WorldWideScience

Sample records for models show transitions

  1. Simple solvable energy-landscape model that shows a thermodynamic phase transition and a glass transition.

    Science.gov (United States)

    Naumis, Gerardo G

    2012-06-01

    When a liquid melt is cooled, a glass or phase transition can be obtained depending on the cooling rate. Yet, this behavior has not been clearly captured in energy-landscape models. Here, a model is provided in which two key ingredients are considered in the landscape, metastable states and their multiplicity. Metastable states are considered as in two level system models. However, their multiplicity and topology allows a phase transition in the thermodynamic limit for slow cooling, while a transition to the glass is obtained for fast cooling. By solving the corresponding master equation, the minimal speed of cooling required to produce the glass is obtained as a function of the distribution of metastable states.

  2. Studies Using an in Vitro Model Show Evidence of Involvement of Epithelial-Mesenchymal Transition of Human Endometrial Epithelial Cells in Human Embryo Implantation*

    Science.gov (United States)

    Uchida, Hiroshi; Maruyama, Tetsuo; Nishikawa-Uchida, Sayaka; Oda, Hideyuki; Miyazaki, Kaoru; Yamasaki, Akiko; Yoshimura, Yasunori

    2012-01-01

    Human embryo implantation is a critical multistep process consisting of embryo apposition/adhesion, followed by penetration and invasion. Through embryo penetration, the endometrial epithelial cell barrier is disrupted and remodeled by an unknown mechanism. We have previously developed an in vitro model for human embryo implantation employing the human choriocarcinoma cell line JAR and the human endometrial adenocarcinoma cell line Ishikawa. Using this model we have shown that stimulation with ovarian steroid hormones (17β-estradiol and progesterone, E2P4) and suberoylanilide hydroxamic acid (SAHA), a histone deacetylase inhibitor, enhances the attachment and adhesion of JAR spheroids to Ishikawa. In the present study we showed that the attachment and adhesion of JAR spheroids and treatment with E2P4 or SAHA individually induce the epithelial-mesenchymal transition (EMT) in Ishikawa cells. This was evident by up-regulation of N-cadherin and vimentin, a mesenchymal cell marker, and concomitant down-regulation of E-cadherin in Ishikawa cells. Stimulation with E2P4 or SAHA accelerated Ishikawa cell motility, increased JAR spheroid outgrowth, and enhanced the unique redistribution of N-cadherin, which was most prominent in proximity to the adhered spheroids. Moreover, an N-cadherin functional blocking antibody attenuated all events but not JAR spheroid adhesion. These results collectively provide evidence suggesting that E2P4- and implanting embryo-induced EMT of endometrial epithelial cells may play a pivotal role in the subsequent processes of human embryo implantation with functional control of N-cadherin. PMID:22174415

  3. Five Kepler target stars that show multiple transiting exoplanet candidates

    Energy Technology Data Exchange (ETDEWEB)

    Steffen, Jason H.; /Fermilab; Batalha, Natalie M.; /San Jose State U.; Borucki, William J.; /NASA, Ames; Buchhave, Lars A.; /Harvard-Smithsonian Ctr. Astrophys. /Bohr Inst.; Caldwell, Douglas A.; /NASA, Ames /SETI Inst., Mtn. View; Cochran, William D.; /Texas U.; Endl, Michael; /Texas U.; Fabrycky, Daniel C.; /Harvard-Smithsonian Ctr. Astrophys.; Fressin, Francois; /Harvard-Smithsonian Ctr. Astrophys.; Ford, Eric B.; /Florida U.; Fortney, Jonathan J.; /UC, Santa Cruz, Phys. Dept. /NASA, Ames

    2010-06-01

    We present and discuss five candidate exoplanetary systems identified with the Kepler spacecraft. These five systems show transits from multiple exoplanet candidates. Should these objects prove to be planetary in nature, then these five systems open new opportunities for the field of exoplanets and provide new insights into the formation and dynamical evolution of planetary systems. We discuss the methods used to identify multiple transiting objects from the Kepler photometry as well as the false-positive rejection methods that have been applied to these data. One system shows transits from three distinct objects while the remaining four systems show transits from two objects. Three systems have planet candidates that are near mean motion commensurabilities - two near 2:1 and one just outside 5:2. We discuss the implications that multitransiting systems have on the distribution of orbital inclinations in planetary systems, and hence their dynamical histories; as well as their likely masses and chemical compositions. A Monte Carlo study indicates that, with additional data, most of these systems should exhibit detectable transit timing variations (TTV) due to gravitational interactions - though none are apparent in these data. We also discuss new challenges that arise in TTV analyses due to the presence of more than two planets in a system.

  4. Five kepler target stars that show multiple transiting exoplanet candidates

    DEFF Research Database (Denmark)

    Steffen..[], Jason H.; Batalha, N. M.; Broucki, W J.

    2010-01-01

    We present and discuss five candidate exoplanetary systems identified with the Kepler spacecraft. These five systems show transits from multiple exoplanet candidates. Should these objects prove to be planetary in nature, then these five systems open new opportunities for the field of exoplanets a...

  5. "Show me your impact": evaluating transitional justice in contested spaces.

    Science.gov (United States)

    Duggan, Colleen

    2012-02-01

    This paper discusses some of the most significant challenges and opportunities for evaluating the effects of programs in support of transitional justice - the field that addresses how post-conflict or post authoritarian societies deal with legacies of wide spread human rights violations. The discussion is empirically grounded in a case study that assesses the efforts of the International Development Research Centre (IDRC) and one of its Guatemalan partners to evaluate the effects of a museum exposition that is attempting to recast historic memory and challenge racist attitudes in post-conflict Guatemala. The paper argues that despite the increasing trend to fund transitional justice programs, many international aid donors are stuck in traditional and arguably orthodox paradigms of program evaluation. This is having a negative effect not only upon the administration of aid but also upon how transitional justice research is perceived and valued by local populations. The case study experience indicates that there is no perfect evaluation model or approach for evaluating transitional justice programming - only choices to be made by commissioners of evaluation, evaluators, and those being evaluated. These are profoundly influenced by the extreme politics and moral values that define transitional justice settings as contested spaces in which calls to remember the tragic past must be balanced with aspirations to re-build a hopeful future. Copyright © 2010. Published by Elsevier Ltd.

  6. Modeling for transition management

    NARCIS (Netherlands)

    Chappin, E.J.L.; Dijkema, G.P.J.

    2015-01-01

    A framework for the modeling and simulation of transitions is presented. A transition, “substantial change in the state of a socio-technical system”, typically unfolds over a long timespan. We therefore suggest to use simulation to inform transition managers on the effect of their decisions.

  7. Modeling for Transition Management

    NARCIS (Netherlands)

    Chappin, Emile J L; Dijkema, Gerard P.J.

    2015-01-01

    A framework for the modeling and simulation of transitions is presented. A transition, “substantial change in the state of a socio-technical system”, typically unfolds over a long timespan. We therefore suggest to use simulation to inform transition managers on the effect of their decisions.

  8. Transitive probabilistic CLIR models.

    NARCIS (Netherlands)

    Kraaij, W.; de Jong, Franciska M.G.

    2004-01-01

    Transitive translation could be a useful technique to enlarge the number of supported language pairs for a cross-language information retrieval (CLIR) system in a cost-effective manner. The paper describes several setups for transitive translation based on probabilistic translation models. The

  9. Duchenne muscular dystrophy models show their age

    OpenAIRE

    Chamberlain, Jeffrey S.

    2010-01-01

    The lack of appropriate animal models has hampered efforts to develop therapies for Duchenne muscular dystrophy (DMD). A new mouse model lacking both dystrophin and telomerase (Sacco et al., 2010) closely mimics the pathological progression of human DMD and shows that muscle stem cell activity is a key determinant of disease severity.

  10. Economic Growth Models Transition

    Directory of Open Access Journals (Sweden)

    Coralia Angelescu

    2006-03-01

    Full Text Available The transitional recession in countries of Eastern Europe has been much longer than expected. The legacy and recent policy mistakes have both contributed to the slow progress. As structural reforms and gradual institution building have taken hold, the post-socialist economics have started to recover, with some leading countries building momentum toward faster growth. There is a possibility that in wider context of globalization several of these emerging market economies will be able to catch up with the more advanced industrial economies in a matter of one or two generations. Over the past few years, most candidate countries have made progress in the transition to a competitive market economy, macroeconomic stabilization and structural reform. However their income levels have remained far below those in the Member States. Measured by per capita income in purchasing power standards, there has been a very limited amount of catching up over the past fourteen years. Prior, the distinctions between Solow-Swan model and endogenous growth model. The interdependence between transition and integration are stated in this study. Finally, some measures of macroeconomic policy for sustainable growth are proposed in correlation with real macroeconomic situation of the Romanian economy. Our study would be considered the real convergence for the Romanian economy and the recommendations for the adequate policies to achieve a fast real convergence and sustainable growth.

  11. Economic Growth Models Transition

    Directory of Open Access Journals (Sweden)

    Coralia Angelescu

    2006-01-01

    Full Text Available The transitional recession in countries of Eastern Europe has been much longer than expected. The legacy and recent policy mistakes have both contributed to the slow progress. As structural reforms and gradual institution building have taken hold, the post-socialist economics have started to recover, with some leading countries building momentum toward faster growth. There is a possibility that in wider context of globalization several of these emerging market economies will be able to catch up with the more advanced industrial economies in a matter of one or two generations. Over the past few years, most candidate countries have made progress in the transition to a competitive market economy, macroeconomic stabilization and structural reform. However their income levels have remained far below those in the Member States. Measured by per capita income in purchasing power standards, there has been a very limited amount of catching up over the past fourteen years. Prior, the distinctions between Solow-Swan model and endogenous growth model. The interdependence between transition and integration are stated in this study. Finally, some measures of macroeconomic policy for sustainable growth are proposed in correlation with real macroeconomic situation of the Romanian economy. Our study would be considered the real convergence for the Romanian economy and the recommendations for the adequate policies to achieve a fast real convergence and sustainable growth.

  12. Transitional region of phase transitions in nuclear models

    Energy Technology Data Exchange (ETDEWEB)

    Kotze, A A

    1988-01-01

    The phase transition in an exactly solvable nuclear model, the Lipkin model, is scrutinised, first using Hartree-Fock methods or the plain mean flield approximation, and then using projected wave functions. It turns out that the plain mean field is not reliable in the transitional region. Although the projection methods give better resutls in the transitional region, it leads to spurious singularities. While the energy of the projection before variation is slightly better than its projection after variation counterpart, the perfomance of the wave function is considerably worse in the transitional region. The model's wave function undergoes dramatic changes in the transitional region. The mechanism that brings about these changes is studied within a model Hamiltonian that can reproduce the Lipkin model mathematically. It turns out that the numerous exceptional points found in the transitional region, bring about the change of the ground state wave function. Exceptional points are associated with level crossings in the complex plane. These level crossings can be seen as level repulsions in the spectrum. Level repulsion and a sensitive dependence of the system on some external parameter are characteristics of chaotic behaviour. These two features are found in the transitional region of the Lipkin model. In order to study chaos, one has to resort to a statistical analysis. A measure of the chaotic behaviour of systems, the ..delta../sub 3/ statistic, is introduced. The results show that the Lipkin model is harmonic, even in the transitional region. For the Lipkin model the exceptional points are regularly distributed in the complex plane. In a total chaotic system the points would be randomly distributed.

  13. The transitional region of phase transitions in nuclear models

    International Nuclear Information System (INIS)

    Kotze, A.A.

    1988-01-01

    The phase transition in an exactly solvable nuclear model, the Lipkin model, is scrutinised, first using Hartree-Fock methods or the plain mean flield approximation, and then using projected wave functions. It turns out that the plain mean field is not reliable in the transitional region. Although the projection methods give better resutls in the transitional region, it leads to spurious singularities. While the energy of the projection before variation is slightly better than its projection after variation counterpart, the perfomance of the wave function is considerably worse in the transitional region. The model's wave function undergoes dramatic changes in the transitional region. The mechanism that brings about these changes is studied within a model Hamiltonian that can reproduce the Lipkin model mathematically. It turns out that the numerous exceptional points found in the transitional region, bring about the change of the ground state wave function. Exceptional points are associated with level crossings in the complex plane. These level crossings can be seen as level repulsions in the spectrum. Level repulsion and a sensitive dependence of the system on some external parameter are characteristics of chaotic behaviour. These two features are found in the transitional region of the Lipkin model. In order to study chaos, one has to resort to a statistical analysis. A measure of the chaotic behaviour of systems, the Δ 3 statistic, is introduced. The results show that the Lipkin model is harmonic, even in the transitional region. For the Lipkin model the exceptional points are regularly distributed in the complex plane. In a total chaotic system the points would be randomly distributed

  14. Modeling Metropolitan Detroit transit.

    Science.gov (United States)

    2010-10-01

    "The seven-county Southeast Michigan region, that encompasses the Detroit Metropolitan Area, : ranks fifth in population among top 25 regions in the nation. It also ranks among bottom five in : the transit service provided, measured in miles or hours...

  15. Transition Models for Engineering Calculations

    Science.gov (United States)

    Fraser, C. J.

    2007-01-01

    While future theoretical and conceptual developments may promote a better understanding of the physical processes involved in the latter stages of boundary layer transition, the designers of rotodynamic machinery and other fluid dynamic devices need effective transition models now. This presentation will therefore center around the development of of some transition models which have been developed as design aids to improve the prediction codes used in the performance evaluation of gas turbine blading. All models are based on Narasimba's concentrated breakdown and spot growth.

  16. Vacuum transitions in dual models

    International Nuclear Information System (INIS)

    Pashnev, A.I.; Volkov, D.V.; Zheltukhin, A.A.

    1976-01-01

    The investigation is continued of the spontaneous vacuum transition problem in the Neview-Schwartz dual model (NSDM). It is shown that vacuum transitions allow disclosing of supplementary degeneration in the resonance state spectrum. The dual amplitudes possess an internal structure corresponding to the presence of an infinite number of quarks with increasing masses and retained charges. The Adler principle holds. Analytic continuation on the constant of induced vacuum transitions makes it possible to establish the existence of spontaneous vacuum transitions in the NSDM. The consequence of this fact is the exact SU(2) symmetry of π, rho meson trajectories and the Higgs mechanism in the model. In this case the ratios of masses of particles leading trajectories are analogous to those obtained in the current algebra. It is shown that in the NSDM there arises chiral SU(2) x SU(2) x U(1) x U(1) x ... symmetry resulting from spontaneous vacuum transitions

  17. Macroeconomic models and energy transition

    International Nuclear Information System (INIS)

    Douillard, Pierre; Le Hir, Boris; Epaulard, Anne

    2016-02-01

    As a new policy for energy transition has just been adopted, several questions emerge about the best way to reduce CO 2 emissions, about policies which enable this reduction, and about their costs and opportunities. This note discusses the contribution macro-economic models may have in this respect, notably in the definition of policies which trigger behaviour changes, and those which support energy transition. The authors first discuss the stakes of the assessment of energy transition, and then describe macro-economic models which can be used for such an assessment, give and comment some results of simulations performed for France by using four of these models (Mesange, Numesis, ThreeME, and Imaclim-R France). The authors finally draw lessons about the way to use these models and to interpret their results within the frame of energy transition

  18. Panel Smooth Transition Regression Models

    DEFF Research Database (Denmark)

    González, Andrés; Terasvirta, Timo; Dijk, Dick van

    We introduce the panel smooth transition regression model. This new model is intended for characterizing heterogeneous panels, allowing the regression coefficients to vary both across individuals and over time. Specifically, heterogeneity is allowed for by assuming that these coefficients are bou...

  19. Modelling the energy transition in cities

    Energy Technology Data Exchange (ETDEWEB)

    Huber, Felix [Wuppertal Univ. (Germany). Dept. of Civil Engineering; Schwarze, Bjoern; Spiekermann, Klaus; Wegener, Michael [Spiekermann und Wegener Urban and Regional Research, Dortmund (Germany)

    2013-09-01

    The history of cities is a history of energy transitions. In the medieval city heating and cooking occurred with wood and peat. The growth of the industrial city in the 19th century was built on coal and electricity. The sprawling metropolis of the 20th century was made possible by oil and gas. How will the city of the 21st century look after the next energy transition from fossil to renewable energy? This paper reports on the extension of an urban land-use transport interaction model to a model of the energy transition in the Ruhr Area, a five-million agglomeration in Germany. The paper presents the planned model extensions and how they are to be integrated into the model and shows first preliminary results.

  20. Phase Transitions in Algebraic Cluster Models

    International Nuclear Information System (INIS)

    Yepez-Martinez, H.; Cseh, J.; Hess, P.O.

    2006-01-01

    same, and the states are said to form a (soft) band. The phase-transitions, as well as the persistence of the quasidynamical symmetries in the algebraic models of quadrupole collectivity have extensively been studied. In a recent work [1] we have addressed these questions in relation with another important collectivity of nuclei, i.e. clusterization. Two models were considered, a phenomenological one, containing no Pauli-principle, and a semimicroscopic one, which is based on a microscopically determined model space, being free from the Pauli-forbidden states. The interactions were treated in a phenomenologic and algebraic way in both cases. In this respect the two models have a similar group-structure. We have studied the SU(3) - SO(4) phase transition, related to the description of the relative motion in terms of the vibron model (in its simplest form in the phenomenological model and in a properly truncated form in the semimicroscopic description). The analytical study of the large-N limit of both models shows a first order phase transition. We have carried out numerical calculations as well. Three binary cluster systems were chosen, in which the number of open-shell clusters were zero, one and two, respectively. The numerical studies show that the phase transition is smoothed out for finite N systems, but some fingerprints of it still can be seen. The appearance of the quasidynamical SU(3) symmetry has also been studied, when moving away from the limit of the real SU(3) dynamical symmetry. It turned out that in each case, when there is a real dynamical symmetry in the limiting case (in the sense that a well-defined SU(3) quantum number can be associated to a band), this symmetry survives as quasidynamical symmetry at least up to the critical value of the control parameter. (author)

  1. Molecular Dynamics Simulations of Trichomonas vaginalis Ferredoxin Show a Loop-Cap Transition.

    Energy Technology Data Exchange (ETDEWEB)

    Weksberg, Tiffany E; Lynch, Gillian C; Krause, Kurt; Pettitt, Bernard M

    2007-05-01

    The crystal structure of the oxidized Trichomonas vaginalis ferredoxin (Tvfd) showed a unique crevice that exposed the redox center. Here we have examined the dynamics and solvation of the active site of Tvfd using molecular dynamics simulations of both the reduced and oxidized states. The oxidized simulation stays true to the crystal form with a heavy atom root mean-squared deviation of 2Å. However, within the reduced simulation of Tvfd a profound loop-cap transition into the redox center occurred within 6-ns of the start of the simulation and remained open throughout the rest of the 20-ns simulation. This large opening seen in the simulations supports the hypothesis that the exceptionally fast electron transfer rate between Tvfd and the drug metronidazole is due to the increased access of the antibiotic to the redox center of the protein and not due to the reduction potential.

  2. Molecular Dynamics Simulations of Trichomonas vaginalis Ferredoxin Show a Loop-Cap Transition

    Energy Technology Data Exchange (ETDEWEB)

    Weksberg, Tiffany E; Lynch, Gillian C; Krause, Kurt; Pettitt, Bernard M

    2007-05-01

    The crystal structure of the oxidized Trichomonas vaginalis ferredoxin (Tvfd) showed a unique crevice that exposed the redox center. Here we have examined the dynamics and solvation of the active site of Tvfd using molecular dynamics simulations of both the reduced and oxidized states. The oxidized simulation stays true to the crystal form with a heavy atom root mean-squared deviation of 2Å . However, within the reduced simulation of Tvfd a profound loop-cap transition into the redox center occurred within 6-ns of the start of the simulation and remained open throughout the rest of the 20-ns simulation. This large opening seen in the simulations supports the hypothesis that the exceptionally fast electron transfer rate between Tvfd and the drug metronidazole is due to the increased access of the antibiotic to the redox center of the protein and not due to the reduction potential.

  3. Time dependent patient no-show predictive modelling development.

    Science.gov (United States)

    Huang, Yu-Li; Hanauer, David A

    2016-05-09

    Purpose - The purpose of this paper is to develop evident-based predictive no-show models considering patients' each past appointment status, a time-dependent component, as an independent predictor to improve predictability. Design/methodology/approach - A ten-year retrospective data set was extracted from a pediatric clinic. It consisted of 7,291 distinct patients who had at least two visits along with their appointment characteristics, patient demographics, and insurance information. Logistic regression was adopted to develop no-show models using two-thirds of the data for training and the remaining data for validation. The no-show threshold was then determined based on minimizing the misclassification of show/no-show assignments. There were a total of 26 predictive model developed based on the number of available past appointments. Simulation was employed to test the effective of each model on costs of patient wait time, physician idle time, and overtime. Findings - The results demonstrated the misclassification rate and the area under the curve of the receiver operating characteristic gradually improved as more appointment history was included until around the 20th predictive model. The overbooking method with no-show predictive models suggested incorporating up to the 16th model and outperformed other overbooking methods by as much as 9.4 per cent in the cost per patient while allowing two additional patients in a clinic day. Research limitations/implications - The challenge now is to actually implement the no-show predictive model systematically to further demonstrate its robustness and simplicity in various scheduling systems. Originality/value - This paper provides examples of how to build the no-show predictive models with time-dependent components to improve the overbooking policy. Accurately identifying scheduled patients' show/no-show status allows clinics to proactively schedule patients to reduce the negative impact of patient no-shows.

  4. Phase transitions in a lattice population model

    International Nuclear Information System (INIS)

    Windus, Alastair; Jensen, Henrik J

    2007-01-01

    We introduce a model for a population on a lattice with diffusion and birth/death according to 2A→3A and A→Φ for a particle A. We find that the model displays a phase transition from an active to an absorbing state which is continuous in 1 + 1 dimensions and of first-order in higher dimensions in agreement with the mean field equation. For the (1 + 1)-dimensional case, we examine the critical exponents and a scaling function for the survival probability and show that it belongs to the universality class of directed percolation. In higher dimensions, we look at the first-order phase transition by plotting a histogram of the population density and use the presence of phase coexistence to find an accurate value for the critical point in 2 + 1 dimensions

  5. The transition probabilities of the reciprocity model

    NARCIS (Netherlands)

    Snijders, T.A.B.

    1999-01-01

    The reciprocity model is a continuous-time Markov chain model used for modeling longitudinal network data. A new explicit expression is derived for its transition probability matrix. This expression can be checked relatively easily. Some properties of the transition probabilities are given, as well

  6. A Conceptual Model for Leadership Transition

    Science.gov (United States)

    Manderscheid, Steven V.; Ardichvili, Alexandre

    2008-01-01

    The purpose of this study was to develop a model of leadership transition based on an integrative review of literature. The article establishes a compelling case for focusing on leadership transitions as an area for study and leadership development practitioner intervention. The proposed model in this study identifies important success factors…

  7. The simplest classical models of topological transitions

    International Nuclear Information System (INIS)

    Konstantinov, M.Yu.

    1983-01-01

    It is shown that simplest classical models of topologigal transitions possess scalar singularity of curvature with a point carrier being a source of space-time incompleteness. It is also shown that the condition of energy dominance is broken near the topological transition, asymptotic behaviour of the curvature tensor (growth of curvature at approximation to the topological transition) and energy-momentum tensor of (breaking the condition of energy dominance) being a common property of the considered models and being completely determined by the type of topological transition

  8. Antimicrobial defense shows an abrupt evolutionary transition in the fungus-growing ants

    DEFF Research Database (Denmark)

    Hughes, William O H; Pagliarini, Roberta; Madsen, Henning Bang

    2008-01-01

    of the reservoir did not relate with the evolutionary transition from lower to higher attines and correlated at most only slightly with colony size. The results thus suggest that the relationship between leaf-cutting ants and their parasites is distinctly different from that for other attine ants, in accord...

  9. Model shows future cut in U.S. ozone levels

    International Nuclear Information System (INIS)

    Anon.

    1991-01-01

    A joint U.S. auto-oil industry research program says modeling shows that changing gasoline composition can reduce ozone levels for Los Angeles in 2010 and for New York City and Dallas-Fort Worth in 2005. The air quality modeling was based on vehicle emissions research data released late last year (OGJ, Dec. 24, 1990, p. 20). The effort is sponsored by the big three auto manufacturers and 14 oil companies. Sponsors the cars and small trucks account for about one third of ozone generated in the three cities studied but by 2005-10 will account for only 5-9%

  10. Reservoir theory, groundwater transit time distributions, and lumped parameter models

    International Nuclear Information System (INIS)

    Etcheverry, D.; Perrochet, P.

    1999-01-01

    The relation between groundwater residence times and transit times is given by the reservoir theory. It allows to calculate theoretical transit time distributions in a deterministic way, analytically, or on numerical models. Two analytical solutions validates the piston flow and the exponential model for simple conceptual flow systems. A numerical solution of a hypothetical regional groundwater flow shows that lumped parameter models could be applied in some cases to large-scale, heterogeneous aquifers. (author)

  11. Mental models accurately predict emotion transitions.

    Science.gov (United States)

    Thornton, Mark A; Tamir, Diana I

    2017-06-06

    Successful social interactions depend on people's ability to predict others' future actions and emotions. People possess many mechanisms for perceiving others' current emotional states, but how might they use this information to predict others' future states? We hypothesized that people might capitalize on an overlooked aspect of affective experience: current emotions predict future emotions. By attending to regularities in emotion transitions, perceivers might develop accurate mental models of others' emotional dynamics. People could then use these mental models of emotion transitions to predict others' future emotions from currently observable emotions. To test this hypothesis, studies 1-3 used data from three extant experience-sampling datasets to establish the actual rates of emotional transitions. We then collected three parallel datasets in which participants rated the transition likelihoods between the same set of emotions. Participants' ratings of emotion transitions predicted others' experienced transitional likelihoods with high accuracy. Study 4 demonstrated that four conceptual dimensions of mental state representation-valence, social impact, rationality, and human mind-inform participants' mental models. Study 5 used 2 million emotion reports on the Experience Project to replicate both of these findings: again people reported accurate models of emotion transitions, and these models were informed by the same four conceptual dimensions. Importantly, neither these conceptual dimensions nor holistic similarity could fully explain participants' accuracy, suggesting that their mental models contain accurate information about emotion dynamics above and beyond what might be predicted by static emotion knowledge alone.

  12. Mental models accurately predict emotion transitions

    Science.gov (United States)

    Thornton, Mark A.; Tamir, Diana I.

    2017-01-01

    Successful social interactions depend on people’s ability to predict others’ future actions and emotions. People possess many mechanisms for perceiving others’ current emotional states, but how might they use this information to predict others’ future states? We hypothesized that people might capitalize on an overlooked aspect of affective experience: current emotions predict future emotions. By attending to regularities in emotion transitions, perceivers might develop accurate mental models of others’ emotional dynamics. People could then use these mental models of emotion transitions to predict others’ future emotions from currently observable emotions. To test this hypothesis, studies 1–3 used data from three extant experience-sampling datasets to establish the actual rates of emotional transitions. We then collected three parallel datasets in which participants rated the transition likelihoods between the same set of emotions. Participants’ ratings of emotion transitions predicted others’ experienced transitional likelihoods with high accuracy. Study 4 demonstrated that four conceptual dimensions of mental state representation—valence, social impact, rationality, and human mind—inform participants’ mental models. Study 5 used 2 million emotion reports on the Experience Project to replicate both of these findings: again people reported accurate models of emotion transitions, and these models were informed by the same four conceptual dimensions. Importantly, neither these conceptual dimensions nor holistic similarity could fully explain participants’ accuracy, suggesting that their mental models contain accurate information about emotion dynamics above and beyond what might be predicted by static emotion knowledge alone. PMID:28533373

  13. Description of transitional nuclei in the sdg boson model

    International Nuclear Information System (INIS)

    Lac, V.S.; Kuyucak, S.

    1992-01-01

    We study the transitional nuclei in the framework of the sdg boson model. This extension is necessitated by recent measurements of E2 and E4 transitions in the Pt and Os isotopes which can not be explained in the sd boson models. We show how γ-unstable and triaxial shapes arise from special choices of sdg model hamiltonians and discuss ways of limiting the number of free parameters through consistency and coherence conditions. A satisfactory description of E2 and E4 properties is obtained for the Pt and Os nuclei, which also predicts dynamic shape transitions in these nuclei. (orig.)

  14. Description of transitional nuclei in the sdg boson model

    Science.gov (United States)

    Lac, V.-S.; Kuyucak, S.

    1992-03-01

    We study the transitional nuclei in the framework of the sdg boson model. This extension is necessitated by recent measurements of E2 and E4 transitions in the Pt and Os isotopes which can not be explained in the sd boson models. We show how γ-unstable and triaxial shapes arise from special choices of sdg model hamiltonians and discuss ways of limiting the number of free parameters through consistency and coherence conditions. A satisfactory description of E2 and E4 properties is obtained for the Pt and Os nuclei, which also predicts dynamic shape transitions in these nuclei.

  15. Description of transitional nuclei in the sdg boson model

    Energy Technology Data Exchange (ETDEWEB)

    Lac, V.S.; Kuyucak, S. (School of Physics, Univ. Melbourne, Victoria (Australia))

    1992-03-30

    We study the transitional nuclei in the framework of the sdg boson model. This extension is necessitated by recent measurements of E2 and E4 transitions in the Pt and Os isotopes which can not be explained in the sd boson models. We show how {gamma}-unstable and triaxial shapes arise from special choices of sdg model hamiltonians and discuss ways of limiting the number of free parameters through consistency and coherence conditions. A satisfactory description of E2 and E4 properties is obtained for the Pt and Os nuclei, which also predicts dynamic shape transitions in these nuclei. (orig.).

  16. Modeling Generational Transitions from Aggregate Data

    NARCIS (Netherlands)

    Ph.H.B.F. Franses (Philip Hans); S. Stremersch (Stefan)

    2002-01-01

    textabstractUsing only aggregate sales data, the model we propose decomposes the diffusion processes of the respective technological generations and tests if different technological generations have different diffusion parameters. It also estimates the location of the generational transition from

  17. Phase transition in the hadron gas model

    International Nuclear Information System (INIS)

    Gorenstein, M.I.; Petrov, V.K.; Zinov'ev, G.M.

    1981-01-01

    A class of statistical models of hadron gas allowing an analytical solution is considered. A mechanism of a possible phase transition in such a system is found and conditions for its occurence are determined [ru

  18. On the phase transition nature in compressible Ising models

    International Nuclear Information System (INIS)

    Ota, A.T.

    1985-01-01

    The phase transition phenomenon is analysed in a compressible ferromagnetic Ising model at null field, through the mean-field approximation. The model studied is d-dimensional under the magnetic point of view and one-dimensional under the elastic point of view. This is achieved keeping the compressive interactions among the ions and rejecting annealing forces completely. The exchange parameter J is linear and the elastic potential quadratic in relation to the microscopic shifts of the lattice. In the one-dimensional case, this model shows no phase transition. In the two-dimensional case, the role of the S i spin of the i-the ion is crucial: a) for spin 1/2 the transitions are of second order; b) for spin 1, desides the second order transitions there is a three-critical point and a first-order transitions line. (L.C.) [pt

  19. Model of the synthesis of trisporic acid in Mucorales showing bistability.

    Science.gov (United States)

    Werner, S; Schroeter, A; Schimek, C; Vlaic, S; Wöstemeyer, J; Schuster, S

    2012-12-01

    An important substance in the signalling between individuals of Mucor-like fungi is trisporic acid (TA). This compound, together with some of its precursors, serves as a pheromone in mating between (+)- and (-)-mating types. Moreover, intermediates of the TA pathway are exchanged between the two mating partners. Based on differential equations, mathematical models of the synthesis pathways of TA in the two mating types of an idealised Mucor-fungus are here presented. These models include the positive feedback of TA on its own synthesis. The authors compare three sub-models in view of bistability, robustness and the reversibility of transitions. The proposed modelling study showed that, in a system where intermediates are exchanged, a reversible transition between the two stable steady states occurs, whereas an exchange of the end product leads to an irreversible transition. The reversible transition is physiologically favoured, because the high-production state of TA must come to an end eventually. Moreover, the exchange of intermediates and TA is compared with the 3-way handshake widely used by computers linked in a network.

  20. Show me a woman! : narratives of gender and violence in human rights law and processes of transitional justice

    NARCIS (Netherlands)

    Mibenge, C.S.|info:eu-repo/dai/nl/304834165

    2010-01-01

    Show me a woman who wasn’t raped!’ These words, thrown down like a gauntlet by a genocide survivor disrupted the narrative of transitional justice as the panacea to redressing gross human rights violations committed against civilian women. The challenge to ‘show me a woman’ is made from a local

  1. An intermittency model for predicting roughness induced transition

    Science.gov (United States)

    Ge, Xuan; Durbin, Paul

    2014-11-01

    An extended model for roughness-induced transition is proposed based on an intermittency transport equation for RANS modeling formulated in local variables. To predict roughness effects in the fully turbulent boundary layer, published boundary conditions for k and ω are used, which depend on the equivalent sand grain roughness height, and account for the effective displacement of wall distance origin. Similarly in our approach, wall distance in the transition model for smooth surfaces is modified by an effective origin, which depends on roughness. Flat plate test cases are computed to show that the proposed model is able to predict the transition onset in agreement with a data correlation of transition location versus roughness height, Reynolds number, and inlet turbulence intensity. Experimental data for a turbine cascade are compared with the predicted results to validate the applicability of the proposed model. Supported by NSF Award Number 1228195.

  2. Evolutionary modelling of transitions to sustainable development

    International Nuclear Information System (INIS)

    Safarzynska, K.

    2010-01-01

    This thesis has examined how evolutionary economics can contribute to modelling the micromechanisms that underlie transitions towards sustainable development. In general, transitions are fundamental or structural system changes. They involve, or even require, escaping lock-in of dominant, environmentally unsustainable technologies, introducing major technical or social innovations, and changing prevailing social practices and structures. Due to the complexity of socioeconomic interactions, it is not always possible to identify, and thus target with appropriate policy instruments, causes of specific unsustainable patterns of behaviour. Formal modelling exercises can help improve our understanding of the interaction of various transition mechanisms which are otherwise difficult to grasp intuitively. They allow exploring effects of policy interventions in complex systems. However, existing models of transitions focus on social phenomena and seldom address economic problems. As opposed, mainstream (neoclassical) economic models of technological change do not account for social interactions, and changing heterogeneity of users and their perspectives - even though all of these can influence the direction of innovations and patterns of socio-technological development. Evolutionary economics offers an approach that goes beyond neoclassical economics - in the sense of employing more realistic assumptions regarding the behaviour and heterogeneity of consumers, firms and investors. It can complement current transition models by providing them with a better understanding of associated economic dynamics. In this thesis, formal models were proposed to illustrate the usefulness of a range of evolutionary-economic techniques for modelling transitions. Modelling exercises aimed to explain the core properties of socio-economic systems, such as lock-in, path-dependence, coevolution, group selection and recombinant innovation. The studies collected in this dissertation illustrate that

  3. On the chiral phase transition in the linear sigma model

    International Nuclear Information System (INIS)

    Tran Huu Phat; Nguyen Tuan Anh; Le Viet Hoa

    2003-01-01

    The Cornwall- Jackiw-Tomboulis (CJT) effective action for composite operators at finite temperature is used to investigate the chiral phase transition within the framework of the linear sigma model as the low-energy effective model of quantum chromodynamics (QCD). A new renormalization prescription for the CJT effective action in the Hartree-Fock (HF) approximation is proposed. A numerical study, which incorporates both thermal and quantum effect, shows that in this approximation the phase transition is of first order. However, taking into account the higher-loop diagrams contribution the order of phase transition is unchanged. (author)

  4. Mott transition in the Hubbard model

    International Nuclear Information System (INIS)

    Shastry, B.S.

    1992-01-01

    In this article, the author discuss W. Kohn's criterion for a metal insulator transition, within the framework of a one-band Hubbard model. This and related ideas are applied to 1-dimensional Hubbard systems, and some interesting miscellaneous results discussed. The Jordan-Wigner transformation converting the two species of fermions to two species of hardcore bosons is performed in detail, and the extra phases arising from odd-even effects are explicitly derived. Bosons are shown to prefer zero flux (i.e., diamagnetism) and the corresponding happy fluxes: for the fermions identified. A curios result following from the interplay between orbital diamagnetism and spin polarization is highlighted. A spin-statistics like theorem, showing that the anticommutation relations between fermions of opposite spin are crucial to obtain the SU(2) invariance is pointed out

  5. Two-Dimensional Wetting Transition Modeling with the Potts Model

    Science.gov (United States)

    Lopes, Daisiane M.; Mombach, José C. M.

    2017-12-01

    A droplet of a liquid deposited on a surface structured in pillars may have two states of wetting: (1) Cassie-Baxter (CB), the liquid remains on top of the pillars, also known as heterogeneous wetting, or (2) Wenzel, the liquid fills completely the cavities of the surface, also known as homogeneous wetting. Studies show that between these two states, there is an energy barrier that, when overcome, results in the transition of states. The transition can be achieved by changes in geometry parameters of the surface, by vibrations of the surface or by evaporation of the liquid. In this paper, we present a comparison of two-dimensional simulations of the Cassie-Wenzel transition on pillar-structured surfaces using the cellular Potts model (CPM) with studies performed by Shahraz et al. In our work, we determine a transition diagram by varying the surface parameters such as the interpillar distance ( G) and the pillar height ( H). Our results were compared to those obtained by Shahraz et al. obtaining good agreement.

  6. Showing that the race model inequality is not violated

    DEFF Research Database (Denmark)

    Gondan, Matthias; Riehl, Verena; Blurton, Steven Paul

    2012-01-01

    important being race models and coactivation models. Redundancy gains consistent with the race model have an upper limit, however, which is given by the well-known race model inequality (Miller, 1982). A number of statistical tests have been proposed for testing the race model inequality in single...... participants and groups of participants. All of these tests use the race model as the null hypothesis, and rejection of the null hypothesis is considered evidence in favor of coactivation. We introduce a statistical test in which the race model prediction is the alternative hypothesis. This test controls...

  7. Optimization models in a transition economy

    CERN Document Server

    Sergienko, Ivan V; Koshlai, Ludmilla

    2014-01-01

    This book opens new avenues in understanding mathematical models within the context of a  transition economy. The exposition lays out the methods for combining different mathematical structures and tools to effectively build the next model that will accurately reflect real world economic processes. Mathematical modeling of weather phenomena allows us to forecast certain essential weather parameters without any possibility of changing them. By contrast, modeling of transition economies gives us the freedom to not only predict changes in important indexes of all types of economies, but also to influence them more effectively in the desired direction. Simply put: any economy, including a transitional one, can be controlled. This book is useful to anyone who wants to increase profits within their business, or improve the quality of their family life and the economic area they live in. It is beneficial for undergraduate and graduate students specializing in the fields of Economic Informatics, Economic Cybernetic...

  8. Interval Forecast for Smooth Transition Autoregressive Model ...

    African Journals Online (AJOL)

    In this paper, we propose a simple method for constructing interval forecast for smooth transition autoregressive (STAR) model. This interval forecast is based on bootstrapping the residual error of the estimated STAR model for each forecast horizon and computing various Akaike information criterion (AIC) function. This new ...

  9. A Model of Mental State Transition Network

    Science.gov (United States)

    Xiang, Hua; Jiang, Peilin; Xiao, Shuang; Ren, Fuji; Kuroiwa, Shingo

    Emotion is one of the most essential and basic attributes of human intelligence. Current AI (Artificial Intelligence) research is concentrating on physical components of emotion, rarely is it carried out from the view of psychology directly(1). Study on the model of artificial psychology is the first step in the development of human-computer interaction. As affective computing remains unpredictable, creating a reasonable mental model becomes the primary task for building a hybrid system. A pragmatic mental model is also the fundament of some key topics such as recognition and synthesis of emotions. In this paper a Mental State Transition Network Model(2) is proposed to detect human emotions. By a series of psychological experiments, we present a new way to predict coming human's emotions depending on the various current emotional states under various stimuli. Besides, people in different genders and characters are taken into consideration in our investigation. According to the psychological experiments data derived from 200 questionnaires, a Mental State Transition Network Model for describing the transitions in distribution among the emotions and relationships between internal mental situations and external are concluded. Further more the coefficients of the mental transition network model were achieved. Comparing seven relative evaluating experiments, an average precision rate of 0.843 is achieved using a set of samples for the proposed model.

  10. Collective models of transition nuclei Pt. 2

    International Nuclear Information System (INIS)

    Dombradi, Zs.

    1982-01-01

    The models describing the even-odd and odd-odd transition nuclei (nuclei of moderate ground state deformation) are reviewed. The nuclear core is described by models of even-even nuclei, and the interaction of a single particle and the core is added. Different models of particle-core coupling (phenomenological models, collective models, nuclear field theory, interacting boson-fermion model, vibration nucleon cluster model) and their results are discussed. New developments like dynamical supersymmetry and new research trends are summarized. (D.Gy.)

  11. Spin delocalization phase transition in a correlated electrons model

    International Nuclear Information System (INIS)

    Huerta, L.

    1990-11-01

    In a simplified one-site model for correlated electrons systems we show the existence of a phase transition corresponding to spin delocalization. The system becomes a solvable model and zero-dimensional functional techniques are used. (author). 7 refs, 3 figs

  12. Transitions amongst synchronous solutions in the stochastic Kuramoto model

    Science.gov (United States)

    DeVille, Lee

    2012-05-01

    We consider the Kuramoto model of coupled oscillators with nearest-neighbour coupling and additive white noise. We show that synchronous solutions which are stable without the addition of noise become metastable and that we have transitions amongst synchronous solutions on long timescales. We compute these timescales and, moreover, compute the most likely path in phase space that transitions will follow. We show that these transition timescales do not increase as the number of oscillators in the system increases, and are roughly constant in the system size. Finally, we show that the transitions correspond to a splitting of one synchronous solution into two communities which move independently for some time and which rejoin to form a different synchronous solution.

  13. Culture in Transition: A learning model

    DEFF Research Database (Denmark)

    Baca, Susan

    2010-01-01

    of organizational transition, and 3) demonstrating the efficacy of the model by using it to explain empirical research findings. It is argued that learning new cultural currency involves the use of active intelligence to locate and answer relevant questions, and further that this process requires the interplay......This paper addresses the problem of resistance to attempted changes in organizational culture, particularly those involving diversity, by 1) identifying precisely what is meant by organizational as opposed to societal culture, 2) developing a theoretical model of learning useful in contexts...... is useful for both management and labor in regulating transition processes, thus making a contribution to industrial relations....

  14. HIV-1 phylogenetic analysis shows HIV-1 transits through the meninges to brain and peripheral tissues.

    Science.gov (United States)

    Lamers, Susanna L; Gray, Rebecca R; Salemi, Marco; Huysentruyt, Leanne C; McGrath, Michael S

    2011-01-01

    Brain infection by the human immunodeficiency virus type 1 (HIV-1) has been investigated in many reports with a variety of conclusions concerning the time of entry and degree of viral compartmentalization. To address these diverse findings, we sequenced HIV-1 gp120 clones from a wide range of brain, peripheral and meningeal tissues from five patients who died from several HIV-1 associated disease pathologies. High-resolution phylogenetic analysis confirmed previous studies that showed a significant degree of compartmentalization in brain and peripheral tissue subpopulations. Some intermixing between the HIV-1 subpopulations was evident, especially in patients that died from pathologies other than HIV-associated dementia. Interestingly, the major tissue harboring virus from both the brain and peripheral tissues was the meninges. These results show that (1) HIV-1 is clearly capable of migrating out of the brain, (2) the meninges are the most likely primary transport tissues, and (3) infected brain macrophages comprise an important HIV reservoir during highly active antiretroviral therapy. Copyright © 2010 Elsevier B.V. All rights reserved.

  15. Towards predictive models for transitionally rough surfaces

    Science.gov (United States)

    Abderrahaman-Elena, Nabil; Garcia-Mayoral, Ricardo

    2017-11-01

    We analyze and model the previously presented decomposition for flow variables in DNS of turbulence over transitionally rough surfaces. The flow is decomposed into two contributions: one produced by the overlying turbulence, which has no footprint of the surface texture, and one induced by the roughness, which is essentially the time-averaged flow around the surface obstacles, but modulated in amplitude by the first component. The roughness-induced component closely resembles the laminar steady flow around the roughness elements at the same non-dimensional roughness size. For small - yet transitionally rough - textures, the roughness-free component is essentially the same as over a smooth wall. Based on these findings, we propose predictive models for the onset of the transitionally rough regime. Project supported by the Engineering and Physical Sciences Research Council (EPSRC).

  16. Free association transitions in models of cortical latching dynamics

    International Nuclear Information System (INIS)

    Russo, Eleonora; Treves, Alessandro; Kropff, Emilio; Namboodiri, Vijay M K

    2008-01-01

    Potts networks, in certain conditions, hop spontaneously from one discrete attractor state to another, a process we have called latching dynamics. When continuing indefinitely, latching can serve as a model of infinite recursion, which is nontrivial if the matrix of transition probabilities presents a structure, i.e. a rudimentary grammar. We show here, with computer simulations, that latching transitions cluster in a number of distinct classes: effectively random transitions between weakly correlated attractors; structured, history-dependent transitions between attractors with intermediate correlations; and oscillations between pairs of closely overlapping attractors. Each type can be described by a reduced set of equations of motion, which, once numerically integrated, matches simulations results. We propose that the analysis of such equations may offer clues on how to embed meaningful grammatical structures into more realistic models of specific recursive processes

  17. Free association transitions in models of cortical latching dynamics

    Energy Technology Data Exchange (ETDEWEB)

    Russo, Eleonora; Treves, Alessandro; Kropff, Emilio [SISSA, Cognitive Neuroscience, via Beirut 4, 34014 Trieste (Italy); Namboodiri, Vijay M K [Department of Physics, IIT Bombay, Powai, Mumbai, India 400076 (India)], E-mail: russo@sissa.it, E-mail: vijay_mkn@iitb.ac.in, E-mail: ale@sissa.it, E-mail: kropff@sissa.it

    2008-01-15

    Potts networks, in certain conditions, hop spontaneously from one discrete attractor state to another, a process we have called latching dynamics. When continuing indefinitely, latching can serve as a model of infinite recursion, which is nontrivial if the matrix of transition probabilities presents a structure, i.e. a rudimentary grammar. We show here, with computer simulations, that latching transitions cluster in a number of distinct classes: effectively random transitions between weakly correlated attractors; structured, history-dependent transitions between attractors with intermediate correlations; and oscillations between pairs of closely overlapping attractors. Each type can be described by a reduced set of equations of motion, which, once numerically integrated, matches simulations results. We propose that the analysis of such equations may offer clues on how to embed meaningful grammatical structures into more realistic models of specific recursive processes.

  18. A dynamical model for plasma confinement transitions

    International Nuclear Information System (INIS)

    Pilarczyk, Paweł; García, Luis; Carreras, Benjamin A; Llerena, Irene

    2012-01-01

    A three-equation model describing the evolution of the turbulence level, averaged shear flow and sheared zonal flow is analyzed using topological properties of the asymptotic solutions. An exploration in parameter space is done, identifying the attractor sets, which are fixed points and limit cycles. Then a more detailed analysis of all Morse sets is conducted using topological-combinatorial computations. This model allows the description of different types of transitions to improved plasma confinement regimes. (paper)

  19. Highlighting the importance of transitional ventilation regimes in the management of Mediterranean show caves (Nerja-Pintada system, southern Spain).

    Science.gov (United States)

    Liñán, C; Del Rosal, Y; Carrasco, F; Vadillo, I; Benavente, J; Ojeda, L

    2018-08-01

    This study shows the utilization of the air CO 2 exhaled by a very high number of visitors in the Nerja Cave as both a tracer and an additional tool to precisely evaluate the air circulation through the entire karst system, which includes non-touristic passages, originally free of anthropogenic CO 2 . The analysis of the temporal - spatial evolution of the CO 2 content and other monitoring data measured from January 2015 to December 2016 in the Nerja-Pintada system, including air microbiological controls, has allowed us to define a new general ventilation model, of great interest for the conservation of the subterranean environment. During the annual cycle four different ventilation regimes and two ventilation modes (UAF-mode and DAF-mode) exist which determine the significance of the anthropogenic impact within the caves. During the winter regime, the strong ventilation regime and the airflow directions from the lowest to the highest entrance (UAF-mode) contribute to the rapid elimination of anthropogenic CO 2 , and this affects the whole karstic system. During the summer regime the DAF-mode ventilation (with airflows from the highest to the lowest entrances) is activated. Although the number of visitors is maximum and the natural ventilation of the karstic system is the lowest of the annual cycle, the anthropogenic impact only affects the Tourist Galleries. The transitional ventilation regimes -spring and autumn- are the most complex of the annual cycle, with changing air-flow directions (from UAF-mode to DAF-mode and vice versa) at diurnal and poly diurnal scale, which conditions the range of the anthropogenic impact in each sector of the karst system. The activation of the DAF-mode has been observed when the temperature difference between the external and air cave is higher than 5°C. Copyright © 2018 Elsevier B.V. All rights reserved.

  20. Deconfinement transition and flux-string models

    International Nuclear Information System (INIS)

    Momen, A.; Rosenzweig, C.

    1997-01-01

    Flux-string models can be used to study the deconfining phase transition. In this paper, we study the models proposed by Patel. We also study the large N c limits of Patel model. To discuss the validity of the mean field theory results, the one-loop Coleman-Weinberg effective potential is calculated for N c =3. We argue that the quantum corrections vanish at large N c when the energy of the so-called baryonic vertices scale with N c . copyright 1997 The American Physical Society

  1. Structural transition models for a class or irreversible aggregates

    International Nuclear Information System (INIS)

    Canessa, E.

    1995-02-01

    A progress report on two recent theoretical approaches proposed to understand the physics of irreversible fractal aggregates showing up a structural transition from a rather dense to a more multibranched growth is presented. In the first approach the transition is understood by solving the Poisson equation on a squared lattice. The second approach is based on the discretization of the Biharmonic equation. Within these models the transition appears when the growth velocity at the fractal surface presents a minimum. The effects of the surrounding medium and geometrical constraints for the seed particles are considered. By using the optical diffraction method, the structural transition is further characterized by a decrease in the fractal dimension for this peculiar class of aggregates. (author). 17 refs, 4 figs

  2. Generalized transport model for phase transition with memory

    International Nuclear Information System (INIS)

    Chen, Chi; Ciucci, Francesco

    2013-01-01

    A general model for phenomenological transport in phase transition is derived, which extends Jäckle and Frisch model of phase transition with memory and the Cahn–Hilliard model. In addition to including interfacial energy to account for the presence of interfaces, we introduce viscosity and relaxation contributions, which result from incorporating memory effect into the driving potential. Our simulation results show that even without interfacial energy term, the viscous term can lead to transient diffuse interfaces. From the phase transition induced hysteresis, we discover different energy dissipation mechanism for the interfacial energy and the viscosity effect. In addition, by combining viscosity and interfacial energy, we find that if the former dominates, then the concentration difference across the phase boundary is reduced; conversely, if the interfacial energy is greater then this difference is enlarged.

  3. Transition sum rules in the shell model

    Science.gov (United States)

    Lu, Yi; Johnson, Calvin W.

    2018-03-01

    An important characterization of electromagnetic and weak transitions in atomic nuclei are sum rules. We focus on the non-energy-weighted sum rule (NEWSR), or total strength, and the energy-weighted sum rule (EWSR); the ratio of the EWSR to the NEWSR is the centroid or average energy of transition strengths from an nuclear initial state to all allowed final states. These sum rules can be expressed as expectation values of operators, which in the case of the EWSR is a double commutator. While most prior applications of the double commutator have been to special cases, we derive general formulas for matrix elements of both operators in a shell model framework (occupation space), given the input matrix elements for the nuclear Hamiltonian and for the transition operator. With these new formulas, we easily evaluate centroids of transition strength functions, with no need to calculate daughter states. We apply this simple tool to a number of nuclides and demonstrate the sum rules follow smooth secular behavior as a function of initial energy, as well as compare the electric dipole (E 1 ) sum rule against the famous Thomas-Reiche-Kuhn version. We also find surprising systematic behaviors for ground-state electric quadrupole (E 2 ) centroids in the s d shell.

  4. Modeling Network Transition Constraints with Hypergraphs

    DEFF Research Database (Denmark)

    Harrod, Steven

    2011-01-01

    Discrete time dynamic graphs are frequently used to model multicommodity flows or activity paths through constrained resources, but simple graphs fail to capture the interaction effects of resource transitions. The resulting schedules are not operationally feasible, and return inflated objective...... values. A directed hypergraph formulation is derived to address railway network sequencing constraints, and an experimental problem sample solved to estimate the magnitude of objective inflation when interaction effects are ignored. The model is used to demonstrate the value of advance scheduling...... of train paths on a busy North American railway....

  5. Modeling Enzymatic Transition States by Force Field Methods

    DEFF Research Database (Denmark)

    Hansen, Mikkel Bo; Jensen, Hans Jørgen Aagaard; Jensen, Frank

    2009-01-01

    The SEAM method, which models a transition structure as a minimum on the seam of two diabatic surfaces represented by force field functions, has been used to generate 20 transition structures for the decarboxylation of orotidine by the orotidine-5'-monophosphate decarboxylase enzyme. The dependence...... of the TS geometry on the flexibility of the system has been probed by fixing layers of atoms around the active site and using increasingly larger nonbonded cutoffs. The variability over the 20 structures is found to decrease as the system is made more flexible. Relative energies have been calculated...... by various electronic structure methods, where part of the enzyme is represented by a force field description and the effects of the solvent are represented by a continuum model. The relative energies vary by several hundreds of kJ/mol between the transition structures, and tests showed that a large part...

  6. Characterizing Phase Transitions in a Model of Neutral Evolutionary Dynamics

    Science.gov (United States)

    Scott, Adam; King, Dawn; Bahar, Sonya

    2013-03-01

    An evolutionary model was recently introduced for sympatric, phenotypic evolution over a variable fitness landscape with assortative mating (Dees & Bahar 2010). Organisms in the model are described by coordinates in a two-dimensional phenotype space, born at random coordinates with limited variation from their parents as determined by a mutation parameter, mutability. The model has been extended to include both neutral evolution and asexual reproduction in Scott et al (submitted). It has been demonstrated that a second order, non-equilibrium phase transition occurs for the temporal dynamics as the mutability is varied, for both the original model and for neutral conditions. This transition likely belongs to the directed percolation universality class. In contrast, the spatial dynamics of the model shows characteristics of an ordinary percolation phase transition. Here, we characterize the phase transitions exhibited by this model by determining critical exponents for the relaxation times, characteristic lengths, and cluster (species) mass distributions. Missouri Research Board; J.S. McDonnell Foundation

  7. Dislocation dynamics modelling of the ductile-brittle-transition

    International Nuclear Information System (INIS)

    Hennecke, Thomas; Haehner, Peter

    2009-01-01

    Many materials like silicon, tungsten or ferritic steels show a transition between high temperature ductile fracture with stable crack grow and high deformation energy absorption and low temperature brittle fracture in an unstable and low deformation mode, the ductile-brittle-transition. Especially in steels, the temperature transition is accompanied by a strong increase of the measured fracture toughness over a certain temperature range and strong scatter in the toughness data in this transition regime. The change in fracture modes is affected by dynamic interactions between dislocations and the inhomogeneous stress fields of notches and small cracks. In the present work a dislocation dynamics model for the ductile-brittle-transition is proposed, which takes those interactions into account. The model can explain an increase with temperature of apparent toughness in the quasi-brittle regime and different levels of scatter in the different temperature regimes. Furthermore it can predict changing failure sites in materials with heterogeneous microstructure. Based on the model, the effects of crack tip blunting, stress state, external strain rate and irradiation-induced changes in the plastic flow properties can be discussed.

  8. Mott transitions in the periodic Anderson model

    International Nuclear Information System (INIS)

    Logan, David E; Galpin, Martin R; Mannouch, Jonathan

    2016-01-01

    The periodic Anderson model (PAM) is studied within the framework of dynamical mean-field theory, with particular emphasis on the interaction-driven Mott transition it contains, and on resultant Mott insulators of both Mott–Hubbard and charge-transfer type. The form of the PAM phase diagram is first deduced on general grounds using two exact results, over the full range of model parameters and including metallic, Mott, Kondo and band insulator phases. The effective low-energy model which describes the PAM in the vicinity of a Mott transition is then shown to be a one-band Hubbard model, with effective hoppings that are not in general solely nearest neighbour, but decay exponentially with distance. This mapping is shown to have a range of implications for the physics of the problem, from phase boundaries to single-particle dynamics; all of which are confirmed and supplemented by NRG calculations. Finally we consider the locally degenerate, non-Fermi liquid Mott insulator, to describe which requires a two-self-energy description. This is shown to yield a number of exact results for the associated local moment, charge, and interaction-renormalised levels, together with a generalisation of Luttinger’s theorem to the Mott insulator. (paper)

  9. Model-independent Exoplanet Transit Spectroscopy

    Science.gov (United States)

    Aronson, Erik; Piskunov, Nikolai

    2018-05-01

    We propose a new data analysis method for obtaining transmission spectra of exoplanet atmospheres and brightness variation across the stellar disk from transit observations. The new method is capable of recovering exoplanet atmosphere absorption spectra and stellar specific intensities without relying on theoretical models of stars and planets. We simultaneously fit both stellar specific intensity and planetary radius directly to transit light curves. This allows stellar models to be removed from the data analysis. Furthermore, we use a data quality weighted filtering technique to achieve an optimal trade-off between spectral resolution and reconstruction fidelity homogenizing the signal-to-noise ratio across the wavelength range. Such an approach is more efficient than conventional data binning onto a low-resolution wavelength grid. We demonstrate that our analysis is capable of reproducing results achieved by using an explicit quadratic limb-darkening equation and that the filtering technique helps eliminate spurious spectral features in regions with strong telluric absorption. The method is applied to the VLT FORS2 observations of the exoplanets GJ 1214 b and WASP-49 b, and our results are in agreement with previous studies. Comparisons between obtained stellar specific intensity and numerical models indicates that the method is capable of accurately reconstructing the specific intensity. The proposed method enables more robust characterization of exoplanetary atmospheres by separating derivation of planetary transmission and stellar specific intensity spectra (that is model-independent) from chemical and physical interpretation.

  10. Facility Will Help Transition Models Into Operations

    Science.gov (United States)

    Kumar, Mohi

    2009-02-01

    The U.S. National Oceanic and Atmospheric Administration's Space Weather Prediction Center (NOAA SWPC), in partnership with the U.S. Air Force Weather Agency (AFWA), is establishing a center to promote and facilitate the transition of space weather models to operations. The new facility, called the Developmental Testbed Center (DTC), will take models used by researchers and rigorously test them to see if they can withstand continued use as viable warning systems. If a model used in a space weather warning system crashes or fails to perform well, severe consequences can result. These include increased radiation risks to astronauts and people traveling on high-altitude flights, national security vulnerabilities from the loss of military satellite communications, and the cost of replacing damaged military and commercial spacecraft.

  11. An Ordered Regression Model to Predict Transit Passengers’ Behavioural Intentions

    Energy Technology Data Exchange (ETDEWEB)

    Oña, J. de; Oña, R. de; Eboli, L.; Forciniti, C.; Mazzulla, G.

    2016-07-01

    Passengers’ behavioural intentions after experiencing transit services can be viewed as signals that show if a customer continues to utilise a company’s service. Users’ behavioural intentions can depend on a series of aspects that are difficult to measure directly. More recently, transit passengers’ behavioural intentions have been just considered together with the concepts of service quality and customer satisfaction. Due to the characteristics of the ways for evaluating passengers’ behavioural intentions, service quality and customer satisfaction, we retain that this kind of issue could be analysed also by applying ordered regression models. This work aims to propose just an ordered probit model for analysing service quality factors that can influence passengers’ behavioural intentions towards the use of transit services. The case study is the LRT of Seville (Spain), where a survey was conducted in order to collect the opinions of the passengers about the existing transit service, and to have a measure of the aspects that can influence the intentions of the users to continue using the transit service in the future. (Author)

  12. Ab initio modelling of transition metals in diamond

    International Nuclear Information System (INIS)

    Watkins, M; Mainwood, A

    2003-01-01

    Transition metals (TM) from the first transition series are commonly used as solvent catalysts in the synthesis of diamond by high pressure, high temperature processes. Ab initio calculations on these metals, in finite clusters of tetrahedrally coordinated carbon, enable us to investigate trends in their stability and properties. By carrying out systematic studies of interstitial, substitutional and semi-vacancy TM defects, we show that the electronic structure of the TMs is complicated by the presence of 'dangling bonds' when the TM disrupts the crystal lattice: interstitial defects conform to the Ludwig-Woodbury (LW) model, whilst substitutional and semi-vacancy defects move from approximating the LW model early in the transition series to approaching the vacancy model for the heavier metals. Multi-configurational self-consistent field methods allow genuine many-electron states to be modelled; for neutral interstitial, and all substitutional TMs, the crystal fields are found to exceed the exchange energies in strength. Consequently, low spin states are found for these defects. We find substitutional defects to be the most stable, but that semi-vacancy TMs are very similar in energy to the substitutional defects late in the transition series; interstitial defects are only metastable in diamond. Given appropriate charge compensators neutral and positively charged interstitial TM defects were stable, while negatively charged species appeared to be strongly disfavoured

  13. Phase Transition Behavior in a Neutral Evolution Model

    Science.gov (United States)

    King, Dawn; Scott, Adam; Maric, Nevena; Bahar, Sonya

    2014-03-01

    The complexity of interactions among individuals and between individuals and the environment make agent based modeling ideal for studying emergent speciation. This is a dynamically complex problem that can be characterized via the critical behavior of a continuous phase transition. Concomitant with the main tenets of natural selection, we allow organisms to reproduce, mutate, and die within a neutral phenotype space. Previous work has shown phase transition behavior in an assortative mating model with variable fitness landscapes as the maximum mutation size (μ) was varied (Dees and Bahar, 2010). Similarly, this behavior was recently presented in the work of Scott et al. (2013), even on a completely neutral landscape, for bacterial-like fission as well as for assortative mating. Here we present another neutral model to investigate the `critical' phase transition behavior of three mating types - assortative, bacterial, and random - in a phenotype space as a function of the percentage of random death. Results show two types of phase transitions occurring for the parameters of the population size and the number of clusters (an analogue of species), indicating different evolutionary dynamics for system survival and clustering. This research was supported by funding from: University of Missouri Research Board and James S. McDonnell Foundation.

  14. Modeling Transit Patterns Via Mobile App Logs.

    Science.gov (United States)

    2016-01-01

    Transit planners need detailed information of the trips people take using public transit in : order to design more optimal routes, address new construction projects, and address the : constantly changing needs of a city and metro region. Better trans...

  15. Modelling Hegemonic Power Transition in Cyberspace

    Directory of Open Access Journals (Sweden)

    Dmitry Brizhinev

    2018-01-01

    Full Text Available Cyberspace is the newest domain of conflict and cooperation between states. In cyberspace, as in all other domains, land, sea, air, and space, these interactions often lead to the emergence of hegemons which are characterised by their predominant influence over global world order and all other states. We examined the emergence and collapse of hegemons in a modelled cyberspace world through the notions of power transition and power diffusion. We used Repast Simphony to construct a simple agent-based model (ABM of a system of states interacting both competitively and cooperatively in this world. Our simple model parsimoniously captures the character of the real international system of states through simple parameters of wealth and power determining the outcome of attack or cooperation amongst pairwise interacting states. We found hegemons of global world order emerged in cyberspace as they do in the other traditional domains from models with these few parameters. And we found that hegemons, contrary to traditional understanding, are not exceptional states but merely occupy the tail of a continuous distribution of power and lifetimes. We also found that hegemony in the system depends on two perhaps unexpected parameters: the difficulty of acquiring power as wealth increases and the amount of cooperation between states. And as a consequence, we argue that cyberspace, as a power-diffuse domain where cooperation is easier than elsewhere, is less suited to the kind of hegemony we see in the traditional domains of state interaction.

  16. Absorbing phase transitions in deterministic fixed-energy sandpile models

    Science.gov (United States)

    Park, Su-Chan

    2018-03-01

    We investigate the origin of the difference, which was noticed by Fey et al. [Phys. Rev. Lett. 104, 145703 (2010), 10.1103/PhysRevLett.104.145703], between the steady state density of an Abelian sandpile model (ASM) and the transition point of its corresponding deterministic fixed-energy sandpile model (DFES). Being deterministic, the configuration space of a DFES can be divided into two disjoint classes such that every configuration in one class should evolve into one of absorbing states, whereas no configurations in the other class can reach an absorbing state. Since the two classes are separated in terms of toppling dynamics, the system can be made to exhibit an absorbing phase transition (APT) at various points that depend on the initial probability distribution of the configurations. Furthermore, we show that in general the transition point also depends on whether an infinite-size limit is taken before or after the infinite-time limit. To demonstrate, we numerically study the two-dimensional DFES with Bak-Tang-Wiesenfeld toppling rule (BTW-FES). We confirm that there are indeed many thresholds. Nonetheless, the critical phenomena at various transition points are found to be universal. We furthermore discuss a microscopic absorbing phase transition, or a so-called spreading dynamics, of the BTW-FES, to find that the phase transition in this setting is related to the dynamical isotropic percolation process rather than self-organized criticality. In particular, we argue that choosing recurrent configurations of the corresponding ASM as an initial configuration does not allow for a nontrivial APT in the DFES.

  17. Transition Heat Transfer Modeling Based on the Characteristics of Turbulent Spots

    Science.gov (United States)

    Simon, Fred; Boyle, Robert

    1998-01-01

    While turbulence models are being developed which show promise for simulating the transition region on a turbine blade or vane, it is believed that the best approach with the greatest potential for practical use is the use of models which incorporate the physics of turbulent spots present in the transition region. This type of modeling results in the prediction of transition region intermittency which when incorporated in turbulence models give a good to excellent prediction of the transition region heat transfer. Some models are presented which show how turbulent spot characteristics and behavior can be employed to predict the effect of pressure gradient and Mach number on the transition region. The models predict the spot formation rate which is needed, in addition to the transition onset location, in the Narasimha concentrated breakdown intermittency equation. A simplified approach is taken for modeling turbulent spot growth and interaction in the transition region which utilizes the turbulent spot variables governing transition length and spot generation rate. The models are expressed in terms of spot spreading angle, dimensionless spot velocity, dimensionless spot area, disturbance frequency and Mach number. The models are used in conjunction with a computer code to predict the effects of pressure gradient and Mach number on the transition region and compared with VKI experimental turbine data.

  18. Dynamical quantum phase transitions in extended transverse Ising models

    Science.gov (United States)

    Bhattacharjee, Sourav; Dutta, Amit

    2018-04-01

    We study the dynamical quantum phase transitions (DQPTs) manifested in the subsequent unitary dynamics of an extended Ising model with an additional three spin interactions following a sudden quench. Revisiting the equilibrium phase diagram of the model, where different quantum phases are characterized by different winding numbers, we show that in some situations the winding number may not change across a gap closing point in the energy spectrum. Although, usually there exists a one-to-one correspondence between the change in winding number and the number of critical time scales associated with DQPTs, we show that the extended nature of interactions may lead to unusual situations. Importantly, we show that in the limit of the cluster Ising model, three critical modes associated with DQPTs become degenerate, thereby leading to a single critical time scale for a given sector of Fisher zeros.

  19. Liquid-liquid phase transition and glass transition in a monoatomic model system.

    Science.gov (United States)

    Xu, Limei; Buldyrev, Sergey V; Giovambattista, Nicolas; Stanley, H Eugene

    2010-01-01

    We review our recent study on the polyamorphism of the liquid and glass states in a monatomic system, a two-scale spherical-symmetric Jagla model with both attractive and repulsive interactions. This potential with a parametrization for which crystallization can be avoided and both the glass transition and the liquid-liquid phase transition are clearly separated, displays water-like anomalies as well as polyamorphism in both liquid and glassy states, providing a unique opportunity to study the interplay between the liquid-liquid phase transition and the glass transition. Our study on a simple model may be useful in understanding recent studies of polyamorphism in metallic glasses.

  20. Dealing with selection bias in educational transition models

    DEFF Research Database (Denmark)

    Holm, Anders; Jæger, Mads Meier

    2011-01-01

    This paper proposes the bivariate probit selection model (BPSM) as an alternative to the traditional Mare model for analyzing educational transitions. The BPSM accounts for selection on unobserved variables by allowing for unobserved variables which affect the probability of making educational tr...... account for selection on unobserved variables and high-quality data are both required in order to estimate credible educational transition models.......This paper proposes the bivariate probit selection model (BPSM) as an alternative to the traditional Mare model for analyzing educational transitions. The BPSM accounts for selection on unobserved variables by allowing for unobserved variables which affect the probability of making educational...... transitions to be correlated across transitions. We use simulated and real data to illustrate how the BPSM improves on the traditional Mare model in terms of correcting for selection bias and providing credible estimates of the effect of family background on educational success. We conclude that models which...

  1. The electroweak phase transition in minimal supergravity models

    CERN Document Server

    Nanopoulos, Dimitri V

    1994-01-01

    We have explored the electroweak phase transition in minimal supergravity models by extending previous analysis of the one-loop Higgs potential to include finite temperature effects. Minimal supergravity is characterized by two higgs doublets at the electroweak scale, gauge coupling unification, and universal soft-SUSY breaking at the unification scale. We have searched for the allowed parameter space that avoids washout of baryon number via unsuppressed anomalous Electroweak sphaleron processes after the phase transition. This requirement imposes strong constraints on the Higgs sector. With respect to weak scale baryogenesis, we find that the generic MSSM is {\\it not} phenomenologically acceptable, and show that the additional experimental and consistency constraints of minimal supergravity restricts the mass of the lightest CP-even Higgs even further to $m_h\\lsim 32\\GeV$ (at one loop), also in conflict with experiment. Thus, if supergravity is to allow for baryogenesis via any other mechanism above the weak...

  2. Numerical simulation of transitional flow on a wind turbine airfoil with RANS-based transition model

    Science.gov (United States)

    Zhang, Ye; Sun, Zhengzhong; van Zuijlen, Alexander; van Bussel, Gerard

    2017-09-01

    This paper presents a numerical investigation of transitional flow on the wind turbine airfoil DU91-W2-250 with chord-based Reynolds number Rec = 1.0 × 106. The Reynolds-averaged Navier-Stokes based transition model using laminar kinetic energy concept, namely the k - kL - ω model, is employed to resolve the boundary layer transition. Some ambiguities for this model are discussed and it is further implemented into OpenFOAM-2.1.1. The k - kL - ω model is first validated through the chosen wind turbine airfoil at the angle of attack (AoA) of 6.24° against wind tunnel measurement, where lift and drag coefficients, surface pressure distribution and transition location are compared. In order to reveal the transitional flow on the airfoil, the mean boundary layer profiles in three zones, namely the laminar, transitional and fully turbulent regimes, are investigated. Observation of flow at the transition location identifies the laminar separation bubble. The AoA effect on boundary layer transition over wind turbine airfoil is also studied. Increasing the AoA from -3° to 10°, the laminar separation bubble moves upstream and reduces in size, which is in close agreement with wind tunnel measurement.

  3. Convergence of Transition Probability Matrix in CLVMarkov Models

    Science.gov (United States)

    Permana, D.; Pasaribu, U. S.; Indratno, S. W.; Suprayogi, S.

    2018-04-01

    A transition probability matrix is an arrangement of transition probability from one states to another in a Markov chain model (MCM). One of interesting study on the MCM is its behavior for a long time in the future. The behavior is derived from one property of transition probabilty matrix for n steps. This term is called the convergence of the n-step transition matrix for n move to infinity. Mathematically, the convergence of the transition probability matrix is finding the limit of the transition matrix which is powered by n where n moves to infinity. The convergence form of the transition probability matrix is very interesting as it will bring the matrix to its stationary form. This form is useful for predicting the probability of transitions between states in the future. The method usually used to find the convergence of transition probability matrix is through the process of limiting the distribution. In this paper, the convergence of the transition probability matrix is searched using a simple concept of linear algebra that is by diagonalizing the matrix.This method has a higher level of complexity because it has to perform the process of diagonalization in its matrix. But this way has the advantage of obtaining a common form of power n of the transition probability matrix. This form is useful to see transition matrix before stationary. For example cases are taken from CLV model using MCM called Model of CLV-Markov. There are several models taken by its transition probability matrix to find its convergence form. The result is that the convergence of the matrix of transition probability through diagonalization has similarity with convergence with commonly used distribution of probability limiting method.

  4. TRANSIT MODEL OF PLANETS WITH MOON AND RING SYSTEMS

    International Nuclear Information System (INIS)

    Tusnski, Luis Ricardo M.; Valio, Adriana

    2011-01-01

    Since the discovery of the first exoplanets, those most adequate for life to begin and evolve have been sought. Due to observational bias, however, most of the discovered planets so far are gas giants, precluding their habitability. However, if these hot Jupiters are located in the habitable zones of their host stars, and if rocky moons orbit them, then these moons may be habitable. In this work, we present a model for planetary transit simulation considering the presence of moons and planetary rings around a planet. The moon's orbit is considered to be circular and coplanar with the planetary orbit. The other physical and orbital parameters of the star, planet, moon, and rings can be adjusted in each simulation. It is possible to simulate as many successive transits as desired. Since the presence of spots on the surface of the star may produce a signal similar to that of the presence of a moon, our model also allows for the inclusion of starspots. The result of the simulation is a light curve with a planetary transit. White noise may also be added to the light curves to produce curves similar to those obtained by the CoRoT and Kepler space telescopes. The goal is to determine the criteria for detectability of moons and/or ring systems using photometry. The results show that it is possible to detect moons with radii as little as 1.3 R ⊕ with CoRoT and 0.3 R ⊕ with Kepler.

  5. Understanding & modeling bus transit driver availability.

    Science.gov (United States)

    2014-07-01

    Bus transit agencies are required to hire extraboard (i.e. back-up) operators to account for unexpected absences. Incorrect sizing of extra driver workforce is problematic for a number of reasons. Overestimating the appropriate number of extraboard o...

  6. Model for pairing phase transition in atomic nuclei

    International Nuclear Information System (INIS)

    Schiller, A.; Guttormsen, M.; Hjorth-Jensen, M.; Rekstad, J.; Siem, S.

    2002-01-01

    A model is developed which allows the investigation and classification of the pairing phase transition in atomic nuclei. The regions of the parameter space are discussed for which a pairing phase transition can be observed. The model parameters include number of particles, attenuation of pairing correlations with increasing seniority, single-particle level spacing, and pairing gap parameter

  7. Accelerating transition dynamics in city regions: A qualitative modeling perspective

    NARCIS (Netherlands)

    P.J. Valkering (Pieter); Yücel, G. (Gönenç); Gebetsroither-Geringer, E. (Ernst); Markvica, K. (Karin); Meynaerts, E. (Erika); N. Frantzeskaki (Niki)

    2017-01-01

    textabstractIn this article, we take stock of the findings from conceptual and empirical work on the role of transition initiatives for accelerating transitions as input for modeling acceleration dynamics. We applied the qualitative modeling approach of causal loop diagrams to capture the dynamics

  8. Modeling Intracellular Oscillations and Polarity Transition in Fission Yeast

    Science.gov (United States)

    Drake, Tyler; Das, Maitreyi; Verde, Fulvia; Vavylonis, Dimitrios

    2011-03-01

    Fission yeast, a pill-shaped model organism, restricts growth to its tips. These cells maintain an asymmetric growth state, growing at only one tip, until they meet length and cell-cycle requirements. With these met, they grow at both. The mechanism of this transition, new-end take-off (NETO), remains unclear. We find that NETO occurs due to long-range competition for fast-diffusing signaling protein Cdc42 between the old and new tips. From experimental results, we suppose that symmetric tips compete for Cdc42, which triggers growth. We describe a symmetric growth model based on competition between tips. This model restricts short cells to monopolar states while allowing longer cells to be bipolar. Autocatalytic Cdc42 recruiting at both cells tips leads to broken symmetry, and the recruiting cuts off as tip Cdc42 levels saturate. Non-linear differential equations describe the model, with stable attractors indicating valid distributions. Linear stability analysis and numerical methods identify stable fixed points over a twofold increase in cell length. The model reproduces qualitative behavior of the organism. We show that observed pole-to-pole Cdc42 oscillations may facilitate the polarity transition and discuss their relationship to the Min system in E. Coli.

  9. A rigidity transition and glassy dynamics in a model for confluent 3D tissues

    Science.gov (United States)

    Merkel, Matthias; Manning, M. Lisa

    The origin of rigidity in disordered materials is an outstanding open problem in statistical physics. Recently, a new type of rigidity transition was discovered in a family of models for 2D biological tissues, but the mechanisms responsible for rigidity remain unclear. This is not just a statistical physics problem, but also relevant for embryonic development, cancer growth, and wound healing. To gain insight into this rigidity transition and make new predictions about biological bulk tissues, we have developed a fully 3D self-propelled Voronoi (SPV) model. The model takes into account shape, elasticity, and self-propelled motion of the individual cells. We find that in the absence of self-propulsion, this model exhibits a rigidity transition that is controlled by a dimensionless model parameter describing the preferred cell shape, with an accompanying structural order parameter. In the presence of self-propulsion, the rigidity transition appears as a glass-like transition featuring caging and aging effects. Given the similarities between this transition and jamming in particulate solids, it is natural to ask if the two transitions are related. By comparing statistics of Voronoi geometries, we show the transitions are surprisingly close but demonstrably distinct. Furthermore, an index theorem used to identify topologically protected mechanical modes in jammed systems can be extended to these vertex-type models. In our model, residual stresses govern the transition and enter the index theorem in a different way compared to jammed particles, suggesting the origin of rigidity may be different between the two.

  10. Transition and Turbulence Modeling for Blunt-Body Wake Flows

    Science.gov (United States)

    Nance, Robert P.; Horvath, Thomas J.; Hassan, H. A.

    1997-01-01

    This study attempts t o improve the modeling and computational prediction of high- speed transitional wake flows. The recently developed kappa - zeta (Enstrophy) turbulence model is coupled with a newly developed transition prediction method and implemented in an implicit flow solver well-suited to hypersonic flows. In this model, transition onset is determined as part of the solution. Results obtained using the new model for a 70- deg blunted cone/sting geometry demonstrate better agreement with experimental heat- transfer measurements when compared to laminar calculations as well as solutions using the kappa - omega model. Results are also presented for the situation where transition onset is preselected. It is shown that, in this case, results are quite sensitive to location of the transition point.

  11. Two kinds of Phase transitions in a Voting model

    OpenAIRE

    Hisakado, Masato; Mori, Shintaro

    2012-01-01

    In this paper, we discuss a voting model with two candidates, C_0 and C_1. We consider two types of voters--herders and independents. The voting of independents is based on their fundamental values; on the other hand, the voting of herders is based on the number of previous votes. We can identify two kinds of phase transitions. One is an information cascade transition similar to a phase transition seen in Ising model. The other is a transition of super and normal diffusions. These phase trans...

  12. Two kinds of phase transitions in a voting model

    Science.gov (United States)

    Hisakado, M.; Mori, S.

    2012-08-01

    In this paper, we discuss a voting model with two candidates, C0 and C1. We consider two types of voters—herders and independents. The voting of independents is based on their fundamental values, while the voting of herders is based on the number of previous votes. We can identify two kinds of phase transitions. One is an information cascade transition similar to a phase transition seen in the Ising model. The other is a transition of super and normal diffusions. These phase transitions coexist. We compared our results to the conclusions of experiments and identified the phase transitions in the upper limit of the time t by using the analysis of human behavior obtained from experiments.

  13. Multiple phase transitions in the generalized Curie-Weiss model

    International Nuclear Information System (INIS)

    Eisele, T.; Ellis, R.S.

    1988-01-01

    The generalized Curie-Weiss model is an extension of the classical Curie-Weiss model in which the quadratic interaction function of the mean spin value is replaced by a more general interaction function. It is shown that the generalized Curie-Weiss model can have a sequence of phase transitions at different critical temperatures. Both first-order and second-order phase transitions can occur, and explicit criteria for the two types are given. Three examples of generalized Curie-Weiss models are worked out in detail, including one example with infinitely many phase transitions. A number of results are derived using large-deviation techniques

  14. Calibration of the 7—Equation Transition Model for High Reynolds Flows at Low Mach

    Science.gov (United States)

    Colonia, S.; Leble, V.; Steijl, R.; Barakos, G.

    2016-09-01

    The numerical simulation of flows over large-scale wind turbine blades without considering the transition from laminar to fully turbulent flow may result in incorrect estimates of the blade loads and performance. Thanks to its relative simplicity and promising results, the Local-Correlation based Transition Modelling concept represents a valid way to include transitional effects into practical CFD simulations. However, the model involves coefficients that need tuning. In this paper, the γ—equation transition model is assessed and calibrated, for a wide range of Reynolds numbers at low Mach, as needed for wind turbine applications. An aerofoil is used to evaluate the original model and calibrate it; while a large scale wind turbine blade is employed to show that the calibrated model can lead to reliable solutions for complex three-dimensional flows. The calibrated model shows promising results for both two-dimensional and three-dimensional flows, even if cross-flow instabilities are neglected.

  15. Transitional paleointensities from Kauai, Hawaii, and geomagnetic reversal models

    Science.gov (United States)

    Bogue, Scott W.; Coe, Robert S.

    1984-01-01

    Previously presented paleointensity results from an R-N transition zone in Kauai, Hawaii, show that field intensity dropped from 0. 431 Oe to 0. 101 Oe while the field remained within 30 degree of the reversed axial dipole direction. A recovery in intensity and the main directional change followed this presumably short period of low field strength. As the reversal neared completion, the field has an intensity of 0. 217 Oe while still 40 degree from the final direction. The relationship of paleointensity to field direction during the early part of the reversal thus differs from that toward the end, a feature that only some reversal models are consistent with. For example, a model in which a standing nondipole component persists through the dipole reversal predicts only symmetric intensity patterns. In contrast, zonal flooding models generate suitably complex field behavior if multiple flooding schemes operate during a single reversal or if the flooding process is itself asymmetric.

  16. Dynamic shape transitions in the sdg boson model

    International Nuclear Information System (INIS)

    Kuyucak, S.

    1992-01-01

    The dynamic evolution of shapes in the sdg interacting boson model is investigated using the angular momentum projected mean field theory. Deformed nuclei are found to be quite stable against shape changes but transitional nuclei could exhibit dynamic shape transitions in the region L = 10-20. Conditions of existence and experimental signatures for dynamic shape transitions are discussed together with a likely candidate, 192 Os. 13 refs., 3 figs

  17. Dynamic shape transitions in the sdg boson model

    Science.gov (United States)

    Kuyucak, S.

    The dynamic evolution of shapes in the sdg interacting boson model is investigated using the angular momentum projected mean field theory. Deformed nuclei are found to be quite stable against shape changes but transitional nuclei could exhibit dynamic shape transitions in the region L = 10-20. Conditions of existence and experimental signatures for dynamic shape transitions are discussed together with a likely candidate, 192Os.

  18. Dynamic shape transitions in the sdg boson model

    Energy Technology Data Exchange (ETDEWEB)

    Kuyucak, S. (Melbourne Univ., Parkville (Australia). School of Physics)

    1992-01-01

    The dynamic evolution of shapes in the sdg interacting bosun model is investigated using the angular momentum projected mean field theory. Deformed nuclei are found to be quite stable against shape changes but transitional nuclei could exhibit dynamic shape transitions in the region L = 10-20. Conditions of existence and experimental signatures for dynamic shape transitions are discussed together with a likely candidate, {sup 192}Os. (author).

  19. Chiral phase transition in a covariant nonlocal NJL model

    International Nuclear Information System (INIS)

    General, I.; Scoccola, N.N.

    2001-01-01

    The properties of the chiral phase transition at finite temperature and chemical potential are investigated within a nonlocal covariant extension of the NJL model based on a separable quark-quark interaction. We find that for low values of T the chiral transition is always of first order and, for finite quark masses, at certain end point the transition turns into a smooth crossover. Our predictions for the position of this point is similar, although somewhat smaller, than previous estimates. (author)

  20. Correlation-based Transition Modeling for External Aerodynamic Flows

    Science.gov (United States)

    Medida, Shivaji

    Conventional turbulence models calibrated for fully turbulent boundary layers often over-predict drag and heat transfer on aerodynamic surfaces with partially laminar boundary layers. A robust correlation-based model is developed for use in Reynolds-Averaged Navier-Stokes simulations to predict laminar-to-turbulent transition onset of boundary layers on external aerodynamic surfaces. The new model is derived from an existing transition model for the two-equation k-omega Shear Stress Transport (SST) turbulence model, and is coupled with the one-equation Spalart-Allmaras (SA) turbulence model. The transition model solves two transport equations for intermittency and transition momentum thickness Reynolds number. Experimental correlations and local mean flow quantities are used in the model to account for effects of freestream turbulence level and pressure gradients on transition onset location. Transition onset is triggered by activating intermittency production using a vorticity Reynolds number criterion. In the new model, production and destruction terms of the intermittency equation are modified to improve consistency in the fully turbulent boundary layer post-transition onset, as well as ensure insensitivity to freestream eddy viscosity value specified in the SA model. In the original model, intermittency was used to control production and destruction of turbulent kinetic energy. Whereas, in the new model, only the production of eddy viscosity in SA model is controlled, and the destruction term is not altered. Unlike the original model, the new model does not use an additional correction to intermittency for separation-induced transition. Accuracy of drag predictions are improved significantly with the use of the transition model for several two-dimensional single- and multi-element airfoil cases over a wide range of Reynolds numbers. The new model is able to predict the formation of stable and long laminar separation bubbles on low-Reynolds number airfoils that

  1. Thresholds and Smooth Transitions in Vector Autoregressive Models

    DEFF Research Database (Denmark)

    Hubrich, Kirstin; Teräsvirta, Timo

    This survey focuses on two families of nonlinear vector time series models, the family of Vector Threshold Regression models and that of Vector Smooth Transition Regression models. These two model classes contain incomplete models in the sense that strongly exogeneous variables are allowed in the...

  2. Curriculum Outline for Tennessee Transition Model.

    Science.gov (United States)

    Esch, B. J.

    This curriculum outline for the Sevier County, Tennessee, transition program for special needs students provides goals and objectives for the following domains: domestic, vocational, community functioning, and recreation/leisure. The domestic domain covers personal hygiene/grooming, first aid, home nursing, birth control/pregnancy, parenting, drug…

  3. Modelling Transition Towards Sustainable Transportation Sector

    DEFF Research Database (Denmark)

    Dominkovic, Dominik Franjo; Bačeković, I.; Mýrdal, Jón Steinar Garðarsson

    2016-01-01

    In a transition towards 100% renewable energy system, transportation sector is rarely dealt withusing the holistic approach and measuring its impact on the whole energy system. Furthermore, assolutions for power and heat sectors are clearer, it is a tendency of the researchers to focus on thelatt...

  4. Model of transition between causes of death.

    Science.gov (United States)

    Damiani, P; Aubenque, M

    1975-06-01

    This paper describes an attempt to estimate the probabilities of transition between various major causes of death during the period 1954-1962. The regression coefficients have been estimated from French département death rates for ten main or typical causes of death, assessed by sex for the age group 45-64 years.

  5. In-transit charging lane model

    NARCIS (Netherlands)

    Verkerk, A.; Nijmeijer, H.; Khajepour, A.

    2012-01-01

    The current electric vehicles still have a problem with a short range and long charging time compared to the internal combustion vehicles. A possible solution for this problem is to charge the batteries while driving on the highway. For this, a special traffic lane is needed with an in-transit

  6. Thermal margin model for transition core of KSNP

    International Nuclear Information System (INIS)

    Nahm, Kee Yil; Lim, Jong Seon; Park, Sung Kew; Chun, Chong Kuk; Hwang, Sun Tack

    2004-01-01

    The PLUS7 fuel was developed with mixing vane grids for KSNP. For the transition core partly loaded with the PLUS7 fuels, the procedure to set up the optimum thermal margin model of the transition core was suggested by introducing AOPM concept into the screening method which determines the limiting assembly. According to the procedure, the optimum thermal margin model of the first transition core was set up by using a part of nuclear data for the first transition and the homogeneous core with PLUS7 fuels. The generic thermal margin model of PLUS7 fuel was generated with the AOPM of 138%. The overpower penalties on the first transition core were calculated to be 1.0 and 0.98 on the limiting assembly and the generic thermal margin model, respectively. It is not usual case to impose the overpower penalty on reload cores. It is considered that the lack of channel flow due to the difference of pressure drop between PLUS7 and STD fuels results in the decrease of DNBR. The AOPM of the first transition core is evaluated to be about 135% by using the optimum generic thermal margin model which involves the generic thermal margin model and the total overpower penalty. The STD fuel is not included among limiting assembly candidates in the second transition core, because they have much lower pin power than PLUS7 fuels. The reduced number of STD fuels near the limiting assembly candidates the flow from the limiting assembly to increase the thermal margin for the second transition core. It is expected that cycle specific overpower penalties increase the thermal margin for the transition core. Using the procedure to set up the optimum thermal margin model makes sure that the enhanced thermal margin of PLUS7 fuel can be sufficiently applied to not only the homogeneous core but also the transition core

  7. Linking Complexity and Sustainability Theories: Implications for Modeling Sustainability Transitions

    Directory of Open Access Journals (Sweden)

    Camaren Peter

    2014-03-01

    Full Text Available In this paper, we deploy a complexity theory as the foundation for integration of different theoretical approaches to sustainability and develop a rationale for a complexity-based framework for modeling transitions to sustainability. We propose a framework based on a comparison of complex systems’ properties that characterize the different theories that deal with transitions to sustainability. We argue that adopting a complexity theory based approach for modeling transitions requires going beyond deterministic frameworks; by adopting a probabilistic, integrative, inclusive and adaptive approach that can support transitions. We also illustrate how this complexity-based modeling framework can be implemented; i.e., how it can be used to select modeling techniques that address particular properties of complex systems that we need to understand in order to model transitions to sustainability. In doing so, we establish a complexity-based approach towards modeling sustainability transitions that caters for the broad range of complex systems’ properties that are required to model transitions to sustainability.

  8. Modelling and numerical simulation of liquid-vapor phase transitions

    International Nuclear Information System (INIS)

    Caro, F.

    2004-11-01

    This work deals with the modelling and numerical simulation of liquid-vapor phase transition phenomena. The study is divided into two part: first we investigate phase transition phenomena with a Van Der Waals equation of state (non monotonic equation of state), then we adopt an alternative approach with two equations of state. In the first part, we study the classical viscous criteria for selecting weak solutions of the system used when the equation of state is non monotonic. Those criteria do not select physical solutions and therefore we focus a more recent criterion: the visco-capillary criterion. We use this criterion to exactly solve the Riemann problem (which imposes solving an algebraic scalar non linear equation). Unfortunately, this step is quite costly in term of CPU which prevent from using this method as a ground for building Godunov solvers. That is why we propose an alternative approach two equations of state. Using the least action principle, we propose a phase changing two-phase flow model which is based on the second thermodynamic principle. We shall then describe two equilibrium submodels issued from the relaxations processes when instantaneous equilibrium is assumed. Despite the weak hyperbolicity of the last sub-model, we propose stable numerical schemes based on a two-step strategy involving a convective step followed by a relaxation step. We show the ability of the system to simulate vapor bubbles nucleation. (author)

  9. Description of transitional nuclei in the sdg boson model

    International Nuclear Information System (INIS)

    Lac, V.S.; Kuyucak, S.

    1992-01-01

    The study of the transitional nuclei in the framework of the sdg boson model was necessitated by recent measurements of E2 and E4 transitions in the Pt and Os isotopes which can not be explained in the sd boson models. It is shown how γ-unstable and triaxial shapes arise from special choices of sdg model Hamiltonians. Ways of limiting the number of free parameters through consistency and coherence conditions are also discussed. A satisfactory description of E2 and E4 properties is obtained for the Pt and Os nuclei, which also predicts dynamic shape transitions in these nuclei. 36 refs., 10 tabs., 12 figs

  10. Sildenafil normalizes bowel transit in preclinical models of constipation.

    Directory of Open Access Journals (Sweden)

    Sarah K Sharman

    Full Text Available Guanylyl cyclase-C (GC-C agonists increase cGMP levels in the intestinal epithelium to promote secretion. This process underlies the utility of exogenous GC-C agonists such as linaclotide for the treatment of chronic idiopathic constipation (CIC and irritable bowel syndrome with constipation (IBS-C. Because GC-C agonists have limited use in pediatric patients, there is a need for alternative cGMP-elevating agents that are effective in the intestine. The present study aimed to determine whether the PDE-5 inhibitor sildenafil has similar effects as linaclotide on preclinical models of constipation. Oral administration of sildenafil caused increased cGMP levels in mouse intestinal epithelium demonstrating that blocking cGMP-breakdown is an alternative approach to increase cGMP in the gut. Both linaclotide and sildenafil reduced proliferation and increased differentiation in colon mucosa, indicating common target pathways. The homeostatic effects of cGMP required gut turnover since maximal effects were observed after 3 days of treatment. Neither linaclotide nor sildenafil treatment affected intestinal transit or water content of fecal pellets in healthy mice. To test the effectiveness of cGMP elevation in a functional motility disorder model, mice were treated with dextran sulfate sodium (DSS to induce colitis and were allowed to recover for several weeks. The recovered animals exhibited slower transit, but increased fecal water content. An acute dose of sildenafil was able to normalize transit and fecal water content in the DSS-recovery animal model, and also in loperamide-induced constipation. The higher fecal water content in the recovered animals was due to a compromised epithelial barrier, which was normalized by sildenafil treatment. Taken together our results show that sildenafil can have similar effects as linaclotide on the intestine, and may have therapeutic benefit to patients with CIC, IBS-C, and post-infectious IBS.

  11. Stochastic resonance induced by novel random transitions of motion of FitzHugh-Nagumo neuron model

    International Nuclear Information System (INIS)

    Zhang Guangjun; Xu Jianxue

    2005-01-01

    In contrast to the previous studies which have dealt with stochastic resonance induced by random transitions of system motion between two coexisting limit cycle attractors in the FitzHugh-Nagumo (FHN) neuron model after Hopf bifurcation and which have dealt with the phenomenon of stochastic resonance induced by external noise when the model with periodic input has only one attractor before Hopf bifurcation, in this paper we have focused our attention on stochastic resonance (SR) induced by a novel transition behavior, the transitions of motion of the model among one attractor on the left side of bifurcation point and two attractors on the right side of bifurcation point under the perturbation of noise. The results of research show: since one bifurcation of transition from one to two limit cycle attractors and the other bifurcation of transition from two to one limit cycle attractors occur in turn besides Hopf bifurcation, the novel transitions of motion of the model occur when bifurcation parameter is perturbed by weak internal noise; the bifurcation point of the model may stochastically slightly shift to the left or right when FHN neuron model is perturbed by external Gaussian distributed white noise, and then the novel transitions of system motion also occur under the perturbation of external noise; the novel transitions could induce SR alone, and when the novel transitions of motion of the model and the traditional transitions between two coexisting limit cycle attractors after bifurcation occur in the same process the SR also may occur with complicated behaviors types; the mechanism of SR induced by external noise when FHN neuron model with periodic input has only one attractor before Hopf bifurcation is related to this kind of novel transition mentioned above

  12. Liquid-Liquid Phase Transition and Glass Transition in a Monoatomic Model System

    Directory of Open Access Journals (Sweden)

    Nicolas Giovambattista

    2010-12-01

    Full Text Available We review our recent study on the polyamorphism of the liquid and glass states in a monatomic system, a two-scale spherical-symmetric Jagla model with both attractive and repulsive interactions. This potential with a parametrization for which crystallization can be avoided and both the glass transition and the liquid-liquid phase transition are clearly separated, displays water-like anomalies as well as polyamorphism in both liquid and glassy states, providing a unique opportunity to study the interplay between the liquid-liquid phase transition and the glass transition. Our study on a simple model may be useful in understanding recent studies of polyamorphism in metallic glasses.

  13. A new stochastic cellular automaton model on traffic flow and its jamming phase transition

    International Nuclear Information System (INIS)

    Sakai, Satoshi; Nishinari, Katsuhiro; Iida, Shinji

    2006-01-01

    A general stochastic traffic cellular automaton (CA) model, which includes the slow-to-start effect and driver's perspective, is proposed in this paper. It is shown that this model includes well-known traffic CA models such as the Nagel-Schreckenberg model, the quick-start model and the slow-to-start model as specific cases. Fundamental diagrams of this new model clearly show metastable states around the critical density even when the stochastic effect is present. We also obtain analytic expressions of the phase transition curve in phase diagrams by using approximate flow-density relations at boundaries. These phase transition curves are in excellent agreement with numerical results

  14. Ohio study shows that insurance coverage is critical for children with special health care needs as they transition to adulthood.

    Science.gov (United States)

    Goudie, Anthony; Carle, Adam C

    2011-12-01

    Nearly 30 percent of young adults with special health care needs in Ohio lack health insurance, compared to 5 percent of the state's children with special health care needs. As children with such needs become too old for Medicaid or insurance through their parents' employer, they face great challenges in obtaining insurance. Lack of insurance is highly predictive of unmet needs, which in turn are predictive of costly hospital-based encounters. Young adults with special health care needs who are uninsured are more than twice as likely as their peers with insurance to forgo filling prescriptions and getting care and to have problems getting care. Even after insurance status is accounted for, young adults with special health care needs are more likely than children with such needs to not fill prescriptions because of cost and to delay or forgo needed care. This study demonstrates that continuous and adequate health insurance is vital to the continued well-being of children with special health care needs as they transition to young adulthood.

  15. Modeling dynamic beta-gamma polymorphic transition in Tin

    Science.gov (United States)

    Chauvin, Camille; Montheillet, Frank; Petit, Jacques; CEA Gramat Collaboration; EMSE Collaboration

    2015-06-01

    Solid-solid phase transitions in metals have been studied by shock waves techniques for many decades. Recent experiments have investigated the transition during isentropic compression experiments and shock-wave compression and have highlighted the strong influence of the loading rate on the transition. Complementary data obtained with velocity and temperature measurements around the polymorphic transition beta-gamma of Tin on gas gun experiments have displayed the importance of the kinetics of the transition. But, even though this phenomenon is known, modeling the kinetic remains complex and based on empirical formulations. A multiphase EOS is available in our 1D Lagrangian code Unidim. We propose to present the influence of various kinetic laws (either empirical or involving nucleation and growth mechanisms) and their parameters (Gibbs free energy, temperature, pressure) on the transformation rate. We compare experimental and calculated velocities and temperature profiles and we underline the effects of the empirical parameters of these models.

  16. Radiative transitions in mesons within a non relativistic quark model

    International Nuclear Information System (INIS)

    Bonnaz, R.; Silvestre-Brac, B.; Gignoux, C.

    2002-01-01

    An exhaustive study of radiative transitions in mesons is performed in a non relativistic quark model. Three different types of mesons wave functions are tested. The effect of some usual approximations is commented. Overall agreement with experimental data is obtained

  17. Quantum catalysis : the modelling of catalytic transition states

    NARCIS (Netherlands)

    Hall, M.B.; Margl, P.; Naray-Szabo, G.; Schramm, Vern; Truhlar, D.G.; Santen, van R.A.; Warshel, A.; Whitten, J.L.; Truhlar, D.G.; Morokuma, K.

    1999-01-01

    A review with 101 refs.; we present an introduction to the computational modeling of transition states for catalytic reactions. We consider both homogeneous catalysis and heterogeneous catalysis, including organometallic catalysts, enzymes, zeolites and metal oxides, and metal surfaces. We summarize

  18. The democracy ochlocracy dictatorship transition in the Sznajd model and in the Ising model

    Science.gov (United States)

    Schneider, Johannes J.; Hirtreiter, Christian

    2005-08-01

    Since its introduction in 2000, the Sznajd model has been assumed to simulate a democratic community with two parties. The main flaw in this model is that a Sznajd system freezes in the long term in a non-democratic state, which can be either a dictatorship or a stalemate configuration. Here we show that the Sznajd model has better to be considered as a transition model, transferring a democratic system already at the beginning of a simulation via an ochlocratic scenario, i.e., a regime in which several mobs rule, to a dictatorship, thus reproducing the corresponding Aristotelian theory.

  19. Annular flow transition model in channels of various shapes

    International Nuclear Information System (INIS)

    Osakabe, Masahiro; Tasaka, Kanji; Kawasaki, Yuji.

    1988-01-01

    The annular transition in the rod bundle is interesting because the small gaps between rods exist in the flow area. This is a very important phenomenon in the boiloff accident of nuclear reactor core. As a first attempt, the effect of small gaps in the flow area was studied by using the vertical rectangular ducts with different narrow gaps (2 x 100, 5 x 100, 10 x 100 mm). Based on the experimental results, the transition void fraction was defined and the transition model was proposed. The model gives a good prediction of the wide range of previous experiments including the data taken in the channels with small gaps. (author)

  20. Annular flow transition model in channels of various shapes

    International Nuclear Information System (INIS)

    Osakabe, M.; Tasaka, K.; Kawasaki, Y.

    1989-01-01

    Annular transition in a rod bundle is interesting because small gaps exist between rods in the flow area. This is a very important phenomenon in a boiloff accident of a nuclear reactor core. This paper reports, as a first attempt, the effect of small gaps in the flow area was studied by using vertical rectangular ducts with different narrow gaps (2 x 100, 5 x 100, 10 x 100 mm). Based on the experimental results, the transition void fraction was defined and a transition model is proposed. The model gives a good prediction for a wide range of previous experiments including the data taken in channels with small gaps

  1. Dynamics of the oil transition: Modeling capacity, depletion, and emissions

    International Nuclear Information System (INIS)

    Brandt, Adam R.; Plevin, Richard J.; Farrell, Alexander E.

    2010-01-01

    The global petroleum system is undergoing a shift to substitutes for conventional petroleum (SCPs). The Regional Optimization Model for Emissions from Oil Substitutes, or ROMEO, models this oil transition and its greenhouse gas impacts. ROMEO models the global liquid fuel market in an economic optimization framework, but in contrast to other models it solves each model year sequentially, with investment and production optimized under uncertainty about future prevailing prices or resource quantities. ROMEO includes more hydrocarbon resource types than integrated assessment models of climate change. ROMEO also includes the carbon intensities and costs of production of these resources. We use ROMEO to explore the uncertainty of future costs, emissions, and total fuel production under a number of scenarios. We perform sensitivity analysis on the endowment of conventional petroleum and future carbon taxes. Results show incremental emissions from production of oil substitutes of ∼ 0-30 gigatonnes (Gt) of carbon over the next 50 years (depending on the carbon tax). Also, demand reductions due to the higher cost of SCPs could reduce or eliminate these increases. Calculated emissions are highly sensitive to the endowment of conventional oil and less sensitive to a carbon tax.

  2. Hierarchical Colored Petri Nets for Modeling and Analysis of Transit Signal Priority Control Systems

    Directory of Open Access Journals (Sweden)

    Yisheng An

    2018-01-01

    Full Text Available In this paper, we consider the problem of developing a model for traffic signal control with transit priority using Hierarchical Colored Petri nets (HCPN. Petri nets (PN are useful for state analysis of discrete event systems due to their powerful modeling capability and mathematical formalism. This paper focuses on their use to formalize the transit signal priority (TSP control model. In a four-phase traffic signal control model, the transit detection and two kinds of transit priority strategies are integrated to obtain the HCPN-based TSP control models. One of the advantages to use these models is the clear presentation of traffic light behaviors in terms of conditions and events that cause the detection of a priority request by a transit vehicle. Another advantage of the resulting models is that the correctness and reliability of the proposed strategies are easily analyzed. After their full reachable states are generated, the boundness, liveness, and fairness of the proposed models are verified. Experimental results show that the proposed control model provides transit vehicles with better effectiveness at intersections. This work helps advance the state of the art in the design of signal control models related to the intersection of roadways.

  3. Boundary-layer transition prediction using a simplified correlation-based model

    Directory of Open Access Journals (Sweden)

    Xia Chenchao

    2016-02-01

    Full Text Available This paper describes a simplified transition model based on the recently developed correlation-based γ-Reθt transition model. The transport equation of transition momentum thickness Reynolds number is eliminated for simplicity, and new transition length function and critical Reynolds number correlation are proposed. The new model is implemented into an in-house computational fluid dynamics (CFD code and validated for low and high-speed flow cases, including the zero pressure flat plate, airfoils, hypersonic flat plate and double wedge. Comparisons between the simulation results and experimental data show that the boundary-layer transition phenomena can be reasonably illustrated by the new model, which gives rise to significant improvements over the fully laminar and fully turbulent results. Moreover, the new model has comparable features of accuracy and applicability when compared with the original γ-Reθt model. In the meantime, the newly proposed model takes only one transport equation of intermittency factor and requires fewer correlations, which simplifies the original model greatly. Further studies, especially on separation-induced transition flows, are required for the improvement of the new model.

  4. Linking rigidity transitions with enthalpic changes at the glass transition and fragility: insight from a simple oscillator model.

    Science.gov (United States)

    Micoulaut, Matthieu

    2010-07-21

    A low temperature Monte Carlo dynamics of a Keating-like oscillator model is used to study the relationship between the nature of network glasses from the viewpoint of rigidity, the thermal reversibility during the glass transition and the strong-fragile behaviour of glass-forming liquids. The model shows that a Phillips optimal glass formation with minimal enthalpic changes is obtained under a cooling/annealing cycle when the system is optimally constrained by the harmonic interactions, i.e. when it is isostatically rigid. For these peculiar systems with a nearly reversible glass transition, the computed activation energy for relaxation time shows also a minimum, which demonstrates that isostatically rigid glasses are strong (Arrhenius-like) glass-forming liquids. Experiments on chalcogenide and oxide glass-forming liquids are discussed under this new perspective and confirm the theoretical prediction for chalcogenide network glasses whereas limitations of the approach appear for weakly interacting (non-covalent, ionic) systems.

  5. Epidemic models for phase transitions: application to a physical gel

    Science.gov (United States)

    Bilge, A. H.; Pekcan, O.; Kara, S.; Ogrenci, A. S.

    2017-09-01

    Carrageenan gels are characterized by reversible sol-gel and gel-sol transitions under cooling and heating processes and these transitions are approximated by generalized logistic growth curves. We express the transitions of carrageenan-water system, as a representative of reversible physical gels, in terms of a modified Susceptible-Infected-Susceptible epidemic model, as opposed to the Susceptible-Infected-Removed model used to represent the (irreversible) chemical gel formation in the previous work. We locate the gel point Tc of sol-gel and gel-sol transitions and we find that, for the sol-gel transition (cooling), Tc > Tsg (transition temperature), i.e. Tc is earlier in time for all carrageenan contents and moves forward in time and gets closer to Tsg as the carrageenan content increases. For the gel-sol transition (heating), Tc is relatively closer to Tgs; it is greater than Tgs, i.e. later in time for low carrageenan contents and moves backward as carrageenan content increases.

  6. Allosteric transition: a comparison of two models

    DEFF Research Database (Denmark)

    Bindslev, Niels

    2013-01-01

    Introduction Two recent models are in use for analysis of allosteric drug action at receptor sites remote from orthosteric binding sites. One is an allosteric two-state mechanical model derived in 2000 by David Hall. The other is an extended operational model developed in 2007 by Arthur...... of model both for simulation and analysis of allosteric concentration-responses at equilibrium or steady-state. Conclusions As detailed knowledge of receptors systems becomes available, systems with several pathways and states and/ or more than two binding sites should be analysed by extended forms...

  7. A multiple-field coupled resistive transition model for superconducting Nb3Sn

    Directory of Open Access Journals (Sweden)

    Lin Yang

    2016-12-01

    Full Text Available A study on the superconducting transition width as functions of the applied magnetic field and strain is performed in superconducting Nb3Sn. A quantitative, yet universal phenomenological resistivity model is proposed. The numerical simulation by the proposed model shows predicted resistive transition characteristics under variable magnetic fields and strain, which in good agreement with the experimental observations. Furthermore, a temperature-modulated magnetoresistance transition behavior in filamentary Nb3Sn conductors can also be well described by the given model. The multiple-field coupled resistive transition model is helpful for making objective determinations of the high-dimensional critical surface of Nb3Sn in the multi-parameter space, offering some preliminary information about the basic vortex-pinning mechanisms, and guiding the design of the quench protection system of Nb3Sn superconducting magnets.

  8. A multiple-field coupled resistive transition model for superconducting Nb3Sn

    Science.gov (United States)

    Yang, Lin; Ding, He; Zhang, Xin; Qiao, Li

    2016-12-01

    A study on the superconducting transition width as functions of the applied magnetic field and strain is performed in superconducting Nb3Sn. A quantitative, yet universal phenomenological resistivity model is proposed. The numerical simulation by the proposed model shows predicted resistive transition characteristics under variable magnetic fields and strain, which in good agreement with the experimental observations. Furthermore, a temperature-modulated magnetoresistance transition behavior in filamentary Nb3Sn conductors can also be well described by the given model. The multiple-field coupled resistive transition model is helpful for making objective determinations of the high-dimensional critical surface of Nb3Sn in the multi-parameter space, offering some preliminary information about the basic vortex-pinning mechanisms, and guiding the design of the quench protection system of Nb3Sn superconducting magnets.

  9. MODELING THE TRANSITION CURVE ON A LIMITED TERAIN

    Directory of Open Access Journals (Sweden)

    V. D. Borisenko

    2017-04-01

    Full Text Available Purpose. Further development of the method of geometric modelling of transition curves, which are placed between rectilinear and circular sections of railway tracks and are created in localities, the relief of which causes certain restrictions on the size of the transition curves of the railway track. Methodology. The equation of the transition curve is taken in parametric form, in which the length of the arc of the modelled curve is used as a parameter. As initial data in the modelling of the transition curve, the coordinates of its initial point and the angle of inclination in it are tangent, the radius of the circumference of the circular section and the parameter that is used as a constraint when placing a section of the railway track. The transition curve is modelled under the condition that the distribution of its curvature from the length of the arc - the natural parameter - is described by a cubic dependence. This dependence contains four unknown coefficients; the unknown is also the length of the arc. The coefficients of the cubic dependence and the length of the arc of the transition curve, the coordinates of its end point, the angle of inclination in it of the tangent are determined during the simulation of the transition curve. The application of boundary conditions and methods of differential geometry with respect to the distribution of the slope angle of the tangent to the simulated curve from the initial to the end points of the transition curve and the calculation of the coordinates of the end point of the curve allows us to reduce the problem of modelling the transition curve to determine the arc length of this curve. Directly the length of the transition curve is in the process of minimizing the deviation of the circumference of the circular path from its current value obtained when searching for the arc length. Findings. As a result of the computational experiment, the possibility of modelling a transition curve between a

  10. Diffraction model of a step-out transition

    Energy Technology Data Exchange (ETDEWEB)

    Chao, A.W.; Zimmermann, F.

    1996-06-01

    The diffraction model of a cavity, suggested by Lawson, Bane and Sands is generalized to a step out transition. Using this model, the high frequency impedance is calculated explicitly for the case that the transition step is small compared with the beam pipe radius. In the diffraction model for a small step out transition, the total energy is conserved, but, unlike the cavity case, the diffracted waves in the geometric shadow and the pipe region, in general, do not always carry equal energy. In the limit of small step sizes, the impedance derived from the diffraction model agrees with that found by Balakin, Novokhatsky and also Kheifets. This impedance can be used to compute the wake field of a round collimator whose half aperture is much larger than the bunch length, as existing in the SLC final focus.

  11. GENESIS - The GENEric SImulation System for Modelling State Transitions.

    Science.gov (United States)

    Gillman, Matthew S

    2017-09-20

    This software implements a discrete time Markov chain model, used to model transitions between states when the transition probabilities are known a priori . It is highly configurable; the user supplies two text files, a "state transition table" and a "config file", to the Perl script genesis.pl. Given the content of these files, the script generates a set of C++ classes based on the State design pattern, and a main program, which can then be compiled and run. The C++ code generated is based on the specification in the text files. Both multiple branching and bi-directional transitions are allowed. The software has been used to model the natural histories of colorectal cancer in Mexico. Although written primarily to model such disease processes, it can be used in any process which depends on discrete states with known transition probabilities between those states. One suitable area may be in environmental modelling. A test suite is supplied with the distribution. Due to its high degree of configurability and flexibility, this software has good re-use potential. It is stored on the Figshare repository.

  12. Fluctuation effects in first-order phase transitions: Theory and model for martensitic transformations

    DEFF Research Database (Denmark)

    Lindgård, Per-Anker; Mouritsen, Ole G.

    1990-01-01

    We discuss central questions in weak, first-order structural transitions by means of a magnetic analog model. A theory including fluctuation effects is developed for the model, showing a dynamical response with softening, fading modes and a growing central peak. The model is also analyzed by a two......-dimensional Monte Carlo simulation, showing clear precursor phenomena near the first-order transition and spontaneous nucleation. The kinetics of the domain growth is studied and found to be exceedingly slow. The results are applicable for martensitic transformations and structural surface...

  13. Detecting critical state before phase transition of complex biological systems by hidden Markov model.

    Science.gov (United States)

    Chen, Pei; Liu, Rui; Li, Yongjun; Chen, Luonan

    2016-07-15

    Identifying the critical state or pre-transition state just before the occurrence of a phase transition is a challenging task, because the state of the system may show little apparent change before this critical transition during the gradual parameter variations. Such dynamics of phase transition is generally composed of three stages, i.e. before-transition state, pre-transition state and after-transition state, which can be considered as three different Markov processes. By exploring the rich dynamical information provided by high-throughput data, we present a novel computational method, i.e. hidden Markov model (HMM) based approach, to detect the switching point of the two Markov processes from the before-transition state (a stationary Markov process) to the pre-transition state (a time-varying Markov process), thereby identifying the pre-transition state or early-warning signals of the phase transition. To validate the effectiveness, we apply this method to detect the signals of the imminent phase transitions of complex systems based on the simulated datasets, and further identify the pre-transition states as well as their critical modules for three real datasets, i.e. the acute lung injury triggered by phosgene inhalation, MCF-7 human breast cancer caused by heregulin and HCV-induced dysplasia and hepatocellular carcinoma. Both functional and pathway enrichment analyses validate the computational results. The source code and some supporting files are available at https://github.com/rabbitpei/HMM_based-method lnchen@sibs.ac.cn or liyj@scut.edu.cn Supplementary data are available at Bioinformatics online. © The Author 2016. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  14. M1 transitions in the (sdg) boson model

    International Nuclear Information System (INIS)

    Kuyucak, S.; Tuebingen Univ.; Morrison, I.

    1988-01-01

    Using the 1/N expansion technique we derive expressions for β → g, γ → g and γ → γ M1 transitions in a general boson model. The M1 matrix elements in the sdg-boson model are similar in form to those in the neutron-proton IBM. Comparisons are made to some selected M1 data exhibiting collective character. (orig.)

  15. M1 transitions in the (sdg) boson model

    Energy Technology Data Exchange (ETDEWEB)

    Kuyucak, S.; Morrison, I.

    1988-03-03

    Using the 1/N expansion technique we derive expressions for ..beta.. -> g, ..gamma.. -> g and ..gamma.. -> ..gamma.. M1 transitions in a general boson model. The M1 matrix elements in the sdg-boson model are similar in form to those in the neutron-proton IBM. Comparisons are made to some selected M1 data exhibiting collective character.

  16. A collective model for transitional nuclei

    International Nuclear Information System (INIS)

    Bernus, L. von; Kappatsch, A.; Rezwani, V.; Scheid, W.; Schneider, U.; Sedlmayr, M.; Sedlmayr, R.

    1975-01-01

    The paper consists of the following sections: 1. Introduction; 2. The model (The quadrupole co-ordinates, the potential energy surface, the Hamilton operator, quadrupole moments, B(E2)-values and rms-radii); 3. The diagonalization of the collective Hamilton operator (The eigen-states of the five-dimensional oscillator, classification of the basis: R(5) is contained in R(3) and R(5) is contained in R(4) = SU(2) x SU(2), calculation of the matrix elements of H, convergence of the numerical procedure); 4. Application of the model (General remarks, typical spectra, selected spectra, conclusions); 5. The coupling of the giant-resonance states with the low-energy spectrum (The Hamilton operator, hydrodynamical model for the GR, the interaction Hamilton operator Hsub(DQ), the basis states for diagonalization, the dipole operator and the γ-absorption cross-section, results); 6. Summary. (author)

  17. Spatial occupancy models applied to atlas data show Southern Ground Hornbills strongly depend on protected areas.

    Science.gov (United States)

    Broms, Kristin M; Johnson, Devin S; Altwegg, Res; Conquest, Loveday L

    2014-03-01

    Determining the range of a species and exploring species--habitat associations are central questions in ecology and can be answered by analyzing presence--absence data. Often, both the sampling of sites and the desired area of inference involve neighboring sites; thus, positive spatial autocorrelation between these sites is expected. Using survey data for the Southern Ground Hornbill (Bucorvus leadbeateri) from the Southern African Bird Atlas Project, we compared advantages and disadvantages of three increasingly complex models for species occupancy: an occupancy model that accounted for nondetection but assumed all sites were independent, and two spatial occupancy models that accounted for both nondetection and spatial autocorrelation. We modeled the spatial autocorrelation with an intrinsic conditional autoregressive (ICAR) model and with a restricted spatial regression (RSR) model. Both spatial models can readily be applied to any other gridded, presence--absence data set using a newly introduced R package. The RSR model provided the best inference and was able to capture small-scale variation that the other models did not. It showed that ground hornbills are strongly dependent on protected areas in the north of their South African range, but less so further south. The ICAR models did not capture any spatial autocorrelation in the data, and they took an order, of magnitude longer than the RSR models to run. Thus, the RSR occupancy model appears to be an attractive choice for modeling occurrences at large spatial domains, while accounting for imperfect detection and spatial autocorrelation.

  18. Models of agglomeration and glass transition

    CERN Document Server

    Kerner, Richard

    2007-01-01

    This book is for any physicist interested in new vistas in the domain of non-crystalline condensed matter, aperiodic and quasi-crystalline networks and especially glass physics and chemistry. Students with an elementary background in thermodynamics and statistical physics will find the book accessible. The physics of glasses is extensively covered, focusing on their thermal and mechanical properties, as well as various models leading to the formation of the glassy states of matter from overcooled liquids. The models of agglomeration and growth are also applied to describe the formation of quasicrystals, fullerenes and, in biology, to describe virus assembly pathways.

  19. Improved transition models for cepstral trajectories

    CSIR Research Space (South Africa)

    Badenhorst, J

    2012-11-01

    Full Text Available We improve on a piece-wise linear model of the trajectories of Mel Frequency Cepstral Coefficients, which are commonly used as features in Automatic Speech Recognition. For this purpose, we have created a very clean single-speaker corpus, which...

  20. From bedside to classroom: the nurse educator transition model.

    Science.gov (United States)

    Schoening, Anne M

    2013-01-01

    The purpose of this qualitative study was to generate a theoretical model that describes the social process that occurs during the role transition from nurse to nurse educator. Recruitment and retention of qualified nurse educators is essential in order to remedy the current staff nurse and faculty shortage in the United States, yet nursing schools face many challenges in this area. This grounded theory study utilized purposive, theoretical sampling to identify 20 nurse educators teaching in baccalaureate nursing programs in the Midwest. The Nurse Educator Transition (NET) model was created from these data.This model identifies four phases in the role transition from nurse to nurse educator: a) the Anticipatory/Expectation Phase, b) the Disorientation Phase, c) the Information-Seeking Phase, and d) the Identity Formation Phase. Recommendations include integrating formal pedagogical education into nursing graduate programs and creating evidence-based orientation and mentoring programs for novice nurse faculty.

  1. Advances in transitional flow modeling applications to helicopter rotors

    CERN Document Server

    Sheng, Chunhua

    2017-01-01

    This book provides a comprehensive description of numerical methods and validation processes for predicting transitional flows based on the Langtry–Menter local correlation-based transition model, integrated with both one-equation Spalart–Allmaras (S–A) and two-equation Shear Stress Transport (SST) turbulence models. A comparative study is presented to combine the respective merits of the two coupling methods in the context of predicting the boundary-layer transition phenomenon from fundamental benchmark flows to realistic helicopter rotors. The book will of interest to industrial practitioners working in aerodynamic design and the analysis of fixed-wing or rotary wing aircraft, while also offering advanced reading material for graduate students in the research areas of Computational Fluid Dynamics (CFD), turbulence modeling and related fields.

  2. Assessment of intermittency transport equations for modeling transition in boundary layers subjected to freestream turbulence

    International Nuclear Information System (INIS)

    Suluksna, Keerati; Juntasaro, Ekachai

    2008-01-01

    flow near a spinning disk. Letters in Heat and Mass Transfer 1, 131-138] and the SST model of Menter [Menter, F.R., 1994. Two-equation eddy-viscosity turbulence models for engineering applications. AIAA 32, 1598-1605] are presented here. Results show that the proposed relations for F length and Re θc can work well with the model to give good agreement in predicting the transition

  3. A Transition Zone Showing Highly Discontinuous or Alternating Levels of Stem Cell and Proliferation Markers Characterizes the Development of PTEN-Haploinsufficient Colorectal Cancer.

    Science.gov (United States)

    Arvai, Kevin J; Hsu, Ya-Hsuan; Lee, Lobin A; Jones, Dan

    2015-01-01

    Stepwise acquisition of oncogene mutations and deletion/inactivation of tumor suppressor genes characterize the development of colorectal cancer (CRC). These genetic events interact with discrete morphologic transitions from hyperplastic mucosa to adenomatous areas, followed by in situ malignant transformation and finally invasive carcinoma. The goal of this study was to identify tissue markers of the adenoma-carcinoma morphogenetic transitions in CRC. We analyzed the patterns of expression of growth regulatory and stem cell markers across these distinct morphologic transition zones in 735 primary CRC tumors. In 202 cases with preserved adenoma-adenocarcinoma transition, we identified, in 37.1% of cases, a zone of adenomatous epithelium, located immediately adjacent to the invasive component, that showed rapidly alternating intraglandular stretches of PTEN+ and PTEN- epithelium. This zone exactly overlapped with similar alternating expression of Ki-67 and inversely with the transforming growth factor-beta (TGF-β) growth regulator SMAD4. These zones also show parallel alternating levels and/or subcellular localization of multiple cancer stem/progenitor cell (CSC) markers, including β-catenin/CTNNB1, ALDH1, and CD44. PTEN was always re-expressed in the invasive tumor in these cases, unlike those with complete loss of PTEN expression. Genomic microarray analysis of CRC with prominent CSC-like expansions demonstrated a high frequency of PTEN genomic deletion/haploinsufficiency in tumors with CSC-like transition zones (62.5%) but not in tumors with downregulated but non-alternating PTEN expression (14.3%). There were no significant differences in the levels of KRAS mutation or CTNNB1 mutation in CSC-like tumors as compared to unselected CRC cases. In conclusion, we have identified a distinctive CSC-like pre-invasive transition zone in PTEN-haploinsufficient CRC that shows convergent on-off regulation of the PTEN/AKT, TGF-β/SMAD and Wnt/β-catenin pathways. This

  4. A Transition Zone Showing Highly Discontinuous or Alternating Levels of Stem Cell and Proliferation Markers Characterizes the Development of PTEN-Haploinsufficient Colorectal Cancer.

    Directory of Open Access Journals (Sweden)

    Kevin J Arvai

    Full Text Available Stepwise acquisition of oncogene mutations and deletion/inactivation of tumor suppressor genes characterize the development of colorectal cancer (CRC. These genetic events interact with discrete morphologic transitions from hyperplastic mucosa to adenomatous areas, followed by in situ malignant transformation and finally invasive carcinoma. The goal of this study was to identify tissue markers of the adenoma-carcinoma morphogenetic transitions in CRC.We analyzed the patterns of expression of growth regulatory and stem cell markers across these distinct morphologic transition zones in 735 primary CRC tumors. In 202 cases with preserved adenoma-adenocarcinoma transition, we identified, in 37.1% of cases, a zone of adenomatous epithelium, located immediately adjacent to the invasive component, that showed rapidly alternating intraglandular stretches of PTEN+ and PTEN- epithelium. This zone exactly overlapped with similar alternating expression of Ki-67 and inversely with the transforming growth factor-beta (TGF-β growth regulator SMAD4. These zones also show parallel alternating levels and/or subcellular localization of multiple cancer stem/progenitor cell (CSC markers, including β-catenin/CTNNB1, ALDH1, and CD44. PTEN was always re-expressed in the invasive tumor in these cases, unlike those with complete loss of PTEN expression. Genomic microarray analysis of CRC with prominent CSC-like expansions demonstrated a high frequency of PTEN genomic deletion/haploinsufficiency in tumors with CSC-like transition zones (62.5% but not in tumors with downregulated but non-alternating PTEN expression (14.3%. There were no significant differences in the levels of KRAS mutation or CTNNB1 mutation in CSC-like tumors as compared to unselected CRC cases.In conclusion, we have identified a distinctive CSC-like pre-invasive transition zone in PTEN-haploinsufficient CRC that shows convergent on-off regulation of the PTEN/AKT, TGF-β/SMAD and Wnt

  5. Correlations for modeling transitional boundary layers under influences of freestream turbulence and pressure gradient

    International Nuclear Information System (INIS)

    Suluksna, Keerati; Dechaumphai, Pramote; Juntasaro, Ekachai

    2009-01-01

    This paper presents mathematical expressions for two significant parameters which control the onset location and length of transition in the γ-Re θ transition model of Menter et al. [Menter, F.R., Langtry, R.B., Volker, S., Huang, P.G., 2005. Transition modelling for general purpose CFD codes. In: ERCOFTAC International Symposium on Engineering Turbulence Modelling and Measurements]. The expressions are formulated and calibrated by means of numerical experiments for predicting transitional boundary layers under the influences of freestream turbulence and pressure gradient. It was also found that the correlation for transition momentum thickness Reynolds number needs only to be expressed in terms of local turbulence intensity, so that the more complex form that includes pressure gradient effects is unnecessary. Transitional boundary layers on a flat plate both with and without pressure gradients are employed to assess the performance of these two expressions for predicting the transition. The results show that the proposed expressions can work well with the model of Menter et al. (2005)

  6. Modelling transition states of a small once-through boiler

    Energy Technology Data Exchange (ETDEWEB)

    Talonpoika, T [Lappeenranta Univ. of Technology (Finland). Dept. of Energy Technology

    1998-12-31

    This article presents a model for the unsteady dynamic behaviour of a once-through counter flow boiler that uses an organic working fluid. The boiler is a compact waste-heat boiler without a furnace and it has a preheater, a vaporiser and a superheater. The relative lengths of the boiler parts vary with the operating conditions since they are all parts of a single tube. The boiler model is presented using a selected example case that uses toluene as the process fluid and flue gas from natural gas combustion as the heat source. The dynamic behaviour of the boiler means transition from the steady initial state towards another steady state that corresponds to the changed process conditions. The solution method chosen is to find such a pressure of the process fluid that the mass of the process fluid in the boiler equals the mass calculated using the mass flows into and out of the boiler during a time step, using the finite difference method. A special method of fast calculation of the thermal properties is used, because most of the calculation time is spent in calculating the fluid properties. The boiler is divided into elements. The values of the thermodynamic properties and mass flows are calculated in the nodes that connect the elements. Dynamic behaviour is limited to the process fluid and tube wall, and the heat source is regarded as to be steady. The elements that connect the preheater to the vaporiser and the vaporiser to the superheater are treated in a special way that takes into account a flexible change from one part to the other. The initial state of the boiler is received from a steady process model that is not a part of the boiler model. The known boundary values that may vary during the dynamic calculation were the inlet temperature and mass flow rates of both the heat source fluid and the process fluid. The dynamic boiler model is analysed for linear and step charges of the entering fluid temperatures and flow rates. The heat source side tests show that

  7. Modelling transition states of a small once-through boiler

    Energy Technology Data Exchange (ETDEWEB)

    Talonpoika, T. [Lappeenranta Univ. of Technology (Finland). Dept. of Energy Technology

    1997-12-31

    This article presents a model for the unsteady dynamic behaviour of a once-through counter flow boiler that uses an organic working fluid. The boiler is a compact waste-heat boiler without a furnace and it has a preheater, a vaporiser and a superheater. The relative lengths of the boiler parts vary with the operating conditions since they are all parts of a single tube. The boiler model is presented using a selected example case that uses toluene as the process fluid and flue gas from natural gas combustion as the heat source. The dynamic behaviour of the boiler means transition from the steady initial state towards another steady state that corresponds to the changed process conditions. The solution method chosen is to find such a pressure of the process fluid that the mass of the process fluid in the boiler equals the mass calculated using the mass flows into and out of the boiler during a time step, using the finite difference method. A special method of fast calculation of the thermal properties is used, because most of the calculation time is spent in calculating the fluid properties. The boiler is divided into elements. The values of the thermodynamic properties and mass flows are calculated in the nodes that connect the elements. Dynamic behaviour is limited to the process fluid and tube wall, and the heat source is regarded as to be steady. The elements that connect the preheater to the vaporiser and the vaporiser to the superheater are treated in a special way that takes into account a flexible change from one part to the other. The initial state of the boiler is received from a steady process model that is not a part of the boiler model. The known boundary values that may vary during the dynamic calculation were the inlet temperature and mass flow rates of both the heat source fluid and the process fluid. The dynamic boiler model is analysed for linear and step charges of the entering fluid temperatures and flow rates. The heat source side tests show that

  8. Out of equilibrium phase transitions and a toy model for disoriented chiral condensates

    International Nuclear Information System (INIS)

    Bedaque, P.F.; Das, A.

    1993-07-01

    We study the dynamics of a second order phase transition in a situation that mimics a sudden quench to a temperature below the critical temperature in a model with dynamical symmetry breaking. In particular we show that the domains of correlated values of the condensate grow as √t and that this result seems to be largely model independent. (author). 9 refs

  9. Metal-insulator transition and Frohlich conductivity in the Su-Schrieffer-Heeger model

    NARCIS (Netherlands)

    Michielsen, K.F L; de Raedt, H.A.

    1996-01-01

    A quantum molecular dynamics technique is used to study the single-particle density of states, Drude weight, optical conductivity and flux quantization in the Su-Schrieffer-Heeger (SSH) model. Our simulation data show that the SSH model has a metal-insulator transition away from half-filling. In the

  10. Metastable liquid-liquid transition in a molecular model of water

    Science.gov (United States)

    Palmer, Jeremy C.; Martelli, Fausto; Liu, Yang; Car, Roberto; Panagiotopoulos, Athanassios Z.; Debenedetti, Pablo G.

    2014-06-01

    Liquid water's isothermal compressibility and isobaric heat capacity, and the magnitude of its thermal expansion coefficient, increase sharply on cooling below the equilibrium freezing point. Many experimental, theoretical and computational studies have sought to understand the molecular origin and implications of this anomalous behaviour. Of the different theoretical scenarios put forward, one posits the existence of a first-order phase transition that involves two forms of liquid water and terminates at a critical point located at deeply supercooled conditions. Some experimental evidence is consistent with this hypothesis, but no definitive proof of a liquid-liquid transition in water has been obtained to date: rapid ice crystallization has so far prevented decisive measurements on deeply supercooled water, although this challenge has been overcome recently. Computer simulations are therefore crucial for exploring water's structure and behaviour in this regime, and have shown that some water models exhibit liquid-liquid transitions and others do not. However, recent work has argued that the liquid-liquid transition has been mistakenly interpreted, and is in fact a liquid-crystal transition in all atomistic models of water. Here we show, by studying the liquid-liquid transition in the ST2 model of water with the use of six advanced sampling methods to compute the free-energy surface, that two metastable liquid phases and a stable crystal phase exist at the same deeply supercooled thermodynamic condition, and that the transition between the two liquids satisfies the thermodynamic criteria of a first-order transition. We follow the rearrangement of water's coordination shell and topological ring structure along a thermodynamically reversible path from the low-density liquid to cubic ice. We also show that the system fluctuates freely between the two liquid phases rather than crystallizing. These findings provide unambiguous evidence for a liquid-liquid transition in

  11. Ordering phase transition in the one-dimensional Axelrod model

    Science.gov (United States)

    Vilone, D.; Vespignani, A.; Castellano, C.

    2002-12-01

    We study the one-dimensional behavior of a cellular automaton aimed at the description of the formation and evolution of cultural domains. The model exhibits a non-equilibrium transition between a phase with all the system sharing the same culture and a disordered phase of coexisting regions with different cultural features. Depending on the initial distribution of the disorder the transition occurs at different values of the model parameters. This phenomenology is qualitatively captured by a mean-field approach, which maps the dynamics into a multi-species reaction-diffusion problem.

  12. Utilizing Gaze Behavior for Inferring Task Transitions Using Abstract Hidden Markov Models

    Directory of Open Access Journals (Sweden)

    Daniel Fernando Tello Gamarra

    2016-12-01

    Full Text Available We demonstrate an improved method for utilizing observed gaze behavior and show that it is useful in inferring hand movement intent during goal directed tasks. The task dynamics and the relationship between hand and gaze behavior are learned using an Abstract Hidden Markov Model (AHMM. We show that the predicted hand movement transitions occur consistently earlier in AHMM models with gaze than those models that do not include gaze observations.

  13. Transitions in a probabilistic interface growth model

    International Nuclear Information System (INIS)

    Alves, S G; Moreira, J G

    2011-01-01

    We study a generalization of the Wolf–Villain (WV) interface growth model based on a probabilistic growth rule. In the WV model, particles are randomly deposited onto a substrate and subsequently move to a position nearby where the binding is strongest. We introduce a growth probability which is proportional to a power of the number n i of bindings of the site i: p i ∝n i ν . Through extensive simulations, in (1 + 1) dimensions, we find three behaviors depending on the ν value: (i) if ν is small, a crossover from the Mullins–Herring to the Edwards–Wilkinson (EW) universality class; (ii) for intermediate values of ν, a crossover from the EW to the Kardar–Parisi–Zhang (KPZ) universality class; and, finally, (iii) for large ν values, the system is always in the KPZ class. In (2 + 1) dimensions, we obtain three different behaviors: (i) a crossover from the Villain–Lai–Das Sarma to the EW universality class for small ν values; (ii) the EW class is always present for intermediate ν values; and (iii) a deviation from the EW class is observed for large ν values

  14. Dynamical phase transitions in spin models and automata

    International Nuclear Information System (INIS)

    Derrida, B.

    1989-01-01

    Some of the models and methods developed in the study of the dynamics of spin models and automata are described. Special attention is given to the distance method which consists of comparing the time evolution of two configurations. The method is used to obtain the phase boundary between a frozen and a chaotic phase in the case of deterministic models. For stochastic systems the method is used to obtain dynamical phase transitions

  15. A phase transition between small- and large-field models of inflation

    International Nuclear Information System (INIS)

    Itzhaki, Nissan; Kovetz, Ely D

    2009-01-01

    We show that models of inflection point inflation exhibit a phase transition from a region in parameter space where they are of large-field type to a region where they are of small-field type. The phase transition is between a universal behavior, with respect to the initial condition, at the large-field region and non-universal behavior at the small-field region. The order parameter is the number of e-foldings. We find integer critical exponents at the transition between the two phases.

  16. Camera-Model Identification Using Markovian Transition Probability Matrix

    Science.gov (United States)

    Xu, Guanshuo; Gao, Shang; Shi, Yun Qing; Hu, Ruimin; Su, Wei

    Detecting the (brands and) models of digital cameras from given digital images has become a popular research topic in the field of digital forensics. As most of images are JPEG compressed before they are output from cameras, we propose to use an effective image statistical model to characterize the difference JPEG 2-D arrays of Y and Cb components from the JPEG images taken by various camera models. Specifically, the transition probability matrices derived from four different directional Markov processes applied to the image difference JPEG 2-D arrays are used to identify statistical difference caused by image formation pipelines inside different camera models. All elements of the transition probability matrices, after a thresholding technique, are directly used as features for classification purpose. Multi-class support vector machines (SVM) are used as the classification tool. The effectiveness of our proposed statistical model is demonstrated by large-scale experimental results.

  17. Analytical expressions for transition edge sensor excess noise models

    International Nuclear Information System (INIS)

    Brandt, Daniel; Fraser, George W.

    2010-01-01

    Transition edge sensors (TESs) are high-sensitivity thermometers used in cryogenic microcalorimeters which exploit the steep gradient in resistivity with temperature during the superconducting phase transition. Practical TES devices tend to exhibit a white noise of uncertain origin, arising inside the device. We discuss two candidate models for this excess noise, phase slip shot noise (PSSN) and percolation noise. We extend the existing PSSN model to include a magnetic field dependence and derive a basic analytical model for percolation noise. We compare the predicted functional forms of the noise current vs. resistivity curves of both models with experimental data and provide a set of equations for both models to facilitate future experimental efforts to clearly identify the source of excess noise.

  18. Integrated response and transit time distributions of watersheds by combining hydrograph separation and long-term transit time modeling

    Directory of Open Access Journals (Sweden)

    M. C. Roa-García

    2010-08-01

    Full Text Available We present a new modeling approach analyzing and predicting the Transit Time Distribution (TTD and the Response Time Distribution (RTD from hourly to annual time scales as two distinct hydrological processes. The model integrates Isotope Hydrograph Separation (IHS and the Instantaneous Unit Hydrograph (IUH approach as a tool to provide a more realistic description of transit and response time of water in catchments. Individual event simulations and parameterizations were combined with long-term baseflow simulation and parameterizations; this provides a comprehensive picture of the catchment response for a long time span for the hydraulic and isotopic processes. The proposed method was tested in three Andean headwater catchments to compare the effects of land use on hydrological response and solute transport. Results show that the characteristics of events and antecedent conditions have a significant influence on TTD and RTD, but in general the RTD of the grassland dominated catchment is concentrated in the shorter time spans and has a higher cumulative TTD, while the forest dominated catchment has a relatively higher response distribution and lower cumulative TTD. The catchment where wetlands concentrate shows a flashier response, but wetlands also appear to prolong transit time.

  19. Size dependence of structural, magnetic, and electrical properties in corundum-type Ti2O3 nanoparticles showing insulator–metal transition

    Directory of Open Access Journals (Sweden)

    Yoshihiro Tsujimoto

    2015-09-01

    Full Text Available Corundum-type Ti2O3 has been investigated over the last half century because it shows unusual insulator–metal (I-M transition over a broad temperature range (420–550 K. In this work, we successfully synthesized Ti2O3 nanoparticles (20, 70, 300 nm in size by the low-temperature reduction between precursors of rutile-type TiO2 and the reductant CaH2, in a non-topotactic manner. The reaction time required for obtaining the reduced phase increases with increasing the particle size. Synchrotron X-ray powder diffraction and electron microscopy studies reveal that the symmetry of all the present samples remains the same as that of bulk samples. However, the particle-size reduction results in three important features compared with bulk samples as follows, (i color shift from dark brown to bluish black, (ii anisotropic volume contraction involving the shrinkage of Ti–Ti bonds in the ab plane and along the c axis, (iii reduction of the I-M transition temperature from 420 K to 350 K. These suggest that the a1g band broadening caused by the surface strain effects, which favors narrowing of the band gap, may play a critical role in the suppression of IM transition.

  20. Modeling on bubbly to churn flow pattern transition for vertical upward flows in narrow rectangular channel

    International Nuclear Information System (INIS)

    Wang Yanlin; Chen Bingde; Huang Yanping; Wang Junfeng

    2011-01-01

    A theoretical model was developed to predict the bubbly to churn flow pattern transition for vertical upward flows in narrow rectangular channel. The model was developed based on the imbalance theory of Helmholtz and some reasonable assumptions. The maximum ideal bubble in narrow rectangular channel and the thermal hydraulics boundary condition leading to bubbly flow to churn flow pattern transition was calculated. The model was validated by experimental data from previous researches. Comparison between predicted result and experimental result shows a reasonable good agreement. (author)

  1. Employment, Production and Consumption model: Patterns of phase transitions

    Czech Academy of Sciences Publication Activity Database

    Lavička, H.; Lin, L.; Novotný, Jan

    2010-01-01

    Roč. 389, č. 8 (2010), s. 1708-1720 ISSN 0378-4371 Institutional research plan: CEZ:AV0Z10480505 Keywords : EPC * Agent based model * Phase transition Subject RIV: BG - Nuclear, Atomic and Molecular Physics, Colliders Impact factor: 1.521, year: 2010

  2. Linearity and Misspecification Tests for Vector Smooth Transition Regression Models

    DEFF Research Database (Denmark)

    Teräsvirta, Timo; Yang, Yukai

    The purpose of the paper is to derive Lagrange multiplier and Lagrange multiplier type specification and misspecification tests for vector smooth transition regression models. We report results from simulation studies in which the size and power properties of the proposed asymptotic tests in small...

  3. The electroweak phase transition in models with gauge singlets

    International Nuclear Information System (INIS)

    Ahriche, A.

    2007-01-01

    A strong first order phase transition is needed for generating the baryon asymmetry; and also to save it during the electroweak phase transition (EWPT). However this condition is not fulfilled within the Standard Model (SM), but in its extensions. It is widely believed that the existence of singlet scalars in some Standard Model extensions can easily make the EWPT strongly first order. In this work, we will examine the strength of the EWPT in the simplest extension of the SM with a real gauge singlet using the sphaleron energy at the critical temperature. We find that the phase transition is stronger by adding a singlet; and also that the criterion for a strong phase transition Ω(T c )/T c >or similar 1, where Ω = (v 2 + (x - x 0 ) 2 ) ( 1)/(2) and x(x 0 ) is the singlet vacuum expectation value in the broken (symmetric) phase, is not valid for models containing singlets, even though often used in the literature. The usual condition v c /T c >or similar 1 is more meaningful, and it is satisfied for the major part of the parameter space for physically allowed Higgs masses. Then it is convenient to study the EWPT in models with singlets that couple only to the Higgs doublets, by replacing the singlets by their vevs. (orig.)

  4. On the logical specification of probabilistic transition models

    CSIR Research Space (South Africa)

    Rens, G

    2013-05-01

    Full Text Available We investigate the requirements for specifying the behaviors of actions in a stochastic domain. That is, we propose how to write sentences in a logical language to capture a model of probabilistic transitions due to the execution of actions of some...

  5. Modeling of Unidirectional-Overloaded Transition in Catalytic Tubular Microjets

    NARCIS (Netherlands)

    Klingner, Anke; Khalil, Islam S. M.; Magdanz, Veronika; Fomin, Vladimir M.; Schmidt, Oliver G.; Misra, Sarthak

    2017-01-01

    A numerical time-resolved model is presented for predicting the transition between unidirectional and overloaded motion of catalytic tubular microjets (Ti/Fe/Pt rolled-up microtubes) in an aqueous solution of hydrogen peroxide. Unidirectional movement is achieved by periodic ejection of gas bubbles

  6. The electroweak phase transition in models with gauge singlets

    Energy Technology Data Exchange (ETDEWEB)

    Ahriche, A.

    2007-04-18

    A strong first order phase transition is needed for generating the baryon asymmetry; and also to save it during the electroweak phase transition (EWPT). However this condition is not fulfilled within the Standard Model (SM), but in its extensions. It is widely believed that the existence of singlet scalars in some Standard Model extensions can easily make the EWPT strongly first order. In this work, we will examine the strength of the EWPT in the simplest extension of the SM with a real gauge singlet using the sphaleron energy at the critical temperature. We find that the phase transition is stronger by adding a singlet; and also that the criterion for a strong phase transition {omega}(T{sub c})/T{sub c} >or similar 1, where {omega} = (v{sup 2} + (x - x{sub 0}){sup 2}){sup (}1)/(2) and x(x{sub 0}) is the singlet vacuum expectation value in the broken (symmetric) phase, is not valid for models containing singlets, even though often used in the literature. The usual condition v{sub c}/T{sub c} >or similar 1 is more meaningful, and it is satisfied for the major part of the parameter space for physically allowed Higgs masses. Then it is convenient to study the EWPT in models with singlets that couple only to the Higgs doublets, by replacing the singlets by their vevs. (orig.)

  7. Size dependence of structural, magnetic, and electrical properties in corundum-type Ti2O3 nanoparticles showing insulator–metal transition

    OpenAIRE

    Yoshihiro Tsujimoto; Yoshitaka Matsushita; Shan Yu; Kazunari Yamaura; Tetsuo Uchikoshi

    2015-01-01

    Corundum-type Ti2O3 has been investigated over the last half century because it shows unusual insulator–metal (I-M) transition over a broad temperature range (420–550 K). In this work, we successfully synthesized Ti2O3 nanoparticles (20, 70, 300 nm in size) by the low-temperature reduction between precursors of rutile-type TiO2 and the reductant CaH2, in a non-topotactic manner. The reaction time required for obtaining the reduced phase increases with increasing the particle size. Synchrotron...

  8. M1-transitions in the MIT bag model

    International Nuclear Information System (INIS)

    Hackman, R.H.; Deshpande, N.G.; Dicus, D.A.; Teplitz, V.L.

    1977-03-01

    In the MIT bag model, the M1-transitions of low lying hadrons are investigated. The following calculations are performed: 32 hadron masses are recomputed with a choice of bag parameters designed to give the correct values for the proton magnetic moment, μ/sub p/, and several masses, M/sub rho/ M/sub ω/ M/sub Δ/ M/sub Ω/, and M/sub D/; (2) eta, eta', eta/sub c/ mixing is computed in an untrustworthy approximation; and the widths for 38 M1-transitions are computed

  9. M1 transitions in the (sdg) boson model

    Science.gov (United States)

    Kuyucak, S.; Morrison, I.

    1988-03-01

    Using the {1}/{N} expansion technique we derive expressions for β→g, γ→g and γ→γ M1 transitions in a general boson model. The M1 matrix elements in the sdg-boson model are similar in form to those in the neutron-proton IBM. Comparisons are made to some selected M1 data exhibiting collective character.

  10. Classifying Multi-Model Wheat Yield Impact Response Surfaces Showing Sensitivity to Temperature and Precipitation Change

    Science.gov (United States)

    Fronzek, Stefan; Pirttioja, Nina; Carter, Timothy R.; Bindi, Marco; Hoffmann, Holger; Palosuo, Taru; Ruiz-Ramos, Margarita; Tao, Fulu; Trnka, Miroslav; Acutis, Marco; hide

    2017-01-01

    Crop growth simulation models can differ greatly in their treatment of key processes and hence in their response to environmental conditions. Here, we used an ensemble of 26 process-based wheat models applied at sites across a European transect to compare their sensitivity to changes in temperature (minus 2 to plus 9 degrees Centigrade) and precipitation (minus 50 to plus 50 percent). Model results were analysed by plotting them as impact response surfaces (IRSs), classifying the IRS patterns of individual model simulations, describing these classes and analysing factors that may explain the major differences in model responses. The model ensemble was used to simulate yields of winter and spring wheat at four sites in Finland, Germany and Spain. Results were plotted as IRSs that show changes in yields relative to the baseline with respect to temperature and precipitation. IRSs of 30-year means and selected extreme years were classified using two approaches describing their pattern. The expert diagnostic approach (EDA) combines two aspects of IRS patterns: location of the maximum yield (nine classes) and strength of the yield response with respect to climate (four classes), resulting in a total of 36 combined classes defined using criteria pre-specified by experts. The statistical diagnostic approach (SDA) groups IRSs by comparing their pattern and magnitude, without attempting to interpret these features. It applies a hierarchical clustering method, grouping response patterns using a distance metric that combines the spatial correlation and Euclidian distance between IRS pairs. The two approaches were used to investigate whether different patterns of yield response could be related to different properties of the crop models, specifically their genealogy, calibration and process description. Although no single model property across a large model ensemble was found to explain the integrated yield response to temperature and precipitation perturbations, the

  11. Mixed-order phase transition in a two-step contagion model with a single infectious seed.

    Science.gov (United States)

    Choi, Wonjun; Lee, Deokjae; Kahng, B

    2017-02-01

    Percolation is known as one of the most robust continuous transitions, because its occupation rule is intrinsically local. As one of the ways to break the robustness, occupation is allowed to more than one species of particles and they occupy cooperatively. This generalized percolation model undergoes a discontinuous transition. Here we investigate an epidemic model with two contagion steps and characterize its phase transition analytically and numerically. We find that even though the order parameter jumps at a transition point r_{c}, then increases continuously, it does not exhibit any critical behavior: the fluctuations of the order parameter do not diverge at r_{c}. However, critical behavior appears in mean outbreak size, which diverges at the transition point in a manner that the ordinary percolation shows. Such a type of phase transition is regarded as a mixed-order phase transition. We also obtain scaling relations of cascade outbreak statistics when the order parameter jumps at r_{c}.

  12. batman: BAsic Transit Model cAlculatioN in Python

    Science.gov (United States)

    Kreidberg, Laura

    2015-11-01

    I introduce batman, a Python package for modeling exoplanet transit light curves. The batman package supports calculation of light curves for any radially symmetric stellar limb darkening law, using a new integration algorithm for models that cannot be quickly calculated analytically. The code uses C extension modules to speed up model calculation and is parallelized with OpenMP. For a typical light curve with 100 data points in transit, batman can calculate one million quadratic limb-darkened models in 30 seconds with a single 1.7 GHz Intel Core i5 processor. The same calculation takes seven minutes using the four-parameter nonlinear limb darkening model (computed to 1 ppm accuracy). Maximum truncation error for integrated models is an input parameter that can be set as low as 0.001 ppm, ensuring that the community is prepared for the precise transit light curves we anticipate measuring with upcoming facilities. The batman package is open source and publicly available at https://github.com/lkreidberg/batman .

  13. Numerical modeling of the deflagration-to-detonation transition

    International Nuclear Information System (INIS)

    Forest, C.A.

    1978-01-01

    The effect of a confined porous bed of burning explosive in contact with a solid explosive is studied by computer simulation. The burning is modeled using a bulk burn model that is a function of the surface area and the pressure. Once pressure excursions occur from the confined burning the transition to detonation is modeled using a pressure-dependent heterogeneous explosive shock decomposition model called Forest Fire. The occurrence of detonation in the solid explosive is shown to be dependent upon the surface-to-volume ratio, the confinement of the porous bed, and the geometry of the system

  14. Efficient Estimation of Non-Linear Dynamic Panel Data Models with Application to Smooth Transition Models

    DEFF Research Database (Denmark)

    Gørgens, Tue; Skeels, Christopher L.; Wurtz, Allan

    This paper explores estimation of a class of non-linear dynamic panel data models with additive unobserved individual-specific effects. The models are specified by moment restrictions. The class includes the panel data AR(p) model and panel smooth transition models. We derive an efficient set...... of moment restrictions for estimation and apply the results to estimation of panel smooth transition models with fixed effects, where the transition may be determined endogenously. The performance of the GMM estimator, both in terms of estimation precision and forecasting performance, is examined in a Monte...

  15. Dicke-model simulation via cavity-assisted Raman transitions

    Science.gov (United States)

    Zhang, Zhiqiang; Lee, Chern Hui; Kumar, Ravi; Arnold, K. J.; Masson, Stuart J.; Grimsmo, A. L.; Parkins, A. S.; Barrett, M. D.

    2018-04-01

    The Dicke model is of fundamental importance in quantum mechanics for understanding the collective behavior of atoms coupled to a single electromagnetic mode. Here, we demonstrate a Dicke-model simulation via cavity-assisted Raman transitions in a configuration using counterpropagating laser beams. The observations indicate that motional effects should be included to fully account for the results. These results are contrary to experiments using single-beam and copropagating configurations. We give a theoretical description that accounts for the beam geometries used in the experiments and indicates the potential role of motional effects. In particular, a model is given that highlights the influence of Doppler broadening on the observed phase-transition thresholds.

  16. Damage spreading for one-dimensional, non-equilibrium models with parity conserving phase transitions

    CERN Document Server

    Ódor, G; Odor, Geza; Menyhard, Nora

    1998-01-01

    The damage spreading (DS) transitions of two one-dimensional stochastic cellular automata suggested by Grassberger (A and B) and the kinetic Ising model of Menyhárd (NEKIM) have been investigated on the level of kinks and spins. On the level of spins the parity conservation is not satisfied and therefore studying these models provides a convenient tool to understand the dependence of DS properties on symmetries. For the model B the critical point and the DS transition point is well separated and directed percolation damage spreading transition universality was found for spin damage as well as for kink damage in spite of the conservation of damage variables modulo 2 in the latter case. For the A stochastic cellular automaton, and the NEKIM model the two transition points coincide with drastic effects on the damage of spin and kink variables showing different time dependent behaviours. While the kink DS transition is continuous and shows regular PC class universality, the spin damage exhibits a discontinuous p...

  17. Phase transition in a sexual age-structured model of learning foreign languages

    OpenAIRE

    Schwammle, Veit

    2005-01-01

    The understanding of language competition helps us to predict extinction and survival of languages spoken by minorities. A simple agent-based model of a sexual population, based on the Penna model, is built in order to find out under which circumstances one language dominates other ones. This model considers that only young people learn foreign languages. The simulations show a first order phase transition where the ratio between the number of speakers of different languages is the order para...

  18. TRANSIT

    Indian Academy of Sciences (India)

    First page Back Continue Last page Overview Graphics. TRANSIT. SYSTEM: DETERMINE 2D-POSITION GLOBALLY BUT INTERMITTENT (POST-FACTO). IMPROVED ACCURACY. PRINCIPLE: POLAR SATELLITES WITH INNOVATIONS OF: GRAVITY-GRADIENT ATTITUDE CONTROL; DRAG COMPENSATION. WORKS ...

  19. Microarray profiling shows distinct differences between primary tumors and commonly used preclinical models in hepatocellular carcinoma

    International Nuclear Information System (INIS)

    Wang, Weining; Iyer, N. Gopalakrishna; Tay, Hsien Ts’ung; Wu, Yonghui; Lim, Tony K. H.; Zheng, Lin; Song, In Chin; Kwoh, Chee Keong; Huynh, Hung; Tan, Patrick O. B.; Chow, Pierce K. H.

    2015-01-01

    Despite advances in therapeutics, outcomes for hepatocellular carcinoma (HCC) remain poor and there is an urgent need for efficacious systemic therapy. Unfortunately, drugs that are successful in preclinical studies often fail in the clinical setting, and we hypothesize that this is due to functional differences between primary tumors and commonly used preclinical models. In this study, we attempt to answer this question by comparing tumor morphology and gene expression profiles between primary tumors, xenografts and HCC cell lines. Hep G2 cell lines and tumor cells from patient tumor explants were subcutaneously (ectopically) injected into the flank and orthotopically into liver parenchyma of Mus Musculus SCID mice. The mice were euthanized after two weeks. RNA was extracted from the tumors, and gene expression profiling was performed using the Gene Chip Human Genome U133 Plus 2.0. Principal component analyses (PCA) and construction of dendrograms were conducted using Partek genomics suite. PCA showed that the commonly used HepG2 cell line model and its xenograft counterparts were vastly different from all fresh primary tumors. Expression profiles of primary tumors were also significantly divergent from their counterpart patient-derived xenograft (PDX) models, regardless of the site of implantation. Xenografts from the same primary tumors were more likely to cluster together regardless of site of implantation, although heat maps showed distinct differences in gene expression profiles between orthotopic and ectopic models. The data presented here challenges the utility of routinely used preclinical models. Models using HepG2 were vastly different from primary tumors and PDXs, suggesting that this is not clinically representative. Surprisingly, site of implantation (orthotopic versus ectopic) resulted in limited impact on gene expression profiles, and in both scenarios xenografts differed significantly from the original primary tumors, challenging the long

  20. Freedom of Expression: Importing European & US Constitutional Models in Transitional Democracies

    NARCIS (Netherlands)

    Belavusau, U.

    2013-01-01

    This book considers the issue of free speech in transitional democracies focusing on the socio-legal developments in the Czech Republic, Hungary, and Poland. In showing how these Central and Eastern European countries have engaged with free speech models imported from the Council of Europe / EU and

  1. A two-parameter model to predict fracture in the transition

    International Nuclear Information System (INIS)

    DeAquino, C.T.; Landes, J.D.; McCabe, D.E.

    1995-01-01

    A model is proposed that uses a numerical characterization of the crack tip stress field modified by the J - Q constraint theory and a weak link assumption to predict fracture behavior in the transition for reactor vessel steels. This model predicts the toughness scatter band for a component model from a toughness scatter band measured on a test specimen geometry. The model has been applied previously to two-dimensional through cracks. Many applications to actual components structures involve three-dimensional surface flaws. These cases require a more difficult level of analysis and need additional information. In this paper, both the current model for two-dimensional cracks and an approach needed to extend the model for the prediction of transition fracture behavior in three-dimensional surface flaws are discussed. Examples are presented to show how the model can be applied and in some cases to compare with other test results. (author). 13 refs., 7 figs

  2. Quantum–classical transition in the Caldeira–Leggett model

    Energy Technology Data Exchange (ETDEWEB)

    Kovács, J. [Department of Theoretical Physics, University of Debrecen, P.O. Box 5, H-4010 Debrecen (Hungary); Institute of Nuclear Research, P.O. Box 51, H-4001 Debrecen (Hungary); Fazekas, B. [Institute of Mathematics, University of Debrecen, P.O. Box 12, H-4010 Debrecen (Hungary); Nagy, S., E-mail: nagys@phys.unideb.hu [Department of Theoretical Physics, University of Debrecen, P.O. Box 5, H-4010 Debrecen (Hungary); Sailer, K. [Department of Theoretical Physics, University of Debrecen, P.O. Box 5, H-4010 Debrecen (Hungary)

    2017-01-15

    The quantum–classical transition in the Caldeira–Leggett model is investigated in the framework of the functional renormalization group method. It is shown that a divergent quadratic term arises in the action due to the heat bath in the model. By removing the divergence with a frequency cutoff we considered the critical behavior of the model. The critical exponents belonging to the susceptibility and the correlation length are determined and their independence of the frequency cutoff and the renormalization scheme is shown.

  3. Model for the resistive critical current transition in composite superconductors

    International Nuclear Information System (INIS)

    Warnes, W.H.

    1988-01-01

    Much of the research investigating technological type-II superconducting composites relies on the measurement of the resistive critical current transition. We have developed a model for the resistive transition which improves on older models by allowing for the very different nature of monofilamentary and multifilamentary composite structures. The monofilamentary model allows for axial current flow around critical current weak links in the superconducting filament. The multifilamentary model incorporates an additional radial current transfer between neighboring filaments. The development of both models is presented. It is shown that the models are useful for extracting more information from the experimental data than was formerly possible. Specific information obtainable from the experimental voltage-current characteristic includes the distribution of critical currents in the composite, the average critical current of the distribution, the range of critical currents in the composite, the field and temperature dependence of the distribution, and the fraction of the composite dissipating energy in flux flow at any current. This additional information about the distribution of critical currents may be helpful in leading toward a better understanding of flux pinning in technological superconductors. Comparison of the models with several experiments is given and shown to be in reasonable agreement. Implications of the models for the measurement of critical currents in technological composites is presented and discussed with reference to basic flux pinning studies in such composites

  4. Transition probabilities of health states for workers in Malaysia using a Markov chain model

    Science.gov (United States)

    Samsuddin, Shamshimah; Ismail, Noriszura

    2017-04-01

    The aim of our study is to estimate the transition probabilities of health states for workers in Malaysia who contribute to the Employment Injury Scheme under the Social Security Organization Malaysia using the Markov chain model. Our study uses four states of health (active, temporary disability, permanent disability and death) based on the data collected from the longitudinal studies of workers in Malaysia for 5 years. The transition probabilities vary by health state, age and gender. The results show that men employees are more likely to have higher transition probabilities to any health state compared to women employees. The transition probabilities can be used to predict the future health of workers in terms of a function of current age, gender and health state.

  5. Small GSK-3 Inhibitor Shows Efficacy in a Motor Neuron Disease Murine Model Modulating Autophagy.

    Directory of Open Access Journals (Sweden)

    Estefanía de Munck

    Full Text Available Amyotrophic lateral sclerosis (ALS is a progressive motor neuron degenerative disease that has no effective treatment up to date. Drug discovery tasks have been hampered due to the lack of knowledge in its molecular etiology together with the limited animal models for research. Recently, a motor neuron disease animal model has been developed using β-N-methylamino-L-alanine (L-BMAA, a neurotoxic amino acid related to the appearing of ALS. In the present work, the neuroprotective role of VP2.51, a small heterocyclic GSK-3 inhibitor, is analysed in this novel murine model together with the analysis of autophagy. VP2.51 daily administration for two weeks, starting the first day after L-BMAA treatment, leads to total recovery of neurological symptoms and prevents the activation of autophagic processes in rats. These results show that the L-BMAA murine model can be used to test the efficacy of new drugs. In addition, the results confirm the therapeutic potential of GSK-3 inhibitors, and specially VP2.51, for the disease-modifying future treatment of motor neuron disorders like ALS.

  6. Human Commercial Models' Eye Colour Shows Negative Frequency-Dependent Selection.

    Directory of Open Access Journals (Sweden)

    Isabela Rodrigues Nogueira Forti

    Full Text Available In this study we investigated the eye colour of human commercial models registered in the UK (400 female and 400 male and Brazil (400 female and 400 male to test the hypothesis that model eye colour frequency was the result of negative frequency-dependent selection. The eye colours of the models were classified as: blue, brown or intermediate. Chi-square analyses of data for countries separated by sex showed that in the United Kingdom brown eyes and intermediate colours were significantly more frequent than expected in comparison to the general United Kingdom population (P<0.001. In Brazil, the most frequent eye colour brown was significantly less frequent than expected in comparison to the general Brazilian population. These results support the hypothesis that model eye colour is the result of negative frequency-dependent selection. This could be the result of people using eye colour as a marker of genetic diversity and finding rarer eye colours more attractive because of the potential advantage more genetically diverse offspring that could result from such a choice. Eye colour may be important because in comparison to many other physical traits (e.g., hair colour it is hard to modify, hide or disguise, and it is highly polymorphic.

  7. Histidine decarboxylase knockout mice, a genetic model of Tourette syndrome, show repetitive grooming after induced fear.

    Science.gov (United States)

    Xu, Meiyu; Li, Lina; Ohtsu, Hiroshi; Pittenger, Christopher

    2015-05-19

    Tics, such as are seen in Tourette syndrome (TS), are common and can cause profound morbidity, but they are poorly understood. Tics are potentiated by psychostimulants, stress, and sleep deprivation. Mutations in the gene histidine decarboxylase (Hdc) have been implicated as a rare genetic cause of TS, and Hdc knockout mice have been validated as a genetic model that recapitulates phenomenological and pathophysiological aspects of the disorder. Tic-like stereotypies in this model have not been observed at baseline but emerge after acute challenge with the psychostimulant d-amphetamine. We tested the ability of an acute stressor to stimulate stereotypies in this model, using tone fear conditioning. Hdc knockout mice acquired conditioned fear normally, as manifested by freezing during the presentation of a tone 48h after it had been paired with a shock. During the 30min following tone presentation, knockout mice showed increased grooming. Heterozygotes exhibited normal freezing and intermediate grooming. These data validate a new paradigm for the examination of tic-like stereotypies in animals without pharmacological challenge and enhance the face validity of the Hdc knockout mouse as a pathophysiologically grounded model of tic disorders. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  8. Noise-and delay-induced phase transitions of the dimer–monomer surface reaction model

    International Nuclear Information System (INIS)

    Zeng Chunhua; Wang Hua

    2012-01-01

    Highlights: ► We study the dimer–monomer surface reaction model. ► We show that noise induces first-order irreversible phase transition (IPT). ► Combination of noise and time-delayed feedback induce first- and second-order IPT. ► First- and second-order IPT is viewed as noise-and delay-induced phase transitions. - Abstract: The effects of noise and time-delayed feedback in the dimer–monomer (DM) surface reaction model are investigated. Applying small delay approximation, we construct a stochastic delayed differential equation and its Fokker–Planck equation to describe the state evolution of the DM reaction model. We show that the noise can only induce first-order irreversible phase transition (IPT) characteristic of the DM model, however the combination of the noise and time-delayed feedback can simultaneously induce first- and second-order IPT characteristics of the DM model. Therefore, it is shown that the well-known first- and second-order IPT characteristics of the DM model may be viewed as noise-and delay-induced phase transitions.

  9. Digital herders and phase transition in a voting model

    Science.gov (United States)

    Hisakado, M.; Mori, S.

    2011-07-01

    In this paper, we discuss a voting model with two candidates, C1 and C2. We set two types of voters—herders and independents. The voting of independent voters is based on their fundamental values; on the other hand, the voting of herders is based on the number of votes. Herders always select the majority of the previous r votes, which are visible to them. We call them digital herders. We can accurately calculate the distribution of votes for special cases. When r >= 3, we find that a phase transition occurs at the upper limit of t, where t is the discrete time (or number of votes). As the fraction of herders increases, the model features a phase transition beyond which a state where most voters make the correct choice coexists with one where most of them are wrong. On the other hand, when r independent voters. Finally, we recognize the behavior of human beings by conducting simple experiments.

  10. Modelling conditional correlations of asset returns: A smooth transition approach

    DEFF Research Database (Denmark)

    Silvennoinen, Annastiina; Teräsvirta, Timo

    In this paper we propose a new multivariate GARCH model with time-varying conditional correlation structure. The time-varying conditional correlations change smoothly between two extreme states of constant correlations according to a predetermined or exogenous transition variable. An LM-test is d......In this paper we propose a new multivariate GARCH model with time-varying conditional correlation structure. The time-varying conditional correlations change smoothly between two extreme states of constant correlations according to a predetermined or exogenous transition variable. An LM......-test is derived to test the constancy of correlations and LM- and Wald tests to test the hypothesis of partially constant correlations. Analytical expressions for the test statistics and the required derivatives are provided to make computations feasible. An empirical example based on daily return series of ve...

  11. Phase Transitions in a Social Impact Model for Opinion Formation

    Science.gov (United States)

    Bordogna, Clelia M.; Albano, Ezequiel V.

    A model for opinion formation in a social group, based on the Theory of Social Impact developed by Latané, is studied by means of numerical simulations. Interactions among the members of the group, as well as with a strong leader competing with the mass media, are considered. The model exhibits first-order transitions between two different states of opinion, which are supported by the leader and the mass media, respectively. The social inertia of the group becomes evident when the opinion of the leader changes periodically. In this case two dynamic states are identified: for long periods of time, the group follows the changes of the leader but, decreasing the period, the opinion of the group remains unchanged. This scenery is suitable for the ocurrence of dynamic phase transitions.

  12. Phase transitions in the sdg interacting boson model

    International Nuclear Information System (INIS)

    Van Isacker, P.; Bouldjedri, A.; Zerguine, S.

    2010-01-01

    A geometric analysis of the sdg interacting boson model is performed. A coherent state is used in terms of three types of deformation: axial quadrupole (β 2 ), axial hexadecapole (β 4 ) and triaxial (γ 2 ). The phase-transitional structure is established for a schematic sdg Hamiltonian which is intermediate between four dynamical symmetries of U(15), namely the spherical U(5)xU(9), the (prolate and oblate) deformed SU ± (3) and the γ 2 -soft SO(15) limits. For realistic choices of the Hamiltonian parameters the resulting phase diagram has properties close to what is obtained in the sd version of the model and, in particular, no transition towards a stable triaxial shape is found.

  13. Phase transitions in the sdg interacting boson model

    Energy Technology Data Exchange (ETDEWEB)

    Van Isacker, P. [Grand Accelerateur National d' Ions Lourds, CEA/DSM-CNRS/IN2P3, BP 55027, F-14076 Caen Cedex 5 (France)], E-mail: isacker@ganil.fr; Bouldjedri, A.; Zerguine, S. [Department of Physics, PRIMALAB Laboratory, University of Batna, Avenue Boukhelouf M El Hadi, 05000 Batna (Algeria)

    2010-05-15

    A geometric analysis of the sdg interacting boson model is performed. A coherent state is used in terms of three types of deformation: axial quadrupole ({beta}{sub 2}), axial hexadecapole ({beta}{sub 4}) and triaxial ({gamma}{sub 2}). The phase-transitional structure is established for a schematic sdg Hamiltonian which is intermediate between four dynamical symmetries of U(15), namely the spherical U(5)xU(9), the (prolate and oblate) deformed SU{sub {+-}}(3) and the {gamma}{sub 2}-soft SO(15) limits. For realistic choices of the Hamiltonian parameters the resulting phase diagram has properties close to what is obtained in the sd version of the model and, in particular, no transition towards a stable triaxial shape is found.

  14. A relativized quark model for radiative baryon transitions

    International Nuclear Information System (INIS)

    Warns, M.; Schroeder, H.; Pfeil, W.; Rollnik, H.

    1989-03-01

    In this paper we investigate the electromagnetic form factors of baryons and their resonances using the framework of a relativized constituent quark model. Beyond the usual single-quark transition ansatz, we incorporate relativistic corrections which are well-determined by the intrinsic strong interaction and confinement forces between the quarks. Furthermore we separate off for the compound three-quark system the relativistic center-of-mass motion by an approximately Lorentz-invariant approach. In this way for the first time recoil effects could be explicitly studied. Using the harmonic oscillator wavefunctions with the configuration mixing as derived in the Isgur-Karl model, after restoring gauge invariance our relativized interaction hamiltonian can be used to calculate the transversely and longitudinally polarized photon transition form factors of the baryons. (orig.)

  15. Phase transitions in the sdg interacting boson model

    Science.gov (United States)

    Van Isacker, P.; Bouldjedri, A.; Zerguine, S.

    2010-05-01

    A geometric analysis of the sdg interacting boson model is performed. A coherent state is used in terms of three types of deformation: axial quadrupole ( β), axial hexadecapole ( β) and triaxial ( γ). The phase-transitional structure is established for a schematic sdg Hamiltonian which is intermediate between four dynamical symmetries of U(15), namely the spherical U(5)⊗U(9), the (prolate and oblate) deformed SU(3) and the γ-soft SO(15) limits. For realistic choices of the Hamiltonian parameters the resulting phase diagram has properties close to what is obtained in the sd version of the model and, in particular, no transition towards a stable triaxial shape is found.

  16. Comparison of approximations to the transition rate in the DDHMS preequilibrium model

    International Nuclear Information System (INIS)

    Brito, L.; Carlson, B.V.

    2014-01-01

    The double differential hybrid Monte Carlo simulation model (DDHMS) originally used exciton model densities and transition densities with approximate angular distributions obtained using linear momentum conservation. Because the model uses only the simplest transition rates, calculations using more complex approximations to these are still viable. We compare calculations using the original approximation to one using a nonrelativistic Fermi gas transition densities with the approximate angular distributions and with exact nonrelativistic and relativistic transition transition densities. (author)

  17. Universal phase transition in community detectability under a stochastic block model.

    Science.gov (United States)

    Chen, Pin-Yu; Hero, Alfred O

    2015-03-01

    We prove the existence of an asymptotic phase-transition threshold on community detectability for the spectral modularity method [M. E. J. Newman, Phys. Rev. E 74, 036104 (2006) and Proc. Natl. Acad. Sci. (USA) 103, 8577 (2006)] under a stochastic block model. The phase transition on community detectability occurs as the intercommunity edge connection probability p grows. This phase transition separates a subcritical regime of small p, where modularity-based community detection successfully identifies the communities, from a supercritical regime of large p where successful community detection is impossible. We show that, as the community sizes become large, the asymptotic phase-transition threshold p* is equal to √[p1p2], where pi(i=1,2) is the within-community edge connection probability. Thus the phase-transition threshold is universal in the sense that it does not depend on the ratio of community sizes. The universal phase-transition phenomenon is validated by simulations for moderately sized communities. Using the derived expression for the phase-transition threshold, we propose an empirical method for estimating this threshold from real-world data.

  18. Phase transitions in the $sdg$ interacting boson model

    OpenAIRE

    Van Isacker, P.; Bouldjedri, A.; Zerguine, S.

    2009-01-01

    19 pages, 5 figures, submitted to Nuclear Physics A; A geometric analysis of the $sdg$ interacting boson model is performed. A coherent-state is used in terms of three types of deformation: axial quadrupole ($\\beta_2$), axial hexadecapole ($\\beta_4$) and triaxial ($\\gamma_2$). The phase-transitional structure is established for a schematic $sdg$ hamiltonian which is intermediate between four dynamical symmetries of U(15), namely the spherical ${\\rm U}(5)\\otimes{\\rm U}(9)$, the (prolate and ob...

  19. Methanol Oxidation on Model Elemental and Bimetallic Transition Metal Surfaces

    DEFF Research Database (Denmark)

    Tritsaris, G. A.; Rossmeisl, J.

    2012-01-01

    Direct methanol fuel cells are a key enabling technology for clean energy conversion. Using density functional theory calculations, we study the methanol oxidation reaction on model electrodes. We discuss trends in reactivity for a set of monometallic and bimetallic transition metal surfaces, flat...... sites on the surface and to screen for novel bimetallic surfaces of enhanced activity. We suggest platinum copper surfaces as promising anode catalysts for direct methanol fuel cells....

  20. Modeling and Simulating Passenger Behavior for a Station Closure in a Rail Transit Network

    Science.gov (United States)

    Yin, Haodong; Han, Baoming; Li, Dewei; Wu, Jianjun; Sun, Huijun

    2016-01-01

    A station closure is an abnormal operational situation in which the entrances or exits of a rail transit station have to be closed for some time due to an unexpected incident. A novel approach is developed to estimate the impacts of the alternative station closure scenarios on both passenger behavioral choices at the individual level and passenger demand at the disaggregate level in a rail transit network. Therefore, the contributions of this study are two-fold: (1) A basic passenger behavior optimization model is mathematically constructed based on 0–1 integer programming to describe passengers’ responses to alternative origin station closure scenarios and destination station closure scenarios; this model also considers the availability of multi-mode transportation and the uncertain duration of the station closure; (2) An integrated solution algorithm based on the passenger simulation is developed to solve the proposed model and to estimate the effects of a station closure on passenger demand in a rail transit network. Furthermore, 13 groups of numerical experiments based on the Beijing rail transit network are performed as case studies with 2,074,267 records of smart card data. The comparisons of the model outputs and the manual survey show that the accuracy of our proposed behavior optimization model is approximately 80%. The results also show that our model can be used to capture the passenger behavior and to quantitatively estimate the effects of alternative closure scenarios on passenger flow demand for the rail transit network. Moreover, the closure duration and its overestimation greatly influence the individual behavioral choices of the affected passengers and the passenger demand. Furthermore, if the rail transit operator can more accurately estimate the closure duration (namely, as g approaches 1), the impact of the closure can be somewhat mitigated. PMID:27935963

  1. Modeling and Simulating Passenger Behavior for a Station Closure in a Rail Transit Network.

    Directory of Open Access Journals (Sweden)

    Haodong Yin

    Full Text Available A station closure is an abnormal operational situation in which the entrances or exits of a rail transit station have to be closed for some time due to an unexpected incident. A novel approach is developed to estimate the impacts of the alternative station closure scenarios on both passenger behavioral choices at the individual level and passenger demand at the disaggregate level in a rail transit network. Therefore, the contributions of this study are two-fold: (1 A basic passenger behavior optimization model is mathematically constructed based on 0-1 integer programming to describe passengers' responses to alternative origin station closure scenarios and destination station closure scenarios; this model also considers the availability of multi-mode transportation and the uncertain duration of the station closure; (2 An integrated solution algorithm based on the passenger simulation is developed to solve the proposed model and to estimate the effects of a station closure on passenger demand in a rail transit network. Furthermore, 13 groups of numerical experiments based on the Beijing rail transit network are performed as case studies with 2,074,267 records of smart card data. The comparisons of the model outputs and the manual survey show that the accuracy of our proposed behavior optimization model is approximately 80%. The results also show that our model can be used to capture the passenger behavior and to quantitatively estimate the effects of alternative closure scenarios on passenger flow demand for the rail transit network. Moreover, the closure duration and its overestimation greatly influence the individual behavioral choices of the affected passengers and the passenger demand. Furthermore, if the rail transit operator can more accurately estimate the closure duration (namely, as g approaches 1, the impact of the closure can be somewhat mitigated.

  2. Modeling and Simulating Passenger Behavior for a Station Closure in a Rail Transit Network.

    Science.gov (United States)

    Yin, Haodong; Han, Baoming; Li, Dewei; Wu, Jianjun; Sun, Huijun

    2016-01-01

    A station closure is an abnormal operational situation in which the entrances or exits of a rail transit station have to be closed for some time due to an unexpected incident. A novel approach is developed to estimate the impacts of the alternative station closure scenarios on both passenger behavioral choices at the individual level and passenger demand at the disaggregate level in a rail transit network. Therefore, the contributions of this study are two-fold: (1) A basic passenger behavior optimization model is mathematically constructed based on 0-1 integer programming to describe passengers' responses to alternative origin station closure scenarios and destination station closure scenarios; this model also considers the availability of multi-mode transportation and the uncertain duration of the station closure; (2) An integrated solution algorithm based on the passenger simulation is developed to solve the proposed model and to estimate the effects of a station closure on passenger demand in a rail transit network. Furthermore, 13 groups of numerical experiments based on the Beijing rail transit network are performed as case studies with 2,074,267 records of smart card data. The comparisons of the model outputs and the manual survey show that the accuracy of our proposed behavior optimization model is approximately 80%. The results also show that our model can be used to capture the passenger behavior and to quantitatively estimate the effects of alternative closure scenarios on passenger flow demand for the rail transit network. Moreover, the closure duration and its overestimation greatly influence the individual behavioral choices of the affected passengers and the passenger demand. Furthermore, if the rail transit operator can more accurately estimate the closure duration (namely, as g approaches 1), the impact of the closure can be somewhat mitigated.

  3. Phase transitions in community detection: A solvable toy model

    Science.gov (United States)

    Ver Steeg, Greg; Moore, Cristopher; Galstyan, Aram; Allahverdyan, Armen

    2014-05-01

    Recently, it was shown that there is a phase transition in the community detection problem. This transition was first computed using the cavity method, and has been proved rigorously in the case of q = 2 groups. However, analytic calculations using the cavity method are challenging since they require us to understand probability distributions of messages. We study analogous transitions in the so-called “zero-temperature inference” model, where this distribution is supported only on the most likely messages. Furthermore, whenever several messages are equally likely, we break the tie by choosing among them with equal probability, corresponding to an infinitesimal random external field. While the resulting analysis overestimates the thresholds, it reproduces some of the qualitative features of the system. It predicts a first-order detectability transition whenever q > 2 (as opposed to q > 4 according to the finite-temperature cavity method). It also has a regime analogous to the “hard but detectable” phase, where the community structure can be recovered, but only when the initial messages are sufficiently accurate. Finally, we study a semisupervised setting where we are given the correct labels for a fraction ρ of the nodes. For q > 2, we find a regime where the accuracy jumps discontinuously at a critical value of ρ.

  4. Two dimensional kicked quantum Ising model: dynamical phase transitions

    International Nuclear Information System (INIS)

    Pineda, C; Prosen, T; Villaseñor, E

    2014-01-01

    Using an efficient one and two qubit gate simulator operating on graphical processing units, we investigate ergodic properties of a quantum Ising spin 1/2 model on a two-dimensional lattice, which is periodically driven by a δ-pulsed transverse magnetic field. We consider three different dynamical properties: (i) level density, (ii) level spacing distribution of the Floquet quasienergy spectrum, and (iii) time-averaged autocorrelation function of magnetization components. Varying the parameters of the model, we found transitions between ordered (non-ergodic) and quantum chaotic (ergodic) phases, but the transitions between flat and non-flat spectral density do not correspond to transitions between ergodic and non-ergodic local observables. Even more surprisingly, we found good agreement of level spacing distribution with the Wigner surmise of random matrix theory for almost all values of parameters except where the model is essentially non-interacting, even in regions where local observables are not ergodic or where spectral density is non-flat. These findings question the versatility of the interpretation of level spacing distribution in many-body systems and stress the importance of the concept of locality. (paper)

  5. Employment, Production and Consumption model: Patterns of phase transitions

    Science.gov (United States)

    Lavička, H.; Lin, L.; Novotný, J.

    2010-04-01

    We have simulated the model of Employment, Production and Consumption (EPC) using Monte Carlo. The EPC model is an agent based model that mimics very basic rules of industrial economy. From the perspective of physics, the nature of the interactions in the EPC model represents multi-agent interactions where the relations among agents follow the key laws for circulation of capital and money. Monte Carlo simulations of the stochastic model reveal phase transition in the model economy. The two phases are the phase with full unemployment and the phase with nearly full employment. The economy switches between these two states suddenly as a reaction to a slight variation in the exogenous parameter, thus the system exhibits strong non-linear behavior as a response to the change of the exogenous parameters.

  6. Visualizing Three-dimensional Slab Geometries with ShowEarthModel

    Science.gov (United States)

    Chang, B.; Jadamec, M. A.; Fischer, K. M.; Kreylos, O.; Yikilmaz, M. B.

    2017-12-01

    Seismic data that characterize the morphology of modern subducted slabs on Earth suggest that a two-dimensional paradigm is no longer adequate to describe the subduction process. Here we demonstrate the effect of data exploration of three-dimensional (3D) global slab geometries with the open source program ShowEarthModel. ShowEarthModel was designed specifically to support data exploration, by focusing on interactivity and real-time response using the Vrui toolkit. Sixteen movies are presented that explore the 3D complexity of modern subduction zones on Earth. The first movie provides a guided tour through the Earth's major subduction zones, comparing the global slab geometry data sets of Gudmundsson and Sambridge (1998), Syracuse and Abers (2006), and Hayes et al. (2012). Fifteen regional movies explore the individual subduction zones and regions intersecting slabs, using the Hayes et al. (2012) slab geometry models where available and the Engdahl and Villasenor (2002) global earthquake data set. Viewing the subduction zones in this way provides an improved conceptualization of the 3D morphology within a given subduction zone as well as the 3D spatial relations between the intersecting slabs. This approach provides a powerful tool for rendering earth properties and broadening capabilities in both Earth Science research and education by allowing for whole earth visualization. The 3D characterization of global slab geometries is placed in the context of 3D slab-driven mantle flow and observations of shear wave splitting in subduction zones. These visualizations contribute to the paradigm shift from a 2D to 3D subduction framework by facilitating the conceptualization of the modern subduction system on Earth in 3D space.

  7. Spalart–Allmaras model apparent transition and RANS simulations of laminar separation bubbles on airfoils

    International Nuclear Information System (INIS)

    Crivellini, Andrea; D’Alessandro, Valerio

    2014-01-01

    Highlights: • RANS simulation of laminar separation bubbles. • Spalart–Allamaras unexpected capability. • Straightforward implementation of our SA modifications. • Applications of a high order DG incompressible solver. - Abstract: The present paper deals with the Reynolds Averaged Navier–Stokes (RANS) simulation of Laminar Separation Bubble (LSB). This phenomenon is of large interest in several engineering fields, such as the study of wind turbines, unmanned aerial vehicles (UAV) and micro-air vehicles (MAV) characterized by a low operating Reynolds number. In such contexts a laminar boundary layer separation followed by a turbulent transition and afterwards by a turbulent reattachment may appear in the flow-field. The main novelty of this work is that an almost standard Spalart–Allmaras (SA) model, without additional equations for transition modeling, was successfully employed. The result achieved is very surprising being the model not developed for this purpose, but for fully-turbulent flows or for cases with imposed transition location. This result is of large interest, since the SA model is widely used in commercial, open-source and research codes. However, our approach cannot be advocated to predict natural transition within an attached boundary layer, indeed it is only able to deal with transitions triggered by a separated flow. The reliability and accuracy of our approach are here proved computing, by means of a high-order Discontinuous Galerkin (DG) incompressible solver, the flow-field over two airfoils at different flow regimes showing the formation of a LSB

  8. Estimating carbon and showing impacts of drought using satellite data in regression-tree models

    Science.gov (United States)

    Boyte, Stephen; Wylie, Bruce K.; Howard, Danny; Dahal, Devendra; Gilmanov, Tagir G.

    2018-01-01

    Integrating spatially explicit biogeophysical and remotely sensed data into regression-tree models enables the spatial extrapolation of training data over large geographic spaces, allowing a better understanding of broad-scale ecosystem processes. The current study presents annual gross primary production (GPP) and annual ecosystem respiration (RE) for 2000–2013 in several short-statured vegetation types using carbon flux data from towers that are located strategically across the conterminous United States (CONUS). We calculate carbon fluxes (annual net ecosystem production [NEP]) for each year in our study period, which includes 2012 when drought and higher-than-normal temperatures influence vegetation productivity in large parts of the study area. We present and analyse carbon flux dynamics in the CONUS to better understand how drought affects GPP, RE, and NEP. Model accuracy metrics show strong correlation coefficients (r) (r ≥ 94%) between training and estimated data for both GPP and RE. Overall, average annual GPP, RE, and NEP are relatively constant throughout the study period except during 2012 when almost 60% less carbon is sequestered than normal. These results allow us to conclude that this modelling method effectively estimates carbon dynamics through time and allows the exploration of impacts of meteorological anomalies and vegetation types on carbon dynamics.

  9. Forecasting performance of smooth transition autoregressive (STAR model on travel and leisure stock index

    Directory of Open Access Journals (Sweden)

    Usman M. Umer

    2018-06-01

    Full Text Available Travel and leisure recorded a consecutive robust growth and become among the fastest economic sectors in the world. Various forecasting models are proposed by researchers that serve as an early recommendation for investors and policy makers. Numerous studies proposed distinct forecasting models to predict the dynamics of this sector and provide early recommendation for investors and policy makers. In this paper, we compare the performance of smooth transition autoregressive (STAR and linear autoregressive (AR models using monthly returns of Turkey and FTSE travel and leisure index from April 1997 to August 2016. MSCI world index used as a proxy of the overall market. The result shows that nonlinear LSTAR model cannot improve the out-of-sample forecast of linear AR model. This finding demonstrates little to be gained from using LSTAR model in the prediction of travel and leisure stock index. Keywords: Nonlinear time-series, Out-of-sample forecasting, Smooth transition autoregressive, Travel and leisure

  10. Remote sensing, geographical information systems, and spatial modeling for analyzing public transit services

    Science.gov (United States)

    Wu, Changshan

    route maximal covering/shortest path (MRMCSP) model is proposed to address the tradeoff between public transit service quality and access coverage in an established bus-based transit system. Results show that it is possible to improve current transit service quality by eliminating redundant or underutilized service stops. This research illustrates that fine resolution data can be efficiently generated to support urban planning, management and analysis. Further, this detailed data may necessitate the development of new spatial optimization models for use in analysis.

  11. Center for modeling of turbulence and transition: Research briefs, 1995

    Science.gov (United States)

    1995-10-01

    This research brief contains the progress reports of the research staff of the Center for Modeling of Turbulence and Transition (CMOTT) from July 1993 to July 1995. It also constitutes a progress report to the Institute of Computational Mechanics in Propulsion located at the Ohio Aerospace Institute and the Lewis Research Center. CMOTT has been in existence for about four years. In the first three years, its main activities were to develop and validate turbulence and combustion models for propulsion systems, in an effort to remove the deficiencies of existing models. Three workshops on computational turbulence modeling were held at LeRC (1991, 1993, 1994). At present, CMOTT is integrating the CMOTT developed/improved models into CFD tools which can be used by the propulsion systems community. This activity has resulted in an increased collaboration with the Lewis CFD researchers.

  12. Digital herders and phase transition in a voting model

    Energy Technology Data Exchange (ETDEWEB)

    Hisakado, M [Standard and Poor' s, Marunouchi 1-6-5, Chiyoda ku, Tokyo 100-0005 (Japan); Mori, S, E-mail: masato_hisakado@standardandpoors.com, E-mail: mori@sci.kitasato-u.ac.jp [Department of Physics, School of Science, Kitasato University, Kitasato 1-15-1, Sagamihara, Kanagawa 228-8555 (Japan)

    2011-07-08

    In this paper, we discuss a voting model with two candidates, C{sub 1} and C{sub 2}. We set two types of voters-herders and independents. The voting of independent voters is based on their fundamental values; on the other hand, the voting of herders is based on the number of votes. Herders always select the majority of the previous r votes, which are visible to them. We call them digital herders. We can accurately calculate the distribution of votes for special cases. When r {>=} 3, we find that a phase transition occurs at the upper limit of t, where t is the discrete time (or number of votes). As the fraction of herders increases, the model features a phase transition beyond which a state where most voters make the correct choice coexists with one where most of them are wrong. On the other hand, when r < 3, there is no phase transition. In this case, the herders' performance is the same as that of the independent voters. Finally, we recognize the behavior of human beings by conducting simple experiments.

  13. Digital herders and phase transition in a voting model

    International Nuclear Information System (INIS)

    Hisakado, M; Mori, S

    2011-01-01

    In this paper, we discuss a voting model with two candidates, C 1 and C 2 . We set two types of voters-herders and independents. The voting of independent voters is based on their fundamental values; on the other hand, the voting of herders is based on the number of votes. Herders always select the majority of the previous r votes, which are visible to them. We call them digital herders. We can accurately calculate the distribution of votes for special cases. When r ≥ 3, we find that a phase transition occurs at the upper limit of t, where t is the discrete time (or number of votes). As the fraction of herders increases, the model features a phase transition beyond which a state where most voters make the correct choice coexists with one where most of them are wrong. On the other hand, when r < 3, there is no phase transition. In this case, the herders' performance is the same as that of the independent voters. Finally, we recognize the behavior of human beings by conducting simple experiments.

  14. Phenolic Acids from Wheat Show Different Absorption Profiles in Plasma: A Model Experiment with Catheterized Pigs

    DEFF Research Database (Denmark)

    Nørskov, Natalja; Hedemann, Mette Skou; Theil, Peter Kappel

    2013-01-01

    The concentration and absorption of the nine phenolic acids of wheat were measured in a model experiment with catheterized pigs fed whole grain wheat and wheat aleurone diets. Six pigs in a repeated crossover design were fitted with catheters in the portal vein and mesenteric artery to study...... the absorption of phenolic acids. The difference between the artery and the vein for all phenolic acids was small, indicating that the release of phenolic acids in the large intestine was not sufficient to create a porto-arterial concentration difference. Although, the porto-arterial difference was small...... consumed. Benzoic acid derivatives showed low concentration in the plasma (phenolic acids, likely because it is an intermediate in the phenolic acid metabolism...

  15. Etoposide Incorporated into Camel Milk Phospholipids Liposomes Shows Increased Activity against Fibrosarcoma in a Mouse Model

    Directory of Open Access Journals (Sweden)

    Hamzah M. Maswadeh

    2015-01-01

    Full Text Available Phospholipids were isolated from camel milk and identified by using high performance liquid chromatography and gas chromatography-mass spectrometry (GC/MS. Anticancer drug etoposide (ETP was entrapped in liposomes, prepared from camel milk phospholipids, to determine its activity against fibrosarcoma in a murine model. Fibrosarcoma was induced in mice by injecting benzopyrene (BAP and tumor-bearing mice were treated with various formulations of etoposide, including etoposide entrapped camel milk phospholipids liposomes (ETP-Cam-liposomes and etoposide-loaded DPPC-liposomes (ETP-DPPC-liposomes. The tumor-bearing mice treated with ETP-Cam-liposomes showed slow progression of tumors and increased survival compared to free ETP or ETP-DPPC-liposomes. These results suggest that ETP-Cam-liposomes may prove to be a better drug delivery system for anticancer drugs.

  16. Rubber particle proteins, HbREF and HbSRPP, show different interactions with model membranes.

    Science.gov (United States)

    Berthelot, Karine; Lecomte, Sophie; Estevez, Yannick; Zhendre, Vanessa; Henry, Sarah; Thévenot, Julie; Dufourc, Erick J; Alves, Isabel D; Peruch, Frédéric

    2014-01-01

    The biomembrane surrounding rubber particles from the hevea latex is well known for its content of numerous allergen proteins. HbREF (Hevb1) and HbSRPP (Hevb3) are major components, linked on rubber particles, and they have been shown to be involved in rubber synthesis or quality (mass regulation), but their exact function is still to be determined. In this study we highlighted the different modes of interactions of both recombinant proteins with various membrane models (lipid monolayers, liposomes or supported bilayers, and multilamellar vesicles) to mimic the latex particle membrane. We combined various biophysical methods (polarization-modulation-infrared reflection-adsorption spectroscopy (PM-IRRAS)/ellipsometry, attenuated-total reflectance Fourier-transform infrared (ATR-FTIR), solid-state nuclear magnetic resonance (NMR), plasmon waveguide resonance (PWR), fluorescence spectroscopy) to elucidate their interactions. Small rubber particle protein (SRPP) shows less affinity than rubber elongation factor (REF) for the membranes but displays a kind of "covering" effect on the lipid headgroups without disturbing the membrane integrity. Its structure is conserved in the presence of lipids. Contrarily, REF demonstrates higher membrane affinity with changes in its aggregation properties, the amyloid nature of REF, which we previously reported, is not favored in the presence of lipids. REF binds and inserts into membranes. The membrane integrity is highly perturbed, and we suspect that REF is even able to remove lipids from the membrane leading to the formation of mixed micelles. These two homologous proteins show affinity to all membrane models tested but neatly differ in their interacting features. This could imply differential roles on the surface of rubber particles. © 2013.

  17. Modeling texture transitions in cholesteric liquid crystal droplets

    Science.gov (United States)

    Selinger, Robin; Gimenez-Pinto, Vianney; Lu, Shin-Ying; Selinger, Jonathan; Konya, Andrew

    2012-02-01

    Cholesteric liquid crystals can be switched reversibly between planar and focal-conic textures, a property enabling their application in bistable displays, liquid crystal writing tablets, e-books, and color switching ``e-skins.'' To explore voltage-pulse induced switching in cholesteric droplets, we perform simulation studies of director dynamics in three dimensions. Electrostatics calculations are solved at each time step using an iterative relaxation method. We demonstrate that as expected, a low amplitude pulse drives the transition from planar to focal conic, while a high amplitude pulse drives the transition from focal conic back to the planar state. We use the model to explore the effects of droplet shape, aspect ratio, and anchoring conditions, with the goal of minimizing both response time and energy consumption.

  18. Topological phase transitions in the gauged BPS baby Skyrme model

    International Nuclear Information System (INIS)

    Adam, C.; Naya, C.; Romanczukiewicz, T.; Sanchez-Guillen, J.; Wereszczynski, A.

    2015-01-01

    We demonstrate that the gauged BPS baby Skyrme model with a double vacuum potential allows for phase transitions from a non-solitonic to a solitonic phase, where the latter corresponds to a ferromagnetic liquid. Such a transition can be generated by increasing the external pressure P or by turning on an external magnetic field H. As a consequence, the topological phase where gauged BPS baby skyrmions exist, is a higher density phase. For smaller densities, obtained for smaller values of P and H, a phase without solitons is reached. We find the critical line in the P,H parameter space. Furthermore, in the soliton phase, we find the equation of state for the baby skyrmion matter V=V(P,H) at zero temperature, where V is the “volume”, i.e., area of the solitons.

  19. Human Inferences about Sequences: A Minimal Transition Probability Model.

    Directory of Open Access Journals (Sweden)

    Florent Meyniel

    2016-12-01

    Full Text Available The brain constantly infers the causes of the inputs it receives and uses these inferences to generate statistical expectations about future observations. Experimental evidence for these expectations and their violations include explicit reports, sequential effects on reaction times, and mismatch or surprise signals recorded in electrophysiology and functional MRI. Here, we explore the hypothesis that the brain acts as a near-optimal inference device that constantly attempts to infer the time-varying matrix of transition probabilities between the stimuli it receives, even when those stimuli are in fact fully unpredictable. This parsimonious Bayesian model, with a single free parameter, accounts for a broad range of findings on surprise signals, sequential effects and the perception of randomness. Notably, it explains the pervasive asymmetry between repetitions and alternations encountered in those studies. Our analysis suggests that a neural machinery for inferring transition probabilities lies at the core of human sequence knowledge.

  20. Topological phase transitions in the gauged BPS baby Skyrme model

    Energy Technology Data Exchange (ETDEWEB)

    Adam, C.; Naya, C. [Departamento de Física de Partículas, Universidad de Santiago de Compostela andInstituto Galego de Física de Altas Enerxias (IGFAE), Santiago de Compostela, E-15782 (Spain); Romanczukiewicz, T. [Institute of Physics, Jagiellonian University, Lojasiecza 11, Kraków, 30-348 (Poland); Sanchez-Guillen, J. [Departamento de Física de Partículas, Universidad de Santiago de Compostela andInstituto Galego de Física de Altas Enerxias (IGFAE), Santiago de Compostela, E-15782 (Spain); Wereszczynski, A. [Institute of Physics, Jagiellonian University, Lojasiecza 11, Kraków, 30-348 (Poland)

    2015-05-29

    We demonstrate that the gauged BPS baby Skyrme model with a double vacuum potential allows for phase transitions from a non-solitonic to a solitonic phase, where the latter corresponds to a ferromagnetic liquid. Such a transition can be generated by increasing the external pressure P or by turning on an external magnetic field H. As a consequence, the topological phase where gauged BPS baby skyrmions exist, is a higher density phase. For smaller densities, obtained for smaller values of P and H, a phase without solitons is reached. We find the critical line in the P,H parameter space. Furthermore, in the soliton phase, we find the equation of state for the baby skyrmion matter V=V(P,H) at zero temperature, where V is the “volume”, i.e., area of the solitons.

  1. Structural models for amorphous transition metal binary alloys

    International Nuclear Information System (INIS)

    Ching, W.Y.; Lin, C.C.

    1976-01-01

    A dense random packing of 445 hard spheres with two different diameters in a concentration ratio of 3 : 1 was hand-built to simulate the structure of amorphous transition metal-metalloid alloys. By introducing appropriate pair potentials of the Lennard-Jones type, the structure is dynamically relaxed by minimizing the total energy. The radial distribution functions (RDF) for amorphous Fe 0 . 75 P 0 . 25 , Ni 0 . 75 P 0 . 25 , Co 0 . 75 P 0 . 25 are obtained and compared with the experimental data. The calculated RDF's are resolved into their partial components. The results indicate that such dynamically constructed models are capable of accounting for some subtle features in the RDF of amorphous transition metal-metalloid alloys

  2. Ab Initio Modeling Of Friction Reducing Agents Shows Quantum Mechanical Interactions Can Have Macroscopic Manifestation.

    Science.gov (United States)

    Hernández Velázquez, J D; Barroso-Flores, J; Gama Goicochea, A

    2016-11-23

    Two of the most commonly encountered friction-reducing agents used in plastic sheet production are the amides known as erucamide and behenamide, which despite being almost identical chemically, lead to markedly different values of the friction coefficient. To understand the origin of this contrasting behavior, in this work we model brushes made of these two types of linear-chain molecules using quantum mechanical numerical simulations under the density functional theory at the B97D/6-31G(d,p) level of theory. Four chains of erucamide and behenamide were linked to a 2 × 10 zigzag graphene sheet and optimized both in vacuum and in continuous solvent using the SMD implicit solvation model. We find that erucamide chains tend to remain closer together through π-π stacking interactions arising from the double bonds located at C13-C14, a feature behenamide lacks, and thus a more spread configuration is obtained with the latter. It is argued that this arrangement of the erucamide chains is responsible for the lower friction coefficient of erucamide brushes, compared with behenamide brushes, which is a macroscopic consequence of cooperative quantum mechanical interactions. While only quantum level interactions are modeled here, we show that behenamide chains are more spread out in the brush than erucamide chains as a consequence of those interactions. The spread-out configuration allows more solvent particles to penetrate the brush, leading in turn to more friction, in agreement with macroscopic measurements and mesoscale simulations of the friction coefficient reported in the literature.

  3. Integer Quantum Magnon Hall Plateau-Plateau Transition in a Spin Ice Model

    OpenAIRE

    Xu, Baolong; Ohtsuki, Tomi; Shindou, Ryuichi

    2016-01-01

    Low-energy magnon bands in a two-dimensional spin ice model become integer quantum magnon Hall bands. By calculating the localization length and the two-terminal conductance of magnon transport, we show that the magnon bands with disorders undergo a quantum phase transition from an integer quantum magnon Hall regime to a conventional magnon localized regime. Finite size scaling analysis as well as a critical conductance distribution shows that the quantum critical point belongs to the same un...

  4. 3D CFD computations of transitional flows using DES and a correlation based transition model; Wind turbines

    Energy Technology Data Exchange (ETDEWEB)

    Soerensen, Niels N.

    2009-07-15

    The report describes the application of the correlation based transition model of Menter et. al. [1, 2] to the cylinder drag crisis and the stalled flow over an DU-96-W-351 airfoil using the DES methodology. When predicting the flow over airfoils and rotors, the laminar-turbulent transition process can be important for the aerodynamic performance. Today, the most widespread approach is to use fully turbulent computations, where the transitional process is ignored and the entire boundary layer on the wings or airfoils is handled by the turbulence model. The correlation based transition model has lately shown promising results, and the present paper describes the application of the model to predict the drag and shedding frequency for flow around a cylinder from sub to super-critical Reynolds numbers. Additionally, the model is applied to the flow around the DU-96 airfoil, at high angles of attack. (au)

  5. Mathematical properties and parameter estimation for transit compartment pharmacodynamic models.

    Science.gov (United States)

    Yates, James W T

    2008-07-03

    One feature of recent research in pharmacodynamic modelling has been the move towards more mechanistically based model structures. However, in all of these models there are common sub-systems, such as feedback loops and time-delays, whose properties and contribution to the model behaviour merit some mathematical analysis. In this paper a common pharmacodynamic model sub-structure is considered: the linear transit compartment. These models have a number of interesting properties as the length of the cascade chain is increased. In the limiting case a pure time-delay is achieved [Milsum, J.H., 1966. Biological Control Systems Analysis. McGraw-Hill Book Company, New York] and the initial behaviour becoming increasingly sensitive to parameter value perturbation. It is also shown that the modelled drug effect is attenuated, though the duration of action is longer. Through this analysis the range of behaviours that such models are capable of reproducing are characterised. The properties of these models and the experimental requirements are discussed in order to highlight how mathematical analysis prior to experimentation can enhance the utility of mathematical modelling.

  6. Bose-Einstein condensation and chiral phase transition in linear sigma model

    International Nuclear Information System (INIS)

    Shu Song; Li Jiarong

    2005-01-01

    With the linear sigma model, we have studied Bose-Einstein condensation and the chiral phase transition in the chiral limit for an interacting pion system. A μ-T phase diagram including these two phenomena is presented. It is found that the phase plane has been divided into three areas: the Bose-Einstein condensation area, the chiral symmetry broken phase area and the chiral symmetry restored phase area. Bose-Einstein condensation can occur either from the chiral symmetry broken phase or from the restored phase. We show that the onset of the chiral phase transition is restricted in the area where there is no Bose-Einstein condensation

  7. Identification of key residues for protein conformational transition using elastic network model.

    Science.gov (United States)

    Su, Ji Guo; Xu, Xian Jin; Li, Chun Hua; Chen, Wei Zu; Wang, Cun Xin

    2011-11-07

    Proteins usually undergo conformational transitions between structurally disparate states to fulfill their functions. The large-scale allosteric conformational transitions are believed to involve some key residues that mediate the conformational movements between different regions of the protein. In the present work, a thermodynamic method based on the elastic network model is proposed to predict the key residues involved in protein conformational transitions. In our method, the key functional sites are identified as the residues whose perturbations largely influence the free energy difference between the protein states before and after transition. Two proteins, nucleotide binding domain of the heat shock protein 70 and human/rat DNA polymerase β, are used as case studies to identify the critical residues responsible for their open-closed conformational transitions. The results show that the functionally important residues mainly locate at the following regions for these two proteins: (1) the bridging point at the interface between the subdomains that control the opening and closure of the binding cleft; (2) the hinge region between different subdomains, which mediates the cooperative motions between the corresponding subdomains; and (3) the substrate binding sites. The similarity in the positions of the key residues for these two proteins may indicate a common mechanism in their conformational transitions.

  8. The deconfinement phase transition, hadronization and the NJL model

    International Nuclear Information System (INIS)

    Raha, Sibaji

    2000-01-01

    One of the confident predictions of QCD is that at sufficiently high temperature and/or density, hadronic matter should undergo a thermodynamic phase transition to a color deconfined state of matter-popularly called the Quark-Gluon Plasma (QGP). In low energy effective theories of Quantum Chromodynamics (QCD), one usually talks of the chiral transition for which a well defined order parameter exists. We investigate the dissociation of pions and kaons in a medium of hot quark matter described by the Nambu-Jona Lasinio (NJL) model. The decay widths of pion and kaon are found to be large but finite at temperature much higher than the critical temperature for the chiral (or deconfinement) transition, the kaon decay width being much larger. Thus pions and even kaons (with a lower density compared to pions) may coexist with quarks and gluons at such high temperatures. On the basis of such premises, we investigate the process of hadronization in quark-gluon plasma with special emphasis on whether such processes shed any light on acceptable low energy effective theories of QCD

  9. Phase transition in a spatial Lotka-Volterra model

    International Nuclear Information System (INIS)

    Szabo, Gyorgy; Czaran, Tamas

    2001-01-01

    Spatial evolution is investigated in a simulated system of nine competing and mutating bacterium strains, which mimics the biochemical war among bacteria capable of producing two different bacteriocins (toxins) at most. Random sequential dynamics on a square lattice is governed by very symmetrical transition rules for neighborhood invasions of sensitive strains by killers, killers by resistants, and resistants by sensitives. The community of the nine possible toxicity/resistance types undergoes a critical phase transition as the uniform transmutation rates between the types decreases below a critical value P c above that all the nine types of strains coexist with equal frequencies. Passing the critical mutation rate from above, the system collapses into one of three topologically identical (degenerated) states, each consisting of three strain types. Of the three possible final states each accrues with equal probability and all three maintain themselves in a self-organizing polydomain structure via cyclic invasions. Our Monte Carlo simulations support that this symmetry-breaking transition belongs to the universality class of the three-state Potts model

  10. Unified Dark Matter scalar field models with fast transition

    Energy Technology Data Exchange (ETDEWEB)

    Bertacca, Daniele [Dipartimento di Fisica Galileo Galilei, Università di Padova, via F. Marzolo 8, I-35131 Padova (Italy); Bruni, Marco [Institute of Cosmology and Gravitation, University of Portsmouth, Dennis Sciama Building, Portsmouth, PO1 3FX (United Kingdom); Piattella, Oliver F. [Department of Physics, Universidade Federal do Espírito Santo, avenida Ferrari 514, 29075-910, Vitória, ES (Brazil); Pietrobon, Davide, E-mail: daniele.bertacca@pd.infn.it, E-mail: marco.bruni@port.ac.uk, E-mail: oliver.piattella@gmail.com, E-mail: davide.pietrobon@jpl.nasa.gov [Jet Propulsion Laboratory, California Institute of Technology, 4800 Oak Grove Drive, 91109 Pasadena CA U.S.A. (United States)

    2011-02-01

    We investigate the general properties of Unified Dark Matter (UDM) scalar field models with Lagrangians with a non-canonical kinetic term, looking specifically for models that can produce a fast transition between an early Einstein-de Sitter CDM-like era and a later Dark Energy like phase, similarly to the barotropic fluid UDM models in JCAP01(2010)014. However, while the background evolution can be very similar in the two cases, the perturbations are naturally adiabatic in fluid models, while in the scalar field case they are necessarily non-adiabatic. The new approach to building UDM Lagrangians proposed here allows to escape the common problem of the fine-tuning of the parameters which plague many UDM models. We analyse the properties of perturbations in our model, focusing on the the evolution of the effective speed of sound and that of the Jeans length. With this insight, we can set theoretical constraints on the parameters of the model, predicting sufficient conditions for the model to be viable. An interesting feature of our models is that what can be interpreted as w{sub DE} can be < −1 without violating the null energy conditions.

  11. Hysteretic transitions in the Kuramoto model with inertia.

    Science.gov (United States)

    Olmi, Simona; Navas, Adrian; Boccaletti, Stefano; Torcini, Alessandro

    2014-10-01

    We report finite-size numerical investigations and mean-field analysis of a Kuramoto model with inertia for fully coupled and diluted systems. In particular, we examine, for a gaussian distribution of the frequencies, the transition from incoherence to coherence for increasingly large system size and inertia. For sufficiently large inertia the transition is hysteretic, and within the hysteretic region clusters of locked oscillators of various sizes and different levels of synchronization coexist. A modification of the mean-field theory developed by Tanaka, Lichtenberg, and Oishi [Physica D 100, 279 (1997)] allows us to derive the synchronization curve associated to each of these clusters. We have also investigated numerically the limits of existence of the coherent and of the incoherent solutions. The minimal coupling required to observe the coherent state is largely independent of the system size, and it saturates to a constant value already for moderately large inertia values. The incoherent state is observable up to a critical coupling whose value saturates for large inertia and for finite system sizes, while in the thermodinamic limit this critical value diverges proportionally to the mass. By increasing the inertia the transition becomes more complex, and the synchronization occurs via the emergence of clusters of whirling oscillators. The presence of these groups of coherently drifting oscillators induces oscillations in the order parameter. We have shown that the transition remains hysteretic even for randomly diluted networks up to a level of connectivity corresponding to a few links per oscillator. Finally, an application to the Italian high-voltage power grid is reported, which reveals the emergence of quasiperiodic oscillations in the order parameter due to the simultaneous presence of many competing whirling clusters.

  12. Vortexlet models of flapping flexible wings show tuning for force production and control

    International Nuclear Information System (INIS)

    Mountcastle, A M; Daniel, T L

    2010-01-01

    Insect wings are compliant structures that experience deformations during flight. Such deformations have recently been shown to substantially affect induced flows, with appreciable consequences to flight forces. However, there are open questions related to the aerodynamic mechanisms underlying the performance benefits of wing deformation, as well as the extent to which such deformations are determined by the boundary conditions governing wing actuation together with mechanical properties of the wing itself. Here we explore aerodynamic performance parameters of compliant wings under periodic oscillations, subject to changes in phase between wing elevation and pitch, and magnitude and spatial pattern of wing flexural stiffness. We use a combination of computational structural mechanics models and a 2D computational fluid dynamics approach to ask how aerodynamic force production and control potential are affected by pitch/elevation phase and variations in wing flexural stiffness. Our results show that lift and thrust forces are highly sensitive to flexural stiffness distributions, with performance optima that lie in different phase regions. These results suggest a control strategy for both flying animals and engineering applications of micro-air vehicles.

  13. Overcoming drug-tolerant cancer cell subpopulations showing AXL activation and epithelial–mesenchymal transition is critical in conquering ALK-positive lung cancer

    Science.gov (United States)

    Nakamichi, Shinji; Seike, Masahiro; Miyanaga, Akihiko; Chiba, Mika; Zou, Fenfei; Takahashi, Akiko; Ishikawa, Arimi; Kunugi, Shinobu; Noro, Rintaro; Kubota, Kaoru; Gemma, Akihiko

    2018-01-01

    Anaplastic lymphoma kinase tyrosine kinase inhibitors (ALK-TKIs) induce a dramatic response in non–small cell lung cancer (NSCLC) patients with the ALK fusion gene. However, acquired resistance to ALK-TKIs remains an inevitable problem. In this study, we aimed to discover novel therapeutic targets to conquer ALK-positive lung cancer. We established three types of ALK-TKI (crizotinib, alectinib and ceritinib)-resistant H2228 NSCLC cell lines by high exposure and stepwise methods. We found these cells showed a loss of ALK signaling, overexpressed AXL with epithelial-mesenchymal transition (EMT), and had cancer stem cell-like (CSC) properties, suggesting drug-tolerant cancer cell subpopulations. Similarly, we demonstrated that TGF-β1 treated H2228 cells also showed AXL overexpression with EMT features and ALK-TKI resistance. The AXL inhibitor, R428, or HSP90 inhibitor, ganetespib, were effective in reversing ALK-TKI resistance and EMT changes in both ALK-TKI-resistant and TGF-β1-exposed H2228 cells. Tumor volumes of xenograft mice implanted with established H2228-ceritinib-resistant (H2228-CER) cells were significantly reduced after treatment with ganetespib, or ganetespib in combination with ceritinib. Some ALK-positive NSCLC patients with AXL overexpression showed a poorer response to crizotinib therapy than patients with a low expression of AXL. ALK signaling-independent AXL overexpressed in drug-tolerant cancer cell subpopulations with EMT and CSC features may be commonly involved commonly involved in intrinsic and acquired resistance to ALK-TKIs. This suggests AXL and HSP90 inhibitors may be promising therapeutic drugs to overcome drug-tolerant cancer cell subpopulations in ALK-positive NSCLC patients for the reason that ALK-positive NSCLC cells do not live through ALK-TKI therapy. PMID:29930762

  14. E1 transitions in the Harari quark model

    International Nuclear Information System (INIS)

    Kamath, S.G.

    1976-10-01

    The radiative decays psi(3.684)→γchi(sup(3)P sub(J)) and chi(sup(3)Psub(J)→chipsi(3.1) have been analyzed within the framework of the Harari quark model. The spatial matrix elements describing these L=1 to L=0 transitions have been estimated from the A 2 (1310)→ chirho(770) mode by applying U(6) symmetry at the quark level. The resulting decay widths, which compare very well with experimental data, have subsequently been used to determine the SU(3)sub(H) assignments for the chi states

  15. A model of interacting strings and the Hagedorn phase transition

    International Nuclear Information System (INIS)

    Lizzi, F.; Senda, I.

    1990-03-01

    In this letter we introduce a model of interacting string in which the usual ideal gas approximations are not made. The model is constructed in analogy with nucleation models, the formation of droplets in a supersaturate gas. We consider the strings to be interacting and their number not fixed. The equilibrium configuration is the one for which the time derivatives of the number of strings in the various energies vanishes. We evaluate numerically the equilibrium configurations for various values of the energy density. We find that a density of order one in planck units there is a sharp transition, from a 'gas' phase in which there are many strings, all in the massless or first few excited states, to a 'liquid' phase in which all strings have coalesced into one (or few) highly excited string. (author). 14 refs, 4 figs

  16. Phase transition and information cascade in a voting model

    Energy Technology Data Exchange (ETDEWEB)

    Hisakado, M [Standard and Poor' s, Marunouchi 1-6-5, Chiyoda ku, Tokyo 100-0005 (Japan); Mori, S, E-mail: masato_hisakado@standardandpoors.co, E-mail: mori@sci.kitasato-u.ac.j [Department of Physics, School of Science, Kitasato University, Kitasato 1-15-1, Sagamihara, Kanagawa 228-8555 (Japan)

    2010-08-06

    In this paper, we introduce a voting model that is similar to a Keynesian beauty contest and analyse it from a mathematical point of view. There are two types of voters-copycat and independent-and two candidates. Our voting model is a binomial distribution (independent voters) doped in a beta binomial distribution (copycat voters). We find that the phase transition in this system is at the upper limit of t, where t is the time (or the number of the votes). Our model contains three phases. If copycats constitute a majority or even half of the total voters, the voting rate converges more slowly than it would in a binomial distribution. If independents constitute the majority of voters, the voting rate converges at the same rate as it would in a binomial distribution. We also study why it is difficult to estimate the conclusion of a Keynesian beauty contest when there is an information cascade.

  17. Phase transition and information cascade in a voting model

    International Nuclear Information System (INIS)

    Hisakado, M; Mori, S

    2010-01-01

    In this paper, we introduce a voting model that is similar to a Keynesian beauty contest and analyse it from a mathematical point of view. There are two types of voters-copycat and independent-and two candidates. Our voting model is a binomial distribution (independent voters) doped in a beta binomial distribution (copycat voters). We find that the phase transition in this system is at the upper limit of t, where t is the time (or the number of the votes). Our model contains three phases. If copycats constitute a majority or even half of the total voters, the voting rate converges more slowly than it would in a binomial distribution. If independents constitute the majority of voters, the voting rate converges at the same rate as it would in a binomial distribution. We also study why it is difficult to estimate the conclusion of a Keynesian beauty contest when there is an information cascade.

  18. Phase transition and information cascade in a voting model

    Science.gov (United States)

    Hisakado, M.; Mori, S.

    2010-08-01

    In this paper, we introduce a voting model that is similar to a Keynesian beauty contest and analyse it from a mathematical point of view. There are two types of voters—copycat and independent—and two candidates. Our voting model is a binomial distribution (independent voters) doped in a beta binomial distribution (copycat voters). We find that the phase transition in this system is at the upper limit of t, where t is the time (or the number of the votes). Our model contains three phases. If copycats constitute a majority or even half of the total voters, the voting rate converges more slowly than it would in a binomial distribution. If independents constitute the majority of voters, the voting rate converges at the same rate as it would in a binomial distribution. We also study why it is difficult to estimate the conclusion of a Keynesian beauty contest when there is an information cascade.

  19. Modelling Multivariate Autoregressive Conditional Heteroskedasticity with the Double Smooth Transition Conditional Correlation GARCH Model

    DEFF Research Database (Denmark)

    Silvennoinen, Annastiina; Teräsvirta, Timo

    In this paper we propose a multivariate GARCH model with a time-varying conditional correlation structure. The new Double Smooth Transition Conditional Correlation GARCH model extends the Smooth Transition Conditional Correlation GARCH model of Silvennoinen and Ter¨asvirta (2005) by including...... another variable according to which the correlations change smoothly between states of constant correlations. A Lagrange multiplier test is derived to test the constancy of correlations against the DSTCC-GARCH model, and another one to test for another transition in the STCC-GARCH framework. In addition......, other specification tests, with the aim of aiding the model building procedure, are considered. Analytical expressions for the test statistics and the required derivatives are provided. The model is applied to a selection of world stock indices, and it is found that time is an important factor affecting...

  20. Many-body localization-delocalization transition in the quantum Sherrington-Kirkpatrick model

    Science.gov (United States)

    Mukherjee, Sudip; Nag, Sabyasachi; Garg, Arti

    2018-04-01

    We analyze the many-body localization- (MBL) to-delocalization transition in the Sherrington-Kirkpatrick (SK) model of Ising spin glass in the presence of a transverse field Γ . Based on energy-resolved analysis, which is of relevance for a closed quantum system, we show that the quantum SK model has many-body mobility edges separating the MBL phase, which is nonergodic and nonthermal, from the delocalized phase, which is ergodic and thermal. The range of the delocalized regime increases with an increase in the strength of Γ , and eventually for Γ larger than ΓCP the entire many-body spectrum is delocalized. We show that the Renyi entropy is almost independent of the system size in the MBL phase while the delocalized phase shows extensive Renyi entropy. We further obtain the spin-glass transition curve in the energy density ɛ -Γ plane from the collapse of the eigenstate spin susceptibility. We demonstrate that in most of the parameter regime, the spin-glass transition occurs close to the MBL transition, indicating that the spin-glass phase is nonergodic and nonthermal while the paramagnetic phase is delocalized and thermal.

  1. Optimized broad-histogram simulations for strong first-order phase transitions: droplet transitions in the large-Q Potts model

    International Nuclear Information System (INIS)

    Bauer, Bela; Troyer, Matthias; Gull, Emanuel; Trebst, Simon; Huse, David A

    2010-01-01

    The numerical simulation of strongly first-order phase transitions has remained a notoriously difficult problem even for classical systems due to the exponentially suppressed (thermal) equilibration in the vicinity of such a transition. In the absence of efficient update techniques, a common approach for improving equilibration in Monte Carlo simulations is broadening the sampled statistical ensemble beyond the bimodal distribution of the canonical ensemble. Here we show how a recently developed feedback algorithm can systematically optimize such broad-histogram ensembles and significantly speed up equilibration in comparison with other extended ensemble techniques such as flat-histogram, multicanonical and Wang–Landau sampling. We simulate, as a prototypical example of a strong first-order transition, the two-dimensional Potts model with up to Q = 250 different states in large systems. The optimized histogram develops a distinct multi-peak structure, thereby resolving entropic barriers and their associated phase transitions in the phase coexistence region—such as droplet nucleation and annihilation, and droplet–strip transitions for systems with periodic boundary conditions. We characterize the efficiency of the optimized histogram sampling by measuring round-trip times τ(N, Q) across the phase transition for samples comprised of N spins. While we find power-law scaling of τ versus N for small Q∼ 2 , we observe a crossover to exponential scaling for larger Q. These results demonstrate that despite the ensemble optimization, broad-histogram simulations cannot fully eliminate the supercritical slowing down at strongly first-order transitions

  2. TRANSIT TIMING OBSERVATIONS FROM KEPLER. V. TRANSIT TIMING VARIATION CANDIDATES IN THE FIRST SIXTEEN MONTHS FROM POLYNOMIAL MODELS

    Energy Technology Data Exchange (ETDEWEB)

    Ford, Eric B. [Astronomy Department, University of Florida, 211 Bryant Space Sciences Center, Gainesville, FL 32111 (United States); Ragozzine, Darin; Holman, Matthew J. [Harvard-Smithsonian Center for Astrophysics, 60 Garden Street, Cambridge, MA 02138 (United States); Rowe, Jason F.; Barclay, Thomas; Borucki, William J.; Bryson, Stephen T.; Caldwell, Douglas A.; Kinemuchi, Karen; Koch, David G.; Lissauer, Jack J.; Still, Martin; Tenenbaum, Peter [NASA Ames Research Center, Moffett Field, CA 94035 (United States); Steffen, Jason H. [Fermilab Center for Particle Astrophysics, P.O. Box 500, MS 127, Batavia, IL 60510 (United States); Batalha, Natalie M. [Department of Physics and Astronomy, San Jose State University, San Jose, CA 95192 (United States); Fabrycky, Daniel C. [UCO/Lick Observatory, University of California, Santa Cruz, CA 95064 (United States); Gautier, Thomas N. [Jet Propulsion Laboratory/California Institute of Technology, Pasadena, CA 91109 (United States); Ibrahim, Khadeejah A.; Uddin, Kamal [Orbital Sciences Corporation/NASA Ames Research Center, Moffett Field, CA 94035 (United States); Kjeldsen, Hans, E-mail: eford@astro.ufl.edu [Department of Physics and Astronomy, Aarhus University, DK-8000 Aarhus C (Denmark); and others

    2012-09-10

    Transit timing variations provide a powerful tool for confirming and characterizing transiting planets, as well as detecting non-transiting planets. We report the results of an updated transit timing variation (TTV) analysis for 1481 planet candidates based on transit times measured during the first sixteen months of Kepler observations. We present 39 strong TTV candidates based on long-term trends (2.8% of suitable data sets). We present another 136 weaker TTV candidates (9.8% of suitable data sets) based on the excess scatter of TTV measurements about a linear ephemeris. We anticipate that several of these planet candidates could be confirmed and perhaps characterized with more detailed TTV analyses using publicly available Kepler observations. For many others, Kepler has observed a long-term TTV trend, but an extended Kepler mission will be required to characterize the system via TTVs. We find that the occurrence rate of planet candidates that show TTVs is significantly increased ({approx}68%) for planet candidates transiting stars with multiple transiting planet candidates when compared to planet candidates transiting stars with a single transiting planet candidate.

  3. The phase transition in the SU(5) model at high temperatures

    International Nuclear Information System (INIS)

    Daniel, M.; Vayonakis, C.E.

    1981-01-01

    Within the minimum GUT model we have studied the nature of the fluctuation-induced transition between the SU(5) and the SU(3)sub(c) x SU(2) x U(1) phase which occurs at high temperatures. Our analysis is limited to the case when the phase transition occurs outside the critical (fluctuation-dominated) region. For this to happen the SU(5) model has to be in a mode analogous to the type I superconductor. This corresponds to having the scalar quartic couplings in the Higgs sector less than the squared gauge coupling. For generic values of the coupling constants the phase transition is found to be weakly first order. As we approach the boundaries for the region of the SU(3)sub(c) x SU(2) x U(1) phase, however, a strong first-order transition occurs. The SU(5) mode (analogous to the type II superconductor) when the phase transition occurs inside the fluctuation-dominated region has been recently studied by Ginsparg. His results together with ours show that there is a continuous merging of the type I mode into the type II mode. Finally our analysis elucidates some aspects of the monopole problem in grand unified theories. (orig.)

  4. Modeling boundary-layer transition in DNS and LES using Parabolized Stability Equations

    Science.gov (United States)

    Lozano-Duran, Adrian; Hack, M. J. Philipp; Moin, Parviz

    2016-11-01

    The modeling of the laminar region and the prediction of the point of transition remain key challenges in the numerical simulation of boundary layers. The issue is of particular relevance for wall-modeled large eddy simulations which require 10 to 100 times higher grid resolution in the thin laminar region than in the turbulent regime. Our study examines the potential of the nonlinear parabolized stability equations (PSE) to provide an accurate, yet computationally efficient treatment of the growth of disturbances in the pre-transitional flow regime. The PSE captures the nonlinear interactions that eventually induce breakdown to turbulence, and can as such identify the onset of transition without relying on empirical correlations. Since the local PSE solution at the point of transition is the solution of the Navier-Stokes equations, it provides a natural inflow condition for large eddy and direct simulations by avoiding unphysical transients. We show that in a classical H-type transition scenario, a combined PSE/DNS approach can reproduce the skin-friction distribution obtained in reference direct numerical simulations. The computational cost in the laminar region is reduced by several orders of magnitude. Funded by the Air Force Office of Scientific Research.

  5. Introducing Modeling Transition Diagrams as a Tool to Connect Mathematical Modeling to Mathematical Thinking

    Science.gov (United States)

    Czocher, Jennifer A.

    2016-01-01

    This study contributes a methodological tool to reconstruct the cognitive processes and mathematical activities carried out by mathematical modelers. Represented as Modeling Transition Diagrams (MTDs), individual modeling routes were constructed for four engineering undergraduate students. Findings stress the importance and limitations of using…

  6. Showing a model's eye movements in examples does not improve learning of problem-solving tasks

    NARCIS (Netherlands)

    van Marlen, Tim; van Wermeskerken, Margot; Jarodzka, Halszka; van Gog, Tamara

    2016-01-01

    Eye movement modeling examples (EMME) are demonstrations of a computer-based task by a human model (e.g., a teacher), with the model's eye movements superimposed on the task to guide learners' attention. EMME have been shown to enhance learning of perceptual classification tasks; however, it is an

  7. Measured Boundary Layer Transition and Rotor Hover Performance at Model Scale

    Science.gov (United States)

    Overmeyer, Austin D.; Martin, Preston B.

    2017-01-01

    An experiment involving a Mach-scaled, 11:08 f t: diameter rotor was performed in hover during the summer of 2016 at NASA Langley Research Center. The experiment investigated the hover performance as a function of the laminar to turbulent transition state of the boundary layer, including both natural and fixed transition cases. The boundary layer transition locations were measured on both the upper and lower aerodynamic surfaces simultaneously. The measurements were enabled by recent advances in infrared sensor sensitivity and stability. The infrared thermography measurement technique was enhanced by a paintable blade surface heater, as well as a new high-sensitivity long wave infrared camera. The measured transition locations showed extensive amounts, x=c>0:90, of laminar flow on the lower surface at moderate to high thrust (CT=s > 0:068) for the full blade radius. The upper surface showed large amounts, x=c > 0:50, of laminar flow at the blade tip for low thrust (CT=s boundary layer transition models in CFD and rotor design tools. The data is expected to be used as part of the AIAA Rotorcraft SimulationWorking Group

  8. A Smooth Transition Logit Model of the Effects of Deregulation in the Electricity Market

    DEFF Research Database (Denmark)

    Hurn, A.S.; Silvennoinen, Annastiina; Teräsvirta, Timo

    We consider a nonlinear vector model called the logistic vector smooth transition autoregressive model. The bivariate single-transition vector smooth transition regression model of Camacho (2004) is generalised to a multivariate and multitransition one. A modelling strategy consisting of specific......We consider a nonlinear vector model called the logistic vector smooth transition autoregressive model. The bivariate single-transition vector smooth transition regression model of Camacho (2004) is generalised to a multivariate and multitransition one. A modelling strategy consisting...... of specification, including testing linearity, estimation and evaluation of these models is constructed. Nonlinear least squares estimation of the parameters of the model is discussed. Evaluation by misspecification tests is carried out using tests derived in a companion paper. The use of the modelling strategy...

  9. Modeling the hepatitis A epidemiological transition in Brazil and Mexico.

    Science.gov (United States)

    Van Effelterre, Thierry; Guignard, Adrienne; Marano, Cinzia; Rojas, Rosalba; Jacobsen, Kathryn H

    2017-08-03

    Many low- to middle-income countries have completed or are in the process of transitioning from high or intermediate to low endemicity for hepatitis A virus (HAV). Because the risk of severe hepatitis A disease increases with age at infection, decreased incidence that leaves older children and adults susceptible to HAV infection may actually increase the population-level burden of disease from HAV. Mathematical models can be helpful for projecting future epidemiological profiles for HAV. An age-specific deterministic, dynamic compartmental transmission model with stratification by setting (rural versus urban) was calibrated with country-specific data on demography, urbanization, and seroprevalence of anti-HAV antibodies. HAV transmission was modeled as a function of setting-specific access to safe water. The model was then used to project various HAV-related epidemiological outcomes in Brazil and in Mexico from 1950 to 2050. The projected epidemiological outcomes were qualitatively similar in the 2 countries. The age at the midpoint of population immunity (AMPI) increased considerably and the mean age of symptomatic HAV cases shifted from childhood to early adulthood. The projected overall incidence rate of HAV infections decreased by about two thirds as safe water access improved. However, the incidence rate of symptomatic HAV infections remained roughly the same over the projection period. The incidence rates of HAV infections (all and symptomatic alone) were projected to become similar in rural and urban settings in the next decades. This model featuring population age structure, urbanization and access to safe water as key contributors to the epidemiological transition for HAV was previously validated with data from Thailand and fits equally well with data from Latin American countries. Assuming no introduction of a vaccination program over the projection period, both Brazil and Mexico were projected to experience a continued decrease in HAV incidence rates

  10. Electroweak phase transition in two Higgs doublet models

    International Nuclear Information System (INIS)

    Cline, J.M.; Lemieux, P.

    1997-01-01

    We reexamine the strength of the first-order phase transition in the electroweak theory supplemented by an extra Higgs doublet. The finite-temperature effective potential V eff is computed to one-loop order, including the summation of ring diagrams, to study the ratio φ c /T c of the Higgs field VEV to the critical temperature. We make a number of improvements over previous treatments, including a consistent treatment of Goldstone bosons in V eff , an accurate analytic approximation to V eff valid for any mass-to-temperature ratios, and use of the experimentally measured top quark mass. For two-Higgs-doublet models, we identify a significant region of parameter space where φ c /T c is large enough for electroweak baryogenesis, and we argue that this identification should persist even at higher orders in perturbation theory. In the case of the minimal supersymmetric standard model, our results indicate that the extra Higgs bosons have little effect on the strength of the phase transition. copyright 1997 The American Physical Society

  11. Demographic model of the Neolithic transition in Central Europe

    Directory of Open Access Journals (Sweden)

    Patrik Galeta

    2009-12-01

    Full Text Available Several recent lines of evidence indicate more intensive contact between LBK farmers and indigenous foragers in Central Europe (5600–5400 calBC. Strong continuity has been identified between Mesolithic and Neolithic material cultures; faunal assemblages, and isotopic analyses of diet have revealed a greater role of hunting in LBK communities; genetic analyses have suggested that the modern Central European gene pool is mainly of Palaeolithic origin. Surprisingly little attention has been paid to demographic aspects of the Neolithic transition. In our study, demographic simulations were performed to assess the demographic conditions that would allow LBK farmers to spread across central Europe without any admixture with Mesolithic foragers. We constructed a stochastic demographic model of changes in farming population size. Model parameters were constrained by data from human demography, archaeology, and human ecology. Our results indicate that the establishment of farming communities in Central Europe without an admixture with foragers was highly improbable. The demographic conditions necessary for colonization were beyond the potential of the Neolithic population. Our study supports the integrationists’ view of the Neolithic transition in Central Europe.

  12. An Anderson-like model of the QCD chiral transition

    International Nuclear Information System (INIS)

    Giordano, Matteo; Kovács, Tamás G.; Pittler, Ferenc

    2016-01-01

    We study the problems of chiral symmetry breaking and eigenmode localisation in finite-temperature QCD by looking at the lattice Dirac operator as a random Hamiltonian. We recast the staggered Dirac operator into an unconventional three-dimensional Anderson Hamiltonian (“Dirac-Anderson Hamiltonian”) carrying internal degrees of freedom, with disorder provided by the fluctuations of the gauge links. In this framework, we identify the features relevant to chiral symmetry restoration and localisation of the low-lying Dirac eigenmodes in the ordering of the local Polyakov lines, and in the related correlation between spatial links across time slices, thus tying the two phenomena to the deconfinement transition. We then build a toy model based on QCD and on the Dirac-Anderson approach, replacing the Polyakov lines with spin variables and simplifying the dynamics of the spatial gauge links, but preserving the above-mentioned relevant dynamical features. Our toy model successfully reproduces the main features of the QCD spectrum and of the Dirac eigenmodes concerning chiral symmetry breaking and localisation, both in the ordered (deconfined) and disordered (confined) phases. Moreover, it allows us to study separately the roles played in the two phenomena by the diagonal and the off-diagonal terms of the Dirac-Anderson Hamiltonian. Our results support our expectation that chiral symmetry restoration and localisation of the low modes are closely related, and that both are triggered by the deconfinement transition.

  13. Census Model Transition: Contributions to its Implementation in Portugal

    Directory of Open Access Journals (Sweden)

    Dias Carlos A.

    2016-03-01

    Full Text Available Given the high cost and complexity of traditional censuses, some countries have started to change the census process. Following this trend, Portugal is also evaluating a new census model as an alternative to an exhaustive collection of all statistical units. The main motivations for the implementation of this census model transition in Portugal are related to the decrease in statistical burden on citizens, improvements in the frequency of outputs, and the reduction of collection costs associated with census operations. This article seeks to systematise and critically review all alternatives to the traditional census methodologies, presenting their advantages and disadvantages and the countries that use them. As a result of the comparison, we conclude that the methods that best meet these objectives are those that use administrative data, either in whole or in part. We also present and discuss the results of an inventory and evaluation of administrative registers in Portugal with the potential to produce statistical census information.

  14. Molecular modeling of polycarbonate materials: Glass transition and mechanical properties

    Science.gov (United States)

    Palczynski, Karol; Wilke, Andreas; Paeschke, Manfred; Dzubiella, Joachim

    2017-09-01

    Linking the experimentally accessible macroscopic properties of thermoplastic polymers to their microscopic static and dynamic properties is a key requirement for targeted material design. Classical molecular dynamics simulations enable us to study the structural and dynamic behavior of molecules on microscopic scales, and statistical physics provides a framework for relating these properties to the macroscopic properties. We take a first step toward creating an automated workflow for the theoretical prediction of thermoplastic material properties by developing an expeditious method for parameterizing a simple yet surprisingly powerful coarse-grained bisphenol-A polycarbonate model which goes beyond previous coarse-grained models and successfully reproduces the thermal expansion behavior, the glass transition temperature as a function of the molecular weight, and several elastic properties.

  15. Classifying multi-model wheat yield impact response surfaces showing sensitivity to temperature and precipitation change

    NARCIS (Netherlands)

    Fronzek, Stefan; Pirttioja, Nina; Carter, Timothy R.; Bindi, Marco; Hoffmann, Holger; Palosuo, Taru; Ruiz-Ramos, Margarita; Tao, Fulu; Trnka, Miroslav; Acutis, Marco; Asseng, Senthold; Baranowski, Piotr; Basso, Bruno; Bodin, Per; Buis, Samuel; Cammarano, Davide; Deligios, Paola; Destain, Marie France; Dumont, Benjamin; Ewert, Frank; Ferrise, Roberto; François, Louis; Gaiser, Thomas; Hlavinka, Petr; Jacquemin, Ingrid; Kersebaum, Kurt Christian; Kollas, Chris; Krzyszczak, Jaromir; Lorite, Ignacio J.; Minet, Julien; Minguez, M.I.; Montesino, Manuel; Moriondo, Marco; Müller, Christoph; Nendel, Claas; Öztürk, Isik; Perego, Alessia; Rodríguez, Alfredo; Ruane, Alex C.; Ruget, Françoise; Sanna, Mattia; Semenov, Mikhail A.; Slawinski, Cezary; Stratonovitch, Pierre; Supit, Iwan; Waha, Katharina; Wang, Enli; Wu, Lianhai; Zhao, Zhigan; Rötter, Reimund P.

    2018-01-01

    Crop growth simulation models can differ greatly in their treatment of key processes and hence in their response to environmental conditions. Here, we used an ensemble of 26 process-based wheat models applied at sites across a European transect to compare their sensitivity to changes in

  16. Classifying multi-model wheat yield impact response surfaces showing sensitivity to temperature and precipitation change

    Czech Academy of Sciences Publication Activity Database

    Fronzek, S.; Pirttioja, N. K.; Carter, T. R.; Bindi, M.; Hoffmann, H.; Palosuo, T.; Ruiz-Ramos, M.; Tao, F.; Trnka, Miroslav; Acutis, M.; Asseng, S.; Baranowski, P.; Basso, B.; Bodin, P.; Buis, S.; Cammarano, D.; Deligios, P.; Destain, M. F.; Dumont, B.; Ewert, F.; Ferrise, R.; Francois, L.; Gaiser, T.; Hlavinka, Petr; Jacquemin, I.; Kersebaum, K. C.; Kollas, C.; Krzyszczak, J.; Lorite, I. J.; Minet, J.; Ines Minguez, M.; Montesino, M.; Moriondo, M.; Mueller, C.; Nendel, C.; Öztürk, I.; Perego, A.; Rodriguez, A.; Ruane, A. C.; Ruget, F.; Sanna, M.; Semenov, M. A.; Slawinski, C.; Stratonovitch, P.; Supit, I.; Waha, K.; Wang, E.; Wu, L.; Zhao, Z.; Rötter, R.

    2018-01-01

    Roč. 159, jan (2018), s. 209-224 ISSN 0308-521X Institutional support: RVO:86652079 Keywords : climate - change * crop models * probabilistic assessment * simulating impacts * british catchments * uncertainty * europe * productivity * calibration * adaptation * Classification * Climate change * Crop model * Ensemble * Sensitivity analysis * Wheat Subject RIV: GC - Agronomy OBOR OECD: Agronomy, plant breeding and plant protection Impact factor: 2.571, year: 2016

  17. Quantum phase transition of light in the Rabi–Hubbard model

    International Nuclear Information System (INIS)

    Schiró, M; Bordyuh, M; Öztop, B; Türeci, H E

    2013-01-01

    We discuss the physics of the Rabi–Hubbard model describing large arrays of coupled cavities interacting with two level atoms via a Rabi nonlinearity. We show that the inclusion of counter-rotating terms in the light–matter interaction, often neglected in theoretical descriptions based on Jaynes–Cumming models, is crucial to stabilize finite-density quantum phases of correlated photons with no need for an artificially engineered chemical potential. We show that the physical properties of these phases and the quantum phase transition occurring between them is remarkably different from those of interacting bosonic massive quantum particles. The competition between photon delocalization and Rabi nonlinearity drives the system across a novel Z 2 parity symmetry-breaking quantum phase transition between two gapped phases, a Rabi insulator and a delocalized super-radiant phase. (paper)

  18. Dynamic Linkages Between the Transition Zone & Surface Plate Motions in 2D Models of Subduction

    Science.gov (United States)

    Arredondo, K.; Billen, M. I.

    2013-12-01

    While slab pull is considered the dominant force controlling plate motion and speed, its magnitude is controlled by slab behavior in the mantle, where tomographic studies show a wide range of possibilities from direct penetration to folding, or stagnation directly above the lower mantle (e.g. Fukao et al., 2009). Geodynamic studies have investigated various parameters, such as plate age and two phase transitions, to recreate observed behavior (e.g. Běhounková and Cízková, 2008). However, past geodynamic models have left out known slab characteristics that may have a large impact on slab behavior and our understanding of subduction processes. Mineral experiments and seismic observations have indicated the existence of additional phase transitions in the mantle transition zone that may produce buoyancy forces large enough to affect the descent of a subducting slab (e.g. Ricard et al., 2005). The current study systematically tests different common assumptions used in geodynamic models: kinematic versus free-slip boundary conditions, the effects of adiabatic heating, viscous dissipation and latent heat, compositional layering and a more complete suite of phase transitions. Final models have a complete energy equation, with eclogite, harzburgite and pyrolite lithosphere compositional layers, and seven composition-dependent phase transitions within the olivine, pyroxene and garnet polymorph minerals. Results show important feedback loops between different assumptions and new behavior from the most complete models. Kinematic models show slab weakening or breaking above the 660 km boundary and between compositional layers. The behavior in dynamic models with a free-moving trench and overriding plate is compared to the more commonly found kinematic models. The new behavior may have important implications for the depth distribution of deep earthquakes within the slab. Though the thermodynamic parameters of certain phase transitions may be uncertain, their presence and

  19. Transition in, Transition out: a sustainable model to engage first year students in learning. A Practice Report

    Directory of Open Access Journals (Sweden)

    Andrea Chester

    2013-08-01

    Full Text Available Peer mentoring, presented as an inclusive teaching approach, embedded in the curriculum, has been successfully implemented to support first year student learning. Developing sustainable and scalable models for large first year cohorts, however, provides a challenge. The Transition in, Transition out model is a sustainable peer mentoring model supporting the transition of both first and final year students. The model has been implemented in two Australian psychology programs, one face-to-face and one delivered online. The focus in this Practice Report will be on the outcome data for on-campus first year student at one university. Participants were 231 first year students (166 females and 65 males. Results suggest positive changes in academic performance and learning approaches as well as positive endorsement of the model.

  20. PyTranSpot: A tool for multiband light curve modeling of planetary transits and stellar spots

    Science.gov (United States)

    Juvan, Ines G.; Lendl, M.; Cubillos, P. E.; Fossati, L.; Tregloan-Reed, J.; Lammer, H.; Guenther, E. W.; Hanslmeier, A.

    2018-02-01

    Several studies have shown that stellar activity features, such as occulted and non-occulted starspots, can affect the measurement of transit parameters biasing studies of transit timing variations and transmission spectra. We present PyTranSpot, which we designed to model multiband transit light curves showing starspot anomalies, inferring both transit and spot parameters. The code follows a pixellation approach to model the star with its corresponding limb darkening, spots, and transiting planet on a two dimensional Cartesian coordinate grid. We combine PyTranSpot with a Markov chain Monte Carlo framework to study and derive exoplanet transmission spectra, which provides statistically robust values for the physical properties and uncertainties of a transiting star-planet system. We validate PyTranSpot's performance by analyzing eleven synthetic light curves of four different star-planet systems and 20 transit light curves of the well-studied WASP-41b system. We also investigate the impact of starspots on transit parameters and derive wavelength dependent transit depth values for WASP-41b covering a range of 6200-9200 Å, indicating a flat transmission spectrum.

  1. Monte Carlo simulations of the NJL model near the nonzero temperature phase transition

    International Nuclear Information System (INIS)

    Strouthos, Costas; Christofi, Stavros

    2005-01-01

    We present results from numerical simulations of the Nambu-Jona-Lasinio model with an SU(2)xSU(2) chiral symmetry and N c = 4,8, and 16 quark colors at nonzero temperature. We performed the simulations by utilizing the hybrid Monte Carlo and hybrid Molecular Dynamics algorithms. We show that the model undergoes a second order phase transition. The critical exponents measured are consistent with the classical 3d O(4) universality class and hence in accordance with the dimensional reduction scenario. We also show that the Ginzburg region is suppressed by a factor of 1/N c in accordance with previous analytical predictions. (author)

  2. Models development for natural circulation and its transition process in nuclear power plant

    International Nuclear Information System (INIS)

    Yu Lei; Cai Qi; Cai Zhangsheng; Xie Haiyan

    2008-01-01

    On the basis of nuclear power plant (NPP) best-estimate transient analysis code RELAP5/MOD3, the point reactor kinetics model in RELAP5/MOD3 was replaced by the two-group, 3-D space and time dependent neutron kinetic model, in order to exactly analyze the responses of key parameters in natural circulation and its transition process considering the reactivity feedback. The coupled model for three-dimensional physics and thermohydraulics was established and corresponding computing code was developed. Using developed code, natural circulation of NPP and its transiton process were calculated and analyzed. Compared with the experiment data, the calculated results show that its high precise avoids the shortage that the point reactor equation can not reflect the reactivity exactly. This code can be a computing and analysis tool for forced circulation and natural circulation and their transitions. (authors)

  3. A geometrically controlled rigidity transition in a model for confluent 3D tissues

    Science.gov (United States)

    Merkel, Matthias; Manning, M. Lisa

    2018-02-01

    The origin of rigidity in disordered materials is an outstanding open problem in statistical physics. Previously, a class of 2D cellular models has been shown to undergo a rigidity transition controlled by a mechanical parameter that specifies cell shapes. Here, we generalize this model to 3D and find a rigidity transition that is similarly controlled by the preferred surface area S 0: the model is solid-like below a dimensionless surface area of {s}0\\equiv {S}0/{\\bar{V}}2/3≈ 5.413 with \\bar{V} being the average cell volume, and fluid-like above this value. We demonstrate that, unlike jamming in soft spheres, residual stresses are necessary to create rigidity. These stresses occur precisely when cells are unable to obtain their desired geometry, and we conjecture that there is a well-defined minimal surface area possible for disordered cellular structures. We show that the behavior of this minimal surface induces a linear scaling of the shear modulus with the control parameter at the transition point, which is different from the scaling observed in particulate matter. The existence of such a minimal surface may be relevant for biological tissues and foams, and helps explain why cell shapes are a good structural order parameter for rigidity transitions in biological tissues.

  4. Gain control through divisive inhibition prevents abrupt transition to chaos in a neural mass model

    Science.gov (United States)

    Papasavvas, Christoforos A.; Wang, Yujiang; Trevelyan, Andrew J.; Kaiser, Marcus

    2016-01-01

    Experimental results suggest that there are two distinct mechanisms of inhibition in cortical neuronal networks: subtractive and divisive inhibition. They modulate the input-output function of their target neurons either by increasing the input that is needed to reach maximum output or by reducing the gain and the value of maximum output itself, respectively. However, the role of these mechanisms on the dynamics of the network is poorly understood. We introduce a novel population model and numerically investigate the influence of divisive inhibition on network dynamics. Specifically, we focus on the transitions from a state of regular oscillations to a state of chaotic dynamics via period-doubling bifurcations. The model with divisive inhibition exhibits a universal transition rate to chaos (Feigenbaum behavior). In contrast, in an equivalent model without divisive inhibition, transition rates to chaos are not bounded by the universal constant (non-Feigenbaum behavior). This non-Feigenbaum behavior, when only subtractive inhibition is present, is linked to the interaction of bifurcation curves in the parameter space. Indeed, searching the parameter space showed that such interactions are impossible when divisive inhibition is included. Therefore, divisive inhibition prevents non-Feigenbaum behavior and, consequently, any abrupt transition to chaos. The results suggest that the divisive inhibition in neuronal networks could play a crucial role in keeping the states of order and chaos well separated and in preventing the onset of pathological neural dynamics. PMID:26465514

  5. Gain control through divisive inhibition prevents abrupt transition to chaos in a neural mass model.

    Science.gov (United States)

    Papasavvas, Christoforos A; Wang, Yujiang; Trevelyan, Andrew J; Kaiser, Marcus

    2015-09-01

    Experimental results suggest that there are two distinct mechanisms of inhibition in cortical neuronal networks: subtractive and divisive inhibition. They modulate the input-output function of their target neurons either by increasing the input that is needed to reach maximum output or by reducing the gain and the value of maximum output itself, respectively. However, the role of these mechanisms on the dynamics of the network is poorly understood. We introduce a novel population model and numerically investigate the influence of divisive inhibition on network dynamics. Specifically, we focus on the transitions from a state of regular oscillations to a state of chaotic dynamics via period-doubling bifurcations. The model with divisive inhibition exhibits a universal transition rate to chaos (Feigenbaum behavior). In contrast, in an equivalent model without divisive inhibition, transition rates to chaos are not bounded by the universal constant (non-Feigenbaum behavior). This non-Feigenbaum behavior, when only subtractive inhibition is present, is linked to the interaction of bifurcation curves in the parameter space. Indeed, searching the parameter space showed that such interactions are impossible when divisive inhibition is included. Therefore, divisive inhibition prevents non-Feigenbaum behavior and, consequently, any abrupt transition to chaos. The results suggest that the divisive inhibition in neuronal networks could play a crucial role in keeping the states of order and chaos well separated and in preventing the onset of pathological neural dynamics.

  6. A stochastic estimation procedure for intermittently-observed semi-Markov multistate models with back transitions.

    Science.gov (United States)

    Aralis, Hilary; Brookmeyer, Ron

    2017-01-01

    Multistate models provide an important method for analyzing a wide range of life history processes including disease progression and patient recovery following medical intervention. Panel data consisting of the states occupied by an individual at a series of discrete time points are often used to estimate transition intensities of the underlying continuous-time process. When transition intensities depend on the time elapsed in the current state and back transitions between states are possible, this intermittent observation process presents difficulties in estimation due to intractability of the likelihood function. In this manuscript, we present an iterative stochastic expectation-maximization algorithm that relies on a simulation-based approximation to the likelihood function and implement this algorithm using rejection sampling. In a simulation study, we demonstrate the feasibility and performance of the proposed procedure. We then demonstrate application of the algorithm to a study of dementia, the Nun Study, consisting of intermittently-observed elderly subjects in one of four possible states corresponding to intact cognition, impaired cognition, dementia, and death. We show that the proposed stochastic expectation-maximization algorithm substantially reduces bias in model parameter estimates compared to an alternative approach used in the literature, minimal path estimation. We conclude that in estimating intermittently observed semi-Markov models, the proposed approach is a computationally feasible and accurate estimation procedure that leads to substantial improvements in back transition estimates.

  7. Chiral and color-superconducting phase transitions with vector interaction in a simple model

    International Nuclear Information System (INIS)

    Kitazawa, Masakiyo; Koide, Tomoi; Kunihiro, Teiji; Nemoto, Yukio

    2002-01-01

    We investigate effects of the vector interaction on chiral and color superconducting (CSC) phase transitions at finite density and temperature in a simple Nambu-Jona-Lasinio model. It is shown that the repulsive density-density interaction coming from the vector term, which is present in the effective chiral models but has been omitted, enhances the competition between the chiral symmetry breaking (χSB) and CSC phase transition, and thereby makes the thermodynamic potential have a shallow minimum over a wide range of values of the correlated chiral and CSC order parameters. We find that when the vector coupling is increased, the first order transition between the χSB and CSC phases becomes weaker, and the coexisting phase in which both the chiral and color-gauge symmetry are dynamically broken comes to exist over a wider range of the density and temperature. We also show that there can exist two endpoints, which are tricritical points in the chiral limit, along the critical line of the first order transition in some range of values of the vector coupling. Although our analysis is based on a simple model, the nontrivial interplay between the χSB and CSC phases induced by the vector interaction is expected to be a universal phenomenon and might give a clue to understanding results obtained with two-color QCD on the lattice. (author)

  8. Models of alien species richness show moderate predictive accuracy and poor transferability

    Directory of Open Access Journals (Sweden)

    César Capinha

    2018-06-01

    Full Text Available Robust predictions of alien species richness are useful to assess global biodiversity change. Nevertheless, the capacity to predict spatial patterns of alien species richness remains largely unassessed. Using 22 data sets of alien species richness from diverse taxonomic groups and covering various parts of the world, we evaluated whether different statistical models were able to provide useful predictions of absolute and relative alien species richness, as a function of explanatory variables representing geographical, environmental and socio-economic factors. Five state-of-the-art count data modelling techniques were used and compared: Poisson and negative binomial generalised linear models (GLMs, multivariate adaptive regression splines (MARS, random forests (RF and boosted regression trees (BRT. We found that predictions of absolute alien species richness had a low to moderate accuracy in the region where the models were developed and a consistently poor accuracy in new regions. Predictions of relative richness performed in a superior manner in both geographical settings, but still were not good. Flexible tree ensembles-type techniques (RF and BRT were shown to be significantly better in modelling alien species richness than parametric linear models (such as GLM, despite the latter being more commonly applied for this purpose. Importantly, the poor spatial transferability of models also warrants caution in assuming the generality of the relationships they identify, e.g. by applying projections under future scenario conditions. Ultimately, our results strongly suggest that predictability of spatial variation in richness of alien species richness is limited. The somewhat more robust ability to rank regions according to the number of aliens they have (i.e. relative richness, suggests that models of aliens species richness may be useful for prioritising and comparing regions, but not for predicting exact species numbers.

  9. Metabolic modeling of energy balances in Mycoplasma hyopneumoniae shows that pyruvate addition increases growth rate.

    Science.gov (United States)

    Kamminga, Tjerko; Slagman, Simen-Jan; Bijlsma, Jetta J E; Martins Dos Santos, Vitor A P; Suarez-Diez, Maria; Schaap, Peter J

    2017-10-01

    Mycoplasma hyopneumoniae is cultured on large-scale to produce antigen for inactivated whole-cell vaccines against respiratory disease in pigs. However, the fastidious nutrient requirements of this minimal bacterium and the low growth rate make it challenging to reach sufficient biomass yield for antigen production. In this study, we sequenced the genome of M. hyopneumoniae strain 11 and constructed a high quality constraint-based genome-scale metabolic model of 284 chemical reactions and 298 metabolites. We validated the model with time-series data of duplicate fermentation cultures to aim for an integrated model describing the dynamic profiles measured in fermentations. The model predicted that 84% of cellular energy in a standard M. hyopneumoniae cultivation was used for non-growth associated maintenance and only 16% of cellular energy was used for growth and growth associated maintenance. Following a cycle of model-driven experimentation in dedicated fermentation experiments, we were able to increase the fraction of cellular energy used for growth through pyruvate addition to the medium. This increase in turn led to an increase in growth rate and a 2.3 times increase in the total biomass concentration reached after 3-4 days of fermentation, enhancing the productivity of the overall process. The model presented provides a solid basis to understand and further improve M. hyopneumoniae fermentation processes. Biotechnol. Bioeng. 2017;114: 2339-2347. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.

  10. Mixed-order phase transition in a one-dimensional model.

    Science.gov (United States)

    Bar, Amir; Mukamel, David

    2014-01-10

    We introduce and analyze an exactly soluble one-dimensional Ising model with long range interactions that exhibits a mixed-order transition, namely a phase transition in which the order parameter is discontinuous as in first order transitions while the correlation length diverges as in second order transitions. Such transitions are known to appear in a diverse classes of models that are seemingly unrelated. The model we present serves as a link between two classes of models that exhibit a mixed-order transition in one dimension, namely, spin models with a coupling constant that decays as the inverse distance squared and models of depinning transitions, thus making a step towards a unifying framework.

  11. Multi-state succession in wetlands: a novel use of state and transition models

    Science.gov (United States)

    Zweig, Christa L.; Kitchens, Wiley M.

    2009-01-01

    The complexity of ecosystems and mechanisms of succession are often simplified by linear and mathematical models used to understand and predict system behavior. Such models often do not incorporate multivariate, nonlinear feedbacks in pattern and process that include multiple scales of organization inherent within real-world systems. Wetlands are ecosystems with unique, nonlinear patterns of succession due to the regular, but often inconstant, presence of water on the landscape. We develop a general, nonspatial state and transition (S and T) succession conceptual model for wetlands and apply the general framework by creating annotated succession/management models and hypotheses for use in impact analysis on a portion of an imperiled wetland. The S and T models for our study area, Water Conservation Area 3A South (WCA3), Florida, USA, included hydrologic and peat depth values from multivariate analyses and classification and regression trees. We used the freeware Vegetation Dynamics Development Tool as an exploratory application to evaluate our S and T models with different management actions (equal chance [a control condition], deeper conditions, dry conditions, and increased hydrologic range) for three communities: slough, sawgrass (Cladium jamaicense), and wet prairie. Deeper conditions and increased hydrologic range behaved similarly, with the transition of community states to deeper states, particularly for sawgrass and slough. Hydrology is the primary mechanism for multi-state transitions within our study period, and we show both an immediate and lagged effect on vegetation, depending on community state. We consider these S and T succession models as a fraction of the framework for the Everglades. They are hypotheses for use in adaptive management, represent the community response to hydrology, and illustrate which aspects of hydrologic variability are important to community structure. We intend for these models to act as a foundation for further restoration

  12. A Unique Autothermal Thermophilic Aerobic Digestion Process Showing a Dynamic Transition of Physicochemical and Bacterial Characteristics from the Mesophilic to the Thermophilic Phase.

    Science.gov (United States)

    Tashiro, Yukihiro; Kanda, Kosuke; Asakura, Yuya; Kii, Toshihiko; Cheng, Huijun; Poudel, Pramod; Okugawa, Yuki; Tashiro, Kosuke; Sakai, Kenji

    2018-03-15

    A unique autothermal thermophilic aerobic digestion (ATAD) process has been used to convert human excreta to liquid fertilizer in Japan. This study investigated the changes in physicochemical and bacterial community characteristics during the full-scale ATAD process operated for approximately 3 weeks in 2 different years. After initiating simultaneous aeration and mixing using an air-inducing circulator (aerator), the temperature autothermally increased rapidly in the first 1 to 2 days with exhaustive oxygen consumption, leading to a drastic decrease and gradual increase in oxidation-reduction potential in the first 2 days, reached >50°C in the middle 4 to 6 days, and remained steady in the final phase. Volatile fatty acids were rapidly consumed and diminished in the first 2 days, whereas the ammonia nitrogen concentration was relatively stable during the process, despite a gradual pH increase to 9.3. Principal-coordinate analysis of 16S rRNA gene amplicons using next-generation sequencing divided the bacterial community structures into distinct clusters corresponding to three phases, and they were similar in the final phase in both years despite different transitions in the middle phase. The predominant phyla (closest species, dominancy) in the initial, middle, and final phases were Proteobacteria ( Arcobacter trophiarum , 19 to 43%; Acinetobacter towneri , 6.3 to 30%), Bacteroidetes ( Moheibacter sediminis , 43 to 54%), and Firmicutes ( Thermaerobacter composti , 11 to 28%; Heliorestis baculata , 2.1 to 16%), respectively. Two predominant operational taxonomic units (OTUs) in the final phase showed very low similarities to the closest species, indicating that the process is unique compared with previously published ones. This unique process with three distinctive phases would be caused by the aerator with complete aeration. IMPORTANCE Although the autothermal thermophilic aerobic digestion (ATAD) process has several advantages, such as a high degradation

  13. Phase Transition Couplings in the Higgsed Monopole Model

    CERN Document Server

    Laperashvili, L V

    1999-01-01

    Using a one-loop approximation for the effective potential in the Higgs model of electrodynamics for a charged scalar field, we argue for the existence of a triple point for the renormalized (running) values of the selfinteraction beta-function as a typical quantity we estimate that the one-loop approximation is valid with accuracy of deviations not more than 30% in the region of the parameters: $0.2 \\stackrel{<}{\\sim}{\\large \\alpha, \\tilde{\\alpha}} corresponds to the above-mentioned region of $\\alpha, \\tilde \\alpha$. Under the point of view that the Higgs particle is a monopole with a magnetic charge g, the obtained electric fine structure constant turns out to be to the $\\alpha_{crit}^{lat}\\approx{0.20}$ which in a U(1) lattice gauge theory corresponds to the phase transition between the "Coulomb" and confinement phases. Such a result is very encouraging for the idea of an approximate "universality" (regularization independence) of gauge couplings at the phase transition point. This idea was suggested by...

  14. Modeled hydrologic metrics show links between hydrology and the functional composition of stream assemblages.

    Science.gov (United States)

    Patrick, Christopher J; Yuan, Lester L

    2017-07-01

    Flow alteration is widespread in streams, but current understanding of the effects of differences in flow characteristics on stream biological communities is incomplete. We tested hypotheses about the effect of variation in hydrology on stream communities by using generalized additive models to relate watershed information to the values of different flow metrics at gauged sites. Flow models accounted for 54-80% of the spatial variation in flow metric values among gauged sites. We then used these models to predict flow metrics in 842 ungauged stream sites in the mid-Atlantic United States that were sampled for fish, macroinvertebrates, and environmental covariates. Fish and macroinvertebrate assemblages were characterized in terms of a suite of metrics that quantified aspects of community composition, diversity, and functional traits that were expected to be associated with differences in flow characteristics. We related modeled flow metrics to biological metrics in a series of stressor-response models. Our analyses identified both drying and base flow instability as explaining 30-50% of the observed variability in fish and invertebrate community composition. Variations in community composition were related to variations in the prevalence of dispersal traits in invertebrates and trophic guilds in fish. The results demonstrate that we can use statistical models to predict hydrologic conditions at bioassessment sites, which, in turn, we can use to estimate relationships between flow conditions and biological characteristics. This analysis provides an approach to quantify the effects of spatial variation in flow metrics using readily available biomonitoring data. © 2017 by the Ecological Society of America.

  15. The speed of memory errors shows the influence of misleading information: Testing the diffusion model and discrete-state models.

    Science.gov (United States)

    Starns, Jeffrey J; Dubé, Chad; Frelinger, Matthew E

    2018-05-01

    In this report, we evaluate single-item and forced-choice recognition memory for the same items and use the resulting accuracy and reaction time data to test the predictions of discrete-state and continuous models. For the single-item trials, participants saw a word and indicated whether or not it was studied on a previous list. The forced-choice trials had one studied and one non-studied word that both appeared in the earlier single-item trials and both received the same response. Thus, forced-choice trials always had one word with a previous correct response and one with a previous error. Participants were asked to select the studied word regardless of whether they previously called both words "studied" or "not studied." The diffusion model predicts that forced-choice accuracy should be lower when the word with a previous error had a fast versus a slow single-item RT, because fast errors are associated with more compelling misleading memory retrieval. The two-high-threshold (2HT) model does not share this prediction because all errors are guesses, so error RT is not related to memory strength. A low-threshold version of the discrete state approach predicts an effect similar to the diffusion model, because errors are a mixture of responses based on misleading retrieval and guesses, and the guesses should tend to be slower. Results showed that faster single-trial errors were associated with lower forced-choice accuracy, as predicted by the diffusion and low-threshold models. Copyright © 2018 Elsevier Inc. All rights reserved.

  16. Elastic Model Transitions Using Quadratic Inequality Constrained Least Squares

    Science.gov (United States)

    Orr, Jeb S.

    2012-01-01

    A technique is presented for initializing multiple discrete finite element model (FEM) mode sets for certain types of flight dynamics formulations that rely on superposition of orthogonal modes for modeling the elastic response. Such approaches are commonly used for modeling launch vehicle dynamics, and challenges arise due to the rapidly time-varying nature of the rigid-body and elastic characteristics. By way of an energy argument, a quadratic inequality constrained least squares (LSQI) algorithm is employed to e ect a smooth transition from one set of FEM eigenvectors to another with no requirement that the models be of similar dimension or that the eigenvectors be correlated in any particular way. The physically unrealistic and controversial method of eigenvector interpolation is completely avoided, and the discrete solution approximates that of the continuously varying system. The real-time computational burden is shown to be negligible due to convenient features of the solution method. Simulation results are presented, and applications to staging and other discontinuous mass changes are discussed

  17. Phases and phase transitions in the algebraic microscopic shell model

    Directory of Open Access Journals (Sweden)

    Georgieva A. I.

    2016-01-01

    Full Text Available We explore the dynamical symmetries of the shell model number conserving algebra, which define three types of pairing and quadrupole phases, with the aim to obtain the prevailing phase or phase transition for the real nuclear systems in a single shell. This is achieved by establishing a correspondence between each of the pairing bases with the Elliott’s SU(3 basis that describes collective rotation of nuclear systems. This allows for a complete classification of the basis states of different number of particles in all the limiting cases. The probability distribution of the SU(3 basis states within theirs corresponding pairing states is also obtained. The relative strengths of dynamically symmetric quadrupole-quadrupole interaction in respect to the isoscalar, isovector and total pairing interactions define a control parameter, which estimates the importance of each term of the Hamiltonian in the correct reproduction of the experimental data for the considered nuclei.

  18. Thermodynamically consistent mesoscopic model of the ferro/paramagnetic transition

    Czech Academy of Sciences Publication Activity Database

    Benešová, Barbora; Kružík, Martin; Roubíček, Tomáš

    2013-01-01

    Roč. 64, Č. 1 (2013), s. 1-28 ISSN 0044-2275 R&D Projects: GA AV ČR IAA100750802; GA ČR GA106/09/1573; GA ČR GAP201/10/0357 Grant - others:GA ČR(CZ) GA106/08/1397; GA MŠk(CZ) LC06052 Program:GA; LC Institutional support: RVO:67985556 Keywords : ferro-para-magnetism * evolution * thermodynamics Subject RIV: BA - General Mathematics; BA - General Mathematics (UT-L) Impact factor: 1.214, year: 2013 http://library.utia.cas.cz/separaty/2012/MTR/kruzik-thermodynamically consistent mesoscopic model of the ferro-paramagnetic transition.pdf

  19. Agent Based Model in SAS Environment for Rail Transit System Alignment Determination

    Directory of Open Access Journals (Sweden)

    I Made Indradjaja Brunner

    2018-04-01

    Full Text Available Transit system had been proposed for the urban area of Honolulu. One consideration to be determined is the alignment of the transit system. Decision to set the transit alignment will have influences on which areas will be served, who will be benefiting, as well as who will be impacted. Inputs for the decision usually conducted through public meetings, where community members are shown numbers of maps with pre-set routes. That approach could lead to a rather subjective decision by the community members. This paper attempts to discuss the utilization of grid map in determining the best alignment for rail transit system in Honolulu, Hawaii. It tries to use a more objective approach using various data derived from thematic maps. Overlaid maps are aggregated into a uniform 0.1-square mile vector based grid map system in GIS environment. The large dataset in the GIS environment is analyzed and manipulated using SAS software. The SAS procedure is applied to select the location of the alignment using a rational and deterministic approach. Grid cells that are superior compared to the others are selected based on several predefined criteria. Location of the dominant cells indicates possible transit alignment. The SAS procedure is designed to allow a transient vector called the GUIDE (Grid Unit with Intelligent Directional Expertise agent to analyze several cells at its vicinity and to move towards a cell with the highest value. Each time the agent landed on a cell, it left a mark. The chain of those marks shows location for the transit alignment. This study shows that the combination of ArcGIS and SAS allows a robust analysis of spatial data and manipulation of its datasets, which can be used to run a simulation mimicking the Agent-Based Modelling. This study also opens up further study possibilities by increasing number of factors analyzed by the agent, as well as creating a composite value of multi-factors.

  20. The putative liquid-liquid transition is a liquid-solid transition in atomistic models of water. II

    Science.gov (United States)

    Limmer, David T.; Chandler, David

    2013-06-01

    This paper extends our earlier studies of free energy functions of density and crystalline order parameters for models of supercooled water, which allows us to examine the possibility of two distinct metastable liquid phases [D. T. Limmer and D. Chandler, J. Chem. Phys. 135, 134503 (2011), 10.1063/1.3643333 and preprint arXiv:1107.0337 (2011)]. Low-temperature reversible free energy surfaces of several different atomistic models are computed: mW water, TIP4P/2005 water, Stillinger-Weber silicon, and ST2 water, the last of these comparing three different treatments of long-ranged forces. In each case, we show that there is one stable or metastable liquid phase, and there is an ice-like crystal phase. The time scales for crystallization in these systems far exceed those of structural relaxation in the supercooled metastable liquid. We show how this wide separation in time scales produces an illusion of a low-temperature liquid-liquid transition. The phenomenon suggesting metastability of two distinct liquid phases is actually coarsening of the ordered ice-like phase, which we elucidate using both analytical theory and computer simulation. For the latter, we describe robust methods for computing reversible free energy surfaces, and we consider effects of electrostatic boundary conditions. We show that sensible alterations of models and boundary conditions produce no qualitative changes in low-temperature phase behaviors of these systems, only marginal changes in equations of state. On the other hand, we show that altering sampling time scales can produce large and qualitative non-equilibrium effects. Recent reports of evidence of a liquid-liquid critical point in computer simulations of supercooled water are considered in this light.

  1. The putative liquid-liquid transition is a liquid-solid transition in atomistic models of water. II

    International Nuclear Information System (INIS)

    Limmer, David T.; Chandler, David

    2013-01-01

    This paper extends our earlier studies of free energy functions of density and crystalline order parameters for models of supercooled water, which allows us to examine the possibility of two distinct metastable liquid phases [D. T. Limmer and D. Chandler, J. Chem. Phys.135, 134503 (2011) and preprint http://arxiv.org/abs/arXiv:1107.0337 (2011)]. Low-temperature reversible free energy surfaces of several different atomistic models are computed: mW water, TIP4P/2005 water, Stillinger-Weber silicon, and ST2 water, the last of these comparing three different treatments of long-ranged forces. In each case, we show that there is one stable or metastable liquid phase, and there is an ice-like crystal phase. The time scales for crystallization in these systems far exceed those of structural relaxation in the supercooled metastable liquid. We show how this wide separation in time scales produces an illusion of a low-temperature liquid-liquid transition. The phenomenon suggesting metastability of two distinct liquid phases is actually coarsening of the ordered ice-like phase, which we elucidate using both analytical theory and computer simulation. For the latter, we describe robust methods for computing reversible free energy surfaces, and we consider effects of electrostatic boundary conditions. We show that sensible alterations of models and boundary conditions produce no qualitative changes in low-temperature phase behaviors of these systems, only marginal changes in equations of state. On the other hand, we show that altering sampling time scales can produce large and qualitative non-equilibrium effects. Recent reports of evidence of a liquid-liquid critical point in computer simulations of supercooled water are considered in this light

  2. The putative liquid-liquid transition is a liquid-solid transition in atomistic models of water. II

    Energy Technology Data Exchange (ETDEWEB)

    Limmer, David T.; Chandler, David, E-mail: chandler@berkeley.edu [Department of Chemistry, University of California, Berkeley, California 94720 (United States)

    2013-06-07

    This paper extends our earlier studies of free energy functions of density and crystalline order parameters for models of supercooled water, which allows us to examine the possibility of two distinct metastable liquid phases [D. T. Limmer and D. Chandler, J. Chem. Phys.135, 134503 (2011) and preprint http://arxiv.org/abs/arXiv:1107.0337 (2011)]. Low-temperature reversible free energy surfaces of several different atomistic models are computed: mW water, TIP4P/2005 water, Stillinger-Weber silicon, and ST2 water, the last of these comparing three different treatments of long-ranged forces. In each case, we show that there is one stable or metastable liquid phase, and there is an ice-like crystal phase. The time scales for crystallization in these systems far exceed those of structural relaxation in the supercooled metastable liquid. We show how this wide separation in time scales produces an illusion of a low-temperature liquid-liquid transition. The phenomenon suggesting metastability of two distinct liquid phases is actually coarsening of the ordered ice-like phase, which we elucidate using both analytical theory and computer simulation. For the latter, we describe robust methods for computing reversible free energy surfaces, and we consider effects of electrostatic boundary conditions. We show that sensible alterations of models and boundary conditions produce no qualitative changes in low-temperature phase behaviors of these systems, only marginal changes in equations of state. On the other hand, we show that altering sampling time scales can produce large and qualitative non-equilibrium effects. Recent reports of evidence of a liquid-liquid critical point in computer simulations of supercooled water are considered in this light.

  3. The putative liquid-liquid transition is a liquid-solid transition in atomistic models of water. II.

    Science.gov (United States)

    Limmer, David T; Chandler, David

    2013-06-07

    This paper extends our earlier studies of free energy functions of density and crystalline order parameters for models of supercooled water, which allows us to examine the possibility of two distinct metastable liquid phases [D. T. Limmer and D. Chandler, J. Chem. Phys. 135, 134503 (2011) and preprint arXiv:1107.0337 (2011)]. Low-temperature reversible free energy surfaces of several different atomistic models are computed: mW water, TIP4P/2005 water, Stillinger-Weber silicon, and ST2 water, the last of these comparing three different treatments of long-ranged forces. In each case, we show that there is one stable or metastable liquid phase, and there is an ice-like crystal phase. The time scales for crystallization in these systems far exceed those of structural relaxation in the supercooled metastable liquid. We show how this wide separation in time scales produces an illusion of a low-temperature liquid-liquid transition. The phenomenon suggesting metastability of two distinct liquid phases is actually coarsening of the ordered ice-like phase, which we elucidate using both analytical theory and computer simulation. For the latter, we describe robust methods for computing reversible free energy surfaces, and we consider effects of electrostatic boundary conditions. We show that sensible alterations of models and boundary conditions produce no qualitative changes in low-temperature phase behaviors of these systems, only marginal changes in equations of state. On the other hand, we show that altering sampling time scales can produce large and qualitative non-equilibrium effects. Recent reports of evidence of a liquid-liquid critical point in computer simulations of supercooled water are considered in this light.

  4. A Murine Model of Candida glabrata Vaginitis Shows No Evidence of an Inflammatory Immunopathogenic Response.

    Directory of Open Access Journals (Sweden)

    Evelyn E Nash

    Full Text Available Candida glabrata is the second most common organism isolated from women with vulvovaginal candidiasis (VVC, particularly in women with uncontrolled diabetes mellitus. However, mechanisms involved in the pathogenesis of C. glabrata-associated VVC are unknown and have not been studied at any depth in animal models. The objective of this study was to evaluate host responses to infection following efforts to optimize a murine model of C. glabrata VVC. For this, various designs were evaluated for consistent experimental vaginal colonization (i.e., type 1 and type 2 diabetic mice, exogenous estrogen, varying inocula, and co-infection with C. albicans. Upon model optimization, vaginal fungal burden and polymorphonuclear neutrophil (PMN recruitment were assessed longitudinally over 21 days post-inoculation, together with vaginal concentrations of IL-1β, S100A8 alarmin, lactate dehydrogenase (LDH, and in vivo biofilm formation. Consistent and sustained vaginal colonization with C. glabrata was achieved in estrogenized streptozotocin-induced type 1 diabetic mice. Vaginal PMN infiltration was consistently low, with IL-1β, S100A8, and LDH concentrations similar to uninoculated mice. Biofilm formation was not detected in vivo, and co-infection with C. albicans did not induce synergistic immunopathogenic effects. This data suggests that experimental vaginal colonization of C. glabrata is not associated with an inflammatory immunopathogenic response or biofilm formation.

  5. A Murine Model of Candida glabrata Vaginitis Shows No Evidence of an Inflammatory Immunopathogenic Response.

    Science.gov (United States)

    Nash, Evelyn E; Peters, Brian M; Lilly, Elizabeth A; Noverr, Mairi C; Fidel, Paul L

    2016-01-01

    Candida glabrata is the second most common organism isolated from women with vulvovaginal candidiasis (VVC), particularly in women with uncontrolled diabetes mellitus. However, mechanisms involved in the pathogenesis of C. glabrata-associated VVC are unknown and have not been studied at any depth in animal models. The objective of this study was to evaluate host responses to infection following efforts to optimize a murine model of C. glabrata VVC. For this, various designs were evaluated for consistent experimental vaginal colonization (i.e., type 1 and type 2 diabetic mice, exogenous estrogen, varying inocula, and co-infection with C. albicans). Upon model optimization, vaginal fungal burden and polymorphonuclear neutrophil (PMN) recruitment were assessed longitudinally over 21 days post-inoculation, together with vaginal concentrations of IL-1β, S100A8 alarmin, lactate dehydrogenase (LDH), and in vivo biofilm formation. Consistent and sustained vaginal colonization with C. glabrata was achieved in estrogenized streptozotocin-induced type 1 diabetic mice. Vaginal PMN infiltration was consistently low, with IL-1β, S100A8, and LDH concentrations similar to uninoculated mice. Biofilm formation was not detected in vivo, and co-infection with C. albicans did not induce synergistic immunopathogenic effects. This data suggests that experimental vaginal colonization of C. glabrata is not associated with an inflammatory immunopathogenic response or biofilm formation.

  6. Modelling systematics of ground-based transit photometry I. Implications on transit timing variations

    DEFF Research Database (Denmark)

    von Essen, C.; Cellone, S.; Mallonn, M.

    2016-01-01

    introduced a perturbation in the mid-transit times of the hot Jupiter, caused by an Earth-sized planet in a 3:2 mean motion resonance. Analyzing the synthetic light curves produced after certain epochs, we attempt to recover the synthetically added TTV signal by means of usual primary transit fitting...... we attempt to reproduce, by means of physically and empirically motivated relationships, the effects caused by the Earth's atmosphere and the instrumental setup on the synthetic light curves. Therefore, the synthetic data present different photometric quality and transit coverage. In addition, we...

  7. Global thermal niche models of two European grasses show high invasion risks in Antarctica.

    Science.gov (United States)

    Pertierra, Luis R; Aragón, Pedro; Shaw, Justine D; Bergstrom, Dana M; Terauds, Aleks; Olalla-Tárraga, Miguel Ángel

    2017-07-01

    The two non-native grasses that have established long-term populations in Antarctica (Poa pratensis and Poa annua) were studied from a global multidimensional thermal niche perspective to address the biological invasion risk to Antarctica. These two species exhibit contrasting introduction histories and reproductive strategies and represent two referential case studies of biological invasion processes. We used a multistep process with a range of species distribution modelling techniques (ecological niche factor analysis, multidimensional envelopes, distance/entropy algorithms) together with a suite of thermoclimatic variables, to characterize the potential ranges of these species. Their native bioclimatic thermal envelopes in Eurasia, together with the different naturalized populations across continents, were compared next. The potential niche of P. pratensis was wider at the cold extremes; however, P. annua life history attributes enable it to be a more successful colonizer. We observe that particularly cold summers are a key aspect of the unique Antarctic environment. In consequence, ruderals such as P. annua can quickly expand under such harsh conditions, whereas the more stress-tolerant P. pratensis endures and persist through steady growth. Compiled data on human pressure at the Antarctic Peninsula allowed us to provide site-specific biosecurity risk indicators. We conclude that several areas across the region are vulnerable to invasions from these and other similar species. This can only be visualized in species distribution models (SDMs) when accounting for founder populations that reveal nonanalogous conditions. Results reinforce the need for strict management practices to minimize introductions. Furthermore, our novel set of temperature-based bioclimatic GIS layers for ice-free terrestrial Antarctica provide a mechanism for regional and global species distribution models to be built for other potentially invasive species. © 2017 John Wiley & Sons Ltd.

  8. ASIC1a Deficient Mice Show Unaltered Neurodegeneration in the Subacute MPTP Model of Parkinson Disease.

    Directory of Open Access Journals (Sweden)

    Daniel Komnig

    Full Text Available Inflammation contributes to the death of dopaminergic neurons in Parkinson disease and can be accompanied by acidification of extracellular pH, which may activate acid-sensing ion channels (ASIC. Accordingly, amiloride, a non-selective inhibitor of ASIC, was protective in an acute 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP mouse model of Parkinson disease. To complement these findings we determined MPTP toxicity in mice deficient for ASIC1a, the most common ASIC isoform in neurons. MPTP was applied i.p. in doses of 30 mg per kg on five consecutive days. We determined the number of dopaminergic neurons in the substantia nigra, assayed by stereological counting 14 days after the last MPTP injection, the number of Nissl positive neurons in the substantia nigra, and the concentration of catecholamines in the striatum. There was no difference between ASIC1a-deficient mice and wildtype controls. We are therefore not able to confirm that ASIC1a are involved in MPTP toxicity. The difference might relate to the subacute MPTP model we used, which more closely resembles the pathogenesis of Parkinson disease, or to further targets of amiloride.

  9. Progesterone treatment shows benefit in a pediatric model of moderate to severe bilateral brain injury.

    Directory of Open Access Journals (Sweden)

    Rastafa I Geddes

    Full Text Available Controlled cortical impact (CCI models in adult and aged Sprague-Dawley (SD rats have been used extensively to study medial prefrontal cortex (mPFC injury and the effects of post-injury progesterone treatment, but the hormone's effects after traumatic brain injury (TBI in juvenile animals have not been determined. In the present proof-of-concept study we investigated whether progesterone had neuroprotective effects in a pediatric model of moderate to severe bilateral brain injury.Twenty-eight-day old (PND 28 male Sprague Dawley rats received sham (n = 24 or CCI (n = 47 injury and were given progesterone (4, 8, or 16 mg/kg per 100 g body weight or vehicle injections on post-injury days (PID 1-7, subjected to behavioral testing from PID 9-27, and analyzed for lesion size at PID 28.The 8 and 16 mg/kg doses of progesterone were observed to be most beneficial in reducing the effect of CCI on lesion size and behavior in PND 28 male SD rats.Our findings suggest that a midline CCI injury to the frontal cortex will reliably produce a moderate TBI comparable to what is seen in the adult male rat and that progesterone can ameliorate the injury-induced deficits.

  10. Reading Ability Development from Kindergarten to Junior Secondary: Latent Transition Analyses with Growth Mixture Modeling

    Directory of Open Access Journals (Sweden)

    Yuan Liu

    2016-10-01

    Full Text Available The present study examined the reading ability development of children in the large scale Early Childhood Longitudinal Study (Kindergarten Class of 1998-99 data; Tourangeau, Nord, Lê, Pollack, & Atkins-Burnett, 2006 under the dynamic systems. To depict children's growth pattern, we extended the measurement part of latent transition analysis to the growth mixture model and found that the new model fitted the data well. Results also revealed that most of the children stayed in the same ability group with few cross-level changes in their classes. After adding the environmental factors as predictors, analyses showed that children receiving higher teachers' ratings, with higher socioeconomic status, and of above average poverty status, would have higher probability to transit into the higher ability group.

  11. Chiral phase transition in the soft-wall model of AdS/QCD

    International Nuclear Information System (INIS)

    Chelabi, Kaddour; Fang, Zhen; Huang, Mei; Li, Danning; Wu, Yue-Liang

    2016-01-01

    We investigate the chiral phase transition in the soft-wall model of AdS/QCD at zero chemical potential for two-flavor and three-flavor cases, respectively. We show that there is no spontaneous chiral symmetry breaking in the original soft-wall model. After detailed analysis, we find that in order to realize chiral symmetry breaking and restoration, both profiles for the scalar potential and the dilaton field are essential. The scalar potential determines the possible solution structure of the chiral condensate, except the mass term, it takes another quartic term for the two-flavor case, and for the three-flavor case, one has to take into account an extra cubic term due to the t’Hooft determinant interaction. The profile of the dilaton field reflects the gluodynamics, which is negative at a certain ultraviolet scale and approaches positive quadratic behavior at far infrared region. With this set-up, the spontaneous chiral symmetry breaking in the vacuum and its restoration at finite temperature can be realized perfectly. In the two-flavor case, it gives a second order chiral phase transition in the chiral limit, while the transition turns to be a crossover for any finite quark mass. In the case of three-flavor, the phase transition becomes a first order one in the chiral limit, while above sufficient large quark mass it turns to be a crossover again. This scenario agrees exactly with the current understanding on chiral phase transition from lattice QCD and other effective model studies.

  12. A zebrafish model of glucocorticoid resistance shows serotonergic modulation of the stress response

    Directory of Open Access Journals (Sweden)

    Brian eGriffiths

    2012-10-01

    Full Text Available One function of glucocorticoids is to restore homeostasis after an acute stress response by providing negative feedback to stress circuits in the brain. Loss of this negative feedback leads to elevated physiological stress and may contribute to depression, anxiety and post-traumatic stress disorder. We investigated the early, developmental effects of glucocorticoid signaling deficits on stress physiology and related behaviors using a mutant zebrafish, grs357, with non-functional glucocorticoid receptors. These mutants are morphologically inconspicuous and adult-viable. A previous study of adult grs357 mutants showed loss of glucocorticoid-mediated negative feedback and elevated physiological and behavioral stress markers. Already at five days post-fertilization, mutant larvae had elevated whole body cortisol, increased expression of pro-opiomelanocortin (POMC, the precursor of adrenocorticotropic hormone (ACTH, and failed to show normal suppression of stress markers after dexamethasone treatment. Mutant larvae had larger auditory-evoked startle responses compared to wildtype sibling controls (grwt, despite having lower spontaneous activity levels. Fluoxetine (Prozac treatment in mutants decreased startle responding and increased spontaneous activity, making them behaviorally similar to wildtype. This result mirrors known effects of selective serotonin reuptake inhibitors (SSRIs in modifying glucocorticoid signaling and alleviating stress disorders in human patients. Our results suggest that larval grs357 zebrafish can be used to study behavioral, physiological and molecular aspects of stress disorders. Most importantly, interactions between glucocorticoid and serotonin signaling appear to be highly conserved among vertebrates, suggesting deep homologies at the neural circuit level and opening up new avenues for research into psychiatric conditions.

  13. A Bayesian approach shows no correlation between transit-depth and stellar metallicity for confirmed and candidates Kepler gas giants planets

    International Nuclear Information System (INIS)

    Nehmé, C; Sarkis, P

    2017-01-01

    Previous study to investigate the correlation between the transit depth and the stellar metallicity of Kepler’s (Q1-Q12) gas giant planets (radii of 5-20R ⊙ ) has led to a weakly significant negative correlation. We use the cumulative catalog of planets detected by the NASA Kepler mission Q1-Q17 catalog, as of April 2015, to perform a solid statistical analysis of this correlation. In the present work, we revise this correlation, within a Bayesian framework, for two large samples: sample A confirmed planets and sample B (confirmed + candidates). We expand a hierarchical method to account for false positives in the studied samples. Our statistical analysis reveals no correlation between the transit depth and the stellar metallicity. This has implications for planet formation theory and interior structure of giant planets. (paper)

  14. Transition point prediction in a multicomponent lattice Boltzmann model: Forcing scheme dependencies

    Science.gov (United States)

    Küllmer, Knut; Krämer, Andreas; Joppich, Wolfgang; Reith, Dirk; Foysi, Holger

    2018-02-01

    Pseudopotential-based lattice Boltzmann models are widely used for numerical simulations of multiphase flows. In the special case of multicomponent systems, the overall dynamics are characterized by the conservation equations for mass and momentum as well as an additional advection diffusion equation for each component. In the present study, we investigate how the latter is affected by the forcing scheme, i.e., by the way the underlying interparticle forces are incorporated into the lattice Boltzmann equation. By comparing two model formulations for pure multicomponent systems, namely the standard model [X. Shan and G. D. Doolen, J. Stat. Phys. 81, 379 (1995), 10.1007/BF02179985] and the explicit forcing model [M. L. Porter et al., Phys. Rev. E 86, 036701 (2012), 10.1103/PhysRevE.86.036701], we reveal that the diffusion characteristics drastically change. We derive a generalized, potential function-dependent expression for the transition point from the miscible to the immiscible regime and demonstrate that it is shifted between the models. The theoretical predictions for both the transition point and the mutual diffusion coefficient are validated in simulations of static droplets and decaying sinusoidal concentration waves, respectively. To show the universality of our analysis, two common and one new potential function are investigated. As the shift in the diffusion characteristics directly affects the interfacial properties, we additionally show that phenomena related to the interfacial tension such as the modeling of contact angles are influenced as well.

  15. Transition point prediction in a multicomponent lattice Boltzmann model: Forcing scheme dependencies.

    Science.gov (United States)

    Küllmer, Knut; Krämer, Andreas; Joppich, Wolfgang; Reith, Dirk; Foysi, Holger

    2018-02-01

    Pseudopotential-based lattice Boltzmann models are widely used for numerical simulations of multiphase flows. In the special case of multicomponent systems, the overall dynamics are characterized by the conservation equations for mass and momentum as well as an additional advection diffusion equation for each component. In the present study, we investigate how the latter is affected by the forcing scheme, i.e., by the way the underlying interparticle forces are incorporated into the lattice Boltzmann equation. By comparing two model formulations for pure multicomponent systems, namely the standard model [X. Shan and G. D. Doolen, J. Stat. Phys. 81, 379 (1995)JSTPBS0022-471510.1007/BF02179985] and the explicit forcing model [M. L. Porter et al., Phys. Rev. E 86, 036701 (2012)PLEEE81539-375510.1103/PhysRevE.86.036701], we reveal that the diffusion characteristics drastically change. We derive a generalized, potential function-dependent expression for the transition point from the miscible to the immiscible regime and demonstrate that it is shifted between the models. The theoretical predictions for both the transition point and the mutual diffusion coefficient are validated in simulations of static droplets and decaying sinusoidal concentration waves, respectively. To show the universality of our analysis, two common and one new potential function are investigated. As the shift in the diffusion characteristics directly affects the interfacial properties, we additionally show that phenomena related to the interfacial tension such as the modeling of contact angles are influenced as well.

  16. Metabolic remodeling agents show beneficial effects in the dystrophin-deficient mdx mouse model

    Directory of Open Access Journals (Sweden)

    Jahnke Vanessa E

    2012-08-01

    Full Text Available Abstract Background Duchenne muscular dystrophy is a genetic disease involving a severe muscle wasting that is characterized by cycles of muscle degeneration/regeneration and culminates in early death in affected boys. Mitochondria are presumed to be involved in the regulation of myoblast proliferation/differentiation; enhancing mitochondrial activity with exercise mimetics (AMPK and PPAR-delta agonists increases muscle function and inhibits muscle wasting in healthy mice. We therefore asked whether metabolic remodeling agents that increase mitochondrial activity would improve muscle function in mdx mice. Methods Twelve-week-old mdx mice were treated with two different metabolic remodeling agents (GW501516 and AICAR, separately or in combination, for 4 weeks. Extensive systematic behavioral, functional, histological, biochemical, and molecular tests were conducted to assess the drug(s' effects. Results We found a gain in body and muscle weight in all treated mice. Histologic examination showed a decrease in muscle inflammation and in the number of fibers with central nuclei and an increase in fibers with peripheral nuclei, with significantly fewer activated satellite cells and regenerating fibers. Together with an inhibition of FoXO1 signaling, these results indicated that the treatments reduced ongoing muscle damage. Conclusions The three treatments produced significant improvements in disease phenotype, including an increase in overall behavioral activity and significant gains in forelimb and hind limb strength. Our findings suggest that triggering mitochondrial activity with exercise mimetics improves muscle function in dystrophin-deficient mdx mice.

  17. Male Wistar rats show individual differences in an animal model of conformity.

    Science.gov (United States)

    Jolles, Jolle W; de Visser, Leonie; van den Bos, Ruud

    2011-09-01

    Conformity refers to the act of changing one's behaviour to match that of others. Recent studies in humans have shown that individual differences exist in conformity and that these differences are related to differences in neuronal activity. To understand the neuronal mechanisms in more detail, animal tests to assess conformity are needed. Here, we used a test of conformity in rats that has previously been evaluated in female, but not male, rats and assessed the nature of individual differences in conformity. Male Wistar rats were given the opportunity to learn that two diets differed in palatability. They were subsequently exposed to a demonstrator that had consumed the less palatable food. Thereafter, they were exposed to the same diets again. Just like female rats, male rats decreased their preference for the more palatable food after interaction with demonstrator rats that had eaten the less palatable food. Individual differences existed for this shift, which were only weakly related to an interaction between their own initial preference and the amount consumed by the demonstrator rat. The data show that this conformity test in rats is a promising tool to study the neurobiology of conformity.

  18. Modeling the transition to a new economy: lessons from two technological revolutions

    OpenAIRE

    Andrew Atkeson; Patrick J. Kehoe

    2006-01-01

    Many view the period after the Second Industrial Revolution as a paradigmatic example of a transition to a new economy following a technological revolution and conjecture that this historical experience is useful for understanding other transitions, including that after the Information Technology Revolution. We build a model of diffusion and growth to study transitions. We quantify the learning process in our model using data on the life cycle of U.S. manufacturing plants. This model accounts...

  19. The generalized model of polypeptide chain describing the helix-coil transition in biopolymers

    International Nuclear Information System (INIS)

    Mamasakhlisov, E.S.; Badasyan, A.V.; Tsarukyan, A.V.; Grigoryan, A.V.; Morozov, V.F.

    2005-07-01

    In this paper we summarize some results of our theoretical investigations of helix-coil transition both in single-strand (polypeptides) and two-strand (polynucleotides) macromolecules. The Hamiltonian of the Generalized Model of Polypeptide Chain (GMPC) is introduced to describe the system in which the conformations are correlated over some dimensional range Δ (it equals 3 for polypeptide, because one H-bond fixes three pairs of rotation, for double strand DNA it equals to one chain rigidity because of impossibility of loop formation on the scale less than Δ). The Hamiltonian does not contain any parameter designed especially for helix-coil transition and uses pure molecular microscopic parameters (the energy of hydrogen bond formation, reduced partition function of repeated unit, the number of repeated units fixed by one hydrogen bond, the energies of interaction between the repeated units and the solvent molecules). To calculate averages we evaluate the partition function using the transfer-matrix approach. The GMPC allowed to describe the influence of a number of factors, affecting the transition, basing on a unified microscopic approach. Thus we obtained, that solvents change transition temperature and interval in different ways, depending on type of solvent and on energy of solvent- macromolecule interaction; stacking on the background of H-bonding increases stability and decreases cooperativity of melting. For heterogeneous DNA we could analytically derive well known formulae for transition temperature and interval. In the framework of GMPC we calculate and show the difference of two order parameters of helix-coil transition - the helicity degree, and the average fraction of repeated units in helical conformation. Given article has the aim to review the results obtained during twenty years in the context of GMPC. (author)

  20. MHD modeling of coronal loops: the transition region throat

    Science.gov (United States)

    Guarrasi, M.; Reale, F.; Orlando, S.; Mignone, A.; Klimchuk, J. A.

    2014-04-01

    Context. The expansion of coronal loops in the transition region may considerably influence the diagnostics of the plasma emission measure. The cross-sectional area of the loops is expected to depend on the temperature and pressure, and might be sensitive to the heating rate. Aims: The approach here is to study the area response to slow changes in the coronal heating rate, and check the current interpretation in terms of steady heating models. Methods: We study the area response with a time-dependent 2D magnetohydrodynamic (MHD) loop model, including the description of the expanding magnetic field, coronal heating and losses by thermal conduction, and radiation from optically thin plasma. We run a simulation for a loop 50 Mm long and quasi-statically heated to about 4 MK. Results: We find that the area can change substantially with the quasi-steady heating rate, e.g., by ~40% at 0.5 MK as the loop temperature varies between 1 MK and 4 MK, and, therefore, affects the interpretation of the differential emission measure vs. temperature (DEM(T)) curves. The movie associated to Fig. 4 is available in electronic form at http://www.aanda.org

  1. 3D CFD computations of trasitional flows using DES and a correlation based transition model

    DEFF Research Database (Denmark)

    Sørensen, Niels N.; Bechmann, Andreas; Zahle, Frederik

    2011-01-01

    a circular cylinder from Re = 10 to 1 × 106 reproducing the cylinder drag crisis. The computations show good quantitative and qualitative agreement with the behaviour seen in experiments. This case shows that the methodology performs smoothly from the laminar cases at low Re to the turbulent cases at high Re......The present article describes the application of the correlation based transition model of Menter et al. in combination with the Detached Eddy Simulation (DES) methodology to two cases with large degree of flow separation typically considered difficult to compute. Firstly, the flow is computed over...

  2. Modeling serotonin uptake in the lung shows endothelial transporters dominate over cleft permeation

    Science.gov (United States)

    Bassingthwaighte, James B.

    2013-01-01

    A four-region (capillary plasma, endothelium, interstitial fluid, cell) multipath model was configured to describe the kinetics of blood-tissue exchange for small solutes in the lung, accounting for regional flow heterogeneity, permeation of cell membranes and through interendothelial clefts, and intracellular reactions. Serotonin uptake data from the Multiple indicator dilution “bolus sweep” experiments of Rickaby and coworkers (Rickaby DA, Linehan JH, Bronikowski TA, Dawson CA. J Appl Physiol 51: 405–414, 1981; Rickaby DA, Dawson CA, and Linehan JH. J Appl Physiol 56: 1170–1177, 1984) and Malcorps et al. (Malcorps CM, Dawson CA, Linehan JH, Bronikowski TA, Rickaby DA, Herman AG, Will JA. J Appl Physiol 57: 720–730, 1984) were analyzed to distinguish facilitated transport into the endothelial cells (EC) and the inhibition of tracer transport by nontracer serotonin in the bolus of injectate from the free uninhibited permeation through the clefts into the interstitial fluid space. The permeability-surface area products (PS) for serotonin via the inter-EC clefts were ∼0.3 ml·g−1·min−1, low compared with the transporter-mediated maximum PS of 13 ml·g−1·min−1 (with Km = ∼0.3 μM and Vmax = ∼4 nmol·g−1·min−1). The estimates of serotonin PS values for EC transporters from their multiple data sets were similar and were influenced only modestly by accounting for the cleft permeability in parallel. The cleft PS estimates in these Ringer-perfused lungs are less than half of those for anesthetized dogs (Yipintsoi T. Circ Res 39: 523–531, 1976) with normal hematocrits, but are compatible with passive noncarrier-mediated transport observed later in the same laboratory (Dawson CA, Linehan JH, Rickaby DA, Bronikowski TA. Ann Biomed Eng 15: 217–227, 1987; Peeters FAM, Bronikowski TA, Dawson CA, Linehan JH, Bult H, Herman AG. J Appl Physiol 66: 2328–2337, 1989) The identification and quantitation of the cleft pathway conductance from these

  3. Phase transition approach to bursting in neuronal cultures: quorum percolation models

    Science.gov (United States)

    Monceau, P.; Renault, R.; Métens, S.; Bottani, S.; Fardet, T.

    2017-10-01

    The Quorum Percolation model has been designed in the context of neurobiology to describe bursts of activity occurring in neuronal cultures from the point of view of statistical physics rather than from a dynamical synchronization approach. It is based upon information propagation on a directed graph with a threshold activation rule; this leads to a phase diagram which exhibits a giant percolation cluster below some critical value mC of the excitability. We describe the main characteristics of the original model and derive extensions according to additional relevant biological features. Firstly, we investigate the effects of an excitability variability on the phase diagram and show that the percolation transition can be destroyed by a sufficient amount of such a disorder; we stress the weakly averaging character of the order parameter and show that connectivity and excitability can be seen as two overlapping aspects of the same reality. Secondly, we elaborate a discrete time stochastic model taking into account the decay originating from ionic leakage through the membrane of neurons and synaptic depression; we give evidence that the decay softens and shifts the transition, and conjecture than decay destroys the transition in the thermodynamical limit. We were able to develop mean-field theories associated with each of the two effects; we discuss the framework of their agreement with Monte Carlo simulations. It turns out that the the critical point mC from which information on the connectivity of the network can be inferred is affected by each of these additional effects. Lastly, we show how dynamical simulations of bursts with an adaptive exponential integrateand- fire model can be interpreted in terms of Quorum Percolation. Moreover, the usefulness of the percolation model including the set of sophistication we investigated can be extended to many scientific fields involving information propagation, such as the spread of rumors in sociology, ethology, ecology.

  4. Optimisation of timetable-based, stochastic transit assignment models based on MSA

    DEFF Research Database (Denmark)

    Nielsen, Otto Anker; Frederiksen, Rasmus Dyhr

    2006-01-01

    (CRM), such a large-scale transit assignment model was developed and estimated. The Stochastic User Equilibrium problem was solved by the Method of Successive Averages (MSA). However, the model suffered from very large calculation times. The paper focuses on how to optimise transit assignment models...

  5. Estimation and asymptotic theory for transition probabilities in Markov Renewal Multi–state models

    NARCIS (Netherlands)

    Spitoni, C.; Verduijn, M.; Putter, H.

    2012-01-01

    In this paper we discuss estimation of transition probabilities for semi–Markov multi–state models. Non–parametric and semi–parametric estimators of the transition probabilities for a large class of models (forward going models) are proposed. Large sample theory is derived using the functional

  6. Direct modeling of regression effects for transition probabilities in the progressive illness-death model

    DEFF Research Database (Denmark)

    Azarang, Leyla; Scheike, Thomas; de Uña-Álvarez, Jacobo

    2017-01-01

    In this work, we present direct regression analysis for the transition probabilities in the possibly non-Markov progressive illness–death model. The method is based on binomial regression, where the response is the indicator of the occupancy for the given state along time. Randomly weighted score...

  7. Interpretation of toughness tests performed on A533, grade B steel in the transition regime. Modelling and numerical analysis

    International Nuclear Information System (INIS)

    Eripret, C.

    1994-01-01

    Modelling the fracture behaviour of pressure vessel steels is of major importance for related structural integrity assessments. It is essential to understand how the micromechanisms control the transition between ductile and brittle fracture for predicting geometry effects on transition temperature. To meet this goal, a model has been developed at EDF/R and DD in the framework of local approach to fracture. Its experimental validation has been achieved by analysing toughness tests performed by AEA Technology for a pressure vessel steel in the transition regime. This large data base has evidenced the specimen thickness effects on toughness properties of the material, as well as influence of prior ductile crack growth. Predictions of the model have been compared with experiments, which shows that the transition curve K 1C = f (T) can be drawn from model predictions and compared with the RCCM or ASME design curve. Substantial safety margins have been exhibited. They are greater for thin specimens (10 mm) than for thicker specimens (230 mm). However, the transition curve in the upper transition region is still underestimated by the model (for temperatures higher than RTNDT + 50 deg C). Improvement should be made to account for important plasticity development and significant crack growth. (author). 30 figs., 10 tabs., 12 refs

  8. Glass Transition Temperature- and Specific Volume- Composition Models for Tellurite Glasses

    Energy Technology Data Exchange (ETDEWEB)

    Riley, Brian J. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Vienna, John D. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States)

    2017-09-01

    This report provides models for predicting composition-properties for tellurite glasses, namely specific gravity and glass transition temperature. Included are the partial specific coefficients for each model, the component validity ranges, and model fit parameters.

  9. The urinary metabolome in female mink (Mustela neovison) shows distinct changes in protein and lipid metabolism during the transition from diapause to implantation

    DEFF Research Database (Denmark)

    Hedemann, Mette Skou

    2017-01-01

    Introduction The mink exhibit an obligatory diapause. The metabolic changes during the transition from diapause to implantation and established pregnancy are currently unknown. Objectives The study aimed to characterize changes in the urinary metabolome in mink during the period from mating...... to early gestation and to identify the metabolites involved. Methods Urine samples were collected from 56 female mink on March 24, April 8, and April 15, covering the period from mating to early pregnancy. The urine samples were subjected to non-targeted LC-MS metabolomics. Processed data were evaluated...

  10. Multifractal regime transition in a modified minority game model

    International Nuclear Information System (INIS)

    Crepaldi, Antonio F.; Rodrigues Neto, Camilo; Ferreira, Fernando F.; Francisco, Gerson

    2009-01-01

    The search for more realistic modeling of financial time series reveals several stylized facts of real markets. In this work we focus on the multifractal properties found in price and index signals. Although the usual minority game (MG) models do not exhibit multifractality, we study here one of its variants that does. We show that the nonsynchronous MG models in the nonergodic phase is multifractal and in this sense, together with other stylized facts, constitute a better modeling tool. Using the structure function (SF) approach we detected the stationary and the scaling range of the time series generated by the MG model and, from the linear (non-linear) behavior of the SF we identified the fractal (multifractal) regimes. Finally, using the wavelet transform modulus maxima (WTMM) technique we obtained its multifractal spectrum width for different dynamical regimes.

  11. Modelling of spark to ignition transition in gas mixtures

    Energy Technology Data Exchange (ETDEWEB)

    Akram, M.

    1996-10-01

    This thesis pertains to the models for studying sparking in chemically inert gases. The processes taking place in a spark to flame transition can be segregated into physical and chemical processes, and this study is focused on physical processes. The plasma is regarded as a single-substance material. One and two-dimensional models are developed. The transfer of electrical energy into thermal energy of the gas and its redistribution in space and time along with the evolution of a plasma kernel is studied in the time domain ranging from 10 ns to 40 micros. In the case of ultra-fast sparks, the propagation of the shock and its reflection from a rigid wall is presented. The influence of electrode shape and the gap size on the flow structure development is found to be a dominating factor. It is observed that the flow structure that has developed in the early stage more or less prevails at later stages and strongly influences the shape and evolution of the hot kernel. The electrode geometry and configuration are responsible for the development of the flow structure. The strength of the vortices generated in the flow field is influenced by the power input to the gap and their location of emergence is dictated by the electrode shape and configuration. The heat transfer after 2 micros in the case of ultra-fast sparks is dominated by convection and diffusion. The strong mixing produced by hydrodynamic effects and the electrode geometry give the indication that the magnetic pinch effect might be negligible. Finally, a model for a multicomponent gas mixture is presented. The chemical kinetics mechanism for dissociation and ionization is introduced. 56 refs

  12. The Ballet Dancing Profession: A Career Transition Model

    Science.gov (United States)

    Roncaglia, Irina

    2008-01-01

    What type of emotional transition is experienced by professional dancers who face the end of their career? What does this journey imply? This article discusses the transition experiences of two case studies out of a total sample of fourteen (N = 14) international professional ballet dancers who left their careers between the ages of 21 and 49…

  13. A Preisach approach to modeling partial phase transitions in the first order magnetocaloric material MnFe(P,As)

    Energy Technology Data Exchange (ETDEWEB)

    Moos, L. von, E-mail: lmoo@dtu.dk [Department of Energy Conversion and Storage, Technical University of Denmark, 4000 Roskilde (Denmark); Bahl, C.R.H.; Nielsen, K.K.; Engelbrecht, K. [Department of Energy Conversion and Storage, Technical University of Denmark, 4000 Roskilde (Denmark); Küpferling, M.; Basso, V. [Istituto Nazionale di Ricerca Metrologica, 10135 Torino (Italy)

    2014-02-15

    Magnetic refrigeration is an emerging technology that could provide energy efficient and environmentally friendly cooling. Magnetocaloric materials in which a structural phase transition is found concurrently with the magnetic phase transition are often termed first order magnetocaloric materials. Such materials are potential candidates for application in magnetic refrigeration devices. However, the first order materials often have adverse properties such as hysteresis, making actual performance troublesome to quantify, a subject not thoroughly studied within this field. Here we investigate the behavior of MnFe(P,As) under partial phase transitions, which is similar to what materials experience in actual magnetic refrigeration devices. Partial phase transition curves, in the absence of a magnetic field, are measured using calorimetry and the experimental results are compared to simulations of a Preisach-type model. We show that this approach is applicable and discuss what experimental data is required to obtain a satisfactory material model.

  14. A stress-induced phase transition model for semi-crystallize shape memory polymer

    Science.gov (United States)

    Guo, Xiaogang; Zhou, Bo; Liu, Liwu; Liu, Yanju; Leng, Jinsong

    2014-03-01

    The developments of constitutive models for shape memory polymer (SMP) have been motivated by its increasing applications. During cooling or heating process, the phase transition which is a continuous time-dependent process happens in semi-crystallize SMP and the various individual phases form at different temperature and in different configuration. Then, the transformation between these phases occurred and shape memory effect will emerge. In addition, stress applied on SMP is an important factor for crystal melting during phase transition. In this theory, an ideal phase transition model considering stress or pre-strain is the key to describe the behaviors of shape memory effect. So a normal distributed model was established in this research to characterize the volume fraction of each phase in SMP during phase transition. Generally, the experiment results are partly backward (in heating process) or forward (in cooling process) compared with the ideal situation considering delay effect during phase transition. So, a correction on the normal distributed model is needed. Furthermore, a nonlinear relationship between stress and phase transition temperature Tg is also taken into account for establishing an accurately normal distributed phase transition model. Finally, the constitutive model which taking the stress as an influence factor on phase transition was also established. Compared with the other expressions, this new-type model possesses less parameter and is more accurate. For the sake of verifying the rationality and accuracy of new phase transition and constitutive model, the comparisons between the simulated and experimental results were carried out.

  15. Exactly solvable model of transitional nuclei based on dual algebraic structure for the three level pairing model in the framework of sdg interacting boson model

    Science.gov (United States)

    Jafarizadeh, M. A.; Ranjbar, Z.; Fouladi, N.; Ghapanvari, M.

    2018-01-01

    In this paper, a successful algebraic method based on the dual algebraic structure for three level pairing model in the framework of sdg IBM is proposed for transitional nuclei which show transitional behavior from spherical to gamma-unstable quantum shape phase transition. In this method complicated sdg Hamiltonian, which is a three level pairing Hamiltonian is determined easily via the exactly solvable method. This description provides a better interpretation of some observables such as BE (4) in nuclei which exhibits the necessity of inclusion of g boson in the sd IBM, while BE (4) cannot be explained in the sd boson model. Some observables such as Energy levels, BE (2), BE (4), the two neutron separation energies signature splitting of the γ-vibrational band and expectation values of the g-boson number operator are calculated and examined for 46 104 - 110Pd isotopes.

  16. Phase transitions

    CERN Document Server

    Sole, Ricard V; Solé, Ricard V; Solé, Ricard V; Sol, Ricard V; Solé, Ricard V

    2011-01-01

    Phase transitions--changes between different states of organization in a complex system--have long helped to explain physics concepts, such as why water freezes into a solid or boils to become a gas. How might phase transitions shed light on important problems in biological and ecological complex systems? Exploring the origins and implications of sudden changes in nature and society, Phase Transitions examines different dynamical behaviors in a broad range of complex systems. Using a compelling set of examples, from gene networks and ant colonies to human language and the degradation of diverse ecosystems, the book illustrates the power of simple models to reveal how phase transitions occur. Introductory chapters provide the critical concepts and the simplest mathematical techniques required to study phase transitions. In a series of example-driven chapters, Ricard Solé shows how such concepts and techniques can be applied to the analysis and prediction of complex system behavior, including the origins of ...

  17. Optimized broad-histogram simulations for strong first-order phase transitions: droplet transitions in the large-Q Potts model

    Science.gov (United States)

    Bauer, Bela; Gull, Emanuel; Trebst, Simon; Troyer, Matthias; Huse, David A.

    2010-01-01

    The numerical simulation of strongly first-order phase transitions has remained a notoriously difficult problem even for classical systems due to the exponentially suppressed (thermal) equilibration in the vicinity of such a transition. In the absence of efficient update techniques, a common approach for improving equilibration in Monte Carlo simulations is broadening the sampled statistical ensemble beyond the bimodal distribution of the canonical ensemble. Here we show how a recently developed feedback algorithm can systematically optimize such broad-histogram ensembles and significantly speed up equilibration in comparison with other extended ensemble techniques such as flat-histogram, multicanonical and Wang-Landau sampling. We simulate, as a prototypical example of a strong first-order transition, the two-dimensional Potts model with up to Q = 250 different states in large systems. The optimized histogram develops a distinct multi-peak structure, thereby resolving entropic barriers and their associated phase transitions in the phase coexistence region—such as droplet nucleation and annihilation, and droplet-strip transitions for systems with periodic boundary conditions. We characterize the efficiency of the optimized histogram sampling by measuring round-trip times τ(N, Q) across the phase transition for samples comprised of N spins. While we find power-law scaling of τ versus N for small Q \\lesssim 50 and N \\lesssim 40^2 , we observe a crossover to exponential scaling for larger Q. These results demonstrate that despite the ensemble optimization, broad-histogram simulations cannot fully eliminate the supercritical slowing down at strongly first-order transitions.

  18. Elastic Model Transitions: a Hybrid Approach Utilizing Quadratic Inequality Constrained Least Squares (LSQI) and Direct Shape Mapping (DSM)

    Science.gov (United States)

    Jurenko, Robert J.; Bush, T. Jason; Ottander, John A.

    2014-01-01

    A method for transitioning linear time invariant (LTI) models in time varying simulation is proposed that utilizes both quadratically constrained least squares (LSQI) and Direct Shape Mapping (DSM) algorithms to determine physical displacements. This approach is applicable to the simulation of the elastic behavior of launch vehicles and other structures that utilize multiple LTI finite element model (FEM) derived mode sets that are propagated throughout time. The time invariant nature of the elastic data for discrete segments of the launch vehicle trajectory presents a problem of how to properly transition between models while preserving motion across the transition. In addition, energy may vary between flex models when using a truncated mode set. The LSQI-DSM algorithm can accommodate significant changes in energy between FEM models and carries elastic motion across FEM model transitions. Compared with previous approaches, the LSQI-DSM algorithm shows improvements ranging from a significant reduction to a complete removal of transients across FEM model transitions as well as maintaining elastic motion from the prior state.

  19. Influence of privatization model to society in transition

    Directory of Open Access Journals (Sweden)

    Cvijetićanin Danijel M.

    2004-01-01

    Full Text Available The goal of the paper is to explain the influence of privatization to the transition in Serbia. At the same time, it will be shown that the absence of the results of development of small and medium enterprises influenced the continuous pointing out the results of privatization. The influence of privatization to performance of enterprises will be especially discussed. The process of privatization of the public sector in the countries of developed market economy will be compared with the privatization in the former socialist countries. The specificity of the latter consists, above all, in huge offer of capital for sale in relatively short time. Inevitable consequence is the low price of this capital, which is very interesting for analysis. Specificities of privatization with not only state, but also social property in the economies of the former SFRY will be also discussed. The paradox of enlarging state property in Serbia and Montenegro will be also pointed out. The results of privatization will be discussed, as well as possible modifications of the model (and the law in the near future.

  20. Model for cryogenic particle detectors with superconducting phase transition thermometers

    International Nuclear Information System (INIS)

    Proebst, F.; Frank, M.; Cooper, S.; Colling, P.; Dummer, D.; Ferger, P.; Nucciotti, A.; Seidel, W.; Stodolsky, L.

    1994-09-01

    We present data on a detector composed of an 18 g Si crystal and a superconducting phase transition thermometer which could be operated over a wide temperature range. An energy resolution of 1 keV (FWHM) has been obtained for 60 keV photons. The signals consist of two components: A fast one and a slow one, with decay times of 1.5 ms and 30-60 ms, respectively. In this paper we present a simple model which takes thermal and non-thermal phonon processes into account and provides a description of the observed temperature dependence of the pulse shape. The fast component, which completely dominates the signal at low temperatures, is due to high-frequency non-thermal phonons being absorbed in the thermometer. Thermalization of these phonons then leads to a temperature rise of the absorber, which causes the slow thermal component. At the highest operating temperatures (T∼80 mK) the amplitude of the slow component is roughly as expected from the heat capacity of the absorber. The strong suppression of the slow component at low temperatures is explained mostly as a consequence of the weak thermal coupling between electrons and phonons in the thermometer at low temperatures. (orig.)

  1. Calibration of a γ- Re θ transition model and its application in low-speed flows

    Science.gov (United States)

    Wang, YunTao; Zhang, YuLun; Meng, DeHong; Wang, GunXue; Li, Song

    2014-12-01

    The prediction of laminar-turbulent transition in boundary layer is very important for obtaining accurate aerodynamic characteristics with computational fluid dynamic (CFD) tools, because laminar-turbulent transition is directly related to complex flow phenomena in boundary layer and separated flow in space. Unfortunately, the transition effect isn't included in today's major CFD tools because of non-local calculations in transition modeling. In this paper, Menter's γ- Re θ transition model is calibrated and incorporated into a Reynolds-Averaged Navier-Stokes (RANS) code — Trisonic Platform (TRIP) developed in China Aerodynamic Research and Development Center (CARDC). Based on the experimental data of flat plate from the literature, the empirical correlations involved in the transition model are modified and calibrated numerically. Numerical simulation for low-speed flow of Trapezoidal Wing (Trap Wing) is performed and compared with the corresponding experimental data. It is indicated that the γ- Re θ transition model can accurately predict the location of separation-induced transition and natural transition in the flow region with moderate pressure gradient. The transition model effectively imporves the simulation accuracy of the boundary layer and aerodynamic characteristics.

  2. Quantum critical phase and Lifshitz transition in an extended periodic Anderson model

    International Nuclear Information System (INIS)

    Laad, M S; Koley, S; Taraphder, A

    2012-01-01

    We study the quantum phase transition in f-electron systems as a quantum Lifshitz transition driven by selective-Mott localization in a realistic extended Anderson lattice model. Using dynamical mean-field theory (DMFT), we find that a quantum critical phase with anomalous ω/T scaling separates a heavy Landau-Fermi liquid from ordered phase(s). This non-Fermi liquid state arises from a lattice orthogonality catastrophe originating from orbital-selective Mott localization. Fermi surface reconstruction occurs via the interplay between and penetration of the Green function zeros to the poles, leading to violation of Luttinger’s theorem in the strange metal. We show how this naturally leads to scale-invariant responses in transport. Thus, our work represents a specific DMFT realization of the hidden-FL and FL* theories, and holds promise for the study of ‘strange’ metal phases in quantum matter. (fast track communication)

  3. Modeling Dzyaloshinskii-Moriya Interaction at Transition Metal Interfaces: Constrained Moment versus Generalized Bloch Theorem

    KAUST Repository

    Dong, Yao-Jun; Belabbes, Abderrezak; Manchon, Aurelien

    2017-01-01

    Dzyaloshinskii-Moriya interaction (DMI) at Pt/Co interfaces is investigated theoretically using two different first principles methods. The first one uses the constrained moment method to build a spin spiral in real space, while the second method uses the generalized Bloch theorem approach to construct a spin spiral in reciprocal space. We show that although the two methods produce an overall similar total DMI energy, the dependence of DMI as a function of the spin spiral wavelength is dramatically different. We suggest that long-range magnetic interactions, that determine itinerant magnetism in transition metals, are responsible for this discrepancy. We conclude that the generalized Bloch theorem approach is more adapted to model DMI in transition metal systems, where magnetism is delocalized, while the constrained moment approach is mostly applicable to weak or insulating magnets, where magnetism is localized.

  4. Modeling Dzyaloshinskii-Moriya Interaction at Transition Metal Interfaces: Constrained Moment versus Generalized Bloch Theorem

    KAUST Repository

    Dong, Yao-Jun

    2017-10-29

    Dzyaloshinskii-Moriya interaction (DMI) at Pt/Co interfaces is investigated theoretically using two different first principles methods. The first one uses the constrained moment method to build a spin spiral in real space, while the second method uses the generalized Bloch theorem approach to construct a spin spiral in reciprocal space. We show that although the two methods produce an overall similar total DMI energy, the dependence of DMI as a function of the spin spiral wavelength is dramatically different. We suggest that long-range magnetic interactions, that determine itinerant magnetism in transition metals, are responsible for this discrepancy. We conclude that the generalized Bloch theorem approach is more adapted to model DMI in transition metal systems, where magnetism is delocalized, while the constrained moment approach is mostly applicable to weak or insulating magnets, where magnetism is localized.

  5. KEEFEKTIFAN MODEL SHOW NOT TELL DAN MIND MAP PADA PEMBELAJARAN MENULIS TEKS EKSPOSISI BERDASARKAN MINAT PESERTA DIDIK KELAS X SMK

    Directory of Open Access Journals (Sweden)

    Wiwit Lili Sokhipah

    2015-03-01

    Full Text Available Tujuan penelitian ini adalah (1 menentukan keefektifan penggunaan model show not tell pada pembelajaran keterampilan menulis teks eksposisi berdasarkan minat peserta didik SMK Kelas X, (2 menentukan keefektifan penggunaan model mind map pada pembelajaran keterampilan menulis teks eksposisi berdasarkan minat peserta didik SMK kelas X, (3 menentukan keefektifan interaksi show not tell dan mind map pada pembelajaran keterampilan menulis teks eksposisi berdasarkan minat peserta didik SMK kelas X. Penelitian ini adalah quasi experimental design (pretes-postes control group design. Dalam desain ini terdapat dua kelompok eksperimen yakni penerapan model show not tell dalam pembelajaran keterampilan menulis teks eksposisipeserta didik dengan minat tinggi dan penerapan model mind map dalam pembelajaran keterampilan menulis teks eksposisi  peserta didik dengan minat rendah. Hasil penelitian adalah (1 model show not tell efektif digunakan  dalam membelajarkan menulis teks eksposisi bagi peserta didik yang memiliki minat tinggi, (2 model mind map efektif digunakan dalam membelajarkan menulis teks eksposisi bagi peserta didik yang memiliki minat rendah, dan (3 model show not tell lebih efektif digunakan dalam membelajarkan menulis teks eksposisi bagi peserta didik yang memiliki minat tinggi, sedangkan model mind map efektif digunakan dalam membelajarkan teks eksposisi pagi peserta didik yang memiliki minat rendah.

  6. The Current Landscape of Transitions of Care Practice Models: A Scoping Review.

    Science.gov (United States)

    Rochester-Eyeguokan, Charmaine D; Pincus, Kathleen J; Patel, Roshni S; Reitz, Shirley J

    2016-01-01

    . Best model TOC services must include services along the TOC continuum: pretransition and posttransition, as well as at home and in outpatient health care settings. Studies clearly show that single-modal interventions are rarely successful in reducing readmissions and that successful TOC services must be multimodal and multidisciplinary, and continue throughout the care transition. Utilizing best practice TOC models described in this article as a starting point, practitioners interested in developing their own TOC program should test these tools in new practice environments and add to the body of literature by publishing their findings. © 2016 Pharmacotherapy Publications, Inc.

  7. Energy Demand Modeling Methodology of Key State Transitions of Turning Processes

    Directory of Open Access Journals (Sweden)

    Shun Jia

    2017-04-01

    Full Text Available Energy demand modeling of machining processes is the foundation of energy optimization. Energy demand of machining state transition is integral to the energy requirements of the machining process. However, research focus on energy modeling of state transition is scarce. To fill this gap, an energy demand modeling methodology of key state transitions of the turning process is proposed. The establishment of an energy demand model of state transition could improve the accuracy of the energy model of the machining process, which also provides an accurate model and reliable data for energy optimization of the machining process. Finally, case studies were conducted on a CK6153i CNC lathe, the results demonstrating that predictive accuracy with the proposed method is generally above 90% for the state transition cases.

  8. Validation of a RANS transition model using a high-order weighted compact nonlinear scheme

    Science.gov (United States)

    Tu, GuoHua; Deng, XiaoGang; Mao, MeiLiang

    2013-04-01

    A modified transition model is given based on the shear stress transport (SST) turbulence model and an intermittency transport equation. The energy gradient term in the original model is replaced by flow strain rate to saving computational costs. The model employs local variables only, and then it can be conveniently implemented in modern computational fluid dynamics codes. The fifth-order weighted compact nonlinear scheme and the fourth-order staggered scheme are applied to discrete the governing equations for the purpose of minimizing discretization errors, so as to mitigate the confusion between numerical errors and transition model errors. The high-order package is compared with a second-order TVD method on simulating the transitional flow of a flat plate. Numerical results indicate that the high-order package give better grid convergence property than that of the second-order method. Validation of the transition model is performed for transitional flows ranging from low speed to hypersonic speed.

  9. Modeling boundary-layer transition in direct and large-eddy simulations using parabolized stability equations

    Science.gov (United States)

    Lozano-Durán, A.; Hack, M. J. P.; Moin, P.

    2018-02-01

    We examine the potential of the nonlinear parabolized stability equations (PSE) to provide an accurate yet computationally efficient treatment of the growth of disturbances in H-type transition to turbulence. The PSE capture the nonlinear interactions that eventually induce breakdown to turbulence and can as such identify the onset of transition without relying on empirical correlations. Since the local PSE solution at the onset of transition is a close approximation of the Navier-Stokes equations, it provides a natural inflow condition for direct numerical simulations (DNS) and large-eddy simulations (LES) by avoiding nonphysical transients. We show that a combined PSE-DNS approach, where the pretransitional region is modeled by the PSE, can reproduce the skin-friction distribution and downstream turbulent statistics from a DNS of the full domain. When the PSE are used in conjunction with wall-resolved and wall-modeled LES, the computational cost in both the laminar and turbulent regions is reduced by several orders of magnitude compared to DNS.

  10. Probing emergent geometry through phase transitions in free vector and matrix models

    Energy Technology Data Exchange (ETDEWEB)

    Amado, Irene; Sundborg, Bo [The Oskar Klein Centre for Cosmoparticle Physics, Department of Physics, Stockholm University,AlbaNova, 106 91 Stockholm (Sweden); Thorlacius, Larus [The Oskar Klein Centre for Cosmoparticle Physics, Department of Physics, Stockholm University,AlbaNova, 106 91 Stockholm (Sweden); Science Institute, University of Iceland, Dunhaga 3, 107 Reykjavik (Iceland); Wintergerst, Nico [The Oskar Klein Centre for Cosmoparticle Physics, Department of Physics, Stockholm University,AlbaNova, 106 91 Stockholm (Sweden)

    2017-02-01

    Boundary correlation functions provide insight into the emergence of an effective geometry in higher spin gravity duals of O(N) or U(N) symmetric field theories. On a compact manifold, the singlet constraint leads to nontrivial dynamics at finite temperature and large N phase transitions even at vanishing ’t Hooft coupling. At low temperature, the leading behavior of boundary two-point functions is consistent with propagation through a bulk thermal anti de Sitter space. Above the phase transition, the two-point function shows significant departure from thermal AdS space and the emergence of localized black hole like objects in the bulk. In adjoint models, these objects appear at length scales of order of the AdS radius, consistent with a Hawking-Page transition, but in vector models they are parametrically larger than the AdS scale. In low dimensions, we find another crossover at large distances beyond which the correlation function again takes a thermal AdS form, albeit with a temperature dependent normalization factor.

  11. Bus Operation Monitoring Oriented Public Transit Travel Index System and Calculation Models

    Directory of Open Access Journals (Sweden)

    Jiancheng Weng

    2013-01-01

    Full Text Available This study proposed a two-dimensional index system which is concerned essentially with urban travel based on travel modes and user satisfaction. First, the public transit was taken as an example to describe the index system establishing process. In consideration of convenience, rapid, reliability, comfort, and safety, a bus service evaluation index system was established. The indicators include the N-minute coverage of bus stops, average travel speed, and fluctuation of travel time between stops and bus load factor which could intuitively describe the characteristics of public transport selected to calculate bus travel indexes. Then, combined with the basic indicators, the calculation models of Convenience Index (CI, Rapid Index (RI, Reliability Index (RBI, and Comfort Index (CTI were established based on the multisource data of public transit including the real-time bus GPS data and passenger IC card data. Finally, a case study of Beijing bus operation evaluation and analysis was conducted by taking real bus operation data including GPS data and passenger transaction recorder (IC card data. The results showed that the operation condition of the public transit was well reflected and scientifically classified by the bus travel index models.

  12. Selection Bias in Educational Transition Models: Theory and Empirical Evidence

    DEFF Research Database (Denmark)

    Holm, Anders; Jæger, Mads

    variables. This paper, first, explains theoretically how selection on unobserved variables leads to waning coefficients and, second, illustrates empirically how selection leads to biased estimates of the effect of family background on educational transitions. Our empirical analysis using data from...

  13. Non-thermal transitions in a model inspired by moral decisions

    International Nuclear Information System (INIS)

    Alamino, Roberto C

    2016-01-01

    This work introduces a model in which agents of a network act upon one another according to three different kinds of moral decisions. These decisions are based on an increasing level of sophistication in the empathy capacity of the agent, a hierarchy which we name Piaget ’ s ladder . The decision strategy of the agents is non-rational, in the sense they are arbitrarily fixed, and the model presents quenched disorder given by the distribution of its defining parameters. An analytical solution for this model is obtained in the large system limit as well as a leading order correction for finite-size systems which shows that typical realisations of the model develop a phase structure with both continuous and discontinuous non-thermal transitions. (paper)

  14. Chaos Theory as a Model for Life Transitions Counseling: Nonlinear Dynamics and Life's Changes

    Science.gov (United States)

    Bussolari, Cori J.; Goodell, Judith A.

    2009-01-01

    Chaos theory is presented for counselors working with clients experiencing life transitions. It is proposed as a model that considers disorder, unpredictability, and lack of control as normal parts of transition processes. Nonlinear constructs from physics are adapted for use in counseling. The model provides a method clients can use to…

  15. Predicting landscape vegetation dynamics using state-and-transition simulation models

    Science.gov (United States)

    Colin J. Daniel; Leonardo. Frid

    2012-01-01

    This paper outlines how state-and-transition simulation models (STSMs) can be used to project changes in vegetation over time across a landscape. STSMs are stochastic, empirical simulation models that use an adapted Markov chain approach to predict how vegetation will transition between states over time, typically in response to interactions between succession,...

  16. Exactly solvable model of phase transition between hadron and quark-gluon-matter

    International Nuclear Information System (INIS)

    Gorenstein, M.I.; Petrov, V.K.; Shelest, V.P.; Zinovjev, G.M.

    1982-01-01

    An exactly solvable model of phase transition between hadron and quark-gluon matter is proposed. The hadron phase of this model is considered as a gas of bags filled by point massless constituents. The mass and volume spectrum of the bag is found. The thermodynamical characteristics of a bag gas in the neighbourhood of a phase transition point are ascertained in analytical form

  17. Neurodynamics of up and down Transitions in Network Model

    Directory of Open Access Journals (Sweden)

    Xuying Xu

    2013-01-01

    Full Text Available This paper focuses on the neurodynamical research of a small neural network that consists of 25 neurons. We study the periodic spontaneous activity and transitions between up and down states without synaptic input. The results demonstrate that these transitions are bidirectional or unidirectional with the parameters changing, which not only reveals the function of the cortex, but also cohere with the experiment results.

  18. Mott metal-insulator transition in the doped Hubbard-Holstein model

    Science.gov (United States)

    Kurdestany, Jamshid Moradi; Satpathy, S.

    2017-08-01

    Motivated by the current interest in the understanding of the Mott insulators away from half-filling, observed in many perovskite oxides, we study the Mott metal-insulator transition in the doped Hubbard-Holstein model using the Hartree-Fock mean field theory. The Hubbard-Holstein model is the simplest model containing both the Coulomb and the electron-lattice interactions, which are important ingredients in the physics of the perovskite oxides. In contrast to the half-filled Hubbard model, which always results in a single phase (either metallic or insulating), our results show that away from half-filling, a mixed phase of metallic and insulating regions occurs. As the dopant concentration is increased, the metallic part progressively grows in volume, until it exceeds the percolation threshold, leading to percolative conduction. This happens above a critical dopant concentration δc, which, depending on the strength of the electron-lattice interaction, can be a significant fraction of unity. This means that the material could be insulating even for a substantial amount of doping, in contrast to the expectation that doped holes would destroy the insulating behavior of the half-filled Hubbard model. While effects of fluctuation beyond the mean field remain an open question, our results provide a starting point for the understanding of the density-driven metal-insulator transition observed in many complex oxides.

  19. Dynamic transitions in a model of the hypothalamic-pituitary-adrenal axis

    Science.gov (United States)

    Čupić, Željko; Marković, Vladimir M.; Maćešić, Stevan; Stanojević, Ana; Damjanović, Svetozar; Vukojević, Vladana; Kolar-Anić, Ljiljana

    2016-03-01

    Dynamic properties of a nonlinear five-dimensional stoichiometric model of the hypothalamic-pituitary-adrenal (HPA) axis were systematically investigated. Conditions under which qualitative transitions between dynamic states occur are determined by independently varying the rate constants of all reactions that constitute the model. Bifurcation types were further characterized using continuation algorithms and scale factor methods. Regions of bistability and transitions through supercritical Andronov-Hopf and saddle loop bifurcations were identified. Dynamic state analysis predicts that the HPA axis operates under basal (healthy) physiological conditions close to an Andronov-Hopf bifurcation. Dynamic properties of the stress-control axis have not been characterized experimentally, but modelling suggests that the proximity to a supercritical Andronov-Hopf bifurcation can give the HPA axis both, flexibility to respond to external stimuli and adjust to new conditions and stability, i.e., the capacity to return to the original dynamic state afterwards, which is essential for maintaining homeostasis. The analysis presented here reflects the properties of a low-dimensional model that succinctly describes neurochemical transformations underlying the HPA axis. However, the model accounts correctly for a number of experimentally observed properties of the stress-response axis. We therefore regard that the presented analysis is meaningful, showing how in silico investigations can be used to guide the experimentalists in understanding how the HPA axis activity changes under chronic disease and/or specific pharmacological manipulations.

  20. The Biological Big Bang model for the major transitions in evolution

    Directory of Open Access Journals (Sweden)

    Koonin Eugene V

    2007-08-01

    Full Text Available Abstract Background Major transitions in biological evolution show the same pattern of sudden emergence of diverse forms at a new level of complexity. The relationships between major groups within an emergent new class of biological entities are hard to decipher and do not seem to fit the tree pattern that, following Darwin's original proposal, remains the dominant description of biological evolution. The cases in point include the origin of complex RNA molecules and protein folds; major groups of viruses; archaea and bacteria, and the principal lineages within each of these prokaryotic domains; eukaryotic supergroups; and animal phyla. In each of these pivotal nexuses in life's history, the principal "types" seem to appear rapidly and fully equipped with the signature features of the respective new level of biological organization. No intermediate "grades" or intermediate forms between different types are detectable. Usually, this pattern is attributed to cladogenesis compressed in time, combined with the inevitable erosion of the phylogenetic signal. Hypothesis I propose that most or all major evolutionary transitions that show the "explosive" pattern of emergence of new types of biological entities correspond to a boundary between two qualitatively distinct evolutionary phases. The first, inflationary phase is characterized by extremely rapid evolution driven by various processes of genetic information exchange, such as horizontal gene transfer, recombination, fusion, fission, and spread of mobile elements. These processes give rise to a vast diversity of forms from which the main classes of entities at the new level of complexity emerge independently, through a sampling process. In the second phase, evolution dramatically slows down, the respective process of genetic information exchange tapers off, and multiple lineages of the new type of entities emerge, each of them evolving in a tree-like fashion from that point on. This biphasic model

  1. The Biological Big Bang model for the major transitions in evolution.

    Science.gov (United States)

    Koonin, Eugene V

    2007-08-20

    Major transitions in biological evolution show the same pattern of sudden emergence of diverse forms at a new level of complexity. The relationships between major groups within an emergent new class of biological entities are hard to decipher and do not seem to fit the tree pattern that, following Darwin's original proposal, remains the dominant description of biological evolution. The cases in point include the origin of complex RNA molecules and protein folds; major groups of viruses; archaea and bacteria, and the principal lineages within each of these prokaryotic domains; eukaryotic supergroups; and animal phyla. In each of these pivotal nexuses in life's history, the principal "types" seem to appear rapidly and fully equipped with the signature features of the respective new level of biological organization. No intermediate "grades" or intermediate forms between different types are detectable. Usually, this pattern is attributed to cladogenesis compressed in time, combined with the inevitable erosion of the phylogenetic signal. I propose that most or all major evolutionary transitions that show the "explosive" pattern of emergence of new types of biological entities correspond to a boundary between two qualitatively distinct evolutionary phases. The first, inflationary phase is characterized by extremely rapid evolution driven by various processes of genetic information exchange, such as horizontal gene transfer, recombination, fusion, fission, and spread of mobile elements. These processes give rise to a vast diversity of forms from which the main classes of entities at the new level of complexity emerge independently, through a sampling process. In the second phase, evolution dramatically slows down, the respective process of genetic information exchange tapers off, and multiple lineages of the new type of entities emerge, each of them evolving in a tree-like fashion from that point on. This biphasic model of evolution incorporates the previously developed

  2. Filling-driven Mott transition in SU(N ) Hubbard models

    Science.gov (United States)

    Lee, Seung-Sup B.; von Delft, Jan; Weichselbaum, Andreas

    2018-04-01

    We study the filling-driven Mott transition involving the metallic and paramagnetic insulating phases in SU (N ) Fermi-Hubbard models, using the dynamical mean-field theory and the numerical renormalization group as its impurity solver. The compressibility shows a striking temperature dependence: near the critical end-point temperature, it is strongly enhanced in the metallic phase close to the insulating phase. We demonstrate that this compressibility enhancement is associated with the thermal suppression of the quasiparticle peak in the local spectral functions. We also explain that the asymmetric shape of the quasiparticle peak originates from the asymmetry in the dynamics of the generalized doublons and holons.

  3. Finland: a model of energy transition to be followed?

    International Nuclear Information System (INIS)

    Lorot, Pascal

    2014-09-01

    Published before the debate of the French Parliament on the law on energy transition, i.e. on a new energy model, or on the construction of a low carbon and less energy consuming society to comply with France's international commitments, this report first discusses the French situation, the evolution of its energy policy, the challenge of a search for a balance between a cheap electricity and energy independence, and the plurality of factors and objectives (economic, budgetary, environmental, industrial, societal, political and social) which are sometime contradictory. The second part presents and comments the case of Germany which seems to be a good example regarding energy policy, however it faces some difficulties and pitfalls: a quick evolution of the energy mix in favour of renewable energies, but an always higher cost supported almost only by individuals, a disturbed electricity market, an environmental impact due to the wider use of coal (less expensive than gas). The third part addresses the case of Finland which could be a more inspiring example: no decision to phase out nuclear, no decision of a quick and forced development of renewable energies, modification of the energy mix by the development of local forest resources, an electric system of good quality, a high energetic competitiveness. The report outlines the consistency of the Finnish policy: search for a balance between international commitments of reduction of greenhouse gas emissions, competitive tariffs, and strengthening of energetic independence. The associated choices are discussed, and it appears that the cost-efficiency criterion is prevailing

  4. Model of Ca(2+) Concentration Controlled by Sarcoplasmic Reticulum of Skeletal Muscle, Using the State Transition

    National Research Council Canada - National Science Library

    Yokota, M

    2001-01-01

    ...). This report proposed a model that represents Ca(2+) in a muscle cell controlled by the SR using a state transition probability model in which one state means that protein in the SR is binding ligands, and the other...

  5. Gravitational waves from the first order electroweak phase transition in the Z3 symmetric singlet scalar model*

    Directory of Open Access Journals (Sweden)

    Matsui Toshinori

    2018-01-01

    Full Text Available Among various scenarios of baryon asymmetry of the Universe, electroweak baryogenesis is directly connected with physics of the Higgs sector. We discuss spectra of gravitational waves which are originated by the strongly first order phase transition at the electroweak symmetry breaking, which is required for a successful scenario of electroweak baryogenesis. In the Z3 symmetric singlet scalar model, the significant gravitational waves are caused by the multi-step phase transition. We show that the model can be tested by measuring the characteristic spectra of the gravitational waves at future interferometers such as LISA and DECIGO.

  6. Diffusion maps, clustering and fuzzy Markov modeling in peptide folding transitions

    International Nuclear Information System (INIS)

    Nedialkova, Lilia V.; Amat, Miguel A.; Kevrekidis, Ioannis G.; Hummer, Gerhard

    2014-01-01

    Using the helix-coil transitions of alanine pentapeptide as an illustrative example, we demonstrate the use of diffusion maps in the analysis of molecular dynamics simulation trajectories. Diffusion maps and other nonlinear data-mining techniques provide powerful tools to visualize the distribution of structures in conformation space. The resulting low-dimensional representations help in partitioning conformation space, and in constructing Markov state models that capture the conformational dynamics. In an initial step, we use diffusion maps to reduce the dimensionality of the conformational dynamics of Ala5. The resulting pretreated data are then used in a clustering step. The identified clusters show excellent overlap with clusters obtained previously by using the backbone dihedral angles as input, with small—but nontrivial—differences reflecting torsional degrees of freedom ignored in the earlier approach. We then construct a Markov state model describing the conformational dynamics in terms of a discrete-time random walk between the clusters. We show that by combining fuzzy C-means clustering with a transition-based assignment of states, we can construct robust Markov state models. This state-assignment procedure suppresses short-time memory effects that result from the non-Markovianity of the dynamics projected onto the space of clusters. In a comparison with previous work, we demonstrate how manifold learning techniques may complement and enhance informed intuition commonly used to construct reduced descriptions of the dynamics in molecular conformation space

  7. Diffusion maps, clustering and fuzzy Markov modeling in peptide folding transitions

    Energy Technology Data Exchange (ETDEWEB)

    Nedialkova, Lilia V.; Amat, Miguel A. [Department of Chemical and Biological Engineering, Princeton University, Princeton, New Jersey 08544 (United States); Kevrekidis, Ioannis G., E-mail: yannis@princeton.edu, E-mail: gerhard.hummer@biophys.mpg.de [Department of Chemical and Biological Engineering and Program in Applied and Computational Mathematics, Princeton University, Princeton, New Jersey 08544 (United States); Hummer, Gerhard, E-mail: yannis@princeton.edu, E-mail: gerhard.hummer@biophys.mpg.de [Department of Theoretical Biophysics, Max Planck Institute of Biophysics, Max-von-Laue-Str. 3, 60438 Frankfurt am Main (Germany)

    2014-09-21

    Using the helix-coil transitions of alanine pentapeptide as an illustrative example, we demonstrate the use of diffusion maps in the analysis of molecular dynamics simulation trajectories. Diffusion maps and other nonlinear data-mining techniques provide powerful tools to visualize the distribution of structures in conformation space. The resulting low-dimensional representations help in partitioning conformation space, and in constructing Markov state models that capture the conformational dynamics. In an initial step, we use diffusion maps to reduce the dimensionality of the conformational dynamics of Ala5. The resulting pretreated data are then used in a clustering step. The identified clusters show excellent overlap with clusters obtained previously by using the backbone dihedral angles as input, with small—but nontrivial—differences reflecting torsional degrees of freedom ignored in the earlier approach. We then construct a Markov state model describing the conformational dynamics in terms of a discrete-time random walk between the clusters. We show that by combining fuzzy C-means clustering with a transition-based assignment of states, we can construct robust Markov state models. This state-assignment procedure suppresses short-time memory effects that result from the non-Markovianity of the dynamics projected onto the space of clusters. In a comparison with previous work, we demonstrate how manifold learning techniques may complement and enhance informed intuition commonly used to construct reduced descriptions of the dynamics in molecular conformation space.

  8. Nonlinearities and transit times in soil organic matter models: new developments in the SoilR package

    Science.gov (United States)

    Sierra, Carlos; Müller, Markus

    2016-04-01

    SoilR is an R package for implementing diverse models representing soil organic matter dynamics. In previous releases of this package, we presented the implementation of linear first-order models with any number of pools as well as radiocarbon dynamics. We present here new improvements of the package regarding the possibility to implement models with nonlinear interactions among state variables and the possibility to calculate ages and transit times for nonlinear models with time dependencies. We show here examples on how to implement model structures with Michaelis-Menten terms for explicit microbial growth and resource use efficiency, and Langmuir isotherms for representing adsorption of organic matter to mineral surfaces. These nonlinear terms can be implemented for any number of organic matter pools, microbial functional groups, or mineralogy, depending on user's requirements. Through a simple example, we also show how transit times of organic matter in soils are controlled by the time-dependencies of the input terms.

  9. Bifurcation analysis and dimension reduction of a predator-prey model for the L-H transition

    DEFF Research Database (Denmark)

    Dam, Magnus; Brøns, Morten; Juul Rasmussen, Jens

    2013-01-01

    The L-H transition denotes a shift to an improved confinement state of a toroidal plasma in a fusion reactor. A model of the L-H transition is required to simulate the time dependence of tokamak discharges that include the L-H transition. A 3-ODE predator-prey type model of the L-H transition...

  10. Enhanced Prognostic Model for Lithium Ion Batteries Based on Particle Filter State Transition Model Modification

    Directory of Open Access Journals (Sweden)

    Buddhi Arachchige

    2017-11-01

    Full Text Available This paper focuses on predicting the End of Life and End of Discharge of Lithium ion batteries using a battery capacity fade model and a battery discharge model. The proposed framework will be able to estimate the Remaining Useful Life (RUL and the Remaining charge through capacity fade and discharge models. A particle filter is implemented that estimates the battery’s State of Charge (SOC and State of Life (SOL by utilizing the battery’s physical data such as voltage, temperature, and current measurements. The accuracy of the prognostic framework has been improved by enhancing the particle filter state transition model to incorporate different environmental and loading conditions without retuning the model parameters. The effect of capacity fade in the reduction of the EOD (End of Discharge time with cycling has also been included, integrating both EOL (End of Life and EOD prediction models in order to get more accuracy in the estimations.

  11. The phase transition in the anisotropic Heisenberg model with long range dipolar interactions

    International Nuclear Information System (INIS)

    Mól, L.A.S.; Costa, B.V.

    2014-01-01

    In this work we have used extensive Monte Carlo calculations to study the planar to paramagnetic phase transition in the two-dimensional anisotropic Heisenberg model with dipolar interactions (AHd) considering the true long-range character of the dipolar interactions by means of the Ewald summation. Our results are consistent with an order–disorder phase transition with unusual critical exponents in agreement with our previous results for the Planar Rotator model with dipolar interactions. Nevertheless, our results disagree with the Renormalization Group results of Maier and Schwabl [Phys. Rev. B, 70, 134430 (2004)] [13] and the results of Rapini et al. [Phys. Rev. B, 75, 014425 (2007)] [12], where the AHd was studied using a cut-off in the evaluation of the dipolar interactions. We argue that besides the long-range character of dipolar interactions their anisotropic character may have a deeper effect in the system than previously believed. Besides, our results show that the use of a cut-off radius in the evaluation of dipolar interactions must be avoided when analyzing the critical behavior of magnetic systems, since it may lead to erroneous results. - Highlights: • The anisotropic Heisenberg model with dipolar interactions is studied. • True long-range interactions were considered by means of Ewald summation. • We found an order–disorder phase transition with unusual critical exponents. • Previous results show a different behavior when a cut-off radius is introduced. • The use of a cut-off radius must be avoided when dealing with dipolar systems

  12. A human breast cell model of pre-invasive to invasive transition

    Energy Technology Data Exchange (ETDEWEB)

    Bissell, Mina J; Rizki, Aylin; Weaver, Valerie M.; Lee, Sun-Young; Rozenberg, Gabriela I.; Chin, Koei; Myers, Connie A.; Bascom, Jamie L.; Mott, Joni D.; Semeiks, Jeremy R.; Grate, Leslie R.; Mian, I. Saira; Borowsky, Alexander D.; Jensen, Roy A.; Idowu, Michael O.; Chen, Fanqing; Chen, David J.; Petersen, Ole W.; Gray, Joe W.; Bissell, Mina J.

    2008-03-10

    A crucial step in human breast cancer progression is the acquisition of invasiveness. There is a distinct lack of human cell culture models to study the transition from pre-invasive to invasive phenotype as it may occur 'spontaneously' in vivo. To delineate molecular alterations important for this transition, we isolated human breast epithelial cell lines that showed partial loss of tissue polarity in three-dimensional reconstituted-basement membrane cultures. These cells remained non-invasive; however, unlike their non-malignant counterparts, they exhibited a high propensity to acquire invasiveness through basement membrane in culture. The genomic aberrations and gene expression profiles of the cells in this model showed a high degree of similarity to primary breast tumor profiles. The xenograft tumors formed by the cell lines in three different microenvironments in nude mice displayed metaplastic phenotypes, including squamous and basal characteristics, with invasive cells exhibiting features of higher grade tumors. To find functionally significant changes in transition from pre-invasive to invasive phenotype, we performed attribute profile clustering analysis on the list of genes differentially expressed between pre-invasive and invasive cells. We found integral membrane proteins, transcription factors, kinases, transport molecules, and chemokines to be highly represented. In addition, expression of matrix metalloproteinases MMP-9,-13,-15,-17 was up regulated in the invasive cells. Using siRNA based approaches, we found these MMPs to be required for the invasive phenotype. This model provides a new tool for dissection of mechanisms by which pre-invasive breast cells could acquire invasiveness in a metaplastic context.

  13. The nature of the continuous non-equilibrium phase transition of Axelrod's model

    Science.gov (United States)

    Peres, Lucas R.; Fontanari, José F.

    2015-09-01

    Axelrod's model in the square lattice with nearest-neighbors interactions exhibits culturally homogeneous as well as culturally fragmented absorbing configurations. In the case in which the agents are characterized by F = 2 cultural features and each feature assumes k states drawn from a Poisson distribution of parameter q, these regimes are separated by a continuous transition at qc = 3.10 +/- 0.02 . Using Monte Carlo simulations and finite-size scaling we show that the mean density of cultural domains μ is an order parameter of the model that vanishes as μ ∼ (q - q_c)^β with β = 0.67 +/- 0.01 at the critical point. In addition, for the correlation length critical exponent we find ν = 1.63 +/- 0.04 and for Fisher's exponent, τ = 1.76 +/- 0.01 . This set of critical exponents places the continuous phase transition of Axelrod's model apart from the known universality classes of non-equilibrium lattice models.

  14. Family Businesses Transitioning to a Circular Economy Model: The Case of “Mercadona”

    Directory of Open Access Journals (Sweden)

    Pedro Núñez-Cacho

    2018-02-01

    Full Text Available Sustainability addresses environmental and social issues affecting this and future generations. When family businesses perceive that the community is disrupted, recognize an environmental problem and respond by implementing new environmental policies or regulations, the family business’s socio-emotional values press to transition to a more sustainable production system, such as the ‘Circular Economy.’ Drawing on the Dubin (1978 methodology—a paradigm for building models through deduction—we design a sustainable model, which shows family businesses’ responses to changes in the environment. It explains the reasons why family firms transition to the Circular Economy, based on the theory of Socio-Emotional Wealth (SEW. We check the model through the case study of the food retail leader in the Spanish market—Mercadona—which applies policies about energy, resources and waste to become a Circular Economy business model. Because of the strong family character of Mercadona, this case can be useful for the decision-making of other family businesses.

  15. Quasi-phases and pseudo-transitions in one-dimensional models with nearest neighbor interactions

    Science.gov (United States)

    de Souza, S. M.; Rojas, Onofre

    2018-01-01

    There are some particular one-dimensional models, such as the Ising-Heisenberg spin models with a variety of chain structures, which exhibit unexpected behaviors quite similar to the first and second order phase transition, which could be confused naively with an authentic phase transition. Through the analysis of the first derivative of free energy, such as entropy, magnetization, and internal energy, a "sudden" jump that closely resembles a first-order phase transition at finite temperature occurs. However, by analyzing the second derivative of free energy, such as specific heat and magnetic susceptibility at finite temperature, it behaves quite similarly to a second-order phase transition exhibiting an astonishingly sharp and fine peak. The correlation length also confirms the evidence of this pseudo-transition temperature, where a sharp peak occurs at the pseudo-critical temperature. We also present the necessary conditions for the emergence of these quasi-phases and pseudo-transitions.

  16. New Higgs transitions between dual N=2 string models

    International Nuclear Information System (INIS)

    Berglund, P.; Katz, S.; Klemm, A.; Mayr, P.

    1997-01-01

    We describe a new kind of transition between topologically distinct N=2 type II Calabi-Yau vacua through points with enhanced non-abelian gauge symmetries together with fundamental charged matter hyper multiplets. We connect the appearance of matter to the local geometry of the singularity and discuss the relation between the instanton numbers of the Calabi-Yau manifolds taking part in the transition. In a dual heterotic string theory on K3 x T 2 the process corresponds to Higgsing a semi-classical gauge group or equivalently to a variation of the gauge bundle. In special cases the situation reduces to simple conifold transitions in the Coulomb phase of the non-abelian gauge symmetries. (orig.)

  17. Comparison of L-H transition measurements with physics models

    International Nuclear Information System (INIS)

    Carlstrom, T.N.; Burrell, K.H.; Carreras, B.A.

    1999-01-01

    Sawteeth and neutrals are found to have a significant influence on the H-mode power threshold scaling. The ion ∇B drift direction has only a small effect on the edge plasma conditions measured near the plasma midplane but a large effect on the divertor plasma. Since the power threshold changes dramatically with the direction of the ion ∇B drift, this implies that phenomena in the divertor region are critical for the L-H transition. Local conditions at the plasma edge are consistent with several theories of the L-H transition that use edge gradients in their formulation of a critical threshold parameter. However, scatter in the database is too large to distinguish between conditions that lead to an L-H transition and those that remain in L-mode. (author)

  18. Comparison of L-H transition measurements with physics models

    International Nuclear Information System (INIS)

    Carlstrom, T.N.; Burrell, K.H.; Groebner, R.J.

    2001-01-01

    Sawteeth and neutrals are found to have a significant influence on the H-mode power threshold scaling. The ion ∇B drift direction has only a small effect on the edge plasma conditions measured near the plasma midplane but a large effect on the divertor plasma. Since the power threshold changes dramatically with the direction of the ion ∇B drift, this implies that phenomena in the divertor region are critical for the L-H transition. Local conditions at the plasma edge are consistent with several theories of the L-H transition that use edge gradients in their formulation of a critical threshold parameter. However, scatter in the database is too large to distinguish between conditions that lead to an L-H transition and those that remain in L-mode. (author)

  19. A Solvable Model for Nuclear Shape Phase Transitions

    International Nuclear Information System (INIS)

    Levai, G.; Arias, J. M.

    2009-01-01

    There has been considerable interest recently in phase transitions that occur between some well-defined nuclear shapes, e.g. the spherical vibrator, the axially deformed rotor and the γ-unstable rotor, which are assigned to the U(5), SU(3) and 0(6) symmetries. These shape phase transitions occur through critical points of the IBM phase diagram and correspond to rapid structural changes. The first transition of this type describes transition form the spherical to the γ-unstable phase and has been associated with an E(5) symmetry. Later further critical point symmetries e.g. X(5) and Y(5) have also been proposed for transitions between other nuclear shape phases. In another application the chain of even Ru isotopes was considered from A 98 to 112 [2]. The parameters were extracted from a fit to the low-lying energy spectrum of each nucleus and were used to plot the corresponding potential. It was found that up to A =102 the potential is essentially an harmonic oscillator, while at A =104 a rather flat potential was seen, in accordance with the expected phase transition and E(5) symmetry there. With increasing A then the minimum got increasingly deeper and moved away from β = 0. We discuss the possibility of generalizing the formalism in two ways: first by including dependence on the 7 variable allowing for the approximate description of nuclei close to the X(5) symmetry, and second, including higher-lying energy levels in the quasi-exactly solvable formalism

  20. Comparison of L-H transition measurements with physics models

    International Nuclear Information System (INIS)

    Carlstrom, T.N.; Burrell, K.H.; Groebner, R.J.; Leonard, A.W.; Osborne, T.H.; Thomas, D.M.

    1998-12-01

    A technique of fitting a modified hyperbolic tangent to the edge profiles has improved the localization of plasma edge parameters. Non-dimensional edge parameters are broadly consistent with several theories of the L-H transition that use edge gradients in their formulation of a critical threshold parameter. The ion ∇B drift direction has only a small effect on the edge plasma conditions measured near the plasma midplane but a large effect on the divertor plasma. The dramatic change of power threshold with the direction of the ion ∇B drift implies that phenomena in the divertor region may be critical for the L-H transition

  1. Speculative and Hedging Interaction Model in Oil and U.S. Dollar Markets—Phase Transition

    Science.gov (United States)

    Campbell, Michael; Carfì, David

    2018-01-01

    We show that there is a phase transition in the bounded rational Carfì-Musolino model, and the possibility of a market crash. This model has two types of operators: a real economic subject (Air) and one or more investment banks (Bank). It also has two markets: oil spot market and US dollar futures. Bank agents react to Air and equilibrate much more quickly than Air. Thus Air is an acting external agent due to its longer-term investing, whereas the action of the banks equilibrates before Air makes its next transaction. This model constitutes a potential game, and agents crowd their preferences into one of the markets at a critical temperature when air makes no purchases of oil futures.

  2. Mechanism-based model of a mass rapid transit system: A perspective

    Science.gov (United States)

    Legara, Erika Fille; Khoon, Lee Kee; Guang, Hung Gih; Monterola, Christopher

    2015-01-01

    In this paper, we discuss our findings on the spatiotemporal dynamics within the mass rapid transit (MRT) system of Singapore. We show that the trip distribution of Origin-Destination (OD) station pairs follows a power-law, implying the existence of critical OD pairs. We then present and discuss the empirically validated agent-based model (ABM) we have developed. The model allows recreation of the observed statistics and the setting up of various scenarios and their effects on the system, such as increasing the commuter population and the propagation of travel delays within the transportation network. The proposed model further enables identification of bottlenecks that can cause the MRT to break down, and consequently provide foresight on how such disruptions can possibly be managed. This can potentially provide a versatile approach for transport planners and government regulators to make quantifiable policies that optimally balance cost and convenience as a function of the number of the commuting public.

  3. A Low-Carbon-Based Bilevel Optimization Model for Public Transit Network

    Directory of Open Access Journals (Sweden)

    Xu Sun

    2013-01-01

    Full Text Available To satisfy the demand of low-carbon transportation, this paper studies the optimization of public transit network based on the concept of low carbon. Taking travel time, operation cost, energy consumption, pollutant emission, and traffic efficiency as the optimization objectives, a bilevel model is proposed in order to maximize the benefits of both travelers and operators and minimize the environmental cost. Then the model is solved with the differential evolution (DE algorithm and applied to a real network of Baoji city. The results show that the model can not only ensure the benefits of travelers and operators, but can also reduce pollutant emission and energy consumption caused by the operations of buses, which reflects the concept of low carbon.

  4. Transition-Systems, Event Structures, and Unfoldings

    DEFF Research Database (Denmark)

    Nielsen, Mogens; Rozenberg, Grzegorz; Thiagarajan, P.S.

    1995-01-01

    systems. Here we show that by smoothly strengthening the regional axioms for elementary transition systems, one obtains a subclass called occurrence transition system. We then prove that occurrence transition systems are the transition system model of yet another basic model of concurrency, namely, prime......A subclass of transition systems called elementary transition systems can be identified with the help of axioms based on a structural notion called regions. Elementary transition systems have been shown to be the transition system model of a basic system model of net theory called elementary net...

  5. Sectoral transitions - modeling the development from agrarian to service economies

    Science.gov (United States)

    Lutz, Raphael; Spies, Michael; Reusser, Dominik E.; Kropp, Jürgen P.; Rybski, Diego

    2013-04-01

    We consider the sectoral composition of a country's GDP, i.e the partitioning into agrarian, industrial, and service sectors. Exploring a simple system of differential equations we characterise the transfer of GDP shares between the sectors in the course of economic development. The model fits for the majority of countries providing 4 country-specific parameters. Relating the agrarian with the industrial sector, a data collapse over all countries and all years supports the applicability of our approach. Depending on the parameter ranges, country development exhibits different transfer properties. Most countries follow 3 of 8 characteristic paths. The types are not random but show distinct geographic and development patterns.

  6. Plot showing ATLAS limits on Standard Model Higgs production in the mass range 100-600 GeV

    CERN Multimedia

    ATLAS Collaboration

    2011-01-01

    The combined upper limit on the Standard Model Higgs boson production cross section divided by the Standard Model expectation as a function of mH is indicated by the solid line. This is a 95% CL limit using the CLs method in the entire mass range. The dotted line shows the median expected limit in the absence of a signal and the green and yellow bands reflect the corresponding 68% and 95% expected

  7. Plot showing ATLAS limits on Standard Model Higgs production in the mass range 110-150 GeV

    CERN Multimedia

    ATLAS Collaboration

    2011-01-01

    The combined upper limit on the Standard Model Higgs boson production cross section divided by the Standard Model expectation as a function of mH is indicated by the solid line. This is a 95% CL limit using the CLs method in in the low mass range. The dotted line shows the median expected limit in the absence of a signal and the green and yellow bands reflect the corresponding 68% and 95% expected

  8. A Monte Carlo calculation model of electronic portal imaging device for transit dosimetry through heterogeneous media

    Energy Technology Data Exchange (ETDEWEB)

    Yoon, Jihyung; Jung, Jae Won, E-mail: jungj@ecu.edu [Department of Physics, East Carolina University, Greenville, North Carolina 27858 (United States); Kim, Jong Oh [Department of Radiation Oncology, University of Pittsburgh Cancer Institute, Pittsburgh, Pennsylvania 15232 (United States); Yeo, Inhwan [Department of Radiation Medicine, Loma Linda University Medical Center, Loma Linda, California 92354 (United States)

    2016-05-15

    Purpose: To develop and evaluate a fast Monte Carlo (MC) dose calculation model of electronic portal imaging device (EPID) based on its effective atomic number modeling in the XVMC code. Methods: A previously developed EPID model, based on the XVMC code by density scaling of EPID structures, was modified by additionally considering effective atomic number (Z{sub eff}) of each structure and adopting a phase space file from the EGSnrc code. The model was tested under various homogeneous and heterogeneous phantoms and field sizes by comparing the calculations in the model with measurements in EPID. In order to better evaluate the model, the performance of the XVMC code was separately tested by comparing calculated dose to water with ion chamber (IC) array measurement in the plane of EPID. Results: In the EPID plane, calculated dose to water by the code showed agreement with IC measurements within 1.8%. The difference was averaged across the in-field regions of the acquired profiles for all field sizes and phantoms. The maximum point difference was 2.8%, affected by proximity of the maximum points to penumbra and MC noise. The EPID model showed agreement with measured EPID images within 1.3%. The maximum point difference was 1.9%. The difference dropped from the higher value of the code by employing the calibration that is dependent on field sizes and thicknesses for the conversion of calculated images to measured images. Thanks to the Z{sub eff} correction, the EPID model showed a linear trend of the calibration factors unlike those of the density-only-scaled model. The phase space file from the EGSnrc code sharpened penumbra profiles significantly, improving agreement of calculated profiles with measured profiles. Conclusions: Demonstrating high accuracy, the EPID model with the associated calibration system may be used for in vivo dosimetry of radiation therapy. Through this study, a MC model of EPID has been developed, and their performance has been rigorously

  9. Phase transitions in an Ising model for monolayers of coadsorbed atoms

    International Nuclear Information System (INIS)

    Lee, H.H.; Landau, D.P.

    1979-01-01

    A Monte Carlo method is used to study a simple S=1 Ising (lattice-gas) model appropriate for monolayers composed of two kinds of atoms on cubic metal substrates H = K/sub nn/ Σ/sub nn/ S 2 /sub i/zS 2 /sub j/z + J/sub nnn/ Σ/sub nnn/ S/sub i/zS/sub j/z + Δ Σ/sub i/ S 2 /sub i/z (where nn denotes nearest-neighbor and nnn next-nearest-neighbor pairs). The phase diagram is determined over a wide range of Δ and T for K/sub nn//J/sub nnn/=1/4. For small (or negative) Δ we find an antiferromagnetic 2 x 1 ordered phase separated from the disordered state by a line of second-order phase transitions. The 2 x 1 phase is separated by a line of first-order transitions from a c (2 x 2) phase which appears for larger Δ. The 2 x 1 and c (2 x 2) phases become simultaneously critical at a bicritical point and the phase boundary of the c (2 x 2) → disordered transition shows a tricritical point

  10. The influence of phase transitions in phosphatidylethanolamine models on the activity of violaxanthin de-epoxidase.

    Science.gov (United States)

    Vieler, Astrid; Scheidt, Holger A; Schmidt, Peter; Montag, Cindy; Nowoisky, Janine F; Lohr, Martin; Wilhelm, Christian; Huster, Daniel; Goss, Reimund

    2008-04-01

    In the present study, the influence of the phospholipid phase state on the activity of the xanthophyll cycle enzyme violaxanthin de-epoxidase (VDE) was analyzed using different phosphatidylethanolamine species as model lipids. By using (31)P NMR spectroscopy, differential scanning calorimetry and temperature dependent enzyme assays, VDE activity could directly be related to the lipid structures the protein is associated with. Our results show that the gel (L beta) to liquid-crystalline (L alpha) phase transition in these single lipid component systems strongly enhances both the solubilization of the xanthophyll cycle pigment violaxanthin in the membrane and the activity of the VDE. This phase transition has a significantly stronger impact on VDE activity than the transition from the L alpha to the inverted hexagonal (HII) phase. Especially at higher temperatures we found increased VDE reaction rates in the presence of the L alpha phase compared to those in the presence of HII phase forming lipids. Our data furthermore imply that the HII phase is better suited to maintain high VDE activities at lower temperatures.

  11. Cost-related model for transit rates in electric power distribution networks

    International Nuclear Information System (INIS)

    Collstrand, F.

    1994-02-01

    The planned deregulation of the swedish electrical power market will require a new structure of the electrical energy rates. In this report different models of transit rates are studied. The report includes studies of literature and a proposal to a rate structure and is made specifically for Malmoe Energi AB. The differences between various methods of calculating the transfer cost are illustrated. Further, the build-up of the tariff structure and its base elements are discussed. The costs are divided on different categories of costumers and shows the cost for each customer. The new regulations should apply simultaneously to all networks, independent of the voltage level. The transit cost should be based on a number of basic elements: capital cost, operation and maintenance, losses, measuring and administration. Capital cost and operation and maintenance should be charged as power fees, the loss cost as an energy fee and the measuring and administration cost as a fixed fee. The customer bill should be split into two parts, one for the transit cost and one for the energy usage. 15 refs., 37 tabs., 6 figs

  12. Description of radiative transitions in the relativistic string model

    International Nuclear Information System (INIS)

    Berdnikov, E.B.; Nanobashvili, G.G.; Pron'ko, G.P.

    1991-01-01

    The transition operator for a straight-line string in the electromagnetic field has been built. It's matrix elements between the states of arbitrary spin are calculated in lowest order of perturbation theory. The consistensy conditions for the operator of interaction arising due to quantum constraints are also discussed. 12 refs

  13. Flexibility and security : National social models in transitional labour markets

    NARCIS (Netherlands)

    Muffels, R.J.A.; Crouch, Colin; Wilthagen, A.C.J.M.

    2014-01-01

    Aggregate and individual data are used to test the association between employment performance and different ways of reconciling flexibility and security in European labour markets. Particular use is made of statistics on individuals’ labour market transitions as revealed by national labour force

  14. Modeling Patient No-Show History and Predicting Future Outpatient Appointment Behavior in the Veterans Health Administration.

    Science.gov (United States)

    Goffman, Rachel M; Harris, Shannon L; May, Jerrold H; Milicevic, Aleksandra S; Monte, Robert J; Myaskovsky, Larissa; Rodriguez, Keri L; Tjader, Youxu C; Vargas, Dominic L

    2017-05-01

    Missed appointments reduce the efficiency of the health care system and negatively impact access to care for all patients. Identifying patients at risk for missing an appointment could help health care systems and providers better target interventions to reduce patient no-shows. Our aim was to develop and test a predictive model that identifies patients that have a high probability of missing their outpatient appointments. Demographic information, appointment characteristics, and attendance history were drawn from the existing data sets from four Veterans Affairs health care facilities within six separate service areas. Past attendance behavior was modeled using an empirical Markov model based on up to 10 previous appointments. Using logistic regression, we developed 24 unique predictive models. We implemented the models and tested an intervention strategy using live reminder calls placed 24, 48, and 72 hours ahead of time. The pilot study targeted 1,754 high-risk patients, whose probability of missing an appointment was predicted to be at least 0.2. Our results indicate that three variables were consistently related to a patient's no-show probability in all 24 models: past attendance behavior, the age of the appointment, and having multiple appointments scheduled on that day. After the intervention was implemented, the no-show rate in the pilot group was reduced from the expected value of 35% to 12.16% (p value < 0.0001). The predictive model accurately identified patients who were more likely to miss their appointments. Applying the model in practice enables clinics to apply more intensive intervention measures to high-risk patients. Reprint & Copyright © 2017 Association of Military Surgeons of the U.S.

  15. Simulation of seismic waves in the brittle-ductile transition (BDT) using a Burgers model

    Science.gov (United States)

    Poletto, Flavio; Farina, Biancamaria; Carcione, José Maria

    2014-05-01

    (Violay et al. 2012), with steep velocity gradient, and assuming deep basaltic rock with low content of glass. The analysis shows the importance of the assessment of the Arrhenius parameters for the characterization and definition of the rheological models in the simulation of wave propagation in geothermal areas. References Carcione JM. Wave fields in real media: Wave propagation in anisotropic, anelastic, porous and electromagnetic media. Handbook of Geophysical Exploration, vol. 38, Elsevier (2nd edition, revised and extended), 2007. Carcione JM, Poletto F. Seismic rheological model and reflection coefficients of the brittle-ductile transition. Pure and Applied Geophysics, DOI 10.1007/s00024-013-0643-4, 2013. Carcione JM, Poletto F., Farina B., Craglietto, A. Simulation of seismic waves at the Earth crust (brittle-ductile transition) based on the Burgers model. Submitted to Solid Earth , 2013. Violay M, Gibert B, Mainprice D, Evans B, Dautria JM, Azais P, Pezard PA. An experimental study of the brittle-ductile transition of basalt at oceanic crust pressure and temperature conditions. Geophys. Res. 117:1-23, 2012.

  16. A latent transition model of the effects of a teen dating violence prevention initiative.

    Science.gov (United States)

    Williams, Jason; Miller, Shari; Cutbush, Stacey; Gibbs, Deborah; Clinton-Sherrod, Monique; Jones, Sarah

    2015-02-01

    Patterns of physical and psychological teen dating violence (TDV) perpetration, victimization, and related behaviors were examined with data from the evaluation of the Start Strong: Building Healthy Teen Relationships initiative, a dating violence primary prevention program targeting middle school students. Latent class and latent transition models were used to estimate distinct patterns of TDV and related behaviors of bullying and sexual harassment in seventh grade students at baseline and to estimate transition probabilities from one pattern of behavior to another at the 1-year follow-up. Intervention effects were estimated by conditioning transitions on exposure to Start Strong. Latent class analyses suggested four classes best captured patterns of these interrelated behaviors. Classes were characterized by elevated perpetration and victimization on most behaviors (the multiproblem class), bullying perpetration/victimization and sexual harassment victimization (the bully-harassment victimization class), bullying perpetration/victimization and psychological TDV victimization (bully-psychological victimization), and experience of bully victimization (bully victimization). Latent transition models indicated greater stability of class membership in the comparison group. Intervention students were less likely to transition to the most problematic pattern and more likely to transition to the least problem class. Although Start Strong has not been found to significantly change TDV, alternative evaluation models may find important differences. Latent transition analysis models suggest positive intervention impact, especially for the transitions at the most and the least positive end of the spectrum. Copyright © 2015. Published by Elsevier Inc.

  17. Population model for nickel-like gold which transitions to discard

    International Nuclear Information System (INIS)

    Busquet, M.; Bruneau, J.

    1986-04-01

    We have started studies of an extensive population model for gold ionized 49 to 52 times. We shall present in this paper a discussion on the effects of discarding low-rate transitions such as cascades, dielectronic transitions,... Their accounting for, even in a crude way, allow some understanding of typical features of gold spectra

  18. Digital soil mapping as a tool for quantifying state-and-transition models

    Science.gov (United States)

    Ecological sites and associated state-and-transition models (STMs) are rapidly becoming important land management tools in rangeland systems in the US and around the world. Descriptions of states and transitions are largely developed from expert knowledge and generally accepted species and community...

  19. Incorporating unreliability of transit in transport demand models: theoretical and practical approach

    NARCIS (Netherlands)

    van Oort, N.; Brands, Ties; de Romph, E.; Aceves Flores, J.

    2014-01-01

    Nowadays, transport demand models do not explicitly evaluate the impacts of service reliability of transit. Service reliability of transit systems is adversely experienced by users, as it causes additional travel time and unsecure arrival times. Because of this, travelers are likely to perceive a

  20. Integral definition of transition time in the Landau-Zener model

    International Nuclear Information System (INIS)

    Yan Yue; Wu Biao

    2010-01-01

    We give a general definition for the transition time in the Landau-Zener model. This definition allows us to compute numerically the Landau-Zener transition time at any sweeping rate without ambiguity in both diabatic and adiabatic bases. With this new definition, analytical results are obtained in both the adiabatic limit and the sudden limit.

  1. Transition management as a model for managing processes of co-evolution towards sustainable development

    NARCIS (Netherlands)

    R. Kemp (René); D.A. Loorbach (Derk); J. Rotmans (Jan)

    2007-01-01

    textabstractSustainable development requires changes in socio-technical systems and wider societal change - in beliefs, values and governance that co-evolve with technology changes. In this article we present a practical model for managing processes of co-evolution: transition management. Transition

  2. Dynamic Modeling Strategy for Flow Regime Transition in Gas-Liquid Two-Phase Flows

    Directory of Open Access Journals (Sweden)

    Xia Wang

    2012-12-01

    Full Text Available In modeling gas-liquid two-phase flows, the concept of flow regimes has been widely used to characterize the global interfacial structure of the flows. Nearly all constitutive relations that provide closures to the interfacial transfers in two-phase flow models, such as the two-fluid model, are flow regime dependent. Current nuclear reactor safety analysis codes, such as RELAP5, classify flow regimes using flow regime maps or transition criteria that were developed for steady-state, fully-developed flows. As two-phase flows are dynamic in nature, it is important to model the flow regime transitions dynamically to more accurately predict the two-phase flows. The present work aims to develop a dynamic modeling strategy to determine flow regimes in gas-liquid two-phase flows through introduction of interfacial area transport equations (IATEs within the framework of a two-fluid model. The IATE is a transport equation that models the interfacial area concentration by considering the creation of the interfacial area, fluid particle (bubble or liquid droplet disintegration, boiling and evaporation, and the destruction of the interfacial area, fluid particle coalescence and condensation. For flow regimes beyond bubbly flows, a two-group IATE has been proposed, in which bubbles are divided into two groups based on their size and shapes, namely group-1 and group-2 bubbles. A preliminary approach to dynamically identify the flow regimes is discussed, in which discriminators are based on the predicted information, such as the void fraction and interfacial area concentration. The flow regime predicted with this method shows good agreement with the experimental observations.

  3. Mixed-order phase transition in a minimal, diffusion-based spin model.

    Science.gov (United States)

    Fronczak, Agata; Fronczak, Piotr

    2016-07-01

    In this paper we exactly solve, within the grand canonical ensemble, a minimal spin model with the hybrid phase transition. We call the model diffusion based because its Hamiltonian can be recovered from a simple dynamic procedure, which can be seen as an equilibrium statistical mechanics representation of a biased random walk. We outline the derivation of the phase diagram of the model, in which the triple point has the hallmarks of the hybrid transition: discontinuity in the average magnetization and algebraically diverging susceptibilities. At this point, two second-order transition curves meet in equilibrium with the first-order curve, resulting in a prototypical mixed-order behavior.

  4. Phase transitions in the random field Ising model in the presence of a transverse field

    Energy Technology Data Exchange (ETDEWEB)

    Dutta, A.; Chakrabarti, B.K. [Saha Institute of Nuclear Physics, Bidhannagar, Calcutta (India); Stinchcombe, R.B. [Saha Institute of Nuclear Physics, Bidhannagar, Calcutta (India); Department of Physics, Oxford (United Kingdom)

    1996-09-07

    We have studied the phase transition behaviour of the random field Ising model in the presence of a transverse (or tunnelling) field. The mean field phase diagram has been studied in detail, and in particular the nature of the transition induced by the tunnelling (transverse) field at zero temperature. Modified hyper-scaling relation for the zero-temperature transition has been derived using the Suzuki-Trotter formalism and a modified 'Harris criterion'. Mapping of the model to a randomly diluted antiferromagnetic Ising model in uniform longitudinal and transverse field is also given. (author)

  5. A transferable coarse-grained model for diphenylalanine: How to represent an environment driven conformational transition

    Science.gov (United States)

    Dalgicdir, Cahit; Sensoy, Ozge; Peter, Christine; Sayar, Mehmet

    2013-12-01

    One of the major challenges in the development of coarse grained (CG) simulation models that aim at biomolecular structure formation processes is the correct representation of an environment-driven conformational change, for example, a folding/unfolding event upon interaction with an interface or upon aggregation. In the present study, we investigate this transferability challenge for a CG model using the example of diphenylalanine. This dipeptide displays a transition from a trans-like to a cis-like conformation upon aggregation as well as upon transfer from bulk water to the cyclohexane/water interface. Here, we show that one can construct a single CG model that can reproduce both the bulk and interface conformational behavior and the segregation between hydrophobic/hydrophilic medium. While the general strategy to obtain nonbonded interactions in the present CG model is to reproduce solvation free energies of small molecules representing the CG beads in the respective solvents, the success of the model strongly depends on nontrivial decisions one has to make to capture the delicate balance between the bonded and nonbonded interactions. In particular, we found that the peptide's conformational behavior is qualitatively affected by the cyclohexane/water interaction potential, an interaction that does not directly involve the peptide at all but merely influences the properties of the hydrophobic/hydrophilic interface. Furthermore, we show that a small modification to improve the structural/conformational properties of the CG model could dramatically alter the thermodynamic properties.

  6. A transferable coarse-grained model for diphenylalanine: How to represent an environment driven conformational transition

    International Nuclear Information System (INIS)

    Dalgicdir, Cahit; Sensoy, Ozge; Sayar, Mehmet; Peter, Christine

    2013-01-01

    One of the major challenges in the development of coarse grained (CG) simulation models that aim at biomolecular structure formation processes is the correct representation of an environment-driven conformational change, for example, a folding/unfolding event upon interaction with an interface or upon aggregation. In the present study, we investigate this transferability challenge for a CG model using the example of diphenylalanine. This dipeptide displays a transition from a trans-like to a cis-like conformation upon aggregation as well as upon transfer from bulk water to the cyclohexane/water interface. Here, we show that one can construct a single CG model that can reproduce both the bulk and interface conformational behavior and the segregation between hydrophobic/hydrophilic medium. While the general strategy to obtain nonbonded interactions in the present CG model is to reproduce solvation free energies of small molecules representing the CG beads in the respective solvents, the success of the model strongly depends on nontrivial decisions one has to make to capture the delicate balance between the bonded and nonbonded interactions. In particular, we found that the peptide's conformational behavior is qualitatively affected by the cyclohexane/water interaction potential, an interaction that does not directly involve the peptide at all but merely influences the properties of the hydrophobic/hydrophilic interface. Furthermore, we show that a small modification to improve the structural/conformational properties of the CG model could dramatically alter the thermodynamic properties

  7. A transferable coarse-grained model for diphenylalanine: How to represent an environment driven conformational transition

    Energy Technology Data Exchange (ETDEWEB)

    Dalgicdir, Cahit; Sensoy, Ozge; Sayar, Mehmet, E-mail: msayar@ku.edu.tr [College of Engineering, Koç University, 34450 Istanbul (Turkey); Peter, Christine [Max Planck Institute for Polymer Research, 55128 Mainz (Germany); Department of Chemistry, University of Konstanz, 78547 Konstanz (Germany)

    2013-12-21

    One of the major challenges in the development of coarse grained (CG) simulation models that aim at biomolecular structure formation processes is the correct representation of an environment-driven conformational change, for example, a folding/unfolding event upon interaction with an interface or upon aggregation. In the present study, we investigate this transferability challenge for a CG model using the example of diphenylalanine. This dipeptide displays a transition from a trans-like to a cis-like conformation upon aggregation as well as upon transfer from bulk water to the cyclohexane/water interface. Here, we show that one can construct a single CG model that can reproduce both the bulk and interface conformational behavior and the segregation between hydrophobic/hydrophilic medium. While the general strategy to obtain nonbonded interactions in the present CG model is to reproduce solvation free energies of small molecules representing the CG beads in the respective solvents, the success of the model strongly depends on nontrivial decisions one has to make to capture the delicate balance between the bonded and nonbonded interactions. In particular, we found that the peptide's conformational behavior is qualitatively affected by the cyclohexane/water interaction potential, an interaction that does not directly involve the peptide at all but merely influences the properties of the hydrophobic/hydrophilic interface. Furthermore, we show that a small modification to improve the structural/conformational properties of the CG model could dramatically alter the thermodynamic properties.

  8. Linking state-and-transition simulation and timber supply models for forest biomass production scenarios

    Directory of Open Access Journals (Sweden)

    Jennifer K. Costanza

    2015-03-01

    Full Text Available We linked state-and-transition simulation models (STSMs with an economics-based timber supply model to examine landscape dynamics in North Carolina through 2050 for three scenarios of forest biomass production. Forest biomass could be an important source of renewable energy in the future, but there is currently much uncertainty about how biomass production would impact landscapes. In the southeastern US, if forests become important sources of biomass for bioenergy, we expect increased land-use change and forest management. STSMs are ideal for simulating these landscape changes, but the amounts of change will depend on drivers such as timber prices and demand for forest land, which are best captured with forest economic models. We first developed state-and-transition model pathways in the ST-Sim software platform for 49 vegetation and land-use types that incorporated each expected type of landscape change. Next, for the three biomass production scenarios, the SubRegional Timber Supply Model (SRTS was used to determine the annual areas of thinning and harvest in five broad forest types, as well as annual areas converted among those forest types, agricultural, and urban lands. The SRTS output was used to define area targets for STSMs in ST-Sim under two scenarios of biomass production and one baseline, business-as-usual scenario. We show that ST-Sim output matched SRTS targets in most cases. Landscape dynamics results indicate that, compared with the baseline scenario, forest biomass production leads to more forest and, specifically, more intensively managed forest on the landscape by 2050. Thus, the STSMs, informed by forest economics models, provide important information about potential landscape effects of bioenergy production.

  9. Linking state-and-transition simulation and timber supply models for forest biomass production scenarios

    Science.gov (United States)

    Costanza, Jennifer; Abt, Robert C.; McKerrow, Alexa; Collazo, Jaime

    2015-01-01

    We linked state-and-transition simulation models (STSMs) with an economics-based timber supply model to examine landscape dynamics in North Carolina through 2050 for three scenarios of forest biomass production. Forest biomass could be an important source of renewable energy in the future, but there is currently much uncertainty about how biomass production would impact landscapes. In the southeastern US, if forests become important sources of biomass for bioenergy, we expect increased land-use change and forest management. STSMs are ideal for simulating these landscape changes, but the amounts of change will depend on drivers such as timber prices and demand for forest land, which are best captured with forest economic models. We first developed state-and-transition model pathways in the ST-Sim software platform for 49 vegetation and land-use types that incorporated each expected type of landscape change. Next, for the three biomass production scenarios, the SubRegional Timber Supply Model (SRTS) was used to determine the annual areas of thinning and harvest in five broad forest types, as well as annual areas converted among those forest types, agricultural, and urban lands. The SRTS output was used to define area targets for STSMs in ST-Sim under two scenarios of biomass production and one baseline, business-as-usual scenario. We show that ST-Sim output matched SRTS targets in most cases. Landscape dynamics results indicate that, compared with the baseline scenario, forest biomass production leads to more forest and, specifically, more intensively managed forest on the landscape by 2050. Thus, the STSMs, informed by forest economics models, provide important information about potential landscape effects of bioenergy production.

  10. Latent Transition Analysis with a Mixture Item Response Theory Measurement Model

    Science.gov (United States)

    Cho, Sun-Joo; Cohen, Allan S.; Kim, Seock-Ho; Bottge, Brian

    2010-01-01

    A latent transition analysis (LTA) model was described with a mixture Rasch model (MRM) as the measurement model. Unlike the LTA, which was developed with a latent class measurement model, the LTA-MRM permits within-class variability on the latent variable, making it more useful for measuring treatment effects within latent classes. A simulation…

  11. Plectasin shows intracellular activity against Staphylococcus aureus in human THP-1 monocytes and in a mouse peritonitis model

    DEFF Research Database (Denmark)

    Brinch, Karoline Sidelmann; Sandberg, Anne; Baudoux, Pierre

    2009-01-01

    was maintained (maximal relative efficacy [E(max)], 1.0- to 1.3-log reduction in CFU) even though efficacy was inferior to that of extracellular killing (E(max), >4.5-log CFU reduction). Animal studies included a novel use of the mouse peritonitis model, exploiting extra- and intracellular differentiation assays...... concentration. These findings stress the importance of performing studies of extra- and intracellular activity since these features cannot be predicted from traditional MIC and killing kinetic studies. Application of both the THP-1 and the mouse peritonitis models showed that the in vitro results were similar...

  12. Wetting and layering transitions of a spin-1/2 Ising model in a random transverse field

    International Nuclear Information System (INIS)

    Bahmad, L.; Benyoussef, A.; El-Kenz, A.; Ez-Zahraouy, H.

    2000-09-01

    The effect of a random transverse field (RTF) on the wetting and layering transitions of a spin-1/2 Ising model, in the presence of bulk and surface fields, is studied within an effective field theory by using the differential operator technique. Indeed, the dependencies of the wetting temperature and wetting transverse field on the probability of the presence of a transverse field are established. For specific values of the surface field we show the existence of a critical probability p, above which wetting and layering transitions disappear. (author)

  13. Modeling high-order synchronization epochs and transitions in the cardiovascular system

    Science.gov (United States)

    García-Álvarez, David; Bahraminasab, Alireza; Stefanovska, Aneta; McClintock, Peter V. E.

    2007-12-01

    We study a system consisting of two coupled phase oscillators in the presence of noise. This system is used as a model for the cardiorespiratory interaction in wakefulness and anaesthesia. We show that longrange correlated noise produces transitions between epochs with different n:m synchronisation ratios, as observed in the cardiovascular system. Also, we see that, the smaller the noise (specially the one acting on the slower oscillator), the bigger the synchronisation time, exactly as happens in anaesthesia compared with wakefulness. The dependence of the synchronisation time on the couplings, in the presence of noise, is studied; such dependence is softened by low-frequency noise. We show that the coupling from the slow oscillator to the fast one (respiration to heart) plays a more important role in synchronisation. Finally, we see that the isolines with same synchronisation time seem to be a linear combination of the two couplings.

  14. Unsupervised machine learning account of magnetic transitions in the Hubbard model

    Science.gov (United States)

    Ch'ng, Kelvin; Vazquez, Nick; Khatami, Ehsan

    2018-01-01

    We employ several unsupervised machine learning techniques, including autoencoders, random trees embedding, and t -distributed stochastic neighboring ensemble (t -SNE), to reduce the dimensionality of, and therefore classify, raw (auxiliary) spin configurations generated, through Monte Carlo simulations of small clusters, for the Ising and Fermi-Hubbard models at finite temperatures. Results from a convolutional autoencoder for the three-dimensional Ising model can be shown to produce the magnetization and the susceptibility as a function of temperature with a high degree of accuracy. Quantum fluctuations distort this picture and prevent us from making such connections between the output of the autoencoder and physical observables for the Hubbard model. However, we are able to define an indicator based on the output of the t -SNE algorithm that shows a near perfect agreement with the antiferromagnetic structure factor of the model in two and three spatial dimensions in the weak-coupling regime. t -SNE also predicts a transition to the canted antiferromagnetic phase for the three-dimensional model when a strong magnetic field is present. We show that these techniques cannot be expected to work away from half filling when the "sign problem" in quantum Monte Carlo simulations is present.

  15. Phase-field model of insulator-to-metal transition in VO2 under an electric field

    Science.gov (United States)

    Shi, Yin; Chen, Long-Qing

    2018-05-01

    The roles of an electric field and electronic doping in insulator-to-metal transitions are still not well understood. Here we formulated a phase-field model of insulator-to-metal transitions by taking into account both structural and electronic instabilities as well as free electrons and holes in VO2, a strongly correlated transition-metal oxide. Our phase-field simulations demonstrate that in a VO2 slab under a uniform electric field, an abrupt universal resistive transition occurs inside the supercooling region, in sharp contrast to the conventional Landau-Zener smooth electric breakdown. We also show that hole doping may decouple the structural and electronic phase transitions in VO2, leading to a metastable metallic monoclinic phase which could be stabilized through a geometrical confinement and the size effect. This work provides a general mesoscale thermodynamic framework for understanding the influences of electric field, electronic doping, and stress and strain on insulator-to-metal transitions and the corresponding mesoscale domain structure evolution in VO2 and related strongly correlated systems.

  16. Calculation model for 16N transit time in the secondary side of steam generators

    International Nuclear Information System (INIS)

    Liu Songyu; Xu Jijun; Xu Ming

    1998-01-01

    The 16 N transit time is essential to determine the leak-rate of steam generator tubes leaks with 16 N monitoring system, which is a new technique. A model was developed for calculation 16 N transit time in the secondary side of steam generators. According to the flow characters of secondary side fluid, the transit times divide into four sectors from tube sheet to the sensor on steam line. The model assumes that 16 N is moving as vapor phase in the secondary-side. So the model for vapor velocity distribution in tube bundle is presented in detail. The 16 N transit time calculation results of this model compare with these of EDF on steam generator of Qinshan NPP

  17. Relation between quantum phase transitions and classical instability points in the pairing model

    International Nuclear Information System (INIS)

    Reis, Mauricio; Terra Cunha, M.O.; Oliveira, Adelcio C.; Nemes, M.C.

    2005-01-01

    A quantum phase transition, characterized by an accumulation of energy levels in the espectrum of the model, is associated with a qualitative change in the corresponding classical dynamic obtained upon generalized coherent states of angular momentum

  18. Experimental results showing the internal three-component velocity field and outlet temperature contours for a model gas turbine combustor

    CSIR Research Space (South Africa)

    Meyers, BC

    2011-09-01

    Full Text Available by the American Institute of Aeronautics and Astronautics Inc. All rights reserved ISABE-2011-1129 EXPERIMENTAL RESULTS SHOWING THE INTERNAL THREE-COMPONENT VELOCITY FIELD AND OUTLET TEMPERATURE CONTOURS FOR A MODEL GAS TURBINE COMBUSTOR BC Meyers*, GC... identifier c Position identifier F Fuel i Index L (Combustor) Liner OP Orifice plate Introduction There are often inconsistencies when comparing experimental and Computational Fluid Dynamics (CFD) simulations for gas turbine combustors [1...

  19. Nonequilibrium phase transitions in finite arrays of globally coupled Stratonovich models: strong coupling limit

    International Nuclear Information System (INIS)

    Senf, Fabian; Altrock, Philipp M; Behn, Ulrich

    2009-01-01

    A finite array of N globally coupled Stratonovich models exhibits a continuous nonequilibrium phase transition. In the limit of strong coupling, there is a clear separation of timescales of centre of mass and relative coordinates. The latter relax very fast to zero and the array behaves as a single entity described by the centre of mass coordinate. We compute analytically the stationary probability distribution and the moments of the centre of mass coordinate. The scaling behaviour of the moments near the critical value of the control parameter a c (N) is determined. We identify a crossover from linear to square root scaling with increasing distance from a c . The crossover point approaches a c in the limit N→∞ which reproduces previous results for infinite arrays. Our results are obtained in both the Fokker-Planck and the Langevin approach and are corroborated by numerical simulations. For a general class of models we show that the transition manifold in the parameter space depends on N and is determined by the scaling behaviour near a fixed point of the stochastic flow.

  20. On the non-equilibrium phase transition in evaporation–deposition models

    International Nuclear Information System (INIS)

    Connaughton, Colm; Zaboronski, Oleg; Rajesh, R

    2010-01-01

    We study a system of diffusing–aggregating particles with deposition and evaporation of monomers. By combining theoretical and numerical methods, we establish a clearer understanding of the non-equilibrium phase transition known to occur in such systems. The transition is between a growing phase in which the total mass increases for all time and a non-growing phase in which the total mass is bounded. In addition to deriving rigorous bounds on the position of the transition point, we show that the growing phase is in the same universality class as diffusion–aggregation models with deposition but no evaporation. In this regime, the flux of mass in mass space becomes asymptotically constant (as a function of mass) at large times. The magnitude of this flux depends on the evaporation rate but the fact that it is asymptotically constant does not. The associated constant flux relation exactly determines the scaling of the two-point mass correlation function with mass in all dimensions while higher order mass correlation functions exhibit nonlinear multi-scaling in dimension less than two. If the deposition rate is below some critical value, a different stationary state is reached at large times characterized by a global balance between evaporation and deposition with a scale-by-scale balance between the mass fluxes due to aggregation and evaporation. Both the mass distribution and the flux decay exponentially in this regime. Finally, we develop a scaling theory of the model near the critical point, which yields non-trivial scaling laws for the critical two-point mass correlation function with mass. These results are well supported by numerical measurements

  1. Double transitions, non-Ising criticality and the critical absorbing phase in an interacting monomer–dimer model on a square lattice

    International Nuclear Information System (INIS)

    Nam, Keekwon; Kim, Bongsoo; Park, Sangwoong; Lee, Sung Jong

    2011-01-01

    We present a numerical study on an interacting monomer–dimer model with nearest neighbor repulsion on a square lattice, which possesses two symmetric absorbing states. The model is observed to exhibit two nearby continuous transitions: the Z 2 symmetry-breaking order–disorder transition and the absorbing transition with directed percolation criticality. We find that the symmetry-breaking transition shows a non-Ising critical behavior, and that the absorbing phase becomes critical, in the sense that the critical decay of the dimer density observed at the absorbing transition persists even within the absorbing phase. Our findings call for further studies on microscopic models and the corresponding continuum description belonging to the generalized voter university class. (letter)

  2. Modeling on bubbly to churn flow pattern transition in narrow rectangular channel

    International Nuclear Information System (INIS)

    Wang Yanlin; Chen Bingde; Huang Yanping; Wang Junfeng

    2012-01-01

    A theoretical model based on some reasonable concepts was developed to predict the bubbly flow to churn flow pattern transition in vertical narrow rectangular channel under flow boiling condition. The maximum size of ideal bubble in narrow rectangular channel was calculated based on previous literature. The thermal hydraulics boundary condition of bubbly to churn flow pattern transition was exported from Helmholtz and maximum size of ideal bubble. The theoretical model was validated by existent experimental data. (authors)

  3. Application of the algebraic RNG model for transition simulation. [renormalization group theory

    Science.gov (United States)

    Lund, Thomas S.

    1990-01-01

    The algebraic form of the RNG model of Yakhot and Orszag (1986) is investigated as a transition model for the Reynolds averaged boundary layer equations. It is found that the cubic equation for the eddy viscosity contains both a jump discontinuity and one spurious root. A yet unpublished transformation to a quartic equation is shown to remove the numerical difficulties associated with the discontinuity, but only at the expense of merging both the physical and spurious root of the cubic. Jumps between the branches of the resulting multiple-valued solution are found to lead to oscillations in flat plate transition calculations. Aside from the oscillations, the transition behavior is qualitatively correct.

  4. Charge and transition densities of samarium isotopes in the interacting Boson model

    International Nuclear Information System (INIS)

    Moinester, M.A.; Alster, J.; Dieperink, A.E.L.

    1982-01-01

    The interacting boson approximation (IBA) model has been used to interpret the ground-state charge distributions and lowest 2 + transition charge densities of the even samarium isotopes for A = 144-154. Phenomenological boson transition densities associated with the nucleons comprising the s-and d-bosons of the IBA were determined via a least squares fit analysis of charge and transition densities in the Sm isotopes. The application of these boson trasition densities to higher excited 0 + and 2 + states of Sm, and to 0 + and 2 + transitions in neighboring nuclei, such as Nd and Gd, is described. IBA predictions for the transition densities of the three lowest 2 + levels of 154 Gd are given and compared to theoretical transition densities based on Hartree-Fock calculations. The deduced quadrupole boson transition densities are in fair agreement with densities derived previously from 150 Nd data. It is also shown how certain moments of the best fit boson transition densities can simply and sucessfully describe rms radii, isomer shifts, B(E2) strengths, and transition radii for the Sm isotopes. (orig.)

  5. Using state-and-transition modeling to account for imperfect detection in invasive species management

    Science.gov (United States)

    Frid, Leonardo; Holcombe, Tracy; Morisette, Jeffrey T.; Olsson, Aaryn D.; Brigham, Lindy; Bean, Travis M.; Betancourt, Julio L.; Bryan, Katherine

    2013-01-01

    Buffelgrass, a highly competitive and flammable African bunchgrass, is spreading rapidly across both urban and natural areas in the Sonoran Desert of southern and central Arizona. Damages include increased fire risk, losses in biodiversity, and diminished revenues and quality of life. Feasibility of sustained and successful mitigation will depend heavily on rates of spread, treatment capacity, and cost–benefit analysis. We created a decision support model for the wildland–urban interface north of Tucson, AZ, using a spatial state-and-transition simulation modeling framework, the Tool for Exploratory Landscape Scenario Analyses. We addressed the issues of undetected invasions, identifying potentially suitable habitat and calibrating spread rates, while answering questions about how to allocate resources among inventory, treatment, and maintenance. Inputs to the model include a state-and-transition simulation model to describe the succession and control of buffelgrass, a habitat suitability model, management planning zones, spread vectors, estimated dispersal kernels for buffelgrass, and maps of current distribution. Our spatial simulations showed that without treatment, buffelgrass infestations that started with as little as 80 ha (198 ac) could grow to more than 6,000 ha by the year 2060. In contrast, applying unlimited management resources could limit 2060 infestation levels to approximately 50 ha. The application of sufficient resources toward inventory is important because undetected patches of buffelgrass will tend to grow exponentially. In our simulations, areas affected by buffelgrass may increase substantially over the next 50 yr, but a large, upfront investment in buffelgrass control could reduce the infested area and overall management costs.

  6. Food pattern modeling shows that the 2010 Dietary Guidelines for sodium and potassium cannot be met simultaneously

    Science.gov (United States)

    Maillot, Matthieu; Monsivais, Pablo; Drewnowski, Adam

    2013-01-01

    The 2010 US Dietary Guidelines recommended limiting intake of sodium to 1500 mg/d for people older than 50 years, African Americans, and those suffering from chronic disease. The guidelines recommended that all other people consume less than 2300 mg sodium and 4700 mg of potassium per day. The theoretical feasibility of meeting the sodium and potassium guidelines while simultaneously maintaining nutritional adequacy of the diet was tested using food pattern modeling based on linear programming. Dietary data from the National Health and Nutrition Examination Survey 2001-2002 were used to create optimized food patterns for 6 age-sex groups. Linear programming models determined the boundary conditions for the potassium and sodium content of the modeled food patterns that would also be compatible with other nutrient goals. Linear programming models also sought to determine the amounts of sodium and potassium that both would be consistent with the ratio of Na to K of 0.49 and would cause the least deviation from the existing food habits. The 6 sets of food patterns were created before and after an across-the-board 10% reduction in sodium content of all foods in the Food and Nutrition Database for Dietary Studies. Modeling analyses showed that the 2010 Dietary Guidelines for sodium were incompatible with potassium guidelines and with nutritionally adequate diets, even after reducing the sodium content of all US foods by 10%. Feasibility studies should precede or accompany the issuing of dietary guidelines to the public. PMID:23507224

  7. Spectral properties near the Mott transition in the two-dimensional Hubbard model

    Science.gov (United States)

    Kohno, Masanori

    2013-03-01

    Single-particle excitations near the Mott transition in the two-dimensional (2D) Hubbard model are investigated by using cluster perturbation theory. The Mott transition is characterized by the loss of the spectral weight from the dispersing mode that leads continuously to the spin-wave excitation of the Mott insulator. The origins of the dominant modes of the 2D Hubbard model near the Mott transition can be traced back to those of the one-dimensional Hubbard model. Various anomalous spectral features observed in cuprate high-temperature superconductors, such as the pseudogap, Fermi arc, flat band, doping-induced states, hole pockets, and spinon-like and holon-like branches, as well as giant kink and waterfall in the dispersion relation, are explained in a unified manner as properties near the Mott transition in a 2D system.

  8. An Optimal Allocation Model of Public Transit Mode Proportion for the Low-Carbon Transportation

    Directory of Open Access Journals (Sweden)

    Linjun Lu

    2015-01-01

    Full Text Available Public transit has been widely recognized as a potential way to develop low-carbon transportation. In this paper, an optimal allocation model of public transit mode proportion (MPMP has been built to achieve the low-carbon public transit. Optimal ratios of passenger traffic for rail, bus, and taxi are derived by running the model using typical data. With different values of traffic demand, construction cost, travel time, and accessibilities, MPMP can generate corresponding optimal ratios, benefiting decision impacts analysis and decision makers. Instead of considering public transit as a united system, it is separated into units in this paper. And Shanghai is used to test model validity and practicality.

  9. Role of secondary instability theory and parabolized stability equations in transition modeling

    Science.gov (United States)

    El-Hady, Nabil M.; Dinavahi, Surya P.; Chang, Chau-Lyan; Zang, Thomas A.

    1993-01-01

    In modeling the laminar-turbulent transition region, the designer depends largely on benchmark data from experiments and/or direct numerical simulations that are usually extremely expensive. An understanding of the evolution of the Reynolds stresses, turbulent kinetic energy, and quantifies in the transport equations like the dissipation and production is essential in the modeling process. The secondary instability theory and the parabolized stability equations method are used to calculate these quantities, which are then compared with corresponding quantities calculated from available direct numerical simulation data for the incompressible boundary-layer flow of laminar-turbulent transition conditions. The potential of the secondary instability theory and the parabolized stability equations approach in predicting these quantities is discussed; results indicate that inexpensive data that are useful for transition modeling in the early stages of the transition region can be provided by these tools.

  10. Skeletal Muscle Differentiation on a Chip Shows Human Donor Mesoangioblasts' Efficiency in Restoring Dystrophin in a Duchenne Muscular Dystrophy Model.

    Science.gov (United States)

    Serena, Elena; Zatti, Susi; Zoso, Alice; Lo Verso, Francesca; Tedesco, F Saverio; Cossu, Giulio; Elvassore, Nicola

    2016-12-01

    : Restoration of the protein dystrophin on muscle membrane is the goal of many research lines aimed at curing Duchenne muscular dystrophy (DMD). Results of ongoing preclinical and clinical trials suggest that partial restoration of dystrophin might be sufficient to significantly reduce muscle damage. Different myogenic progenitors are candidates for cell therapy of muscular dystrophies, but only satellite cells and pericytes have already entered clinical experimentation. This study aimed to provide in vitro quantitative evidence of the ability of mesoangioblasts to restore dystrophin, in terms of protein accumulation and distribution, within myotubes derived from DMD patients, using a microengineered model. We designed an ad hoc experimental strategy to miniaturize on a chip the standard process of muscle regeneration independent of variables such as inflammation and fibrosis. It is based on the coculture, at different ratios, of human dystrophin-positive myogenic progenitors and dystrophin-negative myoblasts in a substrate with muscle-like physiological stiffness and cell micropatterns. Results showed that both healthy myoblasts and mesoangioblasts restored dystrophin expression in DMD myotubes. However, mesoangioblasts showed unexpected efficiency with respect to myoblasts in dystrophin production in terms of the amount of protein produced (40% vs. 15%) and length of the dystrophin membrane domain (210-240 µm vs. 40-70 µm). These results show that our microscaled in vitro model of human DMD skeletal muscle validated previous in vivo preclinical work and may be used to predict efficacy of new methods aimed at enhancing dystrophin accumulation and distribution before they are tested in vivo, reducing time, costs, and variability of clinical experimentation. This study aimed to provide in vitro quantitative evidence of the ability of human mesoangioblasts to restore dystrophin, in terms of protein accumulation and distribution, within myotubes derived from

  11. Modeling of the heat transfer in bypass transitional boundary-layer flows

    Science.gov (United States)

    Simon, Frederick F.; Stephens, Craig A.

    1991-01-01

    A low Reynolds number k-epsilon turbulence model and conditioned momentum, energy and turbulence equations were used to predict bypass transition heat transfer on a flat plate in a high-disturbance environment with zero pressure gradient. The use of conditioned equations was demonstrated to be an improvement over the use of the global-time-averaged equations for the calculation of velocity profiles and turbulence intensity profiles in the transition region of a boundary layer. The approach of conditioned equations is extended to include heat transfer and a modeling of transition events is used to predict transition onset and the extent of transition on a flat plate. The events, which describe the boundary layer at the leading edge, result in boundary-layer regions consisting of: (1) the laminar, (2) pseudolaminar, (3) transitional, and (4) turbulent boundary layers. The modeled transition events were incorporated into the TEXSTAN 2-D boundary-layer code which is used to numerically predict the heat transfer. The numerical predictions in general compared well with the experimental data and revealed areas where additional experimental information is needed.

  12. First Order Electroweak Phase Transition from (Non)Conformal Extensions of the Standard Model

    DEFF Research Database (Denmark)

    Sannino, Francesco; Virkajärvi, Jussi

    2015-01-01

    We analyse and compare the finite-temperature electroweak phase transition properties of classically (non)conformal extensions of the Standard Model. In the classically conformal scenarios the breaking of the electroweak symmetry is generated radiatively. The models feature new scalars coupled co...... the associated models are testable at the upcoming Large Hadron Collider run two experiments....

  13. The Multi-state Latent Factor Intensity Model for Credit Rating Transitions

    NARCIS (Netherlands)

    Koopman, S.J.; Lucas, A.; Monteiro, A.

    2008-01-01

    A new empirical reduced-form model for credit rating transitions is introduced. It is a parametric intensity-based duration model with multiple states and driven by exogenous covariates and latent dynamic factors. The model has a generalized semi-Markov structure designed to accommodate many of the

  14. The Ising model and its applications to a phase transition of biological interest

    International Nuclear Information System (INIS)

    Cabrera, G.G.; Stein-Barana, A.M.; Zuckermann, M.J.

    1984-01-01

    It is investigated a gel-liquid crystal phase transition employing a two-state model equivalent to the Spin 1/2 Ising Model with applied magnetic field. The model is studied from the standpoint of the cluster variational method of Kikuchi for cooperative phenomena. (M.W.O.) [pt

  15. A model description of the first-order phase transition in MnFeP1-x As x

    International Nuclear Information System (INIS)

    Tegus, O.; Lin, G.X.; Dagula, W.; Fuquan, B.; Zhang, L.; Brueck, E.; Boer, F.R. de; Buschow, K.H.J.

    2005-01-01

    We present a description of the critical behavior at the first-order phase transition in MnFeP 1- x As x system in terms of the Bean-Rodbell model. Within the molecular-field approximation, the Gibbs free energy of the system is expressed in terms of the exchange interaction, the elastic energy, the entropy term, the pressure term and the Zeeman energy. A magnetic-state equation has been obtained by minimizing the Gibbs free energy with respect to the volume and the magnetization. The characteristic parameters for the phase transition observed in this system have been obtained by fitting our experimental data. The results show that the magnetoelastic coupling plays a very important role in the mechanism of the phase transition

  16. ΔS=1 weak transitions in the Skyrme model

    International Nuclear Information System (INIS)

    Praszalowicz; Trampetic, J.

    1985-01-01

    We calculate the octet matrix elements of the operator (anti du)sub(L)(anti us)sub(L) in the Skyrme model and compare them with the quark model predictions. We find that the agreement between the two models is quite satisfactory. (orig.)

  17. Climate Modelling Shows Increased Risk to Eucalyptus sideroxylon on the Eastern Coast of Australia Compared to Eucalyptus albens

    Directory of Open Access Journals (Sweden)

    Farzin Shabani

    2017-11-01

    Full Text Available Aim: To identify the extent and direction of range shift of Eucalyptus sideroxylon and E. albens in Australia by 2050 through an ensemble forecast of four species distribution models (SDMs. Each was generated using four global climate models (GCMs, under two representative concentration pathways (RCPs. Location: Australia. Methods: We used four SDMs of (i generalized linear model, (ii MaxEnt, (iii random forest, and (iv boosted regression tree to construct SDMs for species E. sideroxylon and E. albens under four GCMs including (a MRI-CGCM3, (b MIROC5, (c HadGEM2-AO and (d CCSM4, under two RCPs of 4.5 and 6.0. Here, the true skill statistic (TSS index was used to assess the accuracy of each SDM. Results: Results showed that E. albens and E. sideroxylon will lose large areas of their current suitable range by 2050 and E. sideroxylon is projected to gain in eastern and southeastern Australia. Some areas were also projected to remain suitable for each species between now and 2050. Our modelling showed that E. sideroxylon will lose suitable habitat on the western side and will not gain any on the eastern side because this region is one the most heavily populated areas in the country, and the populated areas are moving westward. The predicted decrease in E. sideroxylon’s distribution suggests that land managers should monitor its population closely, and evaluate whether it meets criteria for a protected legal status. Main conclusions: Both Eucalyptus sideroxylon and E. albens will be negatively affected by climate change and it is projected that E. sideroxylon will be at greater risk of losing habitat than E. albens.

  18. Coadministration of doxorubicin and etoposide loaded in camel milk phospholipids liposomes showed increased antitumor activity in a murine model

    Directory of Open Access Journals (Sweden)

    Maswadeh HM

    2015-04-01

    Full Text Available Hamzah M Maswadeh,1 Ahmed N Aljarbou,1 Mohammed S Alorainy,2 Arshad H Rahmani,3 Masood A Khan3 1Department of Pharmaceutics, College of Pharmacy, 2Department of Pharmacology and Therapeutics, College of Medicine, 3College of Applied Medical Sciences, Qassim University, Buraydah, Kingdom of Saudi Arabia Abstract: Small unilamellar vesicles from camel milk phospholipids (CML mixture or from 1,2 dipalmitoyl-sn-glycero-3-phosphatidylcholine (DPPC were prepared, and anticancer drugs doxorubicin (Dox or etoposide (ETP were loaded. Liposomal formulations were used against fibrosarcoma in a murine model. Results showed a very high percentage of Dox encapsulation (~98% in liposomes (Lip prepared from CML-Lip or DPPC-Lip, whereas the percentage of encapsulations of ETP was on the lower side, 22% of CML-Lip and 18% for DPPC-Lip. Differential scanning calorimetry curves show that Dox enhances the lamellar formation in CML-Lip, whereas ETP enhances the nonlamellar formation. Differential scanning calorimetry curves also showed that the presence of Dox and ETP together into DPPC-Lip produced the interdigitation effect. The in vivo anticancer activity of liposomal formulations of Dox or ETP or a combination of both was assessed against benzopyrene (BAP-induced fibrosarcoma in a murine model. Tumor-bearing mice treated with a combination of Dox and ETP loaded into CML-Lip showed increased survival and reduced tumor growth compared to other groups, including the combination of Dox and ETP in DPPC-Lip. Fibrosarcoma-bearing mice treated with a combination of free (Dox + ETP showed much higher tumor growth compared to those groups treated with CML-Lip-(Dox + ETP or DPPC-Lip-(Dox + ETP. Immunohistochemical study was also performed to show the expression of tumor-suppressor PTEN, and it was found that the tumor tissues from the group of mice treated with a combination of free (Dox + ETP showed greater loss of cytoplasmic PTEN than tumor tissues obtained from the

  19. Agent based models of language competition: macroscopic descriptions and order–disorder transitions

    International Nuclear Information System (INIS)

    Vazquez, F; Castelló, X; San Miguel, M

    2010-01-01

    We investigate the dynamics of two agent based models of language competition. In the first model, each individual can be in one of two possible states, either using language X or language Y, while the second model incorporates a third state XY, representing individuals that use both languages (bilinguals). We analyze the models on complex networks and two-dimensional square lattices by analytical and numerical methods, and show that they exhibit a transition from one-language dominance to language coexistence. We find that the coexistence of languages is more difficult to maintain in the bilinguals model, where the presence of bilinguals facilitates the ultimate dominance of one of the two languages. A stability analysis reveals that the coexistence is more unlikely to happen in poorly connected than in fully connected networks, and that the dominance of just one language is enhanced as the connectivity decreases. This dominance effect is even stronger in a two-dimensional space, where domain coarsening tends to drive the system towards language consensus

  20. Proton-neutron sdg boson model and spherical-deformed phase transition

    International Nuclear Information System (INIS)

    Otsuka, Takaharu; Sugita, Michiaki

    1988-01-01

    The spherical-deformed phase transition in nuclei is described in terms of the proton-neutron sdg interacting boson model. The sdg hamiltonian is introduced to model the pairing + quadrupole interaction. The phase transition is reproduced in this framework as a function of the boson number in the Sm isotopes, while all parameters in the hamiltonian are kept constant at values reasonable from the shell-model point of view. The sd IBM is derived from this model through the renormalization of g-boson effects. (orig.)

  1. Proton-neutron sdg boson model and spherical-deformed phase transition

    Science.gov (United States)

    Otsuka, Takaharu; Sugita, Michiaki

    1988-12-01

    The spherical-deformed phase transition in nuclei is described in terms of the proton-neutron sdg interacting boson model. The sdg hamiltonian is introduced to model the pairing+quadrupole interaction. The phase transition is reproduced in this framework as a function of the boson number in the Sm isotopes, while all parameters in the hamiltonian are kept constant at values reasonable from the shell-model point of view. The sd IBM is derived from this model through the renormalization of g-boson effects.

  2. Proton-neutron sdg boson model and spherical-deformed phase transition

    Energy Technology Data Exchange (ETDEWEB)

    Otsuka, Takaharu; Sugita, Michiaki

    1988-12-15

    The spherical-deformed phase transition in nuclei is described in terms of the proton-neutron sdg interacting boson model. The sdg hamiltonian is introduced to model the pairing + quadrupole interaction. The phase transition is reproduced in this framework as a function of the boson number in the Sm isotopes, while all parameters in the hamiltonian are kept constant at values reasonable from the shell-model point of view. The sd IBM is derived from this model through the renormalization of g-boson effects.

  3. Interacting cosmic fluids and phase transitions under a holographic modeling for dark energy

    Energy Technology Data Exchange (ETDEWEB)

    Lepe, Samuel [Pontificia Universidad Catolica de Valparaiso, Instituto de Fisica, Facultad de Ciencias, Valparaiso (Chile); Pena, Francisco [Universidad de La Frontera, Departamento de Ciencias Fisicas, Facultad de Ingenieria y Ciencias, Temuco (Chile)

    2016-09-15

    We discuss the consequences of possible sign changes of the Q-function which measures the transfer of energy between dark energy and dark matter. We investigate this scenario from a holographic perspective by modeling dark energy by a linear parametrization and CPL-parametrization of the equation of state (ω). By imposing the strong constraint of the second law of thermodynamics, we show that the change of sign for Q, due to the cosmic evolution, imply changes in the temperatures of dark energy and dark matter. We also discuss the phase transitions, in the past and future, experienced by dark energy and dark matter (or, equivalently, the sign changes of their heat capacities). (orig.)

  4. Transition from static to kinetic friction: insights from a 2D model.

    Science.gov (United States)

    Trømborg, J; Scheibert, J; Amundsen, D S; Thøgersen, K; Malthe-Sørenssen, A

    2011-08-12

    We describe a 2D spring-block model for the transition from static to kinetic friction at an elastic-slider-rigid-substrate interface obeying a minimalistic friction law (Amontons-Coulomb). By using realistic boundary conditions, a number of previously unexplained experimental results on precursory microslip fronts are successfully reproduced. From the analysis of the interfacial stresses, we derive a prediction for the evolution of the precursor length as a function of the applied loads, as well as an approximate relationship between microscopic and macroscopic friction coefficients. We show that the stress buildup due to both elastic loading and microslip-related relaxations depends only weakly on the underlying shear crack propagation dynamics. Conversely, crack speed depends strongly on both the instantaneous stresses and the friction coefficients, through a nontrivial scaling parameter.

  5. Macroscopic Quantum States and Quantum Phase Transition in the Dicke Model

    International Nuclear Information System (INIS)

    Lian Jin-Ling; Zhang Yuan-Wei; Liang Jiu-Qing

    2012-01-01

    The energy spectrum of Dicke Hamiltonians with and without the rotating wave approximation for an arbitrary atom number is obtained analytically by means of the variational method, in which the effective pseudo-spin Hamiltonian resulting from the expectation value in the boson-field coherent state is diagonalized by the spin-coherent-state transformation. In addition to the ground-state energy, an excited macroscopic quantum-state is found corresponding to the south- and north-pole gauges of the spin-coherent states, respectively. Our results of ground-state energies in exact agreement with various approaches show that these models exhibit a zero-temperature quantum phase transition of the second order for any number of atoms, which was commonly considered as a phenomenon of the thermodynamic limit with the atom number tending to infinity. The critical behavior of the geometric phase is analyzed. (general)

  6. Interacting cosmic fluids and phase transitions under a holographic modeling for dark energy

    International Nuclear Information System (INIS)

    Lepe, Samuel; Pena, Francisco

    2016-01-01

    We discuss the consequences of possible sign changes of the Q-function which measures the transfer of energy between dark energy and dark matter. We investigate this scenario from a holographic perspective by modeling dark energy by a linear parametrization and CPL-parametrization of the equation of state (ω). By imposing the strong constraint of the second law of thermodynamics, we show that the change of sign for Q, due to the cosmic evolution, imply changes in the temperatures of dark energy and dark matter. We also discuss the phase transitions, in the past and future, experienced by dark energy and dark matter (or, equivalently, the sign changes of their heat capacities). (orig.)

  7. Modelling and numerical simulation of liquid-vapor phase transitions; Modelisation et simulation numerique des transitions de phase liquide-vapeur

    Energy Technology Data Exchange (ETDEWEB)

    Caro, F

    2004-11-15

    This work deals with the modelling and numerical simulation of liquid-vapor phase transition phenomena. The study is divided into two part: first we investigate phase transition phenomena with a Van Der Waals equation of state (non monotonic equation of state), then we adopt an alternative approach with two equations of state. In the first part, we study the classical viscous criteria for selecting weak solutions of the system used when the equation of state is non monotonic. Those criteria do not select physical solutions and therefore we focus a more recent criterion: the visco-capillary criterion. We use this criterion to exactly solve the Riemann problem (which imposes solving an algebraic scalar non linear equation). Unfortunately, this step is quite costly in term of CPU which prevent from using this method as a ground for building Godunov solvers. That is why we propose an alternative approach two equations of state. Using the least action principle, we propose a phase changing two-phase flow model which is based on the second thermodynamic principle. We shall then describe two equilibrium submodels issued from the relaxations processes when instantaneous equilibrium is assumed. Despite the weak hyperbolicity of the last sub-model, we propose stable numerical schemes based on a two-step strategy involving a convective step followed by a relaxation step. We show the ability of the system to simulate vapor bubbles nucleation. (author)

  8. Prediction and Analysis of the Nonsteady Transition and Separation Processes on an Oscillating Wind Turbine Airfoil using the \\gamma-Re_\\theta Transition Model.

    Energy Technology Data Exchange (ETDEWEB)

    Nandi, Taraj; Brasseur, James; Vijayakumar, Ganesh

    2016-01-04

    This study is aimed at gaining insight into the nonsteady transitional boundary layer dynamics of wind turbine blades and the predictive capabilities of URANS based transition and turbulence models for similar physics through the analysis of a controlled flow with similar nonsteady parameters.

  9. Station Model for Rail Transit System Using Cellular Automata

    International Nuclear Information System (INIS)

    Xun Jing; Ning Bin; Li Keping

    2009-01-01

    In this paper, we propose a new cellular automata model to simulate the railway traffic at station. Based on NaSch model, the proposed station model is composed of the main track and the siding track. Two different schemes for trains passing through station are considered. One is the scheme of 'pass by the main track, start and stop by the siding track'. The other is the scheme of 'two tracks play the same role'. We simulate the train movement using the proposed model and analyze the traffic flow at station. The simulation results demonstrate that the proposed cellular automata model can be successfully used for the simulations of railway traffic. Some characteristic behaviors of railway traffic flow can be reproduced. Moreover, the simulation values of the minimum headway are close to the theoretical values. This result demonstrates the dependability and availability of the proposed model. (general)

  10. Exploring the Factors that Impact on Transit Use through an Ordered Probit Model: the Case of Metro of Madrid

    Energy Technology Data Exchange (ETDEWEB)

    Eboli, L.; Forciniti, C.; Mazzulla, G.; Calvo, F.

    2016-07-01

    The configuration of urban areas is the result of a cyclic relationship between land use and transportation system: the changes in transportation system arrangements influence the localisation of residence and economic activities, as well as the changes in land use affect transportation system characteristics. In this context, by operating on land use, travel demand can be shift from the individual transportation modes to transit systems. In the literature, many conceptual models were proposed to describe the complex relationship between land use and travel behaviour. In addition to spatial variation, the study of travel demand shows the categorical variation of variables. This work aims to analyse the influence of the categorical variation of variables impacting on transit use. An ordered probit model is proposed for evaluating how transit use depends on variables related to socio-economic characteristics of population, territorial features, accessibility, and transportation system. The study case is Madrid metro network (Spain). The results show a strong influence of characteristics of population and land use variables on daily trips made using metro system and highlighted the aspects that mainly impact on the choice to travel by metro, providing useful suggestions for shifting people from individual transportation mode to transit systems. (Author)

  11. Elementary excitations and the phase transition in the bimodal Ising spin glass model

    International Nuclear Information System (INIS)

    Jinuntuya, N; Poulter, J

    2012-01-01

    We show how the nature of the phase transition in the two-dimensional bimodal Ising spin glass model can be understood in terms of elementary excitations. Although the energy gap with the ground state is expected to be 4J in the ferromagnetic phase, a gap 2J is in fact found if the finite lattice is wound around a cylinder of odd circumference L. This 2J gap is really a finite size effect that should not occur in the thermodynamic limit of the ferromagnet. The spatial influence of the frustration must be limited and not wrap around the system if L is large enough. In essence, the absence of 2J excitations defines the ferromagnetic phase without recourse to calculating the magnetization or investigating the system response to domain wall defects. This study directly investigates the response to temperature. We also estimate the defect concentration where the phase transition to the spin glass state occurs. The value p c = 0.1045(11) is in reasonable agreement with the literature

  12. A predictive model for steam generator degradation through PW SCC in roll transitions

    International Nuclear Information System (INIS)

    Hernalsteen, P.

    1989-01-01

    The tubebundle of pressurized water reactors steam generators (SG) has been affected by numerous corrosion damages, in various nuclear plants, all over the world. One of the main problems is primary water stress corrosion cracking (PWSCC) in the roll transitions of mill annealed Inconel 600 tubes mechanically expanded in the SG tubesheet. Multiple axial cracks are initiated from the primary side and grow rapidly through water; they further grow in length and propagate outside of the roll transition. In most plants, both in Europe and in the USA, short penning has been performed on the inside diameter of the expanded section of susceptible tubing. While the compressive surface layer induced by peening is considered to be efficient in preventing crack initiation, field experience showed that it did not prevent preexisting cracks from further propagation. For the usual case of SG peened after crack initiation, there is thus a remaining concern about the long term evolution of the population of cracked tubes. This paper presents a model to predict the SG degradation process in order to support both the maintenance policy and the longer term repair/replacement strategy

  13. Coleman-Weinberg phase transition in extended Higgs models

    International Nuclear Information System (INIS)

    Sher, M.

    1996-01-01

    In Coleman-Weinberg symmetry breaking, all dimensionful parameters vanish and the symmetry is broken by loop corrections. Before Coleman-Weinberg symmetry breaking in the standard model was experimentally ruled out, it had already been excluded on cosmological grounds. In this Brief Report, the cosmological analysis is carried out for Coleman-Weinberg models with extended Higgs sectors, which are not experimentally ruled out, and general constraints on such models are given. copyright 1996 The American Physical Society

  14. Discovery of Transition Rules for Cellular Automata Using Artificial Bee Colony and Particle Swarm Optimization Algorithms in Urban Growth Modeling

    Directory of Open Access Journals (Sweden)

    Fereydoun Naghibi

    2016-12-01

    Full Text Available This paper presents an advanced method in urban growth modeling to discover transition rules of cellular automata (CA using the artificial bee colony (ABC optimization algorithm. Also, comparisons between the simulation results of CA models optimized by the ABC algorithm and the particle swarm optimization algorithms (PSO as intelligent approaches were performed to evaluate the potential of the proposed methods. According to previous studies, swarm intelligence algorithms for solving optimization problems such as discovering transition rules of CA in land use change/urban growth modeling can produce reasonable results. Modeling of urban growth as a dynamic process is not straightforward because of the existence of nonlinearity and heterogeneity among effective involved variables which can cause a number of challenges for traditional CA. ABC algorithm, the new powerful swarm based optimization algorithms, can be used to capture optimized transition rules of CA. This paper has proposed a methodology based on remote sensing data for modeling urban growth with CA calibrated by the ABC algorithm. The performance of ABC-CA, PSO-CA, and CA-logistic models in land use change detection is tested for the city of Urmia, Iran, between 2004 and 2014. Validations of the models based on statistical measures such as overall accuracy, figure of merit, and total operating characteristic were made. We showed that the overall accuracy of the ABC-CA model was 89%, which was 1.5% and 6.2% higher than those of the PSO-CA and CA-logistic model, respectively. Moreover, the allocation disagreement (simulation error of the simulation results for the ABC-CA, PSO-CA, and CA-logistic models are 11%, 12.5%, and 17.2%, respectively. Finally, for all evaluation indices including running time, convergence capability, flexibility, statistical measurements, and the produced spatial patterns, the ABC-CA model performance showed relative improvement and therefore its superiority was

  15. Modelling public transport passenger flows in the era of intelligent transport systems COST Action TU1004 (TransITs)

    CERN Document Server

    Noekel, Klaus

    2016-01-01

    This book shows how transit assignment models can be used to describe and predict the patterns of network patronage in public transport systems. It provides a fundamental technical tool that can be employed in the process of designing, implementing and evaluating measures and/or policies to improve the current state of transport systems within given financial, technical and social constraints. The book offers a unique methodological contribution to the field of transit assignment because, moving beyond “traditional” models, it describes more evolved variants that can reproduce: • intermodal networks with high- and low-frequency services; • realistic behavioural hypotheses underpinning route choice; • time dependency in frequency-based models; and • assumptions about the knowledge that users have of network conditions that are consistent with the present and future level of information that intelligent transport systems (ITS) can provide. The book also considers the practical perspective of practit...

  16. Electroweak phase transition in an extension of the standard model with scalar color octet

    International Nuclear Information System (INIS)

    Ham, S. W.; Shim, Seong-A; Oh, S. K.

    2010-01-01

    In an extension of the standard model with a scalar color octet, the possibility of the strongly first-order electroweak phase transition is studied by examining the finite-temperature effective Higgs potential at the one-loop level. It is found that there are wide regions in the parameter space that allow the strongly first-order electroweak phase transition, where the Higgs boson mass is larger than the experimental lower bound of 115 GeV, and the masses of the scalar color octet is around 200 GeV. The parameter regions may be explored at the LHC with respect to the electroweak phase transition.

  17. Evidence from Business Strategy of Mutual Fund Managers after the Financial Crisis - Panel Smooth Transition Regression Model

    OpenAIRE

    Joe-Ming Lee

    2013-01-01

    This study applies by the panel transition regression (PSTR) model to investigate the nonlinear dynamic relationship between equity fund flow and investment volatility in Taiwan. Our empirical results show that the equity fund managers will be different business strategy under the volatility threshold value and the control variables of asset of funds, management fee and Turnover indicator. After the financial crisis, the threshold of volatility will be an important index to different business...

  18. A phase-transition induced by the struggle for life in a competitive coexistence model in ecology

    International Nuclear Information System (INIS)

    Wio, H.S.; Kuperman, M.N.

    1994-07-01

    We have studied a spatially homogeneous model of an ecological system consisting of two species: a strong and a weak one, competing for a single food resource. The inclusion of a term corresponding to intraspecies competition, in particular for the strong species, shows that, it a certain threshold value is overcome, the classical result on extinction and coexistence of Lotka-Volterra type equations can drastically change yielding a kind of phase-transition to a coexistence phase. (author). 18 refs, 2 figs

  19. 68Ga/177Lu-labeled DOTA-TATE shows similar imaging and biodistribution in neuroendocrine tumor model.

    Science.gov (United States)

    Liu, Fei; Zhu, Hua; Yu, Jiangyuan; Han, Xuedi; Xie, Qinghua; Liu, Teli; Xia, Chuanqin; Li, Nan; Yang, Zhi

    2017-06-01

    Somatostatin receptors are overexpressed in neuroendocrine tumors, whose endogenous ligands are somatostatin. DOTA-TATE is an analogue of somatostatin, which shows high binding affinity to somatostatin receptors. We aim to evaluate the 68 Ga/ 177 Lu-labeling DOTA-TATE kit in neuroendocrine tumor model for molecular imaging and to try human-positron emission tomography/computed tomography imaging of 68 Ga-DOTA-TATE in neuroendocrine tumor patients. DOTA-TATE kits were formulated and radiolabeled with 68 Ga/ 177 Lu for 68 Ga/ 177 Lu-DOTA-TATE (M-DOTA-TATE). In vitro and in vivo stability of 177 Lu-DOTA-TATE were performed. Nude mice bearing human tumors were injected with 68 Ga-DOTA-TATE or 177 Lu-DOTA-TATE for micro-positron emission tomography and micro-single-photon emission computed tomography/computed tomography imaging separately, and clinical positron emission tomography/computed tomography images of 68 Ga-DOTA-TATE were obtained at 1 h post-intravenous injection from patients with neuroendocrine tumors. Micro-positron emission tomography and micro-single-photon emission computed tomography/computed tomography imaging of 68 Ga-DOTA-TATE and 177 Lu-DOTA-TATE both showed clear tumor uptake which could be blocked by excess DOTA-TATE. In addition, 68 Ga-DOTA-TATE-positron emission tomography/computed tomography imaging in neuroendocrine tumor patients could show primary and metastatic lesions. 68 Ga-DOTA-TATE and 177 Lu-DOTA-TATE could accumulate in tumors in animal models, paving the way for better clinical peptide receptor radionuclide therapy for neuroendocrine tumor patients in Asian population.

  20. (Non-) Gibbsianness and Phase Transitions in Random Lattice Spin Models

    NARCIS (Netherlands)

    Külske, C.

    1999-01-01

    We consider disordered lattice spin models with finite-volume Gibbs measures µΛ[η](dσ). Here σ denotes a lattice spin variable and η a lattice random variable with product distribution P describing the quenched disorder of the model. We ask: when will the joint measures limΛ↑Zd P(dη)µΛ[η](dσ) be

  1. Transition from Model to Proof: Example of Water Treatment Plant

    Science.gov (United States)

    Güler, Gürsel

    2016-01-01

    The aim of this study was to research the prospective mathematics teachers' ability to construct a mathematical model for a real life problem and to prove these models by generalizing them to use in similar situations. The study was conducted with 129 prospective teachers determined on a volunteering basis. The data were obtained with the help of…

  2. Relieving the Impact of Transit Signal Priority on Passenger Cars through a Bilevel Model

    Directory of Open Access Journals (Sweden)

    Ding Wang

    2017-01-01

    Full Text Available Transit signal priority (TSP is an effective control strategy to improve transit operations on the urban network. However, the TSP may sacrifice the right-of-way of vehicles from side streets which have only few transit vehicles; therefore, how to minimize the negative impact of TSP strategy on the side streets is an important issue to be addressed. Concerning the typical mixed-traffic flow pattern and heavy transit volume in China, a bilevel model is proposed in this paper: the upper-level model focused on minimizing the vehicle delay in the nonpriority direction while ensuring acceptable delay variation in transit priority direction, and the lower-level model aimed at minimizing the average passenger delay in the entire intersection. The parameters which will affect the efficiency of the bilevel model have been analyzed based on a hypothetical intersection. Finally, a real-world intersection has been studied, and the average vehicle delay in the nonpriority direction decreased 11.28 s and 22.54 s (under different delay variation constraint compared to the models that only minimize average passenger delay, while the vehicle delay in the priority direction increased only 1.37 s and 2.87 s; the results proved the practical applicability and efficiency of the proposed bilevel model.

  3. Recent developments in the super transition array model for spectral simulation of LTE plasmas

    International Nuclear Information System (INIS)

    Bar-Shalom, A.; Oreg, J.; Goldstein, W.H.

    1992-01-01

    Recently developed sub-picosecond pulse lasers have been used to create hot, near solid density plasmas. Since these plasmas are nearly in local thermodynamic equilibrium (LTE), their emission spectra involve a huge number of populated configurations. A typical spectrum is a combination of many unresolved clusters of emission, each containing an immense number of overlapping, unresolvable bound-bound and bound-free transitions. Under LTE, or near LTE conditions, traditional detailed configuration or detailed term spectroscopic models are not capable of handling the vast number of transitions involved. The average atom (AA) model, on the other hand, accounts for all relevant transitions, but in an oversimplified fashion that ignores all spectral structure. The Super Transition Array (STA) model, which has been developed in recent years, combines the simplicity and comprehensiveness of the AA model with the accuracy of detailed term accounting. The resolvable structure of spectral clusters is revealed by successively increasing the number of distinct STA's, until convergence is attained. The limit of this procedure is a detailed unresolved transition array (UTA) spectrum, with a term-broadened line for each accessible configuration-to-configuration transition, weighted by the relevant Boltzman population. In practice, this UTA spectrum is actually obtained using only a few thousand to tens of thousands of STA's (as opposed, typically, to billions of UTAs). The central result of STA theory is a set of formulas for the moments (total intensity, average transition energy, variance) of an STA. In calculating the moments, detailed relativistic first order quantum transition energies and probabilities are used. The energy appearing in the Boltzman factor associated with each level in a superconfiguration is the zero order result corrected by a superconfiguration averaged first order correction. Examples and application to recent measurements are presented

  4. The model of metal-insulator phase transition in vanadium oxide

    International Nuclear Information System (INIS)

    Vikhnin, V.S.; Lysenko, S.; Rua, A.; Fernandez, F.; Liu, H.

    2005-01-01

    Thermally induced metal-insulator phase transitions (PT) in VO 2 thin films are studied theoretically and experimentally. The hysteresis phenomena in the region of the transition for different type thin films were investigated. The phenomenological model of the PT is suggested. The charge transfer-lattice instability in VO 2 metallic phase is considered as basis of the first order metal-insulator PT in VO 2 . The charge transfer is treated as an order parameter

  5. Analytic properties of the Ruelle ζ-function for mean field models of phase transition

    International Nuclear Information System (INIS)

    Hallerberg, Sarah; Just, Wolfram; Radons, Guenter

    2005-01-01

    We evaluate by analytical means the Ruelle ζ-function for a spin model with global coupling. The implications of the ferromagnetic phase transitions for the analytical properties of the ζ-function are discussed in detail. In the paramagnetic phase the ζ-function develops a single branch point. In the low-temperature regime two branch points appear which correspond to the ferromagnetic state and the metastable state. The results are typical for any Ginsburg-Landau-type phase transition

  6. Simulating the electroweak phase transition in the SU(2) Higgs model

    International Nuclear Information System (INIS)

    Fodor, Z.; Hein, J.; Jansen, K.; Jaster, A.; Montvay, I.

    1994-09-01

    Numerical simulations are performed to study the finite temperature phase transition in the SU(2) Higgs model on the lattice. In the presently investigated range of the Higgs boson mass, below 50 GeV, the phase transition turns out to be of first order and its strength is rapidly decreasing with increasing Higgs boson mass. In order to control the systematic errors, we also perform studies of scaling violations and of finite volume effects. (orig.)

  7. The BACHD Rat Model of Huntington Disease Shows Specific Deficits in a Test Battery of Motor Function.

    Science.gov (United States)

    Manfré, Giuseppe; Clemensson, Erik K H; Kyriakou, Elisavet I; Clemensson, Laura E; van der Harst, Johanneke E; Homberg, Judith R; Nguyen, Huu Phuc

    2017-01-01

    Rationale : Huntington disease (HD) is a progressive neurodegenerative disorder characterized by motor, cognitive and neuropsychiatric symptoms. HD is usually diagnosed by the appearance of motor deficits, resulting in skilled hand use disruption, gait abnormality, muscle wasting and choreatic movements. The BACHD transgenic rat model for HD represents a well-established transgenic rodent model of HD, offering the prospect of an in-depth characterization of the motor phenotype. Objective : The present study aims to characterize different aspects of motor function in BACHD rats, combining classical paradigms with novel high-throughput behavioral phenotyping. Methods : Wild-type (WT) and transgenic animals were tested longitudinally from 2 to 12 months of age. To measure fine motor control, rats were challenged with the pasta handling test and the pellet reaching test. To evaluate gross motor function, animals were assessed by using the holding bar and the grip strength tests. Spontaneous locomotor activity and circadian rhythmicity were assessed in an automated home-cage environment, namely the PhenoTyper. We then integrated existing classical methodologies to test motor function with automated home-cage assessment of motor performance. Results : BACHD rats showed strong impairment in muscle endurance at 2 months of age. Altered circadian rhythmicity and locomotor activity were observed in transgenic animals. On the other hand, reaching behavior, forepaw dexterity and muscle strength were unaffected. Conclusions : The BACHD rat model exhibits certain features of HD patients, like muscle weakness and changes in circadian behavior. We have observed modest but clear-cut deficits in distinct motor phenotypes, thus confirming the validity of this transgenic rat model for treatment and drug discovery purposes.

  8. Routes to chaos in continuous mechanical systems: Part 2. Modelling transitions from regular to chaotic dynamics

    International Nuclear Information System (INIS)

    Krysko, A.V.; Awrejcewicz, J.; Papkova, I.V.; Krysko, V.A.

    2012-01-01

    In second part of the paper both classical and novel scenarios of transition from regular to chaotic dynamics of dissipative continuous mechanical systems are studied. A detailed analysis allowed us to detect the already known classical scenarios of transition from periodic to chaotic dynamics, and in particular the Feigenbaum scenario. The Feigenbaum constant was computed for all continuous mechanical objects studied in the first part of the paper. In addition, we illustrate and discuss different and novel scenarios of transition of the analysed systems from regular to chaotic dynamics, and we show that the type of scenario depends essentially on excitation parameters.

  9. A statistical method for model extraction and model selection applied to the temperature scaling of the L–H transition

    International Nuclear Information System (INIS)

    Peluso, E; Gelfusa, M; Gaudio, P; Murari, A

    2014-01-01

    Access to the H mode of confinement in tokamaks is characterized by an abrupt transition, which has been the subject of continuous investigation for decades. Various theoretical models have been developed and multi-machine databases of experimental data have been collected. In this paper, a new methodology is reviewed for the investigation of the scaling laws for the temperature threshold to access the H mode. The approach is based on symbolic regression via genetic programming and allows first the extraction of the most statistically reliable models from the available experimental data. Nonlinear fitting is then applied to the mathematical expressions found by symbolic regression; this second step permits to easily compare the quality of the data-driven scalings with the most widely accepted theoretical models. The application of a complete set of statistical indicators shows that the data-driven scaling laws are qualitatively better than the theoretical models. The main limitations of the theoretical models are that they are all expressed as power laws, which are too rigid to fit the available experimental data and to extrapolate to ITER. The proposed method is absolutely general and can be applied to the extraction or scaling law from any experimental database of sufficient statistical relevance. (paper)

  10. A Feeder-Bus Dispatch Planning Model for Emergency Evacuation in Urban Rail Transit Corridors

    Science.gov (United States)

    Wang, Yun; Yan, Xuedong; Zhou, Yu; Zhang, Wenyi

    2016-01-01

    The mobility of modern metropolises strongly relies on urban rail transit (URT) systems, and such a heavy dependence causes that even minor service interruptions would make the URT systems unsustainable. This study aims at optimally dispatching the ground feeder-bus to coordinate with the urban rails’ operation for eliminating the effect of unexpected service interruptions in URT corridors. A feeder-bus dispatch planning model was proposed for the collaborative optimization of URT and feeder-bus cooperation under emergency situations and minimizing the total evacuation cost of the feeder-buses. To solve the model, a concept of dummy feeder-bus system is proposed to transform the non-linear model into traditional linear programming (ILP) model, i.e., traditional transportation problem. The case study of Line #2 of Nanjing URT in China was adopted to illustrate the model application and sensitivity analyses of the key variables. The modeling results show that as the evacuation time window increases, the total evacuation cost as well as the number of dispatched feeder-buses decrease, and the dispatched feeder-buses need operate for more times along the feeder-bus line. The number of dispatched feeder-buses does not show an obvious change with the increase of parking spot capacity and time window, indicating that simply increasing the parking spot capacity would cause huge waste for the emergent bus utilization. When the unbalanced evacuation demand exists between stations, the more feeder-buses are needed. The method of this study will contribute to improving transportation emergency management and resource allocation for URT systems. PMID:27676179

  11. Glass Transition Temperature of Saccharide Aqueous Solutions Estimated with the Free Volume/Percolation Model.

    Science.gov (United States)

    Constantin, Julian Gelman; Schneider, Matthias; Corti, Horacio R

    2016-06-09

    The glass transition temperature of trehalose, sucrose, glucose, and fructose aqueous solutions has been predicted as a function of the water content by using the free volume/percolation model (FVPM). This model only requires the molar volume of water in the liquid and supercooled regimes, the molar volumes of the hypothetical pure liquid sugars at temperatures below their pure glass transition temperatures, and the molar volumes of the mixtures at the glass transition temperature. The model is simplified by assuming that the excess thermal expansion coefficient is negligible for saccharide-water mixtures, and this ideal FVPM becomes identical to the Gordon-Taylor model. It was found that the behavior of the water molar volume in trehalose-water mixtures at low temperatures can be obtained by assuming that the FVPM holds for this mixture. The temperature dependence of the water molar volume in the supercooled region of interest seems to be compatible with the recent hypothesis on the existence of two structure of liquid water, being the high density liquid water the state of water in the sugar solutions. The idealized FVPM describes the measured glass transition temperature of sucrose, glucose, and fructose aqueous solutions, with much better accuracy than both the Gordon-Taylor model based on an empirical kGT constant dependent on the saccharide glass transition temperature and the Couchman-Karasz model using experimental heat capacity changes of the components at the glass transition temperature. Thus, FVPM seems to be an excellent tool to predict the glass transition temperature of other aqueous saccharides and polyols solutions by resorting to volumetric information easily available.

  12. Long-range string orders and topological quantum phase transitions in the one-dimensional quantum compass model.

    Science.gov (United States)

    Wang, Hai Tao; Cho, Sam Young

    2015-01-14

    In order to investigate the quantum phase transition in the one-dimensional quantum compass model, we numerically calculate non-local string correlations, entanglement entropy and fidelity per lattice site by using the infinite matrix product state representation with the infinite time evolving block decimation method. In the whole range of the interaction parameters, we find that four distinct string orders characterize the four different Haldane phases and the topological quantum phase transition occurs between the Haldane phases. The critical exponents of the string order parameters β = 1/8 and the cental charges c = 1/2 at the critical points show that the topological phase transitions between the phases belong to an Ising type of universality classes. In addition to the string order parameters, the singularities of the second derivative of the ground state energies per site, the continuous and singular behaviors of the Von Neumann entropy and the pinch points of the fidelity per lattice site manifest that the phase transitions between the phases are of the second-order, in contrast to the first-order transition suggested in previous studies.

  13. Modeling and control of distributed energy systems during transition between grid connected and standalone modes

    Science.gov (United States)

    Arafat, Md Nayeem

    weights or coefficients. Voltage source inverters interfacing the DGs as well as the proposed transition control algorithms have been modeled to analyze the stability of the algorithms in different configurations. The performances of the proposed algorithms are verified through simulation and experimental studies. It has been found that the proposed control techniques can provide smooth power flow to the local loads during the GC, SA and transition modes.

  14. Numerical modeling of the transition from low to high confinement in magnetically confined plasma

    International Nuclear Information System (INIS)

    Rasmussen, J Juul; Nielsen, A H; Madsen, J; Naulin, V; Xu, G S

    2016-01-01

    The transition dynamics from low (L) to high (H) mode confinement in magnetically confined plasmas is investigated using a four-field drift fluid model—HESEL (Hot Edge-Sol-Electrostatic). The model includes profile evolution and is solved in a 2D domain at the out-board mid-plane of a tokamak including both open and closed field lines. The results reveal different types of L–H-like transitions in response to ramping up the input power by increasing the ion temperature in the edge region. For a fast rising input power we obtain an abrupt transition, and for a slow rising power we obtain a L–I–H transition with an intermediate I-phase displaying limit-cycle oscillations (LCO). The model recovers the power threshold for the L–H transition, the scaling of the threshold with the density and with the loss-rate in the SOL, indicating a decrease in power threshold when switching from single to double null configuration. The results hold promises for developing full predictive modeling of the L–H transition, which is an essential step in understanding and optimizing fusion devices. (paper)

  15. A toy MCT model for multiple glass transitions: Double swallow tail singularity

    Energy Technology Data Exchange (ETDEWEB)

    Ryzhov, V.N. [Institute for High Pressure Physics, Russian Academy of Sciences, Troitsk 142190, Moscow region (Russian Federation); Moscow Institute of Physics and Technology, 141700 Moscow (Russian Federation); Tareyeva, E.E. [Institute for High Pressure Physics, Russian Academy of Sciences, Troitsk 142190, Moscow region (Russian Federation)

    2014-11-07

    We propose a toy model to describe in the frame of Mode Coupling Theory multiple glass transitions. The model is based on the postulated simple form for static structure factor as a sum of two delta-functions. This form makes it possible to solve the MCT equations in almost analytical way. The phase diagram is governed by two swallow tails resulting from two A{sub 4} singularities and includes liquid–glass transition and multiple glasses. The diagram has much in common with those of binary and quasibinary systems. - Highlights: • A simple toy model is proposed for description of glass–glass transitions. • The static structure factor of the model has the form of a sum of delta-functions. • The phase diagram contains A{sub 4} bifurcation singularities and A{sub 3} end points. • The results can be applied for the qualitative description of quasibinary systems.

  16. Modeling glass transition and aging processes in nanocomposites and polymer thin films

    Science.gov (United States)

    Pryamitsyn, Victor; Ganesan, Venkat

    2010-03-01

    We use a lattice kinetic model of glass transition to study the role of confinement and the presence of nano-inclusions. We have studied freely suspended films of glass-formers and its nanocomposites with ``plastifying'' and ``hardening'' nanoparticles. Using our model we determine the thickness and nanoparticle load dependencies of the Kauzmann temperature T0 and the fragility parameter. We found the glass transition temperature increases with the thickness of the film and the volume fraction of ``hardening'' nanoparticles , while Tg decreases with increase in the loading of ``plastifying'' nanoparticles. We found that the isothermal free volume relaxation rate of the nanocomposite thin film, usually referred as an aging, correlates with the glass transition temperature shift. We also studied the relations between our lattice model and Curro's, Kovacs and Struik's phenomenological models of free volume reduction to deduce physical insights into the mechanisms governing aging processes in thin films and nanocomposites.

  17. Winding transitions at finite energy and temperature: An O(3) model

    International Nuclear Information System (INIS)

    Habib, S.; Mottola, E.; Tinyakov, P.

    1996-01-01

    Winding number transitions in the two-dimensional softly broken O(3) nonlinear σ model are studied at finite energy and temperature. New periodic instanton solutions which dominate the semiclassical transition amplitudes are found analytically at low energies, and numerically for all energies up to the sphaleron scale. The Euclidean period β of these finite energy instantons increases with energy, contrary to the behavior found in the Abelian Higgs model or simple one-dimensional systems. This results in a sharp crossover from instanton-dominated tunneling to sphaleron-dominated thermal activation at a certain critical temperature. Since this behavior is traceable to the soft breaking of conformal invariance by the mass term in the σ model, semiclassical winding number transition amplitudes in the electroweak theory in 3+1 dimensions should exhibit a similar sharp crossover. We argue that this is indeed the case in the standard model for M H W . copyright 1996 The American Physical Society

  18. Pressure induced valence transitions in the Anderson lattice model

    International Nuclear Information System (INIS)

    Bernhard, B.H.; Coqblin, B.

    2009-01-01

    We apply the equation of motion method to the Anderson lattice model, which describes the physical properties of heavy fermion compounds. In particular, we focus here on the variation of the number of f electrons with pressure, associated to the crossover from the Kondo regime to the intermediate valence regime. We treat here the non-magnetic case and introduce an improved approximation, which consists of an alloy analogy based decoupling for the Anderson lattice model. It is implemented by partial incorporation of the spatial correlations contained in higher-order Green's functions involved in the problem that have been formerly neglected. As it has been verified in the framework of the Hubbard model, the alloy analogy avoids the breakdown of sum rules and is more appropriate to explore the asymmetric case of the periodic Anderson Hamiltonian. The densities of states for a simple cubic lattice are calculated for various values of the model parameters V, t, E f , and U.

  19. New bounds on the phase transition line in a non-compact abelian lattice Higgs model

    International Nuclear Information System (INIS)

    Nill, F.

    1987-01-01

    The Higgs expectation value and the 't Hooft loop are investigated as order respectively disorder parameters in a fixed-length Higgs model of Villain type with gauge group R. Based on either observable the phase transition line is shown to be monotonically decreasing and Lipschitz continuous with Lipschitz constant 4d in dimension d ≥ 3. This gives new bounds on the phase transition line in terms of its endpoints, i.e. the critical couplings of the Z-gauge model and the XY-model with Villain action, respectively. (orig.)

  20. Development of boiling transition analysis code TCAPE-INS/B based on mechanistic methods for BWR fuel bundles. Models and validations with boiling transition experimental data

    International Nuclear Information System (INIS)

    Ishida, Naoyuki; Utsuno, Hideaki; Kasahara, Fumio

    2003-01-01

    The Boiling Transition (BT) analysis code TCAPE-INS/B based on the mechanistic methods coupled with subchannel analysis has been developed for the evaluation of the integrity of Boiling Water Reactor (BWR) fuel rod bundles under abnormal operations. Objective of the development is the evaluation of the BT without using empirical BT and rewetting correlations needed for different bundle designs in the current analysis methods. TCAPE-INS/B consisted mainly of the drift-flux model, the film flow model, the cross-flow model, the thermal conductivity model and the heat transfer correlations. These models were validated systematically with the experimental data. The accuracy of the prediction for the steady-state Critical Heat Flux (CHF) and the transient temperature of the fuel rod surface after the occurrence of BT were evaluated on the validations. The calculations for the experiments with the single tube and bundles were carried out for the validations of the models incorporated in the code. The results showed that the steady-state CHF was predicted within about 6% average error. In the transient calculations, BT timing and temperature of the fuel rod surface gradient agreed well with experimental results, but rewetting was predicted lately. So, modeling of heat transfer phenomena during post-BT is under modification. (author)

  1. Application of fracture toughness scaling models to the ductile-to- brittle transition

    International Nuclear Information System (INIS)

    Link, R.E.; Joyce, J.A.

    1996-01-01

    An experimental investigation of fracture toughness in the ductile-brittle transition range was conducted. A large number of ASTM A533, Grade B steel, bend and tension specimens with varying crack lengths were tested throughout the transition region. Cleavage fracture toughness scaling models were utilized to correct the data for the loss of constraint in short crack specimens and tension geometries. The toughness scaling models were effective in reducing the scatter in the data, but tended to over-correct the results for the short crack bend specimens. A proposed ASTM Test Practice for Fracture Toughness in the Transition Range, which employs a master curve concept, was applied to the results. The proposed master curve over predicted the fracture toughness in the mid-transition and a modified master curve was developed that more accurately modeled the transition behavior of the material. Finally, the modified master curve and the fracture toughness scaling models were combined to predict the as-measured fracture toughness of the short crack bend and the tension specimens. It was shown that when the scaling models over correct the data for loss of constraint, they can also lead to non-conservative estimates of the increase in toughness for low constraint geometries

  2. A modular RANS approach for modelling laminar–turbulent transition in turbomachinery flows

    International Nuclear Information System (INIS)

    Liang Wang; Song Fu; Carnarius, Angelo; Mockett, Charles; Thiele, Frank

    2012-01-01

    Highlights: ► We propose a laminar–turbulent transition model for turbomachinery applications. ► The model considers the effects of the various instability modes. ► The pressure–diffusion process is represented by an elliptic formulation. ► The mixed-mode transition scenario benefits from our modular prediction approach. - Abstract: In this study we propose a laminar–turbulent transition model, which considers the effects of the various instability modes that exist in turbomachinery flows. This model is based on a K–ω–γ three-equation eddy-viscosity concept with K representing the fluctuating kinetic energy, ω the specific dissipation rate and γ the intermittency factor. As usual, the local mechanics by which the freestream disturbances penetrate into the laminar boundary layer, namely convection and viscous diffusion, are described by the transport equations. However, as a novel feature, the non-local effects due to pressure diffusion are additionally represented by an elliptic formulation. Such an approach allows the present model to respond accurately to freestream turbulence intensity properly and to predict both long and short bubble lengths well. The success in its application to a 3-D cascade indicates that the mixed-mode transition scenario indeed benefits from such a modular prediction approach, which embodies current conceptual understanding of the transition process.

  3. Novel mathematic models for quantitative transitivity of quality-markers in extraction process of the Buyanghuanwu decoction.

    Science.gov (United States)

    Zhang, Yu-Tian; Xiao, Mei-Feng; Deng, Kai-Wen; Yang, Yan-Tao; Zhou, Yi-Qun; Zhou, Jin; He, Fu-Yuan; Liu, Wen-Long

    2018-06-01

    preparation and affection of Q-markers transitivity in equilibrium processing. AUC, P, D for potential Q-markers of AST-IV, laetrile, paeoniflorin, and FA were obtained, with the results of 289.9 mAu s, 46.24%, 22.35%; 1730 mAu s, 84.48%, 1.963%; 5600 mAu s, 70.22%, 0.4752%; 7810 mAu s, 24.29%, 4.235%, respectively. The results showed that the suitable Q-markers were laetrile and paeoniflorin in our study, which exhibited acceptable traceability and transitivity in the extraction process of TCMs. Therefore, these novel mathematic models might be developed as a new standard to control TCMs quality process from raw medicinal materials to product manufacturing. Copyright © 2018 Elsevier GmbH. All rights reserved.

  4. Lixisenatide, a drug developed to treat type 2 diabetes, shows neuroprotective effects in a mouse model of Alzheimer's disease.

    Science.gov (United States)

    McClean, Paula L; Hölscher, Christian

    2014-11-01

    Type 2 diabetes is a risk factor for developing Alzheimer's disease (AD). In the brains of AD patients, insulin signalling is desensitised. The incretin hormone Glucagon-like peptide-1 (GLP-1) facilitates insulin signalling, and analogues such as liraglutide are on the market as treatments for type 2 diabetes. We have previously shown that liraglutide showed neuroprotective effects in the APPswe/PS1ΔE9 mouse model of AD. Here, we test the GLP-1 receptor agonist lixisenatide in the same mouse model and compare the effects to liraglutide. After ten weeks of daily i.p. injections with liraglutide (2.5 or 25 nmol/kg) or lixisenatide (1 or 10 nmol/kg) or saline of APP/PS1 mice at an age when amyloid plaques had already formed, performance in an object recognition task was improved in APP/PS1 mice by both drugs at all doses tested. When analysing synaptic plasticity in the hippocampus, LTP was strongly increased in APP/PS1 mice by either drug. Lixisenatide (1 nmol/kg) was most effective. The reduction of synapse numbers seen in APP/PS1 mice was prevented by the drugs. The amyloid plaque load and dense-core Congo red positive plaque load in the cortex was reduced by both drugs at all doses. The chronic inflammation response (microglial activation) was also reduced by all treatments. The results demonstrate that the GLP-1 receptor agonists liraglutide and lixisenatide which are on the market as treatments for type 2 diabetes show promise as potential drug treatments of AD. Lixisenatide was equally effective at a lower dose compared to liraglutide in some of the parameters measured. Copyright © 2014 Elsevier Ltd. All rights reserved.

  5. Novel AAV-based rat model of forebrain synucleinopathy shows extensive pathologies and progressive loss of cholinergic interneurons.

    Directory of Open Access Journals (Sweden)

    Patrick Aldrin-Kirk

    Full Text Available Synucleinopathies, characterized by intracellular aggregation of α-synuclein protein, share a number of features in pathology and disease progression. However, the vulnerable cell population differs significantly between the disorders, despite being caused by the same protein. While the vulnerability of dopamine cells in the substantia nigra to α-synuclein over-expression, and its link to Parkinson's disease, is well studied, animal models recapitulating the cortical degeneration in dementia with Lewy-bodies (DLB are much less mature. The aim of this study was to develop a first rat model of widespread progressive synucleinopathy throughout the forebrain using adeno-associated viral (AAV vector mediated gene delivery. Through bilateral injection of an AAV6 vector expressing human wild-type α-synuclein into the forebrain of neonatal rats, we were able to achieve widespread, robust α-synuclein expression with preferential expression in the frontal cortex. These animals displayed a progressive emergence of hyper-locomotion and dysregulated response to the dopaminergic agonist apomorphine. The animals receiving the α-synuclein vector displayed significant α-synuclein pathology including intra-cellular inclusion bodies, axonal pathology and elevated levels of phosphorylated α-synuclein, accompanied by significant loss of cortical neurons and a progressive reduction in both cortical and striatal ChAT positive interneurons. Furthermore, we found evidence of α-synuclein sequestered by IBA-1 positive microglia, which was coupled with a distinct change in morphology. In areas of most prominent pathology, the total α-synuclein levels were increased to, on average, two-fold, which is similar to the levels observed in patients with SNCA gene triplication, associated with cortical Lewy body pathology. This study provides a novel rat model of progressive cortical synucleinopathy, showing for the first time that cholinergic interneurons are vulnerable

  6. Regime transitions in near-surface temperature inversions : a conceptual model

    NARCIS (Netherlands)

    van de Wiel, B.J.H.; Vignon, E.; Baas, P.; Bosveld, F.C.; de Roode, S.R.; Moene, A.F.; Genthon, C.; van der Linden, Steven J.A.; van Hooft, J. Antoon; van Hooijdonk, I.G.S.

    2017-01-01

    A conceptual model is used in combination with observational analysis to understand regime transitions of near-surface temperature inversions at night as well as in Arctic conditions. The model combines a surface energy budget with a bulk parameterization for turbulent heat transport. Energy fluxes

  7. CORRELATION OF THE GLASS TRANSITION TEMPERATURE OF PLASTICIZED PVC USING A LATTICE FLUID MODEL

    Science.gov (United States)

    A model has been developed to describe the composition dependence of the glass transition temperature (Tg) of polyvinyl chloride (PVC) + plasticizer mixtures. The model is based on Sanchez-Lacombe equation of state and the Gibbs-Di Marzio criterion, which states that th...

  8. Approaches to incorporating climate change effects in state and transition simulation models of vegetation

    Science.gov (United States)

    Becky K. Kerns; Miles A. Hemstrom; David Conklin; Gabriel I. Yospin; Bart Johnson; Dominique Bachelet; Scott Bridgham

    2012-01-01

    Understanding landscape vegetation dynamics often involves the use of scientifically-based modeling tools that are capable of testing alternative management scenarios given complex ecological, management, and social conditions. State-and-transition simulation model (STSM) frameworks and software such as PATH and VDDT are commonly used tools that simulate how landscapes...

  9. State-and-transition model archetypes: a global taxonomy of rangeland change

    Science.gov (United States)

    State and transition models (STMs) synthesize science-based and local knowledge to formally represent the dynamics of rangeland and other ecosystems. Mental models or concepts of ecosystem dynamics implicitly underlie all management decisions in rangelands and thus how people influence rangeland sus...

  10. The phase transition lines in pair approximation for the basic reinfection model SIRI

    International Nuclear Information System (INIS)

    Stollenwerk, Nico; Martins, Jose; Pinto, Alberto

    2007-01-01

    For a spatial stochastic epidemic model we investigate in the pair approximation scheme the differential equations for the moments. The basic reinfection model of susceptible-infected-recovered-reinfected or SIRI type is analysed, its phase transition lines calculated analytically in this pair approximation

  11. Sustainable energy for the future. Modelling transitions to renewable and clean energy in rapidly developing countries.

    NARCIS (Netherlands)

    Urban, Frauke

    2009-01-01

    The main objective of this thesis is first to adapt energy models for the use in developing countries and second to model sustainable energy transitions and their effects in rapidly developing countries like China and India. The focus of this thesis is three-fold: a) to elaborate the differences

  12. Single-Column Model Simulations of Subtropical Marine Boundary-Layer Cloud Transitions Under Weakening Inversions

    NARCIS (Netherlands)

    Neggers, R.A.J.; Ackerman, Andrew S.; Angevine, W. M.; Bazile, Eric; Beau, I.; Blossey, P. N.; Boutle, I. A.; de Bruijn, C.; cheng, A; van der Dussen, J.J.; Fletcher, J.; Dal Gesso, S.; Jam, A.; Kawai, H; Cheedela, S. K.; Larson, V. E.; Lefebvre, Marie Pierre; Lock, A. P.; Meyer, N. R.; de Roode, S.R.; de Rooy, WC; Sandu, I; Xiao, H; Xu, K. M.

    2017-01-01

    Results are presented of the GASS/EUCLIPSE single-column model intercomparison study on the subtropical marine low-level cloud transition. A central goal is to establish the performance of state-of-the-art boundary-layer schemes for weather and climate models for this cloud regime, using

  13. Pseudo dynamic transitional modeling of building heating energy demand using artificial neural network

    NARCIS (Netherlands)

    Paudel, S.; Elmtiri, M.; Kling, W.L.; Corre, le O.; Lacarriere, B.

    2014-01-01

    This paper presents the building heating demand prediction model with occupancy profile and operational heating power level characteristics in short time horizon (a couple of days) using artificial neural network. In addition, novel pseudo dynamic transitional model is introduced, which consider

  14. A comparative study on the flow over an airfoil using transitional turbulence models

    DEFF Research Database (Denmark)

    Lin, Mou; Sarlak Chivaee, Hamid

    2016-01-01

    This work addresses the simulation of the flow over NREL S826 airfoil under a relatively low Reynolds number (Re = 1 × 105 ) using the CFD solvers OpenFoam and ANSYS Fluent. The flow is simulated using two different transition models, γ − Reθ and k − kL − ω model, and the results are examined...

  15. In vitro and in vivo models of cerebral ischemia show discrepancy in therapeutic effects of M2 macrophages.

    Directory of Open Access Journals (Sweden)

    Virginie Desestret

    Full Text Available THE INFLAMMATORY RESPONSE FOLLOWING ISCHEMIC STROKE IS DOMINATED BY INNATE IMMUNE CELLS: resident microglia and blood-derived macrophages. The ambivalent role of these cells in stroke outcome might be explained in part by the acquisition of distinct functional phenotypes: classically (M1 and alternatively activated (M2 macrophages. To shed light on the crosstalk between hypoxic neurons and macrophages, an in vitro model was set up in which bone marrow-derived macrophages were co-cultured with hippocampal slices subjected to oxygen and glucose deprivation. The results showed that macrophages provided potent protection against neuron cell loss through a paracrine mechanism, and that they expressed M2-type alternative polarization. These findings raised the possibility of using bone marrow-derived M2 macrophages in cellular therapy for stroke. Therefore, 2 million M2 macrophages (or vehicle were intravenously administered during the subacute stage of ischemia (D4 in a model of transient middle cerebral artery occlusion. Functional neuroscores and magnetic resonance imaging endpoints (infarct volumes, blood-brain barrier integrity, phagocytic activity assessed by iron oxide uptake were longitudinally monitored for 2 weeks. This cell-based treatment did not significantly improve any outcome measure compared with vehicle, suggesting that this strategy is not relevant to stroke therapy.

  16. Operator product expansion in Liouville field theory and Seiberg-type transitions in log-correlated random energy models

    Science.gov (United States)

    Cao, Xiangyu; Le Doussal, Pierre; Rosso, Alberto; Santachiara, Raoul

    2018-04-01

    We study transitions in log-correlated random energy models (logREMs) that are related to the violation of a Seiberg bound in Liouville field theory (LFT): the binding transition and the termination point transition (a.k.a., pre-freezing). By means of LFT-logREM mapping, replica symmetry breaking and traveling-wave equation techniques, we unify both transitions in a two-parameter diagram, which describes the free-energy large deviations of logREMs with a deterministic background log potential, or equivalently, the joint moments of the free energy and Gibbs measure in logREMs without background potential. Under the LFT-logREM mapping, the transitions correspond to the competition of discrete and continuous terms in a four-point correlation function. Our results provide a statistical interpretation of a peculiar nonlocality of the operator product expansion in LFT. The results are rederived by a traveling-wave equation calculation, which shows that the features of LFT responsible for the transitions are reproduced in a simple model of diffusion with absorption. We examine also the problem by a replica symmetry breaking analysis. It complements the previous methods and reveals a rich large deviation structure of the free energy of logREMs with a deterministic background log potential. Many results are verified in the integrable circular logREM, by a replica-Coulomb gas integral approach. The related problem of common length (overlap) distribution is also considered. We provide a traveling-wave equation derivation of the LFT predictions announced in a precedent work.

  17. Image-based multiscale mechanical modeling shows the importance of structural heterogeneity in the human lumbar facet capsular ligament.

    Science.gov (United States)

    Zarei, Vahhab; Liu, Chao J; Claeson, Amy A; Akkin, Taner; Barocas, Victor H

    2017-08-01

    The lumbar facet capsular ligament (FCL) primarily consists of aligned type I collagen fibers that are mainly oriented across the joint. The aim of this study was to characterize and incorporate in-plane local fiber structure into a multiscale finite element model to predict the mechanical response of the FCL during in vitro mechanical tests, accounting for the heterogeneity in different scales. Characterization was accomplished by using entire-domain polarization-sensitive optical coherence tomography to measure the fiber structure of cadaveric lumbar FCLs ([Formula: see text]). Our imaging results showed that fibers in the lumbar FCL have a highly heterogeneous distribution and are neither isotropic nor completely aligned. The averaged fiber orientation was [Formula: see text] ([Formula: see text] in the inferior region and [Formula: see text] in the middle and superior regions), with respect to lateral-medial direction (superior-medial to inferior-lateral). These imaging data were used to construct heterogeneous structural models, which were then used to predict experimental gross force-strain behavior and the strain distribution during equibiaxial and strip biaxial tests. For equibiaxial loading, the structural model fit the experimental data well but underestimated the lateral-medial forces by [Formula: see text]16% on average. We also observed pronounced heterogeneity in the strain field, with stretch ratios for different elements along the lateral-medial axis of sample typically ranging from about 0.95 to 1.25 during a 12% strip biaxial stretch in the lateral-medial direction. This work highlights the multiscale structural and mechanical heterogeneity of the lumbar FCL, which is significant both in terms of injury prediction and microstructural constituents' (e.g., neurons) behavior.

  18. State-and-transition simulation models: a framework for forecasting landscape change

    Science.gov (United States)

    Daniel, Colin; Frid, Leonardo; Sleeter, Benjamin M.; Fortin, Marie-Josée

    2016-01-01

    SummaryA wide range of spatially explicit simulation models have been developed to forecast landscape dynamics, including models for projecting changes in both vegetation and land use. While these models have generally been developed as separate applications, each with a separate purpose and audience, they share many common features.We present a general framework, called a state-and-transition simulation model (STSM), which captures a number of these common features, accompanied by a software product, called ST-Sim, to build and run such models. The STSM method divides a landscape into a set of discrete spatial units and simulates the discrete state of each cell forward as a discrete-time-inhomogeneous stochastic process. The method differs from a spatially interacting Markov chain in several important ways, including the ability to add discrete counters such as age and time-since-transition as state variables, to specify one-step transition rates as either probabilities or target areas, and to represent multiple types of transitions between pairs of states.We demonstrate the STSM method using a model of land-use/land-cover (LULC) change for the state of Hawai'i, USA. Processes represented in this example include expansion/contraction of agricultural lands, urbanization, wildfire, shrub encroachment into grassland and harvest of tree plantations; the model also projects shifts in moisture zones due to climate change. Key model output includes projections of the future spatial and temporal distribution of LULC classes and moisture zones across the landscape over the next 50 years.State-and-transition simulation models can be applied to a wide range of landscapes, including questions of both land-use change and vegetation dynamics. Because the method is inherently stochastic, it is well suited for characterizing uncertainty in model projections. When combined with the ST-Sim software, STSMs offer a simple yet powerful means for developing a wide range of models of

  19. A Transition Towards a Data-Driven Business Model (DDBM)

    DEFF Research Database (Denmark)

    Zaki, Mohamed; Bøe-Lillegraven, Tor; Neely, Andy

    2016-01-01

    Nettavisen is a Norwegian online start-up that experienced a boost after the financial crisis of 2009. Since then, the firm has been able to increase its market share and profitability through the use of highly disruptive business models, allowing the relatively small staff to outcompete powerhouse...... legacy-publishing companies and new media players such as Facebook and Google. These disruptive business models have been successful, as Nettavisen captured a large market share in Norway early on, and was consistently one of the top-three online news sites in Norway. Capitalising on media data explosion...... and the recent acquisition of blogger network ‘Blog.no’, Nettavisen is moving towards a data-driven business model (DDBM). In particular, the firm aims to analyse huge volumes of user Web browsing and purchasing habits....

  20. Demographical history and palaeodistribution modelling show range shift towards Amazon Basin for a Neotropical tree species in the LGM.

    Science.gov (United States)

    Vitorino, Luciana Cristina; Lima-Ribeiro, Matheus S; Terribile, Levi Carina; Collevatti, Rosane G

    2016-10-13

    We studied the phylogeography and demographical history of Tabebuia serratifolia (Bignoniaceae) to understand the disjunct geographical distribution of South American seasonally dry tropical forests (SDTFs). We specifically tested if the multiple and isolated patches of SDTFs are current climatic relicts of a widespread and continuously distributed dry forest during the last glacial maximum (LGM), the so called South American dry forest refugia hypothesis, using ecological niche modelling (ENM) and statistical phylogeography. We sampled 235 individuals of T. serratifolia in 17 populations in Brazil and analysed the polymorphisms at three intergenic chloroplast regions and ITS nuclear ribosomal DNA. Coalescent analyses showed a demographical expansion at the last c. 130 ka (thousand years before present). Simulations and ENM also showed that the current spatial pattern of genetic diversity is most likely due to a scenario of range expansion and range shift towards the Amazon Basin during the colder and arid climatic conditions associated with the LGM, matching the expected for the South American dry forest refugia hypothesis, although contrasting to the Pleistocene Arc hypothesis. Populations in more stable areas or with higher suitability through time showed higher genetic diversity. Postglacial range shift towards the Southeast and Atlantic coast may have led to spatial genome assortment due to leading edge colonization as the species tracks suitable environments, leading to lower genetic diversity in populations at higher distance from the distribution centroid at 21 ka. Haplotype sharing or common ancestry among populations from Caatinga in Northeast Brazil, Atlantic Forest in Southeast and Cerrado biome and ENM evince the past connection among these biomes.

  1. Specification, construction, and exact reduction of state transition system models of biochemical processes.

    Science.gov (United States)

    Bugenhagen, Scott M; Beard, Daniel A

    2012-10-21

    Biochemical reaction systems may be viewed as discrete event processes characterized by a number of states and state transitions. These systems may be modeled as state transition systems with transitions representing individual reaction events. Since they often involve a large number of interactions, it can be difficult to construct such a model for a system, and since the resulting state-level model can involve a huge number of states, model analysis can be difficult or impossible. Here, we describe methods for the high-level specification of a system using hypergraphs, for the automated generation of a state-level model from a high-level model, and for the exact reduction of a state-level model using information from the high-level model. Exact reduction is achieved through the automated application to the high-level model of the symmetry reduction technique and reduction by decomposition by independent subsystems, allowing potentially significant reductions without the need to generate a full model. The application of the method to biochemical reaction systems is illustrated by models describing a hypothetical ion-channel at several levels of complexity. The method allows for the reduction of the otherwise intractable example models to a manageable size.

  2. Dental Hygiene Curriculum Model for Transition to Future Roles.

    Science.gov (United States)

    Paarmann, Carlene S.; And Others

    1990-01-01

    The establishment of the baccalaureate degree as the minimum entry level for dental hygiene practice centers around three main concerns: changes in health care delivery, awarding of a degree commensurate with students' educational background, and the credibility of dental hygiene as a profession. A curriculum model is discussed. (MLW)

  3. Future Shop: A Model Career Placement & Transition Laboratory.

    Science.gov (United States)

    Floyd, Deborah L.; And Others

    During 1988-89, the Collin County Community College District (CCCCD) conducted a project to develop, implement, and evaluate a model career laboratory called a "Future Shop." The laboratory was designed to let users explore diverse career options, job placement opportunities, and transfer resources. The Future Shop lab had three major components:…

  4. A simple model of big-crunch/big-bang transition

    Energy Technology Data Exchange (ETDEWEB)

    Malkiewicz, Przemyslaw; Piechocki, Wlodzimierz [Department of Theoretical Physics, Soltan Institute for Nuclear Studies, Hoza 69, 00-681 Warsaw (Poland)

    2006-05-07

    We present classical and quantum dynamics of a test particle in the compactified Milne space. Background spacetime includes one compact space dimension undergoing contraction to a point followed by expansion. Quantization consists in finding a self-adjoint representation of the algebra of particle observables. Our model offers some insight into the nature of the cosmic singularity.

  5. Transit timing observations from Kepler. V. Transit timing variation candidates in the first sixteen months from polynomial models

    DEFF Research Database (Denmark)

    Ford, E.B.; Ragozzine, D.; Holman, M.J.

    2012-01-01

    Transit timing variations provide a powerful tool for confirming and characterizing transiting planets, as well as detecting non-transiting planets. We report the results of an updated transit timing variation (TTV) analysis for 1481 planet candidates based on transit times measured during...... that several of these planet candidates could be confirmed and perhaps characterized with more detailed TTV analyses using publicly available Kepler observations. For many others, Kepler has observed a long-term TTV trend, but an extended Kepler mission will be required to characterize the system via TTVs. We...

  6. First-order dynamical phase transition in models of glasses: an approach based on ensembles of histories

    International Nuclear Information System (INIS)

    Garrahan, Juan P; Jack, Robert L; Lecomte, Vivien; Duijvendijk, Kristina van; Wijland, Frederic van; Pitard, Estelle

    2009-01-01

    We investigate the dynamics of kinetically constrained models of glass formers by analysing the statistics of trajectories of the dynamics, or histories, using large deviation function methods. We show that, in general, these models exhibit a first-order dynamical transition between active and inactive dynamical phases. We argue that the dynamical heterogeneities displayed by these systems are a manifestation of dynamical first-order phase coexistence. In particular, we calculate dynamical large deviation functions, both analytically and numerically, for the Fredrickson-Andersen model, the East model, and constrained lattice gas models. We also show how large deviation functions can be obtained from a Landau-like theory for dynamical fluctuations. We discuss possibilities for similar dynamical phase-coexistence behaviour in other systems with heterogeneous dynamics

  7. Thermodynamic properties of a quasi-harmonic model for ferroelectric transitions

    International Nuclear Information System (INIS)

    Mkam Tchouobiap, S E; Mashiyama, H

    2011-01-01

    Within a framework of a quasi-harmonic model for quantum particles in a local potential of the double Morse type and within the mean-field approximation for interactions between particles, we investigate the thermodynamic properties of ferroelectric materials. A quantum thermodynamic treatment gives analytic expressions for the internal energy, the entropy, the specific heat, and the static susceptibility. The calculated thermodynamic characteristics are studied as a function of temperature and energy barrier, where it is shown that at the proper choice of the theory parameters, particularly the energy barrier, the model system exhibits characteristic features of either second-order tricritical or first-order phase transitions. Our results indicate that the barrier energy seems to be an important criterion for the character of the structural phase transition. The influence of quantum fluctuations manifested on zero-point energy on the phase transition and thermodynamic properties is analyzed and discussed. This leads to several quantum effects, including the existence of a saturation regime at low temperatures, where the order parameter saturates giving thermodynamic saturation of the calculated thermodynamic quantities. It is found that both quantum effects and energy barrier magnitude have an important influence on the thermodynamic properties of the ferroelectric materials and on driving the phase transition at low temperatures. Also, the analytical parameters' effect on the transition temperature is discussed, which seems to give a general insight into the structural phase transition and its nature.

  8. Low temperature electroweak phase transition in the Standard Model with hidden scale invariance

    Directory of Open Access Journals (Sweden)

    Suntharan Arunasalam

    2018-01-01

    Full Text Available We discuss a cosmological phase transition within the Standard Model which incorporates spontaneously broken scale invariance as a low-energy theory. In addition to the Standard Model fields, the minimal model involves a light dilaton, which acquires a large vacuum expectation value (VEV through the mechanism of dimensional transmutation. Under the assumption of the cancellation of the vacuum energy, the dilaton develops a very small mass at 2-loop order. As a result, a flat direction is present in the classical dilaton-Higgs potential at zero temperature while the quantum potential admits two (almost degenerate local minima with unbroken and broken electroweak symmetry. We found that the cosmological electroweak phase transition in this model can only be triggered by a QCD chiral symmetry breaking phase transition at low temperatures, T≲132 MeV. Furthermore, unlike the standard case, the universe settles into the chiral symmetry breaking vacuum via a first-order phase transition which gives rise to a stochastic gravitational background with a peak frequency ∼10−8 Hz as well as triggers the production of approximately solar mass primordial black holes. The observation of these signatures of cosmological phase transitions together with the detection of a light dilaton would provide a strong hint of the fundamental role of scale invariance in particle physics.

  9. A Spalart-Allmaras local correlation-based transition model for Thermo-fuid dynamics

    Science.gov (United States)

    D'Alessandro, V.; Garbuglia, F.; Montelpare, S.; Zoppi, A.

    2017-11-01

    The study of innovative energy systems often involves complex fluid flows problems and the Computational Fluid-Dynamics (CFD) is one of the main tools of analysis. It is important to put in evidence that in several energy systems the flow field experiences the laminar-to-turbulent transition. Direct Numerical Simulations (DNS) or Large Eddy Simulation (LES) are able to predict the flow transition but they are still inapplicable to the study of real problems due to the significant computational resources requirements. Differently standard Reynolds Averaged Navier Stokes (RANS) approaches are not always reliable since they assume a fully turbulent regime. In order to overcome this drawback in the recent years some locally formulated transition RANS models have been developed. In this work, we present a local correlation-based transition approach adding two equations that control the laminar-toturbulent transition process -γ and \\[\\overset{}{\\mathop{{{\\operatorname{Re}}θ, \\text{t}}}} \\] - to the well-known Spalart-Allmaras (SA) turbulence model. The new model was implemented within OpenFOAM code. The energy equation is also implemented in order to evaluate the model performance in thermal-fluid dynamics applications. In all the considered cases a very good agreement between numerical and experimental data was observed.

  10. Magnetic transition phase diagram of cobalt clusters electrodeposited on HOPG: Experimental and micromagnetic modelling study

    Energy Technology Data Exchange (ETDEWEB)

    Rivera, M., E-mail: mrivera@fisica.unam.m [Imperial College London, Department of Chemistry, South Kensington Campus, London SW7 2AZ (United Kingdom); Rios-Reyes, C.H. [Universidad Autonoma Metropolitana-Azcapotzalco, Departamento de Materiales, Av. San Pablo 180, Col. Reynosa Tamaulipas, C.P. 02200, Mexico D.F. (Mexico); Universidad Autonoma del Estado de Hidalgo, Centro de Investigaciones Quimicas, Mineral de la Reforma, Hidalgo, C.P. 42181 (Mexico); Mendoza-Huizar, L.H. [Universidad Autonoma del Estado de Hidalgo, Centro de Investigaciones Quimicas, Mineral de la Reforma, Hidalgo, C.P. 42181 (Mexico)

    2011-04-15

    The magnetic transition from mono- to multidomain magnetic states of cobalt clusters electrodeposited on highly oriented pyrolytic graphite electrodes was studied experimentally using Magnetic Force Microscopy. From these images, it was found that the critical size of the magnetic transition is dominated by the height rather than the diameter of the aggregate. This experimental behavior was found to be consistent with a theoretical single-domain ferromagnetic model that states that a critical height limits the monodomain state. By analyzing the clusters magnetic states as a function of their dimensions, magnetic exchange constant and anisotropy value were obtained and used to calculate other magnetic properties such as the exchange length, magnetic wall thickness, etc. Finally, a micromagnetic simulation study correctly predicted the experimental magnetic transition phase diagram. - Research highlights: > Electrodeposition of cobalt clusters. > Mono to multidomain magnetic transition. > Magnetic phase diagram.

  11. Magnetic transition phase diagram of cobalt clusters electrodeposited on HOPG: Experimental and micromagnetic modelling study

    International Nuclear Information System (INIS)

    Rivera, M.; Rios-Reyes, C.H.; Mendoza-Huizar, L.H.

    2011-01-01

    The magnetic transition from mono- to multidomain magnetic states of cobalt clusters electrodeposited on highly oriented pyrolytic graphite electrodes was studied experimentally using Magnetic Force Microscopy. From these images, it was found that the critical size of the magnetic transition is dominated by the height rather than the diameter of the aggregate. This experimental behavior was found to be consistent with a theoretical single-domain ferromagnetic model that states that a critical height limits the monodomain state. By analyzing the clusters magnetic states as a function of their dimensions, magnetic exchange constant and anisotropy value were obtained and used to calculate other magnetic properties such as the exchange length, magnetic wall thickness, etc. Finally, a micromagnetic simulation study correctly predicted the experimental magnetic transition phase diagram. - Research highlights: → Electrodeposition of cobalt clusters. →Mono to multidomain magnetic transition. → Magnetic phase diagram.

  12. Effects of ignoring baseline on modeling transitions from intact cognition to dementia.

    Science.gov (United States)

    Yu, Lei; Tyas, Suzanne L; Snowdon, David A; Kryscio, Richard J

    2009-07-01

    This paper evaluates the effect of ignoring baseline when modeling transitions from intact cognition to dementia with mild cognitive impairment (MCI) and global impairment (GI) as intervening cognitive states. Transitions among states are modeled by a discrete-time Markov chain having three transient (intact cognition, MCI, and GI) and two competing absorbing states (death and dementia). Transition probabilities depend on two covariates, age and the presence/absence of an apolipoprotein E-epsilon4 allele, through a multinomial logistic model with shared random effects. Results are illustrated with an application to the Nun Study, a cohort of 678 participants 75+ years of age at baseline and followed longitudinally with up to ten cognitive assessments per nun.

  13. Dark matter and electroweak phase transition in the mixed scalar dark matter model

    Science.gov (United States)

    Liu, Xuewen; Bian, Ligong

    2018-03-01

    We study the electroweak phase transition in the framework of the scalar singlet-doublet mixed dark matter model, in which the particle dark matter candidate is the lightest neutral Higgs that comprises the C P -even component of the inert doublet and a singlet scalar. The dark matter can be dominated by the inert doublet or singlet scalar depending on the mixing. We present several benchmark models to investigate the two situations after imposing several theoretical and experimental constraints. An additional singlet scalar and the inert doublet drive the electroweak phase transition to be strongly first order. A strong first-order electroweak phase transition and a viable dark matter candidate can be accomplished in two benchmark models simultaneously, for which a proper mass splitting among the neutral and charged Higgs masses is needed.

  14. Deflagration to Detonation Transition (DDT) Simulations of HMX Powder Using the HERMES Model

    Science.gov (United States)

    White, Bradley; Reaugh, John; Tringe, Joseph

    2017-06-01

    We performed computer simulations of DDT experiments with Class I HMX powder using the HERMES model (High Explosive Response to MEchanical Stimulus) in ALE3D. Parameters for the model were fitted to the limited available mechanical property data of the low-density powder, and to the Shock to Detonation Transition (SDT) test results. The DDT tests were carried out in steel-capped polycarbonate tubes. This arrangement permits direct observation of the event using both flash X-ray radiography and high speed camera imaging, and provides a stringent test of the model. We found the calculated detonation transition to be qualitatively similar to experiment. Through simulation we also explored the effects of confinement strength, the HMX particle size distribution and porosity on the computed detonation transition location. This work was performed under the auspices of the US DOE by LLNL under Contract DE-AC52-07NA27344.

  15. One-Way Deficit and Quantum Phase Transitions in XX Model

    Science.gov (United States)

    Wang, Yao-Kun; Zhang, Yu-Ran

    2018-02-01

    Quantum correlations including entanglement and quantum discord have drawn much attention in characterizing quantum phase transitions. Quantum deficit originates in questions regarding work extraction from quantum systems coupled to a heat bath (Oppenheim et al. Phys. Rev. Lett. 89, 180402, 2002). It links quantum thermodynamics with quantum correlations and provides a new standpoint for understanding quantum non-locality. In this paper, we evaluate the one-way deficit of two adjacent spins in the bulk for the XX model. In the thermodynamic limit, the XX model undergoes a first order transition from fully polarized to a critical phase with quasi-long-range order with decrease of quantum parameter. We find that the one-way deficit becomes nonzero after the critical point. Therefore, the one-way deficit characterizes the quantum phase transition in the XX model.

  16. Phase transition and gravitational wave phenomenology of scalar conformal extensions of the Standard Model

    Energy Technology Data Exchange (ETDEWEB)

    Marzola, Luca; Racioppi, Antonio; Vaskonen, Ville [National Institute of Chemical Physics and Biophysics, Tallinn (Estonia)

    2017-07-15

    Thermal corrections in classically conformal models typically induce a strong first-order electroweak phase transition, thereby resulting in a stochastic gravitational background that could be detectable at gravitational wave observatories. After reviewing the basics of classically conformal scenarios, in this paper we investigate the phase transition dynamics in a thermal environment and the related gravitational wave phenomenology within the framework of scalar conformal extensions of the Standard Model. We find that minimal extensions involving only one additional scalar field struggle to reproduce the correct phase transition dynamics once thermal corrections are accounted for. Next-to-minimal models, instead, yield the desired electroweak symmetry breaking and typically result in a very strong gravitational wave signal. (orig.)

  17. PHOTOMETRIC AND SPECTRAL SIGNATURES OF THREE-DIMENSIONAL MODELS OF TRANSITING GIANT EXOPLANETS

    International Nuclear Information System (INIS)

    Burrows, A.; Spiegel, D. S.; Rauscher, E.; Menou, K.

    2010-01-01

    Using a three-dimensional general circulation model, we create dynamical model atmospheres of a representative transiting giant exoplanet, HD 209458b. We post-process these atmospheres with an opacity code to obtain transit radius spectra during the primary transit. Using a spectral atmosphere code, we integrate over the face of the planet seen by an observer at various orbital phases and calculate light curves as a function of wavelength and for different photometric bands. The products of this study are generic predictions for the phase variations of a zero-eccentricity giant planet's transit spectrum and of its light curves. We find that for these models the temporal variations in all quantities and the ingress/egress contrasts in the transit radii are small (<1.0%). Moreover, we determine that the day/night contrasts and phase shifts of the brightness peaks relative to the ephemeris are functions of photometric band. The J, H, and K bands are shifted most, while the IRAC bands are shifted least. Therefore, we verify that the magnitude of the downwind shift in the planetary 'hot spot' due to equatorial winds is strongly wavelength dependent. The phase and wavelength dependence of light curves, as well as the associated day/night contrasts, can be used to constrain the circulation regime of irradiated giant planets and to probe different pressure levels of a hot Jupiter atmosphere. We posit that though our calculations focus on models of HD 209458b, similar calculations for other transiting hot Jupiters in low-eccentricity orbits should yield transit spectra and light curves of a similar character.

  18. A Software Technology Transition Entropy Based Engineering Model

    Science.gov (United States)

    2002-03-01

    Systems Basics, p273). (Prigogine 1997 p81). It is not the place of this research to provide a mathematical formalism with theorems and lemmas. Rather...science). The ancient philosophers, 27 Pythagoras , Protagoras, Socrates, and Plato start the first discourse (the message) that has continued...unpacking of the technology "message" from Pythagoras . This process is characterized by accumulation learning, modeled by learning curves in

  19. Strong to fragile transition in a model of liquid silica

    OpenAIRE

    Barrat, Jean-Louis; Badro, James; Gillet, Philippe

    1996-01-01

    The transport properties of an ionic model for liquid silica at high temperatures and pressure are investigated using molecular dynamics simulations. With increasing pressure, a clear change from "strong" to "fragile" behaviour (according to Angell's classification of glass-forming liquids) is observed, albeit only on the small viscosity range that can be explored in MD simulations.. This change is related to structural changes, from an almost perfect four-fold coordination to an imperfect fi...

  20. Advanced Nuclear Fuel Cycle Transitions: Optimization, Modeling Choices, and Disruptions

    Science.gov (United States)

    Carlsen, Robert W.

    Many nuclear fuel cycle simulators have evolved over time to help understan the nuclear industry/ecosystem at a macroscopic level. Cyclus is one of th first fuel cycle simulators to accommodate larger-scale analysis with it liberal open-source licensing and first-class Linux support. Cyclus also ha features that uniquely enable investigating the effects of modeling choices o fuel cycle simulators and scenarios. This work is divided into thre experiments focusing on optimization, effects of modeling choices, and fue cycle uncertainty. Effective optimization techniques are developed for automatically determinin desirable facility deployment schedules with Cyclus. A novel method fo mapping optimization variables to deployment schedules is developed. Thi allows relationships between reactor types and scenario constraints to b represented implicitly in the variable definitions enabling the usage o optimizers lacking constraint support. It also prevents wasting computationa resources evaluating infeasible deployment schedules. Deployed power capacit over time and deployment of non-reactor facilities are also included a optimization variables There are many fuel cycle simulators built with different combinations o modeling choices. Comparing results between them is often difficult. Cyclus flexibility allows comparing effects of many such modeling choices. Reacto refueling cycle synchronization and inter-facility competition among othe effects are compared in four cases each using combinations of fleet of individually modeled reactors with 1-month or 3-month time steps. There are noticeable differences in results for the different cases. The larges differences occur during periods of constrained reactor fuel availability This and similar work can help improve the quality of fuel cycle analysi generally There is significant uncertainty associated deploying new nuclear technologie such as time-frames for technology availability and the cost of buildin advanced reactors