WorldWideScience

Sample records for models solution algorithms

  1. Capacitated Bounded Cardinality Hub Routing Problem: Model and Solution Algorithm

    OpenAIRE

    Gelareha, Shahin; Monemic, Rahimeh Neamatian; Semetd, Frederic

    2017-01-01

    In this paper, we address the Bounded Cardinality Hub Location Routing with Route Capacity wherein each hub acts as a transshipment node for one directed route. The number of hubs lies between a minimum and a maximum and the hub-level network is a complete subgraph. The transshipment operations take place at the hub nodes and flow transfer time from a hub-level transporter to a spoke-level vehicle influences spoke- to-hub allocations. We propose a mathematical model and a branch-and-cut algor...

  2. An evaluation of solution algorithms and numerical approximation methods for modeling an ion exchange process

    Science.gov (United States)

    Bu, Sunyoung; Huang, Jingfang; Boyer, Treavor H.; Miller, Cass T.

    2010-07-01

    The focus of this work is on the modeling of an ion exchange process that occurs in drinking water treatment applications. The model formulation consists of a two-scale model in which a set of microscale diffusion equations representing ion exchange resin particles that vary in size and age are coupled through a boundary condition with a macroscopic ordinary differential equation (ODE), which represents the concentration of a species in a well-mixed reactor. We introduce a new age-averaged model (AAM) that averages all ion exchange particle ages for a given size particle to avoid the expensive Monte-Carlo simulation associated with previous modeling applications. We discuss two different numerical schemes to approximate both the original Monte-Carlo algorithm and the new AAM for this two-scale problem. The first scheme is based on the finite element formulation in space coupled with an existing backward difference formula-based ODE solver in time. The second scheme uses an integral equation based Krylov deferred correction (KDC) method and a fast elliptic solver (FES) for the resulting elliptic equations. Numerical results are presented to validate the new AAM algorithm, which is also shown to be more computationally efficient than the original Monte-Carlo algorithm. We also demonstrate that the higher order KDC scheme is more efficient than the traditional finite element solution approach and this advantage becomes increasingly important as the desired accuracy of the solution increases. We also discuss issues of smoothness, which affect the efficiency of the KDC-FES approach, and outline additional algorithmic changes that would further improve the efficiency of these developing methods for a wide range of applications.

  3. Thermodynamically Consistent Algorithms for the Solution of Phase-Field Models

    KAUST Repository

    Vignal, Philippe

    2016-02-11

    Phase-field models are emerging as a promising strategy to simulate interfacial phenomena. Rather than tracking interfaces explicitly as done in sharp interface descriptions, these models use a diffuse order parameter to monitor interfaces implicitly. This implicit description, as well as solid physical and mathematical footings, allow phase-field models to overcome problems found by predecessors. Nonetheless, the method has significant drawbacks. The phase-field framework relies on the solution of high-order, nonlinear partial differential equations. Solving these equations entails a considerable computational cost, so finding efficient strategies to handle them is important. Also, standard discretization strategies can many times lead to incorrect solutions. This happens because, for numerical solutions to phase-field equations to be valid, physical conditions such as mass conservation and free energy monotonicity need to be guaranteed. In this work, we focus on the development of thermodynamically consistent algorithms for time integration of phase-field models. The first part of this thesis focuses on an energy-stable numerical strategy developed for the phase-field crystal equation. This model was put forward to model microstructure evolution. The algorithm developed conserves, guarantees energy stability and is second order accurate in time. The second part of the thesis presents two numerical schemes that generalize literature regarding energy-stable methods for conserved and non-conserved phase-field models. The time discretization strategies can conserve mass if needed, are energy-stable, and second order accurate in time. We also develop an adaptive time-stepping strategy, which can be applied to any second-order accurate scheme. This time-adaptive strategy relies on a backward approximation to give an accurate error estimator. The spatial discretization, in both parts, relies on a mixed finite element formulation and isogeometric analysis. The codes are

  4. A new algorithm for DNS of turbulent polymer solutions using the FENE-P model

    Science.gov (United States)

    Vaithianathan, T.; Collins, Lance; Robert, Ashish; Brasseur, James

    2004-11-01

    Direct numerical simulations (DNS) of polymer solutions based on the finite extensible nonlinear elastic model with the Peterlin closure (FENE-P) solve for a conformation tensor with properties that must be maintained by the numerical algorithm. In particular, the eigenvalues of the tensor are all positive (to maintain positive definiteness) and the sum is bounded by the maximum extension length. Loss of either of these properties will give rise to unphysical instabilities. In earlier work, Vaithianathan & Collins (2003) devised an algorithm based on an eigendecomposition that allows you to update the eigenvalues of the conformation tensor directly, making it easier to maintain the necessary conditions for a stable calculation. However, simple fixes (such as ceilings and floors) yield results that violate overall conservation. The present finite-difference algorithm is inherently designed to satisfy all of the bounds on the eigenvalues, and thus restores overall conservation. New results suggest that the earlier algorithm may have exaggerated the energy exchange at high wavenumbers. In particular, feedback of the polymer elastic energy to the isotropic turbulence is now greatly reduced.

  5. Thermodynamically Consistent Algorithms for the Solution of Phase-Field Models

    KAUST Repository

    Vignal, Philippe

    2016-01-01

    of thermodynamically consistent algorithms for time integration of phase-field models. The first part of this thesis focuses on an energy-stable numerical strategy developed for the phase-field crystal equation. This model was put forward to model microstructure

  6. Model and Algorithm for Substantiating Solutions for Organization of High-Rise Construction Project

    Directory of Open Access Journals (Sweden)

    Anisimov Vladimir

    2018-01-01

    Full Text Available In the paper the models and the algorithm for the optimal plan formation for the organization of the material and logistical processes of the high-rise construction project and their financial support are developed. The model is based on the representation of the optimization procedure in the form of a non-linear problem of discrete programming, which consists in minimizing the execution time of a set of interrelated works by a limited number of partially interchangeable performers while limiting the total cost of performing the work. The proposed model and algorithm are the basis for creating specific organization management methodologies for the high-rise construction project.

  7. Model and Algorithm for Substantiating Solutions for Organization of High-Rise Construction Project

    Science.gov (United States)

    Anisimov, Vladimir; Anisimov, Evgeniy; Chernysh, Anatoliy

    2018-03-01

    In the paper the models and the algorithm for the optimal plan formation for the organization of the material and logistical processes of the high-rise construction project and their financial support are developed. The model is based on the representation of the optimization procedure in the form of a non-linear problem of discrete programming, which consists in minimizing the execution time of a set of interrelated works by a limited number of partially interchangeable performers while limiting the total cost of performing the work. The proposed model and algorithm are the basis for creating specific organization management methodologies for the high-rise construction project.

  8. A planning model with a solution algorithm for ready mixed concrete production and truck dispatching under stochastic travel times

    Science.gov (United States)

    Yan, S.; Lin, H. C.; Jiang, X. Y.

    2012-04-01

    In this study the authors employ network flow techniques to construct a systematic model that helps ready mixed concrete carriers effectively plan production and truck dispatching schedules under stochastic travel times. The model is formulated as a mixed integer network flow problem with side constraints. Problem decomposition and relaxation techniques, coupled with the CPLEX mathematical programming solver, are employed to develop an algorithm that is capable of efficiently solving the problems. A simulation-based evaluation method is also proposed to evaluate the model, coupled with a deterministic model, and the method currently used in actual operations. Finally, a case study is performed using real operating data from a Taiwan RMC firm. The test results show that the system operating cost obtained using the stochastic model is a significant improvement over that obtained using the deterministic model or the manual approach. Consequently, the model and the solution algorithm could be useful for actual operations.

  9. A genetic algorithm solution for a nuclear power plant risk-cost maintenance model

    International Nuclear Information System (INIS)

    Tong Jiejuan; Mao Dingyuan; Xue Dazhi

    2004-01-01

    Reliability Centered Maintenance (RCM) is one of the popular maintenance optimization methods according to certain kinds of priorities. Traditional RCM usually analyzes and optimizes the maintenance strategy from the viewpoint of component instead of the whole maintenance program impact. Research presented in this paper is a pilot study using PSA techniques in RCM. How to reflect the effect on component unavailability by the maintenance activities such as surveillance testing and preventive maintenance in PSA model is discussed firstly. Based on the discussion, a maintenance risk-cost model is established for global maintenance optimization in a nuclear power plant, and a genetic algorithm (GA) is applied to solve such a model to get the global optimized maintenance strategy. Finally, the result got from a simple test case based on a risk-cost model consisting of 10 components is presented

  10. A Solution Approach from an Analytic Model to Heuristic Algorithm for Special Case of Vehicle Routing Problem with Stochastic Demands

    Directory of Open Access Journals (Sweden)

    2009-03-01

    Full Text Available We define a special case for the vehicle routing problem with stochastic demands (SC-VRPSD where customer demands are normally distributed. We propose a new linear model for computing the expected length of a tour in SC-VRPSD. The proposed model is based on the integration of the “Traveling Salesman Problem” (TSP and the Assignment Problem. For large-scale problems, we also use an Iterated Local Search (ILS algorithm in order to reach an effective solution.

  11. Discrete Riccati equation solutions: Distributed algorithms

    Directory of Open Access Journals (Sweden)

    D. G. Lainiotis

    1996-01-01

    Full Text Available In this paper new distributed algorithms for the solution of the discrete Riccati equation are introduced. The algorithms are used to provide robust and computational efficient solutions to the discrete Riccati equation. The proposed distributed algorithms are theoretically interesting and computationally attractive.

  12. Benchmarking algorithms for the solution of Collisional Radiative Model (CRM) equations.

    Science.gov (United States)

    Klapisch, Marcel; Busquet, Michel

    2007-11-01

    Elements used in ICF target designs can have many charge states in the same plasma conditions, each charge state having numerous energy levels. When LTE conditions are not met, one has to solve CRM equations for the populations of energy levels, which are necessary for opacities/emissivities, Z* etc. In case of sparse spectra, or when configuration interaction is important (open d or f shells), statistical methods[1] are insufficient. For these cases one must resort to a detailed level CRM rate generator[2]. The equations to be solved may involve tens of thousands of levels. The system is by nature ill conditioned. We show that some classical methods do not converge. Improvements of the latter will be compared with new algorithms[3] with respect to performance, robustness, and accuracy. [1] A Bar-Shalom, J Oreg, and M Klapisch, J. Q. S. R. T.,65, 43 (2000). [2] M Klapisch, M Busquet and A. Bar-Shalom, Proceedings of APIP'07, AIP series (to be published). [3] M Klapisch and M Busquet, High Ener. Density Phys. 3,143 (2007)

  13. Capacitated Hub Routing Problem in Hub-and-Feeder Network Design: Modeling and Solution Algorithm

    OpenAIRE

    Gelareh , Shahin; Neamatian Monemi , Rahimeh; Semet , Frédéric

    2015-01-01

    International audience; In this paper, we address the Bounded Cardinality Hub Location Routing with Route Capacity wherein eachhub acts as a transshipment node for one directed route. The number of hubs lies between a minimum anda maximum and the hub-level network is a complete subgraph. The transshipment operations take place atthe hub nodes and flow transfer time from a hub-level transporter to a spoke-level vehicle influences spoketo-hub allocations. We propose a mathematical model and a b...

  14. Life Cycle Network Modeling Framework and Solution Algorithms for Systems Analysis and Optimization of the Water-Energy Nexus

    Directory of Open Access Journals (Sweden)

    Daniel J. Garcia

    2015-07-01

    Full Text Available The water footprint of energy systems must be considered, as future water scarcity has been identified as a major concern. This work presents a general life cycle network modeling and optimization framework for energy-based products and processes using a functional unit of liters of water consumed in the processing pathway. We analyze and optimize the water-energy nexus over the objectives of water footprint minimization, maximization of economic output per liter of water consumed (economic efficiency of water, and maximization of energy output per liter of water consumed (energy efficiency of water. A mixed integer, multiobjective nonlinear fractional programming (MINLFP model is formulated. A mixed integer linear programing (MILP-based branch and refine algorithm that incorporates both the parametric algorithm and nonlinear programming (NLP subproblems is developed to boost solving efficiency. A case study in bioenergy is presented, and the water footprint is considered from biomass cultivation to biofuel production, providing a novel perspective into the consumption of water throughout the value chain. The case study, optimized successively over the three aforementioned objectives, utilizes a variety of candidate biomass feedstocks to meet primary fuel products demand (ethanol, diesel, and gasoline. A minimum water footprint of 55.1 ML/year was found, economic efficiencies of water range from −$1.31/L to $0.76/L, and energy efficiencies of water ranged from 15.32 MJ/L to 27.98 MJ/L. These results show optimization provides avenues for process improvement, as reported values for the energy efficiency of bioethanol range from 0.62 MJ/L to 3.18 MJ/L. Furthermore, the proposed solution approach was shown to be an order of magnitude more efficient than directly solving the original MINLFP problem with general purpose solvers.

  15. Simultaneous solution algorithms for Eulerian-Eulerian gas-solid flow models: Stability analysis and convergence behaviour of a point and a plane solver

    International Nuclear Information System (INIS)

    Wilde, Juray de; Vierendeels, Jan; Heynderickx, Geraldine J.; Marin, Guy B.

    2005-01-01

    Simultaneous solution algorithms for Eulerian-Eulerian gas-solid flow models are presented and their stability analyzed. The integration algorithms are based on dual-time stepping with fourth-order Runge-Kutta in pseudo-time. The domain is solved point or plane wise. The discretization of the inviscid terms is based on a low-Mach limit of the multi-phase preconditioned advection upstream splitting method (MP-AUSMP). The numerical stability of the simultaneous solution algorithms is analyzed in 2D with the Fourier method. Stability results are compared with the convergence behaviour of 3D riser simulations. The impact of the grid aspect ratio, preconditioning, artificial dissipation, and the treatment of the source terms is investigated. A particular advantage of the simultaneous solution algorithms is that they allow a fully implicit treatment of the source terms which are of crucial importance for the Eulerian-Eulerian gas-solid flow models and their solution. The numerical stability of the optimal simultaneous solution algorithm is analyzed for different solids volume fractions and gas-solid slip velocities. Furthermore, the effect of the grid resolution on the convergence behaviour and the simulation results is investigated. Finally, simulations of the bottom zone of a pilot-scale riser with a side solids inlet are experimentally validated

  16. Modeling design iteration in product design and development and its solution by a novel artificial bee colony algorithm.

    Science.gov (United States)

    Chen, Tinggui; Xiao, Renbin

    2014-01-01

    Due to fierce market competition, how to improve product quality and reduce development cost determines the core competitiveness of enterprises. However, design iteration generally causes increases of product cost and delays of development time as well, so how to identify and model couplings among tasks in product design and development has become an important issue for enterprises to settle. In this paper, the shortcomings existing in WTM model are discussed and tearing approach as well as inner iteration method is used to complement the classic WTM model. In addition, the ABC algorithm is also introduced to find out the optimal decoupling schemes. In this paper, firstly, tearing approach and inner iteration method are analyzed for solving coupled sets. Secondly, a hybrid iteration model combining these two technologies is set up. Thirdly, a high-performance swarm intelligence algorithm, artificial bee colony, is adopted to realize problem-solving. Finally, an engineering design of a chemical processing system is given in order to verify its reasonability and effectiveness.

  17. Complex fluids modeling and algorithms

    CERN Document Server

    Saramito, Pierre

    2016-01-01

    This book presents a comprehensive overview of the modeling of complex fluids, including many common substances, such as toothpaste, hair gel, mayonnaise, liquid foam, cement and blood, which cannot be described by Navier-Stokes equations. It also offers an up-to-date mathematical and numerical analysis of the corresponding equations, as well as several practical numerical algorithms and software solutions for the approximation of the solutions. It discusses industrial (molten plastics, forming process), geophysical (mud flows, volcanic lava, glaciers and snow avalanches), and biological (blood flows, tissues) modeling applications. This book is a valuable resource for undergraduate students and researchers in applied mathematics, mechanical engineering and physics.

  18. On the multi-level solution algorithm for Markov chains

    Energy Technology Data Exchange (ETDEWEB)

    Horton, G. [Univ. of Erlangen, Nuernberg (Germany)

    1996-12-31

    We discuss the recently introduced multi-level algorithm for the steady-state solution of Markov chains. The method is based on the aggregation principle, which is well established in the literature. Recursive application of the aggregation yields a multi-level method which has been shown experimentally to give results significantly faster than the methods currently in use. The algorithm can be reformulated as an algebraic multigrid scheme of Galerkin-full approximation type. The uniqueness of the scheme stems from its solution-dependent prolongation operator which permits significant computational savings in the evaluation of certain terms. This paper describes the modeling of computer systems to derive information on performance, measured typically as job throughput or component utilization, and availability, defined as the proportion of time a system is able to perform a certain function in the presence of component failures and possibly also repairs.

  19. Solutions of the Two-Dimensional Hubbard Model: Benchmarks and Results from a Wide Range of Numerical Algorithms

    Directory of Open Access Journals (Sweden)

    2015-12-01

    Full Text Available Numerical results for ground-state and excited-state properties (energies, double occupancies, and Matsubara-axis self-energies of the single-orbital Hubbard model on a two-dimensional square lattice are presented, in order to provide an assessment of our ability to compute accurate results in the thermodynamic limit. Many methods are employed, including auxiliary-field quantum Monte Carlo, bare and bold-line diagrammatic Monte Carlo, method of dual fermions, density matrix embedding theory, density matrix renormalization group, dynamical cluster approximation, diffusion Monte Carlo within a fixed-node approximation, unrestricted coupled cluster theory, and multireference projected Hartree-Fock methods. Comparison of results obtained by different methods allows for the identification of uncertainties and systematic errors. The importance of extrapolation to converged thermodynamic-limit values is emphasized. Cases where agreement between different methods is obtained establish benchmark results that may be useful in the validation of new approaches and the improvement of existing methods.

  20. An airport surface surveillance solution based on fusion algorithm

    Science.gov (United States)

    Liu, Jianliang; Xu, Yang; Liang, Xuelin; Yang, Yihuang

    2017-01-01

    In this paper, we propose an airport surface surveillance solution combined with Multilateration (MLAT) and Automatic Dependent Surveillance Broadcast (ADS-B). The moving target to be monitored is regarded as a linear stochastic hybrid system moving freely and each surveillance technology is simplified as a sensor with white Gaussian noise. The dynamic model of target and the observation model of sensor are established in this paper. The measurements of sensors are filtered properly by estimators to get the estimation results for current time. Then, we analysis the characteristics of two fusion solutions proposed, and decide to use the scheme based on sensor estimation fusion for our surveillance solution. In the proposed fusion algorithm, according to the output of estimators, the estimation error is quantified, and the fusion weight of each sensor is calculated. The two estimation results are fused with weights, and the position estimation of target is computed accurately. Finally the proposed solution and algorithm are validated by an illustrative target tracking simulation.

  1. Genetic algorithm solution for partial digest problem.

    Science.gov (United States)

    Ahrabian, Hayedeh; Ganjtabesh, Mohammad; Nowzari-Dalini, Abbas; Razaghi-Moghadam-Kashani, Zahra

    2013-01-01

    One of the fundamental problems in computational biology is the construction of physical maps of chromosomes from the hybridisation experiments between unique probes and clones of chromosome fragments. Before introducing the shotgun sequencing method, Partial Digest Problem (PDP) was an intractable problem used to construct the physical maps of DNA sequence in molecular biology. In this paper, we develop a novel Genetic Algorithm (GA) for solving the PDP. This algorithm is implemented and compared with well-known existing algorithms on different types of random and real instances data, and the obtained results show the efficiency of our algorithm. Also, our GA is adapted to handle the erroneous data and their efficiency is presented for the large instances of this problem.

  2. Massively Parallel Algorithms for Solution of Schrodinger Equation

    Science.gov (United States)

    Fijany, Amir; Barhen, Jacob; Toomerian, Nikzad

    1994-01-01

    In this paper massively parallel algorithms for solution of Schrodinger equation are developed. Our results clearly indicate that the Crank-Nicolson method, in addition to its excellent numerical properties, is also highly suitable for massively parallel computation.

  3. A discretized algorithm for the solution of a constrained, continuous ...

    African Journals Online (AJOL)

    A discretized algorithm for the solution of a constrained, continuous quadratic control problem. ... The results obtained show that the Discretized constrained algorithm (DCA) is much more accurate and more efficient than some of these techniques, particularly the FSA. Journal of the Nigerian Association of Mathematical ...

  4. From analytical solutions of solute transport equations to multidimensional time-domain random walk (TDRW) algorithms

    Science.gov (United States)

    Bodin, Jacques

    2015-03-01

    In this study, new multi-dimensional time-domain random walk (TDRW) algorithms are derived from approximate one-dimensional (1-D), two-dimensional (2-D), and three-dimensional (3-D) analytical solutions of the advection-dispersion equation and from exact 1-D, 2-D, and 3-D analytical solutions of the pure-diffusion equation. These algorithms enable the calculation of both the time required for a particle to travel a specified distance in a homogeneous medium and the mass recovery at the observation point, which may be incomplete due to 2-D or 3-D transverse dispersion or diffusion. The method is extended to heterogeneous media, represented as a piecewise collection of homogeneous media. The particle motion is then decomposed along a series of intermediate checkpoints located on the medium interface boundaries. The accuracy of the multi-dimensional TDRW method is verified against (i) exact analytical solutions of solute transport in homogeneous media and (ii) finite-difference simulations in a synthetic 2-D heterogeneous medium of simple geometry. The results demonstrate that the method is ideally suited to purely diffusive transport and to advection-dispersion transport problems dominated by advection. Conversely, the method is not recommended for highly dispersive transport problems because the accuracy of the advection-dispersion TDRW algorithms degrades rapidly for a low Péclet number, consistent with the accuracy limit of the approximate analytical solutions. The proposed approach provides a unified methodology for deriving multi-dimensional time-domain particle equations and may be applicable to other mathematical transport models, provided that appropriate analytical solutions are available.

  5. Multiagent scheduling models and algorithms

    CERN Document Server

    Agnetis, Alessandro; Gawiejnowicz, Stanisław; Pacciarelli, Dario; Soukhal, Ameur

    2014-01-01

    This book presents multi-agent scheduling models in which subsets of jobs sharing the same resources are evaluated by different criteria. It discusses complexity results, approximation schemes, heuristics and exact algorithms.

  6. Accurate solution algorithms for incompressible multiphase flows

    International Nuclear Information System (INIS)

    Rider, W.J.; Kothe, D.B.; Mosso, S.J.; Cerutti, J.H.; Hochstein, J.I.

    1994-01-01

    A number of advances in modeling multiphase incompressible flow are described. These advances include high-order Godunov projection methods, piecewise linear interface reconstruction and tracking and the continuum surface force model. Examples are given

  7. Parallel Algorithms for Model Checking

    NARCIS (Netherlands)

    van de Pol, Jaco; Mousavi, Mohammad Reza; Sgall, Jiri

    2017-01-01

    Model checking is an automated verification procedure, which checks that a model of a system satisfies certain properties. These properties are typically expressed in some temporal logic, like LTL and CTL. Algorithms for LTL model checking (linear time logic) are based on automata theory and graph

  8. Alternative solution algorithm for coupled thermal-hydraulic problems

    International Nuclear Information System (INIS)

    Farnsworth, D.A.; Rice, J.G.

    1986-01-01

    A thermal-hydraulic system involves flow of a fluid for which a combined solution of the continuity, momentum, and energy equations is required. When the solutions of the energy and momentum fields are dependent on each other, the system is said to be thermally coupled. A common problem encountered in the numerical solution of strongly coupled thermal-hydraulic problems is a very slow rate of convergence or a complete lack of convergence. Many times this degradation in convergence is due to the lack of true coupling between the energy and momentum fields during the iteration process. In the most widely used solution algorithms - such as the SIMPLE algorithm and its many variants - a sequential solution technique is required. That is, the solution process alternates between the flow and energy fields until a converged solution is obtained. This approach allows only implicit energy-momentum coupling. To improve the convergence rate for strongly coupled problems, a practical solution algorithm that can accommodate true energy-momentum coupling terms was developed. A complete simultaneous (versus sequential) solution of the governing conservation equations utilizing a line-by-line solution was developed and direct coupling terms between the momentum and energy fields were added utilizing a modified Newton-Raphson technique

  9. A genetic algorithm for solving supply chain network design model

    Science.gov (United States)

    Firoozi, Z.; Ismail, N.; Ariafar, S. H.; Tang, S. H.; Ariffin, M. K. M. A.

    2013-09-01

    Network design is by nature costly and optimization models play significant role in reducing the unnecessary cost components of a distribution network. This study proposes a genetic algorithm to solve a distribution network design model. The structure of the chromosome in the proposed algorithm is defined in a novel way that in addition to producing feasible solutions, it also reduces the computational complexity of the algorithm. Computational results are presented to show the algorithm performance.

  10. Applied Integer Programming Modeling and Solution

    CERN Document Server

    Chen, Der-San; Dang, Yu

    2011-01-01

    An accessible treatment of the modeling and solution of integer programming problems, featuring modern applications and software In order to fully comprehend the algorithms associated with integer programming, it is important to understand not only how algorithms work, but also why they work. Applied Integer Programming features a unique emphasis on this point, focusing on problem modeling and solution using commercial software. Taking an application-oriented approach, this book addresses the art and science of mathematical modeling related to the mixed integer programming (MIP) framework and

  11. Algorithmic Issues in Modeling Motion

    DEFF Research Database (Denmark)

    Agarwal, P. K; Guibas, L. J; Edelsbrunner, H.

    2003-01-01

    This article is a survey of research areas in which motion plays a pivotal role. The aim of the article is to review current approaches to modeling motion together with related data structures and algorithms, and to summarize the challenges that lie ahead in producing a more unified theory of mot...

  12. Algorithmic solution of arithmetic problems and operands-answer associations in long-term memory.

    Science.gov (United States)

    Thevenot, C; Barrouillet, P; Fayol, M

    2001-05-01

    Many developmental models of arithmetic problem solving assume that any algorithmic solution of a given problem results in an association of the two operands and the answer in memory (Logan & Klapp, 1991; Siegler, 1996). In this experiment, adults had to perform either an operation or a comparison on the same pairs of two-digit numbers and then a recognition task. It is shown that unlike comparisons, the algorithmic solution of operations impairs the recognition of operands in adults. Thus, the postulate of a necessary and automatic storage of operands-answer associations in memory when young children solve additions by algorithmic strategies needs to be qualified.

  13. AUTOMATION PROGRAM FOR RECOGNITION OF ALGORITHM SOLUTION OF MATHEMATIC TASK

    Directory of Open Access Journals (Sweden)

    Denis N. Butorin

    2014-01-01

    Full Text Available In the article are been describing technology for manage of testing task in computer program. It was found for recognition of algorithm solution of mathematic task. There are been justifi ed the using hierarchical structure for a special set of testing questions. Also, there has been presented the release of the described tasks in the computer program openSEE. 

  14. AUTOMATION PROGRAM FOR RECOGNITION OF ALGORITHM SOLUTION OF MATHEMATIC TASK

    OpenAIRE

    Denis N. Butorin

    2014-01-01

    In the article are been describing technology for manage of testing task in computer program. It was found for recognition of algorithm solution of mathematic task. There are been justifi ed the using hierarchical structure for a special set of testing questions. Also, there has been presented the release of the described tasks in the computer program openSEE. 

  15. The linear ordering problem: an algorithm for the optimal solution ...

    African Journals Online (AJOL)

    In this paper we describe and implement an algorithm for the exact solution of the Linear Ordering problem. Linear Ordering is the problem of finding a linear order of the nodes of a graph such that the sum of the weights which are consistent with this order is as large as possible. It is an NP - Hard combinatorial optimisation ...

  16. Autonomous path planning solution for industrial robot manipulator using backpropagation algorithm

    Directory of Open Access Journals (Sweden)

    PeiJiang Yuan

    2015-12-01

    Full Text Available Here, we propose an autonomous path planning solution using backpropagation algorithm. The mechanism of movement used by humans in controlling their arms is analyzed and then applied to control a robot manipulator. Autonomous path planning solution is a numerical method. The model of industrial robot manipulator used in this article is a KUKA KR 210 R2700 EXTRA robot. In order to show the performance of the autonomous path planning solution, an experiment validation of path tracking is provided. Experiment validation consists of implementation of the autonomous path planning solution and the control of physical robot. The process of converging to target solution is provided. The mean absolute error of position for tool center point is also analyzed. Comparison between autonomous path planning solution and the numerical methods based on Newton–Raphson algorithm is provided to demonstrate the efficiency and accuracy of the autonomous path planning solution.

  17. Amodified probabilistic genetic algorithm for the solution of complex constrained optimization problems

    OpenAIRE

    Vorozheikin, A.; Gonchar, T.; Panfilov, I.; Sopov, E.; Sopov, S.

    2009-01-01

    A new algorithm for the solution of complex constrained optimization problems based on the probabilistic genetic algorithm with optimal solution prediction is proposed. The efficiency investigation results in comparison with standard genetic algorithm are presented.

  18. Naturally selecting solutions: the use of genetic algorithms in bioinformatics.

    Science.gov (United States)

    Manning, Timmy; Sleator, Roy D; Walsh, Paul

    2013-01-01

    For decades, computer scientists have looked to nature for biologically inspired solutions to computational problems; ranging from robotic control to scheduling optimization. Paradoxically, as we move deeper into the post-genomics era, the reverse is occurring, as biologists and bioinformaticians look to computational techniques, to solve a variety of biological problems. One of the most common biologically inspired techniques are genetic algorithms (GAs), which take the Darwinian concept of natural selection as the driving force behind systems for solving real world problems, including those in the bioinformatics domain. Herein, we provide an overview of genetic algorithms and survey some of the most recent applications of this approach to bioinformatics based problems.

  19. Anisotropic generalization of well-known solutions describing relativistic self-gravitating fluid systems. An algorithm

    Energy Technology Data Exchange (ETDEWEB)

    Thirukkanesh, S. [Eastern University, Department of Mathematics, Chenkalady (Sri Lanka); Ragel, F.C. [Eastern University, Department of Physics, Chenkalady (Sri Lanka); Sharma, Ranjan; Das, Shyam [P.D. Women' s College, Department of Physics, Jalpaiguri (India)

    2018-01-15

    We present an algorithm to generalize a plethora of well-known solutions to Einstein field equations describing spherically symmetric relativistic fluid spheres by relaxing the pressure isotropy condition on the system. By suitably fixing the model parameters in our formulation, we generate closed-form solutions which may be treated as an anisotropic generalization of a large class of solutions describing isotropic fluid spheres. From the resultant solutions, a particular solution is taken up to show its physical acceptability. Making use of the current estimate of mass and radius of a known pulsar, the effects of anisotropic stress on the gross physical behaviour of a relativistic compact star is also highlighted. (orig.)

  20. An algorithm for the solution of dynamic linear programs

    Science.gov (United States)

    Psiaki, Mark L.

    1989-01-01

    The algorithm's objective is to efficiently solve Dynamic Linear Programs (DLP) by taking advantage of their special staircase structure. This algorithm constitutes a stepping stone to an improved algorithm for solving Dynamic Quadratic Programs, which, in turn, would make the nonlinear programming method of Successive Quadratic Programs more practical for solving trajectory optimization problems. The ultimate goal is to being trajectory optimization solution speeds into the realm of real-time control. The algorithm exploits the staircase nature of the large constraint matrix of the equality-constrained DLPs encountered when solving inequality-constrained DLPs by an active set approach. A numerically-stable, staircase QL factorization of the staircase constraint matrix is carried out starting from its last rows and columns. The resulting recursion is like the time-varying Riccati equation from multi-stage LQR theory. The resulting factorization increases the efficiency of all of the typical LP solution operations over that of a dense matrix LP code. At the same time numerical stability is ensured. The algorithm also takes advantage of dynamic programming ideas about the cost-to-go by relaxing active pseudo constraints in a backwards sweeping process. This further decreases the cost per update of the LP rank-1 updating procedure, although it may result in more changes of the active set that if pseudo constraints were relaxed in a non-stagewise fashion. The usual stability of closed-loop Linear/Quadratic optimally-controlled systems, if it carries over to strictly linear cost functions, implies that the saving due to reduced factor update effort may outweigh the cost of an increased number of updates. An aerospace example is presented in which a ground-to-ground rocket's distance is maximized. This example demonstrates the applicability of this class of algorithms to aerospace guidance. It also sheds light on the efficacy of the proposed pseudo constraint relaxation

  1. A new Green's function Monte Carlo algorithm for the solution of the two-dimensional nonlinear Poisson–Boltzmann equation: Application to the modeling of the communication breakdown problem in space vehicles during re-entry

    International Nuclear Information System (INIS)

    Chatterjee, Kausik; Roadcap, John R.; Singh, Surendra

    2014-01-01

    The objective of this paper is the exposition of a recently-developed, novel Green's function Monte Carlo (GFMC) algorithm for the solution of nonlinear partial differential equations and its application to the modeling of the plasma sheath region around a cylindrical conducting object, carrying a potential and moving at low speeds through an otherwise neutral medium. The plasma sheath is modeled in equilibrium through the GFMC solution of the nonlinear Poisson–Boltzmann (NPB) equation. The traditional Monte Carlo based approaches for the solution of nonlinear equations are iterative in nature, involving branching stochastic processes which are used to calculate linear functionals of the solution of nonlinear integral equations. Over the last several years, one of the authors of this paper, K. Chatterjee has been developing a philosophically-different approach, where the linearization of the equation of interest is not required and hence there is no need for iteration and the simulation of branching processes. Instead, an approximate expression for the Green's function is obtained using perturbation theory, which is used to formulate the random walk equations within the problem sub-domains where the random walker makes its walks. However, as a trade-off, the dimensions of these sub-domains have to be restricted by the limitations imposed by perturbation theory. The greatest advantage of this approach is the ease and simplicity of parallelization stemming from the lack of the need for iteration, as a result of which the parallelization procedure is identical to the parallelization procedure for the GFMC solution of a linear problem. The application area of interest is in the modeling of the communication breakdown problem during a space vehicle's re-entry into the atmosphere. However, additional application areas are being explored in the modeling of electromagnetic propagation through the atmosphere/ionosphere in UHF/GPS applications

  2. A new Green's function Monte Carlo algorithm for the solution of the two-dimensional nonlinear Poisson–Boltzmann equation: Application to the modeling of the communication breakdown problem in space vehicles during re-entry

    Energy Technology Data Exchange (ETDEWEB)

    Chatterjee, Kausik, E-mail: kausik.chatterjee@aggiemail.usu.edu [Strategic and Military Space Division, Space Dynamics Laboratory, North Logan, UT 84341 (United States); Center for Atmospheric and Space Sciences, Utah State University, Logan, UT 84322 (United States); Roadcap, John R., E-mail: john.roadcap@us.af.mil [Air Force Research Laboratory, Kirtland AFB, NM 87117 (United States); Singh, Surendra, E-mail: surendra-singh@utulsa.edu [Department of Electrical Engineering, The University of Tulsa, Tulsa, OK 74104 (United States)

    2014-11-01

    The objective of this paper is the exposition of a recently-developed, novel Green's function Monte Carlo (GFMC) algorithm for the solution of nonlinear partial differential equations and its application to the modeling of the plasma sheath region around a cylindrical conducting object, carrying a potential and moving at low speeds through an otherwise neutral medium. The plasma sheath is modeled in equilibrium through the GFMC solution of the nonlinear Poisson–Boltzmann (NPB) equation. The traditional Monte Carlo based approaches for the solution of nonlinear equations are iterative in nature, involving branching stochastic processes which are used to calculate linear functionals of the solution of nonlinear integral equations. Over the last several years, one of the authors of this paper, K. Chatterjee has been developing a philosophically-different approach, where the linearization of the equation of interest is not required and hence there is no need for iteration and the simulation of branching processes. Instead, an approximate expression for the Green's function is obtained using perturbation theory, which is used to formulate the random walk equations within the problem sub-domains where the random walker makes its walks. However, as a trade-off, the dimensions of these sub-domains have to be restricted by the limitations imposed by perturbation theory. The greatest advantage of this approach is the ease and simplicity of parallelization stemming from the lack of the need for iteration, as a result of which the parallelization procedure is identical to the parallelization procedure for the GFMC solution of a linear problem. The application area of interest is in the modeling of the communication breakdown problem during a space vehicle's re-entry into the atmosphere. However, additional application areas are being explored in the modeling of electromagnetic propagation through the atmosphere/ionosphere in UHF/GPS applications.

  3. Models and algorithms for biomolecules and molecular networks

    CERN Document Server

    DasGupta, Bhaskar

    2016-01-01

    By providing expositions to modeling principles, theories, computational solutions, and open problems, this reference presents a full scope on relevant biological phenomena, modeling frameworks, technical challenges, and algorithms. * Up-to-date developments of structures of biomolecules, systems biology, advanced models, and algorithms * Sampling techniques for estimating evolutionary rates and generating molecular structures * Accurate computation of probability landscape of stochastic networks, solving discrete chemical master equations * End-of-chapter exercises

  4. An Algorithm for Isolating the Real Solutions of Piecewise Algebraic Curves

    Directory of Open Access Journals (Sweden)

    Jinming Wu

    2011-01-01

    to compute the real solutions of two piecewise algebraic curves. It is primarily based on the Krawczyk-Moore iterative algorithm and good initial iterative interval searching algorithm. The proposed algorithm is relatively easy to implement.

  5. Solution of single linear tridiagonal systems and vectorization of the ICCG algorithm on the Cray 1

    International Nuclear Information System (INIS)

    Kershaw, D.S.

    1981-01-01

    The numerical algorithms used to solve the physics equation in codes which model laser fusion are examined, it is found that a large number of subroutines require the solution of tridiagonal linear systems of equations. One dimensional radiation transport, thermal and suprathermal electron transport, ion thermal conduction, charged particle and neutron transport, all require the solution of tridiagonal systems of equations. The standard algorithm that has been used in the past on CDC 7600's will not vectorize and so cannot take advantage of the large speed increases possible on the Cray-1 through vectorization. There is however, an alternate algorithm for solving tridiagonal systems, called cyclic reduction, which allows for vectorization, and which is optimal for the Cray-1. Software based on this algorithm is now being used in LASNEX to solve tridiagonal linear systems in the subroutines mentioned above. The new algorithm runs as much as five times faster than the standard algorithm on the Cray-1. The ICCG method is being used to solve the diffusion equation with a nine-point coupling scheme on the CDC 7600. In going from the CDC 7600 to the Cray-1, a large part of the algorithm consists of solving tridiagonal linear systems on each L line of the Lagrangian mesh in a manner which is not vectorizable. An alternate ICCG algorithm for the Cray-1 was developed which utilizes a block form of the cyclic reduction algorithm. This new algorithm allows full vectorization and runs as much as five times faster than the old algorithm on the Cray-1. It is now being used in Cray LASNEX to solve the two-dimensional diffusion equation in all the physics subroutines mentioned above

  6. Automatic differentiation algorithms in model analysis

    NARCIS (Netherlands)

    Huiskes, M.J.

    2002-01-01

    Title: Automatic differentiation algorithms in model analysis
    Author: M.J. Huiskes
    Date: 19 March, 2002

    In this thesis automatic differentiation algorithms and derivative-based methods

  7. Fireworks algorithm for mean-VaR/CVaR models

    Science.gov (United States)

    Zhang, Tingting; Liu, Zhifeng

    2017-10-01

    Intelligent algorithms have been widely applied to portfolio optimization problems. In this paper, we introduce a novel intelligent algorithm, named fireworks algorithm, to solve the mean-VaR/CVaR model for the first time. The results show that, compared with the classical genetic algorithm, fireworks algorithm not only improves the optimization accuracy and the optimization speed, but also makes the optimal solution more stable. We repeat our experiments at different confidence levels and different degrees of risk aversion, and the results are robust. It suggests that fireworks algorithm has more advantages than genetic algorithm in solving the portfolio optimization problem, and it is feasible and promising to apply it into this field.

  8. A Solution Generator Algorithm for Decision Making based Automated Negotiation in the Construction Domain

    Directory of Open Access Journals (Sweden)

    Arazi Idrus

    2017-12-01

    Full Text Available In this paper, we present our work-in-progress of a proposed framework for automated negotiation in the construction domain. The proposed framework enables software agents to conduct negotiations and autonomously make value-based decisions. The framework consists of three main components which are, solution generator algorithm, negotiation algorithm, and conflict resolution algorithm. This paper extends the discussion on the solution generator algorithm that enables software agents to generate solutions and rank them from 1st to nth solution for the negotiation stage of the operation. The solution generator algorithm consists of three steps which are, review solutions, rank solutions, and form ranked solutions. For validation purpose, we present a scenario that utilizes the proposed algorithm to rank solutions. The validation shows that the algorithm is promising, however, it also highlights the conflict between different parties that needs further negotiation action.

  9. Static Load Balancing Algorithms In Cloud Computing Challenges amp Solutions

    Directory of Open Access Journals (Sweden)

    Nadeem Shah

    2015-08-01

    Full Text Available Abstract Cloud computing provides on-demand hosted computing resources and services over the Internet on a pay-per-use basis. It is currently becoming the favored method of communication and computation over scalable networks due to numerous attractive attributes such as high availability scalability fault tolerance simplicity of management and low cost of ownership. Due to the huge demand of cloud computing efficient load balancing becomes critical to ensure that computational tasks are evenly distributed across servers to prevent bottlenecks. The aim of this review paper is to understand the current challenges in cloud computing primarily in cloud load balancing using static algorithms and finding gaps to bridge for more efficient static cloud load balancing in the future. We believe the ideas suggested as new solution will allow researchers to redesign better algorithms for better functionalities and improved user experiences in simple cloud systems. This could assist small businesses that cannot afford infrastructure that supports complex amp dynamic load balancing algorithms.

  10. Vortex solutions in a Witten-type model

    International Nuclear Information System (INIS)

    Itaya, Satoru; Sawado, Nobuyuki; Suzuki, Michitaka

    2014-01-01

    Straight line vortex solutions in a Witten's superconducting string model are studied. The model has many parameters and this is the main reason of the complexity. We argue the precise conditions of the parameters for finding the solutions of the model. We obtain the rotationally symmetric solutions for the winding numbers m = 1 - 4 with/without the gauge field. For the higher winding numbers, an energy minimization algorithm is used to investigate non-rotational solutions

  11. ALGORITHM OF SELECTION EFFECTIVE SOLUTIONS FOR REPROFILING OF INDUSTRIAL BUILDINGS

    Directory of Open Access Journals (Sweden)

    MENEJLJUK A. I.

    2016-08-01

    Full Text Available Raising of problem.Non-compliance requirements of today's industrial enterprises, which were built during the Soviet period, as well as significant technical progress, economic reform and transition to market principles of performance evaluation leading to necessity to change their target and functionality. The technical condition of many industrial buildings in Ukraine allows to exploit them for decades.Redesigning manufacturing enterprises allows not only to reduce the cost of construction, but also to obtain new facilities in the city. Despite the large number of industrial buildings that have lost their effectiveness and relevance, as well as a significant investor interest in these objects, the scope of redevelopment in the construction remains unexplored. Analysis researches on the topic. The problem of reconstruction of industrial buildings considered in Topchy D. [3], Travin V. [9], as well as in the work of other scientists. However, there are no rules in regulatory documents and system studies for improving the organization of the reconstruction of buildings at realigning. The purpose of this work is the development an algorithm of actions for selection of effective organizational decisions at the planning stage of a reprofiling project of industrial buildings. The proposed algorithm allows you to select an effective organizational and technological solution for the re-profiling of industrial buildings, taking into account features of the building, its location, its state of structures and existing restrictions. The most effective organizational solution allows realize the reprofiling project of an industrial building in the most possible short terms and with the lowest possible use of material resources, taking into account the available features and restrictions. Conclusion. Each object has a number of unique features that necessary for considering at choosing an effective reprofiling variant. The developed algorithm for selecting

  12. Artificial Neural Network Modeling and Genetic Algorithm Optimization for Cadmium Removal from Aqueous Solutions by Reduced Graphene Oxide-Supported Nanoscale Zero-Valent Iron (nZVI/rGO) Composites.

    Science.gov (United States)

    Fan, Mingyi; Li, Tongjun; Hu, Jiwei; Cao, Rensheng; Wei, Xionghui; Shi, Xuedan; Ruan, Wenqian

    2017-05-17

    Reduced graphene oxide-supported nanoscale zero-valent iron (nZVI/rGO) composites were synthesized in the present study by chemical deposition method and were then characterized by various methods, such as Fourier-transform infrared spectroscopy (FTIR) and X-ray photoelectron spectroscopy (XPS). The nZVI/rGO composites prepared were utilized for Cd(II) removal from aqueous solutions in batch mode at different initial Cd(II) concentrations, initial pH values, contact times, and operating temperatures. Response surface methodology (RSM) and artificial neural network hybridized with genetic algorithm (ANN-GA) were used for modeling the removal efficiency of Cd(II) and optimizing the four removal process variables. The average values of prediction errors for the RSM and ANN-GA models were 6.47% and 1.08%. Although both models were proven to be reliable in terms of predicting the removal efficiency of Cd(II), the ANN-GA model was found to be more accurate than the RSM model. In addition, experimental data were fitted to the Langmuir, Freundlich, and Dubinin-Radushkevich (D-R) isotherms. It was found that the Cd(II) adsorption was best fitted to the Langmuir isotherm. Examination on thermodynamic parameters revealed that the removal process was spontaneous and exothermic in nature. Furthermore, the pseudo-second-order model can better describe the kinetics of Cd(II) removal with a good R² value than the pseudo-first-order model.

  13. Algorithms for synthesizing management solutions based on OLAP-technologies

    Science.gov (United States)

    Pishchukhin, A. M.; Akhmedyanova, G. F.

    2018-05-01

    OLAP technologies are a convenient means of analyzing large amounts of information. An attempt was made in their work to improve the synthesis of optimal management decisions. The developed algorithms allow forecasting the needs and accepted management decisions on the main types of the enterprise resources. Their advantage is the efficiency, based on the simplicity of quadratic functions and differential equations of only the first order. At the same time, the optimal redistribution of resources between different types of products from the assortment of the enterprise is carried out, and the optimal allocation of allocated resources in time. The proposed solutions can be placed on additional specially entered coordinates of the hypercube representing the data warehouse.

  14. Modeling and Engineering Algorithms for Mobile Data

    DEFF Research Database (Denmark)

    Blunck, Henrik; Hinrichs, Klaus; Sondern, Joëlle

    2006-01-01

    In this paper, we present an object-oriented approach to modeling mobile data and algorithms operating on such data. Our model is general enough to capture any kind of continuous motion while at the same time allowing for encompassing algorithms optimized for specific types of motion. Such motion...

  15. Continuous Time Dynamic Contraflow Models and Algorithms

    Directory of Open Access Journals (Sweden)

    Urmila Pyakurel

    2016-01-01

    Full Text Available The research on evacuation planning problem is promoted by the very challenging emergency issues due to large scale natural or man-created disasters. It is the process of shifting the maximum number of evacuees from the disastrous areas to the safe destinations as quickly and efficiently as possible. Contraflow is a widely accepted model for good solution of evacuation planning problem. It increases the outbound road capacity by reversing the direction of roads towards the safe destination. The continuous dynamic contraflow problem sends the maximum number of flow as a flow rate from the source to the sink in every moment of time unit. We propose the mathematical model for the continuous dynamic contraflow problem. We present efficient algorithms to solve the maximum continuous dynamic contraflow and quickest continuous contraflow problems on single source single sink arbitrary networks and continuous earliest arrival contraflow problem on single source single sink series-parallel networks with undefined supply and demand. We also introduce an approximation solution for continuous earliest arrival contraflow problem on two-terminal arbitrary networks.

  16. Improved Solutions for the Optimal Coordination of DOCRs Using Firefly Algorithm

    Directory of Open Access Journals (Sweden)

    Muhammad Sulaiman

    2018-01-01

    Full Text Available Nature-inspired optimization techniques are useful tools in electrical engineering problems to minimize or maximize an objective function. In this paper, we use the firefly algorithm to improve the optimal solution for the problem of directional overcurrent relays (DOCRs. It is a complex and highly nonlinear constrained optimization problem. In this problem, we have two types of design variables, which are variables for plug settings (PSs and the time dial settings (TDSs for each relay in the circuit. The objective function is to minimize the total operating time of all the basic relays to avoid unnecessary delays. We have considered four models in this paper which are IEEE (3-bus, 4-bus, 6-bus, and 8-bus models. From the numerical results, it is obvious that the firefly algorithm with certain parameter settings performs better than the other state-of-the-art algorithms.

  17. DiamondTorre Algorithm for High-Performance Wave Modeling

    Directory of Open Access Journals (Sweden)

    Vadim Levchenko

    2016-08-01

    Full Text Available Effective algorithms of physical media numerical modeling problems’ solution are discussed. The computation rate of such problems is limited by memory bandwidth if implemented with traditional algorithms. The numerical solution of the wave equation is considered. A finite difference scheme with a cross stencil and a high order of approximation is used. The DiamondTorre algorithm is constructed, with regard to the specifics of the GPGPU’s (general purpose graphical processing unit memory hierarchy and parallelism. The advantages of these algorithms are a high level of data localization, as well as the property of asynchrony, which allows one to effectively utilize all levels of GPGPU parallelism. The computational intensity of the algorithm is greater than the one for the best traditional algorithms with stepwise synchronization. As a consequence, it becomes possible to overcome the above-mentioned limitation. The algorithm is implemented with CUDA. For the scheme with the second order of approximation, the calculation performance of 50 billion cells per second is achieved. This exceeds the result of the best traditional algorithm by a factor of five.

  18. Artificial Neural Network Modeling and Genetic Algorithm Optimization for Cadmium Removal from Aqueous Solutions by Reduced Graphene Oxide-Supported Nanoscale Zero-Valent Iron (nZVI/rGO Composites

    Directory of Open Access Journals (Sweden)

    Mingyi Fan

    2017-05-01

    Full Text Available Reduced graphene oxide-supported nanoscale zero-valent iron (nZVI/rGO composites were synthesized in the present study by chemical deposition method and were then characterized by various methods, such as Fourier-transform infrared spectroscopy (FTIR and X-ray photoelectron spectroscopy (XPS. The nZVI/rGO composites prepared were utilized for Cd(II removal from aqueous solutions in batch mode at different initial Cd(II concentrations, initial pH values, contact times, and operating temperatures. Response surface methodology (RSM and artificial neural network hybridized with genetic algorithm (ANN-GA were used for modeling the removal efficiency of Cd(II and optimizing the four removal process variables. The average values of prediction errors for the RSM and ANN-GA models were 6.47% and 1.08%. Although both models were proven to be reliable in terms of predicting the removal efficiency of Cd(II, the ANN-GA model was found to be more accurate than the RSM model. In addition, experimental data were fitted to the Langmuir, Freundlich, and Dubinin-Radushkevich (D-R isotherms. It was found that the Cd(II adsorption was best fitted to the Langmuir isotherm. Examination on thermodynamic parameters revealed that the removal process was spontaneous and exothermic in nature. Furthermore, the pseudo-second-order model can better describe the kinetics of Cd(II removal with a good R2 value than the pseudo-first-order model.

  19. Quantitative Methods in Supply Chain Management Models and Algorithms

    CERN Document Server

    Christou, Ioannis T

    2012-01-01

    Quantitative Methods in Supply Chain Management presents some of the most important methods and tools available for modeling and solving problems arising in the context of supply chain management. In the context of this book, “solving problems” usually means designing efficient algorithms for obtaining high-quality solutions. The first chapter is an extensive optimization review covering continuous unconstrained and constrained linear and nonlinear optimization algorithms, as well as dynamic programming and discrete optimization exact methods and heuristics. The second chapter presents time-series forecasting methods together with prediction market techniques for demand forecasting of new products and services. The third chapter details models and algorithms for planning and scheduling with an emphasis on production planning and personnel scheduling. The fourth chapter presents deterministic and stochastic models for inventory control with a detailed analysis on periodic review systems and algorithmic dev...

  20. Improvement of arm solutions via step width self-tuning algorithm

    International Nuclear Information System (INIS)

    Sasaki, Shinobu

    1993-09-01

    This paper is concerned with the significant numerical problems encountered in solving the manipulator inverse kinematics. That is, essential difficulties occurred in linearized calculations such as dependence on initial guess or narrow search region are improved with great success by means of a step width self-tuning algorithm. In a practical optimization model based on the reduction of dimensionality and linearized approximation, it is shown that the desired arm solutions are found out at a faster rate over a wider application range. Also, the capability of finding solutions via a traditional Newton method is enhanced to a large extent by combined application of the proposed idea and simplex method. (author)

  1. Stochastic coalescence in finite systems: an algorithm for the numerical solution of the multivariate master equation.

    Science.gov (United States)

    Alfonso, Lester; Zamora, Jose; Cruz, Pedro

    2015-04-01

    The stochastic approach to coagulation considers the coalescence process going in a system of a finite number of particles enclosed in a finite volume. Within this approach, the full description of the system can be obtained from the solution of the multivariate master equation, which models the evolution of the probability distribution of the state vector for the number of particles of a given mass. Unfortunately, due to its complexity, only limited results were obtained for certain type of kernels and monodisperse initial conditions. In this work, a novel numerical algorithm for the solution of the multivariate master equation for stochastic coalescence that works for any type of kernels and initial conditions is introduced. The performance of the method was checked by comparing the numerically calculated particle mass spectrum with analytical solutions obtained for the constant and sum kernels, with an excellent correspondence between the analytical and numerical solutions. In order to increase the speedup of the algorithm, software parallelization techniques with OpenMP standard were used, along with an implementation in order to take advantage of new accelerator technologies. Simulations results show an important speedup of the parallelized algorithms. This study was funded by a grant from Consejo Nacional de Ciencia y Tecnologia de Mexico SEP-CONACYT CB-131879. The authors also thanks LUFAC® Computacion SA de CV for CPU time and all the support provided.

  2. Comparison of parameter estimation algorithms in hydrological modelling

    DEFF Research Database (Denmark)

    Blasone, Roberta-Serena; Madsen, Henrik; Rosbjerg, Dan

    2006-01-01

    Local search methods have been applied successfully in calibration of simple groundwater models, but might fail in locating the optimum for models of increased complexity, due to the more complex shape of the response surface. Global search algorithms have been demonstrated to perform well......-Marquardt-Levenberg algorithm (implemented in the PEST software), when applied to a steady-state and a transient groundwater model. The results show that PEST can have severe problems in locating the global optimum and in being trapped in local regions of attractions. The global SCE procedure is, in general, more effective...... and provides a better coverage of the Pareto optimal solutions at a lower computational cost....

  3. Improved Collaborative Filtering Algorithm using Topic Model

    Directory of Open Access Journals (Sweden)

    Liu Na

    2016-01-01

    Full Text Available Collaborative filtering algorithms make use of interactions rates between users and items for generating recommendations. Similarity among users or items is calculated based on rating mostly, without considering explicit properties of users or items involved. In this paper, we proposed collaborative filtering algorithm using topic model. We describe user-item matrix as document-word matrix and user are represented as random mixtures over item, each item is characterized by a distribution over users. The experiments showed that the proposed algorithm achieved better performance compared the other state-of-the-art algorithms on Movie Lens data sets.

  4. Implementing Modifed Burg Algorithms in Multivariate Subset Autoregressive Modeling

    Directory of Open Access Journals (Sweden)

    A. Alexandre Trindade

    2003-02-01

    Full Text Available The large number of parameters in subset vector autoregressive models often leads one to procure fast, simple, and efficient alternatives or precursors to maximum likelihood estimation. We present the solution of the multivariate subset Yule-Walker equations as one such alternative. In recent work, Brockwell, Dahlhaus, and Trindade (2002, show that the Yule-Walker estimators can actually be obtained as a special case of a general recursive Burg-type algorithm. We illustrate the structure of this Algorithm, and discuss its implementation in a high-level programming language. Applications of the Algorithm in univariate and bivariate modeling are showcased in examples. Univariate and bivariate versions of the Algorithm written in Fortran 90 are included in the appendix, and their use illustrated.

  5. Fast algorithms for transport models. Final report

    International Nuclear Information System (INIS)

    Manteuffel, T.A.

    1994-01-01

    This project has developed a multigrid in space algorithm for the solution of the S N equations with isotropic scattering in slab geometry. The algorithm was developed for the Modified Linear Discontinuous (MLD) discretization in space which is accurate in the thick diffusion limit. It uses a red/black two-cell μ-line relaxation. This relaxation solves for all angles on two adjacent spatial cells simultaneously. It takes advantage of the rank-one property of the coupling between angles and can perform this inversion in O(N) operations. A version of the multigrid in space algorithm was programmed on the Thinking Machines Inc. CM-200 located at LANL. It was discovered that on the CM-200 a block Jacobi type iteration was more efficient than the block red/black iteration. Given sufficient processors all two-cell block inversions can be carried out simultaneously with a small number of parallel steps. The bottleneck is the need for sums of N values, where N is the number of discrete angles, each from a different processor. These are carried out by machine intrinsic functions and are well optimized. The overall algorithm has computational complexity O(log(M)), where M is the number of spatial cells. The algorithm is very efficient and represents the state-of-the-art for isotropic problems in slab geometry. For anisotropic scattering in slab geometry, a multilevel in angle algorithm was developed. A parallel version of the multilevel in angle algorithm has also been developed. Upon first glance, the shifted transport sweep has limited parallelism. Once the right-hand-side has been computed, the sweep is completely parallel in angle, becoming N uncoupled initial value ODE's. The author has developed a cyclic reduction algorithm that renders it parallel with complexity O(log(M)). The multilevel in angle algorithm visits log(N) levels, where shifted transport sweeps are performed. The overall complexity is O(log(N)log(M))

  6. Use of artificial bee colonies algorithm as numerical approximation of differential equations solution

    Science.gov (United States)

    Fikri, Fariz Fahmi; Nuraini, Nuning

    2018-03-01

    The differential equation is one of the branches in mathematics which is closely related to human life problems. Some problems that occur in our life can be modeled into differential equations as well as systems of differential equations such as the Lotka-Volterra model and SIR model. Therefore, solving a problem of differential equations is very important. Some differential equations are difficult to solve, so numerical methods are needed to solve that problems. Some numerical methods for solving differential equations that have been widely used are Euler Method, Heun Method, Runge-Kutta and others. However, some of these methods still have some restrictions that cause the method cannot be used to solve more complex problems such as an evaluation interval that we cannot change freely. New methods are needed to improve that problems. One of the method that can be used is the artificial bees colony algorithm. This algorithm is one of metaheuristic algorithm method, which can come out from local search space and do exploration in solution search space so that will get better solution than other method.

  7. Applicability of genetic algorithms to parameter estimation of economic models

    Directory of Open Access Journals (Sweden)

    Marcel Ševela

    2004-01-01

    Full Text Available The paper concentrates on capability of genetic algorithms for parameter estimation of non-linear economic models. In the paper we test the ability of genetic algorithms to estimate of parameters of demand function for durable goods and simultaneously search for parameters of genetic algorithm that lead to maximum effectiveness of the computation algorithm. The genetic algorithms connect deterministic iterative computation methods with stochastic methods. In the genteic aůgorithm approach each possible solution is represented by one individual, those life and lifes of all generations of individuals run under a few parameter of genetic algorithm. Our simulations resulted in optimal mutation rate of 15% of all bits in chromosomes, optimal elitism rate 20%. We can not set the optimal extend of generation, because it proves positive correlation with effectiveness of genetic algorithm in all range under research, but its impact is degreasing. The used genetic algorithm was sensitive to mutation rate at most, than to extend of generation. The sensitivity to elitism rate is not so strong.

  8. Fast Combinatorial Algorithm for the Solution of Linearly Constrained Least Squares Problems

    Science.gov (United States)

    Van Benthem, Mark H.; Keenan, Michael R.

    2008-11-11

    A fast combinatorial algorithm can significantly reduce the computational burden when solving general equality and inequality constrained least squares problems with large numbers of observation vectors. The combinatorial algorithm provides a mathematically rigorous solution and operates at great speed by reorganizing the calculations to take advantage of the combinatorial nature of the problems to be solved. The combinatorial algorithm exploits the structure that exists in large-scale problems in order to minimize the number of arithmetic operations required to obtain a solution.

  9. Model Checking Algorithms for CTMDPs

    DEFF Research Database (Denmark)

    Buchholz, Peter; Hahn, Ernst Moritz; Hermanns, Holger

    2011-01-01

    Continuous Stochastic Logic (CSL) can be interpreted over continuoustime Markov decision processes (CTMDPs) to specify quantitative properties of stochastic systems that allow some external control. Model checking CSL formulae over CTMDPs requires then the computation of optimal control strategie...

  10. Evolutionary Algorithms Approach to the Solution of Damage Detection Problems

    Science.gov (United States)

    Salazar Pinto, Pedro Yoajim; Begambre, Oscar

    2010-09-01

    In this work is proposed a new Self-Configured Hybrid Algorithm by combining the Particle Swarm Optimization (PSO) and a Genetic Algorithm (GA). The aim of the proposed strategy is to increase the stability and accuracy of the search. The central idea is the concept of Guide Particle, this particle (the best PSO global in each generation) transmits its information to a particle of the following PSO generation, which is controlled by the GA. Thus, the proposed hybrid has an elitism feature that improves its performance and guarantees the convergence of the procedure. In different test carried out in benchmark functions, reported in the international literature, a better performance in stability and accuracy was observed; therefore the new algorithm was used to identify damage in a simple supported beam using modal data. Finally, it is worth noting that the algorithm is independent of the initial definition of heuristic parameters.

  11. a permutation encoding te algorithm solution of reso tation encoding

    African Journals Online (AJOL)

    eobe

    Keywords: Genetic algorithm, resource constrained. 1. INTRODUCTION. 1. .... Nigerian Journal of Technology. Vol. 34, No. 1, January 2015. 128 ... 4. ENCODING OF CHROMOSOME. ENCODING OF CHROMOSOME .... International Multi conference of Engineers and ... method”, Naval Research Logistics, vol 48, issue 2,.

  12. Application of genetic algorithm in radio ecological models parameter determination

    Energy Technology Data Exchange (ETDEWEB)

    Pantelic, G. [Institute of Occupatioanl Health and Radiological Protection ' Dr Dragomir Karajovic' , Belgrade (Serbia)

    2006-07-01

    The method of genetic algorithms was used to determine the biological half-life of 137 Cs in cow milk after the accident in Chernobyl. Methodologically genetic algorithms are based on the fact that natural processes tend to optimize themselves and therefore this method should be more efficient in providing optimal solutions in the modeling of radio ecological and environmental events. The calculated biological half-life of 137 Cs in milk is (32 {+-} 3) days and transfer coefficient from grass to milk is (0.019 {+-} 0.005). (authors)

  13. Application of genetic algorithm in radio ecological models parameter determination

    International Nuclear Information System (INIS)

    Pantelic, G.

    2006-01-01

    The method of genetic algorithms was used to determine the biological half-life of 137 Cs in cow milk after the accident in Chernobyl. Methodologically genetic algorithms are based on the fact that natural processes tend to optimize themselves and therefore this method should be more efficient in providing optimal solutions in the modeling of radio ecological and environmental events. The calculated biological half-life of 137 Cs in milk is (32 ± 3) days and transfer coefficient from grass to milk is (0.019 ± 0.005). (authors)

  14. ABC Algorithm based Fuzzy Modeling of Optical Glucose Detection

    Directory of Open Access Journals (Sweden)

    SARACOGLU, O. G.

    2016-08-01

    Full Text Available This paper presents a modeling approach based on the use of fuzzy reasoning mechanism to define a measured data set obtained from an optical sensing circuit. For this purpose, we implemented a simple but effective an in vitro optical sensor to measure glucose content of an aqueous solution. Measured data contain analog voltages representing the absorbance values of three wavelengths measured from an RGB LED in different glucose concentrations. To achieve a desired model performance, the parameters of the fuzzy models are optimized by using the artificial bee colony (ABC algorithm. The modeling results presented in this paper indicate that the fuzzy model optimized by the algorithm provide a successful modeling performance having the minimum mean squared error (MSE of 0.0013 which are in clearly good agreement with the measurements.

  15. Fuzzy audit risk modeling algorithm

    Directory of Open Access Journals (Sweden)

    Zohreh Hajihaa

    2011-07-01

    Full Text Available Fuzzy logic has created suitable mathematics for making decisions in uncertain environments including professional judgments. One of the situations is to assess auditee risks. During recent years, risk based audit (RBA has been regarded as one of the main tools to fight against fraud. The main issue in RBA is to determine the overall audit risk an auditor accepts, which impact the efficiency of an audit. The primary objective of this research is to redesign the audit risk model (ARM proposed by auditing standards. The proposed model of this paper uses fuzzy inference systems (FIS based on the judgments of audit experts. The implementation of proposed fuzzy technique uses triangular fuzzy numbers to express the inputs and Mamdani method along with center of gravity are incorporated for defuzzification. The proposed model uses three FISs for audit, inherent and control risks, and there are five levels of linguistic variables for outputs. FISs include 25, 25 and 81 rules of if-then respectively and officials of Iranian audit experts confirm all the rules.

  16. Rethinking exchange market models as optimization algorithms

    Science.gov (United States)

    Luquini, Evandro; Omar, Nizam

    2018-02-01

    The exchange market model has mainly been used to study the inequality problem. Although the human society inequality problem is very important, the exchange market models dynamics until stationary state and its capability of ranking individuals is interesting in itself. This study considers the hypothesis that the exchange market model could be understood as an optimization procedure. We present herein the implications for algorithmic optimization and also the possibility of a new family of exchange market models

  17. Model parameters estimation and sensitivity by genetic algorithms

    International Nuclear Information System (INIS)

    Marseguerra, Marzio; Zio, Enrico; Podofillini, Luca

    2003-01-01

    In this paper we illustrate the possibility of extracting qualitative information on the importance of the parameters of a model in the course of a Genetic Algorithms (GAs) optimization procedure for the estimation of such parameters. The Genetic Algorithms' search of the optimal solution is performed according to procedures that resemble those of natural selection and genetics: an initial population of alternative solutions evolves within the search space through the four fundamental operations of parent selection, crossover, replacement, and mutation. During the search, the algorithm examines a large amount of solution points which possibly carries relevant information on the underlying model characteristics. A possible utilization of this information amounts to create and update an archive with the set of best solutions found at each generation and then to analyze the evolution of the statistics of the archive along the successive generations. From this analysis one can retrieve information regarding the speed of convergence and stabilization of the different control (decision) variables of the optimization problem. In this work we analyze the evolution strategy followed by a GA in its search for the optimal solution with the aim of extracting information on the importance of the control (decision) variables of the optimization with respect to the sensitivity of the objective function. The study refers to a GA search for optimal estimates of the effective parameters in a lumped nuclear reactor model of literature. The supporting observation is that, as most optimization procedures do, the GA search evolves towards convergence in such a way to stabilize first the most important parameters of the model and later those which influence little the model outputs. In this sense, besides estimating efficiently the parameters values, the optimization approach also allows us to provide a qualitative ranking of their importance in contributing to the model output. The

  18. New Parallel Algorithms for Landscape Evolution Model

    Science.gov (United States)

    Jin, Y.; Zhang, H.; Shi, Y.

    2017-12-01

    Most landscape evolution models (LEM) developed in the last two decades solve the diffusion equation to simulate the transportation of surface sediments. This numerical approach is difficult to parallelize due to the computation of drainage area for each node, which needs huge amount of communication if run in parallel. In order to overcome this difficulty, we developed two parallel algorithms for LEM with a stream net. One algorithm handles the partition of grid with traditional methods and applies an efficient global reduction algorithm to do the computation of drainage areas and transport rates for the stream net; the other algorithm is based on a new partition algorithm, which partitions the nodes in catchments between processes first, and then partitions the cells according to the partition of nodes. Both methods focus on decreasing communication between processes and take the advantage of massive computing techniques, and numerical experiments show that they are both adequate to handle large scale problems with millions of cells. We implemented the two algorithms in our program based on the widely used finite element library deal.II, so that it can be easily coupled with ASPECT.

  19. Cost optimization model and its heuristic genetic algorithms

    International Nuclear Information System (INIS)

    Liu Wei; Wang Yongqing; Guo Jilin

    1999-01-01

    Interest and escalation are large quantity in proportion to the cost of nuclear power plant construction. In order to optimize the cost, the mathematics model of cost optimization for nuclear power plant construction was proposed, which takes the maximum net present value as the optimization goal. The model is based on the activity networks of the project and is an NP problem. A heuristic genetic algorithms (HGAs) for the model was introduced. In the algorithms, a solution is represented with a string of numbers each of which denotes the priority of each activity for assigned resources. The HGAs with this encoding method can overcome the difficulty which is harder to get feasible solutions when using the traditional GAs to solve the model. The critical path of the activity networks is figured out with the concept of predecessor matrix. An example was computed with the HGAP programmed in C language. The results indicate that the model is suitable for the objectiveness, the algorithms is effective to solve the model

  20. Algorithms and analytical solutions for rapidly approximating long-term dispersion from line and area sources

    Science.gov (United States)

    Barrett, Steven R. H.; Britter, Rex E.

    Predicting long-term mean pollutant concentrations in the vicinity of airports, roads and other industrial sources are frequently of concern in regulatory and public health contexts. Many emissions are represented geometrically as ground-level line or area sources. Well developed modelling tools such as AERMOD and ADMS are able to model dispersion from finite (i.e. non-point) sources with considerable accuracy, drawing upon an up-to-date understanding of boundary layer behaviour. Due to mathematical difficulties associated with line and area sources, computationally expensive numerical integration schemes have been developed. For example, some models decompose area sources into a large number of line sources orthogonal to the mean wind direction, for which an analytical (Gaussian) solution exists. Models also employ a time-series approach, which involves computing mean pollutant concentrations for every hour over one or more years of meteorological data. This can give rise to computer runtimes of several days for assessment of a site. While this may be acceptable for assessment of a single industrial complex, airport, etc., this level of computational cost precludes national or international policy assessments at the level of detail available with dispersion modelling. In this paper, we extend previous work [S.R.H. Barrett, R.E. Britter, 2008. Development of algorithms and approximations for rapid operational air quality modelling. Atmospheric Environment 42 (2008) 8105-8111] to line and area sources. We introduce approximations which allow for the development of new analytical solutions for long-term mean dispersion from line and area sources, based on hypergeometric functions. We describe how these solutions can be parameterized from a single point source run from an existing advanced dispersion model, thereby accounting for all processes modelled in the more costly algorithms. The parameterization method combined with the analytical solutions for long-term mean

  1. Design of attitude solution algorithm for tail-sitter VTOL UAV

    Directory of Open Access Journals (Sweden)

    Donghui LIU

    2016-02-01

    Full Text Available The tail-sitter Vertical Takeoff and Landing (VTOL Unmanned Aerial Vehicle(UAV, flying in a fixed-wing model, overcomes many shortcomings of traditional fixed-wing UAVs, and inherits the advantage of high overall efficiency, which means it has great development potential and very broad application prospects. The attitude of tail-sitter VTOL UAV shows a wide change range in its takeoff and landing stages, and when the attitude sensor changes more than 90 degrees in pitch direction, the Euler angles converted by the Quaternions will have singular points, which means gimbal deadlock appears. From the solution algorithm, this paper provides a method of changing the order of rotation to avoid the appearance of singular points. The results show that this method can be well applied to the attitude solution of the VTOL UAV.

  2. Model based development of engine control algorithms

    NARCIS (Netherlands)

    Dekker, H.J.; Sturm, W.L.

    1996-01-01

    Model based development of engine control systems has several advantages. The development time and costs are strongly reduced because much of the development and optimization work is carried out by simulating both engine and control system. After optimizing the control algorithm it can be executed

  3. Algorithms and Models for the Web Graph

    NARCIS (Netherlands)

    Gleich, David F.; Komjathy, Julia; Litvak, Nelli

    2015-01-01

    This volume contains the papers presented at WAW2015, the 12th Workshop on Algorithms and Models for the Web-Graph held during December 10–11, 2015, in Eindhoven. There were 24 submissions. Each submission was reviewed by at least one, and on average two, Program Committee members. The committee

  4. An efficient algorithm for computation of solitary wave solutions to ...

    Indian Academy of Sciences (India)

    KAMRAN AYUB

    2017-09-08

    Sep 8, 2017 ... solutions has attracted lots of attention by scientists in the field of nonlinear science ... The procedure of this technique is quite simple, explicit, and can easily be extended ... divided into different sections. In the next section, we.

  5. Algorithms

    Indian Academy of Sciences (India)

    algorithm that it is implicitly understood that we know how to generate the next natural ..... Explicit comparisons are made in line (1) where maximum and minimum is ... It can be shown that the function T(n) = 3/2n -2 is the solution to the above ...

  6. Dynamic Airspace Managment - Models and Algorithms

    OpenAIRE

    Cheng, Peng; Geng, Rui

    2010-01-01

    This chapter investigates the models and algorithms for implementing the concept of Dynamic Airspace Management. Three models are discussed. First two models are about how to use or adjust air route dynamically in order to speed up air traffic flow and reduce delay. The third model gives a way to dynamically generate the optimal sector configuration for an air traffic control center to both balance the controller’s workload and save control resources. The first model, called the Dynami...

  7. A Linear Algorithm for Black Scholes Economic Model

    Directory of Open Access Journals (Sweden)

    Dumitru FANACHE

    2008-01-01

    Full Text Available The pricing of options is a very important problem encountered in financial domain. The famous Black-Scholes model provides explicit closed form solution for the values of certain (European style call and put options. But for many other options, either there are no closed form solution, or if such closed form solutions exist, the formulas exhibiting them are complicated and difficult to evaluate accurately by conventional methods. The aim of this paper is to study the possibility of obtaining the numerical solution for the Black-Scholes equation in parallel, by means of several processors, using the finite difference method. A comparison between the complexity of the parallel algorithm and the serial one is given.

  8. Optimization in engineering models and algorithms

    CERN Document Server

    Sioshansi, Ramteen

    2017-01-01

    This textbook covers the fundamentals of optimization, including linear, mixed-integer linear, nonlinear, and dynamic optimization techniques, with a clear engineering focus. It carefully describes classical optimization models and algorithms using an engineering problem-solving perspective, and emphasizes modeling issues using many real-world examples related to a variety of application areas. Providing an appropriate blend of practical applications and optimization theory makes the text useful to both practitioners and students, and gives the reader a good sense of the power of optimization and the potential difficulties in applying optimization to modeling real-world systems. The book is intended for undergraduate and graduate-level teaching in industrial engineering and other engineering specialties. It is also of use to industry practitioners, due to the inclusion of real-world applications, opening the door to advanced courses on both modeling and algorithm development within the industrial engineering ...

  9. IIR Filter Modeling Using an Algorithm Inspired on Electromagnetism

    Directory of Open Access Journals (Sweden)

    Cuevas-Jiménez E.

    2013-01-01

    Full Text Available Infinite-impulse-response (IIR filtering provides a powerful approach for solving a variety of problems. However, its design represents a very complicated task, since the error surface of IIR filters is generally multimodal, global optimization techniques are required in order to avoid local minima. In this paper, a new method based on the Electromagnetism-Like Optimization Algorithm (EMO is proposed for IIR filter modeling. EMO originates from the electro-magnetism theory of physics by assuming potential solutions as electrically charged particles which spread around the solution space. The charge of each particle depends on its objective function value. This algorithm employs a collective attraction-repulsion mechanism to move the particles towards optimality. The experimental results confirm the high performance of the proposed method in solving various benchmark identification problems.

  10. Algebraic dynamics solutions and algebraic dynamics algorithm for nonlinear ordinary differential equations

    Institute of Scientific and Technical Information of China (English)

    WANG; Shunjin; ZHANG; Hua

    2006-01-01

    The problem of preserving fidelity in numerical computation of nonlinear ordinary differential equations is studied in terms of preserving local differential structure and approximating global integration structure of the dynamical system.The ordinary differential equations are lifted to the corresponding partial differential equations in the framework of algebraic dynamics,and a new algorithm-algebraic dynamics algorithm is proposed based on the exact analytical solutions of the ordinary differential equations by the algebraic dynamics method.In the new algorithm,the time evolution of the ordinary differential system is described locally by the time translation operator and globally by the time evolution operator.The exact analytical piece-like solution of the ordinary differential equations is expressd in terms of Taylor series with a local convergent radius,and its finite order truncation leads to the new numerical algorithm with a controllable precision better than Runge Kutta Algorithm and Symplectic Geometric Algorithm.

  11. Fast numerical solution of KKR-CPA equations: Testing new algorithms

    Energy Technology Data Exchange (ETDEWEB)

    Bruno, E.; Florio, G.M.; Ginatempo, B.; Giuliano, E.S. (Universita di Messina (Italy))

    1994-04-01

    Some numerical methods for the solution of KKR-CPA equations are discussed and tested. New, efficient, computational algorithms are proposed, allowing a remarkable reduction of computing time and a good reliability in evaluating spectral quantities. 16 refs., 7 figs.

  12. Asymmetry in some common assignment algorithms: the dispersion factor solution

    OpenAIRE

    T de la Barra; B Pérez

    1986-01-01

    Many common assignment algorithms are based on Dial's original design to determine the paths that trip makers will follow from a given origin to destination centroids. The purpose of this paper is to show that the rules that have to be applied result in two unwanted properties. The first is that trips assigned from an origin centroid i to a destination j can be dramatically different to those resulting from centroid j to centroid i , even if the number of trips is the same and the network is ...

  13. An evolutionary algorithm for model selection

    Energy Technology Data Exchange (ETDEWEB)

    Bicker, Karl [CERN, Geneva (Switzerland); Chung, Suh-Urk; Friedrich, Jan; Grube, Boris; Haas, Florian; Ketzer, Bernhard; Neubert, Sebastian; Paul, Stephan; Ryabchikov, Dimitry [Technische Univ. Muenchen (Germany)

    2013-07-01

    When performing partial-wave analyses of multi-body final states, the choice of the fit model, i.e. the set of waves to be used in the fit, can significantly alter the results of the partial wave fit. Traditionally, the models were chosen based on physical arguments and by observing the changes in log-likelihood of the fits. To reduce possible bias in the model selection process, an evolutionary algorithm was developed based on a Bayesian goodness-of-fit criterion which takes into account the model complexity. Starting from systematically constructed pools of waves which contain significantly more waves than the typical fit model, the algorithm yields a model with an optimal log-likelihood and with a number of partial waves which is appropriate for the number of events in the data. Partial waves with small contributions to the total intensity are penalized and likely to be dropped during the selection process, as are models were excessive correlations between single waves occur. Due to the automated nature of the model selection, a much larger part of the model space can be explored than would be possible in a manual selection. In addition the method allows to assess the dependence of the fit result on the fit model which is an important contribution to the systematic uncertainty.

  14. An Enhanced Artificial Bee Colony Algorithm with Solution Acceptance Rule and Probabilistic Multisearch

    Directory of Open Access Journals (Sweden)

    Alkın Yurtkuran

    2016-01-01

    Full Text Available The artificial bee colony (ABC algorithm is a popular swarm based technique, which is inspired from the intelligent foraging behavior of honeybee swarms. This paper proposes a new variant of ABC algorithm, namely, enhanced ABC with solution acceptance rule and probabilistic multisearch (ABC-SA to address global optimization problems. A new solution acceptance rule is proposed where, instead of greedy selection between old solution and new candidate solution, worse candidate solutions have a probability to be accepted. Additionally, the acceptance probability of worse candidates is nonlinearly decreased throughout the search process adaptively. Moreover, in order to improve the performance of the ABC and balance the intensification and diversification, a probabilistic multisearch strategy is presented. Three different search equations with distinctive characters are employed using predetermined search probabilities. By implementing a new solution acceptance rule and a probabilistic multisearch approach, the intensification and diversification performance of the ABC algorithm is improved. The proposed algorithm has been tested on well-known benchmark functions of varying dimensions by comparing against novel ABC variants, as well as several recent state-of-the-art algorithms. Computational results show that the proposed ABC-SA outperforms other ABC variants and is superior to state-of-the-art algorithms proposed in the literature.

  15. An Enhanced Artificial Bee Colony Algorithm with Solution Acceptance Rule and Probabilistic Multisearch.

    Science.gov (United States)

    Yurtkuran, Alkın; Emel, Erdal

    2016-01-01

    The artificial bee colony (ABC) algorithm is a popular swarm based technique, which is inspired from the intelligent foraging behavior of honeybee swarms. This paper proposes a new variant of ABC algorithm, namely, enhanced ABC with solution acceptance rule and probabilistic multisearch (ABC-SA) to address global optimization problems. A new solution acceptance rule is proposed where, instead of greedy selection between old solution and new candidate solution, worse candidate solutions have a probability to be accepted. Additionally, the acceptance probability of worse candidates is nonlinearly decreased throughout the search process adaptively. Moreover, in order to improve the performance of the ABC and balance the intensification and diversification, a probabilistic multisearch strategy is presented. Three different search equations with distinctive characters are employed using predetermined search probabilities. By implementing a new solution acceptance rule and a probabilistic multisearch approach, the intensification and diversification performance of the ABC algorithm is improved. The proposed algorithm has been tested on well-known benchmark functions of varying dimensions by comparing against novel ABC variants, as well as several recent state-of-the-art algorithms. Computational results show that the proposed ABC-SA outperforms other ABC variants and is superior to state-of-the-art algorithms proposed in the literature.

  16. Quantum-circuit model of Hamiltonian search algorithms

    International Nuclear Information System (INIS)

    Roland, Jeremie; Cerf, Nicolas J.

    2003-01-01

    We analyze three different quantum search algorithms, namely, the traditional circuit-based Grover's algorithm, its continuous-time analog by Hamiltonian evolution, and the quantum search by local adiabatic evolution. We show that these algorithms are closely related in the sense that they all perform a rotation, at a constant angular velocity, from a uniform superposition of all states to the solution state. This makes it possible to implement the two Hamiltonian-evolution algorithms on a conventional quantum circuit, while keeping the quadratic speedup of Grover's original algorithm. It also clarifies the link between the adiabatic search algorithm and Grover's algorithm

  17. Estimating the solute transport parameters of the spatial fractional advection-dispersion equation using Bees Algorithm.

    Science.gov (United States)

    Mehdinejadiani, Behrouz

    2017-08-01

    This study represents the first attempt to estimate the solute transport parameters of the spatial fractional advection-dispersion equation using Bees Algorithm. The numerical studies as well as the experimental studies were performed to certify the integrity of Bees Algorithm. The experimental ones were conducted in a sandbox for homogeneous and heterogeneous soils. A detailed comparative study was carried out between the results obtained from Bees Algorithm and those from Genetic Algorithm and LSQNONLIN routines in FracFit toolbox. The results indicated that, in general, the Bees Algorithm much more accurately appraised the sFADE parameters in comparison with Genetic Algorithm and LSQNONLIN, especially in the heterogeneous soil and for α values near to 1 in the numerical study. Also, the results obtained from Bees Algorithm were more reliable than those from Genetic Algorithm. The Bees Algorithm showed the relative similar performances for all cases, while the Genetic Algorithm and the LSQNONLIN yielded different performances for various cases. The performance of LSQNONLIN strongly depends on the initial guess values so that, compared to the Genetic Algorithm, it can more accurately estimate the sFADE parameters by taking into consideration the suitable initial guess values. To sum up, the Bees Algorithm was found to be very simple, robust and accurate approach to estimate the transport parameters of the spatial fractional advection-dispersion equation. Copyright © 2017 Elsevier B.V. All rights reserved.

  18. Estimating the solute transport parameters of the spatial fractional advection-dispersion equation using Bees Algorithm

    Science.gov (United States)

    Mehdinejadiani, Behrouz

    2017-08-01

    This study represents the first attempt to estimate the solute transport parameters of the spatial fractional advection-dispersion equation using Bees Algorithm. The numerical studies as well as the experimental studies were performed to certify the integrity of Bees Algorithm. The experimental ones were conducted in a sandbox for homogeneous and heterogeneous soils. A detailed comparative study was carried out between the results obtained from Bees Algorithm and those from Genetic Algorithm and LSQNONLIN routines in FracFit toolbox. The results indicated that, in general, the Bees Algorithm much more accurately appraised the sFADE parameters in comparison with Genetic Algorithm and LSQNONLIN, especially in the heterogeneous soil and for α values near to 1 in the numerical study. Also, the results obtained from Bees Algorithm were more reliable than those from Genetic Algorithm. The Bees Algorithm showed the relative similar performances for all cases, while the Genetic Algorithm and the LSQNONLIN yielded different performances for various cases. The performance of LSQNONLIN strongly depends on the initial guess values so that, compared to the Genetic Algorithm, it can more accurately estimate the sFADE parameters by taking into consideration the suitable initial guess values. To sum up, the Bees Algorithm was found to be very simple, robust and accurate approach to estimate the transport parameters of the spatial fractional advection-dispersion equation.

  19. Markov chains models, algorithms and applications

    CERN Document Server

    Ching, Wai-Ki; Ng, Michael K; Siu, Tak-Kuen

    2013-01-01

    This new edition of Markov Chains: Models, Algorithms and Applications has been completely reformatted as a text, complete with end-of-chapter exercises, a new focus on management science, new applications of the models, and new examples with applications in financial risk management and modeling of financial data.This book consists of eight chapters.  Chapter 1 gives a brief introduction to the classical theory on both discrete and continuous time Markov chains. The relationship between Markov chains of finite states and matrix theory will also be highlighted. Some classical iterative methods

  20. Genetic Algorithm Based Microscale Vehicle Emissions Modelling

    Directory of Open Access Journals (Sweden)

    Sicong Zhu

    2015-01-01

    Full Text Available There is a need to match emission estimations accuracy with the outputs of transport models. The overall error rate in long-term traffic forecasts resulting from strategic transport models is likely to be significant. Microsimulation models, whilst high-resolution in nature, may have similar measurement errors if they use the outputs of strategic models to obtain traffic demand predictions. At the microlevel, this paper discusses the limitations of existing emissions estimation approaches. Emission models for predicting emission pollutants other than CO2 are proposed. A genetic algorithm approach is adopted to select the predicting variables for the black box model. The approach is capable of solving combinatorial optimization problems. Overall, the emission prediction results reveal that the proposed new models outperform conventional equations in terms of accuracy and robustness.

  1. Modelling Evolutionary Algorithms with Stochastic Differential Equations.

    Science.gov (United States)

    Heredia, Jorge Pérez

    2017-11-20

    There has been renewed interest in modelling the behaviour of evolutionary algorithms (EAs) by more traditional mathematical objects, such as ordinary differential equations or Markov chains. The advantage is that the analysis becomes greatly facilitated due to the existence of well established methods. However, this typically comes at the cost of disregarding information about the process. Here, we introduce the use of stochastic differential equations (SDEs) for the study of EAs. SDEs can produce simple analytical results for the dynamics of stochastic processes, unlike Markov chains which can produce rigorous but unwieldy expressions about the dynamics. On the other hand, unlike ordinary differential equations (ODEs), they do not discard information about the stochasticity of the process. We show that these are especially suitable for the analysis of fixed budget scenarios and present analogues of the additive and multiplicative drift theorems from runtime analysis. In addition, we derive a new more general multiplicative drift theorem that also covers non-elitist EAs. This theorem simultaneously allows for positive and negative results, providing information on the algorithm's progress even when the problem cannot be optimised efficiently. Finally, we provide results for some well-known heuristics namely Random Walk (RW), Random Local Search (RLS), the (1+1) EA, the Metropolis Algorithm (MA), and the Strong Selection Weak Mutation (SSWM) algorithm.

  2. Adjustment Criterion and Algorithm in Adjustment Model with Uncertain

    Directory of Open Access Journals (Sweden)

    SONG Yingchun

    2015-02-01

    Full Text Available Uncertainty often exists in the process of obtaining measurement data, which affects the reliability of parameter estimation. This paper establishes a new adjustment model in which uncertainty is incorporated into the function model as a parameter. A new adjustment criterion and its iterative algorithm are given based on uncertainty propagation law in the residual error, in which the maximum possible uncertainty is minimized. This paper also analyzes, with examples, the different adjustment criteria and features of optimal solutions about the least-squares adjustment, the uncertainty adjustment and total least-squares adjustment. Existing error theory is extended with new observational data processing method about uncertainty.

  3. On randomized algorithms for numerical solution of applied Fredholm integral equations of the second kind

    Science.gov (United States)

    Voytishek, Anton V.; Shipilov, Nikolay M.

    2017-11-01

    In this paper, the systematization of numerical (implemented on a computer) randomized functional algorithms for approximation of a solution of Fredholm integral equation of the second kind is carried out. Wherein, three types of such algorithms are distinguished: the projection, the mesh and the projection-mesh methods. The possibilities for usage of these algorithms for solution of practically important problems is investigated in detail. The disadvantages of the mesh algorithms, related to the necessity of calculation values of the kernels of integral equations in fixed points, are identified. On practice, these kernels have integrated singularities, and calculation of their values is impossible. Thus, for applied problems, related to solving Fredholm integral equation of the second kind, it is expedient to use not mesh, but the projection and the projection-mesh randomized algorithms.

  4. An Efficient Algorithm for Partitioning and Authenticating Problem-Solutions of eLeaming Contents

    Science.gov (United States)

    Dewan, Jahangir; Chowdhury, Morshed; Batten, Lynn

    2013-01-01

    Content authenticity and correctness is one of the important challenges in eLearning as there can be many solutions to one specific problem in cyber space. Therefore, the authors feel it is necessary to map problems to solutions using graph partition and weighted bipartite matching. This article proposes an efficient algorithm to partition…

  5. Performance comparison of genetic algorithms and particle swarm optimization for model integer programming bus timetabling problem

    Science.gov (United States)

    Wihartiko, F. D.; Wijayanti, H.; Virgantari, F.

    2018-03-01

    Genetic Algorithm (GA) is a common algorithm used to solve optimization problems with artificial intelligence approach. Similarly, the Particle Swarm Optimization (PSO) algorithm. Both algorithms have different advantages and disadvantages when applied to the case of optimization of the Model Integer Programming for Bus Timetabling Problem (MIPBTP), where in the case of MIPBTP will be found the optimal number of trips confronted with various constraints. The comparison results show that the PSO algorithm is superior in terms of complexity, accuracy, iteration and program simplicity in finding the optimal solution.

  6. A proximity algorithm accelerated by Gauss-Seidel iterations for L1/TV denoising models

    Science.gov (United States)

    Li, Qia; Micchelli, Charles A.; Shen, Lixin; Xu, Yuesheng

    2012-09-01

    Our goal in this paper is to improve the computational performance of the proximity algorithms for the L1/TV denoising model. This leads us to a new characterization of all solutions to the L1/TV model via fixed-point equations expressed in terms of the proximity operators. Based upon this observation we develop an algorithm for solving the model and establish its convergence. Furthermore, we demonstrate that the proposed algorithm can be accelerated through the use of the componentwise Gauss-Seidel iteration so that the CPU time consumed is significantly reduced. Numerical experiments using the proposed algorithm for impulsive noise removal are included, with a comparison to three recently developed algorithms. The numerical results show that while the proposed algorithm enjoys a high quality of the restored images, as the other three known algorithms do, it performs significantly better in terms of computational efficiency measured in the CPU time consumed.

  7. A proximity algorithm accelerated by Gauss–Seidel iterations for L1/TV denoising models

    International Nuclear Information System (INIS)

    Li, Qia; Shen, Lixin; Xu, Yuesheng; Micchelli, Charles A

    2012-01-01

    Our goal in this paper is to improve the computational performance of the proximity algorithms for the L1/TV denoising model. This leads us to a new characterization of all solutions to the L1/TV model via fixed-point equations expressed in terms of the proximity operators. Based upon this observation we develop an algorithm for solving the model and establish its convergence. Furthermore, we demonstrate that the proposed algorithm can be accelerated through the use of the componentwise Gauss–Seidel iteration so that the CPU time consumed is significantly reduced. Numerical experiments using the proposed algorithm for impulsive noise removal are included, with a comparison to three recently developed algorithms. The numerical results show that while the proposed algorithm enjoys a high quality of the restored images, as the other three known algorithms do, it performs significantly better in terms of computational efficiency measured in the CPU time consumed. (paper)

  8. Change in optimum genetic algorithm solution with changing band discontinuities and band widths of electrically conducting copolymers

    Science.gov (United States)

    Kaur, Avneet; Bakhshi, A. K.

    2010-04-01

    The interest in copolymers stems from the fact that they present interesting electronic and optical properties leading to a variety of technological applications. In order to get a suitable copolymer for a specific application, genetic algorithm (GA) along with negative factor counting (NFC) method has recently been used. In this paper, we study the effect of change in the ratio of conduction band discontinuity to valence band discontinuity (Δ Ec/Δ Ev) on the optimum solution obtained from GA for model binary copolymers. The effect of varying bandwidths on the optimum GA solution is also investigated. The obtained results show that the optimum solution changes with varying parameters like band discontinuity and band width of constituent homopolymers. As the ratio Δ Ec/Δ Ev increases, band gap of optimum solution decreases. With increasing band widths of constituent homopolymers, the optimum solution tends to be dependent on the component with higher band gap.

  9. Water evaporation algorithm: A new metaheuristic algorithm towards the solution of optimal power flow

    Directory of Open Access Journals (Sweden)

    Anulekha Saha

    2017-12-01

    Full Text Available A relatively new technique to solve the optimal power flow (OPF problem inspired by the evaporation (vaporization of small quantity water particles from dense surfaces is presented in this paper. IEEE 30 bus and IEEE 118 bus test systems are assessed for various objectives to determine water evaporation algorithm’s (WEA efficiency in handling the OPF problem after satisfying constraints. Comparative study with other established techniques demonstrate competitiveness of WEA in treating varied objectives. It achieved superior results for all the objectives considered. The algorithm is found to minimize its objective values by great margins even in case of large test system. Statistical analysis of all the cases using Wilcoxon’s signed rank test resulted in p-values much lower than the required value of 0.05, thereby establishing the robustness of the applied technique. Best performance of the algorithm are obtained for voltage deviation minimization and voltage stability index minimization objectives in case of IEEE 30 and IEEE 118 bus test systems respectively.

  10. Singular characteristic tracking algorithm for improved solution accuracy of the discrete ordinates method with isotropic scattering

    International Nuclear Information System (INIS)

    Duo, J. I.; Azmy, Y. Y.

    2007-01-01

    A new method, the Singular Characteristics Tracking algorithm, is developed to account for potential non-smoothness across the singular characteristics in the exact solution of the discrete ordinates approximation of the transport equation. Numerical results show improved rate of convergence of the solution to the discrete ordinates equations in two spatial dimensions with isotropic scattering using the proposed methodology. Unlike the standard Weighted Diamond Difference methods, the new algorithm achieves local convergence in the case of discontinuous angular flux along the singular characteristics. The method also significantly reduces the error for problems where the angular flux presents discontinuous spatial derivatives across these lines. For purposes of verifying the results, the Method of Manufactured Solutions is used to generate analytical reference solutions that permit estimating the local error in the numerical solution. (authors)

  11. Pyramid algorithms as models of human cognition

    Science.gov (United States)

    Pizlo, Zygmunt; Li, Zheng

    2003-06-01

    There is growing body of experimental evidence showing that human perception and cognition involves mechanisms that can be adequately modeled by pyramid algorithms. The main aspect of those mechanisms is hierarchical clustering of information: visual images, spatial relations, and states as well as transformations of a problem. In this paper we review prior psychophysical and simulation results on visual size transformation, size discrimination, speed-accuracy tradeoff, figure-ground segregation, and the traveling salesman problem. We also present our new results on graph search and on the 15-puzzle.

  12. Modeling Trees with a Space Colonization Algorithm

    OpenAIRE

    Morell Higueras, Marc

    2014-01-01

    [CATALÀ] Aquest TFG tracta la implementació d'un algorisme de generació procedural que construeixi una estructura reminiscent a la d'un arbre de clima temperat, i també la implementació del pas de l'estructura a un model tridimensional, acompanyat de l'eina per a visualitzar el resultat i fer-ne l'exportació [ANGLÈS] This TFG consists of the implementation of a procedural generation algorithm that builds a structure reminiscent of that of a temperate climate tree, and also consists of the ...

  13. Genetic Algorithms Principles Towards Hidden Markov Model

    Directory of Open Access Journals (Sweden)

    Nabil M. Hewahi

    2011-10-01

    Full Text Available In this paper we propose a general approach based on Genetic Algorithms (GAs to evolve Hidden Markov Models (HMM. The problem appears when experts assign probability values for HMM, they use only some limited inputs. The assigned probability values might not be accurate to serve in other cases related to the same domain. We introduce an approach based on GAs to find
    out the suitable probability values for the HMM to be mostly correct in more cases than what have been used to assign the probability values.

  14. Optimization Solutions for Improving the Performance of the Parallel Reduction Algorithm Using Graphics Processing Units

    Directory of Open Access Journals (Sweden)

    Ion LUNGU

    2012-01-01

    Full Text Available In this paper, we research, analyze and develop optimization solutions for the parallel reduction function using graphics processing units (GPUs that implement the Compute Unified Device Architecture (CUDA, a modern and novel approach for improving the software performance of data processing applications and algorithms. Many of these applications and algorithms make use of the reduction function in their computational steps. After having designed the function and its algorithmic steps in CUDA, we have progressively developed and implemented optimization solutions for the reduction function. In order to confirm, test and evaluate the solutions' efficiency, we have developed a custom tailored benchmark suite. We have analyzed the obtained experimental results regarding: the comparison of the execution time and bandwidth when using graphic processing units covering the main CUDA architectures (Tesla GT200, Fermi GF100, Kepler GK104 and a central processing unit; the data type influence; the binary operator's influence.

  15. Numerical solution of dynamic equilibrium models under Poisson uncertainty

    DEFF Research Database (Denmark)

    Posch, Olaf; Trimborn, Timo

    2013-01-01

    We propose a simple and powerful numerical algorithm to compute the transition process in continuous-time dynamic equilibrium models with rare events. In this paper we transform the dynamic system of stochastic differential equations into a system of functional differential equations of the retar...... solution to Lucas' endogenous growth model under Poisson uncertainty are used to compute the exact numerical error. We show how (potential) catastrophic events such as rare natural disasters substantially affect the economic decisions of households....

  16. SPECIAL LIBRARIES OF FRAGMENTS OF ALGORITHMIC NETWORKS TO AUTOMATE THE DEVELOPMENT OF ALGORITHMIC MODELS

    Directory of Open Access Journals (Sweden)

    V. E. Marley

    2015-01-01

    Full Text Available Summary. The concept of algorithmic models appeared from the algorithmic approach in which the simulated object, the phenomenon appears in the form of process, subject to strict rules of the algorithm, which placed the process of operation of the facility. Under the algorithmic model is the formalized description of the scenario subject specialist for the simulated process, the structure of which is comparable with the structure of the causal and temporal relationships between events of the process being modeled, together with all information necessary for its software implementation. To represent the structure of algorithmic models used algorithmic network. Normally, they were defined as loaded finite directed graph, the vertices which are mapped to operators and arcs are variables, bound by operators. The language of algorithmic networks has great features, the algorithms that it can display indifference the class of all random algorithms. In existing systems, automation modeling based on algorithmic nets, mainly used by operators working with real numbers. Although this reduces their ability, but enough for modeling a wide class of problems related to economy, environment, transport, technical processes. The task of modeling the execution of schedules and network diagrams is relevant and useful. There are many counting systems, network graphs, however, the monitoring process based analysis of gaps and terms of graphs, no analysis of prediction execution schedule or schedules. The library is designed to build similar predictive models. Specifying source data to obtain a set of projections from which to choose one and take it for a new plan.

  17. Fast algorithms for transport models. Final report, June 1, 1993--May 31, 1994

    International Nuclear Information System (INIS)

    Manteuffel, T.

    1994-12-01

    The focus of this project is the study of multigrid and multilevel algorithms for the numerical solution of Boltzmann models of the transport of neutral and charged particles. In previous work a fast multigrid algorithm was developed for the numerical solution of the Boltzmann model of neutral particle transport in slab geometry assuming isotropic scattering. The new algorithm is extremely fast in the thick diffusion limit; the multigrid v-cycle convergence factor approaches zero as the mean-free-path between collisions approaches zero, independent of the mesh. Also, a fast multilevel method was developed for the numerical solution of the Boltzmann model of charged particle transport in the thick Fokker-Plank limit for slab geometry. Parallel implementations were developed for both algorithms

  18. An efficient parallel algorithm for the solution of a tridiagonal linear system of equations

    Science.gov (United States)

    Stone, H. S.

    1971-01-01

    Tridiagonal linear systems of equations are solved on conventional serial machines in a time proportional to N, where N is the number of equations. The conventional algorithms do not lend themselves directly to parallel computations on computers of the ILLIAC IV class, in the sense that they appear to be inherently serial. An efficient parallel algorithm is presented in which computation time grows as log sub 2 N. The algorithm is based on recursive doubling solutions of linear recurrence relations, and can be used to solve recurrence relations of all orders.

  19. Genetic algorithms and experimental discrimination of SUSY models

    International Nuclear Information System (INIS)

    Allanach, B.C.; Quevedo, F.; Grellscheid, D.

    2004-01-01

    We introduce genetic algorithms as a means to estimate the accuracy required to discriminate among different models using experimental observables. We exemplify the technique in the context of the minimal supersymmetric standard model. If supersymmetric particles are discovered, models of supersymmetry breaking will be fit to the observed spectrum and it is beneficial to ask beforehand: what accuracy is required to always allow the discrimination of two particular models and which are the most important masses to observe? Each model predicts a bounded patch in the space of observables once unknown parameters are scanned over. The questions can be answered by minimising a 'distance' measure between the two hypersurfaces. We construct a distance measure that scales like a constant fraction of an observable, since that is how the experimental errors are expected to scale. Genetic algorithms, including concepts such as natural selection, fitness and mutations, provide a solution to the minimisation problem. We illustrate the efficiency of the method by comparing three different classes of string models for which the above questions could not be answered with previous techniques. The required accuracy is in the range accessible to the Large Hadron Collider (LHC) when combined with a future linear collider (LC) facility. The technique presented here can be applied to more general classes of models or observables. (author)

  20. Motion Model Employment using interacting Motion Model Algorithm

    DEFF Research Database (Denmark)

    Hussain, Dil Muhammad Akbar

    2006-01-01

    The paper presents a simulation study to track a maneuvering target using a selective approach in choosing Interacting Multiple Models (IMM) algorithm to provide a wider coverage to track such targets.  Initially, there are two motion models in the system to track a target.  Probability of each m...

  1. Models and Algorithms for Tracking Target with Coordinated Turn Motion

    Directory of Open Access Journals (Sweden)

    Xianghui Yuan

    2014-01-01

    Full Text Available Tracking target with coordinated turn (CT motion is highly dependent on the models and algorithms. First, the widely used models are compared in this paper—coordinated turn (CT model with known turn rate, augmented coordinated turn (ACT model with Cartesian velocity, ACT model with polar velocity, CT model using a kinematic constraint, and maneuver centered circular motion model. Then, in the single model tracking framework, the tracking algorithms for the last four models are compared and the suggestions on the choice of models for different practical target tracking problems are given. Finally, in the multiple models (MM framework, the algorithm based on expectation maximization (EM algorithm is derived, including both the batch form and the recursive form. Compared with the widely used interacting multiple model (IMM algorithm, the EM algorithm shows its effectiveness.

  2. Nonlinear model predictive control theory and algorithms

    CERN Document Server

    Grüne, Lars

    2017-01-01

    This book offers readers a thorough and rigorous introduction to nonlinear model predictive control (NMPC) for discrete-time and sampled-data systems. NMPC schemes with and without stabilizing terminal constraints are detailed, and intuitive examples illustrate the performance of different NMPC variants. NMPC is interpreted as an approximation of infinite-horizon optimal control so that important properties like closed-loop stability, inverse optimality and suboptimality can be derived in a uniform manner. These results are complemented by discussions of feasibility and robustness. An introduction to nonlinear optimal control algorithms yields essential insights into how the nonlinear optimization routine—the core of any nonlinear model predictive controller—works. Accompanying software in MATLAB® and C++ (downloadable from extras.springer.com/), together with an explanatory appendix in the book itself, enables readers to perform computer experiments exploring the possibilities and limitations of NMPC. T...

  3. A genetic algorithm solution for combinatorial problems - the nuclear core reload example

    Energy Technology Data Exchange (ETDEWEB)

    Schirru, R.; Silva, F.C. [Universidade Federal, Rio de Janeiro, RJ (Brazil). Coordenacao dos Programas de Pos-graduacao de Engenharia; Pereira, C.M.N.A. [Instituto de Engenharia Nuclear (IEN), Rio de Janeiro, RJ (Brazil); Chapot, J.L.C. [FURNAS, Rio de Janeiro, RJ (Brazil)

    1997-12-01

    This paper presents a solution to Traveling Salesman Problem based upon genetic algorithms (GA), using the classic crossover, but avoiding the feasibility problem in offspring individuals, allowing the natural evolution of the GA without introduction of heuristics in the genetic crossover operator. The genetic model presented, that we call the List Model (LM) is based on the encoding and decoding genotype in the way to always generate a phenotype that has a valid structure, over which will be applied the fitness, represented by the total distance. The main purpose of this work was to develop the basis for a new genetic model to be used in the reload of nuclear core of a PWR. In a generic way, this problem can be interpreted as a a search of the optimal combination of N different fuel elements in N nuclear core `holes`, where each combination or load pattern, determines the neutron flux shape and its associate peak factor. The goal is to find out the load pattern that minimizes the peak factor and consequently maximize the useful life of the nuclear fuel. The GA with the List Model was applied to the Angra-1 PWR reload problem and the results are remarkably better than the ones used in the last fuel cycle. (author). 12 refs., 3 figs., 2 tabs.

  4. A quadratic approximation-based algorithm for the solution of multiparametric mixed-integer nonlinear programming problems

    KAUST Repository

    Domí nguez, Luis F.; Pistikopoulos, Efstratios N.

    2012-01-01

    An algorithm for the solution of convex multiparametric mixed-integer nonlinear programming problems arising in process engineering problems under uncertainty is introduced. The proposed algorithm iterates between a multiparametric nonlinear

  5. Development of an inter-layer solute transport algorithm for SOLTR computer program. Part 1. The algorithm

    International Nuclear Information System (INIS)

    Miller, I.; Roman, K.

    1979-12-01

    In order to perform studies of the influence of regional groundwater flow systems on the long-term performance of potential high-level nuclear waste repositories, it was determined that an adequate computer model would have to consider the full three-dimensional flow system. Golder Associates' SOLTR code, while three-dimensional, has an overly simple algorithm for simulating the passage of radionuclides from one aquifier to another above or below it. Part 1 of this report describes the algorithm developed to provide SOLTR with an improved capability for simulating interaquifer transport

  6. A review of ocean chlorophyll algorithms and primary production models

    Science.gov (United States)

    Li, Jingwen; Zhou, Song; Lv, Nan

    2015-12-01

    This paper mainly introduces the five ocean chlorophyll concentration inversion algorithm and 3 main models for computing ocean primary production based on ocean chlorophyll concentration. Through the comparison of five ocean chlorophyll inversion algorithm, sums up the advantages and disadvantages of these algorithm,and briefly analyzes the trend of ocean primary production model.

  7. Adaptive Numerical Algorithms in Space Weather Modeling

    Science.gov (United States)

    Toth, Gabor; vanderHolst, Bart; Sokolov, Igor V.; DeZeeuw, Darren; Gombosi, Tamas I.; Fang, Fang; Manchester, Ward B.; Meng, Xing; Nakib, Dalal; Powell, Kenneth G.; hide

    2010-01-01

    Space weather describes the various processes in the Sun-Earth system that present danger to human health and technology. The goal of space weather forecasting is to provide an opportunity to mitigate these negative effects. Physics-based space weather modeling is characterized by disparate temporal and spatial scales as well as by different physics in different domains. A multi-physics system can be modeled by a software framework comprising of several components. Each component corresponds to a physics domain, and each component is represented by one or more numerical models. The publicly available Space Weather Modeling Framework (SWMF) can execute and couple together several components distributed over a parallel machine in a flexible and efficient manner. The framework also allows resolving disparate spatial and temporal scales with independent spatial and temporal discretizations in the various models. Several of the computationally most expensive domains of the framework are modeled by the Block-Adaptive Tree Solar wind Roe Upwind Scheme (BATS-R-US) code that can solve various forms of the magnetohydrodynamics (MHD) equations, including Hall, semi-relativistic, multi-species and multi-fluid MHD, anisotropic pressure, radiative transport and heat conduction. Modeling disparate scales within BATS-R-US is achieved by a block-adaptive mesh both in Cartesian and generalized coordinates. Most recently we have created a new core for BATS-R-US: the Block-Adaptive Tree Library (BATL) that provides a general toolkit for creating, load balancing and message passing in a 1, 2 or 3 dimensional block-adaptive grid. We describe the algorithms of BATL and demonstrate its efficiency and scaling properties for various problems. BATS-R-US uses several time-integration schemes to address multiple time-scales: explicit time stepping with fixed or local time steps, partially steady-state evolution, point-implicit, semi-implicit, explicit/implicit, and fully implicit numerical

  8. Verification of fluid-structure-interaction algorithms through the method of manufactured solutions for actuator-line applications

    Science.gov (United States)

    Vijayakumar, Ganesh; Sprague, Michael

    2017-11-01

    Demonstrating expected convergence rates with spatial- and temporal-grid refinement is the ``gold standard'' of code and algorithm verification. However, the lack of analytical solutions and generating manufactured solutions presents challenges for verifying codes for complex systems. The application of the method of manufactured solutions (MMS) for verification for coupled multi-physics phenomena like fluid-structure interaction (FSI) has only seen recent investigation. While many FSI algorithms for aeroelastic phenomena have focused on boundary-resolved CFD simulations, the actuator-line representation of the structure is widely used for FSI simulations in wind-energy research. In this work, we demonstrate the verification of an FSI algorithm using MMS for actuator-line CFD simulations with a simplified structural model. We use a manufactured solution for the fluid velocity field and the displacement of the SMD system. We demonstrate the convergence of both the fluid and structural solver to second-order accuracy with grid and time-step refinement. This work was funded by the U.S. Department of Energy, Office of Energy Efficiency and Renewable Energy, Wind Energy Technologies Office, under Contract No. DE-AC36-08-GO28308 with the National Renewable Energy Laboratory.

  9. Comparison of Nonequilibrium Solution Algorithms Applied to Chemically Stiff Hypersonic Flows

    Science.gov (United States)

    Palmer, Grant; Venkatapathy, Ethiraj

    1995-01-01

    Three solution algorithms, explicit under-relaxation, point implicit, and lower-upper symmetric Gauss-Seidel, are used to compute nonequilibrium flow around the Apollo 4 return capsule at the 62-km altitude point in its descent trajectory. By varying the Mach number, the efficiency and robustness of the solution algorithms were tested for different levels of chemical stiffness.The performance of the solution algorithms degraded as the Mach number and stiffness of the flow increased. At Mach 15 and 30, the lower-upper symmetric Gauss-Seidel method produces an eight order of magnitude drop in the energy residual in one-third to one-half the Cray C-90 computer time as compared to the point implicit and explicit under-relaxation methods. The explicit under-relaxation algorithm experienced convergence difficulties at Mach 30 and above. At Mach 40 the performance of the lower-upper symmetric Gauss-Seidel algorithm deteriorates to the point that it is out performed by the point implicit method. The effects of the viscous terms are investigated. Grid dependency questions are explored.

  10. Rate-control algorithms testing by using video source model

    DEFF Research Database (Denmark)

    Belyaev, Evgeny; Turlikov, Andrey; Ukhanova, Anna

    2008-01-01

    In this paper the method of rate control algorithms testing by the use of video source model is suggested. The proposed method allows to significantly improve algorithms testing over the big test set.......In this paper the method of rate control algorithms testing by the use of video source model is suggested. The proposed method allows to significantly improve algorithms testing over the big test set....

  11. Hybrid artificial bee colony algorithm for parameter optimization of five-parameter bidirectional reflectance distribution function model.

    Science.gov (United States)

    Wang, Qianqian; Zhao, Jing; Gong, Yong; Hao, Qun; Peng, Zhong

    2017-11-20

    A hybrid artificial bee colony (ABC) algorithm inspired by the best-so-far solution and bacterial chemotaxis was introduced to optimize the parameters of the five-parameter bidirectional reflectance distribution function (BRDF) model. To verify the performance of the hybrid ABC algorithm, we measured BRDF of three kinds of samples and simulated the undetermined parameters of the five-parameter BRDF model using the hybrid ABC algorithm and the genetic algorithm, respectively. The experimental results demonstrate that the hybrid ABC algorithm outperforms the genetic algorithm in convergence speed, accuracy, and time efficiency under the same conditions.

  12. Characterizing and improving generalized belief propagation algorithms on the 2D Edwards–Anderson model

    International Nuclear Information System (INIS)

    Domínguez, Eduardo; Lage-Castellanos, Alejandro; Mulet, Roberto; Ricci-Tersenghi, Federico; Rizzo, Tommaso

    2011-01-01

    We study the performance of different message passing algorithms in the two-dimensional Edwards–Anderson model. We show that the standard belief propagation (BP) algorithm converges only at high temperature to a paramagnetic solution. Then, we test a generalized belief propagation (GBP) algorithm, derived from a cluster variational method (CVM) at the plaquette level. We compare its performance with BP and with other algorithms derived under the same approximation: double loop (DL) and a two-way message passing algorithm (HAK). The plaquette-CVM approximation improves BP in at least three ways: the quality of the paramagnetic solution at high temperatures, a better estimate (lower) for the critical temperature, and the fact that the GBP message passing algorithm converges also to nonparamagnetic solutions. The lack of convergence of the standard GBP message passing algorithm at low temperatures seems to be related to the implementation details and not to the appearance of long range order. In fact, we prove that a gauge invariance of the constrained CVM free energy can be exploited to derive a new message passing algorithm which converges at even lower temperatures. In all its region of convergence this new algorithm is faster than HAK and DL by some orders of magnitude

  13. Behavioural modelling using the MOESP algorithm, dynamic neural networks and the Bartels-Stewart algorithm

    NARCIS (Netherlands)

    Schilders, W.H.A.; Meijer, P.B.L.; Ciggaar, E.

    2008-01-01

    In this paper we discuss the use of the state-space modelling MOESP algorithm to generate precise information about the number of neurons and hidden layers in dynamic neural networks developed for the behavioural modelling of electronic circuits. The Bartels–Stewart algorithm is used to transform

  14. Generalized Jaynes-Cummings model as a quantum search algorithm

    International Nuclear Information System (INIS)

    Romanelli, A.

    2009-01-01

    We propose a continuous time quantum search algorithm using a generalization of the Jaynes-Cummings model. In this model the states of the atom are the elements among which the algorithm realizes the search, exciting resonances between the initial and the searched states. This algorithm behaves like Grover's algorithm; the optimal search time is proportional to the square root of the size of the search set and the probability to find the searched state oscillates periodically in time. In this frame, it is possible to reinterpret the usual Jaynes-Cummings model as a trivial case of the quantum search algorithm.

  15. Aeon: Synthesizing Scheduling Algorithms from High-Level Models

    Science.gov (United States)

    Monette, Jean-Noël; Deville, Yves; van Hentenryck, Pascal

    This paper describes the aeon system whose aim is to synthesize scheduling algorithms from high-level models. A eon, which is entirely written in comet, receives as input a high-level model for a scheduling application which is then analyzed to generate a dedicated scheduling algorithm exploiting the structure of the model. A eon provides a variety of synthesizers for generating complete or heuristic algorithms. Moreover, synthesizers are compositional, making it possible to generate complex hybrid algorithms naturally. Preliminary experimental results indicate that this approach may be competitive with state-of-the-art search algorithms.

  16. Visualization of logistic algorithm in Wilson model

    Science.gov (United States)

    Glushchenko, A. S.; Rodin, V. A.; Sinegubov, S. V.

    2018-05-01

    Economic order quantity (EOQ), defined by the Wilson's model, is widely used at different stages of production and distribution of different products. It is useful for making decisions in the management of inventories, providing a more efficient business operation and thus bringing more economic benefits. There is a large amount of reference material and extensive computer shells that help solving various logistics problems. However, the use of large computer environments is not always justified and requires special user training. A tense supply schedule in a logistics model is optimal, if, and only if, the planning horizon coincides with the beginning of the next possible delivery. For all other possible planning horizons, this plan is not optimal. It is significant that when the planning horizon changes, the plan changes immediately throughout the entire supply chain. In this paper, an algorithm and a program for visualizing models of the optimal value of supplies and their number, depending on the magnitude of the planned horizon, have been obtained. The program allows one to trace (visually and quickly) all main parameters of the optimal plan on the charts. The results of the paper represent a part of the authors’ research work in the field of optimization of protection and support services of ports in the Russian North.

  17. Optimal Solutions of Multiproduct Batch Chemical Process Using Multiobjective Genetic Algorithm with Expert Decision System

    Science.gov (United States)

    Mokeddem, Diab; Khellaf, Abdelhafid

    2009-01-01

    Optimal design problem are widely known by their multiple performance measures that are often competing with each other. In this paper, an optimal multiproduct batch chemical plant design is presented. The design is firstly formulated as a multiobjective optimization problem, to be solved using the well suited non dominating sorting genetic algorithm (NSGA-II). The NSGA-II have capability to achieve fine tuning of variables in determining a set of non dominating solutions distributed along the Pareto front in a single run of the algorithm. The NSGA-II ability to identify a set of optimal solutions provides the decision-maker DM with a complete picture of the optimal solution space to gain better and appropriate choices. Then an outranking with PROMETHEE II helps the decision-maker to finalize the selection of a best compromise. The effectiveness of NSGA-II method with multiojective optimization problem is illustrated through two carefully referenced examples. PMID:19543537

  18. A predictor-corrector algorithm to estimate the fractional flow in oil-water models

    International Nuclear Information System (INIS)

    Savioli, Gabriela B; Berdaguer, Elena M Fernandez

    2008-01-01

    We introduce a predictor-corrector algorithm to estimate parameters in a nonlinear hyperbolic problem. It can be used to estimate the oil-fractional flow function from the Buckley-Leverett equation. The forward model is non-linear: the sought- for parameter is a function of the solution of the equation. Traditionally, the estimation of functions requires the selection of a fitting parametric model. The algorithm that we develop does not require a predetermined parameter model. Therefore, the estimation problem is carried out over a set of parameters which are functions. The algorithm is based on the linearization of the parameter-to-output mapping. This technique is new in the field of nonlinear estimation. It has the advantage of laying aside parametric models. The algorithm is iterative and is of predictor-corrector type. We present theoretical results on the inverse problem. We use synthetic data to test the new algorithm.

  19. An MPCC Formulation and Its Smooth Solution Algorithm for Continuous Network Design Problem

    Directory of Open Access Journals (Sweden)

    Guangmin Wang

    2017-12-01

    Full Text Available Continuous network design problem (CNDP is searching for a transportation network configuration to minimize the sum of the total system travel time and the investment cost of link capacity expansions by considering that the travellers follow a traditional Wardrop user equilibrium (UE to choose their routes. In this paper, the CNDP model can be formulated as mathematical programs with complementarity constraints (MPCC by describing UE as a non-linear complementarity problem (NCP. To address the difficulty resulting from complementarity constraints in MPCC, they are substituted by the Fischer-Burmeister (FB function, which can be smoothed by the introduction of the smoothing parameter. Therefore, the MPCC can be transformed into a well-behaved non-linear program (NLP by replacing the complementarity constraints with a smooth equation. Consequently, the solver such as LINDOGLOBAL in GAMS can be used to solve the smooth approximate NLP to obtain the solution to MPCC for modelling CNDP. The numerical experiments on the example from the literature demonstrate that the proposed algorithm is feasible.

  20. Parametrisation of a Maxwell model for transient tyre forces by means of an extended firefly algorithm

    Directory of Open Access Journals (Sweden)

    Andreas Hackl

    2016-12-01

    Full Text Available Developing functions for advanced driver assistance systems requires very accurate tyre models, especially for the simulation of transient conditions. In the past, parametrisation of a given tyre model based on measurement data showed shortcomings, and the globally optimal solution obtained did not appear to be plausible. In this article, an optimisation strategy is presented, which is able to find plausible and physically feasible solutions by detecting many local outcomes. The firefly algorithm mimics the natural behaviour of fireflies, which use a kind of flashing light to communicate with other members. An algorithm simulating the intensity of the light of a single firefly, diminishing with increasing distances, is implicitly able to detect local solutions on its way to the best solution in the search space. This implicit clustering feature is stressed by an additional explicit clustering step, where local solutions are stored and terminally processed to obtain a large number of possible solutions. The enhanced firefly algorithm will be first applied to the well-known Rastrigin functions and then to the tyre parametrisation problem. It is shown that the firefly algorithm is qualified to find a high number of optimisation solutions, which is required for plausible parametrisation for the given tyre model.

  1. An Intelligent Model for Pairs Trading Using Genetic Algorithms.

    Science.gov (United States)

    Huang, Chien-Feng; Hsu, Chi-Jen; Chen, Chi-Chung; Chang, Bao Rong; Li, Chen-An

    2015-01-01

    Pairs trading is an important and challenging research area in computational finance, in which pairs of stocks are bought and sold in pair combinations for arbitrage opportunities. Traditional methods that solve this set of problems mostly rely on statistical methods such as regression. In contrast to the statistical approaches, recent advances in computational intelligence (CI) are leading to promising opportunities for solving problems in the financial applications more effectively. In this paper, we present a novel methodology for pairs trading using genetic algorithms (GA). Our results showed that the GA-based models are able to significantly outperform the benchmark and our proposed method is capable of generating robust models to tackle the dynamic characteristics in the financial application studied. Based upon the promising results obtained, we expect this GA-based method to advance the research in computational intelligence for finance and provide an effective solution to pairs trading for investment in practice.

  2. Algorithm for Solution of Direct Kinematic Problem of Multi-sectional Manipulator with Parallel Structure

    Directory of Open Access Journals (Sweden)

    A. L. Lapikov

    2014-01-01

    Full Text Available The article is aimed at creating techniques to study multi-sectional manipulators with parallel structure. To solve this task the analysis in the field concerned was carried out to reveal both advantages and drawbacks of such executive mechanisms and main problems to be encountered in the course of research. The work shows that it is inefficient to create complete mathematical models of multisectional manipulators, which in the context of solving a direct kinematic problem are to derive a functional dependence of location and orientation of the end effector on all the generalized coordinates of the mechanism. The structure of multisectional manipulators was considered, where the sections are platform manipulators of parallel kinematics with six degrees of freedom. The paper offers an algorithm to define location and orientation of the end effector of the manipulator by means of iterative solution of analytical equation of the moving platform plane for each section. The equation for the unknown plane is derived using three points, which are attachment points of the moving platform joints. To define the values of joint coordinates a system of nine non-linear equations is completed. It is necessary to mention that for completion of the equation system are used the equations with the same type of non-linearity. The physical sense of all nine equations of the system is Euclidean distance between the points of the manipulator. The result of algorithm execution is a matrix of homogenous transformation for each section. The correlations describing transformations between adjoining sections of the manipulator are given. An example of the mechanism consisting of three sections is examined. The comparison of theoretical calculations with results obtained on a 3D-prototype is made. The next step of the work is to conduct research activities both in the field of dynamics of platform parallel kinematics manipulators with six degrees of freedom and in the

  3. Bouc–Wen hysteresis model identification using Modified Firefly Algorithm

    International Nuclear Information System (INIS)

    Zaman, Mohammad Asif; Sikder, Urmita

    2015-01-01

    The parameters of Bouc–Wen hysteresis model are identified using a Modified Firefly Algorithm. The proposed algorithm uses dynamic process control parameters to improve its performance. The algorithm is used to find the model parameter values that results in the least amount of error between a set of given data points and points obtained from the Bouc–Wen model. The performance of the algorithm is compared with the performance of conventional Firefly Algorithm, Genetic Algorithm and Differential Evolution algorithm in terms of convergence rate and accuracy. Compared to the other three optimization algorithms, the proposed algorithm is found to have good convergence rate with high degree of accuracy in identifying Bouc–Wen model parameters. Finally, the proposed method is used to find the Bouc–Wen model parameters from experimental data. The obtained model is found to be in good agreement with measured data. - Highlights: • We describe a new method to find the Bouc–Wen hysteresis model parameters. • We propose a Modified Firefly Algorithm. • We compare our method with existing methods to find that the proposed method performs better. • We use our model to fit experimental results. Good agreement is found

  4. Bouc–Wen hysteresis model identification using Modified Firefly Algorithm

    Energy Technology Data Exchange (ETDEWEB)

    Zaman, Mohammad Asif, E-mail: zaman@stanford.edu [Department of Electrical Engineering, Stanford University (United States); Sikder, Urmita [Department of Electrical Engineering and Computer Sciences, University of California, Berkeley (United States)

    2015-12-01

    The parameters of Bouc–Wen hysteresis model are identified using a Modified Firefly Algorithm. The proposed algorithm uses dynamic process control parameters to improve its performance. The algorithm is used to find the model parameter values that results in the least amount of error between a set of given data points and points obtained from the Bouc–Wen model. The performance of the algorithm is compared with the performance of conventional Firefly Algorithm, Genetic Algorithm and Differential Evolution algorithm in terms of convergence rate and accuracy. Compared to the other three optimization algorithms, the proposed algorithm is found to have good convergence rate with high degree of accuracy in identifying Bouc–Wen model parameters. Finally, the proposed method is used to find the Bouc–Wen model parameters from experimental data. The obtained model is found to be in good agreement with measured data. - Highlights: • We describe a new method to find the Bouc–Wen hysteresis model parameters. • We propose a Modified Firefly Algorithm. • We compare our method with existing methods to find that the proposed method performs better. • We use our model to fit experimental results. Good agreement is found.

  5. Investigating multiple solutions in the constrained minimal supersymmetric standard model

    Energy Technology Data Exchange (ETDEWEB)

    Allanach, B.C. [DAMTP, CMS, University of Cambridge,Wilberforce Road, Cambridge, CB3 0HA (United Kingdom); George, Damien P. [DAMTP, CMS, University of Cambridge,Wilberforce Road, Cambridge, CB3 0HA (United Kingdom); Cavendish Laboratory, University of Cambridge,JJ Thomson Avenue, Cambridge, CB3 0HE (United Kingdom); Nachman, Benjamin [SLAC, Stanford University,2575 Sand Hill Rd, Menlo Park, CA 94025 (United States)

    2014-02-07

    Recent work has shown that the Constrained Minimal Supersymmetric Standard Model (CMSSM) can possess several distinct solutions for certain values of its parameters. The extra solutions were not previously found by public supersymmetric spectrum generators because fixed point iteration (the algorithm used by the generators) is unstable in the neighbourhood of these solutions. The existence of the additional solutions calls into question the robustness of exclusion limits derived from collider experiments and cosmological observations upon the CMSSM, because limits were only placed on one of the solutions. Here, we map the CMSSM by exploring its multi-dimensional parameter space using the shooting method, which is not subject to the stability issues which can plague fixed point iteration. We are able to find multiple solutions where in all previous literature only one was found. The multiple solutions are of two distinct classes. One class, close to the border of bad electroweak symmetry breaking, is disfavoured by LEP2 searches for neutralinos and charginos. The other class has sparticles that are heavy enough to evade the LEP2 bounds. Chargino masses may differ by up to around 10% between the different solutions, whereas other sparticle masses differ at the sub-percent level. The prediction for the dark matter relic density can vary by a hundred percent or more between the different solutions, so analyses employing the dark matter constraint are incomplete without their inclusion.

  6. Aitken extrapolation and epsilon algorithm for an accelerated solution of weakly singular nonlinear Volterra integral equations

    International Nuclear Information System (INIS)

    Mesgarani, H; Parmour, P; Aghazadeh, N

    2010-01-01

    In this paper, we apply Aitken extrapolation and epsilon algorithm as acceleration technique for the solution of a weakly singular nonlinear Volterra integral equation of the second kind. In this paper, based on Tao and Yong (2006 J. Math. Anal. Appl. 324 225-37.) the integral equation is solved by Navot's quadrature formula. Also, Tao and Yong (2006) for the first time applied Richardson extrapolation to accelerating convergence for the weakly singular nonlinear Volterra integral equations of the second kind. To our knowledge, this paper may be the first attempt to apply Aitken extrapolation and epsilon algorithm for the weakly singular nonlinear Volterra integral equations of the second kind.

  7. Focuss algorithm application in kinetic compartment modeling for PET tracer

    International Nuclear Information System (INIS)

    Huang Xinrui; Bao Shanglian

    2004-01-01

    Molecular imaging is in the process of becoming. Its application mostly depends on the molecular discovery process of imaging probes and drugs, from the mouse to the patient, from research to clinical practice. Positron emission tomography (PET) can non-invasively monitor . pharmacokinetic and functional processes of drugs in intact organisms at tracer concentrations by kinetic modeling. It has been known that for all biological systems, linear or nonlinear, if the system is injected by a tracer in a steady state, the distribution of the tracer follows the kinetics of a linear compartmental system, which has sums of exponential solutions. Based on the general compartmental description of the tracer's fate in vivo, we presented a novel kinetic modeling approach for the quantification of in vivo tracer studies with dynamic positron emission tomography (PET), which can determine a parsimonious model consisting with the measured data. This kinetic modeling technique allows for estimation of parametric images from a voxel based analysis and requires no a priori decision about the tracer's fate in vivo, instead determining the most appropriate model from the information contained within the kinetic data. Choosing a set of exponential functions, convolved with the plasma input function, as basis functions, the time activity curve of a region or a pixel can be written as a linear combination of the basis functions with corresponding coefficients. The number of non-zero coefficients returned corresponds to the model order which is related to the number of tissue compartments. The system macro parameters are simply determined using the focal underdetermined system solver (FOCUSS) algorithm. The FOCUSS algorithm is a nonparametric algorithm for finding localized energy solutions from limited data and is a recursive linear estimation procedure. FOCUSS algorithm usually converges very fast, so demands a few iterations. The effectiveness is verified by simulation and clinical

  8. Algebraic dynamics solutions and algebraic dynamics algorithm for nonlinear partial differential evolution equations of dynamical systems

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    Using functional derivative technique in quantum field theory, the algebraic dy-namics approach for solution of ordinary differential evolution equations was gen-eralized to treat partial differential evolution equations. The partial differential evo-lution equations were lifted to the corresponding functional partial differential equations in functional space by introducing the time translation operator. The functional partial differential evolution equations were solved by algebraic dynam-ics. The algebraic dynamics solutions are analytical in Taylor series in terms of both initial functions and time. Based on the exact analytical solutions, a new nu-merical algorithm—algebraic dynamics algorithm was proposed for partial differ-ential evolution equations. The difficulty of and the way out for the algorithm were discussed. The application of the approach to and computer numerical experi-ments on the nonlinear Burgers equation and meteorological advection equation indicate that the algebraic dynamics approach and algebraic dynamics algorithm are effective to the solution of nonlinear partial differential evolution equations both analytically and numerically.

  9. Data mining with SPSS modeler theory, exercises and solutions

    CERN Document Server

    Wendler, Tilo

    2016-01-01

    Introducing the IBM SPSS Modeler, this book guides readers through data mining processes and presents relevant statistical methods. There is a special focus on step-by-step tutorials and well-documented examples that help demystify complex mathematical algorithms and computer programs. The variety of exercises and solutions as well as an accompanying website with data sets and SPSS Modeler streams are particularly valuable. While intended for students, the simplicity of the Modeler makes the book useful for anyone wishing to learn about basic and more advanced data mining, and put this knowledge into practice.

  10. Portfolio optimization by using linear programing models based on genetic algorithm

    Science.gov (United States)

    Sukono; Hidayat, Y.; Lesmana, E.; Putra, A. S.; Napitupulu, H.; Supian, S.

    2018-01-01

    In this paper, we discussed the investment portfolio optimization using linear programming model based on genetic algorithms. It is assumed that the portfolio risk is measured by absolute standard deviation, and each investor has a risk tolerance on the investment portfolio. To complete the investment portfolio optimization problem, the issue is arranged into a linear programming model. Furthermore, determination of the optimum solution for linear programming is done by using a genetic algorithm. As a numerical illustration, we analyze some of the stocks traded on the capital market in Indonesia. Based on the analysis, it is shown that the portfolio optimization performed by genetic algorithm approach produces more optimal efficient portfolio, compared to the portfolio optimization performed by a linear programming algorithm approach. Therefore, genetic algorithms can be considered as an alternative on determining the investment portfolio optimization, particularly using linear programming models.

  11. Algorithms

    Indian Academy of Sciences (India)

    polynomial) division have been found in Vedic Mathematics which are dated much before Euclid's algorithm. A programming language Is used to describe an algorithm for execution on a computer. An algorithm expressed using a programming.

  12. Actuator Disc Model Using a Modified Rhie-Chow/SIMPLE Pressure Correction Algorithm

    DEFF Research Database (Denmark)

    Rethore, Pierre-Elouan; Sørensen, Niels

    2008-01-01

    An actuator disc model for the flow solver EllipSys (2D&3D) is proposed. It is based on a correction of the Rhie-Chow algorithm for using discreet body forces in collocated variable finite volume CFD code. It is compared with three cases where an analytical solution is known.......An actuator disc model for the flow solver EllipSys (2D&3D) is proposed. It is based on a correction of the Rhie-Chow algorithm for using discreet body forces in collocated variable finite volume CFD code. It is compared with three cases where an analytical solution is known....

  13. Investigation of ALEGRA shock hydrocode algorithms using an exact free surface jet flow solution.

    Energy Technology Data Exchange (ETDEWEB)

    Hanks, Bradley Wright.; Robinson, Allen C

    2014-01-01

    Computational testing of the arbitrary Lagrangian-Eulerian shock physics code, ALEGRA, is presented using an exact solution that is very similar to a shaped charge jet flow. The solution is a steady, isentropic, subsonic free surface flow with significant compression and release and is provided as a steady state initial condition. There should be no shocks and no entropy production throughout the problem. The purpose of this test problem is to present a detailed and challenging computation in order to provide evidence for algorithmic strengths and weaknesses in ALEGRA which should be examined further. The results of this work are intended to be used to guide future algorithmic improvements in the spirit of test-driven development processes.

  14. Mining the multigroup-discrete ordinates algorithm for high quality solutions

    International Nuclear Information System (INIS)

    Ganapol, B.D.; Kornreich, D.E.

    2005-01-01

    A novel approach to the numerical solution of the neutron transport equation via the discrete ordinates (SN) method is presented. The new technique is referred to as 'mining' low order (SN) numerical solutions to obtain high order accuracy. The new numerical method, called the Multigroup Converged SN (MGCSN) algorithm, is a combination of several sequence accelerators: Romberg and Wynn-epsilon. The extreme accuracy obtained by the method is demonstrated through self consistency and comparison to the independent semi-analytical benchmark BLUE. (authors)

  15. Solution Algorithm for a New Bi-Level Discrete Network Design Problem

    Directory of Open Access Journals (Sweden)

    Qun Chen

    2013-12-01

    Full Text Available A new discrete network design problem (DNDP was pro-posed in this paper, where the variables can be a series of integers rather than just 0-1. The new DNDP can determine both capacity improvement grades of reconstruction roads and locations and capacity grades of newly added roads, and thus complies with the practical projects where road capacity can only be some discrete levels corresponding to the number of lanes of roads. This paper designed a solution algorithm combining branch-and-bound with Hooke-Jeeves algorithm, where feasible integer solutions are recorded in searching the process of Hooke-Jeeves algorithm, lend -ing itself to determine the upper bound of the upper-level problem. The thresholds for branch cutting and ending were set for earlier convergence. Numerical examples are given to demonstrate the efficiency of the proposed algorithm.

  16. Optimal Solution for VLSI Physical Design Automation Using Hybrid Genetic Algorithm

    Directory of Open Access Journals (Sweden)

    I. Hameem Shanavas

    2014-01-01

    Full Text Available In Optimization of VLSI Physical Design, area minimization and interconnect length minimization is an important objective in physical design automation of very large scale integration chips. The objective of minimizing the area and interconnect length would scale down the size of integrated chips. To meet the above objective, it is necessary to find an optimal solution for physical design components like partitioning, floorplanning, placement, and routing. This work helps to perform the optimization of the benchmark circuits with the above said components of physical design using hierarchical approach of evolutionary algorithms. The goal of minimizing the delay in partitioning, minimizing the silicon area in floorplanning, minimizing the layout area in placement, minimizing the wirelength in routing has indefinite influence on other criteria like power, clock, speed, cost, and so forth. Hybrid evolutionary algorithm is applied on each of its phases to achieve the objective. Because evolutionary algorithm that includes one or many local search steps within its evolutionary cycles to obtain the minimization of area and interconnect length. This approach combines a hierarchical design like genetic algorithm and simulated annealing to attain the objective. This hybrid approach can quickly produce optimal solutions for the popular benchmarks.

  17. An algorithm for computing the hull of the solution set of interval linear equations

    Czech Academy of Sciences Publication Activity Database

    Rohn, Jiří

    2011-01-01

    Roč. 435, č. 2 (2011), s. 193-201 ISSN 0024-3795 R&D Projects: GA ČR GA201/09/1957; GA ČR GC201/08/J020 Institutional research plan: CEZ:AV0Z10300504 Keywords : interval linear equations * solution set * interval hull * algorithm * absolute value inequality Subject RIV: BA - General Mathematics Impact factor: 0.974, year: 2011

  18. Efficient Implementation Algorithms for Homogenized Energy Models

    National Research Council Canada - National Science Library

    Braun, Thomas R; Smith, Ralph C

    2005-01-01

    ... for real-time control implementation. In this paper, we develop algorithms employing lookup tables which permit the high speed implementation of formulations which incorporate relaxation mechanisms and electromechanical coupling...

  19. Pseudoclassical fermionic model and classical solutions

    International Nuclear Information System (INIS)

    Smailagic, A.

    1981-08-01

    We study classical limit of fermionic fields seen as Grassmann variables and deduce the proper quantization prescription using Dirac's method for constrained systems and investigate quantum meaning of classical solutions for the Thirring model. (author)

  20. A solution to the economic dispatch using EP based SA algorithm on large scale power system

    Energy Technology Data Exchange (ETDEWEB)

    Christober Asir Rajan, C. [Department of EEE, Pondicherry Engineering College, Pondicherry 605 014 (India)

    2010-07-15

    This paper develops a new approach for solving the Economic Load Dispatch (ELD) using an integrated algorithm based on Evolutionary Programming (EP) and Simulated Annealing (SA) on large scale power system. Classical methods employed for solving Economic Load Dispatch are calculus-based. For generator units having quadratic fuel cost functions, the classical techniques ignore or flatten out the portions of the incremental fuel cost curves and so may be have difficulties in the determination of the global optimum solution for non-differentiable fuel cost functions. To overcome these problems, the intelligent techniques, namely, Evolutionary Programming and Simulated Annealing are employed. The above said optimization techniques are capable of determining the global or near global optimum dispatch solutions. The validity and effectiveness of the proposed integrated algorithm has been tested with 66-bus Indian utility system, IEEE 5-bus, 30-bus, 118-bus system. And the test results are compared with the results obtained from other methods. Numerical results show that the proposed integrated algorithm can provide accurate solutions within reasonable time for any type of fuel cost functions. (author)

  1. Efficient solution to the stagnation problem of the particle swarm optimization algorithm for phase diversity.

    Science.gov (United States)

    Qi, Xin; Ju, Guohao; Xu, Shuyan

    2018-04-10

    The phase diversity (PD) technique needs optimization algorithms to minimize the error metric and find the global minimum. Particle swarm optimization (PSO) is very suitable for PD due to its simple structure, fast convergence, and global searching ability. However, the traditional PSO algorithm for PD still suffers from the stagnation problem (premature convergence), which can result in a wrong solution. In this paper, the stagnation problem of the traditional PSO algorithm for PD is illustrated first. Then, an explicit strategy is proposed to solve this problem, based on an in-depth understanding of the inherent optimization mechanism of the PSO algorithm. Specifically, a criterion is proposed to detect premature convergence; then a redistributing mechanism is proposed to prevent premature convergence. To improve the efficiency of this redistributing mechanism, randomized Halton sequences are further introduced to ensure the uniform distribution and randomness of the redistributed particles in the search space. Simulation results show that this strategy can effectively solve the stagnation problem of the PSO algorithm for PD, especially for large-scale and high-dimension wavefront sensing and noisy conditions. This work is further verified by an experiment. This work can improve the robustness and performance of PD wavefront sensing.

  2. Loop algorithms for quantum simulations of fermion models on lattices

    International Nuclear Information System (INIS)

    Kawashima, N.; Gubernatis, J.E.; Evertz, H.G.

    1994-01-01

    Two cluster algorithms, based on constructing and flipping loops, are presented for world-line quantum Monte Carlo simulations of fermions and are tested on the one-dimensional repulsive Hubbard model. We call these algorithms the loop-flip and loop-exchange algorithms. For these two algorithms and the standard world-line algorithm, we calculated the autocorrelation times for various physical quantities and found that the ordinary world-line algorithm, which uses only local moves, suffers from very long correlation times that makes not only the estimate of the error difficult but also the estimate of the average values themselves difficult. These difficulties are especially severe in the low-temperature, large-U regime. In contrast, we find that new algorithms, when used alone or in combinations with themselves and the standard algorithm, can have significantly smaller autocorrelation times, in some cases being smaller by three orders of magnitude. The new algorithms, which use nonlocal moves, are discussed from the point of view of a general prescription for developing cluster algorithms. The loop-flip algorithm is also shown to be ergodic and to belong to the grand canonical ensemble. Extensions to other models and higher dimensions are briefly discussed

  3. The quantum Rabi model: solution and dynamics

    International Nuclear Information System (INIS)

    Xie, Qiongtao; Zhong, Honghua; Lee, Chaohong; Batchelor, Murray T

    2017-01-01

    This article presents a review of recent developments on various aspects of the quantum Rabi model. Particular emphasis is given on the exact analytic solution obtained in terms of confluent Heun functions. The analytic solutions for various generalisations of the quantum Rabi model are also discussed. Results are also reviewed on the level statistics and the dynamics of the quantum Rabi model. The article concludes with an introductory overview of several experimental realisations of the quantum Rabi model. An outlook towards future developments is also given. (topical review)

  4. Engineering of Algorithms for Hidden Markov models and Tree Distances

    DEFF Research Database (Denmark)

    Sand, Andreas

    Bioinformatics is an interdisciplinary scientific field that combines biology with mathematics, statistics and computer science in an effort to develop computational methods for handling, analyzing and learning from biological data. In the recent decades, the amount of available biological data has...... speed up all the classical algorithms for analyses and training of hidden Markov models. And I show how two particularly important algorithms, the forward algorithm and the Viterbi algorithm, can be accelerated through a reformulation of the algorithms and a somewhat more complicated parallelization...... contribution to the theoretically fastest set of algorithms presently available to compute two closely related measures of tree distance, the triplet distance and the quartet distance. And I further demonstrate that they are also the fastest algorithms in almost all cases when tested in practice....

  5. GRAVITATIONAL LENS MODELING WITH GENETIC ALGORITHMS AND PARTICLE SWARM OPTIMIZERS

    International Nuclear Information System (INIS)

    Rogers, Adam; Fiege, Jason D.

    2011-01-01

    Strong gravitational lensing of an extended object is described by a mapping from source to image coordinates that is nonlinear and cannot generally be inverted analytically. Determining the structure of the source intensity distribution also requires a description of the blurring effect due to a point-spread function. This initial study uses an iterative gravitational lens modeling scheme based on the semilinear method to determine the linear parameters (source intensity profile) of a strongly lensed system. Our 'matrix-free' approach avoids construction of the lens and blurring operators while retaining the least-squares formulation of the problem. The parameters of an analytical lens model are found through nonlinear optimization by an advanced genetic algorithm (GA) and particle swarm optimizer (PSO). These global optimization routines are designed to explore the parameter space thoroughly, mapping model degeneracies in detail. We develop a novel method that determines the L-curve for each solution automatically, which represents the trade-off between the image χ 2 and regularization effects, and allows an estimate of the optimally regularized solution for each lens parameter set. In the final step of the optimization procedure, the lens model with the lowest χ 2 is used while the global optimizer solves for the source intensity distribution directly. This allows us to accurately determine the number of degrees of freedom in the problem to facilitate comparison between lens models and enforce positivity on the source profile. In practice, we find that the GA conducts a more thorough search of the parameter space than the PSO.

  6. Scaffolding Mathematical Modelling with a Solution Plan

    Science.gov (United States)

    Schukajlow, Stanislaw; Kolter, Jana; Blum, Werner

    2015-01-01

    In the study presented in this paper, we examined the possibility to scaffold mathematical modelling with strategies. The strategies were prompted using an instrument called "solution plan" as a scaffold. The effects of this step by step instrument on mathematical modelling competency and on self-reported strategies were tested using…

  7. A solution algorithm for fluid-particle flows across all flow regimes

    Science.gov (United States)

    Kong, Bo; Fox, Rodney O.

    2017-09-01

    Many fluid-particle flows occurring in nature and in technological applications exhibit large variations in the local particle volume fraction. For example, in circulating fluidized beds there are regions where the particles are close-packed as well as very dilute regions where particle-particle collisions are rare. Thus, in order to simulate such fluid-particle systems, it is necessary to design a flow solver that can accurately treat all flow regimes occurring simultaneously in the same flow domain. In this work, a solution algorithm is proposed for this purpose. The algorithm is based on splitting the free-transport flux solver dynamically and locally in the flow. In close-packed to moderately dense regions, a hydrodynamic solver is employed, while in dilute to very dilute regions a kinetic-based finite-volume solver is used in conjunction with quadrature-based moment methods. To illustrate the accuracy and robustness of the proposed solution algorithm, it is implemented in OpenFOAM for particle velocity moments up to second order, and applied to simulate gravity-driven, gas-particle flows exhibiting cluster-induced turbulence. By varying the average particle volume fraction in the flow domain, it is demonstrated that the flow solver can handle seamlessly all flow regimes present in fluid-particle flows.

  8. Variable selection in Logistic regression model with genetic algorithm.

    Science.gov (United States)

    Zhang, Zhongheng; Trevino, Victor; Hoseini, Sayed Shahabuddin; Belciug, Smaranda; Boopathi, Arumugam Manivanna; Zhang, Ping; Gorunescu, Florin; Subha, Velappan; Dai, Songshi

    2018-02-01

    Variable or feature selection is one of the most important steps in model specification. Especially in the case of medical-decision making, the direct use of a medical database, without a previous analysis and preprocessing step, is often counterproductive. In this way, the variable selection represents the method of choosing the most relevant attributes from the database in order to build a robust learning models and, thus, to improve the performance of the models used in the decision process. In biomedical research, the purpose of variable selection is to select clinically important and statistically significant variables, while excluding unrelated or noise variables. A variety of methods exist for variable selection, but none of them is without limitations. For example, the stepwise approach, which is highly used, adds the best variable in each cycle generally producing an acceptable set of variables. Nevertheless, it is limited by the fact that it commonly trapped in local optima. The best subset approach can systematically search the entire covariate pattern space, but the solution pool can be extremely large with tens to hundreds of variables, which is the case in nowadays clinical data. Genetic algorithms (GA) are heuristic optimization approaches and can be used for variable selection in multivariable regression models. This tutorial paper aims to provide a step-by-step approach to the use of GA in variable selection. The R code provided in the text can be extended and adapted to other data analysis needs.

  9. An Evolutionary Algorithm for Multiobjective Fuzzy Portfolio Selection Models with Transaction Cost and Liquidity

    Directory of Open Access Journals (Sweden)

    Wei Yue

    2015-01-01

    Full Text Available The major issues for mean-variance-skewness models are the errors in estimations that cause corner solutions and low diversity in the portfolio. In this paper, a multiobjective fuzzy portfolio selection model with transaction cost and liquidity is proposed to maintain the diversity of portfolio. In addition, we have designed a multiobjective evolutionary algorithm based on decomposition of the objective space to maintain the diversity of obtained solutions. The algorithm is used to obtain a set of Pareto-optimal portfolios with good diversity and convergence. To demonstrate the effectiveness of the proposed model and algorithm, the performance of the proposed algorithm is compared with the classic MOEA/D and NSGA-II through some numerical examples based on the data of the Shanghai Stock Exchange Market. Simulation results show that our proposed algorithm is able to obtain better diversity and more evenly distributed Pareto front than the other two algorithms and the proposed model can maintain quite well the diversity of portfolio. The purpose of this paper is to deal with portfolio problems in the weighted possibilistic mean-variance-skewness (MVS and possibilistic mean-variance-skewness-entropy (MVS-E frameworks with transaction cost and liquidity and to provide different Pareto-optimal investment strategies as diversified as possible for investors at a time, rather than one strategy for investors at a time.

  10. Computationally efficient model predictive control algorithms a neural network approach

    CERN Document Server

    Ławryńczuk, Maciej

    2014-01-01

    This book thoroughly discusses computationally efficient (suboptimal) Model Predictive Control (MPC) techniques based on neural models. The subjects treated include: ·         A few types of suboptimal MPC algorithms in which a linear approximation of the model or of the predicted trajectory is successively calculated on-line and used for prediction. ·         Implementation details of the MPC algorithms for feedforward perceptron neural models, neural Hammerstein models, neural Wiener models and state-space neural models. ·         The MPC algorithms based on neural multi-models (inspired by the idea of predictive control). ·         The MPC algorithms with neural approximation with no on-line linearization. ·         The MPC algorithms with guaranteed stability and robustness. ·         Cooperation between the MPC algorithms and set-point optimization. Thanks to linearization (or neural approximation), the presented suboptimal algorithms do not require d...

  11. Algorithms

    Indian Academy of Sciences (India)

    to as 'divide-and-conquer'. Although there has been a large effort in realizing efficient algorithms, there are not many universally accepted algorithm design paradigms. In this article, we illustrate algorithm design techniques such as balancing, greedy strategy, dynamic programming strategy, and backtracking or traversal of ...

  12. PARTRACK - A particle tracking algorithm for transport and dispersion of solutes in a sparsely fractured rock

    International Nuclear Information System (INIS)

    Svensson, Urban

    2001-04-01

    A particle tracking algorithm, PARTRACK, that simulates transport and dispersion in a sparsely fractured rock is described. The main novel feature of the algorithm is the introduction of multiple particle states. It is demonstrated that the introduction of this feature allows for the simultaneous simulation of Taylor dispersion, sorption and matrix diffusion. A number of test cases are used to verify and demonstrate the features of PARTRACK. It is shown that PARTRACK can simulate the following processes, believed to be important for the problem addressed: the split up of a tracer cloud at a fracture intersection, channeling in a fracture plane, Taylor dispersion and matrix diffusion and sorption. From the results of the test cases, it is concluded that PARTRACK is an adequate framework for simulation of transport and dispersion of a solute in a sparsely fractured rock

  13. DEVELOPMENT OF 2D HUMAN BODY MODELING USING THINNING ALGORITHM

    Directory of Open Access Journals (Sweden)

    K. Srinivasan

    2010-11-01

    Full Text Available Monitoring the behavior and activities of people in Video surveillance has gained more applications in Computer vision. This paper proposes a new approach to model the human body in 2D view for the activity analysis using Thinning algorithm. The first step of this work is Background subtraction which is achieved by the frame differencing algorithm. Thinning algorithm has been used to find the skeleton of the human body. After thinning, the thirteen feature points like terminating points, intersecting points, shoulder, elbow, and knee points have been extracted. Here, this research work attempts to represent the body model in three different ways such as Stick figure model, Patch model and Rectangle body model. The activities of humans have been analyzed with the help of 2D model for the pre-defined poses from the monocular video data. Finally, the time consumption and efficiency of our proposed algorithm have been evaluated.

  14. Model-Free Adaptive Control Algorithm with Data Dropout Compensation

    Directory of Open Access Journals (Sweden)

    Xuhui Bu

    2012-01-01

    Full Text Available The convergence of model-free adaptive control (MFAC algorithm can be guaranteed when the system is subject to measurement data dropout. The system output convergent speed gets slower as dropout rate increases. This paper proposes a MFAC algorithm with data compensation. The missing data is first estimated using the dynamical linearization method, and then the estimated value is introduced to update control input. The convergence analysis of the proposed MFAC algorithm is given, and the effectiveness is also validated by simulations. It is shown that the proposed algorithm can compensate the effect of the data dropout, and the better output performance can be obtained.

  15. Evaluation of models generated via hybrid evolutionary algorithms ...

    African Journals Online (AJOL)

    2016-04-02

    Apr 2, 2016 ... Evaluation of models generated via hybrid evolutionary algorithms for the prediction of Microcystis ... evolutionary algorithms (HEA) proved to be highly applica- ble to the hypertrophic reservoirs of South Africa. .... discovered and optimised using a large-scale parallel computational device and relevant soft-.

  16. Fast Algorithms for Fitting Active Appearance Models to Unconstrained Images

    NARCIS (Netherlands)

    Tzimiropoulos, Georgios; Pantic, Maja

    2016-01-01

    Fitting algorithms for Active Appearance Models (AAMs) are usually considered to be robust but slow or fast but less able to generalize well to unseen variations. In this paper, we look into AAM fitting algorithms and make the following orthogonal contributions: We present a simple “project-out‿

  17. Optimization algorithms intended for self-tuning feedwater heater model

    International Nuclear Information System (INIS)

    Czop, P; Barszcz, T; Bednarz, J

    2013-01-01

    This work presents a self-tuning feedwater heater model. This work continues the work on first-principle gray-box methodology applied to diagnostics and condition assessment of power plant components. The objective of this work is to review and benchmark the optimization algorithms regarding the time required to achieve the best model fit to operational power plant data. The paper recommends the most effective algorithm to be used in the model adjustment process.

  18. Classical solutions of some field theoretic models

    International Nuclear Information System (INIS)

    Zakrzewski, W.J.

    1982-01-01

    In recent years much attention has been paid to simpler fields theories, so chosen that they possess several properties of nonabelian gauge theories. They preserve the conformal invariance of the action and one can define the topological charge for them. They possess nontrivial solutions to the equations of motion. The perturbation theory based on the fluctuations around each solution is characterized by asymptotic freedom. A model called CP sup(n-1) is presented and some models which are its natural generalizations are discussed. (M.F.W.)

  19. Optimized combination model and algorithm of parking guidance information configuration

    Directory of Open Access Journals (Sweden)

    Tian Ye

    2011-01-01

    Full Text Available Abstract Operators of parking guidance and information (PGI systems often have difficulty in providing the best car park availability information to drivers in periods of high demand. A new PGI configuration model based on the optimized combination method was proposed by analyzing of parking choice behavior. This article first describes a parking choice behavioral model incorporating drivers perceptions of waiting times at car parks based on PGI signs. This model was used to predict the influence of PGI signs on the overall performance of the traffic system. Then relationships were developed for estimating the arrival rates at car parks based on driver characteristics, car park attributes as well as the car park availability information displayed on PGI signs. A mathematical program was formulated to determine the optimal display PGI sign configuration to minimize total travel time. A genetic algorithm was used to identify solutions that significantly reduced queue lengths and total travel time compared with existing practices. These procedures were applied to an existing PGI system operating in Deqing Town and Xiuning City. Significant reductions in total travel time of parking vehicles with PGI being configured. This would reduce traffic congestion and lead to various environmental benefits.

  20. Insertion algorithms for network model database management systems

    Science.gov (United States)

    Mamadolimov, Abdurashid; Khikmat, Saburov

    2017-12-01

    The network model is a database model conceived as a flexible way of representing objects and their relationships. Its distinguishing feature is that the schema, viewed as a graph in which object types are nodes and relationship types are arcs, forms partial order. When a database is large and a query comparison is expensive then the efficiency requirement of managing algorithms is minimizing the number of query comparisons. We consider updating operation for network model database management systems. We develop a new sequantial algorithm for updating operation. Also we suggest a distributed version of the algorithm.

  1. On substructuring algorithms and solution techniques for the numerical approximation of partial differential equations

    Science.gov (United States)

    Gunzburger, M. D.; Nicolaides, R. A.

    1986-01-01

    Substructuring methods are in common use in mechanics problems where typically the associated linear systems of algebraic equations are positive definite. Here these methods are extended to problems which lead to nonpositive definite, nonsymmetric matrices. The extension is based on an algorithm which carries out the block Gauss elimination procedure without the need for interchanges even when a pivot matrix is singular. Examples are provided wherein the method is used in connection with finite element solutions of the stationary Stokes equations and the Helmholtz equation, and dual methods for second-order elliptic equations.

  2. Black hole algorithm for determining model parameter in self-potential data

    Science.gov (United States)

    Sungkono; Warnana, Dwa Desa

    2018-01-01

    Analysis of self-potential (SP) data is increasingly popular in geophysical method due to its relevance in many cases. However, the inversion of SP data is often highly nonlinear. Consequently, local search algorithms commonly based on gradient approaches have often failed to find the global optimum solution in nonlinear problems. Black hole algorithm (BHA) was proposed as a solution to such problems. As the name suggests, the algorithm was constructed based on the black hole phenomena. This paper investigates the application of BHA to solve inversions of field and synthetic self-potential (SP) data. The inversion results show that BHA accurately determines model parameters and model uncertainty. This indicates that BHA is highly potential as an innovative approach for SP data inversion.

  3. Algorithmic detectability threshold of the stochastic block model

    Science.gov (United States)

    Kawamoto, Tatsuro

    2018-03-01

    The assumption that the values of model parameters are known or correctly learned, i.e., the Nishimori condition, is one of the requirements for the detectability analysis of the stochastic block model in statistical inference. In practice, however, there is no example demonstrating that we can know the model parameters beforehand, and there is no guarantee that the model parameters can be learned accurately. In this study, we consider the expectation-maximization (EM) algorithm with belief propagation (BP) and derive its algorithmic detectability threshold. Our analysis is not restricted to the community structure but includes general modular structures. Because the algorithm cannot always learn the planted model parameters correctly, the algorithmic detectability threshold is qualitatively different from the one with the Nishimori condition.

  4. Genetic Algorithms for a Parameter Estimation of a Fermentation Process Model: A Comparison

    Directory of Open Access Journals (Sweden)

    Olympia Roeva

    2005-12-01

    Full Text Available In this paper the problem of a parameter estimation using genetic algorithms is examined. A case study considering the estimation of 6 parameters of a nonlinear dynamic model of E. coli fermentation is presented as a test problem. The parameter estimation problem is stated as a nonlinear programming problem subject to nonlinear differential-algebraic constraints. This problem is known to be frequently ill-conditioned and multimodal. Thus, traditional (gradient-based local optimization methods fail to arrive satisfied solutions. To overcome their limitations, the use of different genetic algorithms as stochastic global optimization methods is explored. These algorithms are proved to be very suitable for the optimization of highly non-linear problems with many variables. Genetic algorithms can guarantee global optimality and robustness. These facts make them advantageous in use for parameter identification of fermentation models. A comparison between simple, modified and multi-population genetic algorithms is presented. The best result is obtained using the modified genetic algorithm. The considered algorithms converged very closely to the cost value but the modified algorithm is in times faster than other two.

  5. Accelerated Genetic Algorithm Solutions Of Some Parametric Families Of Stochastic Differential Equations

    Directory of Open Access Journals (Sweden)

    Eman Ali Hussain

    2015-01-01

    Full Text Available Absract In this project A new method for solving Stochastic Differential Equations SDEs deriving by Wiener process numerically will be construct and implement using Accelerated Genetic Algorithm AGA. An SDE is a differential equation in which one or more of the terms and hence the solutions itself is a stochastic process. Solving stochastic differential equations requires going away from the recognizable deterministic setting of ordinary and partial differential equations into a world where the evolution of a quantity has an inherent random component and where the expected behavior of this quantity can be described in terms of probability distributions. We applied our method on the Ito formula which is equivalent to the SDE to find approximation solution of the SDEs. Numerical experiments illustrate the behavior of the proposed method.

  6. Implementation of a Multichannel Serial Data Streaming Algorithm using the Xilinx Serial RapidIO Solution

    Science.gov (United States)

    Doxley, Charles A.

    2016-01-01

    In the current world of applications that use reconfigurable technology implemented on field programmable gate arrays (FPGAs), there is a need for flexible architectures that can grow as the systems evolve. A project has limited resources and a fixed set of requirements that development efforts are tasked to meet. Designers must develop robust solutions that practically meet the current customer demands and also have the ability to grow for future performance. This paper describes the development of a high speed serial data streaming algorithm that allows for transmission of multiple data channels over a single serial link. The technique has the ability to change to meet new applications developed for future design considerations. This approach uses the Xilinx Serial RapidIO LOGICORE Solution to implement a flexible infrastructure to meet the current project requirements with the ability to adapt future system designs.

  7. Introduction of Parallel GPGPU Acceleration Algorithms for the Solution of Radiative Transfer

    Science.gov (United States)

    Godoy, William F.; Liu, Xu

    2011-01-01

    General-purpose computing on graphics processing units (GPGPU) is a recent technique that allows the parallel graphics processing unit (GPU) to accelerate calculations performed sequentially by the central processing unit (CPU). To introduce GPGPU to radiative transfer, the Gauss-Seidel solution of the well-known expressions for 1-D and 3-D homogeneous, isotropic media is selected as a test case. Different algorithms are introduced to balance memory and GPU-CPU communication, critical aspects of GPGPU. Results show that speed-ups of one to two orders of magnitude are obtained when compared to sequential solutions. The underlying value of GPGPU is its potential extension in radiative solvers (e.g., Monte Carlo, discrete ordinates) at a minimal learning curve.

  8. Factor Analysis with EM Algorithm Never Gives Improper Solutions when Sample Covariance and Initial Parameter Matrices Are Proper

    Science.gov (United States)

    Adachi, Kohei

    2013-01-01

    Rubin and Thayer ("Psychometrika," 47:69-76, 1982) proposed the EM algorithm for exploratory and confirmatory maximum likelihood factor analysis. In this paper, we prove the following fact: the EM algorithm always gives a proper solution with positive unique variances and factor correlations with absolute values that do not exceed one,…

  9. Compacton solutions and multiple compacton solutions for a continuum Toda lattice model

    International Nuclear Information System (INIS)

    Fan Xinghua; Tian Lixin

    2006-01-01

    Some special solutions of the Toda lattice model with a transversal degree of freedom are obtained. With the aid of Mathematica and Wu elimination method, more explicit solitary wave solutions, including compacton solutions, multiple compacton solutions, peakon solutions, as well as periodic solutions are found in this paper

  10. Concurrent algorithms for nuclear shell model calculations

    International Nuclear Information System (INIS)

    Mackenzie, L.M.; Macleod, A.M.; Berry, D.J.; Whitehead, R.R.

    1988-01-01

    The calculation of nuclear properties has proved very successful for light nuclei, but is limited by the power of the present generation of computers. Starting with an analysis of current techniques, this paper discusses how these can be modified to map parallelism inherent in the mathematics onto appropriate parallel machines. A prototype dedicated multiprocessor for nuclear structure calculations, designed and constructed by the authors, is described and evaluated. The approach adopted is discussed in the context of a number of generically similar algorithms. (orig.)

  11. An analysis dictionary learning algorithm under a noisy data model with orthogonality constraint.

    Science.gov (United States)

    Zhang, Ye; Yu, Tenglong; Wang, Wenwu

    2014-01-01

    Two common problems are often encountered in analysis dictionary learning (ADL) algorithms. The first one is that the original clean signals for learning the dictionary are assumed to be known, which otherwise need to be estimated from noisy measurements. This, however, renders a computationally slow optimization process and potentially unreliable estimation (if the noise level is high), as represented by the Analysis K-SVD (AK-SVD) algorithm. The other problem is the trivial solution to the dictionary, for example, the null dictionary matrix that may be given by a dictionary learning algorithm, as discussed in the learning overcomplete sparsifying transform (LOST) algorithm. Here we propose a novel optimization model and an iterative algorithm to learn the analysis dictionary, where we directly employ the observed data to compute the approximate analysis sparse representation of the original signals (leading to a fast optimization procedure) and enforce an orthogonality constraint on the optimization criterion to avoid the trivial solutions. Experiments demonstrate the competitive performance of the proposed algorithm as compared with three baselines, namely, the AK-SVD, LOST, and NAAOLA algorithms.

  12. An Analysis Dictionary Learning Algorithm under a Noisy Data Model with Orthogonality Constraint

    Directory of Open Access Journals (Sweden)

    Ye Zhang

    2014-01-01

    Full Text Available Two common problems are often encountered in analysis dictionary learning (ADL algorithms. The first one is that the original clean signals for learning the dictionary are assumed to be known, which otherwise need to be estimated from noisy measurements. This, however, renders a computationally slow optimization process and potentially unreliable estimation (if the noise level is high, as represented by the Analysis K-SVD (AK-SVD algorithm. The other problem is the trivial solution to the dictionary, for example, the null dictionary matrix that may be given by a dictionary learning algorithm, as discussed in the learning overcomplete sparsifying transform (LOST algorithm. Here we propose a novel optimization model and an iterative algorithm to learn the analysis dictionary, where we directly employ the observed data to compute the approximate analysis sparse representation of the original signals (leading to a fast optimization procedure and enforce an orthogonality constraint on the optimization criterion to avoid the trivial solutions. Experiments demonstrate the competitive performance of the proposed algorithm as compared with three baselines, namely, the AK-SVD, LOST, and NAAOLA algorithms.

  13. Models and algorithms for online server routing

    NARCIS (Netherlands)

    Bonifaci, V.

    2007-01-01

    Combinatorial optimization is the discipline that studies problems in which one seeks to minimize or maximize an objective function by appropriately choosing the values of some variables from within an allowed finite set. In a typical combinatorial optimization problem, the feasibility of a solution

  14. Solutions to the relativistic precession model

    NARCIS (Netherlands)

    Ingram, A.; Motta, S.

    2014-01-01

    The relativistic precession model (RPM) can be used to obtain a precise measurement of the mass and spin of a black hole when the appropriate set of quasi-periodic oscillations is detected in the power-density spectrum of an accreting black hole. However, in previous studies, the solution of the RPM

  15. A Developed Artificial Bee Colony Algorithm Based on Cloud Model

    Directory of Open Access Journals (Sweden)

    Ye Jin

    2018-04-01

    Full Text Available The Artificial Bee Colony (ABC algorithm is a bionic intelligent optimization method. The cloud model is a kind of uncertainty conversion model between a qualitative concept T ˜ that is presented by nature language and its quantitative expression, which integrates probability theory and the fuzzy mathematics. A developed ABC algorithm based on cloud model is proposed to enhance accuracy of the basic ABC algorithm and avoid getting trapped into local optima by introducing a new select mechanism, replacing the onlooker bees’ search formula and changing the scout bees’ updating formula. Experiments on CEC15 show that the new algorithm has a faster convergence speed and higher accuracy than the basic ABC and some cloud model based ABC variants.

  16. PM Synchronous Motor Dynamic Modeling with Genetic Algorithm ...

    African Journals Online (AJOL)

    Adel

    This paper proposes dynamic modeling simulation for ac Surface Permanent Magnet Synchronous ... Simulations are implemented using MATLAB with its genetic algorithm toolbox. .... selection, the process that drives biological evolution.

  17. Maximizing the nurses' preferences in nurse scheduling problem: mathematical modeling and a meta-heuristic algorithm

    Science.gov (United States)

    Jafari, Hamed; Salmasi, Nasser

    2015-09-01

    The nurse scheduling problem (NSP) has received a great amount of attention in recent years. In the NSP, the goal is to assign shifts to the nurses in order to satisfy the hospital's demand during the planning horizon by considering different objective functions. In this research, we focus on maximizing the nurses' preferences for working shifts and weekends off by considering several important factors such as hospital's policies, labor laws, governmental regulations, and the status of nurses at the end of the previous planning horizon in one of the largest hospitals in Iran i.e., Milad Hospital. Due to the shortage of available nurses, at first, the minimum total number of required nurses is determined. Then, a mathematical programming model is proposed to solve the problem optimally. Since the proposed research problem is NP-hard, a meta-heuristic algorithm based on simulated annealing (SA) is applied to heuristically solve the problem in a reasonable time. An initial feasible solution generator and several novel neighborhood structures are applied to enhance performance of the SA algorithm. Inspired from our observations in Milad hospital, random test problems are generated to evaluate the performance of the SA algorithm. The results of computational experiments indicate that the applied SA algorithm provides solutions with average percentage gap of 5.49 % compared to the upper bounds obtained from the mathematical model. Moreover, the applied SA algorithm provides significantly better solutions in a reasonable time than the schedules provided by the head nurses.

  18. Smooth solutions for the dyadic model

    International Nuclear Information System (INIS)

    Barbato, David; Morandin, Francesco; Romito, Marco

    2011-01-01

    We consider the dyadic model, which is a toy model to test issues of well-posedness and blow-up for the Navier–Stokes and Euler equations. We prove well-posedness of positive solutions of the viscous problem in the relevant scaling range which corresponds to Navier–Stokes. Likewise we prove well-posedness for the inviscid problem (in a suitable regularity class) when the parameter corresponds to the strongest transport effect of the nonlinearity

  19. Unit commitment solution using agglomerative and divisive cluster algorithm : an effective new methodology

    Energy Technology Data Exchange (ETDEWEB)

    Reddy, N.M.; Reddy, K.R. [G. Narayanamma Inst. of Technology and Science, Hyderabad (India). Dept. of Electrical Engineering; Ramana, N.V. [JNTU College of Engineering, Jagityala (India). Dept. of Electrical Engineering

    2008-07-01

    Thermal power plants consist of several generating units with different generating capacities, fuel cost per MWH generated, minimum up/down times, and start-up or shut-down costs. The Unit Commitment (UC) problem in power systems involves determining the start-up and shut-down schedules of thermal generating units to meet forecasted load over a future short term for a period of one to seven days. This paper presented a new approach for the most complex UC problem using agglomerative and divisive hierarchical clustering. Euclidean costs, which are a measure of differences in fuel cost and start-up costs of any two units, were first calculated. Then, depending on the value of Euclidean costs, similar type of units were placed in a cluster. The proposed methodology has 2 individual algorithms. An agglomerative cluster algorithm is used while the load is increasing, and a divisive cluster algorithm is used when the load is decreasing. A search was conducted for an optimal solution for a minimal number of clusters and cluster data points. A standard ten-unit thermal unit power system was used to test and evaluate the performance of the method for a period of 24 hours. The new approach proved to be quite effective and satisfactory. 15 refs., 9 tabs., 5 figs.

  20. Management Of Large Scale Osmotic Dehydration Solution Using The Pearsons Square Algorithm

    Directory of Open Access Journals (Sweden)

    Oladejo Duduyemi

    2015-01-01

    Full Text Available ABSTRACT Osmotic dehydration is a widely researched and advantageous pre-treatment process in food preservation but has not enjoyed industrial acceptance because if its highly concentrated and voluminous effluent. The Pearsons square algorithm was employed to give a focussed attack to the problem by developing a user-friendly template for reconstituting effluents for recycling purposes using Java script programme. Outflow from a pilot scale plant was reactivated and introduced into a scheme of operation for continuous OD of fruits and vegetables. Screened and re-concentrated effluent were subjected to statistical analysis in comparison to initial concentrations solution at confidence limit of p0.05. The template proven to be an adequate representation of the Pearsons square algorithm it is sufficiently good in reconstituting used osmotic solutions for repetitive usage. This protocol if adopted in the industry is not only environmentally friendly but also promises significant economic improvement of OD process. Application Recycling of non-reacting media and as a template for automation in continuous OD processing.

  1. A Mining Algorithm for Extracting Decision Process Data Models

    Directory of Open Access Journals (Sweden)

    Cristina-Claudia DOLEAN

    2011-01-01

    Full Text Available The paper introduces an algorithm that mines logs of user interaction with simulation software. It outputs a model that explicitly shows the data perspective of the decision process, namely the Decision Data Model (DDM. In the first part of the paper we focus on how the DDM is extracted by our mining algorithm. We introduce it as pseudo-code and, then, provide explanations and examples of how it actually works. In the second part of the paper, we use a series of small case studies to prove the robustness of the mining algorithm and how it deals with the most common patterns we found in real logs.

  2. Seismotectonic models and CN algorithm: The case of Italy

    International Nuclear Information System (INIS)

    Costa, G.; Orozova Stanishkova, I.; Panza, G.F.; Rotwain, I.M.

    1995-07-01

    The CN algorithm is here utilized both for the intermediate term earthquake prediction and to validate the seismotectonic model of the Italian territory. Using the results of the analysis, made through the CN algorithm and taking into account the seismotectonic model, three areas, one for Northern Italy, one for Central Italy and one for Southern Italy, are defined. Two transition areas, between the three main areas are delineated. The earthquakes which occurred in these two areas contribute to the precursor phenomena identified by the CN algorithm in each main area. (author). 26 refs, 6 figs, 2 tabs

  3. Near infrared system coupled chemometric algorithms for enumeration of total fungi count in cocoa beans neat solution.

    Science.gov (United States)

    Kutsanedzie, Felix Y H; Chen, Quansheng; Hassan, Md Mehedi; Yang, Mingxiu; Sun, Hao; Rahman, Md Hafizur

    2018-02-01

    Total fungi count (TFC) is a quality indicator of cocoa beans when unmonitored leads to quality and safety problems. Fourier transform near infrared spectroscopy (FT-NIRS) combined with chemometric algorithms like partial least square (PLS); synergy interval-PLS (Si-PLS); synergy interval-genetic algorithm-PLS (Si-GAPLS); Ant colony optimization - PLS (ACO-PLS) and competitive-adaptive reweighted sampling-PLS (CARS-PLS) was employed to predict TFC in cocoa beans neat solution. Model results were evaluated using the correlation coefficients of the prediction (Rp) and calibration (Rc); root mean square error of prediction (RMSEP), and the ratio of sample standard deviation to RMSEP (RPD). The developed models performance yielded 0.951≤Rp≤0.975; and 3.15≤RPD≤4.32. The models' prediction stability improved in the order of PLS

  4. An ensemble based nonlinear orthogonal matching pursuit algorithm for sparse history matching of reservoir models

    KAUST Repository

    Fsheikh, Ahmed H.

    2013-01-01

    A nonlinear orthogonal matching pursuit (NOMP) for sparse calibration of reservoir models is presented. Sparse calibration is a challenging problem as the unknowns are both the non-zero components of the solution and their associated weights. NOMP is a greedy algorithm that discovers at each iteration the most correlated components of the basis functions with the residual. The discovered basis (aka support) is augmented across the nonlinear iterations. Once the basis functions are selected from the dictionary, the solution is obtained by applying Tikhonov regularization. The proposed algorithm relies on approximate gradient estimation using an iterative stochastic ensemble method (ISEM). ISEM utilizes an ensemble of directional derivatives to efficiently approximate gradients. In the current study, the search space is parameterized using an overcomplete dictionary of basis functions built using the K-SVD algorithm.

  5. A linear time layout algorithm for business process models

    NARCIS (Netherlands)

    Gschwind, T.; Pinggera, J.; Zugal, S.; Reijers, H.A.; Weber, B.

    2014-01-01

    The layout of a business process model influences how easily it can beunderstood. Existing layout features in process modeling tools often rely on graph representations, but do not take the specific properties of business process models into account. In this paper, we propose an algorithm that is

  6. Collaborative filtering recommendation model based on fuzzy clustering algorithm

    Science.gov (United States)

    Yang, Ye; Zhang, Yunhua

    2018-05-01

    As one of the most widely used algorithms in recommender systems, collaborative filtering algorithm faces two serious problems, which are the sparsity of data and poor recommendation effect in big data environment. In traditional clustering analysis, the object is strictly divided into several classes and the boundary of this division is very clear. However, for most objects in real life, there is no strict definition of their forms and attributes of their class. Concerning the problems above, this paper proposes to improve the traditional collaborative filtering model through the hybrid optimization of implicit semantic algorithm and fuzzy clustering algorithm, meanwhile, cooperating with collaborative filtering algorithm. In this paper, the fuzzy clustering algorithm is introduced to fuzzy clustering the information of project attribute, which makes the project belong to different project categories with different membership degrees, and increases the density of data, effectively reduces the sparsity of data, and solves the problem of low accuracy which is resulted from the inaccuracy of similarity calculation. Finally, this paper carries out empirical analysis on the MovieLens dataset, and compares it with the traditional user-based collaborative filtering algorithm. The proposed algorithm has greatly improved the recommendation accuracy.

  7. Tri-Level Optimization Algorithms for Solving Defender-Attacker-Defender Network Models

    Science.gov (United States)

    2016-06-01

    not improved over three iterations of relaxation. In the heuristic , the current upper bound represents the best found feasible solution that does not...nested loops in the 167 algorithm which represent the outer and inner decompositions of the DAD CSP problem instance. Since our heuristic ...path problem. We merge the attacker model with Lagrangian relaxation of the operator model into a single formulation that can obtain fast heuristic

  8. Recirculating cooling water solute depletion models

    International Nuclear Information System (INIS)

    Price, W.T.

    1990-01-01

    Chromates have been used for years to inhibit copper corrosion in the plant Recirculating Cooling Water (RCW) system. However, chromates have become an environmental problem in recent years both in the chromate removal plant (X-616) operation and from cooling tower drift. In response to this concern, PORTS is replacing chromates with Betz Dianodic II, a combination of phosphates, BZT, and a dispersant. This changeover started with the X-326 system in 1989. In order to control chemical concentrations in X-326 and in systems linked to it, we needed to be able to predict solute concentrations in advance of the changeover. Failure to predict and control these concentrations can result in wasted chemicals, equipment fouling, or increased corrosion. Consequently, Systems Analysis developed two solute concentration models. The first simulation represents the X-326 RCW system by itself; and models the depletion of a solute once the feed has stopped. The second simulation represents the X-326, X-330, and the X-333 systems linked together by blowdown. This second simulation represents the concentration of a solute in all three systems simultaneously. 4 figs

  9. Coarse-Grained Modeling of Polyelectrolyte Solutions

    Science.gov (United States)

    Denton, Alan R.; May, Sylvio

    2014-03-01

    Ionic mixtures, such as electrolyte and polyelectrolyte solutions, have attracted much attention recently for their rich and challenging combination of electrostatic and non-electrostatic interparticle forces and their practical importance, from battery technologies to biological systems. Hydration of ions in aqueous solutions is known to entail ion-specific effects, including variable solubility of organic molecules, as manifested in the classic Hofmeister series for salting-in and salting-out of proteins. The physical mechanism by which the solvent (water) mediates effective interactions between ions, however, is still poorly understood. Starting from a microscopic model of a polyelectrolyte solution, we apply a perturbation theory to derive a coarse-grained model of ions interacting through both long-range electrostatic and short-range solvent-induced pair potentials. Taking these effective interactions as input to molecular dynamics simulations, we calculate structural and thermodynamic properties of aqueous ionic solutions. This work was supported by the National Science Foundation under Grant No. DMR-1106331.

  10. Integrating R and Java for Enhancing Interactivity of Algorithmic Data Analysis Software Solutions

    Directory of Open Access Journals (Sweden)

    Titus Felix FURTUNĂ

    2016-06-01

    Full Text Available Conceiving software solutions for statistical processing and algorithmic data analysis involves handling diverse data, fetched from various sources and in different formats, and presenting the results in a suggestive, tailorable manner. Our ongoing research aims to design programming technics for integrating R developing environment with Java programming language for interoperability at a source code level. The goal is to combine the intensive data processing capabilities of R programing language, along with the multitude of statistical function libraries, with the flexibility offered by Java programming language and platform, in terms of graphical user interface and mathematical function libraries. Both developing environments are multiplatform oriented, and can complement each other through interoperability. R is a comprehensive and concise programming language, benefiting from a continuously expanding and evolving set of packages for statistical analysis, developed by the open source community. While is a very efficient environment for statistical data processing, R platform lacks support for developing user friendly, interactive, graphical user interfaces (GUIs. Java on the other hand, is a high level object oriented programming language, which supports designing and developing performant and interactive frameworks for general purpose software solutions, through Java Foundation Classes, JavaFX and various graphical libraries. In this paper we treat both aspects of integration and interoperability that refer to integrating Java code into R applications, and bringing R processing sequences into Java driven software solutions. Our research has been conducted focusing on case studies concerning pattern recognition and cluster analysis.

  11. Approximation Algorithms for Model-Based Diagnosis

    NARCIS (Netherlands)

    Feldman, A.B.

    2010-01-01

    Model-based diagnosis is an area of abductive inference that uses a system model, together with observations about system behavior, to isolate sets of faulty components (diagnoses) that explain the observed behavior, according to some minimality criterion. This thesis presents greedy approximation

  12. Basic Research on Adaptive Model Algorithmic Control

    Science.gov (United States)

    1985-12-01

    Control Conference. Richalet, J., A. Rault, J.L. Testud and J. Papon (1978). Model predictive heuristic control: applications to industrial...pp.977-982. Richalet, J., A. Rault, J. L. Testud and J. Papon (1978). Model predictive heuristic control: applications to industrial processes

  13. Gas Emission Prediction Model of Coal Mine Based on CSBP Algorithm

    Directory of Open Access Journals (Sweden)

    Xiong Yan

    2016-01-01

    Full Text Available In view of the nonlinear characteristics of gas emission in a coal working face, a prediction method is proposed based on cuckoo search algorithm optimized BP neural network (CSBP. In the CSBP algorithm, the cuckoo search is adopted to optimize weight and threshold parameters of BP network, and obtains the global optimal solutions. Furthermore, the twelve main affecting factors of the gas emission in the coal working face are taken as input vectors of CSBP algorithm, the gas emission is acted as output vector, and then the prediction model of BP neural network with optimal parameters is established. The results show that the CSBP algorithm has batter generalization ability and higher prediction accuracy, and can be utilized effectively in the prediction of coal mine gas emission.

  14. Stochastic cluster algorithms for discrete Gaussian (SOS) models

    International Nuclear Information System (INIS)

    Evertz, H.G.; Hamburg Univ.; Hasenbusch, M.; Marcu, M.; Tel Aviv Univ.; Pinn, K.; Muenster Univ.; Solomon, S.

    1990-10-01

    We present new Monte Carlo cluster algorithms which eliminate critical slowing down in the simulation of solid-on-solid models. In this letter we focus on the two-dimensional discrete Gaussian model. The algorithms are based on reflecting the integer valued spin variables with respect to appropriately chosen reflection planes. The proper choice of the reflection plane turns out to be crucial in order to obtain a small dynamical exponent z. Actually, the successful versions of our algorithm are a mixture of two different procedures for choosing the reflection plane, one of them ergodic but slow, the other one non-ergodic and also slow when combined with a Metropolis algorithm. (orig.)

  15. Algorithms and procedures in the model based control of accelerators

    International Nuclear Information System (INIS)

    Bozoki, E.

    1987-10-01

    The overall design of a Model Based Control system was presented. The system consists of PLUG-IN MODULES, governed by a SUPERVISORY PROGRAM and communicating via SHARED DATA FILES. Models can be ladded or replaced without affecting the oveall system. There can be more then one module (algorithm) to perform the same task. The user can choose the most appropriate algorithm or can compare the results using different algorithms. Calculations, algorithms, file read and write, etc. which are used in more than one module, will be in a subroutine library. This feature will simplify the maintenance of the system. A partial list of modules is presented, specifying the task they perform. 19 refs., 1 fig

  16. Numerical solution of a model for a superconductor field problem

    International Nuclear Information System (INIS)

    Alsop, L.E.; Goodman, A.S.; Gustavson, F.G.; Miranker, W.L.

    1979-01-01

    A model of a magnetic field problem occurring in connection with Josephson junction devices is derived, and numerical solutions are obtained. The model is of mathematical interest, because the magnetic vector potential satisfies inhomogeneous Helmholtz equations in part of the region, i.e., the superconductors, and the Laplace equation elsewhere. Moreover, the inhomogeneities are the guage constants for the potential, which are different for each superconductor, and their magnitudes are proportional to the currents flowing in the superconductors. These constants are directly related to the self and mutual inductances of the superconducting elements in the device. The numerical solution is obtained by the iterative use of a fast Poisson solver. Chebyshev acceleration is used to reduce the number of iterations required to obtain a solution. A typical problem involves solving 100,000 simultaneous equations, which the algorithm used with this model does in 20 iterations, requiring three minutes of CPU time on an IBM VM/370/168. Excellent agreement is obtained between calculated and observed values for the inductances

  17. An Improved Nested Sampling Algorithm for Model Selection and Assessment

    Science.gov (United States)

    Zeng, X.; Ye, M.; Wu, J.; WANG, D.

    2017-12-01

    Multimodel strategy is a general approach for treating model structure uncertainty in recent researches. The unknown groundwater system is represented by several plausible conceptual models. Each alternative conceptual model is attached with a weight which represents the possibility of this model. In Bayesian framework, the posterior model weight is computed as the product of model prior weight and marginal likelihood (or termed as model evidence). As a result, estimating marginal likelihoods is crucial for reliable model selection and assessment in multimodel analysis. Nested sampling estimator (NSE) is a new proposed algorithm for marginal likelihood estimation. The implementation of NSE comprises searching the parameters' space from low likelihood area to high likelihood area gradually, and this evolution is finished iteratively via local sampling procedure. Thus, the efficiency of NSE is dominated by the strength of local sampling procedure. Currently, Metropolis-Hasting (M-H) algorithm and its variants are often used for local sampling in NSE. However, M-H is not an efficient sampling algorithm for high-dimensional or complex likelihood function. For improving the performance of NSE, it could be feasible to integrate more efficient and elaborated sampling algorithm - DREAMzs into the local sampling. In addition, in order to overcome the computation burden problem of large quantity of repeating model executions in marginal likelihood estimation, an adaptive sparse grid stochastic collocation method is used to build the surrogates for original groundwater model.

  18. Algorithms

    Indian Academy of Sciences (India)

    ticians but also forms the foundation of computer science. Two ... with methods of developing algorithms for solving a variety of problems but ... applications of computers in science and engineer- ... numerical calculus are as important. We will ...

  19. Solution of wind integrated thermal generation system for environmental optimal power flow using hybrid algorithm

    Directory of Open Access Journals (Sweden)

    Ambarish Panda

    2016-09-01

    Full Text Available A new evolutionary hybrid algorithm (HA has been proposed in this work for environmental optimal power flow (EOPF problem. The EOPF problem has been formulated in a nonlinear constrained multi objective optimization framework. Considering the intermittency of available wind power a cost model of the wind and thermal generation system is developed. Suitably formed objective function considering the operational cost, cost of emission, real power loss and cost of installation of FACTS devices for maintaining a stable voltage in the system has been optimized with HA and compared with particle swarm optimization algorithm (PSOA to prove its effectiveness. All the simulations are carried out in MATLAB/SIMULINK environment taking IEEE30 bus as the test system.

  20. A finite state projection algorithm for the stationary solution of the chemical master equation

    Science.gov (United States)

    Gupta, Ankit; Mikelson, Jan; Khammash, Mustafa

    2017-10-01

    The chemical master equation (CME) is frequently used in systems biology to quantify the effects of stochastic fluctuations that arise due to biomolecular species with low copy numbers. The CME is a system of ordinary differential equations that describes the evolution of probability density for each population vector in the state-space of the stochastic reaction dynamics. For many examples of interest, this state-space is infinite, making it difficult to obtain exact solutions of the CME. To deal with this problem, the Finite State Projection (FSP) algorithm was developed by Munsky and Khammash [J. Chem. Phys. 124(4), 044104 (2006)], to provide approximate solutions to the CME by truncating the state-space. The FSP works well for finite time-periods but it cannot be used for estimating the stationary solutions of CMEs, which are often of interest in systems biology. The aim of this paper is to develop a version of FSP which we refer to as the stationary FSP (sFSP) that allows one to obtain accurate approximations of the stationary solutions of a CME by solving a finite linear-algebraic system that yields the stationary distribution of a continuous-time Markov chain over the truncated state-space. We derive bounds for the approximation error incurred by sFSP and we establish that under certain stability conditions, these errors can be made arbitrarily small by appropriately expanding the truncated state-space. We provide several examples to illustrate our sFSP method and demonstrate its efficiency in estimating the stationary distributions. In particular, we show that using a quantized tensor-train implementation of our sFSP method, problems admitting more than 100 × 106 states can be efficiently solved.

  1. A finite state projection algorithm for the stationary solution of the chemical master equation.

    Science.gov (United States)

    Gupta, Ankit; Mikelson, Jan; Khammash, Mustafa

    2017-10-21

    The chemical master equation (CME) is frequently used in systems biology to quantify the effects of stochastic fluctuations that arise due to biomolecular species with low copy numbers. The CME is a system of ordinary differential equations that describes the evolution of probability density for each population vector in the state-space of the stochastic reaction dynamics. For many examples of interest, this state-space is infinite, making it difficult to obtain exact solutions of the CME. To deal with this problem, the Finite State Projection (FSP) algorithm was developed by Munsky and Khammash [J. Chem. Phys. 124(4), 044104 (2006)], to provide approximate solutions to the CME by truncating the state-space. The FSP works well for finite time-periods but it cannot be used for estimating the stationary solutions of CMEs, which are often of interest in systems biology. The aim of this paper is to develop a version of FSP which we refer to as the stationary FSP (sFSP) that allows one to obtain accurate approximations of the stationary solutions of a CME by solving a finite linear-algebraic system that yields the stationary distribution of a continuous-time Markov chain over the truncated state-space. We derive bounds for the approximation error incurred by sFSP and we establish that under certain stability conditions, these errors can be made arbitrarily small by appropriately expanding the truncated state-space. We provide several examples to illustrate our sFSP method and demonstrate its efficiency in estimating the stationary distributions. In particular, we show that using a quantized tensor-train implementation of our sFSP method, problems admitting more than 100 × 10 6 states can be efficiently solved.

  2. Co-clustering models, algorithms and applications

    CERN Document Server

    Govaert, Gérard

    2013-01-01

    Cluster or co-cluster analyses are important tools in a variety of scientific areas. The introduction of this book presents a state of the art of already well-established, as well as more recent methods of co-clustering. The authors mainly deal with the two-mode partitioning under different approaches, but pay particular attention to a probabilistic approach. Chapter 1 concerns clustering in general and the model-based clustering in particular. The authors briefly review the classical clustering methods and focus on the mixture model. They present and discuss the use of different mixture

  3. Applied economic model development algorithm for electronics company

    Directory of Open Access Journals (Sweden)

    Mikhailov I.

    2017-01-01

    Full Text Available The purpose of this paper is to report about received experience in the field of creating the actual methods and algorithms that help to simplify development of applied decision support systems. It reports about an algorithm, which is a result of two years research and have more than one-year practical verification. In a case of testing electronic components, the time of the contract conclusion is crucial point to make the greatest managerial mistake. At this stage, it is difficult to achieve a realistic assessment of time-limit and of wage-fund for future work. The creation of estimating model is possible way to solve this problem. In the article is represented an algorithm for creation of those models. The algorithm is based on example of the analytical model development that serves for amount of work estimation. The paper lists the algorithm’s stages and explains their meanings with participants’ goals. The implementation of the algorithm have made possible twofold acceleration of these models development and fulfilment of management’s requirements. The resulting models have made a significant economic effect. A new set of tasks was identified to be further theoretical study.

  4. Economic Models and Algorithms for Distributed Systems

    CERN Document Server

    Neumann, Dirk; Altmann, Jorn; Rana, Omer F

    2009-01-01

    Distributed computing models for sharing resources such as Grids, Peer-to-Peer systems, or voluntary computing are becoming increasingly popular. This book intends to discover fresh avenues of research and amendments to existing technologies, aiming at the successful deployment of commercial distributed systems

  5. Robust Return Algorithm for Anisotropic Plasticity Models

    DEFF Research Database (Denmark)

    Tidemann, L.; Krenk, Steen

    2017-01-01

    Plasticity models can be defined by an energy potential, a plastic flow potential and a yield surface. The energy potential defines the relation between the observable elastic strains ϒe and the energy conjugate stresses Τe and between the non-observable internal strains i and the energy conjugat...

  6. A tractable algorithm for the wellfounded model

    NARCIS (Netherlands)

    Jonker, C.M.; Renardel de Lavalette, G.R.

    In the area of general logic programming (negated atoms allowed in the bodies of rules) and reason maintenance systems, the wellfounded model (first defined by Van Gelder, Ross and Schlipf in 1988) is generally considered to be the declarative semantics of the program. In this paper we present

  7. SU-F-R-10: Selecting the Optimal Solution for Multi-Objective Radiomics Model

    International Nuclear Information System (INIS)

    Zhou, Z; Folkert, M; Wang, J

    2016-01-01

    Purpose: To develop an evidential reasoning approach for selecting the optimal solution from a Pareto solution set obtained by a multi-objective radiomics model for predicting distant failure in lung SBRT. Methods: In the multi-objective radiomics model, both sensitivity and specificity are considered as the objective functions simultaneously. A Pareto solution set with many feasible solutions will be resulted from the multi-objective optimization. In this work, an optimal solution Selection methodology for Multi-Objective radiomics Learning model using the Evidential Reasoning approach (SMOLER) was proposed to select the optimal solution from the Pareto solution set. The proposed SMOLER method used the evidential reasoning approach to calculate the utility of each solution based on pre-set optimal solution selection rules. The solution with the highest utility was chosen as the optimal solution. In SMOLER, an optimal learning model coupled with clonal selection algorithm was used to optimize model parameters. In this study, PET, CT image features and clinical parameters were utilized for predicting distant failure in lung SBRT. Results: Total 126 solution sets were generated by adjusting predictive model parameters. Each Pareto set contains 100 feasible solutions. The solution selected by SMOLER within each Pareto set was compared to the manually selected optimal solution. Five-cross-validation was used to evaluate the optimal solution selection accuracy of SMOLER. The selection accuracies for five folds were 80.00%, 69.23%, 84.00%, 84.00%, 80.00%, respectively. Conclusion: An optimal solution selection methodology for multi-objective radiomics learning model using the evidential reasoning approach (SMOLER) was proposed. Experimental results show that the optimal solution can be found in approximately 80% cases.

  8. SU-F-R-10: Selecting the Optimal Solution for Multi-Objective Radiomics Model

    Energy Technology Data Exchange (ETDEWEB)

    Zhou, Z; Folkert, M; Wang, J [UT Southwestern Medical Center, Dallas, TX (United States)

    2016-06-15

    Purpose: To develop an evidential reasoning approach for selecting the optimal solution from a Pareto solution set obtained by a multi-objective radiomics model for predicting distant failure in lung SBRT. Methods: In the multi-objective radiomics model, both sensitivity and specificity are considered as the objective functions simultaneously. A Pareto solution set with many feasible solutions will be resulted from the multi-objective optimization. In this work, an optimal solution Selection methodology for Multi-Objective radiomics Learning model using the Evidential Reasoning approach (SMOLER) was proposed to select the optimal solution from the Pareto solution set. The proposed SMOLER method used the evidential reasoning approach to calculate the utility of each solution based on pre-set optimal solution selection rules. The solution with the highest utility was chosen as the optimal solution. In SMOLER, an optimal learning model coupled with clonal selection algorithm was used to optimize model parameters. In this study, PET, CT image features and clinical parameters were utilized for predicting distant failure in lung SBRT. Results: Total 126 solution sets were generated by adjusting predictive model parameters. Each Pareto set contains 100 feasible solutions. The solution selected by SMOLER within each Pareto set was compared to the manually selected optimal solution. Five-cross-validation was used to evaluate the optimal solution selection accuracy of SMOLER. The selection accuracies for five folds were 80.00%, 69.23%, 84.00%, 84.00%, 80.00%, respectively. Conclusion: An optimal solution selection methodology for multi-objective radiomics learning model using the evidential reasoning approach (SMOLER) was proposed. Experimental results show that the optimal solution can be found in approximately 80% cases.

  9. An Integrated Multi-Echelon Supply Chain Network Design Considering Stochastic Demand: A Genetic Algorithm Based Solution

    Directory of Open Access Journals (Sweden)

    Sara Nakhjirkan

    2017-09-01

    in green supply chain. Vehicle routing between distribution centres and customers has been considered in the model. Establishment place of distribution centres among potential places is determined by the model. The distributors use continuous review policy (r, Q to control the inventory. The proposed model object is to find an optimal supply chain with minimum costs. To validate the proposed model and measure its compliance with real world problems, GAMS IDE/Cplex has been used. In order to measure the efficiency of the proposed model in large scale problems, a genetic algorithm has been used. The results confirm the efficiency of the proposed model as a practical tool for decision makers to solve location-inventory-routing problems in green supply chain. The proposed GA could reduce the solving time by 85% while reaching on the average 97% of optimal solution compared with exact method.

  10. Development of Gis Tool for the Solution of Minimum Spanning Tree Problem using Prim's Algorithm

    Science.gov (United States)

    Dutta, S.; Patra, D.; Shankar, H.; Alok Verma, P.

    2014-11-01

    minimum spanning tree (MST) of a connected, undirected and weighted network is a tree of that network consisting of all its nodes and the sum of weights of all its edges is minimum among all such possible spanning trees of the same network. In this study, we have developed a new GIS tool using most commonly known rudimentary algorithm called Prim's algorithm to construct the minimum spanning tree of a connected, undirected and weighted road network. This algorithm is based on the weight (adjacency) matrix of a weighted network and helps to solve complex network MST problem easily, efficiently and effectively. The selection of the appropriate algorithm is very essential otherwise it will be very hard to get an optimal result. In case of Road Transportation Network, it is very essential to find the optimal results by considering all the necessary points based on cost factor (time or distance). This paper is based on solving the Minimum Spanning Tree (MST) problem of a road network by finding it's minimum span by considering all the important network junction point. GIS technology is usually used to solve the network related problems like the optimal path problem, travelling salesman problem, vehicle routing problems, location-allocation problems etc. Therefore, in this study we have developed a customized GIS tool using Python script in ArcGIS software for the solution of MST problem for a Road Transportation Network of Dehradun city by considering distance and time as the impedance (cost) factors. It has a number of advantages like the users do not need a greater knowledge of the subject as the tool is user-friendly and that allows to access information varied and adapted the needs of the users. This GIS tool for MST can be applied for a nationwide plan called Prime Minister Gram Sadak Yojana in India to provide optimal all weather road connectivity to unconnected villages (points). This tool is also useful for constructing highways or railways spanning several

  11. Parameters identification of photovoltaic models using an improved JAYA optimization algorithm

    International Nuclear Information System (INIS)

    Yu, Kunjie; Liang, J.J.; Qu, B.Y.; Chen, Xu; Wang, Heshan

    2017-01-01

    Highlights: • IJAYA algorithm is proposed to identify the PV model parameters efficiently. • A self-adaptive weight is introduced to purposefully adjust the search process. • Experience-based learning strategy is developed to enhance the population diversity. • Chaotic learning method is proposed to refine the quality of the best solution. • IJAYA features the superior performance in identifying parameters of PV models. - Abstract: Parameters identification of photovoltaic (PV) models based on measured current-voltage characteristic curves is significant for the simulation, evaluation, and control of PV systems. To accurately and reliably identify the parameters of different PV models, an improved JAYA (IJAYA) optimization algorithm is proposed in the paper. In IJAYA, a self-adaptive weight is introduced to adjust the tendency of approaching the best solution and avoiding the worst solution at different search stages, which enables the algorithm to approach the promising area at the early stage and implement the local search at the later stage. Furthermore, an experience-based learning strategy is developed and employed randomly to maintain the population diversity and enhance the exploration ability. A chaotic elite learning method is proposed to refine the quality of the best solution in each generation. The proposed IJAYA is used to solve the parameters identification problems of different PV models, i.e., single diode, double diode, and PV module. Comprehensive experiment results and analyses indicate that IJAYA can obtain a highly competitive performance compared with other state-of-the-state algorithms, especially in terms of accuracy and reliability.

  12. Differential Evolution algorithm applied to FSW model calibration

    Science.gov (United States)

    Idagawa, H. S.; Santos, T. F. A.; Ramirez, A. J.

    2014-03-01

    Friction Stir Welding (FSW) is a solid state welding process that can be modelled using a Computational Fluid Dynamics (CFD) approach. These models use adjustable parameters to control the heat transfer and the heat input to the weld. These parameters are used to calibrate the model and they are generally determined using the conventional trial and error approach. Since this method is not very efficient, we used the Differential Evolution (DE) algorithm to successfully determine these parameters. In order to improve the success rate and to reduce the computational cost of the method, this work studied different characteristics of the DE algorithm, such as the evolution strategy, the objective function, the mutation scaling factor and the crossover rate. The DE algorithm was tested using a friction stir weld performed on a UNS S32205 Duplex Stainless Steel.

  13. Hybrid nested sampling algorithm for Bayesian model selection applied to inverse subsurface flow problems

    KAUST Repository

    Elsheikh, Ahmed H.; Wheeler, Mary Fanett; Hoteit, Ibrahim

    2014-01-01

    A Hybrid Nested Sampling (HNS) algorithm is proposed for efficient Bayesian model calibration and prior model selection. The proposed algorithm combines, Nested Sampling (NS) algorithm, Hybrid Monte Carlo (HMC) sampling and gradient estimation using

  14. Research on the time optimization model algorithm of Customer Collaborative Product Innovation

    Directory of Open Access Journals (Sweden)

    Guodong Yu

    2014-01-01

    Full Text Available Purpose: To improve the efficiency of information sharing among the innovation agents of customer collaborative product innovation and shorten the product design cycle, an improved genetic annealing algorithm of the time optimization was presented. Design/methodology/approach: Based on the analysis of the objective relationship between the design tasks, the paper takes job shop problems for machining model and proposes the improved genetic algorithm to solve the problems, which is based on the niche technology and thus a better product collaborative innovation design time schedule is got to improve the efficiency. Finally, through the collaborative innovation design of a certain type of mobile phone, the proposed model and method were verified to be correct and effective. Findings and Originality/value: An algorithm with obvious advantages in terms of searching capability and optimization efficiency of customer collaborative product innovation was proposed. According to the defects of the traditional genetic annealing algorithm, the niche genetic annealing algorithm was presented. Firstly, it avoided the effective gene deletions at the early search stage and guaranteed the diversity of solution; Secondly, adaptive double point crossover and swap mutation strategy were introduced to overcome the defects of long solving process and easily converging local minimum value due to the fixed crossover and mutation probability; Thirdly, elite reserved strategy was imported that optimal solution missing was avoided effectively and evolution speed was accelerated. Originality/value: Firstly, the improved genetic simulated annealing algorithm overcomes some defects such as effective gene easily lost in early search. It is helpful to shorten the calculation process and improve the accuracy of the convergence value. Moreover, it speeds up the evolution and ensures the reliability of the optimal solution. Meanwhile, it has obvious advantages in efficiency of

  15. Exact solutions for some discrete models of the Boltzmann equation

    International Nuclear Information System (INIS)

    Cabannes, H.; Hong Tiem, D.

    1987-01-01

    For the simplest of the discrete models of the Boltzmann equation: the Broadwell model, exact solutions have been obtained by Cornille in the form of bisolitons. In the present Note, we build exact solutions for more complex models [fr

  16. Methodology, models and algorithms in thermographic diagnostics

    CERN Document Server

    Živčák, Jozef; Madarász, Ladislav; Rudas, Imre J

    2013-01-01

    This book presents  the methodology and techniques of  thermographic applications with focus primarily on medical thermography implemented for parametrizing the diagnostics of the human body. The first part of the book describes the basics of infrared thermography, the possibilities of thermographic diagnostics and the physical nature of thermography. The second half includes tools of intelligent engineering applied for the solving of selected applications and projects. Thermographic diagnostics was applied to problematics of paraplegia and tetraplegia and carpal tunnel syndrome (CTS). The results of the research activities were created with the cooperation of the four projects within the Ministry of Education, Science, Research and Sport of the Slovak Republic entitled Digital control of complex systems with two degrees of freedom, Progressive methods of education in the area of control and modeling of complex object oriented systems on aircraft turbocompressor engines, Center for research of control of te...

  17. Modeling Algorithms in SystemC and ACL2

    Directory of Open Access Journals (Sweden)

    John W. O'Leary

    2014-06-01

    Full Text Available We describe the formal language MASC, based on a subset of SystemC and intended for modeling algorithms to be implemented in hardware. By means of a special-purpose parser, an algorithm coded in SystemC is converted to a MASC model for the purpose of documentation, which in turn is translated to ACL2 for formal verification. The parser also generates a SystemC variant that is suitable as input to a high-level synthesis tool. As an illustration of this methodology, we describe a proof of correctness of a simple 32-bit radix-4 multiplier.

  18. Algorithmic fault tree construction by component-based system modeling

    International Nuclear Information System (INIS)

    Majdara, Aref; Wakabayashi, Toshio

    2008-01-01

    Computer-aided fault tree generation can be easier, faster and less vulnerable to errors than the conventional manual fault tree construction. In this paper, a new approach for algorithmic fault tree generation is presented. The method mainly consists of a component-based system modeling procedure an a trace-back algorithm for fault tree synthesis. Components, as the building blocks of systems, are modeled using function tables and state transition tables. The proposed method can be used for a wide range of systems with various kinds of components, if an inclusive component database is developed. (author)

  19. Algorithm of Dynamic Model Structural Identification of the Multivariable Plant

    Directory of Open Access Journals (Sweden)

    Л.М. Блохін

    2004-02-01

    Full Text Available  The new algorithm of dynamic model structural identification of the multivariable stabilized plant with observable and unobservable disturbances in the regular operating  modes is offered in this paper. With the help of the offered algorithm it is possible to define the “perturbed” models of dynamics not only of the plant, but also the dynamics characteristics of observable and unobservable casual disturbances taking into account the absence of correlation between themselves and control inputs with the unobservable perturbations.

  20. Introduction to genetic algorithms as a modeling tool

    International Nuclear Information System (INIS)

    Wildberger, A.M.; Hickok, K.A.

    1990-01-01

    Genetic algorithms are search and classification techniques modeled on natural adaptive systems. This is an introduction to their use as a modeling tool with emphasis on prospects for their application in the power industry. It is intended to provide enough background information for its audience to begin to follow technical developments in genetic algorithms and to recognize those which might impact on electric power engineering. Beginning with a discussion of genetic algorithms and their origin as a model of biological adaptation, their advantages and disadvantages are described in comparison with other modeling tools such as simulation and neural networks in order to provide guidance in selecting appropriate applications. In particular, their use is described for improving expert systems from actual data and they are suggested as an aid in building mathematical models. Using the Thermal Performance Advisor as an example, it is suggested how genetic algorithms might be used to make a conventional expert system and mathematical model of a power plant adapt automatically to changes in the plant's characteristics

  1. Algorithms

    Indian Academy of Sciences (India)

    algorithm design technique called 'divide-and-conquer'. One of ... Turtle graphics, September. 1996. 5. ... whole list named 'PO' is a pointer to the first element of the list; ..... Program for computing matrices X and Y and placing the result in C *).

  2. A genetic-algorithm-aided stochastic optimization model for regional air quality management under uncertainty.

    Science.gov (United States)

    Qin, Xiaosheng; Huang, Guohe; Liu, Lei

    2010-01-01

    A genetic-algorithm-aided stochastic optimization (GASO) model was developed in this study for supporting regional air quality management under uncertainty. The model incorporated genetic algorithm (GA) and Monte Carlo simulation techniques into a general stochastic chance-constrained programming (CCP) framework and allowed uncertainties in simulation and optimization model parameters to be considered explicitly in the design of least-cost strategies. GA was used to seek the optimal solution of the management model by progressively evaluating the performances of individual solutions. Monte Carlo simulation was used to check the feasibility of each solution. A management problem in terms of regional air pollution control was studied to demonstrate the applicability of the proposed method. Results of the case study indicated the proposed model could effectively communicate uncertainties into the optimization process and generate solutions that contained a spectrum of potential air pollutant treatment options with risk and cost information. Decision alternatives could be obtained by analyzing tradeoffs between the overall pollutant treatment cost and the system-failure risk due to inherent uncertainties.

  3. A Dynamic Traffic Signal Timing Model and its Algorithm for Junction of Urban Road

    DEFF Research Database (Denmark)

    Cai, Yanguang; Cai, Hao

    2012-01-01

    As an important part of Intelligent Transportation System, the scientific traffic signal timing of junction can improve the efficiency of urban transport. This paper presents a novel dynamic traffic signal timing model. According to the characteristics of the model, hybrid chaotic quantum...... evolutionary algorithm is employed to solve it. The proposed model has simple structure, and only requires traffic inflow speed and outflow speed are bounded functions with at most finite number of discontinuity points. The condition is very loose and better meets the requirements of the practical real......-time and dynamic signal control of junction. To obtain the optimal solution of the model by hybrid chaotic quantum evolutionary algorithm, the model is converted to an easily solvable form. To simplify calculation, we give the expression of the partial derivative and change rate of the objective function...

  4. A Synthesizable VHDL Model of the Exact Solution for Three-dimensional Hyperbolic Positioning System

    Directory of Open Access Journals (Sweden)

    Ralph Bucher

    2002-01-01

    Full Text Available This paper presents a synthesizable VHDL model of a three-dimensional hyperbolic positioning system algorithm. The algorithm obtains an exact solution for the three-dimensional location of a mobile given the locations of four fixed stations (like a global positioning system [GPS] satellite or a base station in a cell and the signal time of arrival (TOA from the mobile to each station. The detailed derivation of the steps required in the algorithm is presented. A VHDL model of the algorithm was implemented and simulated using the IEEE numeric_std package. Signals were described by a 32-bit vector. Simulation results predict location of the mobile is off by 1 m for best case and off by 36 m for worst case. A C + + program using real numbers was used as a benchmark for the accuracy and precision of the VHDL model. The model can be easily synthesized for low power hardware implementation.

  5. Algebraic dynamics algorithm: Numerical comparison with Runge-Kutta algorithm and symplectic geometric algorithm

    Institute of Scientific and Technical Information of China (English)

    WANG ShunJin; ZHANG Hua

    2007-01-01

    Based on the exact analytical solution of ordinary differential equations,a truncation of the Taylor series of the exact solution to the Nth order leads to the Nth order algebraic dynamics algorithm.A detailed numerical comparison is presented with Runge-Kutta algorithm and symplectic geometric algorithm for 12 test models.The results show that the algebraic dynamics algorithm can better preserve both geometrical and dynamical fidelity of a dynamical system at a controllable precision,and it can solve the problem of algorithm-induced dissipation for the Runge-Kutta algorithm and the problem of algorithm-induced phase shift for the symplectic geometric algorithm.

  6. Algebraic dynamics algorithm:Numerical comparison with Runge-Kutta algorithm and symplectic geometric algorithm

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    Based on the exact analytical solution of ordinary differential equations, a truncation of the Taylor series of the exact solution to the Nth order leads to the Nth order algebraic dynamics algorithm. A detailed numerical comparison is presented with Runge-Kutta algorithm and symplectic geometric algorithm for 12 test models. The results show that the algebraic dynamics algorithm can better preserve both geometrical and dynamical fidelity of a dynamical system at a controllable precision, and it can solve the problem of algorithm-induced dissipation for the Runge-Kutta algorithm and the problem of algorithm-induced phase shift for the symplectic geometric algorithm.

  7. Experimental design for estimating unknown groundwater pumping using genetic algorithm and reduced order model

    Science.gov (United States)

    Ushijima, Timothy T.; Yeh, William W.-G.

    2013-10-01

    An optimal experimental design algorithm is developed to select locations for a network of observation wells that provide maximum information about unknown groundwater pumping in a confined, anisotropic aquifer. The design uses a maximal information criterion that chooses, among competing designs, the design that maximizes the sum of squared sensitivities while conforming to specified design constraints. The formulated optimization problem is non-convex and contains integer variables necessitating a combinatorial search. Given a realistic large-scale model, the size of the combinatorial search required can make the problem difficult, if not impossible, to solve using traditional mathematical programming techniques. Genetic algorithms (GAs) can be used to perform the global search; however, because a GA requires a large number of calls to a groundwater model, the formulated optimization problem still may be infeasible to solve. As a result, proper orthogonal decomposition (POD) is applied to the groundwater model to reduce its dimensionality. Then, the information matrix in the full model space can be searched without solving the full model. Results from a small-scale test case show identical optimal solutions among the GA, integer programming, and exhaustive search methods. This demonstrates the GA's ability to determine the optimal solution. In addition, the results show that a GA with POD model reduction is several orders of magnitude faster in finding the optimal solution than a GA using the full model. The proposed experimental design algorithm is applied to a realistic, two-dimensional, large-scale groundwater problem. The GA converged to a solution for this large-scale problem.

  8. An Interactive Personalized Recommendation System Using the Hybrid Algorithm Model

    Directory of Open Access Journals (Sweden)

    Yan Guo

    2017-10-01

    Full Text Available With the rapid development of e-commerce, the contradiction between the disorder of business information and customer demand is increasingly prominent. This study aims to make e-commerce shopping more convenient, and avoid information overload, by an interactive personalized recommendation system using the hybrid algorithm model. The proposed model first uses various recommendation algorithms to get a list of original recommendation results. Combined with the customer’s feedback in an interactive manner, it then establishes the weights of corresponding recommendation algorithms. Finally, the synthetic formula of evidence theory is used to fuse the original results to obtain the final recommendation products. The recommendation performance of the proposed method is compared with that of traditional methods. The results of the experimental study through a Taobao online dress shop clearly show that the proposed method increases the efficiency of data mining in the consumer coverage, the consumer discovery accuracy and the recommendation recall. The hybrid recommendation algorithm complements the advantages of the existing recommendation algorithms in data mining. The interactive assigned-weight method meets consumer demand better and solves the problem of information overload. Meanwhile, our study offers important implications for e-commerce platform providers regarding the design of product recommendation systems.

  9. Existence of Periodic Solutions and Stability of Zero Solution of a Mathematical Model of Schistosomiasis

    Directory of Open Access Journals (Sweden)

    Lin Li

    2014-01-01

    Full Text Available A mathematical model on schistosomiasis governed by periodic differential equations with a time delay was studied. By discussing boundedness of the solutions of this model and construction of a monotonic sequence, the existence of positive periodic solution was shown. The conditions under which the model admits a periodic solution and the conditions under which the zero solution is globally stable are given, respectively. Some numerical analyses show the conditional coexistence of locally stable zero solution and periodic solutions and that it is an effective treatment by simply reducing the population of snails and enlarging the death ratio of snails for the control of schistosomiasis.

  10. Algorithms

    Indian Academy of Sciences (India)

    will become clear in the next article when we discuss a simple logo like programming language. ... Rod B may be used as an auxiliary store. The problem is to find an algorithm which performs this task. ... No disks are moved from A to Busing C as auxiliary rod. • move _disk (A, C);. (No + l)th disk is moved from A to C directly ...

  11. Efficient parallel implementation of active appearance model fitting algorithm on GPU.

    Science.gov (United States)

    Wang, Jinwei; Ma, Xirong; Zhu, Yuanping; Sun, Jizhou

    2014-01-01

    The active appearance model (AAM) is one of the most powerful model-based object detecting and tracking methods which has been widely used in various situations. However, the high-dimensional texture representation causes very time-consuming computations, which makes the AAM difficult to apply to real-time systems. The emergence of modern graphics processing units (GPUs) that feature a many-core, fine-grained parallel architecture provides new and promising solutions to overcome the computational challenge. In this paper, we propose an efficient parallel implementation of the AAM fitting algorithm on GPUs. Our design idea is fine grain parallelism in which we distribute the texture data of the AAM, in pixels, to thousands of parallel GPU threads for processing, which makes the algorithm fit better into the GPU architecture. We implement our algorithm using the compute unified device architecture (CUDA) on the Nvidia's GTX 650 GPU, which has the latest Kepler architecture. To compare the performance of our algorithm with different data sizes, we built sixteen face AAM models of different dimensional textures. The experiment results show that our parallel AAM fitting algorithm can achieve real-time performance for videos even on very high-dimensional textures.

  12. Efficient Parallel Implementation of Active Appearance Model Fitting Algorithm on GPU

    Directory of Open Access Journals (Sweden)

    Jinwei Wang

    2014-01-01

    Full Text Available The active appearance model (AAM is one of the most powerful model-based object detecting and tracking methods which has been widely used in various situations. However, the high-dimensional texture representation causes very time-consuming computations, which makes the AAM difficult to apply to real-time systems. The emergence of modern graphics processing units (GPUs that feature a many-core, fine-grained parallel architecture provides new and promising solutions to overcome the computational challenge. In this paper, we propose an efficient parallel implementation of the AAM fitting algorithm on GPUs. Our design idea is fine grain parallelism in which we distribute the texture data of the AAM, in pixels, to thousands of parallel GPU threads for processing, which makes the algorithm fit better into the GPU architecture. We implement our algorithm using the compute unified device architecture (CUDA on the Nvidia’s GTX 650 GPU, which has the latest Kepler architecture. To compare the performance of our algorithm with different data sizes, we built sixteen face AAM models of different dimensional textures. The experiment results show that our parallel AAM fitting algorithm can achieve real-time performance for videos even on very high-dimensional textures.

  13. Epidemic Processes on Complex Networks : Modelling, Simulation and Algorithms

    NARCIS (Netherlands)

    Van de Bovenkamp, R.

    2015-01-01

    Local interactions on a graph will lead to global dynamic behaviour. In this thesis we focus on two types of dynamic processes on graphs: the Susceptible-Infected-Susceptilbe (SIS) virus spreading model, and gossip style epidemic algorithms. The largest part of this thesis is devoted to the SIS

  14. Worm Algorithm for CP(N-1) Model

    CERN Document Server

    Rindlisbacher, Tobias

    2017-01-01

    The CP(N-1) model in 2D is an interesting toy model for 4D QCD as it possesses confinement, asymptotic freedom and a non-trivial vacuum structure. Due to the lower dimensionality and the absence of fermions, the computational cost for simulating 2D CP(N-1) on the lattice is much lower than that for simulating 4D QCD. However, to our knowledge, no efficient algorithm for simulating the lattice CP(N-1) model has been tested so far, which also works at finite density. To this end we propose a new type of worm algorithm which is appropriate to simulate the lattice CP(N-1) model in a dual, flux-variables based representation, in which the introduction of a chemical potential does not give rise to any complications. In addition to the usual worm moves where a defect is just moved from one lattice site to the next, our algorithm additionally allows for worm-type moves in the internal variable space of single links, which accelerates the Monte Carlo evolution. We use our algorithm to compare the two popular CP(N-1) l...

  15. Optimisation of Hidden Markov Model using Baum–Welch algorithm

    Indian Academy of Sciences (India)

    Home; Journals; Journal of Earth System Science; Volume 126; Issue 1. Optimisation of Hidden Markov Model using Baum–Welch algorithm for prediction of maximum and minimum temperature over Indian Himalaya. J C Joshi Tankeshwar Kumar Sunita Srivastava Divya Sachdeva. Volume 126 Issue 1 February 2017 ...

  16. Heterogenous Agents Model with the Worst Out Algorithm

    Czech Academy of Sciences Publication Activity Database

    Vácha, Lukáš; Vošvrda, Miloslav

    -, č. 8 (2006), s. 3-19 ISSN 1801-5999 Institutional research plan: CEZ:AV0Z10750506 Keywords : efficient market hypothesis * fractal market hypothesis * agents' investment horizons * agents' trading strategies * technical trading rules * heterogeneous agent model with stochastic memory * Worst out algorithm Subject RIV: AH - Economics

  17. A sonification algorithm for developing the off-roads models for driving simulators

    Science.gov (United States)

    Chiroiu, Veturia; Brişan, Cornel; Dumitriu, Dan; Munteanu, Ligia

    2018-01-01

    In this paper, a sonification algorithm for developing the off-road models for driving simulators, is proposed. The aim of this algorithm is to overcome difficulties of heuristics identification which are best suited to a particular off-road profile built by measurements. The sonification algorithm is based on the stochastic polynomial chaos analysis suitable in solving equations with random input data. The fluctuations are generated by incomplete measurements leading to inhomogeneities of the cross-sectional curves of off-roads before and after deformation, the unstable contact between the tire and the road and the unreal distribution of contact and friction forces in the unknown contact domains. The approach is exercised on two particular problems and results compare favorably to existing analytical and numerical solutions. The sonification technique represents a useful multiscale analysis able to build a low-cost virtual reality environment with increased degrees of realism for driving simulators and higher user flexibility.

  18. Real Time Optima Tracking Using Harvesting Models of the Genetic Algorithm

    Science.gov (United States)

    Baskaran, Subbiah; Noever, D.

    1999-01-01

    Tracking optima in real time propulsion control, particularly for non-stationary optimization problems is a challenging task. Several approaches have been put forward for such a study including the numerical method called the genetic algorithm. In brief, this approach is built upon Darwinian-style competition between numerical alternatives displayed in the form of binary strings, or by analogy to 'pseudogenes'. Breeding of improved solution is an often cited parallel to natural selection in.evolutionary or soft computing. In this report we present our results of applying a novel model of a genetic algorithm for tracking optima in propulsion engineering and in real time control. We specialize the algorithm to mission profiling and planning optimizations, both to select reduced propulsion needs through trajectory planning and to explore time or fuel conservation strategies.

  19. A comparison of three-dimensional nonequilibrium solution algorithms applied to hypersonic flows with stiff chemical source terms

    Science.gov (United States)

    Palmer, Grant; Venkatapathy, Ethiraj

    1993-01-01

    Three solution algorithms, explicit underrelaxation, point implicit, and lower upper symmetric Gauss-Seidel (LUSGS), are used to compute nonequilibrium flow around the Apollo 4 return capsule at 62 km altitude. By varying the Mach number, the efficiency and robustness of the solution algorithms were tested for different levels of chemical stiffness. The performance of the solution algorithms degraded as the Mach number and stiffness of the flow increased. At Mach 15, 23, and 30, the LUSGS method produces an eight order of magnitude drop in the L2 norm of the energy residual in 1/3 to 1/2 the Cray C-90 computer time as compared to the point implicit and explicit under-relaxation methods. The explicit under-relaxation algorithm experienced convergence difficulties at Mach 23 and above. At Mach 40 the performance of the LUSGS algorithm deteriorates to the point it is out-performed by the point implicit method. The effects of the viscous terms are investigated. Grid dependency questions are explored.

  20. A quadratic approximation-based algorithm for the solution of multiparametric mixed-integer nonlinear programming problems

    KAUST Repository

    Domínguez, Luis F.

    2012-06-25

    An algorithm for the solution of convex multiparametric mixed-integer nonlinear programming problems arising in process engineering problems under uncertainty is introduced. The proposed algorithm iterates between a multiparametric nonlinear programming subproblem and a mixed-integer nonlinear programming subproblem to provide a series of parametric upper and lower bounds. The primal subproblem is formulated by fixing the integer variables and solved through a series of multiparametric quadratic programming (mp-QP) problems based on quadratic approximations of the objective function, while the deterministic master subproblem is formulated so as to provide feasible integer solutions for the next primal subproblem. To reduce the computational effort when infeasibilities are encountered at the vertices of the critical regions (CRs) generated by the primal subproblem, a simplicial approximation approach is used to obtain CRs that are feasible at each of their vertices. The algorithm terminates when there does not exist an integer solution that is better than the one previously used by the primal problem. Through a series of examples, the proposed algorithm is compared with a multiparametric mixed-integer outer approximation (mp-MIOA) algorithm to demonstrate its computational advantages. © 2012 American Institute of Chemical Engineers (AIChE).

  1. Fuzzy model predictive control algorithm applied in nuclear power plant

    International Nuclear Information System (INIS)

    Zuheir, Ahmad

    2006-01-01

    The aim of this paper is to design a predictive controller based on a fuzzy model. The Takagi-Sugeno fuzzy model with an Adaptive B-splines neuro-fuzzy implementation is used and incorporated as a predictor in a predictive controller. An optimization approach with a simplified gradient technique is used to calculate predictions of the future control actions. In this approach, adaptation of the fuzzy model using dynamic process information is carried out to build the predictive controller. The easy description of the fuzzy model and the easy computation of the gradient sector during the optimization procedure are the main advantages of the computation algorithm. The algorithm is applied to the control of a U-tube steam generation unit (UTSG) used for electricity generation. (author)

  2. Model-based Bayesian signal extraction algorithm for peripheral nerves

    Science.gov (United States)

    Eggers, Thomas E.; Dweiri, Yazan M.; McCallum, Grant A.; Durand, Dominique M.

    2017-10-01

    Objective. Multi-channel cuff electrodes have recently been investigated for extracting fascicular-level motor commands from mixed neural recordings. Such signals could provide volitional, intuitive control over a robotic prosthesis for amputee patients. Recent work has demonstrated success in extracting these signals in acute and chronic preparations using spatial filtering techniques. These extracted signals, however, had low signal-to-noise ratios and thus limited their utility to binary classification. In this work a new algorithm is proposed which combines previous source localization approaches to create a model based method which operates in real time. Approach. To validate this algorithm, a saline benchtop setup was created to allow the precise placement of artificial sources within a cuff and interference sources outside the cuff. The artificial source was taken from five seconds of chronic neural activity to replicate realistic recordings. The proposed algorithm, hybrid Bayesian signal extraction (HBSE), is then compared to previous algorithms, beamforming and a Bayesian spatial filtering method, on this test data. An example chronic neural recording is also analyzed with all three algorithms. Main results. The proposed algorithm improved the signal to noise and signal to interference ratio of extracted test signals two to three fold, as well as increased the correlation coefficient between the original and recovered signals by 10-20%. These improvements translated to the chronic recording example and increased the calculated bit rate between the recovered signals and the recorded motor activity. Significance. HBSE significantly outperforms previous algorithms in extracting realistic neural signals, even in the presence of external noise sources. These results demonstrate the feasibility of extracting dynamic motor signals from a multi-fascicled intact nerve trunk, which in turn could extract motor command signals from an amputee for the end goal of

  3. Watermarking Techniques Using Least Significant Bit Algorithm for Digital Image Security Standard Solution- Based Android

    Directory of Open Access Journals (Sweden)

    Ari Muzakir

    2017-05-01

    Full Text Available Ease of deployment of digital image through the internet has positive and negative sides, especially for owners of the original digital image. The positive side of the ease of rapid deployment is the owner of that image deploys digital image files to various sites in the world address. While the downside is that if there is no copyright that serves as protector of the image it will be very easily recognized ownership by other parties. Watermarking is one solution to protect the copyright and know the results of the digital image. With Digital Image Watermarking, copyright resulting digital image will be protected through the insertion of additional information such as owner information and the authenticity of the digital image. The least significant bit (LSB is one of the algorithm is simple and easy to understand. The results of the simulations carried out using android smartphone shows that the LSB watermarking technique is not able to be seen by naked human eye, meaning there is no significant difference in the image of the original files with images that have been inserted watermarking. The resulting image has dimensions of 640x480 with a bit depth of 32 bits. In addition, to determine the function of the ability of the device (smartphone in processing the image using this application used black box testing. 

  4. An algorithm for determining the K-best solutions of the one-dimensional Knapsack problem

    Directory of Open Access Journals (Sweden)

    Horacio Hideki Yanasse

    2000-06-01

    Full Text Available In this work we present an enumerative scheme for determining the K-best solutions (K > 1 of the one dimensional knapsack problem. If n is the total number of different items and b is the knapsack's capacity, the computational complexity of the proposed scheme is bounded by O(Knb with memory requirements bounded by O(nb. The algorithm was implemented in a workstation and computational tests for varying values of the parameters were performed.Neste trabalho apresenta-se um esquema enumerativo para se determinar as K-melhores (K > 1 soluções para o problema da mochila unidimensional. Se n é o número total de itens diferentes e b é a capacidade da mochila, a complexidade computacional do esquema proposto é limitado por O(Knb. O algoritmo foi implementado em uma estação de trabalho e testes computacionais foram realizados variando-se diferentes parâmetros do problema.

  5. Thickness determination in textile material design: dynamic modeling and numerical algorithms

    International Nuclear Information System (INIS)

    Xu, Dinghua; Ge, Meibao

    2012-01-01

    Textile material design is of paramount importance in the study of functional clothing design. It is therefore important to determine the dynamic heat and moisture transfer characteristics in the human body–clothing–environment system, which directly determine the heat–moisture comfort level of the human body. Based on a model of dynamic heat and moisture transfer with condensation in porous fabric at low temperature, this paper presents a new inverse problem of textile thickness determination (IPTTD). Adopting the idea of the least-squares method, we formulate the IPTTD into a function minimization problem. By means of the finite-difference method, quasi-solution method and direct search method for one-dimensional minimization problems, we construct iterative algorithms of the approximated solution for the IPTTD. Numerical simulation results validate the formulation of the IPTTD and demonstrate the effectiveness of the proposed numerical algorithms. (paper)

  6. GENETIC ALGORITHM BASED SOLUTION IN PWM CONVERTER SWITCHING FOR VOLTAGE SOURCE INVERTER FEEDING AN INDUCTION MOTOR DRIVE

    Directory of Open Access Journals (Sweden)

    V. Jegathesan

    2017-11-01

    Full Text Available This paper presents an efficient and reliable Genetic Algorithm based solution for Selective Harmonic Elimination (SHE switching pattern. This method eliminates considerable amount of lower order line voltage harmonics in Pulse Width Modulation (PWM inverter. Determination of pulse pattern for the elimination of some lower order harmonics of a PWM inverter necessitates solving a system of nonlinear transcendental equations. Genetic Algorithm is used to solve nonlinear transcendental equations for PWM-SHE. Many methods are available to eliminate the higher order harmonics and it can be easily removed. But the greatest challenge is to eliminate the lower order harmonics and this is successfully achieved using Genetic Algorithm without using Dual transformer. Simulations using MATLABTM and Powersim with experimental results are carried out to validate the solution. The experimental results show that the harmonics up to 13th were totally eliminated.

  7. Performance modeling of parallel algorithms for solving neutron diffusion problems

    International Nuclear Information System (INIS)

    Azmy, Y.Y.; Kirk, B.L.

    1995-01-01

    Neutron diffusion calculations are the most common computational methods used in the design, analysis, and operation of nuclear reactors and related activities. Here, mathematical performance models are developed for the parallel algorithm used to solve the neutron diffusion equation on message passing and shared memory multiprocessors represented by the Intel iPSC/860 and the Sequent Balance 8000, respectively. The performance models are validated through several test problems, and these models are used to estimate the performance of each of the two considered architectures in situations typical of practical applications, such as fine meshes and a large number of participating processors. While message passing computers are capable of producing speedup, the parallel efficiency deteriorates rapidly as the number of processors increases. Furthermore, the speedup fails to improve appreciably for massively parallel computers so that only small- to medium-sized message passing multiprocessors offer a reasonable platform for this algorithm. In contrast, the performance model for the shared memory architecture predicts very high efficiency over a wide range of number of processors reasonable for this architecture. Furthermore, the model efficiency of the Sequent remains superior to that of the hypercube if its model parameters are adjusted to make its processors as fast as those of the iPSC/860. It is concluded that shared memory computers are better suited for this parallel algorithm than message passing computers

  8. Estimating the ratios of the stationary distribution values for Markov chains modeling evolutionary algorithms.

    Science.gov (United States)

    Mitavskiy, Boris; Cannings, Chris

    2009-01-01

    The evolutionary algorithm stochastic process is well-known to be Markovian. These have been under investigation in much of the theoretical evolutionary computing research. When the mutation rate is positive, the Markov chain modeling of an evolutionary algorithm is irreducible and, therefore, has a unique stationary distribution. Rather little is known about the stationary distribution. In fact, the only quantitative facts established so far tell us that the stationary distributions of Markov chains modeling evolutionary algorithms concentrate on uniform populations (i.e., those populations consisting of a repeated copy of the same individual). At the same time, knowing the stationary distribution may provide some information about the expected time it takes for the algorithm to reach a certain solution, assessment of the biases due to recombination and selection, and is of importance in population genetics to assess what is called a "genetic load" (see the introduction for more details). In the recent joint works of the first author, some bounds have been established on the rates at which the stationary distribution concentrates on the uniform populations. The primary tool used in these papers is the "quotient construction" method. It turns out that the quotient construction method can be exploited to derive much more informative bounds on ratios of the stationary distribution values of various subsets of the state space. In fact, some of the bounds obtained in the current work are expressed in terms of the parameters involved in all the three main stages of an evolutionary algorithm: namely, selection, recombination, and mutation.

  9. Modelling and genetic algorithm based optimisation of inverse supply chain

    Science.gov (United States)

    Bányai, T.

    2009-04-01

    (Recycling of household appliances with emphasis on reuse options). The purpose of this paper is the presentation of a possible method for avoiding the unnecessary environmental risk and landscape use through unprovoked large supply chain of collection systems of recycling processes. In the first part of the paper the author presents the mathematical model of recycling related collection systems (applied especially for wastes of electric and electronic products) and in the second part of the work a genetic algorithm based optimisation method will be demonstrated, by the aid of which it is possible to determine the optimal structure of the inverse supply chain from the point of view economical, ecological and logistic objective functions. The model of the inverse supply chain is based on a multi-level, hierarchical collection system. In case of this static model it is assumed that technical conditions are permanent. The total costs consist of three parts: total infrastructure costs, total material handling costs and environmental risk costs. The infrastructure-related costs are dependent only on the specific fixed costs and the specific unit costs of the operation points (collection, pre-treatment, treatment, recycling and reuse plants). The costs of warehousing and transportation are represented by the material handling related costs. The most important factors determining the level of environmental risk cost are the number of out of time recycled (treated or reused) products, the number of supply chain objects and the length of transportation routes. The objective function is the minimization of the total cost taking into consideration the constraints. However a lot of research work discussed the design of supply chain [8], but most of them concentrate on linear cost functions. In the case of this model non-linear cost functions were used. The non-linear cost functions and the possible high number of objects of the inverse supply chain leaded to the problem of choosing a

  10. Exact solution of super Liouville model

    International Nuclear Information System (INIS)

    Yang Zhanying; Zhao Liu; Zhen Yi

    2000-01-01

    Using Leznov-Saveliev algebraic analysis and Drinfeld-Sokolov construction, the authors obtained the explicit solutions to the super Liouville system in super covariant form and component form. The explicit solution in component form reduces naturally into the Egnchi-Hanson instanton solution of the usual Liouville equation if all the Grassmann odd components are set equal to zero

  11. Fast sweeping algorithm for accurate solution of the TTI eikonal equation using factorization

    KAUST Repository

    bin Waheed, Umair

    2017-06-10

    Traveltime computation is essential for many seismic data processing applications and velocity analysis tools. High-resolution seismic imaging requires eikonal solvers to account for anisotropy whenever it significantly affects the seismic wave kinematics. Moreover, computation of auxiliary quantities, such as amplitude and take-off angle, rely on highly accurate traveltime solutions. However, the finite-difference based eikonal solution for a point-source initial condition has an upwind source-singularity at the source position, since the wavefront curvature is large near the source point. Therefore, all finite-difference solvers, even the high-order ones, show inaccuracies since the errors due to source-singularity spread from the source point to the whole computational domain. We address the source-singularity problem for tilted transversely isotropic (TTI) eikonal solvers using factorization. We solve a sequence of factored tilted elliptically anisotropic (TEA) eikonal equations iteratively, each time by updating the right hand side function. At each iteration, we factor the unknown TEA traveltime into two factors. One of the factors is specified analytically, such that the other factor is smooth in the source neighborhood. Therefore, through the iterative procedure we obtain accurate solution to the TTI eikonal equation. Numerical tests show significant improvement in accuracy due to factorization. The idea can be easily extended to compute accurate traveltimes for models with lower anisotropic symmetries, such as orthorhombic, monoclinic or even triclinic media.

  12. Enhanced Map-Matching Algorithm with a Hidden Markov Model for Mobile Phone Positioning

    Directory of Open Access Journals (Sweden)

    An Luo

    2017-10-01

    Full Text Available Numerous map-matching techniques have been developed to improve positioning, using Global Positioning System (GPS data and other sensors. However, most existing map-matching algorithms process GPS data with high sampling rates, to achieve a higher correct rate and strong universality. This paper introduces a novel map-matching algorithm based on a hidden Markov model (HMM for GPS positioning and mobile phone positioning with a low sampling rate. The HMM is a statistical model well known for providing solutions to temporal recognition applications such as text and speech recognition. In this work, the hidden Markov chain model was built to establish a map-matching process, using the geometric data, the topologies matrix of road links in road network and refined quad-tree data structure. HMM-based map-matching exploits the Viterbi algorithm to find the optimized road link sequence. The sequence consists of hidden states in the HMM model. The HMM-based map-matching algorithm is validated on a vehicle trajectory using GPS and mobile phone data. The results show a significant improvement in mobile phone positioning and high and low sampling of GPS data.

  13. An algorithm for variational data assimilation of contact concentration measurements for atmospheric chemistry models

    Science.gov (United States)

    Penenko, Alexey; Penenko, Vladimir

    2014-05-01

    Contact concentration measurement data assimilation problem is considered for convection-diffusion-reaction models originating from the atmospheric chemistry study. High dimensionality of models imposes strict requirements on the computational efficiency of the algorithms. Data assimilation is carried out within the variation approach on a single time step of the approximated model. A control function is introduced into the source term of the model to provide flexibility for data assimilation. This function is evaluated as the minimum of the target functional that connects its norm to a misfit between measured and model-simulated data. In the case mathematical model acts as a natural Tikhonov regularizer for the ill-posed measurement data inversion problem. This provides flow-dependent and physically-plausible structure of the resulting analysis and reduces a need to calculate model error covariance matrices that are sought within conventional approach to data assimilation. The advantage comes at the cost of the adjoint problem solution. This issue is solved within the frameworks of splitting-based realization of the basic convection-diffusion-reaction model. The model is split with respect to physical processes and spatial variables. A contact measurement data is assimilated on each one-dimensional convection-diffusion splitting stage. In this case a computationally-efficient direct scheme for both direct and adjoint problem solution can be constructed based on the matrix sweep method. Data assimilation (or regularization) parameter that regulates ratio between model and data in the resulting analysis is obtained with Morozov discrepancy principle. For the proper performance the algorithm takes measurement noise estimation. In the case of Gaussian errors the probability that the used Chi-squared-based estimate is the upper one acts as the assimilation parameter. A solution obtained can be used as the initial guess for data assimilation algorithms that assimilate

  14. Statistical behaviour of adaptive multilevel splitting algorithms in simple models

    International Nuclear Information System (INIS)

    Rolland, Joran; Simonnet, Eric

    2015-01-01

    Adaptive multilevel splitting algorithms have been introduced rather recently for estimating tail distributions in a fast and efficient way. In particular, they can be used for computing the so-called reactive trajectories corresponding to direct transitions from one metastable state to another. The algorithm is based on successive selection–mutation steps performed on the system in a controlled way. It has two intrinsic parameters, the number of particles/trajectories and the reaction coordinate used for discriminating good or bad trajectories. We investigate first the convergence in law of the algorithm as a function of the timestep for several simple stochastic models. Second, we consider the average duration of reactive trajectories for which no theoretical predictions exist. The most important aspect of this work concerns some systems with two degrees of freedom. They are studied in detail as a function of the reaction coordinate in the asymptotic regime where the number of trajectories goes to infinity. We show that during phase transitions, the statistics of the algorithm deviate significatively from known theoretical results when using non-optimal reaction coordinates. In this case, the variance of the algorithm is peaking at the transition and the convergence of the algorithm can be much slower than the usual expected central limit behaviour. The duration of trajectories is affected as well. Moreover, reactive trajectories do not correspond to the most probable ones. Such behaviour disappears when using the optimal reaction coordinate called committor as predicted by the theory. We finally investigate a three-state Markov chain which reproduces this phenomenon and show logarithmic convergence of the trajectory durations

  15. Development of algorithm for depreciation costs allocation in dynamic input-output industrial enterprise model

    Directory of Open Access Journals (Sweden)

    Keller Alevtina

    2017-01-01

    Full Text Available The article considers the issue of allocation of depreciation costs in the dynamic inputoutput model of an industrial enterprise. Accounting the depreciation costs in such a model improves the policy of fixed assets management. It is particularly relevant to develop the algorithm for the allocation of depreciation costs in the construction of dynamic input-output model of an industrial enterprise, since such enterprises have a significant amount of fixed assets. Implementation of terms of the adequacy of such an algorithm itself allows: evaluating the appropriateness of investments in fixed assets, studying the final financial results of an industrial enterprise, depending on management decisions in the depreciation policy. It is necessary to note that the model in question for the enterprise is always degenerate. It is caused by the presence of zero rows in the matrix of capital expenditures by lines of structural elements unable to generate fixed assets (part of the service units, households, corporate consumers. The paper presents the algorithm for the allocation of depreciation costs for the model. This algorithm was developed by the authors and served as the basis for further development of the flowchart for subsequent implementation with use of software. The construction of such algorithm and its use for dynamic input-output models of industrial enterprises is actualized by international acceptance of the effectiveness of the use of input-output models for national and regional economic systems. This is what allows us to consider that the solutions discussed in the article are of interest to economists of various industrial enterprises.

  16. Improving permafrost distribution modelling using feature selection algorithms

    Science.gov (United States)

    Deluigi, Nicola; Lambiel, Christophe; Kanevski, Mikhail

    2016-04-01

    The availability of an increasing number of spatial data on the occurrence of mountain permafrost allows the employment of machine learning (ML) classification algorithms for modelling the distribution of the phenomenon. One of the major problems when dealing with high-dimensional dataset is the number of input features (variables) involved. Application of ML classification algorithms to this large number of variables leads to the risk of overfitting, with the consequence of a poor generalization/prediction. For this reason, applying feature selection (FS) techniques helps simplifying the amount of factors required and improves the knowledge on adopted features and their relation with the studied phenomenon. Moreover, taking away irrelevant or redundant variables from the dataset effectively improves the quality of the ML prediction. This research deals with a comparative analysis of permafrost distribution models supported by FS variable importance assessment. The input dataset (dimension = 20-25, 10 m spatial resolution) was constructed using landcover maps, climate data and DEM derived variables (altitude, aspect, slope, terrain curvature, solar radiation, etc.). It was completed with permafrost evidences (geophysical and thermal data and rock glacier inventories) that serve as training permafrost data. Used FS algorithms informed about variables that appeared less statistically important for permafrost presence/absence. Three different algorithms were compared: Information Gain (IG), Correlation-based Feature Selection (CFS) and Random Forest (RF). IG is a filter technique that evaluates the worth of a predictor by measuring the information gain with respect to the permafrost presence/absence. Conversely, CFS is a wrapper technique that evaluates the worth of a subset of predictors by considering the individual predictive ability of each variable along with the degree of redundancy between them. Finally, RF is a ML algorithm that performs FS as part of its

  17. Development and investigation of an inverse problem solution algorithm for determination of Ap stars magnetic field geometry

    International Nuclear Information System (INIS)

    Piskunov, N.E.

    1985-01-01

    Mathematical formulation of the inverse problem of determination of magnetic field geometry from the polarization profiles of spectral lines is gven. The solving algorithm is proposed. A set of model calculations has shown the effectiveness of the algorithm, the high precision of magnetic star model parameters obtained and also the advantages of the inverse problem method over the commonly used method of interpretation of effective field curves

  18. Optimization of the test intervals of a nuclear safety system by genetic algorithms, solution clustering and fuzzy preference assignment

    International Nuclear Information System (INIS)

    Zio, E.; Bazzo, R.

    2010-01-01

    In this paper, a procedure is developed for identifying a number of representative solutions manageable for decision-making in a multiobjective optimization problem concerning the test intervals of the components of a safety system of a nuclear power plant. Pareto Front solutions are identified by a genetic algorithm and then clustered by subtractive clustering into 'families'. On the basis of the decision maker's preferences, each family is then synthetically represented by a 'head of the family' solution. This is done by introducing a scoring system that ranks the solutions with respect to the different objectives: a fuzzy preference assignment is employed to this purpose. Level Diagrams are then used to represent, analyze and interpret the Pareto Fronts reduced to the head-of-the-family solutions

  19. Highway Passenger Transport Based Express Parcel Service Network Design: Model and Algorithm

    Directory of Open Access Journals (Sweden)

    Yuan Jiang

    2017-01-01

    Full Text Available Highway passenger transport based express parcel service (HPTB-EPS is an emerging business that uses unutilised room of coach trunk to ship parcels between major cities. While it is reaping more and more express market, the managers are facing difficult decisions to design the service network. This paper investigates the HPTB-EPS network design problem and analyses the time-space characteristics of such network. A mixed-integer programming model is formulated integrating the service decision, frequency, and network flow distribution. To solve the model, a decomposition-based heuristic algorithm is designed by decomposing the problem as three steps: construction of service network, service path selection, and distribution of network flow. Numerical experiment using real data from our partner company demonstrates the effectiveness of our model and algorithm. We found that our solution could reduce the total cost by up to 16.3% compared to the carrier’s solution. The sensitivity analysis demonstrates the robustness and flexibility of the solutions of the model.

  20. Two new algorithms to combine kriging with stochastic modelling

    Science.gov (United States)

    Venema, Victor; Lindau, Ralf; Varnai, Tamas; Simmer, Clemens

    2010-05-01

    Two main groups of statistical methods used in the Earth sciences are geostatistics and stochastic modelling. Geostatistical methods, such as various kriging algorithms, aim at estimating the mean value for every point as well as possible. In case of sparse measurements, such fields have less variability at small scales and a narrower distribution as the true field. This can lead to biases if a nonlinear process is simulated driven by such a kriged field. Stochastic modelling aims at reproducing the statistical structure of the data in space and time. One of the stochastic modelling methods, the so-called surrogate data approach, replicates the value distribution and power spectrum of a certain data set. While stochastic methods reproduce the statistical properties of the data, the location of the measurement is not considered. This requires the use of so-called constrained stochastic models. Because radiative transfer through clouds is a highly nonlinear process, it is essential to model the distribution (e.g. of optical depth, extinction, liquid water content or liquid water path) accurately. In addition, the correlations within the cloud field are important, especially because of horizontal photon transport. This explains the success of surrogate cloud fields for use in 3D radiative transfer studies. Up to now, however, we could only achieve good results for the radiative properties averaged over the field, but not for a radiation measurement located at a certain position. Therefore we have developed a new algorithm that combines the accuracy of stochastic (surrogate) modelling with the positioning capabilities of kriging. In this way, we can automatically profit from the large geostatistical literature and software. This algorithm is similar to the standard iterative amplitude adjusted Fourier transform (IAAFT) algorithm, but has an additional iterative step in which the surrogate field is nudged towards the kriged field. The nudging strength is gradually

  1. Optimization Solution of Troesch’s and Bratu’s Problems of Ordinary Type Using Novel Continuous Genetic Algorithm

    Directory of Open Access Journals (Sweden)

    Zaer Abo-Hammour

    2014-01-01

    Full Text Available A new kind of optimization technique, namely, continuous genetic algorithm, is presented in this paper for numerically approximating the solutions of Troesch’s and Bratu’s problems. The underlying idea of the method is to convert the two differential problems into discrete versions by replacing each of the second derivatives by an appropriate difference quotient approximation. The new method has the following characteristics. First, it should not resort to more advanced mathematical tools; that is, the algorithm should be simple to understand and implement and should be thus easily accepted in the mathematical and physical application fields. Second, the algorithm is of global nature in terms of the solutions obtained as well as its ability to solve other mathematical and physical problems. Third, the proposed methodology has an implicit parallel nature which points to its implementation on parallel machines. The algorithm is tested on different versions of Troesch’s and Bratu’s problems. Experimental results show that the proposed algorithm is effective, straightforward, and simple.

  2. Studies of parallel algorithms for the solution of a Fokker-Planck equation

    International Nuclear Information System (INIS)

    Deck, D.; Samba, G.

    1995-11-01

    The study of laser-created plasmas often requires the use of a kinetic model rather than a hydrodynamic one. This model change occurs, for example, in the hot spot formation in an ICF experiment or during the relaxation of colliding plasmas. When the gradients scalelengths or the size of a given system are not small compared to the characteristic mean-free-path, we have to deal with non-equilibrium situations, which can be described by the distribution functions of every species in the system. We present here a numerical method in plane or spherical 1-D geometry, for the solution of a Fokker-Planck equation that describes the evolution of stich functions in the phase space. The size and the time scale of kinetic simulations require the use of Massively Parallel Computers (MPP). We have adopted a message-passing strategy using Parallel Virtual Machine (PVM)

  3. Sustainable logistics and transportation optimization models and algorithms

    CERN Document Server

    Gakis, Konstantinos; Pardalos, Panos

    2017-01-01

    Focused on the logistics and transportation operations within a supply chain, this book brings together the latest models, algorithms, and optimization possibilities. Logistics and transportation problems are examined within a sustainability perspective to offer a comprehensive assessment of environmental, social, ethical, and economic performance measures. Featured models, techniques, and algorithms may be used to construct policies on alternative transportation modes and technologies, green logistics, and incentives by the incorporation of environmental, economic, and social measures. Researchers, professionals, and graduate students in urban regional planning, logistics, transport systems, optimization, supply chain management, business administration, information science, mathematics, and industrial and systems engineering will find the real life and interdisciplinary issues presented in this book informative and useful.

  4. A comparison of updating algorithms for large N reduced models

    Energy Technology Data Exchange (ETDEWEB)

    Pérez, Margarita García [Instituto de Física Teórica UAM-CSIC, Universidad Autónoma de Madrid,Nicolás Cabrera 13-15, E-28049-Madrid (Spain); González-Arroyo, Antonio [Instituto de Física Teórica UAM-CSIC, Universidad Autónoma de Madrid,Nicolás Cabrera 13-15, E-28049-Madrid (Spain); Departamento de Física Teórica, C-XI Universidad Autónoma de Madrid,E-28049 Madrid (Spain); Keegan, Liam [PH-TH, CERN,CH-1211 Geneva 23 (Switzerland); Okawa, Masanori [Graduate School of Science, Hiroshima University,Higashi-Hiroshima, Hiroshima 739-8526 (Japan); Core of Research for the Energetic Universe, Hiroshima University,Higashi-Hiroshima, Hiroshima 739-8526 (Japan); Ramos, Alberto [PH-TH, CERN,CH-1211 Geneva 23 (Switzerland)

    2015-06-29

    We investigate Monte Carlo updating algorithms for simulating SU(N) Yang-Mills fields on a single-site lattice, such as for the Twisted Eguchi-Kawai model (TEK). We show that performing only over-relaxation (OR) updates of the gauge links is a valid simulation algorithm for the Fabricius and Haan formulation of this model, and that this decorrelates observables faster than using heat-bath updates. We consider two different methods of implementing the OR update: either updating the whole SU(N) matrix at once, or iterating through SU(2) subgroups of the SU(N) matrix, we find the same critical exponent in both cases, and only a slight difference between the two.

  5. A comparison of updating algorithms for large $N$ reduced models

    CERN Document Server

    Pérez, Margarita García; Keegan, Liam; Okawa, Masanori; Ramos, Alberto

    2015-01-01

    We investigate Monte Carlo updating algorithms for simulating $SU(N)$ Yang-Mills fields on a single-site lattice, such as for the Twisted Eguchi-Kawai model (TEK). We show that performing only over-relaxation (OR) updates of the gauge links is a valid simulation algorithm for the Fabricius and Haan formulation of this model, and that this decorrelates observables faster than using heat-bath updates. We consider two different methods of implementing the OR update: either updating the whole $SU(N)$ matrix at once, or iterating through $SU(2)$ subgroups of the $SU(N)$ matrix, we find the same critical exponent in both cases, and only a slight difference between the two.

  6. A PISO-like algorithm to simulate superfluid helium flow with the two-fluid model

    CERN Document Server

    Soulaine, Cyprien; Allain, Hervé; Baudouy, Bertrand; Van Weelderen, Rob

    2015-01-01

    This paper presents a segregated algorithm to solve numerically the superfluid helium (He II) equations using the two-fluid model. In order to validate the resulting code and illustrate its potential, different simulations have been performed. First, the flow through a capillary filled with He II with a heated area on one side is simulated and results are compared to analytical solutions in both Landau and Gorter–Mellink flow regimes. Then, transient heat transfer of a forced flow of He II is investigated. Finally, some two-dimensional simulations in a porous medium model are carried out.

  7. Evaluating Multicore Algorithms on the Unified Memory Model

    Directory of Open Access Journals (Sweden)

    John E. Savage

    2009-01-01

    Full Text Available One of the challenges to achieving good performance on multicore architectures is the effective utilization of the underlying memory hierarchy. While this is an issue for single-core architectures, it is a critical problem for multicore chips. In this paper, we formulate the unified multicore model (UMM to help understand the fundamental limits on cache performance on these architectures. The UMM seamlessly handles different types of multiple-core processors with varying degrees of cache sharing at different levels. We demonstrate that our model can be used to study a variety of multicore architectures on a variety of applications. In particular, we use it to analyze an option pricing problem using the trinomial model and develop an algorithm for it that has near-optimal memory traffic between cache levels. We have implemented the algorithm on a two Quad-Core Intel Xeon 5310 1.6 GHz processors (8 cores. It achieves a peak performance of 19.5 GFLOPs, which is 38% of the theoretical peak of the multicore system. We demonstrate that our algorithm outperforms compiler-optimized and auto-parallelized code by a factor of up to 7.5.

  8. Prefiltering Model for Homology Detection Algorithms on GPU.

    Science.gov (United States)

    Retamosa, Germán; de Pedro, Luis; González, Ivan; Tamames, Javier

    2016-01-01

    Homology detection has evolved over the time from heavy algorithms based on dynamic programming approaches to lightweight alternatives based on different heuristic models. However, the main problem with these algorithms is that they use complex statistical models, which makes it difficult to achieve a relevant speedup and find exact matches with the original results. Thus, their acceleration is essential. The aim of this article was to prefilter a sequence database. To make this work, we have implemented a groundbreaking heuristic model based on NVIDIA's graphics processing units (GPUs) and multicore processors. Depending on the sensitivity settings, this makes it possible to quickly reduce the sequence database by factors between 50% and 95%, while rejecting no significant sequences. Furthermore, this prefiltering application can be used together with multiple homology detection algorithms as a part of a next-generation sequencing system. Extensive performance and accuracy tests have been carried out in the Spanish National Centre for Biotechnology (NCB). The results show that GPU hardware can accelerate the execution times of former homology detection applications, such as National Centre for Biotechnology Information (NCBI), Basic Local Alignment Search Tool for Proteins (BLASTP), up to a factor of 4.

  9. Software Piracy Detection Model Using Ant Colony Optimization Algorithm

    Science.gov (United States)

    Astiqah Omar, Nor; Zakuan, Zeti Zuryani Mohd; Saian, Rizauddin

    2017-06-01

    Internet enables information to be accessible anytime and anywhere. This scenario creates an environment whereby information can be easily copied. Easy access to the internet is one of the factors which contribute towards piracy in Malaysia as well as the rest of the world. According to a survey conducted by Compliance Gap BSA Global Software Survey in 2013 on software piracy, found out that 43 percent of the software installed on PCs around the world was not properly licensed, the commercial value of the unlicensed installations worldwide was reported to be 62.7 billion. Piracy can happen anywhere including universities. Malaysia as well as other countries in the world is faced with issues of piracy committed by the students in universities. Piracy in universities concern about acts of stealing intellectual property. It can be in the form of software piracy, music piracy, movies piracy and piracy of intellectual materials such as books, articles and journals. This scenario affected the owner of intellectual property as their property is in jeopardy. This study has developed a classification model for detecting software piracy. The model was developed using a swarm intelligence algorithm called the Ant Colony Optimization algorithm. The data for training was collected by a study conducted in Universiti Teknologi MARA (Perlis). Experimental results show that the model detection accuracy rate is better as compared to J48 algorithm.

  10. Analyses, algorithms, and computations for models of high-temperature superconductivity. Final report

    International Nuclear Information System (INIS)

    Du, Q.

    1997-01-01

    Under the sponsorship of the Department of Energy, the authors have achieved significant progress in the modeling, analysis, and computation of superconducting phenomena. The work so far has focused on mezoscale models as typified by the celebrated Ginzburg-Landau equations; these models are intermediate between the microscopic models (that can be used to understand the basic structure of superconductors and of the atomic and sub-atomic behavior of these materials) and the macroscale, or homogenized, models (that can be of use for the design of devices). The models they have considered include a time dependent Ginzburg-Landau model, a variable thickness thin film model, models for high values of the Ginzburg-landau parameter, models that account for normal inclusions and fluctuations and Josephson effects, and the anisotropic ginzburg-Landau and Lawrence-Doniach models for layered superconductors, including those with high critical temperatures. In each case, they have developed or refined the models, derived rigorous mathematical results that enhance the state of understanding of the models and their solutions, and developed, analyzed, and implemented finite element algorithms for the approximate solution of the model equations

  11. Analyses, algorithms, and computations for models of high-temperature superconductivity. Final technical report

    International Nuclear Information System (INIS)

    Gunzburger, M.D.; Peterson, J.S.

    1998-01-01

    Under the sponsorship of the Department of Energy, the authors have achieved significant progress in the modeling, analysis, and computation of superconducting phenomena. Their work has focused on mezoscale models as typified by the celebrated ginzburg-Landau equations; these models are intermediate between the microscopic models (that can be used to understand the basic structure of superconductors and of the atomic and sub-atomic behavior of these materials) and the macroscale, or homogenized, models (that can be of use for the design of devices). The models the authors have considered include a time dependent Ginzburg-Landau model, a variable thickness thin film model, models for high values of the Ginzburg-Landau parameter, models that account for normal inclusions and fluctuations and Josephson effects, and the anisotropic Ginzburg-Landau and Lawrence-Doniach models for layered superconductors, including those with high critical temperatures. In each case, they have developed or refined the models, derived rigorous mathematical results that enhance the state of understanding of the models and their solutions, and developed, analyzed, and implemented finite element algorithms for the approximate solution of the model equations

  12. Exact and approximate Fourier rebinning algorithms for the solution of the data truncation problem in 3-D PET.

    Science.gov (United States)

    Bouallègue, Fayçal Ben; Crouzet, Jean-François; Comtat, Claude; Fourcade, Marjolaine; Mohammadi, Bijan; Mariano-Goulart, Denis

    2007-07-01

    This paper presents an extended 3-D exact rebinning formula in the Fourier space that leads to an iterative reprojection algorithm (iterative FOREPROJ), which enables the estimation of unmeasured oblique projection data on the basis of the whole set of measured data. In first approximation, this analytical formula also leads to an extended Fourier rebinning equation that is the basis for an approximate reprojection algorithm (extended FORE). These algorithms were evaluated on numerically simulated 3-D positron emission tomography (PET) data for the solution of the truncation problem, i.e., the estimation of the missing portions in the oblique projection data, before the application of algorithms that require complete projection data such as some rebinning methods (FOREX) or 3-D reconstruction algorithms (3DRP or direct Fourier methods). By taking advantage of all the 3-D data statistics, the iterative FOREPROJ reprojection provides a reliable alternative to the classical FOREPROJ method, which only exploits the low-statistics nonoblique data. It significantly improves the quality of the external reconstructed slices without loss of spatial resolution. As for the approximate extended FORE algorithm, it clearly exhibits limitations due to axial interpolations, but will require clinical studies with more realistic measured data in order to decide on its pertinence.

  13. Stochastic dynamics modeling solute transport in porous media modeling solute transport in porous media

    CERN Document Server

    Kulasiri, Don

    2002-01-01

    Most of the natural and biological phenomena such as solute transport in porous media exhibit variability which can not be modeled by using deterministic approaches. There is evidence in natural phenomena to suggest that some of the observations can not be explained by using the models which give deterministic solutions. Stochastic processes have a rich repository of objects which can be used to express the randomness inherent in the system and the evolution of the system over time. The attractiveness of the stochastic differential equations (SDE) and stochastic partial differential equations (SPDE) come from the fact that we can integrate the variability of the system along with the scientific knowledge pertaining to the system. One of the aims of this book is to explaim some useufl concepts in stochastic dynamics so that the scientists and engineers with a background in undergraduate differential calculus could appreciate the applicability and appropriateness of these developments in mathematics. The ideas ...

  14. Modified Hyperspheres Algorithm to Trace Homotopy Curves of Nonlinear Circuits Composed by Piecewise Linear Modelled Devices

    Directory of Open Access Journals (Sweden)

    H. Vazquez-Leal

    2014-01-01

    Full Text Available We present a homotopy continuation method (HCM for finding multiple operating points of nonlinear circuits composed of devices modelled by using piecewise linear (PWL representations. We propose an adaptation of the modified spheres path tracking algorithm to trace the homotopy trajectories of PWL circuits. In order to assess the benefits of this proposal, four nonlinear circuits composed of piecewise linear modelled devices are analysed to determine their multiple operating points. The results show that HCM can find multiple solutions within a single homotopy trajectory. Furthermore, we take advantage of the fact that homotopy trajectories are PWL curves meant to replace the multidimensional interpolation and fine tuning stages of the path tracking algorithm with a simple and highly accurate procedure based on the parametric straight line equation.

  15. Small Body GN&C Research Report: A Robust Model Predictive Control Algorithm with Guaranteed Resolvability

    Science.gov (United States)

    Acikmese, Behcet A.; Carson, John M., III

    2005-01-01

    A robustly stabilizing MPC (model predictive control) algorithm for uncertain nonlinear systems is developed that guarantees the resolvability of the associated finite-horizon optimal control problem in a receding-horizon implementation. The control consists of two components; (i) feedforward, and (ii) feedback part. Feed-forward control is obtained by online solution of a finite-horizon optimal control problem for the nominal system dynamics. The feedback control policy is designed off-line based on a bound on the uncertainty in the system model. The entire controller is shown to be robustly stabilizing with a region of attraction composed of initial states for which the finite-horizon optimal control problem is feasible. The controller design for this algorithm is demonstrated on a class of systems with uncertain nonlinear terms that have norm-bounded derivatives, and derivatives in polytopes. An illustrative numerical example is also provided.

  16. Firefly algorithm based solution to minimize the real power loss in a power system

    Directory of Open Access Journals (Sweden)

    P. Balachennaiah

    2018-03-01

    Full Text Available This paper proposes a method to minimize the real power loss (RPL of a power system transmission network using a new meta-heuristic algorithm known as firefly algorithm (FA by optimizing the control variables such as transformer taps, UPFC location and UPFC series injected voltage magnitude and phase angle. A software program is developed in MATLAB environment for FA to minimize the RPL by optimizing (i only the transformer tap values, (ii only UPFC location and its variables with optimized tap values and (iii UPFC location and its variables along with transformer tap setting values simultaneously. Interior point successive linear programming (IPSLP technique and real coded genetic algorithm (RCGA are considered here to compare the results and to show the efficiency and superiority of the proposed FA towards the optimization of RPL. Also in this paper, bacteria foraging algorithm (BFA is adopted to validate the results of the proposed algorithm.

  17. Hybrid Reduced Order Modeling Algorithms for Reactor Physics Calculations

    Science.gov (United States)

    Bang, Youngsuk

    Reduced order modeling (ROM) has been recognized as an indispensable approach when the engineering analysis requires many executions of high fidelity simulation codes. Examples of such engineering analyses in nuclear reactor core calculations, representing the focus of this dissertation, include the functionalization of the homogenized few-group cross-sections in terms of the various core conditions, e.g. burn-up, fuel enrichment, temperature, etc. This is done via assembly calculations which are executed many times to generate the required functionalization for use in the downstream core calculations. Other examples are sensitivity analysis used to determine important core attribute variations due to input parameter variations, and uncertainty quantification employed to estimate core attribute uncertainties originating from input parameter uncertainties. ROM constructs a surrogate model with quantifiable accuracy which can replace the original code for subsequent engineering analysis calculations. This is achieved by reducing the effective dimensionality of the input parameter, the state variable, or the output response spaces, by projection onto the so-called active subspaces. Confining the variations to the active subspace allows one to construct an ROM model of reduced complexity which can be solved more efficiently. This dissertation introduces a new algorithm to render reduction with the reduction errors bounded based on a user-defined error tolerance which represents the main challenge of existing ROM techniques. Bounding the error is the key to ensuring that the constructed ROM models are robust for all possible applications. Providing such error bounds represents one of the algorithmic contributions of this dissertation to the ROM state-of-the-art. Recognizing that ROM techniques have been developed to render reduction at different levels, e.g. the input parameter space, the state space, and the response space, this dissertation offers a set of novel

  18. Evaluation of odometry algorithm performances using a railway vehicle dynamic model

    Science.gov (United States)

    Allotta, B.; Pugi, L.; Ridolfi, A.; Malvezzi, M.; Vettori, G.; Rindi, A.

    2012-05-01

    In modern railway Automatic Train Protection and Automatic Train Control systems, odometry is a safety relevant on-board subsystem which estimates the instantaneous speed and the travelled distance of the train; a high reliability of the odometry estimate is fundamental, since an error on the train position may lead to a potentially dangerous overestimation of the distance available for braking. To improve the odometry estimate accuracy, data fusion of different inputs coming from a redundant sensor layout may be used. Simplified two-dimensional models of railway vehicles have been usually used for Hardware in the Loop test rig testing of conventional odometry algorithms and of on-board safety relevant subsystems (like the Wheel Slide Protection braking system) in which the train speed is estimated from the measures of the wheel angular speed. Two-dimensional models are not suitable to develop solutions like the inertial type localisation algorithms (using 3D accelerometers and 3D gyroscopes) and the introduction of Global Positioning System (or similar) or the magnetometer. In order to test these algorithms correctly and increase odometry performances, a three-dimensional multibody model of a railway vehicle has been developed, using Matlab-Simulink™, including an efficient contact model which can simulate degraded adhesion conditions (the development and prototyping of odometry algorithms involve the simulation of realistic environmental conditions). In this paper, the authors show how a 3D railway vehicle model, able to simulate the complex interactions arising between different on-board subsystems, can be useful to evaluate the odometry algorithm and safety relevant to on-board subsystem performances.

  19. Efficient solution of three-body quantum collision problems: Application to the Temkin-Poet model

    International Nuclear Information System (INIS)

    Jones, S.; Stelbovics, Andris T.

    2002-01-01

    We have developed a variable-spacing finite-difference algorithm that rapidly propagates the general solution of Schroedinger's equation to large distances (whereupon it can be matched to asymptotic solutions, including the ionization channel, to extract the desired scattering quantities). The present algorithm, when compared to Poet's corresponding fixed-spacing algorithm [R. Poet, J. Phys. B 13, 2995 (1980); S. Jones and A. T. Stelbovics, Phys. Rev. Lett. 84, 1878 (2000)], reduces storage by 98% and computation time by 99.98%. The method is applied to the Temkin-Poet electron-hydrogen model collision problem. Complete results (elastic, inelastic, and ionization) are obtained for low (17.6 eV), intermediate (27.2, 40.8, and 54.4 eV), and high (150 eV) impact energies

  20. Incorporating a Wheeled Vehicle Model in a New Monocular Visual Odometry Algorithm for Dynamic Outdoor Environments

    Science.gov (United States)

    Jiang, Yanhua; Xiong, Guangming; Chen, Huiyan; Lee, Dah-Jye

    2014-01-01

    This paper presents a monocular visual odometry algorithm that incorporates a wheeled vehicle model for ground vehicles. The main innovation of this algorithm is to use the single-track bicycle model to interpret the relationship between the yaw rate and side slip angle, which are the two most important parameters that describe the motion of a wheeled vehicle. Additionally, the pitch angle is also considered since the planar-motion hypothesis often fails due to the dynamic characteristics of wheel suspensions and tires in real-world environments. Linearization is used to calculate a closed-form solution of the motion parameters that works as a hypothesis generator in a RAndom SAmple Consensus (RANSAC) scheme to reduce the complexity in solving equations involving trigonometric. All inliers found are used to refine the winner solution through minimizing the reprojection error. Finally, the algorithm is applied to real-time on-board visual localization applications. Its performance is evaluated by comparing against the state-of-the-art monocular visual odometry methods using both synthetic data and publicly available datasets over several kilometers in dynamic outdoor environments. PMID:25256109

  1. Incorporating a Wheeled Vehicle Model in a New Monocular Visual Odometry Algorithm for Dynamic Outdoor Environments

    Directory of Open Access Journals (Sweden)

    Yanhua Jiang

    2014-09-01

    Full Text Available This paper presents a monocular visual odometry algorithm that incorporates a wheeled vehicle model for ground vehicles. The main innovation of this algorithm is to use the single-track bicycle model to interpret the relationship between the yaw rate and side slip angle, which are the two most important parameters that describe the motion of a wheeled vehicle. Additionally, the pitch angle is also considered since the planar-motion hypothesis often fails due to the dynamic characteristics of wheel suspensions and tires in real-world environments. Linearization is used to calculate a closed-form solution of the motion parameters that works as a hypothesis generator in a RAndom SAmple Consensus (RANSAC scheme to reduce the complexity in solving equations involving trigonometric. All inliers found are used to refine the winner solution through minimizing the reprojection error. Finally, the algorithm is applied to real-time on-board visual localization applications. Its performance is evaluated by comparing against the state-of-the-art monocular visual odometry methods using both synthetic data and publicly available datasets over several kilometers in dynamic outdoor environments.

  2. Development and evaluation of thermal model reduction algorithms for spacecraft

    Science.gov (United States)

    Deiml, Michael; Suderland, Martin; Reiss, Philipp; Czupalla, Markus

    2015-05-01

    This paper is concerned with the topic of the reduction of thermal models of spacecraft. The work presented here has been conducted in cooperation with the company OHB AG, formerly Kayser-Threde GmbH, and the Institute of Astronautics at Technische Universität München with the goal to shorten and automatize the time-consuming and manual process of thermal model reduction. The reduction of thermal models can be divided into the simplification of the geometry model for calculation of external heat flows and radiative couplings and into the reduction of the underlying mathematical model. For simplification a method has been developed which approximates the reduced geometry model with the help of an optimization algorithm. Different linear and nonlinear model reduction techniques have been evaluated for their applicability in reduction of the mathematical model. Thereby the compatibility with the thermal analysis tool ESATAN-TMS is of major concern, which restricts the useful application of these methods. Additional model reduction methods have been developed, which account to these constraints. The Matrix Reduction method allows the approximation of the differential equation to reference values exactly expect for numerical errors. The summation method enables a useful, applicable reduction of thermal models that can be used in industry. In this work a framework for model reduction of thermal models has been created, which can be used together with a newly developed graphical user interface for the reduction of thermal models in industry.

  3. A Multiple Model Prediction Algorithm for CNC Machine Wear PHM

    Directory of Open Access Journals (Sweden)

    Huimin Chen

    2011-01-01

    Full Text Available The 2010 PHM data challenge focuses on the remaining useful life (RUL estimation for cutters of a high speed CNC milling machine using measurements from dynamometer, accelerometer, and acoustic emission sensors. We present a multiple model approach for wear depth estimation of milling machine cutters using the provided data. The feature selection, initial wear estimation and multiple model fusion components of the proposed algorithm are explained in details and compared with several alternative methods using the training data. The final submission ranked #2 among professional and student participants and the method is applicable to other data driven PHM problems.

  4. Classical and Weak Solutions for Two Models in Mathematical Finance

    Science.gov (United States)

    Gyulov, Tihomir B.; Valkov, Radoslav L.

    2011-12-01

    We study two mathematical models, arising in financial mathematics. These models are one-dimensional analogues of the famous Black-Scholes equation on finite interval. The main difficulty is the degeneration at the both ends of the space interval. First, classical solutions are studied. Positivity and convexity properties of the solutions are discussed. Variational formulation in weighted Sobolev spaces is introduced and existence and uniqueness of the weak solution is proved. Maximum principle for weak solution is discussed.

  5. Comparison of evolutionary algorithms in gene regulatory network model inference.

    LENUS (Irish Health Repository)

    2010-01-01

    ABSTRACT: BACKGROUND: The evolution of high throughput technologies that measure gene expression levels has created a data base for inferring GRNs (a process also known as reverse engineering of GRNs). However, the nature of these data has made this process very difficult. At the moment, several methods of discovering qualitative causal relationships between genes with high accuracy from microarray data exist, but large scale quantitative analysis on real biological datasets cannot be performed, to date, as existing approaches are not suitable for real microarray data which are noisy and insufficient. RESULTS: This paper performs an analysis of several existing evolutionary algorithms for quantitative gene regulatory network modelling. The aim is to present the techniques used and offer a comprehensive comparison of approaches, under a common framework. Algorithms are applied to both synthetic and real gene expression data from DNA microarrays, and ability to reproduce biological behaviour, scalability and robustness to noise are assessed and compared. CONCLUSIONS: Presented is a comparison framework for assessment of evolutionary algorithms, used to infer gene regulatory networks. Promising methods are identified and a platform for development of appropriate model formalisms is established.

  6. High speed railway track dynamics models, algorithms and applications

    CERN Document Server

    Lei, Xiaoyan

    2017-01-01

    This book systematically summarizes the latest research findings on high-speed railway track dynamics, made by the author and his research team over the past decade. It explores cutting-edge issues concerning the basic theory of high-speed railways, covering the dynamic theories, models, algorithms and engineering applications of the high-speed train and track coupling system. Presenting original concepts, systematic theories and advanced algorithms, the book places great emphasis on the precision and completeness of its content. The chapters are interrelated yet largely self-contained, allowing readers to either read through the book as a whole or focus on specific topics. It also combines theories with practice to effectively introduce readers to the latest research findings and developments in high-speed railway track dynamics. It offers a valuable resource for researchers, postgraduates and engineers in the fields of civil engineering, transportation, highway & railway engineering.

  7. Optimisation-Based Solution Methods for Set Partitioning Models

    DEFF Research Database (Denmark)

    Rasmussen, Matias Sevel

    The scheduling of crew, i.e. the construction of work schedules for crew members, is often not a trivial task, but a complex puzzle. The task is complicated by rules, restrictions, and preferences. Therefore, manual solutions as well as solutions from standard software packages are not always su......_cient with respect to solution quality and solution time. Enhancement of the overall solution quality as well as the solution time can be of vital importance to many organisations. The _elds of operations research and mathematical optimisation deal with mathematical modelling of di_cult scheduling problems (among...... other topics). The _elds also deal with the development of sophisticated solution methods for these mathematical models. This thesis describes the set partitioning model which has been widely used for modelling crew scheduling problems. Integer properties for the set partitioning model are shown...

  8. A new model and simple algorithms for multi-label mumford-shah problems

    KAUST Repository

    Hong, Byungwoo

    2013-06-01

    In this work, we address the multi-label Mumford-Shah problem, i.e., the problem of jointly estimating a partitioning of the domain of the image, and functions defined within regions of the partition. We create algorithms that are efficient, robust to undesirable local minima, and are easy-to-implement. Our algorithms are formulated by slightly modifying the underlying statistical model from which the multi-label Mumford-Shah functional is derived. The advantage of this statistical model is that the underlying variables: the labels and the functions are less coupled than in the original formulation, and the labels can be computed from the functions with more global updates. The resulting algorithms can be tuned to the desired level of locality of the solution: from fully global updates to more local updates. We demonstrate our algorithm on two applications: joint multi-label segmentation and denoising, and joint multi-label motion segmentation and flow estimation. We compare to the state-of-the-art in multi-label Mumford-Shah problems and show that we achieve more promising results. © 2013 IEEE.

  9. Direct and iterative algorithms for the parallel solution of the one-dimensional macroscopic Navier-Stokes equations

    International Nuclear Information System (INIS)

    Doster, J.M.; Sills, E.D.

    1986-01-01

    Current efforts are under way to develop and evaluate numerical algorithms for the parallel solution of the large sparse matrix equations associated with the finite difference representation of the macroscopic Navier-Stokes equations. Previous work has shown that these equations can be cast into smaller coupled matrix equations suitable for solution utilizing multiple computer processors operating in parallel. The individual processors themselves may exhibit parallelism through the use of vector pipelines. This wor, has concentrated on the one-dimensional drift flux form of the Navier-Stokes equations. Direct and iterative algorithms that may be suitable for implementation on parallel computer architectures are evaluated in terms of accuracy and overall execution speed. This work has application to engineering and training simulations, on-line process control systems, and engineering workstations where increased computational speeds are required

  10. Real time tracking by LOPF algorithm with mixture model

    Science.gov (United States)

    Meng, Bo; Zhu, Ming; Han, Guangliang; Wu, Zhiguo

    2007-11-01

    A new particle filter-the Local Optimum Particle Filter (LOPF) algorithm is presented for tracking object accurately and steadily in visual sequences in real time which is a challenge task in computer vision field. In order to using the particles efficiently, we first use Sobel algorithm to extract the profile of the object. Then, we employ a new Local Optimum algorithm to auto-initialize some certain number of particles from these edge points as centre of the particles. The main advantage we do this in stead of selecting particles randomly in conventional particle filter is that we can pay more attentions on these more important optimum candidates and reduce the unnecessary calculation on those negligible ones, in addition we can overcome the conventional degeneracy phenomenon in a way and decrease the computational costs. Otherwise, the threshold is a key factor that affecting the results very much. So here we adapt an adaptive threshold choosing method to get the optimal Sobel result. The dissimilarities between the target model and the target candidates are expressed by a metric derived from the Bhattacharyya coefficient. Here, we use both the counter cue to select the particles and the color cur to describe the targets as the mixture target model. The effectiveness of our scheme is demonstrated by real visual tracking experiments. Results from simulations and experiments with real video data show the improved performance of the proposed algorithm when compared with that of the standard particle filter. The superior performance is evident when the target encountering the occlusion in real video where the standard particle filter usually fails.

  11. Global identifiability of linear compartmental models--a computer algebra algorithm.

    Science.gov (United States)

    Audoly, S; D'Angiò, L; Saccomani, M P; Cobelli, C

    1998-01-01

    A priori global identifiability deals with the uniqueness of the solution for the unknown parameters of a model and is, thus, a prerequisite for parameter estimation of biological dynamic models. Global identifiability is however difficult to test, since it requires solving a system of algebraic nonlinear equations which increases both in nonlinearity degree and number of terms and unknowns with increasing model order. In this paper, a computer algebra tool, GLOBI (GLOBal Identifiability) is presented, which combines the topological transfer function method with the Buchberger algorithm, to test global identifiability of linear compartmental models. GLOBI allows for the automatic testing of a priori global identifiability of general structure compartmental models from general multi input-multi output experiments. Examples of usage of GLOBI to analyze a priori global identifiability of some complex biological compartmental models are provided.

  12. A self-organizing algorithm for modeling protein loops.

    Directory of Open Access Journals (Sweden)

    Pu Liu

    2009-08-01

    Full Text Available Protein loops, the flexible short segments connecting two stable secondary structural units in proteins, play a critical role in protein structure and function. Constructing chemically sensible conformations of protein loops that seamlessly bridge the gap between the anchor points without introducing any steric collisions remains an open challenge. A variety of algorithms have been developed to tackle the loop closure problem, ranging from inverse kinematics to knowledge-based approaches that utilize pre-existing fragments extracted from known protein structures. However, many of these approaches focus on the generation of conformations that mainly satisfy the fixed end point condition, leaving the steric constraints to be resolved in subsequent post-processing steps. In the present work, we describe a simple solution that simultaneously satisfies not only the end point and steric conditions, but also chirality and planarity constraints. Starting from random initial atomic coordinates, each individual conformation is generated independently by using a simple alternating scheme of pairwise distance adjustments of randomly chosen atoms, followed by fast geometric matching of the conformationally rigid components of the constituent amino acids. The method is conceptually simple, numerically stable and computationally efficient. Very importantly, additional constraints, such as those derived from NMR experiments, hydrogen bonds or salt bridges, can be incorporated into the algorithm in a straightforward and inexpensive way, making the method ideal for solving more complex multi-loop problems. The remarkable performance and robustness of the algorithm are demonstrated on a set of protein loops of length 4, 8, and 12 that have been used in previous studies.

  13. Theoretical modelling of actinide spectra in solution

    International Nuclear Information System (INIS)

    Danilo, Cecile

    2009-01-01

    The framework of this PhD is the interpretation of Nuclear Magnetic Relaxation Dispersion experiments performed on solvated U"4"+, NpO_2"+ and PuO_2"2"+, which all have a f"2 configuration. Unexpectedly the two actinyl ions have a much higher relaxivity than U"4"+,. One possible explanation is that the electronic relaxation rate is faster for Uranium(IV) than for the actinyl ions. We address this problem by exploring the electronic spectrum of the three compounds in gas phase and in solution with a two-step SOCI (Spin-Orbit Configuration-Interaction) method. The influence of electron correlation (treated in the first step) and spin-orbit relaxation effects (considered in the second step) has been discussed thoroughly. Solvent effects have been investigated as well. Another issue that has been questioned is the accuracy of Density Functional Theory for the study of actinide species. This matter has been discussed by comparing its performance to wave-function based correlated methods. The chemical problem chosen was the water exchange in [UO_2"2"+ (H_2O)_5]. We looked at the associative and at the dissociative mechanisms using a model with one additional water in the second hydration sphere. The last part of the thesis dealt with the spectroscopy of coordinated Uranyl(V). Absorption spectrum of Uranyl(V) with various ligands has been recorded. The first sharp absorption bands in the Near-Infrared region were assigned to the Uranium centered 5f-5f transitions, but uncertainties remained for the assignment of transitions observed in the Visible region. We computed the spectra of naked UO_2"+ and [UO_2(CO_3)_3]"5"- to elucidate the spectral changes induced by the carbonate ligands. (author) [fr

  14. A hybrid multiview stereo algorithm for modeling urban scenes.

    Science.gov (United States)

    Lafarge, Florent; Keriven, Renaud; Brédif, Mathieu; Vu, Hoang-Hiep

    2013-01-01

    We present an original multiview stereo reconstruction algorithm which allows the 3D-modeling of urban scenes as a combination of meshes and geometric primitives. The method provides a compact model while preserving details: Irregular elements such as statues and ornaments are described by meshes, whereas regular structures such as columns and walls are described by primitives (planes, spheres, cylinders, cones, and tori). We adopt a two-step strategy consisting first in segmenting the initial meshbased surface using a multilabel Markov Random Field-based model and second in sampling primitive and mesh components simultaneously on the obtained partition by a Jump-Diffusion process. The quality of a reconstruction is measured by a multi-object energy model which takes into account both photo-consistency and semantic considerations (i.e., geometry and shape layout). The segmentation and sampling steps are embedded into an iterative refinement procedure which provides an increasingly accurate hybrid representation. Experimental results on complex urban structures and large scenes are presented and compared to state-of-the-art multiview stereo meshing algorithms.

  15. Exploration Of Deep Learning Algorithms Using Openacc Parallel Programming Model

    KAUST Repository

    Hamam, Alwaleed A.

    2017-03-13

    Deep learning is based on a set of algorithms that attempt to model high level abstractions in data. Specifically, RBM is a deep learning algorithm that used in the project to increase it\\'s time performance using some efficient parallel implementation by OpenACC tool with best possible optimizations on RBM to harness the massively parallel power of NVIDIA GPUs. GPUs development in the last few years has contributed to growing the concept of deep learning. OpenACC is a directive based ap-proach for computing where directives provide compiler hints to accelerate code. The traditional Restricted Boltzmann Ma-chine is a stochastic neural network that essentially perform a binary version of factor analysis. RBM is a useful neural net-work basis for larger modern deep learning model, such as Deep Belief Network. RBM parameters are estimated using an efficient training method that called Contrastive Divergence. Parallel implementation of RBM is available using different models such as OpenMP, and CUDA. But this project has been the first attempt to apply OpenACC model on RBM.

  16. Exploration Of Deep Learning Algorithms Using Openacc Parallel Programming Model

    KAUST Repository

    Hamam, Alwaleed A.; Khan, Ayaz H.

    2017-01-01

    Deep learning is based on a set of algorithms that attempt to model high level abstractions in data. Specifically, RBM is a deep learning algorithm that used in the project to increase it's time performance using some efficient parallel implementation by OpenACC tool with best possible optimizations on RBM to harness the massively parallel power of NVIDIA GPUs. GPUs development in the last few years has contributed to growing the concept of deep learning. OpenACC is a directive based ap-proach for computing where directives provide compiler hints to accelerate code. The traditional Restricted Boltzmann Ma-chine is a stochastic neural network that essentially perform a binary version of factor analysis. RBM is a useful neural net-work basis for larger modern deep learning model, such as Deep Belief Network. RBM parameters are estimated using an efficient training method that called Contrastive Divergence. Parallel implementation of RBM is available using different models such as OpenMP, and CUDA. But this project has been the first attempt to apply OpenACC model on RBM.

  17. Optimal solution for travelling salesman problem using heuristic shortest path algorithm with imprecise arc length

    Science.gov (United States)

    Bakar, Sumarni Abu; Ibrahim, Milbah

    2017-08-01

    The shortest path problem is a popular problem in graph theory. It is about finding a path with minimum length between a specified pair of vertices. In any network the weight of each edge is usually represented in a form of crisp real number and subsequently the weight is used in the calculation of shortest path problem using deterministic algorithms. However, due to failure, uncertainty is always encountered in practice whereby the weight of edge of the network is uncertain and imprecise. In this paper, a modified algorithm which utilized heuristic shortest path method and fuzzy approach is proposed for solving a network with imprecise arc length. Here, interval number and triangular fuzzy number in representing arc length of the network are considered. The modified algorithm is then applied to a specific example of the Travelling Salesman Problem (TSP). Total shortest distance obtained from this algorithm is then compared with the total distance obtained from traditional nearest neighbour heuristic algorithm. The result shows that the modified algorithm can provide not only on the sequence of visited cities which shown to be similar with traditional approach but it also provides a good measurement of total shortest distance which is lesser as compared to the total shortest distance calculated using traditional approach. Hence, this research could contribute to the enrichment of methods used in solving TSP.

  18. A solution to energy and environmental problems of electric power system using hybrid harmony search-random search optimization algorithm

    Directory of Open Access Journals (Sweden)

    Vikram Kumar Kamboj

    2016-04-01

    Full Text Available In recent years, global warming and carbon dioxide (CO2 emission reduction have become important issues in India, as CO2 emission levels are continuing to rise in accordance with the increased volume of Indian national energy consumption under the pressure of global warming, it is crucial for Indian government to impose the effective policy to promote CO2 emission reduction. Challenge of supplying the nation with high quality and reliable electrical energy at a reasonable cost, converted government policy into deregulation and restructuring environment. This research paper presents aims to presents an effective solution for energy and environmental problems of electric power using an efficient and powerful hybrid optimization algorithm: Hybrid Harmony search-random search algorithm. The proposed algorithm is tested for standard IEEE-14 bus, -30 bus and -56 bus system. The effectiveness of proposed hybrid algorithm is compared with others well known evolutionary, heuristics and meta-heuristics search algorithms. For multi-objective unit commitment, it is found that as there are conflicting relationship between cost and emission, if the performance in cost criterion is improved, performance in the emission is seen to deteriorate.

  19. Multiobjective Optimal Algorithm for Automatic Calibration of Daily Streamflow Forecasting Model

    Directory of Open Access Journals (Sweden)

    Yi Liu

    2016-01-01

    Full Text Available Single-objection function cannot describe the characteristics of the complicated hydrologic system. Consequently, it stands to reason that multiobjective functions are needed for calibration of hydrologic model. The multiobjective algorithms based on the theory of nondominate are employed to solve this multiobjective optimal problem. In this paper, a novel multiobjective optimization method based on differential evolution with adaptive Cauchy mutation and Chaos searching (MODE-CMCS is proposed to optimize the daily streamflow forecasting model. Besides, to enhance the diversity performance of Pareto solutions, a more precise crowd distance assigner is presented in this paper. Furthermore, the traditional generalized spread metric (SP is sensitive with the size of Pareto set. A novel diversity performance metric, which is independent of Pareto set size, is put forward in this research. The efficacy of the new algorithm MODE-CMCS is compared with the nondominated sorting genetic algorithm II (NSGA-II on a daily streamflow forecasting model based on support vector machine (SVM. The results verify that the performance of MODE-CMCS is superior to the NSGA-II for automatic calibration of hydrologic model.

  20. A universal optimization strategy for ant colony optimization algorithms based on the Physarum-inspired mathematical model

    International Nuclear Information System (INIS)

    Zhang, Zili; Gao, Chao; Liu, Yuxin; Qian, Tao

    2014-01-01

    Ant colony optimization (ACO) algorithms often fall into the local optimal solution and have lower search efficiency for solving the travelling salesman problem (TSP). According to these shortcomings, this paper proposes a universal optimization strategy for updating the pheromone matrix in the ACO algorithms. The new optimization strategy takes advantages of the unique feature of critical paths reserved in the process of evolving adaptive networks of the Physarum-inspired mathematical model (PMM). The optimized algorithms, denoted as PMACO algorithms, can enhance the amount of pheromone in the critical paths and promote the exploitation of the optimal solution. Experimental results in synthetic and real networks show that the PMACO algorithms are more efficient and robust than the traditional ACO algorithms, which are adaptable to solve the TSP with single or multiple objectives. Meanwhile, we further analyse the influence of parameters on the performance of the PMACO algorithms. Based on these analyses, the best values of these parameters are worked out for the TSP. (paper)

  1. Pareto Optimization of a Half Car Passive Suspension Model Using a Novel Multiobjective Heat Transfer Search Algorithm

    Directory of Open Access Journals (Sweden)

    Vimal Savsani

    2017-01-01

    Full Text Available Most of the modern multiobjective optimization algorithms are based on the search technique of genetic algorithms; however the search techniques of other recently developed metaheuristics are emerging topics among researchers. This paper proposes a novel multiobjective optimization algorithm named multiobjective heat transfer search (MOHTS algorithm, which is based on the search technique of heat transfer search (HTS algorithm. MOHTS employs the elitist nondominated sorting and crowding distance approach of an elitist based nondominated sorting genetic algorithm-II (NSGA-II for obtaining different nondomination levels and to preserve the diversity among the optimal set of solutions, respectively. The capability in yielding a Pareto front as close as possible to the true Pareto front of MOHTS has been tested on the multiobjective optimization problem of the vehicle suspension design, which has a set of five second-order linear ordinary differential equations. Half car passive ride model with two different sets of five objectives is employed for optimizing the suspension parameters using MOHTS and NSGA-II. The optimization studies demonstrate that MOHTS achieves the better nondominated Pareto front with the widespread (diveresed set of optimal solutions as compared to NSGA-II, and further the comparison of the extreme points of the obtained Pareto front reveals the dominance of MOHTS over NSGA-II, multiobjective uniform diversity genetic algorithm (MUGA, and combined PSO-GA based MOEA.

  2. Uncertainty analysis of hydrological modeling in a tropical area using different algorithms

    Science.gov (United States)

    Rafiei Emam, Ammar; Kappas, Martin; Fassnacht, Steven; Linh, Nguyen Hoang Khanh

    2018-01-01

    Hydrological modeling outputs are subject to uncertainty resulting from different sources of errors (e.g., error in input data, model structure, and model parameters), making quantification of uncertainty in hydrological modeling imperative and meant to improve reliability of modeling results. The uncertainty analysis must solve difficulties in calibration of hydrological models, which further increase in areas with data scarcity. The purpose of this study is to apply four uncertainty analysis algorithms to a semi-distributed hydrological model, quantifying different source of uncertainties (especially parameter uncertainty) and evaluate their performance. In this study, the Soil and Water Assessment Tools (SWAT) eco-hydrological model was implemented for the watershed in the center of Vietnam. The sensitivity of parameters was analyzed, and the model was calibrated. The uncertainty analysis for the hydrological model was conducted based on four algorithms: Generalized Likelihood Uncertainty Estimation (GLUE), Sequential Uncertainty Fitting (SUFI), Parameter Solution method (ParaSol) and Particle Swarm Optimization (PSO). The performance of the algorithms was compared using P-factor and Rfactor, coefficient of determination (R 2), the Nash Sutcliffe coefficient of efficiency (NSE) and Percent Bias (PBIAS). The results showed the high performance of SUFI and PSO with P-factor>0.83, R-factor 0.91, NSE>0.89, and 0.18model use for policy or management decisions.

  3. Periodic solutions of nonautonomous differential systems modeling obesity population

    Energy Technology Data Exchange (ETDEWEB)

    Arenas, Abraham J. [Departamento de Matematicas y Estadistica, Universidad de Cordoba Monteria (Colombia)], E-mail: aarenas@sinu.unicordoba.edu.co; Gonzalez-Parra, Gilberto [Departamento de Calculo, Universidad de los Andes, Merida (Venezuela, Bolivarian Republic of)], E-mail: gcarlos@ula.ve; Jodar, Lucas [Instituto de Matematica Multidisciplinar, Universidad Politecnica de Valencia Edificio 8G, 2o, 46022 Valencia (Spain)], E-mail: ljodar@imm.upv.es

    2009-10-30

    In this paper we study the periodic behaviour of the solutions of a nonautonomous model for obesity population. The mathematical model represented by a nonautonomous system of nonlinear ordinary differential equations is used to model the dynamics of obese populations. Numerical simulations suggest periodic behaviour of subpopulations solutions. Sufficient conditions which guarantee the existence of a periodic positive solution are obtained using a continuation theorem based on coincidence degree theory.

  4. Periodic solutions of nonautonomous differential systems modeling obesity population

    International Nuclear Information System (INIS)

    Arenas, Abraham J.; Gonzalez-Parra, Gilberto; Jodar, Lucas

    2009-01-01

    In this paper we study the periodic behaviour of the solutions of a nonautonomous model for obesity population. The mathematical model represented by a nonautonomous system of nonlinear ordinary differential equations is used to model the dynamics of obese populations. Numerical simulations suggest periodic behaviour of subpopulations solutions. Sufficient conditions which guarantee the existence of a periodic positive solution are obtained using a continuation theorem based on coincidence degree theory.

  5. Economic modeling using evolutionary algorithms : the effect of binary encoding of strategies

    NARCIS (Netherlands)

    Waltman, L.R.; Eck, van N.J.; Dekker, Rommert; Kaymak, U.

    2011-01-01

    We are concerned with evolutionary algorithms that are employed for economic modeling purposes. We focus in particular on evolutionary algorithms that use a binary encoding of strategies. These algorithms, commonly referred to as genetic algorithms, are popular in agent-based computational economics

  6. General classical solutions in the noncommutative CPN-1 model

    International Nuclear Information System (INIS)

    Foda, O.; Jack, I.; Jones, D.R.T.

    2002-01-01

    We give an explicit construction of general classical solutions for the noncommutative CP N-1 model in two dimensions, showing that they correspond to integer values for the action and topological charge. We also give explicit solutions for the Dirac equation in the background of these general solutions and show that the index theorem is satisfied

  7. Demonstrations in Solute Transport Using Dyes: Part II. Modeling.

    Science.gov (United States)

    Butters, Greg; Bandaranayake, Wije

    1993-01-01

    A solution of the convection-dispersion equation is used to describe the solute breakthrough curves generated in the demonstrations in the companion paper. Estimation of the best fit model parameters (solute velocity, dispersion, and retardation) is illustrated using the method of moments for an example data set. (Author/MDH)

  8. Modeling the Swift Bat Trigger Algorithm with Machine Learning

    Science.gov (United States)

    Graff, Philip B.; Lien, Amy Y.; Baker, John G.; Sakamoto, Takanori

    2016-01-01

    To draw inferences about gamma-ray burst (GRB) source populations based on Swift observations, it is essential to understand the detection efficiency of the Swift burst alert telescope (BAT). This study considers the problem of modeling the Swift / BAT triggering algorithm for long GRBs, a computationally expensive procedure, and models it using machine learning algorithms. A large sample of simulated GRBs from Lien et al. is used to train various models: random forests, boosted decision trees (with AdaBoost), support vector machines, and artificial neural networks. The best models have accuracies of greater than or equal to 97 percent (less than or equal to 3 percent error), which is a significant improvement on a cut in GRB flux, which has an accuracy of 89.6 percent (10.4 percent error). These models are then used to measure the detection efficiency of Swift as a function of redshift z, which is used to perform Bayesian parameter estimation on the GRB rate distribution. We find a local GRB rate density of n (sub 0) approaching 0.48 (sup plus 0.41) (sub minus 0.23) per cubic gigaparsecs per year with power-law indices of n (sub 1) approaching 1.7 (sup plus 0.6) (sub minus 0.5) and n (sub 2) approaching minus 5.9 (sup plus 5.7) (sub minus 0.1) for GRBs above and below a break point of z (redshift) (sub 1) approaching 6.8 (sup plus 2.8) (sub minus 3.2). This methodology is able to improve upon earlier studies by more accurately modeling Swift detection and using this for fully Bayesian model fitting.

  9. Modeling the Swift BAT Trigger Algorithm with Machine Learning

    Science.gov (United States)

    Graff, Philip B.; Lien, Amy Y.; Baker, John G.; Sakamoto, Takanori

    2015-01-01

    To draw inferences about gamma-ray burst (GRB) source populations based on Swift observations, it is essential to understand the detection efficiency of the Swift burst alert telescope (BAT). This study considers the problem of modeling the Swift BAT triggering algorithm for long GRBs, a computationally expensive procedure, and models it using machine learning algorithms. A large sample of simulated GRBs from Lien et al. (2014) is used to train various models: random forests, boosted decision trees (with AdaBoost), support vector machines, and artificial neural networks. The best models have accuracies of approximately greater than 97% (approximately less than 3% error), which is a significant improvement on a cut in GRB flux which has an accuracy of 89:6% (10:4% error). These models are then used to measure the detection efficiency of Swift as a function of redshift z, which is used to perform Bayesian parameter estimation on the GRB rate distribution. We find a local GRB rate density of eta(sub 0) approximately 0.48(+0.41/-0.23) Gpc(exp -3) yr(exp -1) with power-law indices of eta(sub 1) approximately 1.7(+0.6/-0.5) and eta(sub 2) approximately -5.9(+5.7/-0.1) for GRBs above and below a break point of z(sub 1) approximately 6.8(+2.8/-3.2). This methodology is able to improve upon earlier studies by more accurately modeling Swift detection and using this for fully Bayesian model fitting. The code used in this is analysis is publicly available online.

  10. Modelling and control algorithms of the cross conveyors line with multiengine variable speed drives

    Science.gov (United States)

    Cheremushkina, M. S.; Baburin, S. V.

    2017-02-01

    The paper deals with the actual problem of developing the control algorithm that meets the technical requirements of the mine belt conveyors, and enables energy and resource savings taking into account a random sort of traffic. The most effective method of solution of these tasks is the construction of control systems with the use of variable speed drives for asynchronous motors. The authors designed the mathematical model of the system ‘variable speed multiengine drive - conveyor - control system of conveyors’ that takes into account the dynamic processes occurring in the elements of the transport system, provides an assessment of the energy efficiency of application the developed algorithms, which allows one to reduce the dynamic overload in the belt to 15-20%.

  11. Numerical model updating technique for structures using firefly algorithm

    Science.gov (United States)

    Sai Kubair, K.; Mohan, S. C.

    2018-03-01

    Numerical model updating is a technique used for updating the existing experimental models for any structures related to civil, mechanical, automobiles, marine, aerospace engineering, etc. The basic concept behind this technique is updating the numerical models to closely match with experimental data obtained from real or prototype test structures. The present work involves the development of numerical model using MATLAB as a computational tool and with mathematical equations that define the experimental model. Firefly algorithm is used as an optimization tool in this study. In this updating process a response parameter of the structure has to be chosen, which helps to correlate the numerical model developed with the experimental results obtained. The variables for the updating can be either material or geometrical properties of the model or both. In this study, to verify the proposed technique, a cantilever beam is analyzed for its tip deflection and a space frame has been analyzed for its natural frequencies. Both the models are updated with their respective response values obtained from experimental results. The numerical results after updating show that there is a close relationship that can be brought between the experimental and the numerical models.

  12. Stochastic time-dependent vehicle routing problem: Mathematical models and ant colony algorithm

    Directory of Open Access Journals (Sweden)

    Zhengyu Duan

    2015-11-01

    Full Text Available This article addresses the stochastic time-dependent vehicle routing problem. Two mathematical models named robust optimal schedule time model and minimum expected schedule time model are proposed for stochastic time-dependent vehicle routing problem, which can guarantee delivery within the time windows of customers. The robust optimal schedule time model only requires the variation range of link travel time, which can be conveniently derived from historical traffic data. In addition, the robust optimal schedule time model based on robust optimization method can be converted into a time-dependent vehicle routing problem. Moreover, an ant colony optimization algorithm is designed to solve stochastic time-dependent vehicle routing problem. As the improvements in initial solution and transition probability, ant colony optimization algorithm has a good performance in convergence. Through computational instances and Monte Carlo simulation tests, robust optimal schedule time model is proved to be better than minimum expected schedule time model in computational efficiency and coping with the travel time fluctuations. Therefore, robust optimal schedule time model is applicable in real road network.

  13. Schema Design and Normalization Algorithm for XML Databases Model

    Directory of Open Access Journals (Sweden)

    Samir Abou El-Seoud

    2009-06-01

    Full Text Available In this paper we study the problem of schema design and normalization in XML databases model. We show that, like relational databases, XML documents may contain redundant information, and this redundancy may cause update anomalies. Furthermore, such problems are caused by certain functional dependencies among paths in the document. Based on our research works, in which we presented the functional dependencies and normal forms of XML Schema, we present the decomposition algorithm for converting any XML Schema into normalized one, that satisfies X-BCNF.

  14. Development of modelling algorithm of technological systems by statistical tests

    Science.gov (United States)

    Shemshura, E. A.; Otrokov, A. V.; Chernyh, V. G.

    2018-03-01

    The paper tackles the problem of economic assessment of design efficiency regarding various technological systems at the stage of their operation. The modelling algorithm of a technological system was performed using statistical tests and with account of the reliability index allows estimating the level of machinery technical excellence and defining the efficiency of design reliability against its performance. Economic feasibility of its application shall be determined on the basis of service quality of a technological system with further forecasting of volumes and the range of spare parts supply.

  15. Stochastic geometry, spatial statistics and random fields models and algorithms

    CERN Document Server

    2015-01-01

    Providing a graduate level introduction to various aspects of stochastic geometry, spatial statistics and random fields, this volume places a special emphasis on fundamental classes of models and algorithms as well as on their applications, for example in materials science, biology and genetics. This book has a strong focus on simulations and includes extensive codes in Matlab and R, which are widely used in the mathematical community. It can be regarded as a continuation of the recent volume 2068 of Lecture Notes in Mathematics, where other issues of stochastic geometry, spatial statistics and random fields were considered, with a focus on asymptotic methods.

  16. Heterogeneous Agents Model with the Worst Out Algorithm

    Czech Academy of Sciences Publication Activity Database

    Vošvrda, Miloslav; Vácha, Lukáš

    I, č. 1 (2007), s. 54-66 ISSN 1802-4696 R&D Projects: GA MŠk(CZ) LC06075; GA ČR(CZ) GA402/06/0990 Grant - others:GA UK(CZ) 454/2004/A-EK/FSV Institutional research plan: CEZ:AV0Z10750506 Keywords : Efficient Market s Hypothesis * Fractal Market Hypothesis * agents' investment horizons * agents' trading strategies * technical trading rules * heterogeneous agent model with stochastic memory * Worst out Algorithm Subject RIV: AH - Economics

  17. Two-Stage Electricity Demand Modeling Using Machine Learning Algorithms

    Directory of Open Access Journals (Sweden)

    Krzysztof Gajowniczek

    2017-10-01

    Full Text Available Forecasting of electricity demand has become one of the most important areas of research in the electric power industry, as it is a critical component of cost-efficient power system management and planning. In this context, accurate and robust load forecasting is supposed to play a key role in reducing generation costs, and deals with the reliability of the power system. However, due to demand peaks in the power system, forecasts are inaccurate and prone to high numbers of errors. In this paper, our contributions comprise a proposed data-mining scheme for demand modeling through peak detection, as well as the use of this information to feed the forecasting system. For this purpose, we have taken a different approach from that of time series forecasting, representing it as a two-stage pattern recognition problem. We have developed a peak classification model followed by a forecasting model to estimate an aggregated demand volume. We have utilized a set of machine learning algorithms to benefit from both accurate detection of the peaks and precise forecasts, as applied to the Polish power system. The key finding is that the algorithms can detect 96.3% of electricity peaks (load value equal to or above the 99th percentile of the load distribution and deliver accurate forecasts, with mean absolute percentage error (MAPE of 3.10% and resistant mean absolute percentage error (r-MAPE of 2.70% for the 24 h forecasting horizon.

  18. Toward a Mesoscale Model for the Dynamics of Polymer Solutions

    Energy Technology Data Exchange (ETDEWEB)

    Miller, G H; Trebotich, D

    2006-10-02

    To model entire microfluidic systems containing solvated polymers we argue that it is necessary to have a numerical stability constraint governed only by the advective CFL condition. Advancements in the treatment of Kramers bead-rod polymer models are presented to enable tightly-coupled fluid-particle algorithms in the context of system-level modeling.

  19. Multi-Objective Optimization of the Hedging Model for reservoir Operation Using Evolutionary Algorithms

    Directory of Open Access Journals (Sweden)

    sadegh sadeghitabas

    2015-12-01

    Full Text Available Multi-objective problems rarely ever provide a single optimal solution, rather they yield an optimal set of outputs (Pareto fronts. Solving these problems was previously accomplished by using some simplifier methods such as the weighting coefficient method used for converting a multi-objective problem to a single objective function. However, such robust tools as multi-objective meta-heuristic algorithms have been recently developed for solving these problems. The hedging model is one of the classic problems for reservoir operation that is generally employed for mitigating drought impacts in water resources management. According to this method, although it is possible to supply the total planned demands, only portions of the demands are met to save water by allowing small deficits in the current conditions in order to avoid or reduce severe deficits in future. The approach heavily depends on economic and social considerations. In the present study, the meta-heuristic algorithms of NSGA-II, MOPSO, SPEA-II, and AMALGAM are used toward the multi-objective optimization of the hedging model. For this purpose, the rationing factors involved in Taleghan dam operation are optimized over a 35-year statistical period of inflow. There are two objective functions: a minimizing the modified shortage index, and b maximizing the reliability index (i.e., two opposite objectives. The results show that the above algorithms are applicable to a wide range of optimal solutions. Among the algorithms, AMALGAM is found to produce a better Pareto front for the values of the objective function, indicating its more satisfactory performance.

  20. Multi-cut solutions in Chern-Simons matrix models

    Science.gov (United States)

    Morita, Takeshi; Sugiyama, Kento

    2018-04-01

    We elaborate the Chern-Simons (CS) matrix models at large N. The saddle point equations of these matrix models have a curious structure which cannot be seen in the ordinary one matrix models. Thanks to this structure, an infinite number of multi-cut solutions exist in the CS matrix models. Particularly we exactly derive the two-cut solutions at finite 't Hooft coupling in the pure CS matrix model. In the ABJM matrix model, we argue that some of multi-cut solutions might be interpreted as a condensation of the D2-brane instantons.

  1. Using genetic algorithms to calibrate a water quality model.

    Science.gov (United States)

    Liu, Shuming; Butler, David; Brazier, Richard; Heathwaite, Louise; Khu, Soon-Thiam

    2007-03-15

    With the increasing concern over the impact of diffuse pollution on water bodies, many diffuse pollution models have been developed in the last two decades. A common obstacle in using such models is how to determine the values of the model parameters. This is especially true when a model has a large number of parameters, which makes a full range of calibration expensive in terms of computing time. Compared with conventional optimisation approaches, soft computing techniques often have a faster convergence speed and are more efficient for global optimum searches. This paper presents an attempt to calibrate a diffuse pollution model using a genetic algorithm (GA). Designed to simulate the export of phosphorus from diffuse sources (agricultural land) and point sources (human), the Phosphorus Indicators Tool (PIT) version 1.1, on which this paper is based, consisted of 78 parameters. Previous studies have indicated the difficulty of full range model calibration due to the number of parameters involved. In this paper, a GA was employed to carry out the model calibration in which all parameters were involved. A sensitivity analysis was also performed to investigate the impact of operators in the GA on its effectiveness in optimum searching. The calibration yielded satisfactory results and required reasonable computing time. The application of the PIT model to the Windrush catchment with optimum parameter values was demonstrated. The annual P loss was predicted as 4.4 kg P/ha/yr, which showed a good fitness to the observed value.

  2. A new parallelization algorithm of ocean model with explicit scheme

    Science.gov (United States)

    Fu, X. D.

    2017-08-01

    This paper will focus on the parallelization of ocean model with explicit scheme which is one of the most commonly used schemes in the discretization of governing equation of ocean model. The characteristic of explicit schema is that calculation is simple, and that the value of the given grid point of ocean model depends on the grid point at the previous time step, which means that one doesn’t need to solve sparse linear equations in the process of solving the governing equation of the ocean model. Aiming at characteristics of the explicit scheme, this paper designs a parallel algorithm named halo cells update with tiny modification of original ocean model and little change of space step and time step of the original ocean model, which can parallelize ocean model by designing transmission module between sub-domains. This paper takes the GRGO for an example to implement the parallelization of GRGO (Global Reduced Gravity Ocean model) with halo update. The result demonstrates that the higher speedup can be achieved at different problem size.

  3. A sequential quadratic programming algorithm using an incomplete solution of the subproblem

    Energy Technology Data Exchange (ETDEWEB)

    Murray, W. [Stanford Univ., CA (United States). Systems Optimization Lab.; Prieto, F.J. [Universidad `Carlos III` de Madrid (Spain). Dept. de Estadistica y Econometria

    1993-05-01

    We analyze sequential quadratic programming (SQP) methods to solve nonlinear constrained optimization problems that are more flexible in their definition than standard SQP methods. The type of flexibility introduced is motivated by the necessity to deviate from the standard approach when solving large problems. Specifically we no longer require a minimizer of the QP subproblem to be determined or particular Lagrange multiplier estimates to be used. Our main focus is on an SQP algorithm that uses a particular augmented Lagrangian merit function. New results are derived for this algorithm under weaker conditions than previously assumed; in particular, it is not assumed that the iterates lie on a compact set.

  4. Fast Time and Space Parallel Algorithms for Solution of Parabolic Partial Differential Equations

    Science.gov (United States)

    Fijany, Amir

    1993-01-01

    In this paper, fast time- and Space -Parallel agorithms for solution of linear parabolic PDEs are developed. It is shown that the seemingly strictly serial iterations of the time-stepping procedure for solution of the problem can be completed decoupled.

  5. "Updates to Model Algorithms & Inputs for the Biogenic ...

    Science.gov (United States)

    We have developed new canopy emission algorithms and land use data for BEIS. Simulations with BEIS v3.4 and these updates in CMAQ v5.0.2 are compared these changes to the Model of Emissions of Gases and Aerosols from Nature (MEGAN) and evaluated the simulations against observations. This has resulted in improvements in model evaluations of modeled isoprene, NOx, and O3. The National Exposure Research Laboratory (NERL) Atmospheric Modeling and Analysis Division (AMAD) conducts research in support of EPA mission to protect human health and the environment. AMAD research program is engaged in developing and evaluating predictive atmospheric models on all spatial and temporal scales for forecasting the air quality and for assessing changes in air quality and air pollutant exposures, as affected by changes in ecosystem management and regulatory decisions. AMAD is responsible for providing a sound scientific and technical basis for regulatory policies based on air quality models to improve ambient air quality. The models developed by AMAD are being used by EPA, NOAA, and the air pollution community in understanding and forecasting not only the magnitude of the air pollution problem, but also in developing emission control policies and regulations for air quality improvements.

  6. Simplifying Multiproject Scheduling Problem Based on Design Structure Matrix and Its Solution by an Improved aiNet Algorithm

    Directory of Open Access Journals (Sweden)

    Chunhua Ju

    2012-01-01

    Full Text Available Managing multiple project is a complex task involving the unrelenting pressures of time and cost. Many studies have proposed various tools and techniques for single-project scheduling; however, the literature further considering multimode or multiproject issues occurring in the real world is rather scarce. In this paper, design structure matrix (DSM and an improved artificial immune network algorithm (aiNet are developed to solve a multi-mode resource-constrained scheduling problem. Firstly, the DSM is used to simplify the mathematic model of multi-project scheduling problem. Subsequently, aiNet algorithm comprised of clonal selection, negative selection, and network suppression is adopted to realize the local searching and global searching, which will assure that it has a powerful searching ability and also avoids the possible combinatorial explosion. Finally, the approach is tested on a set of randomly cases generated from ProGen. The computational results validate the effectiveness of the proposed algorithm comparing with other famous metaheuristic algorithms such as genetic algorithm (GA, simulated annealing algorithm (SA, and ant colony optimization (ACO.

  7. Classical solutions for the 4-dimensional σ-nonlinear model

    International Nuclear Information System (INIS)

    Tataru-Mihai, P.

    1979-01-01

    By interpreting the σ-nonlinear model as describing the Gauss map associated to a certain immersion, several classes of classical solutions for the 4-dimensional model are derived. As by-products one points out i) an intimate connection between the energy-momentum tensor of the solution and the second differential form of the immersion associated to it and ii) a connection between self- (antiself-)duality of the solution and the minimality of the associated immersion. (author)

  8. A genetic algorithm solution for the operation of green LTE networks with energy and environment considerations

    KAUST Repository

    Ghazzai, Hakim; Yaacoub, Elias E.; Alouini, Mohamed-Slim; Abu-Dayya, Adnan A.

    2012-01-01

    , as additional power sources in smart grids, becomes a real challenge to network operators to reduce power costs. In this paper, we propose a method based on genetic algorithms that decreases the energy consumption of a Long-Term Evolution (LTE) cellular network

  9. Multigrid Algorithms for the Solution of Linear Complementarity Problems Arising from Free Boundary Problems.

    Science.gov (United States)

    1980-10-01

    solving (1.3); PFAS combines the concepts of multigrid algorithms with those of projected SOR. In Section 3, we discuss the implementation of PFAS, and...numerique de la torsion elasto- plastique d’une barre cylindrique. In Approximation et Methodes Iteratives de Resolution d’Inequations Variationelles et

  10. Biosorption of chromium (VI) from aqueous solutions and ANN modelling.

    Science.gov (United States)

    Nag, Soma; Mondal, Abhijit; Bar, Nirjhar; Das, Sudip Kumar

    2017-08-01

    The use of sustainable, green and biodegradable natural wastes for Cr(VI) detoxification from the contaminated wastewater is considered as a challenging issue. The present research is aimed to assess the effectiveness of seven different natural biomaterials, such as jackfruit leaf, mango leaf, onion peel, garlic peel, bamboo leaf, acid treated rubber leaf and coconut shell powder, for Cr(VI) eradication from aqueous solution by biosorption process. Characterizations were conducted using SEM, BET and FTIR spectroscopy. The effects of operating parameters, viz., pH, initial Cr(VI) ion concentration, adsorbent dosages, contact time and temperature on metal removal efficiency, were studied. The biosorption mechanism was described by the pseudo-second-order model and Langmuir isotherm model. The biosorption process was exothermic, spontaneous and chemical (except garlic peel) in nature. The sequence of adsorption capacity was mango leaf > jackfruit leaf > acid treated rubber leaf > onion peel > bamboo leaf > garlic peel > coconut shell with maximum Langmuir adsorption capacity of 35.7 mg g -1 for mango leaf. The treated effluent can be reused. Desorption study suggested effective reuse of the adsorbents up to three cycles, and safe disposal method of the used adsorbents suggested biodegradability and sustainability of the process by reapplication of the spent adsorbent and ultimately leading towards zero wastages. The performances of the adsorbents were verified with wastewater from electroplating industry. The scale-up study reported for industrial applications. ANN modelling using multilayer perception with gradient descent (GD) and Levenberg-Marquart (LM) algorithm had been successfully used for prediction of Cr(VI) removal efficiency. The study explores the undiscovered potential of the natural waste materials for sustainable existence of small and medium sector industries, especially in the third world countries by protecting the environment by eco-innovation.

  11. Computational Analysis of 3D Ising Model Using Metropolis Algorithms

    International Nuclear Information System (INIS)

    Sonsin, A F; Cortes, M R; Nunes, D R; Gomes, J V; Costa, R S

    2015-01-01

    We simulate the Ising Model with the Monte Carlo method and use the algorithms of Metropolis to update the distribution of spins. We found that, in the specific case of the three-dimensional Ising Model, methods of Metropolis are efficient. Studying the system near the point of phase transition, we observe that the magnetization goes to zero. In our simulations we analyzed the behavior of the magnetization and magnetic susceptibility to verify the phase transition in a paramagnetic to ferromagnetic material. The behavior of the magnetization and of the magnetic susceptibility as a function of the temperature suggest a phase transition around KT/J ≈ 4.5 and was evidenced the problem of finite size of the lattice to work with large lattice. (paper)

  12. Using the fuzzy modeling for the retrieval algorithms

    International Nuclear Information System (INIS)

    Mohamed, A.H

    2010-01-01

    A rapid growth in number and size of images in databases and world wide web (www) has created a strong need for more efficient search and retrieval systems to exploit the benefits of this large amount of information. However, the collection of this information is now based on the image technology. One of the limitations of the current image analysis techniques necessitates that most image retrieval systems use some form of text description provided by the users as the basis to index and retrieve images. To overcome this problem, the proposed system introduces the using of fuzzy modeling to describe the image by using the linguistic ambiguities. Also, the proposed system can include vague or fuzzy terms in modeling the queries to match the image descriptions in the retrieval process. This can facilitate the indexing and retrieving process, increase their performance and decrease its computational time . Therefore, the proposed system can improve the performance of the traditional image retrieval algorithms.

  13. Multiobjecitve Sampling Design for Calibration of Water Distribution Network Model Using Genetic Algorithm and Neural Network

    Directory of Open Access Journals (Sweden)

    Kourosh Behzadian

    2008-03-01

    Full Text Available In this paper, a novel multiobjective optimization model is presented for selecting optimal locations in the water distribution network (WDN with the aim of installing pressure loggers. The pressure data collected at optimal locations will be used later on in the calibration of the proposed WDN model. Objective functions consist of maximization of calibrated model prediction accuracy and minimization of the total cost for sampling design. In order to decrease the model run time, an optimization model has been developed using multiobjective genetic algorithm and adaptive neural network (MOGA-ANN. Neural networks (NNs are initially trained after a number of initial GA generations and periodically retrained and updated after generation of a specified number of full model-analyzed solutions. Trained NNs are replaced with the fitness evaluation of some chromosomes within the GA progress. Using cache prevents objective function evaluation of repetitive chromosomes within GA. Optimal solutions are obtained through pareto-optimal front with respect to the two objective functions. Results show that jointing NNs in MOGA for approximating portions of chromosomes’ fitness in each generation leads to considerable savings in model run time and can be promising for reducing run-time in optimization models with significant computational effort.

  14. A Generalized Deduction of the Ideal-Solution Model

    Science.gov (United States)

    Leo, Teresa J.; Perez-del-Notario, Pedro; Raso, Miguel A.

    2006-01-01

    A new general procedure for deriving the Gibbs energy of mixing is developed through general thermodynamic considerations, and the ideal-solution model is obtained as a special particular case of the general one. The deduction of the Gibbs energy of mixing for the ideal-solution model is a rational one and viewed suitable for advanced students who…

  15. A uniformly valid approximation algorithm for nonlinear ordinary singular perturbation problems with boundary layer solutions.

    Science.gov (United States)

    Cengizci, Süleyman; Atay, Mehmet Tarık; Eryılmaz, Aytekin

    2016-01-01

    This paper is concerned with two-point boundary value problems for singularly perturbed nonlinear ordinary differential equations. The case when the solution only has one boundary layer is examined. An efficient method so called Successive Complementary Expansion Method (SCEM) is used to obtain uniformly valid approximations to this kind of solutions. Four test problems are considered to check the efficiency and accuracy of the proposed method. The numerical results are found in good agreement with exact and existing solutions in literature. The results confirm that SCEM has a superiority over other existing methods in terms of easy-applicability and effectiveness.

  16. Comparison of the genetic algorithm and incremental optimisation routines for a Bayesian inverse modelling based network design

    Science.gov (United States)

    Nickless, A.; Rayner, P. J.; Erni, B.; Scholes, R. J.

    2018-05-01

    The design of an optimal network of atmospheric monitoring stations for the observation of carbon dioxide (CO2) concentrations can be obtained by applying an optimisation algorithm to a cost function based on minimising posterior uncertainty in the CO2 fluxes obtained from a Bayesian inverse modelling solution. Two candidate optimisation methods assessed were the evolutionary algorithm: the genetic algorithm (GA), and the deterministic algorithm: the incremental optimisation (IO) routine. This paper assessed the ability of the IO routine in comparison to the more computationally demanding GA routine to optimise the placement of a five-member network of CO2 monitoring sites located in South Africa. The comparison considered the reduction in uncertainty of the overall flux estimate, the spatial similarity of solutions, and computational requirements. Although the IO routine failed to find the solution with the global maximum uncertainty reduction, the resulting solution had only fractionally lower uncertainty reduction compared with the GA, and at only a quarter of the computational resources used by the lowest specified GA algorithm. The GA solution set showed more inconsistency if the number of iterations or population size was small, and more so for a complex prior flux covariance matrix. If the GA completed with a sub-optimal solution, these solutions were similar in fitness to the best available solution. Two additional scenarios were considered, with the objective of creating circumstances where the GA may outperform the IO. The first scenario considered an established network, where the optimisation was required to add an additional five stations to an existing five-member network. In the second scenario the optimisation was based only on the uncertainty reduction within a subregion of the domain. The GA was able to find a better solution than the IO under both scenarios, but with only a marginal improvement in the uncertainty reduction. These results suggest

  17. special algorithm for the numerical solution of system of initial value ...

    African Journals Online (AJOL)

    Nwokem et al.

    Science World Journal Vol 12(No 4) 2017 ... Over the years, several researchers have considered the collocation method as a way of generating numerical solutions to ... study problems in mathematics, engineering, computer science and.

  18. Algorithms for a parallel implementation of Hidden Markov Models with a small state space

    DEFF Research Database (Denmark)

    Nielsen, Jesper; Sand, Andreas

    2011-01-01

    Two of the most important algorithms for Hidden Markov Models are the forward and the Viterbi algorithms. We show how formulating these using linear algebra naturally lends itself to parallelization. Although the obtained algorithms are slow for Hidden Markov Models with large state spaces...

  19. Genome Scale Modeling in Systems Biology: Algorithms and Resources

    Science.gov (United States)

    Najafi, Ali; Bidkhori, Gholamreza; Bozorgmehr, Joseph H.; Koch, Ina; Masoudi-Nejad, Ali

    2014-01-01

    In recent years, in silico studies and trial simulations have complemented experimental procedures. A model is a description of a system, and a system is any collection of interrelated objects; an object, moreover, is some elemental unit upon which observations can be made but whose internal structure either does not exist or is ignored. Therefore, any network analysis approach is critical for successful quantitative modeling of biological systems. This review highlights some of most popular and important modeling algorithms, tools, and emerging standards for representing, simulating and analyzing cellular networks in five sections. Also, we try to show these concepts by means of simple example and proper images and graphs. Overall, systems biology aims for a holistic description and understanding of biological processes by an integration of analytical experimental approaches along with synthetic computational models. In fact, biological networks have been developed as a platform for integrating information from high to low-throughput experiments for the analysis of biological systems. We provide an overview of all processes used in modeling and simulating biological networks in such a way that they can become easily understandable for researchers with both biological and mathematical backgrounds. Consequently, given the complexity of generated experimental data and cellular networks, it is no surprise that researchers have turned to computer simulation and the development of more theory-based approaches to augment and assist in the development of a fully quantitative understanding of cellular dynamics. PMID:24822031

  20. Optimal solutions for a bio mathematical model for the evolution of smoking habit

    Science.gov (United States)

    Sikander, Waseem; Khan, Umar; Ahmed, Naveed; Mohyud-Din, Syed Tauseef

    In this study, we apply Variation of Parameter Method (VPM) coupled with an auxiliary parameter to obtain the approximate solutions for the epidemic model for the evolution of smoking habit in a constant population. Convergence of the developed algorithm, namely VPM with an auxiliary parameter is studied. Furthermore, a simple way is considered for obtaining an optimal value of auxiliary parameter via minimizing the total residual error over the domain of problem. Comparison of the obtained results with standard VPM shows that an auxiliary parameter is very feasible and reliable in controlling the convergence of approximate solutions.

  1. Groebner Basis Methods for Stationary Solutions of a Low-Dimensional Model for a Shear Flow

    Science.gov (United States)

    Pausch, Marina; Grossmann, Florian; Eckhardt, Bruno; Romanovski, Valery G.

    2014-10-01

    We use Groebner basis methods to extract all stationary solutions for the nine-mode shear flow model described in Moehlis et al. (New J Phys 6:56, 2004). Using rational approximations to irrational wave numbers and algebraic manipulation techniques we reduce the problem of determining all stationary states to finding roots of a polynomial of order 30. The coefficients differ by 30 powers of 10, so that algorithms for extended precision are needed to extract the roots reliably. We find that there are eight stationary solutions consisting of two distinct states, each of which appears in four symmetry-related phases. We discuss extensions of these results for other flows.

  2. Physics Based Model for Cryogenic Chilldown and Loading. Part I: Algorithm

    Science.gov (United States)

    Luchinsky, Dmitry G.; Smelyanskiy, Vadim N.; Brown, Barbara

    2014-01-01

    We report the progress in the development of the physics based model for cryogenic chilldown and loading. The chilldown and loading is model as fully separated non-equilibrium two-phase flow of cryogenic fluid thermally coupled to the pipe walls. The solution follow closely nearly-implicit and semi-implicit algorithms developed for autonomous control of thermal-hydraulic systems developed by Idaho National Laboratory. A special attention is paid to the treatment of instabilities. The model is applied to the analysis of chilldown in rapid loading system developed at NASA-Kennedy Space Center. The nontrivial characteristic feature of the analyzed chilldown regime is its active control by dump valves. The numerical predictions are in reasonable agreement with the experimental time traces. The obtained results pave the way to the development of autonomous loading operation on the ground and space.

  3. An improved simplified model predictive control algorithm and its application to a continuous fermenter

    Directory of Open Access Journals (Sweden)

    W. H. Kwong

    2000-06-01

    Full Text Available The development of a new simplified model predictive control algorithm has been proposed in this work. The algorithm is developed within the framework of internal model control, and it is easy to understanding and implement. Simulation results for a continuous fermenter, which show that the proposed control algorithm is robust for moderate variations in plant parameters, are presented. The algorithm shows a good performance for setpoint tracking.

  4. An ensemble based nonlinear orthogonal matching pursuit algorithm for sparse history matching of reservoir models

    KAUST Repository

    Fsheikh, Ahmed H.; Wheeler, Mary Fanett; Hoteit, Ibrahim

    2013-01-01

    the dictionary, the solution is obtained by applying Tikhonov regularization. The proposed algorithm relies on approximate gradient estimation using an iterative stochastic ensemble method (ISEM). ISEM utilizes an ensemble of directional derivatives

  5. A quasilinear model for solute transport under unsaturated flow

    International Nuclear Information System (INIS)

    Houseworth, J.E.; Leem, J.

    2009-01-01

    We developed an analytical solution for solute transport under steady-state, two-dimensional, unsaturated flow and transport conditions for the investigation of high-level radioactive waste disposal. The two-dimensional, unsaturated flow problem is treated using the quasilinear flow method for a system with homogeneous material properties. Dispersion is modeled as isotropic and is proportional to the effective hydraulic conductivity. This leads to a quasilinear form for the transport problem in terms of a scalar potential that is analogous to the Kirchhoff potential for quasilinear flow. The solutions for both flow and transport scalar potentials take the form of Fourier series. The particular solution given here is for two sources of flow, with one source containing a dissolved solute. The solution method may easily be extended, however, for any combination of flow and solute sources under steady-state conditions. The analytical results for multidimensional solute transport problems, which previously could only be solved numerically, also offer an additional way to benchmark numerical solutions. An analytical solution for two-dimensional, steady-state solute transport under unsaturated flow conditions is presented. A specific case with two sources is solved but may be generalized to any combination of sources. The analytical results complement numerical solutions, which were previously required to solve this class of problems.

  6. The WITCH Model. Structure, Baseline, Solutions.

    Energy Technology Data Exchange (ETDEWEB)

    Bosetti, V.; Massetti, E.; Tavoni, M.

    2007-07-01

    WITCH - World Induced Technical Change Hybrid - is a regionally disaggregated hard link hybrid global model with a neoclassical optimal growth structure (top down) and an energy input detail (bottom up). The model endogenously accounts for technological change, both through learning curves affecting prices of new vintages of capital and through R and D investments. The model features the main economic and environmental policies in each world region as the outcome of a dynamic game. WITCH belongs to the class of Integrated Assessment Models as it possesses a climate module that feeds climate changes back into the economy. In this paper we provide a thorough discussion of the model structure and baseline projections. We report detailed information on the evolution of energy demand, technology and CO2 emissions. Finally, we explicitly quantifiy the role of free riding in determining the emissions scenarios. (auth)

  7. Modelling environmental dynamics. Advances in goematic solutions

    Energy Technology Data Exchange (ETDEWEB)

    Paegelow, Martin [Toulouse-2 Univ., 31 (France). GEODE UMR 5602 CNRS; Camacho Olmedo, Maria Teresa (eds.) [Granada Univ (Spain). Dpto. de Analisis Geografico Regional y Geografia Fisica

    2008-07-01

    Modelling environmental dynamics is critical to understanding and predicting the evolution of the environment in response to the large number of influences including urbanisation, climate change and deforestation. Simulation and modelling provide support for decision making in environmental management. The first chapter introduces terminology and provides an overview of methodological modelling approaches which may be applied to environmental and complex dynamics. Based on this introduction this book illustrates various models applied to a large variety of themes: deforestation in tropical regions, fire risk, natural reforestation in European mountains, agriculture, biodiversity, urbanism, climate change and land management for decision support, etc. These case studies, provided by a large international spectrum of researchers and presented in a uniform structure, focus particularly on methods and model validation so that this book is not only aimed at researchers and graduates but also at professionals. (orig.)

  8. Ripple-Spreading Network Model Optimization by Genetic Algorithm

    Directory of Open Access Journals (Sweden)

    Xiao-Bing Hu

    2013-01-01

    Full Text Available Small-world and scale-free properties are widely acknowledged in many real-world complex network systems, and many network models have been developed to capture these network properties. The ripple-spreading network model (RSNM is a newly reported complex network model, which is inspired by the natural ripple-spreading phenomenon on clam water surface. The RSNM exhibits good potential for describing both spatial and temporal features in the development of many real-world networks where the influence of a few local events spreads out through nodes and then largely determines the final network topology. However, the relationships between ripple-spreading related parameters (RSRPs of RSNM and small-world and scale-free topologies are not as obvious or straightforward as in many other network models. This paper attempts to apply genetic algorithm (GA to tune the values of RSRPs, so that the RSNM may generate these two most important network topologies. The study demonstrates that, once RSRPs are properly tuned by GA, the RSNM is capable of generating both network topologies and therefore has a great flexibility to study many real-world complex network systems.

  9. Mathematical models and algorithms for the computer program 'WOLF'

    International Nuclear Information System (INIS)

    Halbach, K.

    1975-12-01

    The computer program FLOW finds the nonrelativistic self- consistent set of two-dimensional ion trajectories and electric fields (including space charges from ions and electrons) for a given set of initial and boundary conditions for the particles and fields. The combination of FLOW with the optimization code PISA gives the program WOLF, which finds the shape of the emitter which is consistent with the plasma forming it, and in addition varies physical characteristics such as electrode position, shapes, and potentials so that some performance characteristics are optimized. The motivation for developing these programs was the desire to design optimum ion source extractor/accelerator systems in a systematic fashion. The purpose of this report is to explain and derive the mathematical models and algorithms which approximate the real physical processes. It serves primarily to document the computer programs. 10 figures

  10. Model-based fault detection algorithm for photovoltaic system monitoring

    KAUST Repository

    Harrou, Fouzi

    2018-02-12

    Reliable detection of faults in PV systems plays an important role in improving their reliability, productivity, and safety. This paper addresses the detection of faults in the direct current (DC) side of photovoltaic (PV) systems using a statistical approach. Specifically, a simulation model that mimics the theoretical performances of the inspected PV system is designed. Residuals, which are the difference between the measured and estimated output data, are used as a fault indicator. Indeed, residuals are used as the input for the Multivariate CUmulative SUM (MCUSUM) algorithm to detect potential faults. We evaluated the proposed method by using data from an actual 20 MWp grid-connected PV system located in the province of Adrar, Algeria.

  11. Time series modeling and forecasting using memetic algorithms for regime-switching models.

    Science.gov (United States)

    Bergmeir, Christoph; Triguero, Isaac; Molina, Daniel; Aznarte, José Luis; Benitez, José Manuel

    2012-11-01

    In this brief, we present a novel model fitting procedure for the neuro-coefficient smooth transition autoregressive model (NCSTAR), as presented by Medeiros and Veiga. The model is endowed with a statistically founded iterative building procedure and can be interpreted in terms of fuzzy rule-based systems. The interpretability of the generated models and a mathematically sound building procedure are two very important properties of forecasting models. The model fitting procedure employed by the original NCSTAR is a combination of initial parameter estimation by a grid search procedure with a traditional local search algorithm. We propose a different fitting procedure, using a memetic algorithm, in order to obtain more accurate models. An empirical evaluation of the method is performed, applying it to various real-world time series originating from three forecasting competitions. The results indicate that we can significantly enhance the accuracy of the models, making them competitive to models commonly used in the field.

  12. Two New PRP Conjugate Gradient Algorithms for Minimization Optimization Models.

    Directory of Open Access Journals (Sweden)

    Gonglin Yuan

    Full Text Available Two new PRP conjugate Algorithms are proposed in this paper based on two modified PRP conjugate gradient methods: the first algorithm is proposed for solving unconstrained optimization problems, and the second algorithm is proposed for solving nonlinear equations. The first method contains two aspects of information: function value and gradient value. The two methods both possess some good properties, as follows: 1 βk ≥ 0 2 the search direction has the trust region property without the use of any line search method 3 the search direction has sufficient descent property without the use of any line search method. Under some suitable conditions, we establish the global convergence of the two algorithms. We conduct numerical experiments to evaluate our algorithms. The numerical results indicate that the first algorithm is effective and competitive for solving unconstrained optimization problems and that the second algorithm is effective for solving large-scale nonlinear equations.

  13. Two New PRP Conjugate Gradient Algorithms for Minimization Optimization Models.

    Science.gov (United States)

    Yuan, Gonglin; Duan, Xiabin; Liu, Wenjie; Wang, Xiaoliang; Cui, Zengru; Sheng, Zhou

    2015-01-01

    Two new PRP conjugate Algorithms are proposed in this paper based on two modified PRP conjugate gradient methods: the first algorithm is proposed for solving unconstrained optimization problems, and the second algorithm is proposed for solving nonlinear equations. The first method contains two aspects of information: function value and gradient value. The two methods both possess some good properties, as follows: 1) βk ≥ 0 2) the search direction has the trust region property without the use of any line search method 3) the search direction has sufficient descent property without the use of any line search method. Under some suitable conditions, we establish the global convergence of the two algorithms. We conduct numerical experiments to evaluate our algorithms. The numerical results indicate that the first algorithm is effective and competitive for solving unconstrained optimization problems and that the second algorithm is effective for solving large-scale nonlinear equations.

  14. Fundamental resource-allocating model in colleges and universities based on Immune Clone Algorithms

    Science.gov (United States)

    Ye, Mengdie

    2017-05-01

    In this thesis we will seek the combination of antibodies and antigens converted from the optimal course arrangement and make an analogy with Immune Clone Algorithms. According to the character of the Algorithms, we apply clone, clone gene and clone selection to arrange courses. Clone operator can combine evolutionary search and random search, global search and local search. By cloning and clone mutating candidate solutions, we can find the global optimal solution quickly.

  15. Analysis of Multivariate Experimental Data Using A Simplified Regression Model Search Algorithm

    Science.gov (United States)

    Ulbrich, Norbert Manfred

    2013-01-01

    A new regression model search algorithm was developed in 2011 that may be used to analyze both general multivariate experimental data sets and wind tunnel strain-gage balance calibration data. The new algorithm is a simplified version of a more complex search algorithm that was originally developed at the NASA Ames Balance Calibration Laboratory. The new algorithm has the advantage that it needs only about one tenth of the original algorithm's CPU time for the completion of a search. In addition, extensive testing showed that the prediction accuracy of math models obtained from the simplified algorithm is similar to the prediction accuracy of math models obtained from the original algorithm. The simplified algorithm, however, cannot guarantee that search constraints related to a set of statistical quality requirements are always satisfied in the optimized regression models. Therefore, the simplified search algorithm is not intended to replace the original search algorithm. Instead, it may be used to generate an alternate optimized regression model of experimental data whenever the application of the original search algorithm either fails or requires too much CPU time. Data from a machine calibration of NASA's MK40 force balance is used to illustrate the application of the new regression model search algorithm.

  16. Regularity of solutions of a phase field model

    KAUST Repository

    Amler, Thomas

    2013-01-01

    Phase field models are widely-used for modelling phase transition processes such as solidification, freezing or CO2 sequestration. In this paper, a phase field model proposed by G. Caginalp is considered. The existence and uniqueness of solutions are proved in the case of nonsmooth initial data. Continuity of solutions with respect to time is established. In particular, it is shown that the governing initial boundary value problem can be considered as a dynamical system. © 2013 International Press.

  17. New solution for the Schwinger model

    International Nuclear Information System (INIS)

    Baaquie, B.E.

    1980-08-01

    We solve the Schwinger model exactly using the path integral. The fermion sector is solved using the axial current anomaly. We then study the Wilson loop integral for the interacting theory, and discuss the Wilson criterion for confinement. (author)

  18. Parameters extraction of the three diode model for the multi-crystalline solar cell/module using Moth-Flame Optimization Algorithm

    International Nuclear Information System (INIS)

    Allam, Dalia; Yousri, D.A.; Eteiba, M.B.

    2016-01-01

    Highlights: • More detailed models are proposed to emulate the multi-crystalline solar cell/module. • Moth-Flame Optimizer (MFO) is proposed for the parameter extraction process. • The performance of MFO technique is compared with the recent optimization algorithms. • MFO algorithm converges to the optimal solution more rapidly and more accurately. • MFO algorithm accomplished with three diode model achieves the most accurate model. - Abstract: As a result of the wide prevalence of using the multi-crystalline silicon solar cells, an accurate mathematical model for these cells has become an important issue. Therefore, a three diode model is proposed as a more precise model to meet the relatively complicated physical behavior of the multi-crystalline silicon solar cells. The performance of this model is compared to the performance of both the double diode and the modified double diode models of the same cell/module. Therefore, there is a persistent need to keep searching for a more accurate optimization algorithm to estimate the more complicated models’ parameters. Hence, a proper optimization algorithm which is called Moth-Flame Optimizer (MFO), is proposed as a new optimization algorithm for the parameter extraction process of the three tested models based on data measured at laboratory and other data reported at previous literature. To verify the performance of the suggested technique, its results are compared with the results of the most recent and powerful techniques in the literature such as Hybrid Evolutionary (DEIM) and Flower Pollination (FPA) algorithms. Furthermore, evaluation analysis is performed for the three algorithms of the selected models at different environmental conditions. The results show that, MFO algorithm achieves the least Root Mean Square Error (RMSE), Mean Bias Error (MBE), Absolute Error at the Maximum Power Point (AEMPP) and best Coefficient of Determination. In addition, MFO is reaching to the optimal solution with the

  19. Original analytic solution of a half-bridge modelled as a statically indeterminate system

    Science.gov (United States)

    Oanta, Emil M.; Panait, Cornel; Raicu, Alexandra; Barhalescu, Mihaela

    2016-12-01

    The paper presents an original computer based analytical model of a half-bridge belonging to a circular settling tank. The primary unknown is computed using the force method, the coefficients of the canonical equation being calculated using either the discretization of the bending moment diagram in trapezoids, or using the relations specific to the polygons. A second algorithm based on the method of initial parameters is also presented. Analyzing the new solution we came to the conclusion that most of the computer code developed for other model may be reused. The results are useful to evaluate the behavior of the structure and to compare with the results of the finite element models.

  20. A genetic algorithm solution for the operation of green LTE networks with energy and environment considerations

    KAUST Repository

    Ghazzai, Hakim

    2012-01-01

    The Base Station (BS) sleeping strategy has become a well-known technique to achieve energy savings in cellular networks by switching off redundant BSs mainly for lightly loaded networks. Besides, the exploitation of renewable energies, as additional power sources in smart grids, becomes a real challenge to network operators to reduce power costs. In this paper, we propose a method based on genetic algorithms that decreases the energy consumption of a Long-Term Evolution (LTE) cellular network by not only shutting down underutilized BSs but also by optimizing the amounts of energy procured from the smart grid without affecting the desired Quality of Service. © 2012 Springer-Verlag.

  1. A solution algorithm for calculating photon radiation fields with the aid of the Monte Carlo method

    International Nuclear Information System (INIS)

    Zappe, D.

    1978-04-01

    The MCTEST program and its subroutines for the solution of the Boltzmann transport equation is presented. The program renders possible to calculate photon radiation fields of point or plane gamma sources. After changing two subroutines the calculation can also be carried out for the case of directed incidence of radiation on plane shields of iron or concrete. (author)

  2. Trust-region based return mapping algorithm for implicit integration of elastic-plastic constitutive models

    Energy Technology Data Exchange (ETDEWEB)

    Lester, Brian T. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Scherzinger, William M. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2017-01-19

    A new method for the solution of the non-linear equations forming the core of constitutive model integration is proposed. Specifically, the trust-region method that has been developed in the numerical optimization community is successfully modified for use in implicit integration of elastic-plastic models. Although attention here is restricted to these rate-independent formulations, the proposed approach holds substantial promise for adoption with models incorporating complex physics, multiple inelastic mechanisms, and/or multiphysics. As a first step, the non-quadratic Hosford yield surface is used as a representative case to investigate computationally challenging constitutive models. The theory and implementation are presented, discussed, and compared to other common integration schemes. Multiple boundary value problems are studied and used to verify the proposed algorithm and demonstrate the capabilities of this approach over more common methodologies. Robustness and speed are then investigated and compared to existing algorithms. As a result through these efforts, it is shown that the utilization of a trust-region approach leads to superior performance versus a traditional closest-point projection Newton-Raphson method and comparable speed and robustness to a line search augmented scheme.

  3. An evolutionary firefly algorithm for the estimation of nonlinear biological model parameters.

    Directory of Open Access Journals (Sweden)

    Afnizanfaizal Abdullah

    Full Text Available The development of accurate computational models of biological processes is fundamental to computational systems biology. These models are usually represented by mathematical expressions that rely heavily on the system parameters. The measurement of these parameters is often difficult. Therefore, they are commonly estimated by fitting the predicted model to the experimental data using optimization methods. The complexity and nonlinearity of the biological processes pose a significant challenge, however, to the development of accurate and fast optimization methods. We introduce a new hybrid optimization method incorporating the Firefly Algorithm and the evolutionary operation of the Differential Evolution method. The proposed method improves solutions by neighbourhood search using evolutionary procedures. Testing our method on models for the arginine catabolism and the negative feedback loop of the p53 signalling pathway, we found that it estimated the parameters with high accuracy and within a reasonable computation time compared to well-known approaches, including Particle Swarm Optimization, Nelder-Mead, and Firefly Algorithm. We have also verified the reliability of the parameters estimated by the method using an a posteriori practical identifiability test.

  4. Trust-region based return mapping algorithm for implicit integration of elastic-plastic constitutive models

    Energy Technology Data Exchange (ETDEWEB)

    Lester, Brian [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Scherzinger, William [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2017-01-19

    Here, a new method for the solution of the non-linear equations forming the core of constitutive model integration is proposed. Specifically, the trust-region method that has been developed in the numerical optimization community is successfully modified for use in implicit integration of elastic-plastic models. Although attention here is restricted to these rate-independent formulations, the proposed approach holds substantial promise for adoption with models incorporating complex physics, multiple inelastic mechanisms, and/or multiphysics. As a first step, the non-quadratic Hosford yield surface is used as a representative case to investigate computationally challenging constitutive models. The theory and implementation are presented, discussed, and compared to other common integration schemes. Multiple boundary value problems are studied and used to verify the proposed algorithm and demonstrate the capabilities of this approach over more common methodologies. Robustness and speed are then investigated and compared to existing algorithms. Through these efforts, it is shown that the utilization of a trust-region approach leads to superior performance versus a traditional closest-point projection Newton-Raphson method and comparable speed and robustness to a line search augmented scheme.

  5. An evolutionary firefly algorithm for the estimation of nonlinear biological model parameters.

    Science.gov (United States)

    Abdullah, Afnizanfaizal; Deris, Safaai; Anwar, Sohail; Arjunan, Satya N V

    2013-01-01

    The development of accurate computational models of biological processes is fundamental to computational systems biology. These models are usually represented by mathematical expressions that rely heavily on the system parameters. The measurement of these parameters is often difficult. Therefore, they are commonly estimated by fitting the predicted model to the experimental data using optimization methods. The complexity and nonlinearity of the biological processes pose a significant challenge, however, to the development of accurate and fast optimization methods. We introduce a new hybrid optimization method incorporating the Firefly Algorithm and the evolutionary operation of the Differential Evolution method. The proposed method improves solutions by neighbourhood search using evolutionary procedures. Testing our method on models for the arginine catabolism and the negative feedback loop of the p53 signalling pathway, we found that it estimated the parameters with high accuracy and within a reasonable computation time compared to well-known approaches, including Particle Swarm Optimization, Nelder-Mead, and Firefly Algorithm. We have also verified the reliability of the parameters estimated by the method using an a posteriori practical identifiability test.

  6. Solutions manual to accompany finite mathematics models and applications

    CERN Document Server

    Morris, Carla C

    2015-01-01

    A solutions manual to accompany Finite Mathematics: Models and Applications In order to emphasize the main concepts of each chapter, Finite Mathematics: Models and Applications features plentiful pedagogical elements throughout such as special exercises, end notes, hints, select solutions, biographies of key mathematicians, boxed key principles, a glossary of important terms and topics, and an overview of use of technology. The book encourages the modeling of linear programs and their solutions and uses common computer software programs such as LINDO. In addition to extensive chapters on pr

  7. Spatial multiobjective optimization of agricultural conservation practices using a SWAT model and an evolutionary algorithm.

    Science.gov (United States)

    Rabotyagov, Sergey; Campbell, Todd; Valcu, Adriana; Gassman, Philip; Jha, Manoj; Schilling, Keith; Wolter, Calvin; Kling, Catherine

    2012-12-09

    Finding the cost-efficient (i.e., lowest-cost) ways of targeting conservation practice investments for the achievement of specific water quality goals across the landscape is of primary importance in watershed management. Traditional economics methods of finding the lowest-cost solution in the watershed context (e.g.,(5,12,20)) assume that off-site impacts can be accurately described as a proportion of on-site pollution generated. Such approaches are unlikely to be representative of the actual pollution process in a watershed, where the impacts of polluting sources are often determined by complex biophysical processes. The use of modern physically-based, spatially distributed hydrologic simulation models allows for a greater degree of realism in terms of process representation but requires a development of a simulation-optimization framework where the model becomes an integral part of optimization. Evolutionary algorithms appear to be a particularly useful optimization tool, able to deal with the combinatorial nature of a watershed simulation-optimization problem and allowing the use of the full water quality model. Evolutionary algorithms treat a particular spatial allocation of conservation practices in a watershed as a candidate solution and utilize sets (populations) of candidate solutions iteratively applying stochastic operators of selection, recombination, and mutation to find improvements with respect to the optimization objectives. The optimization objectives in this case are to minimize nonpoint-source pollution in the watershed, simultaneously minimizing the cost of conservation practices. A recent and expanding set of research is attempting to use similar methods and integrates water quality models with broadly defined evolutionary optimization methods(3,4,9,10,13-15,17-19,22,23,25). In this application, we demonstrate a program which follows Rabotyagov et al.'s approach and integrates a modern and commonly used SWAT water quality model(7) with a

  8. Solution to automatic generation control problem using firefly algorithm optimized I(λ)D(µ) controller.

    Science.gov (United States)

    Debbarma, Sanjoy; Saikia, Lalit Chandra; Sinha, Nidul

    2014-03-01

    Present work focused on automatic generation control (AGC) of a three unequal area thermal systems considering reheat turbines and appropriate generation rate constraints (GRC). A fractional order (FO) controller named as I(λ)D(µ) controller based on crone approximation is proposed for the first time as an appropriate technique to solve the multi-area AGC problem in power systems. A recently developed metaheuristic algorithm known as firefly algorithm (FA) is used for the simultaneous optimization of the gains and other parameters such as order of integrator (λ) and differentiator (μ) of I(λ)D(µ) controller and governor speed regulation parameters (R). The dynamic responses corresponding to optimized I(λ)D(µ) controller gains, λ, μ, and R are compared with that of classical integer order (IO) controllers such as I, PI and PID controllers. Simulation results show that the proposed I(λ)D(µ) controller provides more improved dynamic responses and outperforms the IO based classical controllers. Further, sensitivity analysis confirms the robustness of the so optimized I(λ)D(µ) controller to wide changes in system loading conditions and size and position of SLP. Proposed controller is also found to have performed well as compared to IO based controllers when SLP takes place simultaneously in any two areas or all the areas. Robustness of the proposed I(λ)D(µ) controller is also tested against system parameter variations. © 2013 ISA. Published by Elsevier Ltd. All rights reserved.

  9. Classical solutions for a one phase osmosis model

    NARCIS (Netherlands)

    Lippoth, F.; Prokert, G.

    2011-01-01

    For a moving boundary problem modelling the motion of a semipermeable membrane by osmotic pressure and surface tension we prove the existence and uniqueness of classical solutions on small time intervals. Moreover, we construct solutions existing on arbitrary long time intervals, provided the

  10. Model-based optimization strategy of chiller driven liquid desiccant dehumidifier with genetic algorithm

    International Nuclear Information System (INIS)

    Wang, Xinli; Cai, Wenjian; Lu, Jiangang; Sun, Youxian; Zhao, Lei

    2015-01-01

    This study presents a model-based optimization strategy for an actual chiller driven dehumidifier of liquid desiccant dehumidification system operating with lithium chloride solution. By analyzing the characteristics of the components, energy predictive models for the components in the dehumidifier are developed. To minimize the energy usage while maintaining the outlet air conditions at the pre-specified set-points, an optimization problem is formulated with an objective function, the constraints of mechanical limitations and components interactions. Model-based optimization strategy using genetic algorithm is proposed to obtain the optimal set-points for desiccant solution temperature and flow rate, to minimize the energy usage in the dehumidifier. Experimental studies on an actual system are carried out to compare energy consumption between the proposed optimization and the conventional strategies. The results demonstrate that energy consumption using the proposed optimization strategy can be reduced by 12.2% in the dehumidifier operation. - Highlights: • Present a model-based optimization strategy for energy saving in LDDS. • Energy predictive models for components in dehumidifier are developed. • The Optimization strategy are applied and tested in an actual LDDS. • Optimization strategy can achieve energy savings by 12% during operation

  11. Combining Interactive Infrastructure Modeling and Evolutionary Algorithm Optimization for Sustainable Water Resources Design

    Science.gov (United States)

    Smith, R.; Kasprzyk, J. R.; Zagona, E. A.

    2013-12-01

    Population growth and climate change, combined with difficulties in building new infrastructure, motivate portfolio-based solutions to ensuring sufficient water supply. Powerful simulation models with graphical user interfaces (GUI) are often used to evaluate infrastructure portfolios; these GUI based models require manual modification of the system parameters, such as reservoir operation rules, water transfer schemes, or system capacities. Multiobjective evolutionary algorithm (MOEA) based optimization can be employed to balance multiple objectives and automatically suggest designs for infrastructure systems, but MOEA based decision support typically uses a fixed problem formulation (i.e., a single set of objectives, decisions, and constraints). This presentation suggests a dynamic framework for linking GUI-based infrastructure models with MOEA search. The framework begins with an initial formulation which is solved using a MOEA. Then, stakeholders can interact with candidate solutions, viewing their properties in the GUI model. This is followed by changes in the formulation which represent users' evolving understanding of exigent system properties. Our case study is built using RiverWare, an object-oriented, data-centered model that facilitates the representation of a diverse array of water resources systems. Results suggest that assumptions within the initial MOEA search are violated after investigating tradeoffs and reveal how formulations should be modified to better capture stakeholders' preferences.

  12. The use of genetic algorithms to model protoplanetary discs

    Science.gov (United States)

    Hetem, Annibal; Gregorio-Hetem, Jane

    2007-12-01

    The protoplanetary discs of T Tauri and Herbig Ae/Be stars have previously been studied using geometric disc models to fit their spectral energy distribution (SED). The simulations provide a means to reproduce the signatures of various circumstellar structures, which are related to different levels of infrared excess. With the aim of improving our previous model, which assumed a simple flat-disc configuration, we adopt here a reprocessing flared-disc model that assumes hydrostatic, radiative equilibrium. We have developed a method to optimize the parameter estimation based on genetic algorithms (GAs). This paper describes the implementation of the new code, which has been applied to Herbig stars from the Pico dos Dias Survey catalogue, in order to illustrate the quality of the fitting for a variety of SED shapes. The star AB Aur was used as a test of the GA parameter estimation, and demonstrates that the new code reproduces successfully a canonical example of the flared-disc model. The GA method gives a good quality of fit, but the range of input parameters must be chosen with caution, as unrealistic disc parameters can be derived. It is confirmed that the flared-disc model fits the flattened SEDs typical of Herbig stars; however, embedded objects (increasing SED slope) and debris discs (steeply decreasing SED slope) are not well fitted with this configuration. Even considering the limitation of the derived parameters, the automatic process of SED fitting provides an interesting tool for the statistical analysis of the circumstellar luminosity of large samples of young stars.

  13. Numerical algorithms based on Galerkin methods for the modeling of reactive interfaces in photoelectrochemical (PEC) solar cells

    Science.gov (United States)

    Harmon, Michael; Gamba, Irene M.; Ren, Kui

    2016-12-01

    This work concerns the numerical solution of a coupled system of self-consistent reaction-drift-diffusion-Poisson equations that describes the macroscopic dynamics of charge transport in photoelectrochemical (PEC) solar cells with reactive semiconductor and electrolyte interfaces. We present three numerical algorithms, mainly based on a mixed finite element and a local discontinuous Galerkin method for spatial discretization, with carefully chosen numerical fluxes, and implicit-explicit time stepping techniques, for solving the time-dependent nonlinear systems of partial differential equations. We perform computational simulations under various model parameters to demonstrate the performance of the proposed numerical algorithms as well as the impact of these parameters on the solution to the model.

  14. Solution for the multigroup neutron space kinetics equations by the modified Picard algorithm

    Energy Technology Data Exchange (ETDEWEB)

    Tavares, Matheus G.; Petersen, Claudio Z., E-mail: matheus.gulartetavares@gmail.com [Universidade Federal de Pelotas (UFPEL), Capao do Leao, RS (Brazil). Departamento de Matematica e Estatistica; Schramm, Marcelo, E-mail: schrammmarcelo@gmail.com [Universidade Federal de Pelotas (UFPEL), RS (Brazil). Centro de Engenharias; Zanette, Rodrigo, E-mail: rodrigozanette@hotmail.com [Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS (Brazil). Instituto de Matematica e Estatistica

    2017-07-01

    In this work, we used a modified Picards method to solve the Multigroup Neutron Space Kinetics Equations (MNSKE) in Cartesian geometry. The method consists in assuming an initial guess for the neutron flux and using it to calculate a fictitious source term in the MNSKE. A new source term is calculated applying its solution, and so on, iteratively, until a stop criterion is satisfied. For the solution of the fast and thermal neutron fluxes equations, the Laplace Transform technique is used in time variable resulting in a rst order linear differential matrix equation, which are solved by classical methods in the literature. After each iteration, the scalar neutron flux and the delayed neutron precursors are reconstructed by polynomial interpolation. We obtain the fluxes and precursors through Numerical Inverse Laplace Transform using the Stehfest method. We present numerical simulations and comparisons with available results in literature. (author)

  15. Solution for the multigroup neutron space kinetics equations by the modified Picard algorithm

    International Nuclear Information System (INIS)

    Tavares, Matheus G.; Petersen, Claudio Z.; Schramm, Marcelo; Zanette, Rodrigo

    2017-01-01

    In this work, we used a modified Picards method to solve the Multigroup Neutron Space Kinetics Equations (MNSKE) in Cartesian geometry. The method consists in assuming an initial guess for the neutron flux and using it to calculate a fictitious source term in the MNSKE. A new source term is calculated applying its solution, and so on, iteratively, until a stop criterion is satisfied. For the solution of the fast and thermal neutron fluxes equations, the Laplace Transform technique is used in time variable resulting in a rst order linear differential matrix equation, which are solved by classical methods in the literature. After each iteration, the scalar neutron flux and the delayed neutron precursors are reconstructed by polynomial interpolation. We obtain the fluxes and precursors through Numerical Inverse Laplace Transform using the Stehfest method. We present numerical simulations and comparisons with available results in literature. (author)

  16. Recursive algorithm for arrays of generalized Bessel functions: Numerical access to Dirac-Volkov solutions.

    Science.gov (United States)

    Lötstedt, Erik; Jentschura, Ulrich D

    2009-02-01

    In the relativistic and the nonrelativistic theoretical treatment of moderate and high-power laser-matter interaction, the generalized Bessel function occurs naturally when a Schrödinger-Volkov and Dirac-Volkov solution is expanded into plane waves. For the evaluation of cross sections of quantum electrodynamic processes in a linearly polarized laser field, it is often necessary to evaluate large arrays of generalized Bessel functions, of arbitrary index but with fixed arguments. We show that the generalized Bessel function can be evaluated, in a numerically stable way, by utilizing a recurrence relation and a normalization condition only, without having to compute any initial value. We demonstrate the utility of the method by illustrating the quantum-classical correspondence of the Dirac-Volkov solutions via numerical calculations.

  17. An algorithm for analytical solution of basic problems featuring elastostatic bodies with cavities and surface flaws

    Science.gov (United States)

    Penkov, V. B.; Levina, L. V.; Novikova, O. S.; Shulmin, A. S.

    2018-03-01

    Herein we propose a methodology for structuring a full parametric analytical solution to problems featuring elastostatic media based on state-of-the-art computing facilities that support computerized algebra. The methodology includes: direct and reverse application of P-Theorem; methods of accounting for physical properties of media; accounting for variable geometrical parameters of bodies, parameters of boundary states, independent parameters of volume forces, and remote stress factors. An efficient tool to address the task is the sustainable method of boundary states originally designed for the purposes of computerized algebra and based on the isomorphism of Hilbertian spaces of internal states and boundary states of bodies. We performed full parametric solutions of basic problems featuring a ball with a nonconcentric spherical cavity, a ball with a near-surface flaw, and an unlimited medium with two spherical cavities.

  18. Using genetic algorithm and TOPSIS for Xinanjiang model calibration with a single procedure

    Science.gov (United States)

    Cheng, Chun-Tian; Zhao, Ming-Yan; Chau, K. W.; Wu, Xin-Yu

    2006-01-01

    Genetic Algorithm (GA) is globally oriented in searching and thus useful in optimizing multiobjective problems, especially where the objective functions are ill-defined. Conceptual rainfall-runoff models that aim at predicting streamflow from the knowledge of precipitation over a catchment have become a basic tool for flood forecasting. The parameter calibration of a conceptual model usually involves the multiple criteria for judging the performances of observed data. However, it is often difficult to derive all objective functions for the parameter calibration problem of a conceptual model. Thus, a new method to the multiple criteria parameter calibration problem, which combines GA with TOPSIS (technique for order performance by similarity to ideal solution) for Xinanjiang model, is presented. This study is an immediate further development of authors' previous research (Cheng, C.T., Ou, C.P., Chau, K.W., 2002. Combining a fuzzy optimal model with a genetic algorithm to solve multi-objective rainfall-runoff model calibration. Journal of Hydrology, 268, 72-86), whose obvious disadvantages are to split the whole procedure into two parts and to become difficult to integrally grasp the best behaviors of model during the calibration procedure. The current method integrates the two parts of Xinanjiang rainfall-runoff model calibration together, simplifying the procedures of model calibration and validation and easily demonstrated the intrinsic phenomenon of observed data in integrity. Comparison of results with two-step procedure shows that the current methodology gives similar results to the previous method, is also feasible and robust, but simpler and easier to apply in practice.

  19. Use of a genetic algorithm in a subchannel model

    International Nuclear Information System (INIS)

    Alberto Teyssedou; Armando Nava-Dominguez

    2005-01-01

    Full text of publication follows: The channel of a nuclear reactor contains the fuel bundles which are made up of fuel elements distributed in a manner that creates a series of interconnected subchannels through which the coolant flows. Subchannel codes are used to determine local flow variables; these codes consider the complex geometry of a nuclear fuel bundle as being divided in simple parallel and interconnected cells called 'subchannels'. Each subchannel is bounded by the solid walls of the fuel rods or by imaginary boundaries placed between adjacent subchannels. In each subchannel the flow is considered as one dimensional, therefore lateral mixing mechanisms between subchannels should be taken into account. These mixing mechanisms are: Diversion cross-flow, Turbulent mixing, Turbulent void diffusion, Void drift and Buoyancy drift; they are implemented as independent contribution terms in a pseudo-vectorial lateral momentum equation. These mixing terms are calculated with correlations that require the use of empirical coefficients. It has been observed, however, that there is no unique set of coefficients and or correlations that can be used to predict a complete range of experimental conditions. To avoid this drawback, in this paper a Genetic Algorithm (GA) was coupled to a subchannel model. The use of a GA in conjunction with an appropriate objective function allows the subchannel model to internally determine the optimal values of the coefficients without user intervention. The subchannel model requires two diffusion coefficients, the drift flux two-phase flow distribution coefficient, C 0 , and a coefficient used to control the lateral pressure losses. The GA algorithm was implemented in order to find the most appropriate values of these four coefficients. Genetic algorithms (GA) are based on the theory of evolution; thus, the GA manipulates a population of individuals (chromosomes) in order to evolve them towards a best adaptation (fitness criterion) to

  20. Design and selection of load control strategies using a multiple objective model and evolutionary algorithms

    International Nuclear Information System (INIS)

    Gomes, Alvaro; Antunes, Carlos Henggeler; Martins, Antonio Gomes

    2005-01-01

    This paper aims at presenting a multiple objective model to evaluate the attractiveness of the use of demand resources (through load management control actions) by different stakeholders and in diverse structure scenarios in electricity systems. For the sake of model flexibility, the multiple (and conflicting) objective functions of technical, economical and quality of service nature are able to capture distinct market scenarios and operating entities that may be interested in promoting load management activities. The computation of compromise solutions is made by resorting to evolutionary algorithms, which are well suited to tackle multiobjective problems of combinatorial nature herein involving the identification and selection of control actions to be applied to groups of loads. (Author)

  1. LETTER TO THE EDITOR: Constant-time solution to the global optimization problem using Brüschweiler's ensemble search algorithm

    Science.gov (United States)

    Protopopescu, V.; D'Helon, C.; Barhen, J.

    2003-06-01

    A constant-time solution of the continuous global optimization problem (GOP) is obtained by using an ensemble algorithm. We show that under certain assumptions, the solution can be guaranteed by mapping the GOP onto a discrete unsorted search problem, whereupon Brüschweiler's ensemble search algorithm is applied. For adequate sensitivities of the measurement technique, the query complexity of the ensemble search algorithm depends linearly on the size of the function's domain. Advantages and limitations of an eventual NMR implementation are discussed.

  2. Spectral bisection algorithm for solving Schrodinger equation using upper and lower solutions

    Directory of Open Access Journals (Sweden)

    Qutaibeh Deeb Katatbeh

    2007-10-01

    Full Text Available This paper establishes a new criteria for obtaining a sequence of upper and lower bounds for the ground state eigenvalue of Schr"odinger equation $ -Deltapsi(r+V(rpsi(r=Epsi(r$ in $N$ spatial dimensions. Based on this proposed criteria, we prove a new comparison theorem in quantum mechanics for the ground state eigenfunctions of Schrodinger equation. We determine also lower and upper solutions for the exact wave function of the ground state eigenfunctions using the computed upper and lower bounds for the eigenvalues obtained by variational methods. In other words, by using this criteria, we prove that the substitution of the lower(upper bound of the eigenvalue in Schrodinger equation leads to an upper(lower solution. Finally, two proposed iteration approaches lead to an exact convergent sequence of solutions. The first one uses Raielgh-Ritz theorem. Meanwhile, the second approach uses a new numerical spectral bisection technique. We apply our results for a wide class of potentials in quantum mechanics such as sum of power-law potentials in quantum mechanics.

  3. Comparison analysis for classification algorithm in data mining and the study of model use

    Science.gov (United States)

    Chen, Junde; Zhang, Defu

    2018-04-01

    As a key technique in data mining, classification algorithm was received extensive attention. Through an experiment of classification algorithm in UCI data set, we gave a comparison analysis method for the different algorithms and the statistical test was used here. Than that, an adaptive diagnosis model for preventive electricity stealing and leakage was given as a specific case in the paper.

  4. A simple and efficient parallel FFT algorithm using the BSP model

    NARCIS (Netherlands)

    Bisseling, R.H.; Inda, M.A.

    2000-01-01

    In this paper we present a new parallel radix FFT algorithm based on the BSP model Our parallel algorithm uses the groupcyclic distribution family which makes it simple to understand and easy to implement We show how to reduce the com munication cost of the algorithm by a factor of three in the case

  5. The Support Reduction Algorithm for Computing Non-Parametric Function Estimates in Mixture Models

    OpenAIRE

    GROENEBOOM, PIET; JONGBLOED, GEURT; WELLNER, JON A.

    2008-01-01

    In this paper, we study an algorithm (which we call the support reduction algorithm) that can be used to compute non-parametric M-estimators in mixture models. The algorithm is compared with natural competitors in the context of convex regression and the ‘Aspect problem’ in quantum physics.

  6. Development of Web-Based Menu Planning Support System and its Solution Using Genetic Algorithm

    Science.gov (United States)

    Kashima, Tomoko; Matsumoto, Shimpei; Ishii, Hiroaki

    2009-10-01

    Recently lifestyle-related diseases have become an object of public concern, while at the same time people are being more health conscious. As an essential factor for causing the lifestyle-related diseases, we assume that the knowledge circulation on dietary habits is still insufficient. This paper focuses on everyday meals close to our life and proposes a well-balanced menu planning system as a preventive measure of lifestyle-related diseases. The system is developed by using a Web-based frontend and it provides multi-user services and menu information sharing capabilities like social networking services (SNS). The system is implemented on a Web server running Apache (HTTP server software), MySQL (database management system), and PHP (scripting language for dynamic Web pages). For the menu planning, a genetic algorithm is applied by understanding this problem as multidimensional 0-1 integer programming.

  7. Some algorithms for the solution of the symmetric eigenvalue problem on a multiprocessor electronic computer

    International Nuclear Information System (INIS)

    Molchanov, I.N.; Khimich, A.N.

    1984-01-01

    This article shows how a reflection method can be used to find the eigenvalues of a matrix by transforming the matrix to tridiagonal form. The method of conjugate gradients is used to find the smallest eigenvalue and the corresponding eigenvector of symmetric positive-definite band matrices. Topics considered include the computational scheme of the reflection method, the organization of parallel calculations by the reflection method, the computational scheme of the conjugate gradient method, the organization of parallel calculations by the conjugate gradient method, and the effectiveness of parallel algorithms. It is concluded that it is possible to increase the overall effectiveness of the multiprocessor electronic computers by either letting the newly available processors of a new problem operate in the multiprocessor mode, or by improving the coefficient of uniform partition of the original information

  8. Assimilation of low-level wind in a high-resolution mesoscale model using the back and forth nudging algorithm

    Directory of Open Access Journals (Sweden)

    Jean-François Mahfouf

    2012-06-01

    Full Text Available The performance of a new data assimilation algorithm called back and forth nudging (BFN is evaluated using a high-resolution numerical mesoscale model and simulated wind observations in the boundary layer. This new algorithm, of interest for the assimilation of high-frequency observations provided by ground-based active remote-sensing instruments, is straightforward to implement in a realistic atmospheric model. The convergence towards a steady-state profile can be achieved after five iterations of the BFN algorithm, and the algorithm provides an improved solution with respect to direct nudging. It is shown that the contribution of the nudging term does not dominate over other model physical and dynamical tendencies. Moreover, by running backward integrations with an adiabatic version of the model, the nudging coefficients do not need to be increased in order to stabilise the numerical equations. The ability of BFN to produce model changes upstream from the observations, in a similar way to 4-D-Var assimilation systems, is demonstrated. The capacity of the model to adjust to rapid changes in wind direction with the BFN is a first encouraging step, for example, to improve the detection and prediction of low-level wind shear phenomena through high-resolution mesoscale modelling over airports.

  9. Analytical solution of dispersion relations for the nuclear optical model

    Energy Technology Data Exchange (ETDEWEB)

    VanderKam, J.M. [Center for Communications Research, Thanet Road, Princeton, NJ 08540 (United States); Weisel, G.J. [Triangle Universities Nuclear Laboratory, and Duke University, Box 90308, Durham, NC 27708-0308 (United States); Penn State Altoona, 3000 Ivyside Park, Altoona, PA 16601-3760 (United States); Tornow, W. [Triangle Universities Nuclear Laboratory, and Duke University, Box 90308, Durham, NC 27708-0308 (United States)

    2000-12-01

    Analytical solutions of dispersion integral relations, linking the real and imaginary parts of the nuclear optical model, have been derived. These are displayed for some widely used forms of the volume- and surface-absorptive nuclear potentials. When the analytical solutions are incorporated into the optical-model search code GENOA, replacing a numerical integration, the code runs three and a half to seven times faster, greatly aiding the analysis of direct-reaction, elastic scattering data. (author)

  10. Skyrmion solutions to the Weinberg-Salam model

    International Nuclear Information System (INIS)

    Eilam, G.; Klabucar, D.; Stern, A.

    1986-01-01

    We find a spherically symmetric solution to the gauged SU(2)/sub L/ x SU(2)/sub R/ chiral model. It corresponds to a new classical solution to the Weinberg-Salam model in the limit of infinite self-coupling and sin 2 theta/sub W/ = 0. It has an energy of 11.6 TeV and is classically unstable under small perturbations of the fields. Quantum corrections may stabilize the solution via the introduction of higher-order terms in the effective action. We then investigate the solutions when a particular choice of a correction, the Skyrme term, is added to the Lagrangian. The energies of the (presumably) classically stable solutions are in the terraelectrovolt region

  11. Genetic algorithm based optimization of advanced solar cell designs modeled in Silvaco AtlasTM

    OpenAIRE

    Utsler, James

    2006-01-01

    A genetic algorithm was used to optimize the power output of multi-junction solar cells. Solar cell operation was modeled using the Silvaco ATLASTM software. The output of the ATLASTM simulation runs served as the input to the genetic algorithm. The genetic algorithm was run as a diffusing computation on a network of eighteen dual processor nodes. Results showed that the genetic algorithm produced better power output optimizations when compared with the results obtained using the hill cli...

  12. GRRR. The EXPECT groundwater model for transport of solutes

    NARCIS (Netherlands)

    Meijers R; Sauter FJ; Veling EJM; van Grinsven JJM; Leijnse A; Uffink GJM; MTV; CWM; LBG

    1994-01-01

    In this report the design and first test results are presented of the EXPECT groundwater module for transport of solutes GRRR (GRoundwater source Receptor Relationships). This model is one of the abiotic compartment modules of the EXPECT model. The EXPECT model is a tool for scenario development

  13. The Solution Construction of Heterotic Super-Liouville Model

    Science.gov (United States)

    Yang, Zhan-Ying; Zhen, Yi

    2001-12-01

    We investigate the heterotic super-Liouville model on the base of the basic Lie super-algebra Osp(1|2).Using the super extension of Leznov-Saveliev analysis and Drinfeld-Sokolov linear system, we construct the explicit solution of the heterotic super-Liouville system in component form. We also show that the solutions are local and periodic by calculating the exchange relation of the solution. Finally starting from the action of heterotic super-Liouville model, we obtain the conserved current and conserved charge which possessed the BRST properties.

  14. A Cost-Effective Tracking Algorithm for Hypersonic Glide Vehicle Maneuver Based on Modified Aerodynamic Model

    Directory of Open Access Journals (Sweden)

    Yu Fan

    2016-10-01

    Full Text Available In order to defend the hypersonic glide vehicle (HGV, a cost-effective single-model tracking algorithm using Cubature Kalman filter (CKF is proposed in this paper based on modified aerodynamic model (MAM as process equation and radar measurement model as measurement equation. In the existing aerodynamic model, the two control variables attack angle and bank angle cannot be measured by the existing radar equipment and their control laws cannot be known by defenders. To establish the process equation, the MAM for HGV tracking is proposed by using additive white noise to model the rates of change of the two control variables. For the ease of comparison several multiple model algorithms based on CKF are presented, including interacting multiple model (IMM algorithm, adaptive grid interacting multiple model (AGIMM algorithm and hybrid grid multiple model (HGMM algorithm. The performances of these algorithms are compared and analyzed according to the simulation results. The simulation results indicate that the proposed tracking algorithm based on modified aerodynamic model has the best tracking performance with the best accuracy and least computational cost among all tracking algorithms in this paper. The proposed algorithm is cost-effective for HGV tracking.

  15. Topics in dual models and extended solutions

    International Nuclear Information System (INIS)

    Roth, R.S.

    1977-01-01

    Two main topics are explored. The first deals with the infinities arising from the one loop planar string diagram of the standard dual model. It is shown that for the number of dimensions d = 25 or 26, these infinities lead to a renormalization of the slope of the Regge trajectories, in addition to a renormalization of the coupling constant. The second topic deals with the propagator for a confined particle (monopole) in a field theory. When summed to all orders, this propagator is altogether free of singularities in the finite momentum plane, and an attempt is made to illustrate this. The Bethe-Salpeter equation is examined and it is shown that ladder diagrams are not sufficient to obtain this result. However, in a nonrelativistic approximation confinement is obtained and all poles disappear

  16. A deflation based parallel algorithm for spectral element solution of the incompressible Navier-Stokes equations

    Energy Technology Data Exchange (ETDEWEB)

    Fischer, P.F. [Brown Univ., Providence, RI (United States)

    1996-12-31

    Efficient solution of the Navier-Stokes equations in complex domains is dependent upon the availability of fast solvers for sparse linear systems. For unsteady incompressible flows, the pressure operator is the leading contributor to stiffness, as the characteristic propagation speed is infinite. In the context of operator splitting formulations, it is the pressure solve which is the most computationally challenging, despite its elliptic origins. We seek to improve existing spectral element iterative methods for the pressure solve in order to overcome the slow convergence frequently observed in the presence of highly refined grids or high-aspect ratio elements.

  17. Modeling of genetic algorithms with a finite population

    NARCIS (Netherlands)

    C.H.M. van Kemenade

    1997-01-01

    textabstractCross-competition between non-overlapping building blocks can strongly influence the performance of evolutionary algorithms. The choice of the selection scheme can have a strong influence on the performance of a genetic algorithm. This paper describes a number of different genetic

  18. Numerical Algorithms for Deterministic Impulse Control Models with Applications

    NARCIS (Netherlands)

    Grass, D.; Chahim, M.

    2012-01-01

    Abstract: In this paper we describe three different algorithms, from which two (as far as we know) are new in the literature. We take both the size of the jump as the jump times as decision variables. The first (new) algorithm considers an Impulse Control problem as a (multipoint) Boundary Value

  19. Multi-skyrmion solutions of a sixth order Skyrme model

    International Nuclear Information System (INIS)

    Floratos, I.

    2001-08-01

    In this thesis, we study some of the classical properties of an extension of the Skyrme model defined by adding a sixth order derivative term to the Lagrangian. In chapter 1, we review the physical as well as the mathematical motivation behind the study of the Skyrme model and in chapter 2, we give a brief summary of various extended Skyrme models that have been proposed over the last few years. We then define a new sixth order Skyrme model by introducing a dimensionless parameter λ that denotes the mixing between the two higher order terms, the Skyrme term and the sixth order term. In chapter 3 we compute numerically the multi-skyrmion solutions of this extended model and show that they have the same symmetries with the usual skyrmion solutions. In addition, we analyse the dependence of the energy and radius of these classical solutions with respect to the coupling constant λ. We compare our results with experimental data and determine whether this modified model can provide us with better theoretical predictions than the original one. In chapter 4, we use the rational map ansatz, introduced by Houghton, Manton and Sutcliffe, to approximate minimum energy multi-skyrmion solutions with B ≤ 9 of the SU(2) model and with B ≤ 6 of the SU(3) model. We compare our results with the ones obtained numerically and show that the rational map ansatz works just as well for the generalised model as for the pure Skyrme model, at least for B ≤ 5. In chapter 5, we use a generalisation of the rational map ansatz, introduced by loannidou, Piette and Zakrzewski, to construct analytically some topologically non-trivial solutions of the extended model in SU(3). These solutions are spherically symmetric and some of them can be interpreted as bound states of skyrmions. Finally, we use the same ansatz to construct low energy configurations of the SU(N) sixth order Skyrme model. (author)

  20. Finding a pareto-optimal solution for multi-region models subject to capital trade and spillover externalities

    Energy Technology Data Exchange (ETDEWEB)

    Leimbach, Marian [Potsdam-Institut fuer Klimafolgenforschung e.V., Potsdam (Germany); Eisenack, Klaus [Oldenburg Univ. (Germany). Dept. of Economics and Statistics

    2008-11-15

    In this paper we present an algorithm that deals with trade interactions within a multi-region model. In contrast to traditional approaches this algorithm is able to handle spillover externalities. Technological spillovers are expected to foster the diffusion of new technologies, which helps to lower the cost of climate change mitigation. We focus on technological spillovers which are due to capital trade. The algorithm of finding a pareto-optimal solution in an intertemporal framework is embedded in a decomposed optimization process. The paper analyzes convergence and equilibrium properties of this algorithm. In the final part of the paper, we apply the algorithm to investigate possible impacts of technological spillovers. While benefits of technological spillovers are significant for the capital-importing region, benefits for the capital-exporting region depend on the type of regional disparities and the resulting specialization and terms-of-trade effects. (orig.)

  1. A Multiobjective Interval Programming Model for Wind-Hydrothermal Power System Dispatching Using 2-Step Optimization Algorithm

    Science.gov (United States)

    Jihong, Qu

    2014-01-01

    Wind-hydrothermal power system dispatching has received intensive attention in recent years because it can help develop various reasonable plans to schedule the power generation efficiency. But future data such as wind power output and power load would not be accurately predicted and the nonlinear nature involved in the complex multiobjective scheduling model; therefore, to achieve accurate solution to such complex problem is a very difficult task. This paper presents an interval programming model with 2-step optimization algorithm to solve multiobjective dispatching. Initially, we represented the future data into interval numbers and simplified the object function to a linear programming problem to search the feasible and preliminary solutions to construct the Pareto set. Then the simulated annealing method was used to search the optimal solution of initial model. Thorough experimental results suggest that the proposed method performed reasonably well in terms of both operating efficiency and precision. PMID:24895663

  2. A multiobjective interval programming model for wind-hydrothermal power system dispatching using 2-step optimization algorithm.

    Science.gov (United States)

    Ren, Kun; Jihong, Qu

    2014-01-01

    Wind-hydrothermal power system dispatching has received intensive attention in recent years because it can help develop various reasonable plans to schedule the power generation efficiency. But future data such as wind power output and power load would not be accurately predicted and the nonlinear nature involved in the complex multiobjective scheduling model; therefore, to achieve accurate solution to such complex problem is a very difficult task. This paper presents an interval programming model with 2-step optimization algorithm to solve multiobjective dispatching. Initially, we represented the future data into interval numbers and simplified the object function to a linear programming problem to search the feasible and preliminary solutions to construct the Pareto set. Then the simulated annealing method was used to search the optimal solution of initial model. Thorough experimental results suggest that the proposed method performed reasonably well in terms of both operating efficiency and precision.

  3. Building optimal regression tree by ant colony system-genetic algorithm: Application to modeling of melting points

    Energy Technology Data Exchange (ETDEWEB)

    Hemmateenejad, Bahram, E-mail: hemmatb@sums.ac.ir [Department of Chemistry, Shiraz University, Shiraz (Iran, Islamic Republic of); Medicinal and Natural Products Chemistry Research Center, Shiraz University of Medical Sciences, Shiraz (Iran, Islamic Republic of); Shamsipur, Mojtaba [Department of Chemistry, Razi University, Kermanshah (Iran, Islamic Republic of); Zare-Shahabadi, Vali [Young Researchers Club, Mahshahr Branch, Islamic Azad University, Mahshahr (Iran, Islamic Republic of); Akhond, Morteza [Department of Chemistry, Shiraz University, Shiraz (Iran, Islamic Republic of)

    2011-10-17

    Highlights: {yields} Ant colony systems help to build optimum classification and regression trees. {yields} Using of genetic algorithm operators in ant colony systems resulted in more appropriate models. {yields} Variable selection in each terminal node of the tree gives promising results. {yields} CART-ACS-GA could model the melting point of organic materials with prediction errors lower than previous models. - Abstract: The classification and regression trees (CART) possess the advantage of being able to handle large data sets and yield readily interpretable models. A conventional method of building a regression tree is recursive partitioning, which results in a good but not optimal tree. Ant colony system (ACS), which is a meta-heuristic algorithm and derived from the observation of real ants, can be used to overcome this problem. The purpose of this study was to explore the use of CART and its combination with ACS for modeling of melting points of a large variety of chemical compounds. Genetic algorithm (GA) operators (e.g., cross averring and mutation operators) were combined with ACS algorithm to select the best solution model. In addition, at each terminal node of the resulted tree, variable selection was done by ACS-GA algorithm to build an appropriate partial least squares (PLS) model. To test the ability of the resulted tree, a set of approximately 4173 structures and their melting points were used (3000 compounds as training set and 1173 as validation set). Further, an external test set containing of 277 drugs was used to validate the prediction ability of the tree. Comparison of the results obtained from both trees showed that the tree constructed by ACS-GA algorithm performs better than that produced by recursive partitioning procedure.

  4. Evaluating ortholog prediction algorithms in a yeast model clade.

    Directory of Open Access Journals (Sweden)

    Leonidas Salichos

    Full Text Available BACKGROUND: Accurate identification of orthologs is crucial for evolutionary studies and for functional annotation. Several algorithms have been developed for ortholog delineation, but so far, manually curated genome-scale biological databases of orthologous genes for algorithm evaluation have been lacking. We evaluated four popular ortholog prediction algorithms (MultiParanoid; and OrthoMCL; RBH: Reciprocal Best Hit; RSD: Reciprocal Smallest Distance; the last two extended into clustering algorithms cRBH and cRSD, respectively, so that they can predict orthologs across multiple taxa against a set of 2,723 groups of high-quality curated orthologs from 6 Saccharomycete yeasts in the Yeast Gene Order Browser. RESULTS: Examination of sensitivity [TP/(TP+FN], specificity [TN/(TN+FP], and accuracy [(TP+TN/(TP+TN+FP+FN] across a broad parameter range showed that cRBH was the most accurate and specific algorithm, whereas OrthoMCL was the most sensitive. Evaluation of the algorithms across a varying number of species showed that cRBH had the highest accuracy and lowest false discovery rate [FP/(FP+TP], followed by cRSD. Of the six species in our set, three descended from an ancestor that underwent whole genome duplication. Subsequent differential duplicate loss events in the three descendants resulted in distinct classes of gene loss patterns, including cases where the genes retained in the three descendants are paralogs, constituting 'traps' for ortholog prediction algorithms. We found that the false discovery rate of all algorithms dramatically increased in these traps. CONCLUSIONS: These results suggest that simple algorithms, like cRBH, may be better ortholog predictors than more complex ones (e.g., OrthoMCL and MultiParanoid for evolutionary and functional genomics studies where the objective is the accurate inference of single-copy orthologs (e.g., molecular phylogenetics, but that all algorithms fail to accurately predict orthologs when paralogy

  5. Stochastic epidemic-type model with enhanced connectivity: exact solution

    International Nuclear Information System (INIS)

    Williams, H T; Mazilu, I; Mazilu, D A

    2012-01-01

    We present an exact analytical solution to a one-dimensional model of the susceptible–infected–recovered (SIR) epidemic type, with infection rates dependent on nearest-neighbor occupations. We use a quantum mechanical approach, transforming the master equation via a quantum spin operator formulation. We calculate exactly the time-dependent density of infected, recovered and susceptible populations for random initial conditions. Our results compare well with those of previous work, validating the model as a useful tool for additional and extended studies in this important area. Our model also provides exact solutions for the n-point correlation functions, and can be extended to more complex epidemic-type models

  6. Quadratic adaptive algorithm for solving cardiac action potential models.

    Science.gov (United States)

    Chen, Min-Hung; Chen, Po-Yuan; Luo, Ching-Hsing

    2016-10-01

    An adaptive integration method is proposed for computing cardiac action potential models accurately and efficiently. Time steps are adaptively chosen by solving a quadratic formula involving the first and second derivatives of the membrane action potential. To improve the numerical accuracy, we devise an extremum-locator (el) function to predict the local extremum when approaching the peak amplitude of the action potential. In addition, the time step restriction (tsr) technique is designed to limit the increase in time steps, and thus prevent the membrane potential from changing abruptly. The performance of the proposed method is tested using the Luo-Rudy phase 1 (LR1), dynamic (LR2), and human O'Hara-Rudy dynamic (ORd) ventricular action potential models, and the Courtemanche atrial model incorporating a Markov sodium channel model. Numerical experiments demonstrate that the action potential generated using the proposed method is more accurate than that using the traditional Hybrid method, especially near the peak region. The traditional Hybrid method may choose large time steps near to the peak region, and sometimes causes the action potential to become distorted. In contrast, the proposed new method chooses very fine time steps in the peak region, but large time steps in the smooth region, and the profiles are smoother and closer to the reference solution. In the test on the stiff Markov ionic channel model, the Hybrid blows up if the allowable time step is set to be greater than 0.1ms. In contrast, our method can adjust the time step size automatically, and is stable. Overall, the proposed method is more accurate than and as efficient as the traditional Hybrid method, especially for the human ORd model. The proposed method shows improvement for action potentials with a non-smooth morphology, and it needs further investigation to determine whether the method is helpful during propagation of the action potential. Copyright © 2016 Elsevier Ltd. All rights

  7. Hybrid nested sampling algorithm for Bayesian model selection applied to inverse subsurface flow problems

    International Nuclear Information System (INIS)

    Elsheikh, Ahmed H.; Wheeler, Mary F.; Hoteit, Ibrahim

    2014-01-01

    A Hybrid Nested Sampling (HNS) algorithm is proposed for efficient Bayesian model calibration and prior model selection. The proposed algorithm combines, Nested Sampling (NS) algorithm, Hybrid Monte Carlo (HMC) sampling and gradient estimation using Stochastic Ensemble Method (SEM). NS is an efficient sampling algorithm that can be used for Bayesian calibration and estimating the Bayesian evidence for prior model selection. Nested sampling has the advantage of computational feasibility. Within the nested sampling algorithm, a constrained sampling step is performed. For this step, we utilize HMC to reduce the correlation between successive sampled states. HMC relies on the gradient of the logarithm of the posterior distribution, which we estimate using a stochastic ensemble method based on an ensemble of directional derivatives. SEM only requires forward model runs and the simulator is then used as a black box and no adjoint code is needed. The developed HNS algorithm is successfully applied for Bayesian calibration and prior model selection of several nonlinear subsurface flow problems

  8. Hybrid nested sampling algorithm for Bayesian model selection applied to inverse subsurface flow problems

    Energy Technology Data Exchange (ETDEWEB)

    Elsheikh, Ahmed H., E-mail: aelsheikh@ices.utexas.edu [Institute for Computational Engineering and Sciences (ICES), University of Texas at Austin, TX (United States); Institute of Petroleum Engineering, Heriot-Watt University, Edinburgh EH14 4AS (United Kingdom); Wheeler, Mary F. [Institute for Computational Engineering and Sciences (ICES), University of Texas at Austin, TX (United States); Hoteit, Ibrahim [Department of Earth Sciences and Engineering, King Abdullah University of Science and Technology (KAUST), Thuwal (Saudi Arabia)

    2014-02-01

    A Hybrid Nested Sampling (HNS) algorithm is proposed for efficient Bayesian model calibration and prior model selection. The proposed algorithm combines, Nested Sampling (NS) algorithm, Hybrid Monte Carlo (HMC) sampling and gradient estimation using Stochastic Ensemble Method (SEM). NS is an efficient sampling algorithm that can be used for Bayesian calibration and estimating the Bayesian evidence for prior model selection. Nested sampling has the advantage of computational feasibility. Within the nested sampling algorithm, a constrained sampling step is performed. For this step, we utilize HMC to reduce the correlation between successive sampled states. HMC relies on the gradient of the logarithm of the posterior distribution, which we estimate using a stochastic ensemble method based on an ensemble of directional derivatives. SEM only requires forward model runs and the simulator is then used as a black box and no adjoint code is needed. The developed HNS algorithm is successfully applied for Bayesian calibration and prior model selection of several nonlinear subsurface flow problems.

  9. Trimming algorithm of frequency modulation for CIAE-230 MeV proton superconducting synchrocyclotron model cavity

    Energy Technology Data Exchange (ETDEWEB)

    Li, Pengzhan, E-mail: lipengzhan@ciae.ac.cn; Zhang, Tianjue; Ji, Bin; Hou, Shigang; Guo, Juanjuan; Yin, Meng; Xing, Jiansheng; Lv, Yinlong; Guan, Fengping; Lin, Jun

    2017-01-21

    A new project, the 230 MeV proton superconducting synchrocyclotron for cancer therapy, was proposed at CIAE in 2013. A model cavity is designed to verify the frequency modulation trimming algorithm featuring a half-wave structure and eight sets of rotating blades for 1 kHz frequency modulation. Based on the electromagnetic (EM) field distribution analysis of the model cavity, the variable capacitor works as a function of time and the frequency can be written in Maclaurin series. Curve fitting is applied for theoretical frequency and original simulation frequency. The second-order fitting excels at the approximation given its minimum variance. Constant equivalent inductance is considered as an important condition in the calculation. The equivalent parameters of theoretical frequency can be achieved through this conversion. Then the trimming formula for rotor blade outer radius is found by discretization in time domain. Simulation verification has been performed and the results show that the calculation radius with minus 0.012 m yields an acceptable result. The trimming amendment in the time range of 0.328–0.4 ms helps to reduce the frequency error to 0.69% in Simulation C with an increment of 0.075 mm/0.001 ms, which is half of the error in Simulation A (constant radius in 0.328–0.4 ms). The verification confirms the feasibility of the trimming algorithm for synchrocyclotron frequency modulation. - Highlights: • A model cavity is designed to verify the trimming algorithm of frequency modulation. • The RF frequency is expressed by fitting approximation and Maclaurin series. • The variable capacitor of the cavity works as a function of time. • The trimming formula for blade radius is found by discretization in time domain. • The amendment solution helps to reduce the frequency error.

  10. Modeling Complex Chemical Systems: Problems and Solutions

    Science.gov (United States)

    van Dijk, Jan

    2016-09-01

    Non-equilibrium plasmas in complex gas mixtures are at the heart of numerous contemporary technologies. They typically contain dozens to hundreds of species, involved in hundreds to thousands of reactions. Chemists and physicists have always been interested in what are now called chemical reduction techniques (CRT's). The idea of such CRT's is that they reduce the number of species that need to be considered explicitly without compromising the validity of the model. This is usually achieved on the basis of an analysis of the reaction time scales of the system under study, which identifies species that are in partial equilibrium after a given time span. The first such CRT that has been widely used in plasma physics was developed in the 1960's and resulted in the concept of effective ionization and recombination rates. It was later generalized to systems in which multiple levels are effected by transport. In recent years there has been a renewed interest in tools for chemical reduction and reaction pathway analysis. An example of the latter is the PumpKin tool. Another trend is that techniques that have previously been developed in other fields of science are adapted as to be able to handle the plasma state of matter. Examples are the Intrinsic Low Dimension Manifold (ILDM) method and its derivatives, which originate from combustion engineering, and the general-purpose Principle Component Analysis (PCA) technique. In this contribution we will provide an overview of the most common reduction techniques, then critically assess the pros and cons of the methods that have gained most popularity in recent years. Examples will be provided for plasmas in argon and carbon dioxide.

  11. Algorithms for Bayesian network modeling and reliability assessment of infrastructure systems

    International Nuclear Information System (INIS)

    Tien, Iris; Der Kiureghian, Armen

    2016-01-01

    Novel algorithms are developed to enable the modeling of large, complex infrastructure systems as Bayesian networks (BNs). These include a compression algorithm that significantly reduces the memory storage required to construct the BN model, and an updating algorithm that performs inference on compressed matrices. These algorithms address one of the major obstacles to widespread use of BNs for system reliability assessment, namely the exponentially increasing amount of information that needs to be stored as the number of components in the system increases. The proposed compression and inference algorithms are described and applied to example systems to investigate their performance compared to that of existing algorithms. Orders of magnitude savings in memory storage requirement are demonstrated using the new algorithms, enabling BN modeling and reliability analysis of larger infrastructure systems. - Highlights: • Novel algorithms developed for Bayesian network modeling of infrastructure systems. • Algorithm presented to compress information in conditional probability tables. • Updating algorithm presented to perform inference on compressed matrices. • Algorithms applied to example systems to investigate their performance. • Orders of magnitude savings in memory storage requirement demonstrated.

  12. Adoption of the Hash algorithm in a conceptual model for the civil registry of Ecuador

    Science.gov (United States)

    Toapanta, Moisés; Mafla, Enrique; Orizaga, Antonio

    2018-04-01

    The Hash security algorithm was analyzed in order to mitigate information security in a distributed architecture. The objective of this research is to develop a prototype for the Adoption of the algorithm Hash in a conceptual model for the Civil Registry of Ecuador. The deductive method was used in order to analyze the published articles that have a direct relation with the research project "Algorithms and Security Protocols for the Civil Registry of Ecuador" and articles related to the Hash security algorithm. It resulted from this research: That the SHA-1 security algorithm is appropriate for use in Ecuador's civil registry; we adopted the SHA-1 algorithm used in the flowchart technique and finally we obtained the adoption of the hash algorithm in a conceptual model. It is concluded that from the comparison of the DM5 and SHA-1 algorithm, it is suggested that in the case of an implementation, the SHA-1 algorithm is taken due to the amount of information and data available from the Civil Registry of Ecuador; It is determined that the SHA-1 algorithm that was defined using the flowchart technique can be modified according to the requirements of each institution; the model for adopting the hash algorithm in a conceptual model is a prototype that can be modified according to all the actors that make up each organization.

  13. Parallelization of the model-based iterative reconstruction algorithm DIRA

    International Nuclear Information System (INIS)

    Oertenberg, A.; Sandborg, M.; Alm Carlsson, G.; Malusek, A.; Magnusson, M.

    2016-01-01

    New paradigms for parallel programming have been devised to simplify software development on multi-core processors and many-core graphical processing units (GPU). Despite their obvious benefits, the parallelization of existing computer programs is not an easy task. In this work, the use of the Open Multiprocessing (OpenMP) and Open Computing Language (OpenCL) frameworks is considered for the parallelization of the model-based iterative reconstruction algorithm DIRA with the aim to significantly shorten the code's execution time. Selected routines were parallelized using OpenMP and OpenCL libraries; some routines were converted from MATLAB to C and optimised. Parallelization of the code with the OpenMP was easy and resulted in an overall speedup of 15 on a 16-core computer. Parallelization with OpenCL was more difficult owing to differences between the central processing unit and GPU architectures. The resulting speedup was substantially lower than the theoretical peak performance of the GPU; the cause was explained. (authors)

  14. Parallel algorithms for interactive manipulation of digital terrain models

    Science.gov (United States)

    Davis, E. W.; Mcallister, D. F.; Nagaraj, V.

    1988-01-01

    Interactive three-dimensional graphics applications, such as terrain data representation and manipulation, require extensive arithmetic processing. Massively parallel machines are attractive for this application since they offer high computational rates, and grid connected architectures provide a natural mapping for grid based terrain models. Presented here are algorithms for data movement on the massive parallel processor (MPP) in support of pan and zoom functions over large data grids. It is an extension of earlier work that demonstrated real-time performance of graphics functions on grids that were equal in size to the physical dimensions of the MPP. When the dimensions of a data grid exceed the processing array size, data is packed in the array memory. Windows of the total data grid are interactively selected for processing. Movement of packed data is needed to distribute items across the array for efficient parallel processing. Execution time for data movement was found to exceed that for arithmetic aspects of graphics functions. Performance figures are given for routines written in MPP Pascal.

  15. Rectangular Full Packed Format for Cholesky's Algorithm: Factorization, Solution, and Inversion

    DEFF Research Database (Denmark)

    Gustavson, Fred G.; Wasniewski, Jerzy; Dongarra, Jack J

    2010-01-01

    of the storage space but provide high performance via the use of Level 3 BLAS. Standard packed format arrays fully utilize storage (array space) but provide low performance as there is no Level 3 packed BLAS. We combine the good features of packed and full storage using RFPF to obtain high performance via using...... Level 3 BLAS as RFPF is a standard full-format representation. Also, RFPF requires exactly the same minimal storage as packed the format. Each LAPACK full and/or packed triangular, symmetric, and Hermitian routine becomes a single new RFPF routine based on eight possible data layouts of RFPF. This new...... RFPF routine usually consists of two calls to the corresponding LAPACK full-format routine and two calls to Level 3 BLAS routines. This means no new software is required. As examples, we present LAPACK routines for Cholesky factorization, Cholesky solution, and Cholesky inverse computation in RFPF...

  16. Developing robust arsenic awareness prediction models using machine learning algorithms.

    Science.gov (United States)

    Singh, Sushant K; Taylor, Robert W; Rahman, Mohammad Mahmudur; Pradhan, Biswajeet

    2018-04-01

    Arsenic awareness plays a vital role in ensuring the sustainability of arsenic mitigation technologies. Thus far, however, few studies have dealt with the sustainability of such technologies and its associated socioeconomic dimensions. As a result, arsenic awareness prediction has not yet been fully conceptualized. Accordingly, this study evaluated arsenic awareness among arsenic-affected communities in rural India, using a structured questionnaire to record socioeconomic, demographic, and other sociobehavioral factors with an eye to assessing their association with and influence on arsenic awareness. First a logistic regression model was applied and its results compared with those produced by six state-of-the-art machine-learning algorithms (Support Vector Machine [SVM], Kernel-SVM, Decision Tree [DT], k-Nearest Neighbor [k-NN], Naïve Bayes [NB], and Random Forests [RF]) as measured by their accuracy at predicting arsenic awareness. Most (63%) of the surveyed population was found to be arsenic-aware. Significant arsenic awareness predictors were divided into three types: (1) socioeconomic factors: caste, education level, and occupation; (2) water and sanitation behavior factors: number of family members involved in water collection, distance traveled and time spent for water collection, places for defecation, and materials used for handwashing after defecation; and (3) social capital and trust factors: presence of anganwadi and people's trust in other community members, NGOs, and private agencies. Moreover, individuals' having higher social network positively contributed to arsenic awareness in the communities. Results indicated that both the SVM and the RF algorithms outperformed at overall prediction of arsenic awareness-a nonlinear classification problem. Lower-caste, less educated, and unemployed members of the population were found to be the most vulnerable, requiring immediate arsenic mitigation. To this end, local social institutions and NGOs could play a

  17. Integrated algorithms for RFID-based multi-sensor indoor/outdoor positioning solutions

    Science.gov (United States)

    Zhu, Mi.; Retscher, G.; Zhang, K.

    2011-12-01

    Position information is very important as people need it almost everywhere all the time. However, it is a challenging task to provide precise positions indoor/outdoor seamlessly. Outdoor positioning has been widely studied and accurate positions can usually be achieved by well developed GPS techniques but these techniques are difficult to be used indoors since GPS signal reception is limited. The alternative techniques that can be used for indoor positioning include, to name a few, Wireless Local Area Network (WLAN), bluetooth and Ultra Wideband (UWB) etc.. However, all of these have limitations. The main objectives of this paper are to investigate and develop algorithms for a low-cost and portable indoor personal positioning system using Radio Frequency Identification (RFID) and its integration with other positioning systems. An RFID system consists of three components, namely a control unit, an interrogator and a transponder that transmits data and communicates with the reader. An RFID tag can be incorporated into a product, animal or person for the purpose of identification and tracking using radio waves. In general, for RFID positioning in urban and indoor environments three different methods can be used, including cellular positioning, trilateration and location fingerprinting. In addition, the integration of RFID with other technologies is also discussed in this paper. A typical combination is to integrate RFID with relative positioning technologies such as MEMS INS to bridge the gaps between RFID tags for continuous positioning applications. Experiments are shown to demonstrate the improvements of integrating multiple sensors with RFID which can be employed successfully for personal positioning.

  18. "Updates to Model Algorithms & Inputs for the Biogenic Emissions Inventory System (BEIS) Model"

    Science.gov (United States)

    We have developed new canopy emission algorithms and land use data for BEIS. Simulations with BEIS v3.4 and these updates in CMAQ v5.0.2 are compared these changes to the Model of Emissions of Gases and Aerosols from Nature (MEGAN) and evaluated the simulations against observatio...

  19. Multi-objective optimization algorithms for mixed model assembly line balancing problem with parallel workstations

    Directory of Open Access Journals (Sweden)

    Masoud Rabbani

    2016-12-01

    Full Text Available This paper deals with mixed model assembly line (MMAL balancing problem of type-I. In MMALs several products are made on an assembly line while the similarity of these products is so high. As a result, it is possible to assemble several types of products simultaneously without any additional setup times. The problem has some particular features such as parallel workstations and precedence constraints in dynamic periods in which each period also effects on its next period. The research intends to reduce the number of workstations and maximize the workload smoothness between workstations. Dynamic periods are used to determine all variables in different periods to achieve efficient solutions. A non-dominated sorting genetic algorithm (NSGA-II and multi-objective particle swarm optimization (MOPSO are used to solve the problem. The proposed model is validated with GAMS software for small size problem and the performance of the foregoing algorithms is compared with each other based on some comparison metrics. The NSGA-II outperforms MOPSO with respect to some comparison metrics used in this paper, but in other metrics MOPSO is better than NSGA-II. Finally, conclusion and future research is provided.

  20. An Improved Global Harmony Search Algorithm for the Identification of Nonlinear Discrete-Time Systems Based on Volterra Filter Modeling

    Directory of Open Access Journals (Sweden)

    Zongyan Li

    2016-01-01

    Full Text Available This paper describes an improved global harmony search (IGHS algorithm for identifying the nonlinear discrete-time systems based on second-order Volterra model. The IGHS is an improved version of the novel global harmony search (NGHS algorithm, and it makes two significant improvements on the NGHS. First, the genetic mutation operation is modified by combining normal distribution and Cauchy distribution, which enables the IGHS to fully explore and exploit the solution space. Second, an opposition-based learning (OBL is introduced and modified to improve the quality of harmony vectors. The IGHS algorithm is implemented on two numerical examples, and they are nonlinear discrete-time rational system and the real heat exchanger, respectively. The results of the IGHS are compared with those of the other three methods, and it has been verified to be more effective than the other three methods on solving the above two problems with different input signals and system memory sizes.

  1. Baryons as solitonic solutions of the chiral sigma model

    International Nuclear Information System (INIS)

    Bentz, W.; Hartmann, J.; Beck, F.

    1996-01-01

    Self-consistent solitonic solutions with baryon number one are obtained in the chiral quark sigma model. The translational invariant vacuum is stabilized by a Landau ghost subtraction procedure based on the requirement of the Kaellacute en-Lehmann (KL) representation for the meson propagators. The connection of this ghost free model (KL model) to the more popular Nambu-Jona-Lasinio (NJL) model is discussed in detail. copyright 1996 The American Physical Society

  2. Model-based remote sensing algorithms for particulate organic carbon

    Indian Academy of Sciences (India)

    negligible loss of spectral information from additional modes. The use of POC algorithms ... and mesoscale circulation system (Vastano et al. 1995; Walker 1996 .... fiber filters were combusted in a thermolyne type. 1300 furnace along with ...

  3. SOLA-VOF: a solution algorithm for transient fluid flow with multiple free boundaries

    International Nuclear Information System (INIS)

    Nichols, B.D.; Hirt, C.W.; Hotchkiss, R.S.

    1980-08-01

    In this report a simple, but powerful, computer program is presented for the solution of two-dimensional transient fluid flow with free boundaries. The SOLA-VOF program, which is based on the concept of a fractional volume of fluid (VOF), is more flexible and efficient than other methods for treating arbitrary free boundaries. SOLA-VOF has a variety of user options that provide capabilities for a wide range of applications. Its basic mode of operation is for single fluid calculations having multiple free surfaces. However, SOLA-VOF can also be used for calculations involving two fluids separated by a sharp interface. In either case, the fluids may be treated as incompressible or as having limited compressibility. Surface tension forces with wall adhesion are permitted in both cases. Internal obstacles may be defined by blocking out any desired combination of cells in the mesh, which is composed of rectangular cells of variable size. SOLA-VOF is an easy-to-use program. Its logical parts are isolated in separate subroutines, and numerous special features have been included to simplify its operation, such as an automatic time-step control, a flexible mesh generator, extensive output capabilities, a variety of optional boundary conditions, and instructive internal documentation

  4. LPV model development and control of a solution copolymerization reactor

    NARCIS (Netherlands)

    Rahme, S.; Abbas, H.M.S.; Meskin, N.; Tóth, R.; Mohammadpour, J.

    2016-01-01

    In this paper, linear parameter-varying (LPV) control is considered for a solution copolymerization reactor, which takes into account the time-varying nature of the parameters of the process. The nonlinear model of the process is first converted to an exact LPV model representation in the

  5. Thermodynamic Models from Fluctuation Solution Theory Analysis of Molecular Simulations

    DEFF Research Database (Denmark)

    Christensen, Steen; Peters, Günther H.j.; Hansen, Flemming Yssing

    2007-01-01

    Fluctuation solution theory (FST) is employed to analyze results of molecular dynamics (MD) simulations of liquid mixtures. The objective is to generate parameters for macroscopic GE-models, here the modified Margules model. We present a strategy for choosing the number of parameters included...

  6. Unified C/VHDL Model Generation of FPGA-based LHCb VELO algorithms

    CERN Document Server

    Muecke, Manfred

    2007-01-01

    We show an alternative design approach for signal processing algorithms implemented on FPGAs. Instead of writing VHDL code for implementation and maintaining a C-model for algorithm simulation, we derive both models from one common source, allowing generation of synthesizeable VHDL and cycleand bit-accurate C-Code. We have tested our approach on the LHCb VELO pre-processing algorithms and report on experiences gained during the course of our work.

  7. A Mesoscopic Model for Protein-Protein Interactions in Solution

    OpenAIRE

    Lund, Mikael; Jönsson, Bo

    2003-01-01

    Protein self-association may be detrimental in biological systems, but can be utilized in a controlled fashion for protein crystallization. It is hence of considerable interest to understand how factors like solution conditions prevent or promote aggregation. Here we present a computational model describing interactions between protein molecules in solution. The calculations are based on a molecular description capturing the detailed structure of the protein molecule using x-ray or nuclear ma...

  8. The Fermi-Pasta-Ulam Model Periodic Solutions

    CERN Document Server

    Arioli, G; Terracini, S

    2003-01-01

    We introduce two novel methods for studying periodic solutions of the FPU beta-model, both numerically and rigorously. One is a variational approach, based on the dual formulation of the problem, and the other involves computer-assisted proofs. These methods are used e.g. to construct a new type of solutions, whose energy is spread among several modes, associated with closely spaced resonances.

  9. Jacobian elliptic wave solutions in an anharmonic molecular crystal model

    International Nuclear Information System (INIS)

    Teh, C.G.R.; Lee, B.S.; Koo, W.K.

    1997-07-01

    Explicit Jacobian elliptic wave solutions are found in the anharmonic molecular crystal model for both the continuum limit and discrete modes. This class of wave solutions include the famous pulse-like and kink-like solitary modes. We would also like to report on the existence of some highly discrete staggered solitary wave modes not found in the continuum limit. (author). 9 refs, 1 fig

  10. Mathematical modeling of solute transport in the subsurface

    International Nuclear Information System (INIS)

    Naymik, T.G.

    1987-01-01

    A review of key works on solute transport models indicates that solute transport processes with the exception of advection are still poorly understood. Solute transport models generally do a good job when they are used to test scientific concepts and hypotheses, investigate natural processes, systematically store and manage data, and simulate mass balance of solutes under certain natural conditions. Solute transport models generally are not good for predicting future conditions with a high degree of certainty, or for determining concentrations precisely. The mathematical treatment of solute transport far surpasses their understanding of the process. Investigations of the extent of groundwater contamination and methods to remedy existing problems show the along-term nature of the hazard. Industrial organic compounds may be immiscible in water, highly volatile, or complexed with inorganic as well as other organic compounds; many remain stable in nature almost indefinitely. In the worst case, future disposal of hazardous waste may be restricted to deep burial, as is proposed for radioactive wastes. For investigations pertinent to transport of radionuclides from a geologic repository, the process cannot be fully understood without adequate thermodynamic and kinetic data bases

  11. COUPLING OF CORONAL AND HELIOSPHERIC MAGNETOHYDRODYNAMIC MODELS: SOLUTION COMPARISONS AND VERIFICATION

    Energy Technology Data Exchange (ETDEWEB)

    Merkin, V. G. [The Johns Hopkins University Applied Physics Laboratory, Laurel, MD 20723 (United States); Lionello, R.; Linker, J.; Török, T.; Downs, C. [Predictive Science, Inc., San Diego, CA 92121 (United States); Lyon, J. G., E-mail: slava.merkin@jhuapl.edu [Department of Physics and Astronomy, Dartmouth College, Hanover, NH 03755 (United States)

    2016-11-01

    Two well-established magnetohydrodynamic (MHD) codes are coupled to model the solar corona and the inner heliosphere. The corona is simulated using the MHD algorithm outside a sphere (MAS) model. The Lyon–Fedder–Mobarry (LFM) model is used in the heliosphere. The interface between the models is placed in a spherical shell above the critical point and allows both models to work in either a rotating or an inertial frame. Numerical tests are presented examining the coupled model solutions from 20 to 50 solar radii. The heliospheric simulations are run with both LFM and the MAS extension into the heliosphere, and use the same polytropic coronal MAS solutions as the inner boundary condition. The coronal simulations are performed for idealized magnetic configurations, with an out-of-equilibrium flux rope inserted into an axisymmetric background, with and without including the solar rotation. The temporal evolution at the inner boundary of the LFM and MAS solutions is shown to be nearly identical, as are the steady-state background solutions, prior to the insertion of the flux rope. However, after the coronal mass ejection has propagated through the significant portion of the simulation domain, the heliospheric solutions diverge. Additional simulations with different resolution are then performed and show that the MAS heliospheric solutions approach those of LFM when run with progressively higher resolution. Following these detailed tests, a more realistic simulation driven by the thermodynamic coronal MAS is presented, which includes solar rotation and an azimuthally asymmetric background and extends to the Earth’s orbit.

  12. Research on compressive sensing reconstruction algorithm based on total variation model

    Science.gov (United States)

    Gao, Yu-xuan; Sun, Huayan; Zhang, Tinghua; Du, Lin

    2017-12-01

    Compressed sensing for breakthrough Nyquist sampling theorem provides a strong theoretical , making compressive sampling for image signals be carried out simultaneously. In traditional imaging procedures using compressed sensing theory, not only can it reduces the storage space, but also can reduce the demand for detector resolution greatly. Using the sparsity of image signal, by solving the mathematical model of inverse reconfiguration, realize the super-resolution imaging. Reconstruction algorithm is the most critical part of compression perception, to a large extent determine the accuracy of the reconstruction of the image.The reconstruction algorithm based on the total variation (TV) model is more suitable for the compression reconstruction of the two-dimensional image, and the better edge information can be obtained. In order to verify the performance of the algorithm, Simulation Analysis the reconstruction result in different coding mode of the reconstruction algorithm based on the TV reconstruction algorithm. The reconstruction effect of the reconfigurable algorithm based on TV based on the different coding methods is analyzed to verify the stability of the algorithm. This paper compares and analyzes the typical reconstruction algorithm in the same coding mode. On the basis of the minimum total variation algorithm, the Augmented Lagrangian function term is added and the optimal value is solved by the alternating direction method.Experimental results show that the reconstruction algorithm is compared with the traditional classical algorithm based on TV has great advantages, under the low measurement rate can be quickly and accurately recovers target image.

  13. Combinatorial Clustering Algorithm of Quantum-Behaved Particle Swarm Optimization and Cloud Model

    Directory of Open Access Journals (Sweden)

    Mi-Yuan Shan

    2013-01-01

    Full Text Available We propose a combinatorial clustering algorithm of cloud model and quantum-behaved particle swarm optimization (COCQPSO to solve the stochastic problem. The algorithm employs a novel probability model as well as a permutation-based local search method. We are setting the parameters of COCQPSO based on the design of experiment. In the comprehensive computational study, we scrutinize the performance of COCQPSO on a set of widely used benchmark instances. By benchmarking combinatorial clustering algorithm with state-of-the-art algorithms, we can show that its performance compares very favorably. The fuzzy combinatorial optimization algorithm of cloud model and quantum-behaved particle swarm optimization (FCOCQPSO in vague sets (IVSs is more expressive than the other fuzzy sets. Finally, numerical examples show the clustering effectiveness of COCQPSO and FCOCQPSO clustering algorithms which are extremely remarkable.

  14. Making the error-controlling algorithm of observable operator models constructive.

    Science.gov (United States)

    Zhao, Ming-Jie; Jaeger, Herbert; Thon, Michael

    2009-12-01

    Observable operator models (OOMs) are a class of models for stochastic processes that properly subsumes the class that can be modeled by finite-dimensional hidden Markov models (HMMs). One of the main advantages of OOMs over HMMs is that they admit asymptotically correct learning algorithms. A series of learning algorithms has been developed, with increasing computational and statistical efficiency, whose recent culmination was the error-controlling (EC) algorithm developed by the first author. The EC algorithm is an iterative, asymptotically correct algorithm that yields (and minimizes) an assured upper bound on the modeling error. The run time is faster by at least one order of magnitude than EM-based HMM learning algorithms and yields significantly more accurate models than the latter. Here we present a significant improvement of the EC algorithm: the constructive error-controlling (CEC) algorithm. CEC inherits from EC the main idea of minimizing an upper bound on the modeling error but is constructive where EC needs iterations. As a consequence, we obtain further gains in learning speed without loss in modeling accuracy.

  15. Parallel Algorithm for Solving TOV Equations for Sequence of Cold and Dense Nuclear Matter Models

    Science.gov (United States)

    Ayriyan, Alexander; Buša, Ján; Grigorian, Hovik; Poghosyan, Gevorg

    2018-04-01

    We have introduced parallel algorithm simulation of neutron star configurations for set of equation of state models. The performance of the parallel algorithm has been investigated for testing set of EoS models on two computational systems. It scales when using with MPI on modern CPUs and this investigation allowed us also to compare two different types of computational nodes.

  16. Modeling and inversion Matlab algorithms for resistivity, induced polarization and seismic data

    Science.gov (United States)

    Karaoulis, M.; Revil, A.; Minsley, B. J.; Werkema, D. D.

    2011-12-01

    M. Karaoulis (1), D.D. Werkema (3), A. Revil (1,2), A., B. Minsley (4), (1) Colorado School of Mines, Dept. of Geophysics, Golden, CO, USA. (2) ISTerre, CNRS, UMR 5559, Université de Savoie, Equipe Volcan, Le Bourget du Lac, France. (3) U.S. EPA, ORD, NERL, ESD, CMB, Las Vegas, Nevada, USA . (4) USGS, Federal Center, Lakewood, 10, 80225-0046, CO. Abstract We propose 2D and 3D forward modeling and inversion package for DC resistivity, time domain induced polarization (IP), frequency-domain IP, and seismic refraction data. For the resistivity and IP case, discretization is based on rectangular cells, where each cell has as unknown resistivity in the case of DC modelling, resistivity and chargeability in the time domain IP modelling, and complex resistivity in the spectral IP modelling. The governing partial-differential equations are solved with the finite element method, which can be applied to both real and complex variables that are solved for. For the seismic case, forward modeling is based on solving the eikonal equation using a second-order fast marching method. The wavepaths are materialized by Fresnel volumes rather than by conventional rays. This approach accounts for complicated velocity models and is advantageous because it considers frequency effects on the velocity resolution. The inversion can accommodate data at a single time step, or as a time-lapse dataset if the geophysical data are gathered for monitoring purposes. The aim of time-lapse inversion is to find the change in the velocities or resistivities of each model cell as a function of time. Different time-lapse algorithms can be applied such as independent inversion, difference inversion, 4D inversion, and 4D active time constraint inversion. The forward algorithms are benchmarked against analytical solutions and inversion results are compared with existing ones. The algorithms are packaged as Matlab codes with a simple Graphical User Interface. Although the code is parallelized for multi

  17. A genetic algorithm for a bi-objective mathematical model for dynamic virtual cell formation problem

    Science.gov (United States)

    Moradgholi, Mostafa; Paydar, Mohammad Mahdi; Mahdavi, Iraj; Jouzdani, Javid

    2016-09-01

    Nowadays, with the increasing pressure of the competitive business environment and demand for diverse products, manufacturers are force to seek for solutions that reduce production costs and rise product quality. Cellular manufacturing system (CMS), as a means to this end, has been a point of attraction to both researchers and practitioners. Limitations of cell formation problem (CFP), as one of important topics in CMS, have led to the introduction of virtual CMS (VCMS). This research addresses a bi-objective dynamic virtual cell formation problem (DVCFP) with the objective of finding the optimal formation of cells, considering the material handling costs, fixed machine installation costs and variable production costs of machines and workforce. Furthermore, we consider different skills on different machines in workforce assignment in a multi-period planning horizon. The bi-objective model is transformed to a single-objective fuzzy goal programming model and to show its performance; numerical examples are solved using the LINGO software. In addition, genetic algorithm (GA) is customized to tackle large-scale instances of the problems to show the performance of the solution method.

  18. A population-feedback control based algorithm for well trajectory optimization using proxy model

    Directory of Open Access Journals (Sweden)

    Javad Kasravi

    2017-04-01

    Full Text Available Wellbore instability is one of the concerns in the field of drilling engineering. This phenomenon is affected by several factors such as azimuth, inclination angle, in-situ stress, mud weight, and rock strength parameters. Among these factors, azimuth, inclination angle, and mud weight are controllable. The objective of this paper is to introduce a new procedure based on elastoplastic theory in wellbore stability solution to determine the optimum well trajectory and global minimum mud pressure required (GMMPR. Genetic algorithm (GA was applied as a main optimization engine that employs proportional feedback controller to obtain the minimum mud pressure required (MMPR. The feedback function repeatedly calculated and updated the error between the simulated and set point of normalized yielded zone area (NYZA. To reduce computation expenses, an artificial neural network (ANN was used as a proxy (surrogate model to approximate the behavior of the actual wellbore model. The methodology was applied to a directional well in southwestern Iranian oilfield. The results demonstrated that the error between the predicted GMMPR and practical safe mud pressure was 4% for elastoplastic method, and 22% for conventional elastic solution.

  19. Modeling of CO2 absorber using an AMP solution

    DEFF Research Database (Denmark)

    Gabrielsen, Jostein; Michelsen, Michael Locht; Stenby, Erling Halfdan

    2006-01-01

    Abstract: An explicit model for carbon dioxide (CO2) solubility in an aqueous solution of 2-amino-2-methyl-1-propanol (AMP) has been proposed and an expression for the heat of absorption of CO2 has been developed as a function of loading and temperature. A rate-based steady-state model for CO2...... to absorption of CO2 into an AMP solution in a packed tower and validated against pilot-plant data from the literature. (c) 2006 American Institute of Chemical Engineers....... absorption into an AMP solution has been proposed, using both the proposed expression for the CO2 solubility and the expression for the heat of absorption along with an expression for the enhancement factor and physicochemical data from the literature. The proposed model has successfully been applied...

  20. A molecular-thermodynamic model for polyelectrolyte solutions

    Energy Technology Data Exchange (ETDEWEB)

    Jiang, J.; Liu, H.; Hu, Y. [Thermodynamics Research Laboratory, East China University of Science and Technology, Shanghai 200237 (China); Prausnitz, J.M. [Department of Chemical Engineering, University of California, Berkeley, and Chemical Sciences Division, Lawrence Berkeley Laboratory, University of California, Berkeley, California 94720 (United States)

    1998-01-01

    Polyelectrolyte solutions are modeled as freely tangent-jointed, charged hard-sphere chains and corresponding counterions in a continuum medium with permitivity {var_epsilon}. By adopting the sticky-point model, the Helmholtz function for polyelectrolyte solutions is derived through the r-particle cavity-correlation function (CCF) for chains of sticky, charged hard spheres. The r-CCF is approximated by a product of effective nearest-neighbor two-particle CCFs; these are determined from the hypernetted-chain and mean-spherical closures (HNC/MSA) inside and outside the hard core, respectively, for the integral equation theory for electrolytes. The colligative properties are given as explicit functions of a scaling parameter {Gamma} that can be estimated by a simple iteration procedure. Osmotic pressures, osmotic coefficients, and activity coefficients are calculated for model solutions with various chain lengths. They are in good agreement with molecular simulation and experimental results. {copyright} {ital 1998 American Institute of Physics.}

  1. Automated drusen detection in retinal images using analytical modelling algorithms

    Directory of Open Access Journals (Sweden)

    Manivannan Ayyakkannu

    2011-07-01

    Full Text Available Abstract Background Drusen are common features in the ageing macula associated with exudative Age-Related Macular Degeneration (ARMD. They are visible in retinal images and their quantitative analysis is important in the follow up of the ARMD. However, their evaluation is fastidious and difficult to reproduce when performed manually. Methods This article proposes a methodology for Automatic Drusen Deposits Detection and quantification in Retinal Images (AD3RI by using digital image processing techniques. It includes an image pre-processing method to correct the uneven illumination and to normalize the intensity contrast with smoothing splines. The drusen detection uses a gradient based segmentation algorithm that isolates drusen and provides basic drusen characterization to the modelling stage. The detected drusen are then fitted by Modified Gaussian functions, producing a model of the image that is used to evaluate the affected area. Twenty two images were graded by eight experts, with the aid of a custom made software and compared with AD3RI. This comparison was based both on the total area and on the pixel-to-pixel analysis. The coefficient of variation, the intraclass correlation coefficient, the sensitivity, the specificity and the kappa coefficient were calculated. Results The ground truth used in this study was the experts' average grading. In order to evaluate the proposed methodology three indicators were defined: AD3RI compared to the ground truth (A2G; each expert compared to the other experts (E2E and a standard Global Threshold method compared to the ground truth (T2G. The results obtained for the three indicators, A2G, E2E and T2G, were: coefficient of variation 28.8 %, 22.5 % and 41.1 %, intraclass correlation coefficient 0.92, 0.88 and 0.67, sensitivity 0.68, 0.67 and 0.74, specificity 0.96, 0.97 and 0.94, and kappa coefficient 0.58, 0.60 and 0.49, respectively. Conclusions The gradings produced by AD3RI obtained an agreement

  2. Global solution for a chemotactic haptotactic model of cancer invasion

    Science.gov (United States)

    Tao, Youshan; Wang, Mingjun

    2008-10-01

    This paper deals with a mathematical model of cancer invasion of tissue recently proposed by Chaplain and Lolas. The model consists of a reaction-diffusion-taxis partial differential equation (PDE) describing the evolution of tumour cell density, a reaction-diffusion PDE governing the evolution of the proteolytic enzyme concentration and an ordinary differential equation modelling the proteolysis of the extracellular matrix (ECM). In addition to random motion, the tumour cells are directed not only by haptotaxis (cellular locomotion directed in response to a concentration gradient of adhesive molecules along the ECM) but also by chemotaxis (cellular locomotion directed in response to a concentration gradient of the diffusible proteolytic enzyme). In one space dimension, the global existence and uniqueness of a classical solution to this combined chemotactic-haptotactic model is proved for any chemotactic coefficient χ > 0. In two and three space dimensions, the global existence is proved for small χ/μ (where μ is the logistic growth rate of the tumour cells). The fundamental point of proof is to raise the regularity of a solution from L1 to Lp (p > 1). Furthermore, the existence of blow-up solutions to a sub-model in two space dimensions for large χ shows, to some extent, that the condition that χ/μ is small is necessary for the global existence of a solution to the full model.

  3. Using Hadoop MapReduce for Parallel Genetic Algorithms: A Comparison of the Global, Grid and Island Models.

    Science.gov (United States)

    Ferrucci, Filomena; Salza, Pasquale; Sarro, Federica

    2017-06-29

    The need to improve the scalability of Genetic Algorithms (GAs) has motivated the research on Parallel Genetic Algorithms (PGAs), and different technologies and approaches have been used. Hadoop MapReduce represents one of the most mature technologies to develop parallel algorithms. Based on the fact that parallel algorithms introduce communication overhead, the aim of the present work is to understand if, and possibly when, the parallel GAs solutions using Hadoop MapReduce show better performance than sequential versions in terms of execution time. Moreover, we are interested in understanding which PGA model can be most effective among the global, grid, and island models. We empirically assessed the performance of these three parallel models with respect to a sequential GA on a software engineering problem, evaluating the execution time and the achieved speedup. We also analysed the behaviour of the parallel models in relation to the overhead produced by the use of Hadoop MapReduce and the GAs' computational effort, which gives a more machine-independent measure of these algorithms. We exploited three problem instances to differentiate the computation load and three cluster configurations based on 2, 4, and 8 parallel nodes. Moreover, we estimated the costs of the execution of the experimentation on a potential cloud infrastructure, based on the pricing of the major commercial cloud providers. The empirical study revealed that the use of PGA based on the island model outperforms the other parallel models and the sequential GA for all the considered instances and clusters. Using 2, 4, and 8 nodes, the island model achieves an average speedup over the three datasets of 1.8, 3.4, and 7.0 times, respectively. Hadoop MapReduce has a set of different constraints that need to be considered during the design and the implementation of parallel algorithms. The overhead of data store (i.e., HDFS) accesses, communication, and latency requires solutions that reduce data store

  4. Modified multiblock partial least squares path modeling algorithm with backpropagation neural networks approach

    Science.gov (United States)

    Yuniarto, Budi; Kurniawan, Robert

    2017-03-01

    PLS Path Modeling (PLS-PM) is different from covariance based SEM, where PLS-PM use an approach based on variance or component, therefore, PLS-PM is also known as a component based SEM. Multiblock Partial Least Squares (MBPLS) is a method in PLS regression which can be used in PLS Path Modeling which known as Multiblock PLS Path Modeling (MBPLS-PM). This method uses an iterative procedure in its algorithm. This research aims to modify MBPLS-PM with Back Propagation Neural Network approach. The result is MBPLS-PM algorithm can be modified using the Back Propagation Neural Network approach to replace the iterative process in backward and forward step to get the matrix t and the matrix u in the algorithm. By modifying the MBPLS-PM algorithm using Back Propagation Neural Network approach, the model parameters obtained are relatively not significantly different compared to model parameters obtained by original MBPLS-PM algorithm.

  5. Mathematical model and coordination algorithms for ensuring complex security of an organization

    Science.gov (United States)

    Novoseltsev, V. I.; Orlova, D. E.; Dubrovin, A. S.; Irkhin, V. P.

    2018-03-01

    The mathematical model of coordination when ensuring complex security of the organization is considered. On the basis of use of a method of casual search three types of algorithms of effective coordination adequate to mismatch level concerning security are developed: a coordination algorithm at domination of instructions of the coordinator; a coordination algorithm at domination of decisions of performers; a coordination algorithm at parity of interests of the coordinator and performers. Assessment of convergence of the algorithms considered above it was made by carrying out a computing experiment. The described algorithms of coordination have property of convergence in the sense stated above. And, the following regularity is revealed: than more simply in the structural relation the algorithm, for the smaller number of iterations is provided to those its convergence.

  6. Dual-Model Reverse CKF Algorithm in Cooperative Navigation for USV

    Directory of Open Access Journals (Sweden)

    Bo Xu

    2014-01-01

    Full Text Available As one of the most promising research directions, cooperative location with high precision and low-cost IMU is becoming an emerging research topic in many positioning fields. Low-cost MEMS/DVL is a preferred solution for dead-reckoning in multi-USV cooperative network. However, large misalignment angles and large gyro drift coexist in low-cost MEMS that leads to the poor observability. Based on cubature Kalman filter (CKF algorithm that has access to high accuracy and relative small computation, dual-model filtering scheme is proposed. It divides the whole process into two subsections that cut off the coupling relations and improve the observability of MEMS errors: it first estimates large misalignment angle and then estimates the gyro drift. Furthermore, to improve the convergence speed of large misalignment angle estimated in the first subsection, “time reversion” concept is introduced. It uses a short period time to forward and backward several times to improve convergence speed effectively. Finally, simulation analysis and experimental verification is conducted. Simulation and experimental results show that the algorithm can effectively improve the cooperative navigation performance.

  7. Solute transport model for radioisotopes in layered soil

    International Nuclear Information System (INIS)

    Essel, P.

    2010-01-01

    The study considered the transport of a radioactive solute in solution from the surface of the earth down through the soil to the ground water when there is an accidental or intentional spillage of a radioactive material on the surface. The finite difference method was used to model the spatial and temporal profile of moisture content in a soil column using the θ-based Richard's equation leading to solution of the convective-dispersive equation for non-adsorbing solutes numerically. A matlab code has been generated to predict the transport of the radioactive contaminant, spilled on the surface of a vertically heterogeneous soil made up of two layers to determine the residence time of the solute in the unsaturated zone, the time it takes the contaminant to reach the groundwater and the amount of the solute entering the groundwater in various times and the levels of pollution in those times. The model predicted that, then there is a spillage of 7.2g of tritium, on the surface of the ground at the study area, it will take two years for the radionuclide to enter the groundwater and fifteen years to totally leave the unsaturated zone. There is therefore the need to try as much as possible to avoid intentional or accidental spillage of the radionuclide since it has long term effect. (au)

  8. Stability and special solutions to the conducting dusty gas model

    International Nuclear Information System (INIS)

    Calmelet, C.J.

    1987-01-01

    Models of the flow of a dusty, conducting and non-conducting gas are examined. Exact solutions for a conducting dusty gas model in the presence of a magnetic field are developed for two different flow domains. The exact solutions are calculated in the cases of negligible and non-negligible induced magnetic field. Stability theorems are developed which depend on the flow parameters of the dusty gas and the magnetic field. In particular, a universal stability theorem is obtained when the dusty gas flow is electrically conducting in the presence of an applied magnetic field, and the dust particles are non-uniformly distributed

  9. Phase-field model and its numerical solution for coring and microstructure evolution studies in alloys

    Science.gov (United States)

    Turchi, Patrice E. A.; Fattebert, Jean-Luc; Dorr, Milo R.; Wickett, Michael E.; Belak, James F.

    2011-03-01

    We describe an algorithm for the numerical solution of a phase-field model (PFM) of microstructure evolution in alloys using physical parameters from thermodynamic (CALPHAD) and kinetic databases. The coupled system of PFM equations includes a local order parameter, a quaternion representation of local crystal orientation and a species composition parameter. Time evolution of microstructures and alloy composition is obtained using an implicit time integration of the system. Physical parameters in databases can be obtained either through experiment or first-principles calculations. Application to coring studies and microstructure evolution of Au-Ni will be presented. Prepared by LLNL under Contract DE-AC52-07NA27344

  10. Transitions amongst synchronous solutions in the stochastic Kuramoto model

    Science.gov (United States)

    DeVille, Lee

    2012-05-01

    We consider the Kuramoto model of coupled oscillators with nearest-neighbour coupling and additive white noise. We show that synchronous solutions which are stable without the addition of noise become metastable and that we have transitions amongst synchronous solutions on long timescales. We compute these timescales and, moreover, compute the most likely path in phase space that transitions will follow. We show that these transition timescales do not increase as the number of oscillators in the system increases, and are roughly constant in the system size. Finally, we show that the transitions correspond to a splitting of one synchronous solution into two communities which move independently for some time and which rejoin to form a different synchronous solution.

  11. Algorithms and Methods for High-Performance Model Predictive Control

    DEFF Research Database (Denmark)

    Frison, Gianluca

    routines employed in the numerical tests. The main focus of this thesis is on linear MPC problems. In this thesis, both the algorithms and their implementation are equally important. About the implementation, a novel implementation strategy for the dense linear algebra routines in embedded optimization...... is proposed, aiming at improving the computational performance in case of small matrices. About the algorithms, they are built on top of the proposed linear algebra, and they are tailored to exploit the high-level structure of the MPC problems, with special care on reducing the computational complexity....

  12. Evaluation of unsaturated-zone solute-transport models for studies of agricultural chemicals

    Science.gov (United States)

    Nolan, Bernard T.; Bayless, E. Randall; Green, Christopher T.; Garg, Sheena; Voss, Frank D.; Lampe, David C.; Barbash, Jack E.; Capel, Paul D.; Bekins, Barbara A.

    2005-01-01

    Seven unsaturated-zone solute-transport models were tested with two data sets to select models for use by the Agricultural Chemical Team of the U.S. Geological Survey's National Water-Quality Assessment Program. The data sets were from a bromide tracer test near Merced, California, and an atrazine study in the White River Basin, Indiana. In this study the models are designated either as complex or simple based on the water flux algorithm. The complex models, HYDRUS2D, LEACHP, RZWQM, and VS2DT, use Richards' equation to simulate water flux and are well suited to process understanding. The simple models, CALF, GLEAMS, and PRZM, use a tipping-bucket algorithm and are more amenable to extrapolation because they require fewer input parameters. The purpose of this report is not to endorse a particular model, but to describe useful features, potential capabilities, and possible limitations that emerged from working with the model input data sets. More rigorous assessment of model applicability involves proper calibration, which was beyond the scope of this study.

  13. The uniqueness of the solution of cone-like inversion models for halo CMEs

    Science.gov (United States)

    Zhao, X. P.

    2006-12-01

    Most of elliptic halo CMEs are believed to be formed by the Thompson scattering of the photospheric light by the 3-D cone-like shell of the CME plasma. To obtain the real propagation direction and angular width of the halo CMEs, such cone-like inversion models as the circular cone, the elliptic cone and the ice-cream cone models have been suggested recently. Because the number of given parameters that are used to characterize 2-D elliptic halo CMEs observed by one spacecraft are less than the number of unknown parameters that are used to characterize the 3-D elliptic cone model, the solution of the elliptic cone model is not unique. Since it is difficult to determine whether or not an observed halo CME is formed by an circular cone or elliptic cone shell, the solution of circular cone model may often be not unique too. To fix the problem of the uniqueness of the solution of various 3-D cone-like inversion models, this work tries to develop the algorithm for using the data from multi-spacecraft, such as the STEREO A and B, and the Solar Sentinels.

  14. Artificial neural network-genetic algorithm based optimization for the adsorption of methylene blue and brilliant green from aqueous solution by graphite oxide nanoparticle.

    Science.gov (United States)

    Ghaedi, M; Zeinali, N; Ghaedi, A M; Teimuori, M; Tashkhourian, J

    2014-05-05

    In this study, graphite oxide (GO) nano according to Hummers method was synthesized and subsequently was used for the removal of methylene blue (MB) and brilliant green (BG). The detail information about the structure and physicochemical properties of GO are investigated by different techniques such as XRD and FTIR analysis. The influence of solution pH, initial dye concentration, contact time and adsorbent dosage was examined in batch mode and optimum conditions was set as pH=7.0, 2 mg of GO and 10 min contact time. Employment of equilibrium isotherm models for description of adsorption capacities of GO explore the good efficiency of Langmuir model for the best presentation of experimental data with maximum adsorption capacity of 476.19 and 416.67 for MB and BG dyes in single solution. The analysis of adsorption rate at various stirring times shows that both dyes adsorption followed a pseudo second-order kinetic model with cooperation with interparticle diffusion model. Subsequently, the adsorption data as new combination of artificial neural network was modeled to evaluate and obtain the real conditions for fast and efficient removal of dyes. A three-layer artificial neural network (ANN) model is applicable for accurate prediction of dyes removal percentage from aqueous solution by GO following conduction of 336 experimental data. The network was trained using the obtained experimental data at optimum pH with different GO amount (0.002-0.008 g) and 5-40 mg/L of both dyes over contact time of 0.5-30 min. The ANN model was able to predict the removal efficiency with Levenberg-Marquardt algorithm (LMA), a linear transfer function (purelin) at output layer and a tangent sigmoid transfer function (tansig) at hidden layer with 10 and 11 neurons for MB and BG dyes, respectively. The minimum mean squared error (MSE) of 0.0012 and coefficient of determination (R(2)) of 0.982 were found for prediction and modeling of MB removal, while the respective value for BG was the

  15. Dealing with Multiple Solutions in Structural Vector Autoregressive Models.

    Science.gov (United States)

    Beltz, Adriene M; Molenaar, Peter C M

    2016-01-01

    Structural vector autoregressive models (VARs) hold great potential for psychological science, particularly for time series data analysis. They capture the magnitude, direction of influence, and temporal (lagged and contemporaneous) nature of relations among variables. Unified structural equation modeling (uSEM) is an optimal structural VAR instantiation, according to large-scale simulation studies, and it is implemented within an SEM framework. However, little is known about the uniqueness of uSEM results. Thus, the goal of this study was to investigate whether multiple solutions result from uSEM analysis and, if so, to demonstrate ways to select an optimal solution. This was accomplished with two simulated data sets, an empirical data set concerning children's dyadic play, and modifications to the group iterative multiple model estimation (GIMME) program, which implements uSEMs with group- and individual-level relations in a data-driven manner. Results revealed multiple solutions when there were large contemporaneous relations among variables. Results also verified several ways to select the correct solution when the complete solution set was generated, such as the use of cross-validation, maximum standardized residuals, and information criteria. This work has immediate and direct implications for the analysis of time series data and for the inferences drawn from those data concerning human behavior.

  16. Coupling between solute transport and chemical reactions models

    International Nuclear Information System (INIS)

    Samper, J.; Ajora, C.

    1993-01-01

    During subsurface transport, reactive solutes are subject to a variety of hydrodynamic and chemical processes. The major hydrodynamic processes include advection and convection, dispersion and diffusion. The key chemical processes are complexation including hydrolysis and acid-base reactions, dissolution-precipitation, reduction-oxidation, adsorption and ion exchange. The combined effects of all these processes on solute transport must satisfy the principle of conservation of mass. The statement of conservation of mass for N mobile species leads to N partial differential equations. Traditional solute transport models often incorporate the effects of hydrodynamic processes rigorously but oversimplify chemical interactions among aqueous species. Sophisticated chemical equilibrium models, on the other hand, incorporate a variety of chemical processes but generally assume no-flow systems. In the past decade, coupled models accounting for complex hydrological and chemical processes, with varying degrees of sophistication, have been developed. The existing models of reactive transport employ two basic sets of equations. The transport of solutes is described by a set of partial differential equations, and the chemical processes, under the assumption of equilibrium, are described by a set of nonlinear algebraic equations. An important consideration in any approach is the choice of primary dependent variables. Most existing models cannot account for the complete set of chemical processes, cannot be easily extended to include mixed chemical equilibria and kinetics, and cannot handle practical two and three dimensional problems. The difficulties arise mainly from improper selection of the primary variables in the transport equations. (Author) 38 refs

  17. Long-term power generation expansion planning with short-term demand response: Model, algorithms, implementation, and electricity policies

    Science.gov (United States)

    Lohmann, Timo

    Electric sector models are powerful tools that guide policy makers and stakeholders. Long-term power generation expansion planning models are a prominent example and determine a capacity expansion for an existing power system over a long planning horizon. With the changes in the power industry away from monopolies and regulation, the focus of these models has shifted to competing electric companies maximizing their profit in a deregulated electricity market. In recent years, consumers have started to participate in demand response programs, actively influencing electricity load and price in the power system. We introduce a model that features investment and retirement decisions over a long planning horizon of more than 20 years, as well as an hourly representation of day-ahead electricity markets in which sellers of electricity face buyers. This combination makes our model both unique and challenging to solve. Decomposition algorithms, and especially Benders decomposition, can exploit the model structure. We present a novel method that can be seen as an alternative to generalized Benders decomposition and relies on dynamic linear overestimation. We prove its finite convergence and present computational results, demonstrating its superiority over traditional approaches. In certain special cases of our model, all necessary solution values in the decomposition algorithms can be directly calculated and solving mathematical programming problems becomes entirely obsolete. This leads to highly efficient algorithms that drastically outperform their programming problem-based counterparts. Furthermore, we discuss the implementation of all tailored algorithms and the challenges from a modeling software developer's standpoint, providing an insider's look into the modeling language GAMS. Finally, we apply our model to the Texas power system and design two electricity policies motivated by the U.S. Environment Protection Agency's recently proposed CO2 emissions targets for the

  18. A Multi-Scale Method for Dynamics Simulation in Continuum Solvent Models I: Finite-Difference Algorithm for Navier-Stokes Equation.

    Science.gov (United States)

    Xiao, Li; Cai, Qin; Li, Zhilin; Zhao, Hongkai; Luo, Ray

    2014-11-25

    A multi-scale framework is proposed for more realistic molecular dynamics simulations in continuum solvent models by coupling a molecular mechanics treatment of solute with a fluid mechanics treatment of solvent. This article reports our initial efforts to formulate the physical concepts necessary for coupling the two mechanics and develop a 3D numerical algorithm to simulate the solvent fluid via the Navier-Stokes equation. The numerical algorithm was validated with multiple test cases. The validation shows that the algorithm is effective and stable, with observed accuracy consistent with our design.

  19. Verification of the coupled space-angle adaptivity algorithm for the finite element-spherical harmonics method via the method of manufactured solutions

    International Nuclear Information System (INIS)

    Park, H.; De Oliveira, C. R. E.

    2007-01-01

    This paper describes the verification of the recently developed space-angle self-adaptive algorithm for the finite element-spherical harmonics method via the Method of Manufactured Solutions. This method provides a simple, yet robust way for verifying the theoretical properties of the adaptive algorithm and interfaces very well with the underlying second-order, even-parity transport formulation. Simple analytic solutions in both spatial and angular variables are manufactured to assess the theoretical performance of the a posteriori error estimates. The numerical results confirm reliability of the developed space-angle error indicators. (authors)

  20. Model-based remote sensing algorithms for particulate organic carbon

    Indian Academy of Sciences (India)

    PCA algorithms based on the first three, four, and five modes accounted for 90, 95, and 98% of total variance and yielded significant correlations with POC with 2 = 0.89, 0.92, and 0.93. These full waveband approaches provided robust estimates of POC in various water types. Three different analyses (root mean square ...

  1. A face recognition algorithm based on multiple individual discriminative models

    DEFF Research Database (Denmark)

    Fagertun, Jens; Gomez, David Delgado; Ersbøll, Bjarne Kjær

    2005-01-01

    Abstract—In this paper, a novel algorithm for facial recognition is proposed. The technique combines the color texture and geometrical configuration provided by face images. Landmarks and pixel intensities are used by Principal Component Analysis and Fisher Linear Discriminant Analysis to associate...

  2. Robust optimization model and algorithm for railway freight center location problem in uncertain environment.

    Science.gov (United States)

    Liu, Xing-Cai; He, Shi-Wei; Song, Rui; Sun, Yang; Li, Hao-Dong

    2014-01-01

    Railway freight center location problem is an important issue in railway freight transport programming. This paper focuses on the railway freight center location problem in uncertain environment. Seeing that the expected value model ignores the negative influence of disadvantageous scenarios, a robust optimization model was proposed. The robust optimization model takes expected cost and deviation value of the scenarios as the objective. A cloud adaptive clonal selection algorithm (C-ACSA) was presented. It combines adaptive clonal selection algorithm with Cloud Model which can improve the convergence rate. Design of the code and progress of the algorithm were proposed. Result of the example demonstrates the model and algorithm are effective. Compared with the expected value cases, the amount of disadvantageous scenarios in robust model reduces from 163 to 21, which prove the result of robust model is more reliable.

  3. Robust Optimization Model and Algorithm for Railway Freight Center Location Problem in Uncertain Environment

    Directory of Open Access Journals (Sweden)

    Xing-cai Liu

    2014-01-01

    Full Text Available Railway freight center location problem is an important issue in railway freight transport programming. This paper focuses on the railway freight center location problem in uncertain environment. Seeing that the expected value model ignores the negative influence of disadvantageous scenarios, a robust optimization model was proposed. The robust optimization model takes expected cost and deviation value of the scenarios as the objective. A cloud adaptive clonal selection algorithm (C-ACSA was presented. It combines adaptive clonal selection algorithm with Cloud Model which can improve the convergence rate. Design of the code and progress of the algorithm were proposed. Result of the example demonstrates the model and algorithm are effective. Compared with the expected value cases, the amount of disadvantageous scenarios in robust model reduces from 163 to 21, which prove the result of robust model is more reliable.

  4. Pollutant source identification model for water pollution incidents in small straight rivers based on genetic algorithm

    Science.gov (United States)

    Zhang, Shou-ping; Xin, Xiao-kang

    2017-07-01

    Identification of pollutant sources for river pollution incidents is an important and difficult task in the emergency rescue, and an intelligent optimization method can effectively compensate for the weakness of traditional methods. An intelligent model for pollutant source identification has been established using the basic genetic algorithm (BGA) as an optimization search tool and applying an analytic solution formula of one-dimensional unsteady water quality equation to construct the objective function. Experimental tests show that the identification model is effective and efficient: the model can accurately figure out the pollutant amounts or positions no matter single pollution source or multiple sources. Especially when the population size of BGA is set as 10, the computing results are sound agree with analytic results for a single source amount and position identification, the relative errors are no more than 5 %. For cases of multi-point sources and multi-variable, there are some errors in computing results for the reasons that there exist many possible combinations of the pollution sources. But, with the help of previous experience to narrow the search scope, the relative errors of the identification results are less than 5 %, which proves the established source identification model can be used to direct emergency responses.

  5. An Iterative Algorithm to Determine the Dynamic User Equilibrium in a Traffic Simulation Model

    Science.gov (United States)

    Gawron, C.

    An iterative algorithm to determine the dynamic user equilibrium with respect to link costs defined by a traffic simulation model is presented. Each driver's route choice is modeled by a discrete probability distribution which is used to select a route in the simulation. After each simulation run, the probability distribution is adapted to minimize the travel costs. Although the algorithm does not depend on the simulation model, a queuing model is used for performance reasons. The stability of the algorithm is analyzed for a simple example network. As an application example, a dynamic version of Braess's paradox is studied.

  6. Stability of subsystem solutions in agent-based models

    Science.gov (United States)

    Perc, Matjaž

    2018-01-01

    The fact that relatively simple entities, such as particles or neurons, or even ants or bees or humans, give rise to fascinatingly complex behaviour when interacting in large numbers is the hallmark of complex systems science. Agent-based models are frequently employed for modelling and obtaining a predictive understanding of complex systems. Since the sheer number of equations that describe the behaviour of an entire agent-based model often makes it impossible to solve such models exactly, Monte Carlo simulation methods must be used for the analysis. However, unlike pairwise interactions among particles that typically govern solid-state physics systems, interactions among agents that describe systems in biology, sociology or the humanities often involve group interactions, and they also involve a larger number of possible states even for the most simplified description of reality. This begets the question: when can we be certain that an observed simulation outcome of an agent-based model is actually stable and valid in the large system-size limit? The latter is key for the correct determination of phase transitions between different stable solutions, and for the understanding of the underlying microscopic processes that led to these phase transitions. We show that a satisfactory answer can only be obtained by means of a complete stability analysis of subsystem solutions. A subsystem solution can be formed by any subset of all possible agent states. The winner between two subsystem solutions can be determined by the average moving direction of the invasion front that separates them, yet it is crucial that the competing subsystem solutions are characterised by a proper composition and spatiotemporal structure before the competition starts. We use the spatial public goods game with diverse tolerance as an example, but the approach has relevance for a wide variety of agent-based models.

  7. A Decomposition Model for HPLC-DAD Data Set and Its Solution by Particle Swarm Optimization

    Directory of Open Access Journals (Sweden)

    Lizhi Cui

    2014-01-01

    Full Text Available This paper proposes a separation method, based on the model of Generalized Reference Curve Measurement and the algorithm of Particle Swarm Optimization (GRCM-PSO, for the High Performance Liquid Chromatography with Diode Array Detection (HPLC-DAD data set. Firstly, initial parameters are generated to construct reference curves for the chromatogram peaks of the compounds based on its physical principle. Then, a General Reference Curve Measurement (GRCM model is designed to transform these parameters to scalar values, which indicate the fitness for all parameters. Thirdly, rough solutions are found by searching individual target for every parameter, and reinitialization only around these rough solutions is executed. Then, the Particle Swarm Optimization (PSO algorithm is adopted to obtain the optimal parameters by minimizing the fitness of these new parameters given by the GRCM model. Finally, spectra for the compounds are estimated based on the optimal parameters and the HPLC-DAD data set. Through simulations and experiments, following conclusions are drawn: (1 the GRCM-PSO method can separate the chromatogram peaks and spectra from the HPLC-DAD data set without knowing the number of the compounds in advance even when severe overlap and white noise exist; (2 the GRCM-PSO method is able to handle the real HPLC-DAD data set.

  8. LED-based Photometric Stereo: Modeling, Calibration and Numerical Solutions

    DEFF Research Database (Denmark)

    Quéau, Yvain; Durix, Bastien; Wu, Tao

    2018-01-01

    We conduct a thorough study of photometric stereo under nearby point light source illumination, from modeling to numerical solution, through calibration. In the classical formulation of photometric stereo, the luminous fluxes are assumed to be directional, which is very difficult to achieve in pr...

  9. The mathematical models of solution mining and case study

    International Nuclear Information System (INIS)

    Jacobson, R.H.; Waskovsky, J.; Wang Xiwen; Wang Haifeng

    1991-01-01

    The mathematical model of parameters which describe solution mining and the principle of ore leaching are presented theoretically and thoroughly with the emphasis on in-situ leaching with a biolixiviant, furthermore, the example of bioleach mining, or biomining, in an abandoned underground copper mine is discussed

  10. Approximate Solutions of Interactive Dynamic Influence Diagrams Using Model Clustering

    DEFF Research Database (Denmark)

    Zeng, Yifeng; Doshi, Prashant; Qiongyu, Cheng

    2007-01-01

    Interactive dynamic influence diagrams (I-DIDs) offer a transparent and semantically clear representation for the sequential decision-making problem over multiple time steps in the presence of other interacting agents. Solving I-DIDs exactly involves knowing the solutions of possible models...

  11. Stationary solutions of multicomponent chiral and gauge models

    International Nuclear Information System (INIS)

    Chudnovsky, D.V.; Chudnovsky, G.V.

    1979-01-01

    The authors examine stationary solutions of completely integrable systems in (x, t) dimensions having infinitely many components. Among the cases under investigation are: (1) the infinite-component non-linear Schroedinger equation; (2) infinite component CPsup(Ω) or SU(N) sigma-models; (3) general gauge and chiral completely integrable systems. (Auth.)

  12. Foam for Enhanced Oil Recovery : Modeling and Analytical Solutions

    NARCIS (Netherlands)

    Ashoori, E.

    2012-01-01

    Foam increases sweep in miscible- and immiscible-gas enhanced oil recovery by decreasing the mobility of gas enormously. This thesis is concerned with the simulations and analytical solutions for foam flow for the purpose of modeling foam EOR in a reservoir. For the ultimate goal of upscaling our

  13. Interpolation solution of the single-impurity Anderson model

    International Nuclear Information System (INIS)

    Kuzemsky, A.L.

    1990-10-01

    The dynamical properties of the single-impurity Anderson model (SIAM) is studied using a novel Irreducible Green's Function method (IGF). The new solution for one-particle GF interpolating between the strong and weak correlation limits is obtained. The unified concept of relevant mean-field renormalizations is indispensable for strong correlation limit. (author). 21 refs

  14. Analysis and modeling of alkali halide aqueous solutions

    DEFF Research Database (Denmark)

    Kim, Sun Hyung; Anantpinijwatna, Amata; Kang, Jeong Won

    2016-01-01

    on calculations for various electrolyte properties of alkali halide aqueous solutions such as mean ionic activity coefficients, osmotic coefficients, and salt solubilities. The model covers highly nonideal electrolyte systems such as lithium chloride, lithium bromide and lithium iodide, that is, systems...

  15. Orbifolds and Exact Solutions of Strongly-Coupled Matrix Models

    Science.gov (United States)

    Córdova, Clay; Heidenreich, Ben; Popolitov, Alexandr; Shakirov, Shamil

    2018-02-01

    We find an exact solution to strongly-coupled matrix models with a single-trace monomial potential. Our solution yields closed form expressions for the partition function as well as averages of Schur functions. The results are fully factorized into a product of terms linear in the rank of the matrix and the parameters of the model. We extend our formulas to include both logarithmic and finite-difference deformations, thereby generalizing the celebrated Selberg and Kadell integrals. We conjecture a formula for correlators of two Schur functions in these models, and explain how our results follow from a general orbifold-like procedure that can be applied to any one-matrix model with a single-trace potential.

  16. Curved-space classical solutions of a massive supermatrix model

    International Nuclear Information System (INIS)

    Azuma, Takehiro; Bagnoud, Maxime

    2003-01-01

    We investigate here a supermatrix model with a mass term and a cubic interaction. It is based on the super Lie algebra osp(1 vertical bar 32,R), which could play a role in the construction of the eleven-dimensional M-theory. This model contains a massive version of the IIB matrix model, where some fields have a tachyonic mass term. Therefore, the trivial vacuum of this theory is unstable. However, this model possesses several classical solutions where these fields build noncommutative curved spaces and these solutions are shown to be energetically more favorable than the trivial vacuum. In particular, we describe in details two cases, the SO(3)xSO(3)xSO(3) (three fuzzy 2-spheres) and the SO(9) (fuzzy 8-sphere) classical backgrounds

  17. Quantum decay model with exact explicit analytical solution

    Science.gov (United States)

    Marchewka, Avi; Granot, Er'El

    2009-01-01

    A simple decay model is introduced. The model comprises a point potential well, which experiences an abrupt change. Due to the temporal variation, the initial quantum state can either escape from the well or stay localized as a new bound state. The model allows for an exact analytical solution while having the necessary features of a decay process. The results show that the decay is never exponential, as classical dynamics predicts. Moreover, at short times the decay has a fractional power law, which differs from perturbation quantum method predictions. At long times the decay includes oscillations with an envelope that decays algebraically. This is a model where the final state can be either continuous or localized, and that has an exact analytical solution.

  18. Small-scale engagement model with arrivals: analytical solutions

    International Nuclear Information System (INIS)

    Engi, D.

    1977-04-01

    This report presents an analytical model of small-scale battles. The specific impetus for this effort was provided by a need to characterize hypothetical battles between guards at a nuclear facility and their potential adversaries. The solution procedure can be used to find measures of a number of critical parameters; for example, the win probabilities and the expected duration of the battle. Numerical solutions are obtainable if the total number of individual combatants on the opposing sides is less than 10. For smaller force size battles, with one or two combatants on each side, symbolic solutions can be found. The symbolic solutions express the output parameters abstractly in terms of symbolic representations of the input parameters while the numerical solutions are expressed as numerical values. The input parameters are derived from the probability distributions of the attrition and arrival processes. The solution procedure reduces to solving sets of linear equations that have been constructed from the input parameters. The approach presented in this report does not address the problems associated with measuring the inputs. Rather, this report attempts to establish a relatively simple structure within which small-scale battles can be studied

  19. Solution of the strong CP problem in models with scalars

    International Nuclear Information System (INIS)

    Dimopoulos, S.

    1978-01-01

    A possible solution to the strong CP problem is pointed out within the context of a Weinberg--Salam model with two Higgs fields coupled in a Peccei--Quinn symmetric fashion. This is done by extending the colour group to a bigger simple group which is broken at some very high energy. The model contains a heavy axion. No old or new U(1) problem re-emerges. 31 references

  20. Zebrabase: An intuitive tracking solution for aquatic model organisms

    OpenAIRE

    Oltova, Jana; Bartunek, Petr; Machonova, Olga; Svoboda, Ondrej; Skuta, Ctibor; Jindrich, Jindrich

    2018-01-01

    Small fish species, like zebrafish or medaka, are constantly gaining popularity in basic research and disease modeling as a useful alternative to rodent model organisms. However, the tracking options for fish within a facility are rather limited. Here, we present an aquatic species tracking database, Zebrabase, developed in our zebrafish research and breeding facility that represents a practical and scalable solution and an intuitive platform for scientists, fish managers and caretakers, in b...