WorldWideScience

Sample records for models subalpine forest

  1. Modeling effects of temperature and precipitation on carbon characteristics and GHGs emissions in Abies fabric forest of subalpine

    Institute of Scientific and Technical Information of China (English)

    LU Xuyang; CHENG Genwei; XIAO Feipeng; FAN Jihui

    2008-01-01

    Abies fabric forest in the eastern slope of Gongga mountain is one type of subalpine dark coniferous forests of southwestern China.It is located on the southeastern edge of the Qinghai-Tibet plateau and is sensitive to climatic changes,A process-oriented biogeochemical model,Forest-DNDC,was applied to simulate the effects of climatic factors,temperature and precipitation changes on carbon characteristics,and greenhouse gases (GHGs) emissions inA.fabric forest.Validation indicated that the Forest-DNDC could be used to predict carbon characteristics and GHGs emissions with reasonable accuracy.The model simulated carbon fluxes,soil carbon dynamics,soil CO2,N2O,and NO emissions with the changes of temperature and precipitation conditions.The results showed that with variation in the baseline temperature from-2℃ to+2℃,the gross primary production (GPP) and soil organic carbon (SOC)increased,and the net primary production (NPP) and net ecosystem production (NEP) decreased because of higher respiration rate.With increasing baseline precipitation the GPP and NPP increased slightly,and the NEP and SOC showed decreasing trend.Soil CO2 emissions increased with the increase of temperature,and CO2 emissions changed little with increased baseline precipitation.With increased temperature and decreased baseline temperature,the total annual soil N2O emissions increased.With the variation of baseline temperature from -2℃ to +2℃,the total annual soil NO emissions increased.The total annual N2O and NO emissions showed increasing trends with the increase of precipitation.The biogeochemical simulation of the typical forest indicated that temperature changes strongly affected carbon fluxes,soil carbon dynamics,and soil GHGs emissions.The precipitation was not a principal factor affecting carbon fluxes,soil carbon dynamics,and soil CO2 emissions,but changes in precipitation could exert strong effect on soil N2O and NO emissions.

  2. Warming and provenance limit tree recruitment across and beyond the elevation range of subalpine forest

    Science.gov (United States)

    Kueppers, Lara M.; Conlisk, Erin; Castanha, Cristina; Moyes, Andrew B.; Germino, Matthew; de Valpine, Perry; Torn, Margaret S.; Mitton, Jeffry B.

    2017-01-01

    Climate niche models project that subalpine forest ranges will extend upslope with climate warming. These projections assume that the climate suitable for adult trees will be adequate for forest regeneration, ignoring climate requirements for seedling recruitment, a potential demographic bottleneck. Moreover, local genetic adaptation is expected to facilitate range expansion, with tree populations at the upper forest edge providing the seed best adapted to the alpine. Here, we test these expectations using a novel combination of common gardens, seeded with two widely distributed subalpine conifers, and climate manipulations replicated at three elevations. Infrared heaters raised temperatures in heated plots, but raised temperatures more in the forest than at or above treeline because strong winds at high elevation reduced heating efficiency. Watering increased season-average soil moisture similarly across sites. Contrary to expectations, warming reduced Engelmann spruce recruitment at and above treeline, as well as in the forest. Warming reduced limber pine first-year recruitment in the forest, but had no net effect on fourth-year recruitment at any site. Watering during the snow-free season alleviated some negative effects of warming, indicating that warming exacerbated water limitations. Contrary to expectations of local adaptation, low-elevation seeds of both species initially recruited more strongly than high-elevation seeds across the elevation gradient, although the low-provenance advantage diminished by the fourth year for Engelmann spruce, likely due to small sample sizes. High- and low-elevation provenances responded similarly to warming across sites for Engelmann spruce, but differently for limber pine. In the context of increasing tree mortality, lower recruitment at all elevations with warming, combined with lower quality, high-provenance seed being most available for colonizing the alpine, portends range contraction for Engelmann spruce. The lower

  3. Subalpine Forest Carbon Cycling Short- and Long-Term Influence ofClimate and Species

    Energy Technology Data Exchange (ETDEWEB)

    Kueppers, L.; Harte, J.

    2005-08-23

    Ecosystem carbon cycle feedbacks to climate change comprise one of the largest remaining sources of uncertainty in global model predictions of future climate. Both direct climate effects on carbon cycling and indirect effects via climate-induced shifts in species composition may alter ecosystem carbon balance over the long term. In the short term, climate effects on carbon cycling may be mediated by ecosystem species composition. We used an elevational climate and tree species composition gradient in Rocky Mountain subalpine forest to quantify the sensitivity of all major ecosystem carbon stocks and fluxes to these factors. The climate sensitivities of carbon fluxes were species-specific in the cases of relative above ground productivity and litter decomposition, whereas the climate sensitivity of dead wood decay did not differ between species, and total annual soil CO2 flux showed no strong climate trend. Lodge pole pine relative productivity increased with warmer temperatures and earlier snowmelt, while Engelmann spruce relative productivity was insensitive to climate variables. Engelmann spruce needle decomposition decreased linearly with increasing temperature(decreasing litter moisture), while lodgepole pine and subalpine fir needle decay showed a hump-shaped temperature response. We also found that total ecosystem carbon declined by 50 percent with a 2.88C increase in mean annual temperature and a concurrent 63 percent decrease ingrowing season soil moisture, primarily due to large declines in mineral soil and dead wood carbon. We detected no independent effect of species composition on ecosystem C stocks. Overall, our carbon flux results suggest that, in the short term, any change in subalpine forest net carbon balance will depend on the specific climate scenario and spatial distribution of tree species. Over the long term, our carbon stock results suggest that with regional warming and drying, Rocky Mountain subalpine forest will be a net source of carbon

  4. Measuring spatiotemporal variation in snow optical grain size under a subalpine forest canopy using contact spectroscopy

    National Research Council Canada - National Science Library

    Molotch, Noah P; Barnard, David M; Burns, Sean P; Painter, Thomas H

    2016-01-01

    .... In this study, we address one of many measurement gaps by using contact spectroscopy to measure snow optical grain size at high spatial resolution in trenches dug between tree boles in a subalpine forest...

  5. Susceptible conditions for debarking by deer in subalpine coniferous forests in central Japan

    Institute of Scientific and Technical Information of China (English)

    Hayato Iijima; Takuo Nagaike

    2016-01-01

    Background:Recently, deer have expanded their distribution to higher altitude ranges including subalpine forests. However, culling deer and construction of deer fence in subalpine forests are difficult because of steep slopes and complex topography. Thus it is necessary to clarify the factors which are associated with debarking by deer for the effective protection of subalpine forests. In this study, we examined which factors are associated with debarking by sika deer (Cervus nippon) in subalpine coniferous forests. Methods:We conducted our survey in Minami-Alps National Park, central Japan. We established 24 10 m × 40 m plots and surveyed the occurrence of debarking on saplings>30 cm in height and3 cm in DBH, as well as sapling density within each plot. Minimum distances to nearest grassland of plots were calculated (tentatively assuming grassland would attract deer and would cause high debarking pressure in the surrounding subalpine forests). Results:The mean percentage of debarked live saplings was higher than that of live trees. The mean percentage of debarked saplings which had already died was 81.6 %. Debarking of saplings increased with lower elevation, taller sapling size, and marginally increased near grassland. Sapling density was lower in plots with low basal area of conspecific trees near grassland and differed among species. Sapling density marginally decreased with decreasing elevation and increasing stand tree density. Debarking of trees was positively related to small DBH and low elevation, and marginally increased near grassland and differed among species. Conclusions:Our results suggest that tall saplings in subalpine forests of low elevation or near subalpine grassland were susceptible to debarking by deer and monitoring of these areas may permit the early detection of the impacts of deer in subalpine coniferous forests.

  6. Litter Dynamics of Three Subalpine Forests in Western Sichuan

    Institute of Scientific and Technical Information of China (English)

    YANG Wan-Qin; WANG Kai-Yun; S. KELLOM(A)KI; GONG He-De

    2005-01-01

    Litter production, components and dynamics were investigated and forest floor litter was quantified throughout a whole year in three subalpine forests, dominated by tree species of spruce (SF), fir (FF) and birch (BF), in Western Sichuan, China, in order to understand the key factors that influenced litter production and dynamics. Litterfall in the three forests consisted mainly of leaves, woody litter, reproductive organs and moss. Contribution of leaf litter to the total litterfall was significantly (P < 0.05) greater than that of woody litter, reproductive organs or moss. Regardless of the stands, litterfall exhibited a marked monthly variation with the maximum litterfall peaks occurring in October,with smaller peaks occurring in February for SF and FF, and May for BF. The analysis indicated that tree species,stand density, leaf area index (LAI), stand basal area and stand age were the key factors determining litter production.Meanwhile tree species and phenology controlled the litter dynamics, with wind and snow modifying the litter components and dynamics.

  7. Hydrological Features on Subalpine Forest Zone in the East of Qinghai-Tibet Plateau

    Science.gov (United States)

    Zhong, X.; Cheng, G.; Guo, W.

    2008-12-01

    The Hengduan mountain chains of China is situated on the east of Qinghai-Tibet Plateau with area of more than 400,000 km2. Mountains and rivers run through in north-south direction, and are collocated side by side on east-west. Elevation difference between ridges and valleys has great disparity, normally of 1000-2500m, so the vertical zones of vegetation are very distinct. Subalpine coniferous forest zone, mainly composed of fir (Abies) and spruce (Picea), is on altitude of 2800-4200m, which is a chief component of the forested area in southwest China, and an important region for water conservation of several international rivers inlcuding Nujiang River and Lancangjiang River, as well as the world-famous Changjiang River. Thus, it has both theoretical and practical significance to study hydrological process and laws of forest in this region. The study area is located at the Gongga Mountain, on the east edge of the Hengduan mountain chains. Elevation of the main peak is 7556m, and elevation difference between ridge and valley on the eastern slope is 6400m. An ecological observation station was built at altitude of 3000m on the eastern slope of Gongga Mountain in 1988, mainly for alpine ecology and forest hydrology research. Based on the analysis of 20- years observation data from this station, it is revealed that hydrological process of forest in this area has several features as follows: (1) Canopy interception of primitive fir (Abies) forest is obviously greater than other tree species, and interception rate is 30-40%. Maximal canopy interception of one-time precipitation of primitive fir forest is commonly 2-5mm. According to observation data of canopy interception, a conceptual model of canopy interception of fir forest is established: R=1.69[(1-exp(-0.41P))+0.19P (P is precipitation in mm); (2) Natural valid moisture holding capacity in layer of moss-decayed wood and leaves beneath trees is up to 5.6mm. Porosity in soil surface layer and non-capillary porosity

  8. Soil fractal features of subalpine coniferous forests in western Sichuan under different anthropogenic disturbances

    Institute of Scientific and Technical Information of China (English)

    LIAO Yongmei; CHEN Jingsong

    2006-01-01

    Fractal theory,used to study natural figures and images with self-similarity but without characteristic lengths,offers an effective tool to investigate quantitatively the complex systems such as soil.In this paper,we have discussed about our study of the fractal features of the subalpine coniferous forests,soil particles,and microaggregates under different intensities of anthropogenic disturbances in the Miyaluo area of west Sichuan and investigated the effects of the disturbances on the forest soils attributed to different fractal dimensions.The study introduces a new way to investigate the recovery and reestablishment of subalpine coniferous forests.

  9. Succession Features and Synamic Simulation of Subalpine Forest in the Gongga Mountain,China

    Institute of Scientific and Technical Information of China (English)

    CHENG Genwei; LUO Ji

    2004-01-01

    The Gongga Mountain of eastern Tibet Plateau is a representative of the alpine regions with high peaks and deep valleys. Climate change over the last thousand years has controlled the dynamics of glacier and debris flow occurrence, which resulted in substantial changes in the mountainous environment.The authors surveyed the community structure of primary forests in Gongga Mountain and forest succession processes in woodland plots. The changing features in the subalpine environment are discussed in this paper. Tree species and sizes between the glacier shrinking areas and debris flow fans in Hailuogou Valley are compared. The pioneer species that settle in debris flow fans and the glacier shrinking areas are Salix spp. and Populus purdomii.Abies fabri and Picea brachytyla are the climax tree species. The succession process of primary vegetation in Hailuogou (2700 ~ 3200 m) can be divided into four stages:Slash surface (20~ 200 yr)→ Salix-Populusseeding community (10 ~ 30 yr) →Populus-Salixsapling community (30 ~ 100 yr) →Populus-Abiesmixed community (50 ~ 100 yr) →Abies-Picea climaxIn a natural and undisturbed environment, trees compete for light, water and nutrients. Disaster disturbance in mountains is a very important driving factor for regeneration of woody plants. Repeated destruction of forests by glacier movement or debris flows generated additional forest gaps that allow young plants to grow. In this study the Gongga Forest Succession Model (GFSM) was developed for simulation of forest community succession processes on different scales in Gongga Mountain. A soil succession module was added to the GFSM model to simulate soil formation and chemical element change of woodland. In order to represent major features of forests in Southwestern China, many field works has been done to identify ecological parameters of various trees in the subalpine region. On the basis of simulation of tree life history, the GFSM combines forest succession with

  10. Transient structures of wave patterns arising in the wave regeneration of subalpine coniferous forests

    Science.gov (United States)

    Ichinose, Shin-Ichi

    2001-12-01

    In wave-regeneration phenomena observed in the subalpine coniferous forests, mainly consisting of Abies species, the blighted forests present various shapes in the course of development, spots at the initial stage turning into arches and finally into long whitish stripes. Because the wave-regeneration could not be followed in the field without long term studies, a simple model has been elaborated to simulate the various different dieback structures observed in the real forests. This model, based on cellular automata, is employed to analyze the power spectral density of canopy tree height fluctuations in the wave-regenerated forests. The results demonstrate that almost all the dieback structures observed in the field can be generated by this simple model, by varying the wind direction and its strength by some stochasticity. The power spectrum density presents various shapes in the course of development, white noise type at the initial stage turning into Lorentz type and finally into 1/f type power spectrum (spatial Fourier frequency).

  11. Bleaching of leaf litter and associated microfungi in subboreal and subalpine forests.

    Science.gov (United States)

    Hagiwara, Yusuke; Matsuoka, Shunsuke; Hobara, Satoru; Mori, Akira S; Hirose, Dai; Osono, Takashi

    2015-10-01

    Fungal decomposition of lignin leads to the whitening, or bleaching, of leaf litter, especially in temperate and tropical forests, but less is known about such bleaching in forests of cooler regions, such as boreal and subalpine forests. The purposes of the present study were to examine the extent of bleached area on the surface of leaf litter and its variation with environmental conditions in subboreal and subalpine forests in Japan and to examine the microfungi associated with the bleaching of leaf litter by isolating fungi from the bleached portions of the litter. Bleached area accounted for 21.7%-32.7% and 2.0%-10.0% of total leaf area of Quercus crispula and Betula ermanii, respectively, in subboreal forests, and for 6.3% and 18.6% of total leaf area of B. ermanii and Picea jezoensis var. hondoensis, respectively, in a subalpine forest. In subboreal forests, elevation, C/N ratio and pH of the FH layer, and slope aspect were selected as predictor variables for the bleached leaf area. Leaf mass per area and lignin content were consistently lower in the bleached area than in the nonbleached area of the same leaves, indicating that the selective decomposition of acid unhydrolyzable residue (recalcitrant compounds such as lignin, tannins, and cutins) enhanced the mass loss of leaf tissues in the bleached portions. Isolates of a total of 11 fungal species (6 species of Ascomycota and 5 of Basidiomycota) exhibited leaf-litter-bleaching activity under pure culture conditions. Two fungal species (Coccomyces sp. and Mycena sp.) occurred in both subboreal and subalpine forests, which were separated from each other by approximately 1100 km.

  12. Comparison of wood-inhabiting myxomycetes in subalpine and montane coniferous forests in the Yatsugatake Mountains of Central Japan.

    Science.gov (United States)

    Takahashi, Kazunari; Harakon, Yuichi

    2012-05-01

    To demonstrate altitudinal gradients (and resulting temperatures) that affect myxomycete biodiversity and species composition, we statistically compared myxomycete assemblages between a subalpine coniferous forest and a montane pine forest within the region of the Yatsugatake Mountains, Nagano Prefecture, Central Japan. In summer and autumn field surveys during 2003-2010, 53 myxomycete taxa (with varieties treated as species) were observed from 639 records of fruiting bodies in the subalpine forest and 32 taxa were detected from 613 records in the montane forest. There were 20 species in common between the assemblages and the percentage similarity index was 0.400. Myxomycete biodiversity was higher in the subalpine than in the montane forest. Nine myxomycete species were statistically frequent occurrences in the subalpine forest and appeared in autumn: Lamproderma columbinum, Cribraria macrocarpa, Trichia botrytis, Physarum newtonii, Diderma ochraceum, Enteridium splendens, Elaeomyxa cerifera, Trichia verrucosa, and Colloderma oculatum. Five species were restricted to appear in the subalpine forest: Cribraria purpurea, Cribraria rufa, Cribraria ferruginea, Cribraria piriformis, and Lepidoderma tigrinum. Dead wood in the subalpine forest provided a breeding habitat for specific myxomycetes that inhabit cold areas; that is those areas having geographical features of decreasing temperature and increasing elevation, such as the temperate area of Central Japan.

  13. Control over ecosystem CO2 exchange by winter snow versus summer rain in a subalpine coniferous forest

    Science.gov (United States)

    Monson, R. K.; Moore, D. J.; Scott-Denton, L.; Rosenbloom, N.; Kittel, T.

    2008-12-01

    Subalpine forests in the Western U.S. depend on both winter snow and summer rain to provide water. Recent observations have shown a widespread decline in the snowpack of mountain ecosystems in the Western U.S. that is coupled to wintertime high temperature anomalies. Twenty-one coupled GCM models have predicted that this trend will continue. These same models predict changes in the summer precipitation regime, though with less consistency. In order to better understand the partitioning of soil water between winter snow and summer rain, we have been studying the seasonal 2H/1H signatures of these two water sources, as well as stem water (expressed as δD, or delta deuterium). Our analysis revealed that all three dominant tree species (spruce, pine and fir) relied on snowmelt water, to a varying extent, for the entire season. By mid-summer, however, the average contribution of rain water to tree xylem water had increased. We used the isotopic data of seasonal trends in water use to parameterize the SIPNET ecosystem process model. Using the model, we predicted that during warmer years the forest will more water stress with concomitantly lower midsummer photosynthesis rates. Given future climate projections for the Colorado Front Range of the Rocky Mountains, with associated earlier spring snow melt and reduced spring snowpacks, our analysis revealed that there will likely be more reliance on summer rains for CO2 uptake by Rocky Mountain subalpine forests.

  14. [Effects of simulated warming on soil enzyme activities in two subalpine coniferous forests in west Sichuan].

    Science.gov (United States)

    Xu, Zhen-feng; Tang, Zheng; Wan, Chuan; Xiong, Pei; Cao, Gang; Liu, Qing

    2010-11-01

    With open top chamber (OTC), this paper studied the effects of simulated warming on the activities of soil invertase, urease, catalase, polyphenol oxidase in two contrasting subalpine coniferous forests (a dragon spruce plantation and a natural conifer forest) in west Sichuan. The dynamic changes of soil temperature and soil moisture were monitored synchronously. In the whole growth season, simulated warming enhanced the daily mean temperature at soil depth 5 cm by 0.61 degrees C in the plantation, and by 0.55 degrees C in the natural forest. Conversely, the volumetric moisture at soil depth 10 cm was declined by 4.10% and 2.55%, respectively. Simulated warming also increased soil invertase, urease, catalase, and polyphenol oxidase activities. The interactive effect of warming and forest type was significant on soil urease and catalase, but not significant on soil invertase and polyphenol oxidase. The warming effect on soil catalase depended, to some extent, on season change. In all treatments, the soil enzyme activities in the natural forest were significantly higher than those in the plantation. The seasonal changes of test soil enzyme activities were highly correlated with soil temperature, but less correlated with soil moisture. This study indicated that warming could enhance soil enzyme activities, and the effect had definite correlations with forest type, enzyme category, and season change. The soil enzyme activities in the subalpine coniferous forests were mainly controlled by soil temperature rather than soil moisture.

  15. Use of passive UAS imaging to measure biophysical parameters in a southern Rocky Mountain subalpine forest

    Science.gov (United States)

    Caldwell, M. K.; Sloan, J.; Mladinich, C. S.; Wessman, C. A.

    2013-12-01

    Unmanned Aerial Systems (UAS) can provide detailed, fine spatial resolution imagery for ecological uses not otherwise obtainable through standard methods. The use of UAS imagery for ecology is a rapidly -evolving field, where the study of forest landscape ecology can be augmented using UAS imagery to scale and validate biophysical data from field measurements to spaceborne observations. High resolution imagery provided by UAS (30 cm2 pixels) offers detailed canopy cover and forest structure data in a time efficient and inexpensive manner. Using a GoPro Hero2 (2 mm focal length) camera mounted in the nose cone of a Raven unmanned system, we collected aerial and thermal data monthly during the summer 2013, over two subalpine forests in the Southern Rocky Mountains in Colorado. These forests are dominated by lodgepole pine (Pinus ponderosae) and have experienced insect-driven (primarily mountain pine beetle; MPB, Dendroctonus ponderosae) mortality. Objectives of this study include observations of forest health variables such as canopy water content (CWC) from thermal imagery and leaf area index (LAI), biomass and forest productivity from the Normalized Difference Vegetation Index (NDVI) from UAS imagery. Observations were, validated with ground measurements. Images were processed using a combination of AgiSoft Photoscan professional software and ENVI remote imaging software. We utilized the software Leaf Area Index Calculator (LAIC) developed by Córcoles et al. (2013) for calculating LAI from digital images and modified to conform to leaf area of needle-leaf trees as in Chen and Cihlar (1996) . LAIC uses a K-means cluster analysis to decipher the RGB levels for each pixel and distinguish between green aboveground vegetation and other materials, and project leaf area per unit of ground surface area (i.e. half total needle surface area per unit area). Preliminary LAIC UAS data shows summer average LAI was 3.8 in the most dense forest stands and 2.95 in less dense

  16. Human disturbance provides foraging opportunities for birds in primary subalpine forest

    DEFF Research Database (Denmark)

    DuBay, Shane G.; Hart Reeve, Andrew; Wu, Yongjie

    2017-01-01

    to species that naturally occur in edge, open, or disturbed habitats. With observations and experiments we provide evidence of insectivorous birds exploiting human disturbance in primary subalpine forest in the mountains of southern China, displaying behavioral flexibility to gain novel foraging...... or Cettia major, and Heteroxenicus stellatus. This behavior is likely a modification of pre-existing interspecific foraging associations with pheasants and large mammals in the region. These larger animals disturb the earth and lower vegetation layers upon passage and while foraging, exposing previously...

  17. Nutrient and Litter Patterns in Three Subalpine Coniferous Forests of Western Sichuan, China

    Institute of Scientific and Technical Information of China (English)

    LIN Bo; LIU Qing; WU Yan; HE Hai

    2006-01-01

    Investigations were conducted to quantify litterfall, and litter and nutrient accumulation in forest floor, and to acquire information on litter decomposition and nitrogen and phosphorus-release patterns in three different subalpine coniferous forests, a plantation (Pl), a secondary forest (SF), and a primitive forest (PF), in western Sichuan, China. The litter trap method was used to evaluate litterfall with the litterbag method being utilized for litterdecomposition. Seasonal patterns of litterfall were similar in the three forests, with two peaks occurring in September-November and March-May. The plantation revealed an annual litterfall of 4.38 × 103 kg ha-1, which was similar to those of SF and PF, but Pl had a lower mass loss rate and a higher C/N ratio. The C/N ratio may be a sound predictor for the decomposition differences. N concentrations of leaf litter in both the secondary forest and primitive forest increased first and then decreased, and the percentages of their final/initial values were 108.9% and 99.9%, respectively. P concentration in the three forests increased by the end of the study. The results of litterfall and decomposition indicated that in the plantation the potential to provide nutrients for soil organic matter was similar to those of SF and PF; however, its slower decomposition rate could result in a somewhat transient accumulation of litter in the forest floor.

  18. Sources and interpretation of channel complexity in forested subalpine streams of the Southern Rocky Mountains

    Science.gov (United States)

    Livers, Bridget; Wohl, Ellen

    2016-05-01

    We evaluate correlations between stream geomorphic complexity and characteristics of the adjacent riparian forest, valley geometry, and land use history in forested subalpine streams of the Colorado Front Range. Measures of geomorphic complexity focus on cross-sectional, planform, and instream wood piece and logjam variables. We categorize adjacent riparian forests as old-growth unmanaged forest (OU), younger unmanaged forest (YU), and younger managed forest (YM), and valley geometry as laterally confined, partly confined, or unconfined. Significant differences in geomorphic stream complexity between OU, YU, and YM result primarily from differences in wood pieces and logjams, and these differences correlate strongly with pool volume and organic matter storage. Significant differences in planform and cross-sectional complexity correlate more strongly with valley geometry, but do not explain as much of the observed variability in complexity between streams as do the wood variables. Unconfined OU streams have the largest wood loads and the greatest complexity, whereas legacy effects of logging, tie-drives, and channel simplification create lower complexity in YM streams, even relative to YU streams flowing through similarly aged forest. We find that management history of riparian forests exerts the strongest control on reduced functional stream channel complexity, regardless of riparian forest stand age.

  19. Annual and Monthly Variations in Litter Macronutrients of Three Subalpine Forests in Western China

    Institute of Scientific and Technical Information of China (English)

    YANG Wan-Qin; WANG Kai-Yun; S.KELLOM(A)KI; ZHANG Jian

    2006-01-01

    Macronutrients (N, P, K, Ca, Mg, and S) in litter of three primarily spruce (Picea purpurea Masters) (SF), fir (Abies faxoniana Rehder & E. H. Wilson) (FF), and birch (Betula platyphylla Sukaczev) (BF) subalpine forests in western China were measured to understand the monthly variations in litter nutrient concentrations and annual and monthly nutrient returns via litterfall. Nutrient concentration in litter showed the rank order of Ca > N > Mg > K > S > P. Monthly variations in nutrient concentrations were greater in leaf litter (LL) than other litter components. The highest and lowest concentrations of N, P, K, and S in LL were found in the growing season and the nongrowing season, respectively, but Ca and Mg were the opposite. Nutrient returns via litterfall showed a marked monthly pattern with a major peak in October and one or two small peaks in February and/or May, varying with the element and stand type, but no marked monthly variations in nutrient returns via woody litter, reproductive litter, except in May for the BF, and moss litter. Not only litter production but also nutrient concentration controlled the annual nutrient return and the monthly nutrient return pattern. The monthly patterns of the nutrient concentration and return were of ecological importance for nutrient cycling and plant growth in the subalpine forest ecosystems.

  20. Ecological processes dominate the 13C land disequilibrium in a Rocky Mountain subalpine forest

    Science.gov (United States)

    Bowling, D. R.; Ballantyne, A. P.; Miller, J. B.; Burns, S. P.; Conway, T. J.; Menzer, O.; Stephens, B. B.; Vaughn, B. H.

    2014-04-01

    Fossil fuel combustion has increased atmospheric CO2 by ≈ 115 µmol mol-1 since 1750 and decreased its carbon isotope composition (δ13C) by 1.7-2‰ (the 13C Suess effect). Because carbon is stored in the terrestrial biosphere for decades and longer, the δ13C of CO2 released by terrestrial ecosystems is expected to differ from the δ13C of CO2 assimilated by land plants during photosynthesis. This isotopic difference between land-atmosphere respiration (δR) and photosynthetic assimilation (δA) fluxes gives rise to the 13C land disequilibrium (D). Contemporary understanding suggests that over annual and longer time scales, D is determined primarily by the Suess effect, and thus, D is generally positive (δR > δA). A 7 year record of biosphere-atmosphere carbon exchange was used to evaluate the seasonality of δA and δR, and the 13C land disequilibrium, in a subalpine conifer forest. A novel isotopic mixing model was employed to determine the δ13C of net land-atmosphere exchange during day and night and combined with tower-based flux observations to assess δA and δR. The disequilibrium varied seasonally and when flux-weighted was opposite in sign than expected from the Suess effect (D = -0.75 ± 0.21‰ or -0.88 ± 0.10‰ depending on method). Seasonality in D appeared to be driven by photosynthetic discrimination (Δcanopy) responding to environmental factors. Possible explanations for negative D include (1) changes in Δcanopy over decades as CO2 and temperature have risen, and/or (2) post-photosynthetic fractionation processes leading to sequestration of isotopically enriched carbon in long-lived pools like wood and soil.

  1. Water holding effect of subalpine dark coniferous forest soil in Gongga Mountain, China

    Institute of Scientific and Technical Information of China (English)

    CHANG Zhi-hua; LU Zhao-hua; GUAN Wen-bin

    2003-01-01

    Because of the distinction of soil property and humus content, soil water content is not ideal to indicate whether it is suitable to the growth of plant. Mainly based on the PF-a numerical value denoting the water regime of soil and connected with the growth of plant, the study combined the moisture percentage of soil with PF to research in quantity the interrelation between the moisture percentage and PF in different succession phases of subalpine dark coniferous forest in Gongga Mountain. The results showed that: (1) In the same PF value, the moisture percentage in humus horizon increased gradually with the development of the succession of the dark coniferous forest; The moisture percentage of over-mature forest was the highest and>mature forest>half-mature forest>young growth forest; (2) With the increase of soil depth, the soil bulk density increased and the moisture percentage decreased, but the difference in the percentage of moisture was not notable in different succession phases. (3) In different succession series, the vegetation affected the soil water characteristics by increasing the soil organic matter, improving the soil construction, receding the soil bulk density and enhancing the soil porosity; (4) The humus horizon of the dark coniferous forest soil has the highest water holding capability in this region.

  2. [Spatial pattern of sub-alpine forest restoration in west Sichuan].

    Science.gov (United States)

    Zhang, Yuandong; Liu, Shirong; Zhao, Changming

    2005-09-01

    West Sichuan sub-alpine is an extension of Qinghai-Tibet Plateau to southeast China, which is covered mainly with dark coniferous forest. As a result of long-term large scale over-logging, the forests have been greatly reduced and degraded. Nowadays, the forest restoration and regeneration in the region are being highlighted. Selecting Miyaluo as a case study area and employing the methods of plot investigation, ETM image interpretation, and overlaying vegetation map with digital topography, this paper analyzed the relations between the appearance and origin of four forest vegetation types, along with their topography differentiation and spatial patterns after a large scale logging and regeneration. The results showed that the appearance of forest vegetations was significantly correlated with their origin. Old coniferous forests (OC) were primitive ones, middle-aged and young coniferous forests (MYC) were from artificial regeneration, deciduous broadleaf forests (DB) were natural secondary ones, while mixed coniferous and deciduous forests (MCD) were partly from natural secondary ones and others from the conjunct action of artificial and natural regeneration. The main cut area in Miyaluo located in the sites with elevation from 2 800 to 3 600 m, where forest restoration appeared difference among different aspects. MYC was mainly distributed on sunny and half-sunny slope, DB and MCD were distributed on shady and half-shady slope, and OC were reserved on the sites with elevation more than 3 600 m. In the process of forest restoration, the four forest vegetation types were in mosaic pattern, and the landscape was seriously fragmentized.

  3. Long-term landscape changes in a subalpine spruce-fir forest in central Utah, USA

    Directory of Open Access Journals (Sweden)

    Jesse L. Morris1

    2015-12-01

    Full Text Available Background: In Western North America, increasing wildfire and outbreaks of native bark beetles have been mediated by warming climate conditions. Bioclimatic models forecast the loss of key high elevation species throughout the region. This study uses retrospective vegetation and fire history data to reconstruct the drivers of past disturbance and environmental change. Understanding the relationship among climate, antecedent disturbances, and the legacy effects of settlement-era logging can help identify the patterns and processes that create landscapes susceptible to bark beetle epidemics. Methods: Our analysis uses data from lake sediment cores, stand inventories, and historical records. Sediment cores were dated with radiometric techniques (14C and 210Pb/137Cs and subsampled for pollen and charcoal to maximize the temporal resolution during the historical period (1800 CE to present and to provide environmental baseline data (last 10,500 years. Pollen data for spruce were calibrated to carbon biomass (C t/ha using standard allometric equations and a transfer function. Charcoal samples were analyzed with statistical models to facilitate peak detection and determine fire recurrence intervals. Results: The Wasatch Plateau has been dominated by Engelmann spruce forests for the last ~10,500 years, with subalpine fir becoming more prominent since 6000 years ago. This landscape has experienced a dynamic fire regime, where burning events are more frequent and of higher magnitude during the last 3000 years. Two important disturbances have impacted Engelmann spruce in the historical period: 1 high-grade logging during the late 19th century; and (2 a high severity spruce beetle outbreak in the late 20th century that killed >90 % of mature spruce (>10 cm dbh. Conclusions: Our study shows that spruce-dominated forests in this region are resilient to a range of climate and disturbance regimes. Several lines of evidence suggest that 19th century logging

  4. Phylogeny and ecophysiology of opportunistic "snow molds" from a subalpine forest ecosystem.

    Science.gov (United States)

    Schmidt, S K; Wilson, K L; Meyer, A F; Gebauer, M M; King, A J

    2008-11-01

    Mats of coenocytic "snow molds" are commonly observed covering the soil and litter of alpine and subalpine areas immediately following snow melt. Here, we describe the phylogenetic placement, growth rates, and metabolic potential of cold-adapted fungi from under-snow mats in the subalpine forests of Colorado. SSU rDNA sequencing revealed that these fungi belong to the zygomycete orders Mucorales and Mortierellales. All of the isolates could grow at temperatures observed under the snow at our sites (0 degrees C and -2 degrees C) but were unable to grow at temperatures above 25 degrees C and were unable to grow anaerobically. Growth rates for these fungi were very high at -2 degrees C, approximately an order of magnitude faster than previously studied cold-tolerant fungi from Antarctic soils. Given the rapid aerobic growth of these fungi at low temperatures, we propose that they are uniquely adapted to take advantage of the flush of nutrient that occurs at the soil-snow interface beneath late winter snow packs. In addition, extracellular enzyme production was relatively high for the Mucorales, but quite low for the Mortierellales, perhaps indicating some niche separation between these fungi beneath the late winter snow pack.

  5. The influence of changes in soil moisture in association with geomorphic change on the formation of a subalpine coniferous forest on Mt. Akita-Komagatake, northern Japan

    Science.gov (United States)

    Konno, A.

    2015-12-01

    The coniferous forest (largely composed of Abies mariesii) is presently the typical vegetation of the subalpine zone in Japan. Pollen analysis revealed that few A. mariesii were present during the last glacial period, and the species began to expand to the subalpine zone during the Holocene (Morita, 1992). However, on Mt. Akita-Komagatake in northern Japan, the expected predominance of A. mariesii is not extensively observed, and the predominant vegetation is instead the dwarf bamboo (Sasa kurilensis). It is unknown why the area under coniferous forest is small in this region. Therefore, I examined this issue from the perspectives of (1) distribution of vegetation, (2) geomorphology, (3) soil moisture, and (4) vegetation history. (1) Precise digital elevation model data and photographic interpretation showed that this coniferous forest was densely distributed in a flat segment considered to be formed by a landslide; (2) this landslide is thought to have occurred up to 3,699 ± 26 yr BP because a boring-core specimen from the landslide included the AK-3 tephra layer (2,300-2,800 yr BP: Wachi et al, 1997) and the radiocarbon date of the lowermost humic soil layer was 3,699 ± 26 yr BP; (3) the soil in the forest area had higher volumetric water content than that in the non-forest area; and (4) phytolith analysis revealed that the main species in the study site was initially dwarf bamboo, but coniferous forest replaced it after the Towada-a tephra (1035 cal. BP, Machida and Arai, 1992) layer fell. These results suggest that soil water conditions changed because of the formation of the flat segment by the landslide, and the coniferous forest was consequently established. However, the landslide only indirectly affected the formation of the coniferous forest, because the forest developed over several thousand years after the landslide occurred. In other words, more direct reasons for the establishment of the coniferous forest may involve changes in soil moisture. This

  6. Litter Production, Decomposition, and Nutrient Release in Subalpine Forest Communities of the Northwest Himalaya

    Directory of Open Access Journals (Sweden)

    Vinod K. Bisht

    2014-01-01

    Full Text Available Production, decomposition, and release of nutrients from leaf and nonleaf litter were investigated in four subalpine forests of North-West Himalaya, India. Total annual litter fall in four communities varied from 2950.00 to 4040.00 kg ha−1 and was found significant (CD0.05 = 118.2. Decomposition of leaf litter varied from 1.82–3.5% during autumn-winter to 36.14–45.51 during summer rainy season in all stands and percent of mass loss was significantly varied in stands (CD6.00. Similarly, decomposition in nonleaf litter was varied from 0.3–1.1% during autumn-winter to 19.59–30.05% during summer rainy season and was significantly varied irrespective of seasons. However, percent decomposition of leaf litter and the values of decay constant (k were at par in all stands. Total standing state of nutrients in fresh litter as well as release of total nitrogen (N, phosphorus (P, and potassium (K in due course of decomposition (12 months was also varying significantly. The rate of nonleaf litter decomposition was significantly positively correlated with air temperature (r=0.63–0.74 in all communities. The significant correlation (r=0.85 was observed only in Rhododendron-Sorbus forest community (PRS. Study indicates that the air temperature is a major determinant for nonleaf litter decomposition in this region.

  7. Nitrification and denitrification in subalpine coniferous forests of different restoration stages in western Sichuan,China

    Institute of Scientific and Technical Information of China (English)

    LIU Yi; CHEN Jinsong; LIU Qing; WU Yan

    2007-01-01

    Nitrification is the biological conversion of organic or inorganic nitrogen compounds from a reduced to a more oxidized state.Denitrification is generally referred to as the microbial reduction of nitrate to nitrite and further gaseous forms of nitric oxide,nitrous oxide and molecular nitrogen.They are functionally interconnected processes in the soil nitrogen cycle that are involved in the control of longterm nitrogen losses in ecosystems through nitrate leaching and gaseous N losses.In" order to better understand how nitrification and denitrification change during the process of ecosystem restoration and how they are affected by various controlling factors,gross nitrification rates and denitrification rates were determined using the barometric process separation (BaPS) technique in subalpine coniferous forests of different restoration stages.The results showed that forest restoration stage had no significant effects on gross nitrification rates or denitrification rates (One-way ANOVA (analysis of variance),p < 0.05).There was no significant difference in the temperature coefficient (Q10) for gross nitrification rate among all the forest sites (One-wayANOVA,p < 0.05).Gross nitrification rates were positively correlated with water content (p <0.05),but not with soil pH,organic matter,total nitrogen,or C/N ratios.Denitrification rates in all the forest soils were low and not closely correlated with water content,soil pH,organic matter,or total nitrogen.Nevertheless,we found that C/N ratios obviously affected denitrification rates (p < 0.05).Results from this research suggest that gross nitrification is more responsible for the nitrogen loss from soils compared with denitrification.

  8. Virtual disjunct eddy covariance measurements of organic compound fluxes from a subalpine forest using proton transfer reaction mass spectrometry

    Directory of Open Access Journals (Sweden)

    T. G. Karl

    2002-07-01

    Full Text Available A `virtual' disjunct eddy covariance (vDEC device was tested with field measurements of biogenic VOC fluxes at a subalpine forest site in the Rocky Mountains of the U.S.A. A PTR-MS instrument was used as the VOC sensor. Daily peak emission fluxes of 2-methyl-3-buten-2-ol (MBO, methanol, acetone and acetaldehyde were around 1.5, 1, 0.8 and 0.4 mg m-2 h-1, respectively. High pass filtering due to long sampling lines was investigated in laboratory experiments, and suggested that VOC losses in PTFA lines are generally governed by diffusion laws. Memory effects and surface reactions did not seem to play a dominant role. Model estimates of MBO fluxes compared well with measured fluxes. The results also suggest that latent heat and sensible heat fluxes are reasonably well correlated with VOC fluxes and could be used to predict variations in VOC emissions. The release of MBO, methanol, acetone and acetaldehyde resulted in significant change of tropospheric oxidant levels and a 10--40% increase in ozone levels, as inferred from a photochemical box model. We conclude that vDEC with a PTR-MS instrument is a versatile tool for simultaneous field analysis of multiple VOC fluxes.

  9. Soil, plant, and transport influences on methane in a subalpine forest under high ultraviolet irradiance

    Directory of Open Access Journals (Sweden)

    D. Baer

    2009-07-01

    Full Text Available Recent studies have demonstrated direct methane emission from plant foliage under aerobic conditions, particularly under high ultraviolet (UV irradiance. We examined the potential importance of this phenomenon in a high-elevation conifer forest using micrometeorological techniques. Vertical profiles of methane and carbon dioxide in forest air were monitored every 2 h for 6 weeks in summer 2007. Day to day variability in above-canopy CH4 was high, with observed values in the range 1790 to 1910 nmol mol−1. High CH4 was correlated with high carbon monoxide and related to wind direction, consistent with pollutant transport from an urban area by a well-studied mountain-plain wind system. Soils were moderately dry during the study. Vertical gradients of CH4 were small but detectable day and night, both near the ground and within the vegetation canopy. Gradients near the ground were consistent with the forest soil being a net CH4 sink. Using scalar similarity with CO2, the magnitude of the summer soil CH4 sink was estimated at ~1.7 mg CH4 m−2 h−1, which is similar to other temperate forest upland soils. The high-elevation forest was naturally exposed to high UV irradiance under clear sky conditions, with observed peak UVB irradiance >2 W m−2. Gradients and means of CO2 within the canopy under daytime conditions showed net uptake of CO2 due to photosynthetic drawdown as expected. No evidence was found for a significant foliar CH4 source in the vegetation canopy, even under high UV conditions. While the possibility of a weak foliar source cannot be excluded given the observed soil sink, overall this subalpine forest was a net sink for atmospheric methane during the growing season.

  10. Bacterial community in sclerotia of Cenococcum species and soil in sub-alpine forest, central Japan

    Science.gov (United States)

    Nonoyama, Y.; Narisawa, K.; Ohta, H.; Watanabe, M.

    2009-04-01

    Species of Cenococcum, ectomycorrhizal fungi, may be particularly abundant in cold- or nutrient-stressed habitats. The fungus is easily recognized by its jet-black hyphae, and distinct compact masses of fungal mycelium called sclerotia. They are hard, black, comparatively smooth and mostly spherical. Sclerotia are formed in rhizosphere and can provide sufficient inoculums for several years. The purpose of this study is to investigate bacterial community inside sclerotia, with an interest on contribution of sclerotia to microbial diversity in rhizosphere. To investigate bacterial community inside of the fungal sclerotia by 16S rDNA gene clone library, several hundred of sclerotia (ca. 1g) were collected from sub-alpine forest soil in central Japan. Furthermore, three sclerotium grains were applied to investigate internal bacteria community by culture method. The isolated bacterial strains were then proceeded to determine their 16S rDNA partial sequences. The predominant group determined by clone library analysis of 16S ribosomal RNA genes with DNA from the sclerotia was Acidobacteria in both sclerotia and soil. Bacterial community of sclerotia showed higher diversity compared to soil. On the contrary, bacterial flora isolated from single sclerotium differed each other. Additionally, the bacterial community was composed by limited species of related genus.

  11. Stand structure, recruitment and growth dynamics in mixed subalpine spruce and Swiss stone pine forests in the Eastern Carpathians.

    Science.gov (United States)

    Popa, Ionel; Nechita, Constantin; Hofgaard, Annika

    2017-11-15

    Natural subalpine forests are considered to be sensitive to climate change, and forest characteristics are assumed to reflect the prevalent disturbance regime. We hypothesize that stand history determines different stand structures. Based on large full inventory datasets (including tree biometric data, spatial coordinates, tree age, and basal area increment) we assessed the size structure, tree recruitment dynamics and radial growth patterns in three permanent plots along an altitudinal gradient in a mixed coniferous forest (Picea abies and Pinus cembra) in the Eastern Carpathians. Both discrete disturbances (large scale or small scale) and chronic disturbances (climate change) were identified as drivers of stand structure development in the studied plots. A stand replacing wind disturbance generated a unimodal bell-shaped size and age distribution for both species characterized by a sharp increase in post-disturbance recruitment. By contrast, small-scale wind-caused gaps led to a negative exponential diameter distribution for spruce and a left-asymmetric unimodal for pine. Climate-driven infilling processes in the upper subalpine forest were reflected as J-shaped size and age distributions for both species, but with pine predating spruce. The growth patterns for both species demonstrated an increased basal area increment since the early 1900s, with an emphasis in the last few decades, irrespective of stand history. Pine demonstrated a competitive advantage compared to spruce due to the higher growth rate and size at the same age. Recognition of combined discrete and chronic disturbances as drivers of the tree layer characteristics in a subalpine coniferous forest is essential in both stand history analyses and growth predictions. Copyright © 2017 Elsevier B.V. All rights reserved.

  12. Changes in soil biogeochemistry following disturbance by girdling and mountain pine beetles in subalpine forests.

    Science.gov (United States)

    Trahan, Nicole A; Dynes, Emily L; Pugh, Evan; Moore, David J P; Monson, Russell K

    2015-04-01

    A recent unprecedented epidemic of beetle-induced tree mortality has occurred in the lodgepole pine forests of Western North America. Here, we present the results of studies in two subalpine forests in the Rocky Mountains, one that experienced natural pine beetle disturbance and one that experienced simulated disturbance imposed through bole girdling. We assessed changes to soil microclimate and biogeochemical pools in plots representing different post-disturbance chronosequences. High plot tree mortality, whether due to girdling or beetle infestation, caused similar alterations in soil nutrient pools. During the first 4 years after disturbance, sharp declines were observed in the soil dissolved organic carbon (DOC) concentration (45-51 %), microbial biomass carbon concentration (33-39 %), dissolved organic nitrogen (DON) concentration (31-42%), and inorganic phosphorus (PO4(3-)) concentration (53-55%). Five to six years after disturbance, concentrations of DOC, DON, and PO4(3-) recovered to 71-140 % of those measured in undisturbed plots. Recovery was coincident with observed increases in litter depth and the sublitter, soil O-horizon. During the 4 years following disturbance, soil ammonium, but not nitrate, increased to 2-3 times the levels measured in undisturbed plots. Microbial biomass N increased in plots where increased ammonium was available. Our results show that previously observed declines in soil respiration following beetle-induced disturbance are accompanied by losses in key soil nutrients. Recovery of the soil nutrient pool occurs only after several years following disturbance, and is correlated with progressive mineralization of dead tree litter.

  13. Total belowground carbon flux in subalpine forests is related to leaf area index, soil nitrogen, and tree height

    Science.gov (United States)

    Berryman, Erin Michele; Ryan, Michael G.; Bradford, John B.; Hawbaker, Todd J.; Birdsey, R.

    2016-01-01

    In forests, total belowground carbon (C) flux (TBCF) is a large component of the C budget and represents a critical pathway for delivery of plant C to soil. Reducing uncertainty around regional estimates of forest C cycling may be aided by incorporating knowledge of controls over soil respiration and TBCF. Photosynthesis, and presumably TBCF, declines with advancing tree size and age, and photosynthesis increases yet C partitioning to TBCF decreases in response to high soil fertility. We hypothesized that these causal relationships would result in predictable patterns of TBCF, and partitioning of C to TBCF, with natural variability in leaf area index (LAI), soil nitrogen (N), and tree height in subalpine forests in the Rocky Mountains, USA. Using three consecutive years of soil respiration data collected from 22 0.38-ha locations across three 1-km2 subalpine forested landscapes, we tested three hypotheses: (1) annual soil respiration and TBCF will show a hump-shaped relationship with LAI; (2) variability in TBCF unexplained by LAI will be related to soil nitrogen (N); and (3) partitioning of C to TBCF (relative to woody growth) will decline with increasing soil N and tree height. We found partial support for Hypothesis 1 and full support for Hypotheses 2 and 3. TBCF, but not soil respiration, was explained by LAI and soil N patterns (r2 = 0.49), and the ratio of annual TBCF to TBCF plus aboveground net primary productivity (ANPP) was related to soil N and tree height (r2 = 0.72). Thus, forest C partitioning to TBCF can vary even within the same forest type and region, and approaches that assume a constant fraction of TBCF relative to ANPP may be missing some of this variability. These relationships can aid with estimates of forest soil respiration and TBCF across landscapes, using spatially explicit forest data such as national inventories or remotely sensed data products.

  14. Resistance of mixed subalpine forest to fire frequency changes: the ecological function of dwarf pine (Pinus mugo ssp. mugo)

    Science.gov (United States)

    Leys, Bérangère; Carcaillet, Christopher; Blarquez, Olivier; Lami, Andrea; Musazzi, Simona; Trevisan, Renata

    2014-04-01

    The availability of fuel and climate are major factors responsible for forest fire activity over time. Here, we tested the hypothesis that forest ecosystems containing a high shrub biomass, which constitutes a fuel load, and affected by a warmer climate, which is associated with drier conditions and a longer fire season, are more prone to fire. Fire occurrence and woody vegetation histories were reconstructed for a subalpine site (Lago di Colbricon Inferiore) in the Dolomites, part of the eastern Italian Alps, for the past 13,000 years. The modern wet climate prevents fire in this area, in spite of the warm summers and an abundant biomass of dwarf pine (Pinus mugo) and three other conifer tree species (Pinus cembra, Picea abies, and Larix decidua). Past fire history reconstructed from sedimentary charcoal showed a median fire return interval of 140 years (30-735 yr fire-1), with a high variability (SD ± 170 years) throughout the Holocene, suggesting that the past environment was more favourable to fire than the modern one, probably due to a drier climate or to different fuel availability. The subalpine community containing P. mugo remained stable for the past 9000 years, despite the variability of the fire return interval. Interestingly, the fire frequency is higher at Lago di Colbricon than at sites in the western Alps that lack P. mugo, suggesting that this species tolerates fire disturbance. In fact, it probably favours the spread of fire due to its flammable biomass, prostrated form, and dense layering canopy, thus offsetting the influence of the wet climate. Since the 19th century, the removal of dwarf pine to promote subalpine grasslands may have suppressed fires in this region.

  15. Long-term reactive nitrogen loading alters soil carbon and microbial community properties in a subalpine forest ecosystem

    Science.gov (United States)

    Boot, Claudia M; Hall, Ed K.; Denef, Karolien; Baron, Jill S.

    2016-01-01

    Elevated nitrogen (N) deposition due to increased fossil fuel combustion and agricultural practices has altered global carbon (C) cycling. Additions of reactive N to N-limited environments are typically accompanied by increases in plant biomass. Soil C dynamics, however, have shown a range of different responses to the addition of reactive N that seem to be ecosystem dependent. We evaluated the effect of N amendments on biogeochemical characteristics and microbial responses of subalpine forest organic soils in order to develop a mechanistic understanding of how soils are affected by N amendments in subalpine ecosystems. We measured a suite of responses across three years (2011–2013) during two seasons (spring and fall). Following 17 years of N amendments, fertilized soils were more acidic (control mean 5.09, fertilized mean 4.68), and had lower %C (control mean 33.7% C, fertilized mean 29.8% C) and microbial biomass C by 22% relative to control plots. Shifts in biogeochemical properties in fertilized plots were associated with an altered microbial community driven by reduced arbuscular mycorrhizal (control mean 3.2 mol%, fertilized mean 2.5 mol%) and saprotrophic fungal groups (control mean 17.0 mol%, fertilized mean 15.2 mol%), as well as a decrease in N degrading microbial enzyme activity. Our results suggest that decreases in soil C in subalpine forests were in part driven by increased microbial degradation of soil organic matter and reduced inputs to soil organic matter in the form of microbial biomass.

  16. Population structure and regeneration patterns of tree species in cli-mate-sensitive subalpine forests of Indian western Himalaya

    Institute of Scientific and Technical Information of China (English)

    Sanjay Gairola; R. S. Rawal; N. P. Todaria; Arvind Bhatt

    2014-01-01

    The population structure of tree species has been explored in order to elucidate regeneration potential of the subalpine forests of Indian western Himalaya. For this study, the subalpine forest area was divided into three strata, i.e., lower altitude (3200m). Considering the major compositional attributes, an increase in altitude came with a significant decline in tree density and the total basal area for all the sites. However, no such clear trends were observed for recruits (i.e., seedlings and saplings). Seedling density did not exhibit uniform patterns for sites and altitude strata. In general, overall seedling density was greater at the Pindari site compared to the Lata and Tungnath sites. By comparison, significant variation in seedling density along the altitude strata was recorded for the Tungnath and Pindari sites only. Likewise, sapling density patterns varied across the sites and altitude strata, and significant variation in sapling density along the altitude strata was recorded only for the Lata site. At the Pin-dari site, the continuous increase in sapling density along with increasing altitude was revealing. The Pindari forests of exhibited expanding popu-lation structure. In contrast, greater accumulation of individuals in the sapling class and sharp decline toward both higher tree classes and lower seedling classes was generally apparent for the Lata and Tungnath sites. This indicates that the replacement in tree size classes from sapling stage is not proportional and the population may decline in the long-term. Considerable variation in patterns of forest and dominant species popula-tion structure were evident across altitude strata. But in all cases irrespec-tive of sites, we found growth at the high-altitude stratum, in the form of entire forests or dominant species. This trend deserves further investiga-tion to explore its relevance under changing climate scenarios.

  17. Water use patterns of three species in subalpine forest, Southwest China: the deuterium isotope approach

    Science.gov (United States)

    Qing Xu; Harbin Li; Jiquan Chen; Jiquan Cheng; Xiaoli Cheng; Shirong Liu; Shuqing An

    2011-01-01

    Determination of water sources of plant species in a community is critical for understanding the hydrological processes and their importance in ecosystem functions. Such partitioning of plant xylem water into specific sources (i.e. precipitation, groundwater) can be achieved by analyzing deuterium isotopic composition (δD) values for source waters. A subalpine dark...

  18. Charcoal and Total Carbon in Soils from Foothills Shrublands to Subalpine Forests in the Colorado Front Range

    Directory of Open Access Journals (Sweden)

    Robert Sanford

    2012-10-01

    Full Text Available Temperate conifer forests in the Colorado Front Range are fire-adapted ecosystems where wildland fires leave a legacy in the form of char and charcoal. Long-term soil charcoal C (CC pools result from the combined effects of wildland fires, aboveground biomass characteristics and soil transfer mechanisms. We measured CC pools in surface soils (0–10 cm at mid-slope positions on east facing aspects in five continuous foothills shrubland and conifer forest types. We found a significant statistical effect of vegetation type on CC pools along this ecological gradient, but not a linear pattern increasing with elevation gain. There is a weak bimodal pattern of CC gain with elevation between foothills shrublands (1.2 mg CC ha−1 and the lower montane, ponderosa pine (1.5 mg CC ha−1 and Douglas-fir (1.5 mg CC ha−1 forest types prior to a mid-elevation decline in upper montane lodgepole pine forests (1.2 mg CC ha−1 before increasing again in the spruce/subalpine fir forests (1.5 mg CC ha−1. We propose that CC forms and accumulates via unique ecological conditions such as fire regime. The range of soil CC amounts and ratios of CC to total SOC are comparable to but lower than other regional estimates.

  19. Complex terrain alters temperature and moisture limitations of forest soil respiration across a semiarid to subalpine gradient

    Science.gov (United States)

    Berryman, Erin Michele; Barnard, H.R.; Adams, H.R.; Burns, M.A.; Gallo, E.; Brooks, P.D.

    2015-01-01

    Forest soil respiration is a major carbon (C) flux that is characterized by significant variability in space and time. We quantified growing season soil respiration during both a drought year and a nondrought year across a complex landscape to identify how landscape and climate interact to control soil respiration. We asked the following questions: (1) How does soil respiration vary across the catchments due to terrain-induced variability in moisture availability and temperature? (2) Does the relative importance of moisture versus temperature limitation of respiration vary across space and time? And (3) what terrain elements are important for dictating the pattern of soil respiration and its controls? Moisture superseded temperature in explaining watershed respiration patterns, with wetter yet cooler areas higher up and on north facing slopes yielding greater soil respiration than lower and south facing areas. Wetter subalpine forests had reduced moisture limitation in favor of greater seasonal temperature limitation, and the reverse was true for low-elevation semiarid forests. Coincident climate poorly predicted soil respiration in the montane transition zone; however, antecedent precipitation from the prior 10 days provided additional explanatory power. A seasonal trend in respiration remained after accounting for microclimate effects, suggesting that local climate alone may not adequately predict seasonal variability in soil respiration in montane forests. Soil respiration climate controls were more strongly related to topography during the drought year highlighting the importance of landscape complexity in ecosystem response to drought.

  20. Movement of elements into the atmosphere from coniferous trees in subalpine forests of colorado and Idaho

    Science.gov (United States)

    Curtin, G.C.; King, H.D.; Mosier, E.L.

    1974-01-01

    Exudates from conifer trees, presumably consisting largely of volatile materials, were sampled at 19 subalpine localitites in Colorado and Idaho where anomalous amounts of several metals were determined in vegetation and mull during previous geochemical testing. The trees sampled were lodgepole pine (Pinus contorta), Engelmann spruce (Picea engelmannii) and Douglas fir (Pseudotsuga menziesii). The condensed exudates were passed through No. 40 Whatman filters, and through 5-micron, 0.45-micron, and 0.05-micron average-pore-diameter membrane filters, evaporated to dryness, and each residue was ashed and analyzed by a semiquantitative spectrographic method. The ashed residues of the exudates contain lithium, beryllium, boron, sodium, magnesium, titanium, vanadium, chromium, manganese, iron, cobalt, nickel, copper, zinc, gallium, arsenic, strontium, yttrium, zirconium, molybdenum, silver, lead, bismuth, cadmium, tin, antimony, barium, and lanthanum. The presence of these elements suggests that volatile exudates from vegetation are a medium for the transport of elements in the biogeochemical cycle in subalpine environments. Thus, air sampling and analysis of aerosols derived from volatile exudates may be a useful tool in geochemical exploration. ?? 1974.

  1. Tree age, disturbance history, and carbon stocks and fluxes in subalpine Rocky Mountain forests

    Science.gov (United States)

    J.B. Bradford; R.A. Birdsey; L.A. Joyce; M.G. Ryan

    2008-01-01

    Forest carbon stocks and fluxes vary with forest age, and relationships with forest age are often used to estimate fluxes for regional or national carbon inventories. Two methods are commonly used to estimate forest age: observed tree age or time since a known disturbance. To clarify the relationships between tree age, time since disturbance and forest carbon storage...

  2. Mercury bioaccumulation in fishes from subalpine lakes of the Wallowa-Whitman National Forest, northeastern Oregon and western Idaho

    Science.gov (United States)

    Eagles-Smith, Collin A.; Herring, Garth; Johnson, Branden L.; Graw, Rick

    2013-01-01

    Mercury (Hg) is a globally distributed pollutant that poses considerable risks to human and wildlife health. Over the past 150 years since the advent of the industrial revolution, approximately 80 percent of global emissions have come from anthropogenic sources, largely fossil fuel combustion. As a result, atmospheric deposition of Hg has increased by up to 4-fold above pre-industrial times. Because of their isolation, remote high-elevation lakes represent unique environments for evaluating the bioaccumulation of atmospherically deposited Hg through freshwater food webs, as well as for evaluating the relative importance of Hg loading versus landscape influences on Hg bioaccumulation. The increase in Hg deposition to these systems over the past century, coupled with their limited exposure to direct anthropogenic disturbance make them useful indicators for estimating how changes in Hg emissions may propagate to changes in Hg bioaccumulation and ecological risk. In this study, we evaluated Hg concentrations in fishes of high-elevation, sub-alpine lakes in the Wallowa-Whitman National Forest in northeastern Oregon and western Idaho. Our goals were to (1) assess the magnitude of Hg contamination in small-catchment lakes to evaluate the risk of atmospheric Hg to human and wildlife health, (2) quantify the spatial variability in fish Hg concentrations, and (3) determine the ecological, limnological, and landscape factors that are best correlated with fish total mercury (THg) concentrations in these systems. Across the 28 study lakes, mean THg concentrations of resident salmonid fishes varied as much as 18-fold among lakes. Importantly, our top statistical model explained 87 percent of the variability in fish THg concentrations among lakes with four key landscape and limnological variables— catchment conifer density (basal area of conifers within a lake’s catchment), lake surface area, aqueous dissolved sulfate, and dissolved organic carbon. The basal area of conifers

  3. Process coupling and control over the response of net ecosystem CO2 exchange to climate variability and insect disturbance in subalpine forests of the Western US

    Science.gov (United States)

    Monson, R. K.; Moore, D. J.; Trahan, N. A.; Scott-Denton, L.; Burns, S. P.; Hu, J.; Bowling, D. R.

    2011-12-01

    Following ten years of studies in subalpine forest ecosystems of the Western US, we have concluded that the tight coupling between gross primary productivity (GPP) and the autotrophic component of soil respiration (Ra) drives responses of net ecosystem CO2 exchange (NEE) to climate variability and insect disturbance. This insight has been gained through long-term eddy flux observations, manipulative plot experiments, analyses of dynamics in the stable isotope compositions of CO2 and H2O, and chamber gas-exchange measurements. Using past observations from these studies, we deployed model-data assimilation techniques and forecast weather/climate modeling to estimate how the coupling between GPP and Ra is likely to affect future (Year 2100) dynamics in NEE. The amount of winter snow and its melting dynamics in the spring represents the dominant control over interannual variation in GPP. Using the SIPNET ecosystem process model, combined with knowledge about the stable isotope content of different water sources, we estimated that approximately 75% of growing season GPP is coupled to the use of snowmelt water, whereas approximately 25% is coupled to summer rain. The tight coupling between GPP and winter snow pack drives a similar tight coupling between soil respiration (Rs) and winter snow pack. Manipulation of snow pack on forest plots has shown that Rs increases with increased snow pack, and this effect disappears when trees are girdled, which stops the transfer of GPP to roots and the soil rhizosphere. Higher-than-normal winter snowpacks cause the carbon isotope ratios of soil-respired CO2 to be depleted in 13C, reflecting a signal of lower photosynthetic water-use efficiency in the GPP that is transferred to the soil rhizosphere. Large-scale forest disturbance due to catastrophic tree mortality from mountain pine beetle attack causes an initial (2-3 year) reduction in Rs, which is attributable to the loss of GPP and its effect on Ra. This near-term reduction in Rs

  4. Thirty Years of Change in Subalpine Forest Cover from Landsat Image Analysis in the Sierra Nevada Mountains of California

    Science.gov (United States)

    Potter, Christopher

    2015-01-01

    Landsat imagery was analyzed to understand changes in subalpine forest stands since the mid-1980s in the Sierra-Nevada region of California. At locations where long-term plot measurements have shown that stands are becoming denser in the number of small tree stems (compared to the early 1930s), the 30-year analysis of Landsat greenness index (NDVI) indicated that no consistent increases in canopy leaf cover have occurred at these same locations since the mid-1980s. Interannual variations in stand NDVI closely followed snow accumulation amounts recorded at nearby stations. In contrast, at eastern Sierra whitebark pine stand locations where it has been observed that widespread tree mortality has occurred, decreasing NDVI trends over the past 5-10 years were consistent with rapid loss of forest canopy cover. Landsat imagery was further analyzed to understand patterns of post-wildfire vegetation recovery, focusing on high burn severity (HBS) patches within burned areas dating from the late 1940s. Analysis of landscape metrics showed that the percentage of total HBS area comprised by the largest patch of recovered woody cover was relatively small in all fires that occurred since 1995, but increased rapidly with time since fire. Patch complexity of recovered woody cover decreased notably after more than 50 years of regrowth, but was not readily associated with time for fires that occurred since the mid 1990s. The aggregation level of patches with recovery of woody cover increased steadily with time since fire. The study approach using satellite remote sensing can be expanded to assess the consequences of stand-replacing wildfires in all forests of the region.

  5. Effects of forest canopy gap on biomass of Abies faxoniana seedlings and its allocation in subalpine coniferous forests of western Sichuan

    Institute of Scientific and Technical Information of China (English)

    Junren XIAN; Tingxing HU; Yuanbin ZHANG; Kaiyun WANG

    2008-01-01

    Using a strip transect sampling method, the density, height (≤ 100 cm), basal diameter and compo-nents of biomass of Abiesfaxoniana seedlings, living in a forest gap (FG) and under the forest canopy (FC) of sub-alpine natural coniferous forests in western Sichuan, were investigated and the relationships among different com-ponents of biomass analyzed. The results indicated that the density and average height (H) of A. faxoniana seed-lings were significantly different in the FG and under the FC, with the values being 12903 and 2017 per hm2, and 26.6 and 24.3 cm. No significant differences were found in the average basal diameter (D) and biomass. The biomass allocation in seedling components was significantly affec-ted by forest gap. In the FG, the biomass ratio of branch to stem reached a maximum of 1.54 at age 12 and then declined and fluctuated around 0.69. Under the FC, the biomass ratio of branch to stem increased with seedling growth and exceeded 1.0 at about age 15. The total bio-mass and the biomass of leaves, stems, shoots and roots grown in the FG and under the FC were significantly correlated with D2H. There were significant and positive correlations among the biomass of different components.

  6. [Spatial patterns of dominant tree species in sub-alpine Betula-Abies forest in West Sichuan of China].

    Science.gov (United States)

    Miao, Ning; Liu, Shi-Rong; Shi, Zuo-Min; Yu, Hong; Liu, Xing-Liang

    2009-06-01

    Based on the investigation in a 4 hm2 Betula-Abies forest plot in sub-alpine area in West Sichuan of China, and by using point pattern analysis method in terms of O-ring statistics, the spatial patterns of dominant species Betula albo-sinensis and Abies faxoniana in different age classes in study area were analyzed, and the intra- and inter-species associations between these age classes were studied. B. albo-sinensis had a unimodal distribution of its DBH frequency, indicating a declining population, while A. faxoniana had a reverse J-shaped pattern, showing an increasing population. All the big trees of B. albo-sinensis and A. faxoniana were spatially in random at all scales, while the medium age and small trees were spatially clumped at small scales and tended to be randomly or evenly distributed with increasing spatial scale. The maximum aggregation degree decreased with increasing age class. Spatial association mainly occurred at small scales. A. faxoniana generally showed positive intra-specific association, while B. albo-sinensis generally showed negative intra-specific association. For the two populations, big and small trees had no significant spatial association, but middle age trees had negative spatial association. Negative inter-specific associations of the two populations were commonly found in different age classes. The larger the difference of age class, the stronger the negative inter-specific association.

  7. Soil N Pools and Transformation Rates Under Different Land Uses in a Subalpine Forest-Grassland Ecotone

    Institute of Scientific and Technical Information of China (English)

    SUN Geng; WU Ning; LUO Peng

    2005-01-01

    Soil nitrogen pools (NP), denitrification (DN), gross nitrification (GN), N2O and CO2 flux rates with their responses to temperature increases were determined under five different land uses and managements in a subalpine forest-grassland ecotone of the eastern Tibetan Plateau. Land uses consisted of 1) sparse woodland, 2) shrub-land, 3) natural pasture, 4)fenced pasture, and 5) tilled pasture mimicking a gradient degenerating ecosystem under grazing impacts. The NO3--N content was higher than the NH4+-N content. Comparing tilled pasture with fenced pasture showed that higher intensive management (tillage) led to a significant decrease of soil organic matter (SOM) (P < 0.05) in the soils, which was in contrast to the significant increases (P <0.05) of DN, GN, N2O and CO2 flux rates. GN (excluding tilled pasture) and CO2 flux rates increased with a temperature rise, but DN and N2O flux rates normally reached their maximum values at 12-14 ℃ with tilled pasture (the highest management intensity) being very sensitive to temperature increases. There was a difference between net nitrification and GN, with GN being a betterindicator of soil nitrification.

  8. Enhanced root exudation stimulates soil nitrogen transformations in a subalpine coniferous forest under experimental warming.

    Science.gov (United States)

    Yin, Huajun; Li, Yufei; Xiao, Juan; Xu, Zhenfeng; Cheng, Xinyin; Liu, Qing

    2013-07-01

    into climate-carbon cycle models to determine reliable estimates of long-term C storage in forests.

  9. Response of clonal plasticity of Fargesia nitida to different canopy conditions of subalpine coniferous forest

    Institute of Scientific and Technical Information of China (English)

    Jianping TAO; Lixia SONG; Yongjian WANG; Weiyin ZHANG

    2008-01-01

    The aim of this study is to explore the effects of canopy conditions on clump and culm numbers, and the morphological plasticity and biomass distribution patterns of the dwarf bamboo species Fargesia nitida. Specifically, we investigated the effects of canopy condi-tions on the growth and morphological characteristics of F. nitida, and the adaptive responses of F. nitida to dif-ferent canopy conditions and its ecological senses. The results indicate that forest canopy had a significant effect on the genet density and culm number per clump, while it did not affect the ramet density. Clumps tended to be few and large in gaps and forest edge plots, and small under forest understory plots. The ramets showed an even distribution under the closed canopy, and clus-ter distribution under gaps and forest edge plots. The forest canopy had a significant effect on both the ramets'biomass and biomass allocation. Favourable light conditions promoted ramet growth and biomass accumulation. Greater amounts of biomass in gaps and forest edge plots were shown by the higher number of culms per clump and the diameter of these culms. Under closed canopy, the bamboos increased their branching angle, leaf biomass allocation, specific leaf area and leaf area ratio to exploit more favourable light conditions in these locations. The spacer length, specific spacer length and spacer branching angles all showed significant differences between gaps and closed canopy conditions. The larger specific spacer length and spacer branching angle were beneficial for bamboo growth, scattering the ramets and exploiting more favourable light conditions. In summary, this study shows that to varying degrees, F nitida exhibits both a wide ecological amplitude and high degree of morphological plasticity in response to differing forest canopy conditions. More-over, the changes in plasticity enable the plants to optimize their light usage efficiency to promote growth and increase access to resources available in

  10. Streamwater chemistry and flow dynamics along vegetation-soil gradient in a subalpine Abies fabri forest watershed,China

    Institute of Scientific and Technical Information of China (English)

    SHAN Bao-qing; WANG Wei-dong; YIN Cheng-qing

    2004-01-01

    Streamwater chemistry and spatial flow dynamics from a subalpine Abies fabri forest in an experimental watershed located in the east slope of Gongga Mountain were analyzed to gain insights into the gradient effect of primary community succession on the stream biogeochemical process. Results showed that high sand content(exceeding 80%) and porosity in the soil(exceeding 20% in A horizon and 35% in B horizon), as well as a thick humus layer on the soil surface, made the water exchange quickly in the Huangbengliu(HBL) watershed. Consequently, no surface runoff was observed, and the stream discharge changed rapidly with the daily precipitation. The flow trends of base ions in the stream water were influenced by the Abies fabri succession gradient. Ca2+, HCO3- and SO42- were the dominant anions in the streamwater in this region. A significant difference of Ca2+, HCO3- and SO42- concentration exported between the succession stages in the watershed can be found. But they had the similar temporal change in the stream flow. Ca2+, HCO3- and SO42- showed significantly negative correlations with the daily precipitation and the stream discharge. Concentrations of Cl-, Na+, K+, and Mg2+ were low in all streamwaters monitored and we observed no differences along the Abies fabri succession gradient. Low ratios of Na:(Na+Ca) (range from 0.1 to 0.2) implied cations were from bedrock weathering(internal source process in the soil system) in this region. But, a variance analysis showed there were almost no differences between rainwater and streamwaters for Mg2+, Na+, K+, and Cl- concentrations. This indicated that they might be come from rainfall inputs (external source). We suggest that the highly mobile capacity, rapid water exchange between precipitation and discharge, and long-term export lead to this observed pattern.

  11. Vegetation types and climate conditions reflected by the modern phytolith assemblages in the subalpine Dalaoling Forest Reserve, central China

    Science.gov (United States)

    Traoré, Djakanibé Désiré; Gu, Yansheng; Liu, Humei; Shemsanga, Ceven; Ge, Jiwen

    2015-06-01

    This research describes modern phytolith records and distributions from subalpine surface soils in the Dalaoling Forest Reserve, and reveals its implications for local climate conditions with respect to the altitude gradient. Well-preserved phytolith morpho-types, assemblages, and climatic indices were used to study the relationship between local vegetation and climate conditions. The phytolith classification system is mainly based on the characteristics of detailed morpho-types described for anatomical terms, which are divided into seven groups: long cells, short cells, bulliform cells, hair cells, pteridophyte type, broad-leaved type, and gymnosperm type. Phytoliths originating from the Poaceae are composed of Pooideae (rondel and trapeziform), Panicoideae (bilobate, cross, and polylobate), Chloridoideae (short/square saddle), and Bambusoideae (oblong concave saddle). Based on the altitudinal distribution of the phytolith assemblages and the indices of aridity (Iph), climate (Ic), and tree cover density (D/P), five phytolith assemblage zones have revealed the five types of climatic conditions ranging from 1,169 m to 2,005 m in turn: warm-wet, warm-xeric to warm-mesic, warm-xeric to cool-mesic, cool-xeric, and cool-mesic to cool-xeric. The Bambusoideae, Panicoideae, and Chloridoideae are the dominant vegetation at the lower-middle of the mountains, while Pooideae is mainly distributed in the higher mountains. The close relationship between phytolith assembleages and changes of altitude gradient suggest that vegetation distribution patterns and plant ecology in the Dalaoling mountains are controlled by temperature and humidity conditions. Our results highlight the importance of phytolith records as reliable ecoclimatic indicators for vegetation ecology in subtropical regions.

  12. Examining the Physical Drivers of Photosynthetic Temperature Sensitivity Within a Sub-alpine Mixed Conifer Forest

    Science.gov (United States)

    Yang, J.; Barron-Gafford, G.; Minor, R.; Heard, M.

    2013-12-01

    Current projections of climate change in the southwestern U.S. suggest increasing temperatures and reduced summer precipitation. High temperature and water deficits have major influence on ecosystem functioning by restricting plant growth and productivity. However, there are limited data on what influences plant sensitivity to temperature, and these dynamics are not often captured in ecosystem models. Understanding the sensitivities, linkages, and feedbacks among biotic processes and abiotic forces is especially important within Critical Zone Sciences, which seeks to integrate among disciplines. Here, we analyzed several potential drivers of photosynthetic temperature sensitivity, including differences in soil parent material, aspect, and seasonality within a suite of species. Each of these variables captures a different physical driver: (i) soil parent material influences water holding capacity of the soil; (ii) aspect influences how incoming energy drives evaporative loss of soil water, creating warmer and drier environments on south/east faces; and (iii) seasonality captures temporal patterns of soil moisture recharge. Our research was conducted within two V shaped zero-order catchment basins of the Santa Catalina Critical Zone Observatory in southern Arizona, one with schist bedrock and the other with granite. We used leaf-level gas exchange measurements on 24 trees across a range of temperatures to quantify this plant temperature sensitivity during the dry pre-monsoon and wet monsoon seasons. Preliminary results show that maximum photosynthetic rate was 51% higher during the monsoon than pre-monsoon season. Optimal photosynthetic temperature decreased 25% while the span of functional temperatures (Ω50) was 21% higher following the onset of monsoon rains. During the rainy season, soil parent material became an important factor. The greater water holding capacity of schist soils yielded greater maximum photosynthesis and reduced tree sensitivity to higher

  13. Effects of litter quality and climate change along an elevational gradient on litter decomposition of subalpine forests, Eastern Tibetan Plateau, China

    Institute of Scientific and Technical Information of China (English)

    Zhenfeng Xu; Jianxiao Zhu; Fuzhong Wu; Yang Liu; Bo Tan; Wanqin Yang

    2016-01-01

    Temperature and freeze-thaw events are two key factors controlling litter decomposition in cold biomes. Predicted global warming and changes in freeze-thaw cycles therefore may directly or indirectly impact litter decomposition in those ecosystems. Here, we conducted a 2-year-long litter decomposition experiment along an ele-vational gradient from 3000 to 3600 m to determine the potential effects of litter quality, climate warming and freeze-thaw on the mass losses of three litter types [dragon spruce (Picea asperata Mast.), red birch (Betula albosi-nensis Burk.), and minjiang fir (Abies faxoniana Rehd. et Wild)]. Marked differences in mass loss were observed among the litter types and sampling dates. Decay constant (k) values of red birch were significantly higher than those of the needle litters. However, mass losses between ele-vations did not differ significantly for any litter type. During the winter, lost mass contributed 18.3–28.8% of the net loss rates of the first year. Statistical analysis showed that the relationships between mass loss and litter chemistry or their ratios varied with decomposition peri-ods. Our results indicated that short-term field incubations could overestimate the k value of litter decomposition. Considerable mass was lost from subalpine forest litters during the wintertime. Potential future warming may not affect the litter decomposition in the subalpine forest ecosystems of eastern Tibetan Plateau.

  14. Warming-induced upslope advance of subalpine forest is severely limited by geomorphic processes.

    Science.gov (United States)

    Macias-Fauria, Marc; Johnson, Edward A

    2013-05-14

    Forests are expected to expand into alpine areas because of climate warming, causing land-cover change and fragmentation of alpine habitats. However, this expansion will only occur if the present upper treeline is limited by low-growing season temperatures that reduce plant growth. This temperature limitation has not been quantified at a landscape scale. Here, we show that temperature alone cannot realistically explain high-elevation tree cover over a >100-km(2) area in the Canadian Rockies and that geologic/geomorphic processes are fundamental to understanding the heterogeneous landscape distribution of trees. Furthermore, upslope tree advance in a warmer scenario will be severely limited by availability of sites with adequate geomorphic/topographic characteristics. Our results imply that landscape-to-regional scale projections of warming-induced, high-elevation forest advance into alpine areas should not be based solely on temperature-sensitive, site-specific upper-treeline studies but also on geomorphic processes that control tree occurrence at long (centuries/millennia) timescales.

  15. Mercury in forest mushrooms and topsoil from the Yunnan highlands and the subalpine region of the Minya Konka summit in the Eastern Tibetan Plateau.

    Science.gov (United States)

    Falandysz, Jerzy; Saba, Martyna; Liu, Hong-Gao; Li, Tao; Wang, Ji-Peng; Wiejak, Anna; Zhang, Ji; Wang, Yuan-Zhong; Zhang, Dan

    2016-12-01

    This study aimed to investigate and discuss the occurrence and accumulation of mercury in the fruiting bodies of wild-growing fungi (Macromycetes) collected from montane forests in two regions of southwestern China with differences in soil geochemistry, climate and geographical conditions. Fungal mycelia in soils of the subalpine region of the Minya Konka (Gongga Mountain) in Sichuan and in the highlands of Yunnan efficiently accumulated mercury in fruiting bodies (mushrooms). The examined sites in Yunnan with highly mineralized red and yellow soils showed Hg contents ranging from 0.066 to 0.28 mg kg(-1) dry biomass (db) which is roughly similar to the results obtained for samples collected from sites with dark soils relatively rich in organic matter from a remote, the subalpine region of Minya Konka. Due to the remoteness of the subalpine section of Minya Konka, as well as its elevation and climate, airborne mercury from long-range transport could be deposited preferentially on the topsoil and the Hg levels determined in soil samples taken beneath the fruiting bodies were up to 0.48 mg kg(-1) dry matter. In Yunnan, with polymetallic soils (Circum-Pacific Mercuriferous Belt), Amanita mushrooms showed mercury in caps of fruiting bodies of up to 7.3 mg kg(-1) dry biomass. Geogenic Hg from the mercuriferous belt seems to be the overriding source of mercury accumulated in mushrooms foraged in the regions of Yunnan, while long-range atmospheric transport and subsequent deposition are the mercury sources for specimens foraged in the region of Minya Konka.

  16. Landscape Soil Respiration Fluxes are Related to Leaf Area Index, Stand Height and Density, and Soil Nitrogen in Rocky Mountain Subalpine Forests

    Science.gov (United States)

    Berryman, E.; Bradford, J. B.; Hawbaker, T. J.; Birdsey, R.; Ryan, M. G.

    2015-12-01

    There is a recent multi-agency push for accurate assessments of terrestrial carbon stocks and fluxes in the United States. Assessing the state of the carbon cycle in the US requires estimates of stocks and fluxes at large spatial scales. Such assessments are difficult, especially for soil respiration, which dominates ecosystem respiration and is notoriously highly variable over space and time. Here, we report three consecutive years of measurement of soil respiration fluxes in three 1 km2 subalpine forest landscapes: Fraser Experimental Forest (Colorado), Glacier Lakes Ecosystems Experimental Site ("GLEES", Wyoming), and Niwot Ridge (Colorado). Plots were established following the protocol of the US Forest Service's Forest Inventory and Analysis (FIA) Program. Clusters of plots were distributed across the landscape in a 0.25 km grid pattern. From 2004 through 2006, measurements of soil respiration were made once monthly during the growing season and twice during snowpack coverage for each year. Annual cumulative soil respiration was 6.10 (+/- 0.21) Mg ha-1y-1 for Fraser, 6.55 (+/- 0.27) Mg ha-1y-1 for GLEES, and 6.97 (+/- 0.20) Mg ha-1y-1 for Niwot. Variability in annual cumulative soil respiration varied by less than 20% among the three subalpine forests, despite differences in terrain, climate, disturbance history and anthropogenic nitrogen deposition. We quantified the relationship between respiration fluxes and commonly-measured forest properties and found that soil respiration was nonlinearly related to leaf area index, peaking around 2.5 m2m-2 then slowly declining. Annual litterfall (FA) was subtracted from soil respiration (FR) to calculate total belowground carbon flux (TBCF), which declined with increasing tree height, density and soil nitrogen. This landscape analysis of soil respiration confirmed experimentally-derived principles governing carbon fluxes in forests: as trees age and get taller, and in high-fertility areas, carbon flux to roots declines

  17. Long-term landscape changes in a subalpine spruce-fir forest in central Utah, USA

    OpenAIRE

    Morris, Jesse L.; R. Justin DeRose; Andrea R. Brunelle

    2015-01-01

    Background: In Western North America, increasing wildfire and outbreaks of native bark beetles have been mediated by warming climate conditions. Bioclimatic models forecast the loss of key high elevation species throughout the region. This study uses retrospective vegetation and fire history data to reconstruct the drivers of past disturbance and environmental change. Understanding the relationship among climate, antecedent disturbances, and the legacy effects of settlement-era lo...

  18. The features of soil aggregation and its eco—environmental effects under different subalpine forests on the east slope of Gongga Mountain,China

    Institute of Scientific and Technical Information of China (English)

    ZHANGBao-hua; HEYu-rong; ZHOUHong-yi; CHENGGen-wei

    2003-01-01

    Structural properties of forest soils have important hydro-ecological function and can influence the soil water-physical characters and soil erosion.The experimental soil samples were obtained in surface horizon (0-10cm) from different subalpine forest types on east slope of Gongga Mountain in the upriver area of Yangtze River China in May 2002.The soil bulk density,porosity,stable infiltration rate,aggregate distribution and particle-size distribution were analyzed by the routine methods in room,and the features and effects on eco-environment of soil aggregation were studied.The results showed that the structure of soil under mixed mature forest is in the best condition and can clearly enhance the eco-environmental function of soil,and the soil structure under the clear-cutting forest is the worst,the others are ranked between them.The study results can offer a basic guidance for the eco-environmental construction in the upper reaches of Yangtze River.

  19. [C and N allocation patterns in planted forests and their release patterns during leaf litter decomposition in subalpine area of west Sichuan].

    Science.gov (United States)

    Liu, Zeng-wen; Duan, Er-jun; Pan, Kai-wen; Zhang, Li-ping; Du, Hong-xia

    2009-01-01

    With the planted forest ecosystems of Cercidiphyllum japonicum, Betula utilis, Pinus yunnansinsis, and Picea asperata in subalpine area of west Sichuan as test objects, their total biomass and the C and N contents in soils and tree organs were determined. The results showed that the allocation of C in tree organs had less correlation with the age of the organs, while that of N and C/N ratio had closer relationship with the age. The N content in young organs was higher than that in aged ones, whereas the C/N ratio was higher in aged organs than in young organs, and higher in the leaf litters of needle-leaved forests than in those of broad-leaved forests. There was an obvious enrichment of C and N in the topsoil of test forests. The accumulated amounts of C and N in the whole planted forest ecosystem, including tree, litter, and 0-40 cm soil layer, were 176.75-228.05 t x hm(-2) and 11.06-16.54 t x hm(-2), respectively, and the nutrients allocation ratio between soil-litter and tree was (1.9-3.3):1 for C and (15.6-41.5):1 for N. Needle-leaved forests functioned as a stronger "C-sink" than broad-leaved forests. The decomposition rate of the leaf litters in needle-leaved forests was larger than that in broad-leaved forests, with the turnover rate being 2.2-3.7 years and 3.9-4.2 years, respectively. During the decomposition of leaf litter, the C in all of the four forests released at super-speed, with the turnover rate being 1.9-3.4 years. As for N, it also released at super-speed in C. japonicum and B. utilis forests, with the turnover rate being 1.9-3.2 years, but released at low speed in P. yunnansinsis and P. asperata forests, with the turnover rate being 6.7-8.5 years.

  20. Two decades of ecosystem CO2 and H2O gas exchange above a sub-alpine coniferous forest in Switzerland

    Science.gov (United States)

    Hörtnagl, Lukas; Baur, Thomas; Burri, Susanne; Eugster, Werner; Etzold, Sophia; Haesler, Rudolf; Käslin, Florian; Meier, Philip; Merbold, Lutz; Pluess, Peter; Zielis, Sebastian; Buchmann, Nina

    2017-04-01

    The ICOS Class 1 Ecosystem Station candidate site in Davos, located in a sub-alpine coniferous forest in Switzerland, is one of the longest running eddy covariance (EC) flux stations in the world. Carbon and water exchange above the canopy, i.e. fluxes of CO2 and H2Ov, were first recorded in 1995, continuous measurements are available since 1997. The availability of these long-term measurements allows detailed analyses of intra- as well as inter-annual variability of forest carbon and water dynamics and thus facilitates the identification of potential trends in ecosystem functioning over a time period of two decades. An additional EC system for CO2 and H2Ov fluxes, compliant with ICOS guidelines, was installed in 2014. Here we present CO2 and H2Ov flux results from the last 20 years and give insights into the complex functioning of the forest ecosystem in response to biotic and abiotic drivers. Flux calculations for all years were standardized, with each year following the same processing steps and corrections. To ensure only data of highest quality go into subsequent analyses, all fluxes were subjected to rigorous quality tests, consistent among all years. In addition, we compare new fluxes from the ICOS eddy covariance system with fluxes from the previously installed EC system between 2014 and 2016. This comparison aims to investigate the impact of switching to the ICOS EC setup on observed ecosystem fluxes in order to identify potential offsets between the two EC systems.

  1. Growth rate of mosses and their environmental determinants in subalpine coniferous forests and clear-cuts at the eastern edge of the Qinghai-Tibetan Plateau,China

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    Mosses cover most of the forest floor of subalpine forests at the eastern edge of the Qinghai-Tibetan Plateau,the origin of many important rivers in China.They play a crucial role in preventing soil erosion and conserving large amounts of water thereby regulating the water budget of local ecosystems.This area has a harsh climate due to low temperatures and low air pressure at high elevations.But the temperature varies considerably during the growing season,which does not favor the regeneration of spruce seedlings on clear-cuts after logging.Leaves of mosses have a single layer of cells and are thus sensitive to environmental changes.This attribute may be useful for monitoring environmental conditions and guide artificial regeneration.The growth of mosses has never been studied in this area and the variables indicating their growth in the subalpine forest ecosystems still needs investigation.Growth rates of mosses have been rarely studied worldwide because the methods are time consuming and often inaccurate.A more simple and accurate method for measuring moss growth would help and encourage relevant research.We have found a method that will promote the efficiency in field measurements.Because of the special growth properties of mosses,the apical cell of branches initiates growth and the preceding leaves will stay where they were as the tips grow.Once mosses are marked with red oil at the tip of branches surrounded by young leaves,that portion of the branch above the marked leaves represents growth after labeling.Two plots,one in an old-growth spruce forest and another in a nearby clear-cut,were selected to label mosses in a subalpine area of western Sichuan Province during the growing season in 2001.The labeling was done on May 7 and measurements were made on August 7.Microclimate measurements on both sites were simultaneously carried out.Of the six mosses,five species were present in both the forest and on the clear-cut.One species,Entodon conncinus,was found only

  2. Forest-fire models

    Science.gov (United States)

    Haiganoush Preisler; Alan Ager

    2013-01-01

    For applied mathematicians forest fire models refer mainly to a non-linear dynamic system often used to simulate spread of fire. For forest managers forest fire models may pertain to any of the three phases of fire management: prefire planning (fire risk models), fire suppression (fire behavior models), and postfire evaluation (fire effects and economic models). In...

  3. Effects of elevated CO{sub 2} and temperature on photosynthesis and leaf traits of an understory dwarf bamboo in subalpine forest zone, China

    Energy Technology Data Exchange (ETDEWEB)

    Yongping Li; Yuanbin Zhang; Xiaolu Zhang; Chunyang Li [Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu (China); Korpelainenc, H. [Univ. of Helsinki. Dept. of Agricultural Sciences, Helsinki (Finland); Berningerd, F. [Univ. of Helsinki. Dept. of Forest Sciences, Helsinki (Finland)

    2013-06-01

    The dwarf bamboo (Fargesia rufa Yi), growing understory in subalpine dark coniferous forest, is one of the main foods for giant panda, and it influences the regeneration of subalpine coniferous forests in southwestern China. To investigate the effects of elevated CO{sub 2}, temperature and their combination, the dwarf bamboo plantlets were exposed to two CO{sub 2} regimes (ambient and double ambient CO{sub 2} concentration) and two temperatures (ambient and +2.2 deg. C) in growth chambers. Gas exchange, leaf traits and carbohydrates concentration were measured after the 150-day experiment. Elevated CO{sub 2} significantly increased the net photosynthetic rate (A{sub net}), intrinsic water-use efficiency (WUE{sub i}) and carbon isotope composition ({delta}{sup 13}C) and decreased stomatal conductance (g{sub s}) and total chlorophyll concentration based on mass (Chl{sub m}) and area (Chl{sub a}). On the other hand, elevated CO{sub 2} decreased specific leaf area (SLA), which was increased by elevated temperature. Elevated CO{sub 2} also increased foliar carbon concentration based on mass (C{sub m}) and area (C{sub a}), nitrogen concentration based on area (N{sub a}), carbohydrates concentration (i.e. sucrose, sugar, starch and non-structural carbohydrates) and the slope of the A{sub net}-N{sub a} relationship. However, elevated temperature decreased C{sub m}, C{sub a} and N{sub a}. The combination of elevated CO{sub 2} and temperature hardly affected SLA, C{sub m}, C{sub a}, N{sub m}, N{sub a}, Chl{sub m} and Chl{sub a}. Variables A{sub net} and N{sub a} had positive linear relationships in all treatments. Our results showed that photosynthetic acclimation did not occur in dwarf bamboo at elevated CO{sub 2} and it could adjust physiology and morphology to enable the capture of more light, to increase WUE and improve nutritional conditions. (Author)

  4. [Quantitative analysis of different restoration stages during natural succession processes of subalpine dark brown coniferous forests in western Sichuan, China].

    Science.gov (United States)

    Ma, Jiang-Ming; Liu, Shi-Rong; Shi, Zuo-Min; Zhang, Yuan-Dong; Chen, Bao-Yu

    2007-08-01

    By adopting space as a substitute for time, and based on the approaches of inter-specific association, PCA and optimal division, the restoration stages of various secondary forest communities originated from the natural succession processes of bamboo-dark brown coniferous and moss-dark brown coniferous old-growth forests after clear-cut were quantified at different temporal series (20, 30, 30, 40, 50 and 160-200 years). The results showed that Betula albo-sinensis, Salix rehderiana, Acer mono, A. laxiflorum, Prunus tatsienensis, Hydrangea xanthoneura, Tilia chinensis and Salix dolia were the declining species groups with progressive restoration processes from secondary forest to mature moss and bamboo-dark brown coniferous forests, Sorbus hupehensis, S. koehneana and P. pilosiuscula were the transient species groups, and Abies faxoniana, Picea purpurea, Tsuga chinensis and P. wilsonii were the progressive species groups. During the period of 20-40 years restoration, the secondary forests were dominated by broad-leaved tree species, such as B. albo-sinensis, and the main forest types were moss--B. albo-sinensis forest and bamboo--B. albo-sinensis forest. Through 50 years natural succession, the secondary forests turned into conifer/broad-leaved mixed forest dominated by B. albo-sinensis and A. faxoniana, and the main forest types were moss--B. albo-sinensis--A. faxoniana forest and bamboo--B. albo-sinensis--A. faxoniana forest. The remained 160-200 years old coniferous forests without cutting were dominated by old-growth stage A. faxoniana, and the main forest types were moss--A. faxoniana forest and bamboo--A. faxoniana forest.

  5. The Niwot Ridge Subalpine Forest US-NR1 AmeriFlux site - Part 1: Data acquisition and site record-keeping

    Science.gov (United States)

    Burns, Sean P.; Maclean, Gordon D.; Blanken, Peter D.; Oncley, Steven P.; Semmer, Steven R.; Monson, Russell K.

    2016-09-01

    The Niwot Ridge Subalpine Forest AmeriFlux site (US-NR1) has been measuring eddy-covariance ecosystem fluxes of carbon dioxide, heat, and water vapor since 1 November 1998. Throughout this 17-year period there have been changes to the instrumentation and improvements to the data acquisition system. Here, in Part 1 of this three-part series of papers, we describe the hardware and software used for data-collection and metadata documentation. We made changes to the data acquisition system that aimed to reduce the system complexity, increase redundancy, and be as independent as possible from any network outages. Changes to facilitate these improvements were (1) switching to a PC/104-based computer running the National Center for Atmospheric Research (NCAR) In-Situ Data Acquisition Software (NIDAS) that saves the high-frequency data locally and over the network, and (2) time-tagging individual 10 Hz serial data samples using network time protocol (NTP) coupled to a GPS-based clock, providing a network-independent, accurate time base. Since making these improvements almost 2 years ago, the successful capture of high-rate data has been better than 99.98 %. We also provide philosophical concepts that shaped our design of the data system and are applicable to many different types of environmental data collection.

  6. Trait-Based Community Assembly along an Elevational Gradient in Subalpine Forests: Quantifying the Roles of Environmental Factors in Inter- and Intraspecific Variability.

    Directory of Open Access Journals (Sweden)

    Ya-Huang Luo

    Full Text Available Understanding how communities respond to environmental variation is a central goal in ecology. Plant communities respond to environmental gradients via intraspecific and/or interspecific variation in plant functional traits. However, the relative contribution of these two responses to environmental factors remains poorly tested. We measured six functional traits (height, leaf thickness, specific leaf area (SLA, leaf carbon concentration (LCC, leaf nitrogen concentration (LNC and leaf phosphorus concentration (LPC for 55 tree species occurring at five elevations across a 1200 m elevational gradient of subalpine forests in Yulong Mountain, Southwest China. We examined the relative contribution of interspecific and intraspecific traits variability based on community weighted mean trait values and functional diversity, and tested how different components of trait variation respond to different environmental axes (climate and soil variables. Species turnover explained the largest amount of variation in leaf morphological traits (leaf thickness and SLA across the elevational gradient. However, intraspecific variability explained a large amount of variation (49.3%-76.3% in three other traits (height, LNC and LPC despite high levels of species turnover. The detection of limiting similarity in community assembly was improved when accounting for both intraspecific and interspecific variability. Different components of trait variation respond to different environmental axes, especially soil water content and climatic variables. Our results indicate that intraspecific variation is critical for understanding community assembly and evaluating community response to environmental change.

  7. Root-associated fungal communities in three Pyroleae species and their mycobiont sharing with surrounding trees in subalpine coniferous forests on Mount Fuji, Japan.

    Science.gov (United States)

    Jia, Shuzheng; Nakano, Takashi; Hattori, Masahira; Nara, Kazuhide

    2017-07-13

    Pyroleae species are perennial understory shrubs, many of which are partial mycoheterotrophs. Most fungi colonizing Pyroleae roots are ectomycorrhizal (ECM) and share common mycobionts with their Pyroleae hosts. However, such mycobiont sharing has neither been examined in depth before nor has the interspecific variation in sharing among Pyroleae species. Here, we examined root-associated fungal communities in three co-existing Pyroleae species, including Pyrola alpina, Pyrola incarnata, and Orthilia secunda, with reference to co-existing ECM fungi on the surrounding trees in the same soil blocks in subalpine coniferous forests. We identified 42, 75, and 18 fungal molecular operational taxonomic units in P. alpina, P. incarnata, and O. secunda roots, respectively. Mycobiont sharing with surrounding trees, which was defined as the occurrence of the same mycobiont between Pyroleae and surrounding trees in each soil block, was most frequent among P. incarnata (31 of 44 plants). In P. alpina, sharing was confirmed in 12 of 37 plants, and the fungal community was similar to that of P. incarnata. Mycobiont sharing was least common in O. secunda, found in only 5 of 32 plants. Root-associated fungi of O. secunda were dominated by Wilcoxina species, which were absent from the surrounding ECM roots in the same soil blocks. These results indicate that mycobiont sharing with surrounding trees does not equally occur among Pyroleae plants, some of which may develop independent mycorrhizal associations with ECM fungi, as suggested in O. secunda at our research sites.

  8. Ramet population structure of Fargesia nitida in different canopy conditions of the subalpine dark coniferous forest in the Wolong Nature Reserve ,China

    Institute of Scientific and Technical Information of China (English)

    TAO Jianping; SONG Lixia; LI Yuan; WANG Yongjian; YU Xiaohong

    2007-01-01

    The bamboo Fargesia nitida,one of the giant panda's main food sources and the dominant shrub species of the forest understory,is mainly distributed in the dark coniferous belt in western Sichuan and southern Gansu in China.To study the impact of different forest canopy conditions on subalpine dwarf bamboo populations,ramet population structures of clonal Fargesia nitida were surveyed in:forest understory (FU),moderate gap (MG),large gap (LG) and marginal open space (MOS).In order to determine how the ramet structures could be affected and its effects on these four canopy conditions,a field survey of the age structure of Fargesia nitida population,its morphological traits and biomass was conducted in the Abies faxoniana forest situated in the Wolong Nature Reserve,western Sichuan,China.The main results were as follows.First,at the ramet level,the structures of the ramet populations in four canopy conditions were significantly different,and as the canopy density decreased,the mean height,basal diameter and biomass of the populations increased following the order:LG < MG < FU.Second,the biomass proportions of ramets modularly varied with different canopy conditions and leaf biomass proportion was positively related to the canopy density except for the MOS where the biomass proportions of rhizome and roots were both higher than those in the three other canopy conditions.Third,ramet specific leaf weight increased in parallel with the decrease in canopy density.In the MG,the values of the individual leaf biomass and leaf area were the largest,followed by those in the MOS.Both the individual leaf biomass and leaf area were significantly different from those in the FU and LG.Leaf number per ramet was significantly different among the four different canopy conditions and the biggest in the LG.Fourth,the ramet population mortality was the lowest in the FU (Chi-square test,p <0.01),while there was no significant difference in the average population age (Mann

  9. Canopy structure and atmospheric flows in relation to the δ13C of respired CO2 in a subalpine coniferous forest

    Science.gov (United States)

    Schaeffer, Sean M.; Anderson, Dean E.; Burns, Sean P.; Monson, Russell K.; Sun, Jielun; Bowling, David R.

    2008-01-01

    Stable isotopes provide insight into ecosystem carbon cycling, plant physiological processes, atmospheric boundary-layer dynamics, and are useful for the integration of processes over multiple scales. Of particular interest is the carbon isotope content (δ13C) of nocturnal ecosystem-respired CO2 (δR). Recent advances in technology have made it possible to continuously examine the variation in δR within a forest canopy over relatively long time-scales (months–years). We used tunable diode laser spectroscopy to examine δR at within- and below-canopy spatial locations in a Colorado subalpine forest (the Niwot Ridge AmeriFlux site). We found a systematic pattern of increased δR within the forest canopy (δR-c) compared to that near the ground (δR-g). Values of δR-c were weakly correlated with the previous day's mean maximum daytime vapor pressure deficit (VPD). Conversely, there was a negative but still weak correlation between δR-g and time-lagged (0–5 days) daily mean soil moisture. The topography and presence of sustained nightly drainage flows at the Niwot Ridge forest site suggests that, on nights with stable atmospheric conditions, there is little mixing of air near the ground with that in the canopy. Atmospheric stability was assessed using thresholds of friction velocity, stability above the canopy, and bulk Richardson number within the canopy. When we selectively calculated δR-g and δR-c by removing time periods when ground and canopy air were well mixed, we found stronger correlations between δR-c and VPD, and δR-g and soil moisture. This suggests that there may be fundamental differences in the environmental controls on δR at sub-canopy spatial scales. These results may help explain the wide variance observed in the correlation of δR with different environmental parameters in other studies.

  10. Evaluating the utility and seasonality of NDVI values for assessing post-disturbance recovery in a subalpine forest.

    Science.gov (United States)

    Buma, Brian

    2012-06-01

    Forest disturbances around the world have the potential to alter forest type and cover, with impacts on diversity, carbon storage, and landscape composition. These disturbances, especially fire, are common and often large, making ground investigation of forest recovery difficult. Remote sensing offers a means to monitor forest recovery in real time, over the entire landscape. Typically, recovery monitoring via remote sensing consists of measuring vegetation indices (e.g., NDVI) or index-derived metrics, with the assumption that recovery in NDVI (for example) is a meaningful measure of ecosystem recovery. This study tests that assumption using MODIS 16-day imagery from 2000 to 2010 in the area of the Colorado's Routt National Forest Hinman burn (2002) and seedling density counts taken in the same area. Results indicate that NDVI is rarely correlated with forest recovery, and is dominated by annual and perennial forb cover, although topography complicates analysis. Utility of NDVI as a means to delineate areas of recovery or non-recovery are in doubt, as bootstrapped analysis indicates distinguishing power only slightly better than random. NDVI in revegetation analyses should carefully consider the ecology and seasonal patterns of the system in question.

  11. Comparisons of photosynthesis-related traits of 27 abundant or subordinate bryophyte species in a subalpine old-growth fir forest.

    Science.gov (United States)

    Wang, Zhe; Bader, Maaike Y; Liu, Xin; Zhu, Zhangming; Bao, Weikai

    2017-09-01

    Bryophyte communities can exhibit similar structural and taxonomic diversity as vascular plant communities, just at a smaller scale. Whether the physiological diversity can be similarly diverse, and whether it can explain local abundance patterns is unknown, due to a lack of community-wide studies of physiological traits. This study re-analyzed data on photosynthesis-related traits (including the nitrogen, phosphorus and chlorophyll concentrations, photosynthetic capacities, and photosynthetic nutrient use efficiencies) of 27 bryophyte species in a subalpine old-growth fir forest on the eastern Tibetan Plateau. We explored differences between taxonomic groups and hypothesized that the most abundant bryophyte species had physiological advantages relative to other subdominant species. Principal component analysis (PCA) was used to summarize the differences among species and trait values of the most abundant and other co-occurring subdominant species. Species from the Polytrichaceae were separated out on both PCA axes, indicating their high chlorophyll concentrations and photosynthetic capacities (axis 1) and relatively high-light requirements (axis 2). Mniaceae species also had relatively high photosynthetic capacities, but their light saturation points were low. In contrast, Racomitrium joseph-hookeri and Lepidozia reptans, two species with a high shoot mass per area, had high-light requirements and low nutrient and chlorophyll concentrations and photosynthetic capacities. The nutrient concentrations, photosynthetic capacities, and photosynthetic nutrient use efficiencies of the most abundant bryophyte species did not differ from co-occurring subdominant species. Our research confirms the links between the photosynthesis-related traits and adaptation strategies of bryophytes. However, species relative abundance was not related to these traits.

  12. Modeling species’ realized climatic niche space and predicting their response to global warming for several western forest species with small geographic distributions

    Science.gov (United States)

    Marcus V. Warwell; Gerald E. Rehfeldt; Nicholas L. Crookston

    2010-01-01

    The Random Forests multiple regression tree was used to develop an empirically based bioclimatic model of the presence-absence of species occupying small geographic distributions in western North America. The species assessed were subalpine larch (Larix lyallii), smooth Arizona cypress (Cupressus arizonica ssp. glabra...

  13. Modelling in forest management

    Science.gov (United States)

    Mark J. Twery

    2004-01-01

    Forest management has traditionally been considered management of trees for timber. It really includes vegetation management and land management and people management as multiple objectives. As such, forest management is intimately linked with other topics in this volume, most especially those chapters on ecological modelling and human dimensions. The key to...

  14. Fire, fuel composition and resilience threshold in subalpine ecosystem.

    Directory of Open Access Journals (Sweden)

    Olivier Blarquez

    Full Text Available BACKGROUND: Forecasting the effects of global changes on high altitude ecosystems requires an understanding of the long-term relationships between biota and forcing factors to identify resilience thresholds. Fire is a crucial forcing factor: both fuel build-up from land-abandonment in European mountains, and more droughts linked to global warming are likely to increase fire risks. METHODS: To assess the vegetation response to fire on a millennium time-scale, we analyzed evidence of stand-to-local vegetation dynamics derived from sedimentary plant macroremains from two subalpine lakes. Paleobotanical reconstructions at high temporal resolution, together with a fire frequency reconstruction inferred from sedimentary charcoal, were analyzed by Superposed Epoch Analysis to model plant behavior before, during and after fire events. PRINCIPAL FINDINGS: We show that fuel build-up from arolla pine (Pinus cembra always precedes fires, which is immediately followed by a rapid increase of birch (Betula sp., then by ericaceous species after 25-75 years, and by herbs after 50-100 years. European larch (Larix decidua, which is the natural co-dominant species of subalpine forests with Pinus cembra, is not sensitive to fire, while the abundance of Pinus cembra is altered within a 150-year period after fires. A long-term trend in vegetation dynamics is apparent, wherein species that abound later in succession are the functional drivers, loading the environment with fuel for fires. This system can only be functional if fires are mainly driven by external factors (e.g. climate, with the mean interval between fires being longer than the minimum time required to reach the late successional stage, here 150 years. CONCLUSION: Current global warming conditions which increase drought occurrences, combined with the abandonment of land in European mountain areas, creates ideal ecological conditions for the ignition and the spread of fire. A fire return interval of less

  15. Modeled subalpine plant community response to climate change and atmospheric nitrogen deposition in Rocky Mountain National Park, USA.

    Science.gov (United States)

    McDonnell, T C; Belyazid, S; Sullivan, T J; Sverdrup, H; Bowman, W D; Porter, E M

    2014-04-01

    To evaluate potential long-term effects of climate change and atmospheric nitrogen (N) deposition on subalpine ecosystems, the coupled biogeochemical and vegetation community competition model ForSAFE-Veg was applied to a site at the Loch Vale watershed of Rocky Mountain National Park, Colorado. Changes in climate and N deposition since 1900 resulted in pronounced changes in simulated plant species cover as compared with ambient and estimated future community composition. The estimated critical load (CL) of N deposition to protect against an average future (2010-2100) change in biodiversity of 10% was between 1.9 and 3.5 kg N ha(-1) yr(-1). Results suggest that the CL has been exceeded and vegetation at the study site has already undergone a change of more than 10% as a result of N deposition. Future increases in air temperature are forecast to cause further changes in plant community composition, exacerbating changes in response to N deposition alone.

  16. Mycorrhiza-plant colonization patterns on a subalpine glacier forefront as a model system of primary succession

    Science.gov (United States)

    Efren Cazares; James M. Trappe; Ari Jumpponen

    2005-01-01

    Lyman glacier in the North Cascades Mountains of Washington has a subalpine forefront characterized by a well-developed terminal moraine, inconspicuous successional moraines, fluting, and outwash. These deposits were depleted of symbiotic fungi when first exposed but colonized by them over time after exposure. Four major groups of plant species in this system are (1)...

  17. Hydrological modelling in forested systems

    Science.gov (United States)

    This chapter provides a brief overview of forest hydrology modelling approaches for answering important global research and management questions. Many hundreds of hydrological models have been applied globally across multiple decades to represent and predict forest hydrological p...

  18. Predictive models of forest dynamics.

    Science.gov (United States)

    Purves, Drew; Pacala, Stephen

    2008-06-13

    Dynamic global vegetation models (DGVMs) have shown that forest dynamics could dramatically alter the response of the global climate system to increased atmospheric carbon dioxide over the next century. But there is little agreement between different DGVMs, making forest dynamics one of the greatest sources of uncertainty in predicting future climate. DGVM predictions could be strengthened by integrating the ecological realities of biodiversity and height-structured competition for light, facilitated by recent advances in the mathematics of forest modeling, ecological understanding of diverse forest communities, and the availability of forest inventory data.

  19. Changes in species composition and diversity in the restoration process of sub-alpine dark brown coniferous forests in western Sichuan Province, China

    Institute of Scientific and Technical Information of China (English)

    Jiangming MA; Shirong LIU; Zuomin SHI; Yuandong ZHANG; Bing KANG; Baoyu CHEN

    2008-01-01

    By adopting the concept of space as a substi-tute for time, we analyzed the dynamics of species com-position and diversity of different restoration sequences (20, 30, 40, 50 years) in two secondary forest types in western Sichuan Province, distributed in a northerly or northwesterly direction. The analysis was based on the results of measurements of 50 plots located at elevations between 3100-3600 m. The forests originated from nat-ural regeneration in combination with reforestation of spruce when the old-growth bamboo-dark brown con-iferous forests and moss-dark brown coniferous old growth forests were harvested. Similar old-growth dark brown coniferous forests at ages ranging between 160 and 200 years were selected as the reference forests for comparisons. We recorded 167 species of vascular plants from 44 families and 117 genera. There was no significant difference in terms of the number of species among secondary forests. But the importance values of dominant species varied during the restoration pro-cesses. The dominant species in the secondary forests is Betula albo-sinensis, while Abiesfaxoniana is the dom-inant species in old-growth dark brown coniferous for-ests. Species richness increased significantly with restoration processes. It increased quickly in secondary forests during the period from 30 to 40 years, but decreased significantly in the old-growth dark brown coniferous forests. The species richness among growth forms decreased in the following order: herb layer> sh-rub layer > tree layer. The maximum value of the even-ness index occurred in secondary forests at age 40 and remained relatively stable in the bamboo-birch forests, but the evenness index tended to decrease in moss-birch forests and slightly increased in the old-growth moss-dark brown coniferous forests. There was a statistically significant difference in the evenness index between the tree and shrub layers as well as between the tree layer and the herb layer, but there was no

  20. Time since death and decay rate constants of Norway spruce and European larch deadwood in subalpine forests determined using dendrochronology and radiocarbon dating

    Directory of Open Access Journals (Sweden)

    M. Petrillo

    2015-09-01

    Full Text Available Due to the large size and highly heterogeneous spatial distribution of deadwood, the time scales involved in the coarse woody debris (CWD decay of Picea abies (L. Karst. and Larix decidua Mill. in Alpine forests have been poorly investigated and are largely unknown. We investigated the CWD decay dynamics in an Alpine valley in Italy using the five-decay class system commonly employed for forest surveys, based on a macromorphological and visual assessment. For the decay classes 1 to 3, most of the dendrochronological samples were cross-dated to assess the time that had elapsed since tree death, but for decay classes 4 and 5 (poorly preserved tree rings and some others not having enough tree rings, radiocarbon dating was used. In addition, density, cellulose and lignin data were measured for the dated CWD. The decay rate constants for spruce and larch were estimated on the basis of the density loss using a single negative exponential model. In the decay classes 1 to 3, the ages of the CWD were similar varying between 1 and 54 years for spruce and 3 and 40 years for larch with no significant differences between the classes; classes 1–3 are therefore not indicative for deadwood age. We found, however, distinct tree species-specific differences in decay classes 4 and 5, with larch CWD reaching an average age of 210 years in class 5 and spruce only 77 years. The mean CWD rate constants were 0.012 to 0.018 yr−1 for spruce and 0.005 to 0.012 yr−1 for larch. Cellulose and lignin time trends half-lives (using a multiple-exponential model could be derived on the basis of the ages of the CWD. The half-lives for cellulose were 21 yr for spruce and 50 yr for larch. The half-life of lignin is considerably higher and may be more than 100 years in larch CWD.

  1. Declines in low-elevation subalpine tree populations outpace growth in high-elevation populations with warming

    Science.gov (United States)

    Conlisk, Erin; Castanha, Cristina; Germino, Matthew J.; Veblen, Thomas T; Smith, Jeremy M.; Kueppers, Lara M.

    2017-01-01

    Species distribution shifts in response to climate change require that recruitment increase beyond current range boundaries. For trees with long life spans, the importance of climate-sensitive seedling establishment to the pace of range shifts has not been demonstrated quantitatively.Using spatially explicit, stochastic population models combined with data from long-term forest surveys, we explored whether the climate-sensitivity of recruitment observed in climate manipulation experiments was sufficient to alter populations and elevation ranges of two widely distributed, high-elevation North American conifers.Empirically observed, warming-driven declines in recruitment led to rapid modelled population declines at the low-elevation, ‘warm edge’ of subalpine forest and slow emergence of populations beyond the high-elevation, ‘cool edge’. Because population declines in the forest occurred much faster than population emergence in the alpine, we observed range contraction for both species. For Engelmann spruce, this contraction was permanent over the modelled time horizon, even in the presence of increased moisture. For limber pine, lower sensitivity to warming may facilitate persistence at low elevations – especially in the presence of increased moisture – and rapid establishment above tree line, and, ultimately, expansion into the alpine.Synthesis. Assuming 21st century warming and no additional moisture, population dynamics in high-elevation forests led to transient range contractions for limber pine and potentially permanent range contractions for Engelmann spruce. Thus, limitations to seedling recruitment with warming can constrain the pace of subalpine tree range shifts.

  2. Mycorrhiza-plant colonization patterns on a subalpine glacier forefront as a model system of primary succession.

    Science.gov (United States)

    Cázares, Efrén; Trappe, James M; Jumpponen, Ari

    2005-09-01

    Lyman glacier in the North Cascades Mountains of Washington has a subalpine forefront characterized by a well-developed terminal moraine, inconspicuous successional moraines, fluting, and outwash. These deposits were depleted of symbiotic fungi when first exposed but colonized by them over time after exposure. Four major groups of plant species in this system are (1) mycorrhiza-independent or facultative mycotrophic, (2) dependent on arbuscular mycorrhizae (AM) (3) dependent on ericoid mycorrhiza (ERM) or ectomycorrhizae (EM), and (4) colonized by dark-septate (DS) endophytes. We hypothesized that availability of mycorrhizal propagules was related to the success of mycorrhiza-dependent plants in colonizing new substrates in naturally evolved ecosystems. To test this hypothesis roots samples of 66 plant species were examined for mycorrhizal colonization. The plants were sampled from communities at increasing distances from the glacier terminus to compare the newest communities with successively older ones. Long established, secondary successional dry meadow communities adjacent to the glacier forefront, and nearby high alpine communities were sampled for comparison. DS were common on most plant species on the forefront. Nonmycorrhizal plants predominated in the earlier successional sites, whereas the proportion of mycorrhizal plants generally increased with age of community. AM were present, mostly at low levels, and nearly absent in two sites of the forefront. ERM were present in all species of Ericaceae sampled, and EM in all species of Pinaceae and Salicaceae. Roots of plants in the long established meadow and heath communities adjacent to the forefront and the high alpine community all had one or another of the colonization types, with DS and AM predominating.

  3. Time since death and decay rate constants of Norway spruce and European larch deadwood in subalpine forests determined using dendrochronology and radiocarbon dating

    Science.gov (United States)

    Petrillo, Marta; Cherubini, Paolo; Fravolini, Giulia; Marchetti, Marco; Ascher-Jenull, Judith; Schärer, Michael; Synal, Hans-Arno; Bertoldi, Daniela; Camin, Federica; Larcher, Roberto; Egli, Markus

    2016-03-01

    Due to the large size (e.g. sections of tree trunks) and highly heterogeneous spatial distribution of deadwood, the timescales involved in the coarse woody debris (CWD) decay of Picea abies (L.) Karst. and Larix decidua Mill. in Alpine forests are largely unknown. We investigated the CWD decay dynamics in an Alpine valley in Italy using the chronosequence approach and the five-decay class system that is based on a macromorphological assessment. For the decay classes 1-3, most of the dendrochronological samples were cross-dated to assess the time that had elapsed since tree death, but for decay classes 4 and 5 (poorly preserved tree rings) radiocarbon dating was used. In addition, density, cellulose, and lignin data were measured for the dated CWD. The decay rate constants for spruce and larch were estimated on the basis of the density loss using a single negative exponential model, a regression approach, and the stage-based matrix model. In the decay classes 1-3, the ages of the CWD were similar and varied between 1 and 54 years for spruce and 3 and 40 years for larch, with no significant differences between the classes; classes 1-3 are therefore not indicative of deadwood age. This seems to be due to a time lag between the death of a standing tree and its contact with the soil. We found distinct tree-species-specific differences in decay classes 4 and 5, with larch CWD reaching an average age of 210 years in class 5 and spruce only 77 years. The mean CWD rate constants were estimated to be in the range 0.018 to 0.022 y-1 for spruce and to about 0.012 y-1 for larch. Snapshot sampling (chronosequences) may overestimate the age and mean residence time of CWD. No sampling bias was, however, detectable using the stage-based matrix model. Cellulose and lignin time trends could be derived on the basis of the ages of the CWD. The half-lives for cellulose were 21 years for spruce and 50 years for larch. The half-life of lignin is considerably higher and may be more than

  4. Forest-management modelling

    Science.gov (United States)

    Mark J. Twery; Aaron R. Weiskittel

    2013-01-01

    Forests are complex and dynamic ecosystems comprising individual trees that can vary in both size and species. In comparison to other organisms, trees are relatively long lived (40-2000 years), quite plastic in terms of their morphology and ecological niche, and adapted to a wide variety of habitats, which can make predicting their behaviour exceedingly difficult....

  5. 低温季节西南亚高山森林土壤轻组分有机碳动态%Dynamics of Light Fraction Organic Carbon in Subalpine Forest Soil in Southwestern China During Cold Season

    Institute of Scientific and Technical Information of China (English)

    秦纪洪; 武艳镯; 孙辉; 马丽红

    2012-01-01

    Soil light fraction organic carbon (LFOC) is regarded as one of the most sensitive indexes of soil labile carbon because the content and turnover ratio is more readily influenced by recent land use and environmental changes than the total organic carbon of soil. The subalpine forest soil in the southwestern China is one vulnerable ecosystem with high altitude and low temperature. The dynamics of LFOC in 0-l0cm and 10-20cm soil with and without liner and/or snow cover of subalpine forest were assessed by on-site incubation of repacked homogenized soil during the cold season. The results showed that LFOC content was 15.5% of the total organic carbon in 0-20cm soil on average, and varied from 13.6% to 21.1% under different treatments with litter cover and/or snowcover after a cold season. Soil LFOC in 0-10cm layer under litter and snow cover was lower than those of other treatment, which indicated that soil surface cover of litter and snow and their combination impacted LFOC content significantly, and the coexsitence of litter and snow was helpful to restrict LFOC formation and to maintain organic carbon stability during the cold season. Different temporal dynamics of LFOC content in I0-20cm layer also showed significant difference under different treatments, indicating that subsoil LFOC were also associated with surface cover. Soil LFOC content and fluctuation were rather high during the cold season, even higher than that in the growth season, which suggested that soil LFOC was active even during the cold season. Litter cover, snowcover, sampling time, soil depth and their interactions affected soil LFOC dynamics in cold season significantly. It was concluded that soil carbon pool size and its stabilization of subalpine forest in the southwestern China would be influenced significantly by the changes of litter and snow cover during the cold season, especially under the global warming and land use changes.%轻组分有机碳(LFOC)易受短期土地利用方式和环

  6. Ecology of whitebark pine populations in relation to white pine blister rust infection in subalpine forests of the Lake Tahoe Basin: Implications for restoration

    Science.gov (United States)

    Patricia E. Maloney; Detlev R. Vogler; Camille E. Jensen; Annette. Delfino Mix

    2012-01-01

    For over a century, white pine blister rust (WPBR), caused by the introduced fungal pathogen, Cronartium ribicola J.C. Fisch., has affected white pine (Subgenus Strobus) individuals, populations, and associated forest communities in North America. We surveyed eight populations of whitebark pine (Pinus albicaulis Engelm.) across a range of environmental conditions in...

  7. Ramet Population Structure of Fargesia nitida (Mitford)Keng f. et Yi in Different Successional Stands of the Subalpine Coniferous Forest in Wolong Nature Reserve

    Institute of Scientific and Technical Information of China (English)

    Xiao-Hong Yu; Jian-Ping Tao; Yuan Li; Yong-Jian Wang; Yi Xi; Wei-Yin Zhang; Run-Guo Zang

    2006-01-01

    Forest structure and succession in Wolong Nature Reserve is influenced by the understory dwarf bamboo population. However, less is known about how the forest succession affects the dwarf bamboo population.To examine the bamboo ramet population growth of Fargesia nitida (Mitford) Keng f. et Yi and to determine how ramet population structure varies along the succession of coniferous forest, we sampled ramet populations of F. nitida from the following three successional stages:(i) a deciduous broad-leaved (BL)stand;(ii) a mixed broad-leaved coniferous (MI) stand;and (iii) a coniferous (CF) stand. We investigated the population structure, biomass allocation, and morphological characteristics of the bamboo ramet among the three stand types. Clonal ramets, constituting the bamboo population, tended to become short and small with succession. The ramet changed towards having a greater mass investment in leaves, branches and underground roots and rhizomes rather than in the culm. With respect to leaf traits, individual leaf mass and area in the BL stand were markedly bigger than those in both the MI and CF stands, except for no significant difference in specific leaf area. The age distribution showed that the bamboo population approached an older age with succession. The results demonstrate that the ramet population structure of F.nitida is unstable and its growth performance is inhibited by succession.

  8. Hydrological modeling in forested systems

    Science.gov (United States)

    H.E. Golden; G.R. Evenson; S. Tian; Devendra Amatya; Ge Sun

    2015-01-01

    Characterizing and quantifying interactions among components of the forest hydrological cycle is complex and usually requires a combination of field monitoring and modelling approaches (Weiler and McDonnell, 2004; National Research Council, 2008). Models are important tools for testing hypotheses, understanding hydrological processes and synthesizing experimental data...

  9. Climate change effects on vegetation in the Pacific Northwest: a review and synthesis of the scientific literature and simulation model projections

    Science.gov (United States)

    David W. Peterson; Becky K. Kerns; Erich Kyle Dodson

    2014-01-01

    The purpose of this study was to review scientifi c knowledge and model projections on vegetation vulnerability to climatic and other environmental changes in the Pacifi c Northwest, with emphasis on fi ve major biome types: subalpine forests and alpine meadows, maritime coniferous forests, dry coniferous forests, savannas and woodlands (oak and juniper), and interior...

  10. Verification of satellite radar remote sensing based estimates of boreal and subalpine growing seasons using an ecosystem process model and surface biophysical measurement network information

    Science.gov (United States)

    McDonald, K. C.; Kimball, J. S.; Zimmerman, R.

    2002-01-01

    We employ daily surface Radar backscatter data from the SeaWinds Ku-band Scatterometer onboard Quikscat to estimate landscape freeze-thaw state and associated length of the seasonal non-frozen period as a surrogate for determining the annual growing season across boreal and subalpine regions of North America for 2000 and 2001.

  11. Nisqually Community Forest VELMA modeling

    Science.gov (United States)

    We developed a set of modeling tools to support community-based forest management and salmon-recovery planning in Pacific Northwest watersheds. Here we describe how these tools are being applied to the Mashel River Watershed in collaboration with the Board of Directors of the Nis...

  12. Hydrological modelling in forested systems | Science ...

    Science.gov (United States)

    This chapter provides a brief overview of forest hydrology modelling approaches for answering important global research and management questions. Many hundreds of hydrological models have been applied globally across multiple decades to represent and predict forest hydrological processes. The focus of this chapter is on process-based models and approaches, specifically 'forest hydrology models'; that is, physically based simulation tools that quantify compartments of the forest hydrological cycle. Physically based models can be considered those that describe the conservation of mass, momentum and/or energy. The purpose of this chapter is to provide a brief overview of forest hydrology modeling approaches for answering important global research and management questions. The focus of this chapter is on process-based models and approaches, specifically “forest hydrology models”, i.e., physically-based simulation tools that quantify compartments of the forest hydrological cycle.

  13. Modeling forest industry in Sweden. Technical documentation

    Energy Technology Data Exchange (ETDEWEB)

    Nystroem, Ingrid [Chalmers Univ. of Technology, Goeteborg (Sweden). Div. of Energy Systems Technology

    2001-02-01

    At the division of Energy Systems Technology at Chalmers University of Technology a study of energy and material flows in the Swedish forest industry has been made. The study includes analysis of potential long-term development paths for the forest industry and their impact on energy flows and energy related material flows in the forest industry. Within this study a forest industry model and a number of forest industry scenarios have been developed. This report presents a technical description of the constructed model, detailed scenario data and complete results tables for the scenario runs. The report does not include any discussion or analysis of model, input data or results.

  14. Remote Sensing Monitoring of the Subalpine Coniferous Forests and Quantitative Analysis of the Characteristics of Succession in East Mountain Area of Tibetan Plateau——A Case Study With Zamtang County%青藏高原东部山区亚高山针叶林遥感提取与空间演替特征的定量分析——以壤塘县为例

    Institute of Scientific and Technical Information of China (English)

    张学儒; 张镱锂; 刘林山; 张继平; 高俊刚

    2011-01-01

    以位长江上游的大渡河流域的壤塘县为研究区。基于TM遥感影像,采用面向对象与目视解译相结合方法,提取1989年和2009年两个时期亚高山针叶林的空间分布,并对两期数据叠加分析,查找出其演替发生的类型和空间位置,作为因变量样本。同时,以GIS技术为支撑,基于DEM和专题数据,提取高程、坡度、坡向正弦、坡向余弦、地表曲率、距居民点距离、距耕地距离和距道路距离8个自变量,使之与亚高山针叶林空间演替样本进行Logistic回归拟合,计算各自变量的贡献率和演替发生概率在空间上的变化特征。结果表明:亚高山针叶林向草甸演%The study area lies in the Dadu River drainage area in upstream Yangtze River.The spatial distribution of subalpine coniferous forests in 1989 and 2009 was extracted by means of a combined method of object orientation and visual interpretation,and then the overlaying analysis of these data was conducted.The type and spatial location of succession were discovered and served as the sample of dependant variable.Meanwhile,supported by GIS technology and based on DEM and thematic data,the eight variables including altitude,slope,sin and cosin of aspect,curvity of land surface,and distance to residential area,cultivated land and road were extracted served as the sample of spatial succession of subalpine coniferous forests to fit Logistic Regression,and then the contribution of each independent variable as well as the spatial property of the occurrence probability of succession was calculated.The results suggested that,during the succession of subalpine coniferous forests to meadow,the closer to the residential area and cultivated land,the greater the contribution to succession is.In particular,when the distance to the residential area decreases by one unit,the probability for its conversion to meadow will be increased by 1.15 times.During the succession of subalpine coniferous forests to

  15. Hydro-geochemical modeling of subalpine urbanized area: geochemical characterization of the shallow and deep aquifers of the urban district of Como (first results).

    Science.gov (United States)

    Terrana, Silvia; Brunamonte, Fabio; Frascoli, Francesca; Ferrario, Maria Francesca; Michetti, Alessandro Maria; Pozzi, Andrea; Gambillara, Roberto; Binda, Gilberto

    2016-04-01

    One of the greatest environmental and social-economics threats is climate change. This topic, in the next few years, will have a significant impact on the availability of water resources of many regions. This is compounded by the strong anthropization of water systems that shows an intensification of conflicts for water resource exploitation. Therefore, it is necessary a sustainable manage of natural resources thorough knowledge of the hosting territories. The development of investigation and data processing methods are essential to reduce costs for the suitable use and protection of resources. Identify a sample area for testing the best approach is crucial. This research aims to find a valid methodology for the characterization, modeling and management of subalpine urban aquifers, and the urban district of Como appears perfect. The city of Como is located at the southern end of the western sector of Lake Como (N Italy). It is a coastal town, placed on a small alluvial plain, therefore in close communication with the lake. The plain is drained by two streams, which are presently artificially buried, and have an underground flow path in the urban section till the mouth. This city area, so, is suitable for this project as it is intensely urbanized, its dimensions is not too extensive and it is characterized by two aquifers very important and little known. These are a shallow aquifer and a deep aquifer, which are important not only for any water supply, but also for the stability of the ground subsidence in the city. This research is also the opportunity to work in a particular well-known area with high scientific significance; however, there is complete absence of information regarding the deep aquifer. Great importance has also the chosen and used of the more powerful open source software for this type of area, such as PHREEQC, EnvironInsite, PHREEQE etc., used for geological and geochemical data processing. The main goal of this preliminary work is the

  16. Stand Composition, Tree Proximity and Size Have Minimal Effects on Leaf Function of Coexisting Aspen and Subalpine Fir.

    Science.gov (United States)

    Rhodes, Aaron C; Barney, Trevor; St Clair, Samuel B

    2016-01-01

    Forest structural heterogeneity due to species composition, spatial relationships and tree size are widely studied patterns in forest systems, but their impacts on tree function are not as well documented. The objective of this study was to examine how stand composition, tree proximity relationships and tree size influence the leaf functional traits of aspen, an early successional species, and subalpine fir, a climax species. We measured foliar nutrients, nonstructural carbohydrates (aspen only), defense chemistry and xylem water potential of aspen and subalpine fir trees in three size classes growing in close proximity or independently from other trees under three stand conditions: aspen dominant, aspen-conifer mixed, and conifer dominant stands. Close proximity of subalpine fir to aspen reduced aspen's storage of starch in foliar tissue by 17% suggesting that competition between these species may have small effects on carbon metabolism in aspen leaves. Simple sugar (glucose + sucrose) concentrations in aspen leaves were slightly higher in larger aspen trees than smaller trees. However, no differences were found in stem water potential, foliar concentrations of nitrogen, phosphorus, or secondary defense chemicals of aspen or subalpine fir across the gradients of stand composition, tree proximity or tree size. These results suggest that mechanisms of coexistence allow both aspen and subalpine fir to maintain leaf function across a wide range of stand structural characteristics. For aspen, resource sharing through its clonal root system and high resource storage capacity may partially contribute to its functional stability in mixed aspen-conifer stands.

  17. Modeling Forest Structure and Vascular Plant Diversity in Piedmont Forests

    Science.gov (United States)

    Hakkenberg, C.

    2014-12-01

    When the interacting stressors of climate change and land cover/land use change (LCLUC) overwhelm ecosystem resilience to environmental and climatic variability, forest ecosystems are at increased risk of regime shifts and hyperdynamism in process rates. To meet the growing range of novel biotic and environmental stressors on human-impacted ecosystems, the maintenance of taxonomic diversity and functional redundancy in metacommunities has been proposed as a risk spreading measure ensuring that species critical to landscape ecosystem functioning are available for recruitment as local systems respond to novel conditions. This research is the first in a multi-part study to establish a dynamic, predictive model of the spatio-temporal dynamics of vascular plant diversity in North Carolina Piedmont mixed forests using remotely sensed data inputs. While remote sensing technologies are optimally suited to monitor LCLUC over large areas, direct approaches to the remote measurement of plant diversity remain a challenge. This study tests the efficacy of predicting indices of vascular plant diversity using remotely derived measures of forest structural heterogeneity from aerial LiDAR and high spatial resolution broadband optical imagery in addition to derived topo-environmental variables. Diversity distribution modelling of this sort is predicated upon the idea that environmental filtering of dispersing species help define fine-scale (permeable) environmental envelopes within which biotic structural and compositional factors drive competitive interactions that, in addition to background stochasticity, determine fine-scale alpha diversity. Results reveal that over a range of Piedmont forest communities, increasing structural complexity is positively correlated with measures of plant diversity, though the nature of this relationship varies by environmental conditions and community type. The diversity distribution model is parameterized and cross-validated using three high

  18. Modeling landowner behavior regarding forest certification

    Science.gov (United States)

    David C. Mercker; Donald G. Hodges

    2008-01-01

    Nonindustrial private forest owners in western Tennessee were surveyed to assess their awareness, acceptance, and perceived benefits of forest certification. More than 80 percent of the landowners indicated a willingness to consider certification for their lands. A model was created to explain landowner behavior regarding their willingness to consider certification....

  19. [Calculation of parameters in forest evapotranspiration model].

    Science.gov (United States)

    Wang, Anzhi; Pei, Tiefan

    2003-12-01

    Forest evapotranspiration is an important component not only in water balance, but also in energy balance. It is a great demand for the development of forest hydrology and forest meteorology to simulate the forest evapotranspiration accurately, which is also a theoretical basis for the management and utilization of water resources and forest ecosystem. Taking the broadleaved Korean pine forest on Changbai Mountain as an example, this paper constructed a mechanism model for estimating forest evapotranspiration, based on the aerodynamic principle and energy balance equation. Using the data measured by the Routine Meteorological Measurement System and Open-Path Eddy Covariance Measurement System mounted on the tower in the broadleaved Korean pine forest, the parameters displacement height d, stability functions for momentum phi m, and stability functions for heat phi h were ascertained. The displacement height of the study site was equal to 17.8 m, near to the mean canopy height, and the functions of phi m and phi h changing with gradient Richarson number R i were constructed.

  20. 凋落物和积雪覆盖对低温季节西南亚高山森林表层土壤脲酶动态的影响%Impacts of Litter and Snow Cover on Topsoil Urease Activity Dynamics of Subalpine Forest in Southwestern China in the Cold Season

    Institute of Scientific and Technical Information of China (English)

    马丽红; 黄雪菊; 秦纪洪; 孙辉; 李沙

    2013-01-01

    土壤脲酶(URE)活性易受到温度、地表覆盖(凋落物和积雪覆盖)、土壤水热动态等的影响,是常用的表征土壤中有机态氮转化与矿化状况的生物活性的指标之一.为探索凋落物和积雪覆盖对低温季节川西亚高山森林土壤脲酶活性的影响,以低温季节亚高山针叶林均质化土壤为研究对象,采用4种不同覆盖处理(裸露地表、凋落物覆盖、积雪覆盖、凋落物和积雪同时覆盖)进行原位培养,对各处理在低温季节(11月至翌年5月)表层(0-10 cm)和下层(10-20 cm)土壤进行采样并分析其脲酶活性动态.结果表明:(1)川西亚高山森林土壤脲酶活性在低温季节仍相对较高;整体呈现出先增高,随后急剧降低,到低温末期达到峰值的变化趋势.(2)整个低温季节凋落物和积雪对URE活性的影响均达到极显著水平,凋落物和积雪两因素之间存在显著的交互作用.凋落物和积雪覆盖动态格局深刻影响着亚高山森林的生态过程,亚高山森林高海拔土壤脲酶活性可以作为低温季节高海拔生态系统环境变化的一个短期响应特征.%Urease activity is often used as one of biochemical indices to assess soil organic nitrogen transformation and mineralization because of its vulnerability and sensitivity to soil temperature, surface cover, moisture dynamics. In order to determine impacts of litter and snow cover on topsoil urease activity dynamics of subalpine forest in southwestern China in the cold season, based on homogenized soil columns incubated in situ under four treatments (i. e. , bare soil without snowcover, bare soil with snowcover. litter without snow-cover, and litter with snowcover), soil of 0-10 cm and 10-20 cm layers of the four treatments were sampled in October, December, January, February, March and May, respectively, and their urease activities were analyzed. The results showed that: (1) urease activities were relatively higher in subalpine forest

  1. Modeling boreal fire and forest dynamics

    Science.gov (United States)

    de Groot, W. J.; McRae, D. J.; Cantin, A.

    2009-04-01

    The circumpolar boreal forest covers about 1.4 billion ha, representing 1/3 of global forest land. Approximately 2/3 of the boreal forest is located in Eurasia and the remainder in North America. Wildland fires annually burn an estimated 12-20 M ha across the entire boreal region, having a major influence on forest structure and composition. However, fire weather, fire behaviour, and fire ecology differ greatly between the boreal forests in eastern and western hemispheres, which have significant impact on tree survival, post-fire regeneration and forest succession. Every year, wildland fires in Canada and Alaska burn an average of 2-3 M ha, primarily by stand-replacing, high intensity crown fires. By comparison, Russian fires burn about 10-15 M ha annually, primarily by low to moderate intensity surface fires that cause minimal tree mortality. Fire weather conditions in the most fire prone regions of Russia are generally more severe than in similar regions of North America. Finally, the species composition of eastern and western boreal forests is also very different. Russian forests are dominated by larch (30%) and pine (28%) with lower components of spruce (14%) and poplar/birch hardwoods (18%) By contrast, Canadian forests are comprised mainly of spruce (35%), pine (22%), poplar/birch (16%), and fir (9%). All of these factors contribute to the variability in vegetation dynamics occurring within the circumpolar boreal region. This modeling study examines the interactions of fire weather, forest composition, fire behaviour, and fire ecology on forest vegetation dynamics within the boreal region. Similar active fire zones in western Canada and eastern Siberia were used as study sites. Historical weather data were collected for both locations and used to calculate fire weather data, which were used as primary driving variables for the Boreal Fire Effects model (BORFIRE). Fire behaviour was calculated in BORFIRE using data for major tree species at both study sites

  2. Modeling meteorological forcing of snowcover in forests

    Science.gov (United States)

    Hellstrom, Robert Ake

    2000-11-01

    The architectural properties of a forest are known to modify significantly meteorological forcing of snowcover. Current numerical snow models utilize a wide range of vegetation representations that limit their application to particular biomes or for basic research on specialized problems. Most do not explicitly represent the combined effects of the canopy on processes of mass and energy transfer beneath the canopy. This project develops forest canopy sub-models that estimate the below-canopy solar and longwave irradiance, wind speed, and accumulation of precipitation, based on meteorological measurements above the canopy and parameters of forest architecture. The wind and solar radiation sub-model predictions were independently compared with meteorological observations at deciduous and coniferous sites in the snowbelt region of northern Michigan. The solar radiation and wind models required adjustments to match sub-canopy measurements. The primary experiment compared the simulations and measurements of snow depth for eight modified versions of the Utah Energy Balance (UEB) snow model during the 1998-99 snowcover season at the two forest sites and a near-by open site. Independent inclusion of each sub-model and a new stability scheme in the UEB model revealed significant sensitivity of modeled snow depth to stability and each of the four processes estimated by the sub-models. The original UEB model uses a simple forest canopy parameterization that does not consider precipitation interception. Comparison of the original and modified UEB models significantly improved simulations of snow depth at the open and coniferous sites, but performance was slightly worse for a leafless deciduous site. Unlike the modified model, the analysis suggests that the original model produces inconsistent results, which reduces its potential for application to different biomes. Results suggest that opposing processes of energy and mass exchange tend to moderate meteorological forcing

  3. Technical change in forest sector models: the global forest products model approach

    Science.gov (United States)

    Joseph Buongiorno; Sushuai Zhu

    2015-01-01

    Technical change is developing rapidly in some parts of the forest sector, especially in the pulp and paper industry where wood fiber is being substituted by waste paper. In forest sector models, the processing of wood and other input into products is frequently represented by activity analysis (input–output). In this context, technical change translates in changes...

  4. Forest-succession models and their ecological and management implications

    Energy Technology Data Exchange (ETDEWEB)

    West, D.; Smith, T.M.; Weinstein, D.A.; Shugart, H.H.

    1981-01-01

    Computer models of forest succession have been developed to an extent that allows their use as a tool for predicting forest ecosystem behavior over long periods of time. This paper outlines the use of one approach to forest succession modeling for a variety of problems including: (1) determining the effect of climate change on forests; (2) integrating information on wildlife habitat changes with the changes in forest structure associated with timber management; (3) assessing the potential effect of air pollutants on forest dynamics; and (4) determining the theoretical importance of disturbance on forest community diversity and function.

  5. Contribution of soil fauna to the mass loss of Betula albosinensis leaf litter at early decomposition stage of subalpine forest litter in western Sichuan%川西亚高山森林凋落物分解初期土壤动物对红桦凋落叶质量损失的贡献

    Institute of Scientific and Technical Information of China (English)

    夏磊; 吴福忠; 杨万勤; 谭波

    2012-01-01

    2010年10月26日-2011年4月18日在川西亚高山地区季节性冻融期间,选择典型的红桦-岷江冷杉林,采用凋落物分解袋法调查了不同网孔(0.02、0.125、1和3 mm)凋落物分解袋内的凋落物质量损失,分析微型、中型和大型土壤动物对红桦凋落叶分解的贡献.结果表明:在季节性冻融期间,0.02、0.125、1和3 mm分解袋内的红桦凋落叶质量损失率分别为11.8%、13.2%、15.4%和19.5%,不同体径土壤动物对红桦凋落叶质量损失的贡献率为39.5%;不同孔径凋落物袋内土壤动物的类群和个体相对密度与凋落叶的质量损失率的变化趋势相对一致.在季节性冻融的初期、深冻期和融化期,不同土壤动物对红桦凋落叶质量损失的贡献率为大型土壤动物(22.7%)>中型土壤动物(11.9%)>微型土壤动物(7.9%).季节性冻融期间土壤动物活动是影响川西亚高山森林凋落物分解的重要因素之一.%In order to quantify the contribution of soil fauna to the decomposition of birch (Betula albosinensis) leaf litter in subalpine forests in western Sichuan of Southwest China during freeze-thaw season, a field experiment with different mesh sizes (0.02, 0.125 , 1 and 3 mm) of litterbags was conducted in a representative birch-fir (Abies faxoniana) forest to investigate the mass loss rate of the birch leaf litter from 26 October, 2010 to 18 April, 2011, and the contributions of micro-, meso- and macro-fauna to the decomposition of the leaf litter. Over the freeze-thaw season, 11. 8% , 13. 2% , 15. 4% and 19. 5% of the mass loss were detected in the litterbags with 0. 02, 0. 125, 1 and 3 mm mesh sizes, respectively. The total contribution of soil fauna to the litter decomposition accounted for 39.5% of the mass loss, and the taxa and individual relative density of the soil fauna in the litterbags had the similar variation trend with that of the mass loss rate. The contribution rate of soil fauna to the

  6. Hydrologic Modeling of Boreal Forest Ecosystems

    Science.gov (United States)

    Haddeland, I.; Lettenmaier, D. P.

    1995-01-01

    This study focused on the hydrologic response, including vegetation water use, of two test regions within the Boreal-Ecosystem-Atmosphere Study (BOREAS) region in the Canadian boreal forest, one north of Prince Albert, Saskatchewan, and the other near Thompson, Manitoba. Fluxes of moisture and heat were studied using a spatially distributed hydrology soil-vegetation-model (DHSVM).

  7. Modeling of forest canopy BRDF using DIRSIG

    Science.gov (United States)

    Rengarajan, Rajagopalan; Schott, John R.

    2016-05-01

    The characterization and temporal analysis of multispectral and hyperspectral data to extract the biophysical information of the Earth's surface can be significantly improved by understanding its aniosotropic reflectance properties, which are best described by a Bi-directional Reflectance Distribution Function (BRDF). The advancements in the field of remote sensing techniques and instrumentation have made hyperspectral BRDF measurements in the field possible using sophisticated goniometers. However, natural surfaces such as forest canopies impose limitations on both the data collection techniques, as well as, the range of illumination angles that can be collected from the field. These limitations can be mitigated by measuring BRDF in a virtual environment. This paper presents an approach to model the spectral BRDF of a forest canopy using the Digital Image and Remote Sensing Image Generation (DIRSIG) model. A synthetic forest canopy scene is constructed by modeling the 3D geometries of different tree species using OnyxTree software. The field collected spectra from the Harvard forest is used to represent the optical properties of the tree elements. The canopy radiative transfer is estimated using the DIRSIG model for specific view and illumination angles to generate BRDF measurements. A full hemispherical BRDF is generated by fitting the measured BRDF to a semi-empirical BRDF model. The results from fitting the model to the measurement indicates a root mean square error of less than 5% (2 reflectance units) relative to the forest's reflectance in the VIS-NIR-SWIR region. The process can be easily extended to generate a spectral BRDF library for various biomes.

  8. The past and future of modeling forest dynamics: from growth and yield curves to forest landscape models

    Science.gov (United States)

    Stephen R. Shifley; Hong S. He; Heike Lischke; Wen J. Wang; Wenchi Jin; Eric J. Gustafson; Jonathan R. Thompson; Frank R. Thompson; William D. Dijak; Jian Yang

    2017-01-01

    Context. Quantitative models of forest dynamics have followed a progression toward methods with increased detail, complexity, and spatial extent. Objectives. We highlight milestones in the development of forest dynamics models and identify future research and application opportunities. Methods. We reviewed...

  9. Relationships of Stable Carbon Isotope of Abies faxoniana Tree-Rings to Climate in the Sub-Alpine Forest in Western Sichuan%川西亚高山森林岷江冷杉树轮碳稳定同位素对气候要素的响应

    Institute of Scientific and Technical Information of China (English)

    靳翔; 徐庆; 刘世荣; 姜春前

    2013-01-01

    利用四川卧龙亚高山暗针叶林岷江冷杉树木年轮样本资料,建立树轮宽度年表,对比宽度年表,提取树木年轮(简称树轮)碳稳定同位素(δ13C)序列和去趋势序列(DS),研究岷江冷杉树轮碳稳定同位素序列对气候要素的响应关系.结果表明:岷江冷杉(1904-2009年)树轮碳稳定同位素变化范围为-23.33‰~-26.31%‰,平均值为-24.91‰,变异系数为-0.025;相关分析表明,岷江冷杉δ13C序列(DS)与前一年11月和当年1月的月平均气温显著正相关(P≤0.05),与前一年1月和当年2,11月的月平均气温极显著正相关(P≤0.01),冬季平均气温对岷江冷杉树轮碳稳定同位素的响应最为敏感,是研究过去环境变化的良好载体,与当年1月降水量显著正相关(P≤0.05),与全年的月平均相对湿度相关性不显著(P≥0.05).%The tree-ring stable isotope technique is an important means to reconstruct climate chronology and to determine tree responses to environmental factors.In this study,the tree-ring samples of Abies faxoniana,collected in 2010 in a sub-alpine forest of Wolong Sichuan,were used to develop the tree-ring width chronology and the stable carbon isotope was extracted based on the standard dendrochronology methods.This new approach can be used to establish the detrend series (DS) of stable carbon isotope of tree rings to eliminate effect of the 13C originated from atmospheric CO2.Results showed that the stable carbon isotope series (1904-2009) varied in a range of-23.33‰--26.31%o with the average value of-24.91‰ and the coefficient of variation of-0.025.Correlation analysis revealed that the tree-ring DS values were significantly positively correlated to the mean monthly temperature of the last January,and the February and November of the current year (P≤0.01),and was also correlated to the mean monthly temperature of the last November and the January of the current year (P ≤ 0.05).The DS values were positively

  10. Modelling the afforested system: the forest/tree model

    NARCIS (Netherlands)

    Heil, G.W.; Deursen, van W.; Elemans, M.; Mol, J.; Kros, H.

    2007-01-01

    A forest/tree model has been developed of which the main growth processes are based on the CENW model. The model links the flows of carbon (C)), energy, nutrients and water in trees and soil organic matter. Modelled tree growth depends on physiological plant factors, the size of plant pools, such as

  11. DRAINMOD-FOREST: Integrated modeling of hydrology, soil carbon and nitrogen dynamics, and plant growth for drained forests

    Science.gov (United States)

    Shiying Tian; Mohamed A. Youssef; R. Wayne Skaggs; Devendra M. Amatya; G.M. Chescheir

    2012-01-01

    We present a hybrid and stand-level forest ecosystem model, DRAINMOD-FOREST, for simulating the hydrology, carbon (C) and nitrogen (N) dynamics, and tree growth for drained forest lands under common silvicultural practices. The model was developed by linking DRAINMOD, the hydrological model, and DRAINMOD-N II, the soil C and N dynamics model, to a forest growth model,...

  12. Opportunities to enhance contribution of model forests in the sustainable forest resources management (example from Yalova Model Forest).

    Science.gov (United States)

    Bekiroğlu, Sultan; Özdemir, Mehmet; Özyürek, Ercan; Arslan, Avni

    2016-10-01

    Model forests are nongovernmental organizations at local, regional and international level which are mainly focused on reconciling the conflicts between the stakeholders. This is an innovative approach to organization, which has been receiving more and more attraction from increasing number of countries, which gradually increased the number of model forests for the last 25 years. If these organizations reach desired levels of structure, medium, impacts and assets their contribution in sustainable forest resources management will increase ipso facto. The very first model forest of Turkey was created in Yalova Province in 2010. Yalova Province has certain fundamental problems including but not limited to; population growth and unplanned urbanization caused by industrialization, uncontrolled increase in demand for fire wood and non-wooden products of forestry resources, questionable resource management decisions adopted in the past and low-income levels of the people especially those in the rural areas. The main objective of present case study is to analyze Yalova Model Forest (YMF) so as to determine the possible problems that may occur during implementation of sustainable management for forestry resources through a planning approach with multiple stakeholders. As a result of research, it has been revealed that YMF has certain significant structural, environmental and impact-related problems. In order to ensure continuity of YMF's contribution to sustainable forestry resources management, these problems need to be addressed promptly. Copyright © 2016 Elsevier Ltd. All rights reserved.

  13. Modeling Anthropogenic Fire Occurrence in the Boreal Forest of China Using Logistic Regression and Random Forests

    Directory of Open Access Journals (Sweden)

    Futao Guo

    2016-10-01

    Full Text Available Frequent and intense anthropogenic fires present meaningful challenges to forest management in the boreal forest of China. Understanding the underlying drivers of human-caused fire occurrence is crucial for making effective and scientifically-based forest fire management plans. In this study, we applied logistic regression (LR and Random Forests (RF to identify important biophysical and anthropogenic factors that help to explain the likelihood of anthropogenic fires in the Chinese boreal forest. Results showed that the anthropogenic fires were more likely to occur at areas close to railways and were significantly influenced by forest types. In addition, distance to settlement and distance to road were identified as important predictors for anthropogenic fire occurrence. The model comparison indicated that RF had greater ability than LR to predict forest fires caused by human activity in the Chinese boreal forest. High fire risk zones in the study area were identified based on RF, where we recommend increasing allocation of fire management resources.

  14. Model forest program: Year in review, 1992-1993

    Energy Technology Data Exchange (ETDEWEB)

    1993-01-01

    As part of the Green Plan, introduced by the Federal Government in late 1990, a network of model forests was developed to demonstrate the concept of sustainable forest management in practical terms on a working scale. This annual report describes the competitive site selection process, the forests involved in the project, program milestones, the operation of model forests, and highlights of the project. Financial data is included.

  15. Similarity of nutrient uptake and root dimensions of Engelmann spruce and subalpine fir at two contrasting sites in Colorado

    Energy Technology Data Exchange (ETDEWEB)

    Yanai, R; McFarlane, K; Lucash, M; Kulpa, S; Wood, D

    2009-10-09

    Nutrient uptake capacity is an important parameter in modeling nutrient uptake by plants. Researchers commonly assume that uptake capacity measured for a species can be used across sites. We tested this assumption by measuring the nutrient uptake capacity of intact roots of Engelmann spruce (Picea engelmanni Parry) and subalpine fir (Abies lasiocarpa (Hook.) Nutt.) at Loch Vale Watershed and Fraser Experimental Forest in the Rocky Mountains of central Colorado. Roots still attached to the tree were exposed to one of three concentrations of nutrient solutions for time periods ranging from 1 to 96 hours, and solutions were analyzed for ammonium, nitrate, calcium, magnesium, and potassium. Surprisingly, the two species were indistinguishable in nutrient uptake within site for all nutrients (P > 0.25), but uptake rates differed by site. In general, nutrient uptake was higher at Fraser (P = 0.01, 0.15, 0.03, 0.18 for NH{sub 4}{sup +}, NO{sub 3}{sup -}, Ca{sup 2+}, and K{sup +}, respectively), which is west of the Continental Divide and has lower atmospheric deposition of N than Loch Vale. Mean uptake rates by site for ambient solution concentrations were 0.12 {micro}mol NH{sub 4}{sup +} g{sub fwt}{sup -1} h{sup -1}, 0.02 {micro}mol NO{sub 3}{sup -} g{sub fwt}{sup -1}, 0.21 {micro}mol Ca{sup 2+} g{sub fwt}{sup -1} h{sup -1}, and 0.01 {micro}mol Mg{sup 2+} g{sub fwt}{sup -1} h{sup -1} at Loch Vale, and 0.21 {micro}mol NH{sub 4}{sup +} f{sub fwt}{sup -1}h{sup -1}, 0.04 {micro}mol NO{sub 3}{sup -} g{sub fwt}{sup -1} h{sup -1}, 0.51 {micro}mol Ca{sup 2+}g{sub fwt}{sup -1}h{sup -1}, and 0.07 {micro}mol Mg{sup 2+} f{sub fwt}{sup -1}h{sup -1} at Fraser. The importance of site conditions in determining uptake capacity should not be overlooked when parameterizing nutrient uptake models. We also characterized the root morphology of these two species and compared them to other tree species we have measured at various sites in the northeastern USA. Engelman spruce and subalpine fir

  16. The role of forest age in earth system models

    Science.gov (United States)

    Poulter, B.; Bellassen, V.; Lin, X.; Luyssaert, S.; Nachin, B.; Pederson, N.; Shchepashchenko, D.; Shvidenko, A.; Ciais, P.

    2012-12-01

    The age of a forest has a principal role in determining the magnitude of carbon stocks and fluxes. As forests grow older, carbon tends to accumulate in above and belowground biomass causing changes in forest canopy complexity, nutrient pools, and the balance between carbon uptake and release. While age is a standard variable for forestry models, the present generation of earth system models neglects a representation of forest age for several reasons. These include the challenge in representing sub-grid cell ecosystem heterogeneity, a poor understanding of how ecosystem processes evolve with age, and because of a lack of forest age data with which to initialize models. Here we present a globally gridded forest age distribution dataset that is derived from National Forest Inventory data and from satellite-derived disturbance frequencies. This gridded dataset is developed at 0.5° spatial resolution at the plant functional types classification level, one that is commonly used in dynamic global vegetation models. We find large national-scale differences in forest age distributions, for example, with a peak age-area for young forests in China, and more mature forests across Canada and in Russia. Comparing simulated forest carbon stocks and fluxes from three DGVM models (LPJ, ORCHIDEE, and ORCHIDEE-Forest Management) with a global forest database, we illustrate the importance of accounting for structural development as forests develop. With over half the world's forests modified by human activities, or influenced by natural disturbance, spatial patterns of forest age distributions are a necessary feature of forward models for closing the global carbon budget within a consistent modeling framework.

  17. Foothills Model Forest: a ten-year review

    Energy Technology Data Exchange (ETDEWEB)

    Simpson, R.

    2002-04-01

    The first ten years of the Foothills Model Forest, established in 1992, is reviewed. The model forest has been established to develop sustainable forest management within the broader concept of sustainable development and integrated resource management. The project focuses on issues such as wildlife habits and habitats; biodiversity monitoring; natural disturbance trends and patterns; and socio-economic studies. In Phase One of the Canadian Model Forest Network the Foothills Model Forest focused primarily on conducting world class research to advance the concept of sustainable forest management. Phase Two was devoted to communicating the results of that research, with a strong emphasis on generating baseline awareness of the concept of sustainable forest management and creating public awareness of the project's mandate in Alberta. Work during the next five years is expected to focus on demonstration and implementation of research results to forest managers and practitioners and others with a stake in the continued sustainability of Alberta's forests. The Sustainable Forest Management project shares a common objective with the Alberta Chamber of Resources' Integrated Landscape Management project; both projects recognise that reducing the industrial footprint is key to sustainable development. The emphasis on demonstration and implementation in the third phase of the Foothills Model Forest is expected to ensure continued sustainability of forests, ecosystems, communities and resources, with full recognition of the fact that the goal of sustainable development can be achieved only by full cooperation and integrated action of all stakeholders.

  18. 季节性冻融期亚高山/高山森林细根分解动态%Fine Root Decomposition Dynamics during Freeze-Thaw Season in the Subalpine/Alpine Forests

    Institute of Scientific and Technical Information of China (English)

    魏圆云; 武志超; 杨万勤; 吴福忠

    2013-01-01

    The ongoing winter warming inevitably alters the process of fine root decomposition in high-altitude area by changing the pattern of seasonal soil freezing and thawing.As yet,the dynamics of fine root decomposition at different stages in the freeze-thaw season remain uncertainty.In order to characterize the dynamics of fine root decomposition at different stages of a freeze-thaw season in cold biomes under climate change scenarios,litterbags with 10 g fine roots of Picea asperata,Betula albo-sinensis and Abies faxoniana were buried in the forest soil at the 3 582,3 298 and 3 023 m altitudes in western Sichuan,China.These litterbags were recovered at onset of freezing (OF),deep frozen stage (DF),early thawing stage (ETS),middle thawing stage (MTS),and later thawing stage (LTS) from December 10,2009 to April 28,2010.The residual rate of fine roots was 88%-92% after a freeze-thaw season,and varied significantly with altitudes and tree species.The fine root decomposition occurred at all stages of the freeze-thaw season,among which OF had the highest rate of fine root decomposition.However,the rate of the fine root decomposition declined as decomposing,especially in the lower altitude.The decay rate constant of fine roots varied from 0.177 6 to 0.242 4,and the relative mass loss was correlated closely with soil temperature at the different stages,but the rate of the fine root decomposition was not significantly correlated with the indices of the measured initial qualities of fine roots.The regression model based on average soil temperature,fluctuated soil temperature,calcium concentration of fine roots and the ratio of lignin to nitrogen in fine roots during the freeze-thaw season,interpreted 95% of the reason of differences in the fine root decay rate.It is concluded that the soil freeze-thaw process caused by temperature fluctuations was an important factor in influencing the rate of the fine root decomposition during the freeze-thaw season in the high

  19. Combining fire and erosion modeling to target forest management activities

    Science.gov (United States)

    William J. Elliot; Mary Ellen Miller; Nic Enstice

    2015-01-01

    Forests deliver a number of important ecosystem services including clean water. When forests are disturbed by wildfire, the timing, quantity and quality of runoff are altered. A modeling study was carried out in a forested watershed in California to determine the risk of wildfire, and the potential post-fire sediment delivery from approximately 6-ha hillslope polygons...

  20. Northern Forest Ecosystem Dynamics Using Coupled Models and Remote Sensing

    Science.gov (United States)

    Ranson, K. J.; Sun, G.; Knox, R. G.; Levine, E. R.; Weishampel, J. F.; Fifer, S. T.

    1999-01-01

    Forest ecosystem dynamics modeling, remote sensing data analysis, and a geographical information system (GIS) were used together to determine the possible growth and development of a northern forest in Maine, USA. Field measurements and airborne synthetic aperture radar (SAR) data were used to produce maps of forest cover type and above ground biomass. These forest attribute maps, along with a conventional soils map, were used to identify the initial conditions for forest ecosystem model simulations. Using this information along with ecosystem model results enabled the development of predictive maps of forest development. The results obtained were consistent with observed forest conditions and expected successional trajectories. The study demonstrated that ecosystem models might be used in a spatial context when parameterized and used with georeferenced data sets.

  1. The Impact of Forest Density on Forest Height Inversion Modeling from Polarimetric InSAR Data

    Directory of Open Access Journals (Sweden)

    Changcheng Wang

    2016-03-01

    Full Text Available Forest height is of great significance in analyzing the carbon cycle on a global or a local scale and in reconstructing the accurate forest underlying terrain. Major algorithms for estimating forest height, such as the three-stage inversion process, are depending on the random-volume-over-ground (RVoG model. However, the RVoG model is characterized by a lot of parameters, which influence its applicability in forest height retrieval. Forest density, as an important biophysical parameter, is one of those main influencing factors. However, its influence to the RVoG model has been ignored in relating researches. For this paper, we study the applicability of the RVoG model in forest height retrieval with different forest densities, using the simulated and real Polarimetric Interferometric SAR data. P-band ESAR datasets of the European Space Agency (ESA BioSAR 2008 campaign were selected for experiments. The test site was located in Krycklan River catchment in Northern Sweden. The experimental results show that the forest density clearly affects the inversion accuracy of forest height and ground phase. For the four selected forest stands, with the density increasing from 633 to 1827 stems/Ha, the RMSEs of inversion decrease from 4.6 m to 3.1 m. The RVoG model is not quite applicable for forest height retrieval especially in sparsely vegetated areas. We conclude that the forest stand density is positively related to the estimation accuracy of the ground phase, but negatively correlates to the ground-to-volume scattering ratio.

  2. A Preliminary Report of Changing Quaternary Mammal Faunas in Subalpine New Guinea

    Science.gov (United States)

    Hope, Geoffrey; Flannery, Tim; Boeardi

    1993-07-01

    The faunas found in the mountains of central Irian Jaya have experienced dramatic changes through the late Quaternary. Remains of two previously unknown species of large marsupial, Maokopia ronaldi and Protemnodon hopei, have been recovered from unrelated cave and fluvial deposits which today occur in dense upper montane forest. Direct dating of the finds has not as yet been possible, but stratigraphic, sedimentologic, and palynologic evidence indicates that these species lived near a climatic treeline in subalpine grassland in the late Pleistocene. At higher altitudes a rockshelter provided the second known mid-Holocene record of Thylogale christenseni and Thylogale sp. cf. brunii, apparently extinct grassland wallabies. The two largest remaining subalpine mammal species are being locally exterminated by hunting, leaving only a large murid, Mallomys gunung, which weighs less than 2.0 kg. The area thus records the disappearance of a grassland-adapted fauna. The possum Pseudocheirops cupreus dominates in modem hunting returns, although this species is totally absent from the local fossil records. It may thus be in the process of invading a vacated and disturbed niche from the upper montane forest.

  3. Forest carbon uptake in North America's aging temperate deciduous forests: A data-theory-model mismatch?

    Science.gov (United States)

    Gough, C. M.; Curtis, P.; Bond-Lamberty, B. P.; Hardiman, B. S.; Scheuermann, C. M.; Nave, L. E.; Nadelhoffer, K. J.

    2015-12-01

    Century-old temperate deciduous forests in the US upper Midwest and Northeast power much of North America's terrestrial carbon sink, but these forests' carbon uptake capacity is expected to soon decline. But will this really happen? We marshal empirical data and ecological theory to show that declines in carbon uptake are not imminent in regrown temperate deciduous forests during coming decades, despite long-held assumptions and modeling results that predict declining carbon uptake during middle stages of ecosystem development. Age and production data for temperate deciduous forests, synthesized from published literature, do not provide evidence for declining net primary and ecosystem production (NPP and NEP, respectively) within the age-range most regional forests will occupy over the next half-century. Ecological theory suggests a mechanism for sustained carbon uptake in the region's aging forests in which high-frequency, low-severity disturbances maintain NPP and NEP by increasing ecosystem complexity. This theoretical model is supported by observations from the Forest Accelerated Succession Experiment in Michigan, USA, but such mechanisms sustaining production in old forests are not broadly represented in ecosystem models. Ecosystems experiencing low-frequency, high-severity disturbances that simplify ecosystem complexity do exhibit declining production during middle stages of succession, but we suggest that such scenarios have exerted a disproportionate influence on prevailing modeling and ecological assumptions regarding age-related declines in forest production. We conclude that there is wide ecological space for forests to sustain high rates of carbon uptake during middle stages of ecosystem development, and that advancing mechanistic understanding of long-term forest carbon cycle dynamics is essential to modeling the continent's future carbon sink strength.

  4. Forest owner representation of forest management and perception of resource efficiency: a structural equation modeling study

    Directory of Open Access Journals (Sweden)

    Andrej Ficko

    2015-03-01

    Full Text Available Underuse of nonindustrial private forests in developed countries has been interpreted mostly as a consequence of the prevailing noncommodity objectives of their owners. Recent empirical studies have indicated a correlation between the harvesting behavior of forest owners and the specific conceptualization of appropriate forest management described as "nonintervention" or "hands-off" management. We aimed to fill the huge gap in knowledge of social representations of forest management in Europe and are the first to be so rigorous in eliciting forest owner representations in Europe. We conducted 3099 telephone interviews with randomly selected forest owners in Slovenia, asking them whether they thought they managed their forest efficiently, what the possible reasons for underuse were, and what they understood by forest management. Building on social representations theory and applying a series of structural equation models, we tested the existence of three latent constructs of forest management and estimated whether and how much these constructs correlated to the perception of resource efficiency. Forest owners conceptualized forest management as a mixture of maintenance and ecosystem-centered and economics-centered management. None of the representations had a strong association with the perception of resource efficiency, nor could it be considered a factor preventing forest owners from cutting more. The underuse of wood resources was mostly because of biophysical constraints in the environment and not a deep-seated philosophical objection to harvesting. The difference between our findings and other empirical studies is primarily explained by historical differences in forestland ownership in different parts of Europe and the United States, the rising number of nonresidential owners, alternative lifestyle, and environmental protectionism, but also as a consequence of our high methodological rigor in testing the relationships between the constructs

  5. Evaluating the long-term management of introduced ungulates to protect the palila, an endangered bird, and its criticial habitat in subalpine forest of Mauna Kea, Hawai'i

    Science.gov (United States)

    Banko, Paul C.; Hess, Steven C.; Scowcroft, Paul G.; Farmer, Chris; Jacobi, James D.; Stephens, Robert M.; Camp, Richard J.; Leonard, David L.; Brinck, Kevin W.; Juvik, J.O.; Juvik, S. P.

    2014-01-01

    Under the multiple-use paradigm, conflicts may arise when protection of an endangered species must compete with other management objectives. To resolve such a conflict in the Critical Habitat of the endangered Hawaiian honeycreeper, palila (Loxioides bailleui), federal courts ordered the eradication of introduced ungulates responsible for damaging the māmane (Sophora chrysophylla) forest on which palila depend. During 1980–2011, a total of 18,130 sheep (Ovis aries and O. gmelini musimon) and 310 goats (Capra hircus) were removed from Palila Critical Habitat (PCH) primarily by public hunters (54%) and secondarily by aerial shooting. Nevertheless, our analysis indicates that ungulates have increased over time. Palila numbers have declined sharply since 2003 due to long-term habitat degradation by ungulates and drought. Although culling ungulate populations has allowed some habitat improvement, their complete removal is necessary for palila to recover, especially given the potential for continued drought. Introduced predators are being controlled to reduce palila mortality, māmane and other native trees are being planted to restore some areas, and fencing is being constructed to prevent ungulate immigration. Funds are recently available for more effective eradication efforts, which are urgently needed to eliminate browsing damage in PCH and protect the palila from extinction.

  6. Modeling human-caused forest fire ignition for assessing forest fire danger in Austria

    Directory of Open Access Journals (Sweden)

    Arndt N

    2013-07-01

    Full Text Available Forest fires have not been considered as a significant threat for mountain forests of the European Alpine Space so far. Climate change and its effects on nature, ecology, forest stand structure and composition, global changes according to demands of society and general trends in the provision of ecosystem services are potentially going to have a significant effect on fire ignition in the future. This makes the prediction of forest fire ignition essential for forest managers in order to establish an effective fire prevention system and to allocate fire fighting resources effectively, especially in alpine landscapes. This paper presents a modelling approach for predicting human-caused forest fire ignition by a range of socio-economic factors associated with an increasing forest fire danger in Austria. The relationship between touristic activities, infrastructure, agriculture and forestry and the spatial occurrence of forest fires have been studied over a 17-year period between 1993 and 2009 by means of logistic regression. 59 independent socio-economic variables have been analysed with different models and validated with heterogeneous subsets of forest fire records. The variables included in the final model indicate that railroad, forest road and hiking trail density together with agricultural and forestry developments may contribute significantly to fire danger. The final model explains 60.5% of the causes of the fire events in the validation set and allows a solid prediction. Maps showing the fire danger classification allow identifying the most vulnerable forest areas in Austria and are used to predict the fire danger classes on municipality level.

  7. Forest Management and Forest Sector of Russia: Conditions and Ways for Transition to Intensive Model

    Directory of Open Access Journals (Sweden)

    N. A. Moiseev

    2014-02-01

    Full Text Available The causes for protracted crisis at the system of forest management and development of forest sector in Russia are discussed in the paper and recommendations for recovery from recession have been done based on transition from extensive to the intensive model of development.

  8. RELATIVE ROLES OF MICROORGANISMS AND SOIL ANIMALS ON NEEDEL LITTER DECOMPOSITION IN A SUBALPINE CONIFEROUS FOREST%亚高山针叶林土壤动物和土壤微生物对针叶分解的作用

    Institute of Scientific and Technical Information of China (English)

    田兴军; 立石贵浩

    2002-01-01

    通过80片亚高山针叶林土壤有机物层切片的显微观察和统计,并结合微生物(CFU)的培养观察,对亚高山针叶林土壤有机物分解过程中土壤动物和土壤微生物的作用进行了研究.根据可见针叶数目和C/N比率在土壤有机物层的垂直分布变化将分解过程分为3个阶段.真菌数量(CFU)在第一阶段(表层0~2 cm)明显高于第二和第三阶段(深层);与此相反细菌的数量(CFU)却表层少深层多.具有虫便的针叶在表层(0~2 cm)为最多,而深于2 cm后便急剧减少,至4.5 cm处为零.综合以上结果并结合微形态观察我们认为针叶的分解过程随着深度的增加而增加;真菌首先定着和破坏针叶表皮层使得内居性动物大量侵入针叶的内部;由于动物的取食可视针叶的数量从2 cm到4.5 cm逐渐消失;最后破损的针叶逐渐变成碎削和粪便,致使碎片的体积越来越小而有机物表面积却相对变大,微生物便很容易定着并分解这些碎片,在深层起主要作用的可能是细菌.%Eighty thin-sections of the subalpine coniferous organic layer were used for observing the effect of microorganisms and animals on the needle decomposition. The distribution patterns of fungal spores and bacteria along the upper 8 cm soil profile of the forest floor were counted using the plate culture method. The changes in needle number and C/N ratio of litter suggest that the decomposition of the needles could be divided into three stages. Colony forming units (CFU) of fungi were higher in the surface 0_2 cm layer (decomposition Stage 1) than in deeper layers. In contrast, the CFU of bacteria was lower in the surface 0_2 cm layer (Stage 1) than in deeper layers. The needles with faeces increased from 0 cm to 2 cm layer, decreased sharply from 2 cm to 4.5 cm layer (Stage 2) and slowly in deeper than 4.5 cm layer (Stage 3). Decomposition of needle litter was clearly apparent with increasing depth of the forest floor. Needles

  9. Conifer density within lake catchments predicts fish mercury concentrations in remote subalpine lakes

    Science.gov (United States)

    Eagles-Smith, Collin A.; Herring, Garth; Johnson, Branden L.; Graw, Rick

    2016-01-01

    Remote high-elevation lakes represent unique environments for evaluating the bioaccumulation of atmospherically deposited mercury through freshwater food webs, as well as for evaluating the relative importance of mercury loading versus landscape influences on mercury bioaccumulation. The increase in mercury deposition to these systems over the past century, coupled with their limited exposure to direct anthropogenic disturbance make them useful indicators for estimating how changes in mercury emissions may propagate to changes in Hg bioaccumulation and ecological risk. We evaluated mercury concentrations in resident fish from 28 high-elevation, sub-alpine lakes in the Pacific Northwest region of the United States. Fish total mercury (THg) concentrations ranged from 4 to 438 ng/g wet weight, with a geometric mean concentration (±standard error) of 43 ± 2 ng/g ww. Fish THg concentrations were negatively correlated with relative condition factor, indicating that faster growing fish that are in better condition have lower THg concentrations. Across the 28 study lakes, mean THg concentrations of resident salmonid fishes varied as much as 18-fold among lakes. We used a hierarchal statistical approach to evaluate the relative importance of physiological, limnological, and catchment drivers of fish Hg concentrations. Our top statistical model explained 87% of the variability in fish THg concentrations among lakes with four key landscape and limnological variables: catchment conifer density (basal area of conifers within a lake's catchment), lake surface area, aqueous dissolved sulfate, and dissolved organic carbon. Conifer density within a lake's catchment was the most important variable explaining fish THg concentrations across lakes, with THg concentrations differing by more than 400 percent across the forest density spectrum. These results illustrate the importance of landscape characteristics in controlling mercury bioaccumulation in fish.

  10. Reducing RANS Model Error Using Random Forest

    Science.gov (United States)

    Wang, Jian-Xun; Wu, Jin-Long; Xiao, Heng; Ling, Julia

    2016-11-01

    Reynolds-Averaged Navier-Stokes (RANS) models are still the work-horse tools in the turbulence modeling of industrial flows. However, the model discrepancy due to the inadequacy of modeled Reynolds stresses largely diminishes the reliability of simulation results. In this work we use a physics-informed machine learning approach to improve the RANS modeled Reynolds stresses and propagate them to obtain the mean velocity field. Specifically, the functional forms of Reynolds stress discrepancies with respect to mean flow features are trained based on an offline database of flows with similar characteristics. The random forest model is used to predict Reynolds stress discrepancies in new flows. Then the improved Reynolds stresses are propagated to the velocity field via RANS equations. The effects of expanding the feature space through the use of a complete basis of Galilean tensor invariants are also studied. The flow in a square duct, which is challenging for standard RANS models, is investigated to demonstrate the merit of the proposed approach. The results show that both the Reynolds stresses and the propagated velocity field are improved over the baseline RANS predictions. SAND Number: SAND2016-7437 A

  11. Weighted Hybrid Decision Tree Model for Random Forest Classifier

    Science.gov (United States)

    Kulkarni, Vrushali Y.; Sinha, Pradeep K.; Petare, Manisha C.

    2016-06-01

    Random Forest is an ensemble, supervised machine learning algorithm. An ensemble generates many classifiers and combines their results by majority voting. Random forest uses decision tree as base classifier. In decision tree induction, an attribute split/evaluation measure is used to decide the best split at each node of the decision tree. The generalization error of a forest of tree classifiers depends on the strength of the individual trees in the forest and the correlation among them. The work presented in this paper is related to attribute split measures and is a two step process: first theoretical study of the five selected split measures is done and a comparison matrix is generated to understand pros and cons of each measure. These theoretical results are verified by performing empirical analysis. For empirical analysis, random forest is generated using each of the five selected split measures, chosen one at a time. i.e. random forest using information gain, random forest using gain ratio, etc. The next step is, based on this theoretical and empirical analysis, a new approach of hybrid decision tree model for random forest classifier is proposed. In this model, individual decision tree in Random Forest is generated using different split measures. This model is augmented by weighted voting based on the strength of individual tree. The new approach has shown notable increase in the accuracy of random forest.

  12. Fitting rainfall interception models to forest ecosystems of Mexico

    Science.gov (United States)

    Návar, José

    2017-05-01

    Models that accurately predict forest interception are essential both for water balance studies and for assessing watershed responses to changes in land use and the long-term climate variability. This paper compares the performance of four rainfall interception models-the sparse Gash (1995), Rutter et al. (1975), Liu (1997) and two new models (NvMxa and NvMxb)-using data from four spatially extensive, structurally diverse forest ecosystems in Mexico. Ninety-eight case studies measuring interception in tropical dry (25), arid/semi-arid (29), temperate (26), and tropical montane cloud forests (18) were compiled and analyzed. Coefficients derived from raw data or published statistical relationships were used as model input to evaluate multi-storm forest interception at the case study scale. On average empirical data showed that, tropical montane cloud, temperate, arid/semi-arid and tropical dry forests intercepted 14%, 18%, 22% and 26% of total precipitation, respectively. The models performed well in predicting interception, with mean deviations between measured and modeled interception as a function of total precipitation (ME) generally 0.66. Model fitting precision was dependent on the forest ecosystem. Arid/semi-arid forests exhibited the smallest, while tropical montane cloud forest displayed the largest ME deviations. Improved agreement between measured and modeled data requires modification of in-storm evaporation rate in the Liu; the canopy storage in the sparse Gash model; and the throughfall coefficient in the Rutter and the NvMx models. This research concludes on recommending the wide application of rainfall interception models with some caution as they provide mixed results. The extensive forest interception data source, the fitting and testing of four models, the introduction of a new model, and the availability of coefficient values for all four forest ecosystems are an important source of information and a benchmark for future investigations in this

  13. Understanding forest-derived biomass supply with GIS modelling

    DEFF Research Database (Denmark)

    Hock, B. K.; Blomqvist, L.; Hall, P.

    2012-01-01

    distribution, and the cost of delivery as forests are frequently remote from energy users. A GIS-based model was developed to predict supply curves of forest biomass material for a site or group of sites, both now and in the future. The GIS biomass supply model was used to assist the New Zealand Energy...

  14. A model to predict the sound reflection from forests

    NARCIS (Netherlands)

    Wunderli, J.M.; Salomons, E.M.

    2009-01-01

    A model is presented to predict the reflection of sound at forest edges. A single tree is modelled as a vertical cylinder. For the reflection at a cylinder an analytical solution is given based on the theory of scattering of spherical waves. The entire forest is represented by a line of cylinders

  15. A model to predict the sound reflection from forests

    NARCIS (Netherlands)

    Wunderli, J.M.; Salomons, E.M.

    2009-01-01

    A model is presented to predict the reflection of sound at forest edges. A single tree is modelled as a vertical cylinder. For the reflection at a cylinder an analytical solution is given based on the theory of scattering of spherical waves. The entire forest is represented by a line of cylinders pl

  16. Numerical modeling of the airflow around a forest edge using LiDAR-derived forest heigths

    DEFF Research Database (Denmark)

    Boudreault, Louis-Etienne; Dellwik, Ebba; Bechmann, Andreas

    to the numerical CFD model. A sensitivity analysis with regards to the resolution of the structured forest height grid obtained from the implemented digital elevation model (DEM) was carried out. CFD calculations were conducted with the forest height grid taken as input and the complete methodology results......NS) approach using the k−e turbulence model with a corresponding canopy model. The example site investigated is a forest edge located on the Falster island in Denmark, where a measurement campaign was conducted. The LiDAR scans are used in order to obtain the forest heights, which served as input...... are finally briefly compared to the wind measurements of the site with regards to the calculated wind field prediction accuracy....

  17. Promoting Sustainable Forest Management Among Stakeholders in the Prince Albert Model Forest, Canada

    Directory of Open Access Journals (Sweden)

    Glen T Hvenegaard

    2015-01-01

    Full Text Available Model Forests are partnerships for shared decision-making to support social, environmental, and economic sustainability in forest management. Relationships among sustainable forest management partners are often strained, but the Prince Albert Model Forest (PAMF represents a process of effective stakeholder involvement, cooperative relationships, visionary planning, and regional landscape management. This article seeks to critically examine the history, drivers, accomplishments, and challenges associated with the PAMF. Four key phases are discussed, representing different funding levels, planning processes, research projects, and partners. Key drivers in the PAMF were funding, urgent issues, provincial responsibility, core of committed people, evolving governance, desire for a neutral organisation, role of protected areas, and potential for mutual benefits. The stakeholders involved in the Model Forest, including the forest industry and associated groups, protected areas, Aboriginal groups, local communities, governments, and research groups, were committed to the project, cooperated on many joint activities, provided significant staffing and financial resources, and gained many benefits to their own organisations. Challenges included declining funding, changing administrative structures, multiple partners, and rotating representatives. The PAMF process promoted consultative and integrated land resource management in the region, and demonstrated the positive results of cooperation between stakeholders interested in sustainable forest management.

  18. Modeling some long-term implications of CO2 fertilization for global forests and forest industries

    Institute of Scientific and Technical Information of China (English)

    Joseph; Buongiorno

    2016-01-01

    Background:This paper explored the long-term, ceteris-paribus effects of potential CO2 fertilization on the global forest sector. Based on the findings of Norby et al. (PNAS 2005, 102(50)) about forest response to elevated [CO2]. Methods:Forest productivity was increased in the Global Forest Products Model (GFPM) in proportion to the rising [CO2] projected in the IPCC scenario A1B, A2, and B2. Projections of the forest area and forest stock and of the production, consumption, prices, and trade of products ranging from fuelwood to paper and paperboard were obtained with the GFPM for each scenario, with and without CO2 fertilization beginning in 2011 and up to 2065. Results:CO2 fertilization increased wood supply, leading to lower wood prices which in turn induced modest lower prices of end products and higher global consumption. However, production and value added in industries decreased in some regions due to the relative competitive advantages and to the varying regional effects of CO2 fertilization. Conclusion:The main effect of CO2 fertilization was to raise the level of the world forest stock in 2065 by 9 to 10%for scenarios A2 and B2 and by 20%for scenario A1B. The rise in forest stock induced by fertilization was in part counteracted by its stimulation of the wood supply which resulted in lower wood prices and increased harvests.

  19. Using advanced surface complexation models for modelling soil chemistry under forests: Solling forest, Germany.

    Science.gov (United States)

    Bonten, Luc T C; Groenenberg, Jan E; Meesenburg, Henning; de Vries, Wim

    2011-10-01

    Various dynamic soil chemistry models have been developed to gain insight into impacts of atmospheric deposition of sulphur, nitrogen and other elements on soil and soil solution chemistry. Sorption parameters for anions and cations are generally calibrated for each site, which hampers extrapolation in space and time. On the other hand, recently developed surface complexation models (SCMs) have been successful in predicting ion sorption for static systems using generic parameter sets. This study reports the inclusion of an assemblage of these SCMs in the dynamic soil chemistry model SMARTml and applies this model to a spruce forest site in Solling Germany. Parameters for SCMs were taken from generic datasets and not calibrated. Nevertheless, modelling results for major elements matched observations well. Further, trace metals were included in the model, also using the existing framework of SCMs. The model predicted sorption for most trace elements well.

  20. Responses Of Subalpine Conifer Seedling Germination And Survival To Soil Microclimate In The Alpine Treeline Warming Experiment

    Science.gov (United States)

    Castanha, C.; Moyes, A. B.; Torn, M. S.; Germino, M. J.; Kueppers, L. M.

    2011-12-01

    At Niwot Ridge, Colorado, we used common gardens and climate manipulations to investigate potential subalpine tree species range shifts due to climate change. In Fall 2009 we harvested seed from local populations of limber pine and Englemann spruce, which we sowed in 3 experimental sites spanning an elevation gradient from lower subalpine forest (3080m asl), to the upper subalpine treeline ecotone (3400m asl), to the alpine tundra (3550m asl). In October we turned on overhead infrared heaters designed to increase growing season surface soil temperature by 4-5°C, and following snowmelt in 2010 we crossed this heating treatment with manual watering, adding 3mm of water each week. Here we report on the species, site, and treatment effects on seedling emergence and survival as mediated by snowmelt date, soil temperature, and soil moisture. Depending on the site and plot, heating accelerated germination by 1 to 4 weeks. Germination degree days (heat accumulation required for seed germination) were greater for pine than for spruce and greater in drier plots. Seedling survival was explained by date of emergence, with older seedlings more likely to survive the season. Survival was also explained by drought degree days -- the number of days below critical soil moisture thresholds compounded by high temperature -- with lower thresholds for spruce than for pine. Our preliminary results indicate that a warmer environment will stimulate germination for both species, but that, survival - especially for spruce - will be critically modulated by summer soil moisture.

  1. FOREST ECOSYSTEM DYNAMICS ASSESSMENT AND PREDICTIVE MODELLING IN EASTERN HIMALAYA

    Directory of Open Access Journals (Sweden)

    S. P. S. Kushwaha

    2012-09-01

    Full Text Available This study focused on the forest ecosystem dynamics assessment and predictive modelling deforestation and forest cover prediction in a part of north-eastern India i.e. forest areas along West Bengal, Bhutan, Arunachal Pradesh and Assam border in Eastern Himalaya using temporal satellite imagery of 1975, 1990 and 2009 and predicted forest cover for the period 2028 using Cellular Automata Markov Modedel (CAMM. The exercise highlighted large-scale deforestation in the study area during 1975–1990 as well as 1990–2009 forest cover vectors. A net loss of 2,334.28 km2 forest cover was noticed between 1975 and 2009, and with current rate of deforestation, a forest area of 4,563.34 km2 will be lost by 2028. The annual rate of deforestation worked out to be 0.35 and 0.78% during 1975–1990 and 1990–2009 respectively. Bamboo forest increased by 24.98% between 1975 and 2009 due to opening up of the forests. Forests in Kokrajhar, Barpeta, Darrang, Sonitpur, and Dhemaji districts in Assam were noticed to be worst-affected while Lower Subansiri, West and East Siang, Dibang Valley, Lohit and Changlang in Arunachal Pradesh were severely affected. Among different forest types, the maximum loss was seen in case of sal forest (37.97% between 1975 and 2009 and is expected to deplete further to 60.39% by 2028. The tropical moist deciduous forest was the next category, which decreased from 5,208.11 km2 to 3,447.28 (33.81% during same period with further chances of depletion to 2,288.81 km2 (56.05% by 2028. It noted progressive loss of forests in the study area between 1975 and 2009 through 1990 and predicted that, unless checked, the area is in for further depletion of the invaluable climax forests in the region, especially sal and moist deciduous forests. The exercise demonstrated high potential of remote sensing and geographic information system for forest ecosystem dynamics assessment and the efficacy of CAMM to predict the forest cover change.

  2. Modeling soil erosion and transport on forest landscape

    Science.gov (United States)

    Ge Sun; Steven G McNulty

    1998-01-01

    Century-long studies on the impacts of forest management in North America suggest sediment can cause major reduction on stream water quality. Soil erosion patterns in forest watersheds are patchy and heterogeneous. Therefore, patterns of soil erosion are difficult to model and predict. The objective of this study is to develop a user friendly management tool for land...

  3. Modeling forest disturbance and recovery in secondary subtropical dry forests of Puerto Rico

    Science.gov (United States)

    Holm, J. A.; Shugart, H. H., Jr.; Van Bloem, S. J.

    2015-12-01

    Because of human pressures, the need to understand and predict the long-term dynamics of subtropical dry forests is urgent. Through modifications to the ZELIG vegetation demographic model, including the development of species- and site-specific parameters and internal modifications, the capability to predict forest change within the Guanica State Forest in Puerto Rico can now be accomplished. One objective was to test the capability of this new model (i.e. ZELIG-TROP) to predict successional patterns of secondary forests across a gradient of abandoned fields currently being reclaimed as forests. Model simulations found that abandoned fields that are on degraded lands have a delayed response to fully recover and reach a mature forest status during the simulated time period; 200 years. The forest recovery trends matched predictions published in other studies, such that attributes involving early resource acquisition (i.e. canopy height, canopy coverage, density) were the fastest to recover, but attributes used for structural development (i.e. biomass, basal area) were relatively slow in recovery. Biomass and basal area, two attributes that tend to increase during later successional stages, are significantly lower during the first 80-100 years of recovery compared to a mature forest, suggesting that the time scale of resilience in subtropical dry forests needs to be partially redefined. A second objective was to investigate the long and short-term effects of increasing hurricane disturbances on vegetation structure and dynamics, due to hurricanes playing an important role in maintaining dry forest structure in Puerto Rico. Hurricane disturbance simulations within ZELIG-TROP predicted that increasing hurricane intensity (i.e. up to 100% increase) did not lead to a large shift in long-term AGB or NPP. However, increased hurricane frequency did lead to a 5-40% decrease in AGB, and 32-50% increase in NPP, depending on the treatment. In addition, the modeling approach used

  4. Mapping regional forest fire probability using artificial neural network model in a Mediterranean forest ecosystem

    Directory of Open Access Journals (Sweden)

    Onur Satir

    2016-09-01

    Full Text Available Forest fires are one of the most important factors in environmental risk assessment and it is the main cause of forest destruction in the Mediterranean region. Forestlands have a number of known benefits such as decreasing soil erosion, containing wild life habitats, etc. Additionally, forests are also important player in carbon cycle and decreasing the climate change impacts. This paper discusses forest fire probability mapping of a Mediterranean forestland using a multiple data assessment technique. An artificial neural network (ANN method was used to map forest fire probability in Upper Seyhan Basin (USB in Turkey. Multi-layer perceptron (MLP approach based on back propagation algorithm was applied in respect to physical, anthropogenic, climate and fire occurrence datasets. Result was validated using relative operating characteristic (ROC analysis. Coefficient of accuracy of the MLP was 0.83. Landscape features input to the model were assessed statistically to identify the most descriptive factors on forest fire probability mapping using the Pearson correlation coefficient. Landscape features like elevation (R = −0.43, tree cover (R = 0.93 and temperature (R = 0.42 were strongly correlated with forest fire probability in the USB region.

  5. Detailed modelling of the 21-cm Forest

    CERN Document Server

    Semelin, Benoit

    2015-01-01

    The 21-cm forest is a promising probe of the Epoch of Reionization. The local state of the intergalactic medium (IGM) is encoded in the spectrum of a background source (radio-loud quasars or gamma ray burst afterglow) by absorption at the local 21-cm wavelength, resulting in a continuous and fluctuating absorption level. Small-scale structures (filaments and minihaloes) in the IGM are responsible for the strongest absorption features. The absorption can also be modulated on large scales by inhomogeneous heating and Wouthuysen-Field coupling. We present the results from a simulation that attempts to preserve the cosmological environment while resolving some of the small-scale structures (a few kpc resolution in a 50 Mpc/h box). The simulation couples the dynamics and the ionizing radiative transfer and includes X-ray and Lyman lines radiative transfer for a detailed physical modelling. As a result we find that soft X-ray self-shielding, Lyman-alpha self-shielding and shock heating all have an impact on the pre...

  6. Elevational sensitivity in an Asian ‘hotspot’: moth diversity across elevational gradients in tropical, sub-tropical and sub-alpine China

    Science.gov (United States)

    Ashton, L. A.; Nakamura, A.; Burwell, C. J.; Tang, Y.; Cao, M.; Whitaker, T.; Sun, Z.; Huang, H.; Kitching, R. L.

    2016-01-01

    South-western China is widely acknowledged as a biodiversity ‘hotspot’: there are high levels of diversity and endemism, and many environments are under significant anthropogenic threats not least climate warming. Here, we explore diversity and compare response patterns of moth assemblages among three elevational gradients established within different climatic bioregions - tropical rain forest, sub-tropical evergreen broad-leaved forest and sub-alpine coniferous forest in Yunnan Province, China. We hypothesised that tropical assemblages would be more elevationally stratified than temperate assemblages, and tropical species would be more elevationally restricted than those in the temperate zone. Contrary to our hypothesis, the moth fauna was more sensitive to elevational differences within the temperate transect, followed by sub-tropical and tropical transects. Moths in the cooler and more seasonal temperate sub-alpine gradient showed stronger elevation-decay beta diversity patterns, and more species were restricted to particular elevational ranges. Our study suggests that moth assemblages are under threat from future climate change and sub-alpine rather than tropical faunas may be the most sensitive to climate change. These results improve our understanding of China’s biodiversity and can be used to monitor future changes to herbivore assemblages in a ‘hotspot’ of biodiversity. PMID:27211989

  7. Using Random Forest Models to Predict Organizational Violence

    Science.gov (United States)

    Levine, Burton; Bobashev, Georgly

    2012-01-01

    We present a methodology to access the proclivity of an organization to commit violence against nongovernment personnel. We fitted a Random Forest model using the Minority at Risk Organizational Behavior (MAROS) dataset. The MAROS data is longitudinal; so, individual observations are not independent. We propose a modification to the standard Random Forest methodology to account for the violation of the independence assumption. We present the results of the model fit, an example of predicting violence for an organization; and finally, we present a summary of the forest in a "meta-tree,"

  8. Using the Global Forest Products Model (GFPM version 2012)

    Science.gov (United States)

    Joseph Buongiorno; Shushuai Zhu

    2012-01-01

    The purpose of this manual is to enable users of the Global Forest Products Model to: • Install and run the GFPM software • Understand the input data • Change the input data to explore different scenarios • Interpret the output The GFPM is an economic model of global production, consumption and trade of forest products (Buongiorno et al. 2003). The GFPM2012 has data...

  9. Modeling the mitigation effect of coastal forests on tsunami

    Science.gov (United States)

    Kh'ng, Xin Yi; Teh, Su Yean; Koh, Hock Lye

    2017-08-01

    As we have learned from the 26 Dec 2004 mega Andaman tsunami that killed 250, 000 lives worldwide, tsunami is a devastating natural disaster that can cause severe impacts including immense loss of human lives and extensive destruction of properties. The wave energy can be dissipated by the presence of coastal mangrove forests, which provide some degree of protection against tsunami waves. On the other hand, costly artificial structures such as reinforced walls can substantially diminish the aesthetic value and may cause environmental problems. To quantify the effectiveness of coastal forests in mitigating tsunami waves, an in-house 2-D model TUNA-RP is developed and used to quantify the reduction in wave heights and velocities due to the presence of coastal forests. The degree of reduction varies significantly depending on forest flow-resistant properties such as vegetation characteristics, forest density and forest width. The ability of coastal forest in reducing tsunami wave heights along the west coast of Penang Island is quantified by means of model simulations. Comparison between measured tsunami wave heights for the 2004 Andaman tsunami and 2-D TUNA-RP model simulated values demonstrated good agreement.

  10. Evaluating the Importance of Plant Functional Traits: the Subalpine and Alpine

    Science.gov (United States)

    Sanchez, A.; Smith, W. K.

    2011-12-01

    Over the past several decades, researchers have attempted to characterize plant groups according to traits that are considered functional, i.e. contributing significantly to fitness. Due to the complexity of measuring fitness, the capability for photosynthetic carbon gain is often used as a proxy. Thus, this approach correlates structural differences to photosynthetic performance, especially those differences that are known to be associated with photosynthesis, are easily measured and inexpensive. At the often sharp boundary between the subalpine forest and alpine community (treeline ecotone), plant structural traits change dramatically, i.e. tall evergreen trees give way abruptly to low-stature shrubs, grasses, forbs, and herbs. Yet, the differences in functional traits, so abundant in the literature for a variety of species and communities, have not been compared contiguous communities such as the subalpine forest and alpine. Can differences in functional traits already identified in the literature also be used to characterize species of these two contrasting communities? Or are there other traits that are most functional and/or, possibly, unique to each community and not the most popular traits reported so far in the literature. Also, does the community structure itself help determine functional traits? For example, the top ten most frequently studied traits (145 total papers from approximately 63 different refereed journals) considered functional include the following (% of the 145 publications): specific leaf area or mass (SLA or SLM 39%), plant height (36%), leaf nitrogen content (34%), leaf size (19%), leaf area (16%), leaf photosynthetic performance (15%), leaf dry matter content (LDMC 15%), leaf mass per unit leaf area (LMA 15%), leaf thickness (15%), and seed mass (14%). In addition, another 120 traits were mentioned as functional, although all fell below a 14% citation rate. Particular focus was placed on this group due to the possibility that they might

  11. Gophers as geomorphic agents in the Colorado Front Range subalpine zone

    Science.gov (United States)

    Winchell, Eric W.; Anderson, Robert S.; Lombardi, Elizabeth M.; Doak, Daniel F.

    2016-07-01

    Gophers are significant geomorphic agents in many landscapes. We document activity of the northern pocket gopher (Thomomys talpoides) in two small subalpine meadows (1050-1800 m2) of the Front Range, Colorado, USA. We tracked locations and volumes of mounds and subnivean infilled tunnels over one year and probed the thickness of the biomantle within one meadow. We infer that only 5-7 gophers occupied each meadow, implying a gopher density of 28-67 ha- 1. Fractional areal coverage of the meadows by diggings suggests that within 49-95 years gophers would fully resurface the meadows. Annual volumes of excavated soil correspond to the equivalent of 1 mm of material spread evenly over the meadows. Probed meadow resistance depths reveal a pattern we interpret to be stone lines at roughly 15 cm depths; implied vertical turnover times are therefore roughly 150 years. These spatial and temporal patterns imply that gophers should be able to churn the biomantle on approximately century timescales and should fully resurface the meadow areas in similar timescales. These field data also contribute to an investigation of lateral sediment transport; given the local slope of the landscape, gopher-driven sediment transport within our two study sites suggests a landscape diffusivity of 0.008 m2y- 1. At no time do gophers occupy the forest. As evidenced by subnivean infilled tunnels, winter activity is restricted to the upslope (and hence upwind) meadow edges, which correspond to high snow cover and warm (> 0 °C) shallow subsurface soil temperatures. Subsequent activity expands downhill into the meadows and shows a distinct pulse of mound activity in late summer through early fall prior to snowfall. Local forest fire history has led to much more extensive meadows in the past, suggesting that the geomorphic influence of gophers in the landscape is much more widespread than the present distribution of meadows and may cover the entire subalpine region of the Front Range on millennial

  12. Partitioning CO2 fluxes with isotopologue measurements and modeling to understand mechanisms of forest carbon sequestration

    Energy Technology Data Exchange (ETDEWEB)

    Saleska, Scott [Univ. of Arizona, Tucson, AZ (United States); Davidson, Eric [Univ. of Arizona, Tucson, AZ (United States); Finzi, Adrien [Boston Univ., MA (United States); Wehr, Richdard [Harvard Univ., Cambridge, MA (United States); Moorcroft, Paul [Harvard Univ., Cambridge, MA (United States)

    2016-01-28

    daytime respiration (by ~100%) in the first half of the growing season at our site, and portrays ecosystem photosynthetic light-use efficiency as declining when in fact it is stable until autumnal senescence. B. Vegetation Phenology and belowground allocation: Findings: 1. Autotrophic respiration (Ra) showed a seasonal pattern, peaking in mid-summer when trees were most active. 2. The effective age of the substrate for belowground respiration is less than 2 weeks. 3. Above and belowground phenology are more synchronous in deciduous hardwood stands than evergreen hemlock stands. 4. The decline in root respiration rates in the fall is related to temperature rather than acclimation of root respiration or substrate limitations. Methodological Issues: 5. The isotopic signatures of autotrophic and heterotrophic respiration are too similar for isotopic partitioning of belowground respiration into these two components at our site—in keeping with the recent findings of Bowling et al. (2015) in a subalpine conifer forest. 6. Artifacts of the trenching method, such as changes in soil moisture and increased carbon substrate from the newly severed roots, are significant and need to be quantified when determining daily to annual estimates of autotrophic and heterotrophic respiration. C. Effects of simulated exudates on priming of microbial decomposition: The stoichiometry of root exudates influences both the amount and the mechanism by which priming occurs. At low C:N, SOC loss is caused by an increase in microbial efficiency. At high C:N, SOC loss is caused by an increase in microbial biomass. D. Modeling with the Ecosystem Demography Model (ED2): 1. Incorporation of 13C tracking to create an isotopically-enabled Ecosystem Demography v2 model (ED2) 2. State-of-the-art parameter optimization methodology developed for improving ED2 model predictions and parameters. 3. Significantly improved model predictions of growth- and maintenance-related carbon fluxes and 13C fluxes

  13. Forest Mortality in High-Elevation Pine Forests of Eastern California, USA; Influence of Climatic Water Deficit

    Science.gov (United States)

    Millar, C. I.; Westfall, R. D.; Flint, A. L.; Flint, L. E.; Bokach, M. J.; Delany, D. L.

    2011-12-01

    Widespread mortality in high-elevation forests has been increasing across western North American mountains in recent years, with climate, insects, and disease the primary causes. Subalpine forests in the eastern Sierra Nevada, by contrast, have experienced far less mortality than other ranges, and mortality events have been patchy and episodic. This situation, and lack of significant effect of non-native white-pine blister rust, enable investigation of fine-scale response of two subalpine Sierran species, whitebark pine (Pinus albicaulis, PiAl) and limber pine (P. flexilis, PiFl), to climate variability, in particular, climatic water deficit (CWD). We report similarities and differences between the two major mortality events in these pines in the last 150 years: 1988-1992 for PiFl and 2006-ongoing for PiAl. The ultimate cause of tree death was mountain pine beetle (Dendroctonus ponderosae), with climatic factors pre-conditioning stress in both species. Our studies include intensive ecology-plot analyses (both species) and region-wide air-survey forest-mortality detection mapping (PiAl only). We used climatic data from historic weather station data; for CWD, we modeled values from PRISM regional climate projections downscaled to 270 m and applied these to a regional water-balance model. The strongest correlations of ring-width (a measure of tree growth) in both species to climatic variables were to CWD: PiFl, -0.29 and -0.54 for live and dead trees, respectively; PiAl ,-0.19 for both live and dead trees. Correlations of ring-widths to 2-year lagged CWD were higher than to current-year means: PiFl, -0.34 and -0.44 for live and dead trees, respectively; PiAl, -0.43 and -0.46, live and dead trees, respectively. Mean annual CWD values of the mortality plots in the intensive study were 181 mm (PiAl) and 289 mm (PiFl); air surveys showed significantly higher CWD values for PiAl mortality stands than live forests (387 mm and 307 mm, respectively). Correlations of growth to

  14. Analysis of nitrogen saturation potential in Rocky Mountain tundra and forest: implications for aquatic systems

    Science.gov (United States)

    Baron, Jill S.; Ojima, Dennis S.; Holland, Elisabeth A.; Parton, William J.

    1994-01-01

    We employed grass and forest versions of the CENTURY model under a range of N deposition values (0.02–1.60 g N m−2 y−1) to explore the possibility that high observed lake and stream N was due to terrestrial N saturation of alpine tundra and subalpine forest in Loch Vale Watershed, Rocky Mountain National Park, Colorado. Model results suggest that N is limiting to subalpine forest productivity, but that excess leachate from alpine tundra is sufficient to account for the current observed stream N. Tundra leachate, combined with N leached from exposed rock surfaces, produce high N loads in aquatic ecosystems above treeline in the Colorado Front Range. A combination of terrestrial leaching, large N inputs from snowmelt, high watershed gradients, rapid hydrologic flushing and lake turnover times, and possibly other nutrient limitations of aquatic organisms constrain high elevation lakes and streams from assimilating even small increases in atmospheric N. CENTURY model simulations further suggest that, while increased N deposition will worsen the situation, nitrogen saturation is an ongoing phenomenon.

  15. Villaflores: Municipal forest fire management model

    Science.gov (United States)

    Pedro Martínez Muñoz; Carlos Alberto Velázquez Sanabria

    2013-01-01

    As provided for in the General Law on Sustainable Forestry Development, the Municipality of Villaflores has worked on a continuous basis since 2002 to reduce the damage caused by forest fires as part of its working agenda, in conjunction with Federal and State agencies and NGOs. The work plan has the following phases: a) Inter-agency coordination:...

  16. Modelling Forest Water Consumption in The Netherlands

    NARCIS (Netherlands)

    Dolman, A.J.; Nonhebel, S.

    1988-01-01

    The water consumption of oak, beech, spruce and pine forest is predicted from routinely measured meteorological data for five locations in the Netherlands. Differences in water consumption are found to be primarily a result of differences in interception loss. Predicted interception loss was found t

  17. Provenance variability in nursery growth of subalpine fir

    Science.gov (United States)

    Charlie Cartwright; Cheng Ying

    2011-01-01

    Subalpine fir (Abies lasiocarpa [Hook] Nutt.) is a wide-ranging, high-elevation species in the interior of British Columbia. It is commonly harvested for lumber, but replanting of it is limited. Some reticence is based upon wood quality and rate of growth, but there are also seed and nursery culturing difficulties. This study investigated seedling growth traits of 111...

  18. Root cold hardiness and native distribution of subalpine conifers

    Science.gov (United States)

    Mark D. Coleman; Thomas M. Hinckley; Geoffrey McNaughton; Barbara A. Smit

    1992-01-01

    Root and needle cold hardiness were compared in seedlings of subalpine conifers to determine if differences existed among species originating from either cold continental climates or mild maritime climates. Abies amabilis (Dougl.) Carr. and Tsuga mertensiana (Bong.) Carr. are exclusively distributed in maritime environments,...

  19. Using urban forest assessment tools to model bird habitat potential

    Science.gov (United States)

    Lerman, Susannah B.; Nislow, Keith H.; Nowak, David J.; Destefano, Stephen; King, David I.; Jones-Farrand, D. Todd

    2014-01-01

    The alteration of forest cover and the replacement of native vegetation with buildings, roads, exotic vegetation, and other urban features pose one of the greatest threats to global biodiversity. As more land becomes slated for urban development, identifying effective urban forest wildlife management tools becomes paramount to ensure the urban forest provides habitat to sustain bird and other wildlife populations. The primary goal of this study was to integrate wildlife suitability indices to an existing national urban forest assessment tool, i-Tree. We quantified available habitat characteristics of urban forests for ten northeastern U.S. cities, and summarized bird habitat relationships from the literature in terms of variables that were represented in the i-Tree datasets. With these data, we generated habitat suitability equations for nine bird species representing a range of life history traits and conservation status that predicts the habitat suitability based on i-Tree data. We applied these equations to the urban forest datasets to calculate the overall habitat suitability for each city and the habitat suitability for different types of land-use (e.g., residential, commercial, parkland) for each bird species. The proposed habitat models will help guide wildlife managers, urban planners, and landscape designers who require specific information such as desirable habitat conditions within an urban management project to help improve the suitability of urban forests for birds.

  20. Harvest choice and timber supply models for forest forecasting

    Science.gov (United States)

    Maksym Polyakov; David N Wear

    2010-01-01

    Timber supply has traditionally been modeled using aggregate data, whereas individual harvest choices have been shown to be sensitive to the vintage and condition of forest capital stocks. In this article, we build aggregate supply models for four roundwood products in a seven-state region of the US South directly from stand-level harvest choice models applied to...

  1. Modeling Forest Succession among Ecological Land Units in Northern Minnesota

    Directory of Open Access Journals (Sweden)

    George Host

    1998-12-01

    Full Text Available Field and modeling studies were used to quantify potential successional pathways among fine-scale ecological classification units within two geomorphic regions of north-central Minnesota. Soil and overstory data were collected on plots stratified across low-relief ground moraines and undulating sand dunes. Each geomorphic feature was sampled across gradients of topography or soil texture. Overstory conditions were sampled using five variable-radius point samples per plot; soil samples were analyzed for carbon and nitrogen content. Climatic, forest composition, and soil data were used to parameterize the sample plots for use with LINKAGES, a forest growth model that simulates changes in composition and soil characteristics over time. Forest composition and soil properties varied within and among geomorphic features. LINKAGES simulations were using "bare ground" and the current overstory as starting conditions. Northern hardwoods or pines dominated the late-successional communities of morainal and dune landforms, respectively. The morainal landforms were dominated by yellow birch and sugar maple; yellow birch reached its maximum abundance in intermediate landscape positions. On the dune sites, pine was most abundant in drier landscape positions, with white spruce increasing in abundance with increasing soil moisture and N content. The differences in measured soil properties and predicted late-successional composition indicate that ecological land units incorporate some of the key variables that govern forest composition and structure. They further show the value of ecological classification and modeling for developing forest management strategies that incorporate the spatial and temporal dynamics of forest ecosystems.

  2. Growth Model System for National Continuous Forest Inventory

    Institute of Scientific and Technical Information of China (English)

    Ge Hongli; Meng Xianyu; Tang Xiaoming

    2006-01-01

    A Growth Model System is developed for data updating and forecasting of the national continuous forest inventory.Its design is based on the inherent forest growth laws,and its parameters are estimated by modern regression methods.It is composed of an age-implicit tree model,a diameter-related survival rate model,a recruitment model based on age and number of plots,and an area model.It is suitable for forest resource information updating and forecasting for a large region,e.g.,a province.Data of remeasured plots and trees are needed for development of the system.A study case of Jiangxi Province with detailed error analyses is provided.

  3. Structural Equation Modeling: Theory and Applications in Forest Management

    Directory of Open Access Journals (Sweden)

    Tzeng Yih Lam

    2012-01-01

    Full Text Available Forest ecosystem dynamics are driven by a complex array of simultaneous cause-and-effect relationships. Understanding this complex web requires specialized analytical techniques such as Structural Equation Modeling (SEM. The SEM framework and implementation steps are outlined in this study, and we then demonstrate the technique by application to overstory-understory relationships in mature Douglas-fir forests in the northwestern USA. A SEM model was formulated with (1 a path model representing the effects of successively higher layers of vegetation on late-seral herbs through processes such as light attenuation and (2 a measurement model accounting for measurement errors. The fitted SEM model suggested a direct negative effect of light attenuation on late-seral herbs cover but a direct positive effect of northern aspect. Moreover, many processes have indirect effects mediated through midstory vegetation. SEM is recommended as a forest management tool for designing silvicultural treatments and systems for attaining complex arrays of management objectives.

  4. Estimating forest carbon dynamics in South Korea from 1954 to 2050 - coupling global forestry model and forest soil carbon model

    Science.gov (United States)

    Lee, Jongyeol; Kim, Moonil; Lakyda, Ivan; Pietsch, Stephan; Shvidenko, Anatoly; Kraxner, Florian; Forsell, Nicklas; Son, Yowhan

    2016-04-01

    There have been demands on reporting national forest carbon (C) inventories to mitigate global climate change. Global forestry models estimate growth of stem volume and C at various spatial and temporal scales but they do not consider dead organic matter (DOM) C. In this study, we simulated national forest C dynamics in South Korea with a calibrated global forestry model (G4M model) and a module of DOM C dynamics in Korean forest C model (FBDC model). 3890 simulation units (1-16 km2) were established in entire South Korea. Growth functions of stem for major tree species (Pinus densiflora, P. rigida, Larix kaempferi, Quercus variabilis, Q. mongolica, and Q. acutissima) were estimated by internal mechanism of G4M model and Korean yield tables. C dynamics in DOMs were determined by balance between input and output (decomposition) of DOMs in the FBDC model. Annual input of DOM was estimated by multiplying C stock of biomass compartment with turnover rate. Decomposition of DOM was estimated by C stock of DOM, mean air temperature, and decay rate. C stock in each C pool was initialized by spin-up process with consideration of severe deforestation by Japanese exploitation and Korean War. No disturbance was included in the simulation process. Total forest C stock (Tg C) and mean C density (Mg C ha-1) decreased from 657.9 and 112.1 in 1954 to 607.2 and 103.4 in 1973. Especially, C stock in mineral soil decreased at a rate of 0.5 Mg C ha-1 yr-1 during the period due to suppression of regeneration. However, total forest C stock (Tg C) and mean C density (Mg C ha-1) gradually increased from 607.0 and 103.4 in 1974 to 1240.7 and 211.3 in 2015 due to the national reforestation program since 1973. After the reforestation program, Korean forests became C sinks. Model estimates were also verified by comparison of these estimates and national forest inventory data (2006-2010). High similarity between the model estimates and the inventory data showed a reliability of down

  5. Forecasting forest development through modeling based on the legacy of forest structure over the past 43 years

    Directory of Open Access Journals (Sweden)

    E.Z. Baskent

    2013-07-01

    Full Text Available Aim of study: Sustainable management of forest ecosystems requires comprehensive coverage of data to reflect both the historical legacy and the future development of forests.  This study focuses on analyzing the spatio-temporal dynamics of forests over the past 43 years to help better forecast the future development of forest under various management strategies.Area of study: The area is situated in Karaisalı district of Adana city in the southeastern corner of Turkey.Material and methods: The historical pattern from 1969 to 2012 was assessed with digital forest cover type maps, produced with high resolution aerial photo interpretation using Geographic Information Systems (GIS. The forest development over the next 120 years was forecasted using ecosystem-based multiple use forest management model (ETÇAP to understand the cause-effect relationships under various management strategies.Main results: The result showed that over the past 43 years while total forest areas decreased about 1194 ha (4%, the productive forest areas increased about 5397 ha (18% with a decrease of degraded forest (5824 ha, 20% and increase of maquis areas (2212 ha, 7%.The forecast of forest development under traditional management strategy resulted in an unsustainable forest due to broken initial age class structure, yet generated more total harvest (11% due to 88% relaxing of even timber flow constraint. While more volume could be harvested under traditional management conditions, the sustainability of future forest is significantly jeopardized.Research highlights: This result trongly implies that it is essential adopting modeling techniques to understand forest dynamics and forecast the future development comprehensively.Keywords: Forest management; simulation; optimization; forest dynamics; land use change.

  6. Infinity computations in cellular automaton forest-fire model

    Science.gov (United States)

    Iudin, D. I.; Sergeyev, Ya. D.; Hayakawa, M.

    2015-03-01

    Recently a number of traditional models related to the percolation theory has been considered by means of a new computational methodology that does not use Cantor's ideas and describes infinite and infinitesimal numbers in accordance with the principle 'The whole is greater than the part' (Euclid's Common Notion 5). Here we apply the new arithmetic to a cellular automaton forest-fire model which is connected with the percolation methodology and in some sense combines the dynamic and the static percolation problems and under certain conditions exhibits critical fluctuations. It is well known that there exist two versions of the model: real forest-fire model where fire catches adjacent trees in the forest in the step by step manner and simplified version with instantaneous combustion. Using new approach we observe that in both situations we deal with the same model but with different time resolution. We show that depending on the "microscope" we use the same cellular automaton forest-fire model reveals either instantaneous forest combustion or step by step firing. By means of the new approach it was also observed that as far as we choose an infinitesimal tree growing rate and infinitesimal ratio between the ignition probability and the growth probability we determine the measure or extent of the system size infinity that provides the criticality of the system dynamics. Correspondent inequalities for grosspowers are derived.

  7. Modeling Mediterranean forest structure using airborne laser scanning data

    Science.gov (United States)

    Bottalico, Francesca; Chirici, Gherardo; Giannini, Raffaello; Mele, Salvatore; Mura, Matteo; Puxeddu, Michele; McRoberts, Ronald E.; Valbuena, Ruben; Travaglini, Davide

    2017-05-01

    The conservation of biological diversity is recognized as a fundamental component of sustainable development, and forests contribute greatly to its preservation. Structural complexity increases the potential biological diversity of a forest by creating multiple niches that can host a wide variety of species. To facilitate greater understanding of the contributions of forest structure to forest biological diversity, we modeled relationships between 14 forest structure variables and airborne laser scanning (ALS) data for two Italian study areas representing two common Mediterranean forests, conifer plantations and coppice oaks subjected to irregular intervals of unplanned and non-standard silvicultural interventions. The objectives were twofold: (i) to compare model prediction accuracies when using two types of ALS metrics, echo-based metrics and canopy height model (CHM)-based metrics, and (ii) to construct inferences in the form of confidence intervals for large area structural complexity parameters. Our results showed that the effects of the two study areas on accuracies were greater than the effects of the two types of ALS metrics. In particular, accuracies were less for the more complex study area in terms of species composition and forest structure. However, accuracies achieved using the echo-based metrics were only slightly greater than when using the CHM-based metrics, thus demonstrating that both options yield reliable and comparable results. Accuracies were greatest for dominant height (Hd) (R2 = 0.91; RMSE% = 8.2%) and mean height weighted by basal area (R2 = 0.83; RMSE% = 10.5%) when using the echo-based metrics, 99th percentile of the echo height distribution and interquantile distance. For the forested area, the generalized regression (GREG) estimate of mean Hd was similar to the simple random sampling (SRS) estimate, 15.5 m for GREG and 16.2 m SRS. Further, the GREG estimator with standard error of 0.10 m was considerable more precise than the SRS

  8. Modelling of radionuclide migration in forest ecosystems. A literature review

    Energy Technology Data Exchange (ETDEWEB)

    Avila, R.; Moberg, L.; Hubbard, L.

    1998-03-01

    The Chernobyl accident has clearly shown the long-term effects of a radioactive contamination of forest ecosystems. This report is based on a literature review of models which describe the migration of radionuclides, radioactive caesium in particular, in forest ecosystems. The report describes the particularities of the forest ecosystem, the time dynamics of the contamination, the transfer processes and factors influencing caesium migration. This provides a basis for a discussion of different approaches for modelling caesium migration in the forest. It is concluded that the studied dynamic models include the most relevant transfer processes both for the acute and the long-term phase after a radioactive deposition. However, most models are site specific and do not consider some of the factors responsible for the differences in radionuclide behaviour and distribution in different types of forests. Although model improvements are constrained by the availability of experimental data and by the lack of knowledge of the migration mechanisms some possible improvements are discussed. This report is part of the LANDSCAPE project. -An integrated approach to radionuclide flow in the semi-natural ecosystems underlying exposure pathways to man. 42 refs, 3 tabs, 9 figs.

  9. Forkome Model Application for Prognosis of Forest Fires

    Directory of Open Access Journals (Sweden)

    Kozak Ihor

    2014-12-01

    Full Text Available This paper presents the perspectives of FORKOME model use regarding the simulation of fre and its impact on forest stands. The calculation of probability of forest fres and predicting its effect on forest stands are analysed as well. The model is supposed to examine the impact of fres on pine stands, which ultimately leads to a decline in the viability of those trees. As a result of fre activity there were determined the following categories of trees - undamaged, slightly damaged, heavily damaged and destroyed. Moreover, by conducting simulations on forests with Scots pine (Pinus sylvestris L., there were demonstrated the possibilities of FORKOME model practical application. Simulation shows the possibility of the model to predict the fre damage in a particular year and the perspective of a stand development, taking into account climate change and its influence on the frequency of fres. Prospects and directions of further developments of the model concerning simulation of fre in forest stands were discussed as well.

  10. Fungi of Mt. Babia Gora. 2: Indicative value of macromycetes in forest associations. A: Initial considerations

    Science.gov (United States)

    Bujakiewicz, A.

    1984-01-01

    The role and value of fungi in forest associations of Mt. Babia Gora massif were determined. The general physiographic characteristics of the research terrain, the distribution of the fungi sites, a list of the 618 taxons noted in the subalpine forests of Mt. Babia Gora, and the initial characteristics of the forest mycoflora of this massif are presented.

  11. Forest cover dynamics analysis and prediction modelling using logistic regression model (case study: forest cover at Indragiri Hulu Regency, Riau Province)

    Science.gov (United States)

    Nahib, Irmadi; Suryanta, Jaka

    2017-01-01

    Forest destruction, climate change and global warming could reduce an indirect forest benefit because forest is the largest carbon sink and it plays a very important role in global carbon cycle. To support Reducing Emissions from Deforestation and Forest Degradation (REDD +) program, people pay attention of forest cover changes as the basis for calculating carbon stock changes. This study try to explore the forest cover dynamics as well as the prediction model of forest cover in Indragiri Hulu Regency, Riau Province Indonesia. The study aims to analyse some various explanatory variables associated with forest conversion processes and predict forest cover change using logistic regression model (LRM). The main data used in this study is Land use/cover map (1990 – 2011). Performance of developed model was assessed through a comparison of the predicted model of forest cover change and the actual forest cover in 2011. The analysis result showed that forest cover has decreased continuously between 1990 and 2011, up to the loss of 165,284.82 ha (35.19 %) of forest area. The LRM successfully predicted the forest cover for the period 2010 with reasonably high accuracy (ROC = 92.97 % and 70.26 %).

  12. Past and Future Climate Change Impacts on Mountain Forests on the Olympic Peninsula (Washington, USA)

    Science.gov (United States)

    Schwörer, C.; Fisher, D. M.; Gavin, D. G.; Temperli, C.; Bartlein, P. J.

    2015-12-01

    Mountain forest composition and distribution is strongly affected by temperature and is expected to shift to higher elevations with climate change. However, warmer winters will also lead to an upward shift of the snowline and a decrease in snowpack at lower and intermediate elevations. In the mountain ranges of Western North America, snowpack plays an important role in providing additional moisture during the dry summer months. It is therefore unclear if the projected climate change will lead to a rise of subalpine forest due to a longer growing season or a contraction due to drought stress. Since forest succession processes take place over decades and centuries we use LandClim, a dynamic vegetation model, to assess the impact of climate change on mountain forests on the Olympic Peninsula (Washington, USA). As a reality check we first simulate vegetation dynamics since the last Ice Age and compare model output with paleobotanical data from five natural archives that span the topographic and climatic gradients on the Peninsula. LandClim produces realistic present-day species compositions with respect to elevation and precipitation gradients. Moreover, the simulations of forest dynamics for the last 16,000 years generally agree with the pollen and macrofossil data. We then simulated mountain forests under future climate projections. As a result, our model indicates drastic changes in species composition with a replacement of mountain hemlock (Tsuga mertensiana) by more drought-resistant species such as subalpine fir (Abies lasiocarpa). On the drier, eastern side of the Peninsula, the model even suggests a lowering of timberline due to insufficient moisture availability in shallow alpine soils. Our results have important implications for ecosystem managers and stress the urgency of climate change mitigation.

  13. Evidence for foliar endophytic nitrogen fixation in a widely distributed subalpine conifer.

    Science.gov (United States)

    Moyes, Andrew B; Kueppers, Lara M; Pett-Ridge, Jennifer; Carper, Dana L; Vandehey, Nick; O'Neil, James; Frank, A Carolin

    2016-04-01

    Coniferous forest nitrogen (N) budgets indicate unknown sources of N. A consistent association between limber pine (Pinus flexilis) and potential N2 -fixing acetic acid bacteria (AAB) indicates that native foliar endophytes may supply subalpine forests with N. To assess whether the P. flexilis-AAB association is consistent across years, we re-sampled P. flexilis twigs at Niwot Ridge, CO and characterized needle endophyte communities via 16S rRNA Illumina sequencing. To investigate whether endophytes have access to foliar N2 , we incubated twigs with (13) N2 -enriched air and imaged radioisotope distribution in needles, the first experiment of its kind using (13) N. We used the acetylene reduction assay to test for nitrogenase activity within P. flexilis twigs four times from June to September. We found evidence for N2 fixation in P. flexilis foliage. N2 diffused readily into needles and nitrogenase activity was positive across sampling dates. We estimate that this association could provide 6.8-13.6 μg N m(-2)  d(-1) to P. flexilis stands. AAB dominated the P. flexilis needle endophyte community. We propose that foliar endophytes represent a low-cost, evolutionarily stable N2 -fixing strategy for long-lived conifers. This novel source of biological N2 fixation has fundamental implications for understanding forest N budgets.

  14. Modeling Alaska boreal forests with a controlled trend surface approach

    Science.gov (United States)

    Mo Zhou; Jingjing Liang

    2012-01-01

    An approach of Controlled Trend Surface was proposed to simultaneously take into consideration large-scale spatial trends and nonspatial effects. A geospatial model of the Alaska boreal forest was developed from 446 permanent sample plots, which addressed large-scale spatial trends in recruitment, diameter growth, and mortality. The model was tested on two sets of...

  15. Modeling the hydrologic impacts of forest harvesting on Florida flatwoods

    Science.gov (United States)

    Ge Sun; Hans Rierkerk; Nicholas B. Comerford

    1998-01-01

    The great temporal and spatial variability of pine flatwoods hydrology suggests traditional short-term field methods may not be effective in evaluating the hydrologic effects of forest management. The flatwoods model was developed, calibrated and validated specifically for the cypress wetland-pine upland landscape. The model was applied to two typical flatwoods sites...

  16. Modelling natural disturbances in forest ecosystems: a review

    NARCIS (Netherlands)

    Seidl, R.; Fernandes, P.M.; Fonseca, T.F.; Gillet, F.; Jöhnsson, A.M.; Merganičová, K.; Netherer, S.; Arpaci, A.; Bontemps, J.D.; Bugmann, H.; González-Olabarria, J.R.; Lasch, P.; Meredieu, C.; Moreira, F.; Schelhaas, M.; Mohren, G.M.J.

    2011-01-01

    Natural disturbances play a key role in ecosystem dynamics and are important factors for sustainable forest ecosystem management. Quantitative models are frequently employed to tackle the complexities associated with disturbance processes. Here we review the wide variety of approaches to modelling n

  17. Modelling natural disturbances in forest ecosystems: a review

    NARCIS (Netherlands)

    Seidl, R.; Fernandes, P.M.; Fonseca, T.F.; Gillet, F.; Jöhnsson, A.M.; Merganičová, K.; Netherer, S.; Arpaci, A.; Bontemps, J.D.; Bugmann, H.; González-Olabarria, J.R.; Lasch, P.; Meredieu, C.; Moreira, F.; Schelhaas, M.; Mohren, G.M.J.

    2011-01-01

    Natural disturbances play a key role in ecosystem dynamics and are important factors for sustainable forest ecosystem management. Quantitative models are frequently employed to tackle the complexities associated with disturbance processes. Here we review the wide variety of approaches to modelling n

  18. DRAINMOD-FOREST: Integrated Modeling of Hydrology, Soil Carbon and Nitrogen Dynamics, and Plant Growth for Drained Forests.

    Science.gov (United States)

    Tian, Shiying; Youssef, Mohamed A; Skaggs, R Wayne; Amatya, Devendra M; Chescheir, G M

    2012-01-01

    We present a hybrid and stand-level forest ecosystem model, DRAINMOD-FOREST, for simulating the hydrology, carbon (C) and nitrogen (N) dynamics, and tree growth for drained forest lands under common silvicultural practices. The model was developed by linking DRAINMOD, the hydrological model, and DRAINMOD-N II, the soil C and N dynamics model, to a forest growth model, which was adapted mainly from the 3-PG model. The forest growth model estimates net primary production, C allocation, and litterfall using physiology-based methods regulated by air temperature, water deficit, stand age, and soil N conditions. The performance of the newly developed DRAINMOD-FOREST model was evaluated using a long-term (21-yr) data set collected from an artificially drained loblolly pine ( L.) plantation in eastern North Carolina, USA. Results indicated that the DRAINMOD-FOREST accurately predicted annual, monthly, and daily drainage, as indicated by Nash-Sutcliffe coefficients of 0.93, 0.87, and 0.75, respectively. The model also predicted annual net primary productivity and dynamics of leaf area index reasonably well. Predicted temporal changes in the organic matter pool on the forest floor and in forest soil were reasonable compared to published literature. Both predicted annual and monthly nitrate export were in good agreement with field measurements, as indicated by Nash-Sutcliffe coefficients above 0.89 and 0.79 for annual and monthly predictions, respectively. This application of DRAINMOD-FOREST demonstrated its capability for predicting hydrology and C and N dynamics in drained forests under limited silvicultural practices.

  19. A new model for estimating boreal forest fPAR

    Science.gov (United States)

    Majasalmi, Titta; Rautiainen, Miina; Stenberg, Pauline

    2014-05-01

    Life on Earth is continuously sustained by the extraterrestrial flux of photosynthetically active radiation (PAR, 400-700 nm) from the sun. This flux is converted to biomass by chloroplasts in green vegetation. Thus, the fraction of absorbed PAR (fPAR) is a key parameter used in carbon balance studies, and is listed as one of the Essential Climate Variables (ECV). Temporal courses of fPAR for boreal forests are difficult to measure, because of the complex 3D structures. Thus, they are most often estimated based on models which quantify the dependency of absorbed radiation on canopy structure. In this study, we adapted a physically-based canopy radiation model into a fPAR model, and compared modeled and measured fPAR in structurally different boreal forest stands. The model is based on the spectral invariants theory, and uses leaf area index (LAI), canopy gap fractions and spectra of foliage and understory as input data. The model differs from previously developed more detailed fPAR models in that the complex 3D structure of coniferous forests is described using an aggregated canopy parameter - photon recollision probability p. The strength of the model is that all model inputs are measurable or available through other simple models. First, the model was validated with measurements of instantaneous fPAR obtained with the TRAC instrument in nine Scots pine, Norway spruce and Silver birch stands in a boreal forest in southern Finland. Good agreement was found between modeled and measured fPAR. Next, we applied the model to predict temporal courses of fPAR using data on incoming radiation from a nearby flux tower and sky irradiance models. Application of the model to simulate diurnal and seasonal values of fPAR indicated that the ratio of direct-to-total incident radiation and leaf area index are the key factors behind the magnitude and variation of stand-level fPAR values.

  20. Evaluation of a large-scale forest scenario model in heterogeneous forests: a case study for Switzerland

    NARCIS (Netherlands)

    Thürig, E.; Schelhaas, M.J.

    2006-01-01

    Large-scale forest scenario models are widely used to simulate the development of forests and to compare the carbon balance estimates of different countries. However, as site variability in the application area often exceeds the variability in the calibration area, model validation is important. The

  1. Calibrating and Updating the Global Forest Products Model (GFPM version 2014 with BPMPD)

    Science.gov (United States)

    Joseph Buongiorno; Shushuai Zhu

    2014-01-01

    The Global Forest Products Model (GFPM) is an economic model of global production, consumption, and trade of forest products. An earlier version of the model is described in Buongiorno et al. (2003). The GFPM 2014 has data and parameters to simulate changes of the forest sector from 2010 to 2030. Buongiorno and Zhu (2014) describe how to use the model for simulation....

  2. Calibrating and updating the Global Forest Products Model (GFPM version 2016 with BPMPD)

    Science.gov (United States)

    Joseph Buongiorno; Shushuai  Zhu

    2016-01-01

    The Global Forest Products Model (GFPM) is an economic model of global production, consumption, and trade of forest products. An earlier version of the model is described in Buongiorno et al. (2003). The GFPM 2016 has data and parameters to simulate changes of the forest sector from 2013 to 2030. Buongiorno and Zhu (2015) describe how to use the model for...

  3. Comparison of Social Benefits of Forest under Different Management Models: A Case Study of Close-to-Nature Forest Management in Harbin, China

    Institute of Scientific and Technical Information of China (English)

    2011-01-01

    Different forest management modes definitely create different results. A study of social benefits nurtured by scientific forest management had been conducted in 1998-2008 with Danqinghe Experiment Forest Farm, Zhuanshan Experiment Forest Farm and Shanhe Experiment Forest Farmtogether as the project area. The method that was centered on quantification and supplemented byqualification was employed to compare the social benefits of forests separately under the scientificmanagement model and the traditional man...

  4. A novel statistical methodology to overcome sampling irregularities in the forest inventory data and to model forest changes under dynamic disturbance regimes

    Science.gov (United States)

    Nikolay Strigul; Jean. Lienard

    2015-01-01

    Forest inventory datasets offer unprecedented opportunities to model forest dynamics under evolving environmental conditions but they are analytically challenging due to irregular sampling time intervals of the same plot, across the years. We propose here a novel method to model dynamic changes in forest biomass and basal area using forest inventory data. Our...

  5. Modelling atmospheric OH-reactivity in a boreal forest ecosystem

    DEFF Research Database (Denmark)

    Mogensen, D.; Smolander, S.; Sogachev, Andrey;

    2011-01-01

    We have modelled the total atmospheric OH-reactivity in a boreal forest and investigated the individual contributions from gas phase inorganic species, isoprene, monoterpenes, and methane along with other important VOCs. Daily and seasonal variation in OH-reactivity for the year 2008 was examined...

  6. Modeling nitrogen cycling in forested watersheds of Chesapeake Bay

    Energy Technology Data Exchange (ETDEWEB)

    Hunsaker, C.T.; Garten, C.T.; Mulholland, P.J.

    1995-03-01

    The Chesapeake Bay Agreement calls for a 40% reduction of controllable phosphorus and nitrogen to the tidal Bay by the year 2000. To accomplish this goal the Chesapeake Bay Program needs accurate estimates of nutrient loadings, including atmospheric deposition, from various land uses. The literature was reviewed on forest nitrogen pools and fluxes, and nitrogen data from research catchments in the Chesapeake Basin were identified. The structure of a nitrogen module for forests is recommended for the Chesapeake Bay Watershed Model along with the possible functional forms for fluxes.

  7. Response of Subalpine Saplings to Different Drought Stress

    Directory of Open Access Journals (Sweden)

    Adriana V. Ivanova

    2014-06-01

    Full Text Available The expectations for increasing periods of drought are becoming larger according to numerous authors. The susceptibility of subalpine tree species to drought provoke our interest to try to understand what will be their reaction to this natural climate change. For this purpose it is set experiment to determine the reaction of drought to 4 subalpine species – Norway spruce (Picea abies L., Mountain pine (Pinus mugo Turra, Macedonian pine (Pinus peuce Grisebach and Bosnian pine (Pinus heldreichii H . Christ. Different requirements are observed to imitate field conditions as close as possible. The saplings are taken from terrain with no disturbed soil substrate. The plants were placed in a 15 l container and at the beginning of the vegetation were situated in a specially built greenhouse. Precipitation regime is controlled by the irrigation system. The indicators for precipitation levels (for a drought from June to July and August scheme were taken from the two previous real years, who had a significant influence on the species. Precipitation norm for control is taken from subalpine zone of the Rila Mountain. To determine the reaction of all the groups of saplings subjected to various circuits, at the end of the year is recorded the survivors.

  8. Study of Value Assessment Model of Forest Biodiversity Based on the Habitat Area in China

    Directory of Open Access Journals (Sweden)

    Ying Zhang

    2014-03-01

    Full Text Available Forest biodiversity is an important part of biodiversity. There is an essential significance of studying forest biodiversity assessment for promoting the conservation of biodiversity and enhancing biodiversity management in China. This study collected forest biodiversity habitat area, output value of forestry and so on forest biodiversity assessment-related data from 2001 to 2010 in China and using optimal control methods in cybernetics to establish value assessment model of forest biodiversity based on the data of habitat area, as well as calculated the optimal price for forest biodiversity assessment. The result showed that forest biodiversity habitat assessment of the optimal price is 9,970 RMB Yuan/ha and there is a dynamic model for forest biodiversity assessment. Finally, the study suggested that studies of forest biodiversity assessment in China, in particular, studying of valuation of forest biodiversity should consider using shadow price and the social, economic and other factors should be taken into account

  9. Modeling Forest Productivity Using Envisat MERIS Data

    Directory of Open Access Journals (Sweden)

    Cenk Donmez

    2007-10-01

    Full Text Available The aim of this study was to derive land cover products with a 300-m pixelresolution of Envisat MERIS (Medium Resolution Imaging Spectrometer to quantify netprimary productivity (NPP of conifer forests of Taurus Mountain range along the EasternMediterranean coast of Turkey. The Carnegie-Ames-Stanford approach (CASA was usedto predict annual and monthly regional NPP as modified by temperature, precipitation,solar radiation, soil texture, fractional tree cover, land cover type, and normalizeddifference vegetation index (NDVI. Fractional tree cover was estimated using continuoustraining data and multi-temporal metrics of 47 Envisat MERIS images of March 2003 toSeptember 2005 and was derived by aggregating tree cover estimates made from high-resolution IKONOS imagery to coarser Landsat ETM imagery. A regression tree algorithmwas used to estimate response variables of fractional tree cover based on the multi-temporal metrics. This study showed that Envisat MERIS data yield a greater spatial detailin the quantification of NPP over a topographically complex terrain at the regional scalethan those used at the global scale such as AVHRR.

  10. Modeling Forest Productivity Using Envisat MERIS Data

    Science.gov (United States)

    Berberoglu, Suha; Evrendilek, Fatih; Ozkan, Coskun; Donmez, Cenk

    2007-01-01

    The aim of this study was to derive land cover products with a 300-m pixel resolution of Envisat MERIS (Medium Resolution Imaging Spectrometer) to quantify net primary productivity (NPP) of conifer forests of Taurus Mountain range along the Eastern Mediterranean coast of Turkey. The Carnegie-Ames-Stanford approach (CASA) was used to predict annual and monthly regional NPP as modified by temperature, precipitation, solar radiation, soil texture, fractional tree cover, land cover type, and normalized difference vegetation index (NDVI). Fractional tree cover was estimated using continuous training data and multi-temporal metrics of 47 Envisat MERIS images of March 2003 to September 2005 and was derived by aggregating tree cover estimates made from high-resolution IKONOS imagery to coarser Landsat ETM imagery. A regression tree algorithm was used to estimate response variables of fractional tree cover based on the multi-temporal metrics. This study showed that Envisat MERIS data yield a greater spatial detail in the quantification of NPP over a topographically complex terrain at the regional scale than those used at the global scale such as AVHRR.

  11. Consequences of increasing bioenergy demand on wood and forests: an application of the global forest products model

    Science.gov (United States)

    Joseph Buongiorno; Ronald Raunikar; Shushuai Zhu

    2011-01-01

    The Global Forest Products Model (GFPM) was applied to project the consequences for the global forest sector of doubling the rate of growth of bioenergy demand relative to a base scenario, other drivers being maintained constant. The results showed that this would lead to the convergence of the price of fuelwood and industrial roundwood, raising the price of industrial...

  12. Forest height estimation from mountain forest areas using general model-based decomposition for polarimetric interferometric synthetic aperture radar images

    Science.gov (United States)

    Minh, Nghia Pham; Zou, Bin; Cai, Hongjun; Wang, Chengyi

    2014-01-01

    The estimation of forest parameters over mountain forest areas using polarimetric interferometric synthetic aperture radar (PolInSAR) images is one of the greatest interests in remote sensing applications. For mountain forest areas, scattering mechanisms are strongly affected by the ground topography variations. Most of the previous studies in modeling microwave backscattering signatures of forest area have been carried out over relatively flat areas. Therefore, a new algorithm for the forest height estimation from mountain forest areas using the general model-based decomposition (GMBD) for PolInSAR image is proposed. This algorithm enables the retrieval of not only the forest parameters, but also the magnitude associated with each mechanism. In addition, general double- and single-bounce scattering models are proposed to fit for the cross-polarization and off-diagonal term by separating their independent orientation angle, which remains unachieved in the previous model-based decompositions. The efficiency of the proposed approach is demonstrated with simulated data from PolSARProSim software and ALOS-PALSAR spaceborne PolInSAR datasets over the Kalimantan areas, Indonesia. Experimental results indicate that forest height could be effectively estimated by GMBD.

  13. Modelling nutrient cycling in forest ecosystems; Modellering av naeringssyklus i skogoekosystemer

    Energy Technology Data Exchange (ETDEWEB)

    Kvindesland, Sheila H.S.B.

    1997-12-31

    Acid deposition`s threat to fresh water and forest environments became an issue in the late 1960s. Acid deposition and forest nutrient cycling then began to be researched in greater co-operation. This thesis studies nutrient cycling processes in Norway spruce forests, emphasizing the effects on soil chemical properties, soil solution chemistry and streamwater chemistry. It investigates the effects of different aged stands on nutrient cycling and sets up nutrient budgets of the base cations and nitrogen at two sites in Norway. It also selects, documents, calibrates, tests and improves nutrient cycling models for use in Norwegian forests. 84 refs., 44 figs., 46 tabs.

  14. An observational constraint on stomatal function in forests: evaluating coupled carbon and water vapor exchange with carbon isotopes in the Community Land Model (CLM4.5)

    Science.gov (United States)

    Raczka, Brett; Duarte, Henrique F.; Koven, Charles D.; Ricciuto, Daniel; Thornton, Peter E.; Lin, John C.; Bowling, David R.

    2016-09-01

    Land surface models are useful tools to quantify contemporary and future climate impact on terrestrial carbon cycle processes, provided they can be appropriately constrained and tested with observations. Stable carbon isotopes of CO2 offer the potential to improve model representation of the coupled carbon and water cycles because they are strongly influenced by stomatal function. Recently, a representation of stable carbon isotope discrimination was incorporated into the Community Land Model component of the Community Earth System Model. Here, we tested the model's capability to simulate whole-forest isotope discrimination in a subalpine conifer forest at Niwot Ridge, Colorado, USA. We distinguished between isotopic behavior in response to a decrease of δ13C within atmospheric CO2 (Suess effect) vs. photosynthetic discrimination (Δcanopy), by creating a site-customized atmospheric CO2 and δ13C of CO2 time series. We implemented a seasonally varying Vcmax model calibration that best matched site observations of net CO2 carbon exchange, latent heat exchange, and biomass. The model accurately simulated observed δ13C of needle and stem tissue, but underestimated the δ13C of bulk soil carbon by 1-2 ‰. The model overestimated the multiyear (2006-2012) average Δcanopy relative to prior data-based estimates by 2-4 ‰. The amplitude of the average seasonal cycle of Δcanopy (i.e., higher in spring/fall as compared to summer) was correctly modeled but only when using a revised, fully coupled An - gs (net assimilation rate, stomatal conductance) version of the model in contrast to the partially coupled An - gs version used in the default model. The model attributed most of the seasonal variation in discrimination to An, whereas interannual variation in simulated Δcanopy during the summer months was driven by stomatal response to vapor pressure deficit (VPD). The model simulated a 10 % increase in both photosynthetic discrimination and water-use efficiency (WUE

  15. Modeling the Lyα Forest in Collisionless Simulations

    Science.gov (United States)

    Sorini, Daniele; Oñorbe, José; Lukić, Zarija; Hennawi, Joseph F.

    2016-08-01

    Cosmological hydrodynamic simulations can accurately predict the properties of the intergalactic medium (IGM), but only under the condition of retaining the high spatial resolution necessary to resolve density fluctuations in the IGM. This resolution constraint prohibits simulating large volumes, such as those probed by BOSS and future surveys, like DESI and 4MOST. To overcome this limitation, we present “Iteratively Matched Statistics” (IMS), a novel method to accurately model the Lyα forest with collisionless N-body simulations, where the relevant density fluctuations are unresolved. We use a small-box, high-resolution hydrodynamic simulation to obtain the probability distribution function (PDF) and the power spectrum of the real-space Lyα forest flux. These two statistics are iteratively mapped onto a pseudo-flux field of an N-body simulation, which we construct from the matter density. We demonstrate that our method can reproduce the PDF, line of sight and 3D power spectra of the Lyα forest with good accuracy (7%, 4%, and 7% respectively). We quantify the performance of the commonly used Gaussian smoothing technique and show that it has significantly lower accuracy (20%-80%), especially for N-body simulations with achievable mean inter-particle separations in large-volume simulations. In addition, we show that IMS produces reasonable and smooth spectra, making it a powerful tool for modeling the IGM in large cosmological volumes and for producing realistic “mock” skies for Lyα forest surveys.

  16. Measurement Models of Forest Biodiversity Variation and Its Controlling Study in China

    Institute of Scientific and Technical Information of China (English)

    2003-01-01

    According to the evaluative data of forest biodiversity variation in China from 1973 to 1998, not only the gray model GM( 1,2), but also the status spatial characterization model with the optimal control model for forest biodiversity variation is developed by using some mathematic approaches and knowledge in economic cybernetics. Furthermore, the structural characteristics of forest biodiversity variation are analyzed. The paper points out that the variation of forest biodiversity is instable, but it ca...

  17. Efficiency of Iranian forest industry based on DEA models

    Institute of Scientific and Technical Information of China (English)

    Soleiman Mohammadi Limaei

    2013-01-01

    Data Envelopment Analysis (DEA) is a mathematical tech-nique to assess relative efficiencies of decision making units (DMUs). The efficiency of 14 Iranian forest companies and forest management units was investigated in 2010. Efficiency of the companies was esti-mated by using a traditional DEA model and a two-stage DEA model. Traditional DEA models consider all DMU activities as a black box and ignore the intermediate products, while two-stage models address inter-mediate processes. LINGO software was used for analysis. Overall pro-duction was divided into to processes for analyses by the two-stage model, timber harvest and marketing. Wilcoxon’s signed-rank test was used to identify the differences of average efficiency in the harvesting and marketing sub-process. Weak performance in the harvesting sub-process was the cause of low efficiency in 2010. Companies such as Neka Chob and Kelardasht proved efficient at timber harvest, and Neka Chob forest company scored highest in overall efficiency. Finally, the reference units identified according to the results of two-stage DEA analysis.

  18. Meso-scale modeling of a forested landscape

    DEFF Research Database (Denmark)

    Dellwik, Ebba; Arnqvist, Johan; Bergström, Hans;

    2014-01-01

    Meso-scale models are increasingly used for estimating wind resources for wind turbine siting. In this study, we investigate how the Weather Research and Forecasting (WRF) model performs using standard model settings in two different planetary boundary layer schemes for a forested landscape and how...... this performance is changed when enhancing the roughness by a factor four in one of the schemes. The model simulations were evaluated using data from a 138 m tall mast in southeastern Sweden, where an experiment with six sonic anemometers and standard meteorological instrumentation was performed 2010...

  19. The vertical signature of gophers on the critical zone in the Colorado Front Range subalpine zone

    Science.gov (United States)

    Winchell, E. W.; Anderson, R. S.; Kaste, J. M.

    2016-12-01

    In the subalpine zone of the Colorado Front Range (CFR), the northern pocket gopher performs much of the geomorphic work. Whereas the impact of gophers is clear on the land surface, it is less obvious in the vertical. Digging data illustrate the importance of gophers within the meadows in this till-covered landscape and imply century-scale turnover time of the upper soil. To quantify the signature of gopher activity in the vertical, we collected 1) field data that illustrates the increased probability of encountering coarser clasts at 9-18 cm depths and 2) 137Cs and 210Pbex activity profiles that monotonically decline within the top 18 cm. Traditional advection-diffusion soil mixing models utilized in both marine and terrestrial environments fail to fit simultaneously the fallout nuclide profiles, and cannot explain the increase in grain size at depth. This motivates construction of a numerical model in which gopher digging activity is explicitly represented. Our algorithm emulates the tunneling-mounding activities of gophers in which smaller clasts are lofted to the surface from an excavated tunnel; the subsequent collapse of the tunnel shuffles downward all clasts above the tunnel. We track the profiles of grain sizes and of 137Cs and 210Pbex concentrations. Higher than average concentrations of coarse grains, stonelines, arise over century timescales from the preferential lofting of fine grains and the avoidance of coarse grains during digging. 137Cs and 210Pbex profiles can be simultaneously fit only if the gopher activity at this particular sampling site ceased roughly several decades prior to our sampling. Field data and modeling together therefore provide insight into the history of the landscape on both century and decadal timescales in the face of gopher activity. We suggest that these `rototilled' meadows repeatedly self-organize in the aftermath of fires to allow the signature of gopher activity to be written throughout the subalpine zone of the CFR.

  20. Lidar Remote Sensing of Forests: New Instruments and Modeling Capabilities

    Science.gov (United States)

    Cook, Bruce D.

    2012-01-01

    Lidar instruments provide scientists with the unique opportunity to characterize the 3D structure of forest ecosystems. This information allows us to estimate properties such as wood volume, biomass density, stocking density, canopy cover, and leaf area. Structural information also can be used as drivers for photosynthesis and ecosystem demography models to predict forest growth and carbon sequestration. All lidars use time-in-flight measurements to compute accurate ranging measurements; however, there is a wide range of instruments and data types that are currently available, and instrument technology continues to advance at a rapid pace. This seminar will present new technologies that are in use and under development at NASA for airborne and space-based missions. Opportunities for instrument and data fusion will also be discussed, as Dr. Cook is the PI for G-LiHT, Goddard's LiDAR, Hyperspectral, and Thermal airborne imager. Lastly, this talk will introduce radiative transfer models that can simulate interactions between laser light and forest canopies. Developing modeling capabilities is important for providing continuity between observations made with different lidars, and to assist the design of new instruments. Dr. Bruce Cook is a research scientist in NASA's Biospheric Sciences Laboratory at Goddard Space Flight Center, and has more than 25 years of experience conducting research on ecosystem processes, soil biogeochemistry, and exchange of carbon, water vapor and energy between the terrestrial biosphere and atmosphere. His research interests include the combined use of lidar, hyperspectral, and thermal data for characterizing ecosystem form and function. He is Deputy Project Scientist for the Landsat Data Continuity Mission (LDCM); Project Manager for NASA s Carbon Monitoring System (CMS) pilot project for local-scale forest biomass; and PI of Goddard's LiDAR, Hyperspectral, and Thermal (G-LiHT) airborne imager.

  1. Modeling Climate-Biosphere Interactions in the Boreal Forest

    Science.gov (United States)

    Frolking, Steve

    1998-01-01

    The overall goal of this BOREAS Program was to develop, test, and apply a model of the carbon balance of boreal forest sites with a significant groundcover component (moss or lichen). The basic question addressed with this model was: What is the sensitivity of the boreal forest carbon balance to weather variability? More specifically: What are the differences in the sensitivities of carbon gains (photosynthesis) and carbon losses (respiration) of the various components of the ecosystem? Are there different seasonalities to their sensitivities (e.g., warmer springs will have one effect, warmer summers a different effect)? What are the effects of different patterns of successive weather years (wet/dry, warm/cool)? What, for example, would be the difference in effects of two "warmer than normal" months-one with each day warmer than normal, and the other with three normal weeks and one very hot week? Due to weather variability, how "noisy" will any carbon flux or carbon pool signal be that we might use to try to detect change? The project resulted in the development of a new boreal forest ecosystem model. This model was the first model in the BOREAS project to look closely at the role of mosses in the ecosystem carbon balance, and also was the first model in the BOREAS project to look closely at interannual variability in carbon fluxes. Along with the work of many other groups, TE-19 modeling analysis pointed to the need for a second, longer field season in 1996, with particular focus on the spring and fall transitions and on ground vegetation. BOREAS groups TE-19 (Frolking), TGB-1 (Crill) & TGB-3 (Moore & Roulet) analyzed BOREAS data and other published and unpublished data to develop a relationship between peatland ecosystem productivity and incoming radiation, which is quite distinct from the upland ecosystem relationships observed in other studies.

  2. Forest fire forecasting tool for air quality modelling systems

    Energy Technology Data Exchange (ETDEWEB)

    San Jose, R.; Perez, J. L.; Perez, L.; Gonzalez, R. M.; Pecci, J.; Palacios, M.

    2015-07-01

    Adverse effects of smoke on air quality are of great concern; however, even today the estimates of atmospheric fire emissions are a key issue. It is necessary to implement systems for predicting smoke into an air quality modelling system, and in this work a first attempt towards creating a system of this type is presented. Wild land fire spread and behavior are complex phenomena due to both the number of involved physic-chemical factors, and the nonlinear relationship between variables. WRF-Fire was employed to simulate spread and behavior of some real fires occurred in South-East of Spain and North of Portugal. The use of fire behavior models requires the availability of high resolution environmental and fuel data. A new custom fuel moisture content model has been developed. The new module allows each time step to calculate the fuel moisture content of the dead fuels and live fuels. The results confirm that the use of accurate meteorological data and a custom fuel moisture content model is crucial to obtain precise simulations of fire behavior. To simulate air pollution over Europe, we use the regional meteorological-chemistry transport model WRF-Chem. In this contribution, we show the impact of using two different fire emissions inventories (FINN and IS4FIRES) and how the coupled WRF-Fire- Chem model improves the results of the forest fire emissions and smoke concentrations. The impact of the forest fire emissions on concentrations is evident, and it is quite clear from these simulations that the choice of emission inventory is very important. We conclude that using the WRF-fire behavior model produces better results than using forest fire emission inventories although the requested computational power is much higher. (Author)

  3. Forest fire forecasting tool for air quality modelling systems

    Energy Technology Data Exchange (ETDEWEB)

    San Jose, R.; Perez, J.L.; Perez, L.; Gonzalez, R.M.; Pecci, J.; Palacios, M.

    2015-07-01

    Adverse effects of smoke on air quality are of great concern; however, even today the estimates of atmospheric fire emissions are a key issue. It is necessary to implement systems for predicting smoke into an air quality modelling system, and in this work a first attempt towards creating a system of this type is presented. Wildland fire spread and behavior are complex Phenomena due to both the number of involved physic-chemical factors, and the nonlinear relationship between variables. WRF-Fire was employed to simulate spread and behavior of some real fires occurred in South-East of Spain and North of Portugal. The use of fire behavior models requires the availability of high resolution environmental and fuel data. A new custom fuel moisture content model has been developed. The new module allows each time step to calculate the fuel moisture content of the dead fuels and live fuels. The results confirm that the use of accurate meteorological data and a custom fuel moisture content model is crucial to obtain precise simulations of fire behavior. To simulate air pollution over Europe, we use the regional meteorological-chemistry transport model WRF-Chem. In this contribution, we show the impact of using two different fire emissions inventories (FINN and IS4FIRES) and how the coupled WRF-FireChem model improves the results of the forest fire emissions and smoke concentrations. The impact of the forest fire emissions on concentrations is evident, and it is quite clear from these simulations that the choice of emission inventory is very important. We conclude that using the WRF-fire behavior model produces better results than using forest fire emission inventories although the requested computational power is much higher. (Author)

  4. Log-periodic behavior in a forest-fire model

    Directory of Open Access Journals (Sweden)

    B. D. Malamud

    2005-01-01

    Full Text Available This paper explores log-periodicity in a forest-fire cellular-automata model. At each time step of this model a tree is dropped on a randomly chosen site; if the site is unoccupied, the tree is planted. Then, for a given sparking frequency, matches are dropped on a randomly chosen site; if the site is occupied by a tree, the tree ignites and an 'instantaneous' model fire consumes that tree and all adjacent trees. The resultant frequency-area distribution for the small and medium model fires is a power-law. However, if we consider very small sparking frequencies, the large model fires that span the square grid are dominant, and we find that the peaks in the frequency-area distribution of these large fires satisfy log-periodic scaling to a good approximation. This behavior can be examined using a simple mean-field model, where in time, the density of trees on the grid exponentially approaches unity. This exponential behavior coupled with a periodic or near-periodic sparking frequency also generates a sequence of peaks in the frequency-area distribution of large fires that satisfy log-periodic scaling. We conclude that the forest-fire model might provide a relatively simple explanation for the log-periodic behavior often seen in nature.

  5. Forest biomass allometry in global land surface models

    Science.gov (United States)

    Wolf, Adam; Ciais, Philippe; Bellassen, Valentin; Delbart, Nicolas; Field, Christopher B.; Berry, Joseph A.

    2011-09-01

    A number of global land surface models simulate photosynthesis, respiration, and disturbance, important flows in the carbon cycle that are widely tested against flux towers and CO2 concentration gradients. The resulting forest biomass is examined in this paper for its resemblance to realistic stands, which are characterized using allometric theory. The simulated biomass pools largely do not conform to widely observed allometry, particularly for young stands. The best performing models had an explicit treatment of stand-thinning processes, which brought the slope of the allometry of these models closer to observations. Additionally, models that had relatively shorter wood turnover times performed were generally closer to observed allometries. The discrepancy between the pool distribution between models and data suggests estimates of NEE have biases when integrated over the long term, as compared to observed biomass data, and could therefore compromise long-term predictions of land carbon sources and sinks. We think that this presents a practical obstacle for improving models by informing them better with data. The approach taken in this paper, examining biomass pools allometrically, offers a simple approach to improving the characteristic behaviors of global models with the relatively sparse data that is available globally by forest inventory.

  6. Broadband distortion modeling in Lyman-$\\alpha$ forest BAO fitting

    CERN Document Server

    Blomqvist, Michael; Bautista, Julian E; Ariño, Andreu; Busca, Nicolás G; Miralda-Escudé, Jordi; Slosar, Anže; Font-Ribera, Andreu; Margala, Daniel; Schneider, Donald P; Vazquez, Jose A

    2015-01-01

    In recent years, the Lyman-$\\alpha$ absorption observed in the spectra of high-redshift quasars has been used as a tracer of large-scale structure by means of the three-dimensional Lyman-$\\alpha$ forest auto-correlation function at redshift $z\\simeq 2.3$, but the need to fit the quasar continuum in every absorption spectrum introduces a broadband distortion that is difficult to correct and causes a systematic error for measuring any broadband properties. We describe a $k$-space model for this broadband distortion based on a multiplicative correction to the power spectrum of the transmitted flux fraction that suppresses power on scales corresponding to the typical length of a Lyman-$\\alpha$ forest spectrum. Implementing the distortion model in fits for the baryon acoustic oscillation (BAO) peak position in the Lyman-$\\alpha$ forest auto-correlation, we find that the fitting method recovers the input values of the linear bias parameter $b_{F}$ and the redshift-space distortion parameter $\\beta_{F}$ for mock dat...

  7. Forest Fires and Prevention Strategies in Northwestern Region of China

    Institute of Scientific and Technical Information of China (English)

    2003-01-01

    The paper described the natural conditions and forest types in Northwestern Region of China. Most forests in the region are distributed in subalpine areas. It is important to protect the existent forests in the region for maintaining ecological balance. According to the statistics results of 1991~2000, the paper analyzes the forest fires distribution and fire severity. Annually the numbers of forest fires range from 52 to 240. The incidence rate of forest fires in Northwestern Region is under 0.33 per t...

  8. Modeling the Lyman-alpha Forest in Collisionless Simulations

    CERN Document Server

    Sorini, Daniele; Lukić, Zarija; Hennawi, Joseph F

    2016-01-01

    Cosmological hydrodynamic simulations can accurately predict the properties of the intergalactic medium (IGM), but only under the condition of retaining high spatial resolution necessary to resolve density fluctuations in the IGM. This resolution constraint prohibits simulating large volumes, such as those probed by BOSS and future surveys, like DESI and 4MOST. To overcome this limitation, we present Iteratively Matched Statistics (IMS), a novel method to accurately model the Lyman-alpha forest with collisionless N-body simulations, where the relevant density fluctuations are unresolved. We use a small-box, high-resolution hydrodynamic simulation to obtain the probability distribution function (PDF) and the power spectrum of the real-space Lyman-alpha forest flux. These two statistics are iteratively mapped onto a pseudo-flux field of an N-body simulation, which we construct from the matter density. We demonstrate that our method can perfectly reproduce line-of-sight observables, such as the PDF and power spe...

  9. Hydrodynamical Simulations of the Lyman $\\alpha$ Forest Model Comparisons

    CERN Document Server

    Machacek, M E; Meiksin, A; Anninos, P; Thayer, D; Norman, M L; Zhang, Y

    1999-01-01

    We investigate the properties of the Lyman alpha forest as predicted by numerical simulations for a range of currently viable cosmological models. This is done in order to understand the dependencies of the forest on cosmological parameters. Focusing on the redshift range from two to four, we show that: (1) most of the evolution in the distributions of optical depth, flux and column density can be understood by simple scaling relations, (2) the shape of optical depth distribution is a sensitive probe of the amplitude of density fluctuations on scales of a few hundred kpc, (3) the mean of the b distribution (a measure of the width of the absorption lines) is also very sensitive to fluctuations on these scales, and decreases as they increase. We perform a preliminary comparison to observations, where available. A number of other properties are also examined, including the evolution in the number of lines, the two-point flux distribution and the HeII opacity.

  10. Modeling the uncertainty of estimating forest carbon stocks in China

    Directory of Open Access Journals (Sweden)

    T. X. Yue

    2015-12-01

    Full Text Available Earth surface systems are controlled by a combination of global and local factors, which cannot be understood without accounting for both the local and global components. The system dynamics cannot be recovered from the global or local controls alone. Ground forest inventory is able to accurately estimate forest carbon stocks at sample plots, but these sample plots are too sparse to support the spatial simulation of carbon stocks with required accuracy. Satellite observation is an important source of global information for the simulation of carbon stocks. Satellite remote-sensing can supply spatially continuous information about the surface of forest carbon stocks, which is impossible from ground-based investigations, but their description has considerable uncertainty. In this paper, we validated the Lund-Potsdam-Jena dynamic global vegetation model (LPJ, the Kriging method for spatial interpolation of ground sample plots and a satellite-observation-based approach as well as an approach for fusing the ground sample plots with satellite observations and an assimilation method for incorporating the ground sample plots into LPJ. The validation results indicated that both the data fusion and data assimilation approaches reduced the uncertainty of estimating carbon stocks. The data fusion had the lowest uncertainty by using an existing method for high accuracy surface modeling to fuse the ground sample plots with the satellite observations (HASM-SOA. The estimates produced with HASM-SOA were 26.1 and 28.4 % more accurate than the satellite-based approach and spatial interpolation of the sample plots, respectively. Forest carbon stocks of 7.08 Pg were estimated for China during the period from 2004 to 2008, an increase of 2.24 Pg from 1984 to 2008, using the preferred HASM-SOA method.

  11. Carbon fluxes in tropical forest ecosystems: the value of Eddy-covariance data for individual-based dynamic forest gap models

    Science.gov (United States)

    Roedig, Edna; Cuntz, Matthias; Huth, Andreas

    2015-04-01

    The effects of climatic inter-annual fluctuations and human activities on the global carbon cycle are uncertain and currently a major issue in global vegetation models. Individual-based forest gap models, on the other hand, model vegetation structure and dynamics on a small spatial (1000 years). They are well-established tools to reproduce successions of highly-diverse forest ecosystems and investigate disturbances as logging or fire events. However, the parameterizations of the relationships between short-term climate variability and forest model processes are often uncertain in these models (e.g. daily variable temperature and gross primary production (GPP)) and cannot be constrained from forest inventories. We addressed this uncertainty and linked high-resolution Eddy-covariance (EC) data with an individual-based forest gap model. The forest model FORMIND was applied to three diverse tropical forest sites in the Amazonian rainforest. Species diversity was categorized into three plant functional types. The parametrizations for the steady-state of biomass and forest structure were calibrated and validated with different forest inventories. The parameterizations of relationships between short-term climate variability and forest model processes were evaluated with EC-data on a daily time step. The validations of the steady-state showed that the forest model could reproduce biomass and forest structures from forest inventories. The daily estimations of carbon fluxes showed that the forest model reproduces GPP as observed by the EC-method. Daily fluctuations of GPP were clearly reflected as a response to daily climate variability. Ecosystem respiration remains a challenge on a daily time step due to a simplified soil respiration approach. In the long-term, however, the dynamic forest model is expected to estimate carbon budgets for highly-diverse tropical forests where EC-measurements are rare.

  12. Toward trait-based mortality models for tropical forests.

    Directory of Open Access Journals (Sweden)

    Mélaine Aubry-Kientz

    Full Text Available Tree mortality in tropical forests is a complex ecological process for which modelling approaches need to be improved to better understand, and then predict, the evolution of tree mortality in response to global change. The mortality model introduced here computes an individual probability of dying for each tree in a community. The mortality model uses the ontogenetic stage of the tree because youngest and oldest trees are more likely to die. Functional traits are integrated as proxies of the ecological strategies of the trees to permit generalization among all species in the community. Data used to parametrize the model were collected at Paracou study site, a tropical rain forest in French Guiana, where 20,408 trees have been censused for 18 years. A Bayesian framework was used to select useful covariates and to estimate the model parameters. This framework was developed to deal with sources of uncertainty, including the complexity of the mortality process itself and the field data, especially historical data for which taxonomic determinations were uncertain. Uncertainty about the functional traits was also considered, to maximize the information they contain. Four functional traits were strong predictors of tree mortality: wood density, maximum height, laminar toughness and stem and branch orientation, which together distinguished the light-demanding, fast-growing trees from slow-growing trees with lower mortality rates. Our modelling approach formalizes a complex ecological problem and offers a relevant mathematical framework for tropical ecologists to process similar uncertain data at the community level.

  13. The Chemistry of Atmosphere-Forest Exchange (CAFE Model – Part 1: Model description and characterization

    Directory of Open Access Journals (Sweden)

    G. M. Wolfe

    2010-09-01

    Full Text Available We present the Chemistry of Atmosphere-Forest Exchange (CAFE model, a vertically-resolved 1-D chemical transport model designed to probe the details of near-surface reactive gas exchange. CAFE integrates all key processes, including turbulent diffusion, emission, deposition and chemistry, throughout the forest canopy and mixed layer. It is the first model of its kind to incorporate the Master Chemical Mechanism (MCM and a suite of reactions for the oxidation of monoterpenes and sesquiterpenes, providing a more comprehensive description of the oxidative chemistry occurring within and above the forest. We use CAFE to simulate a young Ponderosa pine forest in the Sierra Nevada, CA. Utilizing meteorological constraints from the BEARPEX-2007 field campaign, we assess the sensitivity of modeled fluxes to parameterizations of diffusion, laminar sublayer resistance and radiation extinction. To characterize the general chemical environment of this forest, we also present modeled mixing ratio profiles of biogenic hydrocarbons, hydrogen oxides and reactive nitrogen. The vertical profiles of these species demonstrate a range of structures and gradients that reflect the interplay of physical and chemical processes within the forest canopy, which can influence net exchange.

  14. The Chemistry of Atmosphere-Forest Exchange (CAFE Model – Part 1: Model description and characterization

    Directory of Open Access Journals (Sweden)

    G. M. Wolfe

    2011-01-01

    Full Text Available We present the Chemistry of Atmosphere-Forest Exchange (CAFE model, a vertically-resolved 1-D chemical transport model designed to probe the details of near-surface reactive gas exchange. CAFE integrates all key processes, including turbulent diffusion, emission, deposition and chemistry, throughout the forest canopy and mixed layer. CAFE utilizes the Master Chemical Mechanism (MCM and is the first model of its kind to incorporate a suite of reactions for the oxidation of monoterpenes and sesquiterpenes, providing a more comprehensive description of the oxidative chemistry occurring within and above the forest. We use CAFE to simulate a young Ponderosa pine forest in the Sierra Nevada, CA. Utilizing meteorological constraints from the BEARPEX-2007 field campaign, we assess the sensitivity of modeled fluxes to parameterizations of diffusion, laminar sublayer resistance and radiation extinction. To characterize the general chemical environment of this forest, we also present modeled mixing ratio profiles of biogenic hydrocarbons, hydrogen oxides and reactive nitrogen. The vertical profiles of these species demonstrate a range of structures and gradients that reflect the interplay of physical and chemical processes within the forest canopy, which can influence net exchange.

  15. An alternative modelling approach to predict emissions of N2O and NO from forest soils

    NARCIS (Netherlands)

    Bruijn, de A.M.G.; Grote, R.; Butterbach-Bahl, K.

    2011-01-01

    Emissions of N2O from forest soils in Europe are an important source of global greenhouse gas emissions. However, influencing the emission rates by forest management is difficult because the relations and feedbacks between forest and soils are complex. Process-based models covering both vegetation

  16. Fuel load modeling from mensuration attributes in temperate forests in northern Mexico

    Science.gov (United States)

    Maricela Morales-Soto; Marín Pompa-Garcia

    2013-01-01

    The study of fuels is an important factor in defining the vulnerability of ecosystems to forest fires. The aim of this study was to model a dead fuel load based on forest mensuration attributes from forest management inventories. A scatter plot analysis was performed and, from explanatory trends between the variables considered, correlation analysis was carried out...

  17. Carbon dynamics in the future forest: the importance of long-term successional legacy and climate-fire interactions.

    Science.gov (United States)

    Loudermilk, E Louise; Scheller, Robert M; Weisberg, Peter J; Yang, Jian; Dilts, Thomas E; Karam, Sarah L; Skinner, Carl

    2013-11-01

    Understanding how climate change may influence forest carbon (C) budgets requires knowledge of forest growth relationships with regional climate, long-term forest succession, and past and future disturbances, such as wildfires and timber harvesting events. We used a landscape-scale model of forest succession, wildfire, and C dynamics (LANDIS-II) to evaluate the effects of a changing climate (A2 and B1 IPCC emissions; Geophysical Fluid Dynamics Laboratory General Circulation Models) on total forest C, tree species composition, and wildfire dynamics in the Lake Tahoe Basin, California, and Nevada. The independent effects of temperature and precipitation were assessed within and among climate models. Results highlight the importance of modeling forest succession and stand development processes at the landscape scale for understanding the C cycle. Due primarily to landscape legacy effects of historic logging of the Comstock Era in the late 1880s, C sequestration may continue throughout the current century, and the forest will remain a C sink (Net Ecosystem Carbon Balance > 0), regardless of climate regime. Climate change caused increases in temperatures limited simulated C sequestration potential because of augmented fire activity and reduced establishment ability of subalpine and upper montane trees. Higher temperatures influenced forest response more than reduced precipitation. As the forest reached its potential steady state, the forest could become C neutral or a C source, and climate change could accelerate this transition. The future of forest ecosystem C cycling in many forested systems worldwide may depend more on major disturbances and landscape legacies related to land use than on projected climate change alone.

  18. Photosynthetic limitation of several representative subalpine species in the Catalan Pyrenees in summer.

    Science.gov (United States)

    Fernàndez-Martínez, J; Fleck, I

    2016-07-01

    Information on the photosynthetic process and its limitations is essential in order to predict both the capacity of species to adapt to conditions associated with climate change and the likely changes in plant communities. Considering that high-mountain species are especially sensitive, three species representative of subalpine forests of the Central Catalan Pyrenees: mountain pine (Pinus uncinata Mill.), birch (Betula pendula Roth) and rhododendron (Rhododendron ferrugineum L.) were studied under conditions associated with climate change, such as low precipitation, elevated atmospheric [CO2 ] and high solar irradiation incident at Earth's surface, in order to detect any photosynthetic limitations. Short-term high [CO2 ] increased photosynthesis rates (A) and water use efficiency (WUE), especially in birch and mountain pine, whereas stomatal conductance (gs ) was not altered in either species. Birch showed photosynthesis limitation through stomatal closure related to low rainfall, which induced photoinhibition and early foliar senescence. Rhododendron was especially affected by high irradiance, showing early photosynthetic saturation in low light, highest chlorophyll content, lowest gas exchange rates and least photoprotection. Mountain pine had the highest A, photosynthetic capacity (Amax ) and light-saturated rates of net CO2 assimilation (Asat ), which were maintained under reduced precipitation. Furthermore, maximum quantum yield (Fv /Fm ), thermal energy dissipation, PRI and SIPI radiometric index, and ascorbate content indicated improved photoprotection with respect to the other two species. However, maximum velocity of carboxylation of RuBisco (Vcmax ) indicated that N availability would be the main photosynthetic limitation in this species.

  19. Partitioning CO2 fluxes with isotopologue measurements and modeling to understand mechanisms of forest carbon sequestration

    Energy Technology Data Exchange (ETDEWEB)

    Saleska, Scott [Univ. of Arizona, Tucson, AZ (United States); Davidson, Eric [Univ. of Arizona, Tucson, AZ (United States); Finzi, Adrien [Univ. of Arizona, Tucson, AZ (United States); Wehr, Richard [Univ. of Arizona, Tucson, AZ (United States); Moorcroft, Paul [Univ. of Arizona, Tucson, AZ (United States)

    2016-01-28

    photosynthesis (by ~25%) and daytime respiration (by ~100%) in the first half of the growing season at our site, and portrays ecosystem photosynthetic light-use efficiency as declining when in fact it is stable until autumnal senescence. B. Vegetation Phenology and belowground allocation: Findings: 1. Autotrophic respiration (Ra) showed a seasonal pattern, peaking in mid-summer when trees were most active. 2. The effective age of the substrate for belowground respiration is less than 2 weeks. 3. Above and belowground phenology are more synchronous in deciduous hardwood stands than evergreen hemlock stands. 4. The decline in root respiration rates in the fall is related to temperature rather than acclimation of root respiration or substrate limitations. Methodological Issues: 5. The isotopic signatures of autotrophic and heterotrophic respiration are too similar for isotopic partitioning of belowground respiration into these two components at our site—in keeping with the recent findings of Bowling et al. (2015) in a subalpine conifer forest. 6. Artifacts of the trenching method, such as changes in soil moisture and increased carbon substrate from the newly severed roots, are significant and need to be quantified when determining daily to annual estimates of autotrophic and heterotrophic respiration. C. Effects of simulated exudates on priming of microbial decomposition: The stoichiometry of root exudates influences both the amount and the mechanism by which priming occurs. At low C:N, SOC loss is caused by an increase in microbial efficiency. At high C:N, SOC loss is caused by an increase in microbial biomass. D. Modeling with the Ecosystem Demography Model (ED2): 1. Incorporation of 13C tracking to create an isotopically-enabled Ecosystem Demography v2 model (ED2) 2. State-of-the-art parameter optimization methodology developed for improving ED2 model predictions and parameters. 3. Significantly improved model predictions of growth- and maintenance-related carbon fluxes and 13

  20. Forest type mapping using incorporation of spatial models and ETM+ data.

    Science.gov (United States)

    Joibary, Shaban Shataee; Darvishsefat, Ali A; Kellenberger, Tobias W

    2007-07-15

    Results of former researches have shown that spectrally based analysis alone could not satisfy forest type classification in mountainous mixed forests. Forest type based on composed different parameters such as topography elements like aspect, elevation and slop. These elements that are affected on occurrences of forest type can be stated as spatial distribution models. Using ancillary data integrated with spectral data could help to separate forest type. In order to find the abilities of using topographic spatial predictive models to improve forest type classification, an investigation was carried out to classify forest type using ETM+ data in a part of northern forests of Iran. The Tasseled Cap, Ratioing transformations and Principal Component Analysis were applied to the spectral bands. The best spectral and predictive data sets for classifying forest type using maximum likelihood classification were chosen using the Bhattacharya seperability index. Primary analysis between forest type and topographic parameters showed that elevation and aspect are most correlated with the occurrences of type. Probability occurrence rates of forest type were extracted in the aspect; elevation, integrated aspect and elevation as well as homogeneous units structured on elevation and aspect classes. Based on occurrence rates of forest type, spatial predictive distribution models were generated for each type individually. Classification of the best spectral data sets was accomplished by maximum likelihood classifier and using these spatial predictive models. Results were assessed using a sample ground truth of forest type. This study showed that spatial predictive models could considerably improve the results compared with spectral data alone from 49 to 60%. Among spatial models used, the spatial predictive models constructed based on the homogeneous units could improve results in comparison to other models. Applying other parameters related to forest type like soil maps would

  1. Recent findings related to measuring and modeling forest road erosion

    Science.gov (United States)

    W. J. Elliot; R. B. Foltz; P. R. Robichaud

    2009-01-01

    Sediment is the greatest pollutant of forest streams. In the absence of wildfire, forest road networks are usually the main source of sediment in forest watersheds. An understanding of forest road erosion processes is important to aid in predicting sediment delivery from roads to streams. The flowpath followed by runoff is the key to understanding road erosion...

  2. Challenges for measuring and modeling carbon cycling in degraded tropical forests: Examples from the Brazilian Amazon

    Science.gov (United States)

    Keller, M. M.; Longo, M.; Morton, D. C.; Leitold, V.; Pinagé, E. R.; dos-Santos, M. N.; Scaranello, M. A., Sr.

    2016-12-01

    Deforestation has cleared almost 20% of the forest in the Brazilian Amazon region. Logging, and understory forest fires may have degraded a similar area of forest. Despite the significant reduction of deforestation over the past decade, forest degradation through logging and understory fire continues to affect carbon stocks and fluxes. Recent studies using atmospheric data show that uptake by Amazon ecosystems balances or exceeds the carbon dioxide release by deforestation in normal (non-drought) years. However, old growth forest carbon dioxide uptake appears to be declining. Therefore, regeneration of degraded and secondary forests may be playing an ever more important role in the carbon balance of the world's largest extent of tropical forest. There are multiple challenges for understanding the role of degraded forests in regional and global carbon cycling. First, to date, no reliable estimates of the total area of degraded forest or the carbon losses associated with degradation exist in the Amazon. Remote sensing detection of forest degradation is far more difficult than detection of deforestation because changes in canopy characteristics are subtler. Second, forests may be subject to multiple degradation events and forest structure and species composition resulting from degradation is highly variable. Third, the structure of forests that result from degradation can be radically different from more commonly studied old-growth and secondary forests. Finally, there are few measurements that quantify degraded forest function. We will demonstrate pathways to resolving these challenges including (i) multi-temporal remote sensing studies of forest degradation dynamics on the Amazon frontier; (ii) forest structure and biomass estimates using airborne lidar data; (iii) changes in species composition based on forest inventory; and (iv) approaches for incorporating lidar data into a demographic modeling framework.

  3. Renaturalisation of forest ecosystems: is a reference model really needed?

    Directory of Open Access Journals (Sweden)

    Nocentini S

    2006-01-01

    Full Text Available Renaturalisation is more and more often considered the aim of management when dealing with simplified forests. The term “renaturalisation” has become the keyword of many forest management projects. A reference model or system is often considered essential for forest renaturalisation. This approach is coherent with a school of thought which finds relevant examples in the science and practice of Ecological restoration. The search for a reference system has several practical limitations and, especially, a severe theoretical fault. The definition of a reference system underlies the idea that ecosystem reactions to management can be exactly forecast and thus ecosystems can be guided towards a predefined composition, structure and functionality. This idea stems from a deterministic imprinting which characterises traditional forestry thinking and which is clearly in contrast with the dynamic nature of forest ecosystems. If renaturalisation is seen as a silvicultural and management approach which tends to favour natural evolutionary processes through the system’s ability to autonomously increase its complexity and biodiversity, then the actual system under management is the only possible reference system. An accurate analysis of the evolutionary trends in relation to the actual environmental conditions and landscape matrix should therefore be the basis for the renaturalisation process. Management must proceed as an experiment: the reaction to each intervention must be monitored using appropriate indicators. These are not to be seen as reference limits but as parameters for quantifying changes in the system’s self-regulating processes. In conclusion, renaturalisation has more to do with the way we interact with nature than with a closed project with a clearly defined beginning and end.

  4. Modeling future U.S. forest sector market and trade impacts of expansion in wood energy consumption

    Science.gov (United States)

    Peter J. Ince; Andrew D. Kramp; Kenneth E. Skog; Do-il Yoo; V. Alaric Sample

    2011-01-01

    This paper describes an approach to modeling U.S. forest sector market and trade impacts of expansion in domestic wood energy consumption under hypothetical future U.S. wood biomass energy policy scenarios. The U.S. Forest Products Module (USFPM) was created to enhance the modeling of the U.S. forest sector within the Global Forest Products Model (GFPM), providing a...

  5. Methods for the Update and Verification of Forest Surface Model

    Science.gov (United States)

    Rybansky, M.; Brenova, M.; Zerzan, P.; Simon, J.; Mikita, T.

    2016-06-01

    The digital terrain model (DTM) represents the bare ground earth's surface without any objects like vegetation and buildings. In contrast to a DTM, Digital surface model (DSM) represents the earth's surface including all objects on it. The DTM mostly does not change as frequently as the DSM. The most important changes of the DSM are in the forest areas due to the vegetation growth. Using the LIDAR technology the canopy height model (CHM) is obtained by subtracting the DTM and the corresponding DSM. The DSM is calculated from the first pulse echo and DTM from the last pulse echo data. The main problem of the DSM and CHM data using is the actuality of the airborne laser scanning. This paper describes the method of calculating the CHM and DSM data changes using the relations between the canopy height and age of trees. To get a present basic reference data model of the canopy height, the photogrammetric and trigonometric measurements of single trees were used. Comparing the heights of corresponding trees on the aerial photographs of various ages, the statistical sets of the tree growth rate were obtained. These statistical data and LIDAR data were compared with the growth curve of the spruce forest, which corresponds to a similar natural environment (soil quality, climate characteristics, geographic location, etc.) to get the updating characteristics.

  6. Use of models in large-area forest surveys: comparing model-assisted, model-based and hybrid estimation

    Directory of Open Access Journals (Sweden)

    Göran Ståhl

    2016-02-01

    Full Text Available This paper focuses on the use of models for increasing the precision of estimators in large-area forest surveys. It is motivated by the increasing availability of remotely sensed data, which facilitates the development of models predicting the variables of interest in forest surveys. We present, review and compare three different estimation frameworks where models play a core role: model-assisted, model-based, and hybrid estimation. The first two are well known, whereas the third has only recently been introduced in forest surveys. Hybrid inference mixes designbased and model-based inference, since it relies on a probability sample of auxiliary data and a model predicting the target variable from the auxiliary data..We review studies on large-area forest surveys based on model-assisted, modelbased, and hybrid estimation, and discuss advantages and disadvantages of the approaches. We conclude that no general recommendations can be made about whether model-assisted, model-based, or hybrid estimation should be preferred. The choice depends on the objective of the survey and the possibilities to acquire appropriate field and remotely sensed data. We also conclude that modelling approaches can only be successfully applied for estimating target variables such as growing stock volume or biomass, which are adequately related to commonly available remotely sensed data, and thus purely field based surveys remain important for several important forest parameters. Keywords: Design-based inference, Model-assisted estimation, Model-based inference, Hybrid inference, National forest inventory, Remote sensing, Sampling

  7. Modelling for Forest Fire Evolution Based on the Energy Accumulation and Release

    Directory of Open Access Journals (Sweden)

    Fan Yang

    2015-09-01

    Full Text Available Forest fire evolution plays an important role in the decision-making of controlling the forest fire. This paper aims to simulate the dynamics of the forest fire spread using a cellular automaton approach. Having analyzed the characteristics and evolution of forest fires, a simulation model for the forest fire evolution based on the energy accumulation and release is proposed. And, taking Australia's catastrophic forest fire in 2009 as an example, the fire’s evolution closely to the reality is simulated. The results of the experiments are shown that if forest energy is released in a small scale before or during the fire, the fire would be better controlled even if it does not occur. Improving the efficiency of the fire extinguishing procedures and reducing the speed of the fire spread are also effective for controlling the forest fire.

  8. Model Development For Wireless Propagation In Forested Environments

    Science.gov (United States)

    2015-09-01

    ABSTRACT Unclassified 20. LIMITATION OF ABSTRACT UU NSN 7540–01-280-5500 Standard Form 298 (Rev. 2–89) Prescribed by ANSI Std. 239–18 ii...using a model with four layered media,” IEE Proc. Microw. Antennas Propag., vol. 134, no. 4, pp. 361–368, 1987. [17] S. S. Seker, “Radio pulse...transmission along mixed paths in a stratified forest,” IEE Proc. Microw. Antennas Propag., vol. 136, no. 1, pp. 13–18, 1989. [18] S. Haykin and M

  9. Consequences of increasing bioenergy demand on wood and forests: An application of the Global Forest Products Model

    Science.gov (United States)

    Buongiorno, J.; Raunikar, R.; Zhu, S.

    2011-01-01

    The Global Forest Products Model (GFPM) was applied to project the consequences for the global forest sector of doubling the rate of growth of bioenergy demand relative to a base scenario, other drivers being maintained constant. The results showed that this would lead to the convergence of the price of fuelwood and industrial roundwood, raising the price of industrial roundwood by nearly 30% in 2030. The price of sawnwood and panels would be 15% higher. The price of paper would be 3% higher. Concurrently, the demand for all manufactured wood products would be lower in all countries, but the production would rise in countries with competitive advantage. The global value added in wood processing industries would be 1% lower in 2030. The forest stock would be 2% lower for the world and 4% lower for Asia. These effects varied substantially by country. ?? 2011 Department of Forest Economics, SLU Ume??, Sweden.

  10. Geotechnology-Based Modeling to Optimize Conservation of Forest Network in Urban Area.

    Science.gov (United States)

    Teng, Mingjun; Zhou, Zhixiang; Wang, Pengcheng; Xiao, Wenfa; Wu, Changguang; Lord, Elizabeth

    2016-03-01

    Forest network development in urban areas faces the challenge from forest fragmentation, human-induced disturbances, and scarce land resources. Here, we proposed a geotechnology-based modeling to optimize conservation of forest network by a case study of Wuhan, China. The potential forest network and their priorities were assessed using an improved least-cost path model and potential utilization efficiency estimation. The modeling process consists of four steps: (i) developing species assemblages, (ii) identifying core forest patches, (iii) identifying potential linkages among core forest patches, and (iv) demarcating forest networks. As a result, three species assemblages, including mammals, pheasants, and other birds, were identified as the conservation targets of urban forest network (UFN) in Wuhan, China. Based on the geotechnology-based model, a forest network proposal was proposed to fulfill the connectivity requirements of selected species assemblages. The proposal consists of seven forest networks at three levels of connectivity, named ideal networks, backbone networks, and comprehensive network. The action priorities of UFN plans were suggested to optimize forest network in the study area. Additionally, a total of 45 forest patches with important conservation significance were identified as prioritized stepping-stone patches in the forest network development. Urban forest conserve was also suggested for preserving woodlands with priority conservation significance. The presented geotechnology-based modeling is fit for planning and optimizing UFNs, because of the inclusion of the stepping-stone effects, human-induced pressures, and priorities. The framework can also be applied to other areas after a sensitivity test of the model and the modification of the parameters to fit the local environment.

  11. Forest insurance market participants’ game behavior in China: An analysis based on tripartite dynamic game model

    Directory of Open Access Journals (Sweden)

    Ning Ma

    2015-11-01

    Full Text Available Purpose: In forest insurance market, there are three main participants including the insurance company, the forest farmer and the government. As different participant has different benefit object, there will be a complex and dynamic game relationship among all participants. The purpose of this paper is to make the game relationship among all participants in forest insurance market clear, and then to put forward some policy suggestions on the implementation of forest insurance from the view of game theory. Design/methodology/approach: Firstly, the static game model between the insurance company and the forest farmer is set up. According to the result of static game model, it’s difficult to implement forest insurance without government. Secondly, the tripartite dynamic game model among the government, the insurance company and the forest farmer is proposed, and the equilibrium solution of tripartite dynamic game model is acquired. Finally, the behavioral characteristics of all participants are analyzed according to the equilibrium solution of tripartite dynamic game model. Findings: the government’s allowance will be an important positive factor to implement forest insurance. The loss of the insurance company, which the lower insurance premium brings, can be compensated by the allowance from the government. The more the government provides allowance, the more actively the insurance company will implement forest insurance at a low insurance premium. In this situation, the forest farmer will be more likely to purchase the forest insurance, then the scope of forest insurance implementation will expend. Originality/value: There is a complex and dynamic game relationship among all participants in forest insurance market. Based on the tripartite dynamic game model, to make the game relationship between each participant clear is conducive to the implementation of forest insurance market in China.

  12. Geotechnology-Based Modeling to Optimize Conservation of Forest Network in Urban Area

    Science.gov (United States)

    Teng, Mingjun; Zhou, Zhixiang; Wang, Pengcheng; Xiao, Wenfa; Wu, Changguang; Lord, Elizabeth

    2016-03-01

    Forest network development in urban areas faces the challenge from forest fragmentation, human-induced disturbances, and scarce land resources. Here, we proposed a geotechnology-based modeling to optimize conservation of forest network by a case study of Wuhan, China. The potential forest network and their priorities were assessed using an improved least-cost path model and potential utilization efficiency estimation. The modeling process consists of four steps: (i) developing species assemblages, (ii) identifying core forest patches, (iii) identifying potential linkages among core forest patches, and (iv) demarcating forest networks. As a result, three species assemblages, including mammals, pheasants, and other birds, were identified as the conservation targets of urban forest network (UFN) in Wuhan, China. Based on the geotechnology-based model, a forest network proposal was proposed to fulfill the connectivity requirements of selected species assemblages. The proposal consists of seven forest networks at three levels of connectivity, named ideal networks, backbone networks, and comprehensive network. The action priorities of UFN plans were suggested to optimize forest network in the study area. Additionally, a total of 45 forest patches with important conservation significance were identified as prioritized stepping-stone patches in the forest network development. Urban forest conserve was also suggested for preserving woodlands with priority conservation significance. The presented geotechnology-based modeling is fit for planning and optimizing UFNs, because of the inclusion of the stepping-stone effects, human-induced pressures, and priorities. The framework can also be applied to other areas after a sensitivity test of the model and the modification of the parameters to fit the local environment.

  13. Interferometric SAR Coherence Models for Characterization of Hemiboreal Forests Using TanDEM-X Data

    Directory of Open Access Journals (Sweden)

    Aire Olesk

    2016-08-01

    Full Text Available In this study, four models describing the interferometric coherence of the forest vegetation layer are proposed and compared with the TanDEM-X data. Our focus is on developing tools for hemiboreal forest height estimation from single-pol interferometric SAR measurements, suitable for wide area forest mapping with limited a priori information. The multi-temporal set of 19 TanDEM-X interferometric pairs and the 90th percentile forest height maps are derived from Airborne LiDAR Scanning (ALS, covering an area of 2211 ha of forests over Estonia. Three semi-empirical models along with the Random Volume over Ground (RVoG model are examined for applicable parameter ranges and model performance under various conditions for over 3000 forest stands. This study shows that all four models performed well in describing the relationship between forest height and interferometric coherence. Use of an advanced model with multiple parameters is not always justified when modeling the volume decorrelation in the boreal and hemiboreal forests. The proposed set of semi-empirical models, show higher robustness compared to a more advanced RVoG model under a range of seasonal and environmental conditions during data acquisition. We also examine the dynamic range of parameters that different models can take and propose optimal conditions for forest stand height inversion for operationally-feasible scenarios.

  14. A fully polarimetric scattering model for a coniferous forest

    Science.gov (United States)

    Karam, M. A.; Fung, A. K.; Lopes, A.; Mougin, E.

    1991-01-01

    For an elliptically polarized plane wave exciting a coniferous forested canopy a fully polarimetric scattering model has been developed to account for the size and orientation distributions of each forest constituent. A canopy is divided into three layers over a rough interface. The upper two layers represent the crown with its constituents (leaves, stems, and branches). The lower layer stands for the trunks and the rough interface is the canopy-ground interface. For a plane wave exciting the canopy, the explicit expressions for the bistatic scattering coefficient associated with each scattering mechanism are given. For an elliptically polarized incidence wave, the present model can be recast in a form suitable for polarimetric wave synthesis. The model validation is justified by comparing the measured and the calculated values of the backscattering coefficients for a linearly polarized incident wave. The comparison is made over a wide range of frequencies and incident angles. Numerical simulations are conducted to calculate the radar polarization signature of the canopy for different incident frequencies and angles.

  15. Calakmul Model Forest. Reports from the field -- Latin America.

    Science.gov (United States)

    Boulet, M

    1997-01-01

    The Calakmul Model Forest, which is situated in the Calakmul area of Mexico's Yucatan Peninsula, is one of 18 model forests in five countries worldwide that are coordinated by the secretariat at IDRC headquarters in Ottawa. The program promotes the management of natural resources in a sustained manner by a partnership of environmentalists, industry, and local communities. The goals of the program include: 1) ensuring ongoing harvests of food, wood, and other products; 2) enhancing the standard of living of local inhabitants; 3) raising awareness of conservation; and 4) promoting ecotourism. Based upon her initial surveys, Gloria Tavera, environmental educator for the program, found that: 1) more than 50% of the local population was under 15 years of age; 2) ethnic diversity was high; 3) literacy rates were low; and 4) women and children should be targeted. Since written material would be ineffective, other avenues would have to be used, such as the film "The Lion King," which brought people together to discuss environmental issues. Other program achievements include a wildlife station, the Calakmul Botanical Gardens, and a food, arts, and crafts fair and fashion show (1995) that focused on local forest products. The wildlife station houses puma, jaguar, and wild pigs. The Botanical Gardens, which covers six hectares of land, features nature trails and a showcase of local flora (including edible plants and 56 species of native orchids). It is a base for workshops, information sessions, and educational tours to the local Mayan ruins. As a result of the fair, clothes embroidered with traditional designs are being sold to tourists at the ruins, and a cookbook has been published. Tavera is now targeting 2500 primary school children in the area via environmental workshops for their teachers.

  16. Forest models: their development and potential applications for air pollution effects research

    Energy Technology Data Exchange (ETDEWEB)

    Shugart, H.H.; McLaughlin, S.B.; West, D.C.

    1980-01-01

    As research tools for evaluating the effects of chronic air pollution stress, forest simulation models offer one means of integrating forest growth and development data with generalized indices of pollution stress. This approach permits consideration of both the competitive interactions of trees in the forest stand and the influences of the stage of stand development on sensitivity of component species. A review of forest growth models, including tree, stand, and gap models, is provided as a means of evaluating relative strengths, weaknesses, and limits of applicability of representative examples of each type. Data from recent simulations with a gap model of eastern deciduous forest responses to air pollution stress are presented to emphasize the potential importance of competition in modifying individual species' responses in a forest stand. Recent developments in dendroecology are discussed as a potential mechanism for model validation and extended application.

  17. Model forest program: Year in review, 1993-94. Annual publication

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1994-12-31

    The Model Forest Program was initiated in response to concerns expressed by Canadians about their environment during a nationwide consultative process carried out in 1990. The Program is designed to promote the creation of local partnerships and to encourage these partnerships to formulate and implement their own working vision of sustainable forest management. This document presents developments to date, the Model Forest Network, and models across the country. Information is also included on the International Model Forest Program and Russia joining the Network. A budget for the year and an organizational chart are included.

  18. Model forest network: Year in review, 1994-95. Annual publication

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-07-01

    The Model Forest Program was initiated in response to concerns expressed by Canadians about their environment during a nationwide consultative process carried out in 1990. The Program is designed to promote the creation of local partnerships and to encourage these partnerships to formulate and implement their own working vision of sustainable forest management. This document presents developments to date, the Model Forest Network, and models across the country. Information is also included on the International Model Forest Program and Russia joining the Network. A budget for the year and an organizational chart are included.

  19. Geographic Information System-Allocation Model for Forest Path: A Case Study in Ayer Hitam Forest Reserve, Malaysia

    Directory of Open Access Journals (Sweden)

    I. M. Hasmadi

    2010-01-01

    Full Text Available Problem statement: Forest road planning requires a host of information, particularly the availability of spatial and non-spatial data. The requirement of a planning system or tools to gather, integrate and manipulate all data is essential. The ability of Geographic Information System (GIS to integrate such massive information and develop a spatial model of earth features will lead to time and cost reduction and allows analysis of spatial problems more effective than the traditional method. Approach: The objective of this study was to test the potential of GIS in modeling forest road allocation in Ayer Hitam Forest Reserve (AHFR, Selangor, Malaysia. This study is also to compare a road profile (new path generated from GIS approach (new path with existing forest road and allocates the best road path for compartment 2 and 14. Data from digital topographic map was used to generate slope class, elevation class, direction and distance. New road paths were determined using spatial analyst. Several module or technique that used were cost weight, reclassify, raster calculator and shortest path modeling. Results: Results showed that road path generated from GIS technique was shorter and avoid more unnecessary slope and elevation. Road profiles such as elevation, slope and length were analyzed and discussed. Conclusion: The result clearly revealed that GIS has strength and played a vital role in modeling forest road allocation effectively and reduced time consuming.

  20. Modelling atmospheric OH-reactivity in a boreal forest ecosystem

    DEFF Research Database (Denmark)

    Mogensen, D.; Smolander, S.; Sogachev, Andrey;

    2011-01-01

    We have modelled the total atmospheric OH-reactivity in a boreal forest and investigated the individual contributions from gas phase inorganic species, isoprene, monoterpenes, and methane along with other important VOCs. Daily and seasonal variation in OH-reactivity for the year 2008 was examined...... as well as the vertical OH-reactivity profile. We have used SOSA; a one dimensional vertical chemistry-transport model (Boy et al., 2011a) together with measurements from Hyytiala, SMEAR II station, Southern Finland, conducted in August 2008. Model simulations only account for similar to 30......-50% of the total measured OH sink, and in our opinion, the reason for missing OH-reactivity is due to unmeasured unknown BVOCs, and limitations in our knowledge of atmospheric chemistry including uncertainties in rate constants. Furthermore, we found that the OH-reactivity correlates with both organic...

  1. Comparative phytosocioogical investigation of subalpine alder thickets in southwestern Alaska and the North Pacific

    Data.gov (United States)

    US Fish and Wildlife Service, Department of the Interior — We present the first vegetation analysis of subalpine alder (Alnus viridis) thickets in southwestern Alaska. The data are primarily from mesic, hilly and mountainous...

  2. Tree biomass in the Swiss landscape: nationwide modelling for improved accounting for forest and non-forest trees.

    Science.gov (United States)

    Price, B; Gomez, A; Mathys, L; Gardi, O; Schellenberger, A; Ginzler, C; Thürig, E

    2017-03-01

    Trees outside forest (TOF) can perform a variety of social, economic and ecological functions including carbon sequestration. However, detailed quantification of tree biomass is usually limited to forest areas. Taking advantage of structural information available from stereo aerial imagery and airborne laser scanning (ALS), this research models tree biomass using national forest inventory data and linear least-square regression and applies the model both inside and outside of forest to create a nationwide model for tree biomass (above ground and below ground). Validation of the tree biomass model against TOF data within settlement areas shows relatively low model performance (R (2) of 0.44) but still a considerable improvement on current biomass estimates used for greenhouse gas inventory and carbon accounting. We demonstrate an efficient and easily implementable approach to modelling tree biomass across a large heterogeneous nationwide area. The model offers significant opportunity for improved estimates on land use combination categories (CC) where tree biomass has either not been included or only roughly estimated until now. The ALS biomass model also offers the advantage of providing greater spatial resolution and greater within CC spatial variability compared to the current nationwide estimates.

  3. Forest volume-to-biomass models and estimates of mass for live and standing dead trees of U.S. forests.

    Science.gov (United States)

    James E. Smith; Linda S. Heath; Jennifer C. Jenkins

    2003-01-01

    Includes methods and equations for nationally consistent estimates of tree-mass density at the stand level (Mg/ha) as predicted by growing-stock volumes reported by the USDA Forest Service for forests of the conterminous United States. Developed for use in FORCARB, a carbon budget model for U.S. forests, the equations also are useful for converting plot-, stand- and...

  4. Forest Productivity and Diversity: Using Ecological Theory and Landscape Models to Guide Sustainable Forest Management

    Energy Technology Data Exchange (ETDEWEB)

    Huston, M.A.

    1998-11-01

    Sustainable forest management requires maintaining or increasing ecosystem productivity, while preserving or restoring natural levels of biodiversity. Application of general concepts from ecological theory, along with use of mechanistic, landscape-based computer models, can contribute to the successful achievement of both of these objectives. Ecological theories based on the energetics and dynamics of populations can be used to predict the general distribution of individual species, the diversity of different types of species, ecosystem process rates and pool sizes, and patterns of spatial and temporal heterogeneity over a broad range of environmental conditions. This approach requires subdivision of total biodiversity into functional types of organisms, primarily because different types of organisms respond very differently to the spatial and temporal variation of environmental conditions on landscapes. The diversity of species of the same functional type (particularly among plants) tends to be highest at relatively low levels of net primary productivity, while the total number of different functional types (particularly among animals) tends to be highest at high levels of productivity (e.g., site index or potential net primary productivity). In general, the diversity of animals at higher trophic levels (e.g., predators) reaches its maximum at much higher levels of productivity than the diversity of lower trophic levels (e.g., plants). This means that a single environment cannot support high diversity of all types of organisms. Within the framework of the general patterns described above, the distributions, population dynamics, and diversity of organisms in specific regions can be predicted more precisely using a combination of computer simulation models and GIS data based on satellite information and ground surveys. Biophysical models that use information on soil properties, climate, and hydrology have been developed to predict how the abundance and spatial

  5. Confronting terrestrial biosphere models with forest inventory data.

    Science.gov (United States)

    Lichstein, Jeremy W; Golaz, Ni-Zhang; Malyshev, Sergey; Shevliakova, Elena; Zhang, Tao; Sheffield, Justin; Birdsey, Richard A; Sarmiento, Jorge L; Pacala, Stephen W

    2014-06-01

    Efforts to test and improve terrestrial biosphere models (TBMs) using a variety of data sources have become increasingly common. Yet, geographically extensive forest inventories have been under-exploited in previous model-data fusion efforts. Inventory observations of forest growth, mortality, and biomass integrate processes across a range of timescales, including slow timescale processes such as species turnover, that are likely to have important effects on ecosystem responses to environmental variation. However, the large number (thousands) of inventory plots precludes detailed measurements at each location, so that uncertainty in climate, soil properties, and other environmental drivers may be large. Errors in driver variables, if ignored, introduce bias into model-data fusion. We estimated errors in climate and soil drivers at U.S. Forest Inventory and Analysis (FIA) plots, and we explored the effects of these errors on model-data fusion with the Geophysical Fluid Dynamics Laboratory LM3V dynamic global vegetation model. When driver errors were ignored or assumed small at FIA plots, responses of biomass production in LM3V to precipitation and soil available water capacity appeared steeper than the corresponding responses estimated from FIA data. These differences became nonsignificant if driver errors at FIA plots were assumed to be large. Ignoring driver errors when optimizing LM3V parameter values yielded estimates for fine-root allocation that were larger than biometric estimates, which is consistent with the expected direction of bias. To explore whether complications posed by driver errors could be circumvented by relying on intensive study sites where driver errors are small, we performed a power analysis. To accurately quantify the response of biomass production to spatial variation in mean annual precipitation within the eastern United States would require at least 40 intensive study sites, which is larger than the number of sites typically available

  6. Analyzing the ecosystem carbon and hydrologic characteristics of forested wetland using a biogeochemical process model

    Science.gov (United States)

    Jianbo Cui; Changsheng Li; Carl Trettin

    2005-01-01

    A comprehensive biogeochemical model, Wetland-DNDC, was applied to analyze the carbon and hydrologic characteristics of forested wetland ecosystem at Minnesota (MN) and Florida (FL) sites. The model simulates the flows of carbon, energy, and water in forested wetlands. Modeled carbon dynamics depends on physiological plant factors, the size of plant pools,...

  7. An object-oriented forest landscape model and its representation of tree species

    Science.gov (United States)

    Hong S. He; David J. Mladenoff; Joel Boeder

    1999-01-01

    LANDIS is a forest landscape model that simulates the interaction of large landscape processes and forest successional dynamics at tree species level. We discuss how object-oriented design (OOD) approaches such as modularity, abstraction and encapsulation are integrated into the design of LANDIS. We show that using OOD approaches, model decisions (olden as model...

  8. A toolkit modeling approach for sustainable forest management planning: achieving balance between science and local needs

    Science.gov (United States)

    Brian R. Sturtevant; Andrew Fall; Daniel D. Kneeshaw; Neal P. P. Simon; Michael J. Papaik; Kati Berninger; Frederik Doyon; Don G. Morgan; Christian Messier

    2007-01-01

    To assist forest managers in balancing an increasing diversity of resource objectives, we developed a toolkit modeling approach for sustainable forest management (SFM). The approach inserts a meta-modeling strategy into a collaborative modeling framework grounded in adaptive management philosophy that facilitates participation among stakeholders, decision makers, and...

  9. Predicting hydrological response to forest changes by simple statistical models: the selection of the best indicator of forest changes with a hydrological perspective

    Science.gov (United States)

    Ning, D.; Zhang, M.; Ren, S.; Hou, Y.; Yu, L.; Meng, Z.

    2017-01-01

    Forest plays an important role in hydrological cycle, and forest changes will inevitably affect runoff across multiple spatial scales. The selection of a suitable indicator for forest changes is essential for predicting forest-related hydrological response. This study used the Meijiang River, one of the headwaters of the Poyang Lake as an example to identify the best indicator of forest changes for predicting forest change-induced hydrological responses. Correlation analysis was conducted first to detect the relationships between monthly runoff and its predictive variables including antecedent monthly precipitation and indicators for forest changes (forest coverage, vegetation indices including EVI, NDVI, and NDWI), and by use of the identified predictive variables that were most correlated with monthly runoff, multiple linear regression models were then developed. The model with best performance identified in this study included two independent variables -antecedent monthly precipitation and NDWI. It indicates that NDWI is the best indicator of forest change in hydrological prediction while forest coverage, the most commonly used indicator of forest change is insignificantly related to monthly runoff. This highlights the use of vegetation index such as NDWI to indicate forest changes in hydrological studies. This study will provide us with an efficient way to quantify the hydrological impact of large-scale forest changes in the Meijiang River watershed, which is crucial for downstream water resource management and ecological protection in the Poyang Lake basin.

  10. Forest evaporation models: Relationships between stand growth and evaporation

    CSIR Research Space (South Africa)

    Le Maitre, David C

    1997-06-01

    Full Text Available The relationships between forest stand structure, growth and evaporation were analysed to determine whether forest evaporation can be estimated from stand growth data. This approach permits rapid assessment of the potential impacts of afforestation...

  11. Potential of forest management to reduce French carbon emissions - regional modelling of the French forest carbon balance from the forest to the wood.

    Science.gov (United States)

    Valade, A.; Luyssaert, S.; Bellassen, V.; Vallet, P.

    2015-12-01

    In France the low levels of forest harvest (40 Mm3 per year over a volume increment of 89Mm3) is frequently cited to push for a more intensive management of the forest that would help reducing CO2 emissions. This reasoning overlooks the medium-to-long-term effects on the carbon uptake at the national scale that result from changes in the forest's structure and delayed emissions from products decay and bioenergy burning, both determinant for the overall C fluxes between the biosphere and the atmosphere. To address the impacts of an increase in harvest removal on biosphere-atmosphere carbon fluxes at national scale, we build a consistent regional modeling framework to integrate the forest-carbon system from photosynthesis to wood uses. We aim at bridging the gap between regional ecosystem modeling and land managers' considerations, to assess the synergistic and antagonistic effects of management strategies over C-based forest services: C-sequestration, energy and material provision, fossil fuel substitution. For this, we built on inventory data to develop a spatial forest growth simulator and design a novel method for diagnosing the current level of management based on stand characteristics (density, quadratic mean diameter or exploitability). The growth and harvest simulated are then processed with a life cycle analysis to account for wood transformation and uses. Three scenarii describe increases in biomass removals either driven by energy production target (set based on national prospective with a lock on minimum harvest diameters) or by changes in management practices (shorter or longer rotations, management of currently unmanaged forests) to be compared with business as usual simulations. Our management levels' diagnostics quantifies undermanagement at national scale and evidences the large weight of ownership-based undermanagement with an average of 26% of the national forest (between 10% and 40% per species) and thus represents a huge potential wood resource

  12. The cascade of uncertainty in modeling the impacts of climate change on Europe's forests

    Science.gov (United States)

    Reyer, Christopher; Lasch-Born, Petra; Suckow, Felicitas; Gutsch, Martin

    2015-04-01

    Projecting the impacts of global change on forest ecosystems is a cornerstone for designing sustainable forest management strategies and paramount for assessing the potential of Europe's forest to contribute to the EU bioeconomy. Research on climate change impacts on forests relies to a large extent on model applications along a model chain from Integrated Assessment Models to General and Regional Circulation Models that provide important driving variables for forest models. Or to decision support systems that synthesize findings of more detailed forest models to inform forest managers. At each step in the model chain, model-specific uncertainties about, amongst others, parameter values, input data or model structure accumulate, leading to a cascade of uncertainty. For example, climate change impacts on forests strongly depend on the in- or exclusion of CO2-effects or on the use of an ensemble of climate models rather than relying on one particular climate model. In the past, these uncertainties have not or only partly been considered in studies of climate change impacts on forests. This has left managers and decision-makers in doubt of how robust the projected impacts on forest ecosystems are. We deal with this cascade of uncertainty in a structured way and the objective of this presentation is to assess how different types of uncertainties affect projections of the effects of climate change on forest ecosystems. To address this objective we synthesized a large body of scientific literature on modeled productivity changes and the effects of extreme events on plant processes. Furthermore, we apply the process-based forest growth model 4C to forest stands all over Europe and assess how different climate models, emission scenarios and assumptions about the parameters and structure of 4C affect the uncertainty of the model projections. We show that there are consistent regional changes in forest productivity such as an increase in NPP in cold and wet regions while

  13. Modeling the effects of forest management on in situ and ex situ longleaf pine forest carbon stocks

    Science.gov (United States)

    C.A. Gonzalez-Benecke; L.J. Samuelson; T.A. Martin; W.P. Cropper Jr; Kurt Johnsen; T.A. Stokes; John Butnor; P.H. Anderson

    2015-01-01

    Assessment of forest carbon storage dynamics requires a variety of techniques including simulation models. We developed a hybrid model to assess the effects of silvicultural management systems on carbon (C) budgets in longleaf pine (Pinus palustris Mill.) plantations in the southeastern U.S. To simulate in situ C pools, the model integrates a growth and yield model...

  14. Measurement and modeling of rainfall interception by two differently aged secondary forests in upland eastern Madagascar

    Science.gov (United States)

    Prasad Ghimire, Chandra; Adrian Bruijnzeel, L.; Lubczynski, Maciek W.; Ravelona, Maafaka; Zwartendijk, Bob W.; van Meerveld, H. J. (Ilja)

    2017-02-01

    Secondary forests occupy a larger area than old-growth rain forests in many tropical regions but their hydrological functioning is still poorly understood. In particular, little is known about the various components of evapotranspiration in these possibly vigorously regenerating forests. This paper reports on a comparison of measured and modeled canopy interception losses (I) from a semi-mature (ca. 20 years) and a young (5-7 years) secondary forest in the lower montane rain forest zone of eastern Madagascar. Measurements of gross rainfall (P), throughfall (Tf), and stemflow (Sf) were made in both forests for one year (October 2014-September 2015) and the revised analytical model of Gash et al. (1995) was tested for the first time in a tropical secondary forest setting. Overall measured Tf, Sf and derived I in the semi-mature forest were 71.0%, 1.7% and 27.3% of incident P, respectively. Corresponding values for the young forest were 75.8%, 6.2% and 18.0%. The high Sf for the young forest reflects the strongly upward thrusting habit of the branches of the dominant species (Psiadia altissima), which favours funneling of P. The value of I for the semi-mature forest is similar to values reported for old-growth tropical lower montane rain forests elsewhere but I for the younger forest is higher than reported for similarly aged tropical lowland forests. These findings can be explained largely by the prevailing low rainfall intensities and the frequent occurrence of small rainfall events. The revised analytical model was able to reproduce measured cumulative I at the two sites accurately and succeeded in capturing the variability in I associated with the seasonal variability in rainfall intensity, provided that Tf-based values for the average wet-canopy evaporation rates were used instead of values derived with the Penman-Monteith equation.

  15. Linking state-and-transition simulation and timber supply models for forest biomass production scenarios

    Directory of Open Access Journals (Sweden)

    Jennifer K. Costanza

    2015-03-01

    Full Text Available We linked state-and-transition simulation models (STSMs with an economics-based timber supply model to examine landscape dynamics in North Carolina through 2050 for three scenarios of forest biomass production. Forest biomass could be an important source of renewable energy in the future, but there is currently much uncertainty about how biomass production would impact landscapes. In the southeastern US, if forests become important sources of biomass for bioenergy, we expect increased land-use change and forest management. STSMs are ideal for simulating these landscape changes, but the amounts of change will depend on drivers such as timber prices and demand for forest land, which are best captured with forest economic models. We first developed state-and-transition model pathways in the ST-Sim software platform for 49 vegetation and land-use types that incorporated each expected type of landscape change. Next, for the three biomass production scenarios, the SubRegional Timber Supply Model (SRTS was used to determine the annual areas of thinning and harvest in five broad forest types, as well as annual areas converted among those forest types, agricultural, and urban lands. The SRTS output was used to define area targets for STSMs in ST-Sim under two scenarios of biomass production and one baseline, business-as-usual scenario. We show that ST-Sim output matched SRTS targets in most cases. Landscape dynamics results indicate that, compared with the baseline scenario, forest biomass production leads to more forest and, specifically, more intensively managed forest on the landscape by 2050. Thus, the STSMs, informed by forest economics models, provide important information about potential landscape effects of bioenergy production.

  16. Linking state-and-transition simulation and timber supply models for forest biomass production scenarios

    Science.gov (United States)

    Costanza, Jennifer; Abt, Robert C.; McKerrow, Alexa; Collazo, Jaime

    2015-01-01

    We linked state-and-transition simulation models (STSMs) with an economics-based timber supply model to examine landscape dynamics in North Carolina through 2050 for three scenarios of forest biomass production. Forest biomass could be an important source of renewable energy in the future, but there is currently much uncertainty about how biomass production would impact landscapes. In the southeastern US, if forests become important sources of biomass for bioenergy, we expect increased land-use change and forest management. STSMs are ideal for simulating these landscape changes, but the amounts of change will depend on drivers such as timber prices and demand for forest land, which are best captured with forest economic models. We first developed state-and-transition model pathways in the ST-Sim software platform for 49 vegetation and land-use types that incorporated each expected type of landscape change. Next, for the three biomass production scenarios, the SubRegional Timber Supply Model (SRTS) was used to determine the annual areas of thinning and harvest in five broad forest types, as well as annual areas converted among those forest types, agricultural, and urban lands. The SRTS output was used to define area targets for STSMs in ST-Sim under two scenarios of biomass production and one baseline, business-as-usual scenario. We show that ST-Sim output matched SRTS targets in most cases. Landscape dynamics results indicate that, compared with the baseline scenario, forest biomass production leads to more forest and, specifically, more intensively managed forest on the landscape by 2050. Thus, the STSMs, informed by forest economics models, provide important information about potential landscape effects of bioenergy production.

  17. Alternative projections of the impacts of private investment on southern forests: a comparison of two large-scale forest sector models of the United States.

    Science.gov (United States)

    Ralph Alig; Darius Adams; John Mills; Richard Haynes; Peter Ince; Robert. Moulton

    2001-01-01

    The TAMM/NAPAP/ATLAS/AREACHANGE(TNAA) system and the Forest and Agriculture Sector Optimization Model (FASOM) are two large-scale forestry sector modeling systems that have been employed to analyze the U.S. forest resource situation. The TNAA system of static, spatial equilibrium models has been applied to make SO-year projections of the U.S. forest sector for more...

  18. Modeling Forest Timber Productivity in the South: Where Are We Today?

    Science.gov (United States)

    V. Clark Baldwin; Quang V. Cao

    1999-01-01

    The current southern species growth and yield prediction capability, new techniques utilized, and modeling trends over the last 17 years, were examined. Changing forest management objectives that emphasize more non-timber resources may have contributed to the continuing genetii lack of emphasis in modeling the timber productivity of the South's largest forest...

  19. Equilibrium and non-equilibrium concepts in forest genetic modelling: population- and individually-based approaches

    NARCIS (Netherlands)

    Kramer, K.; Werf, van der D.C.

    2010-01-01

    The environment is changing and so are forests, in their functioning, in species composition, and in the species’ genetic composition. Many empirical and process-based models exist to support forest management. However, most of these models do not consider the impact of environmental changes and for

  20. Spatial Simulation Modelling of Future Forest Cover Change Scenarios in Luangprabang Province, Lao PDR

    Directory of Open Access Journals (Sweden)

    Khamma Homsysavath

    2011-08-01

    Full Text Available Taking Luangprabang province in Lao Peoples’s Democratic Republic (PDR as an example, we simulated future forest cover changes under the business-as-usual (BAU, pessimistic and optimistic scenarios based on the Markov-cellular automata (MCA model. We computed transition probabilities from satellite-derived forest cover maps (1993 and 2000 using the Markov chains, while the “weights of evidence” technique was used to generate transition potential maps. The initial forest cover map (1993, the transition potential maps and the 1993–2000 transition probabilities were used to calibrate the model. Forest cover simulations were then performed from 1993 to 2007 at an annual time-step. The simulated forest cover map for 2007 was compared to the observed (actual forest cover map for 2007 in order to test the accuracy of the model. Following the successful calibration and validation, future forest cover changes were simulated up to 2014 under different scenarios. The MCA simulations under the BAU and pessimistic scenarios projected that current forest areas would decrease, whereas unstocked forest areas would increase in the future. Conversely, the optimistic scenario projected that current forest areas would increase in the future if strict forestry laws enforcing conservation in protected forest areas are implemented. The three simulation scenarios provide a very good case study for simulating future forest cover changes at the subnational level (Luangprabang province. Thus, the future simulated forest cover changes can possibly be used as a guideline to set reference scenarios as well as undertake REDD/REDD+ preparedness activities within the study area.

  1. Predictive modelling of the spatial pattern of past and future forest cover changes in India

    Science.gov (United States)

    Reddy, C. Sudhakar; Singh, Sonali; Dadhwal, V. K.; Jha, C. S.; Rao, N. Rama; Diwakar, P. G.

    2017-02-01

    This study was carried out to simulate the forest cover changes in India using Land Change Modeler. Classified multi-temporal long-term forest cover data was used to generate the forest covers of 1880 and 2025. The spatial data were overlaid with variables such as the proximity to roads, settlements, water bodies, elevation and slope to determine the relationship between forest cover change and explanatory variables. The predicted forest cover in 1880 indicates an area of 10,42,008 km2, which represents 31.7% of the geographical area of India. About 40% of the forest cover in India was lost during the time interval of 1880-2013. Ownership of majority of forest lands by non-governmental agencies and large scale shifting cultivation are responsible for higher deforestation rates in the Northeastern states. The six states of the Northeast (Assam, Manipur, Meghalaya, Mizoram, Nagaland, Tripura) and one union territory (Andaman & Nicobar Islands) had shown an annual gross rate of deforestation of >0.3 from 2005 to 2013 and has been considered in the present study for the prediction of future forest cover in 2025. The modelling results predicted widespread deforestation in Northeast India and in Andaman & Nicobar Islands and hence is likely to affect the remaining forests significantly before 2025. The multi-layer perceptron neural network has predicted the forest cover for the period of 1880 and 2025 with a Kappa statistic of >0.70. The model predicted a further decrease of 2305 km2 of forest area in the Northeast and Andaman & Nicobar Islands by 2025. The majority of the protected areas are successful in the protection of the forest cover in the Northeast due to management practices, with the exception of Manas, Sonai-Rupai, Nameri and Marat Longri. The predicted forest cover scenario for the year 2025 would provide useful inputs for effective resource management and help in biodiversity conservation and for mitigating climate change.

  2. Predictive modelling of the spatial pattern of past and future forest cover changes in India

    Indian Academy of Sciences (India)

    C Sudhakar Reddy; Sonali Singh; V K Dadhwal; C S Jha; N Rama Rao; P G Diwakar

    2017-02-01

    This study was carried out to simulate the forest cover changes in India using Land Change Modeler. Classified multi-temporal long-term forest cover data was used to generate the forest covers of 1880 and 2025. The spatial data were overlaid with variables such as the proximity to roads, settlements, water bodies, elevation and slope to determine the relationship between forest cover change and explanatory variables. The predicted forest cover in 1880 indicates an area of 10,42,008 km², which represents 31.7% of the geographical area of India. About 40% of the forest cover in India was lost during the time interval of 1880–2013. Ownership of majority of forest lands by non-governmental agencies and large scale shifting cultivation are responsible for higher deforestation rates in the Northeastern states. The six states of the Northeast (Assam, Manipur, Meghalaya, Mizoram, Nagaland, Tripura) and one union territory (Andaman & Nicobar Islands) had shown an annual gross rate of deforestation of >0.3 from 2005 to 2013 and has been considered in the present study for the prediction of future forest cover in 2025. The modelling results predicted widespread deforestation in Northeast India and in Andaman & Nicobar Islands and hence is likely to affect the remaining forests significantly before 2025. The multilayer perceptron neural network has predicted the forest cover for the period of 1880 and 2025 with a Kappa statistic of >0.70. The model predicted a further decrease of 2305 km2 of forest area in the Northeast and Andaman & Nicobar Islands by 2025. The majority of the protected areas are successful in the protection of the forest cover in the Northeast due to management practices, with the exception of Manas, Sonai-Rupai, Nameri and Marat Longri. The predicted forest cover scenario for the year 2025 would provide useful inputs for effective resource management and help in biodiversity conservation and for mitigating climate change.

  3. Revision and application of the LINKAGES model to simulate forest growth in central hardwood landscapes in response to climate change

    Science.gov (United States)

    William D. Dijak; Brice B. Hanberry; Jacob S. Fraser; Hong S. He; Wen J. Wang; Frank R. Thompson

    2017-01-01

    Context. Global climate change impacts forest growth and methods of modeling those impacts at the landscape scale are needed to forecast future forest species composition change and abundance. Changes in forest landscapes will affect ecosystem processes and services such as succession and disturbance, wildlife habitat, and production of forest...

  4. Development of lichen response indexes using a regional gradient modeling approach for large-scale monitoring of forests

    Science.gov (United States)

    Susan Will-Wolf; Peter Neitlich

    2010-01-01

    Development of a regional lichen gradient model from community data is a powerful tool to derive lichen indexes of response to environmental factors for large-scale and long-term monitoring of forest ecosystems. The Forest Inventory and Analysis (FIA) Program of the U.S. Department of Agriculture Forest Service includes lichens in its national inventory of forests of...

  5. Modeling forest aboveground biomass by combining spectrum, textures and topographic features

    Institute of Scientific and Technical Information of China (English)

    Mingshi LI; Ying TAN; Jie PAN; Shikui PENG

    2008-01-01

    Many textural measures have been developed and used for improving land cover classification accu-racy, but they rarely examined the role of textures in improving the performance of forest aboveground biomass estimations. The relationship between texture and biomass is poorly understood. In this paper, SPOT5 HRG datasets were ortho-rectified and atmospherically calibrated. Then the transform of spectral features is introduced, and the extraction of textural measures based on the Gray Level Co-occurrence Matrix is also implemented in accordance with four different directions (0°, 45°, 90o and 135°) and various moving window sizes, ranging from 3 x 3 to 51 x 51. Thus, a variety of textures were generated. Combined with derived topo-graphic features, the forest aboveground biomass estima-tion models for five predominant forest types in the scenic spot of the Mausoleum of Sun Yat-Sen, Nanjing, are identified and constructed, and the estimation accuracies exhibited by these models are also validated and evaluated respectively. The results indicate that: 1) Most textures are weakly correlated with forest biomass, but minority textural measures such as ME, CR and VA play a significantly effective and critical role in estimating forest biomass; 2) The textures of coniferous forest appear preferable to those of broad-leaved forest and mixed forest in representing the spatial configurations of forests;and 3) Among the topographic features including slope,aspect and elevation,aspect has the lowest correlation with the biomass of a forest in this study.

  6. Modeling forest defoliation using simulated BRDF and assessing its effect on reflectance and sensor reaching radiance

    Science.gov (United States)

    Rengarajan, Rajagopalan; Schott, John R.

    2016-09-01

    Remote sensing techniques such as change detection are widely used for mapping and monitoring forest cover to detect the declining health and vigor of forests. These techniques rely on the assumption that the biophysical variation in the forest introduces a corresponding variation in its reflectance. The biophysical variations are assessed by foresters, but these assessment techniques are expensive and cannot be performed frequently to identify a specific level of change in the forest, for example, infection due to gypsy moths that results in forest defoliation. Further, the interaction of atmosphere, sensor characteristics, and phenology that are inherent in the remotely sensed images makes it difficult to separate biophysical changes from observational effects. We have addressed these limitations by developing a method to model the spectral reflectance properties of forests with varying degrees of defoliation using the Digital Image and Remote Sensing Image Generation (DIRSIG) tool. This paper discusses the in-canopy radiative approach and the impact of defoliation on the reflectance and radiance observed by sensors such as Landsat. The results indicate that the relative variation in forest reflectance between a non-defoliated and a 30% defoliated deciduous forest can be as high as 10% in the NIR spectral band. A function can be fit to predict the level of defoliation from the relative variation in radiance. The modeling and analysis techniques can be extended to assess the impact of atmospheric factors and sensor characteristics relative to the biophysical changes as well as for assessing other biophysical variables in forests.

  7. Modelling and mapping the suitability of European forest formations at 1-km resolution

    DEFF Research Database (Denmark)

    Casalegno, Stefano; Amatulli, Giuseppe; Bastrup-Birk, Annemarie;

    2011-01-01

    Proactive forest conservation planning requires spatially accurate information about the potential distribution of tree species. The most cost-efficient way to obtain this information is habitat suitability modelling i.e. predicting the potential distribution of biota as a function of environmental...... factors. Here, we used the bootstrap-aggregating machine-learning ensemble classifier Random Forest (RF) to derive a 1-km resolution European forest formation suitability map. The statistical model use as inputs more than 6,000 field data forest inventory plots and a large set of environmental variables...... for map applicability. The European forest suitability map is now available for further applications in forest conservation and climate change issues....

  8. Determination of the Support Level of Local Organizations in a Model Forest Initiative: Do Local Stakeholders Have Willingness to Be Involved in the Model Forest Development?

    Directory of Open Access Journals (Sweden)

    Ahmet Tolunay

    2014-10-01

    Full Text Available Voluntary cooperation and the support of stakeholders carry a major importance in the development of Model Forests. The identification of the support level of local organizations as stakeholders in the Bucak Model Forest initiative, located in the Mediterranean region of Turkey, constitutes the theme of this study. Within this scope, the views of the stakeholders comprising local government units (LGUs, non-governmental organizations (NGOs, village councils (VCs, professional organizations (POs and forest products enterprises (FPEs located in the district of Bucak were collected by utilizing a survey technique. The data were analysed by using non-parametric statistical analyses due to the absence of a normal distribution. The results show that the information provided about the Model Forest concept to the stakeholders located in the district on the Bucak Model Forest initiative was identified as a factor impacting the support level. Moreover, it was also observed that the stakeholders were more willing to provide advisory support rather than financial support. NGOs and VCs were identified as stakeholders who could not provide financial support due to their restricted budgets. We discuss the benefits for a Model Forest initiative of establishing international cooperation to strengthen the local and regional sustainable development process.

  9. Assessing the effects of severe rainstorm-induced mixing on a subtropical, subalpine lake.

    Science.gov (United States)

    Kimura, Nobuaki; Liu, Wen-Cheng; Chiu, Chih-Yu; Kratz, T K

    2014-05-01

    Severe rainstorms cause vertical mixing that modifies the internal dynamics (e.g., internal seiche, thermal structure, and velocity filed) in warm polymictic lakes. Yuan Yang Lake (YYL), a subtropical, subalpine, and seasonally stratified small lake in the north-central region of Taiwan, is normally affected by typhoons accompanied with strong wind and heavy rainfall during the summer and fall. In this study, we used the field data, statistical analysis, spectral analysis, and numerical modeling to investigate severe rainstorm-induced mixing in the lake. Statistical determination of the key meteorological and environmental conditions underlying the observed vertical mixing suggests that the vertical mixing, caused by heat loss during severe rainstorms, was likely larger than wind-induced mixing and that high inflow discharge strongly increased heat loss through advection heat. Spectral analysis revealed that internal seiches at the basin scale occurred under non-rainstorm meteorological conditions and that the internal seiches under the rainstorm were modified on the increase of the internal seiche frequencies. Based upon observed frequencies of the internal seiches, a two-dimensional model was simulated and then appropriate velocity patterns of the internal seiches were determined under non-rainstorm conditions. Moreover, the model implemented with inflow boundary condition was conducted for rainstorm events. The model results showed that the severe rainstorms promoted thermal destratification and changed vertical circulation of the basin-scale, internal seiche motion into riverine flow.

  10. Modeling multiple resource limitation in tropical dry forests

    Science.gov (United States)

    Medvigy, D.; Xu, X.; Zarakas, C.

    2015-12-01

    Tropical dry forests (TDFs) are characterized by a long dry season when little rain falls. At the same time, many neotropical soils are highly weathered and relatively nutrient poor. Because TDFs are often subject to both water and nutrient constraints, the question of how they will respond to environmental perturbations is both complex and highly interesting. Models, our basic tools for projecting ecosystem responses to global change, can be used to address this question. However, few models have been specifically parameterized for TDFs. Here, we present a new version of the Ecosystem Demography 2 (ED2) model that includes a new parameterization of TDFs. In particular, we focus on the model's framework for representing limitation by multiple resources (carbon, water, nitrogen, and phosphorus). Plant functional types are represented in terms of a dichotomy between "acquisitive" and "conservative" resource acquisition strategies. Depending on their resource acquisition strategy and basic stoichiometry, plants can dynamically adjust their allocation to organs (leaves, stem, roots), symbionts (e.g. N2-fixing bacteria), and mycorrhizal fungi. Several case studies are used to investigate how resource acquisition strategies affect ecosystem responses to environmental perturbations. Results are described in terms of the basic setting (e.g., rich vs. poor soils; longer vs. shorter dry season), and well as the type and magnitude of environmental perturbation (e.g., changes in precipitation or temperature; changes in nitrogen deposition). Implications for ecosystem structure and functioning are discussed.

  11. Calcium induces long-term legacy effects in a subalpine ecosystem.

    Directory of Open Access Journals (Sweden)

    Urs Schaffner

    Full Text Available Human activities have transformed a significant proportion of the world's land surface, with profound effects on ecosystem processes. Soil applications of macronutrients such as nitrate, phosphorus, potassium or calcium are routinely used in the management of croplands, grasslands and forests to improve plant health or increase productivity. However, while the effects of continuous fertilization and liming on terrestrial ecosystems are well documented, remarkably little is known about the legacy effect of historical fertilization and liming events in terrestrial ecosystems and of the mechanisms involved. Here, we show that more than 70 years after the last application of lime on a subalpine grassland, all major soil and plant calcium pools were still significantly larger in limed than in unlimed plots, and that the resulting shift in the soil calcium/aluminium ratio continues to affect ecosystem services such as primary production. The difference in the calcium content of the vegetation and the topmost 10 cm of the soil in limed vs. unlimed plots amounts to approximately 19.5 g m(-2, equivalent to 16.3% of the amount that was added to the plots some 70 years ago. In contrast, plots that were treated with nitrogen-phosphorus-potassium fertilizer in the 1930s did not differ from unfertilized plots in any of the soil and vegetation characteristics measured. Our findings suggest that the long-term legacy effect of historical liming is due to long-term storage of added calcium in stable soil pools, rather than a general increase in nutrient availability. Our results demonstrate that single applications of calcium in its carbonated form can profoundly and persistently alter ecosystem processes and services in mountain ecosystems.

  12. Growth, allometry and shade tolerance of understory saplings of four subalpine conifers in central Japan.

    Science.gov (United States)

    Takahashi, Koichi; Obata, Yoshiko

    2014-03-01

    The conifers Abies veitchii, A. mariesii, Picea jezoensis var. hondoensis, Tsuga diversifolia dominate in subalpine forests in central Japan. We expected that species differences in shade tolerance and in aboveground and belowground architecture are important for their coexistence. We examined net production and carbon allocation of understory saplings. Although the four species allocated similar amounts of biomass to roots at a given trunk height, the root-zone area of T. diversifolia was greater than that of the three other species. T. diversifolia often dominates shallow soil sites, such as ridge and rocky slopes, and, therefore, a wide spread of lateral roots would be an adaptation to such edaphic conditions. Crown width and leaf and branch mass were greatest for T. diversifolia and A. mariesii, followed in order by A. veitchii and P. jezoensis var. hondoensis. Although leaf mass of P. jezoensis var. hondoensis was lowest among the four species, species differences were not found in the net production per sapling because net production per leaf mass was greatest for P. jezoensis var. hondoensis. The leaf lifespan was longer in the order A. mariesii, T. diversifolia, P. jezoensis var. hondoensis and A. veitchii. The minimum rate of net production per leaf mass required to maintain the current sapling leaf mass (MRNP(LM)) was lowest in A. mariesii and T. diversifolia, and increased in the order of A. veitchii and P. jezoensis var. hondoensis. A. mariesii and T. diversifolia may survive in shade conditions by a lower MRNP(LM) than the two other species. Therefore, species differences in aboveground and belowground architecture and MRNPLM reflected their shade tolerance and regeneration strategies, which contribute to their coexistence.

  13. Evapotranspiration and heat fluxes over a patchy forest - studied using modelling and measurements

    DEFF Research Database (Denmark)

    Sogachev, Andrey; Dellwik, Ebba; Boegh, Eva

    Most forests in Europe are too small to fulfill strict fetch requirements associated with idealized flux observations. As a consequence of limited fetch, the flux measured above the canopy will often deviate from the source strength underlying the measurements, i.e. observations of sensible...... and latent heat flux above forest downwind of a forest edge show these fluxes to be larger than the available energy over the forest (Klaassen et al. 2002, Theor. Appl. Climatol. 72, 231-243). Because such flux measurements are very often used for calibration of forest parameters or model constants, further...... using these parameters without a proper interpretation in mesoscale or global circulation models can results in serious bias of estimates of modelled evapotranspiration or heat fluxes from given area. Since representative measurements focused on heterogeneous effects are scarce numerical modelling can...

  14. A climate sensitive model of carbon transfer through atmosphere, vegetation and soil in managed forest ecosystems

    Science.gov (United States)

    Loustau, D.; Moreaux, V.; Bosc, A.; Trichet, P.; Kumari, J.; Rabemanantsoa, T.; Balesdent, J.; Jolivet, C.; Medlyn, B. E.; Cavaignac, S.; Nguyen-The, N.

    2012-12-01

    For predicting the future of the forest carbon cycle in forest ecosystems, it is necessary to account for both the climate and management impacts. Climate effects are significant not only at a short time scale but also at the temporal horizon of a forest life cycle e.g. through shift in atmospheric CO2 concentration, temperature and precipitation regimes induced by the enhanced greenhouse effect. Intensification of forest management concerns an increasing fraction of temperate and tropical forests and untouched forests represents only one third of the present forest area. Predicting tools are therefore needed to project climate and management impacts over the forest life cycle and understand the consequence of management on the forest ecosystem carbon cycle. This communication summarizes the structure, main components and properties of a carbon transfer model that describes the processes controlling the carbon cycle of managed forest ecosystems. The model, GO+, links three main components, (i) a module describing the vegetation-atmosphere mass and energy exchanges in 3D, (ii) a plant growth module and a (iii) soil carbon dynamics module in a consistent carbon scheme of transfer from atmosphere back into the atmosphere. It was calibrated and evaluated using observed data collected on coniferous and broadleaved forest stands. The model predicts the soil, water and energy balance of entire rotations of managed stands from the plantation to the final cut and according to a range of management alternatives. It accounts for the main soil and vegetation management operations such as soil preparation, understorey removal, thinnings and clearcutting. Including the available knowledge on the climatic sensitivity of biophysical and biogeochemical processes involved in atmospheric exchanges and carbon cycle of forest ecosystems, GO+ can produce long-term backward or forward simulations of forest carbon and water cycles under a range of climate and management scenarios. This

  15. Keystone Species, Forest and Landscape: A Model to Select Protected Areas

    Science.gov (United States)

    Lins, Daniela Barbosa da Silva; Gardon, Fernando Ravanini; Meyer, João Frederico da Costa Azevedo; Santos, Rozely Ferreira dos

    2017-06-01

    The selection of forest fragments for conservation is usually based on spatial parameters as forest size and canopy integrity. This strategy assumes that chosen fragments present high conservation status, ensuring biodiversity and ecological functions. We argue that a well-preserved forest fragment that remains connected by the landscape structure, does not necessarily hold attributes that ensure the presence of keystone species. We also discuss that the presence of keystone species does not always mean that it has the best conditions for its occurrence and maintenance. We developed a model to select areas in forest landscapes to be prioritized for protection based on suitability curves that unify and compare spatial indicators of three categories: forest fragment quality, landscape quality, and environmental conditions for the occurrence of a keystone species. We use a case study to compare different suitability degrees for Euterpe edulis presence, considered an important functional element in Atlantic Forest (São Paulo, Brazil) landscapes and a forest resource for local people. The results show that the identification of medium or advanced stage fragments as singular indicator of forest quality does not guarantee the existence or maintenance of this keystone species. Even in some well-preserved forest fragments, connected to others and with palm presence, the reverse J-shaped distribution of the population size structure is not sustained and these forests continue to be threatened due to human disturbances.

  16. Assessing the accuracy and stability of variable selection methods for random forest modeling in ecology

    Science.gov (United States)

    Random forest (RF) modeling has emerged as an important statistical learning method in ecology due to its exceptional predictive performance. However, for large and complex ecological datasets there is limited guidance on variable selection methods for RF modeling. Typically, e...

  17. Evaluating carbon fluxes of global forest ecosystems by using an individual tree-based model FORCCHN.

    Science.gov (United States)

    Ma, Jianyong; Shugart, Herman H; Yan, Xiaodong; Cao, Cougui; Wu, Shuang; Fang, Jing

    2017-02-14

    The carbon budget of forest ecosystems, an important component of the terrestrial carbon cycle, needs to be accurately quantified and predicted by ecological models. As a preamble to apply the model to estimate global carbon uptake by forest ecosystems, we used the CO2 flux measurements from 37 forest eddy-covariance sites to examine the individual tree-based FORCCHN model's performance globally. In these initial tests, the FORCCHN model simulated gross primary production (GPP), ecosystem respiration (ER) and net ecosystem production (NEP) with correlations of 0.72, 0.70 and 0.53, respectively, across all forest biomes. The model underestimated GPP and slightly overestimated ER across most of the eddy-covariance sites. An underestimation of NEP arose primarily from the lower GPP estimates. Model performance was better in capturing both the temporal changes and magnitude of carbon fluxes in deciduous broadleaf forest than in evergreen broadleaf forest, and it performed less well for sites in Mediterranean climate. We then applied the model to estimate the carbon fluxes of forest ecosystems on global scale over 1982-2011. This application of FORCCHN gave a total GPP of 59.41±5.67 and an ER of 57.21±5.32PgCyr(-1) for global forest ecosystems during 1982-2011. The forest ecosystems over this same period contributed a large carbon storage, with total NEP being 2.20±0.64PgCyr(-1). These values are comparable to and reinforce estimates reported in other studies. This analysis highlights individual tree-based model FORCCHN could be used to evaluate carbon fluxes of forest ecosystems on global scale.

  18. Forecast of China’s Forestation Area Based on ARIMA Model

    Institute of Scientific and Technical Information of China (English)

    2010-01-01

    Man-made forest, which is the forest ecosystem of rehabilitation and reconstruction, plays a significant role in the provision of forest products and improvement the ecological environment. In this paper, we established the AR (5) model to predict China's forest area from 2009 to 2015. This study shows the slow growth of the national plantation area trend with some fluctuations, but the overall growth rate is not large. We proposed that on one hand China should continue to increase the plantation area, on t...

  19. CARBON BALANCE OF FOREST ECOSYSTEMS UNDER GLOBAL WARMING: LANDSCAPE-ECOLOGICAL PREDICTIVE MODELING

    Directory of Open Access Journals (Sweden)

    Erland Kolomyts

    2011-01-01

    Full Text Available This paper presents the results of application of landscape-ecological methods for evaluation of biotic regulation of the carbon cycle in forest ecosystems. Methods for constructing analytical and cartographic empirical-statistical models for identification of forest associations and zonal/regional types of forest formations capable of stabilizing the continental biosphere under changing climate are described. Possible biotic regulation of the carbon cycle under known scenarios of future greenhouse warming is suggested. The maps on the carbon content and its changes in the forests of the Oka river basin are presented.

  20. Spatial modeling of the carbon stock of forest trees in Heilongjiang Province, China

    Institute of Scientific and Technical Information of China (English)

    Chang Liu; Lianjun Zhang; Fengri Li; Xingji Jin

    2014-01-01

    Heilongjiang province is the largest forest zone in China and the forest coverage rate is 46%. Forests of Heilongjiang province play an important role in the forest ecosystem of China. In this study we investi-gated the spatial distribution of forest carbon storage in Heilongjiang province using 3083 plots sampled in 2010. We attempted to fit two global models, ordinary least squares model (OLS) , linear mixed model (LMM), and a local model, geographically weighted regression model (GWR), to the relationship between forest carbon content and stand, environment, and climate factors. Five predictors significantly affected forest carbon storage and spatial distribution, viz. average diameter of stand (DBH), number of trees per hectare (TPH), elevation (Elev), slope (Slope) and the product of precipitation and temperature (Rain_Temp). The GWR model outperformed the two global models in both model fitting and prediction because it successfully reduced both spatial auto-correlation and heterogeneity in model residuals. More importantly, the GWR model provided localized model coefficients for each location in the study area, which allowed us to evaluate the influences of local stand conditions and topographic features on tree and stand growth, and forest carbon stock. It also helped us to better understand the impacts of silvi-cultural and management activities on the amount and changes of forest carbon storage across the province. The detailed information can be readily incorporated with the mapping ability of GIS software to provide excellent tools for assessing the distribution and dynamics of the for-est-carbon stock in the next few years.

  1. Modeling belowground biomass of black cohosh, a medicinal forest product.

    Science.gov (United States)

    James Chamberlain; Gabrielle Ness; Christine Small; Simon Bonner; Elizabeth Hiebert

    2014-01-01

    Tens of thousands of kilograms of rhizomes and roots of Actaea racemosa L., a native Appalachian forest perennial, are harvested every year and used for the treatment of menopausal conditions. Sustainable management of this and other wild-harvested non-timber forest products requires the ability to effectively and reliably inventory marketable plant...

  2. Growth and yield model application in tropical rain forest management

    Science.gov (United States)

    James Atta-Boateng; John W., Jr. Moser

    2000-01-01

    Analytical tools are needed to evaluate the impact of management policies on the sustainable use of rain forest. Optimal decisions concerning the level of management inputs require accurate predictions of output at all relevant input levels. Using growth data from 40 l-hectare permanent plots obtained from the semi-deciduous forest of Ghana, a system of 77 differential...

  3. Economic modelling of Oak forests, animportant factor for the sustainable development of rural area

    Directory of Open Access Journals (Sweden)

    Hasan Cania

    2013-09-01

    Full Text Available According to the non-legally binding instrument on all types of forests of UNFF and legally binding agreement on forest Europe, sustainable forest management, as a dynamic and evolving concept, aims to maintain and enhance the economic, social and environmental value of all types of forests, for the benefit of present and future generations. This definition leads to take into account multifunctional forestry, on the one hand, changes, risks and uncertainties on the other hand. In these document the actual state and multi-functionality of the oak forests of Mati’s district is analysed in order to implement the best practices and the full potential of all forest type in the district. Oak forests are an important component of the primary forest vegetation in Balkan and in Albania. They are well known for the added value on the biodiversity, specific and ecologic so far. Spatial distribution of oak forests is fully dependent from the ecological factors and traditional using practices or silvicultural models, by the rural population for which in this study is spended an important attention. The transfering process oak forests mostly to the ownership of local government call for new concepts on the sustainable forest management of communal forests in terms of objectives identification and implementation of the best treditional using practices. The study actual situation of the forests and the potential productivity are the basic elements to identify the stage of degradation and then the best practices for the rehabilitation and cost efectiveness. There are studied c. a. 43. 000 ha oak forsts or c. a. 4% of all domestic oak forests. There is a high variability of forest types, result of different ecological conditions and traditional using practices. The actual productivity is pretty low, but the elaborated models show that there is in place a big potentiality in terms of biomass production, even if the uneven structure of oak forests per age and

  4. Modeling Critical Forest Habitat in the Southern Coal Fields of West Virginia

    Directory of Open Access Journals (Sweden)

    Aaron E. Maxwell

    2012-01-01

    Full Text Available Throughout the Central Appalachians of the United States resource extraction primarily from coal mining has contributed to the majority of the forest conversion to barren and reclaimed pasture and grass. The loss of forests in this ecoregion is significantly impacting biodiversity at a regional scale. Since not all forest stands provide equal levels of ecological functions, it is critical to identify and map existing forested resources by the benefits that accrue from their unique spatial patterns, watershed drainage, and landscape positions. We utilized spatial analysis and remote sensing techniques to define critical forest characteristics. The characteristics were defined by applying a forest fragmentation model utilizing morphological image analysis, defining headwater catchments at a 1 : 24,000 scale, and deriving ecological land units (ELUs from elevation data. Once critical forest values were calculated, it was possible to identify clusters of critical stands using spatial statistics. This spatially explicit method for modeling forest habitat could be implemented as a tool for assessing the impact of resource extraction and aid in the conservation of critical forest habitat throughout a landscape.

  5. ShapeSelectForest: a new r package for modeling landsat time series

    Science.gov (United States)

    Mary Meyer; Xiyue Liao; Gretchen Moisen; Elizabeth. Freeman

    2015-01-01

    We present a new R package called ShapeSelectForest recently posted to the Comprehensive R Archival Network. The package was developed to fit nonparametric shape-restricted regression splines to time series of Landsat imagery for the purpose of modeling, mapping, and monitoring annual forest disturbance dynamics over nearly three decades. For each pixel and spectral...

  6. Modelling trends in soil solution concentrations under five forest-soil combinations in the Netherlands

    NARCIS (Netherlands)

    Salm, van der C.; Vries, de W.; Kros, J.

    1996-01-01

    The influence of forest and soil properties on changes in soil solution concentration upon a reduction deposition was examined for five forest-soil combinations with the dynamic RESAM model. Predicted concentrations decreased in the direction Douglas fir - Scotch pine - oak, due to decreased filteri

  7. Regional Policy Models for Forest Biodiversity Analysis: Lessons From Coastal Oregon

    Science.gov (United States)

    K. Norman Johnson; Sally Duncan; Thomas A. Spies

    2007-01-01

    The crisis in the early 1990s over conservation of biodiversity in the forests of the Pacific Northwest caused an upheaval in forest policies for public and private landowners. These events led to the development of the Coastal Landscape Assessment and Modeling Study (CLAMS) for the Coast Range Physiographic Province of Oregon, a province containing over two million...

  8. Strategic management of five deciduous forest invaders using Microstegium vimineum as a model species

    Science.gov (United States)

    Cynthia D. Huebner

    2007-01-01

    This paper links key plant invasive traits with key landscape traits to define strategic management for five common forest invaders, using empirical data of Microstegium vimineum dispersal into forests as a preliminary model. Microstegium vimineum exhibits an Allee effect that may allow management to focus on treating its source...

  9. Forest Conservation Opportunity Areas - Conservative Model (ECO_RES.COA_FORREST66)

    Science.gov (United States)

    This layer designates areas with potential for forest conservation. These are areas of natural or semi-natural forest land cover patches that area at least 395 meters away from roads and away from patch edges. OAs were modeled by creating distance grids using the National Land Cover Database and the Census Bureau's TIGER road files.

  10. Forest Conservation Opportunity Areas - Liberal Model (ECO_RES.COA_FORREST33)

    Science.gov (United States)

    This layer designates areas with potential for forest conservation. These are areas of natural or semi-natural forest land cover patches that are at least 75 meters away from roads and away from patch edges. OAs were modeled by creating distance grids using the National Land Cover Database and the Census Bureau's TIGER roads files.

  11. A data model for route planning in the case of forest fires

    NARCIS (Netherlands)

    Wang, Z.; Zlatanova, S.; Moreno, A.; Van Oosterom, P.J.M.; Toro, C.

    2013-01-01

    The ability to guide relief vehicles to safety and quickly pass through environments affected by fires is critical in fighting forest fires. In this paper, we focus on route determination in the case of forest fires, and propose a data model that supports finding paths among moving obstacles. This d

  12. Limnological research in the deep southern subalpine lakes: synthesis, directions and perspectives

    Directory of Open Access Journals (Sweden)

    Nico Salmaso

    2010-06-01

    Full Text Available Based on a selection of 230 papers published during the last 15 years in international journals, the present work aims at evaluating the state of the art of limnological research in the deep southern subalpine lakes (DSL: Garda, Iseo, Como, Lugano and Maggiore. Historically, most of the limnological research was fostered by the need to find solutions to the problems connected with eutrophication and pollution. Many data are available on the thermal structure, algal nutrient concentrations and phytoplankton of the DSL, while other topics still remain more or less constrained to single lakes. Apart from this geographical bias, a number of aspects emerged from this synoptic view. Limnological research is still linked to the concept of scientific monitoring, while experimental studies and modelling are confined to specific niches; the integration of different disciplines is held back by the division of studies on different compartments; integration of studies and synoptic analyses at a macro regional scale have been carried out only for specific research areas. The DSL are increasingly threatened by new pressures (climatic change, excessive proliferation of toxic cyanobacteria, introduction of new species and new micropollutants and by the interactions among these new and old stressors. In this rapidly changing situation, the paper emphasises the need to define criteria to be used to distinguish research able to produce relevant results and predictive models, which are essential elements for an efficient management of water resources.

  13. Wall-to-Wall Forest Mapping Based on Digital Surface Models from Image-Based Point Clouds and a NFI Forest Definition

    Directory of Open Access Journals (Sweden)

    Lars T. Waser

    2015-12-01

    Full Text Available Forest mapping is an important source of information for assessing woodland resources and a key issue for any National Forest Inventory (NFI. In the present study, a detailed wall-to-wall forest cover map was generated for all of Switzerland, which meets the requirement of the Swiss NFI forest definition. The workflow is highly automated and based on digital surface models from image-based point clouds of airborne digital sensor data. It fully takes into account the four key criteria of minimum tree height, crown coverage, width, and land use. The forest cover map was validated using almost 10,000 terrestrial and stereo-interpreted NFI plots, which verified 97% agreement overall. This validation implies different categories such as five production regions, altitude, tree type, and distance to the forest border. Overall accuracy was lower at forest borders but increased with increasing distance from the forest border. Commission errors remained stable at around 10%, but increased to 17.6% at the upper tree line. Omission errors were low at 1%–10%, but also increased with altitude and mainly occurred at the upper tree line (19.7%. The main reasons for this are the lower image quality and the NFI height definition for forest which apparently excludes shrub forest from the mask. The presented forest mapping approach is superior to existing products due to its national coverage, high level of detail, regular updating, and implementation of the land use criteria.

  14. The intrinsic periodic fluctuation of forest: a theoretical model based on diffusion equation

    Science.gov (United States)

    Zhou, J.; Lin, G., Sr.

    2015-12-01

    Most forest dynamic models predict the stable state of size structure as well as the total basal area and biomass in mature forest, the variation of forest stands are mainly driven by environmental factors after the equilibrium has been reached. However, although the predicted power-law size-frequency distribution does exist in analysis of many forest inventory data sets, the estimated distribution exponents are always shifting between -2 and -4, and has a positive correlation with the mean value of DBH. This regular pattern can not be explained by the effects of stochastic disturbances on forest stands. Here, we adopted the partial differential equation (PDE) approach to deduce the systematic behavior of an ideal forest, by solving the diffusion equation under the restricted condition of invariable resource occupation, a periodic solution was gotten to meet the variable performance of forest size structure while the former models with stable performance were just a special case of the periodic solution when the fluctuation frequency equals zero. In our results, the number of individuals in each size class was the function of individual growth rate(G), mortality(M), size(D) and time(T), by borrowing the conclusion of allometric theory on these parameters, the results perfectly reflected the observed "exponent-mean DBH" relationship and also gave a logically complete description to the time varying form of forest size-frequency distribution. Our model implies that the total biomass of a forest can never reach a stable equilibrium state even in the absence of disturbances and climate regime shift, we propose the idea of intrinsic fluctuation property of forest and hope to provide a new perspective on forest dynamics and carbon cycle research.

  15. Observation and modelling of HOx radicals in a boreal forest

    Directory of Open Access Journals (Sweden)

    K. Hens

    2014-08-01

    Full Text Available Measurements of OH and HO2 radicals were conducted in a pine-dominated forest in southern Finland during the HUMPPA-COPEC-2010 (Hyytiälä United Measurements of Photochemistry and Particles in Air – Comprehensive Organic Precursor Emission and Concentration study field campaign in summer 2010. Simultaneous side-by-side measurements of hydroxyl radicals were conducted with two instruments using chemical ionization mass spectrometry (CIMS and laser-induced fluorescence (LIF, indicating small systematic disagreement, OHLIF / OHCIMS = (1.31 ± 0.14. Subsequently, the LIF instrument was moved to the top of a 20 m tower, just above the canopy, to investigate the radical chemistry at the ecosystem–atmosphere interface. Comprehensive measurements including observations of many volatile organic compounds (VOCs and the total OH reactivity were conducted and analysed using steady-state calculations as well as an observationally constrained box model. Production rates of OH calculated from measured OH precursors are consistent with those derived from the steady-state assumption and measured total OH loss under conditions of moderate OH reactivity. The primary photolytic sources of OH contribute up to one-third to the total OH production. OH recycling, which occurs mainly by HO2 reacting with NO and O3, dominates the total hydroxyl radical production in this boreal forest. Box model simulations agree with measurements for hydroxyl radicals (OHmod. / OHobs. = 1.00 ± 0.16, while HO2 mixing ratios are significantly under-predicted (HO2mod. / HO2obs. = 0.3 ± 0.2, and simulated OH reactivity does not match the observed OH reactivity. The simultaneous under-prediction of HO2 and OH reactivity in periods in which OH concentrations were simulated realistically suggests that the missing OH reactivity is an unaccounted-for source of HO2. Detailed analysis of the HOx production, loss, and recycling pathways suggests that in periods of high total OH reactivity

  16. Modeling some long-term implications of CO2 fertilization for global forests and forest industries

    Science.gov (United States)

    Joseph Buongiorno

    2015-01-01

    Background: This paper explored the long-term, ceteris-paribus effects of potential CO2 fertilization on the globalforest sector. Based on the findings of Norby et al. (PNAS 2005, 102(50)) about forest response to elevated [CO2].Methods:...

  17. Climate and bark beetle effects on forest productivity -- linking dendroecology with forest landscape modeling

    Science.gov (United States)

    Alec M. Kretchun; E. Louise Loudermilk; Robert M. Scheller; Matthew D. Hurteau; Soumaya Belmecheri

    2016-01-01

    In forested systems throughout the world, climate influences tree growth and aboveground net primary productivity (ANPP). The effects of extreme climate events (i.e., drought) on ANPP can be compounded by biotic factors (e.g., insect outbreaks). Understanding the contribution of each of these influences on growth requires information at...

  18. Monitoring of carbon dioxide fluxes in a subalpine grassland ecosystem of the Italian Alps using a multispectral sensor

    Directory of Open Access Journals (Sweden)

    K. Sakowska

    2014-03-01

    Full Text Available The study investigates the potential of a multispectral sensor for monitoring mean midday gross ecosystem production (GEPm in a dynamic subalpine grassland ecosystem of the Italian Alps equipped with an eddy covariance flux tower. Reflectance observations were collected for five consecutive years by means of a multispectral radiometer system. Spectral vegetation indices were calculated from reflectance measurements at particular wavelengths. Different models based on linear regression and on multiple regression were developed to estimate GEPm. Chlorophyll-related indices including red-edge part of the spectrum in their formulation were the best predictors of GEPm, explaining most of its variability during the five consecutive years of observations characterized by different climatic conditions. Integrating mean midday photosynthetically active radiation into the model resulted in a general decrease in the accuracy of estimates. Also, the use of the reflectance approach instead of the VIs approach did not lead to considerably improved results in estimating GEPm.

  19. Subalpine Conifer Seedling Demographics: Species Responses to Climate Manipulations Across an Elevational Gradient at Niwot Ridge, Colorado

    Science.gov (United States)

    Castanha, C.; Germino, M. J.; Torn, M. S.; Ferrenberg, S.; Harte, J.; Kueppers, L. M.

    2010-12-01

    The effect of climate change on future ranges of treeline species is poorly understood. For example, it is not known whether trees will recruit into the alpine, above the current treeline, and whether population-level differences in trees will mediate range shifts. At Niwot Ridge, Colorado, we used common gardens and climate manipulations to test predictions that warming will lead to greater recruitment at and beyond the cold edge of these species ranges, and will reduce recruitment at the warm edge. Seed from local populations of limber pine and Englemann spruce was harvested and reciprocally planted in 3 experimental sites spanning an elevation gradient from lower subalpine forest (10,000’), to the upper subalpine treeline ecotone (11,000’), to the alpine tundra (11,300’). In Fall 2009 seeds were sown into 20 plots at each site. Overhead infrared heaters targeted increases in growing season surface soil temperature of 4-5°C. The heating treatment, which began in October 2009, was crossed with manual watering, which was initiated following snowmelt in 2010. Over the 2010 growing season, we surveyed seedling germination and mortality weekly. Germination began in early May at the forest site, in early June at the krummholz site, and in early July at the alpine site. Depending on the site and plot, heating accelerated germination by 1 to 4 weeks. Seed source elevation, species, and site all affected germination, with effects for the two species also depending on site. At all sites, lower elevation, warm-edge populations had higher germination rates than high-elevation, cool-edge populations, indicating a potential bottleneck for germination of the high elevation seed sources in the adjacent alpine tundra. At all sites, survival was generally higher for pine than for spruce. Watering tended to enhance pine germinant survival while heating tended to depress spruce germinant survival. Our results indicate that the alpine tundra, generally considered an

  20. GNSS-Reflectometry: Forest canopies polarization scattering properties and modeling

    Science.gov (United States)

    Wu, Xuerui; Jin, Shuanggen

    2014-09-01

    Nowadays, GNSS-Reflectometry (GNSS-R) can be a new promising remote sensing tool in the ocean, snow/ice and land surfaces, e.g., vegetation biomass monitoring. Although GNSS-R provides a potentially special L-band multi-angular and multi-polarization measurement, the theoretical vegetation scattering properties and mechanisms for GNSS-R are not understood clearly. In this paper, the GNSS-R vegetation polarization scattering properties are studied and modeled at different incidence angles (specular direction). The bistatic scattering model Bi-mimics is employed, which is the first-order radiative transfer equation. As a kind of forest stand, the Aspen’s crown layer is composed of entire leaves, and its parameters in Mimics handbook are used as model input. The specular circular polarizations (co-polarization RR and cross-polarization LR) are simulated. For cross-polarization, the received polarization is assumed as a linear (horizontal and vertical) polarizations and ±45° linear polarizations. Therefore, the HR VR, +45R and -45R polarizations are simulated here. Contributions from different scattering components at RR, LR and VR polarization are also presented. For co-polarization, it is large in the whole specular angles (10-80°). The scattering trends of the other cross polarization (HR, LR, +45R and -45R) are a little similar when compared to the RR and RV. Therefore, the RHCP and V polarizations are more favorable to collect the reflected signals. The trunk heights and crown depths do not affect the scattering trends of RR, RV and RL, while the trunk height has some effect on the scattering amplitude of different polarizations. The azimuth angle has more effects on RR, RL and RV scattering, especially in lower than 50°. The observation angles and polarization combinations are extremely important for GNSS-R remote sensing.

  1. Effects of lidar pulse density and sample size on a model-assisted approach to estimate forest inventory variables

    Science.gov (United States)

    Jacob Strunk; Hailemariam Temesgen; Hans-Erik Andersen; James P. Flewelling; Lisa Madsen

    2012-01-01

    Using lidar in an area-based model-assisted approach to forest inventory has the potential to increase estimation precision for some forest inventory variables. This study documents the bias and precision of a model-assisted (regression estimation) approach to forest inventory with lidar-derived auxiliary variables relative to lidar pulse density and the number of...

  2. A user-friendly forest model with a multiplicative mathematical structure: a Bayesian approach to calibration

    Directory of Open Access Journals (Sweden)

    M. Bagnara

    2014-10-01

    Full Text Available Forest models are being increasingly used to study ecosystem functioning, through the reproduction of carbon fluxes and productivity in very different forests all over the world. Over the last two decades, the need for simple and "easy to use" models for practical applications, characterized by few parameters and equations, has become clear, and some have been developed for this purpose. These models aim to represent the main drivers underlying forest ecosystem processes while being applicable to the widest possible range of forest ecosystems. Recently, it has also become clear that model performance should not be assessed only in terms of accuracy of estimations and predictions, but also in terms of estimates of model uncertainties. Therefore, the Bayesian approach has increasingly been applied to calibrate forest models, with the aim of estimating the uncertainty of their results, and of comparing their performances. Some forest models, considered to be user-friendly, rely on a multiplicative or quasi-multiplicative mathematical structure, which is known to cause problems during the calibration process, mainly due to high correlations between parameters. In a Bayesian framework using a Markov Chain Monte Carlo sampling this is likely to impair the reaching of a proper convergence of the chains and the sampling from the correct posterior distribution. Here we show two methods to reach proper convergence when using a forest model with a multiplicative structure, applying different algorithms with different number of iterations during the Markov Chain Monte Carlo or a two-steps calibration. The results showed that recently proposed algorithms for adaptive calibration do not confer a clear advantage over the Metropolis–Hastings Random Walk algorithm for the forest model used here. Moreover, the calibration remains time consuming and mathematically difficult, so advantages of using a fast and user-friendly model can be lost due to the calibration

  3. Modelling basin-wide variations in Amazon forest photosynthesis

    Science.gov (United States)

    Mercado, Lina; Lloyd, Jon; Domingues, Tomas; Fyllas, Nikolaos; Patino, Sandra; Dolman, Han; Sitch, Stephen

    2010-05-01

    type parameter values are assigned and assumed invariant with environmental condition but also ii) these models use leaf N as a factor that limit photosynthesis. Instead, since leaf P may also limit photosynthesis of the tropical forest (Reich et al. 2009), we use a more specific description of photosynthetic capacity across the basin based on the model evaluation done in Mercado et al. (2009) in which canopy photosynthetic capacity is related to foliar P but also using the relationships derived between canopy photosynthesis and leaf nutrients (N and P) from measurements in tropical trees (Domingues et al.In review). A study of this kind can inform the global vegetation/climate community as to the need for variability in key model parameters in order to accurately simulate carbon fluxes across the Amazon basin. Baker, T. R., et al. 2004. Increasing biomass in Amazonian forest plots. Philosophical Transactions of the Royal Society of London Series B-Biological Sciences 359 (1443):353-365. Phillips, O. L. et al. 2004. Pattern and process in Amazon tree turnover, 1976-2001. Philosophical Transactions of the Royal Society of London Series B-Biological Sciences 359 (1443):381-407. Malhi, Y. et al. 2004. The above-ground coarse wood productivity of 104 Neotropical forest plots. Global Change Biology 10 (5):563-591. Mercado, L.M. et al. 2009. Impact of changes in diffuse radiation on the global land carbon sink. Nature 458 (7241), 1014. Cox, P. M. et al. 1998. A canopy conductance and photosynthesis model for use in a GCM land surface scheme. Journal of Hydrology 213 (1-4):79-9 Sitch, S. et al. 2003. Evaluation of ecosystem dynamics, plant geography and terrestrial carbon cycling in the LPJ dynamic global vegetation model. Global Change Biology 9 (2):161-185. Reich B. R. et al. 2009. Leaf phosphorus influences the photosynhtesis-nitrogen relation: a cross-biome analysis of 314 species. Oecologia, doi 10.1007/s00442-009-1291-3. Domingues, T. et al. In review. Co-limitation of

  4. Assessing impacts of climate change on forests: The state of biological modeling

    Energy Technology Data Exchange (ETDEWEB)

    Dale, V.H. [Oak Ridge National Lab., TN (United States); Rauscher, H.M. [Forest Service, Grand Rapids, MI (United States). North Central Forest Experiment Station

    1993-04-06

    Models that address the impacts to forests of climate change are reviewed by four levels of biological organization: global, regional or landscape, community, and tree. The models are compared as to their ability to assess changes in greenhouse gas flux, land use, maps of forest type or species composition, forest resource productivity, forest health, biodiversity, and wildlife habitat. No one model can address all of these impacts, but landscape transition models and regional vegetation and land-use models consider the largest number of impacts. Developing landscape vegetation dynamics models of functional groups is suggested as a means to integrate the theory of both landscape ecology and individual tree responses to climate change. Risk assessment methodologies can be adapted to deal with the impacts of climate change at various spatial and temporal scales. Four areas of research development are identified: (1) linking socioeconomic and ecologic models, (2) interfacing forest models at different scales, (3) obtaining data on susceptibility of trees and forest to changes in climate and disturbance regimes, and (4) relating information from different scales.

  5. Biogeochemical modelling vs. tree-ring data - comparison of forest ecosystem productivity estimates

    Science.gov (United States)

    Zorana Ostrogović Sever, Maša; Barcza, Zoltán; Hidy, Dóra; Paladinić, Elvis; Kern, Anikó; Marjanović, Hrvoje

    2017-04-01

    Forest ecosystems are sensitive to environmental changes as well as human-induce disturbances, therefore process-based models with integrated management modules represent valuable tool for estimating and forecasting forest ecosystem productivity under changing conditions. Biogeochemical model Biome-BGC simulates carbon, nitrogen and water fluxes, and it is widely used for different terrestrial ecosystems. It was modified and parameterised by many researchers in the past to meet the specific local conditions. In this research, we used recently published improved version of the model Biome-BGCMuSo (BBGCMuSo), with multilayer soil module and integrated management module. The aim of our research is to validate modelling results of forest ecosystem productivity (NPP) from BBGCMuSo model with observed productivity estimated from an extensive dataset of tree-rings. The research was conducted in two distinct forest complexes of managed Pedunculate oak in SE Europe (Croatia), namely Pokupsko basin and Spačva basin. First, we parameterized BBGCMuSo model at a local level using eddy-covariance (EC) data from Jastrebarsko EC site. Parameterized model was used for the assessment of productivity on a larger scale. Results of NPP assessment with BBGCMuSo are compared with NPP estimated from tree ring data taken from trees on over 100 plots in both forest complexes. Keywords: Biome-BGCMuSo, forest productivity, model parameterization, NPP, Pedunculate oak

  6. Assessing Impacts of Climate Change on Forests: The State of Biological Modeling

    Science.gov (United States)

    Dale, V. H.; Rauscher, H. M.

    1993-04-06

    Models that address the impacts to forests of climate change are reviewed by four levels of biological organization: global, regional or landscape, community, and tree. The models are compared as to their ability to assess changes in greenhouse gas flux, land use, maps of forest type or species composition, forest resource productivity, forest health, biodiversity, and wildlife habitat. No one model can address all of these impacts, but landscape transition models and regional vegetation and land-use models consider the largest number of impacts. Developing landscape vegetation dynamics models of functional groups is suggested as a means to integrate the theory of both landscape ecology and individual tree responses to climate change. Risk assessment methodologies can be adapted to deal with the impacts of climate change at various spatial and temporal scales. Four areas of research development are identified: (1) linking socioeconomic and ecologic models, (2) interfacing forest models at different scales, (3) obtaining data on susceptibility of trees and forest to changes in climate and disturbance regimes, and (4) relating information from different scales.

  7. Regression tree modeling of forest NPP using site conditions and climate variables across eastern USA

    Science.gov (United States)

    Kwon, Y.

    2013-12-01

    As evidence of global warming continue to increase, being able to predict forest response to climate changes, such as expected rise of temperature and precipitation, will be vital for maintaining the sustainability and productivity of forests. To map forest species redistribution by climate change scenario has been successful, however, most species redistribution maps lack mechanistic understanding to explain why trees grow under the novel conditions of chaining climate. Distributional map is only capable of predicting under the equilibrium assumption that the communities would exist following a prolonged period under the new climate. In this context, forest NPP as a surrogate for growth rate, the most important facet that determines stand dynamics, can lead to valid prediction on the transition stage to new vegetation-climate equilibrium as it represents changes in structure of forest reflecting site conditions and climate factors. The objective of this study is to develop forest growth map using regression tree analysis by extracting large-scale non-linear structures from both field-based FIA and remotely sensed MODIS data set. The major issue addressed in this approach is non-linear spatial patterns of forest attributes. Forest inventory data showed complex spatial patterns that reflect environmental states and processes that originate at different spatial scales. At broad scales, non-linear spatial trends in forest attributes and mixture of continuous and discrete types of environmental variables make traditional statistical (multivariate regression) and geostatistical (kriging) models inefficient. It calls into question some traditional underlying assumptions of spatial trends that uncritically accepted in forest data. To solve the controversy surrounding the suitability of forest data, regression tree analysis are performed using Software See5 and Cubist. Four publicly available data sets were obtained: First, field-based Forest Inventory and Analysis (USDA

  8. Random forest regression modelling for forest aboveground biomass estimation using RISAT-1 PolSAR and terrestrial LiDAR data

    Science.gov (United States)

    Mangla, Rohit; Kumar, Shashi; Nandy, Subrata

    2016-05-01

    SAR and LiDAR remote sensing have already shown the potential of active sensors for forest parameter retrieval. SAR sensor in its fully polarimetric mode has an advantage to retrieve scattering property of different component of forest structure and LiDAR has the capability to measure structural information with very high accuracy. This study was focused on retrieval of forest aboveground biomass (AGB) using Terrestrial Laser Scanner (TLS) based point clouds and scattering property of forest vegetation obtained from decomposition modelling of RISAT-1 fully polarimetric SAR data. TLS data was acquired for 14 plots of Timli forest range, Uttarakhand, India. The forest area is dominated by Sal trees and random sampling with plot size of 0.1 ha (31.62m*31.62m) was adopted for TLS and field data collection. RISAT-1 data was processed to retrieve SAR data based variables and TLS point clouds based 3D imaging was done to retrieve LiDAR based variables. Surface scattering, double-bounce scattering, volume scattering, helix and wire scattering were the SAR based variables retrieved from polarimetric decomposition. Tree heights and stem diameters were used as LiDAR based variables retrieved from single tree vertical height and least square circle fit methods respectively. All the variables obtained for forest plots were used as an input in a machine learning based Random Forest Regression Model, which was developed in this study for forest AGB estimation. Modelled output for forest AGB showed reliable accuracy (RMSE = 27.68 t/ha) and a good coefficient of determination (0.63) was obtained through the linear regression between modelled AGB and field-estimated AGB. The sensitivity analysis showed that the model was more sensitive for the major contributed variables (stem diameter and volume scattering) and these variables were measured from two different remote sensing techniques. This study strongly recommends the integration of SAR and LiDAR data for forest AGB estimation.

  9. Aboveground Biomass Modeling from Field and LiDAR Data in Brazilian Amazon Tropical Rain Forest

    Science.gov (United States)

    Silva, C. A.; Hudak, A. T.; Vierling, L. A.; Keller, M. M.; Klauberg Silva, C. K.

    2015-12-01

    Tropical forests are an important component of global carbon stocks, but tropical forest responses to climate change are not sufficiently studied or understood. Among remote sensing technologies, airborne LiDAR (Light Detection and Ranging) may be best suited for quantifying tropical forest carbon stocks. Our objective was to estimate aboveground biomass (AGB) using airborne LiDAR and field plot data in Brazilian tropical rain forest. Forest attributes such as tree density, diameter at breast height, and heights were measured at a combination of square plots and linear transects (n=82) distributed across six different geographic zones in the Amazon. Using previously published allometric equations, tree AGB was computed and then summed to calculate total AGB at each sample plot. LiDAR-derived canopy structure metrics were also computed at each sample plot, and random forest regression modelling was applied to predict AGB from selected LiDAR metrics. The LiDAR-derived AGB model was assessed using the random forest explained variation, adjusted coefficient of determination (Adj. R²), root mean square error (RMSE, both absolute and relative) and BIAS (both absolute and relative). Our findings showed that the 99th percentile of height and height skewness were the best LiDAR metrics for AGB prediction. The AGB model using these two best predictors explained 59.59% of AGB variation, with an Adj. R² of 0.92, RMSE of 33.37 Mg/ha (20.28%), and bias of -0.69 (-0.42%). This study showed that LiDAR canopy structure metrics can be used to predict AGC stocks in Tropical Forest with acceptable precision and accuracy. Therefore, we conclude that there is good potential to monitor carbon sequestration in Brazilian Tropical Rain Forest using airborne LiDAR data, large field plots, and the random forest algorithm.

  10. Successful modeling of the environmental changes' influence on forests' vegetation over North Eurasia

    CERN Document Server

    Khabarova, O; Medvedeva, M

    2010-01-01

    Modeling of forests' vegetation in North Eurasia has been performed for 1982-2006 on the basis of remote sensing data. Four meteorological parameters and one parameter, characterizing geomagnetic field disturbance level, were used for this aim. It was found out that revealed formula is adequate both for coniferous evergreen and coniferous deciduous forests for accuracy to a coefficient. The most proper parameters' combination gives the correlation coefficients ~ 0.9 between modeling parameter and original data rows. These results could solve problems of climate-forests feedbacks' investigations and be useful for dendrological aims.

  11. Research on Inversion Models for Forest Height Estimation Using Polarimetric SAR Interferometry

    Science.gov (United States)

    Zhang, L.; Duan, B.; Zou, B.

    2017-09-01

    The forest height is an important forest resource information parameter and usually used in biomass estimation. Forest height extraction with PolInSAR is a hot research field of imaging SAR remote sensing. SAR interferometry is a well-established SAR technique to estimate the vertical location of the effective scattering center in each resolution cell through the phase difference in images acquired from spatially separated antennas. The manipulation of PolInSAR has applications ranging from climate monitoring to disaster detection especially when used in forest area, is of particular interest because it is quite sensitive to the location and vertical distribution of vegetation structure components. However, some of the existing methods can't estimate forest height accurately. Here we introduce several available inversion models and compare the precision of some classical inversion approaches using simulated data. By comparing the advantages and disadvantages of these inversion methods, researchers can find better solutions conveniently based on these inversion methods.

  12. Simulating Amazon forest carbon cycling using an individual- and trait-based model.

    Science.gov (United States)

    Fauset, S.; Fyllas, N.; Galbraith, D.; Christoffersen, B. O.; Baker, T. R.; Johnson, M. O.; Malhi, Y.; Phillips, O. L.; Lloyd, J.; Gloor, E. U.

    2014-12-01

    The Amazon forest, a regional and global regulator of climate and store of enormous biodiversity, is an incredibly complex ecosystem. Just one ha of forest can contain 300 different species of tree, with an estimated 16,000 tree species present in the region. Different tree species, and even different individuals of a species, vary in their functional traits, influencing how they behave in response to the environment. Dynamic global vegetation models (DGVMs) are commonly used to simulate the response of the Amazon forest to global environmental change. Yet, such DGVMs typically use a plant functional type (PFT) approach where variation between individuals and species are not represented, which inherently limits the range of outcomes for Amazonia under climate change. Here, we report on recent advances in an alternative approach to tropical forest modeling that represents the size structure and variation of traits within a community, which we term the Trait-based Forest Simulator (TFS). As originally proposed, TFS was strictly a steady-state model and here we present an extension of TFS which includes full forest dynamics, and has been evaluated with data collected from intensive carbon cycling inventory plots from the GEM (Global Ecosystems Monitoring) network. Specifically, we compare the model output to stand-level data on productivity and respiration of the canopy, stems and roots. The model development process has highlighted ecological tradeoffs that are necessary to integrate into trait-based models, such as a shorter leaf lifetime with a lower leaf mass per area. The adapted TFS model simulates carbon cycling in forest plots, including variation in productivity between sites. These results lend confidence to the ability of next-generation vegetation models to accurately simulate forest sensitivity to future changes.

  13. iTree-Hydro: Snow hydrology update for the urban forest hydrology model

    Science.gov (United States)

    Yang Yang; Theodore A. Endreny; David J. Nowak

    2011-01-01

    This article presents snow hydrology updates made to iTree-Hydro, previously called the Urban Forest Effects—Hydrology model. iTree-Hydro Version 1 was a warm climate model developed by the USDA Forest Service to provide a process-based planning tool with robust water quantity and quality predictions given data limitations common to most urban areas. Cold climate...

  14. Climate change, forest management and nitrogen deposition influence on carbon sequestration in forest ecosystems in Russia: simulation modelling approach

    Science.gov (United States)

    Komarov, Alexander; Kudeyarov, Valery; Shanin, Vladimir

    2014-05-01

    Russian land ecosystems occupy more than 1/9th global land area. Therefore its carbon budget is an essential contribution to the global carbon budget. The first rough estimate of carbon balance on Russian territory was made on comparison data on total soil respiration (Kudeyarov et. al., 1995) and NPP calculated on data on biological productivity of different ecosystems over Russia. The carbon balance was evaluated as a C-sink. Further estimates of Russian C budget by V.Kudeyarov et al., (2007) and I.Kurganova et al., (2010) were more correct and included soil microbial flux, and non-respiratory processes: fossil fuel, agriculture, forest fires and post-fire emissions, insect damage, etc. According to estimates the total C-sink of Russian territory for early nineties was about -0.8-1.0 Pg C per year. The later IIASA account developed by A.Shvidenko et al. (2010) has provided current estimates of C fluxes and storages in Russia and showed that its terrestrial ecosystems served as a net carbon sink of -0.5-0.7 PgC yr-1 during the last decade. Taking into account big uncertainties of determination of carbon balance constituents one can say that results by IIASA and our Institute are rather close. Resulting effect of two processes (sequestration and CO2 emission) can be analysed by mathematical modelling only. Corresponding system of models of organic matter dynamics in forest ecosystems EFIMOD was developed in our Institute last decade and applied in Russia and other countries for evaluation of impacts of climate changes, forest management and forest fires. The comparative simulations of carbon and nitrogen dynamics in the mixed forest ecosystems of Central Russia from different climatic zones and site conditions have been made. Three large forest areas with the total square of about 17,000 km2 distinct in environmental conditions were chosen. We used the data of the forest inventory for model initialization. Four simulation scenarios (without disturbances, with

  15. Modeling Urban Dynamics Using Random Forest: Implementing Roc and Toc for Model Evaluation

    Science.gov (United States)

    Ahmadlou, M.; Delavar, M. R.; Shafizadeh-Moghadam, H.; Tayyebi, A.

    2016-06-01

    The importance of spatial accuracy of land use/cover change maps necessitates the use of high performance models. To reach this goal, calibrating machine learning (ML) approaches to model land use/cover conversions have received increasing interest among the scholars. This originates from the strength of these techniques as they powerfully account for the complex relationships underlying urban dynamics. Compared to other ML techniques, random forest has rarely been used for modeling urban growth. This paper, drawing on information from the multi-temporal Landsat satellite images of 1985, 2000 and 2015, calibrates a random forest regression (RFR) model to quantify the variable importance and simulation of urban change spatial patterns. The results and performance of RFR model were evaluated using two complementary tools, relative operating characteristics (ROC) and total operating characteristics (TOC), by overlaying the map of observed change and the modeled suitability map for land use change (error map). The suitability map produced by RFR model showed 82.48% area under curve for the ROC model which indicates a very good performance and highlights its appropriateness for simulating urban growth.

  16. Use of mathematical models for assessing the pool and dynamics of carbon in forest soils

    Science.gov (United States)

    Komarov, A. S.

    2008-12-01

    The contribution of forest soils to the total carbon budget and to the emission of greenhouse gases is an important problem involved in many international programs, including the Kyoto Protocol. Direct measurements of the carbon pool in forest soils and its changes are slow and expensive; therefore, mathematical models are proposed in different countries for describing the dynamics of soil organic matter (SOM). The models differ in complexity and consider different processes of SOM mineralization and humification. The input parameters include model coefficients (these are usually the rates of decomposition and humification of different SOM compartments) and the initial values for different SOM pools. The coefficients can be estimated in special laboratory and field experiments, but the characteristics of the initial values for different SOM pools are usually absent. In this case, some assumptions about the character of SOM accumulation, which depends on forest vegetation, are used. The most realistic is the use of databases on the pools of carbon and other elements related to the types of forest or habitat conditions, including the primarily water regime and soil fertility. Under some suppositions, the agreement conditions between the main parameters of the SOM and forest vegetation can be formulated to assess the initial SOM pools in the forest litter and mineral horizons of the soil. An example of assessing the prediction of forest soil dynamics in Leningrad oblast was considered.

  17. A hydroeconomic modeling framework for optimal integrated management of forest and water

    Science.gov (United States)

    Garcia-Prats, Alberto; del Campo, Antonio D.; Pulido-Velazquez, Manuel

    2016-10-01

    Forests play a determinant role in the hydrologic cycle, with water being the most important ecosystem service they provide in semiarid regions. However, this contribution is usually neither quantified nor explicitly valued. The aim of this study is to develop a novel hydroeconomic modeling framework for assessing and designing the optimal integrated forest and water management for forested catchments. The optimization model explicitly integrates changes in water yield in the stands (increase in groundwater recharge) induced by forest management and the value of the additional water provided to the system. The model determines the optimal schedule of silvicultural interventions in the stands of the catchment in order to maximize the total net benefit in the system. Canopy cover and biomass evolution over time were simulated using growth and yield allometric equations specific for the species in Mediterranean conditions. Silvicultural operation costs according to stand density and canopy cover were modeled using local cost databases. Groundwater recharge was simulated using HYDRUS, calibrated and validated with data from the experimental plots. In order to illustrate the presented modeling framework, a case study was carried out in a planted pine forest (Pinus halepensis Mill.) located in south-western Valencia province (Spain). The optimized scenario increased groundwater recharge. This novel modeling framework can be used in the design of a "payment for environmental services" scheme in which water beneficiaries could contribute to fund and promote efficient forest management operations.

  18. Ecological contingency in the effects of climatic warming on forest herb communities

    Science.gov (United States)

    Harrison, Susan; Damschen, Ellen Ingman; Grace, James B.

    2010-01-01

    Downscaling from the predictions of general climate models is critical to current strategies for mitigating species loss caused by climate change. A key impediment to this downscaling is that we lack a fully developed understanding of how variation in physical, biological, or land-use characteristics mediates the effects of climate change on ecological communities within regions. We analyzed change in understory herb communities over a 60-y period (1949/1951–2007/2009) in a complex montane landscape (the Siskiyou Mountains, Oregon) where mean temperatures have increased 2 °C since 1948, similar to projections for other terrestrial communities. Our 185 sites included primary and secondary-growth lower montane forests (500–1.200 m above sea level) and primary upper montane to subalpine forests (1,500–2,100 m above sea level). In lower montane forests, regardless of land-use history, we found multiple herb-community changes consistent with an effectively drier climate, including lower mean specific leaf area, lower relative cover by species of northern biogeographic affinity, and greater compositional resemblance to communities in southerly topographic positions. At higher elevations we found qualitatively different and more modest changes, including increases in herbs of northern biogeographic affinity and in forest canopy cover. Our results provide community-level validation of predicted nonlinearities in climate change effects.

  19. Ecological contingency in the effects of climatic warming on forest herb communities.

    Science.gov (United States)

    Harrison, Susan; Damschen, Ellen I; Grace, James B

    2010-11-09

    Downscaling from the predictions of general climate models is critical to current strategies for mitigating species loss caused by climate change. A key impediment to this downscaling is that we lack a fully developed understanding of how variation in physical, biological, or land-use characteristics mediates the effects of climate change on ecological communities within regions. We analyzed change in understory herb communities over a 60-y period (1949/1951-2007/2009) in a complex montane landscape (the Siskiyou Mountains, Oregon) where mean temperatures have increased 2 °C since 1948, similar to projections for other terrestrial communities. Our 185 sites included primary and secondary-growth lower montane forests (500-1.200 m above sea level) and primary upper montane to subalpine forests (1,500-2,100 m above sea level). In lower montane forests, regardless of land-use history, we found multiple herb-community changes consistent with an effectively drier climate, including lower mean specific leaf area, lower relative cover by species of northern biogeographic affinity, and greater compositional resemblance to communities in southerly topographic positions. At higher elevations we found qualitatively different and more modest changes, including increases in herbs of northern biogeographic affinity and in forest canopy cover. Our results provide community-level validation of predicted nonlinearities in climate change effects.

  20. Light Competition and Carbon Partitioning-Allocation in an improved Forest Ecosystem Model

    Science.gov (United States)

    Collalti, Alessio; Santini, Monia; Valentini Valentini, Riccardo

    2010-05-01

    In Italy about 100.000 km2 are covered by forests. This surface is the 30% of the whole national land and this shows how the forests are important both for socio-economic and for environmental aspects. Forests changes affect a delicate balance that involve not only vegetation components but also bio-geochemical cycles and global climate. The knowledge of the amount of Carbon sequestered by forests represents a precious information for their sustainable management in the framework of climate changes. Primary studies in terms of model about this important issue, has been done through Forest Ecosystem Model (FEM), well known and validated as 3PG (Landsberg et Waring, 1997; Sands 2004). It is based on light use efficiency approach at the canopy level. The present study started from the original model 3PG, producing an improved version that uses many of explicit formulations of all relevant ecophysiological processes but makes it able to be applied for natural forests. The mutual interaction of forest growth and light conditions causes vertical and horizontal differentiation in the natural forest mosaic. Only ecophysiological parameters which can be either directly measured or estimates with reasonable certainty are used. The model has been written in C language and has been created considering a tri-dimensional cell structure with different vertical layers depending on the forest type that has to be simulated. This 3PG 'improved' version enable to work on multi-layer and multi-species forests type with cell resolution of one hectare for the typical Italian forest species. The multi-layer version is the result of the implementation and development of Lambert-Beer law for the estimation of intercepted, absorbed and transmitted light through different storeys of the forest. It is possible estimates, for each storey, a Par value (Photosynthetic Active Radiation) through Leaf Area Index (LAI), Light Extinction Coefficient and cell Canopy Cover using a "Big Leaf" approach

  1. Canards and mixed-mode oscillations in a forest pest model

    DEFF Research Database (Denmark)

    Brøns, Morten; Kaasen, Rune

    2010-01-01

    We consider a three-variable forest pest model, proposed by Rinaldi & Muratori (1992) [Rinaldi, S., Muratori, S., 1992. Limit cycles in slow-fast forest-pest models. Theor. Popul. Biol. 41,26-43]. The model allows relaxation oscillations where long pest-free periods are interspersed with outbreaks...... of high pest concentration. For small values of the timescale of the young trees, the model can be reduced to a two-dimensional model. By a geometrical analysis we identify a canard explosion in the reduced model, that is, a change over a narrow parameter interval from outbreak dynamics to small...

  2. Final Progress Report on Model-Based Diagnosis of Soil Limitations to Forest Productivity

    Energy Technology Data Exchange (ETDEWEB)

    Luxmoore, R.J.

    2004-08-30

    This project was undertaken in support of the forest industry to link modeling of nutrients and productivity with field research to identify methods for enhancing soil quality and forest productivity and for alleviating soil limitations to sustainable forest productivity. The project consisted of a series of related tasks, including (1) simulation of changes in biomass and soil carbon with nitrogen fertilization, (2) development of spreadsheet modeling tools for soil nutrient availability and tree nutrient requirements, (3) additional modeling studies, and (4) evaluation of factors involved in the establishment and productivity of southern pine plantations in seasonally wet soils. This report also describes the two Web sites that were developed from the research to assist forest managers with nutrient management of Douglas-fir and loblolly pine plantations.

  3. Predicting and understanding forest dynamics using a simple tractable model.

    Science.gov (United States)

    Purves, Drew W; Lichstein, Jeremy W; Strigul, Nikolay; Pacala, Stephen W

    2008-11-04

    The perfect-plasticity approximation (PPA) is an analytically tractable model of forest dynamics, defined in terms of parameters for individual trees, including allometry, growth, and mortality. We estimated these parameters for the eight most common species on each of four soil types in the US Lake states (Michigan, Wisconsin, and Minnesota) by using short-term (

  4. Polarimetric SAR Interferometry based modeling for tree height and aboveground biomass retrieval in a tropical deciduous forest

    Science.gov (United States)

    Kumar, Shashi; Khati, Unmesh G.; Chandola, Shreya; Agrawal, Shefali; Kushwaha, Satya P. S.

    2017-08-01

    The regulation of the carbon cycle is a critical ecosystem service provided by forests globally. It is, therefore, necessary to have robust techniques for speedy assessment of forest biophysical parameters at the landscape level. It is arduous and time taking to monitor the status of vast forest landscapes using traditional field methods. Remote sensing and GIS techniques are efficient tools that can monitor the health of forests regularly. Biomass estimation is a key parameter in the assessment of forest health. Polarimetric SAR (PolSAR) remote sensing has already shown its potential for forest biophysical parameter retrieval. The current research work focuses on the retrieval of forest biophysical parameters of tropical deciduous forest, using fully polarimetric spaceborne C-band data with Polarimetric SAR Interferometry (PolInSAR) techniques. PolSAR based Interferometric Water Cloud Model (IWCM) has been used to estimate aboveground biomass (AGB). Input parameters to the IWCM have been extracted from the decomposition modeling of SAR data as well as PolInSAR coherence estimation. The technique of forest tree height retrieval utilized PolInSAR coherence based modeling approach. Two techniques - Coherence Amplitude Inversion (CAI) and Three Stage Inversion (TSI) - for forest height estimation are discussed, compared and validated. These techniques allow estimation of forest stand height and true ground topography. The accuracy of the forest height estimated is assessed using ground-based measurements. PolInSAR based forest height models showed enervation in the identification of forest vegetation and as a result height values were obtained in river channels and plain areas. Overestimation in forest height was also noticed at several patches of the forest. To overcome this problem, coherence and backscatter based threshold technique is introduced for forest area identification and accurate height estimation in non-forested regions. IWCM based modeling for forest

  5. Intelligent Model Management in a Forest Ecosystem Management Decision Support System

    Science.gov (United States)

    Donald Nute; Walter D. Potter; Frederick Maier; Jin Wang; Mark Twery; H. Michael Rauscher; Peter Knopp; Scott Thomasma; Mayukh Dass; Hajime Uchiyama

    2002-01-01

    Decision making for forest ecosystem management can include the use of a wide variety of modeling tools. These tools include vegetation growth models, wildlife models, silvicultural models, GIS, and visualization tools. NED-2 is a robust, intelligent, goal-driven decision support system that integrates tools in each of these categories. NED-2 uses a blackboard...

  6. Using a GIS model to assess terrestrial salamander response to alternative forest management plans

    Science.gov (United States)

    Eric J. Gustafson; Nathan L. Murphy; Thomas R. Crow

    2001-01-01

    A GIS model predicting the spatial distribution of terrestrial salamander abundance based on topography and forest age was developed using parameters derived from the literature. The model was tested by sampling salamander abundance across the full range of site conditions used in the model. A regression of the predictions of our GIS model against these sample data...

  7. Calibrating and testing a gap model for simulating forest management in the Oregon Coast Range

    Science.gov (United States)

    Pabst, R.J.; Goslin, M.N.; Garman, S.L.; Spies, T.A.

    2008-01-01

    The complex mix of economic and ecological objectives facing today's forest managers necessitates the development of growth models with a capacity for simulating a wide range of forest conditions while producing outputs useful for economic analyses. We calibrated the gap model ZELIG to simulate stand-level forest development in the Oregon Coast Range as part of a landscape-scale assessment of different forest management strategies. Our goal was to incorporate the predictive ability of an empirical model with the flexibility of a forest succession model. We emphasized the development of commercial-aged stands of Douglas-fir, the dominant tree species in the study area and primary source of timber. In addition, we judged that the ecological approach of ZELIG would be robust to the variety of other forest conditions and practices encountered in the Coast Range, including mixed-species stands, small-scale gap formation, innovative silvicultural methods, and reserve areas where forests grow unmanaged for long periods of time. We parameterized the model to distinguish forest development among two ecoregions, three forest types and two site productivity classes using three data sources: chronosequences of forest inventory data, long-term research data, and simulations from an empirical growth-and-yield model. The calibrated model was tested with independent, long-term measurements from 11 Douglas-fir plots (6 unthinned, 5 thinned), 3 spruce-hemlock plots, and 1 red alder plot. ZELIG closely approximated developmental trajectories of basal area and large trees in the Douglas-fir plots. Differences between simulated and observed conifer basal area for these plots ranged from -2.6 to 2.4 m2/ha; differences in the number of trees/ha ???50 cm dbh ranged from -8.8 to 7.3 tph. Achieving these results required the use of a diameter-growth multiplier, suggesting some underlying constraints on tree growth such as the temperature response function. ZELIG also tended to overestimate

  8. Multiscale modeling of spring phenology across Deciduous Forests in the Eastern United States.

    Science.gov (United States)

    Melaas, Eli K; Friedl, Mark A; Richardson, Andrew D

    2016-02-01

    Phenological events, such as bud burst, are strongly linked to ecosystem processes in temperate deciduous forests. However, the exact nature and magnitude of how seasonal and interannual variation in air temperatures influence phenology is poorly understood, and model-based phenology representations fail to capture local- to regional-scale variability arising from differences in species composition. In this paper, we use a combination of surface meteorological data, species composition maps, remote sensing, and ground-based observations to estimate models that better represent how community-level species composition affects the phenological response of deciduous broadleaf forests to climate forcing at spatial scales that are typically used in ecosystem models. Using time series of canopy greenness from repeat digital photography, citizen science data from the USA National Phenology Network, and satellite remote sensing-based observations of phenology, we estimated and tested models that predict the timing of spring leaf emergence across five different deciduous broadleaf forest types in the eastern United States. Specifically, we evaluated two different approaches: (i) using species-specific models in combination with species composition information to 'upscale' model predictions and (ii) using repeat digital photography of forest canopies that observe and integrate the phenological behavior of multiple representative species at each camera site to calibrate a single model for all deciduous broadleaf forests. Our results demonstrate variability in cumulative forcing requirements and photoperiod cues across species and forest types, and show how community composition influences phenological dynamics over large areas. At the same time, the response of different species to spatial and interannual variation in weather is, under the current climate regime, sufficiently similar that the generic deciduous forest model based on repeat digital photography performed

  9. [Estimation of forest canopy chlorophyll content based on PROSPECT and SAIL models].

    Science.gov (United States)

    Yang, Xi-guang; Fan, Wen-yi; Yu, Ying

    2010-11-01

    The forest canopy chlorophyll content directly reflects the health and stress of forest. The accurate estimation of the forest canopy chlorophyll content is a significant foundation for researching forest ecosystem cycle models. In the present paper, the inversion of the forest canopy chlorophyll content was based on PROSPECT and SAIL models from the physical mechanism angle. First, leaf spectrum and canopy spectrum were simulated by PROSPECT and SAIL models respectively. And leaf chlorophyll content look-up-table was established for leaf chlorophyll content retrieval. Then leaf chlorophyll content was converted into canopy chlorophyll content by Leaf Area Index (LAD). Finally, canopy chlorophyll content was estimated from Hyperion image. The results indicated that the main effect bands of chlorophyll content were 400-900 nm, the simulation of leaf and canopy spectrum by PROSPECT and SAIL models fit better with the measured spectrum with 7.06% and 16.49% relative error respectively, the RMSE of LAI inversion was 0. 542 6 and the forest canopy chlorophyll content was estimated better by PROSPECT and SAIL models with precision = 77.02%.

  10. Measuring and modeling carbon stock change estimates for US forests and uncertainties from apparent inter-annual variability

    Science.gov (United States)

    James E. Smith; Linda S. Heath

    2015-01-01

    Our approach is based on a collection of models that convert or augment the USDA Forest Inventory and Analysis program survey data to estimate all forest carbon component stocks, including live and standing dead tree aboveground and belowground biomass, forest floor (litter), down deadwood, and soil organic carbon, for each inventory plot. The data, which include...

  11. Hierarchical Bayesian spatial models for predicting multiple forest variables using waveform LiDAR, hyperspectral imagery, and large inventory datasets

    Science.gov (United States)

    Finley, Andrew O.; Banerjee, Sudipto; Cook, Bruce D.; Bradford, John B.

    2013-01-01

    In this paper we detail a multivariate spatial regression model that couples LiDAR, hyperspectral and forest inventory data to predict forest outcome variables at a high spatial resolution. The proposed model is used to analyze forest inventory data collected on the US Forest Service Penobscot Experimental Forest (PEF), ME, USA. In addition to helping meet the regression model's assumptions, results from the PEF analysis suggest that the addition of multivariate spatial random effects improves model fit and predictive ability, compared with two commonly applied modeling approaches. This improvement results from explicitly modeling the covariation among forest outcome variables and spatial dependence among observations through the random effects. Direct application of such multivariate models to even moderately large datasets is often computationally infeasible because of cubic order matrix algorithms involved in estimation. We apply a spatial dimension reduction technique to help overcome this computational hurdle without sacrificing richness in modeling.

  12. Spatio-temporal patterns of forest carbon dioxide exchange based on global eddy covariance measurements

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    Spatio-temporal patterns and driving mechanisms of forest carbon dioxide (CO2) exchange are the key issues on terrestrial ecosystem carbon cycles, which are the basis for developing and validating ecosystem carbon cycle models, assessing and predicting the role of forests in global carbon balance. Eddy covariance (EC) technique, an important method for measuring energy and material exchanges between terrestrial ecosystems and the atmosphere, has made a great contribution to understanding CO2 exchanges in the biosphere during the past decade. Here, we synthesized published EC flux measurements at various forest sites in the global network of eddy flux tower sites (FLUXNET) and regional flux networks. Our objective was to explore spatio-temporal patterns and driving factors on forest carbon fluxes, i.e. net ecosystem productivity (NEP), gross primary productivity (GPP) and total ecosystem respiration (TER). Globally, forest NEP exhibited a significant latitudinal pattern jointly controlled by GPP and TER. The NEP decreased in an order of warm temperate forest > cold temperate and tropical rain forests > boreal and subalpine forests. Mean annual temperature (MAT) made a greater contribution to forest carbon fluxes than sum of annual precipitation (SAP). As MAT increased, the GPP increased linearly, whereas the TER increased exponentially, resulting in the NEP decreasing beyond an MAT threshold of 20°C. The GPP, TER and NEP varied substantially when the SAP was less than 1500 mm, but tended to increase with increasing SAP. Temporal dynamics in forest carbon fluxes and determinants depended upon time scales. NEP showed a significant interannual variability mainly driven by climate fluctuations and different responses of the GPP and TER to environmental forcing. In a longer term, forest carbon fluxes had a significant age effect. The ecosystem was a net carbon source right after clearcutting, gradually switched to a net carbon sink when the relative stand age (i

  13. Spatio-temporal patterns of forest carbon dioxide ex change based on global eddy covariance measurements

    Institute of Scientific and Technical Information of China (English)

    WANG XingChang; WANG ChuanKuan; YU GuiRui

    2008-01-01

    Spatio-temporal patterns and driving mechanisms of forest carbon dioxide (CO2) exchange are the key issues on terrestrial ecosystem carbon cycles, which are the basis for developing and validating ecosystem carbon cycle models, assessing and predicting the role of forests in global carbon balance.Eddy covariance (EC) technique, an important method for measuring energy and material exchanges between terrestrial ecosystems and the atmosphere, has made a great contribution to understanding CO2 exchanges in the biosphere during the past decade. Here, we synthesized published EC flux measurements at various forest sites in the global network of eddy flux tower sites (FLUXNET) and regional flux networks. Our objective was to explore spatio-temporal patterns and driving factors on forest carbon fluxes, i.e. net ecosystem productivity (NEP), gross primary productivity (GPP) and total ecosystem respiration (TER). Globally, forest NEP exhibited a significant latitudinal pattern jointly controlled by GPP and TER. The NEP decreased in an order of warm temperate forest > cold temperate and tropical rain forests > boreal and subalpine forests. Mean annual temperature (MAT) made a greater contribution to forest carbon fluxes than sum of annual precipitation (SAP). As MAT increased, the GPP increased linearly, whereas the TER increased exponentially, resulting in the NEP decreasing beyond an MAT threshold of 20℃. The GPP, TER and NEP varied substantially when the SAP was less than 1500 mm, but tended to increase with increasing SAP. Temporal dynamics in forest carbon fluxes and determinants depended upon time scales. NEP showed a significant interannual variability mainly driven by climate fluctuations and different responses of the GPP and TER to environmental forcing. In a longer term, forest carbon fluxes had a significant age effect. The ecosystem was a net carbon source right after clearcutting, gradually switched to a net carbon sink when the relative stand age (i

  14. Spatially-explicit model of mercury accumulation in the forest floor of the United States

    Science.gov (United States)

    Perry, C. H.; Zimmerman, P.

    2009-12-01

    Atmospherically-deposited Hg has a strong affinity for soil organic matter. The Forest Service, US Department of Agriculture, Forest Inventory and Analysis (FIA) program collects soil samples from forested areas across the United States as part of its sampling program, and annual soils inventories are underway or completed in 46 of the 50 states (Alaska, Hawaii, New Mexico, and Oklahoma have yet to be sampled). Our objective is to describe the spatial distribution of forest floor Hg for a transect running across the United States, from Arizona in the southwest to Maine in the northeast. The collection of forest floor samples was accomplished as part of the standard FIA Phase 3 Soil Quality Indicator program. Field protocols include the measurement of the thickness of the forest floor and the collection of the entire forest floor found within a 30-cm diameter sampling frame. We removed approximately 0.1 g of the sample for plots in our region of interest, and these were sent to two different laboratories for Hg analysis by cold-vapor atomic absorption. The two laboratories calibrated their instruments against common Hg standards. We found good agreement between samples analyzed at both laboratories. Observations of mercury concentrations were joined with the Forest Inventory and Analysis Database and other geospatial databases to assign basic location information and associated inventory data. Ecoprovince and forest-type group are significant predictors of Hg storage; conifer species tend to store more mercury than hardwood species. Additionally, models created using spatially-explicit techniques yield distinct patterns of Hg storage that vary across forest-type groups.

  15. Empirical models of monthly and annual surface albedo in managed boreal forests of Norway

    Science.gov (United States)

    Bright, Ryan M.; Astrup, Rasmus; Strømman, Anders H.

    2013-04-01

    As forest management activities play an increasingly important role in climate change mitigation strategies of Nordic regions such as Norway, Sweden, and Finland -- the need for a more comprehensive understanding of the types and magnitude of biogeophysical climate effects and their various tradeoffs with the global carbon cycle becomes essential to avoid implementation of sub-optimal policy. Forest harvest in these regions reduces the albedo "masking effect" and impacts Earth's radiation budget in opposing ways to that of concomitant carbon cycle perturbations; thus, policies based solely on biogeochemical considerations in these regions risk being counterproductive. There is therefore a need to better understand how human disturbances (i.e., forest management activities) affect important biophysical factors like surface albedo. An 11-year remotely sensed surface albedo dataset coupled with stand-level forest management data for a variety of stands in Norway's most productive logging region are used to develop regression models describing temporal changes in monthly and annual forest albedo following clear-cut harvest disturbance events. Datasets are grouped by dominant tree species and site indices (productivity), and two alternate multiple regression models are developed and tested following a potential plus modifier approach. This resulted in an annual albedo model with statistically significant parameters that explains a large proportion of the observed variation, requiring as few as two predictor variables: i) average stand age - a canopy modifier predictor of albedo, and ii) stand elevation - a local climate predictor of a forest's potential albedo. The same model structure is used to derive monthly albedo models, with models for winter months generally found superior to summer models, and conifer models generally outperforming deciduous. We demonstrate how these statistical models can be applied to routine forest inventory data to predict the albedo

  16. Approaches to modeling landscape-scale drought-induced forest mortality

    Science.gov (United States)

    Gustafson, Eric J.; Shinneman, Douglas

    2015-01-01

    Drought stress is an important cause of tree mortality in forests, and drought-induced disturbance events are projected to become more common in the future due to climate change. Landscape Disturbance and Succession Models (LDSM) are becoming widely used to project climate change impacts on forests, including potential interactions with natural and anthropogenic disturbances, and to explore the efficacy of alternative management actions to mitigate negative consequences of global changes on forests and ecosystem services. Recent studies incorporating drought-mortality effects into LDSMs have projected significant potential changes in forest composition and carbon storage, largely due to differential impacts of drought on tree species and interactions with other disturbance agents. In this chapter, we review how drought affects forest ecosystems and the different ways drought effects have been modeled (both spatially and aspatially) in the past. Building on those efforts, we describe several approaches to modeling drought effects in LDSMs, discuss advantages and shortcomings of each, and include two case studies for illustration. The first approach features the use of empirically derived relationships between measures of drought and the loss of tree biomass to drought-induced mortality. The second uses deterministic rules of species mortality for given drought events to project changes in species composition and forest distribution. A third approach is more mechanistic, simulating growth reductions and death caused by water stress. Because modeling of drought effects in LDSMs is still in its infancy, and because drought is expected to play an increasingly important role in forest health, further development of modeling drought-forest dynamics is urgently needed.

  17. Modeling light use efficiency in a subtropical mangrove forest equipped with CO2 eddy covariance

    Science.gov (United States)

    Barr, J.G.; Engel, V.; Fuentes, J.D.; Fuller, D.O.; Kwon, H.

    2013-01-01

    Despite the importance of mangrove ecosystems in the global carbon budget, the relationships between environmental drivers and carbon dynamics in these forests remain poorly understood. This limited understanding is partly a result of the challenges associated with in situ flux studies. Tower-based CO2 eddy covariance (EC) systems are installed in only a few mangrove forests worldwide, and the longest EC record from the Florida Everglades contains less than 9 years of observations. A primary goal of the present study was to develop a methodology to estimate canopy-scale photosynthetic light use efficiency in this forest. These tower-based observations represent a basis for associating CO2 fluxes with canopy light use properties, and thus provide the means for utilizing satellite-based reflectance data for larger scale investigations. We present a model for mangrove canopy light use efficiency utilizing the enhanced green vegetation index (EVI) derived from the Moderate Resolution Imaging Spectroradiometer (MODIS) that is capable of predicting changes in mangrove forest CO2 fluxes caused by a hurricane disturbance and changes in regional environmental conditions, including temperature and salinity. Model parameters are solved for in a Bayesian framework. The model structure requires estimates of ecosystem respiration (RE), and we present the first ever tower-based estimates of mangrove forest RE derived from nighttime CO2 fluxes. Our investigation is also the first to show the effects of salinity on mangrove forest CO2 uptake, which declines 5% per each 10 parts per thousand (ppt) increase in salinity. Light use efficiency in this forest declines with increasing daily photosynthetic active radiation, which is an important departure from the assumption of constant light use efficiency typically applied in satellite-driven models. The model developed here provides a framework for estimating CO2 uptake by these forests from reflectance data and information about

  18. Modeling light use efficiency in a subtropical mangrove forest equipped with CO2 eddy covariance

    Directory of Open Access Journals (Sweden)

    J. G. Barr

    2013-03-01

    Full Text Available Despite the importance of mangrove ecosystems in the global carbon budget, the relationships between environmental drivers and carbon dynamics in these forests remain poorly understood. This limited understanding is partly a result of the challenges associated with in situ flux studies. Tower-based CO2 eddy covariance (EC systems are installed in only a few mangrove forests worldwide, and the longest EC record from the Florida Everglades contains less than 9 years of observations. A primary goal of the present study was to develop a methodology to estimate canopy-scale photosynthetic light use efficiency in this forest. These tower-based observations represent a basis for associating CO2 fluxes with canopy light use properties, and thus provide the means for utilizing satellite-based reflectance data for larger scale investigations. We present a model for mangrove canopy light use efficiency utilizing the enhanced green vegetation index (EVI derived from the Moderate Resolution Imaging Spectroradiometer (MODIS that is capable of predicting changes in mangrove forest CO2 fluxes caused by a hurricane disturbance and changes in regional environmental conditions, including temperature and salinity. Model parameters are solved for in a Bayesian framework. The model structure requires estimates of ecosystem respiration (RE, and we present the first ever tower-based estimates of mangrove forest RE derived from nighttime CO2 fluxes. Our investigation is also the first to show the effects of salinity on mangrove forest CO2 uptake, which declines 5% per each 10 parts per thousand (ppt increase in salinity. Light use efficiency in this forest declines with increasing daily photosynthetic active radiation, which is an important departure from the assumption of constant light use efficiency typically applied in satellite-driven models. The model developed here provides a framework for estimating CO2 uptake by these forests from reflectance data and

  19. Mapping Forest Fire Susceptibility in Temperate Mountain Areas with Expert Knowledge. A Case Study from Iezer Mountains, Romanian Carpathians

    Science.gov (United States)

    Mihai, Bogdan; Savulescu, Ionut

    2014-05-01

    Forest fires in Romanian Carpathians became a frequent phenomenon during the last decade, although local climate and other environmental features did not create typical conditions. From 2004, forest fires affect in Romania more than 100 hectares/year of different forest types (deciduous and coniferous). Their magnitude and frequency are not known, since a historical forest fire inventory does not exist (only press papers and local witness for some selected events). Forest fires features the summer dry periods but there are dry autumns and early winter periods with events of different magnitudes. The application we propose is based on an empirical modeling of forest fire susceptibility in a typical mountain area from the Southern Carpathians, the Iezer Mountains (2462 m). The study area features almost all the altitudinal vegetation zones of the European temperate mountains, from the beech zone, to the coniferous zone, the subalpine and the alpine zones (Mihai et al., 2007). The analysis combines GIS and remote sensing models (Chuvieco et al., 2012), starting from the ideas that forest fires are featured by the ignition zones and then by the fire propagation zones. The first data layer (ignition zones) is the result of the crossing between the ignition factors: lightning - points of multitemporal occurence and anthropogenic activities (grazing, tourism and traffic) and the ignition zones (forest fuel zonation - forest stands, soil cover and topoclimatic factor zonation). This data is modelled from different sources: the MODIS imagery fire product (Hantson et al., 2012), detailed topographic maps, multitemporal orthophotos at 0.5 m resolution, Landsat multispectral imagery, forestry cadastre maps, detailed soil maps, meteorological data (the WorldClim digital database) as well as the field survey (mapping using GPS and local observation). The second data layer (fire propagation zones) is the result of the crossing between the forest fuel zonation, obtained with the

  20. Large-Scale Forest Modeling: Deducing Stand Density from Inventory Data

    Directory of Open Access Journals (Sweden)

    Oskar Franklin

    2012-01-01

    Full Text Available While effects of thinning and natural disturbances on stand density play a central role for forest growth, their representation in large-scale studies is restricted by both model and data availability. Here a forest growth model was combined with a newly developed generic thinning model to estimate stand density and site productivity based on widely available inventory data (tree species, age class, volume, and increment. The combined model successfully coupled biomass, increment, and stand closure (=stand density/self-thinning limited stand density, as indicated by cross-validation against European-wide inventory data. The improvement in model performance attained by including variable stand closure among age cohorts compared to a fixed closure suggests that stand closure is an important parameter for accurate forest growth modeling also at large scales.

  1. [Assessing forest ecosystem health I. Model, method, and index system].

    Science.gov (United States)

    Chen, Gao; Dai, Limin; Ji, Lanzhu; Deng, Hongbing; Hao, Zhanqing; Wang, Qingli

    2004-10-01

    Ecosystem health assessment is one of the main researches and urgent tasks of ecosystem science in 21st century. An operational definition on ecosystem health and an all-sided, simple, easy operational and standard index system, which are the foundation of assessment on ecosystem health, are necessary in obtaining a simple and applicable assessment theory and method of ecosystem health. Taking the Korean pine and broadleaved mixed forest ecosystem as an example, an originally creative idea on ecosystem health was put forward in this paper based on the idea of mode ecosystem set and the idea of forest ecosystem health, together with its assessment. This creative idea can help understand what ecosystem health is. Finally, a formula was deduced based on a new effective health assessment method--health distance (HD), which is the first time to be brought forward in China. At the same time, aiming at it's characteristics by status understanding and material health questions, a health index system of Korean pine and broadleaved mixed forest ecosystem was put forward in this paper, which is a compound ecosystem based on the compound properties of nature, economy and society. It is concrete enough to measure sub-index, so it is the foundation to assess ecosystem health of Korean pine and broadleaved mixed forest in next researches.

  2. Modelling recreational visits to forests and nature areas

    NARCIS (Netherlands)

    Vries, de S.; Goossen, C.M.

    2002-01-01

    Besides their ecological and production function, the social function of forests and nature areas is becoming more and more important However, data, norms, and planning tools for this social function are limited. This makes it difficult for policy makers to do justice to this function, especially in

  3. Modelling recreational visits to forests and nature areas

    NARCIS (Netherlands)

    Vries, de S.; Goossen, C.M.

    2002-01-01

    Besides their ecological and production function, the social function of forests and nature areas is becoming more and more important However, data, norms, and planning tools for this social function are limited. This makes it difficult for policy makers to do justice to this function, especially in

  4. Modeling the Carbon Implications of Ecologically Based Forest Management

    Science.gov (United States)

    2015-08-20

    Journal of Forestry 111, 59-66. Samuelson , L.J., Stokes, T.A., Johnsen, K.H., 2012. Ecophysiological comparison of 50-year-old longleaf pine, slash pine...and loblolly pine. Forest Ecology and Management 274, 108-115. Samuelson , L.J., Whitaker, W.B., 2012. Relationships between Soil CO2 Efflux and

  5. Modeling the Carbon Implications of Ecologically-Based Forest Management

    Science.gov (United States)

    2015-08-01

    Journal of Forestry 111, 59-66. Samuelson , L.J., Stokes, T.A., Johnsen, K.H., 2012. Ecophysiological comparison of 50-year-old longleaf pine, slash pine...and loblolly pine. Forest Ecology and Management 274, 108-115. Samuelson , L.J., Whitaker, W.B., 2012. Relationships between Soil CO2 Efflux and

  6. Home range and diet of feral cats in Hawaii forests

    Science.gov (United States)

    Smucker, T.D.; Lindsey, G.D.; Mosher, S.M.

    2000-01-01

    Feral cat Felis catus home range in a Hawaiian montane wet forest and their diet in three habitats - montane wet forest, subalpine dry forest, and lowland dry forest - were determined to provide baseline ecological data and to assess potential impacts to native terrestrial fauna. Seven cats (three males and four females) were captured in 624 trap nights. Mean weight of adult cats was 2.85 ?? 0.27 (SE) Kg for males and 1.87 ?? 0.03 kg for females. Mean diumal home range using the adaptive kernel method was 5.74 ?? 2.73 km2 for three males and 2.23 ?? 0.44 km2 for two females. Daytime locations were always within the montane wet forest with the borders on one or more sides of the home ranges of all cats defined by open grassland pastures. Rodents comprised the majority of the cat diets in all three habitats, with the frequencies of occurence between 0.88 and 0.91. Bird remains were a regular component of the diet of cats, with montane wet forest having the highest frequency of occurence (0.68), followed by subalpine dry forest (0.53), and lowland dry forest (0.21).

  7. Moderate effects of reforestation with Norway spruce (Picea abies) on carbon storage and turnover in a Swiss sub-alpine pasture

    Science.gov (United States)

    Hiltbrunner, D.; Hagedorn, F.; Niklaus, P. A.; Zimmermann, S.; Schmidt, M. W. I.

    2012-04-01

    In alpine regions the forested area is strongly increasing through woody plant encroachment on abandoned pastures or by man-made afforestations. These natural or artificial reforestations, in fact, have several implications on the nutrient cycling between plants and soils and thus, are likely to affect carbon turnover. Although afforestations are to be accounted as a sink according to the Kyoto protocol, there are still uncertainties about their effects on the soil carbon storage. In the present study, we assessed soils under pasture, an adjacent chronosequence of spruce afforestations (25-45 years) and a mature spruce forest (older than 120 years) on a homogenous slope in a Swiss sub-alpine ecosystem. While the soil bulk densities were not affected by the land use change, carbon concentrations in the mineral soil decreased 25-45 years after tree establishment. However, no differences between pasture and the mature forest were apparent, indicating that the C-loss after land use conversion was only transient. Up to 2.5kg m-2 C was additionally stored in the organic layer of the oldest stands, resulting in a net C gain in the old forest soils. C:N-ratios of the soil organic matter (SOM) considerably increased with stand age in the uppermost soil layer, displaying the distinct chemical composition of the plant input. In accordance, a shift of the δ13C natural abundance of the SOM in the uppermost mineral layer towards a less negative signal was observed with tree development. The abundance of soil microorganisms, as identified by their phospholipid fatty acids (PLFA), was only moderately affected by vegetation type in the mineral soils. In contrast, a strong alteration of the microbial community composition with a decreasing proportion of fungi from the organic layers to the uppermost mineral layer was observable. Our results show that afforestation with spruce trees on an extensively used sub-alpine pasture only led to a transient loss of C in the mineral soils. In

  8. Development of customized fire behavior fuel models for boreal forests of northeastern China.

    Science.gov (United States)

    Wu, Zhi Wei; He, Hong Shi; Chang, Yu; Liu, Zhi Hua; Chen, Hong Wei

    2011-12-01

    Knowledge of forest fuels and their potential fire behavior across a landscape is essential in fire management. Four customized fire behavior fuel models that differed significantly in fuels characteristics and environmental conditions were identified using hierarchical cluster analysis based on fuels data collected across a boreal forest landscape in northeastern China. Fuel model I represented the dense and heavily branched Pinus pumila shrubland which has significant fine live woody fuels. These forests occur mainly at higher mountain elevations. Fuel model II is applicable to forests dominated by Betula platyphylla and Populus davidiana occurring in native forests on hill slopes or at low mountain elevations. This fuel model was differentiated from other fuel models by higher herbaceous cover and lower fine live woody loading. The primary coniferous forests dominated by Larix gmelini and Pinus sylvestris L. var. mongolica were classified as fuel model III and fuel model IV. Those fuel models differed from one another in average cover and height of understory shrub and herbaceous layers as well as in aspect. The potential fire behavior for each fuel model was simulated with the BehavePlus5.0 fire behavior prediction system. The simulation results indicated that the Pinus pumila shrubland fuels had the most severe fire behavior for the 97th percentile weather condition, and had the least severe fire behavior under 90th percentile weather condition. Fuel model II presented the least severe fire potential across weather conditions. Fuel model IV resulted in greater fire severity than Fuel model III across the two weather scenarios that were examined.

  9. Use of fire spread and hydrology models to target forest management on a municipal watershed

    Science.gov (United States)

    Anurag Srivastava; William J. Elliot; Joan Wu

    2015-01-01

    A small town relies on a forested watershed for its water supply. The forest is at risk for a wildfire. To reduce this risk, some of the watershed will be thinned followed by a prescribed burn. This paper reports on a study to evaluate the impact of such watershed disturbances on water yield. To target management activities, a fire spread model was applied to the...

  10. Joint hierarchical models for sparsely sampled high-dimensional LiDAR and forest variables

    OpenAIRE

    Finley, Andrew O.; Banerjee, Sudipto; Zhou, Yuzhen; Cook, Bruce D; Babcock, Chad

    2016-01-01

    Recent advancements in remote sensing technology, specifically Light Detection and Ranging (LiDAR) sensors, provide the data needed to quantify forest characteristics at a fine spatial resolution over large geographic domains. From an inferential standpoint, there is interest in prediction and interpolation of the often sparsely sampled and spatially misaligned LiDAR signals and forest variables. We propose a fully process-based Bayesian hierarchical model for above ground biomass (AGB) and L...

  11. Forest Management in Earth System Modelling: a Vertically Discretised Canopy Description for ORCHIDEE and Effects on European Climate Since 1750

    Science.gov (United States)

    McGrath, M.; Luyssaert, S.; Naudts, K.; Chen, Y.; Ryder, J.; Otto, J.; Valade, A.

    2015-12-01

    Forest management has the potential to impact surface physical characteristics to the same degree that changes in land cover do. The impacts of land cover changes on the global climate are well-known. Despite an increasingly detailed understanding of the potential for forest management to affect climate, none of the current generation of Earth system models account for forest management through their land surface modules. We addressed this gap by developing and reparameterizing the ORCHIDEE land surface model to simulate the biogeochemical and biophysical effects of forest management. Through vertical discretization of the forest canopy and corresponding modifications to the energy budget, radiation transfer, and carbon allocation, forest management can now be simulated much more realistically on the global scale. This model was used to explore the effect of forest management on European climate since 1750. Reparameterization was carried out to replace generic forest plant functional types with real tree species, covering the most dominant species across the continent. Historical forest management and land cover maps were created to run the simulations from 1600 until the present day. The model was coupled to the atmospheric model LMDz to explore differences in climate between 1750 and 2010 and attribute those differences to changes in atmospheric carbon dioxide concentrations and concurrent warming, land cover, species composition, and wood extraction. Although Europe's forest are considered a carbon sink in this century, our simulations show the modern forests are still experiencing carbon debt compared to their historical values.

  12. Validation of 3D-CMCC Forest Ecosystem Model (v.5.1) against eddy covariance data for 10 European forest sites

    DEFF Research Database (Denmark)

    Collalti, A.; Marconi, S.; Ibrom, Andreas;

    2016-01-01

    This study evaluates the performances of the new version (v.5.1) of 3D-CMCC Forest Ecosystem Model (FEM) in simulating gross primary productivity (GPP), against eddy covariance GPP data for 10 FLUXNET forest sites across Europe. A new carbon allocation module, coupled with new both phenological......, with the exception of the two Mediterranean sites. We find that 3D-CMCC FEM tends to better simulate the timing of inter-annual anomalies than their magnitude within measurements' uncertainty. In six of eight sites where data are available, the model well reproduces the 2003 summer drought event. Finally, for three...... sites we evaluate whether a more accurate representation of forest structural characteristics (i.e. cohorts, forest layers) and species composition can improve model results. In two of the three sites results reveal that model slightly increases its performances although, statistically speaking...

  13. A practical approach for comparing management strategies in complex forest ecosystems using meta-modelling toolkits

    Science.gov (United States)

    Andrew Fall; B. Sturtevant; M.-J. Fortin; M. Papaik; F. Doyon; D. Morgan; K. Berninger; C. Messier

    2010-01-01

    The complexity and multi-scaled nature of forests poses significant challenges to understanding and management. Models can provide useful insights into process and their interactions, and implications of alternative management options. Most models, particularly scientific models, focus on a relatively small set of processes and are designed to operate within a...

  14. Net primary productivity of subalpine meadows in Yosemite National Park in relation to climate variability

    Science.gov (United States)

    Moore, Peggy E.; Van Wagtendonk, Jan W.; Yee, Julie L.; McClaran, Mitchel P.; Cole, David N.; McDougald, Neil K.; Brooks, Matthew L.

    2013-01-01

    Subalpine meadows are some of the most ecologically important components of mountain landscapes, and primary productivity is important to the maintenance of meadow functions. Understanding how changes in primary productivity are associated with variability in moisture and temperature will become increasingly important with current and anticipated changes in climate. Our objective was to describe patterns and variability in aboveground live vascular plant biomass in relation to climatic factors. We harvested aboveground biomass at peak growth from four 64-m2 plots each in xeric, mesic, and hydric meadows annually from 1994 to 2000. Data from nearby weather stations provided independent variables of spring snow water content, snow-free date, and thawing degree days for a cumulative index of available energy. We assembled these climatic variables into a set of mixed effects analysis of covariance models to evaluate their relationships with annual aboveground net primary productivity (ANPP), and we used an information theoretic approach to compare the quality of fit among candidate models. ANPP in the xeric meadow was negatively related to snow water content and thawing degree days and in the mesic meadow was negatively related to snow water content. Relationships between ANPP and these 2 covariates in the hydric meadow were not significant. Increasing snow water content may limit ANPP in these meadows if anaerobic conditions delay microbial activity and nutrient availability. Increased thawing degree days may limit ANPP in xeric meadows by prematurely depleting soil moisture. Large within-year variation of ANPP in the hydric meadow limited sensitivity to the climatic variables. These relationships suggest that, under projected warmer and drier conditions, ANPP will increase in mesic meadows but remain unchanged in xeric meadows because declines associated with increased temperatures would offset the increases from decreased snow water content.

  15. Modelling black spruce primary production and carbon allocation in the Quebec boreal forest

    Science.gov (United States)

    Gennaretti, Fabio; Guiot, Joel; Berninger, Frank; Boucher, Etienne; Gea-Izquierdo, Guillermo

    2017-04-01

    Boreal ecosystems are crucial carbon stores that must be urgently quantified and preserved. Their future evolution is extremely important for the global carbon budget. Here, we will show the progresses achieved with the MAIDEN forest ecophysiological model in simulating carbon fluxes of black spruce (Picea mariana (Mill.) B.S.P.) forests, the most representative ecosystem of the North American boreal biome. Starting from daily minimum-maximum air temperature, precipitation and CO2 atmospheric concentration, MAIDEN models the phenological (5 phenological phases are simulated each year) and meteorological controls on gross primary production (GPP) and carbon allocation to stem. The model is being calibrated on eddy covariance and tree-ring data. We will discuss the model's performance and the modifications introduced in MAIDEN to adapt the model to temperature sensitive forests of the boreal region.

  16. Spectral tensor parameters for wind turbine load modeling from forested and agricultural landscapes

    DEFF Research Database (Denmark)

    Chougule, Abhijit S.; Mann, Jakob; Segalini, A.

    2015-01-01

    over a forested and an agricultural landscape were used to calculate the model parameters for neutral, slightly stable and slightly unstable atmospheric conditions for a selected wind speed interval. The dissipation rate above the forest was nine times that at the agricultural site. No significant......A velocity spectral tensor model was evaluated from the single-point measurements of wind speed. The model contains three parameters representing the dissipation rate of specific turbulent kinetic energy, a turbulence length scale and the turbulence anisotropy. Sonic anemometer measurements taken...... constant with height at the forest site, whereas the turbulence became more isotropic with height for the agricultural site. Using the three parameters as inputs, we quantified the performance of the model in coherence predictions for vertical separations. The model coherence of all the three velocity...

  17. Reprint of Infinity computations in cellular automaton forest-fire model

    Science.gov (United States)

    Iudin, D. I.; Sergeyev, Ya. D.; Hayakawa, M.

    2015-04-01

    Recently a number of traditional models related to the percolation theory has been considered by means of a new computational methodology that does not use Cantor's ideas and describes infinite and infinitesimal numbers in accordance with the principle 'The whole is greater than the part' (Euclid's Common Notion 5). Here we apply the new arithmetic to a cellular automaton forest-fire model which is connected with the percolation methodology and in some sense combines the dynamic and the static percolation problems and under certain conditions exhibits critical fluctuations. It is well known that there exist two versions of the model: real forest-fire model where fire catches adjacent trees in the forest in the step by step manner and simplified version with instantaneous combustion. Using new approach we observe that in both situations we deal with the same model but with different time resolution. We show that depending on the "microscope" we use the same cellular automaton forest-fire model reveals either instantaneous forest combustion or step by step firing. By means of the new approach it was also observed that as far as we choose an infinitesimal tree growing rate and infinitesimal ratio between the ignition probability and the growth probability we determine the measure or extent of the system size infinity that provides the criticality of the system dynamics. Correspondent inequalities for grosspowers are derived.

  18. Effects of high-severity fire drove the population collapse of the subalpine Tasmanian endemic conifer Athrotaxis cupressoides.

    Science.gov (United States)

    Holz, Andrés; Wood, Sam W; Veblen, Thomas T; Bowman, David M J S

    2015-01-01

    Athrotaxis cupressoides is a slow-growing and long-lived conifer that occurs in the subalpine temperate forests of Tasmania, a continental island to the south of Australia. In 1960-1961, human-ignited wildfires occurred during an extremely dry summer that killed many A. cupressoides stands on the high plateau in the center of Tasmania. That fire year, coupled with subsequent regeneration failure, caused a loss of ca. 10% of the geographic extent of this endemic Tasmanian forest type. To provide historical context for these large-scale fire events, we (i) collected dendroecological, floristic, and structural data, (ii) documented the postfire survival and regeneration of A. cupressoides and co-occurring understory species, and (iii) assessed postfire understory plant community composition and flammability. We found that fire frequency did not vary following the arrival of European settlers, and that A. cupressoides populations were able to persist under a regime of low-to-mid severity fires prior to the 1960 fires. Our data indicate that the 1960 fires were (i) of greater severity than previous fires, (ii) herbivory by native marsupials may limit seedling survival in both burned and unburned A. cupressoides stands, and (iii) the loss of A. cupressoides populations is largely irreversible given the relatively high fuel loads of postfire vegetation communities that are dominated by resprouting shrubs. We suggest that the feedback between regeneration failure and increased flammability will be further exacerbated by a warmer and drier climate causing A. cupressoides to contract to the most fire-proof landscape settings.

  19. A Novel Modelling Approach for Predicting Forest Growth and Yield under Climate Change.

    Directory of Open Access Journals (Sweden)

    M Irfan Ashraf

    Full Text Available Global climate is changing due to increasing anthropogenic emissions of greenhouse gases. Forest managers need growth and yield models that can be used to predict future forest dynamics during the transition period of present-day forests under a changing climatic regime. In this study, we developed a forest growth and yield model that can be used to predict individual-tree growth under current and projected future climatic conditions. The model was constructed by integrating historical tree growth records with predictions from an ecological process-based model using neural networks. The new model predicts basal area (BA and volume growth for individual trees in pure or mixed species forests. For model development, tree-growth data under current climatic conditions were obtained using over 3000 permanent sample plots from the Province of Nova Scotia, Canada. Data to reflect tree growth under a changing climatic regime were projected with JABOWA-3 (an ecological process-based model. Model validation with designated data produced model efficiencies of 0.82 and 0.89 in predicting individual-tree BA and volume growth. Model efficiency is a relative index of model performance, where 1 indicates an ideal fit, while values lower than zero means the predictions are no better than the average of the observations. Overall mean prediction error (BIAS of basal area and volume growth predictions was nominal (i.e., for BA: -0.0177 cm(2 5-year(-1 and volume: 0.0008 m(3 5-year(-1. Model variability described by root mean squared error (RMSE in basal area prediction was 40.53 cm(2 5-year(-1 and 0.0393 m(3 5-year(-1 in volume prediction. The new modelling approach has potential to reduce uncertainties in growth and yield predictions under different climate change scenarios. This novel approach provides an avenue for forest managers to generate required information for the management of forests in transitional periods of climate change. Artificial intelligence

  20. Random forest methodology for model-based recursive partitioning: the mobForest package for R

    OpenAIRE

    Garge, Nikhil R; Bobashev, Georgiy; Eggleston, Barry

    2013-01-01

    Background Recursive partitioning is a non-parametric modeling technique, widely used in regression and classification problems. Model-based recursive partitioning is used to identify groups of observations with similar values of parameters of the model of interest. The mob() function in the party package in R implements model-based recursive partitioning method. This method produces predictions based on single tree models. Predictions obtained through single tree models are very sensitive to...

  1. A stochastic Forest Fire Model for future land cover scenarios assessment

    Directory of Open Access Journals (Sweden)

    M. D'Andrea

    2010-10-01

    Full Text Available Land cover is affected by many factors including economic development, climate and natural disturbances such as wildfires. The ability to evaluate how fire regimes may alter future vegetation, and how future vegetation may alter fire regimes, would assist forest managers in planning management actions to be carried out in the face of anticipated socio-economic and climatic change. In this paper, we present a method for calibrating a cellular automata wildfire regime simulation model with actual data on land cover and wildfire size-frequency. The method is based on the observation that many forest fire regimes, in different forest types and regions, exhibit power law frequency-area distributions. The standard Drossel-Schwabl cellular automata Forest Fire Model (DS-FFM produces simulations which reproduce this observed pattern. However, the standard model is simplistic in that it considers land cover to be binary – each cell either contains a tree or it is empty – and the model overestimates the frequency of large fires relative to actual landscapes. Our new model, the Modified Forest Fire Model (MFFM, addresses this limitation by incorporating information on actual land use and differentiating among various types of flammable vegetation. The MFFM simulation model was tested on forest types with Mediterranean and sub-tropical fire regimes. The results showed that the MFFM was able to reproduce structural fire regime parameters for these two regions. Further, the model was used to forecast future land cover. Future research will extend this model to refine the forecasts of future land cover and fire regime scenarios under climate, land use and socio-economic change.

  2. Potential influence of wildfire in modulating climate-induced forest redistribution in a central Rocky Mountain landscape

    Science.gov (United States)

    Campbell, John L.; Shinneman, Douglas

    2017-01-01

    IntroductionClimate change is expected to impose significant tension on the geographic distribution of tree species. Yet, tree species range shifts may be delayed by their long life spans, capacity to withstand long periods of physiological stress, and dispersal limitations. Wildfire could theoretically break this biological inertia by killing forest canopies and facilitating species redistribution under changing climate. We investigated the capacity of wildfire to modulate climate-induced tree redistribution across a montane landscape in the central Rocky Mountains under three climate scenarios (contemporary and two warmer future climates) and three wildfire scenarios (representing historical, suppressed, and future fire regimes).MethodsDistributions of four common tree species were projected over 90 years by pairing a climate niche model with a forest landscape simulation model that simulates species dispersal, establishment, and mortality under alternative disturbance regimes and climate scenarios.ResultsThree species (Douglas-fir, lodgepole pine, subalpine fir) declined in abundance over time, due to climate-driven contraction in area suitable for establishment, while one species (ponderosa pine) was unable to exploit climate-driven expansion of area suitable for establishment. Increased fire frequency accelerated declines in area occupied by Douglas-fir, lodgepole pine, and subalpine fir, and it maintained local abundance but not range expansion of ponderosa pine.ConclusionsWildfire may play a larger role in eliminating these conifer species along trailing edges of their distributions than facilitating establishment along leading edges, in part due to dispersal limitations and interspecific competition, and future populations may increasingly depend on persistence in locations unfavorable for their establishment.

  3. An individual-based growth and competition model for coastal redwood forest restoration

    Science.gov (United States)

    van Mantgem, Phillip J.; Das, Adrian J.

    2014-01-01

    Thinning treatments to accelerate coastal redwood forest stand development are in wide application, but managers have yet to identify prescriptions that might best promote Sequoia sempervirens (Lamb. ex D. Don) Endl. (redwood) growth. The creation of successful thinning prescriptions would be aided by identifying the underlying mechanisms governing how individual tree growth responds to competitive environments in coastal redwood forests. We created a spatially explicit individual-based model of tree competition and growth parameterized using surveys of upland redwood forests at Redwood National Park, California. We modeled competition for overstory trees (stems ≥ 20 cm stem diameter at breast height, 1.37 m (dbh)) as growth reductions arising from sizes, distances, and species identity of competitor trees. Our model explained up to half of the variation in individual tree growth, suggesting that neighborhood crowding is an important determinant of growth in this forest type. We used our model to simulate the effects of novel thinning prescriptions (e.g., 40% stand basal area removal) for redwood forest restoration, concluding that these treatments could lead to substantial growth releases, particularly for S. sempervirens. The results of this study, along with continued improvements to our model, will help to determine spacing and species composition that best encourage growth.

  4. A spatial simulation model for forest succession in the Upper Mississippi River floodplain

    Science.gov (United States)

    Yin, Y.; Wu, Y.; Bartell, S.M.

    2009-01-01

    A Markov-chain transition model (FORSUM) and Monte Carlo simulations were used to simulate the succession patterns and predict a long-term impact of flood on the forest structure and growth in the floodplain of the Upper Mississippi River and Illinois River. Model variables, probabilities, functions, and parameters were derived from the analysis of two comprehensive field surveys conducted in this floodplain. This modeling approach describes the establishment, growth, competition, and death of individual trees for modeled species on a 10,000-ha landscape with spatial resolution of 1 ha. The succession characteristics of each Monte Carlo simulation are summed up to describe forest development and dynamics on a landscape level. FORSUM simulated the impacts of flood intensity and frequency on species composition and dynamics in the Upper Mississippi River floodplain ecosystem. The model provides a useful tool for testing hypotheses about forest succession and enables ecologists and managers to evaluate the impacts of flood disturbances and ecosystem restoration on forest succession. The simulation results suggest that the Markov-chain Monte Carlo method is an efficient tool to help organize the existing data and knowledge of forest succession into a system of quantitative predictions for the Upper Mississippi River floodplain ecosystem. ?? 2009 Elsevier B.V.

  5. Validation of modelled forest biomass in Germany using BETHY/DLR

    Directory of Open Access Journals (Sweden)

    M. Tum

    2011-11-01

    Full Text Available We present a new approach to the validation of modelled forest Net Primary Productivity (NPP, using empirical data on the mean annual increment, or MAI, in above-ground forest stock. The soil-vegetation-atmosphere-transfer model BETHY/DLR is used, with a particular focus on a detailed parameterization of photosynthesis, to estimate the NPP of forest areas in Germany, driven by remote sensing data from VEGETATION, meteorological data from the European Centre for Medium-Range Weather Forecasts (ECMWF, and additional tree coverage information from the MODIS Vegetation Continuous Field (VCF. The output of BETHY/DLR, Gross Primary Productivity (GPP, is converted to NPP by subtracting the cumulative plant maintenance and growth respiration, and then validated against MAI data that was calculated from German forestry inventories. Validation is conducted for 2000 and 2001 by converting modelled NPP to stem volume at a regional level. Our analysis shows that the presented method fills an important gap in methods for validating modelled NPP against empirically derived data. In addition, we examine theoretical energy potentials calculated from the modelled and validated NPP, assuming sustainable forest management and using species-specific tree heating values. Such estimated forest biomass energy potentials play an important role in the sustainable energy debate.

  6. Validation of modelled forest biomass in Germany using BETHY/DLR

    Directory of Open Access Journals (Sweden)

    M. Tum

    2011-07-01

    Full Text Available We present a new approach to the validation of modelled forest Net Primary Productivity (NPP, using empirical data on the mean annual increment, or MAI, in above-ground forest stock. The dynamic biomass model BETHY/DLR is used to estimate the NPP of forest areas in Germany, driven by remote sensing data from VEGETATION, meteorological data from the European Centre for Medium-Range Weather Forecasts (ECMWF, and additional tree coverage information from the MODIS Vegetation Continuous Field (VCF. The output of BETHY/DLR, Gross Primary Productivity (GPP, is converted to NPP by subtracting the cumulative plant maintenance and growth respiration, and then validated against MAI data derived from German forestry inventories. Validation is conducted for 2000 and 2001 by converting modelled NPP to stem volume at a regional level. Our analysis shows that the presented method fills an important gap in methods for validating modelled NPP against empirically derived data. In addition, we examine theoretical energy potentials calculated from the modelled and validated NPP, assuming sustainable forest management and using species-specific tree heating values. Such estimated forest biomass energy potentials play an important role in the sustainable energy debate.

  7. Active Build-Model Random Forest Method for Network Traffic Classification

    Directory of Open Access Journals (Sweden)

    Alhamza Munther

    2014-05-01

    Full Text Available Network traffic classification continues to be an interesting subject among numerous networking communities. This method introduces multi-beneficial solutions in different avenues, such as network security, network management, anomaly detection, and quality-of-service. In this paper, we propose a supervised machine learning method that efficiently classifies different types of applications using the Active Build-Model Random Forest (ABRF method. This method constructs a new build model for the original Random Forest (RF method to decrease processing time. This build model includes only the active trees (i.e., trees with high accuracy, whereas the passive trees are excluded from the forest. The passive trees were excluded without any negative effect on classification accuracy. Results show that the ABRF method decreases the processing time by up to 37.5% compared with the original RF method. Our model has an overall accuracy of 98.66% based on the benchmark dataset considered in this paper.

  8. Modeling the early-phase redistribution of radiocesium fallouts in an evergreen coniferous forest after Chernobyl and Fukushima accidents

    Energy Technology Data Exchange (ETDEWEB)

    Calmon, P.; Gonze, M.-A.; Mourlon, Ch.

    2015-10-01

    Following the Chernobyl accident, the scientific community gained numerous data on the transfer of radiocesium in European forest ecosystems, including information regarding the short-term redistribution of atmospheric fallout onto forest canopies. In the course of international programs, the French Institute for Radiological Protection and Nuclear Safety (IRSN) developed a forest model, named TREE4 (Transfer of Radionuclides and External Exposure in FORest systems), 15 years ago. Recently published papers on a Japanese evergreen coniferous forest contaminated by Fukushima radiocesium fallout provide interesting and quantitative data on radioactive mass fluxes measured within the forest in the months following the accident. The present study determined whether the approach adopted in the TREE4 model provides satisfactory results for Japanese forests or whether it requires adjustments. This study focused on the interception of airborne radiocesium by forest canopy, and the subsequent transfer to the forest floor through processes such as litterfall, throughfall, and stemflow, in the months following the accident. We demonstrated that TREE4 quite satisfactorily predicted the interception fraction (20%) and the canopy-to-soil transfer (70% of the total deposit in 5 months) in the Tochigi forest. This dynamics was similar to that observed in the Höglwald spruce forest. However, the unexpectedly high contribution of litterfall (31% in 5 months) in the Tochigi forest could not be reproduced in our simulations (2.5%). Possible reasons for this discrepancy are discussed; and sensitivity of the results to uncertainty in deposition conditions was analyzed. - Highlights: • Transfer of radiocesium atmospheric fallout in evergreen forests was modeled. • The model was tested using observations from Chernobyl and Fukushima accidents. • Model predictions of canopy interception and depuration agree with measurements. • Unexpectedly high contribution of litterfall for the

  9. Joint simulation of carbon and tree diversity dynamics in an Amazonian forest succession using TROLL, an individual-based forest dynamics model

    Science.gov (United States)

    Maréchaux, Isabelle; Chave, Jérôme

    2016-04-01

    Amazonian forests are critical for biogeochemical cycles and provide also key ecosystem services. One approach for modelling forest vegetation dynamics is to parameterize species using field-measured plant traits in individual-based forest growth simulators, a method that has been successfully implemented in temperate forests. Here we extend this approach to the tropics. We parameterized the forest dynamics simulator TROLL over a hundred species and simulated the first decades of an ecological succession with tree species encountered in the coastal zone of French Guiana. The model reproduced well the empirically measured values of gross and net primary productivities (GPP and NPP, obtained from eddy-flux measurements) as well as canopy structure (obtained from aerial LiDAR scanning). Modelled species trajectories compared well with empirically measured ones at a clear-cut site for the past four decades. Modelled carbon accumulation curves show that forests are not mature even after 100 years of regeneration. Finally, we discuss how plant hydrology and responses to drought can be integrated into this modelling scheme using data from leaf water potential at wilting point.

  10. The Prediction Model of Dam Uplift Pressure Based on Random Forest

    Science.gov (United States)

    Li, Xing; Su, Huaizhi; Hu, Jiang

    2017-09-01

    The prediction of the dam uplift pressure is of great significance in the dam safety monitoring. Based on the comprehensive consideration of various factors, 18 parameters are selected as the main factors affecting the prediction of uplift pressure, use the actual monitoring data of uplift pressure as the evaluation factors for the prediction model, based on the random forest algorithm and support vector machine to build the dam uplift pressure prediction model to predict the uplift pressure of the dam, and the predict performance of the two models were compared and analyzed. At the same time, based on the established random forest prediction model, the significance of each factor is analyzed, and the importance of each factor of the prediction model is calculated by the importance function. Results showed that: (1) RF prediction model can quickly and accurately predict the uplift pressure value according to the influence factors, the average prediction accuracy is above 96%, compared with the support vector machine (SVM) model, random forest model has better robustness, better prediction precision and faster convergence speed, and the random forest model is more robust to missing data and unbalanced data. (2) The effect of water level on uplift pressure is the largest, and the influence of rainfall on the uplift pressure is the smallest compared with other factors.

  11. Analysing Amazonian forest productivity using a new individual and trait-based model (TFS v.1

    Directory of Open Access Journals (Sweden)

    N. M. Fyllas

    2014-02-01

    Full Text Available Repeated long-term censuses have revealed large-scale spatial patterns in Amazon Basin forest structure and dynamism, with some forests in the west of the Basin having up to a twice as high rate of aboveground biomass production and tree recruitment as forests in the east. Possible causes for this variation could be the climatic and edaphic gradients across the Basin and/or the spatial distribution of tree species composition. To help understand causes of this variation a new individual-based model of tropical forest growth designed to take full advantage of the forest census data available from the Amazonian Forest Inventory Network (RAINFOR has been developed. The model incorporates variations in tree size distribution, functional traits and soil physical properties and runs at the stand level with four functional traits, leaf dry mass per area (Ma, leaf nitrogen (NL and phosphorus (PL content and wood density (DW used to represent a continuum of plant strategies found in tropical forests. We first applied the model to validate canopy-level water fluxes at three Amazon eddy flux sites. For all three sites the canopy-level water fluxes were adequately simulated. We then applied the model at seven plots, where intensive measurements of carbon allocation are available. Tree-by-tree multi-annual growth rates generally agreed well with observations for small trees, but with deviations identified for large trees. At the stand-level, simulations at 40 plots were used to explore the influence of climate and soil fertility on the gross (ΠG and net (ΠN primary production rates as well as the carbon use efficiency (CU. Simulated ΠG, ΠN and CU were not associated with temperature. However all three measures of stand level productivity were positively related to annual precipitation and soil fertility.

  12. Assessing heat fluxes and water quality trends in subalpine lakes from EO

    Science.gov (United States)

    Cazzaniga, Ilaria; Giardino, Claudia; Bresciani, Mariano; Elli, Chiara; Valerio, Giulia; Pilotti, Marco

    2017-04-01

    Lakes play a fundamental role in providing ecosystem services such as water supplying, hydrological regulation, climate change mitigation, touristic recreation (Schallenberg et al., 2013). Preserving and improving of quality of lakes waters, which is a function of either both natural and human influences, is therefore an important action to be considered. Remote Sensing techniques are spreading as useful instrument for lakes, by integrating classical in situ limnological measurements to frequent and synoptic monitoring capabilities. Within this study, Earth Observation data are exploited for understanding the temporal changes of water quality parameters over a decade, as well as for measuring the surface energy fluxes in recent years in deep clear lakes in the European subalpine ecoregion. According to Pareth et al. (2016), subalpine lakes are showing a clear response to climate change with an increase of 0.017 °C /year of lake surface temperature, whilst the human activities contribute to produce a large impact (agriculture, recreation, industry, fishing and drinking) on these lakes. The investigation is focused on Lake Iseo, which has shown a significant deterioration of water quality conditions since the seventies, and on Lake Garda, the largest Italian lake where EO data have been widely used for many purposes and applications (Giardino et al., 2014). Available ENVISAT-MERIS (2002-2012) and Landsat-8-OLI (2013-on going) imagery has been exploited to produce chlorophyll-a (chl-a) concentration maps, while Landsat-8-TIRS imagery has been used for estimating lake surface temperatures. MERIS images were processed through a neural network (namely the C2R processor, Doerffer et al., 2007), to correct the atmospheric effects and to retrieve water constituents concentration in optically complex deep waters. With regard to L8's images, some atmospheric correctors (e.g. ACOLITE and 6SV) were tested and validated to indentify, for each of the two lakes, the more accurate

  13. Cellular automaton modelling of lightning-induced and man made forest fires

    Directory of Open Access Journals (Sweden)

    R. Krenn

    2009-10-01

    Full Text Available The impact of forest fires on nature and civilisation is conflicting: on one hand, they play an irreplaceable role in the natural regeneration process, but on the other hand, they come within the major natural hazards in many regions. Their frequency-area distributions show power-law behaviour with scaling exponents α in a quite narrow range, relating wildfire research to the theoretical framework of self-organised criticality. Examples of self-organised critical behaviour can be found in computer simulations of simple cellular automaton models. The established self-organised critical Drossel-Schwabl forest fire model is one of the most widespread models in this context. Despite its qualitative agreement with event-size statistics from nature, its applicability is still questioned. Apart from general concerns that the Drossel-Schwabl model apparently oversimplifies the complex nature of forest dynamics, it significantly overestimates the frequency of large fires. We present a modification of the model rules that distinguishes between lightning-induced and man made forest fires and enables a systematic increase of the scaling exponent α by approximately 1/3. In addition, combined simulations using both the original and the modified model rules predict a dependence of the overall event-size distribution on the ratio of lightning induced and man made fires as well as a splitting of their partial distributions. Lightning is identified as the dominant mechanism in the regime of the largest fires. The results are confirmed by the analysis of the Canadian Large Fire Database and suggest that lightning-induced and man made forest fires cannot be treated separately in wildfire modelling, hazard assessment and forest management.

  14. Cellular automaton modelling of lightning-induced and man made forest fires

    Science.gov (United States)

    Krenn, R.; Hergarten, S.

    2009-10-01

    The impact of forest fires on nature and civilisation is conflicting: on one hand, they play an irreplaceable role in the natural regeneration process, but on the other hand, they come within the major natural hazards in many regions. Their frequency-area distributions show power-law behaviour with scaling exponents α in a quite narrow range, relating wildfire research to the theoretical framework of self-organised criticality. Examples of self-organised critical behaviour can be found in computer simulations of simple cellular automaton models. The established self-organised critical Drossel-Schwabl forest fire model is one of the most widespread models in this context. Despite its qualitative agreement with event-size statistics from nature, its applicability is still questioned. Apart from general concerns that the Drossel-Schwabl model apparently oversimplifies the complex nature of forest dynamics, it significantly overestimates the frequency of large fires. We present a modification of the model rules that distinguishes between lightning-induced and man made forest fires and enables a systematic increase of the scaling exponent α by approximately 1/3. In addition, combined simulations using both the original and the modified model rules predict a dependence of the overall event-size distribution on the ratio of lightning induced and man made fires as well as a splitting of their partial distributions. Lightning is identified as the dominant mechanism in the regime of the largest fires. The results are confirmed by the analysis of the Canadian Large Fire Database and suggest that lightning-induced and man made forest fires cannot be treated separately in wildfire modelling, hazard assessment and forest management.

  15. Mathematical Models Arising in the Fractal Forest Gap via Local Fractional Calculus

    Directory of Open Access Journals (Sweden)

    Chun-Ying Long

    2014-01-01

    Full Text Available The forest new gap models via local fractional calculus are investigated. The JABOWA and FORSKA models are extended to deal with the growth of individual trees defined on Cantor sets. The local fractional growth equations with local fractional derivative and difference are discussed. Our results are first attempted to show the key roles for the nondifferentiable growth of individual trees.

  16. Quantitative forest canopy structure assessment using an inverted geometric-optical model and up-scaling

    NARCIS (Netherlands)

    Zeng, Y.; Schaepman, M.E.; Wu, B.; Clevers, J.G.P.W.; Bregt, A.K.

    2009-01-01

    The physical-based geometric-optical Li-Strahler model can be inverted to retrieve forest canopy structural variables. One of the main input variables of the inverted model is the fractional component of sunlit background (K g). K g is calculated by using pure reflectance spectra (endmembers) of the

  17. Modelling recovery from soil acidification in European forests under climate change

    NARCIS (Netherlands)

    Reinds, G.J.; Posch, M.; Leemans, R.

    2009-01-01

    A simple soil acidification model was applied to evaluate the effects of sulphur and nitrogen emission reductions on the recovery of acidified European forest soils. In addition we included the effects of climate change on soil solution chemistry, by modelling temperature effects on soil chemical

  18. Growth models and site index table of natural Korean pine forests

    Institute of Scientific and Technical Information of China (English)

    Sun Yuwen; Li Shi; Cui Hong; Li Changsheng; Lju Peng; Zhang Junhua

    1999-01-01

    According to the growth characteristics of natural Korean pine (Pinus Koraiensis) forests, 6 equations such as Chapman-Richards equation, Logistic equation, Power equation, and so on were selected to fit for the growth models for Korean pine forest. The growth models were developed based on 208 random trees and 240 dominant trees. Results show that the Chapman-Richards equation is the best model for estimating tree height by age and DBH, while the Parabola equation is fittest for predicting DBH by age or estimating age from DBH The site index table of Korean pine forest was compiled by using the proportional method with the Chapman-Richards equation as the guide curve and validated by accuracy test.

  19. Sustainable development models of converting cropland to forest in Dabieshan District, Anhui Province

    Institute of Scientific and Technical Information of China (English)

    Kai ZHANG; Ning LUO; Xiaojing XU; Xiaoniu XU

    2008-01-01

    The characteristics of the eco-environment,extension scale and sustainable models of converting cropland to forest in the Dabieshan District of Anhui were analyzed. The Dabieshan District is a main ecological area with a function of soil and water conservation where seven large reservoirs and irrigation systems of the Pishihang are distributed. Therefore, the extension scale of converting cropland to forest could be enlarged properly in the reservoir area, while it should be limited in the non-reservoir area due to the issues of higher population density and food safety. Great attention should be paid to the model selection and results during the conversion of cropland to forest. Some suitable models and effective approaches were put forward for the sustainable development in the Dabieshan District, Anhui.

  20. Forest cover algorithms for estimating meteorological forcing in a numerical snow model

    Science.gov (United States)

    Hellström, Robert Å.

    2000-12-01

    The architectural properties of a forest are known to significantly modify meteorological forcing of snowcover. This project develops four numerical modules to simulate canopy processes including attenuation of solar radiation and wind speed, the mixed sky and canopy components of longwave irradiance, and precipitation interception by canopy elements. The four modules and a more realistic atmospheric stability algorithm were included in the Utah Energy Balance (UEB) snow model to estimate water equivalence beneath coniferous and defoliated deciduous forests in northern Michigan. Systematic underestimation of early season snow depth was attributed to the assumption of constant, seasonal average, snow density in the model's lumped treatment of the snowpack processes. The modified UEB model (UEBMOD) improved estimation of snow depth in a clearing and beneath the coniferous site, whereas UEB with original forest parameterizations performed best for the deciduous site.

  1. Multi-Stakeholder Collaboration in Russian and Swedish Model Forest Initiatives: Adaptive Governance Toward Sustainable Forest Management?

    Directory of Open Access Journals (Sweden)

    Marine Elbakidze

    2010-06-01

    Full Text Available Building the adaptive capacity of interlinked social and ecological systems is assumed to improve implementation of sustainable forest management (SFM policies. One mechanism is collaborative learning by continuous evaluation, communication, and transdisciplinary knowledge production. The Model Forest (MF concept, developed in Canada, is intended to encourage all dimensions of sustainable development through collaboration among stakeholders of forest resources in a geographical area. Because the MF approach encompasses both social and ecological systems, it can be seen as a process aimed at improving adaptive capacity to deal with uncertainty and change. We analyzed multi-stakeholder approaches used in four MF initiatives representing social-ecological systems with different governance legacies and economic histories in the northwest of the Russian Federation (Komi MF and Pskov MF and in Sweden (Vilhelmina MF and the Foundation Säfsen Forests in the Bergslagen region. To describe the motivations behind development of the initiative and the governance systems, we used qualitative open-ended interviews and analyzed reports and official documents. The initial driving forces for establishing new local governance arrangements were different in all four cases. All MFs were characterized by multi-level and multi-sector collaboration. However, the distribution of power among stakeholders ranged from clearly top down in the Russian Federation to largely bottom up in Sweden. All MF initiatives shared three main challenges: (a to develop governance arrangements that include representative actors and stakeholders, (b to combine top-down and bottom-up approaches to governance, and (c to coordinate different sectors' modes of landscape governance. We conclude that, in principle, the MF concept is a promising approach to multi-stakeholder collaboration. However, to understand the local and regional dimensions of sustainability, and the level of adaptability

  2. Spatio-temporal analysis of forest modeling in Mexico

    Directory of Open Access Journals (Sweden)

    Saira Y. Martínez-Santiago

    2017-01-01

    Full Text Available Hay consenso de que las acciones antropogénicas están degradando los ecosistemas a un ritmo alarmante. La modelación y las nuevas tecnologías, como las tecnologías de la información y de la comunicación ( TIC, se utilizan en modo creciente para tomar decisiones sobre el manejo y la conservación de los recursos naturales. En este trabajo se analizaron la evolución temporal y la distribución espacial de la producción científica en modelación forestal en México. De 1980 a 2015, 454 autores participaron en la publicación de 259 artículos en 37 revistas (84 % mexicanas, de las cuales 28 están indizadas en el Journal Citation Reports (JCR. Los trabajos sobre manejo forestal han sido los más relevantes, aunque tienen una importancia relativa a la baja, mientras que los de servicios ambientales y distribución potencial van ganando importancia. Los autores pertenecen a 89 instituciones, de las cuales 65 % son mexicanas. Durante el periodo analizado, el número de autores (y las colaboraciones y publicaciones incrementaron 12 y nueve veces, respectivamente. Estos incrementos coinciden con la evolución de las políticas normativas y el establecimiento y apoyo del Sistema Nacional de Investigadores. Las colaboraciones en la red actual de modelación forestal aún tienen gran potencial de crecimiento.

  3. Quantifying Forest Ecosystem Services Tradeoff—Coupled Ecological and Economic Models

    Science.gov (United States)

    Haff, P. K.; Ling, P. Y.

    2015-12-01

    Quantification of the effect of carbon-related forestland management activities on ecosystem services is difficult, because knowledge about the dynamics of coupled social-ecological systems is lacking. Different forestland management activities, such as various amount, timing, and methods of harvesting, and natural disturbances events, such as wind and fires, create shocks and uncertainties to the forest carbon dynamics. A spatially explicit model, Landis-ii, was used to model the forest succession for different harvest management scenarios at the Grandfather District, North Carolina. In addition to harvest, the model takes into account of the impact of natural disturbances, such as fire and insects, and species competition. The result shows the storage of carbon in standing biomass and in wood product for each species for each scenario. In this study, optimization is used to analyze the maximum profit and the number of tree species that each forest landowner can gain at different prices of carbon, roundwood, and interest rates for different harvest management scenarios. Time series of roundwood production of different types were estimated using remote sensing data. Econometric analysis is done to understand the possible interaction and relations between the production of different types of roundwood and roundwood prices, which can indicate the possible planting scheme that a forest owner may make. This study quantifies the tradeoffs between carbon sequestration, roundwood production, and forest species diversity not only from an economic perspective, but also takes into account of the forest succession mechanism in a species-diverse region. The resulting economic impact on the forest landowners is likely to influence their future planting decision, which in turn, will influence the species composition and future revenue of the landowners.

  4. Braking effect of climate and topography on global change-induced upslope forest expansion.

    Science.gov (United States)

    Alatalo, Juha M; Ferrarini, Alessandro

    2017-03-01

    Forests are expected to expand into alpine areas due to global climate change. It has recently been shown that temperature alone cannot realistically explain this process and that upslope tree advance in a warmer scenario may depend on the availability of sites with adequate geomorphic/topographic characteristics. Here, we show that, besides topography (slope and aspect), climate itself can produce a braking effect on the upslope advance of subalpine forests and that tree limit is influenced by non-linear and non-monotonic contributions of the climate variables which act upon treeline upslope advance with varying relative strengths. Our results suggest that global climate change impact on the upslope advance of subalpine forests should be interpreted in a more complex way where climate can both speed up and slow down the process depending on complex patterns of contribution from each climate and non-climate variable.

  5. Braking effect of climate and topography on global change-induced upslope forest expansion

    Science.gov (United States)

    Alatalo, Juha M.; Ferrarini, Alessandro

    2016-08-01

    Forests are expected to expand into alpine areas due to global climate change. It has recently been shown that temperature alone cannot realistically explain this process and that upslope tree advance in a warmer scenario may depend on the availability of sites with adequate geomorphic/topographic characteristics. Here, we show that, besides topography (slope and aspect), climate itself can produce a braking effect on the upslope advance of subalpine forests and that tree limit is influenced by non-linear and non-monotonic contributions of the climate variables which act upon treeline upslope advance with varying relative strengths. Our results suggest that global climate change impact on the upslope advance of subalpine forests should be interpreted in a more complex way where climate can both speed up and slow down the process depending on complex patterns of contribution from each climate and non-climate variable.

  6. The Utilization of Landsat 8 Multitemporal Imagery and Forest Canopy Density (FCD) Model for Forest Reclamation Priority of Natural Disaster Areas at Kelud Mountain, East Java

    Science.gov (United States)

    Himayah, S.; Hartono; Danoedoro, P.

    2016-11-01

    Remote sensing has the advantage in terms of temporal resolution that can be used to examine changes of the forest canopy density as occurred in Kelud Mountain after the eruption of 2014. Canopy density changes then used as a consideration for forest reclamation priority. This study aims to assess the ability of Landsat 8 multitemporal imagery and Forest Canopy Density (FCD) modeling for canopy density changes at Kelud forest before and after the eruption, as well as take advantage of the canopy density changes from FCD and biophysical condition of forest to make a forest reclamation priority. This research using a Landsat 8 imagery (26 June 2013 and 4 September 2015). The method that used is FCD modeling to obtain canopy density. Forest reclamation priority is determined based on the canopy density change after the eruption and biophysical factors such as slope, soil fertility and native vegetation. Landsat 8 can used to determine the forest canopy density of Kelud before and after eruption with an accuracy of 83.73% and 81.14%. Kelud forest reclamation priorities are divided into nine classes based on priority level. The most prioritized class is 1a with an area of 865 ha and class 1b with an area of 2.085 ha. Then class 1c (0 ha), 1d (413 ha), and 1e that most dominate (5.454 ha). Beside that, there is class 2a (1.900 ha) and 2b (243 ha), and the last is class 3a (467 ha) and 3b (1.172 Ha).ntroduction

  7. ADVANCED EARTH OBSERVATION APPROACH FOR MULTISCALE FOREST ECOSYSTEM SERVICES MODELING AND MAPPING (MIMOSE

    Directory of Open Access Journals (Sweden)

    G. Chirici

    2014-04-01

    Full Text Available In the last decade ecosystem services (ES have been proposed as a method for quantifying the multifunctional role of forest ecosystems. Their spatial distribution on large areas is frequently limited by the lack of information, because field data collection with traditional methods requires much effort in terms of time and cost.  In this contribution we propose a methodology (namely, MultIscale Mapping Of ecoSystem servicEs - MIMOSE based on the integration of remotely sensed images and field observation to produce a wall-to-wall geodatabase of forest parcels accompanied with several information useful as a basis for future trade-off analysis of different ES. Here, we present the application of the MIMOSE approach to a study area of 443,758 hectares  coincident with administrative Molise Region in Central Italy. The procedure is based on a local high resolution forest types map integrated with information on the main forest management approaches. Through the non-parametric k-Nearest Neighbors techniques, we produced a growing stock volume map integrating a local forest inventory with a multispectral satellite IRS LISS III imagery. With the growing stock volume map we derived a forest age map for even-aged forest types. Later these information were used to automatically create a vector forest parcels map by multidimensional image segmentation that were finally populated with a number of information useful for ES spatial estimation. The contribution briefly introduce to the MIMOSE methodology presenting the preliminary results we achieved which constitute the basis for a future implementation of ES modeling.

  8. Semantic World Modelling and Data Management in a 4d Forest Simulation and Information System

    Science.gov (United States)

    Roßmann, J.; Hoppen, M.; Bücken, A.

    2013-08-01

    Various types of 3D simulation applications benefit from realistic forest models. They range from flight simulators for entertainment to harvester simulators for training and tree growth simulations for research and planning. Our 4D forest simulation and information system integrates the necessary methods for data extraction, modelling and management. Using modern methods of semantic world modelling, tree data can efficiently be extracted from remote sensing data. The derived forest models contain position, height, crown volume, type and diameter of each tree. This data is modelled using GML-based data models to assure compatibility and exchangeability. A flexible approach for database synchronization is used to manage the data and provide caching, persistence, a central communication hub for change distribution, and a versioning mechanism. Combining various simulation techniques and data versioning, the 4D forest simulation and information system can provide applications with "both directions" of the fourth dimension. Our paper outlines the current state, new developments, and integration of tree extraction, data modelling, and data management. It also shows several applications realized with the system.

  9. IMPROVED FARMER’S CAPASITY MODEL OF PRIVATE FOREST MANAGEMENT: STUDIES IN RANGGANG VILLAGE, SOUTH KALIMANTAN

    Directory of Open Access Journals (Sweden)

    Idin Saepudin Ruhimat

    2015-05-01

    Full Text Available Farmer’s capacity is one of the important factors that determine the success of private forest management. However, the farmer’s capacity level in several places is still low so that potentially to inhibiting successful of private forests management practices. This study aims to analyze the factors that affect farmer’s capacity level of private forests management practices, and to formulate improved farmer’s capacity model of private forests management in Ranggang Village, South Kalimantan. The data was analyzed by Structural Equation Model (SEM with the help of SmartPls 2.0 M3. Results showed (1 learning experience level directly affect to farmer’s capacity while farmer’s characteristics, external support, social and cultural environment supporting, the role of extension, and information availability indirectly affect to farmer’s capacity of private forests management in Ranggang Village, and (2 improved farmer’s capacity model can be done by improving the farmer’s learning experience through intensive, scheduled, and suistainable education, training and extension with stakeholders support. 

  10. Detecting forest structure and biomass with C-band multipolarization radar - Physical model and field tests

    Science.gov (United States)

    Westman, Walter E.; Paris, Jack F.

    1987-01-01

    The ability of C-band radar (4.75 GHz) to discriminate features of forest structure, including biomass, is tested using a truck-mounted scatterometer for field tests on a 1.5-3.0 m pygmy forest of cypress (Cupressus pygmaea) and pine (Pinus contorta ssp, Bolanderi) near Mendocino, CA. In all, 31 structural variables of the forest are quantified at seven sites. Also measured was the backscatter from a life-sized physical model of the pygmy forest, composed of nine wooden trees with 'leafy branches' of sponge-wrapped dowels. This model enabled independent testing of the effects of stem, branch, and leafy branch biomass, branch angle, and moisture content on radar backscatter. Field results suggested that surface area of leaves played a greater role in leaf scattering properties than leaf biomass per se. Tree leaf area index was strongly correlated with vertically polarized power backscatter (r = 0.94; P less than 0.01). Field results suggested that the scattering role of leaf water is enhanced as leaf surface area per unit leaf mass increases; i.e., as the moist scattering surfaces become more dispersed. Fog condensate caused a measurable rise in forest backscatter, both from surface and internal rises in water content. Tree branch mass per unit area was highly correlated with cross-polarized backscatter in the field (r = 0.93; P less than 0.01), a result also seen in the physical model.

  11. Automated Generation of Digital Terrain Model using Point Clouds of Digital Surface Model in Forest Area

    Directory of Open Access Journals (Sweden)

    Yoshikazu Kamiya

    2011-04-01

    Full Text Available At present, most of the digital data acquisition methods generate Digital Surface Model (DSM and not a Digital Elevation Model (DEM. Conversion from DSM to DEM still has some drawbacks, especially the removing of off terrain point clouds and subsequently the generation of DEM within these spaces even though the methods are automated. In this paper it was intended to overcome this issue by attempting to project off terrain point clouds to the terrain in forest areas using Artificial Neural Networks (ANN instead of removing them and then filling gaps by interpolation. Five sites were tested and accuracies assessed. They all give almost the same results. In conclusion, the ANN has ability to obtain the DEM by projecting the DSM point clouds and greater accuracies of DEMs were obtained. If the size of the hollow areas resulting from the removal of DSM point clouds are larger the accuracies are reduced.

  12. Forest-fire model as a supercritical dynamic model in financial systems.

    Science.gov (United States)

    Lee, Deokjae; Kim, Jae-Young; Lee, Jeho; Kahng, B

    2015-02-01

    Recently large-scale cascading failures in complex systems have garnered substantial attention. Such extreme events have been treated as an integral part of self-organized criticality (SOC). Recent empirical work has suggested that some extreme events systematically deviate from the SOC paradigm, requiring a different theoretical framework. We shed additional theoretical light on this possibility by studying financial crisis. We build our model of financial crisis on the well-known forest fire model in scale-free networks. Our analysis shows a nontrivial scaling feature indicating supercritical behavior, which is independent of system size. Extreme events in the supercritical state result from bursting of a fat bubble, seeds of which are sown by a protracted period of a benign financial environment with few shocks. Our findings suggest that policymakers can control the magnitude of financial meltdowns by keeping the economy operating within reasonable duration of a benign environment.

  13. The Uncertainty of Biomass Estimates from Modeled ICESat-2 Returns Across a Boreal Forest Gradient

    Science.gov (United States)

    Montesano, P. M.; Rosette, J.; Sun, G.; North, P.; Nelson, R. F.; Dubayah, R. O.; Ranson, K. J.; Kharuk, V.

    2014-01-01

    The Forest Light (FLIGHT) radiative transfer model was used to examine the uncertainty of vegetation structure measurements from NASA's planned ICESat-2 photon counting light detection and ranging (LiDAR) instrument across a synthetic Larix forest gradient in the taiga-tundra ecotone. The simulations demonstrate how measurements from the planned spaceborne mission, which differ from those of previous LiDAR systems, may perform across a boreal forest to non-forest structure gradient in globally important ecological region of northern Siberia. We used a modified version of FLIGHT to simulate the acquisition parameters of ICESat-2. Modeled returns were analyzed from collections of sequential footprints along LiDAR tracks (link-scales) of lengths ranging from 20 m-90 m. These link-scales traversed synthetic forest stands that were initialized with parameters drawn from field surveys in Siberian Larix forests. LiDAR returns from vegetation were compiled for 100 simulated LiDAR collections for each 10 Mg · ha(exp -1) interval in the 0-100 Mg · ha(exp -1) above-ground biomass density (AGB) forest gradient. Canopy height metrics were computed and AGB was inferred from empirical models. The root mean square error (RMSE) and RMSE uncertainty associated with the distribution of inferred AGB within each AGB interval across the gradient was examined. Simulation results of the bright daylight and low vegetation reflectivity conditions for collecting photon counting LiDAR with no topographic relief show that 1-2 photons are returned for 79%-88% of LiDAR shots. Signal photons account for approximately 67% of all LiDAR returns, while approximately 50% of shots result in 1 signal photon returned. The proportion of these signal photon returns do not differ significantly (p greater than 0.05) for AGB intervals greater than 20 Mg · ha(exp -1). The 50m link-scale approximates the finest horizontal resolution (length) at which photon counting LiDAR collection provides strong model

  14. The Uncertainty of Biomass Estimates from Modeled ICESat-2 Returns Across a Boreal Forest Gradient

    Science.gov (United States)

    Montesano, P. M.; Rosette, J.; Sun, G.; North, P.; Nelson, R. F.; Dubayah, R. O.; Ranson, K. J.; Kharuk, V.

    2014-01-01

    The Forest Light (FLIGHT) radiative transfer model was used to examine the uncertainty of vegetation structure measurements from NASA's planned ICESat-2 photon counting light detection and ranging (LiDAR) instrument across a synthetic Larix forest gradient in the taiga-tundra ecotone. The simulations demonstrate how measurements from the planned spaceborne mission, which differ from those of previous LiDAR systems, may perform across a boreal forest to non-forest structure gradient in globally important ecological region of northern Siberia. We used a modified version of FLIGHT to simulate the acquisition parameters of ICESat-2. Modeled returns were analyzed from collections of sequential footprints along LiDAR tracks (link-scales) of lengths ranging from 20 m-90 m. These link-scales traversed synthetic forest stands that were initialized with parameters drawn from field surveys in Siberian Larix forests. LiDAR returns from vegetation were compiled for 100 simulated LiDAR collections for each 10 Mg · ha(exp -1) interval in the 0-100 Mg · ha(exp -1) above-ground biomass density (AGB) forest gradient. Canopy height metrics were computed and AGB was inferred from empirical models. The root mean square error (RMSE) and RMSE uncertainty associated with the distribution of inferred AGB within each AGB interval across the gradient was examined. Simulation results of the bright daylight and low vegetation reflectivity conditions for collecting photon counting LiDAR with no topographic relief show that 1-2 photons are returned for 79%-88% of LiDAR shots. Signal photons account for approximately 67% of all LiDAR returns, while approximately 50% of shots result in 1 signal photon returned. The proportion of these signal photon returns do not differ significantly (p greater than 0.05) for AGB intervals greater than 20 Mg · ha(exp -1). The 50m link-scale approximates the finest horizontal resolution (length) at which photon counting LiDAR collection provides strong model

  15. Using Count Data and Ordered Models in National Forest Recreation Demand Analysis

    Science.gov (United States)

    Simões, Paula; Barata, Eduardo; Cruz, Luis

    2013-11-01

    This research addresses the need to improve our knowledge on the demand for national forests for recreation and offers an in-depth data analysis supported by the complementary use of count data and ordered models. From a policy-making perspective, while count data models enable the estimation of monetary welfare measures, ordered models allow for the wider use of the database and provide a more flexible analysis of data. The main purpose of this article is to analyse the individual forest recreation demand and to derive a measure of its current use value. To allow a more complete analysis of the forest recreation demand structure the econometric approach supplements the use of count data models with ordered category models using data obtained by means of an on-site survey in the Bussaco National Forest (Portugal). Overall, both models reveal that travel cost and substitute prices are important explanatory variables, visits are a normal good and demographic variables seem to have no influence on demand. In particular, estimated price and income elasticities of demand are quite low. Accordingly, it is possible to argue that travel cost (price) in isolation may be expected to have a low impact on visitation levels.

  16. Numerical modeling of watershed-scale radiocesium transport coupled with biogeochemical cycling in forests

    Science.gov (United States)

    Mori, K.; Tada, K.; Tawara, Y.; Tosaka, H.; Ohno, K.; Asami, M.; Kosaka, K.

    2015-12-01

    Since the Fukushima Dai-ichi Nuclear Power Plant (FDNPP) accident, intensive monitoring and modeling works on radionuclide transfer in environment have been carried out. Although Cesium (Cs) concentration has been attenuating due to both physical and environmental half-life (i.e., wash-off by water and sediment), the attenuation rate depends clearly on the type of land use and land cover. In the Fukushima case, studying the migration in forest land use is important for predicting the long-term behavior of Cs because most of the contaminated region is covered by forests. Atmospheric fallout is characterized by complicated behavior in biogeochemical cycle in forests which can be described by biotic/abiotic interactions between many components. In developing conceptual and mathematical model on Cs transfer in forest ecosystem, defining the dominant components and their interactions are crucial issues (BIOMASS, 1997-2001). However, the modeling of fate and transport in geosphere after Cs exports from the forest ecosystem is often ignored. An integrated watershed modeling for simulating spatiotemporal redistribution of Cs that includes the entire region from source to mouth and surface to subsurface, has been recently developed. Since the deposited Cs can migrate due to water and sediment movement, the different species (i.e., dissolved and suspended) and their interactions are key issues in the modeling. However, the initial inventory as source-term was simplified to be homogeneous and time-independent, and biogeochemical cycle in forests was not explicitly considered. Consequently, it was difficult to evaluate the regionally-inherent characteristics which differ according to land uses, even if the model was well calibrated. In this study, we combine the different advantages in modeling of forest ecosystem and watershed. This enable to include more realistic Cs deposition and time series of inventory can be forced over the land surface. These processes are integrated

  17. The numerical model for parametric studies of forest haul roads pavements

    Directory of Open Access Journals (Sweden)

    Lenka Ševelová

    2010-01-01

    Full Text Available Forest roads pavement structures are considered to be low volume roads. These roads serve as a mean of transport of wood and people. Besides they are currently often used for recreational purpose. The construction of the pavements should be suitable for forest transportation irrespective of their low bearing capacity. These pavement structures are very specific for special unbound materials that are used in their construction. To meet the requirements of the pavement designs and simulation analysis the FEM model in the software ANSYS was created.This paper compares two material models used for the description of the behaviour of unbound materials. The first is linear elastic according to Hook theory (H model and the second one is nonlinear plastic model Drucker-Prager (D–P model. ANSYS software has been used to create flexible model based on the parametrers of variable principle. The flexible model is parametric to realize repeated calculations useful for optimization analysis.

  18. Modelling Net Ecosystem Exchange and LUE in Mediterranean Oak Forest by Satellite Remote Sensing

    Science.gov (United States)

    Tramontana, Gianluca; Papale, Dario

    2011-01-01

    Net Ecosystem Exchange (NEE) is a key factor defining CO2 fluxes between atmosphere and ecosystems and CO2 flux measurements at individual eddy covariance flux sites provide valuable information on the seasonal dynamics of NEE. In this work, we developed and validated a satellite-based Light Use Efficiency (LUE) model to estimate NEE for a typical oak forest located in Central Italy. Satellite data were acquired by Moderate resolution spectroradiometer (MODIS) sensor installed on board Terra satellite. Oak forest studied is coppice managed; 2 eddy-covariance towers are located inside two forests parcels having different ages. We proposed to estimate LUE like function of mean brightness temperature, Normalized Difference Water Index (NDWI) and Photochemical Reflectance Index (PRI). Empirical multiple regressions models (MR) and Artificial Neural Network (ANN) were parameterized and validated using subset of data acquired by both the stations. Daily, 8-day and monthly temporal resolutions were investigated and accuracy estimation in space and time was performed.

  19. Element cycling in forest soils - modelling the effects of a changing environment

    Energy Technology Data Exchange (ETDEWEB)

    Walse, C.

    1998-11-01

    Element cycling and nutrient supply in forest ecosystems are of vital importance for short-term productivity and for longer-term land management in terms of nutrient leaching and CO{sub 2} fixation. This thesis includes a series of studies with the objective of modelling some aspects of the effect of acidification and climate change on element cycling and nutrient supply in forest soil. A reconstruction model of atmospheric deposition and nutrient uptake and cycling, MAKEDEP, was developed. An existing model of soil chemistry, SAFE, was analyzed and applied. SAFE+MAKEDEP were then applied in combination with the RAINS model to perform scenario analyses of soil acidification/recovery for six European forest sites. A decomposition model intended to run in conjunction with the SAFE model was developed. Key elements were N, Ca, K, Mg, S and Al. In the decomposition model, only carbon release was included to date.The results show, that understanding the history of soil geochemistry is important for modelling the system and for projecting the future impact of acidification on nutrient supply in forest soils. The applied reconstruction models of acid deposition (MAKEDEP, RAINS) seem to generate reasonable and consistent estimates of historic acid deposition, so that present day conditions can be simulated starting from pre-acidification conditions. From applications of the SAFE model to large-scale forest manipulation experiments, we conclude that the geochemical processes and the degree of detail in process descriptions included in SAFE are adequate to capture the most important aspects of soil solution dynamics of forest soils in northern and central Europe. Therefore, SAFE is appropriate for the simulation of acidification and recovery scenarios for these soils. The precision in model prediction on a more general scale is often limited by factors other than model formulation, such as consistency and representativity of input data. It is shown that the physical

  20. NORMALIZED DIFFERENCE SNOW INDEX SIMULATION FOR SNOW-COVER MAPPING IN FOREST BY GEOSAIL MODEL

    Institute of Scientific and Technical Information of China (English)

    CAO Yun-gang; LIU Chuang

    2006-01-01

    The snow-cover mapping in forest area is always one of the difficult points for optical satellite remote sensing. To investigate reflectance variability and to improve the mapping of snow in forest area, GeoSail model was used to simulate the reflectance of a snow-covered forest. Using this model, the effects of varying canopy density, solar illumination and view geometry on the performance of the MODIS (Moderate-resolution Imaging Spectroradiometer)snow-cover mapping algorithm were investigated. The relationship between NDSI (Normalized Difference Snow Index), NDVI (Normalized Difference Vegetation Index) and snow fraction was discussed in detail. Results indicated that the weak performance would be achieved if fixed criteria were used for different regions especially in the complicated land cover components. Finally, some suggestions to MODIS SNOWMAP algorithm were put forward to improve snow mapping precision in forest area based on the simulation, for example, new criteria should be used in coniferous forest, that is, NDSI greater than 0.3 and NDVI greater than zero. Otherwise, a threshold on view zenith angle may be used in the criteria such as 45°.

  1. [Prediction of spatial distribution of forest carbon storage in Heilongjiang Province using spatial error model].

    Science.gov (United States)

    Liu, Chang; Li, Feng-Ri; Zhen, Zhen

    2014-10-01

    Abstract: Based on the data from Chinese National Forest Inventory (CNFI) and Key Ecological Benefit Forest Monitoring plots (5075 in total) in Heilongjiang Province in 2010 and concurrent meteorological data coming from 59 meteorological stations located in Heilongjiang, Jilin and Inner Mongolia, this paper established a spatial error model (SEM) by GeoDA using carbon storage as dependent variable and several independent variables, including diameter of living trees (DBH), number of trees per hectare (TPH), elevation (Elev), slope (Slope), and product of precipitation and temperature (Rain_Temp). Global Moran's I was computed for describing overall spatial autocorrelations of model results at different spatial scales. Local Moran's I was calculated at the optimal bandwidth (25 km) to present spatial distribution residuals. Intra-block spatial variances were computed to explain spatial heterogeneity of residuals. Finally, a spatial distribution map of carbon storage in Heilongjiang was visualized based on predictions. The results showed that the distribution of forest carbon storage in Heilongjiang had spatial effect and was significantly influenced by stand, topographic and meteorological factors, especially average DBH. SEM could solve the spatial autocorrelation and heterogeneity well. There were significant spatial differences in distribution of forest carbon storage. The carbon storage was mainly distributed in Zhangguangcai Mountain, Xiao Xing'an Mountain and Da Xing'an Mountain where dense, forests existed, rarely distributed in Songnen Plains, while Wanda Mountain had moderate-level carbon storage.

  2. Detection and Projection of Forest Changes by Using the Markov Chain Model and Cellular Automata

    Directory of Open Access Journals (Sweden)

    Griselda Vázquez-Quintero

    2016-03-01

    Full Text Available The spatio-temporal analysis of land use changes could provide basic information for managing the protection, conservation and production of forestlands, which promotes a sustainable resource use of temperate ecosystems. In this study we modeled and analyzed the spatial and temporal dynamics of land use of a temperate forests in the region of Pueblo Nuevo, Durango, Mexico. Data from the Landsat images Multispectral Scanner (MSS 1973, Thematic Mapper (TM 1990, and Operational Land Imager (OLI 2014 were used. Supervised classification methods were then applied to generate the land use for these years. To validate the land use classifications on the images, the Kappa coefficient was used. The resulting Kappa coefficients were 91%, 92% and 90% for 1973, 1990 and 2014, respectively. The analysis of the change dynamics was assessed with Markov Chains and Cellular Automata (CA, which are based on probabilistic modeling techniques. The Markov Chains and CA show constant changes in land use. The class most affected by these changes is the pine forest. Changes in the extent of temperate forest of the study area were further projected until 2028, indicating that the area of pine forest could be continuously reduced. The results of this study could provide quantitative information, which represents a base for assessing the sustainability in the management of these temperate forest ecosystems and for taking actions to mitigate their degradation.

  3. Modelling the role of forests on water provision services: a hydro-economic valuation approach

    Science.gov (United States)

    Beguería, S.; Campos, P.

    2015-12-01

    Hydro-economic models that allow integrating the ecological, hydrological, infrastructure, economic and social aspects into a coherent, scientifically- informed framework constitute preferred tools for supporting decision making in the context of integrated water resources management. We present a case study of water regulation and provision services of forests in the Andalusia region of Spain. Our model computes the physical water flows and conducts an economic environmental income and asset valuation of forest surface and underground water yield. Based on available hydrologic and economic data, we develop a comprehensive water account for all the forest lands at the regional scale. This forest water environmental valuation is integrated within a much larger project aiming at providing a robust and easily replicable accounting tool to evaluate yearly the total income and capital of forests, encompassing all measurable sources of private and public incomes (timber and cork production, auto-consumption, recreational activities, biodiversity conservation, carbon sequestration, water production, etc.). We also force our simulation with future socio-economic scenarios to quantify the physical and economic efects of expected trends or simulated public and private policies on future water resources. Only a comprehensive integrated tool may serve as a basis for the development of integrated policies, such as those internationally agreed and recommended for the management of water resources.

  4. Aspirated pits in wetwood and micromorphology of microbial degradation in subalpine fir

    Institute of Scientific and Technical Information of China (English)

    ZHANG Yaoli; CAI Liping; XU Yongji

    2006-01-01

    Differentiating from normal wood,pit membranes in wetwood of subalpine fir contain bacteria of water drop shape or orbicular shape,and flaky shape,as observed using Scanning Electronic Microscope.Not only are ray parenchyma cells in wetwood partially degraded but also margo strands in pit membranes are somewhat degraded by bacterial activities.Most of the bordered-pit membranes in normal wood are unaspirated in green conditions and the proportions of aspirated pits in earlywood and latewood account for only 6.8% and 13.4%,respectively.Nevertheless,most of the bordered-pit membranes in wetwood are aspirated in green conditions and the proportions of aspirated pits account for 77.7% and 72.1%,respectively.The problem of hard-to-dry for subalpine fir could be reasoned from the considerable amount of aspirated pit membranes in wetwood.

  5. EVALUATING THE NOVEL METHODS ON SPECIES DISTRIBUTION MODELING IN COMPLEX FOREST

    Directory of Open Access Journals (Sweden)

    C. H. Tu

    2012-07-01

    Full Text Available The prediction of species distribution has become a focus in ecology. For predicting a result more effectively and accurately, some novel methods have been proposed recently, like support vector machine (SVM and maximum entropy (MAXENT. However, high complexity in the forest, like that in Taiwan, will make the modeling become even harder. In this study, we aim to explore which method is more applicable to species distribution modeling in the complex forest. Castanopsis carlesii (long-leaf chinkapin, LLC, growing widely in Taiwan, was chosen as the target species because its seeds are an important food source for animals. We overlaid the tree samples on the layers of altitude, slope, aspect, terrain position, and vegetation index derived from SOPT-5 images, and developed three models, MAXENT, SVM, and decision tree (DT, to predict the potential habitat of LLCs. We evaluated these models by two sets of independent samples in different site and the effect on the complexity of forest by changing the background sample size (BSZ. In the forest with low complex (small BSZ, the accuracies of SVM (kappa = 0.87 and DT (0.86 models were slightly higher than that of MAXENT (0.84. In the more complex situation (large BSZ, MAXENT kept high kappa value (0.85, whereas SVM (0.61 and DT (0.57 models dropped significantly due to limiting the habitat close to samples. Therefore, MAXENT model was more applicable to predict species’ potential habitat in the complex forest; whereas SVM and DT models would tend to underestimate the potential habitat of LLCs.

  6. High-Resolution Modeling Disturbance-Induced Forest Carbon Dynamics with Lidar and Landsat Observations

    Science.gov (United States)

    Zhao, M.; Huang, C.; Hurtt, G. C.; Dubayah, R.; Fisk, J.; Sahajpal, R.; Flanagan, S.; Swatantran, A.; Huang, W.; Tang, H.; ONeil-Dunne, J.; Johnson, K. D.

    2015-12-01

    Forest stands are dynamic in a status from severely, partially disturbed, or undisturbed to different stages of recovery towards maturity and equilibrium. Forest ecosystem models generally use potential biomass (an assumption of equilibrium status) as initial biomass, which is unrealistic and could result in unreliable estimates of disturbance-induced carbon changes. To accurately estimate spatiotemporal changes of forest carbon stock and fluxes, it requires accurate information on initial biomass, the extent and severity of disturbance, and following land use. We demonstrate a prototype system to achieve this goal by integrating 1-m small footprint Lidar acquired in year 2004, 30-m Landsat disturbances from 1984 to 2011, and an individual-based structure height Ecosystem Demography (ED) model. Lidar provides critical information on forest canopy height, improving the accuracy of initial forest biomass estimates; impervious surfaces data and yearly disturbance data from Landsat provide information on wall-to-wall yearly natural and anthropogenic disturbances and their severity (on average 0.32% for the natural and 0.19% for the anthropogenic for below test area); ED model plays a central role by linking both Lidar canopy height and Landsat disturbances with ecosystem processes. We tested the system at 90-m spatial resolution in Charles County, Maryland, by running ED model for six experiments, the combinations of three initial biomass (potential, moderate and low initial biomass constrained by Lidar canopy height) with two disturbance scenarios (with and without anthropogenic disturbances). Our experiments show that estimated changes of carbon stock and flux are sensitive to initial biomass status and human-induced land cover change. Our prototype system can assess regional carbon dynamics at local scale under changing climate and disturbance regimes, and provide useful information for forest management and land use policies.

  7. [Ecological benefit evaluation of urban forests in Shenyang City based on QuickBird image and CITYgreen model].

    Science.gov (United States)

    Liu, Chang-Fu; He, Xing-Yuan; Chen, Wei; Zhao, Gui-Ling; Li, Ling; Xu, Wen-Duo

    2008-09-01

    Based on the urban forest coverage data interpreted from QuickBird image (2006) and the CITYgreen model, the benefits of Shenyang urban forest types with different canopy closure in carbon fixation and pollutant removal were investigated by means of sampling strategy. The results showed that the total amount of carbon storage, annual carbon sequestration, annual air pollutant removal, and their corresponding values were 0.51 Tg, 6858.20 Mg x a-1), 556.04 Mg x a(-1) 1.26 x 10(8) Yuan, 1.72 x 10(6) Yuan, and 0.22 x 10(8) Yuan, respectively. Among the urban forest types in Shenyang City, ecological and public welfare forest (E) contributed most to the carbon fixation and air pollutant removal. The carbon density decreased in the order of S (subordinated forest) > L (landscape and relaxation forest) > P (production and management forest) > E > R (road forest), annual carbon sequestration was in the order of P > L > E > S > R, and annual air pollutant removal was in the order of P > L > S > E > R. The carbon density of different urban forest types was closely related to their structural complexity. For the forests with high canopy closure, both the annual carbon sequestration and the annual pollutant removal were high; while for those with lower canopy closure, these two characteristics were dependent on the structural complexity of the forests.

  8. A Model-Based Analysis of Nitrogen Deposition: Effects on Forest Carbon Sequestration

    Science.gov (United States)

    Dezi, S.; Medlyn, B. E.; Tonon, G.; Magnani, F.

    2009-04-01

    Over the last 150 years nitrogen deposition has increased, especially in the northern hemisphere, mainly due to the use of fossil fuels, deforestation and agricultural practices. Although the impact of this increase on the terrestrial carbon cycle is still uncertain, it is likely that this large perturbation of the global nitrogen cycle will have important effects on carbon cycling, particularly via impacts on forest carbon storage. In the present work we investigated qualitatively the overall response of forest carbon sequestration to nitrogen deposition, and the relative importance of different mechanisms that bring about this response. For this purpose we used the G'DAY forest carbon-nitrogen cycling model (Comins and McMurtrie 1993), introducing some new assumptions which focus on the effect of nitrogen deposition. Specifically the new assumptions are: (i) foliar litterfall and specific leaf area (SLA) are functions of leaf nitrogen concentration; (ii) belowground C allocation is a function of net primary production (NPP); (iii) forest canopies can directly take up nitrogen; (iv) management of forests occurs; (v) leaching occurs only for nitrate nitrogen. We investigated the effect of each assumption on net ecosystem production (NEP), with a step increase in nitrogen deposition from a steady state of 0.4 gN m-2 yr-1 to 2 gN m-2 yr-1, and then running the old and new model versions for different nitrogen deposition levels. Our analysis showed that nitrogen deposition can have a large effect on forest carbon storage at ecosystem level. In particular the effect of the assumptions (ii), (iii) and (iv) seem to be of greater importance, giving rise to a markedly higher level of forest carbon sequestration than in their absence. On the contrary assumptions (i) and (v) seem not to have any particular effect on the NEP simulated. Finally, running the models for different levels of nitrogen deposition showed that estimating forest carbon exchange without taking into

  9. An innovative computer design for modeling forest landscape change in very large spatial extents with fine resolutions

    Science.gov (United States)

    Jian Yang; Hong S. He; Stephen R. Shifley; Frank R. Thompson; Yangjian. Zhang

    2011-01-01

    Although forest landscape models (FLMs) have benefited greatly from ongoing advances of computer technology and software engineering, computing capacity remains a bottleneck in the design and development of FLMs. Computer memory overhead and run time efficiency are primary limiting factors when applying forest landscape models to simulate large landscapes with fine...

  10. Building generalized tree mass/volume component models for improved estimation of forest stocks and utilization potential

    Science.gov (United States)

    David W. MacFarlane

    2015-01-01

    Accurately assessing forest biomass potential is contingent upon having accurate tree biomass models to translate data from forest inventories. Building generality into these models is especially important when they are to be applied over large spatial domains, such as regional, national and international scales. Here, new, generalized whole-tree mass / volume...

  11. Drought as a driver of declining boreal forest growth: Integrating forest inventory measurements with models to gain insight into underlying mechanisms

    Science.gov (United States)

    Trugman, A. T.; Medvigy, D.; Anderegg, W.; Caspersen, J.; Zeng, H.; Pacala, S. W.

    2016-12-01

    Boreal forests contain over 30% of Earth's terrestrial carbon and are an important component of the land carbon sink. However, the future ability of the boreal forest to maintain a net carbon sink is uncertain and depends on potentially compensating interactions of CO2 fertilization, warmer temperatures, and hotter drought conditions. Observational studies have attributed drought as a major driver of recent declines in growth and increases in mortality in many parts of the North American boreal forest. Yet, most vegetation models have a simplistic representation of vegetation water stress and fail to capture drought-associated growth and mortality trends, impacting our ability to accurately forecast the effects of climate change on the boreal forest. Here, we show additional evidence for widespread declines in boreal tree growth and increasing insect-related mortality in aspen trees based on a mixed model analysis of the Cooperative Alaska Forest Inventory. Our findings indicate that the growth decline is controlled by high midsummer potential evapotranspiration that overpowers any CO2 fertilization signal. We also observe a possible shift in the distribution of angiosperm and gymnosperm, a biological transition that could impact long-term local carbon dynamics. Using insight gained from our mixed model analysis, we perform a regional-scale model evaluation using the boreal forest version of Ecosystem Demography model 2 that includes a dynamic soil organic layer, 7 boreal-specific plant functional types, and a fully mechanistic plant hydraulic scheme. We then use both the Alaskan and Canadian Forest Inventories to constrain our hypotheses and assess whether drought related growth declines can be better attributed to tree drought response from (1) carbon starvation, (2) permanent damage of hydraulic machinery, or (3) delayed recovery of hydraulic machinery. Under each of these scenarios we forecast how drought potentially impacts decadal-scale boreal carbon dynamics.

  12. Selection bias in species distribution models: An econometric approach on forest trees based on structural modeling

    Science.gov (United States)

    Martin-StPaul, N. K.; Ay, J. S.; Guillemot, J.; Doyen, L.; Leadley, P.

    2014-12-01

    Species distribution models (SDMs) are widely used to study and predict the outcome of global changes on species. In human dominated ecosystems the presence of a given species is the result of both its ecological suitability and human footprint on nature such as land use choices. Land use choices may thus be responsible for a selection bias in the presence/absence data used in SDM calibration. We present a structural modelling approach (i.e. based on structural equation modelling) that accounts for this selection bias. The new structural species distribution model (SSDM) estimates simultaneously land use choices and species responses to bioclimatic variables. A land use equation based on an econometric model of landowner choices was joined to an equation of species response to bioclimatic variables. SSDM allows the residuals of both equations to be dependent, taking into account the possibility of shared omitted variables and measurement errors. We provide a general description of the statistical theory and a set of applications on forest trees over France using databases of climate and forest inventory at different spatial resolution (from 2km to 8km). We also compared the outputs of the SSDM with outputs of a classical SDM (i.e. Biomod ensemble modelling) in terms of bioclimatic response curves and potential distributions under current climate and climate change scenarios. The shapes of the bioclimatic response curves and the modelled species distribution maps differed markedly between SSDM and classical SDMs, with contrasted patterns according to species and spatial resolutions. The magnitude and directions of these differences were dependent on the correlations between the errors from both equations and were highest for higher spatial resolutions. A first conclusion is that the use of classical SDMs can potentially lead to strong miss-estimation of the actual and future probability of presence modelled. Beyond this selection bias, the SSDM we propose represents

  13. Neural network modelling of rainfall interception in four different forest stands

    Directory of Open Access Journals (Sweden)

    Ibrahim Yurtseven

    2013-12-01

    Full Text Available The objective of this study is to reveal whether it is possible to predict rainfall, throughfall and stemflow in forest ecosystems with less effort, using several measurements of rainfall interception (hereafter ‘interception’ and an artificial neural network based linear regression model (ANN model. To this end, the Kerpe Research Forest in the province of Kocaeli, which houses stands of mixed deciduous-broadleaf forest (Castanea sativa Mill., Fagus orientalis Lipsky, Quercus spp., black pine (Pinus nigra Arnold, maritime pine (Pinus pinaster Aiton and Monterey pine (Pinus radiata D. Don, was selected study site. Four different forest stands were observed for a period of two years, during which rainfall, throughfall and stemflow measurements were conducted. These measurements were separately calculated for each individual stand, based on interception values and the use of stemflow data in strict accordance with the rainfall data, and the measured throughfall interception values were compared with values estimated by the ANN model. In this comparison, 70% of the total data was used for testing, and 30% was used for estimation and performance evaluation. No significant differences were found between values predicted with the help of the model and the measured values. In other words, interception values predicted by the ANN models were parallel with the measured values. In this study, the most success was achieved with the models of the Monterey pine stand (r2 = 0.9968; Mean Squared Error MSE = 0.16 and the mixed deciduous forest stand (r2 = 0.9964; MSE = 0.08, followed by models of the maritime pine stand (r2 = 0.9405; MSE = 1.27 and the black pine stand (r2 = 0.843, MSE = 17.36.

  14. Neural network modelling of rainfall interception in four different forest stands

    Directory of Open Access Journals (Sweden)

    İbrahim Yurtseven

    2013-11-01

    Full Text Available The objective of this study is to reveal whether it is possible to predict rainfall, through fall and stem flow in forest ecosystems with less effort, using several measurements of rainfall interception (hereafter ‘interception’ and an artificial neural network based linear regression model (ANN model. To this end, the Kerpe Research Forest in the province of Kocaeli, which houses stands of mixed deciduous-broadleaf forest (Castanea sativa Mill., Fagusorientalis Lipsky, Quercus spp., black pine (Pinus nigra Arnold, maritime pine (Pinus pinaster Aiton and Monterey pine (Pinus radiata D. Don, was selected study site. Four different forest stands were observed for a period of two years, during which rainfall, throughfall and stemflow measurements were conducted. These measurements were separately calculated for each individual stand, based on interception values and the use of stemflow data in strict accordance with the rainfall data, and the measured throughfall interceptionvalues were compared with values estimated by the ANN model.In this comparison, 70% of the total data was used for testing, and 30% was used for estimation and performance evaluation. No significant differences were found between values predicted with the help of the model and the measured values. In other words, interception values predicted by the ANN models were parallel with the measured values. In this study, the most success was achieved with the models of the Monterey pine stand (r2 = 0.9968; Mean Squared Error MSE = 0.16 and the mixed deciduous forest stand (r2 = 0.9964; MSE = 0.08, followed by models of the maritime pine stand (r2 = 0.9405; MSE = 1.27 and the black pine stand (r2 = 0.843, MSE = 17.36.

  15. Aboveground Biomass and Dynamics of Forest Attributes using LiDAR Data and Vegetation Model

    Science.gov (United States)

    V V L, P. A.

    2015-12-01

    In recent years, biomass estimation for tropical forests has received much attention because of the fact that regional biomass is considered to be a critical input to climate change. Biomass almost determines the potential carbon emission that could be released to the atmosphere due to deforestation or conservation to non-forest land use. Thus, accurate biomass estimation is necessary for better understating of deforestation impacts on global warming and environmental degradation. In this context, forest stand height inclusion in biomass estimation plays a major role in reducing the uncertainty in the estimation of biomass. The improvement in the accuracy in biomass shall also help in meeting the MRV objectives of REDD+. Along with the precise estimate of biomass, it is also important to emphasize the role of vegetation models that will most likely become an important tool for assessing the effects of climate change on potential vegetation dynamics and terrestrial carbon storage and for managing terrestrial ecosystem sustainability. Remote sensing is an efficient way to estimate forest parameters in large area, especially at regional scale where field data is limited. LIDAR (Light Detection And Ranging) provides accurate information on the vertical structure of forests. We estimated average tree canopy heights and AGB from GLAS waveform parameters by using a multi-regression linear model in forested area of Madhya Pradesh (area-3,08,245 km2), India. The derived heights from ICESat-GLAS were correlated with field measured tree canopy heights for 60 plots. Results have shown a significant correlation of R2= 74% for top canopy heights and R2= 57% for stand biomass. The total biomass estimation 320.17 Mt and canopy heights are generated by using random forest algorithm. These canopy heights and biomass maps were used in vegetation models to predict the changes biophysical/physiological characteristics of forest according to the changing climate. In our study we have

  16. The contribution of advective fluxes to net ecosystem exchange in a high-elevation, subalpine forest.

    Science.gov (United States)

    Yi, Chuixiang; Anderson, Dean E; Turnipseed, Andrew A; Burns, Sean P; Sparks, Jed P; Stannard, David I; Monson, Russell K

    2008-09-01

    The eddy covariance technique, which is used in the determination of net ecosystem CO2 exchange (NEE), is subject to significant errors when advection that carries CO2 in the mean flow is ignored. We measured horizontal and vertical advective CO2 fluxes at the Niwot Ridge AmeriFlux site (Colorado, USA) using a measurement approach consisting of multiple towers. We observed relatively high rates of both horizontal (F(hadv)) and vertical (F(vadv)) advective fluxes at low surface friction velocities (u(*)) which were associated with downslope katabatic flows. We observed that F(hadv) was confined to a relatively thin layer (0-6 m thick) of subcanopy air that flowed beneath the eddy covariance sensors principally at night, carrying with it respired CO2 from the soil and lower parts of the canopy. The observed F(vadv) came from above the canopy and was presumably due to the convergence of drainage flows at the tower site. The magnitudes of both F(hadv) and F(vadv) were similar, of opposite sign, and increased with decreasing u(*), meaning that they most affected estimates of the total CO2 flux on calm nights with low wind speeds. The mathematical sign, temporal variation and dependence on u(*) of both F(hadv) and F(vadv) were determined by the unique terrain of the Niwot Ridge site. Therefore, the patterns we observed may not be broadly applicable to other sites. We evaluated the influence of advection on the cumulative annual and monthly estimates of the total CO2 flux (F(c)), which is often used as an estimate of NEE, over six years using the dependence of F(hadv) and F(vadv) on u(*). When the sum of F(hadv) and F(vadv) was used to correct monthly F(c), we observed values that were different from the monthly F(c) calculated using the traditional u(*)-filter correction by--16 to 20 g C x m(-2) x mo(-1); the mean percentage difference in monthly Fc for these two methods over the six-year period was 10%. When the sum of F(hadv) and F(vadv) was used to correct annual Fc, we observed a 65% difference compared to the traditional u(*)-filter approach. Thus, the errors to the local CO2 budget, when F(hadv) and F(vadv) are ignored, can become large when compounded in cumulative fashion over long time intervals. We conclude that the "micrometeorological" (using observations of F(hadv) and F(vadv)) and "biological" (using the u(*) filter and temperature vs. F(c) relationship) corrections differ on the basis of fundamental mechanistic grounds. The micrometeorological correction is based on aerodynamic mechanisms and shows no correlation to drivers of biological activity. Conversely, the biological correction is based on climatic responses of organisms and has no physical connection to aerodynamic processes. In those cases where they impose corrections of similar magnitude on the cumulative F(c) sum, the result is due to a serendipitous similarity in scale but has no clear mechanistic explanation.

  17. The influence of climate changes on carbon cycle in the russian forests. Data inventory and long-scale model prognoses

    Energy Technology Data Exchange (ETDEWEB)

    Kokorin, A.O.; Nazarov, I.M.; Lelakin, A.L. [Inst. Global Climate and Ecology, Moscow (Russian Federation)

    1995-12-31

    The growing up climate changes arise the question about reaction of forests. Forests cover 770 Mha in Russia and are giant carbon reservoir. Climate changes cause disbalance in carbon budget that give additional CO{sub 2} exchange between forests and the atmosphere. The aim of the work is estimation of these fluxes. This problem is directly connected with an GHG inventory, vulnerability and mitigation assessment, which are necessary for future Russian Reports to UN FCCC. The work includes the following steps: (1) Collection of literature data as well as processing of the experimental data on influence of climate changes on forests, (2) Calculation of carbon budget as base for calculations of CO{sub 2} fluxes, (3) Developing of new version of CCBF (Carbon and Climate in Boreal Forests) model, (4) Model estimations of current and future CO{sub 2} fluxes caused by climate changes, forest cuttings, fires and reforestation

  18. Converging Climate Sensitivities of European Forests Between Observed Radial Tree Growth and Vegetation Models

    Science.gov (United States)

    Zhang, Zhen; Babst, Flurin; Bellassen, Valentin; Frank, David; Launois, Thomas; Tan, Kun; Ciais, Philippe; Poulter, Benjamin

    2017-01-01

    The impacts of climate variability and trends on European forests are unevenly distributed across different bioclimatic zones and species. Extreme climate events are also becoming more frequent and it is unknown how they will affect feed backs of CO2 between forest ecosystems and the atmosphere. An improved understanding of species differences at the regional scale of the response of forest productivity to climate variation and extremes is thus important for forecasting forest dynamics. In this study, we evaluate the climate sensitivity of above ground net primary production (NPP) simulated by two dynamic global vegetation models (DGVM; ORCHIDEE and LPJ-wsl) against tree ring width (TRW) observations from about1000 sites distributed across Europe. In both the model simulations and the TRW observations, forests in northern Europe and the Alps respond positively to warmer spring and summer temperature, and their overall temperature sensitivity is larger than that of the soil-moisture-limited forests in central Europe and Mediterranean regions. Compared with TRW observations, simulated NPP from ORCHIDEE and LPJ-wsl appear to be overly sensitive to climatic factors. Our results indicate that the models lack biological processes that control time lags, such as carbohydrate storage and remobilization, that delay the effects of radial growth dynamics to climate. Our study highlights the need for re-evaluating the physiological controls on the climate sensitivity of NPP simulated by DGVMs. In particular, DGVMs could be further enhanced by a more detailed representation of carbon reserves and allocation that control year-to year variation in plant growth.

  19. Analysing Amazonian forest productivity using a new individual and trait-based model (TFS v.1)

    Science.gov (United States)

    Fyllas, N. M.; Gloor, E.; Mercado, L. M.; Sitch, S.; Quesada, C. A.; Domingues, T. F.; Galbraith, D. R.; Torre-Lezama, A.; Vilanova, E.; Ramírez-Angulo, H.; Higuchi, N.; Neill, D. A.; Silveira, M.; Ferreira, L.; Aymard C., G. A.; Malhi, Y.; Phillips, O. L.; Lloyd, J.

    2014-07-01

    Repeated long-term censuses have revealed large-scale spatial patterns in Amazon basin forest structure and dynamism, with some forests in the west of the basin having up to a twice as high rate of aboveground biomass production and tree recruitment as forests in the east. Possible causes for this variation could be the climatic and edaphic gradients across the basin and/or the spatial distribution of tree species composition. To help understand causes of this variation a new individual-based model of tropical forest growth, designed to take full advantage of the forest census data available from the Amazonian Forest Inventory Network (RAINFOR), has been developed. The model allows for within-stand variations in tree size distribution and key functional traits and between-stand differences in climate and soil physical and chemical properties. It runs at the stand level with four functional traits - leaf dry mass per area (Ma), leaf nitrogen (NL) and phosphorus (PL) content and wood density (DW) varying from tree to tree - in a way that replicates the observed continua found within each stand. We first applied the model to validate canopy-level water fluxes at three eddy covariance flux measurement sites. For all three sites the canopy-level water fluxes were adequately simulated. We then applied the model at seven plots, where intensive measurements of carbon allocation are available. Tree-by-tree multi-annual growth rates generally agreed well with observations for small trees, but with deviations identified for larger trees. At the stand level, simulations at 40 plots were used to explore the influence of climate and soil nutrient availability on the gross (ΠG) and net (ΠN) primary production rates as well as the carbon use efficiency (CU). Simulated ΠG, ΠN and CU were not associated with temperature. On the other hand, all three measures of stand level productivity were positively related to both mean annual precipitation and soil nutrient status

  20. Heterogeneous movement of insectivorous Amazonian birds through primary and secondary forest: A case study using multistate models with radiotelemetry data

    Science.gov (United States)

    Hines, James; Powell, Luke L.; Wolfe, Jared D.; Johnson, Erik l.; Nichols, James D.; Stouffer, Phillip C.

    2015-01-01

    Given rates of deforestation, disturbance, and secondary forest accumulation in tropical rainforests, there is a great need to quantify habitat use and movement among different habitats. This need is particularly pronounced for animals most sensitive to disturbance, such as insectivorous understory birds. Here we use multistate capture–recapture models with radiotelemetry data to determine the successional stage at which within-day movement probabilities of Amazonian birds in secondary forest are similar to those in primary forest. We radio-tracked three common understory insectivore species in primary and secondary forest at the Biological Dynamics of Forest Fragments project near Manaus, Brazil: two woodcreepers, Glyphorynchus spirurus (n = 19) andXiphorhynchus pardalotus (n = 18), and the terrestrial antthrush Formicarius colma(n = 19). Forest age was a strong predictor of fidelity to a given habitat. All three species showed greater fidelity to primary forest than to 8–14-year-old secondary forest, indicating the latter’s relatively poor quality. The two woodcreeper species used 12–18-year-old secondary forest in a manner comparable to continuous forest, but F. colmaavoided moving even to 27–31-year-old secondary forest—the oldest at our site. Our results suggest that managers concerned with less sensitive species can assume that forest reserves connected by 12–18-year-old secondary forest corridors are effectively connected. On the other hand, >30 years are required after land abandonment before secondary forest serves as a primary forest-like conduit for movement by F. colma; more sensitive terrestrial insectivores may take longer still.

  1. Estimating Net Primary Production of Swedish Forest Landscapes by Combining Mechanistic Modeling and Remote Sensing

    DEFF Research Database (Denmark)

    Tagesson, Håkan Torbern; Smith, Benjamin; Løfgren, Anders;

    2009-01-01

    The aim of this study was to investigate a combination of satellite images of leaf area index (LAI) with processbased vegetation modeling for the accurate assessment of the carbon balances of Swedish forest ecosystems at the scale of a landscape. Monthly climatologic data were used as inputs in a...

  2. Modeling forest ecosystem changes resulting from surface coal mining in West Virginia

    Science.gov (United States)

    John Brown; Andrew J. Lister; Mary Ann Fajvan; Bonnie Ruefenacht; Christine Mazzarella

    2012-01-01

    The objective of this project is to assess the effects of surface coal mining on forest ecosystem disturbance and restoration in the Coal River Subbasin in southern West Virginia. Our approach is to develop disturbance impact models for this subbasin that will serve as a case study for testing the feasibility of integrating currently available GIS data layers, remote...

  3. Bibliography of forest water yields, flooding issues, and the hydrologic modeling of extreme flood events

    Science.gov (United States)

    Mark H. Eisenbies; M.B. Adams; W. Michael Aust; James A. Burger

    2007-01-01

    Floods continue to cause significant damage in the United States and elsewhere, and questions about the causes of flooding continue to be debated. A significant amount of research has been conducted on the relationship between forest management activities and water yield, peak flows, and flooding; somewhat less research has been conducted on the modeling of these...

  4. Estimating forest variables from top-of-atmosphere radiance satellite measurements using coupled radiative transfer models

    NARCIS (Netherlands)

    Laurent, V.C.E.; Verhoef, W.; Clevers, J.G.P.W.; Schaepman, M.E.

    2011-01-01

    Traditionally, it is necessary to pre-process remote sensing data to obtain top of canopy (TOC) reflectances before applying physically-based model inversion techniques to estimate forest variables. Corrections for atmospheric, adjacency, topography, and surface directional effects are applied

  5. Airborne laser scanning for forested landslides: terrain model quality and visualization

    NARCIS (Netherlands)

    Razak, K.A.; Straatsma, M.W.; Westen, C.J. van; Malet, J.P.; Jong, S.M. de

    2011-01-01

    Mapping complex landslides under forested terrain requires an appropriate quality of digital terrain models (DTMs), which preserve small diagnostic features for landslide classification such as primary and secondary scarps, cracks, and displacement structures (flow-type and rigid-type). Optical sate

  6. Mixed-Mode Oscillations Due to a Singular Hopf Bifurcation in a Forest Pest Model

    DEFF Research Database (Denmark)

    Brøns, Morten; Desroches, Mathieu; Krupa, Martin

    2015-01-01

    In a forest pest model, young trees are distinguished from old trees. The pest feeds on old trees. The pest grows on a fast scale, the young trees on an intermediate scale, and the old trees on a slow scale. A combination of a singular Hopf bifurcation and a “weak return” mechanism, characterized...

  7. An Optimization-Based System Model of Disturbance-Generated Forest Biomass Utilization

    Science.gov (United States)

    Curry, Guy L.; Coulson, Robert N.; Gan, Jianbang; Tchakerian, Maria D.; Smith, C. Tattersall

    2008-01-01

    Disturbance-generated biomass results from endogenous and exogenous natural and cultural disturbances that affect the health and productivity of forest ecosystems. These disturbances can create large quantities of plant biomass on predictable cycles. A systems analysis model has been developed to quantify aspects of system capacities (harvest,…

  8. Exploring metabolic syndrome serum profiling based on gas chromatography mass spectrometry and random forest models.

    Science.gov (United States)

    Lin, Zhang; Vicente Gonçalves, Carlos M; Dai, Ling; Lu, Hong-mei; Huang, Jian-hua; Ji, Hongchao; Wang, Dong-sheng; Yi, Lun-zhao; Liang, Yi-zeng

    2014-05-27

    Metabolic syndrome (MetS) is a constellation of the most dangerous heart attack risk factors: diabetes and raised fasting plasma glucose, abdominal obesity, high cholesterol and high blood pressure. Analysis and representation of the variances of metabolic profiles is urgently needed for early diagnosis and treatment of MetS. In current study, we proposed a metabolomics approach for analyzing MetS based on GC-MS profiling and random forest models. The serum samples from healthy controls and MetS patients were characterized by GC-MS. Then, random forest (RF) models were used to visually discriminate the serum changes in MetS based on these GC-MS profiles. Simultaneously, some informative metabolites or potential biomarkers were successfully discovered by means of variable importance ranking in random forest models. The metabolites such as 2-hydroxybutyric acid, inositol and d-glucose, were defined as potential biomarkers to diagnose the MetS. These results obtained by proposed method showed that the combining GC-MS profiling with random forest models was a useful approach to analyze metabolites variances and further screen the potential biomarkers for MetS diagnosis.

  9. Using occupancy models of forest breeding birds to prioritize conservation planning

    Science.gov (United States)

    De Wan, A. A.; Sullivan, P.J.; Lembo, A.J.; Smith, C.R.; Maerz, J.C.; Lassoie, J.P.; Richmond, M.E.

    2009-01-01

    As urban development continues to encroach on the natural and rural landscape, land-use planners struggle to identify high priority conservation areas for protection. Although knowing where urban-sensitive species may be occurring on the landscape would facilitate conservation planning, research efforts are often not sufficiently designed to make quality predictions at unknown locations. Recent advances in occupancy modeling allow for more precise estimates of occupancy by accounting for differences in detectability. We applied these techniques to produce robust estimates of habitat occupancy for a subset of forest breeding birds, a group that has been shown to be sensitive to urbanization, in a rapidly urbanizing yet biological diverse region of New York State. We found that detection probability ranged widely across species, from 0.05 to 0.8. Our models suggest that detection probability declined with increasing forest fragmentation. We also found that the probability of occupancy of forest breeding birds is negatively influenced by increasing perimeter-area ratio of forest fragments and urbanization in the surrounding habitat matrix. We capitalized on our random sampling design to produce spatially explicit models that predict high priority conservation areas across the entire region, where interior-species were most likely to occur. Finally, we use our predictive maps to demonstrate how a strict sampling design coupled with occupancy modeling can be a valuable tool for prioritizing biodiversity conservation in land-use planning. ?? 2009 Elsevier Ltd.

  10. Modeling snag dynamics in northern Arizona mixed-conifer and ponderosa pine forests

    Science.gov (United States)

    Joseph L. Ganey; Scott C. Vojta

    2007-01-01

    Snags (standing dead trees) are important components of forested habitats that contribute to ecological decay and recycling processes as well as providing habitat for many life forms. As such, snags are of special interest to land managers, but information on dynamics of snag populations is lacking. We modeled trends in snag populations in mixed-conifer and ponderosa...

  11. Using FLUXNET data to improve models of springtime vegetation activity onset in forest ecosystems

    NARCIS (Netherlands)

    Melaas, E.; Richardson, A.; Friedl, M.; Dragoni, D.; Gough, C.; Herbst, M.; Montagnani, L.; Moors, E.J.

    2013-01-01

    Vegetation phenology is sensitive to climate change and variability, and is a first order control on the carbon budget of forest ecosystems. Robust representation of phenology is therefore needed to support model-based projections of how climate change will affect ecosystem function. A variety of mo

  12. A framework for evaluating forest landscape model predictions using empirical data and knowledge

    Science.gov (United States)

    Wen J. Wang; Hong S. He; Martin A. Spetich; Stephen R. Shifley; Frank R. Thompson; William D. Dijak; Qia. Wang

    2014-01-01

    Evaluation of forest landscape model (FLM) predictions is indispensable to establish the credibility of predictions. We present a framework that evaluates short- and long-term FLM predictions at site and landscape scales. Site-scale evaluation is conducted through comparing raster cell-level predictions with inventory plot data whereas landscape-scale evaluation is...

  13. Calibration of the L-MEB model over a coniferous and a deciduous forest

    DEFF Research Database (Denmark)

    Grant, Jennifer P.; Saleh-Contell, Kauzar; Wigneron, Jean-Pierre

    2008-01-01

    In this paper, the L-band Microwave Emission of the Biosphere (L-MEB) model used in the Soil Moisture and Ocean Salinity (SMOS) Level 2 Soil Moisture algorithm is calibrated using L-band (1.4 GHz) microwave measurements over a coniferous (Pine) and a deciduous (mixed/Beech) forest. This resulted...

  14. Estimating forest variables from top-of-atmosphere radiance satellite measurements using coupled radiative transfer models

    NARCIS (Netherlands)

    Laurent, V.C.E.; Verhoef, W.; Clevers, J.G.P.W.; Schaepman, M.E.

    2011-01-01

    Traditionally, it is necessary to pre-process remote sensing data to obtain top of canopy (TOC) reflectances before applying physically-based model inversion techniques to estimate forest variables. Corrections for atmospheric, adjacency, topography, and surface directional effects are applied seque

  15. Using the Global Forest Products Model (GFPM version 2016 with BPMPD)

    Science.gov (United States)

    Joseph Buongiorno; Shushuai   Zhu

    2016-01-01

     The GFPM is an economic model of global production, consumption and trade of forest products. The original formulation and several applications are described in Buongiorno et al. (2003). However, subsequent versions, including the GFPM 2016 reflect significant changes and extensions. The GFPM 2016 software uses the...

  16. Remote Sensing Protocols for Parameterizing an Individual, Tree-Based, Forest Growth and Yield Model

    Science.gov (United States)

    2014-09-01

    IT TO THE ORIGINATOR . ERDC/CERL TR-14-18 iii Contents Abstract... original pixel size of 0.25m, the following segmenta- tion parameters seemed to generate the best (visually compared to origi- nal imagery...Penelope Morgan. 2006. “Regression Modeling and Mapping of Coniferous Forest Basal Area and Tree Density from Discrete- Return LIDAR and

  17. Analyzing the ecosystem carbon dynamics of four European coniferous forests using a biogeochemistry model

    NARCIS (Netherlands)

    Churkina, G.; Tenhunen, J.; Thornton, P.; Falge, E.; Elbers, J.A.; Erhard, M.; Grünwald, T.; Kowalski, A.; Rannik, Ü.; Sprinz, D.

    2003-01-01

    This paper provides the first steps toward a regional-scale analysis of carbon (C) budgets. We explore the ability of the ecosystem model BIOME-BGC to estimate the daily and annual C dynamics of four European coniferous forests and shifts in these dynamics in response to changing environmental

  18. The Future of Eurasian Boreal Forests: Ecological Modeling Projections in the Russian Federation

    Science.gov (United States)

    Lutz, D.; Shugart, H.

    2008-12-01

    Ecological modeling is one of the primary methodologies for making predictions on future changes in forested ecosystems such as those occurring in Northern Eurasia and Siberia. In particular, combining ecological modeling with global circulation model simulation outputs is a method in which scientists can forecast the impact of climate change on biodiversity (Thuiller, 2007) as well as the forested landscape. Dynamic global vegetation models (DGVMs) have been designed for specifically this purpose, however, these vegetation models run at large spatial scales and as a result make predictions that are highly uncertain (Purves and Pacala, 2008). In previous papers, we discussed the FAREAST forest gap model and its ability to accurately predict boreal forest dynamics at smaller scales and higher resolution than DGVMs. This presentation investigates the use of the FAREAST gap model, modified for spatial expansion to cover the entire country of Russia, to predict future land cover trends under different warming scenarios. The poster provides the initial framework for the project, as well as some initial results. The collection of input variables needed by FAREAST to model the Russian continent will involve collaboration with the Russian Academy of Sciences (CEPF). Together we have developed a framework in which to amalgamate both original (temperature, precipitation, soil values) parameters as well as new parameters (fire probability, logging probability) into a GIS database that can be integrated with the FAREAST model. This framework will be capable of providing visual and graphical output for interpretation of large model runs. In order to ensure accuracy in FAREAST's ability to simulate the current environment, a run of the model under current-day conditions will be compared to recent remote sensing land cover maps. The GLC2000 land cover classification project (EU JRC) will be the primary validation method with additional validation through other biophysical

  19. Jaguars on the move: modeling movement to mitigate fragmentation from road expansion in the Mayan Forests

    DEFF Research Database (Denmark)

    Colchero, Fernando; Conde, Dalia Amor; Manterola, Carlos

    2011-01-01

    -telemetry and GPS data to infer the movement behavior of jaguars Panthera onca as a response to vegetation, roads and human population density in the Mayan Forests of Mexico and Guatemala. We used the results of the model to simulate jaguars moving along a road that bisects the major reserve system in the area....... The aim of the simulations was to identify suitable locations for wildlife passes. We found that jaguars move preferentially to undisturbed forests and that females avoid moving close to roads and to areas with even low levels of human occupation. Males also avoid roads, but to a lesser degree, and appear...

  20. Comparative analysis of the actual evapotranspiration of Flemish forest and cropland, using the soil water balance model WAVE

    Directory of Open Access Journals (Sweden)

    W. W. Verstraeten

    2005-01-01

    Full Text Available This paper focuses on the quantification of the green – vegetation related – water flux of forest stands in the temperate lowland of Flanders. The underlying reason of the research was to develop a methodology for assessing the impact of forests on the hydrologic cycle in comparison to agriculture. The tested approach for calculating the water use by forests was based on the application of the soil water balance model WAVE. The study involved the collection of data from 14 forest stands, the calibration and validation of the WAVE model, and the comparison of the water use (WU components – transpiration, soil and interception evaporation – between forest and cropland. For model calibration purposes simulated and measured time series of soil water content at different soil depths, period March 2000–August 2001, were compared. A multiple-site validation was conducted as well. Actual tree transpiration calculated with sap flow measurements in three forest stands gave similar results for two of the three stands of pine (Pinus sylvestris L., but WAVE overestimated the actual measured transpiration for a stand of poplar (Populus sp.. A useful approach to compare the WU components of forest versus cropland is scenario analysis based on the validated WAVE model. The statistical Profile Analysis method was implemented to explore and analyse the simulated WU time series. With an average annual rainfall of 819 mm, the results reveal that forests in Flanders consume more water than agricultural crops. A 30 years average of 491 mm for 10 forests stands versus 398 mm for 10 cropped agricultural fields was derived. The WU components, on yearly basis, also differ between the two land use types (transpiration: 315 mm for forest and 261 mm for agricultural land use; soil evaporation: 47 mm and 131 mm, for forest and cropland, respectively. Forest canopy interception evaporation was estimated at 126 mm, while it was negligible for cropland.

  1. RESEARCH ON INVERSION MODELS FOR FOREST HEIGHT ESTIMATION USING POLARIMETRIC SAR INTERFEROMETRY

    Directory of Open Access Journals (Sweden)

    L. Zhang

    2017-09-01

    Full Text Available The forest height is an important forest resource information parameter and usually used in biomass estimation. Forest height extraction with PolInSAR is a hot research field of imaging SAR remote sensing. SAR interferometry is a well-established SAR technique to estimate the vertical location of the effective scattering center in each resolution cell through the phase difference in images acquired from spatially separated antennas. The manipulation of PolInSAR has applications ranging from climate monitoring to disaster detection especially when used in forest area, is of particular interest because it is quite sensitive to the location and vertical distribution of vegetation structure components. However, some of the existing methods can’t estimate forest height accurately. Here we introduce several available inversion models and compare the precision of some classical inversion approaches using simulated data. By comparing the advantages and disadvantages of these inversion methods, researchers can find better solutions conveniently based on these inversion methods.

  2. Distribution and Conservation of Davilla (Dilleniaceae in Brazilian Atlantic Forest Using Ecological Niche Modeling

    Directory of Open Access Journals (Sweden)

    Ismael Martins Pereira

    2014-01-01

    Full Text Available We have modeled the ecological niche for 12 plant species belonging to the genus Davilla (Dilleniaceae which occur in the Atlantic Forest of Brazil. This group includes endemic species lianas threatened by extinction and is therefore a useful indicator for forest areas requiring conservation. The aims are to compare the distribution and richness of species within the protected areas, assessing the degree of protection and gap analysis of reserves for this group. We used the Maxent algorithm with environmental and occurrence data, and produced geographic distribution maps. The results show that high species richness occurs in forest and coastal forest of Espírito Santo to Bahia states. The endemic species comprise D. flexuosa, D. macrocarpa, D. flexuosa, D. grandifolia, and D. sessilifolia. In the Atlantic Forest of southeastern Brazil, the following endemic species occur: D. tintinnabulata and D. glaziovii, with this latter species being included in the “red list” due habitat loss and predatory extractivism. The indicators of species richness in the coastal region of Bahia correspond with floristic inventories that point to this area having a high biodiversity. Although this region has several protected areas, there are gaps in reserves, which, combined with anthropogenic threats and fragmentation, have caused several problems for biodiversity.

  3. STUDY ON FOREST FIRE DANGER MODEL WITHREMOTE SENSING BASED ON GIS

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    Forest fire is one of the main natural hazards because of its fierce destructiveness. Various researches on fire real-time monitoring, behavior simulation and loss assessment have been carried out in many countries. As fire prevention is probably the most efficient means for protecting forests, suitable methods should be developed for estimating the fire danger. Fire danger is composed of ecological, human and climatic factors. Therefore, the systematic analysis of the factors including forest characteristics, meteorological status, topographic condition causing forest fire is made in this paper at first. The relationships between biophysical factors and fire danger are paid more attention to. Then the parameters derived from remote sensing data are used to estimate the fire danger variables, According to the analysis, not only PVI (Perpendicular Vegetation Index) can classify different vegetation but also crown density is captured with PVI. Vegetation moisture content has high correlation with the ratio of actual evapotranspiration (LE) to potential ecapotranspiration (LEp). SI (Structural Index), which is the combination of TM band 4 and 5 data, is a good indicator of forest age. Finally, a fire dsnger prediction model, in which relative importance of each fire factor is taken into account, is built based on GIS.

  4. Climate Change for Agriculture, Forest Cover and 3d Urban Models

    Science.gov (United States)

    Kapoor, M.; Bassir, D.

    2014-11-01

    This research demonstrates the important role of the remote sensing in finding out the different parameters behind the agricultural crop change, forest cover and urban 3D models. Standalone software is developed to view and analysis the different factors effecting the change in crop productions. Open-source libraries from the Open Source Geospatial Foundation have been used for the development of the shape-file viewer. Software can be used to get the attribute information, scale, zoom in/out and pan the shapefiles. Environmental changes due to pollution and population that are increasing the urbanisation and decreasing the forest cover on the earth. Satellite imagery such as Landsat 5(1984) to Landsat TRIS/8 (2014), Landsat Data Continuity Mission (LDCM) and NDVI are used to analyse the different parameters that are effecting the agricultural crop production change and forest change. It is advisable for the development of good quality of NDVI and forest cover maps to use data collected from the same processing methods for the complete region. Management practices have been developed from the analysed data for the betterment of the crop and saving the forest cover

  5. Forest operations planning by using RTK-GPS based digital elevation model

    Directory of Open Access Journals (Sweden)

    Neşe Gülci

    2015-07-01

    Full Text Available Having large proportion of forests in mountainous terrain in Turkey, the logging methods that not only minimize operational costs but also minimize environmental damages should be determined in forest operations planning. In a case where necessary logging equipment and machines are available, ground slope is the most important factor in determining the logging method. For this reason, accurate, up to date, and precise ground slope data is very crucial in the success of forest operations planning. In recent years, high-resolution Digital Elevation Models (DEM can be generated for forested areas by using Real Time Kinematic (RTK GPS method and these DEMs can be used to develop precise slope maps. In this study, high-resolution DEM was developed by RTK-GPS method to generate precise slope map in a sample area. Then, the slope map was classified into slope classes specified by IUFRO in order to assist forest operations planning. According to the results, logging methods that are suitable for very steep and steep terrain conditions (i.e. skyline logging, cable pulling, and chute systems should be preferred in 48.1% of the study area. It was also found that logging methods that are suitable for terrain with medium slope (i.e. skidding and cable pulling and gentle slope (i.e. skidding and mobile winch should be preferred in 34.1% and 17.8% of the study area, respectively.

  6. Response of pine forest to disturbance of pine wood nematode with interpretative structural model

    Institute of Scientific and Technical Information of China (English)

    Juan SHI; Youqing LUO; Xiaosu YAN; Weiping CHEN; Ping JIANG

    2009-01-01

    Pine wood nematode (PWN, Bursaphelenchus xylophilus), originating from North America, causes destructive pine wilt disease. Different pine forest ecosystems have different resistances to B. xylophilus,and after its invasion, the resilience and restoration direction of different ecosystems also varies. In this study, an interpretative structural model was applied for analyzing the response of pine forest ecosystem to PWN disturbance. The result showed that a five-degree multi-stage hierarchical system affected the response of the pine forest ecosystem to PWN disturbance, in which direct affecting factors are resistance and resilience. Furthermore,the analysis to the 2nd, 3rd and 4th degree factors showed that not only does distribution pattern of plant species and pine's ecological features affect the resistance of pine forests' ecosystem, but removal of attacked trees and other measures also influence the resistance through indirectly affecting the damage degree of Monochamus alternatus and distribution pattern of plant species. As for resilience,it is influenced directly by soil factors, hydrology,surrounding species provenance and biological character-istics of the second and jointly dominant species, and the climate factors can also have a direct or indirect effect on it by affecting the above factors. Among the fifth elements,the elevation, gradient and slope direction, topographical factors, diversity of geographical location and improve-ment of prevention technology all influence the response of pine forest ecosystem to PWN disturbance.

  7. Developments to the Sylvan stand structure model to describe wood quality changes in southern bottomland hardwood forests because of forest management

    Science.gov (United States)

    David R. Larsen; Ian R. Scott

    2009-01-01

    Growth models can produce a wealth of detailed information that is often very difficult to perceive because it is frequently presented either as summary tables, stand view or landscape view visualizations. We have developed new tools for use with the Sylvan model (Larsen 1994) that allow the analysis of wood-quality changes as a consequence of forest management....

  8. A classification and regression tree model of controls on dissolved inorganic nitrogen leaching from European forests.

    Science.gov (United States)

    Rothwell, James J; Futter, Martyn N; Dise, Nancy B

    2008-11-01

    Often, there is a non-linear relationship between atmospheric dissolved inorganic nitrogen (DIN) input and DIN leaching that is poorly captured by existing models. We present the first application of the non-parametric classification and regression tree approach to evaluate the key environmental drivers controlling DIN leaching from European forests. DIN leaching was classified as low (15kg N ha(-1) year(-1)) at 215 sites across Europe. The analysis identified throughfall NO(3)(-) deposition, acid deposition, hydrology, soil type, the carbon content of the soil, and the legacy of historic N deposition as the dominant drivers of DIN leaching for these forests. Ninety four percent of sites were successfully classified into the appropriate leaching category. This approach shows promise for understanding complex ecosystem responses to a wide range of anthropogenic stressors as well as an improved method for identifying risk and targeting pollution mitigation strategies in forest ecosystems.

  9. Modeling diameter distribution of the broadleaved-Korean pine mixed forest on Changbai Mountains of China

    Institute of Scientific and Technical Information of China (English)

    WANG Shunzhong; DAI Limin; LIU Guohua; YUAN Jianqiong; ZHANG Hengmin; WANG Qingli

    2006-01-01

    The broadleaved-Korean pine mixed forest is a native vegetation in the Changbai Mountains, northeast China. The probability density functions including the normal, negative exponential, Weibull and finite mixture distribution, were used to describe the diameter distributions of the species groups and entire forest stand. There is a strong correlation between parameters and mean DBH except the shape parameters in the mixture distribution. The diameter classes of species and entire forest stand showed not negative exponential but normal and "S" distribution. The mixture function was better than normal and Weibull to describe the model distribution. The location parameter had an effect on the estimated frequency in the first diameter class, when the estimated location parameter was bigger than the lower limit of the first diameter class.

  10. Sensitivity of North Patagonian temperate rainforests to changes in rainfall regimes: a process-based, dynamic forest model

    Science.gov (United States)

    Gutiérrez, A. G.; Armesto, J. J.; Díaz, M. F.; Huth, A.

    2012-06-01

    Rainfall changes due to climate change and their potential impacts on forests demand the development of predictable tools coupling vegetation dynamics to hydrologic processes. Such tools need to be accurate at local scales (i.e. forest management strategies for climate change adaptation. In this study, we developed and tested a dynamic forest model to predict hydrological balance of North Patagonian temperate rainforests on Chiloé Island, Chile (42° S). The developed model includes detailed calculations of forest water fluxes and incorporates the dynamical linkage of rainfall regimes to soil moisture, and individual tree growth. We confronted model results with detailed field measurements of water fluxes in a young secondary stand (YS). We used the model to compare forest sensitivity in the YS and an old-growth stand (OG, > 500 yr-old), i.e. changes in forest evapotranspiration, soil moisture and forest structure (biomass and basal area). We evaluated sensitivity using changes in rainfall regimes comparable to future climatic scenarios for this century in the study region. The model depicted well the hydrological balance of temperate rainforests. We found a higher evapotranspiration in OG than YS under current climatic conditions. Dryer climatic conditions predicted for this century in the study area led to changes in the hydrological balance that impacted forest structure, with stronger impacts in OG. Changes in climatic parameters decreased evapotranspiration (up to 15 % in OG compared to current values) and soil moisture to 32 % . These changes in water fluxes induced decreases in above-ground biomass in OG (up to 27 %). Our results support the use of the model for detailed analyses of climate change impacts on hydrological balance of forests. Also, it provides a tool suitable for analyses of the impacts of multiple drivers of global change on forest processes (e.g., climate change, fragmentation, forest management).

  11. Predicting the dynamics of a native Araucaria forest using a distance-independent individual tree-growth model

    Directory of Open Access Journals (Sweden)

    Enrique Orellana

    2016-05-01

    Full Text Available Background: In recent decades, native Araucaria forests in Brazil have become fragmented due to the conversion of forest to agricultural lands and commercial tree plantations. Consequently, the forest dynamics in this forest type have been poorly investigated, as most fragments are poorly structured in terms of tree size and diversity. Methods: We developed a distance-independent individual tree-growth model to simulate the forest dynamics in a native Araucaria forest located predominantly in southern Brazil. The data were derived from 25 contiguous plots (1 ha established in a protected area left undisturbed for the past 70 years. The plots were measured at 3-year intervals from their establishment in 2002. All trees above a 10-cm diameter at breast height were tagged, identified as to species, and measured. Because this forest type comprises hundreds of tree species, we clustered them into six ecological groups: understory, subcanopy, upper canopy shade-tolerant, upper canopy light-demanding, pioneer, and emergent. The diameter increment, survival, and recruitment sub-models were fitted for each species group, and parameters were implemented in a simulation software to project the forest dynamics. The growth model was validated using independent data collected from another research area of the same forest type. To simulate the forest dynamics, we projected the species group and stand basal areas for 50 years under three different stand-density conditions: low, average, and high. Results: Emergent species tended to grow in basal area, irrespective of the forest density conditions. Conversely, shade-tolerant species tended to decline over the years. Under low-density conditions, the model showed a growth tendency for the stand basal area, while under average-density conditions, forest growth tended to stabilize within 30 years. Under high-density conditions, the model indicated a decline in the stand basal area from the onset of the simulation

  12. Improving predictions of tropical forest response to climate change through integration of field studies and ecosystem modeling

    Science.gov (United States)

    Feng, Xiaohui; Uriarte, María; González, Grizelle; Reed, Sasha C.; Thompson, J.; Zimmerman, Jess K.; Murphy, Lora

    2017-01-01

    Tropical forests play a critical role in carbon and water cycles at a global scale. Rapid climate change is anticipated in tropical regions over the coming decades and, under a warmer and drier climate, tropical forests are likely to be net sources of carbon rather than sinks. However, our understanding of tropical forest response and feedback to climate change is very limited. Efforts to model climate change impacts on carbon fluxes in tropical forests have not reached a consensus. Here we use the Ecosystem Demography model (ED2) to predict carbon fluxes of a Puerto Rican tropical forest under realistic climate change scenarios. We parameterized ED2 with species-specific tree physiological data using the Predictive Ecosystem Analyzer workflow and projected the fate of this ecosystem under five future climate scenarios. The model successfully captured inter-annual variability in the dynamics of this tropical forest. Model predictions closely followed observed values across a wide range of metrics including above-ground biomass, tree diameter growth, tree size class distributions, and leaf area index. Under a future warming and drying climate scenario, the model predicted reductions in carbon storage and tree growth, together with large shifts in forest community composition and structure. Such rapid changes in climate led the forest to transition from a sink to a source of carbon. Growth respiration and root allocation parameters were responsible for the highest fraction of predictive uncertainty in modeled biomass, highlighting the need to target these processes in future data collection. Our study is the first effort to rely on Bayesian model calibration and synthesis to elucidate the key physiological parameters that drive uncertainty in tropical forests responses to climatic change. We propose a new path forward for model-data synthesis that can substantially reduce uncertainty in our ability to model tropical forest responses to future climate.

  13. The role of phosphorus dynamics in tropical forests – a modeling study using CLM-CNP

    Directory of Open Access Journals (Sweden)

    X. Yang

    2013-08-01

    Full Text Available Tropical forests play a significant role in the global carbon cycle and global climate. However, tropical carbon cycling and the feedbacks from tropical ecosystems to the climate system remain critical uncertainties in current generation carbon-climate models. One of the major uncertainties comes from the lack of representation of phosphorus (P, the most limiting nutrient in tropical regions. Here we introduce P dynamics and C–N–P interactions into the CLM4-CN model and investigate the role of P cycling in controlling the productivity of tropical ecosystems. The newly developed CLM-CNP model includes all major biological and geochemical processes controlling P availability in soils and the interactions between C, N, and P cycles. Model simulations at sites along a Hawaiian soil chronosequence indicate that the introduction of P limitation greatly improved the model performance at the P-limited site. The model is also able to capture the shift in nutrient limitation along this chronosequence (from N limited to P limited, as shown in the comparison of model simulated plant responses to fertilization with the observed data. Model simulations at Amazonian forest sites show that CLM-CNP is capable of capturing the overall trend in NPP along the P availability gradient. This comparison also suggests a significant interaction between nutrient limitation and land use history. Model experiments under elevated atmospheric CO2 ([CO2] condition suggest that tropical forest responses to increasing [CO2] will interact strongly with changes in the P cycle. We highlight the importance of two feedback pathways (biochemical mineralization and desorption of secondary mineral P that can significantly affect P availability and determine the extent of P limitation in tropical forests under elevated [CO2]. Field experiments with elevated CO2 are therefore needed to help quantify these important feedbacks. Predictive modeling of C–P interactions will have

  14. [Forest lighting fire forecasting for Daxing'anling Mountains based on MAXENT model].

    Science.gov (United States)

    Sun, Yu; Shi, Ming-Chang; Peng, Huan; Zhu, Pei-Lin; Liu, Si-Lin; Wu, Shi-Lei; He, Cheng; Chen, Feng

    2014-04-01

    Daxing'anling Mountains is one of the areas with the highest occurrence of forest lighting fire in Heilongjiang Province, and developing a lightning fire forecast model to accurately predict the forest fires in this area is of importance. Based on the data of forest lightning fires and environment variables, the MAXENT model was used to predict the lightning fire in Daxing' anling region. Firstly, we studied the collinear diagnostic of each environment variable, evaluated the importance of the environmental variables using training gain and the Jackknife method, and then evaluated the prediction accuracy of the MAXENT model using the max Kappa value and the AUC value. The results showed that the variance inflation factor (VIF) values of lightning energy and neutralized charge were 5.012 and 6.230, respectively. They were collinear with the other variables, so the model could not be used for training. Daily rainfall, the number of cloud-to-ground lightning, and current intensity of cloud-to-ground lightning were the three most important factors affecting the lightning fires in the forest, while the daily average wind speed and the slope was of less importance. With the increase of the proportion of test data, the max Kappa and AUC values were increased. The max Kappa values were above 0.75 and the average value was 0.772, while all of the AUC values were above 0.5 and the average value was 0. 859. With a moderate level of prediction accuracy being achieved, the MAXENT model could be used to predict forest lightning fire in Daxing'anling Mountains.

  15. Effect of different tree mortality patterns on stand development in the forest model SIBYLA

    Directory of Open Access Journals (Sweden)

    Trombik Jiří

    2016-09-01

    Full Text Available Forest mortality critically affects stand structure and the quality of ecosystem services provided by forests. Spruce bark beetle (Ips typographus generates rather complex infestation and mortality patterns, and implementation of such patterns in forest models is challenging. We present here the procedure, which allows to simulate the bark beetle-related tree mortality in the forest dynamics model Sibyla. We explored how sensitive various production and stand structure indicators are to tree mortality patterns, which can be generated by bark beetles. We compared the simulation outputs for three unmanaged forest stands with 40, 70 and 100% proportion of spruce as affected by the disturbance-related mortality that occurred in a random pattern and in a patchy pattern. The used tree species and age class-specific mortality rates were derived from the disturbance-related mortality records from Slovakia. The proposed algorithm was developed in the SQLite using the Python language, and the algorithm allowed us to define the degree of spatial clustering of dead trees ranging from a random distribution to a completely clustered distribution; a number of trees that died in either mode is set to remain equal. We found significant differences between the long-term developments of the three investigated forest stands, but we found very little effect of the tested mortality modes on stand increment, tree species composition and diversity, and tree size diversity. Hence, our hypothesis that the different pattern of dead trees emergence should affect the competitive interactions between trees and regeneration, and thus affect selected productivity and stand structure indicators was not confirmed.

  16. Comparison Between Surf and Multi-Shock Forest Fire High Explosive Burn Models

    Energy Technology Data Exchange (ETDEWEB)

    Greenfield, Nicholas Alexander [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2017-07-18

    PAGOSA1 has several different burn models used to model high explosive detonation. Two of these, Multi-Shock Forest Fire and Surf, are capable of modeling shock initiation. Accurately calculating shock initiation of a high explosive is important because it is a mechanism for detonation in many accident scenarios (i.e. fragment impact). Comparing the models to pop-plot data give confidence that the models are accurately calculating detonation or lack thereof. To compare the performance of these models, pop-plots2 were created from simulations where one two cm block of PBX 9502 collides with another block of PBX 9502.

  17. Comparison of drought stress indices in beech forests: a modelling study

    Directory of Open Access Journals (Sweden)

    Vilhar U

    2016-08-01

    Full Text Available Two drought stress indices were applied to managed as well as old-growth beech forests and gaps for the 2001 to 2013 period to aid in the development of an efficient tool for field water supply diagnosis. The relative extractable soil water (REW, which was calculated from the soil water content in the root zone, and the transpiration index (TI, calculated as the ratio between the actual and potential transpiration were used. Both indices were calculated on a daily basis using the water balance model BROOK90, which was fitted and tested using measured data on throughfall and soil water content. A sensitivity analysis apportioned to the input parameters of the drought stress indices was conducted to assess uncertainty. Both drought stress indices showed the greatest drought stress in the years 2009, 2003 and 2011, as also indicated by the Standardized Precipitation Evapotranspiration Index (SPEI at the nearest meteorological station. However, drought stress intensity and duration differed between the indices and study sites. Greater water supply stress was shown in the forests than the gaps. Furthermore, the agreement among the indices was smaller for gaps compared with forests, which implies that careful index selection is needed when comparing water supply stresses in different stages of forest stand development. Due to the low amount of input data required and the parameters that can be measured with relative ease in the field, REW might be an efficient tool for field water supply diagnosis when analyzing the drought stresses of similar forest types and at unique stages of development. REW satisfactorily indicated drought stress in forests but to a lesser extent in gaps. TI demonstrated more consistent differences in drought stress between forests and gaps and therefore proved to be the appropriate index for a detailed analysis of drought stress variation between different stages of forest stand development. However, due to a greater number of

  18. Investigating the spread in surface albedo for snow-covered forests in CMIP5 models

    Science.gov (United States)

    Wang, Libo; Cole, Jason N. S.; Bartlett, Paul; Verseghy, Diana; Derksen, Chris; Brown, Ross; Salzen, Knut

    2016-02-01

    This study investigates the role of leaf/plant area index (LAI/PAI) specification on the large spread of winter albedo simulated by climate models. To examine the sensitivity of winter albedo to LAI, we perform a sensitivity analysis using two methods commonly used to compute albedo in snow-covered forests as well as diagnostic calculations within version 4.2 of the Canadian Atmospheric Model for which PAI is systematically varied. The results show that the simulated albedo is very sensitive to negative PAI biases, especially for smaller PAI values. The LAI and surface albedo of boreal forests in the presence of snow simulated by the Coupled Model Intercomparison Project Phase 5 (CMIP5) models are evaluated using satellite observations. The evaluation of CMIP5 models suggest that inaccurate tree cover fraction due to improper plant functional type specification or erroneous LAI parameterization in some models explains, in part, an observed positive bias in winter albedo over boreal forest regions of the Northern Hemisphere. This contributes to a large intermodel spread in simulated surface albedo in the presence of snow over these regions and is largely responsible for uncertainties in simulated snow-albedo feedback strength. Errors are largest (+20-40%) in models with large underestimation of LAI but are typically within ±15% when simulated LAI is within the observed range. This study underscores the importance of accurate representation of vegetation distribution and parameters in realistic simulation of surface albedo.

  19. Investigating the spread of surface albedo in snow covered forests in CMIP5 models

    Science.gov (United States)

    Wang, Libo; Cole, Jason; Bartlett, Paul; Verseghy, Diana; Derksen, Chris; Brown, Ross; von Salzen, Knut

    2016-04-01

    This study investigates the role of leaf/plant area index (LAI/PAI) specification on the large spread of winter albedo simulated by climate models. To examine the sensitivity of winter albedo to LAI, we perform a sensitivity analysis using two methods commonly used to compute albedo in snow-covered forests as well as diagnostic calculations within version 4.2 of the Canadian Atmospheric Model for which PAI is systematically varied. The results show that the simulated albedo is very sensitive to negative PAI biases, especially for smaller PAI values. The LAI and surface albedo of boreal forests in the presence of snow simulated by the Coupled Model Intercomparison Project Phase 5 (CMIP5) models are evaluated using satellite observations. The evaluation of CMIP5 models suggest that inaccurate tree cover fraction due to improper plant functional type specification or erroneous LAI parameterization in some models explains, in part, an observed positive bias in winter albedo over boreal forest regions of the Northern Hemisphere. This contributes to a large intermodel spread in simulated surface albedo in the presence of snow over these regions and is largely responsible for uncertainties in simulated snow-albedo feedback strength. Errors are largest (+20-40 %) in models with large underestimation of LAI but are typically within ±15% when simulated LAI is within the observed range. This study underscores the importance of accurate representation of vegetation distribution and parameters in realistic simulation of surface albedo.

  20. Modeling transcriptional networks regulating secondary growth and wood formation in forest trees.

    Science.gov (United States)

    Liu, Lijun; Filkov, Vladimir; Groover, Andrew

    2014-06-01

    The complex interactions among the genes that underlie a biological process can be modeled and presented as a transcriptional network, in which genes (nodes) and their interactions (edges) are shown in a graphical form similar to a wiring diagram. A large number of genes have been identified that are expressed during the radial woody growth of tree stems (secondary growth), but a comprehensive understanding of how these genes interact to influence woody growth is currently lacking. Modeling transcriptional networks has recently been made tractable by next-generation sequencing-based technologies that can comprehensively catalog gene expression and transcription factor-binding genome-wide, but has not yet been extensively applied to undomesticated tree species or woody growth. Here we discuss basic features of transcriptional networks, approaches for modeling biological networks, and examples of biological network models developed for forest trees to date. We discuss how transcriptional network research is being developed in the model forest tree genus, Populus, and how this research area can be further developed and applied. Transcriptional network models for forest tree secondary growth and wood formation could ultimately provide new predictive models to accelerate hypothesis-driven research and develop new breeding applications.

  1. Modelling forest carbon stock changes as affected by harvest and natural disturbances. I. Comparison with countries' estimates for forest management.

    Science.gov (United States)

    Pilli, Roberto; Grassi, Giacomo; Kurz, Werner A; Viñas, Raúl Abad; Guerrero, Nuria Hue

    2016-12-01

    According to the post-2012 rules under the Kyoto protocol, developed countries that are signatories to the protocol have to estimate and report the greenhouse gas (GHG) emissions and removals from forest management (FM), with the option to exclude the emissions associated to natural disturbances, following the Intergovernmental Panel on Climate Change (IPCC) guidelines. To increase confidence in GHG estimates, the IPCC recommends performing verification activities, i.e. comparing country data with independent estimates. However, countries currently conduct relatively few verification efforts. The aim of this study is to implement a consistent methodological approach using the Carbon Budget Model (CBM) to estimate the net CO2 emissions from FM in 26 European Union (EU) countries for the period 2000-2012, including the impacts of natural disturbances. We validated our results against a totally independent case study and then we compared the CBM results with the data reported by countries in their 2014 Greenhouse Gas Inventories (GHGIs) submitted to the United Nations Framework Convention on Climate Change (UNFCCC). The match between the CBM results and the GHGIs was good in nine countries (i.e. the average of our results is within ±25 % compared to the GHGI and the correlation between CBM and GHGI is significant at P stock-change approach; (2) different assumptions for non-biomass pools, and for CO2 emissions from fires and harvest residues. In few cases, further analysis will be needed to identify any possible inappropriate data used by the CBM or problems in the GHGI. Finally, the frequent updates to data and methods used by countries to prepare GHGI makes the implementation of a consistent modeling methodology challenging. This study indicates opportunities to use the CBM as tool to assist countries in estimating forest carbon dynamics, including the impact of natural disturbances, and to verify the country GHGIs at the EU level, consistent with the IPCC

  2. Modelling silviculture alternatives for managing Pinus pinea L. forest in North-East Spain

    Energy Technology Data Exchange (ETDEWEB)

    Piqu-Nicalau, M.; Rio, M. del; Calama, R.; Montero, G.

    2011-07-01

    A yield model was developed to simulate silviculture alternatives for Pinus pinea L. in north-east Spain (Catalonia). The model uses several functions to estimate the main silvicultural parameters at stand level and a disaggregation system to predict diameter distributions. From a network of 75 temporary plots a system of equations to predict stand variables was simultaneously fitted for two stand density ty