WorldWideScience

Sample records for models show transitions

  1. Simple solvable energy-landscape model that shows a thermodynamic phase transition and a glass transition.

    Science.gov (United States)

    Naumis, Gerardo G

    2012-06-01

    When a liquid melt is cooled, a glass or phase transition can be obtained depending on the cooling rate. Yet, this behavior has not been clearly captured in energy-landscape models. Here, a model is provided in which two key ingredients are considered in the landscape, metastable states and their multiplicity. Metastable states are considered as in two level system models. However, their multiplicity and topology allows a phase transition in the thermodynamic limit for slow cooling, while a transition to the glass is obtained for fast cooling. By solving the corresponding master equation, the minimal speed of cooling required to produce the glass is obtained as a function of the distribution of metastable states.

  2. Five Kepler target stars that show multiple transiting exoplanet candidates

    Energy Technology Data Exchange (ETDEWEB)

    Steffen, Jason H.; /Fermilab; Batalha, Natalie M.; /San Jose State U.; Borucki, William J.; /NASA, Ames; Buchhave, Lars A.; /Harvard-Smithsonian Ctr. Astrophys. /Bohr Inst.; Caldwell, Douglas A.; /NASA, Ames /SETI Inst., Mtn. View; Cochran, William D.; /Texas U.; Endl, Michael; /Texas U.; Fabrycky, Daniel C.; /Harvard-Smithsonian Ctr. Astrophys.; Fressin, Francois; /Harvard-Smithsonian Ctr. Astrophys.; Ford, Eric B.; /Florida U.; Fortney, Jonathan J.; /UC, Santa Cruz, Phys. Dept. /NASA, Ames

    2010-06-01

    We present and discuss five candidate exoplanetary systems identified with the Kepler spacecraft. These five systems show transits from multiple exoplanet candidates. Should these objects prove to be planetary in nature, then these five systems open new opportunities for the field of exoplanets and provide new insights into the formation and dynamical evolution of planetary systems. We discuss the methods used to identify multiple transiting objects from the Kepler photometry as well as the false-positive rejection methods that have been applied to these data. One system shows transits from three distinct objects while the remaining four systems show transits from two objects. Three systems have planet candidates that are near mean motion commensurabilities - two near 2:1 and one just outside 5:2. We discuss the implications that multitransiting systems have on the distribution of orbital inclinations in planetary systems, and hence their dynamical histories; as well as their likely masses and chemical compositions. A Monte Carlo study indicates that, with additional data, most of these systems should exhibit detectable transit timing variations (TTV) due to gravitational interactions - though none are apparent in these data. We also discuss new challenges that arise in TTV analyses due to the presence of more than two planets in a system.

  3. Five kepler target stars that show multiple transiting exoplanet candidates

    DEFF Research Database (Denmark)

    Steffen..[], Jason H.; Batalha, N. M.; Broucki, W J.

    2010-01-01

    We present and discuss five candidate exoplanetary systems identified with the Kepler spacecraft. These five systems show transits from multiple exoplanet candidates. Should these objects prove to be planetary in nature, then these five systems open new opportunities for the field of exoplanets...

  4. Modeling for Transition Management

    NARCIS (Netherlands)

    Chappin, Emile J L; Dijkema, Gerard P.J.

    2015-01-01

    A framework for the modeling and simulation of transitions is presented. A transition, “substantial change in the state of a socio-technical system”, typically unfolds over a long timespan. We therefore suggest to use simulation to inform transition managers on the effect of their decisions.

  5. Transitive probabilistic CLIR models.

    NARCIS (Netherlands)

    Kraaij, W.; de Jong, Franciska M.G.

    2004-01-01

    Transitive translation could be a useful technique to enlarge the number of supported language pairs for a cross-language information retrieval (CLIR) system in a cost-effective manner. The paper describes several setups for transitive translation based on probabilistic translation models. The

  6. Improved transition models for cepstral trajectories

    CSIR Research Space (South Africa)

    Badenhorst, J

    2012-11-01

    Full Text Available is ideal for the investigation of contextual effects on cepstral trajectories. We show that modelling improvements, such as continuity constraints on parameter values and more flexible transition models, systematically improve the robustness of our...

  7. Show and tell: how supervisors facilitate leader development among transitioning leaders.

    Science.gov (United States)

    Dragoni, Lisa; Park, Haeseen; Soltis, Jim; Forte-Trammell, Sheila

    2014-01-01

    We argue that studying leaders experiencing a job transition offers a unique opportunity to explore initial changes in leaders' development in their cognition and action. Here, we examine 2 early indicators of leaders' development-their acquisition of knowledge regarding their new role (a cognitive outcome) and the time they allocate toward leading others (a behavioral outcome)-and how supervisors can facilitate these forms of development among transitioning leaders. With a sample of 110 first-line leaders who we tracked over approximately 10 months at 4 different points in time, we tested the efficacy of supervisors' support in the form of modeling effective leadership behavior (i.e., "show") and the provision of job information (i.e., "tell"). Results from random coefficient modeling revealed that the interactive effect of supervisors' "show" and "tell" accelerates the rate of transitioning leaders' self-perceived role knowledge acquisition over time. This upward trajectory is even more pronounced for transitioning leaders who have not been exposed to an exceptional leader during their careers. Further, with a lagged design, we found that leaders who report greater role knowledge allocate more time toward leading others, thus indicating initial changes in these leaders' behavior. We discuss these findings in light of their theoretical and practical importance to the field of leader development. PsycINFO Database Record (c) 2014 APA, all rights reserved

  8. Modeling Metropolitan Detroit transit.

    Science.gov (United States)

    2010-10-01

    "The seven-county Southeast Michigan region, that encompasses the Detroit Metropolitan Area, : ranks fifth in population among top 25 regions in the nation. It also ranks among bottom five in : the transit service provided, measured in miles or hours...

  9. Thresholds models of technological transitions

    NARCIS (Netherlands)

    Zeppini, P.; Frenken, K.; Kupers, R.

    2014-01-01

    We present a systematic review of seven threshold models of technological transitions from physics, biology, economics and sociology. The very same phenomenon of a technological transition can be explained by very different logics, ranging from economic explanations based on price, performance and

  10. Vacuum transitions in dual models

    International Nuclear Information System (INIS)

    Pashnev, A.I.; Volkov, D.V.; Zheltukhin, A.A.

    1976-01-01

    The investigation is continued of the spontaneous vacuum transition problem in the Neview-Schwartz dual model (NSDM). It is shown that vacuum transitions allow disclosing of supplementary degeneration in the resonance state spectrum. The dual amplitudes possess an internal structure corresponding to the presence of an infinite number of quarks with increasing masses and retained charges. The Adler principle holds. Analytic continuation on the constant of induced vacuum transitions makes it possible to establish the existence of spontaneous vacuum transitions in the NSDM. The consequence of this fact is the exact SU(2) symmetry of π, rho meson trajectories and the Higgs mechanism in the model. In this case the ratios of masses of particles leading trajectories are analogous to those obtained in the current algebra. It is shown that in the NSDM there arises chiral SU(2) x SU(2) x U(1) x U(1) x ... symmetry resulting from spontaneous vacuum transitions

  11. Transition Models with Measurement Errors

    OpenAIRE

    Magnac, Thierry; Visser, Michael

    1999-01-01

    In this paper, we estimate a transition model that allows for measurement errors in the data. The measurement errors arise because the survey design is partly retrospective, so that individuals sometimes forget or misclassify their past labor market transitions. The observed data are adjusted for errors via a measurement-error mechanism. The parameters of the distribution of the true data, and those of the measurement-error mechanism are estimated by a two-stage method. The results, based on ...

  12. Modelling the energy transition in cities

    Energy Technology Data Exchange (ETDEWEB)

    Huber, Felix [Wuppertal Univ. (Germany). Dept. of Civil Engineering; Schwarze, Bjoern; Spiekermann, Klaus; Wegener, Michael [Spiekermann und Wegener Urban and Regional Research, Dortmund (Germany)

    2013-09-01

    The history of cities is a history of energy transitions. In the medieval city heating and cooking occurred with wood and peat. The growth of the industrial city in the 19th century was built on coal and electricity. The sprawling metropolis of the 20th century was made possible by oil and gas. How will the city of the 21st century look after the next energy transition from fossil to renewable energy? This paper reports on the extension of an urban land-use transport interaction model to a model of the energy transition in the Ruhr Area, a five-million agglomeration in Germany. The paper presents the planned model extensions and how they are to be integrated into the model and shows first preliminary results.

  13. Phase transition in tensor models

    Energy Technology Data Exchange (ETDEWEB)

    Delepouve, Thibault [Laboratoire de Physique Théorique, CNRS UMR 8627, Université Paris Sud,91405 Orsay Cedex (France); Centre de Physique Théorique, CNRS UMR 7644, École Polytechnique,91128 Palaiseau Cedex (France); Gurau, Razvan [Centre de Physique Théorique, CNRS UMR 7644, École Polytechnique,91128 Palaiseau Cedex (France); Perimeter Institute for Theoretical Physics,31 Caroline St. N, N2L 2Y5, Waterloo, ON (Canada)

    2015-06-25

    Generalizing matrix models, tensor models generate dynamical triangulations in any dimension and support a 1/N expansion. Using the intermediate field representation we explicitly rewrite a quartic tensor model as a field theory for a fluctuation field around a vacuum state corresponding to the resummation of the entire leading order in 1/N (a resummation of the melonic family). We then prove that the critical regime in which the continuum limit in the sense of dynamical triangulations is reached is precisely a phase transition in the field theory sense for the fluctuation field.

  14. Selection Bias in Educational Transition Models: Theory and Empirical Evidence

    DEFF Research Database (Denmark)

    Holm, Anders; Jæger, Mads

    Most studies using Mare’s (1980, 1981) seminal model of educational transitions find that the effect of family background decreases across transitions. Recently, Cameron and Heckman (1998, 2001) have argued that the “waning coefficients” in the Mare model are driven by selection on unobserved...... the United States, United Kingdom, Denmark, and the Netherlands shows that when we take selection into account the effect of family background variables on educational transitions is largely constant across transitions. We also discuss several difficulties in estimating educational transition models which...

  15. Modelling societal transitions with agent transformation

    NARCIS (Netherlands)

    M.P. Schilperoord (Michel); J. Rotmans (Jan); N. Bergman (Noam)

    2008-01-01

    textabstractTransition models explain long-term and large-scale processes fundamentally changing the structure of a societal system. Our concern is that most transition models are too static. Although they capture a move of focus from static equilibria to transitions between dynamic equilibria, they

  16. Safety models incorporating graph theory based transit indicators.

    Science.gov (United States)

    Quintero, Liliana; Sayed, Tarek; Wahba, Mohamed M

    2013-01-01

    There is a considerable need for tools to enable the evaluation of the safety of transit networks at the planning stage. One interesting approach for the planning of public transportation systems is the study of networks. Network techniques involve the analysis of systems by viewing them as a graph composed of a set of vertices (nodes) and edges (links). Once the transport system is visualized as a graph, various network properties can be evaluated based on the relationships between the network elements. Several indicators can be calculated including connectivity, coverage, directness and complexity, among others. The main objective of this study is to investigate the relationship between network-based transit indicators and safety. The study develops macro-level collision prediction models that explicitly incorporate transit physical and operational elements and transit network indicators as explanatory variables. Several macro-level (zonal) collision prediction models were developed using a generalized linear regression technique, assuming a negative binomial error structure. The models were grouped into four main themes: transit infrastructure, transit network topology, transit route design, and transit performance and operations. The safety models showed that collisions were significantly associated with transit network properties such as: connectivity, coverage, overlapping degree and the Local Index of Transit Availability. As well, the models showed a significant relationship between collisions and some transit physical and operational attributes such as the number of routes, frequency of routes, bus density, length of bus and 3+ priority lanes. Copyright © 2012 Elsevier Ltd. All rights reserved.

  17. The transition probabilities of the reciprocity model

    NARCIS (Netherlands)

    Snijders, T.A.B.

    1999-01-01

    The reciprocity model is a continuous-time Markov chain model used for modeling longitudinal network data. A new explicit expression is derived for its transition probability matrix. This expression can be checked relatively easily. Some properties of the transition probabilities are given, as well

  18. Characteristics of the chiral phase transition in nonlocal quark models

    International Nuclear Information System (INIS)

    Gomez Dumm, D. Gomez; Scoccola, N.N.

    2005-01-01

    The characteristics of the chiral phase transition are analyzed within the framework of chiral quark models with nonlocal interactions in the mean-field approximation. In the chiral limit, we develop a semianalytic framework that allows us to explicitly determine the phase transition curve, the position of the critical points, some relevant critical exponents, etc. For the case of finite current quark masses, we show the behavior of various thermodynamical and chiral response functions across the phase transition

  19. Culture in Transition: A learning model

    DEFF Research Database (Denmark)

    Baca, Susan

    2010-01-01

    of spare capacity, desire, focus, and information. By integrating the element of culture, both in the organizational sense and that pertaining to diversity, otherwise overseen aspects of transition are brought into view, with the potential of reducing stress and increasing job satisfaction. The model...... is useful for both management and labor in regulating transition processes, thus making a contribution to industrial relations....

  20. Phase transition in the hadron gas model

    International Nuclear Information System (INIS)

    Gorenstein, M.I.; Petrov, V.K.; Zinov'ev, G.M.

    1981-01-01

    A class of statistical models of hadron gas allowing an analytical solution is considered. A mechanism of a possible phase transition in such a system is found and conditions for its occurence are determined [ru

  1. On the phase transition nature in compressible Ising models

    International Nuclear Information System (INIS)

    Ota, A.T.

    1985-01-01

    The phase transition phenomenon is analysed in a compressible ferromagnetic Ising model at null field, through the mean-field approximation. The model studied is d-dimensional under the magnetic point of view and one-dimensional under the elastic point of view. This is achieved keeping the compressive interactions among the ions and rejecting annealing forces completely. The exchange parameter J is linear and the elastic potential quadratic in relation to the microscopic shifts of the lattice. In the one-dimensional case, this model shows no phase transition. In the two-dimensional case, the role of the S i spin of the i-the ion is crucial: a) for spin 1/2 the transitions are of second order; b) for spin 1, desides the second order transitions there is a three-critical point and a first-order transitions line. (L.C.) [pt

  2. Panel Smooth Transition Regression Models

    DEFF Research Database (Denmark)

    González, Andrés; Terasvirta, Timo; Dijk, Dick van

    models to the panel context. The strategy consists of model specification based on homogeneity tests, parameter estimation, and model evaluation, including tests of parameter constancy and no remaining heterogeneity. The model is applied to describing firms' investment decisions in the presence...

  3. On the chiral phase transition in the linear sigma model

    International Nuclear Information System (INIS)

    Tran Huu Phat; Nguyen Tuan Anh; Le Viet Hoa

    2003-01-01

    The Cornwall- Jackiw-Tomboulis (CJT) effective action for composite operators at finite temperature is used to investigate the chiral phase transition within the framework of the linear sigma model as the low-energy effective model of quantum chromodynamics (QCD). A new renormalization prescription for the CJT effective action in the Hartree-Fock (HF) approximation is proposed. A numerical study, which incorporates both thermal and quantum effect, shows that in this approximation the phase transition is of first order. However, taking into account the higher-loop diagrams contribution the order of phase transition is unchanged. (author)

  4. Modeling Enzymatic Transition States by Force Field Methods

    DEFF Research Database (Denmark)

    Hansen, Mikkel Bo; Jensen, Hans Jørgen Aagaard; Jensen, Frank

    2009-01-01

    The SEAM method, which models a transition structure as a minimum on the seam of two diabatic surfaces represented by force field functions, has been used to generate 20 transition structures for the decarboxylation of orotidine by the orotidine-5'-monophosphate decarboxylase enzyme. The dependence...... by various electronic structure methods, where part of the enzyme is represented by a force field description and the effects of the solvent are represented by a continuum model. The relative energies vary by several hundreds of kJ/mol between the transition structures, and tests showed that a large part...

  5. Nuclear inelastic scattering study of a dinuclear iron(II) complex showing a direct spin transition

    Energy Technology Data Exchange (ETDEWEB)

    Wolny, J. A., E-mail: wolny@physik.uni-kl.de [University of Kaiserslautern, Department of Physics (Germany); Garcia, Y. [Université Catholique de Louvain, Institute of Condensed Matter and Nanosciences, Molecules, Solids and Reactivity (IMCN/MOST) (Belgium); Faus, I.; Rackwitz, S. [University of Kaiserslautern, Department of Physics (Germany); Schlage, K.; Wille, H.-C. [DESY (Germany); Schünemann, V. [University of Kaiserslautern, Department of Physics (Germany)

    2016-12-15

    The results of the nuclear inelastic scattering (NIS)/nuclear resonance vibrational spectroscopy (NRVS) for the powder spectra of dimeric [Fe {sub 2}L{sub 5}(NCS) {sub 4}] (L = N-salicylidene-4-amino-1,2,4-triazole) complex are presented. This system is spin crossover (SCO) material tagged with a fluorophore that can sense or “feel” the SCO signal ripping through the molecular network and thereby providing an opportunity to register the SCO transition. The spectra have been measured for the low-spin and high-spin phases of the complex. The high-spin isomer reveals one broad band above 200 cm {sup −1}, while the low-spin one displays two intense bands in the range from 390 to 430 cm {sup −1}, accompanied by a number of weaker bands below this area and one at ca. 490 cm {sup −1}. A normal coordinate analysis based on density functional calculations yields the assignment of the spin marker bands to particular molecular modes. In addition the vibrational contribution to the spin transition has been estimated.

  6. Optimization models in a transition economy

    CERN Document Server

    Sergienko, Ivan V; Koshlai, Ludmilla

    2014-01-01

    This book opens new avenues in understanding mathematical models within the context of a  transition economy. The exposition lays out the methods for combining different mathematical structures and tools to effectively build the next model that will accurately reflect real world economic processes. Mathematical modeling of weather phenomena allows us to forecast certain essential weather parameters without any possibility of changing them. By contrast, modeling of transition economies gives us the freedom to not only predict changes in important indexes of all types of economies, but also to influence them more effectively in the desired direction. Simply put: any economy, including a transitional one, can be controlled. This book is useful to anyone who wants to increase profits within their business, or improve the quality of their family life and the economic area they live in. It is beneficial for undergraduate and graduate students specializing in the fields of Economic Informatics, Economic Cybernetic...

  7. Show me a woman! : narratives of gender and violence in human rights law and processes of transitional justice

    NARCIS (Netherlands)

    Mibenge, C.S.

    2010-01-01

    Show me a woman who wasn’t raped!’ These words, thrown down like a gauntlet by a genocide survivor disrupted the narrative of transitional justice as the panacea to redressing gross human rights violations committed against civilian women. The challenge to ‘show me a woman’ is made from a local

  8. Interval Forecast for Smooth Transition Autoregressive Model ...

    African Journals Online (AJOL)

    In this paper, we propose a simple method for constructing interval forecast for smooth transition autoregressive (STAR) model. This interval forecast is based on bootstrapping the residual error of the estimated STAR model for each forecast horizon and computing various Akaike information criterion (AIC) function. This new ...

  9. Complexity and phase transitions in a holographic QCD model

    Science.gov (United States)

    Zhang, Shao-Jun

    2018-04-01

    Applying the "Complexity = Action" conjecture, we study the holographic complexity close to crossover/phase transition in a holographic QCD model proposed by Gubser et al. This model can realize three types of phase transition, crossover or first and second order, depending on the parameters of the dilaton potential. The re-scaled late-time growth rate of holographic complexity density for the three cases is calculated. Our results show that it experiences a fast drop/jump close to the critical point while approaching constants far beyond the critical temperature. Moreover, close to the critical temperature, it shows a behavior characterizing the type of the transition. These features suggest that the growth rate of the holographic complexity may be used as a good parameter to characterize the phase transition. The Lloyd's bound is always satisfied for the cases we considered but only saturated for the conformal case.

  10. A Model of Mental State Transition Network

    Science.gov (United States)

    Xiang, Hua; Jiang, Peilin; Xiao, Shuang; Ren, Fuji; Kuroiwa, Shingo

    Emotion is one of the most essential and basic attributes of human intelligence. Current AI (Artificial Intelligence) research is concentrating on physical components of emotion, rarely is it carried out from the view of psychology directly(1). Study on the model of artificial psychology is the first step in the development of human-computer interaction. As affective computing remains unpredictable, creating a reasonable mental model becomes the primary task for building a hybrid system. A pragmatic mental model is also the fundament of some key topics such as recognition and synthesis of emotions. In this paper a Mental State Transition Network Model(2) is proposed to detect human emotions. By a series of psychological experiments, we present a new way to predict coming human's emotions depending on the various current emotional states under various stimuli. Besides, people in different genders and characters are taken into consideration in our investigation. According to the psychological experiments data derived from 200 questionnaires, a Mental State Transition Network Model for describing the transitions in distribution among the emotions and relationships between internal mental situations and external are concluded. Further more the coefficients of the mental transition network model were achieved. Comparing seven relative evaluating experiments, an average precision rate of 0.843 is achieved using a set of samples for the proposed model.

  11. Spin delocalization phase transition in a correlated electrons model

    International Nuclear Information System (INIS)

    Huerta, L.

    1990-11-01

    In a simplified one-site model for correlated electrons systems we show the existence of a phase transition corresponding to spin delocalization. The system becomes a solvable model and zero-dimensional functional techniques are used. (author). 7 refs, 3 figs

  12. Culture in Transition: A learning model

    DEFF Research Database (Denmark)

    Baca, Susan

    2010-01-01

    of spare capacity, desire, focus, and information. By integrating the element of culture, both in the organizational sense and that pertaining to diversity, otherwise overseen aspects of transition are brought into view, with the potential of reducing stress and increasing job satisfaction. The model...

  13. Modeling Network Transition Constraints with Hypergraphs

    DEFF Research Database (Denmark)

    Harrod, Steven

    2011-01-01

    Discrete time dynamic graphs are frequently used to model multicommodity flows or activity paths through constrained resources, but simple graphs fail to capture the interaction effects of resource transitions. The resulting schedules are not operationally feasible, and return inflated objective...... values. A directed hypergraph formulation is derived to address railway network sequencing constraints, and an experimental problem sample solved to estimate the magnitude of objective inflation when interaction effects are ignored. The model is used to demonstrate the value of advance scheduling...

  14. Modelling Transition Towards Sustainable Transportation Sector

    DEFF Research Database (Denmark)

    Dominkovic, Dominik Franjo; Bačeković, I.; Mýrdal, Jón Steinar Garðarsson

    2016-01-01

    two energy sectors. In order to deal with the raised issue, authors of this paper developed amethodology for calculation of the transition towards sustainable transport sector, focusing on thesolutions that are already available. Furthermore, as a part of the model, a detailed mapping ofresources......In a transition towards 100% renewable energy system, transportation sector is rarely dealt withusing the holistic approach and measuring its impact on the whole energy system. Furthermore, assolutions for power and heat sectors are clearer, it is a tendency of the researchers to focus on thelatter...... needed has been carried out for each of the alternatives. It was shown that theelectrification of the transportation sector is a crucial point in transition, while for the transportmodes that cannot be electrified, or shifted to different transportation modes, four alternatives weredefined: synthetic...

  15. Phase transitions for Ising model with four competing interactions

    International Nuclear Information System (INIS)

    Ganikhodjaev, N.N.; Rozikov, U.A.

    2004-11-01

    In this paper we consider an Ising model with four competing interactions (external field, nearest neighbor, second neighbors and triples of neighbors) on the Cayley tree of order two. We show that for some parameter values of the model there is phase transition. Our second result gives a complete description of periodic Gibbs measures for the model. We also construct uncountably many non-periodic extreme Gibbs measures. (author)

  16. Analytic Scattering and Refraction Models for Exoplanet Transit Spectra

    Science.gov (United States)

    Robinson, Tyler D.; Fortney, Jonathan J.; Hubbard, William B.

    2017-12-01

    Observations of exoplanet transit spectra are essential to understanding the physics and chemistry of distant worlds. The effects of opacity sources and many physical processes combine to set the shape of a transit spectrum. Two such key processes—refraction and cloud and/or haze forward-scattering—have seen substantial recent study. However, models of these processes are typically complex, which prevents their incorporation into observational analyses and standard transit spectrum tools. In this work, we develop analytic expressions that allow for the efficient parameterization of forward-scattering and refraction effects in transit spectra. We derive an effective slant optical depth that includes a correction for forward-scattered light, and present an analytic form of this correction. We validate our correction against a full-physics transit spectrum model that includes scattering, and we explore the extent to which the omission of forward-scattering effects may bias models. Also, we verify a common analytic expression for the location of a refractive boundary, which we express in terms of the maximum pressure probed in a transit spectrum. This expression is designed to be easily incorporated into existing tools, and we discuss how the detection of a refractive boundary could help indicate the background atmospheric composition by constraining the bulk refractivity of the atmosphere. Finally, we show that opacity from Rayleigh scattering and collision-induced absorption will outweigh the effects of refraction for Jupiter-like atmospheres whose equilibrium temperatures are above 400-500 K.

  17. [Estimation of transition probability in diameter grade transition model of forest population].

    Science.gov (United States)

    Qu, Zhilin; Hu, Haiqing

    2006-12-01

    Based on the theories of statistical analysis and differential equation, two methods were given for estimating the transition probability in the diameter grade transition model of forest population. The first method was used for the estimation when two groups of observation data were given and it was no necessary to consider the environmental factors of forest stand, while the second one was used for that when the environmental factors were known and there was no need of the observation data. The results of case studies showed that both of the two methods had the characteristics of easy operation and high practicability, and the importance of theoretical guidance and practical application in forest management.

  18. Showing that the race model inequality is not violated

    DEFF Research Database (Denmark)

    Gondan, Matthias; Riehl, Verena; Blurton, Steven Paul

    2012-01-01

    When participants are asked to respond in the same way to stimuli from different sources (e. g., auditory and visual), responses are often observed to be substantially faster when both stimuli are presented simultaneously (redundancy gain). Different models account for this effect, the two most...

  19. Structural transition models for a class or irreversible aggregates

    International Nuclear Information System (INIS)

    Canessa, E.

    1995-02-01

    A progress report on two recent theoretical approaches proposed to understand the physics of irreversible fractal aggregates showing up a structural transition from a rather dense to a more multibranched growth is presented. In the first approach the transition is understood by solving the Poisson equation on a squared lattice. The second approach is based on the discretization of the Biharmonic equation. Within these models the transition appears when the growth velocity at the fractal surface presents a minimum. The effects of the surrounding medium and geometrical constraints for the seed particles are considered. By using the optical diffraction method, the structural transition is further characterized by a decrease in the fractal dimension for this peculiar class of aggregates. (author). 17 refs, 4 figs

  20. Generalized transport model for phase transition with memory

    International Nuclear Information System (INIS)

    Chen, Chi; Ciucci, Francesco

    2013-01-01

    A general model for phenomenological transport in phase transition is derived, which extends Jäckle and Frisch model of phase transition with memory and the Cahn–Hilliard model. In addition to including interfacial energy to account for the presence of interfaces, we introduce viscosity and relaxation contributions, which result from incorporating memory effect into the driving potential. Our simulation results show that even without interfacial energy term, the viscous term can lead to transient diffuse interfaces. From the phase transition induced hysteresis, we discover different energy dissipation mechanism for the interfacial energy and the viscosity effect. In addition, by combining viscosity and interfacial energy, we find that if the former dominates, then the concentration difference across the phase boundary is reduced; conversely, if the interfacial energy is greater then this difference is enlarged.

  1. Transition sum rules in the shell model

    Science.gov (United States)

    Lu, Yi; Johnson, Calvin W.

    2018-03-01

    An important characterization of electromagnetic and weak transitions in atomic nuclei are sum rules. We focus on the non-energy-weighted sum rule (NEWSR), or total strength, and the energy-weighted sum rule (EWSR); the ratio of the EWSR to the NEWSR is the centroid or average energy of transition strengths from an nuclear initial state to all allowed final states. These sum rules can be expressed as expectation values of operators, which in the case of the EWSR is a double commutator. While most prior applications of the double commutator have been to special cases, we derive general formulas for matrix elements of both operators in a shell model framework (occupation space), given the input matrix elements for the nuclear Hamiltonian and for the transition operator. With these new formulas, we easily evaluate centroids of transition strength functions, with no need to calculate daughter states. We apply this simple tool to a number of nuclides and demonstrate the sum rules follow smooth secular behavior as a function of initial energy, as well as compare the electric dipole (E 1 ) sum rule against the famous Thomas-Reiche-Kuhn version. We also find surprising systematic behaviors for ground-state electric quadrupole (E 2 ) centroids in the s d shell.

  2. Simulation Model of Bus Rapid Transit

    Directory of Open Access Journals (Sweden)

    Gunawan Fergyanto E.

    2014-03-01

    Full Text Available Bus rapid transit system is modern solution for mass transportation system. The system, in comparison to the rail-based transportation system, is significantly cheaper and requires shorter development time, but lower performance. The BRT system performance strongly depends on variables related to station design and infrastructure. A numerical model offers an effective and efficient means to evaluate the system performance. This article offers a detailed numerical model on the basis of the discrete-event approach and demonstrates its application.

  3. Model-independent Exoplanet Transit Spectroscopy

    Science.gov (United States)

    Aronson, Erik; Piskunov, Nikolai

    2018-05-01

    We propose a new data analysis method for obtaining transmission spectra of exoplanet atmospheres and brightness variation across the stellar disk from transit observations. The new method is capable of recovering exoplanet atmosphere absorption spectra and stellar specific intensities without relying on theoretical models of stars and planets. We simultaneously fit both stellar specific intensity and planetary radius directly to transit light curves. This allows stellar models to be removed from the data analysis. Furthermore, we use a data quality weighted filtering technique to achieve an optimal trade-off between spectral resolution and reconstruction fidelity homogenizing the signal-to-noise ratio across the wavelength range. Such an approach is more efficient than conventional data binning onto a low-resolution wavelength grid. We demonstrate that our analysis is capable of reproducing results achieved by using an explicit quadratic limb-darkening equation and that the filtering technique helps eliminate spurious spectral features in regions with strong telluric absorption. The method is applied to the VLT FORS2 observations of the exoplanets GJ 1214 b and WASP-49 b, and our results are in agreement with previous studies. Comparisons between obtained stellar specific intensity and numerical models indicates that the method is capable of accurately reconstructing the specific intensity. The proposed method enables more robust characterization of exoplanetary atmospheres by separating derivation of planetary transmission and stellar specific intensity spectra (that is model-independent) from chemical and physical interpretation.

  4. Mott transitions in the periodic Anderson model

    International Nuclear Information System (INIS)

    Logan, David E; Galpin, Martin R; Mannouch, Jonathan

    2016-01-01

    The periodic Anderson model (PAM) is studied within the framework of dynamical mean-field theory, with particular emphasis on the interaction-driven Mott transition it contains, and on resultant Mott insulators of both Mott–Hubbard and charge-transfer type. The form of the PAM phase diagram is first deduced on general grounds using two exact results, over the full range of model parameters and including metallic, Mott, Kondo and band insulator phases. The effective low-energy model which describes the PAM in the vicinity of a Mott transition is then shown to be a one-band Hubbard model, with effective hoppings that are not in general solely nearest neighbour, but decay exponentially with distance. This mapping is shown to have a range of implications for the physics of the problem, from phase boundaries to single-particle dynamics; all of which are confirmed and supplemented by NRG calculations. Finally we consider the locally degenerate, non-Fermi liquid Mott insulator, to describe which requires a two-self-energy description. This is shown to yield a number of exact results for the associated local moment, charge, and interaction-renormalised levels, together with a generalisation of Luttinger’s theorem to the Mott insulator. (paper)

  5. Modeling the Coordinated Operation between Bus Rapid Transit and Bus

    Directory of Open Access Journals (Sweden)

    Jiaqing Wu

    2015-01-01

    Full Text Available The coordination between bus rapid transit (BRT and feeder bus service is helpful in improving the operational efficiency and service level of urban public transport system. Therefore, a coordinated operation model of BRT and bus is intended to develop in this paper. The total costs are formulated and optimized by genetic algorithm. Moreover, the skip-stop BRT operation is considered when building the coordinated operation model. A case of the existing bus network in Beijing is studied, the proposed coordinated operation model of BRT and bus is applied, and the optimized headway and costs are obtained. The results show that the coordinated operation model could effectively decrease the total costs of the transit system and the transfer time of passengers. The results also suggest that the coordination between the skip-stop BRT and bus during peak hour is more effective than non-coordination operation.

  6. An Ordered Regression Model to Predict Transit Passengers’ Behavioural Intentions

    Energy Technology Data Exchange (ETDEWEB)

    Oña, J. de; Oña, R. de; Eboli, L.; Forciniti, C.; Mazzulla, G.

    2016-07-01

    Passengers’ behavioural intentions after experiencing transit services can be viewed as signals that show if a customer continues to utilise a company’s service. Users’ behavioural intentions can depend on a series of aspects that are difficult to measure directly. More recently, transit passengers’ behavioural intentions have been just considered together with the concepts of service quality and customer satisfaction. Due to the characteristics of the ways for evaluating passengers’ behavioural intentions, service quality and customer satisfaction, we retain that this kind of issue could be analysed also by applying ordered regression models. This work aims to propose just an ordered probit model for analysing service quality factors that can influence passengers’ behavioural intentions towards the use of transit services. The case study is the LRT of Seville (Spain), where a survey was conducted in order to collect the opinions of the passengers about the existing transit service, and to have a measure of the aspects that can influence the intentions of the users to continue using the transit service in the future. (Author)

  7. Ab initio modelling of transition metals in diamond

    International Nuclear Information System (INIS)

    Watkins, M; Mainwood, A

    2003-01-01

    Transition metals (TM) from the first transition series are commonly used as solvent catalysts in the synthesis of diamond by high pressure, high temperature processes. Ab initio calculations on these metals, in finite clusters of tetrahedrally coordinated carbon, enable us to investigate trends in their stability and properties. By carrying out systematic studies of interstitial, substitutional and semi-vacancy TM defects, we show that the electronic structure of the TMs is complicated by the presence of 'dangling bonds' when the TM disrupts the crystal lattice: interstitial defects conform to the Ludwig-Woodbury (LW) model, whilst substitutional and semi-vacancy defects move from approximating the LW model early in the transition series to approaching the vacancy model for the heavier metals. Multi-configurational self-consistent field methods allow genuine many-electron states to be modelled; for neutral interstitial, and all substitutional TMs, the crystal fields are found to exceed the exchange energies in strength. Consequently, low spin states are found for these defects. We find substitutional defects to be the most stable, but that semi-vacancy TMs are very similar in energy to the substitutional defects late in the transition series; interstitial defects are only metastable in diamond. Given appropriate charge compensators neutral and positively charged interstitial TM defects were stable, while negatively charged species appeared to be strongly disfavoured

  8. Transit timing observations from Kepler. V. Transit timing variation candidates in the first sixteen months from polynomial models

    DEFF Research Database (Denmark)

    Ford, E.B.; Ragozzine, D.; Holman, M.J.

    2012-01-01

    Transit timing variations provide a powerful tool for confirming and characterizing transiting planets, as well as detecting non-transiting planets. We report the results of an updated transit timing variation (TTV) analysis for 1481 planet candidates based on transit times measured during...... find that the occurrence rate of planet candidates that show TTVs is significantly increased (~68%) for planet candidates transiting stars with multiple transiting planet candidates when compared to planet candidates transiting stars with a single transiting planet candidate....

  9. Microscopic model of the glass transition and the glassy state

    International Nuclear Information System (INIS)

    Shukla, P.

    1982-07-01

    A microscopic model of the glass transition and the glassy state is presented. It is exactly solvable, and offers a unified view of the equilibrium and non-equilibrium aspects of the glass transition. It also provides a statistical-mechanical justification of the irreversible thermodynamic models of the glass transition proposed earlier. (author)

  10. Modelling transitions in urban water systems.

    Science.gov (United States)

    Rauch, W; Urich, C; Bach, P M; Rogers, B C; de Haan, F J; Brown, R R; Mair, M; McCarthy, D T; Kleidorfer, M; Sitzenfrei, R; Deletic, A

    2017-12-01

    Long term planning of urban water infrastructure requires acknowledgement that transitions in the water system are driven by changes in the urban environment, as well as societal dynamics. Inherent to the complexity of these underlying processes is that the dynamics of a system's evolution cannot be explained by linear cause-effect relationships and cannot be predicted under narrow sets of assumptions. Planning therefore needs to consider the functional behaviour and performance of integrated flexible infrastructure systems under a wide range of future conditions. This paper presents the first step towards a new generation of integrated planning tools that take such an exploratory planning approach. The spatially explicit model, denoted DAnCE4Water, integrates urban development patterns, water infrastructure changes and the dynamics of socio-institutional changes. While the individual components of the DAnCE4Water model (i.e. modules for simulation of urban development, societal dynamics and evolution/performance of water infrastructure) have been developed elsewhere, this paper presents their integration into a single model. We explain the modelling framework of DAnCE4Water, its potential utility and its software implementation. The integrated model is validated for the case study of an urban catchment located in Melbourne, Australia. Copyright © 2017 Elsevier Ltd. All rights reserved.

  11. Modeling Transit Patterns Via Mobile App Logs.

    Science.gov (United States)

    2016-01-01

    Transit planners need detailed information of the trips people take using public transit in : order to design more optimal routes, address new construction projects, and address the : constantly changing needs of a city and metro region. Better trans...

  12. Modelling Hegemonic Power Transition in Cyberspace

    Directory of Open Access Journals (Sweden)

    Dmitry Brizhinev

    2018-01-01

    Full Text Available Cyberspace is the newest domain of conflict and cooperation between states. In cyberspace, as in all other domains, land, sea, air, and space, these interactions often lead to the emergence of hegemons which are characterised by their predominant influence over global world order and all other states. We examined the emergence and collapse of hegemons in a modelled cyberspace world through the notions of power transition and power diffusion. We used Repast Simphony to construct a simple agent-based model (ABM of a system of states interacting both competitively and cooperatively in this world. Our simple model parsimoniously captures the character of the real international system of states through simple parameters of wealth and power determining the outcome of attack or cooperation amongst pairwise interacting states. We found hegemons of global world order emerged in cyberspace as they do in the other traditional domains from models with these few parameters. And we found that hegemons, contrary to traditional understanding, are not exceptional states but merely occupy the tail of a continuous distribution of power and lifetimes. We also found that hegemony in the system depends on two perhaps unexpected parameters: the difficulty of acquiring power as wealth increases and the amount of cooperation between states. And as a consequence, we argue that cyberspace, as a power-diffuse domain where cooperation is easier than elsewhere, is less suited to the kind of hegemony we see in the traditional domains of state interaction.

  13. Absorbing phase transitions in deterministic fixed-energy sandpile models

    Science.gov (United States)

    Park, Su-Chan

    2018-03-01

    We investigate the origin of the difference, which was noticed by Fey et al. [Phys. Rev. Lett. 104, 145703 (2010), 10.1103/PhysRevLett.104.145703], between the steady state density of an Abelian sandpile model (ASM) and the transition point of its corresponding deterministic fixed-energy sandpile model (DFES). Being deterministic, the configuration space of a DFES can be divided into two disjoint classes such that every configuration in one class should evolve into one of absorbing states, whereas no configurations in the other class can reach an absorbing state. Since the two classes are separated in terms of toppling dynamics, the system can be made to exhibit an absorbing phase transition (APT) at various points that depend on the initial probability distribution of the configurations. Furthermore, we show that in general the transition point also depends on whether an infinite-size limit is taken before or after the infinite-time limit. To demonstrate, we numerically study the two-dimensional DFES with Bak-Tang-Wiesenfeld toppling rule (BTW-FES). We confirm that there are indeed many thresholds. Nonetheless, the critical phenomena at various transition points are found to be universal. We furthermore discuss a microscopic absorbing phase transition, or a so-called spreading dynamics, of the BTW-FES, to find that the phase transition in this setting is related to the dynamical isotropic percolation process rather than self-organized criticality. In particular, we argue that choosing recurrent configurations of the corresponding ASM as an initial configuration does not allow for a nontrivial APT in the DFES.

  14. 3D CFD computations of transitional flows using DES and a correlation based transition model

    DEFF Research Database (Denmark)

    Sørensen, Niels N.

    The report describes the application of the correlation based transition model of of Menter et. al. [1, 2] to the cylinder drag crisis and the stalled flow over an DU-96-W-351 airfoil using the DES methodology. When predicting the flow over airfoils and rotors, the laminar-turbulent transition...... process can be important for the aerodynamic performance. Today, the most widespread approach is to use fully turbulent computations, where the transitional process is ignored and the entire boundary layer on the wings or airfoils is handled by the turbulence model. The correlation based transition model...

  15. Liquid-liquid phase transition and glass transition in a monoatomic model system.

    Science.gov (United States)

    Xu, Limei; Buldyrev, Sergey V; Giovambattista, Nicolas; Stanley, H Eugene

    2010-01-01

    We review our recent study on the polyamorphism of the liquid and glass states in a monatomic system, a two-scale spherical-symmetric Jagla model with both attractive and repulsive interactions. This potential with a parametrization for which crystallization can be avoided and both the glass transition and the liquid-liquid phase transition are clearly separated, displays water-like anomalies as well as polyamorphism in both liquid and glassy states, providing a unique opportunity to study the interplay between the liquid-liquid phase transition and the glass transition. Our study on a simple model may be useful in understanding recent studies of polyamorphism in metallic glasses.

  16. Transitioning Back to Mainstream Education: The Flexible Integration Model

    Science.gov (United States)

    Cumming, Therese M.; Strnadová, Iva

    2017-01-01

    The implementation of a transition model, the flexible integration model, was investigated in a school in Sydney, Australia, using an exploratory single case study design (Rowley, 2002). It is a person-centred model designed to assist students in transitioning from a special school for students with emotional and behavioural disabilities to…

  17. Advances in Laminar Turbulent Transition Modelling (Les avancees dans la modelisation de la transition laminaire turbulente)

    Science.gov (United States)

    2008-06-01

    la transition, la croissance des instabilités 3D et leurs mécanismes d’éclatement, les progrès effectués dans les méthodes Navier Stoke parabolisées...EN-AVT-151 Advances in Laminar Turbulent Transition Modelling (Les avancées dans la modélisation de la transition laminaire turbulente) Papers...

  18. Convergence of Transition Probability Matrix in CLVMarkov Models

    Science.gov (United States)

    Permana, D.; Pasaribu, U. S.; Indratno, S. W.; Suprayogi, S.

    2018-04-01

    A transition probability matrix is an arrangement of transition probability from one states to another in a Markov chain model (MCM). One of interesting study on the MCM is its behavior for a long time in the future. The behavior is derived from one property of transition probabilty matrix for n steps. This term is called the convergence of the n-step transition matrix for n move to infinity. Mathematically, the convergence of the transition probability matrix is finding the limit of the transition matrix which is powered by n where n moves to infinity. The convergence form of the transition probability matrix is very interesting as it will bring the matrix to its stationary form. This form is useful for predicting the probability of transitions between states in the future. The method usually used to find the convergence of transition probability matrix is through the process of limiting the distribution. In this paper, the convergence of the transition probability matrix is searched using a simple concept of linear algebra that is by diagonalizing the matrix.This method has a higher level of complexity because it has to perform the process of diagonalization in its matrix. But this way has the advantage of obtaining a common form of power n of the transition probability matrix. This form is useful to see transition matrix before stationary. For example cases are taken from CLV model using MCM called Model of CLV-Markov. There are several models taken by its transition probability matrix to find its convergence form. The result is that the convergence of the matrix of transition probability through diagonalization has similarity with convergence with commonly used distribution of probability limiting method.

  19. Thermodynamic model of nonequilibrium phase transitions.

    Science.gov (United States)

    Martyushev, L M; Konovalov, M S

    2011-07-01

    Within the scope of a thermodynamic description using the maximum entropy production principle, transitions from one nonequilibrium (kinetic) regime to another are considered. It is shown that in the case when power-law dependencies of thermodynamic flux on force are similar for two regimes, only a transition accompanied by a positive jump of thermodynamic flux is possible between them. It is found that the difference in powers of the dependencies of thermodynamic fluxes on forces results in a number of interesting nonequilibrium transitions between kinetic regimes, including the reentrant one with a negative jump of thermodynamic flux.

  20. Model for pairing phase transition in atomic nuclei

    International Nuclear Information System (INIS)

    Schiller, A.; Guttormsen, M.; Hjorth-Jensen, M.; Rekstad, J.; Siem, S.

    2002-01-01

    A model is developed which allows the investigation and classification of the pairing phase transition in atomic nuclei. The regions of the parameter space are discussed for which a pairing phase transition can be observed. The model parameters include number of particles, attenuation of pairing correlations with increasing seniority, single-particle level spacing, and pairing gap parameter

  1. A rigidity transition and glassy dynamics in a model for confluent 3D tissues

    Science.gov (United States)

    Merkel, Matthias; Manning, M. Lisa

    The origin of rigidity in disordered materials is an outstanding open problem in statistical physics. Recently, a new type of rigidity transition was discovered in a family of models for 2D biological tissues, but the mechanisms responsible for rigidity remain unclear. This is not just a statistical physics problem, but also relevant for embryonic development, cancer growth, and wound healing. To gain insight into this rigidity transition and make new predictions about biological bulk tissues, we have developed a fully 3D self-propelled Voronoi (SPV) model. The model takes into account shape, elasticity, and self-propelled motion of the individual cells. We find that in the absence of self-propulsion, this model exhibits a rigidity transition that is controlled by a dimensionless model parameter describing the preferred cell shape, with an accompanying structural order parameter. In the presence of self-propulsion, the rigidity transition appears as a glass-like transition featuring caging and aging effects. Given the similarities between this transition and jamming in particulate solids, it is natural to ask if the two transitions are related. By comparing statistics of Voronoi geometries, we show the transitions are surprisingly close but demonstrably distinct. Furthermore, an index theorem used to identify topologically protected mechanical modes in jammed systems can be extended to these vertex-type models. In our model, residual stresses govern the transition and enter the index theorem in a different way compared to jammed particles, suggesting the origin of rigidity may be different between the two.

  2. Understanding & modeling bus transit driver availability.

    Science.gov (United States)

    2014-07-01

    Bus transit agencies are required to hire extraboard (i.e. back-up) operators to account for unexpected absences. Incorrect sizing of extra driver workforce is problematic for a number of reasons. Overestimating the appropriate number of extraboard o...

  3. Electroweak phase transition in a model with gauged lepton number

    International Nuclear Information System (INIS)

    Aranda, Alfredo; Jiménez, Enrique; Vaquera-Araujo, Carlos A.

    2015-01-01

    In this work we study the electroweak phase transition in a model with gauged lepton number. Here, a family of vector-like leptons is required in order to cancel the gauge anomalies. Furthermore, these leptons can play an important role in the transition process. We find that this framework is able to provide a strong transition, but only for a very limited number of cases.

  4. Good urban transit: a conservative model

    Science.gov (United States)

    2009-02-01

    For many years, transit advocates and city planners have argued that we need more and : better public transportation. Public transportation is not merely a service to the poor, something that enables people who have no car or do not drive to get arou...

  5. Model of transition between causes of death.

    Science.gov (United States)

    Damiani, P; Aubenque, M

    1975-06-01

    This paper describes an attempt to estimate the probabilities of transition between various major causes of death during the period 1954-1962. The regression coefficients have been estimated from French département death rates for ten main or typical causes of death, assessed by sex for the age group 45-64 years.

  6. Stochastic resonance induced by novel random transitions of motion of FitzHugh-Nagumo neuron model

    International Nuclear Information System (INIS)

    Zhang Guangjun; Xu Jianxue

    2005-01-01

    In contrast to the previous studies which have dealt with stochastic resonance induced by random transitions of system motion between two coexisting limit cycle attractors in the FitzHugh-Nagumo (FHN) neuron model after Hopf bifurcation and which have dealt with the phenomenon of stochastic resonance induced by external noise when the model with periodic input has only one attractor before Hopf bifurcation, in this paper we have focused our attention on stochastic resonance (SR) induced by a novel transition behavior, the transitions of motion of the model among one attractor on the left side of bifurcation point and two attractors on the right side of bifurcation point under the perturbation of noise. The results of research show: since one bifurcation of transition from one to two limit cycle attractors and the other bifurcation of transition from two to one limit cycle attractors occur in turn besides Hopf bifurcation, the novel transitions of motion of the model occur when bifurcation parameter is perturbed by weak internal noise; the bifurcation point of the model may stochastically slightly shift to the left or right when FHN neuron model is perturbed by external Gaussian distributed white noise, and then the novel transitions of system motion also occur under the perturbation of external noise; the novel transitions could induce SR alone, and when the novel transitions of motion of the model and the traditional transitions between two coexisting limit cycle attractors after bifurcation occur in the same process the SR also may occur with complicated behaviors types; the mechanism of SR induced by external noise when FHN neuron model with periodic input has only one attractor before Hopf bifurcation is related to this kind of novel transition mentioned above

  7. Sildenafil normalizes bowel transit in preclinical models of constipation.

    Directory of Open Access Journals (Sweden)

    Sarah K Sharman

    Full Text Available Guanylyl cyclase-C (GC-C agonists increase cGMP levels in the intestinal epithelium to promote secretion. This process underlies the utility of exogenous GC-C agonists such as linaclotide for the treatment of chronic idiopathic constipation (CIC and irritable bowel syndrome with constipation (IBS-C. Because GC-C agonists have limited use in pediatric patients, there is a need for alternative cGMP-elevating agents that are effective in the intestine. The present study aimed to determine whether the PDE-5 inhibitor sildenafil has similar effects as linaclotide on preclinical models of constipation. Oral administration of sildenafil caused increased cGMP levels in mouse intestinal epithelium demonstrating that blocking cGMP-breakdown is an alternative approach to increase cGMP in the gut. Both linaclotide and sildenafil reduced proliferation and increased differentiation in colon mucosa, indicating common target pathways. The homeostatic effects of cGMP required gut turnover since maximal effects were observed after 3 days of treatment. Neither linaclotide nor sildenafil treatment affected intestinal transit or water content of fecal pellets in healthy mice. To test the effectiveness of cGMP elevation in a functional motility disorder model, mice were treated with dextran sulfate sodium (DSS to induce colitis and were allowed to recover for several weeks. The recovered animals exhibited slower transit, but increased fecal water content. An acute dose of sildenafil was able to normalize transit and fecal water content in the DSS-recovery animal model, and also in loperamide-induced constipation. The higher fecal water content in the recovered animals was due to a compromised epithelial barrier, which was normalized by sildenafil treatment. Taken together our results show that sildenafil can have similar effects as linaclotide on the intestine, and may have therapeutic benefit to patients with CIC, IBS-C, and post-infectious IBS.

  8. Liquid-Liquid Phase Transition and Glass Transition in a Monoatomic Model System

    Directory of Open Access Journals (Sweden)

    Nicolas Giovambattista

    2010-12-01

    Full Text Available We review our recent study on the polyamorphism of the liquid and glass states in a monatomic system, a two-scale spherical-symmetric Jagla model with both attractive and repulsive interactions. This potential with a parametrization for which crystallization can be avoided and both the glass transition and the liquid-liquid phase transition are clearly separated, displays water-like anomalies as well as polyamorphism in both liquid and glassy states, providing a unique opportunity to study the interplay between the liquid-liquid phase transition and the glass transition. Our study on a simple model may be useful in understanding recent studies of polyamorphism in metallic glasses.

  9. Modeling dynamic beta-gamma polymorphic transition in Tin

    Science.gov (United States)

    Chauvin, Camille; Montheillet, Frank; Petit, Jacques; CEA Gramat Collaboration; EMSE Collaboration

    2015-06-01

    Solid-solid phase transitions in metals have been studied by shock waves techniques for many decades. Recent experiments have investigated the transition during isentropic compression experiments and shock-wave compression and have highlighted the strong influence of the loading rate on the transition. Complementary data obtained with velocity and temperature measurements around the polymorphic transition beta-gamma of Tin on gas gun experiments have displayed the importance of the kinetics of the transition. But, even though this phenomenon is known, modeling the kinetic remains complex and based on empirical formulations. A multiphase EOS is available in our 1D Lagrangian code Unidim. We propose to present the influence of various kinetic laws (either empirical or involving nucleation and growth mechanisms) and their parameters (Gibbs free energy, temperature, pressure) on the transformation rate. We compare experimental and calculated velocities and temperature profiles and we underline the effects of the empirical parameters of these models.

  10. The electroweak phase transition in the Inert Doublet Model

    Energy Technology Data Exchange (ETDEWEB)

    Blinov, Nikita [Department of Physics, University of California Santa Cruz,1156 High St, Santa Cruz, CA 95064 (United States); Santa Cruz Institute for Particle Physics,1156 High St, Santa Cruz, CA 95064 (United States); Theory Department, TRIUMF,4004 Wesbrook Mall, Vancouver, BC V6T 2A3 (Canada); Department of Physics and Astronomy, University of British Columbia,Vancouver, BC V6T 1Z1 (Canada); Profumo, Stefano; Stefaniak, Tim [Department of Physics, University of California Santa Cruz,1156 High St, Santa Cruz, CA 95064 (United States); Santa Cruz Institute for Particle Physics,1156 High St, Santa Cruz, CA 95064 (United States)

    2015-07-21

    We study the strength of a first-order electroweak phase transition in the Inert Doublet Model (IDM), where particle dark matter (DM) is comprised of the lightest neutral inert Higgs boson. We improve over previous studies in the description and treatment of the finite-temperature effective potential and of the electroweak phase transition. We focus on a set of benchmark models inspired by the key mechanisms in the IDM leading to a viable dark matter particle candidate, and illustrate how to enhance the strength of the electroweak phase transition by adjusting the masses of the yet undiscovered IDM Higgs states. We argue that across a variety of DM masses, obtaining a strong enough first-order phase transition is a generic possibility in the IDM. We find that due to direct dark matter searches and collider constraints, a sufficiently strong transition and a thermal relic density matching the universal DM abundance is possible only in the Higgs funnel regime.

  11. The electroweak phase transition in the Inert Doublet Model

    Energy Technology Data Exchange (ETDEWEB)

    Blinov, Nikita; Profumo, Stefano; Stefaniak, Tim, E-mail: nblinov@triumf.ca, E-mail: profumo@ucsc.edu, E-mail: tistefan@ucsc.edu [Department of Physics, University of California Santa Cruz, 1156 High St, Santa Cruz, CA 95064 (United States)

    2015-07-01

    We study the strength of a first-order electroweak phase transition in the Inert Doublet Model (IDM), where particle dark matter (DM) is comprised of the lightest neutral inert Higgs boson. We improve over previous studies in the description and treatment of the finite-temperature effective potential and of the electroweak phase transition. We focus on a set of benchmark models inspired by the key mechanisms in the IDM leading to a viable dark matter particle candidate, and illustrate how to enhance the strength of the electroweak phase transition by adjusting the masses of the yet undiscovered IDM Higgs states. We argue that across a variety of DM masses, obtaining a strong enough first-order phase transition is a generic possibility in the IDM. We find that due to direct dark matter searches and collider constraints, a sufficiently strong transition and a thermal relic density matching the universal DM abundance is possible only in the Higgs funnel regime.

  12. Gender and Transition From Pediatric to Adult Health Care Among Youth With Acquired Brain Injury: Experiences in a Transition Model.

    Science.gov (United States)

    Lindsay, Sally; Proulx, Meghann; Maxwell, Joanne; Hamdani, Yani; Bayley, Mark; Macarthur, Colin; Colantonio, Angela

    2016-02-01

    To explore gender and sex differences in experiences of transitioning to adult health care among young adults with acquired brain injury (ABI) who take part in a coordinated model of transitional care. Descriptive design using in-depth semistructured qualitative interviews. Interviews over the phone and in person. Participants (N=18) included 10 young adults with a diagnosis of ABI (4 women, 6 men; age range, 19-21y) and 9 parents (8 women, 1 man) from the Greater Toronto Area, Ontario, Canada. Not applicable. Semistructured interviews with participants. Our findings highlight several commonalities and differences relative to sex and gender among young adults with ABI who are transitioning from pediatric to adult care. Both young adult men and women experienced a similar transition process and similar organization, continuity, and availability of care. Sex differences were found in relational factors (eg, communication, family involvement, social support). Young adult men, and parents of the men, differed in their transition regarding relational factors (eg, communication, family involvement). Our findings show that young adult men and women with ABI who have taken part in a transition preparation program experience similarities in organization, continuity, and availability of care, but they experience differences in relational factors (eg, communication, family involvement). Copyright © 2016 American Congress of Rehabilitation Medicine. Published by Elsevier Inc. All rights reserved.

  13. The democracy ochlocracy dictatorship transition in the Sznajd model and in the Ising model

    Science.gov (United States)

    Schneider, Johannes J.; Hirtreiter, Christian

    2005-08-01

    Since its introduction in 2000, the Sznajd model has been assumed to simulate a democratic community with two parties. The main flaw in this model is that a Sznajd system freezes in the long term in a non-democratic state, which can be either a dictatorship or a stalemate configuration. Here we show that the Sznajd model has better to be considered as a transition model, transferring a democratic system already at the beginning of a simulation via an ochlocratic scenario, i.e., a regime in which several mobs rule, to a dictatorship, thus reproducing the corresponding Aristotelian theory.

  14. Are oceanic fronts ecotones? Seasonal changes along the subtropical front show fronts as bacterioplankton transition zones but not diversity hotspots.

    Science.gov (United States)

    Morales, Sergio E; Meyer, Moana; Currie, Kim; Baltar, Federico

    2018-04-01

    Ecotones are regarded as diversity hotspots in terrestrial systems, but it is unknown if this 'ecotone effect' occurs in the marine environment. Oceanic fronts are widespread mesoscale features, present in the boundary between different water masses, and are arguably the best potential examples of ecotones in the ocean. Here we performed the first seasonal study along an oceanic front, combining 16S rRNA gene sequencing coupled with a high spatial resolution analysis of the physical properties of the water masses. Using the Subtropical Frontal Zone off New Zealand we demonstrate that fronts delimit shifts in bacterioplankton community composition between water masses, but that the strength of this effect is seasonally dependent. While creating a transition zone where physicochemical parameters and bacterioplankton communities get mixed, this ecotone does not result in increased diversity. Thus unlike terrestrial ecotones, oceanic fronts are boundaries but not hotspots of bacterioplankton diversity in the ocean. © 2018 Society for Applied Microbiology and John Wiley & Sons Ltd.

  15. Dynamics of the oil transition: Modeling capacity, depletion, and emissions

    International Nuclear Information System (INIS)

    Brandt, Adam R.; Plevin, Richard J.; Farrell, Alexander E.

    2010-01-01

    The global petroleum system is undergoing a shift to substitutes for conventional petroleum (SCPs). The Regional Optimization Model for Emissions from Oil Substitutes, or ROMEO, models this oil transition and its greenhouse gas impacts. ROMEO models the global liquid fuel market in an economic optimization framework, but in contrast to other models it solves each model year sequentially, with investment and production optimized under uncertainty about future prevailing prices or resource quantities. ROMEO includes more hydrocarbon resource types than integrated assessment models of climate change. ROMEO also includes the carbon intensities and costs of production of these resources. We use ROMEO to explore the uncertainty of future costs, emissions, and total fuel production under a number of scenarios. We perform sensitivity analysis on the endowment of conventional petroleum and future carbon taxes. Results show incremental emissions from production of oil substitutes of ∼ 0-30 gigatonnes (Gt) of carbon over the next 50 years (depending on the carbon tax). Also, demand reductions due to the higher cost of SCPs could reduce or eliminate these increases. Calculated emissions are highly sensitive to the endowment of conventional oil and less sensitive to a carbon tax. (author)

  16. Hierarchical Colored Petri Nets for Modeling and Analysis of Transit Signal Priority Control Systems

    Directory of Open Access Journals (Sweden)

    Yisheng An

    2018-01-01

    Full Text Available In this paper, we consider the problem of developing a model for traffic signal control with transit priority using Hierarchical Colored Petri nets (HCPN. Petri nets (PN are useful for state analysis of discrete event systems due to their powerful modeling capability and mathematical formalism. This paper focuses on their use to formalize the transit signal priority (TSP control model. In a four-phase traffic signal control model, the transit detection and two kinds of transit priority strategies are integrated to obtain the HCPN-based TSP control models. One of the advantages to use these models is the clear presentation of traffic light behaviors in terms of conditions and events that cause the detection of a priority request by a transit vehicle. Another advantage of the resulting models is that the correctness and reliability of the proposed strategies are easily analyzed. After their full reachable states are generated, the boundness, liveness, and fairness of the proposed models are verified. Experimental results show that the proposed control model provides transit vehicles with better effectiveness at intersections. This work helps advance the state of the art in the design of signal control models related to the intersection of roadways.

  17. Modelling systematics of ground-based transit photometry I. Implications on transit timing variations

    DEFF Research Database (Denmark)

    von Essen, C.; Cellone, S.; Mallonn, M.

    2016-01-01

    The transit timing variation technique (TTV) has been widely used to detect and characterize multiple planetary systems. Due to the observational biases imposed mainly by the photometric conditions and instrumentation and the high signal-to-noise required to produce primary transit observations...... the observing time at hand carrying out such follow-ups, or if the use of medium-to-low quality transit light curves, combined with current standard techniques of data analysis, could be playing a main role against exoplanetary search via TTVs. The purpose of this work is to investigate to what extent ground......-based observations treated with current modelling techniques are reliable to detect and characterize additional planets in already known planetary systems. To meet this goal, we simulated typical primary transit observations of a hot Jupiter mimicing an existing system, Qatar-1. To resemble ground-based observations...

  18. Ohio study shows that insurance coverage is critical for children with special health care needs as they transition to adulthood.

    Science.gov (United States)

    Goudie, Anthony; Carle, Adam C

    2011-12-01

    Nearly 30 percent of young adults with special health care needs in Ohio lack health insurance, compared to 5 percent of the state's children with special health care needs. As children with such needs become too old for Medicaid or insurance through their parents' employer, they face great challenges in obtaining insurance. Lack of insurance is highly predictive of unmet needs, which in turn are predictive of costly hospital-based encounters. Young adults with special health care needs who are uninsured are more than twice as likely as their peers with insurance to forgo filling prescriptions and getting care and to have problems getting care. Even after insurance status is accounted for, young adults with special health care needs are more likely than children with such needs to not fill prescriptions because of cost and to delay or forgo needed care. This study demonstrates that continuous and adequate health insurance is vital to the continued well-being of children with special health care needs as they transition to young adulthood.

  19. Allosteric transition: a comparison of two models

    DEFF Research Database (Denmark)

    Bindslev, Niels

    2013-01-01

    Introduction Two recent models are in use for analysis of allosteric drug action at receptor sites remote from orthosteric binding sites. One is an allosteric two-state mechanical model derived in 2000 by David Hall. The other is an extended operational model developed in 2007 by Arthur Christopo...

  20. Boundary-layer transition prediction using a simplified correlation-based model

    Directory of Open Access Journals (Sweden)

    Xia Chenchao

    2016-02-01

    Full Text Available This paper describes a simplified transition model based on the recently developed correlation-based γ-Reθt transition model. The transport equation of transition momentum thickness Reynolds number is eliminated for simplicity, and new transition length function and critical Reynolds number correlation are proposed. The new model is implemented into an in-house computational fluid dynamics (CFD code and validated for low and high-speed flow cases, including the zero pressure flat plate, airfoils, hypersonic flat plate and double wedge. Comparisons between the simulation results and experimental data show that the boundary-layer transition phenomena can be reasonably illustrated by the new model, which gives rise to significant improvements over the fully laminar and fully turbulent results. Moreover, the new model has comparable features of accuracy and applicability when compared with the original γ-Reθt model. In the meantime, the newly proposed model takes only one transport equation of intermittency factor and requires fewer correlations, which simplifies the original model greatly. Further studies, especially on separation-induced transition flows, are required for the improvement of the new model.

  1. 3D CFD computations of trasitional flows using DES and a correlation based transition model

    DEFF Research Database (Denmark)

    Sørensen, Niels N.; Bechmann, Andreas; Zahle, Frederik

    2011-01-01

    The present article describes the application of the correlation based transition model of Menter et al. in combination with the Detached Eddy Simulation (DES) methodology to two cases with large degree of flow separation typically considered difficult to compute. Firstly, the flow is computed over....... Secondly, the flow is computed over a thick airfoil at high angle of attack, in this case the DU-96-W351 is considered. These computations show that a transition model is needed to obtain correct drag predictions at low angle of attack, and that the combination of transition and the DES method improve...

  2. Mutational profiles of Brenner tumors show distinctive features uncoupling urothelial carcinomas and ovarian carcinoma with transitional cell histology.

    Science.gov (United States)

    Pfarr, Nicole; Darb-Esfahani, Silvia; Leichsenring, Jonas; Taube, Eliane; Boxberg, Melanie; Braicu, Ioana; Jesinghaus, Moritz; Penzel, Roland; Endris, Volker; Noske, Aurelia; Weichert, Wilko; Schirmacher, Peter; Denkert, Carsten; Stenzinger, Albrecht

    2017-10-01

    Brenner tumors (BT) are rare ovarian tumors encompassing benign, borderline, and malignant variants. While the histopathology of BTs and their clinical course is well described, little is known about the underlying genetic defects. We employed targeted next generation sequencing to analyze the mutational landscape in a cohort of 23 BT cases (17 benign, 2 borderline, and 4 malignant) and 3 ovarian carcinomas with transitional cell histology (TCC). Copy number variations (CNV) were validated by fluorescence in-situ hybridization (FISH) and quantitative PCR-based copy number assays. Additionally, we analyzed the TERT promotor region by conventional Sanger sequencing. We identified 25 different point mutations in 23 of the analyzed genes in BTs and 10 mutations in 8 genes in TCCs. About 57% percent of mutations occurred in genes involved in cell cycle control, DNA repair, and epigenetic regulation processes. All TCC cases harbored TP53 mutations whereas all BTs were negative and none of the mutations observed in BTs were present in TCCs. CNV analysis revealed recurrent MDM2 amplifications in 3 out of 4 of the malignant BT cases with one case harboring a concomitant amplification of CCND1. No mutations were observed in the TERT promoter region in BTs and TCCs, which is mutated in about 50%-75% of urothelial carcinoma and in 16% of ovarian clear-cell carcinomas. In conclusion, our study highlights distinct genetic features of BTs, and detection of the triplet phenotype MDM2 amplification/TP53 wt/TERT wt may aid diagnosis of malignant BT in difficult cases. Moreover, selected genetic lesions may be clinically exploitable in a metastatic setting. © 2017 Wiley Periodicals, Inc.

  3. Linking rigidity transitions with enthalpic changes at the glass transition and fragility: insight from a simple oscillator model.

    Science.gov (United States)

    Micoulaut, Matthieu

    2010-07-21

    A low temperature Monte Carlo dynamics of a Keating-like oscillator model is used to study the relationship between the nature of network glasses from the viewpoint of rigidity, the thermal reversibility during the glass transition and the strong-fragile behaviour of glass-forming liquids. The model shows that a Phillips optimal glass formation with minimal enthalpic changes is obtained under a cooling/annealing cycle when the system is optimally constrained by the harmonic interactions, i.e. when it is isostatically rigid. For these peculiar systems with a nearly reversible glass transition, the computed activation energy for relaxation time shows also a minimum, which demonstrates that isostatically rigid glasses are strong (Arrhenius-like) glass-forming liquids. Experiments on chalcogenide and oxide glass-forming liquids are discussed under this new perspective and confirm the theoretical prediction for chalcogenide network glasses whereas limitations of the approach appear for weakly interacting (non-covalent, ionic) systems.

  4. TPmsm: Estimation of the Transition Probabilities in 3-State Models

    Directory of Open Access Journals (Sweden)

    Artur Araújo

    2014-12-01

    Full Text Available One major goal in clinical applications of multi-state models is the estimation of transition probabilities. The usual nonparametric estimator of the transition matrix for non-homogeneous Markov processes is the Aalen-Johansen estimator (Aalen and Johansen 1978. However, two problems may arise from using this estimator: first, its standard error may be large in heavy censored scenarios; second, the estimator may be inconsistent if the process is non-Markovian. The development of the R package TPmsm has been motivated by several recent contributions that account for these estimation problems. Estimation and statistical inference for transition probabilities can be performed using TPmsm. The TPmsm package provides seven different approaches to three-state illness-death modeling. In two of these approaches the transition probabilities are estimated conditionally on current or past covariate measures. Two real data examples are included for illustration of software usage.

  5. A multiple-field coupled resistive transition model for superconducting Nb3Sn

    Directory of Open Access Journals (Sweden)

    Lin Yang

    2016-12-01

    Full Text Available A study on the superconducting transition width as functions of the applied magnetic field and strain is performed in superconducting Nb3Sn. A quantitative, yet universal phenomenological resistivity model is proposed. The numerical simulation by the proposed model shows predicted resistive transition characteristics under variable magnetic fields and strain, which in good agreement with the experimental observations. Furthermore, a temperature-modulated magnetoresistance transition behavior in filamentary Nb3Sn conductors can also be well described by the given model. The multiple-field coupled resistive transition model is helpful for making objective determinations of the high-dimensional critical surface of Nb3Sn in the multi-parameter space, offering some preliminary information about the basic vortex-pinning mechanisms, and guiding the design of the quench protection system of Nb3Sn superconducting magnets.

  6. A multiple-field coupled resistive transition model for superconducting Nb3Sn

    Science.gov (United States)

    Yang, Lin; Ding, He; Zhang, Xin; Qiao, Li

    2016-12-01

    A study on the superconducting transition width as functions of the applied magnetic field and strain is performed in superconducting Nb3Sn. A quantitative, yet universal phenomenological resistivity model is proposed. The numerical simulation by the proposed model shows predicted resistive transition characteristics under variable magnetic fields and strain, which in good agreement with the experimental observations. Furthermore, a temperature-modulated magnetoresistance transition behavior in filamentary Nb3Sn conductors can also be well described by the given model. The multiple-field coupled resistive transition model is helpful for making objective determinations of the high-dimensional critical surface of Nb3Sn in the multi-parameter space, offering some preliminary information about the basic vortex-pinning mechanisms, and guiding the design of the quench protection system of Nb3Sn superconducting magnets.

  7. A Correlation-Based Transition Model using Local Variables. Part 1; Model Formation

    Science.gov (United States)

    Menter, F. R.; Langtry, R. B.; Likki, S. R.; Suzen, Y. B.; Huang, P. G.; Volker, S.

    2006-01-01

    A new correlation-based transition model has been developed, which is based strictly on local variables. As a result, the transition model is compatible with modern computational fluid dynamics (CFD) approaches, such as unstructured grids and massive parallel execution. The model is based on two transport equations, one for intermittency and one for the transition onset criteria in terms of momentum thickness Reynolds number. The proposed transport equations do not attempt to model the physics of the transition process (unlike, e.g., turbulence models) but from a framework for the implementation of correlation-based models into general-purpose CFD methods.

  8. GENESIS - The GENEric SImulation System for Modelling State Transitions.

    Science.gov (United States)

    Gillman, Matthew S

    2017-09-20

    This software implements a discrete time Markov chain model, used to model transitions between states when the transition probabilities are known a priori . It is highly configurable; the user supplies two text files, a "state transition table" and a "config file", to the Perl script genesis.pl. Given the content of these files, the script generates a set of C++ classes based on the State design pattern, and a main program, which can then be compiled and run. The C++ code generated is based on the specification in the text files. Both multiple branching and bi-directional transitions are allowed. The software has been used to model the natural histories of colorectal cancer in Mexico. Although written primarily to model such disease processes, it can be used in any process which depends on discrete states with known transition probabilities between those states. One suitable area may be in environmental modelling. A test suite is supplied with the distribution. Due to its high degree of configurability and flexibility, this software has good re-use potential. It is stored on the Figshare repository.

  9. Detecting critical state before phase transition of complex biological systems by hidden Markov model.

    Science.gov (United States)

    Chen, Pei; Liu, Rui; Li, Yongjun; Chen, Luonan

    2016-07-15

    Identifying the critical state or pre-transition state just before the occurrence of a phase transition is a challenging task, because the state of the system may show little apparent change before this critical transition during the gradual parameter variations. Such dynamics of phase transition is generally composed of three stages, i.e. before-transition state, pre-transition state and after-transition state, which can be considered as three different Markov processes. By exploring the rich dynamical information provided by high-throughput data, we present a novel computational method, i.e. hidden Markov model (HMM) based approach, to detect the switching point of the two Markov processes from the before-transition state (a stationary Markov process) to the pre-transition state (a time-varying Markov process), thereby identifying the pre-transition state or early-warning signals of the phase transition. To validate the effectiveness, we apply this method to detect the signals of the imminent phase transitions of complex systems based on the simulated datasets, and further identify the pre-transition states as well as their critical modules for three real datasets, i.e. the acute lung injury triggered by phosgene inhalation, MCF-7 human breast cancer caused by heregulin and HCV-induced dysplasia and hepatocellular carcinoma. Both functional and pathway enrichment analyses validate the computational results. The source code and some supporting files are available at https://github.com/rabbitpei/HMM_based-method lnchen@sibs.ac.cn or liyj@scut.edu.cn Supplementary data are available at Bioinformatics online. © The Author 2016. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  10. Dealing with selection bias in educational transition models

    DEFF Research Database (Denmark)

    Holm, Anders; Jæger, Mads Meier

    2011-01-01

    This paper proposes the bivariate probit selection model (BPSM) as an alternative to the traditional Mare model for analyzing educational transitions. The BPSM accounts for selection on unobserved variables by allowing for unobserved variables which affect the probability of making educational tr...

  11. A validated, transitional and translational porcine model of hepatocellular carcinoma

    NARCIS (Netherlands)

    Schachtschneider, Kyle M.; Schwind, Regina M.; Darfour-Oduro, Kwame A.; De, Arun K.; Rund, Lauretta A.; Singh, Kuldeep; Principe, Daniel R.; Guzman, Grace; Ray, Charles E.; Ozer, Howard; Gaba, Ron C.; Schook, Lawrence B.

    2017-01-01

    Difficult questions are confronting clinicians attempting to improve hepatocellular carcinoma (HCC) outcomes. A large animal model with genetic, anatomical, and physiological similarities to humans is required to transition from mouse models to human clinical trials to address unmet clinical

  12. The Work of Cultural Transition: An Emerging Model

    Directory of Open Access Journals (Sweden)

    Tatiana V. Ryba

    2016-03-01

    Full Text Available In today’s uncertain, fluid job market, transnational mobility has intensified. Though the concept of cultural transition is increasingly used in sport and career research, insight into the processes of how individuals produce their own development through work and relationships in shifting cultural patterns of meaning remains limited. The transnational industry of sports, in which athletes’ psychological adjustment to cultural transitions has implications for both performance and meaningful life, serves as a backdrop for this article. This study applied the life story method to interviews with 15 professional and semi-professional athletes, focusing particularly on the cultural transition aspect of their transnational athletic careers. The aims of the study were to identify the developmental tasks of cultural transitions and strategies/mechanisms through which cultural transitions were enacted. Three underlying mechanisms of the transition process that assisted athletic career adaptability were social repositioning, negotiation of cultural practices, and meaning reconstruction. Based on the data analyses, a temporal model of cultural transition is proposed. The results of this research provide professionals working in the fields of career counseling and migrant support with a content framework for enhancing migrant workers’ adaptabilities and psychological wellbeing.

  13. The Work of Cultural Transition: An Emerging Model.

    Science.gov (United States)

    Ryba, Tatiana V; Stambulova, Natalia B; Ronkainen, Noora J

    2016-01-01

    In today's uncertain, fluid job market, transnational mobility has intensified. Though the concept of cultural transition is increasingly used in sport and career research, insight into the processes of how individuals produce their own development through work and relationships in shifting cultural patterns of meaning remains limited. The transnational industry of sports, in which athletes' psychological adjustment to cultural transitions has implications for both performance and meaningful life, serves as a backdrop for this article. This study applied the life story method to interviews with 15 professional and semi-professional athletes, focusing particularly on the cultural transition aspect of their transnational athletic careers. The aims of the study were to identify the developmental tasks of cultural transitions and strategies/mechanisms through which cultural transitions were enacted. Three underlying mechanisms of the transition process that assisted athletic career adaptability were social repositioning, negotiation of cultural practices, and meaning reconstruction. Based on the data analyses, a temporal model of cultural transition is proposed. The results of this research provide professionals working in the fields of career counseling and migrant support with a content framework for enhancing migrant workers' adaptabilities and psychological wellbeing.

  14. A Transitive Model For Artificial Intelligence Applications

    Science.gov (United States)

    Dwyer, John

    1986-03-01

    A wide range of mathematical techniques have been applied to artificial intelligence problems and some techniques have proved more suitable than others for certain types of problem. We formally define a mathematical model which incorporates some of these successful techniques and we discuss its intrinsic properties. Universal applicability of the model is demonstrated through specific applications to problems drawn from rule-based systems, digital hardware design and constraint satisfaction networks. We also give indications of potential applications to other artificial intelligence problems, including knowledge engineering.

  15. Models of agglomeration and glass transition

    CERN Document Server

    Kerner, Richard

    2007-01-01

    This book is for any physicist interested in new vistas in the domain of non-crystalline condensed matter, aperiodic and quasi-crystalline networks and especially glass physics and chemistry. Students with an elementary background in thermodynamics and statistical physics will find the book accessible. The physics of glasses is extensively covered, focusing on their thermal and mechanical properties, as well as various models leading to the formation of the glassy states of matter from overcooled liquids. The models of agglomeration and growth are also applied to describe the formation of quasicrystals, fullerenes and, in biology, to describe virus assembly pathways.

  16. Human driven transitions in complex model ecosystems

    Science.gov (United States)

    Harfoot, Mike; Newbold, Tim; Tittinsor, Derek; Purves, Drew

    2015-04-01

    Human activities have been observed to be impacting ecosystems across the globe, leading to reduced ecosystem functioning, altered trophic and biomass structure and ultimately ecosystem collapse. Previous attempts to understand global human impacts on ecosystems have usually relied on statistical models, which do not explicitly model the processes underlying the functioning of ecosystems, represent only a small proportion of organisms and do not adequately capture complex non-linear and dynamic responses of ecosystems to perturbations. We use a mechanistic ecosystem model (1), which simulates the underlying processes structuring ecosystems and can thus capture complex and dynamic interactions, to investigate boundaries of complex ecosystems to human perturbation. We explore several drivers including human appropriation of net primary production and harvesting of animal biomass. We also present an analysis of the key interactions between biotic, societal and abiotic earth system components, considering why and how we might think about these couplings. References: M. B. J. Harfoot et al., Emergent global patterns of ecosystem structure and function from a mechanistic general ecosystem model., PLoS Biol. 12, e1001841 (2014).

  17. Quantum Phase Transition and Universal Dynamics in the Rabi Model.

    Science.gov (United States)

    Hwang, Myung-Joong; Puebla, Ricardo; Plenio, Martin B

    2015-10-30

    We consider the Rabi Hamiltonian, which exhibits a quantum phase transition (QPT) despite consisting only of a single-mode cavity field and a two-level atom. We prove QPT by deriving an exact solution in the limit where the atomic transition frequency in the unit of the cavity frequency tends to infinity. The effect of a finite transition frequency is studied by analytically calculating finite-frequency scaling exponents as well as performing a numerically exact diagonalization. Going beyond this equilibrium QPT setting, we prove that the dynamics under slow quenches in the vicinity of the critical point is universal; that is, the dynamics is completely characterized by critical exponents. Our analysis demonstrates that the Kibble-Zurek mechanism can precisely predict the universal scaling of residual energy for a model without spatial degrees of freedom. Moreover, we find that the onset of the universal dynamics can be observed even with a finite transition frequency.

  18. Advances in transitional flow modeling applications to helicopter rotors

    CERN Document Server

    Sheng, Chunhua

    2017-01-01

    This book provides a comprehensive description of numerical methods and validation processes for predicting transitional flows based on the Langtry–Menter local correlation-based transition model, integrated with both one-equation Spalart–Allmaras (S–A) and two-equation Shear Stress Transport (SST) turbulence models. A comparative study is presented to combine the respective merits of the two coupling methods in the context of predicting the boundary-layer transition phenomenon from fundamental benchmark flows to realistic helicopter rotors. The book will of interest to industrial practitioners working in aerodynamic design and the analysis of fixed-wing or rotary wing aircraft, while also offering advanced reading material for graduate students in the research areas of Computational Fluid Dynamics (CFD), turbulence modeling and related fields.

  19. A MATLAB GUI to study Ising model phase transition

    Science.gov (United States)

    Thornton, Curtislee; Datta, Trinanjan

    We have created a MATLAB based graphical user interface (GUI) that simulates the single spin flip Metropolis Monte Carlo algorithm. The GUI has the capability to study temperature and external magnetic field dependence of magnetization, susceptibility, and equilibration behavior of the nearest-neighbor square lattice Ising model. Since the Ising model is a canonical system to study phase transition, the GUI can be used both for teaching and research purposes. The presence of a Monte Carlo code in a GUI format allows easy visualization of the simulation in real time and provides an attractive way to teach the concept of thermal phase transition and critical phenomena. We will also discuss the GUI implementation to study phase transition in a classical spin ice model on the pyrochlore lattice.

  20. Metal-insulator transition and Frohlich conductivity in the Su-Schrieffer-Heeger model

    NARCIS (Netherlands)

    Michielsen, K.F L; de Raedt, H.A.

    1996-01-01

    A quantum molecular dynamics technique is used to study the single-particle density of states, Drude weight, optical conductivity and flux quantization in the Su-Schrieffer-Heeger (SSH) model. Our simulation data show that the SSH model has a metal-insulator transition away from half-filling. In the

  1. Out of equilibrium phase transitions and a toy model for disoriented chiral condensates

    International Nuclear Information System (INIS)

    Bedaque, P.F.; Das, A.

    1993-07-01

    We study the dynamics of a second order phase transition in a situation that mimics a sudden quench to a temperature below the critical temperature in a model with dynamical symmetry breaking. In particular we show that the domains of correlated values of the condensate grow as √t and that this result seems to be largely model independent. (author). 9 refs

  2. Modelling transition states of a small once-through boiler

    Energy Technology Data Exchange (ETDEWEB)

    Talonpoika, T. [Lappeenranta Univ. of Technology (Finland). Dept. of Energy Technology

    1997-12-31

    This article presents a model for the unsteady dynamic behaviour of a once-through counter flow boiler that uses an organic working fluid. The boiler is a compact waste-heat boiler without a furnace and it has a preheater, a vaporiser and a superheater. The relative lengths of the boiler parts vary with the operating conditions since they are all parts of a single tube. The boiler model is presented using a selected example case that uses toluene as the process fluid and flue gas from natural gas combustion as the heat source. The dynamic behaviour of the boiler means transition from the steady initial state towards another steady state that corresponds to the changed process conditions. The solution method chosen is to find such a pressure of the process fluid that the mass of the process fluid in the boiler equals the mass calculated using the mass flows into and out of the boiler during a time step, using the finite difference method. A special method of fast calculation of the thermal properties is used, because most of the calculation time is spent in calculating the fluid properties. The boiler is divided into elements. The values of the thermodynamic properties and mass flows are calculated in the nodes that connect the elements. Dynamic behaviour is limited to the process fluid and tube wall, and the heat source is regarded as to be steady. The elements that connect the preheater to the vaporiser and the vaporiser to the superheater are treated in a special way that takes into account a flexible change from one part to the other. The initial state of the boiler is received from a steady process model that is not a part of the boiler model. The known boundary values that may vary during the dynamic calculation were the inlet temperature and mass flow rates of both the heat source fluid and the process fluid. The dynamic boiler model is analysed for linear and step charges of the entering fluid temperatures and flow rates. The heat source side tests show that

  3. Metastable liquid-liquid transition in a molecular model of water.

    Science.gov (United States)

    Palmer, Jeremy C; Martelli, Fausto; Liu, Yang; Car, Roberto; Panagiotopoulos, Athanassios Z; Debenedetti, Pablo G

    2014-06-19

    Liquid water's isothermal compressibility and isobaric heat capacity, and the magnitude of its thermal expansion coefficient, increase sharply on cooling below the equilibrium freezing point. Many experimental, theoretical and computational studies have sought to understand the molecular origin and implications of this anomalous behaviour. Of the different theoretical scenarios put forward, one posits the existence of a first-order phase transition that involves two forms of liquid water and terminates at a critical point located at deeply supercooled conditions. Some experimental evidence is consistent with this hypothesis, but no definitive proof of a liquid-liquid transition in water has been obtained to date: rapid ice crystallization has so far prevented decisive measurements on deeply supercooled water, although this challenge has been overcome recently. Computer simulations are therefore crucial for exploring water's structure and behaviour in this regime, and have shown that some water models exhibit liquid-liquid transitions and others do not. However, recent work has argued that the liquid-liquid transition has been mistakenly interpreted, and is in fact a liquid-crystal transition in all atomistic models of water. Here we show, by studying the liquid-liquid transition in the ST2 model of water with the use of six advanced sampling methods to compute the free-energy surface, that two metastable liquid phases and a stable crystal phase exist at the same deeply supercooled thermodynamic condition, and that the transition between the two liquids satisfies the thermodynamic criteria of a first-order transition. We follow the rearrangement of water's coordination shell and topological ring structure along a thermodynamically reversible path from the low-density liquid to cubic ice. We also show that the system fluctuates freely between the two liquid phases rather than crystallizing. These findings provide unambiguous evidence for a liquid-liquid transition in

  4. Utilizing Gaze Behavior for Inferring Task Transitions Using Abstract Hidden Markov Models

    Directory of Open Access Journals (Sweden)

    Daniel Fernando Tello Gamarra

    2016-12-01

    Full Text Available We demonstrate an improved method for utilizing observed gaze behavior and show that it is useful in inferring hand movement intent during goal directed tasks. The task dynamics and the relationship between hand and gaze behavior are learned using an Abstract Hidden Markov Model (AHMM. We show that the predicted hand movement transitions occur consistently earlier in AHMM models with gaze than those models that do not include gaze observations.

  5. A Coupled Groundwater-Surface Water Modeling Framework for Simulating Transition Zone Processes.

    Science.gov (United States)

    Mugunthan, Pradeep; Russell, Kevin T; Gong, Binglei; Riley, Michael J; Chin, Arthur; McDonald, Blair G; Eastcott, Linda J

    2017-05-01

    There is an identified need for fully representing groundwater-surface water transition zone (i.e., the sediment zone that connects groundwater and surface water) processes in modeling fate and transport of contaminants to assist with management of contaminated sediments. Most existing groundwater and surface water fate and transport models are not dynamically linked and do not consider transition zone processes such as bioturbation and deposition and erosion of sediments. An interface module is developed herein to holistically simulate the fate and transport by coupling two commonly used models, Environmental Fluid Dynamics Code (EFDC) and SEAWAT, to simulate surface water and groundwater hydrodynamics, while providing an enhanced representation of the processes in the transition zone. Transition zone and surface water contaminant processes were represented through an enhanced version of the EFDC model, AQFATE. AQFATE also includes SEDZLJ, a state-of-the-science surface water sediment transport model. The modeling framework was tested on a published test problem and applied to evaluate field-scale two- and three-dimensional contaminant transport. The model accurately simulated concentrations of salinity from a published test case. For the field-scale applications, the model showed excellent mass balance closure for the transition zone and provided accurate simulations of all transition zone processes represented in the modeling framework. The model predictions for the two-dimensional field case were consistent with site-specific observations of contaminant migration. This modeling framework represents advancement in the simulation of transition zone processes and can help inform risk assessment at sites where contaminant sources from upland areas have the potential to impact sediments and surface water. © 2016, National Ground Water Association.

  6. Rifalazil and derivative compounds show potent efficacy in a mouse model of H. pylori colonization.

    Science.gov (United States)

    Rothstein, David M; Mullin, Steve; Sirokman, Klari; Söndergaard, Karen L; Johnson, Starrla; Gwathmey, Judith K; van Duzer, John; Murphy, Christopher K

    2008-08-01

    The rifamycin rifalazil (RFZ), and derivatives (NCEs) were efficacious in a mouse model of Helicobacter pylori colonization. Select NCEs were more active in vitro and showed greater efficacy than RFZ. A systemic component contributes to efficacy.

  7. A phase transition between small- and large-field models of inflation

    International Nuclear Information System (INIS)

    Itzhaki, Nissan; Kovetz, Ely D

    2009-01-01

    We show that models of inflection point inflation exhibit a phase transition from a region in parameter space where they are of large-field type to a region where they are of small-field type. The phase transition is between a universal behavior, with respect to the initial condition, at the large-field region and non-universal behavior at the small-field region. The order parameter is the number of e-foldings. We find integer critical exponents at the transition between the two phases.

  8. Polarimetry of transiting planets: Differences between plane-parallel and spherical host star atmosphere models

    Science.gov (United States)

    Kostogryz, N. M.; Yakobchuk, T. M.; Berdyugina, S. V.; Milic, I.

    2017-05-01

    Context. To properly interpret photometric and polarimetric observations of exoplanetary transits, accurate calculations of center-to-limb variations of intensity and linear polarization of the host star are needed. These variations, in turn, depend on the choice of geometry of stellar atmosphere. Aims: We want to understand the dependence of the flux and the polarization curves during a transit on the choice of the applied approximation for the stellar atmosphere: spherical and plane-parallel. We examine whether simpler plane-parallel models of stellar atmospheres are good enough to interpret the flux and the polarization light curves during planetary transits, or whether more complicated spherical models should be used. Methods: Linear polarization during a transit appears because a planet eclipses a stellar disk and thus breaks left-right symmetry. We calculate the flux and the polarization variations during a transit with given center-to-limb variations of intensity and polarization. Results: We calculate the flux and the polarization variations during transit for a sample of 405 extrasolar systems. Most of them show higher transit polarization for the spherical stellar atmosphere. Our calculations reveal a group of exoplanetary systems that demonstrates lower maximum polarization during the transits with spherical model atmospheres of host stars with effective temperatures of Teff = 4400-5400 K and surface gravity of log g = 4.45-4.65 than that obtained with plane-parallel atmospheres. Moreover, we have found two trends of the transit polarization. The first trend is a decrease in the polarization calculated with spherical model atmosphere of host stars with effective temperatures Teff = 3500-5100 K, and the second shows an increase in the polarization for host stars with Teff = 5100-7000 K. These trends can be explained by the relative variation of temperature and pressure dependences in the plane-parallel and spherical model atmospheres. Conclusions: For

  9. Analytical expressions for transition edge sensor excess noise models

    International Nuclear Information System (INIS)

    Brandt, Daniel; Fraser, George W.

    2010-01-01

    Transition edge sensors (TESs) are high-sensitivity thermometers used in cryogenic microcalorimeters which exploit the steep gradient in resistivity with temperature during the superconducting phase transition. Practical TES devices tend to exhibit a white noise of uncertain origin, arising inside the device. We discuss two candidate models for this excess noise, phase slip shot noise (PSSN) and percolation noise. We extend the existing PSSN model to include a magnetic field dependence and derive a basic analytical model for percolation noise. We compare the predicted functional forms of the noise current vs. resistivity curves of both models with experimental data and provide a set of equations for both models to facilitate future experimental efforts to clearly identify the source of excess noise.

  10. Engineering models of deflagration-to-detonation transition

    Energy Technology Data Exchange (ETDEWEB)

    Bdzil, J.B.; Son, S.F.

    1995-07-01

    For the past two years, Los Alamos has supported research into the deflagration-to-detonation transition (DDT) in damaged energetic materials as part of the explosives safety program. This program supported both a theory/modeling group and an experimentation group. The goal of the theory/modeling group was to examine the various modeling structures (one-phase models, two-phase models, etc.) and select from these a structure suitable to model accidental initiation of detonation in damaged explosives. The experimental data on low-velocity piston supported DDT in granular explosive was to serve as a test bed to help in the selection process. Three theoretical models have been examined in the course of this study: (1) the Baer-Nunziato (BN) model, (2) the Stewart-Prasad-Asay (SPA) model and (3) the Bdzil-Kapila-Stewart model. Here we describe these models, discuss their properties, and compare their features.

  11. A Transition Zone Showing Highly Discontinuous or Alternating Levels of Stem Cell and Proliferation Markers Characterizes the Development of PTEN-Haploinsufficient Colorectal Cancer.

    Directory of Open Access Journals (Sweden)

    Kevin J Arvai

    Full Text Available Stepwise acquisition of oncogene mutations and deletion/inactivation of tumor suppressor genes characterize the development of colorectal cancer (CRC. These genetic events interact with discrete morphologic transitions from hyperplastic mucosa to adenomatous areas, followed by in situ malignant transformation and finally invasive carcinoma. The goal of this study was to identify tissue markers of the adenoma-carcinoma morphogenetic transitions in CRC.We analyzed the patterns of expression of growth regulatory and stem cell markers across these distinct morphologic transition zones in 735 primary CRC tumors. In 202 cases with preserved adenoma-adenocarcinoma transition, we identified, in 37.1% of cases, a zone of adenomatous epithelium, located immediately adjacent to the invasive component, that showed rapidly alternating intraglandular stretches of PTEN+ and PTEN- epithelium. This zone exactly overlapped with similar alternating expression of Ki-67 and inversely with the transforming growth factor-beta (TGF-β growth regulator SMAD4. These zones also show parallel alternating levels and/or subcellular localization of multiple cancer stem/progenitor cell (CSC markers, including β-catenin/CTNNB1, ALDH1, and CD44. PTEN was always re-expressed in the invasive tumor in these cases, unlike those with complete loss of PTEN expression. Genomic microarray analysis of CRC with prominent CSC-like expansions demonstrated a high frequency of PTEN genomic deletion/haploinsufficiency in tumors with CSC-like transition zones (62.5% but not in tumors with downregulated but non-alternating PTEN expression (14.3%. There were no significant differences in the levels of KRAS mutation or CTNNB1 mutation in CSC-like tumors as compared to unselected CRC cases.In conclusion, we have identified a distinctive CSC-like pre-invasive transition zone in PTEN-haploinsufficient CRC that shows convergent on-off regulation of the PTEN/AKT, TGF-β/SMAD and Wnt

  12. Integrated response and transit time distributions of watersheds by combining hydrograph separation and long-term transit time modeling

    Directory of Open Access Journals (Sweden)

    M. C. Roa-García

    2010-08-01

    Full Text Available We present a new modeling approach analyzing and predicting the Transit Time Distribution (TTD and the Response Time Distribution (RTD from hourly to annual time scales as two distinct hydrological processes. The model integrates Isotope Hydrograph Separation (IHS and the Instantaneous Unit Hydrograph (IUH approach as a tool to provide a more realistic description of transit and response time of water in catchments. Individual event simulations and parameterizations were combined with long-term baseflow simulation and parameterizations; this provides a comprehensive picture of the catchment response for a long time span for the hydraulic and isotopic processes. The proposed method was tested in three Andean headwater catchments to compare the effects of land use on hydrological response and solute transport. Results show that the characteristics of events and antecedent conditions have a significant influence on TTD and RTD, but in general the RTD of the grassland dominated catchment is concentrated in the shorter time spans and has a higher cumulative TTD, while the forest dominated catchment has a relatively higher response distribution and lower cumulative TTD. The catchment where wetlands concentrate shows a flashier response, but wetlands also appear to prolong transit time.

  13. Incommmensurability and Unconventional Superconductor to Insulator Transition in the Hubbard Model with Bond-Charge Interaction

    Science.gov (United States)

    Aligia, A. A.; Anfossi, A.; Arrachea, L.; Degli Esposti Boschi, C.; Dobry, A. O.; Gazza, C.; Montorsi, A.; Ortolani, F.; Torio, M. E.

    2007-11-01

    We determine the quantum phase diagram of the one-dimensional Hubbard model with bond-charge interaction X in addition to the usual Coulomb repulsion U>0 at half-filling. For large enough Xmodel shows three phases. For large U the system is in the spin-density wave phase as in the usual Hubbard model. As U decreases, there is first a spin transition to a spontaneously dimerized bond-ordered wave phase and then a charge transition to a novel phase in which the dominant correlations at large distances correspond to an incommensurate singlet superconductor.

  14. Linearity and Misspecification Tests for Vector Smooth Transition Regression Models

    DEFF Research Database (Denmark)

    Teräsvirta, Timo; Yang, Yukai

    The purpose of the paper is to derive Lagrange multiplier and Lagrange multiplier type specification and misspecification tests for vector smooth transition regression models. We report results from simulation studies in which the size and power properties of the proposed asymptotic tests in small...

  15. On the logical specification of probabilistic transition models

    CSIR Research Space (South Africa)

    Rens, G

    2013-05-01

    Full Text Available We investigate the requirements for specifying the behaviors of actions in a stochastic domain. That is, we propose how to write sentences in a logical language to capture a model of probabilistic transitions due to the execution of actions of some...

  16. Long time behaviour of a singular phase transition model

    Czech Academy of Sciences Publication Activity Database

    Krejčí, Pavel; Sprekels, J.

    2006-01-01

    Roč. 15, č. 4 (2006), s. 1119-1135 ISSN 1078-0947 Institutional research plan: CEZ:AV0Z10190503 Keywords : phase transition * nonlocal model * integrodifferential heat equation Subject RIV: BA - General Mathematics Impact factor: 1.087, year: 2006

  17. The electroweak phase transition in models with gauge singlets

    International Nuclear Information System (INIS)

    Ahriche, A.

    2007-01-01

    A strong first order phase transition is needed for generating the baryon asymmetry; and also to save it during the electroweak phase transition (EWPT). However this condition is not fulfilled within the Standard Model (SM), but in its extensions. It is widely believed that the existence of singlet scalars in some Standard Model extensions can easily make the EWPT strongly first order. In this work, we will examine the strength of the EWPT in the simplest extension of the SM with a real gauge singlet using the sphaleron energy at the critical temperature. We find that the phase transition is stronger by adding a singlet; and also that the criterion for a strong phase transition Ω(T c )/T c >or similar 1, where Ω = (v 2 + (x - x 0 ) 2 ) ( 1)/(2) and x(x 0 ) is the singlet vacuum expectation value in the broken (symmetric) phase, is not valid for models containing singlets, even though often used in the literature. The usual condition v c /T c >or similar 1 is more meaningful, and it is satisfied for the major part of the parameter space for physically allowed Higgs masses. Then it is convenient to study the EWPT in models with singlets that couple only to the Higgs doublets, by replacing the singlets by their vevs. (orig.)

  18. The electroweak phase transition in models with gauge singlets

    Energy Technology Data Exchange (ETDEWEB)

    Ahriche, A.

    2007-04-18

    A strong first order phase transition is needed for generating the baryon asymmetry; and also to save it during the electroweak phase transition (EWPT). However this condition is not fulfilled within the Standard Model (SM), but in its extensions. It is widely believed that the existence of singlet scalars in some Standard Model extensions can easily make the EWPT strongly first order. In this work, we will examine the strength of the EWPT in the simplest extension of the SM with a real gauge singlet using the sphaleron energy at the critical temperature. We find that the phase transition is stronger by adding a singlet; and also that the criterion for a strong phase transition {omega}(T{sub c})/T{sub c} >or similar 1, where {omega} = (v{sup 2} + (x - x{sub 0}){sup 2}){sup (}1)/(2) and x(x{sub 0}) is the singlet vacuum expectation value in the broken (symmetric) phase, is not valid for models containing singlets, even though often used in the literature. The usual condition v{sub c}/T{sub c} >or similar 1 is more meaningful, and it is satisfied for the major part of the parameter space for physically allowed Higgs masses. Then it is convenient to study the EWPT in models with singlets that couple only to the Higgs doublets, by replacing the singlets by their vevs. (orig.)

  19. SPOTROD: Semi-analytic model for transits of spotted stars

    Science.gov (United States)

    Béky, Bence

    2014-11-01

    SPOTROD is a model for planetary transits of stars with an arbitrary limb darkening law and a number of homogeneous, circular spots on their surface. It facilitates analysis of anomalies due to starspot eclipses, and is a free, open source implementation written in C with a Python API.

  20. Employment, Production and Consumption model: Patterns of phase transitions

    Czech Academy of Sciences Publication Activity Database

    Lavička, H.; Lin, L.; Novotný, Jan

    2010-01-01

    Roč. 389, č. 8 (2010), s. 1708-1720 ISSN 0378-4371 Institutional research plan: CEZ:AV0Z10480505 Keywords : EPC * Agent based model * Phase transition Subject RIV: BG - Nuclear, Atomic and Molecular Physics, Colliders Impact factor: 1.521, year: 2010

  1. Application of transition modelling in CFD for use with turbine blades

    CSIR Research Space (South Africa)

    Dunn, Dwain I

    2011-09-01

    Full Text Available achieved by the addition of the transition model (as in the boundary layer and Spalart-Allmaras with transition) compared to those without (Yang-shih k-e and Spalart-Allmaras without transition)....

  2. Non-robust Phase Transitions in the Generalized Clock Model on Trees

    Science.gov (United States)

    Külske, C.; Schriever, P.

    2018-01-01

    Pemantle and Steif provided a sharp threshold for the existence of a robust phase transition (RPT) for the continuous rotator model and the Potts model in terms of the branching number and the second eigenvalue of the transfer matrix whose kernel describes the nearest neighbor interaction along the edges of the tree. Here a RPT is said to occur if an arbitrarily weak coupling with symmetry-breaking boundary conditions suffices to induce symmetry breaking in the bulk. They further showed that for the Potts model RPT occurs at a different threshold than PT (phase transition in the sense of multiple Gibbs measures), and conjectured that RPT and PT should occur at the same threshold in the continuous rotator model. We consider the class of four- and five-state rotation-invariant spin models with reflection symmetry on general trees which contains the Potts model and the clock model with scalarproduct-interaction as limiting cases. The clock model can be viewed as a particular discretization which is obtained from the classical rotator model with state space S^1. We analyze the transition between PT=RPT and PT≠ RPT, in terms of the eigenvalues of the transfer matrix of the model at the critical threshold value for the existence of RPT. The transition between the two regimes depends sensitively on the third largest eigenvalue.

  3. batman: BAsic Transit Model cAlculatioN in Python

    Science.gov (United States)

    Kreidberg, Laura

    2015-11-01

    I introduce batman, a Python package for modeling exoplanet transit light curves. The batman package supports calculation of light curves for any radially symmetric stellar limb darkening law, using a new integration algorithm for models that cannot be quickly calculated analytically. The code uses C extension modules to speed up model calculation and is parallelized with OpenMP. For a typical light curve with 100 data points in transit, batman can calculate one million quadratic limb-darkened models in 30 seconds with a single 1.7 GHz Intel Core i5 processor. The same calculation takes seven minutes using the four-parameter nonlinear limb darkening model (computed to 1 ppm accuracy). Maximum truncation error for integrated models is an input parameter that can be set as low as 0.001 ppm, ensuring that the community is prepared for the precise transit light curves we anticipate measuring with upcoming facilities. The batman package is open source and publicly available at https://github.com/lkreidberg/batman .

  4. Dissipative phase transition in the open quantum Rabi model

    Science.gov (United States)

    Hwang, Myung-Joong; Rabl, Peter; Plenio, Martin B.

    2018-01-01

    We demonstrate that the open quantum Rabi model (QRM) exhibits a second-order dissipative phase transition (DPT) and propose a method to observe this transition with trapped ions. The interplay between the ultrastrong qubit-oscillator coupling and the oscillator damping brings the system into a steady state with a diverging number of excitations, in which a DPT is allowed to occur even with a finite number of system components. The universality class of the open QRM, modified from the closed QRM by a Markovian bath, is identified by finding critical exponents and scaling functions using the Keldysh functional integral approach. We propose to realize the open QRM with two trapped ions where the coherent coupling and the rate of dissipation can be individually controlled and adjusted over a wide range. Thanks to this controllability, our work opens a possibility to investigate potentially rich dynamics associated with a dissipative phase transition.

  5. Numerical modeling of the deflagration-to-detonation transition

    International Nuclear Information System (INIS)

    Forest, C.A.

    1978-01-01

    The effect of a confined porous bed of burning explosive in contact with a solid explosive is studied by computer simulation. The burning is modeled using a bulk burn model that is a function of the surface area and the pressure. Once pressure excursions occur from the confined burning the transition to detonation is modeled using a pressure-dependent heterogeneous explosive shock decomposition model called Forest Fire. The occurrence of detonation in the solid explosive is shown to be dependent upon the surface-to-volume ratio, the confinement of the porous bed, and the geometry of the system

  6. Size dependence of structural, magnetic, and electrical properties in corundum-type Ti2O3 nanoparticles showing insulator–metal transition

    Directory of Open Access Journals (Sweden)

    Yoshihiro Tsujimoto

    2015-09-01

    Full Text Available Corundum-type Ti2O3 has been investigated over the last half century because it shows unusual insulator–metal (I-M transition over a broad temperature range (420–550 K. In this work, we successfully synthesized Ti2O3 nanoparticles (20, 70, 300 nm in size by the low-temperature reduction between precursors of rutile-type TiO2 and the reductant CaH2, in a non-topotactic manner. The reaction time required for obtaining the reduced phase increases with increasing the particle size. Synchrotron X-ray powder diffraction and electron microscopy studies reveal that the symmetry of all the present samples remains the same as that of bulk samples. However, the particle-size reduction results in three important features compared with bulk samples as follows, (i color shift from dark brown to bluish black, (ii anisotropic volume contraction involving the shrinkage of Ti–Ti bonds in the ab plane and along the c axis, (iii reduction of the I-M transition temperature from 420 K to 350 K. These suggest that the a1g band broadening caused by the surface strain effects, which favors narrowing of the band gap, may play a critical role in the suppression of IM transition.

  7. Phase Transition in a Sexual Age-Structured Model of Learning Foreign Languages

    Science.gov (United States)

    Schwämmle, V.

    The understanding of language competition helps us to predict extinction and survival of languages spoken by minorities. A simple agent-based model of a sexual population, based on the Penna model, is built in order to find out under which circumstances one language dominates other ones. This model considers that only young people learn foreign languages. The simulations show a first order phase transition of the ratio between the number of speakers of different languages with the mutation rate as control parameter.

  8. Size dependence of structural, magnetic, and electrical properties in corundum-type Ti2O3 nanoparticles showing insulator–metal transition

    OpenAIRE

    Yoshihiro Tsujimoto; Yoshitaka Matsushita; Shan Yu; Kazunari Yamaura; Tetsuo Uchikoshi

    2015-01-01

    Corundum-type Ti2O3 has been investigated over the last half century because it shows unusual insulator–metal (I-M) transition over a broad temperature range (420–550 K). In this work, we successfully synthesized Ti2O3 nanoparticles (20, 70, 300 nm in size) by the low-temperature reduction between precursors of rutile-type TiO2 and the reductant CaH2, in a non-topotactic manner. The reaction time required for obtaining the reduced phase increases with increasing the particle size. Synchrotron...

  9. Differential Transform Method for Mathematical Modeling of Jamming Transition Problem in Traffic Congestion Flow

    DEFF Research Database (Denmark)

    Ganji, S.; Barari, Amin; Ibsen, Lars Bo

    2012-01-01

    . In current research the authors utilized the Differential Transformation Method (DTM) for solving the nonlinear problem and compared the analytical results with those ones obtained by the 4th order Runge-Kutta Method (RK4) as a numerical method. Further illustration embedded in this paper shows the ability...... of DTM in solving nonlinear problems when a so accurate solution is required.......In this paper we aim to find an analytical solution for jamming transition in traffic flow. Generally the Jamming Transition Problem (JTP) can be modeled via Lorentz system. So, in this way, the governing differential equation achieved is modeled in the form of a nonlinear damped oscillator...

  10. Differential Transform Method for Mathematical Modeling of Jamming Transition Problem in Traffic Congestion Flow

    DEFF Research Database (Denmark)

    Ganji, S. S.; Barari, Amin; Ibsen, Lars Bo

    2010-01-01

    . In current research the authors utilized the Differential Transformation Method (DTM) for solving the nonlinear problem and compared the analytical results with those ones obtained by the 4th order Runge-Kutta Method (RK4) as a numerical method. Further illustration embedded in this paper shows the ability...... of DTM in solving nonlinear problems when a so accurate solution is required.......In this paper we aim to find an analytical solution for jamming transition in traffic flow. Generally the Jamming Transition Problem (JTP) can be modeled via Lorentz system. So, in this way, the governing differential equation achieved is modeled in the form of a nonlinear damped oscillator...

  11. Freedom of Expression: Importing European & US Constitutional Models in Transitional Democracies

    NARCIS (Netherlands)

    Belavusau, U.

    2013-01-01

    This book considers the issue of free speech in transitional democracies focusing on the socio-legal developments in the Czech Republic, Hungary, and Poland. In showing how these Central and Eastern European countries have engaged with free speech models imported from the Council of Europe / EU and

  12. A two-parameter model to predict fracture in the transition

    International Nuclear Information System (INIS)

    DeAquino, C.T.; Landes, J.D.; McCabe, D.E.

    1995-01-01

    A model is proposed that uses a numerical characterization of the crack tip stress field modified by the J - Q constraint theory and a weak link assumption to predict fracture behavior in the transition for reactor vessel steels. This model predicts the toughness scatter band for a component model from a toughness scatter band measured on a test specimen geometry. The model has been applied previously to two-dimensional through cracks. Many applications to actual components structures involve three-dimensional surface flaws. These cases require a more difficult level of analysis and need additional information. In this paper, both the current model for two-dimensional cracks and an approach needed to extend the model for the prediction of transition fracture behavior in three-dimensional surface flaws are discussed. Examples are presented to show how the model can be applied and in some cases to compare with other test results. (author). 13 refs., 7 figs

  13. TRANSIT

    Indian Academy of Sciences (India)

    First page Back Continue Last page Overview Graphics. TRANSIT. SYSTEM: DETERMINE 2D-POSITION GLOBALLY BUT INTERMITTENT (POST-FACTO). IMPROVED ACCURACY. PRINCIPLE: POLAR SATELLITES WITH INNOVATIONS OF: GRAVITY-GRADIENT ATTITUDE CONTROL; DRAG COMPENSATION. WORKS ...

  14. Transition probabilities of health states for workers in Malaysia using a Markov chain model

    Science.gov (United States)

    Samsuddin, Shamshimah; Ismail, Noriszura

    2017-04-01

    The aim of our study is to estimate the transition probabilities of health states for workers in Malaysia who contribute to the Employment Injury Scheme under the Social Security Organization Malaysia using the Markov chain model. Our study uses four states of health (active, temporary disability, permanent disability and death) based on the data collected from the longitudinal studies of workers in Malaysia for 5 years. The transition probabilities vary by health state, age and gender. The results show that men employees are more likely to have higher transition probabilities to any health state compared to women employees. The transition probabilities can be used to predict the future health of workers in terms of a function of current age, gender and health state.

  15. Sabin-to-Mahoney Transition Model of Quasispecies Replication

    Energy Technology Data Exchange (ETDEWEB)

    2009-05-31

    Qspp is an agent-based stochastic simulation model of the Poliovirus Sabin-to-Mahoney transition. This code simulates a cell-to-cell model of Poliovirus replication. The model tracks genotypes (virus genomes) as they are replicated in cells, and as the cells burst and release particles into the medium of a culture dish. An inoculum is then taken from the pool of virions and is used to inoculate cells on a new dish. This process repeats. The Sabin genotype comprises the initial inoculum. Nucleotide positions that match the Sabin1 (vaccine strain) and Mahoney (wild type) genotypes, as well as the neurovirulent phenotype (from the literature) are enumerated as constants.

  16. Model for the resistive critical current transition in composite superconductors

    International Nuclear Information System (INIS)

    Warnes, W.H.

    1988-01-01

    Much of the research investigating technological type-II superconducting composites relies on the measurement of the resistive critical current transition. We have developed a model for the resistive transition which improves on older models by allowing for the very different nature of monofilamentary and multifilamentary composite structures. The monofilamentary model allows for axial current flow around critical current weak links in the superconducting filament. The multifilamentary model incorporates an additional radial current transfer between neighboring filaments. The development of both models is presented. It is shown that the models are useful for extracting more information from the experimental data than was formerly possible. Specific information obtainable from the experimental voltage-current characteristic includes the distribution of critical currents in the composite, the average critical current of the distribution, the range of critical currents in the composite, the field and temperature dependence of the distribution, and the fraction of the composite dissipating energy in flux flow at any current. This additional information about the distribution of critical currents may be helpful in leading toward a better understanding of flux pinning in technological superconductors. Comparison of the models with several experiments is given and shown to be in reasonable agreement. Implications of the models for the measurement of critical currents in technological composites is presented and discussed with reference to basic flux pinning studies in such composites

  17. Noise-and delay-induced phase transitions of the dimer–monomer surface reaction model

    International Nuclear Information System (INIS)

    Zeng Chunhua; Wang Hua

    2012-01-01

    Highlights: ► We study the dimer–monomer surface reaction model. ► We show that noise induces first-order irreversible phase transition (IPT). ► Combination of noise and time-delayed feedback induce first- and second-order IPT. ► First- and second-order IPT is viewed as noise-and delay-induced phase transitions. - Abstract: The effects of noise and time-delayed feedback in the dimer–monomer (DM) surface reaction model are investigated. Applying small delay approximation, we construct a stochastic delayed differential equation and its Fokker–Planck equation to describe the state evolution of the DM reaction model. We show that the noise can only induce first-order irreversible phase transition (IPT) characteristic of the DM model, however the combination of the noise and time-delayed feedback can simultaneously induce first- and second-order IPT characteristics of the DM model. Therefore, it is shown that the well-known first- and second-order IPT characteristics of the DM model may be viewed as noise-and delay-induced phase transitions.

  18. Classifying Multi-Model Wheat Yield Impact Response Surfaces Showing Sensitivity to Temperature and Precipitation Change

    Science.gov (United States)

    Fronzek, Stefan; Pirttioja, Nina; Carter, Timothy R.; Bindi, Marco; Hoffmann, Holger; Palosuo, Taru; Ruiz-Ramos, Margarita; Tao, Fulu; Trnka, Miroslav; Acutis, Marco; hide

    2017-01-01

    Crop growth simulation models can differ greatly in their treatment of key processes and hence in their response to environmental conditions. Here, we used an ensemble of 26 process-based wheat models applied at sites across a European transect to compare their sensitivity to changes in temperature (minus 2 to plus 9 degrees Centigrade) and precipitation (minus 50 to plus 50 percent). Model results were analysed by plotting them as impact response surfaces (IRSs), classifying the IRS patterns of individual model simulations, describing these classes and analysing factors that may explain the major differences in model responses. The model ensemble was used to simulate yields of winter and spring wheat at four sites in Finland, Germany and Spain. Results were plotted as IRSs that show changes in yields relative to the baseline with respect to temperature and precipitation. IRSs of 30-year means and selected extreme years were classified using two approaches describing their pattern. The expert diagnostic approach (EDA) combines two aspects of IRS patterns: location of the maximum yield (nine classes) and strength of the yield response with respect to climate (four classes), resulting in a total of 36 combined classes defined using criteria pre-specified by experts. The statistical diagnostic approach (SDA) groups IRSs by comparing their pattern and magnitude, without attempting to interpret these features. It applies a hierarchical clustering method, grouping response patterns using a distance metric that combines the spatial correlation and Euclidian distance between IRS pairs. The two approaches were used to investigate whether different patterns of yield response could be related to different properties of the crop models, specifically their genealogy, calibration and process description. Although no single model property across a large model ensemble was found to explain the integrated yield response to temperature and precipitation perturbations, the

  19. Comparison of approximations to the transition rate in the DDHMS preequilibrium model

    Directory of Open Access Journals (Sweden)

    Brito L.

    2014-04-01

    Full Text Available The double differential hybrid Monte Carlo simulation model (DDHMS originally used exciton model densities and transition densities with approximate angular distributions obtained using linear momentum conservation. Because the model uses only the simplest transition rates, calculations using more complex approximations to these are still viable. We compare calculations using the original approximation to one using a nonrelativistic Fermi gas transition densities with the approximate angular distributions and with exact nonrelativistic and relativistic transition transition densities.

  20. Modelling conditional correlations of asset returns: A smooth transition approach

    DEFF Research Database (Denmark)

    Silvennoinen, Annastiina; Teräsvirta, Timo

    In this paper we propose a new multivariate GARCH model with time-varying conditional correlation structure. The time-varying conditional correlations change smoothly between two extreme states of constant correlations according to a predetermined or exogenous transition variable. An LM-test is d......In this paper we propose a new multivariate GARCH model with time-varying conditional correlation structure. The time-varying conditional correlations change smoothly between two extreme states of constant correlations according to a predetermined or exogenous transition variable. An LM......-test is derived to test the constancy of correlations and LM- and Wald tests to test the hypothesis of partially constant correlations. Analytical expressions for the test statistics and the required derivatives are provided to make computations feasible. An empirical example based on daily return series of ve...

  1. Phase Transitions in a Social Impact Model for Opinion Formation

    Science.gov (United States)

    Bordogna, Clelia M.; Albano, Ezequiel V.

    A model for opinion formation in a social group, based on the Theory of Social Impact developed by Latané, is studied by means of numerical simulations. Interactions among the members of the group, as well as with a strong leader competing with the mass media, are considered. The model exhibits first-order transitions between two different states of opinion, which are supported by the leader and the mass media, respectively. The social inertia of the group becomes evident when the opinion of the leader changes periodically. In this case two dynamic states are identified: for long periods of time, the group follows the changes of the leader but, decreasing the period, the opinion of the group remains unchanged. This scenery is suitable for the ocurrence of dynamic phase transitions.

  2. A relativized quark model for radiative baryon transitions

    International Nuclear Information System (INIS)

    Warns, M.; Schroeder, H.; Pfeil, W.; Rollnik, H.

    1989-03-01

    In this paper we investigate the electromagnetic form factors of baryons and their resonances using the framework of a relativized constituent quark model. Beyond the usual single-quark transition ansatz, we incorporate relativistic corrections which are well-determined by the intrinsic strong interaction and confinement forces between the quarks. Furthermore we separate off for the compound three-quark system the relativistic center-of-mass motion by an approximately Lorentz-invariant approach. In this way for the first time recoil effects could be explicitly studied. Using the harmonic oscillator wavefunctions with the configuration mixing as derived in the Isgur-Karl model, after restoring gauge invariance our relativized interaction hamiltonian can be used to calculate the transversely and longitudinally polarized photon transition form factors of the baryons. (orig.)

  3. Phase transitions in the sdg interacting boson model

    Energy Technology Data Exchange (ETDEWEB)

    Van Isacker, P. [Grand Accelerateur National d' Ions Lourds, CEA/DSM-CNRS/IN2P3, BP 55027, F-14076 Caen Cedex 5 (France)], E-mail: isacker@ganil.fr; Bouldjedri, A.; Zerguine, S. [Department of Physics, PRIMALAB Laboratory, University of Batna, Avenue Boukhelouf M El Hadi, 05000 Batna (Algeria)

    2010-05-15

    A geometric analysis of the sdg interacting boson model is performed. A coherent state is used in terms of three types of deformation: axial quadrupole ({beta}{sub 2}), axial hexadecapole ({beta}{sub 4}) and triaxial ({gamma}{sub 2}). The phase-transitional structure is established for a schematic sdg Hamiltonian which is intermediate between four dynamical symmetries of U(15), namely the spherical U(5)xU(9), the (prolate and oblate) deformed SU{sub {+-}}(3) and the {gamma}{sub 2}-soft SO(15) limits. For realistic choices of the Hamiltonian parameters the resulting phase diagram has properties close to what is obtained in the sd version of the model and, in particular, no transition towards a stable triaxial shape is found.

  4. Modeling and Simulating Passenger Behavior for a Station Closure in a Rail Transit Network

    Science.gov (United States)

    Yin, Haodong; Han, Baoming; Li, Dewei; Wu, Jianjun; Sun, Huijun

    2016-01-01

    A station closure is an abnormal operational situation in which the entrances or exits of a rail transit station have to be closed for some time due to an unexpected incident. A novel approach is developed to estimate the impacts of the alternative station closure scenarios on both passenger behavioral choices at the individual level and passenger demand at the disaggregate level in a rail transit network. Therefore, the contributions of this study are two-fold: (1) A basic passenger behavior optimization model is mathematically constructed based on 0–1 integer programming to describe passengers’ responses to alternative origin station closure scenarios and destination station closure scenarios; this model also considers the availability of multi-mode transportation and the uncertain duration of the station closure; (2) An integrated solution algorithm based on the passenger simulation is developed to solve the proposed model and to estimate the effects of a station closure on passenger demand in a rail transit network. Furthermore, 13 groups of numerical experiments based on the Beijing rail transit network are performed as case studies with 2,074,267 records of smart card data. The comparisons of the model outputs and the manual survey show that the accuracy of our proposed behavior optimization model is approximately 80%. The results also show that our model can be used to capture the passenger behavior and to quantitatively estimate the effects of alternative closure scenarios on passenger flow demand for the rail transit network. Moreover, the closure duration and its overestimation greatly influence the individual behavioral choices of the affected passengers and the passenger demand. Furthermore, if the rail transit operator can more accurately estimate the closure duration (namely, as g approaches 1), the impact of the closure can be somewhat mitigated. PMID:27935963

  5. Methanol Oxidation on Model Elemental and Bimetallic Transition Metal Surfaces

    DEFF Research Database (Denmark)

    Tritsaris, G. A.; Rossmeisl, J.

    2012-01-01

    Direct methanol fuel cells are a key enabling technology for clean energy conversion. Using density functional theory calculations, we study the methanol oxidation reaction on model electrodes. We discuss trends in reactivity for a set of monometallic and bimetallic transition metal surfaces, flat...... sites on the surface and to screen for novel bimetallic surfaces of enhanced activity. We suggest platinum copper surfaces as promising anode catalysts for direct methanol fuel cells....

  6. Modelling gait transition in two-legged animals

    Science.gov (United States)

    Pinto, Carla M. A.; Santos, Alexandra P.

    2011-12-01

    The study of locomotor patterns has been a major research goal in the last decades. Understanding how intralimb and interlimb coordination works out so well in animals' locomotion is a hard and challenging task. Many models have been proposed to model animal's rhythms. These models have also been applied to the control of rhythmic movements of adaptive legged robots, namely biped, quadruped and other designs. In this paper we study gait transition in a central pattern generator (CPG) model for bipeds, the 4-cells model. This model is proposed by Golubitsky, Stewart, Buono and Collins and is studied further by Pinto and Golubitsky. We briefly resume the work done by Pinto and Golubitsky. We compute numerically gait transition in the 4-cells CPG model for bipeds. We use Morris-Lecar equations and Wilson-Cowan equations as the internal dynamics for each cell. We also consider two types of coupling between the cells: diffusive and synaptic. We obtain secondary gaits by bifurcation of primary gaits, by varying the coupling strengths. Nevertheless, some bifurcating branches could not be obtained, emphasizing the fact that despite analytically those bifurcations exist, finding them is a hard task and requires variation of other parameters of the equations. We note that the type of coupling did not influence the results.

  7. A physics-explicit model of bacterial conjugation shows the stabilizing role of the conjugative junction

    OpenAIRE

    Pastuszak, Jakub; Waclaw, Bartlomiej

    2017-01-01

    Conjugation is a process in which bacteria exchange DNA through a physical connection (conjugative junction) between mating cells. Despite its significance for processes such as the spread of antibiotic resistance, the role of physical forces in conjugation is poorly understood. Here we use computer models to show that the conjugative junction not only serves as a link to transfer the DNA but it also mechanically stabilises the mating pair which significantly increases the conjugation rate. W...

  8. Employment, Production and Consumption model: Patterns of phase transitions

    Science.gov (United States)

    Lavička, H.; Lin, L.; Novotný, J.

    2010-04-01

    We have simulated the model of Employment, Production and Consumption (EPC) using Monte Carlo. The EPC model is an agent based model that mimics very basic rules of industrial economy. From the perspective of physics, the nature of the interactions in the EPC model represents multi-agent interactions where the relations among agents follow the key laws for circulation of capital and money. Monte Carlo simulations of the stochastic model reveal phase transition in the model economy. The two phases are the phase with full unemployment and the phase with nearly full employment. The economy switches between these two states suddenly as a reaction to a slight variation in the exogenous parameter, thus the system exhibits strong non-linear behavior as a response to the change of the exogenous parameters.

  9. Effect of random field disorder on the first order transition in p-spin interaction model

    Science.gov (United States)

    Sumedha; Singh, Sushant K.

    2016-01-01

    We study the random field p-spin model with Ising spins on a fully connected graph using the theory of large deviations in this paper. This is a good model to study the effect of quenched random field on systems which have a sharp first order transition in the pure state. For p = 2, the phase-diagram of the model, for bimodal distribution of the random field, has been well studied and is known to undergo a continuous transition for lower values of the random field (h) and a first order transition beyond a threshold, htp(≈ 0.439) . We find the phase diagram of the model, for all p ≥ 2, with bimodal random field distribution, using large deviation techniques. We also look at the fluctuations in the system by calculating the magnetic susceptibility. For p = 2, beyond the tricritical point in the regime of first order transition, we find that for htp ho = 1 / p!), the system does not show ferromagnetic order even at zero temperature. We find that the magnetic susceptibility for p ≥ 3 is discontinuous at the transition point for h

  10. Microarray profiling shows distinct differences between primary tumors and commonly used preclinical models in hepatocellular carcinoma

    International Nuclear Information System (INIS)

    Wang, Weining; Iyer, N. Gopalakrishna; Tay, Hsien Ts’ung; Wu, Yonghui; Lim, Tony K. H.; Zheng, Lin; Song, In Chin; Kwoh, Chee Keong; Huynh, Hung; Tan, Patrick O. B.; Chow, Pierce K. H.

    2015-01-01

    Despite advances in therapeutics, outcomes for hepatocellular carcinoma (HCC) remain poor and there is an urgent need for efficacious systemic therapy. Unfortunately, drugs that are successful in preclinical studies often fail in the clinical setting, and we hypothesize that this is due to functional differences between primary tumors and commonly used preclinical models. In this study, we attempt to answer this question by comparing tumor morphology and gene expression profiles between primary tumors, xenografts and HCC cell lines. Hep G2 cell lines and tumor cells from patient tumor explants were subcutaneously (ectopically) injected into the flank and orthotopically into liver parenchyma of Mus Musculus SCID mice. The mice were euthanized after two weeks. RNA was extracted from the tumors, and gene expression profiling was performed using the Gene Chip Human Genome U133 Plus 2.0. Principal component analyses (PCA) and construction of dendrograms were conducted using Partek genomics suite. PCA showed that the commonly used HepG2 cell line model and its xenograft counterparts were vastly different from all fresh primary tumors. Expression profiles of primary tumors were also significantly divergent from their counterpart patient-derived xenograft (PDX) models, regardless of the site of implantation. Xenografts from the same primary tumors were more likely to cluster together regardless of site of implantation, although heat maps showed distinct differences in gene expression profiles between orthotopic and ectopic models. The data presented here challenges the utility of routinely used preclinical models. Models using HepG2 were vastly different from primary tumors and PDXs, suggesting that this is not clinically representative. Surprisingly, site of implantation (orthotopic versus ectopic) resulted in limited impact on gene expression profiles, and in both scenarios xenografts differed significantly from the original primary tumors, challenging the long

  11. Efficient Estimation of Non-Linear Dynamic Panel Data Models with Application to Smooth Transition Models

    DEFF Research Database (Denmark)

    Gørgens, Tue; Skeels, Christopher L.; Wurtz, Allan

    This paper explores estimation of a class of non-linear dynamic panel data models with additive unobserved individual-specific effects. The models are specified by moment restrictions. The class includes the panel data AR(p) model and panel smooth transition models. We derive an efficient set...... of moment restrictions for estimation and apply the results to estimation of panel smooth transition models with fixed effects, where the transition may be determined endogenously. The performance of the GMM estimator, both in terms of estimation precision and forecasting performance, is examined in a Monte...... Carlo experiment. We find that estimation of the parameters in the transition function can be problematic but that there may be significant benefits in terms of forecast performance....

  12. Digital herders and phase transition in a voting model

    Energy Technology Data Exchange (ETDEWEB)

    Hisakado, M [Standard and Poor' s, Marunouchi 1-6-5, Chiyoda ku, Tokyo 100-0005 (Japan); Mori, S, E-mail: masato_hisakado@standardandpoors.com, E-mail: mori@sci.kitasato-u.ac.jp [Department of Physics, School of Science, Kitasato University, Kitasato 1-15-1, Sagamihara, Kanagawa 228-8555 (Japan)

    2011-07-08

    In this paper, we discuss a voting model with two candidates, C{sub 1} and C{sub 2}. We set two types of voters-herders and independents. The voting of independent voters is based on their fundamental values; on the other hand, the voting of herders is based on the number of votes. Herders always select the majority of the previous r votes, which are visible to them. We call them digital herders. We can accurately calculate the distribution of votes for special cases. When r {>=} 3, we find that a phase transition occurs at the upper limit of t, where t is the discrete time (or number of votes). As the fraction of herders increases, the model features a phase transition beyond which a state where most voters make the correct choice coexists with one where most of them are wrong. On the other hand, when r < 3, there is no phase transition. In this case, the herders' performance is the same as that of the independent voters. Finally, we recognize the behavior of human beings by conducting simple experiments.

  13. Porcine Esophageal Submucosal Gland Culture Model Shows Capacity for Proliferation and DifferentiationSummary

    Directory of Open Access Journals (Sweden)

    Richard J. von Furstenberg

    2017-11-01

    Full Text Available Background & Aims: Although cells comprising esophageal submucosal glands (ESMGs represent a potential progenitor cell niche, new models are needed to understand their capacity to proliferate and differentiate. By histologic appearance, ESMGs have been associated with both overlying normal squamous epithelium and columnar epithelium. Our aim was to assess ESMG proliferation and differentiation in a 3-dimensional culture model. Methods: We evaluated proliferation in human ESMGs from normal and diseased tissue by proliferating cell nuclear antigen immunohistochemistry. Next, we compared 5-ethynyl-2′-deoxyuridine labeling in porcine ESMGs in vivo before and after esophageal injury with a novel in vitro porcine organoid ESMG model. Microarray analysis of ESMGs in culture was compared with squamous epithelium and fresh ESMGs. Results: Marked proliferation was observed in human ESMGs of diseased tissue. This activated ESMG state was recapitulated after esophageal injury in an in vivo porcine model, ESMGs assumed a ductal appearance with increased proliferation compared with control. Isolated and cultured porcine ESMGs produced buds with actively cycling cells and passaged to form epidermal growth factor–dependent spheroids. These spheroids were highly proliferative and were passaged multiple times. Two phenotypes of spheroids were identified: solid squamous (P63+ and hollow/ductal (cytokeratin 7+. Microarray analysis showed spheroids to be distinct from parent ESMGs and enriched for columnar transcripts. Conclusions: Our results suggest that the activated ESMG state, seen in both human disease and our porcine model, may provide a source of cells to repopulate damaged epithelium in a normal manner (squamous or abnormally (columnar epithelium. This culture model will allow the evaluation of factors that drive ESMGs in the regeneration of injured epithelium. The raw microarray data have been uploaded to the National Center for

  14. Porcine Esophageal Submucosal Gland Culture Model Shows Capacity for Proliferation and Differentiation.

    Science.gov (United States)

    von Furstenberg, Richard J; Li, Joy; Stolarchuk, Christina; Feder, Rachel; Campbell, Alexa; Kruger, Leandi; Gonzalez, Liara M; Blikslager, Anthony T; Cardona, Diana M; McCall, Shannon J; Henning, Susan J; Garman, Katherine S

    2017-11-01

    Although cells comprising esophageal submucosal glands (ESMGs) represent a potential progenitor cell niche, new models are needed to understand their capacity to proliferate and differentiate. By histologic appearance, ESMGs have been associated with both overlying normal squamous epithelium and columnar epithelium. Our aim was to assess ESMG proliferation and differentiation in a 3-dimensional culture model. We evaluated proliferation in human ESMGs from normal and diseased tissue by proliferating cell nuclear antigen immunohistochemistry. Next, we compared 5-ethynyl-2'-deoxyuridine labeling in porcine ESMGs in vivo before and after esophageal injury with a novel in vitro porcine organoid ESMG model. Microarray analysis of ESMGs in culture was compared with squamous epithelium and fresh ESMGs. Marked proliferation was observed in human ESMGs of diseased tissue. This activated ESMG state was recapitulated after esophageal injury in an in vivo porcine model, ESMGs assumed a ductal appearance with increased proliferation compared with control. Isolated and cultured porcine ESMGs produced buds with actively cycling cells and passaged to form epidermal growth factor-dependent spheroids. These spheroids were highly proliferative and were passaged multiple times. Two phenotypes of spheroids were identified: solid squamous (P63+) and hollow/ductal (cytokeratin 7+). Microarray analysis showed spheroids to be distinct from parent ESMGs and enriched for columnar transcripts. Our results suggest that the activated ESMG state, seen in both human disease and our porcine model, may provide a source of cells to repopulate damaged epithelium in a normal manner (squamous) or abnormally (columnar epithelium). This culture model will allow the evaluation of factors that drive ESMGs in the regeneration of injured epithelium. The raw microarray data have been uploaded to the National Center for Biotechnology Information Gene Expression Omnibus (accession number: GSE100543).

  15. Small GSK-3 Inhibitor Shows Efficacy in a Motor Neuron Disease Murine Model Modulating Autophagy.

    Directory of Open Access Journals (Sweden)

    Estefanía de Munck

    Full Text Available Amyotrophic lateral sclerosis (ALS is a progressive motor neuron degenerative disease that has no effective treatment up to date. Drug discovery tasks have been hampered due to the lack of knowledge in its molecular etiology together with the limited animal models for research. Recently, a motor neuron disease animal model has been developed using β-N-methylamino-L-alanine (L-BMAA, a neurotoxic amino acid related to the appearing of ALS. In the present work, the neuroprotective role of VP2.51, a small heterocyclic GSK-3 inhibitor, is analysed in this novel murine model together with the analysis of autophagy. VP2.51 daily administration for two weeks, starting the first day after L-BMAA treatment, leads to total recovery of neurological symptoms and prevents the activation of autophagic processes in rats. These results show that the L-BMAA murine model can be used to test the efficacy of new drugs. In addition, the results confirm the therapeutic potential of GSK-3 inhibitors, and specially VP2.51, for the disease-modifying future treatment of motor neuron disorders like ALS.

  16. Human Commercial Models' Eye Colour Shows Negative Frequency-Dependent Selection.

    Directory of Open Access Journals (Sweden)

    Isabela Rodrigues Nogueira Forti

    Full Text Available In this study we investigated the eye colour of human commercial models registered in the UK (400 female and 400 male and Brazil (400 female and 400 male to test the hypothesis that model eye colour frequency was the result of negative frequency-dependent selection. The eye colours of the models were classified as: blue, brown or intermediate. Chi-square analyses of data for countries separated by sex showed that in the United Kingdom brown eyes and intermediate colours were significantly more frequent than expected in comparison to the general United Kingdom population (P<0.001. In Brazil, the most frequent eye colour brown was significantly less frequent than expected in comparison to the general Brazilian population. These results support the hypothesis that model eye colour is the result of negative frequency-dependent selection. This could be the result of people using eye colour as a marker of genetic diversity and finding rarer eye colours more attractive because of the potential advantage more genetically diverse offspring that could result from such a choice. Eye colour may be important because in comparison to many other physical traits (e.g., hair colour it is hard to modify, hide or disguise, and it is highly polymorphic.

  17. Human Commercial Models' Eye Colour Shows Negative Frequency-Dependent Selection.

    Science.gov (United States)

    Forti, Isabela Rodrigues Nogueira; Young, Robert John

    2016-01-01

    In this study we investigated the eye colour of human commercial models registered in the UK (400 female and 400 male) and Brazil (400 female and 400 male) to test the hypothesis that model eye colour frequency was the result of negative frequency-dependent selection. The eye colours of the models were classified as: blue, brown or intermediate. Chi-square analyses of data for countries separated by sex showed that in the United Kingdom brown eyes and intermediate colours were significantly more frequent than expected in comparison to the general United Kingdom population (PBrazilian population. These results support the hypothesis that model eye colour is the result of negative frequency-dependent selection. This could be the result of people using eye colour as a marker of genetic diversity and finding rarer eye colours more attractive because of the potential advantage more genetically diverse offspring that could result from such a choice. Eye colour may be important because in comparison to many other physical traits (e.g., hair colour) it is hard to modify, hide or disguise, and it is highly polymorphic.

  18. Histidine decarboxylase knockout mice, a genetic model of Tourette syndrome, show repetitive grooming after induced fear.

    Science.gov (United States)

    Xu, Meiyu; Li, Lina; Ohtsu, Hiroshi; Pittenger, Christopher

    2015-05-19

    Tics, such as are seen in Tourette syndrome (TS), are common and can cause profound morbidity, but they are poorly understood. Tics are potentiated by psychostimulants, stress, and sleep deprivation. Mutations in the gene histidine decarboxylase (Hdc) have been implicated as a rare genetic cause of TS, and Hdc knockout mice have been validated as a genetic model that recapitulates phenomenological and pathophysiological aspects of the disorder. Tic-like stereotypies in this model have not been observed at baseline but emerge after acute challenge with the psychostimulant d-amphetamine. We tested the ability of an acute stressor to stimulate stereotypies in this model, using tone fear conditioning. Hdc knockout mice acquired conditioned fear normally, as manifested by freezing during the presentation of a tone 48h after it had been paired with a shock. During the 30min following tone presentation, knockout mice showed increased grooming. Heterozygotes exhibited normal freezing and intermediate grooming. These data validate a new paradigm for the examination of tic-like stereotypies in animals without pharmacological challenge and enhance the face validity of the Hdc knockout mouse as a pathophysiologically grounded model of tic disorders. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  19. Human Inferences about Sequences: A Minimal Transition Probability Model.

    Directory of Open Access Journals (Sweden)

    Florent Meyniel

    2016-12-01

    Full Text Available The brain constantly infers the causes of the inputs it receives and uses these inferences to generate statistical expectations about future observations. Experimental evidence for these expectations and their violations include explicit reports, sequential effects on reaction times, and mismatch or surprise signals recorded in electrophysiology and functional MRI. Here, we explore the hypothesis that the brain acts as a near-optimal inference device that constantly attempts to infer the time-varying matrix of transition probabilities between the stimuli it receives, even when those stimuli are in fact fully unpredictable. This parsimonious Bayesian model, with a single free parameter, accounts for a broad range of findings on surprise signals, sequential effects and the perception of randomness. Notably, it explains the pervasive asymmetry between repetitions and alternations encountered in those studies. Our analysis suggests that a neural machinery for inferring transition probabilities lies at the core of human sequence knowledge.

  20. MTO1-deficient mouse model mirrors the human phenotype showing complex I defect and cardiomyopathy.

    Directory of Open Access Journals (Sweden)

    Lore Becker

    Full Text Available Recently, mutations in the mitochondrial translation optimization factor 1 gene (MTO1 were identified as causative in children with hypertrophic cardiomyopathy, lactic acidosis and respiratory chain defect. Here, we describe an MTO1-deficient mouse model generated by gene trap mutagenesis that mirrors the human phenotype remarkably well. As in patients, the most prominent signs and symptoms were cardiovascular and included bradycardia and cardiomyopathy. In addition, the mutant mice showed a marked worsening of arrhythmias during induction and reversal of anaesthesia. The detailed morphological and biochemical workup of murine hearts indicated that the myocardial damage was due to complex I deficiency and mitochondrial dysfunction. In contrast, neurological examination was largely normal in Mto1-deficient mice. A translational consequence of this mouse model may be to caution against anaesthesia-related cardiac arrhythmias which may be fatal in patients.

  1. Hardening transition in a one-dimensional model for ferrogels.

    Science.gov (United States)

    Annunziata, Mario Alberto; Menzel, Andreas M; Löwen, Hartmut

    2013-05-28

    We introduce and investigate a coarse-grained model for quasi one-dimensional ferrogels. In our description the magnetic particles are represented by hard spheres with a magnetic dipole moment in their centers. Harmonic springs connecting these spheres mimic the presence of a cross-linked polymer matrix. A special emphasis is put on the coupling of the dipolar orientations to the elastic deformations of the matrix, where a memory effect of the orientations is included. Although the particles are displaced along one spatial direction only, the system already shows rich behavior: as a function of the magnetic dipole moment, we find a phase transition between "soft-elastic" states with finite interparticle separation and finite compressive elastic modulus on the one hand, and "hardened" states with touching particles and therefore diverging compressive elastic modulus on the other hand. Corresponding phase diagrams are derived neglecting thermal fluctuations of the magnetic particles. In addition, we consider a situation in which a spatially homogeneous magnetization is initially imprinted into the material. Depending on the strength of the magneto-mechanical coupling between the dipole orientations and the elastic deformations, the system then relaxes to a uniaxially ferromagnetic, an antiferromagnetic, or a spiral state of magnetization to minimize its energy. One purpose of our work is to provide a largely analytically solvable approach that can provide a benchmark to test future descriptions of higher complexity. From an applied point of view, our results could be exploited, for example, for the construction of novel damping devices of tunable shock absorbance.

  2. Marketing Capstone Models "The Apprentice" Television Show with Client-Sponsored Projects

    Science.gov (United States)

    Strauss, Judy

    2011-01-01

    Marketing faculty use cases, simulations, and client-sponsored projects to achieve learning objectives in the marketing capstone class. This class typically aims to integrate and apply previously learned material and to transition students into their careers. Drawing on the professional school, creative problem solving and constructivist learning…

  3. Model Atmospheres and Transit Spectra for Hot Rocky Planets

    Science.gov (United States)

    Lupu, Roxana

    We propose to build a versatile set of self-consistent atmospheric models for hot rocky exoplanets and use them to predict their transit and eclipse spectra. Hot rocky exoplanets will form the majority of small planets in close-in orbits to be discovered by the TESS and Kepler K2 missions, and offer the best opportunity for characterization with current and future instruments. We will use fully non-grey radiative-convective atmospheric structure codes with cloud formation and vertical mixing, combined with a self-consistent treatment of gas chemistry above the magma ocean. Being in equilibrium with the surface, the vaporized rock material can be a good tracer of the bulk composition of the planet. We will derive the atmospheric structure and escape rates considering both volatile-free and volatile bearing compositions, which reflect the diversity of hot rocky planet atmospheres. Our models will inform follow- up observations with JWST and ground-based instruments, aid the interpretation of transit and eclipse spectra, and provide a better understanding of volatile loss in these atmospheres. Such results will help refine our picture of rocky planet formation and evolution. Planets in ultra-short period (USP) orbits are a special class of hot rocky exoplanets. As shown by Kepler, these planets are generally smaller than 2 Earth radii, suggesting that they are likely to be rocky and could have lost their volatiles through photo-evaporation. Being close to their host stars, these planets are ultra-hot, with estimated temperatures of 1000-3000 K. A number of USP planets have been already discovered (e.g. Kepler-78 b, CoRoT-7 b, Kepler-10 b), and this number is expected to grow by confirming additional planet candidates. The characterization of planets on ultra-short orbits is advantageous due to the larger number of observable transits, and the larger transit signal in the case of an evaporating atmosphere. Much advance has been made in understanding and characterizing

  4. Visual modeling shows that avian host parents use multiple visual cues in rejecting parasitic eggs.

    Science.gov (United States)

    Spottiswoode, Claire N; Stevens, Martin

    2010-05-11

    One of the most striking outcomes of coevolution between species is egg mimicry by brood parasitic birds, resulting from rejection behavior by discriminating host parents. Yet, how exactly does a host detect a parasitic egg? Brood parasitism and egg rejection behavior provide a model system for exploring the relative importance of different visual cues used in a behavioral task. Although hosts are discriminating, we do not know exactly what cues they use, and to answer this it is crucial to account for the receiver's visual perception. Color, luminance ("perceived lightness") and pattern information have never been simultaneously quantified and experimentally tested through a bird's eye. The cuckoo finch Anomalospiza imberbis and its hosts show spectacular polymorphisms in egg appearance, providing a good opportunity for investigating visual discrimination owing to the large range of patterns and colors involved. Here we combine field experiments in Africa with modeling of avian color vision and pattern discrimination to identify the specific visual cues used by hosts in making rejection decisions. We found that disparity between host and foreign eggs in both color and several aspects of pattern (dispersion, principal marking size, and variability in marking size) were important predictors of rejection, especially color. These cues correspond exactly to the principal differences between host and parasitic eggs, showing that hosts use the most reliable available cues in making rejection decisions, and select for parasitic eggs that are increasingly mimetic in a range of visual attributes.

  5. Transchromosomic cell model of Down syndrome shows aberrant migration, adhesion and proteome response to extracellular matrix

    Directory of Open Access Journals (Sweden)

    Cotter Finbarr E

    2009-08-01

    Full Text Available Abstract Background Down syndrome (DS, caused by trisomy of human chromosome 21 (HSA21, is the most common genetic birth defect. Congenital heart defects (CHD are seen in 40% of DS children, and >50% of all atrioventricular canal defects in infancy are caused by trisomy 21, but the causative genes remain unknown. Results Here we show that aberrant adhesion and proliferation of DS cells can be reproduced using a transchromosomic model of DS (mouse fibroblasts bearing supernumerary HSA21. We also demonstrate a deacrease of cell migration in transchromosomic cells independently of their adhesion properties. We show that cell-autonomous proteome response to the presence of Collagen VI in extracellular matrix is strongly affected by trisomy 21. Conclusion This set of experiments establishes a new model system for genetic dissection of the specific HSA21 gene-overdose contributions to aberrant cell migration, adhesion, proliferation and specific proteome response to collagen VI, cellular phenotypes linked to the pathogenesis of CHD.

  6. Estimating carbon and showing impacts of drought using satellite data in regression-tree models

    Science.gov (United States)

    Boyte, Stephen; Wylie, Bruce K.; Howard, Danny; Dahal, Devendra; Gilmanov, Tagir G.

    2018-01-01

    Integrating spatially explicit biogeophysical and remotely sensed data into regression-tree models enables the spatial extrapolation of training data over large geographic spaces, allowing a better understanding of broad-scale ecosystem processes. The current study presents annual gross primary production (GPP) and annual ecosystem respiration (RE) for 2000–2013 in several short-statured vegetation types using carbon flux data from towers that are located strategically across the conterminous United States (CONUS). We calculate carbon fluxes (annual net ecosystem production [NEP]) for each year in our study period, which includes 2012 when drought and higher-than-normal temperatures influence vegetation productivity in large parts of the study area. We present and analyse carbon flux dynamics in the CONUS to better understand how drought affects GPP, RE, and NEP. Model accuracy metrics show strong correlation coefficients (r) (r ≥ 94%) between training and estimated data for both GPP and RE. Overall, average annual GPP, RE, and NEP are relatively constant throughout the study period except during 2012 when almost 60% less carbon is sequestered than normal. These results allow us to conclude that this modelling method effectively estimates carbon dynamics through time and allows the exploration of impacts of meteorological anomalies and vegetation types on carbon dynamics.

  7. Visualizing Three-dimensional Slab Geometries with ShowEarthModel

    Science.gov (United States)

    Chang, B.; Jadamec, M. A.; Fischer, K. M.; Kreylos, O.; Yikilmaz, M. B.

    2017-12-01

    Seismic data that characterize the morphology of modern subducted slabs on Earth suggest that a two-dimensional paradigm is no longer adequate to describe the subduction process. Here we demonstrate the effect of data exploration of three-dimensional (3D) global slab geometries with the open source program ShowEarthModel. ShowEarthModel was designed specifically to support data exploration, by focusing on interactivity and real-time response using the Vrui toolkit. Sixteen movies are presented that explore the 3D complexity of modern subduction zones on Earth. The first movie provides a guided tour through the Earth's major subduction zones, comparing the global slab geometry data sets of Gudmundsson and Sambridge (1998), Syracuse and Abers (2006), and Hayes et al. (2012). Fifteen regional movies explore the individual subduction zones and regions intersecting slabs, using the Hayes et al. (2012) slab geometry models where available and the Engdahl and Villasenor (2002) global earthquake data set. Viewing the subduction zones in this way provides an improved conceptualization of the 3D morphology within a given subduction zone as well as the 3D spatial relations between the intersecting slabs. This approach provides a powerful tool for rendering earth properties and broadening capabilities in both Earth Science research and education by allowing for whole earth visualization. The 3D characterization of global slab geometries is placed in the context of 3D slab-driven mantle flow and observations of shear wave splitting in subduction zones. These visualizations contribute to the paradigm shift from a 2D to 3D subduction framework by facilitating the conceptualization of the modern subduction system on Earth in 3D space.

  8. Hysteretic transitions in the Kuramoto model with inertia

    Science.gov (United States)

    Torcini, Alessandro; Olmi, Simona; Navas, Adrian; Boccaletti, Stefano

    2015-03-01

    We report finite size numerical investigations and mean field analysis of a Kuramoto model with inertia for fully coupled and diluted systems. In particular, we examine the transition from incoherence to coherence for increasingly large system size and inertia. For sufficiently large inertia the transition is hysteretic and within the hysteretic region clusters of locked oscillators of various sizes and different levels of synchronization coexist. A modification of the mean field theory developed by Tanaka, Lichtenberg, and Oishi allows to derive the synchronization curve associated to each of these clusters. We have also investigated numerically the limits of existence of the coherent and of the incoherent solutions. The minimal coupling required to observe the coherent state is largely independent of the system size and it saturates to a constant value already for moderately large inertia values. The incoherent state is observable up to a critical coupling whose value saturates for large inertia and for finite system sizes, while in the thermodinamic limit this critical value diverges proportionally to the mass. By increasing the inertia the transition becomes more complex, and the synchronization occurs via the emergence of clusters of coherently drifting oscillators. Financial support has been provided by the Italian Ministry of University and Research within the project CRISIS LAB PNR 2011-2013.

  9. E1 transitions in the Harari quark model

    International Nuclear Information System (INIS)

    Kamath, S.G.

    1976-10-01

    The radiative decays psi(3.684)→γchi(sup(3)P sub(J)) and chi(sup(3)Psub(J)→chipsi(3.1) have been analyzed within the framework of the Harari quark model. The spatial matrix elements describing these L=1 to L=0 transitions have been estimated from the A 2 (1310)→ chirho(770) mode by applying U(6) symmetry at the quark level. The resulting decay widths, which compare very well with experimental data, have subsequently been used to determine the SU(3)sub(H) assignments for the chi states

  10. Predictors of stage transitions in the precaution adoption process model.

    Science.gov (United States)

    de Vet, Emely; de Nooijer, Jascha; Oenema, Anke; de Vries, Nanne K; Brug, Johannes

    2008-01-01

    To explore psychosocial correlates and predictors of stage transitions in the precaution adoption process model (PAPM) for fruit intake. A cohort completed three electronic questionnaires, at baseline (time 0), 35 days later (time 1), and another 32 days later (time 2). Secured Internet Web site. A cohort of 735 adults was formed from a random sample of an existing Internet panel. The mean age was 37.5 years, 51% were women, and 90% were of Dutch origin. Most respondents (48%) had a medium level of education. Precaution adoption process model stage, risk perception, perception of own fruit intake level, attitude, pros, cons, subjective norms, social support, modeling, self-efficacy, and fruit intake (assessed using a food frequency questionnaire). Cross-sectional differences in psychosocial variables and fruit intake across PAPM stages at baseline were analyzed using analysis of variance with Tukey multiple comparisons tests. Predictors of PAPM stage transitions between time 0 and time 1 and between time 1 and time 2 were analyzed using logistic regression analysis. Factors related to attitude and social influences may be important if one is to decide to act, whereas strong self-efficacy may also be required for acting on the decision to act. Although the results should be replicated in a larger and more representative sample, the PAPM seems a good framework for studying fruit intake.

  11. A dynamic phase transition model for spatial agglomeration processes.

    Science.gov (United States)

    Weidlich, W; Haag, G

    1987-11-01

    A nonlinear model of population migration is presented in order to provide a dynamic explanation for the formation of metropolitan areas. "In Section 2 the model is introduced in terms of the rate equations for the mean values of the regional population numbers with specifically chosen individual transition rates. Section 3 gives a survey of concepts and results for the convenience of the reader not interested in the details of the mathematical derivations. Section 4 derives the stationary solutions of the rate equations, that is, the equilibria of the system. Section 5 treats the time dependent solutions of the model equations focussing on the exact analytic solutions along so-called symmetry paths. Section 6 analyzes the dynamic stability of the symmetry path solutions and decides which stationary states are unstable and which are stable equilibrium states." excerpt

  12. A model of interacting strings and the Hagedorn phase transition

    International Nuclear Information System (INIS)

    Lizzi, F.; Senda, I.

    1990-03-01

    In this letter we introduce a model of interacting string in which the usual ideal gas approximations are not made. The model is constructed in analogy with nucleation models, the formation of droplets in a supersaturate gas. We consider the strings to be interacting and their number not fixed. The equilibrium configuration is the one for which the time derivatives of the number of strings in the various energies vanishes. We evaluate numerically the equilibrium configurations for various values of the energy density. We find that a density of order one in planck units there is a sharp transition, from a 'gas' phase in which there are many strings, all in the massless or first few excited states, to a 'liquid' phase in which all strings have coalesced into one (or few) highly excited string. (author). 14 refs, 4 figs

  13. Etoposide incorporated into camel milk phospholipids liposomes shows increased activity against fibrosarcoma in a mouse model.

    Science.gov (United States)

    Maswadeh, Hamzah M; Aljarbou, Ahmad N; Alorainy, Mohammed S; Alsharidah, Mansour S; Khan, Masood A

    2015-01-01

    Phospholipids were isolated from camel milk and identified by using high performance liquid chromatography and gas chromatography-mass spectrometry (GC/MS). Anticancer drug etoposide (ETP) was entrapped in liposomes, prepared from camel milk phospholipids, to determine its activity against fibrosarcoma in a murine model. Fibrosarcoma was induced in mice by injecting benzopyrene (BAP) and tumor-bearing mice were treated with various formulations of etoposide, including etoposide entrapped camel milk phospholipids liposomes (ETP-Cam-liposomes) and etoposide-loaded DPPC-liposomes (ETP-DPPC-liposomes). The tumor-bearing mice treated with ETP-Cam-liposomes showed slow progression of tumors and increased survival compared to free ETP or ETP-DPPC-liposomes. These results suggest that ETP-Cam-liposomes may prove to be a better drug delivery system for anticancer drugs.

  14. Etoposide Incorporated into Camel Milk Phospholipids Liposomes Shows Increased Activity against Fibrosarcoma in a Mouse Model

    Directory of Open Access Journals (Sweden)

    Hamzah M. Maswadeh

    2015-01-01

    Full Text Available Phospholipids were isolated from camel milk and identified by using high performance liquid chromatography and gas chromatography-mass spectrometry (GC/MS. Anticancer drug etoposide (ETP was entrapped in liposomes, prepared from camel milk phospholipids, to determine its activity against fibrosarcoma in a murine model. Fibrosarcoma was induced in mice by injecting benzopyrene (BAP and tumor-bearing mice were treated with various formulations of etoposide, including etoposide entrapped camel milk phospholipids liposomes (ETP-Cam-liposomes and etoposide-loaded DPPC-liposomes (ETP-DPPC-liposomes. The tumor-bearing mice treated with ETP-Cam-liposomes showed slow progression of tumors and increased survival compared to free ETP or ETP-DPPC-liposomes. These results suggest that ETP-Cam-liposomes may prove to be a better drug delivery system for anticancer drugs.

  15. Phenolic Acids from Wheat Show Different Absorption Profiles in Plasma: A Model Experiment with Catheterized Pigs

    DEFF Research Database (Denmark)

    Nørskov, Natalja; Hedemann, Mette Skou; Theil, Peter Kappel

    2013-01-01

    consumed. Benzoic acid derivatives showed low concentration in the plasma (diets. The exception was p-hydroxybenzoic acid, with a plasma concentration (4 ± 0.4 μM), much higher than the other plant phenolic acids, likely because it is an intermediate in the phenolic acid metabolism......The concentration and absorption of the nine phenolic acids of wheat were measured in a model experiment with catheterized pigs fed whole grain wheat and wheat aleurone diets. Six pigs in a repeated crossover design were fitted with catheters in the portal vein and mesenteric artery to study....... It was concluded that plant phenolic acids undergo extensive interconversion in the colon and that their absorption profiles reflected their low bioavailability in the plant matrix....

  16. Introducing Modeling Transition Diagrams as a Tool to Connect Mathematical Modeling to Mathematical Thinking

    Science.gov (United States)

    Czocher, Jennifer A.

    2016-01-01

    This study contributes a methodological tool to reconstruct the cognitive processes and mathematical activities carried out by mathematical modelers. Represented as Modeling Transition Diagrams (MTDs), individual modeling routes were constructed for four engineering undergraduate students. Findings stress the importance and limitations of using…

  17. Modeling boundary-layer transition in DNS and LES using Parabolized Stability Equations

    Science.gov (United States)

    Lozano-Duran, Adrian; Hack, M. J. Philipp; Moin, Parviz

    2016-11-01

    The modeling of the laminar region and the prediction of the point of transition remain key challenges in the numerical simulation of boundary layers. The issue is of particular relevance for wall-modeled large eddy simulations which require 10 to 100 times higher grid resolution in the thin laminar region than in the turbulent regime. Our study examines the potential of the nonlinear parabolized stability equations (PSE) to provide an accurate, yet computationally efficient treatment of the growth of disturbances in the pre-transitional flow regime. The PSE captures the nonlinear interactions that eventually induce breakdown to turbulence, and can as such identify the onset of transition without relying on empirical correlations. Since the local PSE solution at the point of transition is the solution of the Navier-Stokes equations, it provides a natural inflow condition for large eddy and direct simulations by avoiding unphysical transients. We show that in a classical H-type transition scenario, a combined PSE/DNS approach can reproduce the skin-friction distribution obtained in reference direct numerical simulations. The computational cost in the laminar region is reduced by several orders of magnitude. Funded by the Air Force Office of Scientific Research.

  18. Optimized broad-histogram simulations for strong first-order phase transitions: droplet transitions in the large-Q Potts model

    International Nuclear Information System (INIS)

    Bauer, Bela; Troyer, Matthias; Gull, Emanuel; Trebst, Simon; Huse, David A

    2010-01-01

    The numerical simulation of strongly first-order phase transitions has remained a notoriously difficult problem even for classical systems due to the exponentially suppressed (thermal) equilibration in the vicinity of such a transition. In the absence of efficient update techniques, a common approach for improving equilibration in Monte Carlo simulations is broadening the sampled statistical ensemble beyond the bimodal distribution of the canonical ensemble. Here we show how a recently developed feedback algorithm can systematically optimize such broad-histogram ensembles and significantly speed up equilibration in comparison with other extended ensemble techniques such as flat-histogram, multicanonical and Wang–Landau sampling. We simulate, as a prototypical example of a strong first-order transition, the two-dimensional Potts model with up to Q = 250 different states in large systems. The optimized histogram develops a distinct multi-peak structure, thereby resolving entropic barriers and their associated phase transitions in the phase coexistence region—such as droplet nucleation and annihilation, and droplet–strip transitions for systems with periodic boundary conditions. We characterize the efficiency of the optimized histogram sampling by measuring round-trip times τ(N, Q) across the phase transition for samples comprised of N spins. While we find power-law scaling of τ versus N for small Q∼ 2 , we observe a crossover to exponential scaling for larger Q. These results demonstrate that despite the ensemble optimization, broad-histogram simulations cannot fully eliminate the supercritical slowing down at strongly first-order transitions

  19. Ebola Virus Makona Shows Reduced Lethality in an Immune-deficient Mouse Model.

    Science.gov (United States)

    Smither, Sophie J; Eastaugh, Lin; Ngugi, Sarah; O'Brien, Lyn; Phelps, Amanda; Steward, Jackie; Lever, Mark Stephen

    2016-10-15

    Ebola virus Makona (EBOV-Makona; from the 2013-2016 West Africa outbreak) shows decreased virulence in an immune-deficient mouse model, compared with a strain from 1976. Unlike other filoviruses tested, EBOV-Makona may be slightly more virulent by the aerosol route than by the injected route, as 2 mice died following aerosol exposure, compared with no mortality among mice that received intraperitoneal injection of equivalent or higher doses. Although most mice did not succumb to infection, the detection of an immunoglobulin G antibody response along with observed clinical signs suggest that the mice were infected but able to clear the infection and recover. We hypothesize that this may be due to the growth rates and kinetics of the virus, which appear slower than that for other filoviruses and consequently give more time for an immune response that results in clearance of the virus. In this instance, the immune-deficient mouse model is unlikely to be appropriate for testing medical countermeasures against this EBOV-Makona stock but may provide insight into pathogenesis and the immune response to virus. © Crown copyright 2016.

  20. Liquid-gas phase transition in strange hadronic matter with relativistic models

    Science.gov (United States)

    Torres, James R.; Gulminelli, F.; Menezes, Débora P.

    2016-02-01

    Background: The advent of new dedicated experimental programs on hyperon physics is rapidly boosting the field, and the possibility of synthesizing multiple strange hypernuclei requires the addition of the strangeness degree of freedom to the models dedicated to nuclear structure and nuclear matter studies at low energy. Purpose: We want to settle the influence of strangeness on the nuclear liquid-gas phase transition. Because of the large uncertainties concerning the hyperon sector, we do not aim at a quantitative estimation of the phase diagram but rather at a qualitative description of the phenomenology, as model independent as possible. Method: We analyze the phase diagram of low-density matter composed of neutrons, protons, and Λ hyperons using a relativistic mean field (RMF) model. We largely explore the parameter space to pin down generic features of the phase transition, and compare the results to ab initio quantum Monte Carlo calculations. Results: We show that the liquid-gas phase transition is only slightly quenched by the addition of hyperons. Strangeness is seen to be an order parameter of the phase transition, meaning that dilute strange matter is expected to be unstable with respect to the formation of hyperclusters. Conclusions: More quantitative results within the RMF model need improved functionals at low density, possibly fitted to ab initio calculations of nuclear and Λ matter.

  1. Dynamical phase transitions in Hegselmann-Krause model of opinion dynamics and consensus

    Science.gov (United States)

    Slanina, F.

    2011-01-01

    The dynamics of the model of agents with limited confidence introduced by Hegselmann and Krause exhibits multiple well-separated regimes characterised by the number of distinct clusters in the stationary state. We present indications that there are genuine dynamical phase transitions between these regimes. The main indicator is the divergence of the average evolution time required to reach the stationary state. The slowdown close to the transition is connected with the emergence of the groups of mediator agents which are very small but have decisive role in the process of social convergence. More detailed study shows that the histogram of the evolution times is composed of several peaks. These peaks are unambiguously interpreted as corresponding to mediator groups consisting of one, two, three etc. agents. Detailed study reveals that each transition possesses also an internal fine structure.

  2. Spin supercurrent and effect of quantum phase transition in the two-dimensional XY model

    Science.gov (United States)

    Lima, L. S.

    2018-04-01

    We have verified the influence of quantum phase transition on spin transport in the spin-1 two-dimensional XY model on the square lattice, with easy plane, single ion and exchange anisotropy. We analyze the effect of the phase transition from the Néel phase to the paramagnetic phase on the AC spin conductivity. Our results show a bit influence of the quantum phase transition on the conductivity. We also obtain a conventional spin transport for ω > 0 and an ideal spin transport in the limit of DC conductivity and therefore, a superfluid spin transport for the DC current in this limit. We have made the diagrammatic expansion for the Green-function with objective to include the effect exciton-exciton scattering on the results.

  3. A CD44high/EGFRlow subpopulation within head and neck cancer cell lines shows an epithelial-mesenchymal transition phenotype and resistance to treatment.

    Directory of Open Access Journals (Sweden)

    Linnea La Fleur

    Full Text Available Mortality in head and neck squamous cell carcinoma (HNSCC is high due to emergence of therapy resistance which results in local and regional recurrences that may have their origin in resistant cancer stem cells (CSCs or cells with an epithelial-mesenchymal transition (EMT phenotype. In the present study, we investigate the possibility of using the cell surface expression of CD44 and epidermal growth factor receptor (EGFR, both of which have been used as stem cell markers, to identify subpopulations within HNSCC cell lines that differ with respect to phenotype and treatment sensitivity. Three subpopulations, consisting of CD44(high/EGFR(low, CD44(high/EGFR(high and CD44(low cells, respectively, were collected by fluorescence-activated cell sorting. The CD44(high/EGFR(low population showed a spindle-shaped EMT-like morphology, while the CD44(low population was dominated by cobblestone-shaped cells. The CD44(high/EGFR(low population was enriched with cells in G0/G1 and showed a relatively low proliferation rate and a high plating efficiency. Using a real time PCR array, 27 genes, of which 14 were related to an EMT phenotype and two with stemness, were found to be differentially expressed in CD44(high/EGFR(low cells in comparison to CD44(low cells. Moreover, CD44(high/EGFR(low cells showed a low sensitivity to radiation, cisplatin, cetuximab and gefitinib, and a high sensitivity to dasatinib relative to its CD44(high/EGFR(high and CD44(low counterparts. In conclusion, our results show that the combination of CD44 (high and EGFR (low cell surface expression can be used to identify a treatment resistant subpopulation with an EMT phenotype in HNSCC cell lines.

  4. Demographic model of the Neolithic transition in Central Europe

    Directory of Open Access Journals (Sweden)

    Patrik Galeta

    2009-12-01

    Full Text Available Several recent lines of evidence indicate more intensive contact between LBK farmers and indigenous foragers in Central Europe (5600–5400 calBC. Strong continuity has been identified between Mesolithic and Neolithic material cultures; faunal assemblages, and isotopic analyses of diet have revealed a greater role of hunting in LBK communities; genetic analyses have suggested that the modern Central European gene pool is mainly of Palaeolithic origin. Surprisingly little attention has been paid to demographic aspects of the Neolithic transition. In our study, demographic simulations were performed to assess the demographic conditions that would allow LBK farmers to spread across central Europe without any admixture with Mesolithic foragers. We constructed a stochastic demographic model of changes in farming population size. Model parameters were constrained by data from human demography, archaeology, and human ecology. Our results indicate that the establishment of farming communities in Central Europe without an admixture with foragers was highly improbable. The demographic conditions necessary for colonization were beyond the potential of the Neolithic population. Our study supports the integrationists’ view of the Neolithic transition in Central Europe.

  5. Systematic review: Health care transition practice service models.

    Science.gov (United States)

    Betz, Cecily L; O'Kane, Lisa S; Nehring, Wendy M; Lobo, Marie L

    2016-01-01

    Nearly 750,000 adolescents and emerging adults with special health care needs (AEA-SHCN) enter into adulthood annually. The linkages to ensure the seamless transfer of care from pediatric to adult care and transition to adulthood for AEA-SHCN have yet to be realized. The purpose of this systematic review was to investigate the state of the science of health care transition (HCT) service models as described in quantitative investigations. A four-tier screening approach was used to obtain reviewed articles published from 2004 to 2013. A total of 17 articles were included in this review. Transfer of care was the most prominent intervention feature. Overall, using the Effective Public Health Practice Project criteria, the studies were rated as weak. Limitations included lack of control groups, rigorous designs and methodology, and incomplete intervention descriptions. As the findings indicate, HCT is an emerging field of practice that is largely in the exploratory stage of model development. Copyright © 2016 Elsevier Inc. All rights reserved.

  6. Census Model Transition: Contributions to its Implementation in Portugal

    Directory of Open Access Journals (Sweden)

    Dias Carlos A.

    2016-03-01

    Full Text Available Given the high cost and complexity of traditional censuses, some countries have started to change the census process. Following this trend, Portugal is also evaluating a new census model as an alternative to an exhaustive collection of all statistical units. The main motivations for the implementation of this census model transition in Portugal are related to the decrease in statistical burden on citizens, improvements in the frequency of outputs, and the reduction of collection costs associated with census operations. This article seeks to systematise and critically review all alternatives to the traditional census methodologies, presenting their advantages and disadvantages and the countries that use them. As a result of the comparison, we conclude that the methods that best meet these objectives are those that use administrative data, either in whole or in part. We also present and discuss the results of an inventory and evaluation of administrative registers in Portugal with the potential to produce statistical census information.

  7. Quantum phase transition of light in the Rabi–Hubbard model

    International Nuclear Information System (INIS)

    Schiró, M; Bordyuh, M; Öztop, B; Türeci, H E

    2013-01-01

    We discuss the physics of the Rabi–Hubbard model describing large arrays of coupled cavities interacting with two level atoms via a Rabi nonlinearity. We show that the inclusion of counter-rotating terms in the light–matter interaction, often neglected in theoretical descriptions based on Jaynes–Cumming models, is crucial to stabilize finite-density quantum phases of correlated photons with no need for an artificially engineered chemical potential. We show that the physical properties of these phases and the quantum phase transition occurring between them is remarkably different from those of interacting bosonic massive quantum particles. The competition between photon delocalization and Rabi nonlinearity drives the system across a novel Z 2 parity symmetry-breaking quantum phase transition between two gapped phases, a Rabi insulator and a delocalized super-radiant phase. (paper)

  8. Dynamic Linkages Between the Transition Zone & Surface Plate Motions in 2D Models of Subduction

    Science.gov (United States)

    Arredondo, K.; Billen, M. I.

    2013-12-01

    While slab pull is considered the dominant force controlling plate motion and speed, its magnitude is controlled by slab behavior in the mantle, where tomographic studies show a wide range of possibilities from direct penetration to folding, or stagnation directly above the lower mantle (e.g. Fukao et al., 2009). Geodynamic studies have investigated various parameters, such as plate age and two phase transitions, to recreate observed behavior (e.g. Běhounková and Cízková, 2008). However, past geodynamic models have left out known slab characteristics that may have a large impact on slab behavior and our understanding of subduction processes. Mineral experiments and seismic observations have indicated the existence of additional phase transitions in the mantle transition zone that may produce buoyancy forces large enough to affect the descent of a subducting slab (e.g. Ricard et al., 2005). The current study systematically tests different common assumptions used in geodynamic models: kinematic versus free-slip boundary conditions, the effects of adiabatic heating, viscous dissipation and latent heat, compositional layering and a more complete suite of phase transitions. Final models have a complete energy equation, with eclogite, harzburgite and pyrolite lithosphere compositional layers, and seven composition-dependent phase transitions within the olivine, pyroxene and garnet polymorph minerals. Results show important feedback loops between different assumptions and new behavior from the most complete models. Kinematic models show slab weakening or breaking above the 660 km boundary and between compositional layers. The behavior in dynamic models with a free-moving trench and overriding plate is compared to the more commonly found kinematic models. The new behavior may have important implications for the depth distribution of deep earthquakes within the slab. Though the thermodynamic parameters of certain phase transitions may be uncertain, their presence and

  9. PyTranSpot: A tool for multiband light curve modeling of planetary transits and stellar spots

    Science.gov (United States)

    Juvan, Ines G.; Lendl, M.; Cubillos, P. E.; Fossati, L.; Tregloan-Reed, J.; Lammer, H.; Guenther, E. W.; Hanslmeier, A.

    2018-02-01

    Several studies have shown that stellar activity features, such as occulted and non-occulted starspots, can affect the measurement of transit parameters biasing studies of transit timing variations and transmission spectra. We present PyTranSpot, which we designed to model multiband transit light curves showing starspot anomalies, inferring both transit and spot parameters. The code follows a pixellation approach to model the star with its corresponding limb darkening, spots, and transiting planet on a two dimensional Cartesian coordinate grid. We combine PyTranSpot with a Markov chain Monte Carlo framework to study and derive exoplanet transmission spectra, which provides statistically robust values for the physical properties and uncertainties of a transiting star-planet system. We validate PyTranSpot's performance by analyzing eleven synthetic light curves of four different star-planet systems and 20 transit light curves of the well-studied WASP-41b system. We also investigate the impact of starspots on transit parameters and derive wavelength dependent transit depth values for WASP-41b covering a range of 6200-9200 Å, indicating a flat transmission spectrum.

  10. Transition in, Transition out: a sustainable model to engage first year students in learning. A Practice Report

    Directory of Open Access Journals (Sweden)

    Andrea Chester

    2013-08-01

    Full Text Available Peer mentoring, presented as an inclusive teaching approach, embedded in the curriculum, has been successfully implemented to support first year student learning. Developing sustainable and scalable models for large first year cohorts, however, provides a challenge. The Transition in, Transition out model is a sustainable peer mentoring model supporting the transition of both first and final year students. The model has been implemented in two Australian psychology programs, one face-to-face and one delivered online. The focus in this Practice Report will be on the outcome data for on-campus first year student at one university. Participants were 231 first year students (166 females and 65 males. Results suggest positive changes in academic performance and learning approaches as well as positive endorsement of the model.

  11. Atovaquone Nanosuspensions Show Excellent Therapeutic Effect in a New Murine Model of Reactivated Toxoplasmosis

    Science.gov (United States)

    Schöler, Nadja; Krause, Karsten; Kayser, Oliver; Müller, Rainer H.; Borner, Klaus; Hahn, Helmut; Liesenfeld, Oliver

    2001-01-01

    Immunocompromised patients are at risk of developing toxoplasma encephalitis (TE). Standard therapy regimens (including sulfadiazine plus pyrimethamine) are hampered by severe side effects. While atovaquone has potent in vitro activity against Toxoplasma gondii, it is poorly absorbed after oral administration and shows poor therapeutic efficacy against TE. To overcome the low absorption of atovaquone, we prepared atovaquone nanosuspensions (ANSs) for intravenous (i.v.) administration. At concentrations higher than 1.0 μg/ml, ANS did not exert cytotoxicity and was as effective as free atovaquone (i.e., atovaquone suspended in medium) against T. gondii in freshly isolated peritoneal macrophages. In a new murine model of TE that closely mimics reactivated toxoplasmosis in immunocompromised hosts, using mice with a targeted mutation in the gene encoding the interferon consensus sequence binding protein, i.v.-administered ANS doses of 10.0 mg/kg of body weight protected the animals against development of TE and death. Atovaquone was detectable in the sera, brains, livers, and lungs of mice by high-performance liquid chromatography. Development of TE and mortality in mice treated with 1.0- or 0.1-mg/kg i.v. doses of ANS did not differ from that in mice treated orally with 100 mg of atovaquone/kg. In conclusion, i.v. ANSs may prove to be an effective treatment alternative for patients with TE. PMID:11353624

  12. New azole derivatives showing antimicrobial effects and their mechanism of antifungal activity by molecular modeling studies.

    Science.gov (United States)

    Doğan, İnci Selin; Saraç, Selma; Sari, Suat; Kart, Didem; Eşsiz Gökhan, Şebnem; Vural, İmran; Dalkara, Sevim

    2017-04-21

    Azole antifungals are potent inhibitors of fungal lanosterol 14α demethylase (CYP51) and have been used for eradication of systemic candidiasis clinically. Herein we report the design, synthesis, and biological evaluation of a series of 1-phenyl/1-(4-chlorophenyl)-2-(1H-imidazol-1-yl)ethanol esters. Many of these derivatives showed fungal growth inhibition at very low concentrations. Minimal inhibition concentration (MIC) value of 15 was 0.125 μg/mL against Candida albicans. Additionally, some of our compounds, such as 19 (MIC: 0.25 μg/mL), were potent against resistant C. glabrata, a fungal strain less susceptible to some first-line antifungal drugs. We confirmed their antifungal efficacy by antibiofilm test and their safety against human monocytes by cytotoxicity assay. To rationalize their mechanism of action, we performed computational analysis utilizing molecular docking and dynamics simulations on the C. albicans and C. glabrata CYP51 (CACYP51 and CGCYP51) homology models we built. Leu130 and T131 emerged as possible key residues for inhibition of CGCYP51 by 19. Copyright © 2017 Elsevier Masson SAS. All rights reserved.

  13. Chiral and color-superconducting phase transitions with vector interaction in a simple model

    International Nuclear Information System (INIS)

    Kitazawa, Masakiyo; Koide, Tomoi; Kunihiro, Teiji; Nemoto, Yukio

    2002-01-01

    We investigate effects of the vector interaction on chiral and color superconducting (CSC) phase transitions at finite density and temperature in a simple Nambu-Jona-Lasinio model. It is shown that the repulsive density-density interaction coming from the vector term, which is present in the effective chiral models but has been omitted, enhances the competition between the chiral symmetry breaking (χSB) and CSC phase transition, and thereby makes the thermodynamic potential have a shallow minimum over a wide range of values of the correlated chiral and CSC order parameters. We find that when the vector coupling is increased, the first order transition between the χSB and CSC phases becomes weaker, and the coexisting phase in which both the chiral and color-gauge symmetry are dynamically broken comes to exist over a wider range of the density and temperature. We also show that there can exist two endpoints, which are tricritical points in the chiral limit, along the critical line of the first order transition in some range of values of the vector coupling. Although our analysis is based on a simple model, the nontrivial interplay between the χSB and CSC phases induced by the vector interaction is expected to be a universal phenomenon and might give a clue to understanding results obtained with two-color QCD on the lattice. (author)

  14. A stochastic estimation procedure for intermittently-observed semi-Markov multistate models with back transitions.

    Science.gov (United States)

    Aralis, Hilary; Brookmeyer, Ron

    2017-01-01

    Multistate models provide an important method for analyzing a wide range of life history processes including disease progression and patient recovery following medical intervention. Panel data consisting of the states occupied by an individual at a series of discrete time points are often used to estimate transition intensities of the underlying continuous-time process. When transition intensities depend on the time elapsed in the current state and back transitions between states are possible, this intermittent observation process presents difficulties in estimation due to intractability of the likelihood function. In this manuscript, we present an iterative stochastic expectation-maximization algorithm that relies on a simulation-based approximation to the likelihood function and implement this algorithm using rejection sampling. In a simulation study, we demonstrate the feasibility and performance of the proposed procedure. We then demonstrate application of the algorithm to a study of dementia, the Nun Study, consisting of intermittently-observed elderly subjects in one of four possible states corresponding to intact cognition, impaired cognition, dementia, and death. We show that the proposed stochastic expectation-maximization algorithm substantially reduces bias in model parameter estimates compared to an alternative approach used in the literature, minimal path estimation. We conclude that in estimating intermittently observed semi-Markov models, the proposed approach is a computationally feasible and accurate estimation procedure that leads to substantial improvements in back transition estimates.

  15. A geometrically controlled rigidity transition in a model for confluent 3D tissues

    Science.gov (United States)

    Merkel, Matthias; Manning, M. Lisa

    2018-02-01

    The origin of rigidity in disordered materials is an outstanding open problem in statistical physics. Previously, a class of 2D cellular models has been shown to undergo a rigidity transition controlled by a mechanical parameter that specifies cell shapes. Here, we generalize this model to 3D and find a rigidity transition that is similarly controlled by the preferred surface area S 0: the model is solid-like below a dimensionless surface area of {s}0\\equiv {S}0/{\\bar{V}}2/3≈ 5.413 with \\bar{V} being the average cell volume, and fluid-like above this value. We demonstrate that, unlike jamming in soft spheres, residual stresses are necessary to create rigidity. These stresses occur precisely when cells are unable to obtain their desired geometry, and we conjecture that there is a well-defined minimal surface area possible for disordered cellular structures. We show that the behavior of this minimal surface induces a linear scaling of the shear modulus with the control parameter at the transition point, which is different from the scaling observed in particulate matter. The existence of such a minimal surface may be relevant for biological tissues and foams, and helps explain why cell shapes are a good structural order parameter for rigidity transitions in biological tissues.

  16. Showing a model's eye movements in examples does not improve learning of problem-solving tasks

    NARCIS (Netherlands)

    van Marlen, Tim; van Wermeskerken, Margot; Jarodzka, Halszka; van Gog, Tamara

    2016-01-01

    Eye movement modeling examples (EMME) are demonstrations of a computer-based task by a human model (e.g., a teacher), with the model's eye movements superimposed on the task to guide learners' attention. EMME have been shown to enhance learning of perceptual classification tasks; however, it is an

  17. Phase transitions in a holographic s + p model with back-reaction

    Energy Technology Data Exchange (ETDEWEB)

    Nie, Zhang-Yu [Kunming University of Science and Technology, Kunming (China); Chinese Academy of Sciences, State Key Laboratory of Theoretical Physics, Institute of Theoretical Physics, Beijing (China); Shanghai Jiao Tong University, INPAC, Department of Physics, and Shanghai Key Laboratory of Particle Physics and Cosmology, Shanghai (China); Cai, Rong-Gen [Chinese Academy of Sciences, State Key Laboratory of Theoretical Physics, Institute of Theoretical Physics, Beijing (China); Gao, Xin [Virginia Tech, Department of Physics, Blacksburg, VA (United States); Li, Li [University of Crete, Department of Physics, Crete Center for Theoretical Physics, Heraklion (Greece); Zeng, Hui [Kunming University of Science and Technology, Kunming (China); Chinese Academy of Sciences, State Key Laboratory of Theoretical Physics, Institute of Theoretical Physics, Beijing (China)

    2015-11-15

    In a previous paper (Nie et al. in JHEP 1311:087, arXiv:1309.2204 [hep-th], 2013), we presented a holographic s + p superconductor model with a scalar triplet charged under an SU(2) gauge field in the bulk. We also study the competition and coexistence of the s-wave and p-wave orders in the probe limit. In this work we continue to study the model by considering the full back-reaction. The model shows a rich phase structure and various condensate behaviors such as the ''n-type'' and ''u-type'' ones, which are also known as reentrant phase transitions in condensed matter physics. The phase transitions to the p-wave phase or s + p coexisting phase become first order in strong back-reaction cases. In these first order phase transitions, the free energy curve always forms a swallow tail shape, in which the unstable s + p solution can also play an important role. The phase diagrams of this model are given in terms of the dimension of the scalar order and the temperature in the cases of eight different values of the back-reaction parameter, which show that the region for the s + p coexisting phase is enlarged with a small or medium back-reaction parameter but is reduced in the strong back-reaction cases. (orig.)

  18. A general allometric and life-history model for cellular differentiation in the transition to multicellularity.

    Science.gov (United States)

    Solari, Cristian A; Kessler, John O; Goldstein, Raymond E

    2013-03-01

    The transition from unicellular, to colonial, to larger multicellular organisms has benefits, costs, and requirements. Here we present a model inspired by the volvocine green algae that explains the dynamics involved in the unicellular-multicellular transition using life-history theory and allometry. We model the two fitness components (fecundity and viability) and compare the fitness of hypothetical colonies of different sizes with varying degrees of cellular differentiation to understand the general principles that underlie the evolution of multicellularity. We argue that germ-soma separation may have evolved to counteract the increasing costs and requirements of larger multicellular colonies. The model shows that the cost of investing in soma decreases with size. For lineages such as the Volvocales, as reproduction costs increase with size for undifferentiated colonies, soma specialization benefits the colony indirectly by decreasing such costs and directly by helping reproductive cells acquire resources for their metabolic needs. Germ specialization is favored once soma evolves and takes care of vegetative functions. To illustrate the model, we use some allometric relationships measured in Volvocales. Our analysis shows that the cost of reproducing an increasingly larger group has likely played an important role in the transition to multicellularity and cellular differentiation.

  19. Position-sensitive transition edge sensor modeling and results

    Energy Technology Data Exchange (ETDEWEB)

    Hammock, Christina E-mail: chammock@milkyway.gsfc.nasa.gov; Figueroa-Feliciano, Enectali; Apodaca, Emmanuel; Bandler, Simon; Boyce, Kevin; Chervenak, Jay; Finkbeiner, Fred; Kelley, Richard; Lindeman, Mark; Porter, Scott; Saab, Tarek; Stahle, Caroline

    2004-03-11

    We report the latest design and experimental results for a Position-Sensitive Transition-Edge Sensor (PoST). The PoST is motivated by the desire to achieve a larger field-of-view without increasing the number of readout channels. A PoST consists of a one-dimensional array of X-ray absorbers connected on each end to a Transition Edge Sensor (TES). Position differentiation is achieved through a comparison of pulses between the two TESs and X-ray energy is inferred from a sum of the two signals. Optimizing such a device involves studying the available parameter space which includes device properties such as heat capacity and thermal conductivity as well as TES read-out circuitry parameters. We present results for different regimes of operation and the effects on energy resolution, throughput, and position differentiation. Results and implications from a non-linear model developed to study the saturation effects unique to PoSTs are also presented.

  20. A Correlation-Based Transition Model using Local Variables. Part 2; Test Cases and Industrial Applications

    Science.gov (United States)

    Langtry, R. B.; Menter, F. R.; Likki, S. R.; Suzen, Y. B.; Huang, P. G.; Volker, S.

    2006-01-01

    A new correlation-based transition model has been developed, which is built strictly on local variables. As a result, the transition model is compatible with modern computational fluid dynamics (CFD) methods using unstructured grids and massive parallel execution. The model is based on two transport equations, one for the intermittency and one for the transition onset criteria in terms of momentum thickness Reynolds number. The proposed transport equations do not attempt to model the physics of the transition process (unlike, e.g., turbulence models), but form a framework for the implementation of correlation-based models into general-purpose CFD methods.

  1. Elastic Model Transitions Using Quadratic Inequality Constrained Least Squares

    Science.gov (United States)

    Orr, Jeb S.

    2012-01-01

    A technique is presented for initializing multiple discrete finite element model (FEM) mode sets for certain types of flight dynamics formulations that rely on superposition of orthogonal modes for modeling the elastic response. Such approaches are commonly used for modeling launch vehicle dynamics, and challenges arise due to the rapidly time-varying nature of the rigid-body and elastic characteristics. By way of an energy argument, a quadratic inequality constrained least squares (LSQI) algorithm is employed to e ect a smooth transition from one set of FEM eigenvectors to another with no requirement that the models be of similar dimension or that the eigenvectors be correlated in any particular way. The physically unrealistic and controversial method of eigenvector interpolation is completely avoided, and the discrete solution approximates that of the continuously varying system. The real-time computational burden is shown to be negligible due to convenient features of the solution method. Simulation results are presented, and applications to staging and other discontinuous mass changes are discussed

  2. Passenger route choice model and algorithm in the urban rail transit network

    Directory of Open Access Journals (Sweden)

    Ke Qiao

    2013-03-01

    Full Text Available Purpose: There are several routes between some OD pairs in the urban rail transit network. In order to carry out the fare allocating, operators use some models to estimate which route the passengers choose, but there are some errors between estimation results and actual choices results. The aim of this study is analyzing the passenger route choice behavior in detail based on passenger classification and improving the models to make the results more in line with the actual situations.Design/methodology/approach: In this paper, the passengers were divided into familiar type and strange type. Firstly passenger integrated travel impedance functions of two types were established respectively, after that a multi-route distribution model was used to get the initial route assignment results, then a ratio correction method was used to correct the results taking into account the transfer times, crowd and demand for seats. Finally, a case study for the Beijing local rail transit network is shown.Findings: The numerical example showed that it is logical to take passenger classification and the model and algorithm is effective, the final route choice results are more comprehensive and realistic.Originality/value: The paper offers an improved model and algorithm based on passenger classification for passenger route choice in the urban rail transit network.

  3. Thermodynamically consistent mesoscopic model of the ferro/paramagnetic transition

    Czech Academy of Sciences Publication Activity Database

    Benešová, Barbora; Kružík, Martin; Roubíček, Tomáš

    2013-01-01

    Roč. 64, Č. 1 (2013), s. 1-28 ISSN 0044-2275 R&D Projects: GA AV ČR IAA100750802; GA ČR GA106/09/1573; GA ČR GAP201/10/0357 Grant - others:GA ČR(CZ) GA106/08/1397; GA MŠk(CZ) LC06052 Program:GA; LC Institutional support: RVO:67985556 Keywords : ferro-para-magnetism * evolution * thermodynamics Subject RIV: BA - General Mathematics; BA - General Mathematics (UT-L) Impact factor: 1.214, year: 2013 http://library.utia.cas.cz/separaty/2012/MTR/kruzik-thermodynamically consistent mesoscopic model of the ferro-paramagnetic transition.pdf

  4. Band to Mott transition in the infinite dimensional Holstein model

    CERN Document Server

    Hague, J P

    2001-01-01

    down at intermediate couplings in the limit of low phonon frequency where it is supposed to be most applicable. By examining the effective hopping and renormalized phonon frequency, I suggest an intuitive explanation for the breakdown of Migdal-Eliashberg theory. For completeness, a description of the breakdown of Migdal's theorem in the limit of high phonon frequency is considered via the Lang-Firsov canonical transformation. The Holstein model can be seen as providing an interpolation scheme between Hubbard-like and Falicov-Kimball like behaviour and it may therefore help elucidate the nature of the transition between band and Mott states. I describe a number of approximations to the self-energy. By comparing these with results from the exact solution in various limits, I find that a second order iterated perturbation scheme may be capable of describing the intermediate behaviour. Application of this method reveals a strongly renormalized hybrid behaviour between band and miniature-Mott states, with unusual...

  5. Transport modeling of L/H transition in Tokamaks

    International Nuclear Information System (INIS)

    Fuji, Y.; Fukuyama, A.; Itoh, K.; Itoh, S.I.

    1995-01-01

    In order to study the particle transport and the mechanism of the L/H transition in tokamaks, a one-dimensional transport code which describes the toroidal and poloidal plasma rotation as well as the radial electric field has been developed. The neoclassical transport, turbulent transport and ion orbit loss are included. Using a turbulent transport model based on the current diffusive high-n ballooning mode and a fixed temperature profile, the density profile in a steady state and the dependence on the edge temperature are studied. With high edge temperature, the density gradient near the edge becomes steep and a H-mode like density profile is obtained. The preliminary calculation including heat transport is also presented. 10 refs., 3 figs

  6. Phases and phase transitions in the algebraic microscopic shell model

    Directory of Open Access Journals (Sweden)

    Georgieva A. I.

    2016-01-01

    Full Text Available We explore the dynamical symmetries of the shell model number conserving algebra, which define three types of pairing and quadrupole phases, with the aim to obtain the prevailing phase or phase transition for the real nuclear systems in a single shell. This is achieved by establishing a correspondence between each of the pairing bases with the Elliott’s SU(3 basis that describes collective rotation of nuclear systems. This allows for a complete classification of the basis states of different number of particles in all the limiting cases. The probability distribution of the SU(3 basis states within theirs corresponding pairing states is also obtained. The relative strengths of dynamically symmetric quadrupole-quadrupole interaction in respect to the isoscalar, isovector and total pairing interactions define a control parameter, which estimates the importance of each term of the Hamiltonian in the correct reproduction of the experimental data for the considered nuclei.

  7. Classifying multi-model wheat yield impact response surfaces showing sensitivity to temperature and precipitation change

    NARCIS (Netherlands)

    Fronzek, Stefan; Pirttioja, Nina; Carter, Timothy R.; Bindi, Marco; Hoffmann, Holger; Palosuo, Taru; Ruiz-Ramos, Margarita; Tao, Fulu; Trnka, Miroslav; Acutis, Marco; Asseng, Senthold; Baranowski, Piotr; Basso, Bruno; Bodin, Per; Buis, Samuel; Cammarano, Davide; Deligios, Paola; Destain, Marie France; Dumont, Benjamin; Ewert, Frank; Ferrise, Roberto; François, Louis; Gaiser, Thomas; Hlavinka, Petr; Jacquemin, Ingrid; Kersebaum, Kurt Christian; Kollas, Chris; Krzyszczak, Jaromir; Lorite, Ignacio J.; Minet, Julien; Minguez, M.I.; Montesino, Manuel; Moriondo, Marco; Müller, Christoph; Nendel, Claas; Öztürk, Isik; Perego, Alessia; Rodríguez, Alfredo; Ruane, Alex C.; Ruget, Françoise; Sanna, Mattia; Semenov, Mikhail A.; Slawinski, Cezary; Stratonovitch, Pierre; Supit, Iwan; Waha, Katharina; Wang, Enli; Wu, Lianhai; Zhao, Zhigan; Rötter, Reimund P.

    2018-01-01

    Crop growth simulation models can differ greatly in their treatment of key processes and hence in their response to environmental conditions. Here, we used an ensemble of 26 process-based wheat models applied at sites across a European transect to compare their sensitivity to changes in

  8. Classifying multi-model wheat yield impact response surfaces showing sensitivity to temperature and precipitation change

    Czech Academy of Sciences Publication Activity Database

    Fronzek, S.; Pirttioja, N. K.; Carter, T. R.; Bindi, M.; Hoffmann, H.; Palosuo, T.; Ruiz-Ramos, M.; Tao, F.; Trnka, Miroslav; Acutis, M.; Asseng, S.; Baranowski, P.; Basso, B.; Bodin, P.; Buis, S.; Cammarano, D.; Deligios, P.; Destain, M. F.; Dumont, B.; Ewert, F.; Ferrise, R.; Francois, L.; Gaiser, T.; Hlavinka, Petr; Jacquemin, I.; Kersebaum, K. C.; Kollas, C.; Krzyszczak, J.; Lorite, I. J.; Minet, J.; Ines Minguez, M.; Montesino, M.; Moriondo, M.; Mueller, C.; Nendel, C.; Öztürk, I.; Perego, A.; Rodriguez, A.; Ruane, A. C.; Ruget, F.; Sanna, M.; Semenov, M. A.; Slawinski, C.; Stratonovitch, P.; Supit, I.; Waha, K.; Wang, E.; Wu, L.; Zhao, Z.; Rötter, R.

    2018-01-01

    Roč. 159, jan (2018), s. 209-224 ISSN 0308-521X Keywords : climate-change * crop models * probabilistic assessment * simulating impacts * british catchments * uncertainty * europe * productivity * calibration * adaptation * Classification * Climate change * Crop model * Ensemble * Sensitivity analysis * Wheat Impact factor: 2.571, year: 2016

  9. Predictive Modeling of Influenza Shows the Promise of Applied Evolutionary Biology.

    Science.gov (United States)

    Morris, Dylan H; Gostic, Katelyn M; Pompei, Simone; Bedford, Trevor; Łuksza, Marta; Neher, Richard A; Grenfell, Bryan T; Lässig, Michael; McCauley, John W

    2018-02-01

    Seasonal influenza is controlled through vaccination campaigns. Evolution of influenza virus antigens means that vaccines must be updated to match novel strains, and vaccine effectiveness depends on the ability of scientists to predict nearly a year in advance which influenza variants will dominate in upcoming seasons. In this review, we highlight a promising new surveillance tool: predictive models. Based on data-sharing and close collaboration between the World Health Organization and academic scientists, these models use surveillance data to make quantitative predictions regarding influenza evolution. Predictive models demonstrate the potential of applied evolutionary biology to improve public health and disease control. We review the state of influenza predictive modeling and discuss next steps and recommendations to ensure that these models deliver upon their considerable biomedical promise. Copyright © 2017 Elsevier Ltd. All rights reserved.

  10. Minimal Models for a Superconductor-Insulator Conformal Quantum Phase Transition

    CERN Document Server

    Diamantini, M Cristina

    2013-01-01

    Conformal field theories do not only classify 2D classical critical behavior but they also govern a certain class of 2D quantum critical behavior. In this latter case it is the ground state wave functional of the quantum theory that is conformally invariant, rather than the classical action. We show that the superconducting-insulating (SI) quantum phase transition in 2D Josephson junction arrays (JJAs) is a (doubled) $c=1$ Gaussian conformal quantum critical point. The quantum action describing this system is a doubled Maxwell-Chern-Simons model in the strong coupling limit. We also argue that the SI quantum transitions in frustrated JJAs realize the other possible universality classes of conformal quantum critical behavior, corresponding to the unitary minimal models at central charge $c=1-6/m(m+1)$.

  11. Reading Ability Development from Kindergarten to Junior Secondary: Latent Transition Analyses with Growth Mixture Modeling

    Directory of Open Access Journals (Sweden)

    Yuan Liu

    2016-10-01

    Full Text Available The present study examined the reading ability development of children in the large scale Early Childhood Longitudinal Study (Kindergarten Class of 1998-99 data; Tourangeau, Nord, Lê, Pollack, & Atkins-Burnett, 2006 under the dynamic systems. To depict children's growth pattern, we extended the measurement part of latent transition analysis to the growth mixture model and found that the new model fitted the data well. Results also revealed that most of the children stayed in the same ability group with few cross-level changes in their classes. After adding the environmental factors as predictors, analyses showed that children receiving higher teachers' ratings, with higher socioeconomic status, and of above average poverty status, would have higher probability to transit into the higher ability group.

  12. Sticking transition in a minimal model for the collisions of active particles in quantum fluids

    Science.gov (United States)

    Shukla, Vishwanath; Brachet, Marc; Pandit, Rahul

    2016-10-01

    Particles of low velocity, traveling without dissipation in a superfluid, can interact and emit sound when they collide. We propose a minimal model in which the equations of motion of the particles, including a short-range repulsive force, are self-consistently coupled with the Gross-Pitaevskii equation. We show that this model generates naturally an effective superfluid-mediated attractive interaction between the particles; and we study numerically the collisional dynamics of particles as a function of their incident kinetic energy and the length scale of the repulsive force. We find a transition from almost elastic to completely inelastic (sticking) collisions as the parameters are tuned. We find that aggregation and clustering result from this sticking transition in multiparticle systems.

  13. Transition to quorum sensing in an Agrobacterium population: A stochastic model.

    Directory of Open Access Journals (Sweden)

    Andrew B Goryachev

    2005-09-01

    Full Text Available Understanding of the intracellular molecular machinery that is responsible for the complex collective behavior of multicellular populations is an exigent problem of modern biology. Quorum sensing, which allows bacteria to activate genetic programs cooperatively, provides an instructive and tractable example illuminating the causal relationships between the molecular organization of gene networks and the complex phenotypes they control. In this work we--to our knowledge for the first time--present a detailed model of the population-wide transition to quorum sensing using the example of Agrobacterium tumefaciens. We construct a model describing the Ti plasmid quorum-sensing gene network and demonstrate that it behaves as an "on-off" gene expression switch that is robust to molecular noise and that activates the plasmid conjugation program in response to the increase in autoinducer concentration. This intracellular model is then incorporated into an agent-based stochastic population model that also describes bacterial motion, cell division, and chemical communication. Simulating the transition to quorum sensing in a liquid medium and biofilm, we explain the experimentally observed gradual manifestation of the quorum-sensing phenotype by showing that the transition of individual model cells into the "on" state is spread stochastically over a broad range of autoinducer concentrations. At the same time, the population-averaged values of critical autoinducer concentration and the threshold population density are shown to be robust to variability between individual cells, predictable and specific to particular growth conditions. Our modeling approach connects intracellular and population scales of the quorum-sensing phenomenon and provides plausible answers to the long-standing questions regarding the ecological and evolutionary significance of the phenomenon. Thus, we demonstrate that the transition to quorum sensing requires a much higher threshold

  14. Technology Transition a Model for Infusion and Commercialization

    Science.gov (United States)

    McMillan, Vernotto C.

    2006-01-01

    The National Aeronautics and Space Administration has as part of its charter the mission of transferring technologies developed for the space program into the private sector for the purpose of affording back to the American people the economical and improved quality of life benefits associated with the technologies developed. In recent years considerable effort has been made to use this program for not only transitioning technologies out of the NASA Mission Directorate Programs, but also to transfer technologies into the Mission Directorate Programs and leverage the impact of government and private sector innovation. The objective of this paper is to outline an approach and the creation of a model that brings together industry, government, and commercialization strategies. When these elements are integrated, the probability of successful technology development, technology infusion into the Mission Programs, and commercialization into the private sector is increased. This model primarily addresses technology readiness levels between TRL 3 and TRL 6. This is typically a gap area known as the valley of death. This gap area is too low for commercial entities to invest heavily and not developed enough for major programs to actively pursue. This model has shown promise for increasing the probably of TRL advancement to an acceptable level for NASA programs and/or commercial entities to afford large investments toward either commercialization or infusion.

  15. How can models support a transition to sustainability: The role of simulations in sustainable resource management

    Science.gov (United States)

    Halbe, Johannes; Reusser, Dominik E.; Holtz, Gerog; Stosius, Annette; Kwakkel, Jan; Haasnoot, Marjolijn; Avenhaus, Wiebke

    2013-04-01

    The delineation of transition pathways towards sustainability and the implementation of associated measures are challenged by uncertainty, structural barriers, and conflicts among affected stakeholders. Experiences from other research domains suggest that the effective application of models to tackle these challenges require the explicit consideration of modeling purposes and roles. We present a classification of modeling roles for the analysis and governance of transitions. Models can support understanding of transitions processes, detect barriers and drivers of change, support the exploration of pathways towards sustainability, and help to actively engage relevant stakeholder groups. For each application area, examples are provided from the transition community and related research fields like environmental modeling and integrated assessment.

  16. Metabolic modeling of energy balances in Mycoplasma hyopneumoniae shows that pyruvate addition increases growth rate.

    Science.gov (United States)

    Kamminga, Tjerko; Slagman, Simen-Jan; Bijlsma, Jetta J E; Martins Dos Santos, Vitor A P; Suarez-Diez, Maria; Schaap, Peter J

    2017-10-01

    Mycoplasma hyopneumoniae is cultured on large-scale to produce antigen for inactivated whole-cell vaccines against respiratory disease in pigs. However, the fastidious nutrient requirements of this minimal bacterium and the low growth rate make it challenging to reach sufficient biomass yield for antigen production. In this study, we sequenced the genome of M. hyopneumoniae strain 11 and constructed a high quality constraint-based genome-scale metabolic model of 284 chemical reactions and 298 metabolites. We validated the model with time-series data of duplicate fermentation cultures to aim for an integrated model describing the dynamic profiles measured in fermentations. The model predicted that 84% of cellular energy in a standard M. hyopneumoniae cultivation was used for non-growth associated maintenance and only 16% of cellular energy was used for growth and growth associated maintenance. Following a cycle of model-driven experimentation in dedicated fermentation experiments, we were able to increase the fraction of cellular energy used for growth through pyruvate addition to the medium. This increase in turn led to an increase in growth rate and a 2.3 times increase in the total biomass concentration reached after 3-4 days of fermentation, enhancing the productivity of the overall process. The model presented provides a solid basis to understand and further improve M. hyopneumoniae fermentation processes. Biotechnol. Bioeng. 2017;114: 2339-2347. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.

  17. Chiral phase transition in the soft-wall model of AdS/QCD

    Energy Technology Data Exchange (ETDEWEB)

    Chelabi, Kaddour [State Key Laboratory of Theoretical Physics, Institute of Theoretical Physics,Chinese Academy of Sciences,Beijing 100190 (China); University of Chinese Academy of Sciences (UCAS),Beijing 100049 (China); Laboratory of Particle Physics and Statistical Physics, Ecole Normale Superieure-Kouba,B.P. 92,16050, Vieux-Kouba, Algiers (Algeria); Fang, Zhen [State Key Laboratory of Theoretical Physics, Institute of Theoretical Physics,Chinese Academy of Sciences,Beijing 100190 (China); University of Chinese Academy of Sciences (UCAS),Beijing 100049 (China); Huang, Mei [Institute of High Energy Physics, Chinese Academy of Sciences,Beijing 100049 (China); Theoretical Physics Center for Science Facilities, Chinese Academy of Sciences,Beijing 100049 (China); Li, Danning [State Key Laboratory of Theoretical Physics, Institute of Theoretical Physics,Chinese Academy of Sciences,Beijing 100190 (China); Wu, Yue-Liang [State Key Laboratory of Theoretical Physics, Institute of Theoretical Physics,Chinese Academy of Sciences,Beijing 100190 (China); University of Chinese Academy of Sciences (UCAS),Beijing 100049 (China)

    2016-04-06

    We investigate the chiral phase transition in the soft-wall model of AdS/QCD at zero chemical potential for two-flavor and three-flavor cases, respectively. We show that there is no spontaneous chiral symmetry breaking in the original soft-wall model. After detailed analysis, we find that in order to realize chiral symmetry breaking and restoration, both profiles for the scalar potential and the dilaton field are essential. The scalar potential determines the possible solution structure of the chiral condensate, except the mass term, it takes another quartic term for the two-flavor case, and for the three-flavor case, one has to take into account an extra cubic term due to the t’Hooft determinant interaction. The profile of the dilaton field reflects the gluodynamics, which is negative at a certain ultraviolet scale and approaches positive quadratic behavior at far infrared region. With this set-up, the spontaneous chiral symmetry breaking in the vacuum and its restoration at finite temperature can be realized perfectly. In the two-flavor case, it gives a second order chiral phase transition in the chiral limit, while the transition turns to be a crossover for any finite quark mass. In the case of three-flavor, the phase transition becomes a first order one in the chiral limit, while above sufficient large quark mass it turns to be a crossover again. This scenario agrees exactly with the current understanding on chiral phase transition from lattice QCD and other effective model studies.

  18. A Unique Autothermal Thermophilic Aerobic Digestion Process Showing a Dynamic Transition of Physicochemical and Bacterial Characteristics from the Mesophilic to the Thermophilic Phase.

    Science.gov (United States)

    Tashiro, Yukihiro; Kanda, Kosuke; Asakura, Yuya; Kii, Toshihiko; Cheng, Huijun; Poudel, Pramod; Okugawa, Yuki; Tashiro, Kosuke; Sakai, Kenji

    2018-03-15

    A unique autothermal thermophilic aerobic digestion (ATAD) process has been used to convert human excreta to liquid fertilizer in Japan. This study investigated the changes in physicochemical and bacterial community characteristics during the full-scale ATAD process operated for approximately 3 weeks in 2 different years. After initiating simultaneous aeration and mixing using an air-inducing circulator (aerator), the temperature autothermally increased rapidly in the first 1 to 2 days with exhaustive oxygen consumption, leading to a drastic decrease and gradual increase in oxidation-reduction potential in the first 2 days, reached >50°C in the middle 4 to 6 days, and remained steady in the final phase. Volatile fatty acids were rapidly consumed and diminished in the first 2 days, whereas the ammonia nitrogen concentration was relatively stable during the process, despite a gradual pH increase to 9.3. Principal-coordinate analysis of 16S rRNA gene amplicons using next-generation sequencing divided the bacterial community structures into distinct clusters corresponding to three phases, and they were similar in the final phase in both years despite different transitions in the middle phase. The predominant phyla (closest species, dominancy) in the initial, middle, and final phases were Proteobacteria ( Arcobacter trophiarum , 19 to 43%; Acinetobacter towneri , 6.3 to 30%), Bacteroidetes ( Moheibacter sediminis , 43 to 54%), and Firmicutes ( Thermaerobacter composti , 11 to 28%; Heliorestis baculata , 2.1 to 16%), respectively. Two predominant operational taxonomic units (OTUs) in the final phase showed very low similarities to the closest species, indicating that the process is unique compared with previously published ones. This unique process with three distinctive phases would be caused by the aerator with complete aeration. IMPORTANCE Although the autothermal thermophilic aerobic digestion (ATAD) process has several advantages, such as a high degradation

  19. The speed of memory errors shows the influence of misleading information: Testing the diffusion model and discrete-state models.

    Science.gov (United States)

    Starns, Jeffrey J; Dubé, Chad; Frelinger, Matthew E

    2018-05-01

    In this report, we evaluate single-item and forced-choice recognition memory for the same items and use the resulting accuracy and reaction time data to test the predictions of discrete-state and continuous models. For the single-item trials, participants saw a word and indicated whether or not it was studied on a previous list. The forced-choice trials had one studied and one non-studied word that both appeared in the earlier single-item trials and both received the same response. Thus, forced-choice trials always had one word with a previous correct response and one with a previous error. Participants were asked to select the studied word regardless of whether they previously called both words "studied" or "not studied." The diffusion model predicts that forced-choice accuracy should be lower when the word with a previous error had a fast versus a slow single-item RT, because fast errors are associated with more compelling misleading memory retrieval. The two-high-threshold (2HT) model does not share this prediction because all errors are guesses, so error RT is not related to memory strength. A low-threshold version of the discrete state approach predicts an effect similar to the diffusion model, because errors are a mixture of responses based on misleading retrieval and guesses, and the guesses should tend to be slower. Results showed that faster single-trial errors were associated with lower forced-choice accuracy, as predicted by the diffusion and low-threshold models. Copyright © 2018 Elsevier Inc. All rights reserved.

  20. Transition point prediction in a multicomponent lattice Boltzmann model: Forcing scheme dependencies

    Science.gov (United States)

    Küllmer, Knut; Krämer, Andreas; Joppich, Wolfgang; Reith, Dirk; Foysi, Holger

    2018-02-01

    Pseudopotential-based lattice Boltzmann models are widely used for numerical simulations of multiphase flows. In the special case of multicomponent systems, the overall dynamics are characterized by the conservation equations for mass and momentum as well as an additional advection diffusion equation for each component. In the present study, we investigate how the latter is affected by the forcing scheme, i.e., by the way the underlying interparticle forces are incorporated into the lattice Boltzmann equation. By comparing two model formulations for pure multicomponent systems, namely the standard model [X. Shan and G. D. Doolen, J. Stat. Phys. 81, 379 (1995), 10.1007/BF02179985] and the explicit forcing model [M. L. Porter et al., Phys. Rev. E 86, 036701 (2012), 10.1103/PhysRevE.86.036701], we reveal that the diffusion characteristics drastically change. We derive a generalized, potential function-dependent expression for the transition point from the miscible to the immiscible regime and demonstrate that it is shifted between the models. The theoretical predictions for both the transition point and the mutual diffusion coefficient are validated in simulations of static droplets and decaying sinusoidal concentration waves, respectively. To show the universality of our analysis, two common and one new potential function are investigated. As the shift in the diffusion characteristics directly affects the interfacial properties, we additionally show that phenomena related to the interfacial tension such as the modeling of contact angles are influenced as well.

  1. Modeled hydrologic metrics show links between hydrology and the functional composition of stream assemblages.

    Science.gov (United States)

    Patrick, Christopher J; Yuan, Lester L

    2017-07-01

    Flow alteration is widespread in streams, but current understanding of the effects of differences in flow characteristics on stream biological communities is incomplete. We tested hypotheses about the effect of variation in hydrology on stream communities by using generalized additive models to relate watershed information to the values of different flow metrics at gauged sites. Flow models accounted for 54-80% of the spatial variation in flow metric values among gauged sites. We then used these models to predict flow metrics in 842 ungauged stream sites in the mid-Atlantic United States that were sampled for fish, macroinvertebrates, and environmental covariates. Fish and macroinvertebrate assemblages were characterized in terms of a suite of metrics that quantified aspects of community composition, diversity, and functional traits that were expected to be associated with differences in flow characteristics. We related modeled flow metrics to biological metrics in a series of stressor-response models. Our analyses identified both drying and base flow instability as explaining 30-50% of the observed variability in fish and invertebrate community composition. Variations in community composition were related to variations in the prevalence of dispersal traits in invertebrates and trophic guilds in fish. The results demonstrate that we can use statistical models to predict hydrologic conditions at bioassessment sites, which, in turn, we can use to estimate relationships between flow conditions and biological characteristics. This analysis provides an approach to quantify the effects of spatial variation in flow metrics using readily available biomonitoring data. © 2017 by the Ecological Society of America.

  2. Downscaling CMIP5 climate models shows increased tropical cyclone activity over the 21st century.

    Science.gov (United States)

    Emanuel, Kerry A

    2013-07-23

    A recently developed technique for simulating large [O(10(4))] numbers of tropical cyclones in climate states described by global gridded data is applied to simulations of historical and future climate states simulated by six Coupled Model Intercomparison Project 5 (CMIP5) global climate models. Tropical cyclones downscaled from the climate of the period 1950-2005 are compared with those of the 21st century in simulations that stipulate that the radiative forcing from greenhouse gases increases by over preindustrial values. In contrast to storms that appear explicitly in most global models, the frequency of downscaled tropical cyclones increases during the 21st century in most locations. The intensity of such storms, as measured by their maximum wind speeds, also increases, in agreement with previous results. Increases in tropical cyclone activity are most prominent in the western North Pacific, but are evident in other regions except for the southwestern Pacific. The increased frequency of events is consistent with increases in a genesis potential index based on monthly mean global model output. These results are compared and contrasted with other inferences concerning the effect of global warming on tropical cyclones.

  3. The generalized model of polypeptide chain describing the helix-coil transition in biopolymers

    International Nuclear Information System (INIS)

    Mamasakhlisov, E.S.; Badasyan, A.V.; Tsarukyan, A.V.; Grigoryan, A.V.; Morozov, V.F.

    2005-07-01

    In this paper we summarize some results of our theoretical investigations of helix-coil transition both in single-strand (polypeptides) and two-strand (polynucleotides) macromolecules. The Hamiltonian of the Generalized Model of Polypeptide Chain (GMPC) is introduced to describe the system in which the conformations are correlated over some dimensional range Δ (it equals 3 for polypeptide, because one H-bond fixes three pairs of rotation, for double strand DNA it equals to one chain rigidity because of impossibility of loop formation on the scale less than Δ). The Hamiltonian does not contain any parameter designed especially for helix-coil transition and uses pure molecular microscopic parameters (the energy of hydrogen bond formation, reduced partition function of repeated unit, the number of repeated units fixed by one hydrogen bond, the energies of interaction between the repeated units and the solvent molecules). To calculate averages we evaluate the partition function using the transfer-matrix approach. The GMPC allowed to describe the influence of a number of factors, affecting the transition, basing on a unified microscopic approach. Thus we obtained, that solvents change transition temperature and interval in different ways, depending on type of solvent and on energy of solvent- macromolecule interaction; stacking on the background of H-bonding increases stability and decreases cooperativity of melting. For heterogeneous DNA we could analytically derive well known formulae for transition temperature and interval. In the framework of GMPC we calculate and show the difference of two order parameters of helix-coil transition - the helicity degree, and the average fraction of repeated units in helical conformation. Given article has the aim to review the results obtained during twenty years in the context of GMPC. (author)

  4. Methodology for transition probabilities determination in a Markov decision processes model for quality-accuracy management

    Directory of Open Access Journals (Sweden)

    Mitkovska-Trendova Katerina

    2014-01-01

    Full Text Available The main goal of the presented research is to define a methodology for determination of the transition probabilities in a Markov Decision Process on the example of optimization of the quality accuracy through optimization of its main measure (percent of scrap in a Performance Measurement System. This research had two main driving forces. First, today's urge for introduction of more robust, mathematically founded methods/tools in different enterprise areas, including PMSs. Second, since Markov Decision Processes are chosen as such tool, certain shortcomings of this approach had to be handled. Exactly the calculation of the transition probabilities is one of the weak points of the Markov Decision Processes. The proposed methodology for calculation of the transition probabilities is based on utilization of recorded historical data and they are calculated for each possible transition from a state after one run to a state after the following run of the influential factor (e.g. machine. The methodology encompasses several steps that include: collecting different data connected to the percent of scrap and their processing according to the needs of the methodology, determination of the limits of the states for every influential factor, classification of the data from real batches according to the determined states and calculation of the transition probabilities from one state to another state for every action. However, the implementation of the Markov Decision Process model with the proposed methodology for calculation of the transition probabilities resulted in optimal policy that showed significant differences in the percent of scrap, compared to the real situation when the optimization of the percent of scrap was done heuristically (5.2107% versus 13.5928%.

  5. Design and Evaluation of a Mathematical Optimization Model for Traffic Signal Plan Transition Based on Social Cost Function

    Directory of Open Access Journals (Sweden)

    Rita Peñabaena-Niebles

    2017-01-01

    Full Text Available Signal plan transition is the process of changing from one timing plan to another. It begins when the first intersection starts adjusting signal timing plans and ends when the last intersection completes adjusting signal timing plans. The transition between signal timing plans is required because traffic patterns change during the day. Therefore, it is necessary to modify signal timing parameters offset, phase split, and cycle length for different expectations of traffic volume. This paper presents an alternative and new mathematical model to enhance the performance of traffic signals coordination at intersections during the transition phase. This model is oriented to describe the transition regarding coordination parameters in all intersections of an arterial road for minimizing the social cost during the transition phase expressed in function of costs due to delays, fuel consumption, and air emissions. An ant colony algorithm was designed, coded, and simulated to find the optimal transition parameters using available data. The model was evaluated based on its ability to minimize social costs during the transition period. Results showed that the proposed method performs better than traditional ones.

  6. Interpretation of toughness tests performed on A533, grade B steel in the transition regime. Modelling and numerical analysis

    International Nuclear Information System (INIS)

    Eripret, C.

    1994-01-01

    Modelling the fracture behaviour of pressure vessel steels is of major importance for related structural integrity assessments. It is essential to understand how the micromechanisms control the transition between ductile and brittle fracture for predicting geometry effects on transition temperature. To meet this goal, a model has been developed at EDF/R and DD in the framework of local approach to fracture. Its experimental validation has been achieved by analysing toughness tests performed by AEA Technology for a pressure vessel steel in the transition regime. This large data base has evidenced the specimen thickness effects on toughness properties of the material, as well as influence of prior ductile crack growth. Predictions of the model have been compared with experiments, which shows that the transition curve K 1C = f (T) can be drawn from model predictions and compared with the RCCM or ASME design curve. Substantial safety margins have been exhibited. They are greater for thin specimens (10 mm) than for thicker specimens (230 mm). However, the transition curve in the upper transition region is still underestimated by the model (for temperatures higher than RTNDT + 50 deg C). Improvement should be made to account for important plasticity development and significant crack growth. (author). 30 figs., 10 tabs., 12 refs

  7. Optimisation of timetable-based, stochastic transit assignment models based on MSA

    DEFF Research Database (Denmark)

    Nielsen, Otto Anker; Frederiksen, Rasmus Dyhr

    2006-01-01

    (CRM), such a large-scale transit assignment model was developed and estimated. The Stochastic User Equilibrium problem was solved by the Method of Successive Averages (MSA). However, the model suffered from very large calculation times. The paper focuses on how to optimise transit assignment models...

  8. Estimation and asymptotic theory for transition probabilities in markov renewal multi-state models

    NARCIS (Netherlands)

    Spitoni, Cristian|info:eu-repo/dai/nl/304625957; Verduijn, Marion; Putter, Hein

    2014-01-01

    In this paper we discuss estimation of transition probabilities for semi-Markov multi-state models. Non-parametric and semi-parametric estimators of the transition probabilities for a large class of models (forward going models) are proposed. Large sample theory is derived using the functional delta

  9. Phase transition approach to bursting in neuronal cultures: quorum percolation models

    Science.gov (United States)

    Monceau, P.; Renault, R.; Métens, S.; Bottani, S.; Fardet, T.

    2017-10-01

    The Quorum Percolation model has been designed in the context of neurobiology to describe bursts of activity occurring in neuronal cultures from the point of view of statistical physics rather than from a dynamical synchronization approach. It is based upon information propagation on a directed graph with a threshold activation rule; this leads to a phase diagram which exhibits a giant percolation cluster below some critical value mC of the excitability. We describe the main characteristics of the original model and derive extensions according to additional relevant biological features. Firstly, we investigate the effects of an excitability variability on the phase diagram and show that the percolation transition can be destroyed by a sufficient amount of such a disorder; we stress the weakly averaging character of the order parameter and show that connectivity and excitability can be seen as two overlapping aspects of the same reality. Secondly, we elaborate a discrete time stochastic model taking into account the decay originating from ionic leakage through the membrane of neurons and synaptic depression; we give evidence that the decay softens and shifts the transition, and conjecture than decay destroys the transition in the thermodynamical limit. We were able to develop mean-field theories associated with each of the two effects; we discuss the framework of their agreement with Monte Carlo simulations. It turns out that the the critical point mC from which information on the connectivity of the network can be inferred is affected by each of these additional effects. Lastly, we show how dynamical simulations of bursts with an adaptive exponential integrateand- fire model can be interpreted in terms of Quorum Percolation. Moreover, the usefulness of the percolation model including the set of sophistication we investigated can be extended to many scientific fields involving information propagation, such as the spread of rumors in sociology, ethology, ecology.

  10. Direct modeling of regression effects for transition probabilities in the progressive illness-death model

    DEFF Research Database (Denmark)

    Azarang, Leyla; Scheike, Thomas; de Uña-Álvarez, Jacobo

    2017-01-01

    In this work, we present direct regression analysis for the transition probabilities in the possibly non-Markov progressive illness–death model. The method is based on binomial regression, where the response is the indicator of the occupancy for the given state along time. Randomly weighted score...

  11. Modelling Multivariate Autoregressive Conditional Heteroskedasticity with the Double Smooth Transition Conditional Correlation GARCH Model

    DEFF Research Database (Denmark)

    Silvennoinen, Annastiina; Teräsvirta, Timo

    another variable according to which the correlations change smoothly between states of constant correlations. A Lagrange multiplier test is derived to test the constancy of correlations against the DSTCC-GARCH model, and another one to test for another transition in the STCC-GARCH framework. In addition...

  12. Glass Transition Temperature- and Specific Volume- Composition Models for Tellurite Glasses

    Energy Technology Data Exchange (ETDEWEB)

    Riley, Brian J. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Vienna, John D. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States)

    2017-09-01

    This report provides models for predicting composition-properties for tellurite glasses, namely specific gravity and glass transition temperature. Included are the partial specific coefficients for each model, the component validity ranges, and model fit parameters.

  13. Animal Models for Muscular Dystrophy Show Different Patterns of Sarcolemmal Disruption

    OpenAIRE

    Straub, Volker; Rafael, Jill A.; Chamberlain, Jeffrey S.; Campbell, Kevin P.

    1997-01-01

    Genetic defects in a number of components of the dystrophin–glycoprotein complex (DGC) lead to distinct forms of muscular dystrophy. However, little is known about how alterations in the DGC are manifested in the pathophysiology present in dystrophic muscle tissue. One hypothesis is that the DGC protects the sarcolemma from contraction-induced damage. Using tracer molecules, we compared sarcolemmal integrity in animal models for muscular dystrophy and in muscular dystrophy patient samples. Ev...

  14. The PROMETHEUS bundled payment experiment: slow start shows problems in implementing new payment models.

    Science.gov (United States)

    Hussey, Peter S; Ridgely, M Susan; Rosenthal, Meredith B

    2011-11-01

    Fee-for-service payment is blamed for many of the problems observed in the US health care system. One of the leading alternative payment models proposed in the Affordable Care Act of 2010 is bundled payment, which provides payment for all of the care a patient needs over the course of a defined clinical episode, instead of paying for each discrete service. We evaluated the initial "road test" of PROMETHEUS Payment, one of several bundled payment pilot projects. The project has faced substantial implementation challenges, and none of the three pilot sites had executed contracts or made bundled payments as of May 2011. The pilots have taken longer to set up than expected, primarily because of the complexity of the payment model and the fact that it builds on the existing fee-for-service payment system and other complexities of health care. Participants continue to see promise and value in the bundled payment model, but the pilot results suggest that the desired benefits of this and other payment reforms may take time and considerable effort to materialize.

  15. A Murine Model of Candida glabrata Vaginitis Shows No Evidence of an Inflammatory Immunopathogenic Response.

    Directory of Open Access Journals (Sweden)

    Evelyn E Nash

    Full Text Available Candida glabrata is the second most common organism isolated from women with vulvovaginal candidiasis (VVC, particularly in women with uncontrolled diabetes mellitus. However, mechanisms involved in the pathogenesis of C. glabrata-associated VVC are unknown and have not been studied at any depth in animal models. The objective of this study was to evaluate host responses to infection following efforts to optimize a murine model of C. glabrata VVC. For this, various designs were evaluated for consistent experimental vaginal colonization (i.e., type 1 and type 2 diabetic mice, exogenous estrogen, varying inocula, and co-infection with C. albicans. Upon model optimization, vaginal fungal burden and polymorphonuclear neutrophil (PMN recruitment were assessed longitudinally over 21 days post-inoculation, together with vaginal concentrations of IL-1β, S100A8 alarmin, lactate dehydrogenase (LDH, and in vivo biofilm formation. Consistent and sustained vaginal colonization with C. glabrata was achieved in estrogenized streptozotocin-induced type 1 diabetic mice. Vaginal PMN infiltration was consistently low, with IL-1β, S100A8, and LDH concentrations similar to uninoculated mice. Biofilm formation was not detected in vivo, and co-infection with C. albicans did not induce synergistic immunopathogenic effects. This data suggests that experimental vaginal colonization of C. glabrata is not associated with an inflammatory immunopathogenic response or biofilm formation.

  16. Robotic Emotional Expression Generation Based on Mood Transition and Personality Model.

    Science.gov (United States)

    Han, Meng-Ju; Lin, Chia-How; Song, Kai-Tai

    2013-08-01

    This paper presents a method of mood transition design of a robot for autonomous emotional interaction with humans. A 2-D emotional model is proposed to combine robot emotion, mood, and personality in order to generate emotional expressions. In this design, the robot personality is programmed by adjusting the factors of the five factor model proposed by psychologists. From Big Five personality traits, the influence factors of robot mood transition are determined. Furthermore, a method to fuse basic robotic emotional behaviors is proposed in order to manifest robotic emotional states via continuous facial expressions. An artificial face on a screen is a way to provide a robot with a humanlike appearance, which might be useful for human-robot interaction. An artificial face simulator has been implemented to show the effectiveness of the proposed methods. Questionnaire surveys have been carried out to evaluate the effectiveness of the proposed method by observing robotic responses to a user's emotional expressions. Preliminary experimental results on a robotic head show that the proposed mood state transition scheme appropriately responds to a user's emotional changes in a continuous manner.

  17. Global thermal niche models of two European grasses show high invasion risks in Antarctica.

    Science.gov (United States)

    Pertierra, Luis R; Aragón, Pedro; Shaw, Justine D; Bergstrom, Dana M; Terauds, Aleks; Olalla-Tárraga, Miguel Ángel

    2017-07-01

    The two non-native grasses that have established long-term populations in Antarctica (Poa pratensis and Poa annua) were studied from a global multidimensional thermal niche perspective to address the biological invasion risk to Antarctica. These two species exhibit contrasting introduction histories and reproductive strategies and represent two referential case studies of biological invasion processes. We used a multistep process with a range of species distribution modelling techniques (ecological niche factor analysis, multidimensional envelopes, distance/entropy algorithms) together with a suite of thermoclimatic variables, to characterize the potential ranges of these species. Their native bioclimatic thermal envelopes in Eurasia, together with the different naturalized populations across continents, were compared next. The potential niche of P. pratensis was wider at the cold extremes; however, P. annua life history attributes enable it to be a more successful colonizer. We observe that particularly cold summers are a key aspect of the unique Antarctic environment. In consequence, ruderals such as P. annua can quickly expand under such harsh conditions, whereas the more stress-tolerant P. pratensis endures and persist through steady growth. Compiled data on human pressure at the Antarctic Peninsula allowed us to provide site-specific biosecurity risk indicators. We conclude that several areas across the region are vulnerable to invasions from these and other similar species. This can only be visualized in species distribution models (SDMs) when accounting for founder populations that reveal nonanalogous conditions. Results reinforce the need for strict management practices to minimize introductions. Furthermore, our novel set of temperature-based bioclimatic GIS layers for ice-free terrestrial Antarctica provide a mechanism for regional and global species distribution models to be built for other potentially invasive species. © 2017 John Wiley & Sons Ltd.

  18. Statistical Model and the mesonic-baryonic transition region

    CERN Document Server

    Oeschler, H.; Redlich, K.; Wheaton, S.

    2009-01-01

    The statistical model assuming chemical equilibriumand local strangeness conservation describes most of the observed features of strange particle production from SIS up to RHIC. Deviations are found as the maximum in the measured K+/pi+ ratio is much sharper than in the model calculations. At the incident energy of the maximum, the statistical model shows that freeze out changes regime from one being dominated by baryons at the lower energies toward one being dominated by mesons. It will be shown how deviations from the usual freeze-out curve influence the various particle ratios. Furthermore, other observables exhibit also changes just in this energy regime.

  19. Pediatric to adult transition: a quality improvement model for primary care.

    Science.gov (United States)

    McManus, Margaret; White, Patience; Barbour, April; Downing, Billie; Hawkins, Kirsten; Quion, Nathalie; Tuchman, Lisa; Cooley, W Carl; McAllister, Jeanne W

    2015-01-01

    To examine the relationship between quality improvement activities with pediatric and adult primary care practices and improvements in transition from pediatric to adult care. This was a time-series comparative study of changes in pediatric and adult practices involving five large pediatric and adult academic health centers in the District of Columbia. Using the Health Care Transition Index (pediatric and adult versions), we examined improvements in specific indicators of transition performance, including development of an office transition policy, provider knowledge and skills related to transition, identification of transitioning youth, transition preparation of youth, transition planning, and transfer of care. Improvements took place in all six transition quality indicators in the pediatric and adult practices that participated in a 2-year learning collaborative to implement the "Six Core Elements of Health Care Transition," a quality improvement intervention modeled after the American Academy of Pediatrics/American Academy of Family Physicians/American College of Physicians Clinical Report on Transition. All sites established a practice-wide policy on transition and created an organized clinical process for tracking transition preparation. The pediatric sites conducted transition readiness assessments with 88% of eligible youth and prepared transition plans for 29% of this group. The adult sites conducted transition readiness assessments with 73% of eligible young adults and developed plans for 33%. A total of 50 were transferred in a systematic way to adult primary care practices. Quality improvement using the Six Core Elements of Health Care Transition resulted in the development of a systematic clinical transition process in pediatric and adult academic primary care practices. Copyright © 2015 Society for Adolescent Health and Medicine. Published by Elsevier Inc. All rights reserved.

  20. ASIC1a Deficient Mice Show Unaltered Neurodegeneration in the Subacute MPTP Model of Parkinson Disease.

    Science.gov (United States)

    Komnig, Daniel; Imgrund, Silke; Reich, Arno; Gründer, Stefan; Falkenburger, Björn H

    2016-01-01

    Inflammation contributes to the death of dopaminergic neurons in Parkinson disease and can be accompanied by acidification of extracellular pH, which may activate acid-sensing ion channels (ASIC). Accordingly, amiloride, a non-selective inhibitor of ASIC, was protective in an acute 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) mouse model of Parkinson disease. To complement these findings we determined MPTP toxicity in mice deficient for ASIC1a, the most common ASIC isoform in neurons. MPTP was applied i.p. in doses of 30 mg per kg on five consecutive days. We determined the number of dopaminergic neurons in the substantia nigra, assayed by stereological counting 14 days after the last MPTP injection, the number of Nissl positive neurons in the substantia nigra, and the concentration of catecholamines in the striatum. There was no difference between ASIC1a-deficient mice and wildtype controls. We are therefore not able to confirm that ASIC1a are involved in MPTP toxicity. The difference might relate to the subacute MPTP model we used, which more closely resembles the pathogenesis of Parkinson disease, or to further targets of amiloride.

  1. Progesterone treatment shows benefit in a pediatric model of moderate to severe bilateral brain injury.

    Directory of Open Access Journals (Sweden)

    Rastafa I Geddes

    Full Text Available Controlled cortical impact (CCI models in adult and aged Sprague-Dawley (SD rats have been used extensively to study medial prefrontal cortex (mPFC injury and the effects of post-injury progesterone treatment, but the hormone's effects after traumatic brain injury (TBI in juvenile animals have not been determined. In the present proof-of-concept study we investigated whether progesterone had neuroprotective effects in a pediatric model of moderate to severe bilateral brain injury.Twenty-eight-day old (PND 28 male Sprague Dawley rats received sham (n = 24 or CCI (n = 47 injury and were given progesterone (4, 8, or 16 mg/kg per 100 g body weight or vehicle injections on post-injury days (PID 1-7, subjected to behavioral testing from PID 9-27, and analyzed for lesion size at PID 28.The 8 and 16 mg/kg doses of progesterone were observed to be most beneficial in reducing the effect of CCI on lesion size and behavior in PND 28 male SD rats.Our findings suggest that a midline CCI injury to the frontal cortex will reliably produce a moderate TBI comparable to what is seen in the adult male rat and that progesterone can ameliorate the injury-induced deficits.

  2. ASIC1a Deficient Mice Show Unaltered Neurodegeneration in the Subacute MPTP Model of Parkinson Disease.

    Directory of Open Access Journals (Sweden)

    Daniel Komnig

    Full Text Available Inflammation contributes to the death of dopaminergic neurons in Parkinson disease and can be accompanied by acidification of extracellular pH, which may activate acid-sensing ion channels (ASIC. Accordingly, amiloride, a non-selective inhibitor of ASIC, was protective in an acute 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP mouse model of Parkinson disease. To complement these findings we determined MPTP toxicity in mice deficient for ASIC1a, the most common ASIC isoform in neurons. MPTP was applied i.p. in doses of 30 mg per kg on five consecutive days. We determined the number of dopaminergic neurons in the substantia nigra, assayed by stereological counting 14 days after the last MPTP injection, the number of Nissl positive neurons in the substantia nigra, and the concentration of catecholamines in the striatum. There was no difference between ASIC1a-deficient mice and wildtype controls. We are therefore not able to confirm that ASIC1a are involved in MPTP toxicity. The difference might relate to the subacute MPTP model we used, which more closely resembles the pathogenesis of Parkinson disease, or to further targets of amiloride.

  3. The Ballet Dancing Profession: A Career Transition Model

    Science.gov (United States)

    Roncaglia, Irina

    2008-01-01

    What type of emotional transition is experienced by professional dancers who face the end of their career? What does this journey imply? This article discusses the transition experiences of two case studies out of a total sample of fourteen (N = 14) international professional ballet dancers who left their careers between the ages of 21 and 49…

  4. Elastic Model Transitions: a Hybrid Approach Utilizing Quadratic Inequality Constrained Least Squares (LSQI) and Direct Shape Mapping (DSM)

    Science.gov (United States)

    Jurenko, Robert J.; Bush, T. Jason; Ottander, John A.

    2014-01-01

    A method for transitioning linear time invariant (LTI) models in time varying simulation is proposed that utilizes both quadratically constrained least squares (LSQI) and Direct Shape Mapping (DSM) algorithms to determine physical displacements. This approach is applicable to the simulation of the elastic behavior of launch vehicles and other structures that utilize multiple LTI finite element model (FEM) derived mode sets that are propagated throughout time. The time invariant nature of the elastic data for discrete segments of the launch vehicle trajectory presents a problem of how to properly transition between models while preserving motion across the transition. In addition, energy may vary between flex models when using a truncated mode set. The LSQI-DSM algorithm can accommodate significant changes in energy between FEM models and carries elastic motion across FEM model transitions. Compared with previous approaches, the LSQI-DSM algorithm shows improvements ranging from a significant reduction to a complete removal of transients across FEM model transitions as well as maintaining elastic motion from the prior state.

  5. Optimized broad-histogram simulations for strong first-order phase transitions: droplet transitions in the large-Q Potts model

    Science.gov (United States)

    Bauer, Bela; Gull, Emanuel; Trebst, Simon; Troyer, Matthias; Huse, David A.

    2010-01-01

    The numerical simulation of strongly first-order phase transitions has remained a notoriously difficult problem even for classical systems due to the exponentially suppressed (thermal) equilibration in the vicinity of such a transition. In the absence of efficient update techniques, a common approach for improving equilibration in Monte Carlo simulations is broadening the sampled statistical ensemble beyond the bimodal distribution of the canonical ensemble. Here we show how a recently developed feedback algorithm can systematically optimize such broad-histogram ensembles and significantly speed up equilibration in comparison with other extended ensemble techniques such as flat-histogram, multicanonical and Wang-Landau sampling. We simulate, as a prototypical example of a strong first-order transition, the two-dimensional Potts model with up to Q = 250 different states in large systems. The optimized histogram develops a distinct multi-peak structure, thereby resolving entropic barriers and their associated phase transitions in the phase coexistence region—such as droplet nucleation and annihilation, and droplet-strip transitions for systems with periodic boundary conditions. We characterize the efficiency of the optimized histogram sampling by measuring round-trip times τ(N, Q) across the phase transition for samples comprised of N spins. While we find power-law scaling of τ versus N for small Q \\lesssim 50 and N \\lesssim 40^2 , we observe a crossover to exponential scaling for larger Q. These results demonstrate that despite the ensemble optimization, broad-histogram simulations cannot fully eliminate the supercritical slowing down at strongly first-order transitions.

  6. Phase transitions

    CERN Document Server

    Sole, Ricard V; Solé, Ricard V; Solé, Ricard V; Sol, Ricard V; Solé, Ricard V

    2011-01-01

    Phase transitions--changes between different states of organization in a complex system--have long helped to explain physics concepts, such as why water freezes into a solid or boils to become a gas. How might phase transitions shed light on important problems in biological and ecological complex systems? Exploring the origins and implications of sudden changes in nature and society, Phase Transitions examines different dynamical behaviors in a broad range of complex systems. Using a compelling set of examples, from gene networks and ant colonies to human language and the degradation of diverse ecosystems, the book illustrates the power of simple models to reveal how phase transitions occur. Introductory chapters provide the critical concepts and the simplest mathematical techniques required to study phase transitions. In a series of example-driven chapters, Ricard Solé shows how such concepts and techniques can be applied to the analysis and prediction of complex system behavior, including the origins of ...

  7. The urinary metabolome in female mink (Mustela neovison) shows distinct changes in protein and lipid metabolism during the transition from diapause to implantation

    DEFF Research Database (Denmark)

    Hedemann, Mette Skou

    2017-01-01

    Introduction The mink exhibit an obligatory diapause. The metabolic changes during the transition from diapause to implantation and established pregnancy are currently unknown. Objectives The study aimed to characterize changes in the urinary metabolome in mink during the period from mating to ea...... studied. The major changes were observed at the time of implantation where increases in the lipid and protein metabolism were evident.......Introduction The mink exhibit an obligatory diapause. The metabolic changes during the transition from diapause to implantation and established pregnancy are currently unknown. Objectives The study aimed to characterize changes in the urinary metabolome in mink during the period from mating...... acids and acylcarnitines of dicarboxylic acids exhibited a decline on April 8, and the same trend was observed for four unidentified metabolites, two of which were putatively identified as acids of the furan fatty acid type. The decreased excretion of lipid components was suggested to be a result...

  8. A Bayesian approach shows no correlation between transit-depth and stellar metallicity for confirmed and candidates Kepler gas giants planets

    International Nuclear Information System (INIS)

    Nehmé, C; Sarkis, P

    2017-01-01

    Previous study to investigate the correlation between the transit depth and the stellar metallicity of Kepler’s (Q1-Q12) gas giant planets (radii of 5-20R ⊙ ) has led to a weakly significant negative correlation. We use the cumulative catalog of planets detected by the NASA Kepler mission Q1-Q17 catalog, as of April 2015, to perform a solid statistical analysis of this correlation. In the present work, we revise this correlation, within a Bayesian framework, for two large samples: sample A confirmed planets and sample B (confirmed + candidates). We expand a hierarchical method to account for false positives in the studied samples. Our statistical analysis reveals no correlation between the transit depth and the stellar metallicity. This has implications for planet formation theory and interior structure of giant planets. (paper)

  9. A zebrafish model of glucocorticoid resistance shows serotonergic modulation of the stress response

    Directory of Open Access Journals (Sweden)

    Brian eGriffiths

    2012-10-01

    Full Text Available One function of glucocorticoids is to restore homeostasis after an acute stress response by providing negative feedback to stress circuits in the brain. Loss of this negative feedback leads to elevated physiological stress and may contribute to depression, anxiety and post-traumatic stress disorder. We investigated the early, developmental effects of glucocorticoid signaling deficits on stress physiology and related behaviors using a mutant zebrafish, grs357, with non-functional glucocorticoid receptors. These mutants are morphologically inconspicuous and adult-viable. A previous study of adult grs357 mutants showed loss of glucocorticoid-mediated negative feedback and elevated physiological and behavioral stress markers. Already at five days post-fertilization, mutant larvae had elevated whole body cortisol, increased expression of pro-opiomelanocortin (POMC, the precursor of adrenocorticotropic hormone (ACTH, and failed to show normal suppression of stress markers after dexamethasone treatment. Mutant larvae had larger auditory-evoked startle responses compared to wildtype sibling controls (grwt, despite having lower spontaneous activity levels. Fluoxetine (Prozac treatment in mutants decreased startle responding and increased spontaneous activity, making them behaviorally similar to wildtype. This result mirrors known effects of selective serotonin reuptake inhibitors (SSRIs in modifying glucocorticoid signaling and alleviating stress disorders in human patients. Our results suggest that larval grs357 zebrafish can be used to study behavioral, physiological and molecular aspects of stress disorders. Most importantly, interactions between glucocorticoid and serotonin signaling appear to be highly conserved among vertebrates, suggesting deep homologies at the neural circuit level and opening up new avenues for research into psychiatric conditions.

  10. Modeling Dzyaloshinskii-Moriya Interaction at Transition Metal Interfaces: Constrained Moment versus Generalized Bloch Theorem

    KAUST Repository

    Dong, Yao-Jun

    2017-10-29

    Dzyaloshinskii-Moriya interaction (DMI) at Pt/Co interfaces is investigated theoretically using two different first principles methods. The first one uses the constrained moment method to build a spin spiral in real space, while the second method uses the generalized Bloch theorem approach to construct a spin spiral in reciprocal space. We show that although the two methods produce an overall similar total DMI energy, the dependence of DMI as a function of the spin spiral wavelength is dramatically different. We suggest that long-range magnetic interactions, that determine itinerant magnetism in transition metals, are responsible for this discrepancy. We conclude that the generalized Bloch theorem approach is more adapted to model DMI in transition metal systems, where magnetism is delocalized, while the constrained moment approach is mostly applicable to weak or insulating magnets, where magnetism is localized.

  11. Hysteresis loop signatures of phase transitions in a mean-field model of disordered Ising magnet

    Science.gov (United States)

    Timonin, P. N.

    2010-06-01

    The multiplicity of long-lived states in frustrated disordered magnets makes the task to experimentally deter-mine which of them has the lowest free energy (and thus what thermodynamic phase the sample is in) seem rather hopeless. Nevertheless here we show in the framework of Landau-type phenomenological model that signatures of the mean-field equilibrium phase transitions in such highly nonequilibrium systems may be found in the evolution of the hysteresis loop form. Thus the sequence of transitions from spin-glass to mixed phase and to ferromagnetic one results in the changes from inclined hysteresis loop to that with the developing vertical sides and to one with the perfectly vertical sides. Such relation between loop form and the location of global minimum may hold beyond the mean-field approximation and can be useful in the real experiments and Monte-Carlo simulations of the problems involving rugged potential landscape.

  12. Metabolic remodeling agents show beneficial effects in the dystrophin-deficient mdx mouse model

    Directory of Open Access Journals (Sweden)

    Jahnke Vanessa E

    2012-08-01

    Full Text Available Abstract Background Duchenne muscular dystrophy is a genetic disease involving a severe muscle wasting that is characterized by cycles of muscle degeneration/regeneration and culminates in early death in affected boys. Mitochondria are presumed to be involved in the regulation of myoblast proliferation/differentiation; enhancing mitochondrial activity with exercise mimetics (AMPK and PPAR-delta agonists increases muscle function and inhibits muscle wasting in healthy mice. We therefore asked whether metabolic remodeling agents that increase mitochondrial activity would improve muscle function in mdx mice. Methods Twelve-week-old mdx mice were treated with two different metabolic remodeling agents (GW501516 and AICAR, separately or in combination, for 4 weeks. Extensive systematic behavioral, functional, histological, biochemical, and molecular tests were conducted to assess the drug(s' effects. Results We found a gain in body and muscle weight in all treated mice. Histologic examination showed a decrease in muscle inflammation and in the number of fibers with central nuclei and an increase in fibers with peripheral nuclei, with significantly fewer activated satellite cells and regenerating fibers. Together with an inhibition of FoXO1 signaling, these results indicated that the treatments reduced ongoing muscle damage. Conclusions The three treatments produced significant improvements in disease phenotype, including an increase in overall behavioral activity and significant gains in forelimb and hind limb strength. Our findings suggest that triggering mitochondrial activity with exercise mimetics improves muscle function in dystrophin-deficient mdx mice.

  13. Male Wistar rats show individual differences in an animal model of conformity.

    Science.gov (United States)

    Jolles, Jolle W; de Visser, Leonie; van den Bos, Ruud

    2011-09-01

    Conformity refers to the act of changing one's behaviour to match that of others. Recent studies in humans have shown that individual differences exist in conformity and that these differences are related to differences in neuronal activity. To understand the neuronal mechanisms in more detail, animal tests to assess conformity are needed. Here, we used a test of conformity in rats that has previously been evaluated in female, but not male, rats and assessed the nature of individual differences in conformity. Male Wistar rats were given the opportunity to learn that two diets differed in palatability. They were subsequently exposed to a demonstrator that had consumed the less palatable food. Thereafter, they were exposed to the same diets again. Just like female rats, male rats decreased their preference for the more palatable food after interaction with demonstrator rats that had eaten the less palatable food. Individual differences existed for this shift, which were only weakly related to an interaction between their own initial preference and the amount consumed by the demonstrator rat. The data show that this conformity test in rats is a promising tool to study the neurobiology of conformity.

  14. Energy Demand Modeling Methodology of Key State Transitions of Turning Processes

    Directory of Open Access Journals (Sweden)

    Shun Jia

    2017-04-01

    Full Text Available Energy demand modeling of machining processes is the foundation of energy optimization. Energy demand of machining state transition is integral to the energy requirements of the machining process. However, research focus on energy modeling of state transition is scarce. To fill this gap, an energy demand modeling methodology of key state transitions of the turning process is proposed. The establishment of an energy demand model of state transition could improve the accuracy of the energy model of the machining process, which also provides an accurate model and reliable data for energy optimization of the machining process. Finally, case studies were conducted on a CK6153i CNC lathe, the results demonstrating that predictive accuracy with the proposed method is generally above 90% for the state transition cases.

  15. Random-diluted triangular plaquette model: Study of phase transitions in a kinetically constrained model

    Science.gov (United States)

    Franz, Silvio; Gradenigo, Giacomo; Spigler, Stefano

    2016-03-01

    We study how the thermodynamic properties of the triangular plaquette model (TPM) are influenced by the addition of extra interactions. The thermodynamics of the original TPM is trivial, while its dynamics is glassy, as usual in kinetically constrained models. As soon as we generalize the model to include additional interactions, a thermodynamic phase transition appears in the system. The additional interactions we consider are either short ranged, forming a regular lattice in the plane, or long ranged of the small-world kind. In the case of long-range interactions we call the new model the random-diluted TPM. We provide arguments that the model so modified should undergo a thermodynamic phase transition, and that in the long-range case this is a glass transition of the "random first-order" kind. Finally, we give support to our conjectures studying the finite-temperature phase diagram of the random-diluted TPM in the Bethe approximation. This corresponds to the exact calculation on the random regular graph, where free energy and configurational entropy can be computed by means of the cavity equations.

  16. Modeling serotonin uptake in the lung shows endothelial transporters dominate over cleft permeation

    Science.gov (United States)

    Bassingthwaighte, James B.

    2013-01-01

    A four-region (capillary plasma, endothelium, interstitial fluid, cell) multipath model was configured to describe the kinetics of blood-tissue exchange for small solutes in the lung, accounting for regional flow heterogeneity, permeation of cell membranes and through interendothelial clefts, and intracellular reactions. Serotonin uptake data from the Multiple indicator dilution “bolus sweep” experiments of Rickaby and coworkers (Rickaby DA, Linehan JH, Bronikowski TA, Dawson CA. J Appl Physiol 51: 405–414, 1981; Rickaby DA, Dawson CA, and Linehan JH. J Appl Physiol 56: 1170–1177, 1984) and Malcorps et al. (Malcorps CM, Dawson CA, Linehan JH, Bronikowski TA, Rickaby DA, Herman AG, Will JA. J Appl Physiol 57: 720–730, 1984) were analyzed to distinguish facilitated transport into the endothelial cells (EC) and the inhibition of tracer transport by nontracer serotonin in the bolus of injectate from the free uninhibited permeation through the clefts into the interstitial fluid space. The permeability-surface area products (PS) for serotonin via the inter-EC clefts were ∼0.3 ml·g−1·min−1, low compared with the transporter-mediated maximum PS of 13 ml·g−1·min−1 (with Km = ∼0.3 μM and Vmax = ∼4 nmol·g−1·min−1). The estimates of serotonin PS values for EC transporters from their multiple data sets were similar and were influenced only modestly by accounting for the cleft permeability in parallel. The cleft PS estimates in these Ringer-perfused lungs are less than half of those for anesthetized dogs (Yipintsoi T. Circ Res 39: 523–531, 1976) with normal hematocrits, but are compatible with passive noncarrier-mediated transport observed later in the same laboratory (Dawson CA, Linehan JH, Rickaby DA, Bronikowski TA. Ann Biomed Eng 15: 217–227, 1987; Peeters FAM, Bronikowski TA, Dawson CA, Linehan JH, Bult H, Herman AG. J Appl Physiol 66: 2328–2337, 1989) The identification and quantitation of the cleft pathway conductance from these

  17. Probing emergent geometry through phase transitions in free vector and matrix models

    Energy Technology Data Exchange (ETDEWEB)

    Amado, Irene; Sundborg, Bo [The Oskar Klein Centre for Cosmoparticle Physics, Department of Physics, Stockholm University,AlbaNova, 106 91 Stockholm (Sweden); Thorlacius, Larus [The Oskar Klein Centre for Cosmoparticle Physics, Department of Physics, Stockholm University,AlbaNova, 106 91 Stockholm (Sweden); Science Institute, University of Iceland, Dunhaga 3, 107 Reykjavik (Iceland); Wintergerst, Nico [The Oskar Klein Centre for Cosmoparticle Physics, Department of Physics, Stockholm University,AlbaNova, 106 91 Stockholm (Sweden)

    2017-02-01

    Boundary correlation functions provide insight into the emergence of an effective geometry in higher spin gravity duals of O(N) or U(N) symmetric field theories. On a compact manifold, the singlet constraint leads to nontrivial dynamics at finite temperature and large N phase transitions even at vanishing ’t Hooft coupling. At low temperature, the leading behavior of boundary two-point functions is consistent with propagation through a bulk thermal anti de Sitter space. Above the phase transition, the two-point function shows significant departure from thermal AdS space and the emergence of localized black hole like objects in the bulk. In adjoint models, these objects appear at length scales of order of the AdS radius, consistent with a Hawking-Page transition, but in vector models they are parametrically larger than the AdS scale. In low dimensions, we find another crossover at large distances beyond which the correlation function again takes a thermal AdS form, albeit with a temperature dependent normalization factor.

  18. Direct imaging and mesoscale modelling of phase transitions in a nanostructured fluid

    Science.gov (United States)

    Knoll, A.; Lyakhova, K. S.; Horvat, A.; Krausch, G.; Sevink, G. J. A.; Zvelindovsky, A. V.; Magerle, R.

    2004-12-01

    The kinetics of phase transitions is essential for understanding pattern formation in structured fluids. These fluids play a key role in the morphogenesis of biological cells, and they are very common in pharmaceutical products and plastic materials. Until now, it has not been possible to follow phase transitions in structured fluids experimentally in real time and with high spatial resolution. Previous work has relied on static images and indirect experimental evidence from spatially averaging scattering experiments. Simulating the processes with computer models is a further challenge because of the multiple time and length scales involved. Our movies based on in situ scanning force microscopy show the time sequence of the elementary steps of a phase transition in a fluid film of block copolymer from the cylinder to the perforated lamella phase. The movies validate a versatile simulation model that gives physical insight into the nature of the process. Our approach provides a means of improving the study and understanding of pattern formation processes in nanostructured fluids. We expect a significant impact on nanotechnology where block copolymers serve as self-organized templates for the synthesis of inorganic nanostructured materials.

  19. Modeling boundary-layer transition in direct and large-eddy simulations using parabolized stability equations

    Science.gov (United States)

    Lozano-Durán, A.; Hack, M. J. P.; Moin, P.

    2018-02-01

    We examine the potential of the nonlinear parabolized stability equations (PSE) to provide an accurate yet computationally efficient treatment of the growth of disturbances in H-type transition to turbulence. The PSE capture the nonlinear interactions that eventually induce breakdown to turbulence and can as such identify the onset of transition without relying on empirical correlations. Since the local PSE solution at the onset of transition is a close approximation of the Navier-Stokes equations, it provides a natural inflow condition for direct numerical simulations (DNS) and large-eddy simulations (LES) by avoiding nonphysical transients. We show that a combined PSE-DNS approach, where the pretransitional region is modeled by the PSE, can reproduce the skin-friction distribution and downstream turbulent statistics from a DNS of the full domain. When the PSE are used in conjunction with wall-resolved and wall-modeled LES, the computational cost in both the laminar and turbulent regions is reduced by several orders of magnitude compared to DNS.

  20. Bus Operation Monitoring Oriented Public Transit Travel Index System and Calculation Models

    Directory of Open Access Journals (Sweden)

    Jiancheng Weng

    2013-01-01

    Full Text Available This study proposed a two-dimensional index system which is concerned essentially with urban travel based on travel modes and user satisfaction. First, the public transit was taken as an example to describe the index system establishing process. In consideration of convenience, rapid, reliability, comfort, and safety, a bus service evaluation index system was established. The indicators include the N-minute coverage of bus stops, average travel speed, and fluctuation of travel time between stops and bus load factor which could intuitively describe the characteristics of public transport selected to calculate bus travel indexes. Then, combined with the basic indicators, the calculation models of Convenience Index (CI, Rapid Index (RI, Reliability Index (RBI, and Comfort Index (CTI were established based on the multisource data of public transit including the real-time bus GPS data and passenger IC card data. Finally, a case study of Beijing bus operation evaluation and analysis was conducted by taking real bus operation data including GPS data and passenger transaction recorder (IC card data. The results showed that the operation condition of the public transit was well reflected and scientifically classified by the bus travel index models.

  1. A pilot randomized control trial: testing a transitional care model for acute psychiatric conditions.

    Science.gov (United States)

    Hanrahan, Nancy P; Solomon, Phyllis; Hurford, Matthew O

    2014-01-01

    People with multiple and persistent mental and physical health problems have high rates of transition failures when transferring from a hospital level of care to home. The transitional care model (TCM) is evidence-based and demonstrated to improve posthospital outcomes for elderly with physical health conditions, but it has not been studied in the population with serious mental illness. Using a randomized controlled design, 40 inpatients from two general hospital psychiatric units were recruited and randomly assigned to an intervention group (n = 20) that received the TCM intervention that was delivered by a psychiatric nurse practitioner for 90 days posthospitalization, or a control group (n = 20) that received usual care. Outcomes were as follows: service utilization, health-related quality of life, and continuity of care. The intervention group showed higher medical and psychiatric rehospitalization than the control group (p = .054). Emergency room use was lower for intervention group but not statistically significant. Continuity of care with primary care appointments were significantly higher for the intervention group (p = .023). The intervention group's general health improved but was not statistically significant compared with controls. A transitional care intervention is recommended; however, the model needs to be modified from a single nurse to a multidisciplinary team with expertise from a psychiatric nurse practitioner, a social worker, and a peer support specialist. A team approach can best manage the complex physical/mental health conditions and complicated social needs of the population with serious mental illness. © The Author(s) 2014.

  2. Predicting landscape vegetation dynamics using state-and-transition simulation models

    Science.gov (United States)

    Colin J. Daniel; Leonardo. Frid

    2012-01-01

    This paper outlines how state-and-transition simulation models (STSMs) can be used to project changes in vegetation over time across a landscape. STSMs are stochastic, empirical simulation models that use an adapted Markov chain approach to predict how vegetation will transition between states over time, typically in response to interactions between succession,...

  3. Exactly solvable model of phase transition between hadron and quark-gluon-matter

    International Nuclear Information System (INIS)

    Gorenstein, M.I.; Petrov, V.K.; Shelest, V.P.; Zinovjev, G.M.

    1982-01-01

    An exactly solvable model of phase transition between hadron and quark-gluon matter is proposed. The hadron phase of this model is considered as a gas of bags filled by point massless constituents. The mass and volume spectrum of the bag is found. The thermodynamical characteristics of a bag gas in the neighbourhood of a phase transition point are ascertained in analytical form

  4. Non-thermal transitions in a model inspired by moral decisions

    International Nuclear Information System (INIS)

    Alamino, Roberto C

    2016-01-01

    This work introduces a model in which agents of a network act upon one another according to three different kinds of moral decisions. These decisions are based on an increasing level of sophistication in the empathy capacity of the agent, a hierarchy which we name Piaget ’ s ladder . The decision strategy of the agents is non-rational, in the sense they are arbitrarily fixed, and the model presents quenched disorder given by the distribution of its defining parameters. An analytical solution for this model is obtained in the large system limit as well as a leading order correction for finite-size systems which shows that typical realisations of the model develop a phase structure with both continuous and discontinuous non-thermal transitions. (paper)

  5. Modeling taxi demand with GPS data from taxis and transit.

    Science.gov (United States)

    2014-07-01

    Identifying factors that influence taxi demand is very important for understanding where and when people use taxis and how taxi demand relates to the availability and quality of transit service. This study used a large set of global positioning syste...

  6. The Biological Big Bang model for the major transitions in evolution

    Directory of Open Access Journals (Sweden)

    Koonin Eugene V

    2007-08-01

    Full Text Available Abstract Background Major transitions in biological evolution show the same pattern of sudden emergence of diverse forms at a new level of complexity. The relationships between major groups within an emergent new class of biological entities are hard to decipher and do not seem to fit the tree pattern that, following Darwin's original proposal, remains the dominant description of biological evolution. The cases in point include the origin of complex RNA molecules and protein folds; major groups of viruses; archaea and bacteria, and the principal lineages within each of these prokaryotic domains; eukaryotic supergroups; and animal phyla. In each of these pivotal nexuses in life's history, the principal "types" seem to appear rapidly and fully equipped with the signature features of the respective new level of biological organization. No intermediate "grades" or intermediate forms between different types are detectable. Usually, this pattern is attributed to cladogenesis compressed in time, combined with the inevitable erosion of the phylogenetic signal. Hypothesis I propose that most or all major evolutionary transitions that show the "explosive" pattern of emergence of new types of biological entities correspond to a boundary between two qualitatively distinct evolutionary phases. The first, inflationary phase is characterized by extremely rapid evolution driven by various processes of genetic information exchange, such as horizontal gene transfer, recombination, fusion, fission, and spread of mobile elements. These processes give rise to a vast diversity of forms from which the main classes of entities at the new level of complexity emerge independently, through a sampling process. In the second phase, evolution dramatically slows down, the respective process of genetic information exchange tapers off, and multiple lineages of the new type of entities emerge, each of them evolving in a tree-like fashion from that point on. This biphasic model

  7. The Biological Big Bang model for the major transitions in evolution.

    Science.gov (United States)

    Koonin, Eugene V

    2007-08-20

    Major transitions in biological evolution show the same pattern of sudden emergence of diverse forms at a new level of complexity. The relationships between major groups within an emergent new class of biological entities are hard to decipher and do not seem to fit the tree pattern that, following Darwin's original proposal, remains the dominant description of biological evolution. The cases in point include the origin of complex RNA molecules and protein folds; major groups of viruses; archaea and bacteria, and the principal lineages within each of these prokaryotic domains; eukaryotic supergroups; and animal phyla. In each of these pivotal nexuses in life's history, the principal "types" seem to appear rapidly and fully equipped with the signature features of the respective new level of biological organization. No intermediate "grades" or intermediate forms between different types are detectable. Usually, this pattern is attributed to cladogenesis compressed in time, combined with the inevitable erosion of the phylogenetic signal. I propose that most or all major evolutionary transitions that show the "explosive" pattern of emergence of new types of biological entities correspond to a boundary between two qualitatively distinct evolutionary phases. The first, inflationary phase is characterized by extremely rapid evolution driven by various processes of genetic information exchange, such as horizontal gene transfer, recombination, fusion, fission, and spread of mobile elements. These processes give rise to a vast diversity of forms from which the main classes of entities at the new level of complexity emerge independently, through a sampling process. In the second phase, evolution dramatically slows down, the respective process of genetic information exchange tapers off, and multiple lineages of the new type of entities emerge, each of them evolving in a tree-like fashion from that point on. This biphasic model of evolution incorporates the previously developed

  8. Study of the metal-insulator transition and superconducting correlations of a generalized Hubbard model

    Science.gov (United States)

    Arrachea, Liliana; Aligia, A. A.; Gagliano, E.

    1996-02-01

    We study the metal-insulator transition of a generalized Hubbard model in which the magnitude of the nearest-neighbor hopping depends on the occupations of the sites involved. Numerical results for finite chains at half-filling show that when 0 0 for which the system is metallic. This is consistent with a Hartree-Fock calculation. The metallic phase collapses to one point, U = 0, in the Hubbard limit. In the metallic phase we obtain that the superconducting correlations are the dominant ones, at least for doped systems.

  9. Matrix model of QCD: Edge localized glueballs and phase transitions

    Science.gov (United States)

    Acharyya, Nirmalendu; Balachandran, A. P.

    2017-10-01

    In a matrix model of pure SU(2) Yang-Mills theory, boundaries emerge in the space of Mat3(R ) and the Hamiltonian requires boundary conditions. We show the existence of edge localized glueball states that can have negative energies. These edge levels can be lifted to positive energies if the gluons acquire a London-like mass. This suggests a new phase of QCD with an incompressible bulk.

  10. Finland: a model of energy transition to be followed?

    International Nuclear Information System (INIS)

    Lorot, Pascal

    2014-09-01

    Published before the debate of the French Parliament on the law on energy transition, i.e. on a new energy model, or on the construction of a low carbon and less energy consuming society to comply with France's international commitments, this report first discusses the French situation, the evolution of its energy policy, the challenge of a search for a balance between a cheap electricity and energy independence, and the plurality of factors and objectives (economic, budgetary, environmental, industrial, societal, political and social) which are sometime contradictory. The second part presents and comments the case of Germany which seems to be a good example regarding energy policy, however it faces some difficulties and pitfalls: a quick evolution of the energy mix in favour of renewable energies, but an always higher cost supported almost only by individuals, a disturbed electricity market, an environmental impact due to the wider use of coal (less expensive than gas). The third part addresses the case of Finland which could be a more inspiring example: no decision to phase out nuclear, no decision of a quick and forced development of renewable energies, modification of the energy mix by the development of local forest resources, an electric system of good quality, a high energetic competitiveness. The report outlines the consistency of the Finnish policy: search for a balance between international commitments of reduction of greenhouse gas emissions, competitive tariffs, and strengthening of energetic independence. The associated choices are discussed, and it appears that the cost-efficiency criterion is prevailing

  11. Gravitational waves from the first order electroweak phase transition in the Z3 symmetric singlet scalar model

    Science.gov (United States)

    Matsui, Toshinori

    2018-01-01

    Among various scenarios of baryon asymmetry of the Universe, electroweak baryogenesis is directly connected with physics of the Higgs sector. We discuss spectra of gravitational waves which are originated by the strongly first order phase transition at the electroweak symmetry breaking, which is required for a successful scenario of electroweak baryogenesis. In the Z3 symmetric singlet scalar model, the significant gravitational waves are caused by the multi-step phase transition. We show that the model can be tested by measuring the characteristic spectra of the gravitational waves at future interferometers such as LISA and DECIGO.

  12. A transition-based joint model for disease named entity recognition and normalization.

    Science.gov (United States)

    Lou, Yinxia; Zhang, Yue; Qian, Tao; Li, Fei; Xiong, Shufeng; Ji, Donghong

    2017-08-01

    Disease named entities play a central role in many areas of biomedical research, and automatic recognition and normalization of such entities have received increasing attention in biomedical research communities. Existing methods typically used pipeline models with two independent phases: (i) a disease named entity recognition (DER) system is used to find the boundaries of mentions in text and (ii) a disease named entity normalization (DEN) system is used to connect the mentions recognized to concepts in a controlled vocabulary. The main problems of such models are: (i) there is error propagation from DER to DEN and (ii) DEN is useful for DER, but pipeline models cannot utilize this. We propose a transition-based model to jointly perform disease named entity recognition and normalization, casting the output construction process into an incremental state transition process, learning sequences of transition actions globally, which correspond to joint structural outputs. Beam search and online structured learning are used, with learning being designed to guide search. Compared with the only existing method for joint DEN and DER, our method allows non-local features to be used, which significantly improves the accuracies. We evaluate our model on two corpora: the BioCreative V Chemical Disease Relation (CDR) corpus and the NCBI disease corpus. Experiments show that our joint framework achieves significantly higher performances compared to competitive pipeline baselines. Our method compares favourably to other state-of-the-art approaches. Data and code are available at https://github.com/louyinxia/jointRN. dhji@whu.edu.cn. © The Author (2017). Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com

  13. Main transition in the Pink membrane model: finite-size scaling and the influence of surface roughness.

    Science.gov (United States)

    Sadeghi, Sina; Vink, R L C

    2012-06-01

    We consider the main transition in single-component membranes using computer simulations of the Pink model [D. A. Pink et al., Biochemistry 19, 349 (1980)]. We first show that the accepted parameters of the Pink model yield a main transition temperature that is systematically below experimental values. This resolves an issue that was first pointed out by Corvera and co-workers [Phys. Rev. E 47, 696 (1993)]. In order to yield the correct transition temperature, the strength of the van der Waals coupling in the Pink model must be increased; by using finite-size scaling, a set of optimal values is proposed. We also provide finite-size scaling evidence that the Pink model belongs to the universality class of the two-dimensional Ising model. This finding holds irrespective of the number of conformational states. Finally, we address the main transition in the presence of quenched disorder, which may arise in situations where the membrane is deposited on a rough support. In this case, we observe a stable multidomain structure of gel and fluid domains, and the absence of a sharp transition in the thermodynamic limit.

  14. Diffusion maps, clustering and fuzzy Markov modeling in peptide folding transitions

    International Nuclear Information System (INIS)

    Nedialkova, Lilia V.; Amat, Miguel A.; Kevrekidis, Ioannis G.; Hummer, Gerhard

    2014-01-01

    Using the helix-coil transitions of alanine pentapeptide as an illustrative example, we demonstrate the use of diffusion maps in the analysis of molecular dynamics simulation trajectories. Diffusion maps and other nonlinear data-mining techniques provide powerful tools to visualize the distribution of structures in conformation space. The resulting low-dimensional representations help in partitioning conformation space, and in constructing Markov state models that capture the conformational dynamics. In an initial step, we use diffusion maps to reduce the dimensionality of the conformational dynamics of Ala5. The resulting pretreated data are then used in a clustering step. The identified clusters show excellent overlap with clusters obtained previously by using the backbone dihedral angles as input, with small—but nontrivial—differences reflecting torsional degrees of freedom ignored in the earlier approach. We then construct a Markov state model describing the conformational dynamics in terms of a discrete-time random walk between the clusters. We show that by combining fuzzy C-means clustering with a transition-based assignment of states, we can construct robust Markov state models. This state-assignment procedure suppresses short-time memory effects that result from the non-Markovianity of the dynamics projected onto the space of clusters. In a comparison with previous work, we demonstrate how manifold learning techniques may complement and enhance informed intuition commonly used to construct reduced descriptions of the dynamics in molecular conformation space

  15. Diffusion maps, clustering and fuzzy Markov modeling in peptide folding transitions

    Science.gov (United States)

    Nedialkova, Lilia V.; Amat, Miguel A.; Kevrekidis, Ioannis G.; Hummer, Gerhard

    2014-09-01

    Using the helix-coil transitions of alanine pentapeptide as an illustrative example, we demonstrate the use of diffusion maps in the analysis of molecular dynamics simulation trajectories. Diffusion maps and other nonlinear data-mining techniques provide powerful tools to visualize the distribution of structures in conformation space. The resulting low-dimensional representations help in partitioning conformation space, and in constructing Markov state models that capture the conformational dynamics. In an initial step, we use diffusion maps to reduce the dimensionality of the conformational dynamics of Ala5. The resulting pretreated data are then used in a clustering step. The identified clusters show excellent overlap with clusters obtained previously by using the backbone dihedral angles as input, with small—but nontrivial—differences reflecting torsional degrees of freedom ignored in the earlier approach. We then construct a Markov state model describing the conformational dynamics in terms of a discrete-time random walk between the clusters. We show that by combining fuzzy C-means clustering with a transition-based assignment of states, we can construct robust Markov state models. This state-assignment procedure suppresses short-time memory effects that result from the non-Markovianity of the dynamics projected onto the space of clusters. In a comparison with previous work, we demonstrate how manifold learning techniques may complement and enhance informed intuition commonly used to construct reduced descriptions of the dynamics in molecular conformation space.

  16. Diffusion maps, clustering and fuzzy Markov modeling in peptide folding transitions.

    Science.gov (United States)

    Nedialkova, Lilia V; Amat, Miguel A; Kevrekidis, Ioannis G; Hummer, Gerhard

    2014-09-21

    Using the helix-coil transitions of alanine pentapeptide as an illustrative example, we demonstrate the use of diffusion maps in the analysis of molecular dynamics simulation trajectories. Diffusion maps and other nonlinear data-mining techniques provide powerful tools to visualize the distribution of structures in conformation space. The resulting low-dimensional representations help in partitioning conformation space, and in constructing Markov state models that capture the conformational dynamics. In an initial step, we use diffusion maps to reduce the dimensionality of the conformational dynamics of Ala5. The resulting pretreated data are then used in a clustering step. The identified clusters show excellent overlap with clusters obtained previously by using the backbone dihedral angles as input, with small--but nontrivial--differences reflecting torsional degrees of freedom ignored in the earlier approach. We then construct a Markov state model describing the conformational dynamics in terms of a discrete-time random walk between the clusters. We show that by combining fuzzy C-means clustering with a transition-based assignment of states, we can construct robust Markov state models. This state-assignment procedure suppresses short-time memory effects that result from the non-Markovianity of the dynamics projected onto the space of clusters. In a comparison with previous work, we demonstrate how manifold learning techniques may complement and enhance informed intuition commonly used to construct reduced descriptions of the dynamics in molecular conformation space.

  17. KEEFEKTIFAN MODEL SHOW NOT TELL DAN MIND MAP PADA PEMBELAJARAN MENULIS TEKS EKSPOSISI BERDASARKAN MINAT PESERTA DIDIK KELAS X SMK

    Directory of Open Access Journals (Sweden)

    Wiwit Lili Sokhipah

    2015-03-01

    Full Text Available Tujuan penelitian ini adalah (1 menentukan keefektifan penggunaan model show not tell pada pembelajaran keterampilan menulis teks eksposisi berdasarkan minat peserta didik SMK Kelas X, (2 menentukan keefektifan penggunaan model mind map pada pembelajaran keterampilan menulis teks eksposisi berdasarkan minat peserta didik SMK kelas X, (3 menentukan keefektifan interaksi show not tell dan mind map pada pembelajaran keterampilan menulis teks eksposisi berdasarkan minat peserta didik SMK kelas X. Penelitian ini adalah quasi experimental design (pretes-postes control group design. Dalam desain ini terdapat dua kelompok eksperimen yakni penerapan model show not tell dalam pembelajaran keterampilan menulis teks eksposisipeserta didik dengan minat tinggi dan penerapan model mind map dalam pembelajaran keterampilan menulis teks eksposisi  peserta didik dengan minat rendah. Hasil penelitian adalah (1 model show not tell efektif digunakan  dalam membelajarkan menulis teks eksposisi bagi peserta didik yang memiliki minat tinggi, (2 model mind map efektif digunakan dalam membelajarkan menulis teks eksposisi bagi peserta didik yang memiliki minat rendah, dan (3 model show not tell lebih efektif digunakan dalam membelajarkan menulis teks eksposisi bagi peserta didik yang memiliki minat tinggi, sedangkan model mind map efektif digunakan dalam membelajarkan teks eksposisi pagi peserta didik yang memiliki minat rendah.

  18. Nonlinearities and transit times in soil organic matter models: new developments in the SoilR package

    Science.gov (United States)

    Sierra, Carlos; Müller, Markus

    2016-04-01

    SoilR is an R package for implementing diverse models representing soil organic matter dynamics. In previous releases of this package, we presented the implementation of linear first-order models with any number of pools as well as radiocarbon dynamics. We present here new improvements of the package regarding the possibility to implement models with nonlinear interactions among state variables and the possibility to calculate ages and transit times for nonlinear models with time dependencies. We show here examples on how to implement model structures with Michaelis-Menten terms for explicit microbial growth and resource use efficiency, and Langmuir isotherms for representing adsorption of organic matter to mineral surfaces. These nonlinear terms can be implemented for any number of organic matter pools, microbial functional groups, or mineralogy, depending on user's requirements. Through a simple example, we also show how transit times of organic matter in soils are controlled by the time-dependencies of the input terms.

  19. Nonlinear modeling of crystal system transition of black phosphorus using continuum-DFT model

    Science.gov (United States)

    Setoodeh, A. R.; Farahmand, H.

    2018-01-01

    In this paper, the nonlinear behavior of black phosphorus crystals is investigated in tandem with dispersion-corrected density functional theory (DFT-D) analysis under uniaxial loadings. From the identified anisotropic behavior of black phosphorus due to its morphological anisotropy, a hyperelastic anisotropic (HA) model named continuum-DFT is established to predict the nonlinear behavior of the material. In this respect, uniaxial Cauchy stresses are employed on both the DFT-D and HA models along the zig-zag and armchair directions. Simultaneously, the transition of the crystal system is recognized at about 4.5 GPa of the applied uniaxial tensile stress along the zig-zag direction on the DFT-D simulation in the nonlinear region. In order to develop the nonlinear continuum model, unknown constants are surveyed with the optimized least square technique. In this regard, the continuum model is obtained to reproduce the Cauchy stress–stretch and density of strain–stretch results of the DFT-D simulation. Consequently, the modified HA model is introduced to characterize the nonlinear behavior of black phosphorus along the zig-zag direction. More importantly, the specific transition of the crystal system is successfully predicted in the new modified continuum-DFT model. The results reveal that the multiscale continuum-DFT model is well defined to replicate the nonlinear behavior of black phosphorus along the zig-zag and armchair directions.

  20. Nonlinear modeling of crystal system transition of black phosphorus using continuum-DFT model.

    Science.gov (United States)

    Setoodeh, A R; Farahmand, H

    2018-01-24

    In this paper, the nonlinear behavior of black phosphorus crystals is investigated in tandem with dispersion-corrected density functional theory (DFT-D) analysis under uniaxial loadings. From the identified anisotropic behavior of black phosphorus due to its morphological anisotropy, a hyperelastic anisotropic (HA) model named continuum-DFT is established to predict the nonlinear behavior of the material. In this respect, uniaxial Cauchy stresses are employed on both the DFT-D and HA models along the zig-zag and armchair directions. Simultaneously, the transition of the crystal system is recognized at about 4.5 GPa of the applied uniaxial tensile stress along the zig-zag direction on the DFT-D simulation in the nonlinear region. In order to develop the nonlinear continuum model, unknown constants are surveyed with the optimized least square technique. In this regard, the continuum model is obtained to reproduce the Cauchy stress-stretch and density of strain-stretch results of the DFT-D simulation. Consequently, the modified HA model is introduced to characterize the nonlinear behavior of black phosphorus along the zig-zag direction. More importantly, the specific transition of the crystal system is successfully predicted in the new modified continuum-DFT model. The results reveal that the multiscale continuum-DFT model is well defined to replicate the nonlinear behavior of black phosphorus along the zig-zag and armchair directions.

  1. Bifurcation analysis and dimension reduction of a predator-prey model for the L-H transition

    DEFF Research Database (Denmark)

    Dam, Magnus; Brøns, Morten; Juul Rasmussen, Jens

    2013-01-01

    The L-H transition denotes a shift to an improved confinement state of a toroidal plasma in a fusion reactor. A model of the L-H transition is required to simulate the time dependence of tokamak discharges that include the L-H transition. A 3-ODE predator-prey type model of the L-H transition...

  2. Enhanced Prognostic Model for Lithium Ion Batteries Based on Particle Filter State Transition Model Modification

    Directory of Open Access Journals (Sweden)

    Buddhi Arachchige

    2017-11-01

    Full Text Available This paper focuses on predicting the End of Life and End of Discharge of Lithium ion batteries using a battery capacity fade model and a battery discharge model. The proposed framework will be able to estimate the Remaining Useful Life (RUL and the Remaining charge through capacity fade and discharge models. A particle filter is implemented that estimates the battery’s State of Charge (SOC and State of Life (SOL by utilizing the battery’s physical data such as voltage, temperature, and current measurements. The accuracy of the prognostic framework has been improved by enhancing the particle filter state transition model to incorporate different environmental and loading conditions without retuning the model parameters. The effect of capacity fade in the reduction of the EOD (End of Discharge time with cycling has also been included, integrating both EOL (End of Life and EOD prediction models in order to get more accuracy in the estimations.

  3. A Smooth Transition Logit Model of the Effects of Deregulation in the Electricity Market

    DEFF Research Database (Denmark)

    Hurn, A.S.; Silvennoinen, Annastiina; Teräsvirta, Timo

    We consider a nonlinear vector model called the logistic vector smooth transition autoregressive model. The bivariate single-transition vector smooth transition regression model of Camacho (2004) is generalised to a multivariate and multitransition one. A modelling strategy consisting of specific......We consider a nonlinear vector model called the logistic vector smooth transition autoregressive model. The bivariate single-transition vector smooth transition regression model of Camacho (2004) is generalised to a multivariate and multitransition one. A modelling strategy consisting...... of specification, including testing linearity, estimation and evaluation of these models is constructed. Nonlinear least squares estimation of the parameters of the model is discussed. Evaluation by misspecification tests is carried out using tests derived in a companion paper. The use of the modelling strategy...... is illustrated by two applications. In the first one, the dynamic relationship between the US gasoline price and consumption is studied and possible asymmetries in it considered. The second application consists of modelling two well known Icelandic riverflow series, previously considered by many hydrologists...

  4. A continuum theoretical model and finite elements simulation of bacterial flagellar filament phase transition.

    Science.gov (United States)

    Wang, Xiaoling; Meng, Shuo; Han, Jingshi

    2017-10-03

    The Bacterial flagellar filament can undergo a polymorphic phase transition in response to both mechanical and chemical variations in vitro and in vivo environments. Under mechanical stimuli, such as viscous flow or forces induced by motor rotation, the filament changes its phase from left-handed normal (N) to right-handed semi-coiled (SC) via phase nucleation and growth. Our detailed mechanical analysis of existing experiments shows that both torque and bending moment contribute to the filament phase transition. In this paper, we establish a non-convex and non-local continuum model based on the Ginzburg-Landau theory to describe main characteristics of the filament phase transition such as new-phase nucleation, growth, propagation and the merging of neighboring interfaces. The finite element method (FEM) is adopted to simulate the phase transition under a displacement-controlled loading condition (rotation angle and bending deflection). We show that new-phase nucleation corresponds to the maximum torque and bending moment at the stuck end of the filament. The hysteresis loop in the loading and unloading curves indicates energy dissipation. When the new phase grows and propagates, torque and bending moment remain static. We also find that there is a drop in load when the two interfaces merge, indicating a concomitant reduction in the interfacial energy. Finally, the interface thickness is governed by the coefficients of the gradient of order parameters in the non-local interface energy. Our continuum theory and the finite element method provide a method to study the mechanical behavior of such biomaterials. Copyright © 2017 Elsevier Ltd. All rights reserved.

  5. The phase transition in the anisotropic Heisenberg model with long range dipolar interactions

    International Nuclear Information System (INIS)

    Mól, L.A.S.; Costa, B.V.

    2014-01-01

    In this work we have used extensive Monte Carlo calculations to study the planar to paramagnetic phase transition in the two-dimensional anisotropic Heisenberg model with dipolar interactions (AHd) considering the true long-range character of the dipolar interactions by means of the Ewald summation. Our results are consistent with an order–disorder phase transition with unusual critical exponents in agreement with our previous results for the Planar Rotator model with dipolar interactions. Nevertheless, our results disagree with the Renormalization Group results of Maier and Schwabl [Phys. Rev. B, 70, 134430 (2004)] [13] and the results of Rapini et al. [Phys. Rev. B, 75, 014425 (2007)] [12], where the AHd was studied using a cut-off in the evaluation of the dipolar interactions. We argue that besides the long-range character of dipolar interactions their anisotropic character may have a deeper effect in the system than previously believed. Besides, our results show that the use of a cut-off radius in the evaluation of dipolar interactions must be avoided when analyzing the critical behavior of magnetic systems, since it may lead to erroneous results. - Highlights: • The anisotropic Heisenberg model with dipolar interactions is studied. • True long-range interactions were considered by means of Ewald summation. • We found an order–disorder phase transition with unusual critical exponents. • Previous results show a different behavior when a cut-off radius is introduced. • The use of a cut-off radius must be avoided when dealing with dipolar systems

  6. A human breast cell model of pre-invasive to invasive transition

    Energy Technology Data Exchange (ETDEWEB)

    Bissell, Mina J; Rizki, Aylin; Weaver, Valerie M.; Lee, Sun-Young; Rozenberg, Gabriela I.; Chin, Koei; Myers, Connie A.; Bascom, Jamie L.; Mott, Joni D.; Semeiks, Jeremy R.; Grate, Leslie R.; Mian, I. Saira; Borowsky, Alexander D.; Jensen, Roy A.; Idowu, Michael O.; Chen, Fanqing; Chen, David J.; Petersen, Ole W.; Gray, Joe W.; Bissell, Mina J.

    2008-03-10

    A crucial step in human breast cancer progression is the acquisition of invasiveness. There is a distinct lack of human cell culture models to study the transition from pre-invasive to invasive phenotype as it may occur 'spontaneously' in vivo. To delineate molecular alterations important for this transition, we isolated human breast epithelial cell lines that showed partial loss of tissue polarity in three-dimensional reconstituted-basement membrane cultures. These cells remained non-invasive; however, unlike their non-malignant counterparts, they exhibited a high propensity to acquire invasiveness through basement membrane in culture. The genomic aberrations and gene expression profiles of the cells in this model showed a high degree of similarity to primary breast tumor profiles. The xenograft tumors formed by the cell lines in three different microenvironments in nude mice displayed metaplastic phenotypes, including squamous and basal characteristics, with invasive cells exhibiting features of higher grade tumors. To find functionally significant changes in transition from pre-invasive to invasive phenotype, we performed attribute profile clustering analysis on the list of genes differentially expressed between pre-invasive and invasive cells. We found integral membrane proteins, transcription factors, kinases, transport molecules, and chemokines to be highly represented. In addition, expression of matrix metalloproteinases MMP-9,-13,-15,-17 was up regulated in the invasive cells. Using siRNA based approaches, we found these MMPs to be required for the invasive phenotype. This model provides a new tool for dissection of mechanisms by which pre-invasive breast cells could acquire invasiveness in a metaplastic context.

  7. Family Businesses Transitioning to a Circular Economy Model: The Case of “Mercadona”

    Directory of Open Access Journals (Sweden)

    Pedro Núñez-Cacho

    2018-02-01

    Full Text Available Sustainability addresses environmental and social issues affecting this and future generations. When family businesses perceive that the community is disrupted, recognize an environmental problem and respond by implementing new environmental policies or regulations, the family business’s socio-emotional values press to transition to a more sustainable production system, such as the ‘Circular Economy.’ Drawing on the Dubin (1978 methodology—a paradigm for building models through deduction—we design a sustainable model, which shows family businesses’ responses to changes in the environment. It explains the reasons why family firms transition to the Circular Economy, based on the theory of Socio-Emotional Wealth (SEW. We check the model through the case study of the food retail leader in the Spanish market—Mercadona—which applies policies about energy, resources and waste to become a Circular Economy business model. Because of the strong family character of Mercadona, this case can be useful for the decision-making of other family businesses.

  8. On phase transitions of the Potts model with three competing interactions on Cayley tree

    Directory of Open Access Journals (Sweden)

    S. Temir

    2011-06-01

    Full Text Available In the present paper we study a phase transition problem for the Potts model with three competing interactions, the nearest neighbors, the second neighbors and triples of neighbors and non-zero external field on Cayley tree of order two. We prove that for some parameter values of the model there is phase transition. We reduce the problem of describing by limiting Gibbs measures to the problem of solving a system of nonlinear functional equations. We extend the results obtained by Ganikhodjaev and Rozikov [Math. Phys. Anal. Geom., 2009, vol. 12, No. 2, 141-156] on phase transition for the Ising model to the Potts model setting.

  9. Comparison of L-H transition measurements with physics models

    International Nuclear Information System (INIS)

    Carlstrom, T.N.; Burrell, K.H.; Groebner, R.J.

    2001-01-01

    Sawteeth and neutrals are found to have a significant influence on the H-mode power threshold scaling. The ion ∇B drift direction has only a small effect on the edge plasma conditions measured near the plasma midplane but a large effect on the divertor plasma. Since the power threshold changes dramatically with the direction of the ion ∇B drift, this implies that phenomena in the divertor region are critical for the L-H transition. Local conditions at the plasma edge are consistent with several theories of the L-H transition that use edge gradients in their formulation of a critical threshold parameter. However, scatter in the database is too large to distinguish between conditions that lead to an L-H transition and those that remain in L-mode. (author)

  10. Comparison of L-H transition measurements with physics models

    International Nuclear Information System (INIS)

    Carlstrom, T.N.; Burrell, K.H.; Carreras, B.A.

    1999-01-01

    Sawteeth and neutrals are found to have a significant influence on the H-mode power threshold scaling. The ion ∇B drift direction has only a small effect on the edge plasma conditions measured near the plasma midplane but a large effect on the divertor plasma. Since the power threshold changes dramatically with the direction of the ion ∇B drift, this implies that phenomena in the divertor region are critical for the L-H transition. Local conditions at the plasma edge are consistent with several theories of the L-H transition that use edge gradients in their formulation of a critical threshold parameter. However, scatter in the database is too large to distinguish between conditions that lead to an L-H transition and those that remain in L-mode. (author)

  11. Speculative and Hedging Interaction Model in Oil and U.S. Dollar Markets—Phase Transition

    Science.gov (United States)

    Campbell, Michael; Carfì, David

    2018-01-01

    We show that there is a phase transition in the bounded rational Carfì-Musolino model, and the possibility of a market crash. This model has two types of operators: a real economic subject (Air) and one or more investment banks (Bank). It also has two markets: oil spot market and US dollar futures. Bank agents react to Air and equilibrate much more quickly than Air. Thus Air is an acting external agent due to its longer-term investing, whereas the action of the banks equilibrates before Air makes its next transaction. This model constitutes a potential game, and agents crowd their preferences into one of the markets at a critical temperature when air makes no purchases of oil futures.

  12. Mechanism-based model of a mass rapid transit system: A perspective

    Science.gov (United States)

    Legara, Erika Fille; Khoon, Lee Kee; Guang, Hung Gih; Monterola, Christopher

    2015-01-01

    In this paper, we discuss our findings on the spatiotemporal dynamics within the mass rapid transit (MRT) system of Singapore. We show that the trip distribution of Origin-Destination (OD) station pairs follows a power-law, implying the existence of critical OD pairs. We then present and discuss the empirically validated agent-based model (ABM) we have developed. The model allows recreation of the observed statistics and the setting up of various scenarios and their effects on the system, such as increasing the commuter population and the propagation of travel delays within the transportation network. The proposed model further enables identification of bottlenecks that can cause the MRT to break down, and consequently provide foresight on how such disruptions can possibly be managed. This can potentially provide a versatile approach for transport planners and government regulators to make quantifiable policies that optimally balance cost and convenience as a function of the number of the commuting public.

  13. High Pressure phase transition in some alkali halides using interatomic potential model

    International Nuclear Information System (INIS)

    Yazar, H.R.

    2002-01-01

    We have predicted the phase transition pressure in some alkali halides using an interatomic potential approach based on rigid ion model.The phase transition pressures(28.69 and 2.4 GPa) obtained by us for two alkali halides (NaCl and KCl ) are in closer agreement with their corresponding experimental data(29.0 and 2.0 GPa).This potential is promising with respect to prediction of the phase transition pressure of other alkali halides as well

  14. Comparison of L-H transition measurements with physics models

    International Nuclear Information System (INIS)

    Carlstrom, T.N.; Burrell, K.H.; Groebner, R.J.; Leonard, A.W.; Osborne, T.H.; Thomas, D.M.

    1998-12-01

    A technique of fitting a modified hyperbolic tangent to the edge profiles has improved the localization of plasma edge parameters. Non-dimensional edge parameters are broadly consistent with several theories of the L-H transition that use edge gradients in their formulation of a critical threshold parameter. The ion ∇B drift direction has only a small effect on the edge plasma conditions measured near the plasma midplane but a large effect on the divertor plasma. The dramatic change of power threshold with the direction of the ion ∇B drift implies that phenomena in the divertor region may be critical for the L-H transition

  15. Cost-related model for transit rates in electric power distribution networks

    International Nuclear Information System (INIS)

    Collstrand, F.

    1994-02-01

    The planned deregulation of the swedish electrical power market will require a new structure of the electrical energy rates. In this report different models of transit rates are studied. The report includes studies of literature and a proposal to a rate structure and is made specifically for Malmoe Energi AB. The differences between various methods of calculating the transfer cost are illustrated. Further, the build-up of the tariff structure and its base elements are discussed. The costs are divided on different categories of costumers and shows the cost for each customer. The new regulations should apply simultaneously to all networks, independent of the voltage level. The transit cost should be based on a number of basic elements: capital cost, operation and maintenance, losses, measuring and administration. Capital cost and operation and maintenance should be charged as power fees, the loss cost as an energy fee and the measuring and administration cost as a fixed fee. The customer bill should be split into two parts, one for the transit cost and one for the energy usage. 15 refs., 37 tabs., 6 figs

  16. Phase transitions in an Ising model for monolayers of coadsorbed atoms

    International Nuclear Information System (INIS)

    Lee, H.H.; Landau, D.P.

    1979-01-01

    A Monte Carlo method is used to study a simple S=1 Ising (lattice-gas) model appropriate for monolayers composed of two kinds of atoms on cubic metal substrates H = K/sub nn/ Σ/sub nn/ S 2 /sub i/zS 2 /sub j/z + J/sub nnn/ Σ/sub nnn/ S/sub i/zS/sub j/z + Δ Σ/sub i/ S 2 /sub i/z (where nn denotes nearest-neighbor and nnn next-nearest-neighbor pairs). The phase diagram is determined over a wide range of Δ and T for K/sub nn//J/sub nnn/=1/4. For small (or negative) Δ we find an antiferromagnetic 2 x 1 ordered phase separated from the disordered state by a line of second-order phase transitions. The 2 x 1 phase is separated by a line of first-order transitions from a c (2 x 2) phase which appears for larger Δ. The 2 x 1 and c (2 x 2) phases become simultaneously critical at a bicritical point and the phase boundary of the c (2 x 2) → disordered transition shows a tricritical point

  17. Phase Transitions and the Korteweg-De Vries Equation in the Density Difference Lattice Hydrodynamic Model of Traffic Flow

    Science.gov (United States)

    Tian, Jun-Fang; Yuan, Zhen-Zhou; Jia, Bin; Fan, Hong-Qiang

    2013-03-01

    We investigate the phase transitions and the Korteweg-de Vries (KdV) equation in the density difference lattice hydrodynamic (DDLM) model, which shows a close connection with the gas-kinetic-based model and the microscopic car following model. The KdV equation near the neutral stability line is derived and the corresponding soliton solution describing the density waves is obtained. Numerical simulations are conducted in two aspects. On the one hand, under periodic conditions perturbations are applied to demonstrate the nonlinear analysis result. On the other hand, the open boundary condition with random fluctuations is designed to explore the empirical congested traffic patterns. The phase transitions among the free traffic (FT), widening synchronized flow pattern (WSP), moving localized cluster (MLC), oscillatory congested traffic (OCT) and homogeneous congested traffic (HCT) occur by varying the amplitude of the fluctuations. To our knowledge, it is the first research showing that the lattice hydrodynamic model could reproduce so many congested traffic patterns.

  18. Description of radiative transitions in the relativistic string model

    International Nuclear Information System (INIS)

    Berdnikov, E.B.; Nanobashvili, G.G.; Pron'ko, G.P.

    1991-01-01

    The transition operator for a straight-line string in the electromagnetic field has been built. It's matrix elements between the states of arbitrary spin are calculated in lowest order of perturbation theory. The consistensy conditions for the operator of interaction arising due to quantum constraints are also discussed. 12 refs

  19. Gaussian wave packet dynamics and the Landau-Zener model for nonadiabatic transitions

    DEFF Research Database (Denmark)

    Henriksen, Niels Engholm

    1992-01-01

    The Landau-Zener model for transitions between two linear diabatic potentials is examined. We derive, in the weak-coupling limit, an expression for the transition probability where the classical trajectory and the constant velocity approximations are abandoned and replaced by quantum dynamics...

  20. Incorporating unreliability of transit in transport demand models: theoretical and practical approach

    NARCIS (Netherlands)

    van Oort, N.; Brands, Ties; de Romph, E.; Aceves Flores, J.

    2014-01-01

    Nowadays, transport demand models do not explicitly evaluate the impacts of service reliability of transit. Service reliability of transit systems is adversely experienced by users, as it causes additional travel time and unsecure arrival times. Because of this, travelers are likely to perceive a

  1. A latent transition model of the effects of a teen dating violence prevention initiative.

    Science.gov (United States)

    Williams, Jason; Miller, Shari; Cutbush, Stacey; Gibbs, Deborah; Clinton-Sherrod, Monique; Jones, Sarah

    2015-02-01

    Patterns of physical and psychological teen dating violence (TDV) perpetration, victimization, and related behaviors were examined with data from the evaluation of the Start Strong: Building Healthy Teen Relationships initiative, a dating violence primary prevention program targeting middle school students. Latent class and latent transition models were used to estimate distinct patterns of TDV and related behaviors of bullying and sexual harassment in seventh grade students at baseline and to estimate transition probabilities from one pattern of behavior to another at the 1-year follow-up. Intervention effects were estimated by conditioning transitions on exposure to Start Strong. Latent class analyses suggested four classes best captured patterns of these interrelated behaviors. Classes were characterized by elevated perpetration and victimization on most behaviors (the multiproblem class), bullying perpetration/victimization and sexual harassment victimization (the bully-harassment victimization class), bullying perpetration/victimization and psychological TDV victimization (bully-psychological victimization), and experience of bully victimization (bully victimization). Latent transition models indicated greater stability of class membership in the comparison group. Intervention students were less likely to transition to the most problematic pattern and more likely to transition to the least problem class. Although Start Strong has not been found to significantly change TDV, alternative evaluation models may find important differences. Latent transition analysis models suggest positive intervention impact, especially for the transitions at the most and the least positive end of the spectrum. Copyright © 2015. Published by Elsevier Inc.

  2. Weak first-order orientational transition in the Lebwohl-Lasher model for liquid crystals

    DEFF Research Database (Denmark)

    Zhang, Zhengping; Mouritsen, Ole G.; Zuckermann, Martin J.

    1992-01-01

    The nature of the orientational phase transition in the three-dimensional Lebwohl-Lasher model of liquid crystals has been studied by computer simulation using reweighting techniques and finite-size scaling analysis. Unambiguous numerical evidence is found in favor of a weak first-order transition...

  3. Plot showing ATLAS limits on Standard Model Higgs production in the mass range 110-150 GeV

    CERN Multimedia

    ATLAS Collaboration

    2011-01-01

    The combined upper limit on the Standard Model Higgs boson production cross section divided by the Standard Model expectation as a function of mH is indicated by the solid line. This is a 95% CL limit using the CLs method in in the low mass range. The dotted line shows the median expected limit in the absence of a signal and the green and yellow bands reflect the corresponding 68% and 95% expected

  4. Plot showing ATLAS limits on Standard Model Higgs production in the mass range 100-600 GeV

    CERN Multimedia

    ATLAS Collaboration

    2011-01-01

    The combined upper limit on the Standard Model Higgs boson production cross section divided by the Standard Model expectation as a function of mH is indicated by the solid line. This is a 95% CL limit using the CLs method in the entire mass range. The dotted line shows the median expected limit in the absence of a signal and the green and yellow bands reflect the corresponding 68% and 95% expected

  5. Latent Transition Analysis with a Mixture Item Response Theory Measurement Model

    Science.gov (United States)

    Cho, Sun-Joo; Cohen, Allan S.; Kim, Seock-Ho; Bottge, Brian

    2010-01-01

    A latent transition analysis (LTA) model was described with a mixture Rasch model (MRM) as the measurement model. Unlike the LTA, which was developed with a latent class measurement model, the LTA-MRM permits within-class variability on the latent variable, making it more useful for measuring treatment effects within latent classes. A simulation…

  6. Linking state-and-transition simulation and timber supply models for forest biomass production scenarios

    Science.gov (United States)

    Costanza, Jennifer; Abt, Robert C.; McKerrow, Alexa; Collazo, Jaime

    2015-01-01

    We linked state-and-transition simulation models (STSMs) with an economics-based timber supply model to examine landscape dynamics in North Carolina through 2050 for three scenarios of forest biomass production. Forest biomass could be an important source of renewable energy in the future, but there is currently much uncertainty about how biomass production would impact landscapes. In the southeastern US, if forests become important sources of biomass for bioenergy, we expect increased land-use change and forest management. STSMs are ideal for simulating these landscape changes, but the amounts of change will depend on drivers such as timber prices and demand for forest land, which are best captured with forest economic models. We first developed state-and-transition model pathways in the ST-Sim software platform for 49 vegetation and land-use types that incorporated each expected type of landscape change. Next, for the three biomass production scenarios, the SubRegional Timber Supply Model (SRTS) was used to determine the annual areas of thinning and harvest in five broad forest types, as well as annual areas converted among those forest types, agricultural, and urban lands. The SRTS output was used to define area targets for STSMs in ST-Sim under two scenarios of biomass production and one baseline, business-as-usual scenario. We show that ST-Sim output matched SRTS targets in most cases. Landscape dynamics results indicate that, compared with the baseline scenario, forest biomass production leads to more forest and, specifically, more intensively managed forest on the landscape by 2050. Thus, the STSMs, informed by forest economics models, provide important information about potential landscape effects of bioenergy production.

  7. Unsupervised machine learning account of magnetic transitions in the Hubbard model

    Science.gov (United States)

    Ch'ng, Kelvin; Vazquez, Nick; Khatami, Ehsan

    2018-01-01

    We employ several unsupervised machine learning techniques, including autoencoders, random trees embedding, and t -distributed stochastic neighboring ensemble (t -SNE), to reduce the dimensionality of, and therefore classify, raw (auxiliary) spin configurations generated, through Monte Carlo simulations of small clusters, for the Ising and Fermi-Hubbard models at finite temperatures. Results from a convolutional autoencoder for the three-dimensional Ising model can be shown to produce the magnetization and the susceptibility as a function of temperature with a high degree of accuracy. Quantum fluctuations distort this picture and prevent us from making such connections between the output of the autoencoder and physical observables for the Hubbard model. However, we are able to define an indicator based on the output of the t -SNE algorithm that shows a near perfect agreement with the antiferromagnetic structure factor of the model in two and three spatial dimensions in the weak-coupling regime. t -SNE also predicts a transition to the canted antiferromagnetic phase for the three-dimensional model when a strong magnetic field is present. We show that these techniques cannot be expected to work away from half filling when the "sign problem" in quantum Monte Carlo simulations is present.

  8. Calculation model for 16N transit time in the secondary side of steam generators

    International Nuclear Information System (INIS)

    Liu Songyu; Xu Jijun; Xu Ming

    1998-01-01

    The 16 N transit time is essential to determine the leak-rate of steam generator tubes leaks with 16 N monitoring system, which is a new technique. A model was developed for calculation 16 N transit time in the secondary side of steam generators. According to the flow characters of secondary side fluid, the transit times divide into four sectors from tube sheet to the sensor on steam line. The model assumes that 16 N is moving as vapor phase in the secondary-side. So the model for vapor velocity distribution in tube bundle is presented in detail. The 16 N transit time calculation results of this model compare with these of EDF on steam generator of Qinshan NPP

  9. Nonequilibrium phase transition in a system with chaotic dynamics. The ABCDE model

    Science.gov (United States)

    Friedrich, R.; Haken, H.

    1992-04-01

    For the ABCDE model, a low-dimensional dynamical system devised to study the generation of magnetic fields by convective fluid motions, we examine a nonequilibrium phase transition in a system with chaotic dynamics.

  10. Entanglement and fidelity signatures of quantum phase transitions in spin liquid models

    Science.gov (United States)

    Tribedi, Amit; Bose, Indrani

    2008-03-01

    We consider a spin ladder model which is known to have matrix product states as exact ground states with spin liquid characteristics. The model has two critical-point transitions at the parameter values u=0 and ∞ . We study the variation of entanglement and fidelity measures in the ground states as a function of u and specially look for signatures of quantum phase transitions at u=0 and ∞ . The two different entanglement measures used are S(i) (the single-site von Neumann entropy) and S(i,j) (the two-body entanglement). At the quantum critical point (QCP) u=∞ , the entanglement measure E [=S(i),S(i,j)] vanishes but remains nonzero at the other QCP u=0 . The first and second derivatives of E with respect to the parameter u and the entanglement length associated with S(i,j) are further calculated to identify special features, if any, near the QCPs. We further determine the GS fidelity F and a quantity ln|D| related to the second derivative of F and show that these quantities calculated for finite-sized systems are good indicators of QPTs occurring in the infinite system.

  11. Application of the algebraic RNG model for transition simulation. [renormalization group theory

    Science.gov (United States)

    Lund, Thomas S.

    1990-01-01

    The algebraic form of the RNG model of Yakhot and Orszag (1986) is investigated as a transition model for the Reynolds averaged boundary layer equations. It is found that the cubic equation for the eddy viscosity contains both a jump discontinuity and one spurious root. A yet unpublished transformation to a quartic equation is shown to remove the numerical difficulties associated with the discontinuity, but only at the expense of merging both the physical and spurious root of the cubic. Jumps between the branches of the resulting multiple-valued solution are found to lead to oscillations in flat plate transition calculations. Aside from the oscillations, the transition behavior is qualitatively correct.

  12. Charge and transition densities of samarium isotopes in the interacting Boson model

    International Nuclear Information System (INIS)

    Moinester, M.A.; Alster, J.; Dieperink, A.E.L.

    1982-01-01

    The interacting boson approximation (IBA) model has been used to interpret the ground-state charge distributions and lowest 2 + transition charge densities of the even samarium isotopes for A = 144-154. Phenomenological boson transition densities associated with the nucleons comprising the s-and d-bosons of the IBA were determined via a least squares fit analysis of charge and transition densities in the Sm isotopes. The application of these boson trasition densities to higher excited 0 + and 2 + states of Sm, and to 0 + and 2 + transitions in neighboring nuclei, such as Nd and Gd, is described. IBA predictions for the transition densities of the three lowest 2 + levels of 154 Gd are given and compared to theoretical transition densities based on Hartree-Fock calculations. The deduced quadrupole boson transition densities are in fair agreement with densities derived previously from 150 Nd data. It is also shown how certain moments of the best fit boson transition densities can simply and sucessfully describe rms radii, isomer shifts, B(E2) strengths, and transition radii for the Sm isotopes. (orig.)

  13. Observations and Modeling of Transition Region and Coronal Heating Associated with Spicules

    Science.gov (United States)

    De Pontieu, B.; Martinez-Sykora, J.; De Moortel, I.; Chintzoglou, G.; McIntosh, S. W.

    2017-12-01

    Spicules have been proposed as significant contributorsto the coronal energy and mass balance. While previous observationshave provided a glimpse of short-lived transient brightenings in thecorona that are associated with spicules, these observations have beencontested and are the subject of a vigorous debate both on the modelingand the observational side so that it remains unclear whether plasmais heated to coronal temperatures in association with spicules. We use high-resolution observations of the chromosphere and transition region with the Interface Region Imaging Spectrograph (IRIS) and ofthe corona with the Atmospheric Imaging Assembly (AIA) onboard theSolar Dynamics Observatory (SDO) to show evidence of the formation of coronal structures as a result of spicular mass ejections andheating of plasma to transition region and coronaltemperatures. Our observations suggest that a significant fraction of the highly dynamic loop fan environment associated with plage regions may be the result of the formation of such new coronal strands, a process that previously had been interpreted as the propagation of transient propagating coronal disturbances (PCD)s. Our observationsare supported by 2.5D radiative MHD simulations that show heating tocoronal temperatures in association with spicules. Our results suggest that heating and strong flows play an important role in maintaining the substructure of loop fans, in addition to the waves that permeate this low coronal environment. Our models also matches observations ofTR counterparts of spicules and provides an elegant explanation forthe high apparent speeds of these "network jets".

  14. Transition paths of Met-enkephalin from Markov state modeling of a molecular dynamics trajectory.

    Science.gov (United States)

    Banerjee, Rahul; Cukier, Robert I

    2014-03-20

    Conformational states and their interconversion pathways of the zwitterionic form of the pentapeptide Met-enkephalin (MetEnk) are identified. An explicit solvent molecular dynamics (MD) trajectory is used to construct a Markov state model (MSM) based on dihedral space clustering of the trajectory, and transition path theory (TPT) is applied to identify pathways between open and closed conformers. In the MD trajectory, only four of the eight backbone dihedrals exhibit bistable behavior. Defining a conformer as the string XXXX with X = "+" or "-" denoting, respectively, positive or negative values of a given dihedral angle and obtaining the populations of these conformers shows that only four conformers are highly populated, implying a strong correlation among these dihedrals. Clustering in dihedral space to construct the MSM finds the same four bistable dihedral angles. These state populations are very similar to those found directly from the MD trajectory. TPT is used to obtain pathways, parametrized by committor values, in dihedral state space that are followed in transitioning from closed to open states. Pathway costs are estimated by introducing a kinetics-based procedure that orders pathways from least (shortest) to greater cost paths. The least costly pathways in dihedral space are found to only involve the same XXXX set of dihedral angles, and the conformers accessed in the closed to open transition pathways are identified. For these major pathways, a correlation between reaction path progress (committors) and the end-to-end distance is identified. A dihedral space principal component analysis of the MD trajectory shows that the first three modes capture most of the overall fluctuation, and pick out the same four dihedrals having essentially all the weight in those modes. A MSM based on root-mean-square backbone clustering was also carried out, with good agreement found with dihedral clustering for the static information, but with results that differ

  15. Using state-and-transition modeling to account for imperfect detection in invasive species management

    Science.gov (United States)

    Frid, Leonardo; Holcombe, Tracy; Morisette, Jeffrey T.; Olsson, Aaryn D.; Brigham, Lindy; Bean, Travis M.; Betancourt, Julio L.; Bryan, Katherine

    2013-01-01

    Buffelgrass, a highly competitive and flammable African bunchgrass, is spreading rapidly across both urban and natural areas in the Sonoran Desert of southern and central Arizona. Damages include increased fire risk, losses in biodiversity, and diminished revenues and quality of life. Feasibility of sustained and successful mitigation will depend heavily on rates of spread, treatment capacity, and cost–benefit analysis. We created a decision support model for the wildland–urban interface north of Tucson, AZ, using a spatial state-and-transition simulation modeling framework, the Tool for Exploratory Landscape Scenario Analyses. We addressed the issues of undetected invasions, identifying potentially suitable habitat and calibrating spread rates, while answering questions about how to allocate resources among inventory, treatment, and maintenance. Inputs to the model include a state-and-transition simulation model to describe the succession and control of buffelgrass, a habitat suitability model, management planning zones, spread vectors, estimated dispersal kernels for buffelgrass, and maps of current distribution. Our spatial simulations showed that without treatment, buffelgrass infestations that started with as little as 80 ha (198 ac) could grow to more than 6,000 ha by the year 2060. In contrast, applying unlimited management resources could limit 2060 infestation levels to approximately 50 ha. The application of sufficient resources toward inventory is important because undetected patches of buffelgrass will tend to grow exponentially. In our simulations, areas affected by buffelgrass may increase substantially over the next 50 yr, but a large, upfront investment in buffelgrass control could reduce the infested area and overall management costs.

  16. Workforce Transition Model for DOE-AL non-nuclear reconfiguration

    Energy Technology Data Exchange (ETDEWEB)

    Stahlman, E.J.; Lewis, R.E.

    1993-10-01

    The Pacific Northwest Laboratory (PNL) was tasked by the US Department of Energy Albuquerque Field Office (DOE-AL) to develop a workforce assessment and transition planning tool to support integrated decision making at a single DOE installation. The planning tool permits coordinated, integrated workforce planning to manage growth, decline, or transition within a DOE installation. The tool enhances the links and provides commonality between strategic, programmatic, and operations planners and human resources. Successful development and subsequent complex-wide implementation of the model will also facilitate planning at the national level by enforcing a consistent format on data that are now collected by installations in corporate-specific formats that are not amenable to national-level analyses. The workforce assessment and transition planning tool consists of two components: the Workforce Transition Model and the Workforce Budget Constraint Model. The Workforce Transition Model, the preponderant of the two, assists decision makers to identify and evaluates alternatives for transitioning the current workforce to meet the skills required to support projected workforce requirements. The Workforce Budget Constraint Model helps estimate the number of personnel that will be affected given a workforce budget increase or decrease and assists in identifying how the corresponding hiring or layoffs should be distributed across the common occupational classification system (COCS) occupations. The conceptual models and the computer implementation are described.

  17. Mechanistic modeling of transition temperature shift of Japanese RPV materials

    Energy Technology Data Exchange (ETDEWEB)

    Hiranuma, N. [Tokyo Electric Power Co., Tokyo (Japan); Soneda, N.; Dohi, K.; Ishino, S. [Central Research Inst. of Electric Power Industry, Tokyo (Japan); Dohi, N. [Kansai Electric Power Co., Osaka (Japan); Ohata, H. [The Japan Atomic Power Co., Tokyo (Japan)

    2004-07-01

    A new correlation method to predict neutron irradiation embrittlement of reactor pressure vessel (RPV) materials of Japanese nuclear power plants is developed based on the understandings of the embrittlement mechanisms. A set of rate equations is constructed to describe the microstructural changes in the RPV materials during irradiation. Formation of copper-enriched clusters (CEC) and matrix damage (MD) are considered as the two primary causes of the embrittlement. Not only the effects of chemical compositions, such as copper and nickel, and neutron fluence, but also the effects of irradiation temperature as well as neutron flux are formulated in the rate equations to describe the evolution of CEC and MD. Transition temperature shifts corresponding to the microstructural changes are calculated using the predicted number densities of the CEC and MD. Coefficients of the rate equations are optimized using the Japanese surveillance database with a specific attention to reproduce the embrittlement trend of each material of the Japanese RPVs. The standard deviation of 12.1 C of the current Japanese correlation method, JEAC 4201, is reduced down to 10.6 C in the proposed new correlation method. Possibility of adjusting the uncertainty in the initial transition temperatures is discussed. (orig.)

  18. Role of secondary instability theory and parabolized stability equations in transition modeling

    Science.gov (United States)

    El-Hady, Nabil M.; Dinavahi, Surya P.; Chang, Chau-Lyan; Zang, Thomas A.

    1993-01-01

    In modeling the laminar-turbulent transition region, the designer depends largely on benchmark data from experiments and/or direct numerical simulations that are usually extremely expensive. An understanding of the evolution of the Reynolds stresses, turbulent kinetic energy, and quantifies in the transport equations like the dissipation and production is essential in the modeling process. The secondary instability theory and the parabolized stability equations method are used to calculate these quantities, which are then compared with corresponding quantities calculated from available direct numerical simulation data for the incompressible boundary-layer flow of laminar-turbulent transition conditions. The potential of the secondary instability theory and the parabolized stability equations approach in predicting these quantities is discussed; results indicate that inexpensive data that are useful for transition modeling in the early stages of the transition region can be provided by these tools.

  19. An Optimal Allocation Model of Public Transit Mode Proportion for the Low-Carbon Transportation

    Directory of Open Access Journals (Sweden)

    Linjun Lu

    2015-01-01

    Full Text Available Public transit has been widely recognized as a potential way to develop low-carbon transportation. In this paper, an optimal allocation model of public transit mode proportion (MPMP has been built to achieve the low-carbon public transit. Optimal ratios of passenger traffic for rail, bus, and taxi are derived by running the model using typical data. With different values of traffic demand, construction cost, travel time, and accessibilities, MPMP can generate corresponding optimal ratios, benefiting decision impacts analysis and decision makers. Instead of considering public transit as a united system, it is separated into units in this paper. And Shanghai is used to test model validity and practicality.

  20. Implementation of an inter-agency transition model for youth with spina bifida.

    Science.gov (United States)

    Lindsay, S; Cruickshank, H; McPherson, A C; Maxwell, J

    2016-03-01

    To address gaps in transfer of care and transition support, a paediatric hospital and adult community health care centre partnered to implement an inter-agency transition model for youth with spina bifida. Our objective was to understand the enablers and challenges experienced in the implementation of the model. Using a descriptive, qualitative design, we conducted semi-structured interviews, in-person or over the phone, with 12 clinicians and nine key informants involved in implementing the spina bifida transition model. We recruited all 21 participants from an urban area of Ontario, Canada. Clinicians and key informants experienced several enablers and challenges in implementing the spina bifida transition model. Enablers included dedicated leadership, advocacy, funding, inter-agency partnerships, cross-appointed staff and gaps in co-ordinated care to connect youth to adult services. Challenges included gaps in the availability of adult specialty services, limited geographical catchment of adult services, limited engagement of front-line staff, gaps in communication and role clarity. Although the transition model has realized some initial successes, there are still many challenges to overcome in transferring youth with spina bifida to adult health care and transitioning to adulthood. © 2015 John Wiley & Sons Ltd.

  1. The Ising model and its applications to a phase transition of biological interest

    International Nuclear Information System (INIS)

    Cabrera, G.G.; Stein-Barana, A.M.; Zuckermann, M.J.

    1984-01-01

    It is investigated a gel-liquid crystal phase transition employing a two-state model equivalent to the Spin 1/2 Ising Model with applied magnetic field. The model is studied from the standpoint of the cluster variational method of Kikuchi for cooperative phenomena. (M.W.O.) [pt

  2. The Multi-state Latent Factor Intensity Model for Credit Rating Transitions

    NARCIS (Netherlands)

    Koopman, S.J.; Lucas, A.; Monteiro, A.

    2008-01-01

    A new empirical reduced-form model for credit rating transitions is introduced. It is a parametric intensity-based duration model with multiple states and driven by exogenous covariates and latent dynamic factors. The model has a generalized semi-Markov structure designed to accommodate many of the

  3. First Order Electroweak Phase Transition from (Non)Conformal Extensions of the Standard Model

    DEFF Research Database (Denmark)

    Sannino, Francesco; Virkajärvi, Jussi

    2015-01-01

    We analyse and compare the finite-temperature electroweak phase transition properties of classically (non)conformal extensions of the Standard Model. In the classically conformal scenarios the breaking of the electroweak symmetry is generated radiatively. The models feature new scalars coupled co...... the associated models are testable at the upcoming Large Hadron Collider run two experiments....

  4. Extinction phase transitions in a model of ecological and evolutionary dynamics

    Science.gov (United States)

    Barghathi, Hatem; Tackkett, Skye; Vojta, Thomas

    2017-07-01

    We study the non-equilibrium phase transition between survival and extinction of spatially extended biological populations using an agent-based model. We especially focus on the effects of global temporal fluctuations of the environmental conditions, i.e., temporal disorder. Using large-scale Monte-Carlo simulations of up to 3 × 107 organisms and 105 generations, we find the extinction transition in time-independent environments to be in the well-known directed percolation universality class. In contrast, temporal disorder leads to a highly unusual extinction transition characterized by logarithmically slow population decay and enormous fluctuations even for large populations. The simulations provide strong evidence for this transition to be of exotic infinite-noise type, as recently predicted by a renormalization group theory. The transition is accompanied by temporal Griffiths phases featuring a power-law dependence of the life time on the population size.

  5. Correlation-Driven Lifshitz Transition at the Emergence of the Pseudogap Phase in the Two-Dimensional Hubbard Model

    Science.gov (United States)

    Bragança, Helena; Sakai, Shiro; Aguiar, M. C. O.; Civelli, Marcello

    2018-02-01

    We study the relationship between the pseudogap and Fermi-surface topology in the two-dimensional Hubbard model by means of the cellular dynamical mean-field theory. We find two possible mean-field metallic solutions on a broad range of interactions, doping, and frustration: a conventional renormalized metal and an unconventional pseudogap metal. At half filling, the conventional metal is more stable and displays an interaction-driven Mott metal-insulator transition. However, for large interactions and small doping, a region that is relevant for cuprates, the pseudogap phase becomes the ground state. By increasing doping, we show that a first-order transition from the pseudogap to the conventional metal is tied to a change of the Fermi surface from hole- to electronlike, unveiling a correlation-driven mechanism for a Lifshitz transition. This explains the puzzling link between the pseudogap phase and Fermi surface topology that has been pointed out in recent experiments.

  6. A congested and dwell time dependent transit corridor assignment model

    OpenAIRE

    Alonso Oreña, Borja; Muñoz, Juan Carlos; Ibeas Portilla, Ángel; Moura Berodia, José Luis

    2016-01-01

    This research proposes an equilibrium assignment model for congested public transport corridors in urban areas. In this model, journey times incorporate the effect of bus queuing on travel times and boarding and alighting passengers on dwell times at stops. The model also considers limited bus capacity leading to longer waiting times and more uncomfortable journeys. The proposed model is applied to an example network, and the results are compared with those obtained in a recent study. This is...

  7. Agent based models of language competition: macroscopic descriptions and order-disorder transitions

    Science.gov (United States)

    Vazquez, F.; Castelló, X.; San Miguel, M.

    2010-04-01

    We investigate the dynamics of two agent based models of language competition. In the first model, each individual can be in one of two possible states, either using language X or language Y, while the second model incorporates a third state XY, representing individuals that use both languages (bilinguals). We analyze the models on complex networks and two-dimensional square lattices by analytical and numerical methods, and show that they exhibit a transition from one-language dominance to language coexistence. We find that the coexistence of languages is more difficult to maintain in the bilinguals model, where the presence of bilinguals facilitates the ultimate dominance of one of the two languages. A stability analysis reveals that the coexistence is more unlikely to happen in poorly connected than in fully connected networks, and that the dominance of just one language is enhanced as the connectivity decreases. This dominance effect is even stronger in a two-dimensional space, where domain coarsening tends to drive the system towards language consensus.

  8. Agent based models of language competition: macroscopic descriptions and order–disorder transitions

    International Nuclear Information System (INIS)

    Vazquez, F; Castelló, X; San Miguel, M

    2010-01-01

    We investigate the dynamics of two agent based models of language competition. In the first model, each individual can be in one of two possible states, either using language X or language Y, while the second model incorporates a third state XY, representing individuals that use both languages (bilinguals). We analyze the models on complex networks and two-dimensional square lattices by analytical and numerical methods, and show that they exhibit a transition from one-language dominance to language coexistence. We find that the coexistence of languages is more difficult to maintain in the bilinguals model, where the presence of bilinguals facilitates the ultimate dominance of one of the two languages. A stability analysis reveals that the coexistence is more unlikely to happen in poorly connected than in fully connected networks, and that the dominance of just one language is enhanced as the connectivity decreases. This dominance effect is even stronger in a two-dimensional space, where domain coarsening tends to drive the system towards language consensus

  9. Finite temperature spin-dynamics and phase transitions in spin-orbital models

    Energy Technology Data Exchange (ETDEWEB)

    Chen, C.-C.

    2010-04-29

    We study finite temperature properties of a generic spin-orbital model relevant to transition metal compounds, having coupled quantum Heisenberg-spin and Ising-orbital degrees of freedom. The model system undergoes a phase transition, consistent with that of a 2D Ising model, to an orbitally ordered state at a temperature set by short-range magnetic order. At low temperatures the orbital degrees of freedom freeze-out and the model maps onto a quantum Heisenberg model. The onset of orbital excitations causes a rapid scrambling of the spin spectral weight away from coherent spin-waves, which leads to a sharp increase in uniform magnetic susceptibility just below the phase transition, reminiscent of the observed behavior in the Fe-pnictide materials.

  10. The Wigner solution and QCD phase transitions in a modified PNJL model

    Energy Technology Data Exchange (ETDEWEB)

    Cui, Zhu-fang [Nanjing University, Department of Physics, Key Laboratory of Modern Acoustics, MOE, Institute of Acoustics, Nanjing (China); State Key Laboratory of Theoretical Physics, Institute of Theoretical Physics, CAS, Beijing (China); Shi, Chao [Nanjing University, Department of Physics, Nanjing (China); State Key Laboratory of Theoretical Physics, Institute of Theoretical Physics, CAS, Beijing (China); Sun, Wei-min; Zong, Hong-shi [Nanjing University, Department of Physics, Nanjing (China); Joint Center for Particle, Nuclear Physics and Cosmology, Nanjing (China); State Key Laboratory of Theoretical Physics, Institute of Theoretical Physics, CAS, Beijing (China); Wang, Yong-long [Nanjing University, Department of Physics, Key Laboratory of Modern Acoustics, MOE, Institute of Acoustics, Nanjing (China); Linyi University, Department of Physics, School of Science, Linyi (China); Massachusetts Institute of Technology, Center for Theoretical Physics, Cambridge, MA (United States)

    2014-02-15

    By employing some modification to the widely used two-flavor Polyakov-loop extended Nambu-Jona-Lasinio (PNJL) model, we discuss the Wigner solution of the quark gap equation at finite temperature and zero quark chemical potential beyond the chiral limit, and then we try to explore its influence on the chiral and deconfinement phase transitions of QCD at finite temperature and zero chemical potential. The discovery of the coexistence of the Nambu and the Wigner solutions of the quark gap equation with nonzero current quark mass at zero temperature and zero chemical potential, as well as their evolutions with temperature, is very interesting for the studies of the phase transitions of QCD. According to our results, the chiral phase transition might be of first order (while the deconfinement phase transition is still a crossover, as in the normal PNJL model), and the corresponding phase transition temperature is lower than that of the deconfinement phase transition, instead of coinciding with each other, which are not the same as the conclusions obtained from the normal PNJL model. In addition, we also discuss the sensibility of our final results on the choice of model parameters. (orig.)

  11. Evaluating transit operator efficiency: An enhanced DEA model with constrained fuzzy-AHP cones

    OpenAIRE

    Xin Li; Yue Liu; Yaojun Wang; Zhigang Gao

    2016-01-01

    This study addresses efforts to comb the Analytic Hierarchy Process (AHP) with Data Envelopment Analysis (DEA) to deliver a robust enhanced DEA model for transit operator efficiency assessment. The proposed model is designed to better capture inherent preferences information over input and output indicators by adding constraint cones to the conventional DEA model. A revised fuzzy-AHP model is employed to generate cones, where the proposed model features the integration of the fuzzy logic with...

  12. Discovery of Transition Rules for Cellular Automata Using Artificial Bee Colony and Particle Swarm Optimization Algorithms in Urban Growth Modeling

    Directory of Open Access Journals (Sweden)

    Fereydoun Naghibi

    2016-12-01

    Full Text Available This paper presents an advanced method in urban growth modeling to discover transition rules of cellular automata (CA using the artificial bee colony (ABC optimization algorithm. Also, comparisons between the simulation results of CA models optimized by the ABC algorithm and the particle swarm optimization algorithms (PSO as intelligent approaches were performed to evaluate the potential of the proposed methods. According to previous studies, swarm intelligence algorithms for solving optimization problems such as discovering transition rules of CA in land use change/urban growth modeling can produce reasonable results. Modeling of urban growth as a dynamic process is not straightforward because of the existence of nonlinearity and heterogeneity among effective involved variables which can cause a number of challenges for traditional CA. ABC algorithm, the new powerful swarm based optimization algorithms, can be used to capture optimized transition rules of CA. This paper has proposed a methodology based on remote sensing data for modeling urban growth with CA calibrated by the ABC algorithm. The performance of ABC-CA, PSO-CA, and CA-logistic models in land use change detection is tested for the city of Urmia, Iran, between 2004 and 2014. Validations of the models based on statistical measures such as overall accuracy, figure of merit, and total operating characteristic were made. We showed that the overall accuracy of the ABC-CA model was 89%, which was 1.5% and 6.2% higher than those of the PSO-CA and CA-logistic model, respectively. Moreover, the allocation disagreement (simulation error of the simulation results for the ABC-CA, PSO-CA, and CA-logistic models are 11%, 12.5%, and 17.2%, respectively. Finally, for all evaluation indices including running time, convergence capability, flexibility, statistical measurements, and the produced spatial patterns, the ABC-CA model performance showed relative improvement and therefore its superiority was

  13. Interacting cosmic fluids and phase transitions under a holographic modeling for dark energy

    Energy Technology Data Exchange (ETDEWEB)

    Lepe, Samuel [Pontificia Universidad Catolica de Valparaiso, Instituto de Fisica, Facultad de Ciencias, Valparaiso (Chile); Pena, Francisco [Universidad de La Frontera, Departamento de Ciencias Fisicas, Facultad de Ingenieria y Ciencias, Temuco (Chile)

    2016-09-15

    We discuss the consequences of possible sign changes of the Q-function which measures the transfer of energy between dark energy and dark matter. We investigate this scenario from a holographic perspective by modeling dark energy by a linear parametrization and CPL-parametrization of the equation of state (ω). By imposing the strong constraint of the second law of thermodynamics, we show that the change of sign for Q, due to the cosmic evolution, imply changes in the temperatures of dark energy and dark matter. We also discuss the phase transitions, in the past and future, experienced by dark energy and dark matter (or, equivalently, the sign changes of their heat capacities). (orig.)

  14. Interacting cosmic fluids and phase transitions under a holographic modeling for dark energy

    International Nuclear Information System (INIS)

    Lepe, Samuel; Pena, Francisco

    2016-01-01

    We discuss the consequences of possible sign changes of the Q-function which measures the transfer of energy between dark energy and dark matter. We investigate this scenario from a holographic perspective by modeling dark energy by a linear parametrization and CPL-parametrization of the equation of state (ω). By imposing the strong constraint of the second law of thermodynamics, we show that the change of sign for Q, due to the cosmic evolution, imply changes in the temperatures of dark energy and dark matter. We also discuss the phase transitions, in the past and future, experienced by dark energy and dark matter (or, equivalently, the sign changes of their heat capacities). (orig.)

  15. Transition from static to kinetic friction: insights from a 2D model.

    Science.gov (United States)

    Trømborg, J; Scheibert, J; Amundsen, D S; Thøgersen, K; Malthe-Sørenssen, A

    2011-08-12

    We describe a 2D spring-block model for the transition from static to kinetic friction at an elastic-slider-rigid-substrate interface obeying a minimalistic friction law (Amontons-Coulomb). By using realistic boundary conditions, a number of previously unexplained experimental results on precursory microslip fronts are successfully reproduced. From the analysis of the interfacial stresses, we derive a prediction for the evolution of the precursor length as a function of the applied loads, as well as an approximate relationship between microscopic and macroscopic friction coefficients. We show that the stress buildup due to both elastic loading and microslip-related relaxations depends only weakly on the underlying shear crack propagation dynamics. Conversely, crack speed depends strongly on both the instantaneous stresses and the friction coefficients, through a nontrivial scaling parameter.

  16. Gravitational waves from first-order phase transitions: towards model separation by bubble nucleation rate

    Science.gov (United States)

    Jinno, Ryusuke; Lee, Sangjun; Seong, Hyeonseok; Takimoto, Masahiro

    2017-11-01

    We study gravitational-wave production from bubble collisions in a cosmic first-order phase transition, focusing on the possibility of model separation by the bubble nucleation rate dependence of the resulting gravitational-wave spectrum. By using the method of relating the spectrum with the two-point correlator of the energy-momentum tensor , we first write down analytic expressions for the spectrum with a Gaussian correction to the commonly used nucleation rate, Γ propto eβ tarrow eβ t-γ2t2, under the thin-wall and envelope approximations. Then we quantitatively investigate how the spectrum changes with the size of the Gaussian correction. It is found that the spectral shape shows Script O(10)% deviation from Γ propto eβ t case for some physically motivated scenarios. We also briefly discuss detector sensitivities required to distinguish different spectral shapes.

  17. Modelling and numerical simulation of liquid-vapor phase transitions; Modelisation et simulation numerique des transitions de phase liquide-vapeur

    Energy Technology Data Exchange (ETDEWEB)

    Caro, F

    2004-11-15

    This work deals with the modelling and numerical simulation of liquid-vapor phase transition phenomena. The study is divided into two part: first we investigate phase transition phenomena with a Van Der Waals equation of state (non monotonic equation of state), then we adopt an alternative approach with two equations of state. In the first part, we study the classical viscous criteria for selecting weak solutions of the system used when the equation of state is non monotonic. Those criteria do not select physical solutions and therefore we focus a more recent criterion: the visco-capillary criterion. We use this criterion to exactly solve the Riemann problem (which imposes solving an algebraic scalar non linear equation). Unfortunately, this step is quite costly in term of CPU which prevent from using this method as a ground for building Godunov solvers. That is why we propose an alternative approach two equations of state. Using the least action principle, we propose a phase changing two-phase flow model which is based on the second thermodynamic principle. We shall then describe two equilibrium submodels issued from the relaxations processes when instantaneous equilibrium is assumed. Despite the weak hyperbolicity of the last sub-model, we propose stable numerical schemes based on a two-step strategy involving a convective step followed by a relaxation step. We show the ability of the system to simulate vapor bubbles nucleation. (author)

  18. Prediction and Analysis of the Nonsteady Transition and Separation Processes on an Oscillating Wind Turbine Airfoil using the \\gamma-Re_\\theta Transition Model.

    Energy Technology Data Exchange (ETDEWEB)

    Nandi, Taraj; Brasseur, James; Vijayakumar, Ganesh

    2016-01-04

    This study is aimed at gaining insight into the nonsteady transitional boundary layer dynamics of wind turbine blades and the predictive capabilities of URANS based transition and turbulence models for similar physics through the analysis of a controlled flow with similar nonsteady parameters.

  19. Markov-chain model of classified atomistic transition states for discrete kinetic Monte Carlo simulations.

    Science.gov (United States)

    Numazawa, Satoshi; Smith, Roger

    2011-10-01

    Classical harmonic transition state theory is considered and applied in discrete lattice cells with hierarchical transition levels. The scheme is then used to determine transitions that can be applied in a lattice-based kinetic Monte Carlo (KMC) atomistic simulation model. The model results in an effective reduction of KMC simulation steps by utilizing a classification scheme of transition levels for thermally activated atomistic diffusion processes. Thermally activated atomistic movements are considered as local transition events constrained in potential energy wells over certain local time periods. These processes are represented by Markov chains of multidimensional Boolean valued functions in three-dimensional lattice space. The events inhibited by the barriers under a certain level are regarded as thermal fluctuations of the canonical ensemble and accepted freely. Consequently, the fluctuating system evolution process is implemented as a Markov chain of equivalence class objects. It is shown that the process can be characterized by the acceptance of metastable local transitions. The method is applied to a problem of Au and Ag cluster growth on a rippled surface. The simulation predicts the existence of a morphology-dependent transition time limit from a local metastable to stable state for subsequent cluster growth by accretion. Excellent agreement with observed experimental results is obtained.

  20. Modelling public transport passenger flows in the era of intelligent transport systems COST Action TU1004 (TransITs)

    CERN Document Server

    Noekel, Klaus

    2016-01-01

    This book shows how transit assignment models can be used to describe and predict the patterns of network patronage in public transport systems. It provides a fundamental technical tool that can be employed in the process of designing, implementing and evaluating measures and/or policies to improve the current state of transport systems within given financial, technical and social constraints. The book offers a unique methodological contribution to the field of transit assignment because, moving beyond “traditional” models, it describes more evolved variants that can reproduce: • intermodal networks with high- and low-frequency services; • realistic behavioural hypotheses underpinning route choice; • time dependency in frequency-based models; and • assumptions about the knowledge that users have of network conditions that are consistent with the present and future level of information that intelligent transport systems (ITS) can provide. The book also considers the practical perspective of practit...

  1. Station Model for Rail Transit System Using Cellular Automata

    International Nuclear Information System (INIS)

    Xun Jing; Ning Bin; Li Keping

    2009-01-01

    In this paper, we propose a new cellular automata model to simulate the railway traffic at station. Based on NaSch model, the proposed station model is composed of the main track and the siding track. Two different schemes for trains passing through station are considered. One is the scheme of 'pass by the main track, start and stop by the siding track'. The other is the scheme of 'two tracks play the same role'. We simulate the train movement using the proposed model and analyze the traffic flow at station. The simulation results demonstrate that the proposed cellular automata model can be successfully used for the simulations of railway traffic. Some characteristic behaviors of railway traffic flow can be reproduced. Moreover, the simulation values of the minimum headway are close to the theoretical values. This result demonstrates the dependability and availability of the proposed model. (general)

  2. Advanced network planning for bus rapid transit : the "Quickway" model as a modal alternative to "Light Rail Lite"

    Science.gov (United States)

    2008-02-01

    Transit planning in the United States has tended toward viewing BRT as an analogue to light rail transit, with similar operating patterns. This model, referred to as Light Rail Lite, is compared to international best practices, which have often...

  3. Universality class of the depinning transition in the two-dimensional Ising model with quenched disorder

    Science.gov (United States)

    Qin, X. P.; Zheng, B.; Zhou, N. J.

    2012-03-01

    With Monte Carlo methods, we investigate the universality class of the depinning transition in the two-dimensional Ising model with quenched random fields. Based on the short-time dynamic approach, we accurately determine the depinning transition field and both static and dynamic critical exponents. The critical exponents vary significantly with the form and strength of the random fields, but exhibit independence of the updating schemes of the Monte Carlo algorithm. From the roughness exponents ζ, ζloc and ζs, one may judge that the depinning transition of the random-field Ising model belongs to the new dynamic universality class with ζ ≠ ζloc ≠ ζs and ζloc ≠ 1. The crossover from the second-order phase transition to the first-order one is observed for the uniform distribution of the random fields, but it is not present for the Gaussian distribution.

  4. Macrophages Undergo M1-to-M2 Transition in Adipose Tissue Regeneration in a Rat Tissue Engineering Model.

    Science.gov (United States)

    Li, Zhijin; Xu, Fangfang; Wang, Zhifa; Dai, Taiqiang; Ma, Chao; Liu, Bin; Liu, Yanpu

    2016-10-01

    Macrophages are involved in the full processes of tissue healing or regeneration and play an important role in the regeneration of a variety of tissues. Although recent evidence suggests the role of different macrophage phenotypes in adipose tissue expansion, metabolism, and remodeling, the spectrum of macrophage phenotype in the adipose tissue engineering field remains unknown. The present study established a rat model of adipose tissue regeneration using a tissue engineering chamber. Macrophage phenotypes were assessed during the regenerative process in the model. Neo-adipose tissue was generated 6 weeks after implantation. Macrophages were obvious in the chamber constructs 3 days after implantation, peaked at day 7, and significantly decreased thereafter. At day 3, macrophages were predominantly M1 macrophages (CCR7+), and there were few M2 macrophages (CD206+). At day 7, the percentage of M2 macrophages significantly increased and remained stable at day 14. M2 macrophages became the predominant macrophage population at 42 days. Enzyme-linked immunosorbent assay demonstrated transition of cytokines from pro-inflammatory to anti-inflammatory, which was consistent with the transition of macrophage phenotype from M1 to M2. These results showed distinct transition of macrophage phenotypes from a pro-inflammatory M1 phenotype to an anti-inflammatory M2 in adipose tissue regeneration in our tissue engineering model. This study provides new insight into macrophage phenotype transition in the regeneration of adipose tissue. © 2016 International Center for Artificial Organs and Transplantation and Wiley Periodicals, Inc.

  5. Relieving the Impact of Transit Signal Priority on Passenger Cars through a Bilevel Model

    Directory of Open Access Journals (Sweden)

    Ding Wang

    2017-01-01

    Full Text Available Transit signal priority (TSP is an effective control strategy to improve transit operations on the urban network. However, the TSP may sacrifice the right-of-way of vehicles from side streets which have only few transit vehicles; therefore, how to minimize the negative impact of TSP strategy on the side streets is an important issue to be addressed. Concerning the typical mixed-traffic flow pattern and heavy transit volume in China, a bilevel model is proposed in this paper: the upper-level model focused on minimizing the vehicle delay in the nonpriority direction while ensuring acceptable delay variation in transit priority direction, and the lower-level model aimed at minimizing the average passenger delay in the entire intersection. The parameters which will affect the efficiency of the bilevel model have been analyzed based on a hypothetical intersection. Finally, a real-world intersection has been studied, and the average vehicle delay in the nonpriority direction decreased 11.28 s and 22.54 s (under different delay variation constraint compared to the models that only minimize average passenger delay, while the vehicle delay in the priority direction increased only 1.37 s and 2.87 s; the results proved the practical applicability and efficiency of the proposed bilevel model.

  6. Analytic properties of the Ruelle ζ-function for mean field models of phase transition

    International Nuclear Information System (INIS)

    Hallerberg, Sarah; Just, Wolfram; Radons, Guenter

    2005-01-01

    We evaluate by analytical means the Ruelle ζ-function for a spin model with global coupling. The implications of the ferromagnetic phase transitions for the analytical properties of the ζ-function are discussed in detail. In the paramagnetic phase the ζ-function develops a single branch point. In the low-temperature regime two branch points appear which correspond to the ferromagnetic state and the metastable state. The results are typical for any Ginsburg-Landau-type phase transition

  7. Simulating the electroweak phase transition in the SU(2) Higgs model

    International Nuclear Information System (INIS)

    Fodor, Z.; Hein, J.; Jansen, K.; Jaster, A.; Montvay, I.

    1994-09-01

    Numerical simulations are performed to study the finite temperature phase transition in the SU(2) Higgs model on the lattice. In the presently investigated range of the Higgs boson mass, below 50 GeV, the phase transition turns out to be of first order and its strength is rapidly decreasing with increasing Higgs boson mass. In order to control the systematic errors, we also perform studies of scaling violations and of finite volume effects. (orig.)

  8. Recent developments in the super transition array model for spectral simulation of LTE plasmas

    International Nuclear Information System (INIS)

    Bar-Shalom, A.; Oreg, J.; Goldstein, W.H.

    1992-01-01

    Recently developed sub-picosecond pulse lasers have been used to create hot, near solid density plasmas. Since these plasmas are nearly in local thermodynamic equilibrium (LTE), their emission spectra involve a huge number of populated configurations. A typical spectrum is a combination of many unresolved clusters of emission, each containing an immense number of overlapping, unresolvable bound-bound and bound-free transitions. Under LTE, or near LTE conditions, traditional detailed configuration or detailed term spectroscopic models are not capable of handling the vast number of transitions involved. The average atom (AA) model, on the other hand, accounts for all relevant transitions, but in an oversimplified fashion that ignores all spectral structure. The Super Transition Array (STA) model, which has been developed in recent years, combines the simplicity and comprehensiveness of the AA model with the accuracy of detailed term accounting. The resolvable structure of spectral clusters is revealed by successively increasing the number of distinct STA's, until convergence is attained. The limit of this procedure is a detailed unresolved transition array (UTA) spectrum, with a term-broadened line for each accessible configuration-to-configuration transition, weighted by the relevant Boltzman population. In practice, this UTA spectrum is actually obtained using only a few thousand to tens of thousands of STA's (as opposed, typically, to billions of UTAs). The central result of STA theory is a set of formulas for the moments (total intensity, average transition energy, variance) of an STA. In calculating the moments, detailed relativistic first order quantum transition energies and probabilities are used. The energy appearing in the Boltzman factor associated with each level in a superconfiguration is the zero order result corrected by a superconfiguration averaged first order correction. Examples and application to recent measurements are presented

  9. Transition from Model to Proof: Example of Water Treatment Plant

    Science.gov (United States)

    Güler, Gürsel

    2016-01-01

    The aim of this study was to research the prospective mathematics teachers' ability to construct a mathematical model for a real life problem and to prove these models by generalizing them to use in similar situations. The study was conducted with 129 prospective teachers determined on a volunteering basis. The data were obtained with the help of…

  10. Glass Transition Temperature of Saccharide Aqueous Solutions Estimated with the Free Volume/Percolation Model.

    Science.gov (United States)

    Constantin, Julian Gelman; Schneider, Matthias; Corti, Horacio R

    2016-06-09

    The glass transition temperature of trehalose, sucrose, glucose, and fructose aqueous solutions has been predicted as a function of the water content by using the free volume/percolation model (FVPM). This model only requires the molar volume of water in the liquid and supercooled regimes, the molar volumes of the hypothetical pure liquid sugars at temperatures below their pure glass transition temperatures, and the molar volumes of the mixtures at the glass transition temperature. The model is simplified by assuming that the excess thermal expansion coefficient is negligible for saccharide-water mixtures, and this ideal FVPM becomes identical to the Gordon-Taylor model. It was found that the behavior of the water molar volume in trehalose-water mixtures at low temperatures can be obtained by assuming that the FVPM holds for this mixture. The temperature dependence of the water molar volume in the supercooled region of interest seems to be compatible with the recent hypothesis on the existence of two structure of liquid water, being the high density liquid water the state of water in the sugar solutions. The idealized FVPM describes the measured glass transition temperature of sucrose, glucose, and fructose aqueous solutions, with much better accuracy than both the Gordon-Taylor model based on an empirical kGT constant dependent on the saccharide glass transition temperature and the Couchman-Karasz model using experimental heat capacity changes of the components at the glass transition temperature. Thus, FVPM seems to be an excellent tool to predict the glass transition temperature of other aqueous saccharides and polyols solutions by resorting to volumetric information easily available.

  11. Skeletal Muscle Differentiation on a Chip Shows Human Donor Mesoangioblasts' Efficiency in Restoring Dystrophin in a Duchenne Muscular Dystrophy Model.

    Science.gov (United States)

    Serena, Elena; Zatti, Susi; Zoso, Alice; Lo Verso, Francesca; Tedesco, F Saverio; Cossu, Giulio; Elvassore, Nicola

    2016-12-01

    : Restoration of the protein dystrophin on muscle membrane is the goal of many research lines aimed at curing Duchenne muscular dystrophy (DMD). Results of ongoing preclinical and clinical trials suggest that partial restoration of dystrophin might be sufficient to significantly reduce muscle damage. Different myogenic progenitors are candidates for cell therapy of muscular dystrophies, but only satellite cells and pericytes have already entered clinical experimentation. This study aimed to provide in vitro quantitative evidence of the ability of mesoangioblasts to restore dystrophin, in terms of protein accumulation and distribution, within myotubes derived from DMD patients, using a microengineered model. We designed an ad hoc experimental strategy to miniaturize on a chip the standard process of muscle regeneration independent of variables such as inflammation and fibrosis. It is based on the coculture, at different ratios, of human dystrophin-positive myogenic progenitors and dystrophin-negative myoblasts in a substrate with muscle-like physiological stiffness and cell micropatterns. Results showed that both healthy myoblasts and mesoangioblasts restored dystrophin expression in DMD myotubes. However, mesoangioblasts showed unexpected efficiency with respect to myoblasts in dystrophin production in terms of the amount of protein produced (40% vs. 15%) and length of the dystrophin membrane domain (210-240 µm vs. 40-70 µm). These results show that our microscaled in vitro model of human DMD skeletal muscle validated previous in vivo preclinical work and may be used to predict efficacy of new methods aimed at enhancing dystrophin accumulation and distribution before they are tested in vivo, reducing time, costs, and variability of clinical experimentation. This study aimed to provide in vitro quantitative evidence of the ability of human mesoangioblasts to restore dystrophin, in terms of protein accumulation and distribution, within myotubes derived from

  12. Skeletal Muscle Differentiation on a Chip Shows Human Donor Mesoangioblasts’ Efficiency in Restoring Dystrophin in a Duchenne Muscular Dystrophy Model

    Science.gov (United States)

    Serena, Elena; Zatti, Susi; Zoso, Alice; Lo Verso, Francesca; Tedesco, F. Saverio; Cossu, Giulio

    2016-01-01

    Restoration of the protein dystrophin on muscle membrane is the goal of many research lines aimed at curing Duchenne muscular dystrophy (DMD). Results of ongoing preclinical and clinical trials suggest that partial restoration of dystrophin might be sufficient to significantly reduce muscle damage. Different myogenic progenitors are candidates for cell therapy of muscular dystrophies, but only satellite cells and pericytes have already entered clinical experimentation. This study aimed to provide in vitro quantitative evidence of the ability of mesoangioblasts to restore dystrophin, in terms of protein accumulation and distribution, within myotubes derived from DMD patients, using a microengineered model. We designed an ad hoc experimental strategy to miniaturize on a chip the standard process of muscle regeneration independent of variables such as inflammation and fibrosis. It is based on the coculture, at different ratios, of human dystrophin-positive myogenic progenitors and dystrophin-negative myoblasts in a substrate with muscle-like physiological stiffness and cell micropatterns. Results showed that both healthy myoblasts and mesoangioblasts restored dystrophin expression in DMD myotubes. However, mesoangioblasts showed unexpected efficiency with respect to myoblasts in dystrophin production in terms of the amount of protein produced (40% vs. 15%) and length of the dystrophin membrane domain (210–240 µm vs. 40–70 µm). These results show that our microscaled in vitro model of human DMD skeletal muscle validated previous in vivo preclinical work and may be used to predict efficacy of new methods aimed at enhancing dystrophin accumulation and distribution before they are tested in vivo, reducing time, costs, and variability of clinical experimentation. Significance This study aimed to provide in vitro quantitative evidence of the ability of human mesoangioblasts to restore dystrophin, in terms of protein accumulation and distribution, within myotubes

  13. Long-range string orders and topological quantum phase transitions in the one-dimensional quantum compass model.

    Science.gov (United States)

    Wang, Hai Tao; Cho, Sam Young

    2015-01-14

    In order to investigate the quantum phase transition in the one-dimensional quantum compass model, we numerically calculate non-local string correlations, entanglement entropy and fidelity per lattice site by using the infinite matrix product state representation with the infinite time evolving block decimation method. In the whole range of the interaction parameters, we find that four distinct string orders characterize the four different Haldane phases and the topological quantum phase transition occurs between the Haldane phases. The critical exponents of the string order parameters β = 1/8 and the cental charges c = 1/2 at the critical points show that the topological phase transitions between the phases belong to an Ising type of universality classes. In addition to the string order parameters, the singularities of the second derivative of the ground state energies per site, the continuous and singular behaviors of the Von Neumann entropy and the pinch points of the fidelity per lattice site manifest that the phase transitions between the phases are of the second-order, in contrast to the first-order transition suggested in previous studies.

  14. A Feeder-Bus Dispatch Planning Model for Emergency Evacuation in Urban Rail Transit Corridors

    Science.gov (United States)

    Wang, Yun; Yan, Xuedong; Zhou, Yu; Zhang, Wenyi

    2016-01-01

    The mobility of modern metropolises strongly relies on urban rail transit (URT) systems, and such a heavy dependence causes that even minor service interruptions would make the URT systems unsustainable. This study aims at optimally dispatching the ground feeder-bus to coordinate with the urban rails’ operation for eliminating the effect of unexpected service interruptions in URT corridors. A feeder-bus dispatch planning model was proposed for the collaborative optimization of URT and feeder-bus cooperation under emergency situations and minimizing the total evacuation cost of the feeder-buses. To solve the model, a concept of dummy feeder-bus system is proposed to transform the non-linear model into traditional linear programming (ILP) model, i.e., traditional transportation problem. The case study of Line #2 of Nanjing URT in China was adopted to illustrate the model application and sensitivity analyses of the key variables. The modeling results show that as the evacuation time window increases, the total evacuation cost as well as the number of dispatched feeder-buses decrease, and the dispatched feeder-buses need operate for more times along the feeder-bus line. The number of dispatched feeder-buses does not show an obvious change with the increase of parking spot capacity and time window, indicating that simply increasing the parking spot capacity would cause huge waste for the emergent bus utilization. When the unbalanced evacuation demand exists between stations, the more feeder-buses are needed. The method of this study will contribute to improving transportation emergency management and resource allocation for URT systems. PMID:27676179

  15. Numerical Computation of a Continuous-thrust State Transition Matrix Incorporating Accurate Hardware and Ephemeris Models

    Science.gov (United States)

    Ellison, Donald; Conway, Bruce; Englander, Jacob

    2015-01-01

    A significant body of work exists showing that providing a nonlinear programming (NLP) solver with expressions for the problem constraint gradient substantially increases the speed of program execution and can also improve the robustness of convergence, especially for local optimizers. Calculation of these derivatives is often accomplished through the computation of spacecraft's state transition matrix (STM). If the two-body gravitational model is employed as is often done in the context of preliminary design, closed form expressions for these derivatives may be provided. If a high fidelity dynamics model, that might include perturbing forces such as the gravitational effect from multiple third bodies and solar radiation pressure is used then these STM's must be computed numerically. We present a method for the power hardward model and a full ephemeris model. An adaptive-step embedded eight order Dormand-Prince numerical integrator is discussed and a method for the computation of the time of flight derivatives in this framework is presented. The use of these numerically calculated derivatieves offer a substantial improvement over finite differencing in the context of a global optimizer. Specifically the inclusion of these STM's into the low thrust missiondesign tool chain in use at NASA Goddard Spaceflight Center allows for an increased preliminary mission design cadence.

  16. Does the liaison Nurse have an Effective Role in Transitional Care Model?

    Directory of Open Access Journals (Sweden)

    Rafat Rezapour

    2011-05-01

    Full Text Available Nurses play a pivotal role in the care of chronic patients. In consequence, innovations relating to the nursing practiceas a liaison nurse and care for chronic patients are being implemented in many countries to produce new forms ofhealth care model. These innovations often aim to break care gap and deliver long term after care for chronicpatients. Long term after care means a shift of care givers responsibilities and tasks from hospital to patients homethat qualitatively good care is provided by the most appropriate health care provider at the lowest cost level.Implementing transitional care model show that it is indeed possible to decrease rates of re-hospitalization alsoduration of hospitalization of chronic patients. Patients and loved ones are better able to manage their careindependently and their quality of life will be promoted.Improved coordination of care leads to better communication and improved satisfaction ratings between patients andhealthcare providers. Also improve quality of care and decrease health care costs.In this paper author try to introduces a new model of nursing care, especially in patients with chronic diseases thatwill full care gap between hospital and home. Also the author suggests the positive and effective role of the liaisonnurse in promote of quality of life of the patients with chronic diseases in this new model of care.

  17. Phase transition in the infinite-dimensional Z(Q)-symmetric models

    International Nuclear Information System (INIS)

    Akheyan, A.Z.; Ananikyan, N.S.

    1986-01-01

    The critical behaviour of the Q-component Potts model on a Bethe lattice is studied. Critical temperatures T c (1) of the II order phase transition and T c (2) , below which a spontaneous magnetization exists, are found. These temperatures coincide for the ising model Q = 2. Critical exponents β and δ, and also scaling function at T ∼ T c (1) are calculated. The obtained critical exponents confirm the mean field results for the ising model and are β = 1/2, δ = 3, respectively. Their values are independent of Q. It is shown that pure gauge models have only I order phase transitions, but introducing matter fields, interacting with gauge ones it is possible to obtain the II order transition. (author)

  18. CFD modelling of laminar-turbulent transition for airfoils and rotors using the gamma-(Re)over-tilde (theta) model

    DEFF Research Database (Denmark)

    Sørensen, Niels N.

    2009-01-01

    When predicting the flow over airfoils and rotors, the laminar-turbulent transition process can be important for the aerodynamic performance. Today, the most widespread approach is to use fully turbulent computations, where the transitional process is ignored and the entire boundary layer...... on the wings or airfoils is handled by the turbulence model. The correlation based transition model has lately shown promising results, and the present paper describes the effort of deriving the two non-public empirical correlations of the model to make the model complete. To verify the model it is applied...... to flow over a flat plate, flow over the S809 and the NACA63-415 airfoils, flow over a prolate spheroid at zero and thirty degrees angle of attack, and finally to the NREL Phase VI wind turbine rotor for the zero yaw upwind cases from the NREL/NASA Ames wind tunnel test. Copyright © 2009 John Wiley & Sons...

  19. Studies of phase transitions in the framework of interacting boson model

    International Nuclear Information System (INIS)

    Andrejevs, A.; Tambergs, J.

    2005-01-01

    Full text: The interacting boson model (IBM-1) is characterized by several groups of symmetry -U(5), SU(3), SU(3)'', O(6), corresponding in the limiting cases of this model to the definite nuclear shape (spherical, prolate and oblate axially symmetric deformed, triaxial). The precise analysis of the extended Casten triangle version of IBM-1 for the classical energy functional E(N, e ta , χ, β) has been performed according to the phase transition theory, and the conditions on model parameters for the transitions between nuclear shapes and for the coexistence between shapes has been studied

  20. Implementing autonomous clinical nurse specialist prescriptive authority: a competency-based transition model.

    Science.gov (United States)

    Klein, Tracy Ann

    2012-01-01

    The purpose of this study was to identify and implement a competency-based regulatory model that transitions clinical nurse specialists (CNSs) to autonomous prescriptive authority pursuant to change in state law. Prescriptive authority for CNSs may be optional or restricted under current state law. Implementation of the APRN Consensus Model includes full prescriptive authority for all advanced practice registered nurses. Clinical nurse specialists face barriers to establishing their prescribing authority when laws or practice change. Identification of transition models will assist CNSs who need to add prescriptive authority to their scope of practice. Identification and implementation of a competency-based transition model for expansion of CNS prescriptive authority. By January 1, 2012, 9 CNSs in the state exemplar have completed a practicum and been granted full prescriptive authority including scheduled drug prescribing. No complaints or board actions resulted from the transition to autonomous prescribing. Transition to prescribing may be facilitated through competency-based outcomes including practicum hours as appropriate to the individual CNS nursing specialty. Outcomes from this model can be used to develop and further validate educational and credentialing policies to reduce barriers for CNSs requiring prescriptive authority in other states.

  1. Plectasin shows intracellular activity against Staphylococcus aureus in human THP-1 monocytes and in a mouse peritonitis model

    DEFF Research Database (Denmark)

    Brinch, Karoline Sidelmann; Sandberg, Anne; Baudoux, Pierre

    2009-01-01

    Antimicrobial therapy of infections with Staphylococcus aureus can pose a challenge due to slow response to therapy and recurrence of infection. These treatment difficulties can partly be explained by intracellular survival of staphylococci, which is why the intracellular activity...... was maintained (maximal relative efficacy [E(max)], 1.0- to 1.3-log reduction in CFU) even though efficacy was inferior to that of extracellular killing (E(max), >4.5-log CFU reduction). Animal studies included a novel use of the mouse peritonitis model, exploiting extra- and intracellular differentiation assays...... concentration. These findings stress the importance of performing studies of extra- and intracellular activity since these features cannot be predicted from traditional MIC and killing kinetic studies. Application of both the THP-1 and the mouse peritonitis models showed that the in vitro results were similar...

  2. Climate Modelling Shows Increased Risk to Eucalyptus sideroxylon on the Eastern Coast of Australia Compared to Eucalyptus albens.

    Science.gov (United States)

    Shabani, Farzin; Kumar, Lalit; Ahmadi, Mohsen

    2017-11-24

    Aim: To identify the extent and direction of range shift of Eucalyptus sideroxylon and E. albens in Australia by 2050 through an ensemble forecast of four species distribution models (SDMs). Each was generated using four global climate models (GCMs), under two representative concentration pathways (RCPs). Location: Australia. Methods : We used four SDMs of (i) generalized linear model, (ii) MaxEnt, (iii) random forest, and (iv) boosted regression tree to construct SDMs for species E. sideroxylon and E. albens under four GCMs including (a) MRI-CGCM3, (b) MIROC5, (c) HadGEM2-AO and (d) CCSM4, under two RCPs of 4.5 and 6.0. Here, the true skill statistic (TSS) index was used to assess the accuracy of each SDM. Results: Results showed that E. albens and E. sideroxylon will lose large areas of their current suitable range by 2050 and E. sideroxylon is projected to gain in eastern and southeastern Australia. Some areas were also projected to remain suitable for each species between now and 2050. Our modelling showed that E. sideroxylon will lose suitable habitat on the western side and will not gain any on the eastern side because this region is one the most heavily populated areas in the country, and the populated areas are moving westward. The predicted decrease in E. sideroxylon's distribution suggests that land managers should monitor its population closely, and evaluate whether it meets criteria for a protected legal status. Main conclusions: Both Eucalyptus sideroxylon and E. albens will be negatively affected by climate change and it is projected that E. sideroxylon will be at greater risk of losing habitat than E. albens .

  3. Climate Modelling Shows Increased Risk to Eucalyptus sideroxylon on the Eastern Coast of Australia Compared to Eucalyptus albens

    Directory of Open Access Journals (Sweden)

    Farzin Shabani

    2017-11-01

    Full Text Available Aim: To identify the extent and direction of range shift of Eucalyptus sideroxylon and E. albens in Australia by 2050 through an ensemble forecast of four species distribution models (SDMs. Each was generated using four global climate models (GCMs, under two representative concentration pathways (RCPs. Location: Australia. Methods: We used four SDMs of (i generalized linear model, (ii MaxEnt, (iii random forest, and (iv boosted regression tree to construct SDMs for species E. sideroxylon and E. albens under four GCMs including (a MRI-CGCM3, (b MIROC5, (c HadGEM2-AO and (d CCSM4, under two RCPs of 4.5 and 6.0. Here, the true skill statistic (TSS index was used to assess the accuracy of each SDM. Results: Results showed that E. albens and E. sideroxylon will lose large areas of their current suitable range by 2050 and E. sideroxylon is projected to gain in eastern and southeastern Australia. Some areas were also projected to remain suitable for each species between now and 2050. Our modelling showed that E. sideroxylon will lose suitable habitat on the western side and will not gain any on the eastern side because this region is one the most heavily populated areas in the country, and the populated areas are moving westward. The predicted decrease in E. sideroxylon’s distribution suggests that land managers should monitor its population closely, and evaluate whether it meets criteria for a protected legal status. Main conclusions: Both Eucalyptus sideroxylon and E. albens will be negatively affected by climate change and it is projected that E. sideroxylon will be at greater risk of losing habitat than E. albens.

  4. Sustainable energy for the future. Modelling transitions to renewable and clean energy in rapidly developing countries.

    NARCIS (Netherlands)

    Urban, Frauke

    2009-01-01

    The main objective of this thesis is first to adapt energy models for the use in developing countries and second to model sustainable energy transitions and their effects in rapidly developing countries like China and India. The focus of this thesis is three-fold: a) to elaborate the differences

  5. Approaches to incorporating climate change effects in state and transition simulation models of vegetation

    Science.gov (United States)

    Becky K. Kerns; Miles A. Hemstrom; David Conklin; Gabriel I. Yospin; Bart Johnson; Dominique Bachelet; Scott Bridgham

    2012-01-01

    Understanding landscape vegetation dynamics often involves the use of scientifically-based modeling tools that are capable of testing alternative management scenarios given complex ecological, management, and social conditions. State-and-transition simulation model (STSM) frameworks and software such as PATH and VDDT are commonly used tools that simulate how landscapes...

  6. CORRELATION OF THE GLASS TRANSITION TEMPERATURE OF PLASTICIZED PVC USING A LATTICE FLUID MODEL

    Science.gov (United States)

    A model has been developed to describe the composition dependence of the glass transition temperature (Tg) of polyvinyl chloride (PVC) + plasticizer mixtures. The model is based on Sanchez-Lacombe equation of state and the Gibbs-Di Marzio criterion, which states that th...

  7. A comparative study on the flow over an airfoil using transitional turbulence models

    DEFF Research Database (Denmark)

    Lin, Mou; Sarlak Chivaee, Hamid

    2016-01-01

    This work addresses the simulation of the flow over NREL S826 airfoil under a relatively low Reynolds number (Re = 1 × 105 ) using the CFD solvers OpenFoam and ANSYS Fluent. The flow is simulated using two different transition models, γ − Reθ and k − kL − ω model, and the results are examined...

  8. Systems Operation Studies for Automated Guideway Transit Systems: Feeder Systems Model Functional Specification

    Science.gov (United States)

    1981-01-01

    This document specifies the functional requirements for the AGT-SOS Feeder Systems Model (FSM), the type of hardware required, and the modeling techniques employed by the FSM. The objective of the FSM is to map the zone-to-zone transit patronage dema...

  9. Estimating and Testing Continuous-Time Models in Finance: The Role of Transition Densities

    OpenAIRE

    Yacine Aït-Sahalia

    2009-01-01

    This article surveys recent developments to estimate and test continuous-time models in finance using discrete observations on the underlying asset price or derivative securities' prices. Both parametric and nonparametric methods are described. All these methods share a common focus on the transition density as the central object for inference and testing of the model.

  10. State-and-transition model archetypes: a global taxonomy of rangeland change

    Science.gov (United States)

    State and transition models (STMs) synthesize science-based and local knowledge to formally represent the dynamics of rangeland and other ecosystems. Mental models or concepts of ecosystem dynamics implicitly underlie all management decisions in rangelands and thus how people influence rangeland sus...

  11. The phase transition lines in pair approximation for the basic reinfection model SIRI

    International Nuclear Information System (INIS)

    Stollenwerk, Nico; Martins, Jose; Pinto, Alberto

    2007-01-01

    For a spatial stochastic epidemic model we investigate in the pair approximation scheme the differential equations for the moments. The basic reinfection model of susceptible-infected-recovered-reinfected or SIRI type is analysed, its phase transition lines calculated analytically in this pair approximation

  12. Coadministration of doxorubicin and etoposide loaded in camel milk phospholipids liposomes showed increased antitumor activity in a murine model

    Directory of Open Access Journals (Sweden)

    Maswadeh HM

    2015-04-01

    Full Text Available Hamzah M Maswadeh,1 Ahmed N Aljarbou,1 Mohammed S Alorainy,2 Arshad H Rahmani,3 Masood A Khan3 1Department of Pharmaceutics, College of Pharmacy, 2Department of Pharmacology and Therapeutics, College of Medicine, 3College of Applied Medical Sciences, Qassim University, Buraydah, Kingdom of Saudi Arabia Abstract: Small unilamellar vesicles from camel milk phospholipids (CML mixture or from 1,2 dipalmitoyl-sn-glycero-3-phosphatidylcholine (DPPC were prepared, and anticancer drugs doxorubicin (Dox or etoposide (ETP were loaded. Liposomal formulations were used against fibrosarcoma in a murine model. Results showed a very high percentage of Dox encapsulation (~98% in liposomes (Lip prepared from CML-Lip or DPPC-Lip, whereas the percentage of encapsulations of ETP was on the lower side, 22% of CML-Lip and 18% for DPPC-Lip. Differential scanning calorimetry curves show that Dox enhances the lamellar formation in CML-Lip, whereas ETP enhances the nonlamellar formation. Differential scanning calorimetry curves also showed that the presence of Dox and ETP together into DPPC-Lip produced the interdigitation effect. The in vivo anticancer activity of liposomal formulations of Dox or ETP or a combination of both was assessed against benzopyrene (BAP-induced fibrosarcoma in a murine model. Tumor-bearing mice treated with a combination of Dox and ETP loaded into CML-Lip showed increased survival and reduced tumor growth compared to other groups, including the combination of Dox and ETP in DPPC-Lip. Fibrosarcoma-bearing mice treated with a combination of free (Dox + ETP showed much higher tumor growth compared to those groups treated with CML-Lip-(Dox + ETP or DPPC-Lip-(Dox + ETP. Immunohistochemical study was also performed to show the expression of tumor-suppressor PTEN, and it was found that the tumor tissues from the group of mice treated with a combination of free (Dox + ETP showed greater loss of cytoplasmic PTEN than tumor tissues obtained from the

  13. Connecting with The Biggest Loser: an extended model of parasocial interaction and identification in health-related reality TV shows.

    Science.gov (United States)

    Tian, Yan; Yoo, Jina H

    2015-01-01

    This study investigates audience responses to health-related reality TV shows in the setting of The Biggest Loser. It conceptualizes a model for audience members' parasocial interaction and identification with cast members and explores antecedents and outcomes of parasocial interaction and identification. Data analysis suggests the following direct relationships: (1) audience members' exposure to the show is positively associated with parasocial interaction, which in turn is positively associated with identification, (2) parasocial interaction is positively associated with exercise self-efficacy, whereas identification is negatively associated with exercise self-efficacy, and (3) exercise self-efficacy is positively associated with exercise behavior. Indirect effects of parasocial interaction and identification on exercise self-efficacy and exercise behavior are also significant. We discuss the theoretical and practical implications of these findings.

  14. Emergent structured transition from variation to repetition in a biologically-plausible model of learning in basal ganglia.

    Directory of Open Access Journals (Sweden)

    Ashvin eShah

    2014-02-01

    Full Text Available Often, when animals encounter an unexpected sensory event, they transition from executing a variety of movements to repeating the movement(s that may have caused the event. According to a recent theory of action discovery (Redgrave and Gurney 2006, repetition allows the animal to represent those movements, and the outcome, as an action for later recruitment. The transition from variation to repetition often follows a non-random, structured, pattern. While the structure of the pattern can be explained by sophisticated cognitive mechanisms, simpler mechanisms based on dopaminergic modulation of basal ganglia (BG activity are thought to underlie action discovery (Redgrave and Gurney 2006. In this paper we ask the question: can simple BG-mediated mechanisms account for a structured transition from variation to repetition, or are more sophisticated cognitive mechanisms always necessary?To address this question, we present a computational model of BG-mediated biasing of behavior. In our model, unlike most other models of BG function, the BG biases behaviour through modulation of cortical response to excitation; many possible movements are represented by the cortical area; and excitation to the cortical area is topographically-organized. We subject the model to simple reaching tasks, inspired by behavioral studies, in which a location to which to reach must be selected. Locations within a target area elicit a reinforcement signal. A structured transition from variation to repetition emerges from simple BG-mediated biasing of cortical response to excitation. We show how the structured pattern influences behavior in simple and complicated tasks. We also present analyses that describe the structured transition from variation to repetition due to BG-mediated biasing and from biasing that would be expected from a type of cognitive biasing, allowing us to compare behaviour resulting from these types of biasing and make connections with future behavioural

  15. State-and-transition simulation models: a framework for forecasting landscape change

    Science.gov (United States)

    Daniel, Colin; Frid, Leonardo; Sleeter, Benjamin M.; Fortin, Marie-Josée

    2016-01-01

    SummaryA wide range of spatially explicit simulation models have been developed to forecast landscape dynamics, including models for projecting changes in both vegetation and land use. While these models have generally been developed as separate applications, each with a separate purpose and audience, they share many common features.We present a general framework, called a state-and-transition simulation model (STSM), which captures a number of these common features, accompanied by a software product, called ST-Sim, to build and run such models. The STSM method divides a landscape into a set of discrete spatial units and simulates the discrete state of each cell forward as a discrete-time-inhomogeneous stochastic process. The method differs from a spatially interacting Markov chain in several important ways, including the ability to add discrete counters such as age and time-since-transition as state variables, to specify one-step transition rates as either probabilities or target areas, and to represent multiple types of transitions between pairs of states.We demonstrate the STSM method using a model of land-use/land-cover (LULC) change for the state of Hawai'i, USA. Processes represented in this example include expansion/contraction of agricultural lands, urbanization, wildfire, shrub encroachment into grassland and harvest of tree plantations; the model also projects shifts in moisture zones due to climate change. Key model output includes projections of the future spatial and temporal distribution of LULC classes and moisture zones across the landscape over the next 50 years.State-and-transition simulation models can be applied to a wide range of landscapes, including questions of both land-use change and vegetation dynamics. Because the method is inherently stochastic, it is well suited for characterizing uncertainty in model projections. When combined with the ST-Sim software, STSMs offer a simple yet powerful means for developing a wide range of models of

  16. Specification, construction, and exact reduction of state transition system models of biochemical processes.

    Science.gov (United States)

    Bugenhagen, Scott M; Beard, Daniel A

    2012-10-21

    Biochemical reaction systems may be viewed as discrete event processes characterized by a number of states and state transitions. These systems may be modeled as state transition systems with transitions representing individual reaction events. Since they often involve a large number of interactions, it can be difficult to construct such a model for a system, and since the resulting state-level model can involve a huge number of states, model analysis can be difficult or impossible. Here, we describe methods for the high-level specification of a system using hypergraphs, for the automated generation of a state-level model from a high-level model, and for the exact reduction of a state-level model using information from the high-level model. Exact reduction is achieved through the automated application to the high-level model of the symmetry reduction technique and reduction by decomposition by independent subsystems, allowing potentially significant reductions without the need to generate a full model. The application of the method to biochemical reaction systems is illustrated by models describing a hypothetical ion-channel at several levels of complexity. The method allows for the reduction of the otherwise intractable example models to a manageable size.

  17. Effects of magma and conduit conditions on transitions between effusive and explosive activity: a numerical modeling approach

    Science.gov (United States)

    Carr, B. B.; De'Michieli Vitturi, M.; Clarke, A. B.; Voight, B.

    2013-12-01

    Transitions between effusive and explosive eruptions, common at silicic volcanoes, can occur between distinct eruptive episodes or can occur as changes between effusive and explosive phases within a single episode. The precise causes of these transitions are difficult to determine due to the multitude of mechanisms and variables that can influence fragmentation thresholds. Numerical modeling of magma ascent within a volcanic conduit allows the influence of key variables to be extensively tested. We study the effect of different variables on the mass eruption rate at the vent using a conservative, 1-D, two-phase, steady-state model that allows for lateral gas loss at shallow depths. Several fragmentation criteria are also tested. We are able to generate a number of regime diagrams for a variety of magma and conduit conditions that constrain transitions from effusive to explosive episodes. We show that a transition to explosive activity can occur without changes in the bulk chemistry, crystal volume fraction, or gas mass fraction of the magma. Eruptive style can be controlled by the pressure gradient within the conduit caused by either overpressure in the chamber or varying lava dome size at the vent. Specific results are sensitive to both magma temperature and conduit geometry. It is important that these variables are well constrained when applying this model to different volcanic systems. We apply our model to the recent activity at Merapi Volcano in Indonesia. We constrain model input and output parameters using current petrologic, seismic, and geodetic studies of the Merapi system, and vary critical parameters over reasonable ranges as documented in the literature. Our model is able to reproduce eruption rates observed during both the 2006 effusive and 2010 explosive/effusive eruptions. Our modeling suggests that a combination of chamber overpressure, increased volatile content, and decreased crystal content due to the voluminous injection of new magma into the

  18. Simple model for phonon dispersion of nonstoichiometric transition metal carbides

    International Nuclear Information System (INIS)

    Splettstoesser, B.

    1977-09-01

    The simple shell model for the acoustic dispersion curves of ideal and nonstoichiometric Niobium Carbide is presented. The main emphasis is put on a qualitative understanding of the rather sharp dips, observed in some of the branches, and, in particular, their extreme sensitivity to C-vacancies. For comparison the 'normal' acoustic dispersion curves of TiC - which can be described with the same model - and their weak stoichiometry dependence are investigated. For both materials the one phonon cross section of the defect crystal is calculated in various approximations. The obtained phonon shifts and broadenings are small for TiC, but large for NbC in the dip regions - in good agreement with experimental results. Both, the dip structure observed for TaC and the 'normal' acoustic dispersion curves of HfC, ZrC can be described with our model as well. (orig.) [de

  19. A Transition Towards a Data-Driven Business Model (DDBM)

    DEFF Research Database (Denmark)

    Zaki, Mohamed; Bøe-Lillegraven, Tor; Neely, Andy

    2016-01-01

    Nettavisen is a Norwegian online start-up that experienced a boost after the financial crisis of 2009. Since then, the firm has been able to increase its market share and profitability through the use of highly disruptive business models, allowing the relatively small staff to outcompete powerhouse...... legacy-publishing companies and new media players such as Facebook and Google. These disruptive business models have been successful, as Nettavisen captured a large market share in Norway early on, and was consistently one of the top-three online news sites in Norway. Capitalising on media data explosion...

  20. First-order dynamical phase transition in models of glasses: an approach based on ensembles of histories

    Energy Technology Data Exchange (ETDEWEB)

    Garrahan, Juan P [School of Physics and Astronomy, University of Nottingham, Nottingham, NG7 2RD (United Kingdom); Jack, Robert L [Department of Chemistry, University of California, Berkeley, CA 94720-1460 (United States); Lecomte, Vivien; Duijvendijk, Kristina van; Wijland, Frederic van [Laboratoire Matiere et Systemes Complexes (CNRS UMR 7057), Universite Paris Diderot, 10 rue Alice Domon et Leonie Duquet, 75205 Paris Cedex 13 (France); Pitard, Estelle [Laboratoire des Colloides, Verres et Nanomateriaux (CNRS UMR 5587), Universite de Montpellier II, place Eugene Bataillon, 34095 Montpellier Cedex 5 (France)

    2009-02-20

    We investigate the dynamics of kinetically constrained models of glass formers by analysing the statistics of trajectories of the dynamics, or histories, using large deviation function methods. We show that, in general, these models exhibit a first-order dynamical transition between active and inactive dynamical phases. We argue that the dynamical heterogeneities displayed by these systems are a manifestation of dynamical first-order phase coexistence. In particular, we calculate dynamical large deviation functions, both analytically and numerically, for the Fredrickson-Andersen model, the East model, and constrained lattice gas models. We also show how large deviation functions can be obtained from a Landau-like theory for dynamical fluctuations. We discuss possibilities for similar dynamical phase-coexistence behaviour in other systems with heterogeneous dynamics.

  1. Low temperature electroweak phase transition in the Standard Model with hidden scale invariance

    Directory of Open Access Journals (Sweden)

    Suntharan Arunasalam

    2018-01-01

    Full Text Available We discuss a cosmological phase transition within the Standard Model which incorporates spontaneously broken scale invariance as a low-energy theory. In addition to the Standard Model fields, the minimal model involves a light dilaton, which acquires a large vacuum expectation value (VEV through the mechanism of dimensional transmutation. Under the assumption of the cancellation of the vacuum energy, the dilaton develops a very small mass at 2-loop order. As a result, a flat direction is present in the classical dilaton-Higgs potential at zero temperature while the quantum potential admits two (almost degenerate local minima with unbroken and broken electroweak symmetry. We found that the cosmological electroweak phase transition in this model can only be triggered by a QCD chiral symmetry breaking phase transition at low temperatures, T≲132 MeV. Furthermore, unlike the standard case, the universe settles into the chiral symmetry breaking vacuum via a first-order phase transition which gives rise to a stochastic gravitational background with a peak frequency ∼10−8 Hz as well as triggers the production of approximately solar mass primordial black holes. The observation of these signatures of cosmological phase transitions together with the detection of a light dilaton would provide a strong hint of the fundamental role of scale invariance in particle physics.

  2. Low temperature electroweak phase transition in the Standard Model with hidden scale invariance

    Science.gov (United States)

    Arunasalam, Suntharan; Kobakhidze, Archil; Lagger, Cyril; Liang, Shelley; Zhou, Albert

    2018-01-01

    We discuss a cosmological phase transition within the Standard Model which incorporates spontaneously broken scale invariance as a low-energy theory. In addition to the Standard Model fields, the minimal model involves a light dilaton, which acquires a large vacuum expectation value (VEV) through the mechanism of dimensional transmutation. Under the assumption of the cancellation of the vacuum energy, the dilaton develops a very small mass at 2-loop order. As a result, a flat direction is present in the classical dilaton-Higgs potential at zero temperature while the quantum potential admits two (almost) degenerate local minima with unbroken and broken electroweak symmetry. We found that the cosmological electroweak phase transition in this model can only be triggered by a QCD chiral symmetry breaking phase transition at low temperatures, T ≲ 132 MeV. Furthermore, unlike the standard case, the universe settles into the chiral symmetry breaking vacuum via a first-order phase transition which gives rise to a stochastic gravitational background with a peak frequency ∼10-8 Hz as well as triggers the production of approximately solar mass primordial black holes. The observation of these signatures of cosmological phase transitions together with the detection of a light dilaton would provide a strong hint of the fundamental role of scale invariance in particle physics.

  3. A Spalart–Allmaras local correlation–based transition model for Thermo–fuid dynamics

    Science.gov (United States)

    D’Alessandro, V.; Garbuglia, F.; Montelpare, S.; Zoppi, A.

    2017-11-01

    The study of innovative energy systems often involves complex fluid flows problems and the Computational Fluid-Dynamics (CFD) is one of the main tools of analysis. It is important to put in evidence that in several energy systems the flow field experiences the laminar-to-turbulent transition. Direct Numerical Simulations (DNS) or Large Eddy Simulation (LES) are able to predict the flow transition but they are still inapplicable to the study of real problems due to the significant computational resources requirements. Differently standard Reynolds Averaged Navier Stokes (RANS) approaches are not always reliable since they assume a fully turbulent regime. In order to overcome this drawback in the recent years some locally formulated transition RANS models have been developed. In this work, we present a local correlation–based transition approach adding two equations that control the laminar-toturbulent transition process –γ and \\[\\overset{}{\\mathop{{{\\operatorname{Re}}θ, \\text{t}}}} \\] – to the well–known Spalart–Allmaras (SA) turbulence model. The new model was implemented within OpenFOAM code. The energy equation is also implemented in order to evaluate the model performance in thermal–fluid dynamics applications. In all the considered cases a very good agreement between numerical and experimental data was observed.

  4. Thermodynamic properties of a quasi-harmonic model for ferroelectric transitions

    International Nuclear Information System (INIS)

    Mkam Tchouobiap, S E; Mashiyama, H

    2011-01-01

    Within a framework of a quasi-harmonic model for quantum particles in a local potential of the double Morse type and within the mean-field approximation for interactions between particles, we investigate the thermodynamic properties of ferroelectric materials. A quantum thermodynamic treatment gives analytic expressions for the internal energy, the entropy, the specific heat, and the static susceptibility. The calculated thermodynamic characteristics are studied as a function of temperature and energy barrier, where it is shown that at the proper choice of the theory parameters, particularly the energy barrier, the model system exhibits characteristic features of either second-order tricritical or first-order phase transitions. Our results indicate that the barrier energy seems to be an important criterion for the character of the structural phase transition. The influence of quantum fluctuations manifested on zero-point energy on the phase transition and thermodynamic properties is analyzed and discussed. This leads to several quantum effects, including the existence of a saturation regime at low temperatures, where the order parameter saturates giving thermodynamic saturation of the calculated thermodynamic quantities. It is found that both quantum effects and energy barrier magnitude have an important influence on the thermodynamic properties of the ferroelectric materials and on driving the phase transition at low temperatures. Also, the analytical parameters' effect on the transition temperature is discussed, which seems to give a general insight into the structural phase transition and its nature.

  5. Investigating the Influence of Auxiliary Rails on Dynamic Behavior of Railway Transition Zone by a 3D Train-Track Interaction Model

    Directory of Open Access Journals (Sweden)

    H. Heydari-Noghabi

    Full Text Available Abstract Abrupt track vertical stiffness variations along railway tracks can lead to increased dynamic loads, asymmetric deformations, damaged track components, and consequently, increased maintenance costs. The junction of slab track and ballasted track is one of the existing areas where vertical track stiffness can suddenly change, therefore requiring a transition zone that smoothes the track stiffness change. One of the methods for constructing the transition zone at the junction of slab and ballasted tracks is to install auxiliary rails along the transition zone. In the present study, the dynamic behavior of this type of transition zone was evaluated by a train-track interaction model. For this purpose, a 3D model of the railway track was made, representing the slab track, the transition zone, and the ballasted track. Then, the modeling results were validated by the results of field tests. Afterwards, in order to study the dynamic behavior of the transition zone with auxiliary rails, different sensitive analyses, such as vehicle speed, vehicle load, number of auxiliary rails and railpad stiffness, were performed with the model. The obtained results showed that the use of auxiliary rails reduced the rail deflection variations along the transition zone from 35% to 28% for low and medium speeds (120, 160, 200 km/h, and from 40% to 33% for high speeds (250, 300 km/h.

  6. Heavy baryon transitions in a relativistic three-quark model

    International Nuclear Information System (INIS)

    Ivanov, M.A.; Lyubovitskij, V.E.; Koerner, J.G.; Kroll, P.

    1997-01-01

    Exclusive semileptonic decays of bottom and charm baryons are considered within a relativistic three-quark model with a Gaussian shape for the baryon-three-quark vertex and standard quark propagators. We calculate the baryonic Isgur-Wise functions, decay rates, and asymmetry parameters. copyright 1997 The American Physical Society

  7. Modelling the transition from simple to complex Ca oscillations in ...

    Indian Academy of Sciences (India)

    2014-04-29

    Apr 29, 2014 ... feedback regulation of degradation and production. In our model, the apical and the basal ... transmitters or hormones, pancreatic acinar cells exhibit intracellular calcium oscillations (Tanimura 2009; ...... Putney JW, Broad LM, Braun FJ, Lievremont JP and Bird GH 2001. Mechanisms of capacitative calcium ...

  8. Modelling the transition from simple to complex Ca oscillations in ...

    Indian Academy of Sciences (India)

    2014-04-29

    Apr 29, 2014 ... 2Department of Mathematics, University of Auckland, Private Bag 92019, Auckland, New Zealand. *Corresponding author (Fax, +91-755-2670562; Email, mannumanhas@gmail.com). A mathematical model is proposed which systematically investigates complex calcium oscillations in pancreatic.

  9. A simple model of big-crunch/big-bang transition

    Energy Technology Data Exchange (ETDEWEB)

    Malkiewicz, Przemyslaw; Piechocki, Wlodzimierz [Department of Theoretical Physics, Soltan Institute for Nuclear Studies, Hoza 69, 00-681 Warsaw (Poland)

    2006-05-07

    We present classical and quantum dynamics of a test particle in the compactified Milne space. Background spacetime includes one compact space dimension undergoing contraction to a point followed by expansion. Quantization consists in finding a self-adjoint representation of the algebra of particle observables. Our model offers some insight into the nature of the cosmic singularity.

  10. Magnetic transition phase diagram of cobalt clusters electrodeposited on HOPG: Experimental and micromagnetic modelling study

    Energy Technology Data Exchange (ETDEWEB)

    Rivera, M., E-mail: mrivera@fisica.unam.m [Imperial College London, Department of Chemistry, South Kensington Campus, London SW7 2AZ (United Kingdom); Rios-Reyes, C.H. [Universidad Autonoma Metropolitana-Azcapotzalco, Departamento de Materiales, Av. San Pablo 180, Col. Reynosa Tamaulipas, C.P. 02200, Mexico D.F. (Mexico); Universidad Autonoma del Estado de Hidalgo, Centro de Investigaciones Quimicas, Mineral de la Reforma, Hidalgo, C.P. 42181 (Mexico); Mendoza-Huizar, L.H. [Universidad Autonoma del Estado de Hidalgo, Centro de Investigaciones Quimicas, Mineral de la Reforma, Hidalgo, C.P. 42181 (Mexico)

    2011-04-15

    The magnetic transition from mono- to multidomain magnetic states of cobalt clusters electrodeposited on highly oriented pyrolytic graphite electrodes was studied experimentally using Magnetic Force Microscopy. From these images, it was found that the critical size of the magnetic transition is dominated by the height rather than the diameter of the aggregate. This experimental behavior was found to be consistent with a theoretical single-domain ferromagnetic model that states that a critical height limits the monodomain state. By analyzing the clusters magnetic states as a function of their dimensions, magnetic exchange constant and anisotropy value were obtained and used to calculate other magnetic properties such as the exchange length, magnetic wall thickness, etc. Finally, a micromagnetic simulation study correctly predicted the experimental magnetic transition phase diagram. - Research highlights: > Electrodeposition of cobalt clusters. > Mono to multidomain magnetic transition. > Magnetic phase diagram.

  11. Magnetic transition phase diagram of cobalt clusters electrodeposited on HOPG: Experimental and micromagnetic modelling study

    International Nuclear Information System (INIS)

    Rivera, M.; Rios-Reyes, C.H.; Mendoza-Huizar, L.H.

    2011-01-01

    The magnetic transition from mono- to multidomain magnetic states of cobalt clusters electrodeposited on highly oriented pyrolytic graphite electrodes was studied experimentally using Magnetic Force Microscopy. From these images, it was found that the critical size of the magnetic transition is dominated by the height rather than the diameter of the aggregate. This experimental behavior was found to be consistent with a theoretical single-domain ferromagnetic model that states that a critical height limits the monodomain state. By analyzing the clusters magnetic states as a function of their dimensions, magnetic exchange constant and anisotropy value were obtained and used to calculate other magnetic properties such as the exchange length, magnetic wall thickness, etc. Finally, a micromagnetic simulation study correctly predicted the experimental magnetic transition phase diagram. - Research highlights: → Electrodeposition of cobalt clusters. →Mono to multidomain magnetic transition. → Magnetic phase diagram.

  12. Deflagration to Detonation Transition (DDT) Simulations of HMX Powder Using the HERMES Model

    Science.gov (United States)

    White, Bradley; Reaugh, John; Tringe, Joseph

    2017-06-01

    We performed computer simulations of DDT experiments with Class I HMX powder using the HERMES model (High Explosive Response to MEchanical Stimulus) in ALE3D. Parameters for the model were fitted to the limited available mechanical property data of the low-density powder, and to the Shock to Detonation Transition (SDT) test results. The DDT tests were carried out in steel-capped polycarbonate tubes. This arrangement permits direct observation of the event using both flash X-ray radiography and high speed camera imaging, and provides a stringent test of the model. We found the calculated detonation transition to be qualitatively similar to experiment. Through simulation we also explored the effects of confinement strength, the HMX particle size distribution and porosity on the computed detonation transition location. This work was performed under the auspices of the US DOE by LLNL under Contract DE-AC52-07NA27344.

  13. Statistically induced topological phase transitions in a one-dimensional superlattice anyon-Hubbard model

    Science.gov (United States)

    Zuo, Zheng-Wei; Li, Guo-Ling; Li, Liben

    2018-03-01

    We theoretically investigate topological properties of the one-dimensional superlattice anyon-Hubbard model, which can be mapped to a superlattice bose-Hubbard model with an occupation-dependent phase factor by fractional Jordan-Wigner transformation. The topological anyon-Mott insulator is identified by topological invariant and edge modes using exact diagonalization and the density matrix renormalization group algorithm. When only the statistical angle is varied and all other parameters are fixed, a statistically induced topological phase transition can be realized, which provides insights into the topological phase transitions. What's more, we give an explanation of the statistically induced topological phase transition. The topological anyon-Mott phases can also appear in a variety of superlattice anyon-Hubbard models.

  14. Phase transition and gravitational wave phenomenology of scalar conformal extensions of the Standard Model

    Energy Technology Data Exchange (ETDEWEB)

    Marzola, Luca; Racioppi, Antonio; Vaskonen, Ville [National Institute of Chemical Physics and Biophysics, Tallinn (Estonia)

    2017-07-15

    Thermal corrections in classically conformal models typically induce a strong first-order electroweak phase transition, thereby resulting in a stochastic gravitational background that could be detectable at gravitational wave observatories. After reviewing the basics of classically conformal scenarios, in this paper we investigate the phase transition dynamics in a thermal environment and the related gravitational wave phenomenology within the framework of scalar conformal extensions of the Standard Model. We find that minimal extensions involving only one additional scalar field struggle to reproduce the correct phase transition dynamics once thermal corrections are accounted for. Next-to-minimal models, instead, yield the desired electroweak symmetry breaking and typically result in a very strong gravitational wave signal. (orig.)

  15. Restless led syndrome model Drosophila melanogaster show successful olfactory learning and 1-day retention of the acquired memory

    Directory of Open Access Journals (Sweden)

    Mika F. Asaba

    2013-09-01

    Full Text Available Restless Legs Syndrome (RLS is a prevalent but poorly understood disorder that ischaracterized by uncontrollable movements during sleep, resulting in sleep disturbance.Olfactory memory in Drosophila melanogaster has proven to be a useful tool for the study ofcognitive deficits caused by sleep disturbances, such as those seen in RLS. A recently generatedDrosophila model of RLS exhibited disturbed sleep patterns similar to those seen in humans withRLS. This research seeks to improve understanding of the relationship between cognitivefunctioning and sleep disturbances in a new model for RLS. Here, we tested learning andmemory in wild type and dBTBD9 mutant flies by Pavlovian olfactory conditioning, duringwhich a shock was paired with one of two odors. Flies were then placed in a T-maze with oneodor on either side, and successful associative learning was recorded when the flies chose theside with the unpaired odor. We hypothesized that due to disrupted sleep patterns, dBTBD9mutant flies would be unable to learn the shock-odor association. However, the current studyreports that the recently generated Drosophila model of RLS shows successful olfactorylearning, despite disturbed sleep patterns, with learning performance levels matching or betterthan wild type flies.

  16. Bounded noise induced first-order phase transitions in a baseline non-spatial model of gene transcription

    Science.gov (United States)

    d'Onofrio, Alberto; Caravagna, Giulio; de Franciscis, Sebastiano

    2018-02-01

    In this work we consider, from a statistical mechanics point of view, the effects of bounded stochastic perturbations of the protein decay rate for a bistable biomolecular network module. Namely, we consider the perturbations of the protein decay/binding rate constant (DBRC) in a circuit modeling the positive feedback of a transcription factor (TF) on its own synthesis. The DBRC models both the spontaneous degradation of the TF and its linking to other unknown biomolecular factors or drugs. We show that bounded perturbations of the DBRC preserve the positivity of the parameter value (and also its limited variation), and induce effects of interest. First, the noise amplitude induces a first-order phase transition. This is of interest since the system in study has neither spatial components nor it is composed by multiple interacting networks. In particular, we observe that the system passes from two to a unique stochastic attractor, and vice-versa. This behavior is different from noise-induced transitions (also termed phenomenological bifurcations), where a unique stochastic attractor changes its shape depending on the values of a parameter. Moreover, we observe irreversible jumps as a consequence of the above-mentioned phase transition. We show that the illustrated mechanism holds for general models with the same deterministic hysteresis bifurcation structure. Finally, we illustrate the possible implications of our findings to the intracellular pharmacodynamics of drugs delivered in continuous infusion.

  17. Two-photon finite-pulse model for resonant transitions in attosecond experiments

    Science.gov (United States)

    Jiménez-Galán, Álvaro; Martín, Fernando; Argenti, Luca

    2016-02-01

    We present an analytical model capable of describing two-photon ionization of atoms with attosecond pulses in the presence of intermediate and final isolated autoionizing states. The model is based on the finite-pulse formulation of second-order time-dependent perturbation theory. It approximates the intermediate and final states with Fano's theory for resonant continua, and it depends on a small set of atomic parameters that can either be obtained from separate ab initio calculations or be extracted from a few selected experiments. We use the model to compute the two-photon resonant photoelectron spectrum of helium below the N =2 threshold for the RABITT (reconstruction of attosecond beating by interference of two-photon transitions) pump-probe scheme, in which an XUV attosecond pulse train is used in association with a weak IR probe, obtaining results in quantitative agreement with those from accurate ab initio simulations. In particular, we show that (i) the use of finite pulses results in a homogeneous redshift of the RABITT beating frequency, as well as a resonant modulation of the beating frequency in proximity to intermediate autoionizing states; (ii) the phase of resonant two-photon amplitudes generally experiences a continuous excursion as a function of the intermediate detuning, with either zero or 2 π overall variation.

  18. The value of information for woodland management: Updating a state–transition model

    Science.gov (United States)

    Morris, William K.; Runge, Michael C.; Vesk, Peter A.

    2017-01-01

    Value of information (VOI) analyses reveal the expected benefit of reducing uncertainty to a decision maker. Most ecological VOI analyses have focused on population models rarely addressing more complex community models. We performed a VOI analysis for a complex state–transition model of Box-Ironbark Forest and Woodland management. With three management alternatives (limited harvest/firewood removal (HF), ecological thinning (ET), and no management), managing the system optimally (for 150 yr) with the original information would, on average, increase the amount of forest in a desirable state from 19% to 35% (a 16-percentage point increase). Resolving all uncertainty would, on average, increase the final percentage to 42% (a 19-percentage point increase). However, only resolving the uncertainty for a single parameter was worth almost two-thirds the value of resolving all uncertainty. We found the VOI to depend on the number of management options, increasing as the management flexibility increased. Our analyses show it is more cost-effective to monitor low-density regrowth forest than other states and more cost-effective to experiment with the no-management alternative than the other management alternatives. Importantly, the most cost-effective strategies did not include either the most desired forest states or the least understood management strategy, ET. This implies that managers cannot just rely on intuition to tell them where the most VOI will lie, as critical uncertainties in a complex system are sometimes cryptic.

  19. Ferromagnetic transition in a simple variant of the Ising model on multiplex networks

    Science.gov (United States)

    Krawiecki, A.

    2018-02-01

    Multiplex networks consist of a fixed set of nodes connected by several sets of edges which are generated separately and correspond to different networks ("layers"). Here, a simple variant of the Ising model on multiplex networks with two layers is considered, with spins located in the nodes and edges corresponding to ferromagnetic interactions between them. Critical temperatures for the ferromagnetic transition are evaluated for the layers in the form of random Erdös-Rényi graphs or heterogeneous scale-free networks using the mean-field approximation and the replica method, from the replica symmetric solution. Both methods require the use of different "partial" magnetizations, associated with different layers of the multiplex network, and yield qualitatively similar results. If the layers are strongly heterogeneous the critical temperature differs noticeably from that for the Ising model on a network being a superposition of the two layers, evaluated in the mean-field approximation neglecting the effect of the underlying multiplex structure on the correlations between the degrees of nodes. The critical temperature evaluated from the replica symmetric solution depends sensitively on the correlations between the degrees of nodes in different layers and shows satisfactory quantitative agreement with that obtained from Monte Carlo simulations. The critical behavior of the magnetization for the model with strongly heterogeneous layers can depend on the distributions of the degrees of nodes and is then determined by the properties of the most heterogeneous layer.

  20. Business model renewal and ambidexterity: Structural alteration and strategy formation process during transition to a Cloud business model

    NARCIS (Netherlands)

    S. Khanagha (Saeed); H.W. Volberda (Henk); I. Oshri (Ilan)

    2014-01-01

    textabstractThis paper presents the findings of a longitudinal study of a large corporation's transition to a new business model in the face of a major transformation in the ICT industry brought about by Cloud computing. We build theory on the process of business model innovation through a

  1. The BACHD Rat Model of Huntington Disease Shows Specific Deficits in a Test Battery of Motor Function

    Directory of Open Access Journals (Sweden)

    Giuseppe Manfré

    2017-11-01

    Full Text Available Rationale: Huntington disease (HD is a progressive neurodegenerative disorder characterized by motor, cognitive and neuropsychiatric symptoms. HD is usually diagnosed by the appearance of motor deficits, resulting in skilled hand use disruption, gait abnormality, muscle wasting and choreatic movements. The BACHD transgenic rat model for HD represents a well-established transgenic rodent model of HD, offering the prospect of an in-depth characterization of the motor phenotype.Objective: The present study aims to characterize different aspects of motor function in BACHD rats, combining classical paradigms with novel high-throughput behavioral phenotyping.Methods: Wild-type (WT and transgenic animals were tested longitudinally from 2 to 12 months of age. To measure fine motor control, rats were challenged with the pasta handling test and the pellet reaching test. To evaluate gross motor function, animals were assessed by using the holding bar and the grip strength tests. Spontaneous locomotor activity and circadian rhythmicity were assessed in an automated home-cage environment, namely the PhenoTyper. We then integrated existing classical methodologies to test motor function with automated home-cage assessment of motor performance.Results: BACHD rats showed strong impairment in muscle endurance at 2 months of age. Altered circadian rhythmicity and locomotor activity were observed in transgenic animals. On the other hand, reaching behavior, forepaw dexterity and muscle strength were unaffected.Conclusions: The BACHD rat model exhibits certain features of HD patients, like muscle weakness and changes in circadian behavior. We have observed modest but clear-cut deficits in distinct motor phenotypes, thus confirming the validity of this transgenic rat model for treatment and drug discovery purposes.

  2. Estimation of Catchment Transit Time in Fuji River Basin by using an improved Tank model

    Science.gov (United States)

    Wenchao, M.; Yamanaka, T.; Wakiyama, Y.; Wang, P.

    2013-12-01

    discharge basically satisfied requirements of reproducing water fluxes and their balance, while improvements in parameter estimations relating to isotope mass balance is necessary. Water balance and isotopes balance have been exercised in abundant simulations by using Mont-Carlo method, and the optimal parameters combination generated reliable result. Later, we figured out the temporal-variant MTT as well as the degree of influence that brought by precipitation event, where the results showed inverse relationship between precipitation amount and MTT value. Reference: [1] Jeffrey. J. McDonnell, Kevin J. McGuire, Aggarwal, P., et al. 2010. How old is stream water? Open questions in catchment transit time conceptualization, modeling and analysis. Hydro. Process. 24, 1745-1754. [2] Kevin J. McGuire, Jeffrey J. McDonnell. 2006. A review and evaluation of transit time modeling. Journal of Hydrology. 330, 543-563.

  3. Evaporation-condensation transition of the two-dimensional Potts model in the microcanonical ensemble

    KAUST Repository

    Nogawa, Tomoaki

    2011-12-05

    The evaporation-condensation transition of the Potts model on a square lattice is numerically investigated by the Wang-Landau sampling method. An intrinsically system-size-dependent discrete transition between supersaturation state and phase-separation state is observed in the microcanonical ensemble by changing constrained internal energy. We calculate the microcanonical temperature, as a derivative of microcanonical entropy, and condensation ratio, and perform a finite-size scaling of them to indicate the clear tendency of numerical data to converge to the infinite-size limit predicted by phenomenological theory for the isotherm lattice gas model. © 2011 American Physical Society.

  4. Entanglement and fidelity signatures of quantum phase transitions in spin liquid models

    OpenAIRE

    Tribedi, Amit; Bose, Indrani

    2008-01-01

    We consider a spin ladder model which is known to have matrix product states as exact ground states with spin liquid characteristics. The model has two critical-point transitions at the parameter values u=0 and infinity. We study the variation of entanglement and fidelity measures in the ground states as a function of u and specially look for signatures of quantum phase transitions at u=0 and infinity. The two different entanglement measures used are S(i) (the single-site von Neumann entropy)...

  5. Methods used to parameterize the spatially-explicit components of a state-and-transition simulation model

    Science.gov (United States)

    Sleeter, Rachel; Acevedo, William; Soulard, Christopher E.; Sleeter, Benjamin M.

    2015-01-01

    Spatially-explicit state-and-transition simulation models of land use and land cover (LULC) increase our ability to assess regional landscape characteristics and associated carbon dynamics across multiple scenarios. By characterizing appropriate spatial attributes such as forest age and land-use distribution, a state-and-transition model can more effectively simulate the pattern and spread of LULC changes. This manuscript describes the methods and input parameters of the Land Use and Carbon Scenario Simulator (LUCAS), a customized state-and-transition simulation model utilized to assess the relative impacts of LULC on carbon stocks for the conterminous U.S. The methods and input parameters are spatially explicit and describe initial conditions (strata, state classes and forest age), spatial multipliers, and carbon stock density. Initial conditions were derived from harmonization of multi-temporal data characterizing changes in land use as well as land cover. Harmonization combines numerous national-level datasets through a cell-based data fusion process to generate maps of primary LULC categories. Forest age was parameterized using data from the North American Carbon Program and spatially-explicit maps showing the locations of past disturbances (i.e. wildfire and harvest). Spatial multipliers were developed to spatially constrain the location of future LULC transitions. Based on distance-decay theory, maps were generated to guide the placement of changes related to forest harvest, agricultural intensification/extensification, and urbanization. We analyze the spatially-explicit input parameters with a sensitivity analysis, by showing how LUCAS responds to variations in the model input. This manuscript uses Mediterranean California as a regional subset to highlight local to regional aspects of land change, which demonstrates the utility of LUCAS at many scales and applications.

  6. Methods used to parameterize the spatially-explicit components of a state-and-transition simulation model

    Directory of Open Access Journals (Sweden)

    Rachel R. Sleeter

    2015-06-01

    Full Text Available Spatially-explicit state-and-transition simulation models of land use and land cover (LULC increase our ability to assess regional landscape characteristics and associated carbon dynamics across multiple scenarios. By characterizing appropriate spatial attributes such as forest age and land-use distribution, a state-and-transition model can more effectively simulate the pattern and spread of LULC changes. This manuscript describes the methods and input parameters of the Land Use and Carbon Scenario Simulator (LUCAS, a customized state-and-transition simulation model utilized to assess the relative impacts of LULC on carbon stocks for the conterminous U.S. The methods and input parameters are spatially explicit and describe initial conditions (strata, state classes and forest age, spatial multipliers, and carbon stock density. Initial conditions were derived from harmonization of multi-temporal data characterizing changes in land use as well as land cover. Harmonization combines numerous national-level datasets through a cell-based data fusion process to generate maps of primary LULC categories. Forest age was parameterized using data from the North American Carbon Program and spatially-explicit maps showing the locations of past disturbances (i.e. wildfire and harvest. Spatial multipliers were developed to spatially constrain the location of future LULC transitions. Based on distance-decay theory, maps were generated to guide the placement of changes related to forest harvest, agricultural intensification/extensification, and urbanization. We analyze the spatially-explicit input parameters with a sensitivity analysis, by showing how LUCAS responds to variations in the model input. This manuscript uses Mediterranean California as a regional subset to highlight local to regional aspects of land change, which demonstrates the utility of LUCAS at many scales and applications.

  7. A Framework for Quantitative Modeling of Neural Circuits Involved in Sleep-to-Wake Transition

    Directory of Open Access Journals (Sweden)

    Siamak eSorooshyari

    2015-02-01

    Full Text Available Identifying the neuronal circuits and dynamics of sleep-to-wake transition is essential to understanding brain regulation of behavioral states, including sleep-wake cycles, arousal, and hyperarousal. Recent work by different laboratories has used optogenetics to determine the role of individual neuromodulators in state transitions. The optogenetically-driven data does not yet provide a multi-dimensional schematic of the mechanisms underlying changes in vigilance states. This work presents a modeling framework to interpret, assist, and drive research on the sleep-regulatory network. We identify feedback, redundancy, and gating hierarchy as three fundamental aspects of this model. The presented model is expected to expand as additional data on the contribution of each transmitter to a vigilance state becomes available. Incorporation of conductance-based models of neuronal ensembles into this model and existing models of cortical excitability will provide more comprehensive insight into sleep dynamics as well as sleep and arousal-related disorders.

  8. Coupled Model for CO2 Leaks from Geological Storage: Geomechanics, Fluid Flow and Phase Transitions

    Science.gov (United States)

    Gor, G.; Prevost, J.

    2013-12-01

    Deep saline aquifers are considered as a promising option for long-term storage of carbon dioxide. However, risk of CO2 leakage from the aquifers through faults, natural or induced fractures or abandoned wells cannot be disregarded. Therefore, modeling of various leakage scenarios is crucial when selecting a site for CO2 sequestration and choosing proper operational conditions. Carbon dioxide is injected into wells at supercritical conditions (t > 31.04 C, P > 73.82 bar), and these conditions are maintained in the deep aquifers (at 1-2 km depth) due to hydrostatic pressure and geothermal gradient. However, if CO2 and brine start to migrate from the aquifer upward, both pressure and temperature will decrease, and at the depth of 500-750 m, the conditions for CO2 will become subcritical. At subcritical conditions, CO2 starts boiling and the character of the flow changes dramatically due to appearance of the third (vapor) phase and latent heat effects. When modeling CO2 leaks, one needs to couple the multiphase flow in porous media with geomechanics. These capabilities are provided by Dynaflow, a finite element analysis program [1]; Dynaflow has already showed to be efficient for modeling caprock failure causing CO2 leaks [2, 3]. Currently we have extended the capabilities of Dynaflow with the phase transition module, based on two-phase and three-phase isenthalpic flash calculations [4]. We have also developed and implemented an efficient method for solving heat and mass transport with the phase transition using our flash module. Therefore, we have developed a robust tool for modeling CO2 leaks. In the talk we will give a brief overview of our method and illustrate it with the results of simulations for characteristic test cases. References: [1] J.H. Prevost, DYNAFLOW: A Nonlinear Transient Finite Element Analysis Program. Department of Civil and Environmental Engineering, Princeton University, Princeton, NJ. http://www.princeton.edu/~dynaflow/ (last update 2013

  9. Transition to synchrony in degree-frequency correlated Sakaguchi-Kuramoto model

    Science.gov (United States)

    Kundu, Prosenjit; Khanra, Pitambar; Hens, Chittaranjan; Pal, Pinaki

    2017-11-01

    We investigate transition to synchrony in degree-frequency correlated Sakaguchi-Kuramoto (SK) model on complex networks both analytically and numerically. We analytically derive self-consistent equations for group angular velocity and order parameter for the model in the thermodynamic limit. Using the self-consistent equations we investigate transition to synchronization in SK model on uncorrelated scale-free (SF) and Erdős-Rényi (ER) networks in detail. Depending on the degree distribution exponent (γ ) of SF networks and phase-frustration parameter, the population undergoes from first-order transition [explosive synchronization (ES)] to second-order transition and vice versa. In ER networks transition is always second order irrespective of the values of the phase-lag parameter. We observe that the critical coupling strength for the onset of synchronization is decreased by phase-frustration parameter in case of SF network where as in ER network, the phase-frustration delays the onset of synchronization. Extensive numerical simulations using SF and ER networks are performed to validate the analytical results. An analytical expression of critical coupling strength for the onset of synchronization is also derived from the self-consistent equations considering the vanishing order parameter limit.

  10. Assessing Aegis Program Transition to an Open-Architecture Model

    Science.gov (United States)

    2013-01-01

    physical architecture of the combat system in a way that ensures broad applicability of the physical plant and by mod- ernizing the in-service fleet...tatio n C h o ices o n th e Fleet 45 Figure 4.6 Aegis Fleet Composition Under the IWS and Legacy Models (FYs 2010–2060) RAND RR161-4.6 N u m b e r...hardware follows a hockey stick pattern, whereby the cost of purchas- ing the most recent technology is greatest, the cost of purchasing one- generation-old

  11. Energy transition: development of the new French model

    International Nuclear Information System (INIS)

    Anon.

    2014-01-01

    Many times postponed, the 'programming bill for a new French energy model', commitment of the President of the Republic Francois Hollande, will finally be presented at the Parliament in September with the hope that it will be passed on next spring. Developed on two-pillar approach - energy savings and renewable energies -, this bill should allow France to reduce half of its energy consumption between 2012 and 2050 and to increase the share of renewable energy sources of 14% by 2012 to 32% by 2030 in the power mix. (O.M.)

  12. Creating Agent-Based Energy Transition Management Models That Can Uncover Profitable Pathways to Climate Change Mitigation

    Directory of Open Access Journals (Sweden)

    Auke Hoekstra

    2017-01-01

    Full Text Available The energy domain is still dominated by equilibrium models that underestimate both the dangers and opportunities related to climate change. In reality, climate and energy systems contain tipping points, feedback loops, and exponential developments. This paper describes how to create realistic energy transition management models: quantitative models that can discover profitable pathways from fossil fuels to renewable energy. We review the literature regarding agent-based economics, disruptive innovation, and transition management and determine the following requirements. Actors must be detailed, heterogeneous, interacting, learning, and strategizing. Technology should be represented as a detailed and heterogeneous portfolio that can develop in a bottom-up manner, using endogenous feedback loops. Assumptions about discount rates and the social cost of carbon should be configurable. The model should contain interactions between the global, national, local, and individual level. A review of modelling techniques shows that equilibrium models are unsuitable and that system dynamics and discrete event simulation are too limited. The agent-based approach is found to be uniquely suited for the complex adaptive sociotechnical systems that must be modelled. But the choice for agent-based models does not mean a rejection of other approaches because they can be accommodated within the agent-based framework. We conclude with practical guidelines.

  13. Transition towards Sustainable Solutions: Product, Service, Technology, and Business Model

    Directory of Open Access Journals (Sweden)

    Mina Nasiri

    2018-01-01

    Full Text Available Nowadays, the horse industry can be considered as an important industry in European countries and has a major role in agricultural industry throughout the world. Although today the diversity of the horse-related companies provides new markets and business opportunities, there are also some sustainable issues which needs to be addressed. Therefore, this study contributes to this research gap by reviewing the concept of sustainability and existing approaches to find sustainable solutions for companies. These sustainable approaches can be applied to products, services and technologies as well as business models, such as the product-service-system (PSS, circular economy (CE and industrial symbiosis (IS. Although there seems to be a growing understanding of sustainable approaches and their role in sustainable development, there is a lack of research at the empirical level regarding the types of sustainability approaches (i.e., technologies, services, products and business models that evolve in specific industries. The empirical data in this research have been collected from a cross-section of Finnish horse industry operators to determine how willing companies are to exploit approaches to sustainable solutions, as well as what the existing sustainable solutions are in this industry. The response rate of this study is approximately 24 percent, including 139 received valid responses among the sample of 580 operators.

  14. BO-1055, a novel DNA cross-linking agent with remarkable low myelotoxicity shows potent activity in sarcoma models.

    Science.gov (United States)

    Ambati, Srikanth R; Shieh, Jae-Hung; Pera, Benet; Lopes, Eloisi Caldas; Chaudhry, Anisha; Wong, Elissa W P; Saxena, Ashish; Su, Tsann-Long; Moore, Malcolm A S

    2016-07-12

    DNA damaging agents cause rapid shrinkage of tumors and form the basis of chemotherapy for sarcomas despite significant toxicities. Drugs having superior efficacy and wider therapeutic windows are needed to improve patient outcomes. We used cell proliferation and apoptosis assays in sarcoma cell lines and benign cells; γ-H2AX expression, comet assay, immunoblot analyses and drug combination studies in vitro and in patient derived xenograft (PDX) models. BO-1055 caused apoptosis and cell death in a concentration and time dependent manner in sarcoma cell lines. BO-1055 had potent activity (submicromolar IC50) against Ewing sarcoma and rhabdomyosarcoma, intermediate activity in DSRCT (IC50 = 2-3μM) and very weak activity in osteosarcoma (IC50 >10μM) cell lines. BO-1055 exhibited a wide therapeutic window compared to other DNA damaging drugs. BO-1055 induced more DNA double strand breaks and γH2AX expression in cancer cells compared to benign cells. BO-1055 showed inhibition of tumor growth in A673 xenografts and caused tumor regression in cyclophosphamide resistant patient-derived Ewing sarcoma xenografts and A204 xenografts. Combination of BO-1055 and irinotecan demonstrated synergism in Ewing sarcoma PDX models. Potent activity on sarcoma cells and its relative lack of toxicity presents a strong rationale for further development of BO-1055 as a therapeutic agent.

  15. Comprehensive Validation of an Intermittency Transport Model for Transitional Low-Pressure Turbine Flows

    Science.gov (United States)

    Suzen, Y. B.; Huang, P. G.

    2005-01-01

    A transport equation for the intermittency factor is employed to predict transitional flows under the effects of pressure gradients, freestream turbulence intensities, Reynolds number variations, flow separation and reattachment. and unsteady wake-blade interactions representing diverse operating conditions encountered in low-pressure turbines. The intermittent behaviour of the transitional flows is taken into account and incorporated into computations by modifying the eddy viscosity, Mu(sub t), with the intermittency factor, gamma. Turbulent quantities are predicted by using Menter's two-equation turbulence model (SST). The onset location of transition is obtained from correlations based on boundary-layer momentum thickness, acceleration parameter, and turbulence intensity. The intermittency factor is obtained from a transport model which can produce both the experimentally observed streamwise variation of intermittency and a realistic profile in the cross stream direction. The intermittency transport model is tested and validated against several well documented low pressure turbine experiments ranging from flat plate cases to unsteady wake-blade interaction experiments. Overall, good agreement between the experimental data and computational results is obtained illustrating the predicting capabilities of the model and the current intermittency transport modelling approach for transitional flow simulations.

  16. Modelling of bypass transition including the pseudolaminar part of the boundary layer

    Energy Technology Data Exchange (ETDEWEB)

    Prihoda, J.; Hlava, T. [Ceska Akademie Ved, Prague (Czech Republic). Inst. of Thermomechanics; Kozel, K. [Ceske Vysoke Uceni Technicke, Prague (Czech Republic). Faculty of Mechanical Engineering

    1999-12-01

    The boundary-layer transition in turbomachinery is accelerated by a number of parameters, especially by the free-stream turbulence. This so-called bypass transition is usually modelled by means of one-equation or two-equation turbulence models based on turbulent viscosity. Using of transport equations for turbulent energy and for dissipation rate in these models is questionable before the onset of the last stage of the transition, i.e. before the formation of turbulent spots. Used approximations of production and turbulent diffusion are the weak points of turbulence models with turbulent viscosity in the pseudolaminar boundary layer, as the Boussinesq assumption on turbulent viscosity is not fulfilled in this part of the boundary layer. In order to obtain a more reliable prediction of the transitional boundary layer, Mayle and Schulz (1997) proposed for the solution of pseudolaminar boundary layer a special `laminar-kinetic-energy` equation based on the analysis of laminar boundary layer in flows with velocity fluctuations. The effect of production and turbulent diffusion on the development of turbulent energy in the pseudolaminar boundary layer was tested using a two-layer turbulence model. (orig.)

  17. Modelling of bypass transition including the pseudolaminar part of the boundary layer

    Energy Technology Data Exchange (ETDEWEB)

    Prihoda, J.; Hlava, T. (Ceska Akademie Ved, Prague (Czech Republic). Inst. of Thermomechanics); Kozel, K. (Ceske Vysoke Uceni Technicke, Prague (Czech Republic). Faculty of Mechanical Engineering)

    1999-01-01

    The boundary-layer transition in turbomachinery is accelerated by a number of parameters, especially by the free-stream turbulence. This so-called bypass transition is usually modelled by means of one-equation or two-equation turbulence models based on turbulent viscosity. Using of transport equations for turbulent energy and for dissipation rate in these models is questionable before the onset of the last stage of the transition, i.e. before the formation of turbulent spots. Used approximations of production and turbulent diffusion are the weak points of turbulence models with turbulent viscosity in the pseudolaminar boundary layer, as the Boussinesq assumption on turbulent viscosity is not fulfilled in this part of the boundary layer. In order to obtain a more reliable prediction of the transitional boundary layer, Mayle and Schulz (1997) proposed for the solution of pseudolaminar boundary layer a special 'laminar-kinetic-energy' equation based on the analysis of laminar boundary layer in flows with velocity fluctuations. The effect of production and turbulent diffusion on the development of turbulent energy in the pseudolaminar boundary layer was tested using a two-layer turbulence model. (orig.)

  18. Modelling study of magnetic and concentration phase transition in ultrathin antiferromagnetic films

    International Nuclear Information System (INIS)

    Leonid, Afremov; Aleksandr, Petrov

    2014-01-01

    Using the method of the ''average spin'' a modelling study of magnetic and concentration phase transition in ultrathin antiferromagnetic of different crystalline structure has been carried out. It has been shown, that relative change of Neel temperature is subject to the power law with negative index which doesn't depend on the film's crystal kind. The calculation of the dependence of phase transition critical concentration in diluted magnetic material on the film thickness has been made out. The legitimacy of the use of the method developed for modelling of magnetic and concentration phase transition in different nanostructures is certified by accordance between the results of calculations and the experimental data

  19. Modification of transition's factor in the compact surface-potential-based MOSFET model

    Directory of Open Access Journals (Sweden)

    Kevkić Tijana

    2016-01-01

    Full Text Available The modification of an important transition's factor which enables continual behavior of the surface potential in entire useful range of MOSFET operation is presented. The various modifications have been made in order to obtain an accurate and computationally efficient compact MOSFET model. The best results have been achieved by introducing the generalized logistic function (GL in fitting of considered factor. The smoothness and speed of the transition of the surface potential from the depletion to the strong inversion region can be controlled in this way. The results of the explicit model with this GL functional form for transition's factor have been verified extensively with the numerical data. A great agreement was found for a wide range of substrate doping and oxide thickness. Moreover, the proposed approach can be also applied on the case where quantum mechanical effects play important role in inversion mode.

  20. Demographical history and palaeodistribution modelling show range shift towards Amazon Basin for a Neotropical tree species in the LGM.

    Science.gov (United States)

    Vitorino, Luciana Cristina; Lima-Ribeiro, Matheus S; Terribile, Levi Carina; Collevatti, Rosane G

    2016-10-13

    We studied the phylogeography and demographical history of Tabebuia serratifolia (Bignoniaceae) to understand the disjunct geographical distribution of South American seasonally dry tropical forests (SDTFs). We specifically tested if the multiple and isolated patches of SDTFs are current climatic relicts of a widespread and continuously distributed dry forest during the last glacial maximum (LGM), the so called South American dry forest refugia hypothesis, using ecological niche modelling (ENM) and statistical phylogeography. We sampled 235 individuals of T. serratifolia in 17 populations in Brazil and analysed the polymorphisms at three intergenic chloroplast regions and ITS nuclear ribosomal DNA. Coalescent analyses showed a demographical expansion at the last c. 130 ka (thousand years before present). Simulations and ENM also showed that the current spatial pattern of genetic diversity is most likely due to a scenario of range expansion and range shift towards the Amazon Basin during the colder and arid climatic conditions associated with the LGM, matching the expected for the South American dry forest refugia hypothesis, although contrasting to the Pleistocene Arc hypothesis. Populations in more stable areas or with higher suitability through time showed higher genetic diversity. Postglacial range shift towards the Southeast and Atlantic coast may have led to spatial genome assortment due to leading edge colonization as the species tracks suitable environments, leading to lower genetic diversity in populations at higher distance from the distribution centroid at 21 ka. Haplotype sharing or common ancestry among populations from Caatinga in Northeast Brazil, Atlantic Forest in Southeast and Cerrado biome and ENM evince the past connection among these biomes.

  1. Geodynamic modelling of the rift-drift transition: Application to the Red Sea

    Science.gov (United States)

    Fierro, E.; Schettino, A.; Capitanio, F. A.; Ranalli, G.

    2017-12-01

    The onset of oceanic accretion after a rifting phase is generally accompanied by an initial fast pulse of spreading in the case of volcanic margins, such that the effective spreading rate exceeds the relative far-field velocity between the two plates for a short time interval. This pulse has been attributed to edge-driven convention (EDC), although our numerical modelling shows that the shear stress at the base of the lithosphere cannot exceed 1 MPa. In general, we have developed a 2D numerical model of the mantle instabilities during the rifting phase, in order to determine the geodynamic conditions at the rift-drift transition. The model was tested using Underworld II software, variable rheological parameters, and temperature and stress-dependent viscosity. Our results show an increase of strain rates at the top of the lithosphere with the lithosphere thickness as well as with the initial width of the margin up to 300 km. Beyond this value, the influence of the initial rift width can be neglected. An interesting outcome of the numerical model is the existence of an axial zone characterized by higher strain rates, which is flanked by two low-strain stripes. As a consequence, the model suggests the existence of an area of syn-rift compression within the rift valley. Regarding the post-rift phase, we propose that at the onset of a seafloor spreading, a phase of transient creep allows the release of the strain energy accumulated in the mantle lithosphere during the rifting phase, through anelastic relaxation. Then, the conjugated margins would be subject to post-rift contraction and eventually to tectonic inversion of the rift structures. To explore the tenability of this model, we introduce an anelastic component in the lithosphere rheology, assuming both the classical linear Kelvin-Voigt rheology and a non-linear Kelvin model. The non-linear model predicts viable relaxation times ( 1-2Myrs) to explain the post-rift tectonic inversion observed along the Arabian

  2. An aggregate method to calibrate the reference point of cumulative prospect theory-based route choice model for urban transit network

    Science.gov (United States)

    Zhang, Yufeng; Long, Man; Luo, Sida; Bao, Yu; Shen, Hanxia

    2015-12-01

    Transit route choice model is the key technology of public transit systems planning and management. Traditional route choice models are mostly based on expected utility theory which has an evident shortcoming that it cannot accurately portray travelers' subjective route choice behavior for their risk preferences are not taken into consideration. Cumulative prospect theory (CPT), a brand new theory, can be used to describe travelers' decision-making process under the condition of uncertainty of transit supply and risk preferences of multi-type travelers. The method to calibrate the reference point, a key parameter to CPT-based transit route choice model, determines the precision of the model to a great extent. In this paper, a new method is put forward to obtain the value of reference point which combines theoretical calculation and field investigation results. Comparing the proposed method with traditional method, it shows that the new method can promote the quality of CPT-based model by improving the accuracy in simulating travelers' route choice behaviors based on transit trip investigation from Nanjing City, China. The proposed method is of great significance to logical transit planning and management, and to some extent makes up the defect that obtaining the reference point is solely based on qualitative analysis.

  3. Monte Carlo simulations of phase transitions and lattice dynamics in an atom-phonon model for spin transition compounds

    International Nuclear Information System (INIS)

    Apetrei, Alin Marian; Enachescu, Cristian; Tanasa, Radu; Stoleriu, Laurentiu; Stancu, Alexandru

    2010-01-01

    We apply here the Monte Carlo Metropolis method to a known atom-phonon coupling model for 1D spin transition compounds (STC). These inorganic molecular systems can switch under thermal or optical excitation, between two states in thermodynamical competition, i.e. high spin (HS) and low spin (LS). In the model, the ST units (molecules) are linked by springs, whose elastic constants depend on the spin states of the neighboring atoms, and can only have three possible values. Several previous analytical papers considered a unique average value for the elastic constants (mean-field approximation) and obtained phase diagrams and thermal hysteresis loops. Recently, Monte Carlo simulation papers, taking into account all three values of the elastic constants, obtained thermal hysteresis loops, but no phase diagrams. Employing Monte Carlo simulation, in this work we obtain the phase diagram at T=0 K, which is fully consistent with earlier analytical work; however it is more complex. The main difference is the existence of two supplementary critical curves that mark a hysteresis zone in the phase diagram. This explains the pressure hysteresis curves at low temperature observed experimentally and predicts a 'chemical' hysteresis in STC at very low temperatures. The formation and the dynamics of the domains are also discussed.

  4. Examination of Solubility Models for the Determination of Transition Metals within Liquid Alkali Metals

    Directory of Open Access Journals (Sweden)

    Jeremy Isler

    2016-06-01

    Full Text Available The experimental solubility of transition metals in liquid alkali metal was compared to the modeled solubility calculated using various equations for solubility. These equations were modeled using the enthalpy calculations of the semi-empirical Miedema model and various entropy calculations. The accuracy of the predicted solubility compared to the experimental data is more dependent on which liquid alkali metal is being examined rather than the transition metal solute examined. For liquid lithium the calculated solubility by the model was generally larger than experimental values, while for liquid cesium the modeling solubility was significantly smaller than the experimental values. For liquid sodium, potassium, and rubidium the experimental solubilities were within the range calculated by this study. Few data approached the predicted temperature dependence of solubility and instead most data exhibited a less pronounced temperature dependence.

  5. Critical success factors for the transition to business models for sustainability in the food and beverage industry in the Netherlands

    NARCIS (Netherlands)

    Long, Thomas B.; Looijen, Arnold; Blok, Vincent

    2018-01-01

    Businesses will play a key role in helping the transition towards greater sustainability. To maximise business sustainability performance, sustainability characteristics must be integrated at the business model level, creating business models for sustainability. Creating a business model for

  6. Constitutive model for a stress- and thermal-induced phase transition in a shape memory polymer

    International Nuclear Information System (INIS)

    Guo, Xiaogang; Liu, Liwu; Liu, Yanju; Zhou, Bo; Leng, Jinsong

    2014-01-01

    Recently, increasing applications of shape memory polymers have pushed forward the development of appropriate constitutive models for smart materials such as the shape memory polymer. During the heating process, the phase transition, which is a continuous time-dependent process, happens in the shape memory polymer, and various individual phases will form at different configuration temperatures. In addition, these phases can generally be divided into two parts: the frozen and active phase (Liu Y et al 2006 Int. J. Plast. 22 279–313). During the heating or cooling process, the strain will be stored or released with the occurring phase transition between these two parts. Therefore, a shape memory effect emerges. In this paper, a new type of model was developed to characterize the variation of the volume fraction in a shape memory polymer during the phase transition. In addition to the temperature variation, the applied stress was also taken as a significant influence factor on the phase transition. Based on the experimental results, an exponential equation was proposed to describe the relationship between the stress and phase transition temperature. For the sake of describing the mechanical behaviors of the shape memory polymer, a three-dimensional constitutive model was established. Also, the storage strain, which was the key factor of the shape memory effect, was also discussed in detail. Similar to previous works, we first explored the effect of applied stress on storage strain. Through comparisons with the DMA and the creep experimental results, the rationality and accuracy of the new phase transition and constitutive model were finally verified. (paper)

  7. Phase transitions in two-dimensional uniformly frustrated XY models. I. antiferromagnetic model on a triangular lattice

    International Nuclear Information System (INIS)

    Korshunov, S.E.; Uimin, G.V.

    1986-01-01

    A most popular model in the family of two-dimensional uniformly-frustrated XY models is the antiferromagnetic model on a triangular lattice (AF XY(t) model). Its ground state is both continuously and twofold discretely degenerated. Different phase transitions possible in such systems are investigated. Relevant topological excitations are analyzed and a new class of such (vortices with a fractional number of circulation quanta) is discovered. Their role in determining the properties of the system proves itself essential. The characteristics of phase transitions related to breaking of discrete and continuous symmetries change. The phase diagram of the ''generalized'' AF XY(t) model is constructed. The results obtained are rederived in the representation of the Coulomb gas with half-interger charges, equivalent to the AF XY(t) model with the Berezinskii-Villain interaction

  8. Complex transition to cooperative behavior in a structured population model.

    Directory of Open Access Journals (Sweden)

    Luciano Miranda

    Full Text Available Cooperation plays an important role in the evolution of species and human societies. The understanding of the emergence and persistence of cooperation in those systems is a fascinating and fundamental question. Many mechanisms were extensively studied and proposed as supporting cooperation. The current work addresses the role of migration for the maintenance of cooperation in structured populations. This problem is investigated in an evolutionary perspective through the prisoner's dilemma game paradigm. It is found that migration and structure play an essential role in the evolution of the cooperative behavior. The possible outcomes of the model are extinction of the entire population, dominance of the cooperative strategy and coexistence between cooperators and defectors. The coexistence phase is obtained in the range of large migration rates. It is also verified the existence of a critical level of structuring beyond that cooperation is always likely. In resume, we conclude that the increase in the number of demes as well as in the migration rate favor the fixation of the cooperative behavior.

  9. THE GREAT OXIDATION OF EARTH'S ATMOSPHERE: CONTESTING THE YOYO MODEL VIA TRANSITION STABILITY ANALYSIS

    International Nuclear Information System (INIS)

    Cuntz, M.; Roy, D.; Musielak, Z. E.

    2009-01-01

    A significant controversy regarding the climate history of the Earth and its relationship to the development of complex life forms concerns the rise of oxygen in the early Earth's atmosphere. Geological records show that this rise occurred about 2.4 Gyr ago, when the atmospheric oxygen increased from less than 10 -5 present atmospheric level (PAL) to more than 0.01 PAL and possibly above 0.1 PAL. However, there is a debate whether this rise happened relatively smoothly or with well-pronounced ups and downs (the Yoyo model). In our study, we explore a simplified atmospheric chemical system consisting of oxygen, methane, and carbon that is driven by the sudden decline of the net input of reductants to the surface as previously considered by Goldblatt et al. Based on the transition stability analysis for the system equations, constituting a set of non-autonomous and non-linear differential equations, as well as the inspection of the Lyapunov exponents, it is found that the equations do not exhibit chaotic behavior. In addition, the rise of oxygen occurs relative smoothly, possibly with minor bumps (within a factor of 1.2), but without major jumps. This result clearly argues against the Yoyo model in agreement with recent geological findings.

  10. Hyperoxic treatment induces mesenchymal-to-epithelial transition in a rat adenocarcinoma model.

    Directory of Open Access Journals (Sweden)

    Ingrid Moen

    Full Text Available Tumor hypoxia is relevant for tumor growth, metabolism and epithelial-to-mesenchymal transition (EMT. We report that hyperbaric oxygen (HBO treatment induced mesenchymal-to-epithelial transition (MET in a dimethyl-alpha-benzantracene induced mammary rat adenocarcinoma model, and the MET was associated with extensive coordinated gene expression changes and less aggressive tumors. One group of tumor bearing rats was exposed to HBO (2 bar, pO(2 = 2 bar, 4 exposures à 90 minutes, whereas the control group was housed under normal atmosphere (1 bar, pO(2 = 0.2 bar. Treatment effects were determined by assessment of tumor growth, tumor vascularisation, tumor cell proliferation, cell death, collagen fibrils and gene expression profile. Tumor growth was significantly reduced (approximately 16% after HBO treatment compared to day 1 levels, whereas control tumors increased almost 100% in volume. Significant decreases in tumor cell proliferation, tumor blood vessels and collagen fibrils, together with an increase in cell death, are consistent with tumor growth reduction and tumor stroma influence after hyperoxic treatment. Gene expression profiling showed that HBO induced MET. In conclusion, hyperoxia induced MET with coordinated expression of gene modules involved in cell junctions and attachments together with a shift towards non-tumorigenic metabolism. This leads to more differentiated and less aggressive tumors, and indicates that oxygen per se might be an important factor in the "switches" of EMT and MET in vivo. HBO treatment also attenuated tumor growth and changed tumor stroma, by targeting the vascular system, having anti-proliferative and pro-apoptotic effects.

  11. How does dietary particle size affect carnivore gastrointestinal transit: A dog model.

    Science.gov (United States)

    De Cuyper, A; Hesta, M; Tibosch, S; Wanke, C; Clauss, M; Janssens, G P J

    2018-04-01

    The effect of dietary particle size on gastrointestinal transit in carnivores has not been studied and might offer more insight into their digestive physiology. This study evaluated the effect of two dietary particle sizes (fine = 7.8 mm vs. coarse = 13 mm) of chunked day-old chicks on transit parameters in dogs. Six beagle dogs were fed both dietary treatments in a crossover design of 7 days with transit testing on the fifth day. Transit parameters were assessed using two markers, that is a wireless motility capsule (IntelliCap ® ) and titanium oxide (TiO 2 ). Dietary particle size did not affect gastric emptying time (GRT), small bowel transit time (SBTT), colonic transit time (CTT) and total transit time (aTTT) of the capsule (p > .05). There was no effect of dietary particle size on TiO 2 mean retention time (MRT) (p > .05). The time of last TiO 2 excretion (MaxRT) differed (p = .013) between diets, being later for the coarse diet. Both MRT (R = 0.617, p = .032) and MaxRT (R = 0.814; p = .001) were positively correlated to aTTT. The ratio MRT/aTTT tended towards a difference between diets (p = .059) with the coarse diet exceeding fine diet values. Results show that the difference between capsule measurements and TiO 2 is larger for the fine than the coarse diet suggesting that the capsule becomes more accurate when dietary particle size approaches marker size. Dietary particle size might have affected transit parameters but differences are too small to claim major physiological consequences. © 2017 Blackwell Verlag GmbH.

  12. Treatment of Electronic Energy Level Transition and Ionization Following the Particle-Based Chemistry Model

    Science.gov (United States)

    Liechty, Derek S.; Lewis, Mark

    2010-01-01

    A new method of treating electronic energy level transitions as well as linking ionization to electronic energy levels is proposed following the particle-based chemistry model of Bird. Although the use of electronic energy levels and ionization reactions in DSMC are not new ideas, the current method of selecting what level to transition to, how to reproduce transition rates, and the linking of the electronic energy levels to ionization are, to the author s knowledge, novel concepts. The resulting equilibrium temperatures are shown to remain constant, and the electronic energy level distributions are shown to reproduce the Boltzmann distribution. The electronic energy level transition rates and ionization rates due to electron impacts are shown to reproduce theoretical and measured rates. The rates due to heavy particle impacts, while not as favorable as the electron impact rates, compare favorably to values from the literature. Thus, these new extensions to the particle-based chemistry model of Bird provide an accurate method for predicting electronic energy level transition and ionization rates in gases.

  13. A Model for Assessing the Extent of Transition to Technology Education.

    Science.gov (United States)

    Dyrenfurth, Michael J.; And Others

    1993-01-01

    Implementation of the Illinois Plan for Industrial Technology Education was assessed through interviews with 117 teachers. The assessment model (based on Stufflebeam's Context, Input, Process, Product) blended qualitative and quantitative information. Six key dimensions of change were identified, and the Transition Assessment Inventory proved…

  14. Is there a delocalization transition in a two-dimensional model for quantum percolation

    International Nuclear Information System (INIS)

    Dasgupta, I.; Saha, T.; Mookerjee, A.; Chakrabarti, B.K.

    1992-01-01

    In this paper, the authors estimate the transmittance of the quantum percolation model of Eggarter and Kirkpatrick on the square lattice of various sizes using the vector recursion method. The authors note from finite size scaling that there is no delocalization transition for any degree of disorder in two dimensions

  15. Implementation of Bus Rapid Transit in Copenhagen: A Mesoscopic Model Approach

    DEFF Research Database (Denmark)

    Ingvardson, Jesper Bláfoss; Kornerup Jensen, Jonas

    2012-01-01

    Bus Rapid Transit(BRT) has shown to be an efficient and cost-effective mode of public transport, and has gained popularity in many cities around the world.To optimise the operations and infrastructure it is advantageous to deploy transportmodels. However, microscopic models are very inefficient...

  16. Forecasting timber, biomass, and tree carbon pools with the output of state and transition models

    Science.gov (United States)

    Xiaoping Zhou; Miles A. Hemstrom

    2012-01-01

    The Integrated Landscape Assessment Project (ILAP) uses spatial vegetation data and state and transition models (STM) to forecast future vegetation conditions and the interacting effects of natural disturbances and management activities. Results from ILAP will help land managers, planners, and policymakers evaluate management strategies that reduce fire risk, improve...

  17. Linearity Testing in Time-Varying Smooth Transition Autoregressive Models under Unknown Degree of Persistency

    DEFF Research Database (Denmark)

    Sandberg, Rickard; Kruse, Robinson

    Building upon the work of Vogelsang (1998) and Harvey and Leybourne (2007) we derive tests that are invariant to the order of integration when the null hypothesis of linearity is tested in time-varying smooth transition models. As heteroscedasticity may lead to spurious rejections of the null...

  18. DETAILED CHEMICAL KINETIC MODELING OF ISO-OCTANE SI-HCCI TRANSITION

    Energy Technology Data Exchange (ETDEWEB)

    Havstad, M A; Aceves, S M; McNenly, M J; Piggott, W T; Edwards, K D; Wagner, R M; Daw, C S; Finney, C A

    2009-10-12

    The authors describe a CHEMKIN-based multi-zone model that simulates the expected combustion variations in a single-cylinder engine fueled with iso-octane as the engine transitions from spark-ignited (ST) combustion to homogeneous charge compression ignition (HCCI) combustion. The model includes a 63-species reaction mechanism and mass and energy balances for the cylinder and the exhaust flow. For this study they assumed that the SI-to-HCCI transition is implemented by means of increasing the internal exhaust gas recirculation (EGR) at constant engine speed. This transition scneario is consistent with that implemented in previously reported experimental measurements on an experimental engine equipped with variable valve actuation. They find that the model captures many of the important experimental trends, including stable SI combustion at low EGR ({approx} 0.10), a transition to highly unstable combustion at intermediate EGR, and finally stable HCCI combustion at very high EGR ({approx} 0.75). Remaining differences between the predicted and experimental instability patterns indicate that there is further room for model improvement.

  19. Boundary Induced Phase Transition in Cellular Automata Models of Pedestrian Flow

    Czech Academy of Sciences Publication Activity Database

    Bukáček, M.; Hrabák, Pavel

    2016-01-01

    Roč. 11, č. 4 (2016), s. 327-338 ISSN 1557-5969 R&D Projects: GA ČR GA13-13502S Institutional support: RVO:67985556 Keywords : Adaptive time-span * Cellular automata model * Floor-field * Pedestrian flow * Phase transition * Principle of bonds Subject RIV: BD - Theory of Information Impact factor: 0.696, year: 2016

  20. Detecting Intervention Effects Using a Multilevel Latent Transition Analysis with a Mixture IRT Model

    Science.gov (United States)

    Cho, Sun-Joo; Cohen, Allan S.; Bottge, Brian

    2013-01-01

    A multilevel latent transition analysis (LTA) with a mixture IRT measurement model (MixIRTM) is described for investigating the effectiveness of an intervention. The addition of a MixIRTM to the multilevel LTA permits consideration of both potential heterogeneity in students' response to instructional intervention as well as a methodology for…

  1. Time evolution of chiral phase transition at finite temperature and density in the linear sigma model

    Energy Technology Data Exchange (ETDEWEB)

    Sato, K.; Koide, Tomoi; Maruyama, Masahiro [Tohoku Univ., Faculty of Science, Sendai, Miyagi (Japan)

    1999-08-01

    There are various approaches to nonequilibrium system. We use the projection operator method investigated by F. Shibata and N. Hashitsume on the linear sigma model at finite temperature and density. We derive a differential equation of the time evolution for the order parameter and pion number density in chiral phase transition. (author)

  2. Nonparametric estimation in an "illness-death" model when all transition times are interval censored

    DEFF Research Database (Denmark)

    Frydman, Halina; Gerds, Thomas; Grøn, Randi

    2013-01-01

    veneers. Using the self-consistency algorithm we obtain the maximum likelihood estimators of the cumulative incidences of the times to events 1 and 2 and of the intensity of the 1 → 2 transition. This work generalizes previous results on the estimation in an "illness-death" model from interval censored...

  3. Agent-based model of intermittent renewables : Simulating emerging changes in energy markets in transition

    NARCIS (Netherlands)

    Chappin, E.J.L.; Viebahn, P.; Richstein, J.C.; Lechtenböhmer, S.; Nebel, A.

    2012-01-01

    The energy transition is taking shape in the German and, to a lesser extent also its neighbouring electricity markets. We have proposed adaptations to an existing model to represent the increasing shares of intermittent renewables, that may alter the structure of the market and the viability of

  4. Modeling corewood-outerwood transition in loblolly pine using wood specific gravity

    Science.gov (United States)

    Christian R. Mora; H. Lee Allen; Richard F. Daniels; Alexander Clark

    2007-01-01

    A modified logistic function was used for modeling specific-gravity profiles obtained from X-ray densitometry analysis in 675 loblolly pine (Pinus taeda L.) trees in four regeneration trials. Trees were 21 or 22 years old at the time of the study. The function was used for demarcating corewood, transitional, and outerwood zones. Site and silvicultural effects were...

  5. Supporting Transition of At-Risk Students through a Freshman Orientation Model

    Science.gov (United States)

    DeLamar, Shawna; Brown, Casey Graham

    2016-01-01

    This study examines the issues surrounding middle school students' transitions to high school and the degree to which freshman orientation models can help them. The attendance, discipline, report card grades, and end-of-course exams of 60 students who participated in a freshman orientation were compared to those of 150 students who were invited to…

  6. An evolutionary model of energy transitions with interactive innovation-selection dynamics

    NARCIS (Netherlands)

    Safarzynska, K.E.; van den Bergh, J.C.J.M.

    2013-01-01

    We develop a stylized application of a new evolutionary model to study an energy transition in electricity production. The framework describes a population of boundedly rational electricity producers who decide each period on the allocation of profits among different energy technologies. They tend

  7. Glassy transition in a disordered model for the RNA secondary structure

    International Nuclear Information System (INIS)

    Pagnani, A.; Parisi, G.; Ricci-Tersenghi, F.

    2000-04-01

    We numerically study a disordered model for the RNA secondary structure and we find that it undergoes a phase transition, with a breaking of the replica symmetry in the low temperature region (like in spin glasses). Our results are based on the exact evaluation of the partition function. (author)

  8. State-and-transition models as guides for adaptive management: What are the needs?

    Science.gov (United States)

    State and transaction models (STMs) were conceived as a means to organize information about land potential and vegetation dynamics in rangelands to be used in their management. The basic idea is to describe the plant community states that can occur on a site and the causes of transitions between the...

  9. Approaches to Modelling the Human Immune Response in Transition of Candidates from Research to Development

    Directory of Open Access Journals (Sweden)

    Diane Williamson

    2014-01-01

    Full Text Available This review considers the steps required to evaluate a candidate biodefense vaccine or therapy as it emerges from the research phase, in order to transition it to development. The options for preclinical modelling of efficacy are considered in the context of the FDA’s Animal Rule.

  10. Susceptibility and Phase Transitions in the Pseudospin-Electron Model at Weak Coupling

    International Nuclear Information System (INIS)

    Stasyuk, I.V.; Mysakovych, T.S.

    2003-01-01

    The pseudospin-electron model (PEM) is considered in the case of the weak pseudospin-electron coupling. It is shown that the transition to uniform and chess-board phases occurs when the chemical potential is situated near the electron band edges and near the band centre, respectively. The incommensurate phase is realized at the intermediate values of the chemical potential. (author)

  11. Temperature response of the cell cycle of Haplopappus gracilis in suspension culture and its significance to the G1 transition probability model.

    Science.gov (United States)

    Gould, A R

    1977-01-01

    The effects of temperature on the cell cycle of Haplopappus gracilis suspension cultures were analysed by the fraction of labelled mitoses method. Sphase in these cultures shows a different temperature optimum as compared to optima derived for G2 and mitosis. G1 phase has a much lower Q10 than the other cell cycle phases and shows no temperature optimum between 22 and 34° C. These results are discussed in relation to a transition probability model of the cell cycle proposed by Smith and Martin (Proc. Natl. Acad. Sci. USA 70, 1263-1267, 1973), in which each cell has a time independent probability of initiating the transition into another round of DNA replication and division. The implications of such a model for cell cycle analysis are discussed and a tentative model for a probabilistic transition trigger is advanced.

  12. Challenges to Rainfall-Runoff and Transit Time Distribution Modeling Within the Southeastern Coastal Plain, USA

    Science.gov (United States)

    Decker, P.; Cohen, M. J.; Jawitz, J. W.

    2017-12-01

    Previous hydrologic studies primarily focus on processes related to montane catchments with significant runoff ratios, low evapotranspiration rates, and reasonably short travel times. There is a significant lack of research for hydrologic processes occurring within the United States Southeastern Coastal Plain landscape where low-relief and high rates of evapotranspiration impact water fluxes. Hydrologic modeling efforts within this region may elucidate possible interactions and timescales of solute travel where much of the landscape is managed for agricultural crops, namely plantation forestry. A long-term paired watershed study carried out in northern Florida monitored two second-order blackwater streams for five years. Rainfall-runoff models for both catchments were created using daily discharge, precipitation, and modeled evapotranspiration as input parameters. Best fit occurred (NSE = 0.8) when the catchments were modeled as two-storage (shallow and deep) reservoirs in parallel and overland flow was allowed to contribute to streamflow in periods were shallow groundwater storage was at capacity. In addition, streamflow and rainfall chloride concentrations were used to model in-variable transit time distributions using spectral methods. In both catchments this transit time was unresolvable because output spectral power exceeded input spectral power, a result assumed to be driven by the evaporative demand of the region. A modeled chloride time series from random input concentration and modeled output through the rainfall-runoff model was used to alter the evaporation ratio. Once evaporation rates equaled known rates found in cool, high-relief catchments, spectral analysis illustrated higher input spectral power and therefore resolvable transit times. Findings from this study illustrate significant effects from evaporation within the catchment - often exceeding the signal from the background catchment process itself. Calculations illustrate a proposed mean transit

  13. Evaluating transit operator efficiency: An enhanced DEA model with constrained fuzzy-AHP cones

    Directory of Open Access Journals (Sweden)

    Xin Li

    2016-06-01

    Full Text Available This study addresses efforts to comb the Analytic Hierarchy Process (AHP with Data Envelopment Analysis (DEA to deliver a robust enhanced DEA model for transit operator efficiency assessment. The proposed model is designed to better capture inherent preferences information over input and output indicators by adding constraint cones to the conventional DEA model. A revised fuzzy-AHP model is employed to generate cones, where the proposed model features the integration of the fuzzy logic with a hierarchical AHP structure to: 1 normalize the scales of different evaluation indicators, 2 construct the matrix of pair-wise comparisons with fuzzy set, and 3 optimize the weight of each criterion with a non-linear programming model. With introduction of cone-based constraints, the new system offers accounting advantages in the interaction among indicators when evaluating the performance of transit operators. To illustrate the applicability of the proposed approach, a real case in Nanjing City, the capital of China's Jiangsu Province, has been selected to assess the efficiencies of seven bus companies based on 2009 and 2010 datasets. A comparison between conventional DEA and enhanced DEA was also conducted to clarify the new system's superiority. Results reveal that the proposed model is more applicable in evaluating transit operator's efficiency thus encouraging a boarder range of applications.

  14. Towards a fluid model for the streamer-to-leader transition in lightning channels.

    Science.gov (United States)

    Malagón, Alejandro; Luque, Alejandro

    2017-04-01

    Electric discharges are a very common phenomenon on Earth's atmosphere. However some of their features are still poorly understood. A sufficiently long electric discharge, such as a lightning channel, propagates along two phases. The first phase is known as "streamer phase" and consists in thin filaments of ionized air that advance due to a high electric field at their tip. The dominant process of ionization is impact ionization, involving electrons and the two major components in the air mass, which are nitrogen and oxygen. In the second phase called "leader phase", the electric current of the streamers has increased the air temperature highly enough so the thermal energy of the molecules present in the air is comparable to the ionization potential of nitrogen and oxygen. The underlying mechanism whereby the streamer-to-leader transition occurs is not precisely known. High-speed observations show that in negative discharges, comprising 90% of cloud-to-ground lightning, this transition is not smooth but mediated by the formation of a "space leader", that is, an isolated hot segment within the streamer region. This space leader is connected to the main leader in a sudden jump and therefore one speaks of a "stepped leader". However, the origin of the space leader is so far unknown. Here we present recent steps in the modeling of the streamer-to-leader transition, which requires coupling fluid mechanics, electromagnetism and air plasma chemistry. We discuss our work towards a model that solves Euler's equations (3 dimensions reduced to 2 by virtue of symmetry) coupled to electron drift using high-resolution finite volume methods for hyperbolic systems [1] implemented in the software package CLAWPACK. The drift of electrons is determined by a self-consistent electric field, which we obtain by solving Poisson's equation by means of off-the-shelf solvers. Our model also includes a selection of chemical reactions that have a relevant effect on the electron density in air

  15. A dry-spot model of critical heat flux and transition boiling in pool and subcooled forced convection boiling

    International Nuclear Information System (INIS)

    Ha, Sang Jun

    1998-02-01

    boiling from given boiling conditions with the pool CHF data measured by Dhir and Liaw and Paul and Abdel-Khalik and the subcooled flow CHF data measured by Del Valle M. and Kenning and with the heat flux data in transition boiling measured by Dhir and Liaw. The predictions show good agreement with the existing data. To use the present phenomenological model as a prediction tool, a study has been performed to predict CHF in pool and subcooled forced convection boiling using existing correlations for active site density, maximum bubble diameter, and heat transfer coefficients in nucleate boiling. Comparison of the model predictions with experimental data for pool boiling of water and upward flow boiling of water in vertical, uniformly-heated round tubes is performed. The data set (2438 data points) for CHF in subcooled forced convection boiling covers wide ranges of operating conditions (0.1≤P≤14.0 MPa, 0.00033≤D≤0.0375 m: 0.002≤L≤2 m: 660 ≤G≤90000 kg/m 2 s: 70≤Δh,≤1456 kJ/kg). Without any tuning factor, 1492 data points out of 2438 (61.2%) are calculated with a r.m.s. error of 41.3% and about 80% of the calculated data points are predicted within ±50%. It is also shown that by a modification of suppression factor in subcooled boiling, the predictive capability of the present model can be improved, i.e., 2421 data points (99.3%) are calculated with a r.m.s. error of 20.5% and 82.3% of the calculated data points are predicted within ±25%. In addition, the parametric trends of CHF in subcooled forced convection boiling have been investigated under local conditions hypothesis

  16. Noise-Induced Transitions in a Population Growth Model Based on Size-Dependent Carrying Capacity

    Directory of Open Access Journals (Sweden)

    Neeme Lumi

    2014-01-01

    Full Text Available The stochastic dynamics of a population growth model with size-dependent carrying capacity is considered. The effect of a fluctuating environment on population growth is modeled as a multiplicative dichotomous noise. At intermediate values of population size the deterministic counterpart of the model behaves similarly to the Von Foerster model for human population, but at small and very large values of population size substantial differences occur. In the stochastic case, an exact analytical solution for the stationary probability distribution is found. It is established that variation of noise correlation time can cause noise-induced transitions between three different states of the system characterized by qualitatively different behaviors of the probability distributions of the population size. Also, it is shown that, in some regions of the system parameters, variation of the amplitude of environmental fluctuations can induce single unidirectional abrupt transitions of the mean population size.

  17. Self-organized criticality in sandpiles - Nature of the critical phenomenon. [dynamic models in phase transition

    Science.gov (United States)

    Carlson, J. M.; Chayes, J. T.; Swindle, G. H.; Grannan, E. R.

    1990-01-01

    The scaling behavior of sandpile models is investigated analytically. First, it is shown that sandpile models contain a set of domain walls, referred to as troughs, which bound regions that can experience avalanches. It is further shown that the dynamics of the troughs is governed by a simple set of rules involving birth, death, and coalescence events. A simple trough model is then introduced, and it is proved that the model has a phase transition with the density of the troughs as an order parameter and that, in the thermodynamic limit, the trough density goes to zero at the transition point. Finally, it is shown that the observed scaling behavior is a consequence of finite-size effects.

  18. Model-Independent Constraints on New Physics in $b \\to s$ Transitions

    CERN Document Server

    Altmannshofer, Wolfgang; Straub, David M.

    2012-01-01

    We provide a comprehensive model-independent analysis of rare decays involving the b --> s transition to put constraints on dimension-six Delta(F)=1 effective operators. The constraints are derived from all the available up-to-date experimental data from the B-factories, CDF and LHCb. The implications and future prospects for observables in b --> s l+l- and b --> s nu nu transitions in view of improved measurements are also investigated. The present work updates and generalises previous studies providing, at the same time, a useful tool to test the flavour structure of any theory beyond the SM.

  19. Mathematical modeling of photoinitiated coating degradation: Effects of coating glass transition temperature and light stabilizers

    DEFF Research Database (Denmark)

    Kiil, Søren; G.de With, R.A.T.M.Van Benthem

    2013-01-01

    A mathematical model, describing coating degradation mechanisms of thermoset coatings exposed to ultraviolet radiation and humidity at constant temperature, was extended to simulate the behavior of a coating with a low glass transition temperature. The effects of adding light stabilizers (a UV......, and simulates the transient development of an oxidation zone. Simulations are in good agreement with experimental data for a fast degrading epoxy-amine coating with a glass transition temperature of −50°C. It was found that the degradation rate of the non-stabilized coating was influenced significantly...

  20. Evidence of departure from transition-state statistical model in different mass regions

    International Nuclear Information System (INIS)

    Das, P.; Ray, A.; Bhattacharya, C.; Mullick, K.; Bhattacharjee, T.; Banerjee, S.R.; Basu, D.N.; Bhattacharya, S.

    2000-01-01

    The emission of complex fragments from compound nucleus can be understood very well using transition-state method calculations, that have shown that for a large number of excitation functions of compound nuclei near A = 100, the reduced decay rates after the removal of phase space dependence are identical for all fragments, thus implying statistical emission. One can consider two scenarios for departure from statistical transition-state model. An experiment was performed to look for orbiting effect in 16 O+ 93 Nb reaction

  1. A one-dimensional semi-empirical model considering transition boiling effect for dispersed flow film boiling

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Yu-Jou [Institute of Nuclear Engineering and Science, National Tsing Hua University, Hsinchu 30013, Taiwan, ROC (China); Pan, Chin, E-mail: cpan@ess.nthu.edu.tw [Institute of Nuclear Engineering and Science, National Tsing Hua University, Hsinchu 30013, Taiwan, ROC (China); Department of Engineering and System Science, National Tsing Hua University, Hsinchu 30013, Taiwan, ROC (China); Low Carbon Energy Research Center, National Tsing Hua University, Hsinchu 30013, Taiwan, ROC (China)

    2017-05-15

    Highlights: • Seven heat transfer mechanisms are studied numerically by the model. • A semi-empirical method is proposed to account for the transition boiling effect. • The parametric effects on the heat transfer mechanisms are investigated. • The thermal non-equilibrium phenomenon between vapor and droplets is investigated. - Abstract: The objective of this paper is to develop a one-dimensional semi-empirical model for the dispersed flow film boiling considering transition boiling effects. The proposed model consists of conservation equations, i.e., vapor mass, vapor energy, droplet mass and droplet momentum conservation, and a set of closure relations to address the interactions among wall, vapor and droplets. The results show that the transition boiling effect is of vital importance in the dispersed flow film boiling regime, since the flowing situation in the downstream would be influenced by the conditions in the upstream. In addition, the present paper, through evaluating the vapor temperature and the amount of heat transferred to droplets, investigates the thermal non-equilibrium phenomenon under different flowing conditions. Comparison of the wall temperature predictions with the 1394 experimental data in the literature, the present model ranging from system pressure of 30–140 bar, heat flux of 204–1837 kW/m{sup 2} and mass flux of 380–5180 kg/m{sup 2} s, shows very good agreement with RMS of 8.80% and standard deviation of 8.81%. Moreover, the model well depicts the thermal non-equilibrium phenomenon for the dispersed flow film boiling.

  2. A non-equilibrium phase transition in a dissipative forest model

    International Nuclear Information System (INIS)

    Messer, Joachim A.

    2009-01-01

    The shape of the biostress force for a stressed Lotka-Volterra network is for the first time derived from Lindblad's dissipative dynamics. Numerical solutions for stressed prey-predator systems with limited resources show a threshold. A non-equilibrium phase transition to a phase with ecosystem dying after a few enforced oscillations (waldsterben phase) occurs.

  3. Transition and the community college: a Career Keys model for students with disabilities.

    Science.gov (United States)

    Roessler, Richard T.; Brown, Patricia L.

    2000-01-01

    Transition models are needed that address multiple phases in the postsecondary education of students with disabilities. These models must first address the recruitment of high school students with disabilities for community colleges through career exploration experiences that help students clarify their educational and vocational interests and relate those interests to a two-year postsecondary program. Students with disabilities then need a comprehensive service program while attending community college to help them identify accommodation needs in classroom and workplace environments and develop the skills to request such accommodations from their instructors and employers. With this skill base, they are well prepared to initiate the next transition in their lives, that is, the movement from the community college to a four-year educational institution or to employment. Programs are needed to facilitate this transition, such as a placement planning seminar involving rehabilitation professionals and employers and an accommodation follow-up assessment with students in their new educational and employment settings. The "Career Keys" model describes how to deliver the services needed in each of these critical transition phases.

  4. Analysis of phase transitions in spin-crossover compounds by using atom - phonon coupling model

    International Nuclear Information System (INIS)

    Gindulescu, A; Linares, J; Rotaru, A; Dimian, M; Nasser, J

    2011-01-01

    The spin - crossover compounds (SCO) have become of great interest recently due to their potential applications in memories, sensors, switches, and display devices. These materials are particularly interesting because upon application of heat, light, pressure or other physical stimulus, they feature a phase transition between a low-spin (LS) diamagnetic ground state and a high-spin (HS) paramagnetic state, accompanied in some cases by color change. The phase transition can be discontinuous (with hysteresis), in two steps or gradual. Our analysis is performed by using the atom - phonon coupling (APC) model which considers that neighboring molecules are connected through a spring characterized by an elastic constant depending on molecules electronic state. By associating a fictitious spin to each molecule that has -1 and +1 eigenvalues corresponding to LS and HS levels respectively, an Ising type model can be developed for the analysis of metastable states and phase transitions in spin-crossover compounds. This contribution is aimed at providing a review of our recent results in this area, as well as novel aspects related to SCO compounds behavior at low temperature. In the framework of the APC model, we will discuss about the existence of metastable and unstable states, phase transitions and hysteresis phenomena, as well as their dependence on sample size.

  5. Jamming transition in a homogeneous one-dimensional system: The bus route model

    Science.gov (United States)

    O'loan, O. J.; Evans, M. R.; Cates, M. E.

    1998-08-01

    We present a driven diffusive model that we call the bus route model. The model is defined on a one-dimensional lattice, with each lattice site having two binary variables, one of which is conserved (``buses'') and one of which is nonconserved (``passengers''). The buses are driven in a preferred direction and are slowed down by the presence of passengers who arrive with rate λ. We study the model by simulation, heuristic argument, and a mean-field theory. All these approaches provide strong evidence of a transition between an inhomogeneous ``jammed'' phase (where the buses bunch together) and a homogeneous phase as the bus density is increased. However, we argue that a strict phase transition is present only in the limit λ-->0. For small λ, we argue that the transition is replaced by an abrupt crossover that is exponentially sharp in 1/λ. We also study the coarsening of gaps between buses in the jammed regime. An alternative interpretation of the model is given in which the spaces between buses and the buses themselves are interchanged. This describes a system of particles whose mobility decreases the longer they have been stationary and could provide a model for, say, the flow of a gelling or sticky material along a pipe.

  6. A new formulation of cannabidiol in cream shows therapeutic effects in a mouse model of experimental autoimmune encephalomyelitis.

    Science.gov (United States)

    Giacoppo, Sabrina; Galuppo, Maria; Pollastro, Federica; Grassi, Gianpaolo; Bramanti, Placido; Mazzon, Emanuela

    2015-10-21

    The present study was designed to investigate the efficacy of a new formulation of alone, purified cannabidiol (CBD) (>98 %), the main non-psychotropic cannabinoid of Cannabis sativa, as a topical treatment in an experimental model of autoimmune encephalomyelitis (EAE), the most commonly used model for multiple sclerosis (MS). Particularly, we evaluated whether administration of a topical 1 % CBD-cream, given at the time of symptomatic disease onset, could affect the EAE progression and if this treatment could also recover paralysis of hind limbs, qualifying topical-CBD for the symptomatic treatment of MS. In order to have a preparation of 1 % of CBD-cream, pure CBD have been solubilized in propylene glycoland basic dense cream O/A. EAE was induced by immunization with myelin oligodendroglial glycoprotein peptide (MOG35-55) in C57BL/6 mice. After EAE onset, mice were allocated into several experimental groups (Naïve, EAE, EAE-1 % CBD-cream, EAE-vehicle cream, CTRL-1 % CBD-cream, CTRL-vehicle cream). Mice were observed daily for signs of EAE and weight loss. At the sacrifice of the animals, which occurred at the 28(th) day from EAE-induction, spinal cord and spleen tissues were collected in order to perform histological evaluation, immunohistochemistry and western blotting analysis. Achieved results surprisingly show that daily treatment with topical 1 % CBD-cream may exert neuroprotective effects against EAE, diminishing clinical disease score (mean of 5.0 in EAE mice vs 1.5 in EAE + CBD-cream), by recovering of paralysis of hind limbs and by ameliorating histological score typical of disease (lymphocytic infiltration and demyelination) in spinal cord tissues. Also, 1 % CBD-cream is able to counteract the EAE-induced damage reducing release of CD4 and CD8α T cells (spleen tissue localization was quantified about 10,69 % and 35,96 % of positive staining respectively in EAE mice) and expression of the main pro-inflammatory cytokines as well as several other

  7. Applications of neural networks to the studies of phase transitions of two-dimensional Potts models

    Science.gov (United States)

    Li, C.-D.; Tan, D.-R.; Jiang, F.-J.

    2018-04-01

    We study the phase transitions of two-dimensional (2D) Q-states Potts models on the square lattice, using the first principles Monte Carlo (MC) simulations as well as the techniques of neural networks (NN). We demonstrate that the ideas from NN can be adopted to study these considered phase transitions efficiently. In particular, even with a simple NN constructed in this investigation, we are able to obtain the relevant information of the nature of these phase transitions, namely whether they are first order or second order. Our results strengthen the potential applicability of machine learning in studying various states of matters. Subtlety of applying NN techniques to investigate many-body systems is briefly discussed as well.

  8. Effective field theory with differential operator technique for dynamic phase transition in ferromagnetic Ising model

    International Nuclear Information System (INIS)

    Kinoshita, Takehiro; Fujiyama, Shinya; Idogaki, Toshihiro; Tokita, Masahiko

    2009-01-01

    The non-equilibrium phase transition in a ferromagnetic Ising model is investigated by use of a new type of effective field theory (EFT) which correctly accounts for all the single-site kinematic relations by differential operator technique. In the presence of a time dependent oscillating external field, with decrease of the temperature the system undergoes a dynamic phase transition, which is characterized by the period averaged magnetization Q, from a dynamically disordered state Q = 0 to the dynamically ordered state Q ≠ 0. The results of the dynamic phase transition point T c determined from the behavior of the dynamic magnetization and the Liapunov exponent provided by EFT are improved than that of the standard mean field theory (MFT), especially for the one dimensional lattice where the standard MFT gives incorrect result of T c = 0 even in the case of zero external field.

  9. Evaluation of drought using SPEI drought class transitions and log-linear models for different agro-ecological regions of India

    Science.gov (United States)

    Alam, N. M.; Sharma, G. C.; Moreira, Elsa; Jana, C.; Mishra, P. K.; Sharma, N. K.; Mandal, D.

    2017-08-01

    Markov chain and 3-dimensional log-linear models were attempted to model drought class transitions derived from the newly developed drought index the Standardized Precipitation Evapotranspiration Index (SPEI) at a 12 month time scale for six major drought prone areas of India. Log-linear modelling approach has been used to investigate differences relative to drought class transitions using SPEI-12 time series derived form 48 yeas monthly rainfall and temperature data. In this study, the probabilities of drought class transition, the mean residence time, the 1, 2 or 3 months ahead prediction of average transition time between drought classes and the drought severity class have been derived. Seasonality of precipitation has been derived for non-homogeneous Markov chains which could be used to explain the effect of the potential retreat of drought. Quasi-association and Quasi-symmetry log-linear models have been fitted to the drought class transitions derived from SPEI-12 time series. The estimates of odds along with their confidence intervals were obtained to explain the progression of drought and estimation of drought class transition probabilities. For initial months as the drought severity increases the calculated odds shows lower value and the odds decreases for the succeeding months. This indicates that the ratio of expected frequencies of occurrence of transition from drought class to the non-drought class decreases as compared to transition to any drought class when the drought severity of the present class increases. From 3-dimensional log-linear model it is clear that during the last 24 years the drought probability has increased for almost all the six regions. The findings from the present study will immensely help to assess the impact of drought on the gross primary production and to develop future contingent planning in similar regions worldwide.

  10. Quantum phase transition in the U(4) vibron model and the E(3) symmetry

    International Nuclear Information System (INIS)

    Zhang Yu; Hou Zhanfeng; Chen Huan; Wei Haiqing; Liu Yuxin

    2008-01-01

    We study the details of the U(3)-O(4) quantum phase transition in the U(4) vibron model. Both asymptotic analysis in the classical limit and rigorous calculations for finite boson number systems indicate that a second-order phase transition is still there even for the systems with boson number N ranging from tens to hundreds. Two kinds of effective order parameters, including E1 transition ratios B(E1:2 1 →1 1 )/B(E1:1 1 →0 1 ) and B(E1:0 2 →1 1 )/B(E1:1 1 →0 1 ), and the energy ratios E 2 1 /E 0 2 and E 3 1 /E 0 2 are proposed to identify the second-order phase transition in experiments. We also found that the critical point of phase transition can be approximately described by the E(3) symmetry, which persists even for moderate N∼10 protected by the scaling behaviors of quantities at the critical point. In addition, a possible empirical example exhibiting roughly the E(3) symmetry is discussed

  11. Enhancement of neutral tc transitions in the model of dynamical breaking of electroweak symmetry

    International Nuclear Information System (INIS)

    Arbuzov, B.A.; Osipov, M.Yu.

    1999-01-01

    The problem of possible deviations from the standard model is considered in the framework of a variant of dynamical electroweak symmetry breaking. It comes clear, that the parameters of the theory, being obtained earlier and describing deviations from standard model in Z → b-barb decay, are also consistent with the existence of a nontrivial solution for vertex t-bar (Z, γ)c. The occurrence of this solution leads to a significant enhancement in neutral flavor changing transition t → c. The intensity of this transition is connected with the c-quark mass, that leads to estimates of probabilities of exotic decays t → c(Z, γ) and of the cross section of a single t-quark production in process e + e - → tc-bar, which threshold is already overcome at LEP2. The model is shown to be consistent with the totality of the existing data, the predictions allow its unambiguous check [ru

  12. Ages and transit times as important diagnostics of model performance for predicting carbon dynamics in terrestrial vegetation models

    Science.gov (United States)

    Ceballos-Núñez, Verónika; Richardson, Andrew D.; Sierra, Carlos A.

    2018-03-01

    The global carbon cycle is strongly controlled by the source/sink strength of vegetation as well as the capacity of terrestrial ecosystems to retain this carbon. These dynamics, as well as processes such as the mixing of old and newly fixed carbon, have been studied using ecosystem models, but different assumptions regarding the carbon allocation strategies and other model structures may result in highly divergent model predictions. We assessed the influence of three different carbon allocation schemes on the C cycling in vegetation. First, we described each model with a set of ordinary differential equations. Second, we used published measurements of ecosystem C compartments from the Harvard Forest Environmental Measurement Site to find suitable parameters for the different model structures. And third, we calculated C stocks, release fluxes, radiocarbon values (based on the bomb spike), ages, and transit times. We obtained model simulations in accordance with the available data, but the time series of C in foliage and wood need to be complemented with other ecosystem compartments in order to reduce the high parameter collinearity that we observed, and reduce model equifinality. Although the simulated C stocks in ecosystem compartments were similar, the different model structures resulted in very different predictions of age and transit time distributions. In particular, the inclusion of two storage compartments resulted in the prediction of a system mean age that was 12-20 years older than in the models with one or no storage compartments. The age of carbon in the wood compartment of this model was also distributed towards older ages, whereas fast cycling compartments had an age distribution that did not exceed 5 years. As expected, models with C distributed towards older ages also had longer transit times. These results suggest that ages and transit times, which can be indirectly measured using isotope tracers, serve as important diagnostics of model structure

  13. Ages and transit times as important diagnostics of model performance for predicting carbon dynamics in terrestrial vegetation models

    Directory of Open Access Journals (Sweden)

    V. Ceballos-Núñez

    2018-03-01

    Full Text Available The global carbon cycle is strongly controlled by the source/sink strength of vegetation as well as the capacity of terrestrial ecosystems to retain this carbon. These dynamics, as well as processes such as the mixing of old and newly fixed carbon, have been studied using ecosystem models, but different assumptions regarding the carbon allocation strategies and other model structures may result in highly divergent model predictions. We assessed the influence of three different carbon allocation schemes on the C cycling in vegetation. First, we described each model with a set of ordinary differential equations. Second, we used published measurements of ecosystem C compartments from the Harvard Forest Environmental Measurement Site to find suitable parameters for the different model structures. And third, we calculated C stocks, release fluxes, radiocarbon values (based on the bomb spike, ages, and transit times. We obtained model simulations in accordance with the available data, but the time series of C in foliage and wood need to be complemented with other ecosystem compartments in order to reduce the high parameter collinearity that we observed, and reduce model equifinality. Although the simulated C stocks in ecosystem compartments were similar, the different model structures resulted in very different predictions of age and transit time distributions. In particular, the inclusion of two storage compartments resulted in the prediction of a system mean age that was 12–20 years older than in the models with one or no storage compartments. The age of carbon in the wood compartment of this model was also distributed towards older ages, whereas fast cycling compartments had an age distribution that did not exceed 5 years. As expected, models with C distributed towards older ages also had longer transit times. These results suggest that ages and transit times, which can be indirectly measured using isotope tracers, serve as important

  14. Route Design Model of Feeder Bus Service for Urban Rail Transit Stations

    Directory of Open Access Journals (Sweden)

    Zhenjun Zhu

    2017-01-01

    Full Text Available As an important part of urban public transportation systems, the feeder bus fills a service gap left by rail transit, effectively extending the range of rail transit’s service and solving the problem of short-distance travel and interchanges. By defining the potential demand of feeder bus services and considering its relationship with the traffic demands of corresponding staging areas, the distance between road and rail transit, and the repetition factor of road bus lines, this paper established a potential demand model of roads by opening feeder bus services and applying a logit model for passenger flow distribution. Based on a circular route model, a route starting and ending at urban rail transit stations was generated, and a genetic algorithm was then applied to solve it. The Wei-Fang community of Shanghai was selected as the test area. Per the model and algorithm, the feeder route length was conformed to a functional orientation of short-distance travel and the feeder service of a feeder bus; the route mostly covered where conventional bus lines were fewer, which is a finding that is in agreement with the actual situation; the feasibility of the model and algorithm was verified.

  15. Single-Column Model Simulations of Subtropical Marine Boundary-Layer Cloud Transitions Under Weakening Inversions

    Science.gov (United States)

    Neggers, R. A. J.; Ackerman, A. S.; Angevine, W. M.; Bazile, E.; Beau, I.; Blossey, P. N.; Boutle, I. A.; de Bruijn, C.; Cheng, A.; van der Dussen, J.; Fletcher, J.; Dal Gesso, S.; Jam, A.; Kawai, H.; Cheedela, S. K.; Larson, V. E.; Lefebvre, M.-P.; Lock, A. P.; Meyer, N. R.; de Roode, S. R.; de Rooy, W.; Sandu, I.; Xiao, H.; Xu, K.-M.

    2017-10-01

    Results are presented of the GASS/EUCLIPSE single-column model intercomparison study on the subtropical marine low-level cloud transition. A central goal is to establish the performance of state-of-the-art boundary-layer schemes for weather and climate models for this cloud regime, using large-eddy simulations of the same scenes as a reference. A novelty is that the comparison covers four different cases instead of one, in order to broaden the covered parameter space. Three cases are situated in the North-Eastern Pacific, while one reflects conditions in the North-Eastern Atlantic. A set of variables is considered that reflects key aspects of the transition process, making use of simple metrics to establish the model performance. Using this method, some longstanding problems in low-level cloud representation are identified. Considerable spread exists among models concerning the cloud amount, its vertical structure, and the associated impact on radiative transfer. The sign and amplitude of these biases differ somewhat per case, depending on how far the transition has progressed. After cloud breakup the ensemble median exhibits the well-known "too few too bright" problem. The boundary-layer deepening rate and its state of decoupling are both underestimated, while the representation of the thin capping cloud layer appears complicated by a lack of vertical resolution. Encouragingly, some models are successful in representing the full set of variables, in particular, the vertical structure and diurnal cycle of the cloud layer in transition. An intriguing result is that the median of the model ensemble performs best, inspiring a new approach in subgrid parameterization.

  16. Observation and modeling of deflagration-to-detonation transition (DDT) in low-density HMX

    Science.gov (United States)

    Tringe, Joseph W.; Vandersall, Kevin S.; Reaugh, John E.; Levie, Harold W.; Henson, Bryan F.; Smilowitz, Laura B.; Parker, Gary R.

    2017-01-01

    We employ simultaneous flash x-ray radiography and streak imaging, together with a multi-phase finite element model, to understand deflagration-to-detonation transition (DDT) phenomena in low-density (˜1.2 gm/cm3) powder of the explosive cyclotetramethylene-tetranitramine (HMX). HMX powder was lightly hand-tamped in a 12.7 mm diameter column, relatively lightly-confined in an optically-transparent polycarbonate cylinder with wall thickness 25.4 mm. We observe apparent compaction of the powder in advance of the detonation transition by the motion of small steel spheres pre-emplaced throughout the length of explosive. High-speed imaging along the explosive cylinder length provides a more temporally continuous record of the transition that is correlated with the high-resolution x-ray image record. Preliminary simulation of these experiments with the HERMES model implemented in the ALE3D code enables improved understanding of the explosive particle burning, compaction and detonation phenomena which are implied by the observed reaction rate and transition location within the cylinder.

  17. ON THE TRANSITIONAL DISK CLASS: LINKING OBSERVATIONS OF T TAURI STARS AND PHYSICAL DISK MODELS

    International Nuclear Information System (INIS)

    Espaillat, C.; Andrews, S.; Qi, C.; Wilner, D.; Ingleby, L.; Calvet, N.; Hernández, J.; Furlan, E.; D'Alessio, P.; Muzerolle, J.

    2012-01-01

    Two decades ago 'transitional disks' (TDs) described spectral energy distributions (SEDs) of T Tauri stars with small near-IR excesses, but significant mid- and far-IR excesses. Many inferred this indicated dust-free holes in disks possibly cleared by planets. Recently, this term has been applied disparately to objects whose Spitzer SEDs diverge from the expectations for a typical full disk (FD). Here, we use irradiated accretion disk models to fit the SEDs of 15 such disks in NGC 2068 and IC 348. One group has a 'dip' in infrared emission while the others' continuum emission decreases steadily at all wavelengths. We find that the former have an inner disk hole or gap at intermediate radii in the disk and we call these objects 'transitional disks' and 'pre-transitional disks' (PTDs), respectively. For the latter group, we can fit these SEDs with FD models and find that millimeter data are necessary to break the degeneracy between dust settling and disk mass. We suggest that the term 'transitional' only be applied to objects that display evidence for a radical change in the disk's radial structure. Using this definition, we find that TDs and PTDs tend to have lower mass accretion rates than FDs and that TDs have lower accretion rates than PTDs. These reduced accretion rates onto the star could be linked to forming planets. Future observations of TDs and PTDs will allow us to better quantify the signatures of planet formation in young disks.

  18. Analytic Study of Cosmological Perturbations in a Unified Model of Dark Matter and Dark Energy with a Sharp Transition

    OpenAIRE

    Cuzinatto, Rodrigo R.; Medeiros, Léo G.; de Morais, Eduardo M.; Brandenberger, Robert H.

    2018-01-01

    We study cosmological perturbations in a model of unified dark matter and dark energy with a sharp transition in the late-time universe. The dark sector is described by a dark fluid which evolves from an early stage at redshifts $z > z_C$ when it behaves as cold dark matter (CDM) to a late time dark energy (DE) phase ($z < z_C$) when the equation of state parameter is $w = -1 + \\epsilon$, with a constant $\\epsilon$ which must be in the range $0 < \\epsilon < 2/3$. We show that fluctuations in ...

  19. An analytical model for pulse shape and electrothermal stability in two-body transition-edge sensor microcalorimeters

    International Nuclear Information System (INIS)

    Bennett, D. A.; Horansky, R. D.; Schmidt, D. R.; Swetz, D. S.; Vale, L. R.; Ullom, J. N.; Hoover, A. S.; Hoteling, N. J.; Rabin, M. W.

    2010-01-01

    High-resolution superconducting gamma-ray sensors show potential for the more accurate analysis of nuclear material. These devices are part of a larger class of microcalorimeters and bolometers based on transition edge sensors (TESs) that have two distinct thermal bodies. We derive the time domain behavior of the current and temperature for compound TES devices in the small signal limit and demonstrate the utility of these equations for device design and characterization. In particular, we use the model to fit pulses from our gamma-ray microcalorimeters and demonstrate how critical damping and electrothermal stability can be predicted.

  20. THE PRACTEAM MODEL REGARDING SCHOOL TO ACTIVE LIFE TRANSITION. STUDENTS’ EXPECTANCIES

    Directory of Open Access Journals (Sweden)

    Dodescu Anca Otilia

    2013-07-01

    Full Text Available The project “Practical training of economist’s students. Inter-regional partnership in the labor market between universities and the business environment” focuses on student’s transition from school to labor market. Concretely, it tries to highlight the general role of practical training – specifically the field related practical training set as a mandatory discipline in the curriculum, by identifying possibilities of interventions from supervisors. Starting with literature review regarding determinants of school to active life transition, the present contribution discusses the outline of the practical training set as a mandatory discipline in the curriculum. Within PRACTeam project the practical training itself is accompanied with a series of supplementary services (aptitude testing, counseling, career guidance, mentoring by a trained tutor, granting financial aid, awarding excellence over contests and internships. It represents an active partnership on the labor market meant to address directly students’ expectations regarding practical training, work, and entrepreneurship. At least two main benefits may be derived from the training and tutoring. First, as a dual type model of transition from school to active life, allowing students to become insiders in the labor market. Secondly, changes in supervisor’ patterns of interactions and behavior/attitudes toward work and employees may also occur, which in turn may improve the work. A pretest-posttest non-experimental design was applied for the PRACTeam evaluation. Using administered questionnaires and focus group method to students before and after they completed their practical stages we examined their attitudes and behavior towards elements of the dual model of transition. The paper concludes that a dual type model of transition from school to active life - that implies the education and practice occur simultaneously, successfully meets students’ expectancies and may be

  1. Modeling how shark and dolphin skin patterns control transitional wall-turbulence vorticity patterns using spatiotemporal phase reset mechanisms

    Science.gov (United States)

    Bandyopadhyay, Promode R.; Hellum, Aren M.

    2014-10-01

    Many slow-moving biological systems like seashells and zebrafish that do not contend with wall turbulence have somewhat organized pigmentation patterns flush with their outer surfaces that are formed by underlying autonomous reaction-diffusion (RD) mechanisms. In contrast, sharks and dolphins contend with wall turbulence, are fast swimmers, and have more organized skin patterns that are proud and sometimes vibrate. A nonlinear spatiotemporal analytical model is not available that explains the mechanism underlying control of flow with such proud patterns, despite the fact that shark and dolphin skins are major targets of reverse engineering mechanisms of drag and noise reduction. Comparable to RD, a minimal self-regulation model is given for wall turbulence regeneration in the transitional regime--laterally coupled, diffusively--which, although restricted to pre-breakdown durations and to a plane close and parallel to the wall, correctly reproduces many experimentally observed spatiotemporal organizations of vorticity in both laminar-to-turbulence transitioning and very low Reynolds number but turbulent regions. We further show that the onset of vorticity disorganization is delayed if the skin organization is treated as a spatiotemporal template of olivo-cerebellar phase reset mechanism. The model shows that the adaptation mechanisms of sharks and dolphins to their fluid environment have much in common.

  2. Ductile to brittle transition of an A508 steel characterized by Charpy impact test, part II., Modeling of the Charpy transition curve

    OpenAIRE

    Tanguy, Benoit; Besson, Jacques; Piques, Roland; Pineau, André

    2005-01-01

    International audience; A finite element simulation of the Charpy test is developed in order to model the ductile to brittle transition curve of a pressure vessel steel. The material (an A508 steel) and the experimental results are presented in a companion paper (Part I [Engng. Fract. Mech.]). The proposed simulation includes a detailed description of the material viscoplastic behavior over a wide temperature range. Ductile behavior is modeled using modified Rousselier model. The Beremin mode...

  3. Critical success factors for the transition to business models for sustainability in the food and beverage industry in the Netherlands

    OpenAIRE

    Long, Thomas B.; Looijen, Arnold; Blok, Vincent

    2018-01-01

    Businesses will play a key role in helping the transition towards greater sustainability. To maximise business sustainability performance, sustainability characteristics must be integrated at the business model level, creating business models for sustainability. Creating a business model for sustainability, or transitioning from a traditional business model, is likely to be a complicated and challenging process. Previous research has identified a range of barriers, such as low financial rewar...

  4. The Transitional Justice Models and the Justifications of Means of Dealing with the Past

    Directory of Open Access Journals (Sweden)

    Michal Krotoszynski

    2016-09-01

    Full Text Available The development of transitional justice measures can be fully understood only when one takes into account the values, rationales and justifications that lie at the roots of various ways of dealing with past wrongs. Seeing transitional justice as an ontologically complex structure, the article aims to relate the legal instruments that concentrate on past abusers to the axiological layer of settling accounts with the past. In order to do so, three basic models of transitional justice – a retribution model, a historical clarification model and a thick line model – all based on the measures implemented during democratic change, are presented. Then, with the use of a classic division between consequentialist and deontological argumentation, the article describes transitional justice justifications. Next, the values emblematic for each of the models are identified. Finally, the article proposes a structure of transitional justice moral reasoning that may guide transitional decision-making process on the axiological level. El desarrollo de medidas de justicia transicional sólo puede entenderse en su totalidad cuando se tienen en cuenta los valores, razones y justificaciones que subyacen en las raíces de las diversas maneras de tratar con los errores del pasado. Al ver la justicia transicional como una estructura ontológicamente compleja, el artículo pretende relacionar los instrumentos jurídicos que se concentran en los agresores del pasado con la capa axiológica de ajustar cuentas con el pasado. Para conseguirlo, se presentan tres modelos básicos de justicia transicional -un modelo de retribución, un modelo de esclarecimiento histórico y un modelo de línea gruesa-, todos basados en las medidas aplicadas durante un cambio democrático. Seguidamente, el artículo describe las justificaciones de la justicia transicional, con el uso de una división clásica entre argumentación consecuencialista y deontológica. A continuación, se

  5. Structure of transition nuclei states in fermion dynamic-symmetry model

    International Nuclear Information System (INIS)

    Baktybaev, K.; Kojlyk, N.O.; Romankulov, K.

    2007-01-01

    In the paper collective structures of osmium heavy isotopes nucleons are studied. Results of diagonalization of SO(6) symmetric Hamiltonian of fermion-dynamical symmetry-model are comparing with results of other phenomenological methods such as Bohr-Mottelson model and interacting bosons model. For heavy osmium isotopes not only collective excitations spectral bands but also for probability of E2-electromagnet transition are which are compared with existing experimental data. It is revealed, that complexity of state structure for examined nuclei is related with competition and interweaving of rotation and vibration states and also more complicated states of γ instable nature

  6. Percolation model of excess electrical noise in transition-edge sensors

    Energy Technology Data Exchange (ETDEWEB)

    Lindeman, M.A. [Department of Physics, University of Wisconsin, Madison, WI 53706 (United States)]. E-mail: lindeman@wisp.physics.wisc.edu; Anderson, M.B. [Department of Physics, University of Wisconsin, Madison, WI 53706 (United States); Bandler, S.R. [NASA Goddard Space Flight Center, Greenbelt, MD 20771 (United States); Bilgri, N. [Department of Physics, University of Wisconsin, Madison, WI 53706 (United States); Chervenak, J. [NASA Goddard Space Flight Center, Greenbelt, MD 20771 (United States); Gwynne Crowder, S. [Department of Physics, University of Wisconsin, Madison, WI 53706 (United States); Fallows, S. [Department of Physics, University of Wisconsin, Madison, WI 53706 (United States); Figueroa-Feliciano, E. [NASA Goddard Space Flight Center, Greenbelt, MD 20771 (United States); Finkbeiner, F. [NASA Goddard Space Flight Center, Greenbelt, MD 20771 (United States); Iyomoto, N. [NASA Goddard Space Flight Center, Greenbelt, MD 20771 (United States); Kelley, R. [NASA Goddard Space Flight Center, Greenbelt, MD 20771 (United States); Kilbourne, C.A. [NASA Goddard Space Flight Center, Greenbelt, MD 20771 (United States); Lai, T. [Department of Physics, University of Wisconsin, Madison, WI 53706 (United States); Man, J. [Department of Physics, University of Wisconsin, Madison, WI 53706 (United States); McCammon, D. [Department of Physics, University of Wisconsin, Madison, WI 53706 (United States); Nelms, K.L. [Department of Physics, University of Wisconsin, Madison, WI 53706 (United States); Porter, F.S. [NASA Goddard Space Flight Center, Greenbelt, MD 20771 (United States); Rocks, L.E. [Department of Physics, University of Wisconsin, Madison, WI 53706 (United States); Saab, T. [NASA Goddard Space Flight Center, Greenbelt, MD 20771 (United States); Sadleir, J. [NASA Goddard Space Flight Center, Greenbelt, MD 20771 (United States); Vidugiris, G. [Department of Physics, University of Wisconsin, Madison, WI 53706 (United States)

    2006-04-15

    We present a geometrical model to describe excess electrical noise in transition-edge sensors (TESs). In this model, a network of fluctuating resistors represents the complex dynamics inside a TES. The fluctuations can cause several resistors in series to become superconducting. Such events short out part of the TES and generate noise because much of the current percolates through low resistance paths. The model predicts that excess white noise increases with decreasing TES bias resistance (R/R{sub N}) and that perpendicular zebra stripes reduce noise and alpha of the TES by reducing percolation.

  7. State-and-transition prototype model of riparian vegetation downstream of Glen Canyon Dam, Arizona

    Science.gov (United States)

    Ralston, Barbara E.; Starfield, Anthony M.; Black, Ronald S.; Van Lonkhuyzen, Robert A.

    2014-01-01

    Facing an altered riparian plant community dominated by nonnative species, resource managers are increasingly interested in understanding how to manage and promote healthy riparian habitats in which native species dominate. For regulated rivers, managing flows is one tool resource managers consider to achieve these goals. Among many factors that can influence riparian community composition, hydrology is a primary forcing variable. Frame-based models, used successfully in grassland systems, provide an opportunity for stakeholders concerned with riparian systems to evaluate potential riparian vegetation responses to alternative flows. Frame-based, state-and-transition models of riparian vegetation for reattachment bars, separation bars, and the channel margin found on the Colorado River downstream of Glen Canyon Dam were constructed using information from the literature. Frame-based models can be simple spreadsheet models (created in Microsoft® Excel) or developed further with programming languages (for example, C-sharp). The models described here include seven community states and five dam operations that cause transitions between states. Each model divides operations into growing (April–September) and non-growing seasons (October–March) and incorporates upper and lower bar models, using stage elevation as a division. The inputs (operations) can be used by stakeholders to evaluate flows that may promote dynamic riparian vegetation states, or identify those flow options that may promote less desirable states (for example, Tamarisk [Tamarix sp.] temporarily flooded shrubland). This prototype model, although simple, can still elicit discussion about operational options and vegetation response.

  8. Modeling the Oil Transition: A Summary of the Proceedings of the DOE/EPA Workshop on the Economic and Environmental Implications of Global Energy Transitions

    Energy Technology Data Exchange (ETDEWEB)

    Greene, David L [ORNL

    2007-02-01

    The global energy system faces sweeping changes in the next few decades, with potentially critical implications for the global economy and the global environment. It is important that global institutions have the tools necessary to predict, analyze and plan for such massive change. This report summarizes the proceedings of an international workshop concerning methods of forecasting, analyzing, and planning for global energy transitions and their economic and environmental consequences. A specific case, it focused on the transition from conventional to unconventional oil and other energy sources likely to result from a peak in non-OPEC and/or global production of conventional oil. Leading energy models from around the world in government, academia and the private sector met, reviewed the state-of-the-art of global energy modeling and evaluated its ability to analyze and predict large-scale energy transitions.

  9. The Impact of Urban Transit Systems on Property Values: A Model and Some Evidences from the City of Naples

    Directory of Open Access Journals (Sweden)

    Mariano Gallo

    2018-01-01

    Full Text Available A hedonic model for estimating the effects of transit systems on real estate values is specified and calibrated for the city of Naples. The model is used to estimate the external benefits concerning property values which may be attributed to the Naples metro at the present time and in two future scenarios. The results show that only high-frequency metro lines have appreciable effects on real estate values, while low-frequency metro lines and bus lines produce no significant impacts. Our results show that the impacts on real estate values of the metro system in Naples are significant, with corresponding external benefits estimated at about 7.2 billion euros or about 8.5% of the total value of real estate assets.

  10. Mott insulator–superfluid phase transition in two-band Bose–Hubbard models with gapless nodal lines

    Science.gov (United States)

    Huang, Beibing; Yang, Xiaosen

    2018-01-01

    Recent studies on ultracold atoms have reported the implementation of laser-assisted tunneling in lattice systems, facilitating the realization of topological phases. Motivated by such advances, we investigate a two-band Bose–Hubbard model with its single-particle energy bands showing gapless nodal lines, which can be realized for ultracold atoms in the cubic optical lattices using laser-assisted tunneling. We analyze the superfluid–Mott insulator (MI) phase transition in this model and obtain a global phase diagram by using the strong-coupling expansion method. The excitation spectra in strong and weak coupling limits inherit the topological properties of single-particle energy bands to show the structures of nodal lines. The topological invariants, the flat surface states and the critical properties are analyzed theoretically in detail. The excitation spectra in the MI and superfluid phases are measurable in ultracold atom experiments to prove our results.

  11. Effect of third- and fourth-order moments on the modeling of unresolved transition arrays

    Science.gov (United States)

    Pain, J.-Ch.; Gilleron, F.; Bauche, J.; Bauche-Arnoult, C.

    2009-12-01

    The impact of the third (skewness) and fourth (kurtosis) reduced centered moments on the statistical modeling of E1 lines in complex atomic spectra is investigated through the use of Gram-Charlier, Normal Inverse Gaussian and Generalized Gaussian distributions. It is shown that the modeling of unresolved transition arrays with non-Gaussian distributions may reveal more detailed structures, due essentially to the large value of the kurtosis. In the present work, focus is put essentially on the Generalized Gaussian, the power of the argument in the exponential being constrained by the kurtosis value. The relevance of the new statistical line distribution is checked by comparisons with smoothed detailed line-by-line calculations and through the analysis of 2 p → 3 d transitions of recent laser or Z-pinch absorption measurements. The issue of calculating high-order moments is also discussed (Racah algebra, Jucys graphical method, semi-empirical approach…).

  12. Spin-glass-like transition in the majority-vote model with anticonformists

    Science.gov (United States)

    Krawiecki, Andrzej

    2018-03-01

    Majority-vote model on scale-free networks and random graphs is investigated in which a randomly chosen fraction p of agents (called anticonformists) follows an antiferromagnetic update rule, i.e., they assume, with probability governed by a parameter q (0 transition from a disordered (paramagnetic) state to a spin-glass-like state, characterized by a non-zero value of the spin-glass order parameter measuring the overlap of agents' opinions in two replicas of the system, and simultaneously by the magnetization close to zero. In the case of the model on scale-free networks the critical value of the parameter q weakly depends on the details of the degree distribution. As p is decreased, the critical value of q falls quickly to zero and only the disordered phase is observed. On the other hand, for p close to zero for decreasing q the usual ferromagnetic transition is observed.

  13. Structural phase transition in a growing network model with tunable member intimacy

    Science.gov (United States)

    Kim, Kibum; Jo, Woo Seong; Kim, Beom Jun

    2017-05-01

    Users of online communities become more intimate in time by writing posts and exchanging comments to each other. Although a certain level of intimacy among a group of members can be beneficial for the activity of the whole community, too strong intimacy among existing members can make newcomers feel alienated, driving them to leave the community. In this letter, we introduce a growing network model in which we systematically study the effect of member intimacy on the formation of connected component of the network. We introduce a parameter called clinginess and control how the member intimacy affects the communication activity. We observe that cumulative number of users who leave the community exhibits a transition-like behavior, similarly to the discontinuous transition in statistical mechanics models. Implication of our result in constructing a sustainable online community is also discussed.

  14. The simulation of L-H transition in tokamak plasma using MMM95 transport model

    International Nuclear Information System (INIS)

    Intharat, P; Poolyarat, N; Chatthong, B; Onjun, T; Picha, R

    2015-01-01

    BALDUR integrative predictive modelling code together with a Multimode (MMM95) anomalous transport model is used to simulate the evolution profiles, including plasma current, temperature, density and energy in a tokamak reactor. It is found that a self - transition from low confinement mode (L-mode) to high confinement mode (H-mode) regimes can be achieved once a sufficient auxiliary heating applied to the plasma is reached. The result agrees with experimental observations from various tokamaks. A strong reduction of turbulent transport near the edge of plasma is also observed, which is related to the formation of steep radial electric field near the edge regime. From transport analysis, it appears that the resistive ballooning mode is the dominant term near the plasma edge regime, which is significantly reduced during the transition. (paper)

  15. On P-transitive graphs and applications

    Directory of Open Access Journals (Sweden)

    Giacomo Lenzi

    2011-06-01

    Full Text Available We introduce a new class of graphs which we call P-transitive graphs, lying between transitive and 3-transitive graphs. First we show that the analogue of de Jongh-Sambin Theorem is false for wellfounded P-transitive graphs; then we show that the mu-calculus fixpoint hierarchy is infinite for P-transitive graphs. Both results contrast with the case of transitive graphs. We give also an undecidability result for an enriched mu-calculus on P-transitive graphs. Finally, we consider a polynomial time reduction from the model checking problem on arbitrary graphs to the model checking problem on P-transitive graphs. All these results carry over to 3-transitive graphs.

  16. The SU(3)/Z3 QCD(adj) deconfinement transition via the gauge theory/"affine" XY-model duality

    Science.gov (United States)

    Anber, Mohamed M.; Collier, Scott; Poppitz, Erich

    2013-01-01

    Earlier, two of us and M. Ünsal [1] showed that a class of 4d gauge theories, when compactified on a small spatial circle of size L and considered at temperatures β-1 near the deconfinement transition, are dual to 2d "affine" XY-spin models. We exploit this duality to study the deconfinement phase transition in SU(3)/{{{Z}}_3} gauge theories with n f > 1 massless adjoint Weyl fermions, QCD(adj) on {{{R}}^2}× {S}_{β}^1× {S}_L^1 . The dual "affine" XY-model describes two "spins" — compact scalars taking values in the SU(3) root lattice. The spins couple via nearest-neighbor interactions and are subject to an "external field" perturbation preserving the topological {Z}_3^t and a discrete {Z}_3^{{{d_{\\upchi}}}} subgroup of the anomaly-free chiral symmetry of the 4d gauge theory. The equivalent Coulomb gas representation of the theory exhibits electric-magnetic duality, which is also a high-/low-temperature duality. A renormalization group analysis suggests — but is not convincing, due to the onset of strong coupling — that the self-dual point is a fixed point, implying a continuous deconfinement transition. Here, we study the nature of the transition via Monte Carlo simulations. The {Z}_3^t× {Z}_3^{{{d_{\\upchi}}}} order parameter, its susceptibility, the vortex density, the energy per spin, and the specific heat are measured over a range of volumes, temperatures, and "external field" strengths (in the gauge theory, these correspond to magnetic bion fugacities). The finite-size scaling of the susceptibility and specific heat we find is characteristic of a first-order transition. Furthermore, for sufficiently large but still smaller than unity bion fugacity (as can be achieved upon an increase of the {S}_L^1 size), at the critical temperature we find two distinct peaks of the energy probability distribution, indicative of a first-order transition, as has been seen in earlier simulations of the full 4d QCD(adj) theory. We end with discussions of the global

  17. Bioavailability of particulate metal to zebra mussels: Biodynamic modelling shows that assimilation efficiencies are site-specific

    Energy Technology Data Exchange (ETDEWEB)

    Bourgeault, Adeline, E-mail: bourgeault@ensil.unilim.fr [Cemagref, Unite de Recherche Hydrosystemes et Bioprocedes, 1 rue Pierre-Gilles de Gennes, 92761 Antony (France); FIRE, FR-3020, 4 place Jussieu, 75005 Paris (France); Gourlay-France, Catherine, E-mail: catherine.gourlay@cemagref.fr [Cemagref, Unite de Recherche Hydrosystemes et Bioprocedes, 1 rue Pierre-Gilles de Gennes, 92761 Antony (France); FIRE, FR-3020, 4 place Jussieu, 75005 Paris (France); Priadi, Cindy, E-mail: cindy.priadi@eng.ui.ac.id [LSCE/IPSL CEA-CNRS-UVSQ, Avenue de la Terrasse, 91198 Gif-sur-Yvette (France); Ayrault, Sophie, E-mail: Sophie.Ayrault@lsce.ipsl.fr [LSCE/IPSL CEA-CNRS-UVSQ, Avenue de la Terrasse, 91198 Gif-sur-Yvette (France); Tusseau-Vuillemin, Marie-Helene, E-mail: Marie-helene.tusseau@ifremer.fr [IFREMER Technopolis 40, 155 rue Jean-Jacques Rousseau, 92138 Issy-Les-Moulineaux (France)

    2011-12-15

    This study investigates the ability of the biodynamic model to predict the trophic bioaccumulation of cadmium (Cd), chromium (Cr), copper (Cu), nickel (Ni) and zinc (Zn) in a freshwater bivalve. Zebra mussels were transplanted to three sites along the Seine River (France) and collected monthly for 11 months. Measurements of the metal body burdens in mussels were compared with the predictions from the biodynamic model. The exchangeable fraction of metal particles did not account for the bioavailability of particulate metals, since it did not capture the differences between sites. The assimilation efficiency (AE) parameter is necessary to take into account biotic factors influencing particulate metal bioavailability. The biodynamic model, applied with AEs from the literature, overestimated the measured concentrations in zebra mussels, the extent of overestimation being site-specific. Therefore, an original methodology was proposed for in situ AE measurements for each site and metal. - Highlights: > Exchangeable fraction of metal particles did not account for the bioavailability of particulate metals. > Need for site-specific biodynamic parameters. > Field-determined AE provide a good fit between the biodynamic model predictions and bioaccumulation measurements. - The interpretation of metal bioaccumulation in transplanted zebra mussels with biodynamic modelling highlights the need for site-specific assimilation efficiencies of particulate metals.

  18. Age of Sulfate Methane Transition Zone Determined by Modelling Barium Sulfate Growth

    Science.gov (United States)

    Lin, S.; Wang, W. C.; Lien, K. L.; Liu, C. C.; Fan, L. F.

    2017-12-01

    Methane seep to the sediment/water interface could initiate anaerobic methane oxidation (AOM) with subsequent build up of chemosynthetic community, carbonate, pyrite and a number of other authigenic mineral formation. Determination the duration, sequence and time of methane seeps are keys to understand how methane seep to the environment and degree of alteration to the vicinity area. However, limited method existed in defining time of methane seep since there are some known problems involving typical dating methods, i.e. old carbon on C14 of fossil test or authigenic carbonate, thorium from surrounding matrix on U/Th authigenic carbonate dating. In this study, we have employed barium determination method (Dickens, 2001) to model timing of methane seep at two locations in the South China Sea. Our objective is to compare timing of the barium accumulation near the sulfate methane transition zone (SMTZ) on these two different locations and to seek if a similar mechanism driving the methane seep at two locations far apart. Dissolved barium, total sediment barium and aluminum were measured as well as pore water sulfate, and sediment pyrite concentrations. Time for the barium sulfate accumulation is calculated by: T = C/F, C= ∫ I x p x (1-Ø) Our results show that SMTZ is stabilized at each site for a duration of about 4000-5000 years. AOM process have been active at both sites at about the same time. In conjunction, pyrite also accumulated at a depth near the SMTZ as a result of methane oxidation. This result show that AOM could stay at the SMTZ for a relatively long period of time, on a scale of thousands of years.

  19. Single-column model and large eddy simulation of the evening transition in the planetary boundary layer

    Science.gov (United States)

    Cuchiara, Gustavo; Rappenglück, Bernhard

    2016-04-01

    The transition from the convective boundary layer during the daytime to the stable stratified boundary layer during nighttime after sunset plays an important role in the transport and dispersion of atmospheric pollutants. However, our knowledge regarding this transition and its feedback on the structure of the subsequent nocturnal boundary layer is still restricted. This also prevents forecast models from accurate prediction of the onset and development of the nighttime boundary layer, which determines the redistribution of pollutants within the nocturnal surface layer and the residual layer aloft. In the present study, the well-known case of day 33 of the Wangara experiment is resimulated using the Weather Research and Forecasting (WRF) model in an idealized single-column mode to assess the performance of a frequently used planetary boundary layer (PBL) scheme, the Yonsei University (YSU) PBL scheme. These results are compared with two large eddy simulations (LES) for the same case study imposing different surface fluxes: one using previous surface fluxes calculated for the Wangara experiment and a second one using output from the WRF model. The results show a reasonable agreement of the PBL scheme in WRF with the LES. Overall, all the simulations presented a cold bias of ~3 Kelvin for the potential temperature and underestimation of the wind speed, especially after the transition to nighttime conditions (biases were up to 4 ms-1). Finally, an alternative set of eddy diffusivity equations was tested to represent the transition characteristics of a sunset period, with a stable layer below and a new parameterization for the convective decay regime typically observed in the RL aloft. This set of equations led to a gradual decrease of the eddy diffusivity, which replaces the instantaneous collapse of traditional diagnostics for eddy diffusivities. More appreciable changes were observed in air temperature, wind speed and specific humidity (up to 0.5 K, 0.6 ms-1, and 0

  20. Topological phase transition in the two-dimensional anisotropic Heisenberg model: A study using the Replica Exchange Wang-Landau sampling

    Science.gov (United States)

    Figueiredo, T. P.; Rocha, J. C. S.; Costa, B. V.

    2017-12-01

    Although the topological Berezinskii-Kosterlitz-Thouless transition was for the first time described by 40 years ago, it is still a matter of discussion. It has been used to explain several experiments in the most diverse physical systems. In contrast with the ordinary continuous phase transitions the BKT-transition does not break any symmetry. However, in some contexts it can easily be confused with other continuous transitions, in general due to an insufficient data analysis. The two-dimensional XY (or sometimes called planar rotator) spin model is the fruit fly model describing the BKT transition. As demonstrated by Bramwell and Holdsworth (1993) the finite-size effects are more important in two-dimensions than in others due to the logarithmic system size dependence of the properties of the system. Closely related is the anisotropic two dimensional Heisenberg model (AH). Although they have the same Hamiltonian the spin variable in the former has only two degrees of freedom while the AH has three. Many works treat the AH model as undergoing a transition in the same universality class as the XY model. However, its characterization as being in the BKT class of universality deserve some investigation. This paper has two goals. First, we describe an analytical evidence showing that the AH model is in the BKT class of universality. Second, we make an extensive simulation, using the numerical Replica Exchange Wang-Landau method that corroborate our analytical calculations. From our simulation we obtain the BKT transition temperature as TBKT = 0 . 6980(10) by monitoring the susceptibility, the two point correlation function and the helicity modulus. We discuss the misuse of the fourth order Binder's cumulant to locate the transition temperature. The specific heat is shown to have a non-critical behavior as expected in the BKT transition. An analysis of the two point correlation function at low temperature, C(r) ∝r - η(T), shows that the exponent, η, is consistent