmarking 1-D, transient heat and moisture transfer models of hygroscopic building materials-Part-I: experimental facility and property data, Int. J. Heat Mass Transfer, in press, doi:10.1016/j.ijheatmasstransfer.2007.03.026] of this paper. The temperature, relative humidity and moisture accumulation distributions within both materials are presented following different and repeated step changes in air humidity and different airflow Reynolds numbers above the materials. The experimental data are compared with numerical data, numerical sensitivity studies and analytical solutions to increase the confidence in the experimental data set. (author)
International Nuclear Information System (INIS)
Serra, Oscar
2000-01-01
Some studies were done about the effect of the uncertainty in the values of several thermo-hydraulic parameters on the core behaviour of the CAREM-25 reactor.By using the chain codes CITVAP-THERMIT and the perturbation the reference states, it was found that concerning to the total power, the effects were not very important, but were much bigger for the pressure.Furthermore were hardly significant in the presence of any perturbation on the void fraction calculation and the fuel temperature.The reactivity and the power peaking factor had highly important changes in the case of the coolant flow.We conclude that the use of this procedure is adequate and useful to our purpose
International Nuclear Information System (INIS)
Rohatgi, U.S.; Cheng, H.S.; Khan, H.J.; Mallen, A.N.; Neymotin, L.Y.
1998-03-01
This document describes the major modifications and improvements made to the modeling of the RAMONA-3B/MOD0 code since 1981, when the code description and assessment report was completed. The new version of the code is RAMONA-4B. RAMONA-4B is a systems transient code for application to different versions of Boiling Water Reactors (BWR) such as the current BWR, the Advanced Boiling Water Reactor (ABWR), and the Simplified Boiling Water Reactor (SBWR). This code uses a three-dimensional neutron kinetics model coupled with a multichannel, non-equilibrium, drift-flux, two-phase flow formulation of the thermal hydraulics of the reactor vessel. The code is designed to analyze a wide spectrum of BWR core and system transients and instability issues. Chapter 1 is an overview of the code's capabilities and limitations; Chapter 2 discusses the neutron kinetics modeling and the implementation of reactivity edits. Chapter 3 is an overview of the heat conduction calculations. Chapter 4 presents modifications to the thermal-hydraulics model of the vessel, recirculation loop, steam separators, boron transport, and SBWR specific components. Chapter 5 describes modeling of the plant control and safety systems. Chapter 6 presents and modeling of Balance of Plant (BOP). Chapter 7 describes the mechanistic containment model in the code. The content of this report is complementary to the RAMONA-3B code description and assessment document. 53 refs., 81 figs., 13 tabs
Current interruption transients calculation
Peelo, David F
2014-01-01
Provides an original, detailed and practical description of current interruption transients, origins, and the circuits involved, and how they can be calculated Current Interruption Transients Calculationis a comprehensive resource for the understanding, calculation and analysis of the transient recovery voltages (TRVs) and related re-ignition or re-striking transients associated with fault current interruption and the switching of inductive and capacitive load currents in circuits. This book provides an original, detailed and practical description of current interruption transients, origins,
A neural model for transient identification in dynamic processes with 'don't know' response
Energy Technology Data Exchange (ETDEWEB)
Mol, Antonio C. de A. E-mail: mol@ien.gov.br; Martinez, Aquilino S. E-mail: aquilino@lmp.ufrj.br; Schirru, Roberto E-mail: schirru@lmp.ufrj.br
2003-09-01
This work presents an approach for neural network based transient identification which allows either dynamic identification or a 'don't know' response. The approach uses two 'jump' multilayer neural networks (NN) trained with the backpropagation algorithm. The 'jump' network is used because it is useful to dealing with very complex patterns, which is the case of the space of the state variables during some abnormal events. The first one is responsible for the dynamic identification. This NN uses, as input, a short set (in a moving time window) of recent measurements of each variable avoiding the necessity of using starting events. The other one is used to validate the instantaneous identification (from the first net) through the validation of each variable. This net is responsible for allowing the system to provide a 'don't know' response. In order to validate the method, a Nuclear Power Plant (NPP) transient identification problem comprising 15 postulated accidents, simulated for a pressurized water reactor (PWR), was proposed in the validation process it has been considered noisy data in order to evaluate the method robustness. Obtained results reveal the ability of the method in dealing with both dynamic identification of transients and correct 'don't know' response. Another important point studied in this work is that the system has shown to be independent of a trigger signal which indicates the beginning of the transient, thus making it robust in relation to this limitation.
Transient analysis of multicavity klystrons
International Nuclear Information System (INIS)
Lavine, T.L.; Miller, R.H.; Morton, P.L.; Ruth, R.D.
1988-09-01
We describe a model for analytic analysis of transients in multicavity klystron output power and phase. Cavities are modeled as resonant circuits, while bunching of the beam is modeled using linear space-charge wave theory. Our analysis has been implemented in a computer program which we use in designing multicavity klystrons with stable output power and phase. We present as examples transient analysis of a relativistic klystron using a magnetic pulse compression modulator, and of a conventional klystron designed to use phase shifting techniques for RF pulse compression. 4 refs., 4 figs
Three dimensional neutronic/thermal-hydraulic coupled simulation of MSR in transient state condition
International Nuclear Information System (INIS)
Zhou, Jianjun; Zhang, Daling; Qiu, Suizheng; Su, Guanghui; Tian, Wenxi; Wu, Yingwei
2015-01-01
Highlights: • Developed a three dimensional neutronic/thermal-hydraulic coupled transient analysis code for MSR. • Investigated the neutron distribution and thermal-hydraulic characters of the core under transient condition. • Analyzed three different transient conditions of inlet temperature drop, reactivity jump and pump coastdown. - Abstract: MSR (molten salt reactor) use liquid molten salt as coolant and fuel solvent, which was the only one liquid reactor of six Generation IV reactor types. As a liquid reactor the physical property of reactor was significantly influenced by fuel salt flow and the conventional analysis methods applied in solid fuel reactors are not applicable for this type of reactors. The present work developed a three dimensional neutronic/thermal-hydraulic coupled code investigated the neutronics and thermo-hydraulics characteristics of the core in transient condition based on neutron diffusion theory and numerical heat transfer. The code consists of two group neutron diffusion equations for fast and thermal neutron fluxes and six group balance equations for delayed neutron precursors. The code was separately validated by neutron benchmark and flow and heat transfer benchmark. Three different transient conditions was analyzed with inlet temperature drop, reactivity jump and pump coastdown. The results provide some valuable information in design and research this kind of reactor
Transient filament stretching rheometer II
DEFF Research Database (Denmark)
Kolte, Mette Irene; Rasmussen, Henrik K.; Hassager, Ole
1997-01-01
The Lagrangian sspecification is used to simulate the transient stretching filament rheometer. Simulations are performed for dilute PIB-solutions modeled as a four mode Oldroyd-B fluid and a semidilute PIB-solution modeled as a non-linear single integral equation. The simulations are compared...
Energy Technology Data Exchange (ETDEWEB)
Kroeger, P.G.; Kennett, R.J.; Colman, J.; Ginsberg, T. (Brookhaven National Lab., Upton, NY (United States))
1991-10-01
This report documents the THATCH code, which can be used to model general thermal and flow networks of solids and coolant channels in two-dimensional r-z geometries. The main application of THATCH is to model reactor thermo-hydraulic transients in High-Temperature Gas-Cooled Reactors (HTGRs). The available modules simulate pressurized or depressurized core heatup transients, heat transfer to general exterior sinks or to specific passive Reactor Cavity Cooling Systems, which can be air or water-cooled. Graphite oxidation during air or water ingress can be modelled, including the effects of added combustion products to the gas flow and the additional chemical energy release. A point kinetics model is available for analyzing reactivity excursions; for instance due to water ingress, and also for hypothetical no-scram scenarios. For most HTGR transients, which generally range over hours, a user-selected nodalization of the core in r-z geometry is used. However, a separate model of heat transfer in the symmetry element of each fuel element is also available for very rapid transients. This model can be applied coupled to the traditional coarser r-z nodalization. This report described the mathematical models used in the code and the method of solution. It describes the code and its various sub-elements. Details of the input data and file usage, with file formats, is given for the code, as well as for several preprocessing and postprocessing options. The THATCH model of the currently applicable 350 MW{sub th} reactor is described. Input data for four sample cases are given with output available in fiche form. Installation requirements and code limitations, as well as the most common error indications are listed. 31 refs., 23 figs., 32 tabs.
Some special aspects of HTGR primary loop thermohydraulics during unrestricted core heatup accidents
International Nuclear Information System (INIS)
Kroeger, P.G.; Hsu, C.J.; Colman, J.
1982-01-01
During the initial hours of a hypothetical unrestricted core heatup accident, natural circulation flows between relatively hotter and cooler regions of the core provide a large part of the main remaining flow. It is pointed out that these flows are very weak and are strongly dependent on second order effects. Their analysis by the currently used codes, therefore, cannot be accurate. However, initial results from some idealized transient simulations indicate that an accurate knowledge of these weak natural circulation flows may not be required
Kirk, Hayden; Kersten, Paula; Crawford, Pamela; Keens, Angela; Ashburn, Ann; Conway, Joy
2014-04-01
To evaluate the feasibility and effectiveness of a standard National Health Service cardiac rehabilitation programme on risk factor reduction for patients after a minor stroke and transient ischaemic attack. Single-blind randomized controlled trial. Cardiac rehabilitation classes. Twenty-four patients. All participants received standard care. In addition, the intervention group undertook an eight-week cardiac rehabilitation programme consisting of weekly exercise and education classes. Cardiovascular disease risk score; lipid profiles; resting blood pressure; C-reactive protein (measured with a high sensitive assay) and fibrinogen levels; blood glucose; obesity; physical activity levels; subjective health status (SF-36); Hospital Anxiety and Depression Scale. Group comparison with independent t-tests showed a significantly greater improvement in the cardiovascular disease risk score for participants in the intervention group compared to standard care (intervention 25.7 ± 22.8 to 23.15 ± 18.3, control 25.03 ± 15.4 to 27.12 ± 16.1, t = -1.81, P rehabilitation programmes are a feasible and effective means of reducing the risk of future cardiovascular events for patients after minor stroke and transient ischaemic attack.
O'Reilly, Andrew M.
2004-01-01
A relatively simple method is needed that provides estimates of transient ground-water recharge in deep water-table settings that can be incorporated into other hydrologic models. Deep water-table settings are areas where the water table is below the reach of plant roots and virtually all water that is not lost to surface runoff, evaporation at land surface, or evapotranspiration in the root zone eventually becomes ground-water recharge. Areas in central Florida with a deep water table generally are high recharge areas; consequently, simulation of recharge in these areas is of particular interest to water-resource managers. Yet the complexities of meteorological variations and unsaturated flow processes make it difficult to estimate short-term recharge rates, thereby confounding calibration and predictive use of transient hydrologic models. A simple water-balance/transfer-function (WBTF) model was developed for simulating transient ground-water recharge in deep water-table settings. The WBTF model represents a one-dimensional column from the top of the vegetative canopy to the water table and consists of two components: (1) a water-balance module that simulates the water storage capacity of the vegetative canopy and root zone; and (2) a transfer-function module that simulates the traveltime of water as it percolates from the bottom of the root zone to the water table. Data requirements include two time series for the period of interest?precipitation (or precipitation minus surface runoff, if surface runoff is not negligible) and evapotranspiration?and values for five parameters that represent water storage capacity or soil-drainage characteristics. A limiting assumption of the WBTF model is that the percolation of water below the root zone is a linear process. That is, percolating water is assumed to have the same traveltime characteristics, experiencing the same delay and attenuation, as it moves through the unsaturated zone. This assumption is more accurate if
A COMETHE version with transient capability
International Nuclear Information System (INIS)
Vliet, J. van; Lebon, G.; Mathieu, P.
1980-01-01
A version of the COMETHE code is under development to simulate transient situations. This paper focuses on some aspects of the transient heat transfer models. Initially the coupling between transient heat transfer and other thermomechanical models is discussed. An estimation of the thermal characteristic times shows that the cladding temperatures are often in quasi-steady state. In order to reduce the computing time, calculations are therefore switched from a transient to a quasi-static numerical procedure as soon as such a quasi-equilibrium is detected. The temperature calculation is performed by use of the Lebon-Lambermont restricted variational principle, with piecewise polynoms as trial functions. The method has been checked by comparison with some exact results and yields good agreement for transient as well as for quasi-static situations. This method therefore provides a valuable tool for the simulation of the transient behaviour of nuclear reactor fuel rods. (orig.)