Personalized Predictive Modeling and Risk Factor Identification using Patient Similarity.
Ng, Kenney; Sun, Jimeng; Hu, Jianying; Wang, Fei
2015-01-01
Personalized predictive models are customized for an individual patient and trained using information from similar patients. Compared to global models trained on all patients, they have the potential to produce more accurate risk scores and capture more relevant risk factors for individual patients. This paper presents an approach for building personalized predictive models and generating personalized risk factor profiles. A locally supervised metric learning (LSML) similarity measure is trained for diabetes onset and used to find clinically similar patients. Personalized risk profiles are created by analyzing the parameters of the trained personalized logistic regression models. A 15,000 patient data set, derived from electronic health records, is used to evaluate the approach. The predictive results show that the personalized models can outperform the global model. Cluster analysis of the risk profiles show groups of patients with similar risk factors, differences in the top risk factors for different groups of patients and differences between the individual and global risk factors.
Predictive analytics technology review: Similarity-based modeling and beyond
Energy Technology Data Exchange (ETDEWEB)
Herzog, James; Doan, Don; Gandhi, Devang; Nieman, Bill
2010-09-15
Over 11 years ago, SmartSignal introduced Predictive Analytics for eliminating equipment failures, using its patented SBM technology. SmartSignal continues to lead and dominate the market and, in 2010, went one step further and introduced Predictive Diagnostics. Now, SmartSignal is combining Predictive Diagnostics with RCM methodology and industry expertise. FMEA logic reengineers maintenance work management, eliminates unneeded inspections, and focuses efforts on the real issues. This integrated solution significantly lowers maintenance costs, protects against critical asset failures, and improves commercial availability, and reduces work orders 20-40%. Learn how.
Anderson, Andrew James; Zinszer, Benjamin D; Raizada, Rajeev D S
2016-03-01
Patterns of neural activity are systematically elicited as the brain experiences categorical stimuli and a major challenge is to understand what these patterns represent. Two influential approaches, hitherto treated as separate analyses, have targeted this problem by using model-representations of stimuli to interpret the corresponding neural activity patterns. Stimulus-model-based-encoding synthesizes neural activity patterns by first training weights to map between stimulus-model features and voxels. This allows novel model-stimuli to be mapped into voxel space, and hence the strength of the model to be assessed by comparing predicted against observed neural activity. Representational Similarity Analysis (RSA) assesses models by testing how well the grand structure of pattern-similarities measured between all pairs of model-stimuli aligns with the same structure computed from neural activity patterns. RSA does not require model fitting, but also does not allow synthesis of neural activity patterns, thereby limiting its applicability. We introduce a new approach, representational similarity-encoding, that builds on the strengths of RSA and robustly enables stimulus-model-based neural encoding without model fitting. The approach therefore sidesteps problems associated with overfitting that notoriously confront any approach requiring parameter estimation (and is consequently low cost computationally), and importantly enables encoding analyses to be incorporated within the wider Representational Similarity Analysis framework. We illustrate this new approach by using it to synthesize and decode fMRI patterns representing the meanings of words, and discuss its potential biological relevance to encoding in semantic memory. Our new similarity-based encoding approach unites the two previously disparate methods of encoding models and RSA, capturing the strengths of both, and enabling similarity-based synthesis of predicted fMRI patterns.
Patient Similarity in Prediction Models Based on Health Data: A Scoping Review
Sharafoddini, Anis; Dubin, Joel A
2017-01-01
Background Physicians and health policy makers are required to make predictions during their decision making in various medical problems. Many advances have been made in predictive modeling toward outcome prediction, but these innovations target an average patient and are insufficiently adjustable for individual patients. One developing idea in this field is individualized predictive analytics based on patient similarity. The goal of this approach is to identify patients who are similar to an index patient and derive insights from the records of similar patients to provide personalized predictions.. Objective The aim is to summarize and review published studies describing computer-based approaches for predicting patients’ future health status based on health data and patient similarity, identify gaps, and provide a starting point for related future research. Methods The method involved (1) conducting the review by performing automated searches in Scopus, PubMed, and ISI Web of Science, selecting relevant studies by first screening titles and abstracts then analyzing full-texts, and (2) documenting by extracting publication details and information on context, predictors, missing data, modeling algorithm, outcome, and evaluation methods into a matrix table, synthesizing data, and reporting results. Results After duplicate removal, 1339 articles were screened in abstracts and titles and 67 were selected for full-text review. In total, 22 articles met the inclusion criteria. Within included articles, hospitals were the main source of data (n=10). Cardiovascular disease (n=7) and diabetes (n=4) were the dominant patient diseases. Most studies (n=18) used neighborhood-based approaches in devising prediction models. Two studies showed that patient similarity-based modeling outperformed population-based predictive methods. Conclusions Interest in patient similarity-based predictive modeling for diagnosis and prognosis has been growing. In addition to raw/coded health
Jaiswal, Neeru; Kishtawal, C. M.; Bhomia, Swati
2017-04-01
The southwest (SW) monsoon season (June, July, August and September) is the major period of rainfall over the Indian region. The present study focuses on the development of a new multi-model ensemble approach based on the similarity criterion (SMME) for the prediction of SW monsoon rainfall in the extended range. This approach is based on the assumption that training with the similar type of conditions may provide the better forecasts in spite of the sequential training which is being used in the conventional MME approaches. In this approach, the training dataset has been selected by matching the present day condition to the archived dataset and days with the most similar conditions were identified and used for training the model. The coefficients thus generated were used for the rainfall prediction. The precipitation forecasts from four general circulation models (GCMs), viz. European Centre for Medium-Range Weather Forecasts (ECMWF), United Kingdom Meteorological Office (UKMO), National Centre for Environment Prediction (NCEP) and China Meteorological Administration (CMA) have been used for developing the SMME forecasts. The forecasts of 1-5, 6-10 and 11-15 days were generated using the newly developed approach for each pentad of June-September during the years 2008-2013 and the skill of the model was analysed using verification scores, viz. equitable skill score (ETS), mean absolute error (MAE), Pearson's correlation coefficient and Nash-Sutcliffe model efficiency index. Statistical analysis of SMME forecasts shows superior forecast skill compared to the conventional MME and the individual models for all the pentads, viz. 1-5, 6-10 and 11-15 days.
Mining Object Similarity for Predicting Next Locations
Institute of Scientific and Technical Information of China (English)
Meng Chen; Xiaohui Yu; Yang Liu
2016-01-01
Next location prediction is of great importance for many location-based applications. With the virtue of solid theoretical foundations, Markov-based approaches have gained success along this direction. In this paper, we seek to enhance the prediction performance by understanding the similarity between objects. In particular, we propose a novel method, called weighted Markov model (weighted-MM), which exploits both the sequence of just-passed locations and the object similarity in mining the mobility patterns. To this end, we first train a Markov model for each object with its own trajectory records, and then quantify the similarities between different objects from two aspects: spatial locality similarity and trajectory similarity. Finally, we incorporate the object similarity into the Markov model by considering the similarity as the weight of the probability of reaching each possible next location, and return the top-rankings as results. We have conducted extensive experiments on a real dataset, and the results demonstrate significant improvements in prediction accuracy over existing solutions.
Directory of Open Access Journals (Sweden)
Sergey B. Kuznetsov
2017-06-01
Full Text Available Objective to obtain dimensionless criteria ndash economic indices characterizing the national economy and not depending on its size. Methods mathematical modeling theory of dimensions processing statistical data. Results basing on differential equations describing the national economy with the account of economical environment resistance two dimensionless criteria are obtained which allow to compare economies regardless of their sizes. With the theory of dimensions we show that the obtained indices are not accidental. We demonstrate the implementation of the obtained dimensionless criteria for the analysis of behavior of certain countriesrsquo economies. Scientific novelty the dimensionless criteria are obtained ndash economic indices which allow to compare economies regardless of their sizes and to analyze the dynamic changes in the economies with time. nbsp Practical significance the obtained results can be used for dynamic and comparative analysis of different countriesrsquo economies regardless of their sizes.
Vogt, Martin; Bajorath, Jürgen
2011-10-24
A statistical approach named the conditional correlated Bernoulli model is introduced for modeling of similarity scores and predicting the potential of fingerprint search calculations to identify active compounds. Fingerprint features are rationalized as dependent Bernoulli variables and conditional distributions of Tanimoto similarity values of database compounds given a reference molecule are assessed. The conditional correlated Bernoulli model is utilized in the context of virtual screening to estimate the position of a compound obtaining a certain similarity value in a database ranking. Through the generation of receiver operating characteristic curves from cumulative distribution functions of conditional similarity values for known active and random database compounds, one can predict how successful a fingerprint search might be. The comparison of curves for different fingerprints makes it possible to identify fingerprints that are most likely to identify new active molecules in a database search given a set of known reference molecules.
Predicting the performance of fingerprint similarity searching.
Vogt, Martin; Bajorath, Jürgen
2011-01-01
Fingerprints are bit string representations of molecular structure that typically encode structural fragments, topological features, or pharmacophore patterns. Various fingerprint designs are utilized in virtual screening and their search performance essentially depends on three parameters: the nature of the fingerprint, the active compounds serving as reference molecules, and the composition of the screening database. It is of considerable interest and practical relevance to predict the performance of fingerprint similarity searching. A quantitative assessment of the potential that a fingerprint search might successfully retrieve active compounds, if available in the screening database, would substantially help to select the type of fingerprint most suitable for a given search problem. The method presented herein utilizes concepts from information theory to relate the fingerprint feature distributions of reference compounds to screening libraries. If these feature distributions do not sufficiently differ, active database compounds that are similar to reference molecules cannot be retrieved because they disappear in the "background." By quantifying the difference in feature distribution using the Kullback-Leibler divergence and relating the divergence to compound recovery rates obtained for different benchmark classes, fingerprint search performance can be quantitatively predicted.
Directory of Open Access Journals (Sweden)
Lynch John
2006-08-01
Full Text Available Abstract Background There are at least three broad conceptual models for the impact of the social environment on adult disease: the critical period, social mobility, and cumulative life course models. Several studies have shown an association between each of these models and mortality. However, few studies have investigated the importance of the different models within the same setting and none has been performed in samples of the whole population. The purpose of the present study was to study the relation between socioeconomic position (SEP and mortality using different conceptual models in the whole population of Scania. Methods In the present investigation we use socioeconomic information on all men (N = 48,909 and women (N = 47,688 born between 1945 and 1950, alive on January, 1st,1990, and living in the Region of Scania, in Sweden. Focusing on three specific life periods (i.e., ages 10–15, 30–35 and 40–45, we examined the association between SEP and the 12-year risk of premature cardiovascular mortality and all-cause mortality. Results There was a strong relation between SEP and mortality among those inside the workforce, irrespective of the conceptual model used. There was a clear upward trend in the mortality hazard rate ratios (HRR with accumulated exposure to manual SEP in both men (p for trend Conclusion There was a strong relation between SEP and cardiovascular and all-cause mortality, irrespective of the conceptual model used. The critical period, social mobility, and cumulative life course models, showed the same fit to the data. That is, one model could not be pointed out as "the best" model and even in this large unselected sample it was not possible to adjudicate which theories best describe the links between life course SEP and mortality risk.
A COMPARISON OF SEMANTIC SIMILARITY MODELS IN EVALUATING CONCEPT SIMILARITY
Directory of Open Access Journals (Sweden)
Q. X. Xu
2012-08-01
Full Text Available The semantic similarities are important in concept definition, recognition, categorization, interpretation, and integration. Many semantic similarity models have been established to evaluate semantic similarities of objects or/and concepts. To find out the suitability and performance of different models in evaluating concept similarities, we make a comparison of four main types of models in this paper: the geometric model, the feature model, the network model, and the transformational model. Fundamental principles and main characteristics of these models are introduced and compared firstly. Land use and land cover concepts of NLCD92 are employed as examples in the case study. The results demonstrate that correlations between these models are very high for a possible reason that all these models are designed to simulate the similarity judgement of human mind.
a Comparison of Semantic Similarity Models in Evaluating Concept Similarity
Xu, Q. X.; Shi, W. Z.
2012-08-01
The semantic similarities are important in concept definition, recognition, categorization, interpretation, and integration. Many semantic similarity models have been established to evaluate semantic similarities of objects or/and concepts. To find out the suitability and performance of different models in evaluating concept similarities, we make a comparison of four main types of models in this paper: the geometric model, the feature model, the network model, and the transformational model. Fundamental principles and main characteristics of these models are introduced and compared firstly. Land use and land cover concepts of NLCD92 are employed as examples in the case study. The results demonstrate that correlations between these models are very high for a possible reason that all these models are designed to simulate the similarity judgement of human mind.
Predicting the evolution of complex networks via similarity dynamics
Wu, Tao; Chen, Leiting; Zhong, Linfeng; Xian, Xingping
2017-01-01
Almost all real-world networks are subject to constant evolution, and plenty of them have been investigated empirically to uncover the underlying evolution mechanism. However, the evolution prediction of dynamic networks still remains a challenging problem. The crux of this matter is to estimate the future network links of dynamic networks. This paper studies the evolution prediction of dynamic networks with link prediction paradigm. To estimate the likelihood of the existence of links more accurate, an effective and robust similarity index is presented by exploiting network structure adaptively. Moreover, most of the existing link prediction methods do not make a clear distinction between future links and missing links. In order to predict the future links, the networks are regarded as dynamic systems in this paper, and a similarity updating method, spatial-temporal position drift model, is developed to simulate the evolutionary dynamics of node similarity. Then the updated similarities are used as input information for the future links' likelihood estimation. Extensive experiments on real-world networks suggest that the proposed similarity index performs better than baseline methods and the position drift model performs well for evolution prediction in real-world evolving networks.
Vavilin, V A; Qu, X; Qu, X; Mazéas, L; Lemunier, M; Duquennoi, C; Mouchel, J M; He, P; Bouchez, T
2009-01-01
Similar evolution was obtained for the stable carbon isotope signatures delta (13)CH(4) and the model-predicted relative rate of aceticlastic methanogenesis during mesophilic methanization of municipal solid wastes. In batch incubations, the importance of aceticlastic and hydrogenotrophic methanogenesis changes in time. Initially, hydrogenotrophic methanogenesis dominated, but increasing population of Methanosarcina sp. enhances aceticlastic methanogenesis. Later, hydrogenotrophic methanogenesis intensified again. A mathematical model was developed to evaluate the relative contribution of hydrogenotrophic and aceticlastic pathways of methane generation during mesophilic batch anaerobic biodegradation of the French and the Chinese Municipal Solid Wastes (FMSW and CMSW). Taking into account molecular biology analysis reported earlier three groups of methanogens including strictly hydrogenotrophic methanogens, strictly aceticlastic methanogens (Methanosaeta sp.) and Methanosarcina sp., consuming both acetate and H(2)/H(2)CO(3) were considered in the model. The total organic and inorganic carbon concentrations, methane production volume, methane and carbon dioxide partial pressures values were used for the model calibration and validation. Methane isotopic composition (delta (13)CH(4)) evolution during the incubations was used to independently validate the model results. The model demonstrated that only the putrescible solid waste was totally converted to methane.
MOST: most-similar ligand based approach to target prediction.
Huang, Tao; Mi, Hong; Lin, Cheng-Yuan; Zhao, Ling; Zhong, Linda L D; Liu, Feng-Bin; Zhang, Ge; Lu, Ai-Ping; Bian, Zhao-Xiang
2017-03-11
Many computational approaches have been used for target prediction, including machine learning, reverse docking, bioactivity spectra analysis, and chemical similarity searching. Recent studies have suggested that chemical similarity searching may be driven by the most-similar ligand. However, the extent of bioactivity of most-similar ligands has been oversimplified or even neglected in these studies, and this has impaired the prediction power. Here we propose the MOst-Similar ligand-based Target inference approach, namely MOST, which uses fingerprint similarity and explicit bioactivity of the most-similar ligands to predict targets of the query compound. Performance of MOST was evaluated by using combinations of different fingerprint schemes, machine learning methods, and bioactivity representations. In sevenfold cross-validation with a benchmark Ki dataset from CHEMBL release 19 containing 61,937 bioactivity data of 173 human targets, MOST achieved high average prediction accuracy (0.95 for pKi ≥ 5, and 0.87 for pKi ≥ 6). Morgan fingerprint was shown to be slightly better than FP2. Logistic Regression and Random Forest methods performed better than Naïve Bayes. In a temporal validation, the Ki dataset from CHEMBL19 were used to train models and predict the bioactivity of newly deposited ligands in CHEMBL20. MOST also performed well with high accuracy (0.90 for pKi ≥ 5, and 0.76 for pKi ≥ 6), when Logistic Regression and Morgan fingerprint were employed. Furthermore, the p values associated with explicit bioactivity were found be a robust index for removing false positive predictions. Implicit bioactivity did not offer this capability. Finally, p values generated with Logistic Regression, Morgan fingerprint and explicit activity were integrated with a false discovery rate (FDR) control procedure to reduce false positives in multiple-target prediction scenario, and the success of this strategy it was demonstrated with a case of fluanisone
Notions of similarity for computational biology models
Waltemath, Dagmar
2016-03-21
Computational models used in biology are rapidly increasing in complexity, size, and numbers. To build such large models, researchers need to rely on software tools for model retrieval, model combination, and version control. These tools need to be able to quantify the differences and similarities between computational models. However, depending on the specific application, the notion of similarity may greatly vary. A general notion of model similarity, applicable to various types of models, is still missing. Here, we introduce a general notion of quantitative model similarities, survey the use of existing model comparison methods in model building and management, and discuss potential applications of model comparison. To frame model comparison as a general problem, we describe a theoretical approach to defining and computing similarities based on different model aspects. Potentially relevant aspects of a model comprise its references to biological entities, network structure, mathematical equations and parameters, and dynamic behaviour. Future similarity measures could combine these model aspects in flexible, problem-specific ways in order to mimic users\\' intuition about model similarity, and to support complex model searches in databases.
Levy, R.; Mcginness, H.
1976-01-01
Investigations were performed to predict the power available from the wind at the Goldstone, California, antenna site complex. The background for power prediction was derived from a statistical evaluation of available wind speed data records at this location and at nearby locations similarly situated within the Mojave desert. In addition to a model for power prediction over relatively long periods of time, an interim simulation model that produces sample wind speeds is described. The interim model furnishes uncorrelated sample speeds at hourly intervals that reproduce the statistical wind distribution at Goldstone. A stochastic simulation model to provide speed samples representative of both the statistical speed distributions and correlations is also discussed.
and Models: A Self-Similar Approach
Directory of Open Access Journals (Sweden)
José Antonio Belinchón
2013-01-01
equations (FEs admit self-similar solutions. The methods employed allow us to obtain general results that are valid not only for the FRW metric, but also for all the Bianchi types as well as for the Kantowski-Sachs model (under the self-similarity hypothesis and the power-law hypothesis for the scale factors.
Similarity and Modeling in Science and Engineering
Kuneš, Josef
2012-01-01
The present text sets itself in relief to other titles on the subject in that it addresses the means and methodologies versus a narrow specific-task oriented approach. Concepts and their developments which evolved to meet the changing needs of applications are addressed. This approach provides the reader with a general tool-box to apply to their specific needs. Two important tools are presented: dimensional analysis and the similarity analysis methods. The fundamental point of view, enabling one to sort all models, is that of information flux between a model and an original expressed by the similarity and abstraction. Each chapter includes original examples and ap-plications. In this respect, the models can be divided into several groups. The following models are dealt with separately by chapter; mathematical and physical models, physical analogues, deterministic, stochastic, and cybernetic computer models. The mathematical models are divided into asymptotic and phenomenological models. The phenomenological m...
Modeling of Hysteresis in Piezoelectric Actuator Based on Segment Similarity
Directory of Open Access Journals (Sweden)
Rui Xiong
2015-11-01
Full Text Available To successfully exploit the full potential of piezoelectric actuators in micro/nano positioning systems, it is essential to model their hysteresis behavior accurately. A novel hysteresis model for piezoelectric actuator is proposed in this paper. Firstly, segment-similarity, which describes the similarity relationship between hysteresis curve segments with different turning points, is proposed. Time-scale similarity, which describes the similarity relationship between hysteresis curves with different rates, is used to solve the problem of dynamic effect. The proposed model is formulated using these similarities. Finally, the experiments are performed with respect to a micro/nano-meter movement platform system. The effectiveness of the proposed model is verified as compared with the Preisach model. The experimental results show that the proposed model is able to precisely predict the hysteresis trajectories of piezoelectric actuators and performs better than the Preisach model.
Machine Learning Approaches for Predicting Protein Complex Similarity.
Farhoodi, Roshanak; Akbal-Delibas, Bahar; Haspel, Nurit
2017-01-01
Discriminating native-like structures from false positives with high accuracy is one of the biggest challenges in protein-protein docking. While there is an agreement on the existence of a relationship between various favorable intermolecular interactions (e.g., Van der Waals, electrostatic, and desolvation forces) and the similarity of a conformation to its native structure, the precise nature of this relationship is not known. Existing protein-protein docking methods typically formulate this relationship as a weighted sum of selected terms and calibrate their weights by using a training set to evaluate and rank candidate complexes. Despite improvements in the predictive power of recent docking methods, producing a large number of false positives by even state-of-the-art methods often leads to failure in predicting the correct binding of many complexes. With the aid of machine learning methods, we tested several approaches that not only rank candidate structures relative to each other but also predict how similar each candidate is to the native conformation. We trained a two-layer neural network, a multilayer neural network, and a network of Restricted Boltzmann Machines against extensive data sets of unbound complexes generated by RosettaDock and PyDock. We validated these methods with a set of refinement candidate structures. We were able to predict the root mean squared deviations (RMSDs) of protein complexes with a very small, often less than 1.5 Å, error margin when trained with structures that have RMSD values of up to 7 Å. In our most recent experiments with the protein samples having RMSD values up to 27 Å, the average prediction error was still relatively small, attesting to the potential of our approach in predicting the correct binding of protein-protein complexes.
Integrated Semantic Similarity Model Based on Ontology
Institute of Scientific and Technical Information of China (English)
LIU Ya-Jun; ZHAO Yun
2004-01-01
To solve the problem of the inadequacy of semantic processing in the intelligent question answering system, an integrated semantic similarity model which calculates the semantic similarity using the geometric distance and information content is presented in this paper.With the help of interrelationship between concepts, the information content of concepts and the strength of the edges in the ontology network, we can calculate the semantic similarity between two concepts and provide information for the further calculation of the semantic similarity between user's question and answers in knowlegdge base.The results of the experiments on the prototype have shown that the semantic problem in natural language processing can also be solved with the help of the knowledge and the abundant semantic information in ontology.More than 90% accuracy with less than 50 ms average searching time in the intelligent question answering prototype system based on ontology has been reached.The result is very satisfied.
Link prediction based on temporal similarity metrics using continuous action set learning automata
Moradabadi, Behnaz; Meybodi, Mohammad Reza
2016-10-01
Link prediction is a social network research area that tries to predict future links using network structure. The main approaches in this area are based on predicting future links using network structure at a specific period, without considering the links behavior through different periods. For example, a common traditional approach in link prediction calculates a chosen similarity metric for each non-connected link and outputs the links with higher similarity scores as the prediction result. In this paper, we propose a new link prediction method based on temporal similarity metrics and Continuous Action set Learning Automata (CALA). The proposed method takes advantage of using different similarity metrics as well as different time periods. In the proposed algorithm, we try to model the link prediction problem as a noisy optimization problem and use a team of CALAs to solve the noisy optimization problem. CALA is a reinforcement based optimization tool which tries to learn the optimal behavior from the environment feedbacks. To determine the importance of different periods and similarity metrics on the prediction result, we define a coefficient for each of different periods and similarity metrics and use a CALA for each coefficient. Each CALA tries to learn the true value of the corresponding coefficient. Final link prediction is obtained from a combination of different similarity metrics in different times based on the obtained coefficients. The link prediction results reported here show satisfactory of the proposed method for some social network data sets.
DEFF Research Database (Denmark)
Lemeunier, N; Leboeuf-Yde, C; Gagey, O;
2016-01-01
are similar, regardless which of the two classifications is used. METHOD: During 1 year, 49- or 50-year-old people from the Danish general population were sent fortnightly automated text messages (SMS-Track) asking them if they had any LBP in the past fortnight. Responses for the whole year were.......7). Despite the large overlap of persons in the two classification groups, the patterns of associations with the two types of LBP definitions were different in the two classification groups. However, none of the estimates were significantly different when the variables were compared across the two...
Link prediction based on a semi-local similarity index
Institute of Scientific and Technical Information of China (English)
Bai Meng; Hu Ke; Tang Yi
2011-01-01
Missing link prediction provides significant instruction for both analysis of network structure and mining of unknown links in incomplete networks.Recently,many algorithms have been proposed based on various node-similarity measures.Among these measures,the common neighbour index,the resource allocation index,and the local path index,stemming from different source,have been proved to have relatively high accuracy and low computational effort.In this paper,we propose a similarity index by combining the resource allocation index and the local path index.Simulation results on six unweighted networks show that the accuracy of the proposed index is higher than that of the local path one.Based on the same idea of the present index,we develop its corresponding weighted version and test it on several weighted networks.It is found that,except for the USAir network,the weighted variant also performs better than both the weighted resource allocation index and the weighted local path index.Due to the improved accuracy and the still low computational complexity,the indices may be useful for link prediction.
Apostol, Tom M. (Editor)
1990-01-01
In this 'Project Mathematics! series, sponsored by the California Institute for Technology (CalTech), the mathematical concept of similarity is presented. he history of and real life applications are discussed using actual film footage and computer animation. Terms used and various concepts of size, shape, ratio, area, and volume are demonstrated. The similarity of polygons, solids, congruent triangles, internal ratios, perimeters, and line segments using the previous mentioned concepts are shown.
Similarity-based semi-local estimation of EMOS models
Lerch, Sebastian
2015-01-01
Weather forecasts are typically given in the form of forecast ensembles obtained from multiple runs of numerical weather prediction models with varying initial conditions and physics parameterizations. Such ensemble predictions tend to be biased and underdispersive and thus require statistical postprocessing. In the ensemble model output statistics (EMOS) approach, a probabilistic forecast is given by a single parametric distribution with parameters depending on the ensemble members. This article proposes two semi-local methods for estimating the EMOS coefficients where the training data for a specific observation station are augmented with corresponding forecast cases from stations with similar characteristics. Similarities between stations are determined using either distance functions or clustering based on various features of the climatology, forecast errors, ensemble predictions and locations of the observation stations. In a case study on wind speed over Europe with forecasts from the Grand Limited Area...
Personalized mortality prediction driven by electronic medical data and a patient similarity metric.
Directory of Open Access Journals (Sweden)
Joon Lee
Full Text Available Clinical outcome prediction normally employs static, one-size-fits-all models that perform well for the average patient but are sub-optimal for individual patients with unique characteristics. In the era of digital healthcare, it is feasible to dynamically personalize decision support by identifying and analyzing similar past patients, in a way that is analogous to personalized product recommendation in e-commerce. Our objectives were: 1 to prove that analyzing only similar patients leads to better outcome prediction performance than analyzing all available patients, and 2 to characterize the trade-off between training data size and the degree of similarity between the training data and the index patient for whom prediction is to be made.We deployed a cosine-similarity-based patient similarity metric (PSM to an intensive care unit (ICU database to identify patients that are most similar to each patient and subsequently to custom-build 30-day mortality prediction models. Rich clinical and administrative data from the first day in the ICU from 17,152 adult ICU admissions were analyzed. The results confirmed that using data from only a small subset of most similar patients for training improves predictive performance in comparison with using data from all available patients. The results also showed that when too few similar patients are used for training, predictive performance degrades due to the effects of small sample sizes. Our PSM-based approach outperformed well-known ICU severity of illness scores. Although the improved prediction performance is achieved at the cost of increased computational burden, Big Data technologies can help realize personalized data-driven decision support at the point of care.The present study provides crucial empirical evidence for the promising potential of personalized data-driven decision support systems. With the increasing adoption of electronic medical record (EMR systems, our novel medical data analytics
Personalized Mortality Prediction Driven by Electronic Medical Data and a Patient Similarity Metric
Lee, Joon; Maslove, David M.; Dubin, Joel A.
2015-01-01
Background Clinical outcome prediction normally employs static, one-size-fits-all models that perform well for the average patient but are sub-optimal for individual patients with unique characteristics. In the era of digital healthcare, it is feasible to dynamically personalize decision support by identifying and analyzing similar past patients, in a way that is analogous to personalized product recommendation in e-commerce. Our objectives were: 1) to prove that analyzing only similar patients leads to better outcome prediction performance than analyzing all available patients, and 2) to characterize the trade-off between training data size and the degree of similarity between the training data and the index patient for whom prediction is to be made. Methods and Findings We deployed a cosine-similarity-based patient similarity metric (PSM) to an intensive care unit (ICU) database to identify patients that are most similar to each patient and subsequently to custom-build 30-day mortality prediction models. Rich clinical and administrative data from the first day in the ICU from 17,152 adult ICU admissions were analyzed. The results confirmed that using data from only a small subset of most similar patients for training improves predictive performance in comparison with using data from all available patients. The results also showed that when too few similar patients are used for training, predictive performance degrades due to the effects of small sample sizes. Our PSM-based approach outperformed well-known ICU severity of illness scores. Although the improved prediction performance is achieved at the cost of increased computational burden, Big Data technologies can help realize personalized data-driven decision support at the point of care. Conclusions The present study provides crucial empirical evidence for the promising potential of personalized data-driven decision support systems. With the increasing adoption of electronic medical record (EMR) systems, our
Personalized mortality prediction driven by electronic medical data and a patient similarity metric.
Lee, Joon; Maslove, David M; Dubin, Joel A
2015-01-01
Clinical outcome prediction normally employs static, one-size-fits-all models that perform well for the average patient but are sub-optimal for individual patients with unique characteristics. In the era of digital healthcare, it is feasible to dynamically personalize decision support by identifying and analyzing similar past patients, in a way that is analogous to personalized product recommendation in e-commerce. Our objectives were: 1) to prove that analyzing only similar patients leads to better outcome prediction performance than analyzing all available patients, and 2) to characterize the trade-off between training data size and the degree of similarity between the training data and the index patient for whom prediction is to be made. We deployed a cosine-similarity-based patient similarity metric (PSM) to an intensive care unit (ICU) database to identify patients that are most similar to each patient and subsequently to custom-build 30-day mortality prediction models. Rich clinical and administrative data from the first day in the ICU from 17,152 adult ICU admissions were analyzed. The results confirmed that using data from only a small subset of most similar patients for training improves predictive performance in comparison with using data from all available patients. The results also showed that when too few similar patients are used for training, predictive performance degrades due to the effects of small sample sizes. Our PSM-based approach outperformed well-known ICU severity of illness scores. Although the improved prediction performance is achieved at the cost of increased computational burden, Big Data technologies can help realize personalized data-driven decision support at the point of care. The present study provides crucial empirical evidence for the promising potential of personalized data-driven decision support systems. With the increasing adoption of electronic medical record (EMR) systems, our novel medical data analytics contributes to
Bounding SAR ATR performance based on model similarity
Boshra, Michael; Bhanu, Bir
1999-08-01
Similarity between model targets plays a fundamental role in determining the performance of target recognition. We analyze the effect of model similarity on the performance of a vote- based approach for target recognition from SAR images. In such an approach, each model target is represented by a set of SAR views sampled at a variety of azimuth angles and a specific depression angle. Both model and data views are represented by locations of scattering centers, which are peak features. The model hypothesis (view of a specific target and associated location) corresponding to a given data view is chosen to be the one with the highest number of data-supported model features (votes). We address three issues in this paper. Firstly, we present a quantitative measure of the similarity between a pair of model views. Such a measure depends on the degree of structural overlap between the two views, and the amount of uncertainty. Secondly, we describe a similarity- based framework for predicting an upper bound on recognition performance in the presence of uncertainty, occlusion and clutter. Thirdly, we validate the proposed framework using MSTAR public data, which are obtained under different depression angles, configurations and articulations.
Similarity Predicts Liking in 3-Year-Old Children
Fawcett, Christine A.; Markson, Lori
2010-01-01
Two studies examined the influence of similarity on 3-year-old children's initial liking of their peers. Children were presented with pairs of childlike puppets who were either similar or dissimilar to them on a specified dimension and then were asked to choose one of the puppets to play with as a measure of liking. Children selected the puppet…
Similarity Predicts Liking in 3-Year-Old Children
Fawcett, Christine A.; Markson, Lori
2010-01-01
Two studies examined the influence of similarity on 3-year-old children's initial liking of their peers. Children were presented with pairs of childlike puppets who were either similar or dissimilar to them on a specified dimension and then were asked to choose one of the puppets to play with as a measure of liking. Children selected the puppet…
Burghardt, Juliane
2014-01-01
The evaluative priming paradigm aims to uncover the processes underlying evaluations. For this purpose, this paradigm presents a sequence of two or more stimuli varying on the valence dimension to which participants must provide a response. The “standard” evaluative priming effect is a relative facilitation of the required responses in congruent trials compared to incongruent trials. The following thesis argues that this evaluative priming effect depends on prime-target similarity, with highe...
Chen, Lei; He, Zhi-Song; Huang, Tao; Cai, Yu-Dong
2010-11-01
Study of interactions between drugs and target proteins is an essential step in genomic drug discovery. It is very hard to determine the compound-protein interactions or drug-target interactions by experiment alone. As supplementary, effective prediction model using machine learning or data mining methods can provide much help. In this study, a prediction method based on Nearest Neighbor Algorithm and a novel metric, which was obtained by combining compound similarity and functional domain composition, was proposed. The target proteins were divided into the following groups: enzymes, ion channels, G protein-coupled receptors, and nuclear receptors. As a result, four predictors with the optimal parameters were established. The overall prediction accuracies, evaluated by jackknife cross-validation test, for four groups of target proteins are 90.23%, 94.74%, 97.80%, and 97.51%, respectively, indicating that compound similarity and functional domain composition are very effective to predict drug-target interaction networks.
Hendrick, C; Seyfried, B A
1974-01-01
Reinforcement and balance theory are both viable explanatory contenders for attraction processes. Differential predictions were derived and tested. Ss rated their attraction toward five strangers who were .00, .25, .50, .75, or 1.00 similax in attitudes. Half of the Ss rated perceived similarity to the strangers prior to making the attraction ratings (similarity]then liking condition) and the other half rated attraction prior to similarity ratings (liking/then similarity condition). Balance theory would predict an interaction between order of rating conditions and proportion of similar attitudes in determining attraction. Results showed that the only significant effect was due to proportion of similar attitudes. Factor analyses of the rating data showed that attraction and similarity ratings loaded on different factors. This result indicates that perceived similarity does not necessarily mediate attraction. Trend analyses suggested that the reverse may hold to some extent; perception of attraction may partially determine perceived similarity. This result suggests that a restricted balance model may be viable. However, the preponderance of the evidence supported reinforcement theory.
Confidence scores for prediction models
DEFF Research Database (Denmark)
Gerds, Thomas Alexander; van de Wiel, MA
2011-01-01
modelling strategy is applied to different training sets. For each modelling strategy we estimate a confidence score based on the same repeated bootstraps. A new decomposition of the expected Brier score is obtained, as well as the estimates of population average confidence scores. The latter can be used...... to distinguish rival prediction models with similar prediction performances. Furthermore, on the subject level a confidence score may provide useful supplementary information for new patients who want to base a medical decision on predicted risk. The ideas are illustrated and discussed using data from cancer...
A framework for similarity recognition of CAD models
Directory of Open Access Journals (Sweden)
Leila Zehtaban
2016-07-01
Full Text Available A designer is mainly supported by two essential factors in design decisions. These two factors are intelligence and experience aiding the designer by predicting the interconnection between the required design parameters. Through classification of product data and similarity recognition between new and existing designs, it is partially possible to replace the required experience for an inexperienced designer. Given this context, the current paper addresses a framework for recognition and flexible retrieval of similar models in product design. The idea is to establish an infrastructure for transferring design as well as the required PLM (Product Lifecycle Management know-how to the design phase of product development in order to reduce the design time. Furthermore, such a method can be applied as a brainstorming method for a new and creative product development as well. The proposed framework has been tested and benchmarked while showing promising results.
Self-similar two-particle separation model
DEFF Research Database (Denmark)
Lüthi, Beat; Berg, Jacob; Ott, Søren
2007-01-01
We present a new stochastic model for relative two-particle separation in turbulence. Inspired by material line stretching, we suggest that a similar process also occurs beyond the viscous range, with time scaling according to the longitudinal second-order structure function S2(r), e.g.; in the i......We present a new stochastic model for relative two-particle separation in turbulence. Inspired by material line stretching, we suggest that a similar process also occurs beyond the viscous range, with time scaling according to the longitudinal second-order structure function S2(r), e.......g.; in the inertial range as epsilon−1/3r2/3. Particle separation is modeled as a Gaussian process without invoking information of Eulerian acceleration statistics or of precise shapes of Eulerian velocity distribution functions. The time scale is a function of S2(r) and thus of the Lagrangian evolving separation....... The model predictions agree with numerical and experimental results for various initial particle separations. We present model results for fixed time and fixed scale statistics. We find that for the Richardson-Obukhov law, i.e., =gepsilont3, to hold and to also be observed in experiments, high Reynolds...
K-Line Patterns’ Predictive Power Analysis Using the Methods of Similarity Match and Clustering
Directory of Open Access Journals (Sweden)
Lv Tao
2017-01-01
Full Text Available Stock price prediction based on K-line patterns is the essence of candlestick technical analysis. However, there are some disputes on whether the K-line patterns have predictive power in academia. To help resolve the debate, this paper uses the data mining methods of pattern recognition, pattern clustering, and pattern knowledge mining to research the predictive power of K-line patterns. The similarity match model and nearest neighbor-clustering algorithm are proposed for solving the problem of similarity match and clustering of K-line series, respectively. The experiment includes testing the predictive power of the Three Inside Up pattern and Three Inside Down pattern with the testing dataset of the K-line series data of Shanghai 180 index component stocks over the latest 10 years. Experimental results show that (1 the predictive power of a pattern varies a great deal for different shapes and (2 each of the existing K-line patterns requires further classification based on the shape feature for improving the prediction performance.
Wardle, Susan G; Kriegeskorte, Nikolaus; Grootswagers, Tijl; Khaligh-Razavi, Seyed-Mahdi; Carlson, Thomas A
2016-05-15
Perceptual similarity is a cognitive judgment that represents the end-stage of a complex cascade of hierarchical processing throughout visual cortex. Previous studies have shown a correspondence between the similarity of coarse-scale fMRI activation patterns and the perceived similarity of visual stimuli, suggesting that visual objects that appear similar also share similar underlying patterns of neural activation. Here we explore the temporal relationship between the human brain's time-varying representation of visual patterns and behavioral judgments of perceptual similarity. The visual stimuli were abstract patterns constructed from identical perceptual units (oriented Gabor patches) so that each pattern had a unique global form or perceptual 'Gestalt'. The visual stimuli were decodable from evoked neural activation patterns measured with magnetoencephalography (MEG), however, stimuli differed in the similarity of their neural representation as estimated by differences in decodability. Early after stimulus onset (from 50ms), a model based on retinotopic organization predicted the representational similarity of the visual stimuli. Following the peak correlation between the retinotopic model and neural data at 80ms, the neural representations quickly evolved so that retinotopy no longer provided a sufficient account of the brain's time-varying representation of the stimuli. Overall the strongest predictor of the brain's representation was a model based on human judgments of perceptual similarity, which reached the limits of the maximum correlation with the neural data defined by the 'noise ceiling'. Our results show that large-scale brain activation patterns contain a neural signature for the perceptual Gestalt of composite visual features, and demonstrate a strong correspondence between perception and complex patterns of brain activity.
Prediction of oil contamination distribution in aquifers using self similar solutions
Pistiner, Arieh
2016-12-01
Oil contaminant migration in an aquifer is analyzed by applying some power law relationships between the porous medium parameters and oil saturation. Such an application generates a self-similar model whose solutions are used to analyze the effect of the porous structure and the oil properties on the oil migration in the aquifer. By using hypothetical saturation data, the model was used to find the characteristic length and time scales of the aquifer, and then to predict the temporal saturation distribution of the oil contamination in the aquifer.
Günther, Fritz; Dudschig, Carolin; Kaup, Barbara
2016-01-01
In two experiments, we attempted to replicate and extend findings by Günther et al. (2016) that word similarity measures obtained from distributional semantics models-Latent Semantic Analysis (LSA) and Hyperspace Analog to Language (HAL)-predict lexical priming effects. To this end, we used the pseudo-random method to generate item material while systematically controlling for word similarities introduced by Günther et al. (2016) which was based on LSA cosine similarities (Experiment 1) and HAL cosine similarities (Experiment 2). Extending the original study, we used semantic spaces created from far larger corpora, and implemented several additional methodological improvements. In Experiment 1, we only found a significant effect of HAL cosines on lexical decision times, while we found significant effects for both LSA and HAL cosines in Experiment 2. As further supported by an analysis of the pooled data from both experiments, this indicates that HAL cosines are a better predictor of priming effects than LSA cosines. Taken together, the results replicate the finding that priming effects can be predicted from distributional semantic similarity measures.
Molecular similarity-based predictions of the Tox21 screening outcome
Directory of Open Access Journals (Sweden)
Malgorzata Natalia Drwal
2015-07-01
Full Text Available To assess the toxicity of new chemicals and drugs, regulatory agencies require in vivo testing for many toxic endpoints, resulting in millions of animal experiments conducted each year. However, following the Replace, Reduce, Refine (3R principle, the development and optimization of alternative methods, in particular in silico methods, has been put into focus in the recent years. It is generally acknowledged that the more complex a toxic endpoint, the more difficult it is to model. Therefore, computational toxicology is shifting from modelling general and complex endpoints to the investigation and modelling of pathways of toxicity and the underlying molecular effects.The U.S. Toxicology in the 21st Century (Tox21 initiative has screened a large library of compounds, including approximately 10K environmental chemicals and drugs, for different mechanisms responsible for eliciting toxic effects, and made the results publicly available. Through the Tox21 Data Challenge, the consortium has established a platform for computational toxicologists to develop and validate their predictive models.Here, we present a fast and successful method for the prediction of different outcomes of the nuclear receptor and stress response pathway screening from the Tox21 Data Challenge 2014. The method is based on the combination of molecular similarity calculations and a naïve Bayes machine learning algorithm and has been implemented as a KNIME pipeline. Molecules are represented as binary vectors consisting of a concatenation of common two-dimensional molecular fingerprint types with topological compound properties. The prediction method has been optimized individually for each modelled target and evaluated in a cross-validation as well as with the independent Tox21 validation set. Our results show that the method can achieve good prediction accuracies and rank among the top algorithms submitted to the prediction challenge, indicating its broad applicability in
A synthesis of similarity and eddy-viscosity models
Verstappen, R.; Friedrich, R; Geurts, BJ; Metais, O
2004-01-01
In large-eddy simulation, a low-pass spatial filter is usually applied to the Navier-Stokes equations. The resulting commutator of the filter and the nonlinear term is usually modelled by an eddy-viscosity model, by a similarity model or by a mix thereof. Similarity models possess the proper mathema
Model Wind Turbines Tested at Full-Scale Similarity
Miller, M. A.; Kiefer, J.; Westergaard, C.; Hultmark, M.
2016-09-01
The enormous length scales associated with modern wind turbines complicate any efforts to predict their mechanical loads and performance. Both experiments and numerical simulations are constrained by the large Reynolds numbers governing the full- scale aerodynamics. The limited fundamental understanding of Reynolds number effects in combination with the lack of empirical data affects our ability to predict, model, and design improved turbines and wind farms. A new experimental approach is presented, which utilizes a highly pressurized wind tunnel (up to 220 bar). It allows exact matching of the Reynolds numbers (no matter how it is defined), tip speed ratios, and Mach numbers on a geometrically similar, small-scale model. The design of a measurement and instrumentation stack to control the turbine and measure the loads in the pressurized environment is discussed. Results are then presented in the form of power coefficients as a function of Reynolds number and Tip Speed Ratio. Due to gearbox power loss, a preliminary study has also been completed to find the gearbox efficiency and the resulting correction has been applied to the data set.
Robust hashing with local models for approximate similarity search.
Song, Jingkuan; Yang, Yi; Li, Xuelong; Huang, Zi; Yang, Yang
2014-07-01
Similarity search plays an important role in many applications involving high-dimensional data. Due to the known dimensionality curse, the performance of most existing indexing structures degrades quickly as the feature dimensionality increases. Hashing methods, such as locality sensitive hashing (LSH) and its variants, have been widely used to achieve fast approximate similarity search by trading search quality for efficiency. However, most existing hashing methods make use of randomized algorithms to generate hash codes without considering the specific structural information in the data. In this paper, we propose a novel hashing method, namely, robust hashing with local models (RHLM), which learns a set of robust hash functions to map the high-dimensional data points into binary hash codes by effectively utilizing local structural information. In RHLM, for each individual data point in the training dataset, a local hashing model is learned and used to predict the hash codes of its neighboring data points. The local models from all the data points are globally aligned so that an optimal hash code can be assigned to each data point. After obtaining the hash codes of all the training data points, we design a robust method by employing l2,1 -norm minimization on the loss function to learn effective hash functions, which are then used to map each database point into its hash code. Given a query data point, the search process first maps it into the query hash code by the hash functions and then explores the buckets, which have similar hash codes to the query hash code. Extensive experimental results conducted on real-life datasets show that the proposed RHLM outperforms the state-of-the-art methods in terms of search quality and efficiency.
Strange, Winifred; Levy, Erika; Lehnholf, Robert
2001-05-01
Previous research in our laboratory has demonstrated that the perceived similarity of vowels across languages is not always predictable from the closeness of their target formant values in F1/F2/F3 space. In this study, perceptual similarity was established using a task in which 11 American English (AE) monolinguals were presented multiple tokens of 9 French vowels and 14 North German vowels (in separate blocks) produced in citation-form /hVb(a)/ (bi)syllables by native speakers. They selected 1 of 11 AE vowel responses to which each non-native vowel token was most similar, and rated its goodness on a 9-point Likert scale. Of special interest was the perceptual assimilation of front rounded French [y, oe] and German [y, Y, o/, oe] vowels. Acoustically, all six French and German vowels are more similar to front unrounded AE vowels. However, all six vowels were perceived to be more similar to back rounded AE vowels (range across vowels = 55% to 100%), although relatively poor exemplars. There were differences across languages in how the same vowel was assimilated (e.g., French /y/ assimilated to front AE vowels 13%, German /y/, 0% French [oe] 3%, German [oe] 45%). There were also large individual differences in listeners assimilation patterns. [Work supported by NIDCD.
Cestari, Andrea
2013-01-01
Predictive modeling is emerging as an important knowledge-based technology in healthcare. The interest in the use of predictive modeling reflects advances on different fronts such as the availability of health information from increasingly complex databases and electronic health records, a better understanding of causal or statistical predictors of health, disease processes and multifactorial models of ill-health and developments in nonlinear computer models using artificial intelligence or neural networks. These new computer-based forms of modeling are increasingly able to establish technical credibility in clinical contexts. The current state of knowledge is still quite young in understanding the likely future direction of how this so-called 'machine intelligence' will evolve and therefore how current relatively sophisticated predictive models will evolve in response to improvements in technology, which is advancing along a wide front. Predictive models in urology are gaining progressive popularity not only for academic and scientific purposes but also into the clinical practice with the introduction of several nomograms dealing with the main fields of onco-urology.
Directory of Open Access Journals (Sweden)
Fritz Günther
2016-10-01
Full Text Available In two experiments, we attempted to replicate findings by Günther, Dudschig &Kaup (2016 that word similarity measures obtained from distributional semantics models -Latent Semantic Analysis (LSA and Hyperspace Analogue to Language (HAL - predictlexical priming effects. To this end, we used the pseudo-random method to generate itemmaterial while systematically controlling for word similarities introduced by Günther et al.,which was based on LSA cosine similarities (Experiment 1 and HAL cosine similarities(Experiment 2. Contrary to the original study, we used semantic spaces created from farlarger corpora, and implemented several additional methodological improvements. InExperiment 1, we only found a significant effect of HAL cosines on lexical decision times,while we found significant effects for both LSA and HAL cosines in Experiment 2. Asfurther supported by an analysis of the pooled data from both experiments, this indicatesthat HAL cosines are a better predictor of priming effects than LSA cosines. Takentogether, the results replicate the finding that priming effects can be predicted fromdistributional semantic similarity measures.
Directory of Open Access Journals (Sweden)
Kejian Wang
Full Text Available Small drug molecules usually bind to multiple protein targets or even unintended off-targets. Such drug promiscuity has often led to unwanted or unexplained drug reactions, resulting in side effects or drug repositioning opportunities. So it is always an important issue in pharmacology to identify potential drug-target interactions (DTI. However, DTI discovery by experiment remains a challenging task, due to high expense of time and resources. Many computational methods are therefore developed to predict DTI with high throughput biological and clinical data. Here, we initiatively demonstrate that the on-target and off-target effects could be characterized by drug-induced in vitro genomic expression changes, e.g. the data in Connectivity Map (CMap. Thus, unknown ligands of a certain target can be found from the compounds showing high gene-expression similarity to the known ligands. Then to clarify the detailed practice of CMap based DTI prediction, we objectively evaluate how well each target is characterized by CMap. The results suggest that (1 some targets are better characterized than others, so the prediction models specific to these well characterized targets would be more accurate and reliable; (2 in some cases, a family of ligands for the same target tend to interact with common off-targets, which may help increase the efficiency of DTI discovery and explain the mechanisms of complicated drug actions. In the present study, CMap expression similarity is proposed as a novel indicator of drug-target interactions. The detailed strategies of improving data quality by decreasing the batch effect and building prediction models are also effectively established. We believe the success in CMap can be further translated into other public and commercial data of genomic expression, thus increasing research productivity towards valid drug repositioning and minimal side effects.
MODEL PREDICTIVE CONTROL FUNDAMENTALS
African Journals Online (AJOL)
2012-07-02
Jul 2, 2012 ... paper, we will present an introduction to the theory and application of MPC with Matlab codes written to ... model predictive control, linear systems, discrete-time systems, ... and then compute very rapidly for this open-loop con-.
Generalized total least squares prediction algorithm for universal 3D similarity transformation
Wang, Bin; Li, Jiancheng; Liu, Chao; Yu, Jie
2017-02-01
Three-dimensional (3D) similarity datum transformation is extensively applied to transform coordinates from GNSS-based datum to a local coordinate system. Recently, some total least squares (TLS) algorithms have been successfully developed to solve the universal 3D similarity transformation problem (probably with big rotation angles and an arbitrary scale ratio). However, their procedures of the parameter estimation and new point (non-common point) transformation were implemented separately, and the statistical correlation which often exists between the common and new points in the original coordinate system was not considered. In this contribution, a generalized total least squares prediction (GTLSP) algorithm, which implements the parameter estimation and new point transformation synthetically, is proposed. All of the random errors in the original and target coordinates, and their variance-covariance information will be considered. The 3D transformation model in this case is abstracted as a kind of generalized errors-in-variables (EIV) model and the equation for new point transformation is incorporated into the functional model as well. Then the iterative solution is derived based on the Gauss-Newton approach of nonlinear least squares. The performance of GTLSP algorithm is verified in terms of a simulated experiment, and the results show that GTLSP algorithm can improve the statistical accuracy of the transformed coordinates compared with the existing TLS algorithms for 3D similarity transformation.
Prospective evaluation of shape similarity based pose prediction method in D3R Grand Challenge 2015
Kumar, Ashutosh; Zhang, Kam Y. J.
2016-09-01
Evaluation of ligand three-dimensional (3D) shape similarity is one of the commonly used approaches to identify ligands similar to one or more known active compounds from a library of small molecules. Apart from using ligand shape similarity as a virtual screening tool, its role in pose prediction and pose scoring has also been reported. We have recently developed a method that utilizes ligand 3D shape similarity with known crystallographic ligands to predict binding poses of query ligands. Here, we report the prospective evaluation of our pose prediction method through the participation in drug design data resource (D3R) Grand Challenge 2015. Our pose prediction method was used to predict binding poses of heat shock protein 90 (HSP90) and mitogen activated protein kinase kinase kinase kinase (MAP4K4) ligands and it was able to predict the pose within 2 Å root mean square deviation (RMSD) either as the top pose or among the best of five poses in a majority of cases. Specifically for HSP90 protein, a median RMSD of 0.73 and 0.68 Å was obtained for the top and the best of five predictions respectively. For MAP4K4 target, although the median RMSD for our top prediction was only 2.87 Å but the median RMSD of 1.67 Å for the best of five predictions was well within the limit for successful prediction. Furthermore, the performance of our pose prediction method for HSP90 and MAP4K4 ligands was always among the top five groups. Particularly, for MAP4K4 protein our pose prediction method was ranked number one both in terms of mean and median RMSD when the best of five predictions were considered. Overall, our D3R Grand Challenge 2015 results demonstrated that ligand 3D shape similarity with the crystal ligand is sufficient to predict binding poses of new ligands with acceptable accuracy.
Nominal model predictive control
Grüne, Lars
2013-01-01
5 p., to appear in Encyclopedia of Systems and Control, Tariq Samad, John Baillieul (eds.); International audience; Model Predictive Control is a controller design method which synthesizes a sampled data feedback controller from the iterative solution of open loop optimal control problems.We describe the basic functionality of MPC controllers, their properties regarding feasibility, stability and performance and the assumptions needed in order to rigorously ensure these properties in a nomina...
Nominal Model Predictive Control
Grüne, Lars
2014-01-01
5 p., to appear in Encyclopedia of Systems and Control, Tariq Samad, John Baillieul (eds.); International audience; Model Predictive Control is a controller design method which synthesizes a sampled data feedback controller from the iterative solution of open loop optimal control problems.We describe the basic functionality of MPC controllers, their properties regarding feasibility, stability and performance and the assumptions needed in order to rigorously ensure these properties in a nomina...
Candidate Prediction Models and Methods
DEFF Research Database (Denmark)
Nielsen, Henrik Aalborg; Nielsen, Torben Skov; Madsen, Henrik
2005-01-01
This document lists candidate prediction models for Work Package 3 (WP3) of the PSO-project called ``Intelligent wind power prediction systems'' (FU4101). The main focus is on the models transforming numerical weather predictions into predictions of power production. The document also outlines...... the possibilities w.r.t. different numerical weather predictions actually available to the project....
Prediction of microRNAs Associated with Human Diseases Based on Weighted k Most Similar Neighbors
Guo, Maozu; Guo, Yahong; Li, Jinbao; Ding, Jian; Liu, Yong; Dai, Qiguo; Li, Jin; Teng, Zhixia; Huang, Yufei
2013-01-01
Background The identification of human disease-related microRNAs (disease miRNAs) is important for further investigating their involvement in the pathogenesis of diseases. More experimentally validated miRNA-disease associations have been accumulated recently. On the basis of these associations, it is essential to predict disease miRNAs for various human diseases. It is useful in providing reliable disease miRNA candidates for subsequent experimental studies. Methodology/Principal Findings It is known that miRNAs with similar functions are often associated with similar diseases and vice versa. Therefore, the functional similarity of two miRNAs has been successfully estimated by measuring the semantic similarity of their associated diseases. To effectively predict disease miRNAs, we calculated the functional similarity by incorporating the information content of disease terms and phenotype similarity between diseases. Furthermore, the members of miRNA family or cluster are assigned higher weight since they are more probably associated with similar diseases. A new prediction method, HDMP, based on weighted k most similar neighbors is presented for predicting disease miRNAs. Experiments validated that HDMP achieved significantly higher prediction performance than existing methods. In addition, the case studies examining prostatic neoplasms, breast neoplasms, and lung neoplasms, showed that HDMP can uncover potential disease miRNA candidates. Conclusions The superior performance of HDMP can be attributed to the accurate measurement of miRNA functional similarity, the weight assignment based on miRNA family or cluster, and the effective prediction based on weighted k most similar neighbors. The online prediction and analysis tool is freely available at http://nclab.hit.edu.cn/hdmpred. PMID:23950912
Prediction of microRNAs associated with human diseases based on weighted k most similar neighbors.
Directory of Open Access Journals (Sweden)
Ping Xuan
Full Text Available BACKGROUND: The identification of human disease-related microRNAs (disease miRNAs is important for further investigating their involvement in the pathogenesis of diseases. More experimentally validated miRNA-disease associations have been accumulated recently. On the basis of these associations, it is essential to predict disease miRNAs for various human diseases. It is useful in providing reliable disease miRNA candidates for subsequent experimental studies. METHODOLOGY/PRINCIPAL FINDINGS: It is known that miRNAs with similar functions are often associated with similar diseases and vice versa. Therefore, the functional similarity of two miRNAs has been successfully estimated by measuring the semantic similarity of their associated diseases. To effectively predict disease miRNAs, we calculated the functional similarity by incorporating the information content of disease terms and phenotype similarity between diseases. Furthermore, the members of miRNA family or cluster are assigned higher weight since they are more probably associated with similar diseases. A new prediction method, HDMP, based on weighted k most similar neighbors is presented for predicting disease miRNAs. Experiments validated that HDMP achieved significantly higher prediction performance than existing methods. In addition, the case studies examining prostatic neoplasms, breast neoplasms, and lung neoplasms, showed that HDMP can uncover potential disease miRNA candidates. CONCLUSIONS: The superior performance of HDMP can be attributed to the accurate measurement of miRNA functional similarity, the weight assignment based on miRNA family or cluster, and the effective prediction based on weighted k most similar neighbors. The online prediction and analysis tool is freely available at http://nclab.hit.edu.cn/hdmpred.
Using hydro-climatic and edaphic similarity to enhance soil moisture prediction
Coopersmith, E. J.; Minsker, B. S.; Sivapalan, M.
2014-02-01
Estimating soil moisture typically involves calibrating models to sparse networks of in~situ sensors, which introduces considerable error in locations where sensors are not available. We address this issue by calibrating parameters of a parsimonious soil moisture model, which requires only antecedent precipitation information, at gauged locations and then extrapolating these values to ungauged locations via a hydro-climatic classification system. Fifteen sites within the soil climate analysis network (SCAN) containing multi-year time series data for precipitation and soil moisture are used to calibrate the model. By calibrating at one of these fifteen sites and validating at another, we observe that the best results are obtained where calibration and validation occur within the same hydro-climatic class. Additionally, soil texture data are tested for their importance in improving predictions between calibration and validation sites. Results have the largest errors when calibration/validation pairs differ hydro-climatically and edaphically, improve when one of these two characteristics are aligned, and are strongest when the calibration and validation sites are hydro-climatically and edaphically similar. These findings indicate considerable promise for improving soil moisture estimation in ungauged locations by considering these similarities.
Prediction of Drug Indications Based on Chemical Interactions and Chemical Similarities
Directory of Open Access Journals (Sweden)
Guohua Huang
2015-01-01
Full Text Available Discovering potential indications of novel or approved drugs is a key step in drug development. Previous computational approaches could be categorized into disease-centric and drug-centric based on the starting point of the issues or small-scaled application and large-scale application according to the diversity of the datasets. Here, a classifier has been constructed to predict the indications of a drug based on the assumption that interactive/associated drugs or drugs with similar structures are more likely to target the same diseases using a large drug indication dataset. To examine the classifier, it was conducted on a dataset with 1,573 drugs retrieved from Comprehensive Medicinal Chemistry database for five times, evaluated by 5-fold cross-validation, yielding five 1st order prediction accuracies that were all approximately 51.48%. Meanwhile, the model yielded an accuracy rate of 50.00% for the 1st order prediction by independent test on a dataset with 32 other drugs in which drug repositioning has been confirmed. Interestingly, some clinically repurposed drug indications that were not included in the datasets are successfully identified by our method. These results suggest that our method may become a useful tool to associate novel molecules with new indications or alternative indications with existing drugs.
Self-Similar Symmetry Model and Cosmic Microwave Background
Directory of Open Access Journals (Sweden)
Tomohide eSonoda
2016-05-01
Full Text Available In this paper, we present the self-similar symmetry (SSS model that describes the hierarchical structure of the universe. The model is based on the concept of self-similarity, which explains the symmetry of the cosmic microwave background (CMB. The approximate length and time scales of the six hierarchies of the universe---grand unification, electroweak unification, the atom, the pulsar, the solar system, and the galactic system---are derived from the SSS model. In addition, the model implies that the electron mass and gravitational constant could vary with the CMB radiation temperature.
Simulation and similarity using models to understand the world
Weisberg, Michael
2013-01-01
In the 1950s, John Reber convinced many Californians that the best way to solve the state's water shortage problem was to dam up the San Francisco Bay. Against massive political pressure, Reber's opponents persuaded lawmakers that doing so would lead to disaster. They did this not by empirical measurement alone, but also through the construction of a model. Simulation and Similarity explains why this was a good strategy while simultaneously providing an account of modeling and idealization in modern scientific practice. Michael Weisberg focuses on concrete, mathematical, and computational models in his consideration of the nature of models, the practice of modeling, and nature of the relationship between models and real-world phenomena. In addition to a careful analysis of physical, computational, and mathematical models, Simulation and Similarity offers a novel account of the model/world relationship. Breaking with the dominant tradition, which favors the analysis of this relation through logical notions suc...
Predictive Surface Complexation Modeling
Energy Technology Data Exchange (ETDEWEB)
Sverjensky, Dimitri A. [Johns Hopkins Univ., Baltimore, MD (United States). Dept. of Earth and Planetary Sciences
2016-11-29
Surface complexation plays an important role in the equilibria and kinetics of processes controlling the compositions of soilwaters and groundwaters, the fate of contaminants in groundwaters, and the subsurface storage of CO_{2} and nuclear waste. Over the last several decades, many dozens of individual experimental studies have addressed aspects of surface complexation that have contributed to an increased understanding of its role in natural systems. However, there has been no previous attempt to develop a model of surface complexation that can be used to link all the experimental studies in order to place them on a predictive basis. Overall, my research has successfully integrated the results of the work of many experimentalists published over several decades. For the first time in studies of the geochemistry of the mineral-water interface, a practical predictive capability for modeling has become available. The predictive correlations developed in my research now enable extrapolations of experimental studies to provide estimates of surface chemistry for systems not yet studied experimentally and for natural and anthropogenically perturbed systems.
Burridge-Knopoff model and self-similarity
Akishin, P G; Budnik, A D; Ivanov, V V; Antoniou, I
1997-01-01
The seismic processes are well known to be self-similar in both spatial and temporal behavior. At the same time, the Burridge-Knopoff (BK) model of earthquake fault dynamics, one of the basic models of theoretical seismicity, does not posses self-similarity. In this article an extension of BK model, which directly accounts for the self-similarity of earth crust elastic properties by introducing nonlinear terms for inter-block springs of BK model, is presented. The phase space analysis of the model have shown it to behave like a system of coupled randomly kicked oscillators. The nonlinear stiffness terms cause the synchronization of collective motion and produce stronger seismic events.
Similar Constructive Method for Solving a nonlinearly Spherical Percolation Model
Directory of Open Access Journals (Sweden)
WANG Yong
2013-01-01
Full Text Available In the view of nonlinear spherical percolation problem of dual porosity reservoir, a mathematical model considering three types of outer boundary conditions: closed, constant pressure, infinity was established in this paper. The mathematical model was linearized by substitution of variable and became a boundary value problem of ordinary differential equation in Laplace space by Laplace transformation. It was verified that such boundary value problem with one type of outer boundary had a similar structure of solution. And a new method: Similar Constructive Method was obtained for solving such boundary value problem. By this method, solutions with similar structure in other two outer boundary conditions were obtained. The Similar Constructive Method raises efficiency of solving such percolation model.
Directory of Open Access Journals (Sweden)
Chen Ke
2008-05-01
Full Text Available Abstract Background Protein structure prediction methods provide accurate results when a homologous protein is predicted, while poorer predictions are obtained in the absence of homologous templates. However, some protein chains that share twilight-zone pairwise identity can form similar folds and thus determining structural similarity without the sequence similarity would be desirable for the structure prediction. The folding type of a protein or its domain is defined as the structural class. Current structural class prediction methods that predict the four structural classes defined in SCOP provide up to 63% accuracy for the datasets in which sequence identity of any pair of sequences belongs to the twilight-zone. We propose SCPRED method that improves prediction accuracy for sequences that share twilight-zone pairwise similarity with sequences used for the prediction. Results SCPRED uses a support vector machine classifier that takes several custom-designed features as its input to predict the structural classes. Based on extensive design that considers over 2300 index-, composition- and physicochemical properties-based features along with features based on the predicted secondary structure and content, the classifier's input includes 8 features based on information extracted from the secondary structure predicted with PSI-PRED and one feature computed from the sequence. Tests performed with datasets of 1673 protein chains, in which any pair of sequences shares twilight-zone similarity, show that SCPRED obtains 80.3% accuracy when predicting the four SCOP-defined structural classes, which is superior when compared with over a dozen recent competing methods that are based on support vector machine, logistic regression, and ensemble of classifiers predictors. Conclusion The SCPRED can accurately find similar structures for sequences that share low identity with sequence used for the prediction. The high predictive accuracy achieved by SCPRED is
Long, Nicole M; Lee, Hongmi; Kuhl, Brice A
2016-12-14
The hippocampus is thought to compare predicted events with current perceptual input, generating a mismatch signal when predictions are violated. However, most prior studies have only inferred when predictions occur without measuring them directly. Moreover, an important but unresolved question is whether hippocampal mismatch signals are modulated by the degree to which predictions differ from outcomes. Here, we conducted a human fMRI study in which subjects repeatedly studied various word-picture pairs, learning to predict particular pictures (outcomes) from the words (cues). After initial learning, a subset of cues was paired with a novel, unexpected outcome, whereas other cues continued to predict the same outcome. Critically, when outcomes changed, the new outcome was either "near" to the predicted outcome (same visual category as the predicted picture) or "far" from the predicted outcome (different visual category). Using multivoxel pattern analysis, we indexed cue-evoked reactivation (prediction) within neocortical areas and related these trial-by-trial measures of prediction strength to univariate hippocampal responses to the outcomes. We found that prediction strength positively modulated hippocampal responses to unexpected outcomes, particularly when unexpected outcomes were close, but not identical, to the prediction. Hippocampal responses to unexpected outcomes were also associated with a tradeoff in performance during a subsequent memory test: relatively faster retrieval of new (updated) associations, but relatively slower retrieval of the original (older) associations. Together, these results indicate that hippocampal mismatch signals reflect a comparison between active predictions and current outcomes and that these signals are most robust when predictions are similar, but not identical, to outcomes. Although the hippocampus is widely thought to signal "mismatches" between memory-based predictions and outcomes, previous research has not linked
Nonlinear scoring functions for similarity-based ligand docking and binding affinity prediction.
Brylinski, Michal
2013-11-25
A common strategy for virtual screening considers a systematic docking of a large library of organic compounds into the target sites in protein receptors with promising leads selected based on favorable intermolecular interactions. Despite a continuous progress in the modeling of protein-ligand interactions for pharmaceutical design, important challenges still remain, thus the development of novel techniques is required. In this communication, we describe eSimDock, a new approach to ligand docking and binding affinity prediction. eSimDock employs nonlinear machine learning-based scoring functions to improve the accuracy of ligand ranking and similarity-based binding pose prediction, and to increase the tolerance to structural imperfections in the target structures. In large-scale benchmarking using the Astex/CCDC data set, we show that 53.9% (67.9%) of the predicted ligand poses have RMSD of <2 Å (<3 Å). Moreover, using binding sites predicted by recently developed eFindSite, eSimDock models ligand binding poses with an RMSD of 4 Å for 50.0-39.7% of the complexes at the protein homology level limited to 80-40%. Simulations against non-native receptor structures, whose mean backbone rearrangements vary from 0.5 to 5.0 Å Cα-RMSD, show that the ratio of docking accuracy and the estimated upper bound is at a constant level of ∼0.65. Pearson correlation coefficient between experimental and predicted by eSimDock Ki values for a large data set of the crystal structures of protein-ligand complexes from BindingDB is 0.58, which decreases only to 0.46 when target structures distorted to 3.0 Å Cα-RMSD are used. Finally, two case studies demonstrate that eSimDock can be customized to specific applications as well. These encouraging results show that the performance of eSimDock is largely unaffected by the deformations of ligand binding regions, thus it represents a practical strategy for across-proteome virtual screening using protein models. eSimDock is freely
Numerical verification of similar Cam-clay model based on generalized potential theory
Institute of Scientific and Technical Information of China (English)
钟志辉; 杨光华; 傅旭东; 温勇; 张玉成
2014-01-01
From the mathematical principles, the generalized potential theory can be employed to create constitutive model of geomaterial directly. The similar Cam-clay model, which is created based on the generalized potential theory, has less assumptions, clearer mathematical basis, and better computational accuracy. Theoretically, it is more scientific than the traditional Cam-clay models. The particle flow code PFC3D was used to make numerical tests to verify the rationality and practicality of the similar Cam-clay model. The verification process was as follows: 1) creating the soil sample for numerical test in PFC3D, and then simulating the conventional triaxial compression test, isotropic compression test, and isotropic unloading test by PFC3D; 2) determining the parameters of the similar Cam-clay model from the results of above tests; 3) predicting the sample’s behavior in triaxial tests under different stress paths by the similar Cam-clay model, and comparing the predicting results with predictions by the Cam-clay model and the modified Cam-clay model. The analysis results show that the similar Cam-clay model has relatively high prediction accuracy, as well as good practical value.
Candidate Prediction Models and Methods
DEFF Research Database (Denmark)
Nielsen, Henrik Aalborg; Nielsen, Torben Skov; Madsen, Henrik
2005-01-01
This document lists candidate prediction models for Work Package 3 (WP3) of the PSO-project called ``Intelligent wind power prediction systems'' (FU4101). The main focus is on the models transforming numerical weather predictions into predictions of power production. The document also outlines...
RNA and protein 3D structure modeling: similarities and differences.
Rother, Kristian; Rother, Magdalena; Boniecki, Michał; Puton, Tomasz; Bujnicki, Janusz M
2011-09-01
In analogy to proteins, the function of RNA depends on its structure and dynamics, which are encoded in the linear sequence. While there are numerous methods for computational prediction of protein 3D structure from sequence, there have been very few such methods for RNA. This review discusses template-based and template-free approaches for macromolecular structure prediction, with special emphasis on comparison between the already tried-and-tested methods for protein structure modeling and the very recently developed "protein-like" modeling methods for RNA. We highlight analogies between many successful methods for modeling of these two types of biological macromolecules and argue that RNA 3D structure can be modeled using "protein-like" methodology. We also highlight the areas where the differences between RNA and proteins require the development of RNA-specific solutions.
Pohle, Ina; Glendell, Miriam; Stutter, Marc I.; Helliwell, Rachel C.
2017-04-01
An understanding of catchment response to climate and land use change at a regional scale is necessary for the assessment of mitigation and adaptation options addressing diffuse nutrient pollution. It is well documented that the physicochemical properties of a river ecosystem respond to change in a non-linear fashion. This is particularly important when threshold water concentrations, relevant to national and EU legislation, are exceeded. Large scale (regional) model assessments required for regulatory purposes must represent the key processes and mechanisms that are more readily understood in catchments with water quantity and water quality data monitored at high spatial and temporal resolution. While daily discharge data are available for most catchments in Scotland, nitrate and phosphorus are mostly available on a monthly basis only, as typified by regulatory monitoring. However, high resolution (hourly to daily) water quantity and water quality data exist for a limited number of research catchments. To successfully implement adaptation measures across Scotland, an upscaling from data-rich to data-sparse catchments is required. In addition, the widespread availability of spatial datasets affecting hydrological and biogeochemical responses (e.g. soils, topography/geomorphology, land use, vegetation etc.) provide an opportunity to transfer predictions between data-rich and data-sparse areas by linking processes and responses to catchment attributes. Here, we develop a framework of catchment typologies as a prerequisite for transferring information from data-rich to data-sparse catchments by focusing on how hydrological catchment similarity can be used as an indicator of grouped behaviours in water quality response. As indicators of hydrological catchment similarity we use flow indices derived from observed discharge data across Scotland as well as hydrological model parameters. For the latter, we calibrated the lumped rainfall-runoff model TUWModel using multiple
Zhang, Gang; Liang, Zhaohui; Yin, Jian; Fu, Wenbin; Li, Guo-Zheng
2013-01-01
Chronic neck pain is a common morbid disorder in modern society. Acupuncture has been administered for treating chronic pain as an alternative therapy for a long time, with its effectiveness supported by the latest clinical evidence. However, the potential effective difference in different syndrome types is questioned due to the limits of sample size and statistical methods. We applied machine learning methods in an attempt to solve this problem. Through a multi-objective sorting of subjective measurements, outstanding samples are selected to form the base of our kernel-oriented model. With calculation of similarities between the concerned sample and base samples, we are able to make full use of information contained in the known samples, which is especially effective in the case of a small sample set. To tackle the parameters selection problem in similarity learning, we propose an ensemble version of slightly different parameter setting to obtain stronger learning. The experimental result on a real data set shows that compared to some previous well-known methods, the proposed algorithm is capable of discovering the underlying difference among different syndrome types and is feasible for predicting the effective tendency in clinical trials of large samples.
Melanoma risk prediction models
Directory of Open Access Journals (Sweden)
Nikolić Jelena
2014-01-01
Full Text Available Background/Aim. The lack of effective therapy for advanced stages of melanoma emphasizes the importance of preventive measures and screenings of population at risk. Identifying individuals at high risk should allow targeted screenings and follow-up involving those who would benefit most. The aim of this study was to identify most significant factors for melanoma prediction in our population and to create prognostic models for identification and differentiation of individuals at risk. Methods. This case-control study included 697 participants (341 patients and 356 controls that underwent extensive interview and skin examination in order to check risk factors for melanoma. Pairwise univariate statistical comparison was used for the coarse selection of the most significant risk factors. These factors were fed into logistic regression (LR and alternating decision trees (ADT prognostic models that were assessed for their usefulness in identification of patients at risk to develop melanoma. Validation of the LR model was done by Hosmer and Lemeshow test, whereas the ADT was validated by 10-fold cross-validation. The achieved sensitivity, specificity, accuracy and AUC for both models were calculated. The melanoma risk score (MRS based on the outcome of the LR model was presented. Results. The LR model showed that the following risk factors were associated with melanoma: sunbeds (OR = 4.018; 95% CI 1.724- 9.366 for those that sometimes used sunbeds, solar damage of the skin (OR = 8.274; 95% CI 2.661-25.730 for those with severe solar damage, hair color (OR = 3.222; 95% CI 1.984-5.231 for light brown/blond hair, the number of common naevi (over 100 naevi had OR = 3.57; 95% CI 1.427-8.931, the number of dysplastic naevi (from 1 to 10 dysplastic naevi OR was 2.672; 95% CI 1.572-4.540; for more than 10 naevi OR was 6.487; 95%; CI 1.993-21.119, Fitzpatricks phototype and the presence of congenital naevi. Red hair, phototype I and large congenital naevi were
Morphological similarities between DBM and a microeconomic model of sprawl
Caruso, Geoffrey; Vuidel, Gilles; Cavailhès, Jean; Frankhauser, Pierre; Peeters, Dominique; Thomas, Isabelle
2011-03-01
We present a model that simulates the growth of a metropolitan area on a 2D lattice. The model is dynamic and based on microeconomics. Households show preferences for nearby open spaces and neighbourhood density. They compete on the land market. They travel along a road network to access the CBD. A planner ensures the connectedness and maintenance of the road network. The spatial pattern of houses, green spaces and road network self-organises, emerging from agents individualistic decisions. We perform several simulations and vary residential preferences. Our results show morphologies and transition phases that are similar to Dieletric Breakdown Models (DBM). Such similarities were observed earlier by other authors, but we show here that it can be deducted from the functioning of the land market and thus explicitly connected to urban economic theory.
Predicting the growth of new links by new preferential attachment similarity indices
Indian Academy of Sciences (India)
Ke Hu; Ju Xiang; Xiao-Ke Xu; Hui-Jia Li; Wan-Chun Yang; Yi Tang
2014-03-01
By revisiting the preferential attachment (PA) mechanism for generating a classical scale-free network, we propose a class of novel preferential attachment similarity indices for predicting future links in evolving networks. Extensive experiments on 14 real-life networks show that these new indices can provide more accurate prediction than the traditional one. Due to the improved prediction accuracy and low computational complexity, these proposed preferential attachment indices can be helpful for providing both instructions for mining unknown links and new insights to understand the underlying mechanisms that drive the network evolution.
Cohen - Schotanus, Janke; Schönrock-Adema, Johanna; Schmidt, Henk G
2010-01-01
Background: A well-known problem with student surveys is a too low response rate. Experiences with predicting electoral outcomes, which required much smaller sample sizes, inspired us to adopt a similar approach to course evaluation. We expected that having respondents estimate the average opinions
Software Suite for Gene and Protein Annotation Prediction and Similarity Search.
Chicco, Davide; Masseroli, Marco
2015-01-01
In the computational biology community, machine learning algorithms are key instruments for many applications, including the prediction of gene-functions based upon the available biomolecular annotations. Additionally, they may also be employed to compute similarity between genes or proteins. Here, we describe and discuss a software suite we developed to implement and make publicly available some of such prediction methods and a computational technique based upon Latent Semantic Indexing (LSI), which leverages both inferred and available annotations to search for semantically similar genes. The suite consists of three components. BioAnnotationPredictor is a computational software module to predict new gene-functions based upon Singular Value Decomposition of available annotations. SimilBio is a Web module that leverages annotations available or predicted by BioAnnotationPredictor to discover similarities between genes via LSI. The suite includes also SemSim, a new Web service built upon these modules to allow accessing them programmatically. We integrated SemSim in the Bio Search Computing framework (http://www.bioinformatics.deib. polimi.it/bio-seco/seco/), where users can exploit the Search Computing technology to run multi-topic complex queries on multiple integrated Web services. Accordingly, researchers may obtain ranked answers involving the computation of the functional similarity between genes in support of biomedical knowledge discovery.
Lie algebraic similarity transformed Hamiltonians for lattice model systems
Wahlen-Strothman, Jacob M.; Jiménez-Hoyos, Carlos A.; Henderson, Thomas M.; Scuseria, Gustavo E.
2015-01-01
We present a class of Lie algebraic similarity transformations generated by exponentials of two-body on-site Hermitian operators whose Hausdorff series can be summed exactly without truncation. The correlators are defined over the entire lattice and include the Gutzwiller factor ni ↑ni ↓ , and two-site products of density (ni ↑+ni ↓) and spin (ni ↑-ni ↓) operators. The resulting non-Hermitian many-body Hamiltonian can be solved in a biorthogonal mean-field approach with polynomial computational cost. The proposed similarity transformation generates locally weighted orbital transformations of the reference determinant. Although the energy of the model is unbound, projective equations in the spirit of coupled cluster theory lead to well-defined solutions. The theory is tested on the one- and two-dimensional repulsive Hubbard model where it yields accurate results for small and medium sized interaction strengths.
A Fuzzy Similarity Based Concept Mining Model for Text Classification
Puri, Shalini
2012-01-01
Text Classification is a challenging and a red hot field in the current scenario and has great importance in text categorization applications. A lot of research work has been done in this field but there is a need to categorize a collection of text documents into mutually exclusive categories by extracting the concepts or features using supervised learning paradigm and different classification algorithms. In this paper, a new Fuzzy Similarity Based Concept Mining Model (FSCMM) is proposed to classify a set of text documents into pre - defined Category Groups (CG) by providing them training and preparing on the sentence, document and integrated corpora levels along with feature reduction, ambiguity removal on each level to achieve high system performance. Fuzzy Feature Category Similarity Analyzer (FFCSA) is used to analyze each extracted feature of Integrated Corpora Feature Vector (ICFV) with the corresponding categories or classes. This model uses Support Vector Machine Classifier (SVMC) to classify correct...
APPLICABILITY OF SIMILARITY CONDITIONS TO ANALOGUE MODELLING OF TECTONIC STRUCTURES
Directory of Open Access Journals (Sweden)
Mikhail A. Goncharov
2015-09-01
Full Text Available The publication is aimed at comparing concepts of V.V. Belousov and M.V. Gzovsky, outstanding researchers who established fundamentals of tectonophysics in Russia, specifically similarity conditions in application to tectonophysical modeling. Quotations from their publications illustrate differences in their views. In this respect, we can reckon V.V. Belousov as a «realist» as he supported «the liberal point of view» [Methods of modelling…, 1988, p. 21–22], whereas M.V. Gzovsky can be regarded as an «idealist» as he believed that similarity conditions should be mandatorily applied to ensure correctness of physical modeling of tectonic deformations and structures [Gzovsky, 1975, pp. 88 and 94].Objectives of the present publication are (1 to be another reminder about desirability of compliance with similarity conditions in experimental tectonics; (2 to point out difficulties in ensuring such compliance; (3 to give examples which bring out the fact that similarity conditions are often met per se, i.e. automatically observed; (4 to show that modeling can be simplified in some cases without compromising quantitative estimations of parameters of structure formation.(1 Physical modelling of tectonic deformations and structures should be conducted, if possible, in compliance with conditions of geometric and physical similarity between experimental models and corresponding natural objects. In any case, a researcher should have a clear vision of conditions applicable to each particular experiment.(2 Application of similarity conditions is often challenging due to unavoidable difficulties caused by the following: a Imperfection of experimental equipment and technologies (Fig. 1 to 3; b uncertainties in estimating parameters of formation of natural structures, including main ones: structure size (Fig. 4, time of formation (Fig. 5, deformation properties of the medium wherein such structures are formed, including, first of all, viscosity (Fig. 6
Li, Zhong; Wang, Jing; Zhang, Shunpu; Zhang, Qifeng; Wu, Wuming
2017-03-16
The coding pattern of protein can greatly affect the prediction accuracy of protein secondary structure. In this paper, a novel hybrid coding method based on the physicochemical properties of amino acids and tendency factors is proposed for the prediction of protein secondary structure. The principal component analysis (PCA) is first applied to the physicochemical properties of amino acids to construct a 3-bit-code, and then the 3 tendency factors of amino acids are calculated to generate another 3-bit-code. Two 3-bit-codes are fused to form a novel hybrid 6-bit-code. Furthermore, we make a geometry-based similarity comparison of the protein primary structure between the reference set and the test set before the secondary structure prediction. We finally use the support vector machine (SVM) to predict those amino acids which are not detected by the primary structure similarity comparison. Experimental results show that our method achieves a satisfactory improvement in accuracy in the prediction of protein secondary structure.
NoisyGOA: Noisy GO annotations prediction using taxonomic and semantic similarity.
Lu, Chang; Wang, Jun; Zhang, Zili; Yang, Pengyi; Yu, Guoxian
2016-12-01
Gene Ontology (GO) provides GO annotations (GOA) that associate gene products with GO terms that summarize their cellular, molecular and functional aspects in the context of biological pathways. GO Consortium (GOC) resorts to various quality assurances to ensure the correctness of annotations. Due to resources limitations, only a small portion of annotations are manually added/checked by GO curators, and a large portion of available annotations are computationally inferred. While computationally inferred annotations provide greater coverage of known genes, they may also introduce annotation errors (noise) that could mislead the interpretation of the gene functions and their roles in cellular and biological processes. In this paper, we investigate how to identify noisy annotations, a rarely addressed problem, and propose a novel approach called NoisyGOA. NoisyGOA first measures taxonomic similarity between ontological terms using the GO hierarchy and semantic similarity between genes. Next, it leverages the taxonomic similarity and semantic similarity to predict noisy annotations. We compare NoisyGOA with other alternative methods on identifying noisy annotations under different simulated cases of noisy annotations, and on archived GO annotations. NoisyGOA achieved higher accuracy than other alternative methods in comparison. These results demonstrated both taxonomic similarity and semantic similarity contribute to the identification of noisy annotations. Our study shows that annotation errors are predictable and removing noisy annotations improves the performance of gene function prediction. This study can prompt the community to study methods for removing inaccurate annotations, a critical step for annotating gene and pathway functions. Copyright Â© 2016 Elsevier Ltd. All rights reserved.
Similarity transformation approach to identifiability analysis of nonlinear compartmental models.
Vajda, S; Godfrey, K R; Rabitz, H
1989-04-01
Through use of the local state isomorphism theorem instead of the algebraic equivalence theorem of linear systems theory, the similarity transformation approach is extended to nonlinear models, resulting in finitely verifiable sufficient and necessary conditions for global and local identifiability. The approach requires testing of certain controllability and observability conditions, but in many practical examples these conditions prove very easy to verify. In principle the method also involves nonlinear state variable transformations, but in all of the examples presented in the paper the transformations turn out to be linear. The method is applied to an unidentifiable nonlinear model and a locally identifiable nonlinear model, and these are the first nonlinear models other than bilinear models where the reason for lack of global identifiability is nontrivial. The method is also applied to two models with Michaelis-Menten elimination kinetics, both of considerable importance in pharmacokinetics, and for both of which the complicated nature of the algebraic equations arising from the Taylor series approach has hitherto defeated attempts to establish identifiability results for specific input functions.
A Fuzzy Similarity Based Concept Mining Model for Text Classification
Directory of Open Access Journals (Sweden)
Shalini Puri
2011-11-01
Full Text Available Text Classification is a challenging and a red hot field in the current scenario and has great importance in text categorization applications. A lot of research work has been done in this field but there is a need to categorize a collection of text documents into mutually exclusive categories by extracting the concepts or features using supervised learning paradigm and different classification algorithms. In this paper, a new Fuzzy Similarity Based Concept Mining Model (FSCMM is proposed to classify a set of text documents into pre - defined Category Groups (CG by providing them training and preparing on the sentence, document and integrated corpora levels along with feature reduction, ambiguity removal on each level to achieve high system performance. Fuzzy Feature Category Similarity Analyzer (FFCSA is used to analyze each extracted feature of Integrated Corpora Feature Vector (ICFV with the corresponding categories or classes. This model uses Support Vector Machine Classifier (SVMC to classify correctly the training data patterns into two groups; i. e., + 1 and – 1, thereby producing accurate and correct results. The proposed model works efficiently and effectively with great performance and high - accuracy results.
Model predictive control classical, robust and stochastic
Kouvaritakis, Basil
2016-01-01
For the first time, a textbook that brings together classical predictive control with treatment of up-to-date robust and stochastic techniques. Model Predictive Control describes the development of tractable algorithms for uncertain, stochastic, constrained systems. The starting point is classical predictive control and the appropriate formulation of performance objectives and constraints to provide guarantees of closed-loop stability and performance. Moving on to robust predictive control, the text explains how similar guarantees may be obtained for cases in which the model describing the system dynamics is subject to additive disturbances and parametric uncertainties. Open- and closed-loop optimization are considered and the state of the art in computationally tractable methods based on uncertainty tubes presented for systems with additive model uncertainty. Finally, the tube framework is also applied to model predictive control problems involving hard or probabilistic constraints for the cases of multiplic...
Paiement, Jean-François; Grandvalet, Yves; Bengio, Samy
2008-01-01
Modeling long-term dependencies in time series has proved very difficult to achieve with traditional machine learning methods. This problem occurs when considering music data. In this paper, we introduce generative models for melodies. We decompose melodic modeling into two subtasks. We first propose a rhythm model based on the distributions of distances between subsequences. Then, we define a generative model for melodies given chords and rhythms based on modeling sequences of Narmour featur...
Predicting human age using regional morphometry and inter-regional morphological similarity
Wang, Xun-Heng; Li, Lihua
2016-03-01
The goal of this study is predicting human age using neuro-metrics derived from structural MRI, as well as investigating the relationships between age and predictive neuro-metrics. To this end, a cohort of healthy subjects were recruited from 1000 Functional Connectomes Project. The ages of the participations were ranging from 7 to 83 (36.17+/-20.46). The structural MRI for each subject was preprocessed using FreeSurfer, resulting in regional cortical thickness, mean curvature, regional volume and regional surface area for 148 anatomical parcellations. The individual age was predicted from the combination of regional and inter-regional neuro-metrics. The prediction accuracy is r = 0.835, p ages and actual ages. Moreover, the LASSO linear regression also found certain predictive features, most of which were inter-regional features. The turning-point of the developmental trajectories in human brain was around 40 years old based on regional cortical thickness. In conclusion, structural MRI could be potential biomarkers for the aging in human brain. The human age could be successfully predicted from the combination of regional morphometry and inter-regional morphological similarity. The inter-regional measures could be beneficial to investigating human brain connectome.
Self-similar infall models for cold dark matter haloes
Le Delliou, Morgan Patrick
2002-04-01
How can we understand the mechanisms for relaxation and the constitution of the density profile in CDM halo formation? Can the old Self-Similar Infall Model (SSIM) be made to contain all the elements essential for this understanding? In this work, we have explored and improved the SSIM, showing it can at once explain large N-body simulations and indirect observations of real haloes alike. With the use of a carefully-crafted simple shell code, we have followed the accretion of secondary infalls in different settings, ranging from a model for mergers to a distribution of angular momentum for the shells, through the modeling of a central black hole. We did not assume self-similar accretion from initial conditions but allowed for it to develop and used coordinates that make it evident. We found self-similar accretion to appear very prominently in CDM halo formation as an intermediate stable (quasi-equilibrium) stage of Large Scale Structure formation. Dark Matter haloes density profiles are shown to be primarily influenced by non-radial motion. The merger paradigm reveals itself through the SSIM to be a secondary but non-trivial factor in those density profiles: it drives the halo profile towards a unique attractor, but the main factor for universality is still the self-similarity. The innermost density cusp flattening observed in some dwarf and Low Surface Brightness galaxies finds a natural and simple explanation in the SSIM embedding a central black hole. Relaxation in cold collisionless collapse is clarified by the SSIM. It is a continuous process involving only the newly-accreted particles for just a few dynamical times. All memory of initial energy is not lost so relaxation is only moderately violent. A sharp cut off, or population inversion, originates in initial conditions and is maintained through relaxation. It characterises moderately violent relaxation in the system's Distribution Function. Finally, the SSIM has shown this relaxation to arise from phase
Abdelaziz, Ibrahim
2017-06-12
Drug-Drug Interactions (DDIs) are a major cause of preventable Adverse Drug Reactions (ADRs), causing a significant burden on the patients’ health and the healthcare system. It is widely known that clinical studies cannot sufficiently and accurately identify DDIs for new drugs before they are made available on the market. In addition, existing public and proprietary sources of DDI information are known to be incomplete and/or inaccurate and so not reliable. As a result, there is an emerging body of research on in-silico prediction of drug-drug interactions. In this paper, we present Tiresias, a large-scale similarity-based framework that predicts DDIs through link prediction. Tiresias takes in various sources of drug-related data and knowledge as inputs, and provides DDI predictions as outputs. The process starts with semantic integration of the input data that results in a knowledge graph describing drug attributes and relationships with various related entities such as enzymes, chemical structures, and pathways. The knowledge graph is then used to compute several similarity measures between all the drugs in a scalable and distributed framework. In particular, Tiresias utilizes two classes of features in a knowledge graph: local and global features. Local features are derived from the information directly associated to each drug (i.e., one hop away) while global features are learnt by minimizing a global loss function that considers the complete structure of the knowledge graph. The resulting similarity metrics are used to build features for a large-scale logistic regression model to predict potential DDIs. We highlight the novelty of our proposed Tiresias and perform thorough evaluation of the quality of the predictions. The results show the effectiveness of Tiresias in both predicting new interactions among existing drugs as well as newly developed drugs.
Zephyr - the prediction models
DEFF Research Database (Denmark)
Nielsen, Torben Skov; Madsen, Henrik; Nielsen, Henrik Aalborg
2001-01-01
This paper briefly describes new models and methods for predicationg the wind power output from wind farms. The system is being developed in a project which has the research organization Risø and the department of Informatics and Mathematical Modelling (IMM) as the modelling team and all the Dani...
Directory of Open Access Journals (Sweden)
Iris I A Groen
Full Text Available The visual world is complex and continuously changing. Yet, our brain transforms patterns of light falling on our retina into a coherent percept within a few hundred milliseconds. Possibly, low-level neural responses already carry substantial information to facilitate rapid characterization of the visual input. Here, we computationally estimated low-level contrast responses to computer-generated naturalistic images, and tested whether spatial pooling of these responses could predict image similarity at the neural and behavioral level. Using EEG, we show that statistics derived from pooled responses explain a large amount of variance between single-image evoked potentials (ERPs in individual subjects. Dissimilarity analysis on multi-electrode ERPs demonstrated that large differences between images in pooled response statistics are predictive of more dissimilar patterns of evoked activity, whereas images with little difference in statistics give rise to highly similar evoked activity patterns. In a separate behavioral experiment, images with large differences in statistics were judged as different categories, whereas images with little differences were confused. These findings suggest that statistics derived from low-level contrast responses can be extracted in early visual processing and can be relevant for rapid judgment of visual similarity. We compared our results with two other, well- known contrast statistics: Fourier power spectra and higher-order properties of contrast distributions (skewness and kurtosis. Interestingly, whereas these statistics allow for accurate image categorization, they do not predict ERP response patterns or behavioral categorization confusions. These converging computational, neural and behavioral results suggest that statistics of pooled contrast responses contain information that corresponds with perceived visual similarity in a rapid, low-level categorization task.
Directory of Open Access Journals (Sweden)
David A Bridwell
Full Text Available Cortical responses to complex natural stimuli can be isolated by examining the relationship between neural measures obtained while multiple individuals view the same stimuli. These inter-subject correlation's (ISC's emerge from similarities in individual's cortical response to the shared audiovisual inputs, which may be related to their emergent cognitive and perceptual experience. Within the present study, our goal is to examine the utility of using ISC's for predicting which audiovisual clips individuals viewed, and to examine the relationship between neural responses to natural stimuli and subjective reports. The ability to predict which clips individuals viewed depends on the relationship of the EEG response across subjects and the nature in which this information is aggregated. We conceived of three approaches for aggregating responses, i.e. three assignment algorithms, which we evaluated in Experiment 1A. The aggregate correlations algorithm generated the highest assignment accuracy (70.83% chance = 33.33% and was selected as the assignment algorithm for the larger sample of individuals and clips within Experiment 1B. The overall assignment accuracy was 33.46% within Experiment 1B (chance = 06.25%, with accuracies ranging from 52.9% (Silver Linings Playbook to 11.75% (Seinfeld within individual clips. ISC's were significantly greater than zero for 15 out of 16 clips, and fluctuations within the delta frequency band (i.e. 0-4 Hz primarily contributed to response similarities across subjects. Interestingly, there was insufficient evidence to indicate that individuals with greater similarities in clip preference demonstrate greater similarities in cortical responses, suggesting a lack of association between ISC and clip preference. Overall these results demonstrate the utility of using ISC's for prediction, and further characterize the relationship between ISC magnitudes and subjective reports.
Bridwell, David A; Roth, Cullen; Gupta, Cota Navin; Calhoun, Vince D
2015-01-01
Cortical responses to complex natural stimuli can be isolated by examining the relationship between neural measures obtained while multiple individuals view the same stimuli. These inter-subject correlation's (ISC's) emerge from similarities in individual's cortical response to the shared audiovisual inputs, which may be related to their emergent cognitive and perceptual experience. Within the present study, our goal is to examine the utility of using ISC's for predicting which audiovisual clips individuals viewed, and to examine the relationship between neural responses to natural stimuli and subjective reports. The ability to predict which clips individuals viewed depends on the relationship of the EEG response across subjects and the nature in which this information is aggregated. We conceived of three approaches for aggregating responses, i.e. three assignment algorithms, which we evaluated in Experiment 1A. The aggregate correlations algorithm generated the highest assignment accuracy (70.83% chance = 33.33%) and was selected as the assignment algorithm for the larger sample of individuals and clips within Experiment 1B. The overall assignment accuracy was 33.46% within Experiment 1B (chance = 06.25%), with accuracies ranging from 52.9% (Silver Linings Playbook) to 11.75% (Seinfeld) within individual clips. ISC's were significantly greater than zero for 15 out of 16 clips, and fluctuations within the delta frequency band (i.e. 0-4 Hz) primarily contributed to response similarities across subjects. Interestingly, there was insufficient evidence to indicate that individuals with greater similarities in clip preference demonstrate greater similarities in cortical responses, suggesting a lack of association between ISC and clip preference. Overall these results demonstrate the utility of using ISC's for prediction, and further characterize the relationship between ISC magnitudes and subjective reports.
Similarity-Based Prediction of Travel Times for Vehicles Traveling on Known Routes
DEFF Research Database (Denmark)
Tiesyte, Dalia; Jensen, Christian Søndergaard
2008-01-01
, historical data in combination with real-time data may be used to predict the future travel times of vehicles more accurately, thus improving the experience of the users who rely on such information. We propose a Nearest-Neighbor Trajectory (NNT) technique that identifies the historical trajectory......The use of centralized, real-time position tracking is proliferating in the areas of logistics and public transportation. Real-time positions can be used to provide up-to-date information to a variety of users, and they can also be accumulated for uses in subsequent data analyses. In particular...... of vehicles that travel along known routes. In empirical studies with real data from buses, we evaluate how well the proposed distance functions are capable of predicting future vehicle movements. Second, we propose a main-memory index structure that enables incremental similarity search and that is capable...
Escudero, Paola; Vasiliev, Polina
2011-11-01
Monolingual Peruvian Spanish listeners identified natural tokens of the Canadian French (CF) and Canadian English (CE) /ɛ/ and /æ/, produced in five consonantal contexts. The results demonstrate that while the CF vowels were mapped to two different native vowels, /e/ and /a/, in all consonantal contexts, the CE contrast was mapped to the single native vowel /a/ in four out of five contexts. Linear discriminant analysis revealed that acoustic similarity between native and target language vowels was a very good predictor of context-specific perceptual mappings. Predictions are made for Spanish learners of the /ɛ/-/æ/ contrast in CF and CE.
Modelling, controlling, predicting blackouts
Wang, Chengwei; Baptista, Murilo S
2016-01-01
The electric power system is one of the cornerstones of modern society. One of its most serious malfunctions is the blackout, a catastrophic event that may disrupt a substantial portion of the system, playing havoc to human life and causing great economic losses. Thus, understanding the mechanisms leading to blackouts and creating a reliable and resilient power grid has been a major issue, attracting the attention of scientists, engineers and stakeholders. In this paper, we study the blackout problem in power grids by considering a practical phase-oscillator model. This model allows one to simultaneously consider different types of power sources (e.g., traditional AC power plants and renewable power sources connected by DC/AC inverters) and different types of loads (e.g., consumers connected to distribution networks and consumers directly connected to power plants). We propose two new control strategies based on our model, one for traditional power grids, and another one for smart grids. The control strategie...
Towards Modelling Variation in Music as Foundation for Similarity
Volk, A.; de Haas, W.B.; van Kranenburg, P.; Cambouropoulos, E.; Tsougras, C.; Mavromatis, P.; Pastiadis, K.
2012-01-01
This paper investigates the concept of variation in music from the perspective of music similarity. Music similarity is a central concept in Music Information Retrieval (MIR), however there exists no comprehensive approach to music similarity yet. As a consequence, MIR faces the challenge on how to
Melanoma Risk Prediction Models
Developing statistical models that estimate the probability of developing melanoma cancer over a defined period of time will help clinicians identify individuals at higher risk of specific cancers, allowing for earlier or more frequent screening and counseling of behavioral changes to decrease risk.
Timmers, Renee
2005-01-01
Measurements of tempo and dynamics from audio files or MIDI data are frequently used to get insight into a performer's contribution to music. The measured variations in tempo and dynamics are often represented in different formats by different authors. Few systematic comparisons have been made between these representations. Moreover, it is unknown what data representation comes closest to subjective perception. The reported study tests the perceptual validity of existing data representations by comparing their ability to explain the subjective similarity between pairs of performances. In two experiments, 40 participants rated the similarity between performances of a Chopin prelude and a Mozart sonata. Models based on different representations of the tempo and dynamics of the performances were fitted to these similarity ratings. The results favor other data representations of performances than generally used, and imply that comparisons between performances are made perceptually in a different way than often assumed. For example, the best fit was obtained with models based on absolute tempo and absolute tempo times loudness, while conventional models based on normalized variations, or on correlations between tempo profiles and loudness profiles, did not explain the similarity ratings well. .
Epileptic Seizure Prediction Using a New Similarity Index for Chaotic Signals
Niknazar, Hamid; Nasrabadi, Ali Motie
Epileptic seizures are generated by abnormal activity of neurons. The prediction of epileptic seizures is an important issue in the field of neurology, since it may improve the quality of life of patients suffering from drug resistant epilepsy. In this study a new similarity index based on symbolic dynamic techniques which can be used for extracting behavior of chaotic time series is presented. Using Freiburg EEG dataset, it is found that the method is able to detect the behavioral changes of the neural activity prior to epileptic seizures, so it can be used for prediction of epileptic seizure. A sensitivity of 63.75% with 0.33 false positive rate (FPR) in all 21 patients and sensitivity of 96.66% with 0.33 FPR in eight patients were achieved using the proposed method. Moreover, the method was evaluated by applying on Logistic and Tent map with different parameters to demonstrate its robustness and ability in determining similarity between two time series with the same chaotic characterization.
Prediction models in complex terrain
DEFF Research Database (Denmark)
Marti, I.; Nielsen, Torben Skov; Madsen, Henrik
2001-01-01
are calculated using on-line measurements of power production as well as HIRLAM predictions as input thus taking advantage of the auto-correlation, which is present in the power production for shorter pediction horizons. Statistical models are used to discribe the relationship between observed energy production......The objective of the work is to investigatethe performance of HIRLAM in complex terrain when used as input to energy production forecasting models, and to develop a statistical model to adapt HIRLAM prediction to the wind farm. The features of the terrain, specially the topography, influence...... and HIRLAM predictions. The statistical models belong to the class of conditional parametric models. The models are estimated using local polynomial regression, but the estimation method is here extended to be adaptive in order to allow for slow changes in the system e.g. caused by the annual variations...
QSAR models based on quantum topological molecular similarity.
Popelier, P L A; Smith, P J
2006-07-01
A new method called quantum topological molecular similarity (QTMS) was fairly recently proposed [J. Chem. Inf. Comp. Sc., 41, 2001, 764] to construct a variety of medicinal, ecological and physical organic QSAR/QSPRs. QTMS method uses quantum chemical topology (QCT) to define electronic descriptors drawn from modern ab initio wave functions of geometry-optimised molecules. It was shown that the current abundance of computing power can be utilised to inject realistic descriptors into QSAR/QSPRs. In this article we study seven datasets of medicinal interest : the dissociation constants (pK(a)) for a set of substituted imidazolines , the pK(a) of imidazoles , the ability of a set of indole derivatives to displace [(3)H] flunitrazepam from binding to bovine cortical membranes , the influenza inhibition constants for a set of benzimidazoles , the interaction constants for a set of amides and the enzyme liver alcohol dehydrogenase , the natriuretic activity of sulphonamide carbonic anhydrase inhibitors and the toxicity of a series of benzyl alcohols. A partial least square analysis in conjunction with a genetic algorithm delivered excellent models. They are also able to highlight the active site, of the ligand or the molecule whose structure determines the activity. The advantages and limitations of QTMS are discussed.
Prediction models in complex terrain
DEFF Research Database (Denmark)
Marti, I.; Nielsen, Torben Skov; Madsen, Henrik
2001-01-01
The objective of the work is to investigatethe performance of HIRLAM in complex terrain when used as input to energy production forecasting models, and to develop a statistical model to adapt HIRLAM prediction to the wind farm. The features of the terrain, specially the topography, influence...
Strange, Winifred; Hisagi, Miwako; Akahane-Yamada, Reiko; Kubo, Rieko
2011-10-01
Current speech perception models propose that relative perceptual difficulties with non-native segmental contrasts can be predicted from cross-language phonetic similarities. Japanese (J) listeners performed a categorical discrimination task in which nine contrasts (six adjacent height pairs, three front/back pairs) involving eight American (AE) vowels [iː, ɪ, ε, æː, ɑː, ʌ, ʊ, uː] in /hVbə/ disyllables were tested. The listeners also completed a perceptual assimilation task (categorization as J vowels with category goodness ratings). Perceptual assimilation patterns (quantified as categorization overlap scores) were highly predictive of discrimination accuracy (r(s)=0.93). Results suggested that J listeners used both spectral and temporal information in discriminating vowel contrasts.
LDA-Based Unified Topic Modeling for Similar TV User Grouping and TV Program Recommendation.
Pyo, Shinjee; Kim, Eunhui; Kim, Munchurl
2015-08-01
Social TV is a social media service via TV and social networks through which TV users exchange their experiences about TV programs that they are viewing. For social TV service, two technical aspects are envisioned: grouping of similar TV users to create social TV communities and recommending TV programs based on group and personal interests for personalizing TV. In this paper, we propose a unified topic model based on grouping of similar TV users and recommending TV programs as a social TV service. The proposed unified topic model employs two latent Dirichlet allocation (LDA) models. One is a topic model of TV users, and the other is a topic model of the description words for viewed TV programs. The two LDA models are then integrated via a topic proportion parameter for TV programs, which enforces the grouping of similar TV users and associated description words for watched TV programs at the same time in a unified topic modeling framework. The unified model identifies the semantic relation between TV user groups and TV program description word groups so that more meaningful TV program recommendations can be made. The unified topic model also overcomes an item ramp-up problem such that new TV programs can be reliably recommended to TV users. Furthermore, from the topic model of TV users, TV users with similar tastes can be grouped as topics, which can then be recommended as social TV communities. To verify our proposed method of unified topic-modeling-based TV user grouping and TV program recommendation for social TV services, in our experiments, we used real TV viewing history data and electronic program guide data from a seven-month period collected by a TV poll agency. The experimental results show that the proposed unified topic model yields an average 81.4% precision for 50 topics in TV program recommendation and its performance is an average of 6.5% higher than that of the topic model of TV users only. For TV user prediction with new TV programs, the average
A Model-Based Approach to Constructing Music Similarity Functions
Directory of Open Access Journals (Sweden)
Lamere Paul
2007-01-01
Full Text Available Several authors have presented systems that estimate the audio similarity of two pieces of music through the calculation of a distance metric, such as the Euclidean distance, between spectral features calculated from the audio, related to the timbre or pitch of the signal. These features can be augmented with other, temporally or rhythmically based features such as zero-crossing rates, beat histograms, or fluctuation patterns to form a more well-rounded music similarity function. It is our contention that perceptual or cultural labels, such as the genre, style, or emotion of the music, are also very important features in the perception of music. These labels help to define complex regions of similarity within the available feature spaces. We demonstrate a machine-learning-based approach to the construction of a similarity metric, which uses this contextual information to project the calculated features into an intermediate space where a music similarity function that incorporates some of the cultural information may be calculated.
Directory of Open Access Journals (Sweden)
Xiuli Sang
2012-01-01
Full Text Available We constructed a similarity model (based on Euclidean distance between rainfall and runoff to study time-correlated characteristics of rainfall-runoff similar patterns in the upstream Red River Basin and presented a detailed evaluation of the time correlation of rainfall-runoff similarity. The rainfall-runoff similarity was used to determine the optimum similarity. The results showed that a time-correlated model was found to be capable of predicting the rainfall-runoff similarity in the upstream Red River Basin in a satisfactory way. Both noised and denoised time series by thresholding the wavelet coefficients were applied to verify the accuracy of model. And the corresponding optimum similar sets obtained as the equation solution conditions showed an interesting and stable trend. On the whole, the annual mean similarity presented a gradually rising trend, for quantitatively estimating comprehensive influence of climate change and of human activities on rainfall-runoff similarity.
Minimal axiom group of similarity-based rough set model
Institute of Scientific and Technical Information of China (English)
DAI Jian-hua; PAN Yun-he
2006-01-01
Rough set axiomatization is one aspect of rough set study to characterize rough set theory using dependable and minimal axiom groups.Thus,rough set theory can be studied by logic and axiom system methods.The classical rough set theory is based on equivalence relation,but the rough set theory based on similarity relation has wide applications in the real world.To characterize similarity-based rough set theory,an axiom group named S,consisting of 3 axioms,is proposed.The reliability of the axiom group,which shows that characterizing of rough set theory based on similarity relation is rational,is proved.Simultaneously,the minimization of the axiom group,which requests that each axiom is an equation and independent,is proved.The axiom group is helpful to research rough set theory by logic and axiom system methods.
Modeling of 3D-structure for regular fragments of low similarity unknown structure proteins
Institute of Scientific and Technical Information of China (English)
Peng Zhihong; Chen Jie; Lin Xiwen; Sang Yanchao
2007-01-01
Because it is hard to search similar structure for low similarity unknown structure proteins dimefly from the Protein Data Bank(PDB)database,3D-structure is modeled in this paper for secondary structure regular fragments(α-Helices,β-Strands)of such proteins by the protein secondary structure prediction software,the Basic Local Alignment Search Tool(BLAST)and the side chain construction software SCWRL3.First.the protein secondary structure prediction software is adopted to extract secondary structure fragments from the unknown structure proteins.Then.regular fragments are regulated by BLAST based on comparative modeling,providing main chain configurations.Finally,SCWRL3 is applied to assemble side chains for regular fragments,so that 3D-structure of regular fragments of low similarity un known structure protein is obtained.Regular fragments of several neurotoxins ale used for test.Simulation results show that the prediction errors are less than 0.06nm for regular fragments less than 10 amino acids,implying the simpleness and effectiveness of the proposed method.
Teixeira, Ana L; Falcao, Andre O
2014-07-28
Structurally similar molecules tend to have similar properties, i.e. closer molecules in the molecular space are more likely to yield similar property values while distant molecules are more likely to yield different values. Based on this principle, we propose the use of a new method that takes into account the high dimensionality of the molecular space, predicting chemical, physical, or biological properties based on the most similar compounds with measured properties. This methodology uses ordinary kriging coupled with three different molecular similarity approaches (based on molecular descriptors, fingerprints, and atom matching) which creates an interpolation map over the molecular space that is capable of predicting properties/activities for diverse chemical data sets. The proposed method was tested in two data sets of diverse chemical compounds collected from the literature and preprocessed. One of the data sets contained dihydrofolate reductase inhibition activity data, and the second molecules for which aqueous solubility was known. The overall predictive results using kriging for both data sets comply with the results obtained in the literature using typical QSPR/QSAR approaches. However, the procedure did not involve any type of descriptor selection or even minimal information about each problem, suggesting that this approach is directly applicable to a large spectrum of problems in QSAR/QSPR. Furthermore, the predictive results improve significantly with the similarity threshold between the training and testing compounds, allowing the definition of a confidence threshold of similarity and error estimation for each case inferred. The use of kriging for interpolation over the molecular metric space is independent of the training data set size, and no reparametrizations are necessary when more compounds are added or removed from the set, and increasing the size of the database will consequentially improve the quality of the estimations. Finally it is shown
MAC/FAC: A Model of Similarity-Based Retrieval
1994-10-01
giraffe, donkey] (b) HEAVIER [camel, cow] --- BITE [ dromedary , calf] (c) HEAVIER [camel, cowl --- TALLER [giraffe, donkey] (d) GREATER [WEIGHT(camel...stand a good chance of being matched, depending on the stored similarities between TALLER, HEAVIER, and BITE, camel, dromedary and giraffe, and so on
Similarities between obesity in pets and children : the addiction model
Pretlow, Robert A; Corbee, Ronald J
2016-01-01
Obesity in pets is a frustrating, major health problem. Obesity in human children is similar. Prevailing theories accounting for the rising obesity rates - for example, poor nutrition and sedentary activity - are being challenged. Obesity interventions in both pets and children have produced modest
Similarities between obesity in pets and children : the addiction model
Pretlow, Robert A; Corbee, Ronald J
2016-01-01
Obesity in pets is a frustrating, major health problem. Obesity in human children is similar. Prevailing theories accounting for the rising obesity rates - for example, poor nutrition and sedentary activity - are being challenged. Obesity interventions in both pets and children have produced modest
Predictive models of forest dynamics.
Purves, Drew; Pacala, Stephen
2008-06-13
Dynamic global vegetation models (DGVMs) have shown that forest dynamics could dramatically alter the response of the global climate system to increased atmospheric carbon dioxide over the next century. But there is little agreement between different DGVMs, making forest dynamics one of the greatest sources of uncertainty in predicting future climate. DGVM predictions could be strengthened by integrating the ecological realities of biodiversity and height-structured competition for light, facilitated by recent advances in the mathematics of forest modeling, ecological understanding of diverse forest communities, and the availability of forest inventory data.
Evaluation of CASP8 model quality predictions
Cozzetto, Domenico
2009-01-01
The model quality assessment problem consists in the a priori estimation of the overall and per-residue accuracy of protein structure predictions. Over the past years, a number of methods have been developed to address this issue and CASP established a prediction category to evaluate their performance in 2006. In 2008 the experiment was repeated and its results are reported here. Participants were invited to infer the correctness of the protein models submitted by the registered automatic servers. Estimates could apply to both whole models and individual amino acids. Groups involved in the tertiary structure prediction categories were also asked to assign local error estimates to each predicted residue in their own models and their results are also discussed here. The correlation between the predicted and observed correctness measures was the basis of the assessment of the results. We observe that consensus-based methods still perform significantly better than those accepting single models, similarly to what was concluded in the previous edition of the experiment. © 2009 WILEY-LISS, INC.
Nava, Jaime
2015-01-01
This book demonstrates how to describe and analyze a system's behavior and extract the desired prediction and control algorithms from this analysis. A typical prediction is based on observing similar situations in the past, knowing the outcomes of these past situations, and expecting that the future outcome of the current situation will be similar to these past observed outcomes. In mathematical terms, similarity corresponds to symmetry, and similarity of outcomes to invariance. This book shows how symmetries can be used in all classes of algorithmic problems of sciences and engineering: from analysis to prediction to control. Applications cover chemistry, geosciences, intelligent control, neural networks, quantum physics, and thermal physics. Specifically, it is shown how the approach based on symmetry and similarity can be used in the analysis of real-life systems, in the algorithms of prediction, and in the algorithms of control.
Modelling clinical systemic lupus erythematosus: similarities, differences and success stories.
Celhar, Teja; Fairhurst, Anna-Marie
2016-12-24
Mouse models of SLE have been indispensable tools to study disease pathogenesis, to identify genetic susceptibility loci and targets for drug development, and for preclinical testing of novel therapeutics. Recent insights into immunological mechanisms of disease progression have boosted a revival in SLE drug development. Despite promising results in mouse studies, many novel drugs have failed to meet clinical end points. This is probably because of the complexity of the disease, which is driven by polygenic predisposition and diverse environmental factors, resulting in a heterogeneous clinical presentation. Each mouse model recapitulates limited aspects of lupus, especially in terms of the mechanism underlying disease progression. The main mouse models have been fairly successful for the evaluation of broad-acting immunosuppressants. However, the advent of targeted therapeutics calls for a selection of the most appropriate model(s) for testing and, ultimately, identification of patients who will be most likely to respond.
Modelling clinical systemic lupus erythematosus: similarities, differences and success stories
Celhar, Teja
2017-01-01
Abstract Mouse models of SLE have been indispensable tools to study disease pathogenesis, to identify genetic susceptibility loci and targets for drug development, and for preclinical testing of novel therapeutics. Recent insights into immunological mechanisms of disease progression have boosted a revival in SLE drug development. Despite promising results in mouse studies, many novel drugs have failed to meet clinical end points. This is probably because of the complexity of the disease, which is driven by polygenic predisposition and diverse environmental factors, resulting in a heterogeneous clinical presentation. Each mouse model recapitulates limited aspects of lupus, especially in terms of the mechanism underlying disease progression. The main mouse models have been fairly successful for the evaluation of broad-acting immunosuppressants. However, the advent of targeted therapeutics calls for a selection of the most appropriate model(s) for testing and, ultimately, identification of patients who will be most likely to respond. PMID:28013204
Directory of Open Access Journals (Sweden)
Geoff Boeing
2016-11-01
Full Text Available Nearly all nontrivial real-world systems are nonlinear dynamical systems. Chaos describes certain nonlinear dynamical systems that have a very sensitive dependence on initial conditions. Chaotic systems are always deterministic and may be very simple, yet they produce completely unpredictable and divergent behavior. Systems of nonlinear equations are difficult to solve analytically, and scientists have relied heavily on visual and qualitative approaches to discover and analyze the dynamics of nonlinearity. Indeed, few fields have drawn as heavily from visualization methods for their seminal innovations: from strange attractors, to bifurcation diagrams, to cobweb plots, to phase diagrams and embedding. Although the social sciences are increasingly studying these types of systems, seminal concepts remain murky or loosely adopted. This article has three aims. First, it argues for several visualization methods to critically analyze and understand the behavior of nonlinear dynamical systems. Second, it uses these visualizations to introduce the foundations of nonlinear dynamics, chaos, fractals, self-similarity and the limits of prediction. Finally, it presents Pynamical, an open-source Python package to easily visualize and explore nonlinear dynamical systems’ behavior.
Similarities between obesity in pets and children: the addiction model
Pretlow, Robert A.; Corbee, Ronald J.
2016-01-01
Obesity in pets is a frustrating, major health problem. Obesity in human children is similar. Prevailing theories accounting for the rising obesity rates – for example, poor nutrition and sedentary activity – are being challenged. Obesity interventions in both pets and children have produced modest short-term but poor long-term results. New strategies are needed. A novel theory posits that obesity in pets and children is due to ‘treats’ and excessive meal amounts given by the ‘pet–parent’ and...
Similarity solutions for systems arising from an Aedes aegypti model
Freire, Igor Leite; Torrisi, Mariano
2014-04-01
In a recent paper a new model for the Aedes aegypti mosquito dispersal dynamics was proposed and its Lie point symmetries were investigated. According to the carried group classification, the maximal symmetry Lie algebra of the nonlinear cases is reached whenever the advection term vanishes. In this work we analyze the family of systems obtained when the wind effects on the proposed model are neglected. Wide new classes of solutions to the systems under consideration are obtained.
Prediction using patient comparison vs. modeling: a case study for mortality prediction.
Hoogendoorn, Mark; El Hassouni, Ali; Mok, Kwongyen; Ghassemi, Marzyeh; Szolovits, Peter
2016-08-01
Information in Electronic Medical Records (EMRs) can be used to generate accurate predictions for the occurrence of a variety of health states, which can contribute to more pro-active interventions. The very nature of EMRs does make the application of off-the-shelf machine learning techniques difficult. In this paper, we study two approaches to making predictions that have hardly been compared in the past: (1) extracting high-level (temporal) features from EMRs and building a predictive model, and (2) defining a patient similarity metric and predicting based on the outcome observed for similar patients. We analyze and compare both approaches on the MIMIC-II ICU dataset to predict patient mortality and find that the patient similarity approach does not scale well and results in a less accurate model (AUC of 0.68) compared to the modeling approach (0.84). We also show that mortality can be predicted within a median of 72 hours.
Directory of Open Access Journals (Sweden)
Lei Chen
Full Text Available The Anatomical Therapeutic Chemical (ATC classification system, recommended by the World Health Organization, categories drugs into different classes according to their therapeutic and chemical characteristics. For a set of query compounds, how can we identify which ATC-class (or classes they belong to? It is an important and challenging problem because the information thus obtained would be quite useful for drug development and utilization. By hybridizing the informations of chemical-chemical interactions and chemical-chemical similarities, a novel method was developed for such purpose. It was observed by the jackknife test on a benchmark dataset of 3,883 drug compounds that the overall success rate achieved by the prediction method was about 73% in identifying the drugs among the following 14 main ATC-classes: (1 alimentary tract and metabolism; (2 blood and blood forming organs; (3 cardiovascular system; (4 dermatologicals; (5 genitourinary system and sex hormones; (6 systemic hormonal preparations, excluding sex hormones and insulins; (7 anti-infectives for systemic use; (8 antineoplastic and immunomodulating agents; (9 musculoskeletal system; (10 nervous system; (11 antiparasitic products, insecticides and repellents; (12 respiratory system; (13 sensory organs; (14 various. Such a success rate is substantially higher than 7% by the random guess. It has not escaped our notice that the current method can be straightforwardly extended to identify the drugs for their 2(nd-level, 3(rd-level, 4(th-level, and 5(th-level ATC-classifications once the statistically significant benchmark data are available for these lower levels.
Similarities between obesity in pets and children: the addiction model.
Pretlow, Robert A; Corbee, Ronald J
2016-09-01
Obesity in pets is a frustrating, major health problem. Obesity in human children is similar. Prevailing theories accounting for the rising obesity rates - for example, poor nutrition and sedentary activity - are being challenged. Obesity interventions in both pets and children have produced modest short-term but poor long-term results. New strategies are needed. A novel theory posits that obesity in pets and children is due to 'treats' and excessive meal amounts given by the 'pet-parent' and child-parent to obtain affection from the pet/child, which enables 'eating addiction' in the pet/child and results in parental 'co-dependence'. Pet-parents and child-parents may even become hostage to the treats/food to avoid the ire of the pet/child. Eating addiction in the pet/child also may be brought about by emotional factors such as stress, independent of parental co-dependence. An applicable treatment for child obesity has been trialled using classic addiction withdrawal/abstinence techniques, as well as behavioural addiction methods, with significant results. Both the child and the parent progress through withdrawal from specific 'problem foods', next from snacking (non-specific foods) and finally from excessive portions at meals (gradual reductions). This approach should adapt well for pets and pet-parents. Pet obesity is more 'pure' than child obesity, in that contributing factors and treatment points are essentially under the control of the pet-parent. Pet obesity might thus serve as an ideal test bed for the treatment and prevention of child obesity, with focus primarily on parental behaviours. Sharing information between the fields of pet and child obesity would be mutually beneficial.
Directory of Open Access Journals (Sweden)
L. Rowland
2014-11-01
Full Text Available Accurately predicting the response of Amazonia to climate change is important for predicting changes across the globe. However, changes in multiple climatic factors simultaneously may result in complex non-linear responses, which are difficult to predict using vegetation models. Using leaf and canopy scale observations, this study evaluated the capability of five vegetation models (CLM3.5, ED2, JULES, SiB3, and SPA to simulate the responses of canopy and leaf scale productivity to changes in temperature and drought in an Amazonian forest. The models did not agree as to whether gross primary productivity (GPP was more sensitive to changes in temperature or precipitation. There was greater model–data consistency in the response of net ecosystem exchange to changes in temperature, than in the response to temperature of leaf area index (LAI, net photosynthesis (An and stomatal conductance (gs. Modelled canopy scale fluxes are calculated by scaling leaf scale fluxes to LAI, and therefore in this study similarities in modelled ecosystem scale responses to drought and temperature were the result of inconsistent leaf scale and LAI responses among models. Across the models, the response of An to temperature was more closely linked to stomatal behaviour than biochemical processes. Consequently all the models predicted that GPP would be higher if tropical forests were 5 °C colder, closer to the model optima for gs. There was however no model consistency in the response of the An–gs relationship when temperature changes and drought were introduced simultaneously. The inconsistencies in the An–gs relationships amongst models were caused by to non-linear model responses induced by simultaneous drought and temperature change. To improve the reliability of simulations of the response of Amazonian rainforest to climate change the mechanistic underpinnings of vegetation models need more complete validation to improve accuracy and consistency in the scaling
DKIST Polarization Modeling and Performance Predictions
Harrington, David
2016-05-01
Calibrating the Mueller matrices of large aperture telescopes and associated coude instrumentation requires astronomical sources and several modeling assumptions to predict the behavior of the system polarization with field of view, altitude, azimuth and wavelength. The Daniel K Inouye Solar Telescope (DKIST) polarimetric instrumentation requires very high accuracy calibration of a complex coude path with an off-axis f/2 primary mirror, time dependent optical configurations and substantial field of view. Polarization predictions across a diversity of optical configurations, tracking scenarios, slit geometries and vendor coating formulations are critical to both construction and contined operations efforts. Recent daytime sky based polarization calibrations of the 4m AEOS telescope and HiVIS spectropolarimeter on Haleakala have provided system Mueller matrices over full telescope articulation for a 15-reflection coude system. AEOS and HiVIS are a DKIST analog with a many-fold coude optical feed and similar mirror coatings creating 100% polarization cross-talk with altitude, azimuth and wavelength. Polarization modeling predictions using Zemax have successfully matched the altitude-azimuth-wavelength dependence on HiVIS with the few percent amplitude limitations of several instrument artifacts. Polarization predictions for coude beam paths depend greatly on modeling the angle-of-incidence dependences in powered optics and the mirror coating formulations. A 6 month HiVIS daytime sky calibration plan has been analyzed for accuracy under a wide range of sky conditions and data analysis algorithms. Predictions of polarimetric performance for the DKIST first-light instrumentation suite have been created under a range of configurations. These new modeling tools and polarization predictions have substantial impact for the design, fabrication and calibration process in the presence of manufacturing issues, science use-case requirements and ultimate system calibration
Short-Term Power Forecasting Model for Photovoltaic Plants Based on Historical Similarity
Directory of Open Access Journals (Sweden)
M. Sonia Terreros-Olarte
2013-05-01
Full Text Available This paper proposes a new model for short-term forecasting of electric energy production in a photovoltaic (PV plant. The model is called HIstorical SImilar MIning (HISIMI model; its final structure is optimized by using a genetic algorithm, based on data mining techniques applied to historical cases composed by past forecasted values of weather variables, obtained from numerical tools for weather prediction, and by past production of electric power in a PV plant. The HISIMI model is able to supply spot values of power forecasts, and also the uncertainty, or probabilities, associated with those spot values, providing new useful information to users with respect to traditional forecasting models for PV plants. Such probabilities enable analysis and evaluation of risk associated with those spot forecasts, for example, in offers of energy sale for electricity markets. The results of spot forecasting of an illustrative example obtained with the HISIMI model for a real-life grid-connected PV plant, which shows high intra-hour variability of its actual power output, with forecasting horizons covering the following day, have improved those obtained with other two power spot forecasting models, which are a persistence model and an artificial neural network model.
Hard state of the urban canopy layer turbulence and its self-similar multiplicative cascade models
Institute of Scientific and Technical Information of China (English)
HU; Fei; CHENG; Xueling; ZHAO; Songnian; QUAN; Lihong
2005-01-01
It is found by experiment that under the thermal convection condition, the temperature fluctuation in the urban canopy layer turbulence has the hard state character, and the temperature difference between two points has the exponential probability density function distribution. At the same time, the turbulent energy dissipation rate fits the log-normal distribution, and is in accord with the hypothesis proposed by Kolmogorov in 1962 and lots of reported experimental results. In this paper, the scaling law of hard state temperature n order structure function is educed by the self-similar multiplicative cascade models. The theory formula is Sn = n/3μ{n(n+6)/72+[2lnn!-nln2]/2ln6}, and μ Is intermittent exponent. The formula can fit the experimental results up to order 8 exponents, is superior to the predictions by the Kolmogorov theory, the β And log-normal model.
Self-similarity of phase-space networks of frustrated spin models and lattice gas models
Peng, Yi; Wang, Feng; Han, Yilong
2013-03-01
We studied the self-similar properties of the phase-spaces of two frustrated spin models and two lattice gas models. The frustrated spin models included (1) the anti-ferromagnetic Ising model on a two-dimensional triangular lattice (1a) at the ground states and (1b) above the ground states and (2) the six-vertex model. The two lattice gas models were (3) the one-dimensional lattice gas model and (4) the two-dimensional lattice gas model. The phase spaces were mapped to networks so that the fractal analysis of complex networks could be applied, i.e. the box-covering method and the cluster-growth method. These phase spaces, in turn, establish new classes of networks with unique self-similar properties. Models 1a, 2, and 3 with long-range power-law correlations in real space exhibit fractal phase spaces, while models 1b and 4 with short-range exponential correlations in real space exhibit nonfractal phase spaces. This behavior agrees with one of untested assumptions in Tsallis nonextensive statistics. Hong Kong GRC grants 601208 and 601911
PREDICT : model for prediction of survival in localized prostate cancer
Kerkmeijer, Linda G W; Monninkhof, Evelyn M.; van Oort, Inge M.; van der Poel, Henk G.; de Meerleer, Gert; van Vulpen, Marco
2016-01-01
Purpose: Current models for prediction of prostate cancer-specific survival do not incorporate all present-day interventions. In the present study, a pre-treatment prediction model for patients with localized prostate cancer was developed.Methods: From 1989 to 2008, 3383 patients were treated with I
DEFF Research Database (Denmark)
Heide-Jørgensen, M. P.; Nielsen, N.H.; Hansen, R. G.;
2015-01-01
Comparison of behavioural similarities between subpopulations of species that have been isolated for a long time is important for understanding the general ecology of species that are under pressure from large-scale changes in habitats. Narwhals (Monodon monoceros) east and west of Greenland...... are examples of separated populations that, in different ocean parts, will be coping with similar anthropogenic and climate-driven habitat alterations. To study this, 28 narwhals from the Scoresby Sound fjord system were tracked by satellite in 2010-2013. The average duration of contact with the whales was 124...
A model to predict the power output from wind farms
Energy Technology Data Exchange (ETDEWEB)
Landberg, L. [Riso National Lab., Roskilde (Denmark)
1997-12-31
This paper will describe a model that can predict the power output from wind farms. To give examples of input the model is applied to a wind farm in Texas. The predictions are generated from forecasts from the NGM model of NCEP. These predictions are made valid at individual sites (wind farms) by applying a matrix calculated by the sub-models of WASP (Wind Atlas Application and Analysis Program). The actual wind farm production is calculated using the Riso PARK model. Because of the preliminary nature of the results, they will not be given. However, similar results from Europe will be given.
Predictive Modeling of Cardiac Ischemia
Anderson, Gary T.
1996-01-01
The goal of the Contextual Alarms Management System (CALMS) project is to develop sophisticated models to predict the onset of clinical cardiac ischemia before it occurs. The system will continuously monitor cardiac patients and set off an alarm when they appear about to suffer an ischemic episode. The models take as inputs information from patient history and combine it with continuously updated information extracted from blood pressure, oxygen saturation and ECG lines. Expert system, statistical, neural network and rough set methodologies are then used to forecast the onset of clinical ischemia before it transpires, thus allowing early intervention aimed at preventing morbid complications from occurring. The models will differ from previous attempts by including combinations of continuous and discrete inputs. A commercial medical instrumentation and software company has invested funds in the project with a goal of commercialization of the technology. The end product will be a system that analyzes physiologic parameters and produces an alarm when myocardial ischemia is present. If proven feasible, a CALMS-based system will be added to existing heart monitoring hardware.
Predictive Capability Maturity Model for computational modeling and simulation.
Energy Technology Data Exchange (ETDEWEB)
Oberkampf, William Louis; Trucano, Timothy Guy; Pilch, Martin M.
2007-10-01
The Predictive Capability Maturity Model (PCMM) is a new model that can be used to assess the level of maturity of computational modeling and simulation (M&S) efforts. The development of the model is based on both the authors experience and their analysis of similar investigations in the past. The perspective taken in this report is one of judging the usefulness of a predictive capability that relies on the numerical solution to partial differential equations to better inform and improve decision making. The review of past investigations, such as the Software Engineering Institute's Capability Maturity Model Integration and the National Aeronautics and Space Administration and Department of Defense Technology Readiness Levels, indicates that a more restricted, more interpretable method is needed to assess the maturity of an M&S effort. The PCMM addresses six contributing elements to M&S: (1) representation and geometric fidelity, (2) physics and material model fidelity, (3) code verification, (4) solution verification, (5) model validation, and (6) uncertainty quantification and sensitivity analysis. For each of these elements, attributes are identified that characterize four increasing levels of maturity. Importantly, the PCMM is a structured method for assessing the maturity of an M&S effort that is directed toward an engineering application of interest. The PCMM does not assess whether the M&S effort, the accuracy of the predictions, or the performance of the engineering system satisfies or does not satisfy specified application requirements.
Combining logistic regression and neural networks to create predictive models.
Spackman, K. A.
1992-01-01
Neural networks are being used widely in medicine and other areas to create predictive models from data. The statistical method that most closely parallels neural networks is logistic regression. This paper outlines some ways in which neural networks and logistic regression are similar, shows how a small modification of logistic regression can be used in the training of neural network models, and illustrates the use of this modification for variable selection and predictive model building wit...
Predictive modeling by the cerebellum improves proprioception.
Bhanpuri, Nasir H; Okamura, Allison M; Bastian, Amy J
2013-09-04
Because sensation is delayed, real-time movement control requires not just sensing, but also predicting limb position, a function hypothesized for the cerebellum. Such cerebellar predictions could contribute to perception of limb position (i.e., proprioception), particularly when a person actively moves the limb. Here we show that human cerebellar patients have proprioceptive deficits compared with controls during active movement, but not when the arm is moved passively. Furthermore, when healthy subjects move in a force field with unpredictable dynamics, they have active proprioceptive deficits similar to cerebellar patients. Therefore, muscle activity alone is likely insufficient to enhance proprioception and predictability (i.e., an internal model of the body and environment) is important for active movement to benefit proprioception. We conclude that cerebellar patients have an active proprioceptive deficit consistent with disrupted movement prediction rather than an inability to generally enhance peripheral proprioceptive signals during action and suggest that active proprioceptive deficits should be considered a fundamental cerebellar impairment of clinical importance.
Scanpath Based N-Gram Models for Predicting Reading Behavior
DEFF Research Database (Denmark)
Mishra, Abhijit; Bhattacharyya, Pushpak; Carl, Michael
2013-01-01
Predicting reading behavior is a difficult task. Reading behavior depends on various linguistic factors (e.g. sentence length, structural complexity etc.) and other factors (e.g individual's reading style, age etc.). Ideally, a reading model should be similar to a language model where the model i...
Numerical weather prediction model tuning via ensemble prediction system
Jarvinen, H.; Laine, M.; Ollinaho, P.; Solonen, A.; Haario, H.
2011-12-01
This paper discusses a novel approach to tune predictive skill of numerical weather prediction (NWP) models. NWP models contain tunable parameters which appear in parameterizations schemes of sub-grid scale physical processes. Currently, numerical values of these parameters are specified manually. In a recent dual manuscript (QJRMS, revised) we developed a new concept and method for on-line estimation of the NWP model parameters. The EPPES ("Ensemble prediction and parameter estimation system") method requires only minimal changes to the existing operational ensemble prediction infra-structure and it seems very cost-effective because practically no new computations are introduced. The approach provides an algorithmic decision making tool for model parameter optimization in operational NWP. In EPPES, statistical inference about the NWP model tunable parameters is made by (i) generating each member of the ensemble of predictions using different model parameter values, drawn from a proposal distribution, and (ii) feeding-back the relative merits of the parameter values to the proposal distribution, based on evaluation of a suitable likelihood function against verifying observations. In the presentation, the method is first illustrated in low-order numerical tests using a stochastic version of the Lorenz-95 model which effectively emulates the principal features of ensemble prediction systems. The EPPES method correctly detects the unknown and wrongly specified parameters values, and leads to an improved forecast skill. Second, results with an atmospheric general circulation model based ensemble prediction system show that the NWP model tuning capacity of EPPES scales up to realistic models and ensemble prediction systems. Finally, a global top-end NWP model tuning exercise with preliminary results is published.
Probabilistic prediction models for aggregate quarry siting
Robinson, G.R.; Larkins, P.M.
2007-01-01
Weights-of-evidence (WofE) and logistic regression techniques were used in a GIS framework to predict the spatial likelihood (prospectivity) of crushed-stone aggregate quarry development. The joint conditional probability models, based on geology, transportation network, and population density variables, were defined using quarry location and time of development data for the New England States, North Carolina, and South Carolina, USA. The Quarry Operation models describe the distribution of active aggregate quarries, independent of the date of opening. The New Quarry models describe the distribution of aggregate quarries when they open. Because of the small number of new quarries developed in the study areas during the last decade, independent New Quarry models have low parameter estimate reliability. The performance of parameter estimates derived for Quarry Operation models, defined by a larger number of active quarries in the study areas, were tested and evaluated to predict the spatial likelihood of new quarry development. Population density conditions at the time of new quarry development were used to modify the population density variable in the Quarry Operation models to apply to new quarry development sites. The Quarry Operation parameters derived for the New England study area, Carolina study area, and the combined New England and Carolina study areas were all similar in magnitude and relative strength. The Quarry Operation model parameters, using the modified population density variables, were found to be a good predictor of new quarry locations. Both the aggregate industry and the land management community can use the model approach to target areas for more detailed site evaluation for quarry location. The models can be revised easily to reflect actual or anticipated changes in transportation and population features. ?? International Association for Mathematical Geology 2007.
Kuhnert, Peter; Korczak, Bozena M; Stephan, Roger; Joosten, Han; Iversen, Carol
2009-12-31
Multilocus sequence analysis (MLSA) based on recN, rpoA and thdF genes was done on more than 30 species of the family Enterobacteriaceae with a focus on Cronobacter and the related genus Enterobacter. The sequences provide valuable data for phylogenetic, taxonomic and diagnostic purposes. Phylogenetic analysis showed that the genus Cronobacter forms a homogenous cluster related to recently described species of Enterobacter, but distant to other species of this genus. Combining sequence information on all three genes is highly representative for the species' %GC-content used as taxonomic marker. Sequence similarity of the three genes and even of recN alone can be used to extrapolate genetic similarities between species of Enterobacteriaceae. Finally, the rpoA gene sequence, which is the easiest one to determine, provides a powerful diagnostic tool to identify and differentiate species of this family. The comparative analysis gives important insights into the phylogeny and genetic relatedness of the family Enterobacteriaceae and will serve as a basis for further studies and clarifications on the taxonomy of this large and heterogeneous family.
Model-observer similarity, error modeling and social learning in rhesus macaques.
Monfardini, Elisabetta; Hadj-Bouziane, Fadila; Meunier, Martine
2014-01-01
Monkeys readily learn to discriminate between rewarded and unrewarded items or actions by observing their conspecifics. However, they do not systematically learn from humans. Understanding what makes human-to-monkey transmission of knowledge work or fail could help identify mediators and moderators of social learning that operate regardless of language or culture, and transcend inter-species differences. Do monkeys fail to learn when human models show a behavior too dissimilar from the animals' own, or when they show a faultless performance devoid of error? To address this question, six rhesus macaques trained to find which object within a pair concealed a food reward were successively tested with three models: a familiar conspecific, a 'stimulus-enhancing' human actively drawing the animal's attention to one object of the pair without actually performing the task, and a 'monkey-like' human performing the task in the same way as the monkey model did. Reward was manipulated to ensure that all models showed equal proportions of errors and successes. The 'monkey-like' human model improved the animals' subsequent object discrimination learning as much as a conspecific did, whereas the 'stimulus-enhancing' human model tended on the contrary to retard learning. Modeling errors rather than successes optimized learning from the monkey and 'monkey-like' models, while exacerbating the adverse effect of the 'stimulus-enhancing' model. These findings identify error modeling as a moderator of social learning in monkeys that amplifies the models' influence, whether beneficial or detrimental. By contrast, model-observer similarity in behavior emerged as a mediator of social learning, that is, a prerequisite for a model to work in the first place. The latter finding suggests that, as preverbal infants, macaques need to perceive the model as 'like-me' and that, once this condition is fulfilled, any agent can become an effective model.
A prediction model for Clostridium difficile recurrence
Directory of Open Access Journals (Sweden)
Francis D. LaBarbera
2015-02-01
Full Text Available Background: Clostridium difficile infection (CDI is a growing problem in the community and hospital setting. Its incidence has been on the rise over the past two decades, and it is quickly becoming a major concern for the health care system. High rate of recurrence is one of the major hurdles in the successful treatment of C. difficile infection. There have been few studies that have looked at patterns of recurrence. The studies currently available have shown a number of risk factors associated with C. difficile recurrence (CDR; however, there is little consensus on the impact of most of the identified risk factors. Methods: Our study was a retrospective chart review of 198 patients diagnosed with CDI via Polymerase Chain Reaction (PCR from February 2009 to Jun 2013. In our study, we decided to use a machine learning algorithm called the Random Forest (RF to analyze all of the factors proposed to be associated with CDR. This model is capable of making predictions based on a large number of variables, and has outperformed numerous other models and statistical methods. Results: We came up with a model that was able to accurately predict the CDR with a sensitivity of 83.3%, specificity of 63.1%, and area under curve of 82.6%. Like other similar studies that have used the RF model, we also had very impressive results. Conclusions: We hope that in the future, machine learning algorithms, such as the RF, will see a wider application.
Effect on Prediction when Modeling Covariates in Bayesian Nonparametric Models.
Cruz-Marcelo, Alejandro; Rosner, Gary L; Müller, Peter; Stewart, Clinton F
2013-04-01
In biomedical research, it is often of interest to characterize biologic processes giving rise to observations and to make predictions of future observations. Bayesian nonparametric methods provide a means for carrying out Bayesian inference making as few assumptions about restrictive parametric models as possible. There are several proposals in the literature for extending Bayesian nonparametric models to include dependence on covariates. Limited attention, however, has been directed to the following two aspects. In this article, we examine the effect on fitting and predictive performance of incorporating covariates in a class of Bayesian nonparametric models by one of two primary ways: either in the weights or in the locations of a discrete random probability measure. We show that different strategies for incorporating continuous covariates in Bayesian nonparametric models can result in big differences when used for prediction, even though they lead to otherwise similar posterior inferences. When one needs the predictive density, as in optimal design, and this density is a mixture, it is better to make the weights depend on the covariates. We demonstrate these points via a simulated data example and in an application in which one wants to determine the optimal dose of an anticancer drug used in pediatric oncology.
Directory of Open Access Journals (Sweden)
Howard Y Chang
2004-02-01
Full Text Available Cancer invasion and metastasis have been likened to wound healing gone awry. Despite parallels in cellular behavior between cancer progression and wound healing, the molecular relationships between these two processes and their prognostic implications are unclear. In this study, based on gene expression profiles of fibroblasts from ten anatomic sites, we identify a stereotyped gene expression program in response to serum exposure that appears to reflect the multifaceted role of fibroblasts in wound healing. The genes comprising this fibroblast common serum response are coordinately regulated in many human tumors, allowing us to identify tumors with gene expression signatures suggestive of active wounds. Genes induced in the fibroblast serum-response program are expressed in tumors by the tumor cells themselves, by tumor-associated fibroblasts, or both. The molecular features that define this wound-like phenotype are evident at an early clinical stage, persist during treatment, and predict increased risk of metastasis and death in breast, lung, and gastric carcinomas. Thus, the transcriptional signature of the response of fibroblasts to serum provides a possible link between cancer progression and wound healing, as well as a powerful predictor of the clinical course in several common carcinomas.
Return Predictability, Model Uncertainty, and Robust Investment
DEFF Research Database (Denmark)
Lukas, Manuel
Stock return predictability is subject to great uncertainty. In this paper we use the model confidence set approach to quantify uncertainty about expected utility from investment, accounting for potential return predictability. For monthly US data and six representative return prediction models, we...
Predictive Model Assessment for Count Data
2007-09-05
critique count regression models for patent data, and assess the predictive performance of Bayesian age-period-cohort models for larynx cancer counts...the predictive performance of Bayesian age-period-cohort models for larynx cancer counts in Germany. We consider a recent suggestion by Baker and...Figure 5. Boxplots for various scores for patent data count regressions. 11 Table 1 Four predictive models for larynx cancer counts in Germany, 1998–2002
Institute of Scientific and Technical Information of China (English)
GAO Yan-fa; ZHONG Ya-ping; LI Jian-min; WANG Su-hua; ZHANG Qing-song
2007-01-01
The subsidence prediction theory under the condition of grouting into bedseparated was developed. Reducing ground subsidence by grouting was carried out on eight fully-mechanized top-coal caving faces, by using the continuous grouting in multiple-layer to obtain experiment results of reducing subsidence under fully mining. The similar material model that can be dismantled under the condition of constant temperature and constant humidity was developed. The model was used to simulate the evolution of overburden bed-separated under such constraints of temperature and humidity, at the same time, and to test the hardening process of similar materials.
Institute of Scientific and Technical Information of China (English)
Jia-Long Wang; Wei-Guo Zong; Gui-Ming Le; Hai-Juan Zhao; Yun-Qiu Tang; Yang Zhang
2009-01-01
We find that the solar cycles 9, 11, and 20 are similar to cycle 23 in their respective descending phases. Using this similarity and the observed data of smoothed monthly mean sunspot numbers (SMSNs) available for the descending phase of cycle 23, we make a date calibration for the average time sequence made of the three descending phases of the three cycles, and predict the start of March or April 2008 for cycle 24. For the three cycles, we also find a linear correlation of the length of the descending phase of a cycle with the difference between the maximum epoch of this cycle and that of its next cycle.Using this relationship along with the known relationship between the rise-time and the maximum amplitude of a slowly rising solar cycle, we predict the maximum SMSN of cycle 24 of 100.2±7.5 to appear during the period from May to October 2012.
Content-Based Search on a Database of Geometric Models: Identifying Objects of Similar Shape
Energy Technology Data Exchange (ETDEWEB)
XAVIER, PATRICK G.; HENRY, TYSON R.; LAFARGE, ROBERT A.; MEIRANS, LILITA; RAY, LAWRENCE P.
2001-11-01
The Geometric Search Engine is a software system for storing and searching a database of geometric models. The database maybe searched for modeled objects similar in shape to a target model supplied by the user. The database models are generally from CAD models while the target model may be either a CAD model or a model generated from range data collected from a physical object. This document describes key generation, database layout, and search of the database.
A New Retrieval Model Based on TextTiling for Document Similarity Search
Institute of Scientific and Technical Information of China (English)
Xiao-Jun Wan; Yu-Xin Peng
2005-01-01
Document similarity search is to find documents similar to a given query document and return a ranked list of similar documents to users, which is widely used in many text and web systems, such as digital library, search engine,etc. Traditional retrieval models, including the Okapi's BM25 model and the Smart's vector space model with length normalization, could handle this problem to some extent by taking the query document as a long query. In practice,the Cosine measure is considered as the best model for document similarity search because of its good ability to measure similarity between two documents. In this paper, the quantitative performances of the above models are compared using experiments. Because the Cosine measure is not able to reflect the structural similarity between documents, a new retrieval model based on TextTiling is proposed in the paper. The proposed model takes into account the subtopic structures of documents. It first splits the documents into text segments with TextTiling and calculates the similarities for different pairs of text segments in the documents. Lastly the overall similarity between the documents is returned by combining the similarities of different pairs of text segments with optimal matching method. Experiments are performed and results show:1) the popular retrieval models (the Okapi's BM25 model and the Smart's vector space model with length normalization)do not perform well for document similarity search; 2) the proposed model based on TextTiling is effective and outperforms other models, including the Cosine measure; 3) the methods for the three components in the proposed model are validated to be appropriately employed.
Nonlinear chaotic model for predicting storm surges
Directory of Open Access Journals (Sweden)
M. Siek
2010-09-01
Full Text Available This paper addresses the use of the methods of nonlinear dynamics and chaos theory for building a predictive chaotic model from time series. The chaotic model predictions are made by the adaptive local models based on the dynamical neighbors found in the reconstructed phase space of the observables. We implemented the univariate and multivariate chaotic models with direct and multi-steps prediction techniques and optimized these models using an exhaustive search method. The built models were tested for predicting storm surge dynamics for different stormy conditions in the North Sea, and are compared to neural network models. The results show that the chaotic models can generally provide reliable and accurate short-term storm surge predictions.
Nonlinear chaotic model for predicting storm surges
Siek, M.; Solomatine, D.P.
This paper addresses the use of the methods of nonlinear dynamics and chaos theory for building a predictive chaotic model from time series. The chaotic model predictions are made by the adaptive local models based on the dynamical neighbors found in the reconstructed phase space of the observables.
EFFICIENT PREDICTIVE MODELLING FOR ARCHAEOLOGICAL RESEARCH
Balla, A.; Pavlogeorgatos, G.; Tsiafakis, D.; Pavlidis, G.
2014-01-01
The study presents a general methodology for designing, developing and implementing predictive modelling for identifying areas of archaeological interest. The methodology is based on documented archaeological data and geographical factors, geospatial analysis and predictive modelling, and has been applied to the identification of possible Macedonian tombs’ locations in Northern Greece. The model was tested extensively and the results were validated using a commonly used predictive gain,...
Losada, David E.; Barreiro, Alvaro
2003-01-01
Proposes an approach to incorporate term similarity and inverse document frequency into a logical model of information retrieval. Highlights include document representation and matching; incorporating term similarity into the measure of distance; new algorithms for implementation; inverse document frequency; and logical versus classical models of…
How to Establish Clinical Prediction Models
Directory of Open Access Journals (Sweden)
Yong-ho Lee
2016-03-01
Full Text Available A clinical prediction model can be applied to several challenging clinical scenarios: screening high-risk individuals for asymptomatic disease, predicting future events such as disease or death, and assisting medical decision-making and health education. Despite the impact of clinical prediction models on practice, prediction modeling is a complex process requiring careful statistical analyses and sound clinical judgement. Although there is no definite consensus on the best methodology for model development and validation, a few recommendations and checklists have been proposed. In this review, we summarize five steps for developing and validating a clinical prediction model: preparation for establishing clinical prediction models; dataset selection; handling variables; model generation; and model evaluation and validation. We also review several studies that detail methods for developing clinical prediction models with comparable examples from real practice. After model development and vigorous validation in relevant settings, possibly with evaluation of utility/usability and fine-tuning, good models can be ready for the use in practice. We anticipate that this framework will revitalize the use of predictive or prognostic research in endocrinology, leading to active applications in real clinical practice.
Improved similarity criterion for seepage erosion using mesoscopic coupled PFC-CFD model
Institute of Scientific and Technical Information of China (English)
倪小东; 王媛; 陈珂; 赵帅龙
2015-01-01
Conventional model tests and centrifuge tests are frequently used to investigate seepage erosion. However, the centrifugal test method may not be efficient according to the results of hydraulic conductivity tests and piping erosion tests. The reason why seepage deformation in model tests may deviate from similarity was first discussed in this work. Then, the similarity criterion for seepage deformation in porous media was improved based on the extended Darcy-Brinkman-Forchheimer equation. Finally, the coupled particle flow code–computational fluid dynamics (PFC−CFD) model at the mesoscopic level was proposed to verify the derived similarity criterion. The proposed model maximizes its potential to simulate seepage erosion via the discrete element method and satisfy the similarity criterion by adjusting particle size. The numerical simulations achieved identical results with the prototype, thus indicating that the PFC−CFD model that satisfies the improved similarity criterion can accurately reproduce the processes of seepage erosion at the mesoscopic level.
An Improved Modeling for Network Traffic Based on Alpha-Stable Self-similar Processes
Institute of Scientific and Technical Information of China (English)
GEXiaohu; ZHUGuangxi; ZHUYaoting
2003-01-01
This paper produces an improved model based on alpha-stable processes. First, this paper introduces the basic of self-similarity, and then the reason why the alpha-stable processes have been used for self-similar network traffic modeling is given out; Second, the research in this field is advanced, and the paper analyzes the drawback of the S4 model, which is supported by the related mathematical proof and confirmations of experiments. In order to make up for the drawback of the S4 model andaccurately describe the varieties of the heavily tailed distributions, an improved network traffic model is proposed. By comparison with simulation data (including the S4 model and the improved model) and actual data, the advantage of the improved model has been demonstrated. In the end, the significance of the self-similar network traffic model has been put forward, and the future work is discussed.
Directory of Open Access Journals (Sweden)
Kimberly eLeiken
2015-11-01
Full Text Available One of the most replicated findings in neurolinguistic literature on syntax is the increase of hemodynamic activity in the left inferior frontal gyrus (LIFG in response to object relative clauses (ORs compared to subject relative clauses (SRs. However, behavioral studies have shown that ORs are primarily only costly when similarity-based interference is involved and recently, Leiken & Pylkkänen (2014 showed with magnetoencephalography (MEG that an LIFG increase at an OR gap is also dependent on such interference. However, since ORs always involve a cue indicating an upcoming dependency formation, OR dependencies could be processed already prior to the gap-site and thus show no sheer dependency effects at the gap itself. To investigate the role of gap predictability in LIFG dependency effects, this MEG study compared ORs to Verb Phrase Ellipsis (VPE, which was used as an example of a non-predictable dependency. Additionally, we explored LIFG sensitivity to filler-gap order by including Right Node Raising (RNR structures, in which the order of filler and gap is reverse to that of ORs and VPE. Half of the stimuli invoked similarity-based interference and half did not. Our results demonstrate that LIFG effects of dependency can be elicited regardless of whether the dependency is predictable, the stimulus materials evoke similarity-based interference, or the filler precedes the gap. Thus, contrary to our own prior data, the current findings suggest a highly general role for the LIFG in dependency interpretation that is not limited to environments involving similarity-based interference. Additionally, the millisecond time-resolution of MEG allowed for a detailed characterization of the temporal profiles of LIFG dependency effects across our three constructions, revealing that the timing of these effects is somewhat construction-specific.
A new k-epsilon model consistent with Monin-Obukhov similarity theory
DEFF Research Database (Denmark)
van der Laan, Paul; Kelly, Mark C.; Sørensen, Niels N.
2016-01-01
A new k-" model is introduced that is consistent with Monin–Obukhov similarity theory (MOST). The proposed k-" model is compared with another k-" model that was developed in an attempt to maintain inlet profiles compatible with MOST. It is shown that the previous k-" model is not consistent with ...
Comparison of Prediction-Error-Modelling Criteria
DEFF Research Database (Denmark)
Jørgensen, John Bagterp; Jørgensen, Sten Bay
2007-01-01
is a realization of a continuous-discrete multivariate stochastic transfer function model. The proposed prediction error-methods are demonstrated for a SISO system parameterized by the transfer functions with time delays of a continuous-discrete-time linear stochastic system. The simulations for this case suggest......Single and multi-step prediction-error-methods based on the maximum likelihood and least squares criteria are compared. The prediction-error methods studied are based on predictions using the Kalman filter and Kalman predictors for a linear discrete-time stochastic state space model, which...... computational resources. The identification method is suitable for predictive control....
A technical study and analysis on fuzzy similarity based models for text classification
Puri, Shalini; 10.5121/ijdkp.2012.2201
2012-01-01
In this new and current era of technology, advancements and techniques, efficient and effective text document classification is becoming a challenging and highly required area to capably categorize text documents into mutually exclusive categories. Fuzzy similarity provides a way to find the similarity of features among various documents. In this paper, a technical review on various fuzzy similarity based models is given. These models are discussed and compared to frame out their use and necessity. A tour of different methodologies is provided which is based upon fuzzy similarity related concerns. It shows that how text and web documents are categorized efficiently into different categories. Various experimental results of these models are also discussed. The technical comparisons among each model's parameters are shown in the form of a 3-D chart. Such study and technical review provide a strong base of research work done on fuzzy similarity based text document categorization.
Case studies in archaeological predictive modelling
Verhagen, Jacobus Wilhelmus Hermanus Philippus
2007-01-01
In this thesis, a collection of papers is put together dealing with various quantitative aspects of predictive modelling and archaeological prospection. Among the issues covered are the effects of survey bias on the archaeological data used for predictive modelling, and the complexities of testing p
Childhood asthma prediction models: a systematic review.
Smit, Henriette A; Pinart, Mariona; Antó, Josep M; Keil, Thomas; Bousquet, Jean; Carlsen, Kai H; Moons, Karel G M; Hooft, Lotty; Carlsen, Karin C Lødrup
2015-12-01
Early identification of children at risk of developing asthma at school age is crucial, but the usefulness of childhood asthma prediction models in clinical practice is still unclear. We systematically reviewed all existing prediction models to identify preschool children with asthma-like symptoms at risk of developing asthma at school age. Studies were included if they developed a new prediction model or updated an existing model in children aged 4 years or younger with asthma-like symptoms, with assessment of asthma done between 6 and 12 years of age. 12 prediction models were identified in four types of cohorts of preschool children: those with health-care visits, those with parent-reported symptoms, those at high risk of asthma, or children in the general population. Four basic models included non-invasive, easy-to-obtain predictors only, notably family history, allergic disease comorbidities or precursors of asthma, and severity of early symptoms. Eight extended models included additional clinical tests, mostly specific IgE determination. Some models could better predict asthma development and other models could better rule out asthma development, but the predictive performance of no single model stood out in both aspects simultaneously. This finding suggests that there is a large proportion of preschool children with wheeze for which prediction of asthma development is difficult.
Institute of Scientific and Technical Information of China (English)
YANG XuShu; WANG XiaoDong; JI Li; LI Rong; SUN Cheng; WANG LianSheng
2008-01-01
Estrogen compounds are suspected of disrupting endocrine functions by mimicking natural hormones,and such compounds may pose a serious threat to the health of humans and wildlife. Close attention has been paid to the prediction and molecular mechanisms of estrogen activity for estrogen compounds. In this article, estrogen receptor a subtype (Era) -based comparative molecular similarity indices analysis (COMSIA) was performed on 44 estrogen compounds with structural diversity to find out the structural relationship with the activity and to predict the activity. The model with the significant correlation and the best predictive power (R2 = 0.965, (Q2LOO = 0.599, R2pred = 0.825) was achieved. The COMSIA and docking results revealed the structural features for estrogen activity and key amino acid residues in binding pocket, and provided an insight into the interaction between the ligands and these amino acid residues.
Prediction of Catastrophes: an experimental model
Peters, Randall D; Pomeau, Yves
2012-01-01
Catastrophes of all kinds can be roughly defined as short duration-large amplitude events following and followed by long periods of "ripening". Major earthquakes surely belong to the class of 'catastrophic' events. Because of the space-time scales involved, an experimental approach is often difficult, not to say impossible, however desirable it could be. Described in this article is a "laboratory" setup that yields data of a type that is amenable to theoretical methods of prediction. Observations are made of a critical slowing down in the noisy signal of a solder wire creeping under constant stress. This effect is shown to be a fair signal of the forthcoming catastrophe in both of two dynamical models. The first is an "abstract" model in which a time dependent quantity drifts slowly but makes quick jumps from time to time. The second is a realistic physical model for the collective motion of dislocations (the Ananthakrishna set of equations for creep). Hope thus exists that similar changes in the response to ...
My Understanding of the Main Similarities and Differences between the Three Translation Models
Institute of Scientific and Technical Information of China (English)
支志
2009-01-01
In this paper,the author wants to prove that the three translation models not only have similarities but also have differences,with the similarities being that they all refer to faithful and free translation and the status of reader,the differences being that their focuses are quite different and their influence upon the present translation theory and practice vary.
Similarity-based search of model organism, disease and drug effect phenotypes
Hoehndorf, Robert
2015-02-19
Background: Semantic similarity measures over phenotype ontologies have been demonstrated to provide a powerful approach for the analysis of model organism phenotypes, the discovery of animal models of human disease, novel pathways, gene functions, druggable therapeutic targets, and determination of pathogenicity. Results: We have developed PhenomeNET 2, a system that enables similarity-based searches over a large repository of phenotypes in real-time. It can be used to identify strains of model organisms that are phenotypically similar to human patients, diseases that are phenotypically similar to model organism phenotypes, or drug effect profiles that are similar to the phenotypes observed in a patient or model organism. PhenomeNET 2 is available at http://aber-owl.net/phenomenet. Conclusions: Phenotype-similarity searches can provide a powerful tool for the discovery and investigation of molecular mechanisms underlying an observed phenotypic manifestation. PhenomeNET 2 facilitates user-defined similarity searches and allows researchers to analyze their data within a large repository of human, mouse and rat phenotypes.
a Fast Method for Measuring the Similarity Between 3d Model and 3d Point Cloud
Zhang, Zongliang; Li, Jonathan; Li, Xin; Lin, Yangbin; Zhang, Shanxin; Wang, Cheng
2016-06-01
This paper proposes a fast method for measuring the partial Similarity between 3D Model and 3D point Cloud (SimMC). It is crucial to measure SimMC for many point cloud-related applications such as 3D object retrieval and inverse procedural modelling. In our proposed method, the surface area of model and the Distance from Model to point Cloud (DistMC) are exploited as measurements to calculate SimMC. Here, DistMC is defined as the weighted distance of the distances between points sampled from model and point cloud. Similarly, Distance from point Cloud to Model (DistCM) is defined as the average distance of the distances between points in point cloud and model. In order to reduce huge computational burdens brought by calculation of DistCM in some traditional methods, we define SimMC as the ratio of weighted surface area of model to DistMC. Compared to those traditional SimMC measuring methods that are only able to measure global similarity, our method is capable of measuring partial similarity by employing distance-weighted strategy. Moreover, our method is able to be faster than other partial similarity assessment methods. We demonstrate the superiority of our method both on synthetic data and laser scanning data.
Applying Statistical Models and Parametric Distance Measures for Music Similarity Search
Lukashevich, Hanna; Dittmar, Christian; Bastuck, Christoph
Automatic deriving of similarity relations between music pieces is an inherent field of music information retrieval research. Due to the nearly unrestricted amount of musical data, the real-world similarity search algorithms have to be highly efficient and scalable. The possible solution is to represent each music excerpt with a statistical model (ex. Gaussian mixture model) and thus to reduce the computational costs by applying the parametric distance measures between the models. In this paper we discuss the combinations of applying different parametric modelling techniques and distance measures and weigh the benefits of each one against the others.
Radev, Dimitar; Lokshina, Izabella
2010-11-01
The paper examines self-similar (or fractal) properties of real communication network traffic data over a wide range of time scales. These self-similar properties are very different from the properties of traditional models based on Poisson and Markov-modulated Poisson processes. Advanced fractal models of sequentional generators and fixed-length sequence generators, and efficient algorithms that are used to simulate self-similar behavior of IP network traffic data are developed and applied. Numerical examples are provided; and simulation results are obtained and analyzed.
Energy based prediction models for building acoustics
DEFF Research Database (Denmark)
Brunskog, Jonas
2012-01-01
In order to reach robust and simplified yet accurate prediction models, energy based principle are commonly used in many fields of acoustics, especially in building acoustics. This includes simple energy flow models, the framework of statistical energy analysis (SEA) as well as more elaborated...... principles as, e.g., wave intensity analysis (WIA). The European standards for building acoustic predictions, the EN 12354 series, are based on energy flow and SEA principles. In the present paper, different energy based prediction models are discussed and critically reviewed. Special attention is placed...
Massive Predictive Modeling using Oracle R Enterprise
CERN. Geneva
2014-01-01
R is fast becoming the lingua franca for analyzing data via statistics, visualization, and predictive analytics. For enterprise-scale data, R users have three main concerns: scalability, performance, and production deployment. Oracle's R-based technologies - Oracle R Distribution, Oracle R Enterprise, Oracle R Connector for Hadoop, and the R package ROracle - address these concerns. In this talk, we introduce Oracle's R technologies, highlighting how each enables R users to achieve scalability and performance while making production deployment of R results a natural outcome of the data analyst/scientist efforts. The focus then turns to Oracle R Enterprise with code examples using the transparency layer and embedded R execution, targeting massive predictive modeling. One goal behind massive predictive modeling is to build models per entity, such as customers, zip codes, simulations, in an effort to understand behavior and tailor predictions at the entity level. Predictions...
An evaluation of mathematical models for predicting skin permeability.
Lian, Guoping; Chen, Longjian; Han, Lujia
2008-01-01
A number of mathematical models have been proposed for predicting skin permeability, mostly empirical and very few are deterministic. Early empirical models use simple lipophilicity parameters. The recent trend is to use more complicated molecular structure descriptors. There has been much debate on which models best predict skin permeability. This article evaluates various mathematical models using a comprehensive experimental dataset of skin permeability for 124 chemical compounds compiled from various sources. Of the seven models compared, the deterministic model of Mitragotri gives the best prediction. The simple quantitative structure permeability relationships (QSPR) model of Potts and Guy gives the second best prediction. The two models have many features in common. Both assume the lipid matrix as the pathway of transdermal permeation. Both use octanol-water partition coefficient and molecular size. Even the mathematical formulae are similar. All other empirical QSPR models that use more complicated molecular structure descriptors fail to provide satisfactory prediction. The molecular structure descriptors in the more complicated QSPR models are empirically related to skin permeation. The mechanism on how these descriptors affect transdermal permeation is not clear. Mathematically it is an ill-defined approach to use many colinearly related parameters rather than fewer independent parameters in multi-linear regression.
Liver Cancer Risk Prediction Models
Developing statistical models that estimate the probability of developing liver cancer over a defined period of time will help clinicians identify individuals at higher risk of specific cancers, allowing for earlier or more frequent screening and counseling of behavioral changes to decrease risk.
Colorectal Cancer Risk Prediction Models
Developing statistical models that estimate the probability of developing colorectal cancer over a defined period of time will help clinicians identify individuals at higher risk of specific cancers, allowing for earlier or more frequent screening and counseling of behavioral changes to decrease risk.
Cervical Cancer Risk Prediction Models
Developing statistical models that estimate the probability of developing cervical cancer over a defined period of time will help clinicians identify individuals at higher risk of specific cancers, allowing for earlier or more frequent screening and counseling of behavioral changes to decrease risk.
Prostate Cancer Risk Prediction Models
Developing statistical models that estimate the probability of developing prostate cancer over a defined period of time will help clinicians identify individuals at higher risk of specific cancers, allowing for earlier or more frequent screening and counseling of behavioral changes to decrease risk.
Pancreatic Cancer Risk Prediction Models
Developing statistical models that estimate the probability of developing pancreatic cancer over a defined period of time will help clinicians identify individuals at higher risk of specific cancers, allowing for earlier or more frequent screening and counseling of behavioral changes to decrease risk.
Colorectal Cancer Risk Prediction Models
Developing statistical models that estimate the probability of developing colorectal cancer over a defined period of time will help clinicians identify individuals at higher risk of specific cancers, allowing for earlier or more frequent screening and counseling of behavioral changes to decrease risk.
Bladder Cancer Risk Prediction Models
Developing statistical models that estimate the probability of developing bladder cancer over a defined period of time will help clinicians identify individuals at higher risk of specific cancers, allowing for earlier or more frequent screening and counseling of behavioral changes to decrease risk.
Esophageal Cancer Risk Prediction Models
Developing statistical models that estimate the probability of developing esophageal cancer over a defined period of time will help clinicians identify individuals at higher risk of specific cancers, allowing for earlier or more frequent screening and counseling of behavioral changes to decrease risk.
Lung Cancer Risk Prediction Models
Developing statistical models that estimate the probability of developing lung cancer over a defined period of time will help clinicians identify individuals at higher risk of specific cancers, allowing for earlier or more frequent screening and counseling of behavioral changes to decrease risk.
Breast Cancer Risk Prediction Models
Developing statistical models that estimate the probability of developing breast cancer over a defined period of time will help clinicians identify individuals at higher risk of specific cancers, allowing for earlier or more frequent screening and counseling of behavioral changes to decrease risk.
Ovarian Cancer Risk Prediction Models
Developing statistical models that estimate the probability of developing ovarian cancer over a defined period of time will help clinicians identify individuals at higher risk of specific cancers, allowing for earlier or more frequent screening and counseling of behavioral changes to decrease risk.
Testicular Cancer Risk Prediction Models
Developing statistical models that estimate the probability of testicular cervical cancer over a defined period of time will help clinicians identify individuals at higher risk of specific cancers, allowing for earlier or more frequent screening and counseling of behavioral changes to decrease risk.
On Measuring Process Model Similarity Based on High-Level Change Operations
Li, C.; Reichert, M.U.; Wombacher, A.
2008-01-01
For various applications there is the need to compare the similarity between two process models. For example, given the as-is and to-be models of a particular business process, we would like to know how much they differ from each other and how we can efficiently transform the as-is to the to-be mode
On Measuring Process Model Similarity based on High-level Change Operations
Li, C.; Reichert, M.U.; Wombacher, A.
2007-01-01
For various applications there is the need to compare the similarity between two process models. For example, given the as-is and to-be models of a particular business process, we would like to know how much they differ from each other and how we can efficiently transform the as-is to the to-be mode
Posterior Predictive Model Checking in Bayesian Networks
Crawford, Aaron
2014-01-01
This simulation study compared the utility of various discrepancy measures within a posterior predictive model checking (PPMC) framework for detecting different types of data-model misfit in multidimensional Bayesian network (BN) models. The investigated conditions were motivated by an applied research program utilizing an operational complex…
Directory of Open Access Journals (Sweden)
Jun Li
2014-08-01
Full Text Available Paper similarity detection depends on grammatical and semantic analysis, word segmentation, similarity detection, document summarization and other technologies, involving multiple disciplines. However, there are some problems in the existing main detection models, such as incomplete segmentation preprocessing specification, impact of the semantic orders on detection, near-synonym evaluation, difficulties in paper backtrack and etc. Therefore, this paper presents a two-step segmentation model of special identifier and Sharpley value specific to above problems, which can improve segmentation accuracy. In the aspect of similarity comparison, a distance matrix model with row-column order penalty factor is proposed, which recognizes new words through search engine exponent. This model integrates the characteristics of vector detection, hamming distance and the longest common substring and carries out detection specific to near-synonyms, word deletion and changes in word order by redefining distance matrix and adding ordinal measures, making sentence similarity detection in terms of semantics and backbone word segmentation more effective. Compared with the traditional paper similarity retrieval, the present method has advantages in accuracy of word segmentation, low computation, reliability and high efficiency, which is of great academic significance in word segmentation, similarity detection and document summarization.
A Course in... Model Predictive Control.
Arkun, Yaman; And Others
1988-01-01
Describes a graduate engineering course which specializes in model predictive control. Lists course outline and scope. Discusses some specific topics and teaching methods. Suggests final projects for the students. (MVL)
Osman, Marisol; Vera, C. S.
2016-11-01
This work presents an assessment of the predictability and skill of climate anomalies over South America. The study was made considering a multi-model ensemble of seasonal forecasts for surface air temperature, precipitation and regional circulation, from coupled global circulation models included in the Climate Historical Forecast Project. Predictability was evaluated through the estimation of the signal-to-total variance ratio while prediction skill was assessed computing anomaly correlation coefficients. Both indicators present over the continent higher values at the tropics than at the extratropics for both, surface air temperature and precipitation. Moreover, predictability and prediction skill for temperature are slightly higher in DJF than in JJA while for precipitation they exhibit similar levels in both seasons. The largest values of predictability and skill for both variables and seasons are found over northwestern South America while modest but still significant values for extratropical precipitation at southeastern South America and the extratropical Andes. The predictability levels in ENSO years of both variables are slightly higher, although with the same spatial distribution, than that obtained considering all years. Nevertheless, predictability at the tropics for both variables and seasons diminishes in both warm and cold ENSO years respect to that in all years. The latter can be attributed to changes in signal rather than in the noise. Predictability and prediction skill for low-level winds and upper-level zonal winds over South America was also assessed. Maximum levels of predictability for low-level winds were found were maximum mean values are observed, i.e. the regions associated with the equatorial trade winds, the midlatitudes westerlies and the South American Low-Level Jet. Predictability maxima for upper-level zonal winds locate where the subtropical jet peaks. Seasonal changes in wind predictability are observed that seem to be related to
Equivalency and unbiasedness of grey prediction models
Institute of Scientific and Technical Information of China (English)
Bo Zeng; Chuan Li; Guo Chen; Xianjun Long
2015-01-01
In order to deeply research the structure discrepancy and modeling mechanism among different grey prediction mo-dels, the equivalence and unbiasedness of grey prediction mo-dels are analyzed and verified. The results show that al the grey prediction models that are strictly derived from x(0)(k) +az(1)(k) = b have the identical model structure and simulation precision. Moreover, the unbiased simulation for the homoge-neous exponential sequence can be accomplished. However, the models derived from dx(1)/dt+ax(1) =b are only close to those derived from x(0)(k)+az(1)(k)=b provided that|a|has to satisfy|a| < 0.1; neither could the unbiased simulation for the homoge-neous exponential sequence be achieved. The above conclusions are proved and verified through some theorems and examples.
Predictability of extreme values in geophysical models
Directory of Open Access Journals (Sweden)
A. E. Sterk
2012-09-01
Full Text Available Extreme value theory in deterministic systems is concerned with unlikely large (or small values of an observable evaluated along evolutions of the system. In this paper we study the finite-time predictability of extreme values, such as convection, energy, and wind speeds, in three geophysical models. We study whether finite-time Lyapunov exponents are larger or smaller for initial conditions leading to extremes. General statements on whether extreme values are better or less predictable are not possible: the predictability of extreme values depends on the observable, the attractor of the system, and the prediction lead time.
Hybrid modeling and prediction of dynamical systems
Lloyd, Alun L.; Flores, Kevin B.
2017-01-01
Scientific analysis often relies on the ability to make accurate predictions of a system’s dynamics. Mechanistic models, parameterized by a number of unknown parameters, are often used for this purpose. Accurate estimation of the model state and parameters prior to prediction is necessary, but may be complicated by issues such as noisy data and uncertainty in parameters and initial conditions. At the other end of the spectrum exist nonparametric methods, which rely solely on data to build their predictions. While these nonparametric methods do not require a model of the system, their performance is strongly influenced by the amount and noisiness of the data. In this article, we consider a hybrid approach to modeling and prediction which merges recent advancements in nonparametric analysis with standard parametric methods. The general idea is to replace a subset of a mechanistic model’s equations with their corresponding nonparametric representations, resulting in a hybrid modeling and prediction scheme. Overall, we find that this hybrid approach allows for more robust parameter estimation and improved short-term prediction in situations where there is a large uncertainty in model parameters. We demonstrate these advantages in the classical Lorenz-63 chaotic system and in networks of Hindmarsh-Rose neurons before application to experimentally collected structured population data. PMID:28692642
Risk terrain modeling predicts child maltreatment.
Daley, Dyann; Bachmann, Michael; Bachmann, Brittany A; Pedigo, Christian; Bui, Minh-Thuy; Coffman, Jamye
2016-12-01
As indicated by research on the long-term effects of adverse childhood experiences (ACEs), maltreatment has far-reaching consequences for affected children. Effective prevention measures have been elusive, partly due to difficulty in identifying vulnerable children before they are harmed. This study employs Risk Terrain Modeling (RTM), an analysis of the cumulative effect of environmental factors thought to be conducive for child maltreatment, to create a highly accurate prediction model for future substantiated child maltreatment cases in the City of Fort Worth, Texas. The model is superior to commonly used hotspot predictions and more beneficial in aiding prevention efforts in a number of ways: 1) it identifies the highest risk areas for future instances of child maltreatment with improved precision and accuracy; 2) it aids the prioritization of risk-mitigating efforts by informing about the relative importance of the most significant contributing risk factors; 3) since predictions are modeled as a function of easily obtainable data, practitioners do not have to undergo the difficult process of obtaining official child maltreatment data to apply it; 4) the inclusion of a multitude of environmental risk factors creates a more robust model with higher predictive validity; and, 5) the model does not rely on a retrospective examination of past instances of child maltreatment, but adapts predictions to changing environmental conditions. The present study introduces and examines the predictive power of this new tool to aid prevention efforts seeking to improve the safety, health, and wellbeing of vulnerable children.
An Exactly Soluble Hierarchical Clustering Model Inverse Cascades, Self-Similarity, and Scaling
Gabrielov, A; Turcotte, D L
1999-01-01
We show how clustering as a general hierarchical dynamical process proceeds via a sequence of inverse cascades to produce self-similar scaling, as an intermediate asymptotic, which then truncates at the largest spatial scales. We show how this model can provide a general explanation for the behavior of several models that has been described as ``self-organized critical,'' including forest-fire, sandpile, and slider-block models.
Property predictions using microstructural modeling
Energy Technology Data Exchange (ETDEWEB)
Wang, K.G. [Department of Materials Science and Engineering, Rensselaer Polytechnic Institute, CII 9219, 110 8th Street, Troy, NY 12180-3590 (United States)]. E-mail: wangk2@rpi.edu; Guo, Z. [Sente Software Ltd., Surrey Technology Centre, 40 Occam Road, Guildford GU2 7YG (United Kingdom); Sha, W. [Metals Research Group, School of Civil Engineering, Architecture and Planning, The Queen' s University of Belfast, Belfast BT7 1NN (United Kingdom); Glicksman, M.E. [Department of Materials Science and Engineering, Rensselaer Polytechnic Institute, CII 9219, 110 8th Street, Troy, NY 12180-3590 (United States); Rajan, K. [Department of Materials Science and Engineering, Rensselaer Polytechnic Institute, CII 9219, 110 8th Street, Troy, NY 12180-3590 (United States)
2005-07-15
Precipitation hardening in an Fe-12Ni-6Mn maraging steel during overaging is quantified. First, applying our recent kinetic model of coarsening [Phys. Rev. E, 69 (2004) 061507], and incorporating the Ashby-Orowan relationship, we link quantifiable aspects of the microstructures of these steels to their mechanical properties, including especially the hardness. Specifically, hardness measurements allow calculation of the precipitate size as a function of time and temperature through the Ashby-Orowan relationship. Second, calculated precipitate sizes and thermodynamic data determined with Thermo-Calc[copyright] are used with our recent kinetic coarsening model to extract diffusion coefficients during overaging from hardness measurements. Finally, employing more accurate diffusion parameters, we determined the hardness of these alloys independently from theory, and found agreement with experimental hardness data. Diffusion coefficients determined during overaging of these steels are notably higher than those found during the aging - an observation suggesting that precipitate growth during aging and precipitate coarsening during overaging are not controlled by the same diffusion mechanism.
The Next Page Access Prediction Using Makov Model
Directory of Open Access Journals (Sweden)
Deepti Razdan
2011-09-01
Full Text Available Predicting the next page to be accessed by the Webusers has attracted a large amount of research. In this paper, anew web usage mining approach is proposed to predict next pageaccess. It is proposed to identify similar access patterns from weblog using K-mean clustering and then Markov model is used forprediction for next page accesses. The tightness of clusters isimproved by setting similarity threshold while forming clusters.In traditional recommendation models, clustering by nonsequentialdata decreases recommendation accuracy. In thispaper involve incorporating clustering with low order markovmodel which can improve the prediction accuracy. The main areaof research in this paper is pre processing and identification ofuseful patterns from web data using mining techniques with thehelp of open source software.
On two-layer models and the similarity functions for the PBL
Brown, R. A.
1982-01-01
An operational Planetary Boundary Layer model which employs similarity principles and two-layer patching to provide state-of-the-art parameterization for the PBL flow is used to study the popularly used similarity functions, A and B. The expected trends with stratification are shown. The effects of baroclinicity, secondary flow, humidity, latitude, surface roughness variation and choice of characteristic height scale are discussed.
Uncovering highly obfuscated plagiarism cases using fuzzy semantic-based similarity model
Salha M. Alzahrani; Naomie Salim; Vasile Palade
2015-01-01
Highly obfuscated plagiarism cases contain unseen and obfuscated texts, which pose difficulties when using existing plagiarism detection methods. A fuzzy semantic-based similarity model for uncovering obfuscated plagiarism is presented and compared with five state-of-the-art baselines. Semantic relatedness between words is studied based on the part-of-speech (POS) tags and WordNet-based similarity measures. Fuzzy-based rules are introduced to assess the semantic distance between source and su...
Spatial Economics Model Predicting Transport Volume
Directory of Open Access Journals (Sweden)
Lu Bo
2016-10-01
Full Text Available It is extremely important to predict the logistics requirements in a scientific and rational way. However, in recent years, the improvement effect on the prediction method is not very significant and the traditional statistical prediction method has the defects of low precision and poor interpretation of the prediction model, which cannot only guarantee the generalization ability of the prediction model theoretically, but also cannot explain the models effectively. Therefore, in combination with the theories of the spatial economics, industrial economics, and neo-classical economics, taking city of Zhuanghe as the research object, the study identifies the leading industry that can produce a large number of cargoes, and further predicts the static logistics generation of the Zhuanghe and hinterlands. By integrating various factors that can affect the regional logistics requirements, this study established a logistics requirements potential model from the aspect of spatial economic principles, and expanded the way of logistics requirements prediction from the single statistical principles to an new area of special and regional economics.
Modeling and Prediction Using Stochastic Differential Equations
DEFF Research Database (Denmark)
Juhl, Rune; Møller, Jan Kloppenborg; Jørgensen, John Bagterp
2016-01-01
Pharmacokinetic/pharmakodynamic (PK/PD) modeling for a single subject is most often performed using nonlinear models based on deterministic ordinary differential equations (ODEs), and the variation between subjects in a population of subjects is described using a population (mixed effects) setup...... that describes the variation between subjects. The ODE setup implies that the variation for a single subject is described by a single parameter (or vector), namely the variance (covariance) of the residuals. Furthermore the prediction of the states is given as the solution to the ODEs and hence assumed...... deterministic and can predict the future perfectly. A more realistic approach would be to allow for randomness in the model due to e.g., the model be too simple or errors in input. We describe a modeling and prediction setup which better reflects reality and suggests stochastic differential equations (SDEs...
Precision Plate Plan View Pattern Predictive Model
Institute of Scientific and Technical Information of China (English)
ZHAO Yang; YANG Quan; HE An-rui; WANG Xiao-chen; ZHANG Yun
2011-01-01
According to the rolling features of plate mill, a 3D elastic-plastic FEM （finite element model） based on full restart method of ANSYS/LS-DYNA was established to study the inhomogeneous plastic deformation of multipass plate rolling. By analyzing the simulation results, the difference of head and tail ends predictive models was found and modified. According to the numerical simulation results of 120 different kinds of conditions, precision plate plan view pattern predictive model was established. Based on these models, the sizing MAS （mizushima automatic plan view pattern control system） method was designed and used on a 2 800 mm plate mill. Comparing the rolled plates with and without PVPP （plan view pattern predictive） model, the reduced width deviation indicates that the olate !olan view Dattern predictive model is preeise.
NBC Hazard Prediction Model Capability Analysis
1999-09-01
Puff( SCIPUFF ) Model Verification and Evaluation Study, Air Resources Laboratory, NOAA, May 1998. Based on the NOAA review, the VLSTRACK developers...TO SUBSTANTIAL DIFFERENCES IN PREDICTIONS HPAC uses a transport and dispersion (T&D) model called SCIPUFF and an associated mean wind field model... SCIPUFF is a model for atmospheric dispersion that uses the Gaussian puff method - an arbitrary time-dependent concentration field is represented
Directory of Open Access Journals (Sweden)
William R Swindell
Full Text Available Development of a suitable mouse model would facilitate the investigation of pathomechanisms underlying human psoriasis and would also assist in development of therapeutic treatments. However, while many psoriasis mouse models have been proposed, no single model recapitulates all features of the human disease, and standardized validation criteria for psoriasis mouse models have not been widely applied. In this study, whole-genome transcriptional profiling is used to compare gene expression patterns manifested by human psoriatic skin lesions with those that occur in five psoriasis mouse models (K5-Tie2, imiquimod, K14-AREG, K5-Stat3C and K5-TGFbeta1. While the cutaneous gene expression profiles associated with each mouse phenotype exhibited statistically significant similarity to the expression profile of psoriasis in humans, each model displayed distinctive sets of similarities and differences in comparison to human psoriasis. For all five models, correspondence to the human disease was strong with respect to genes involved in epidermal development and keratinization. Immune and inflammation-associated gene expression, in contrast, was more variable between models as compared to the human disease. These findings support the value of all five models as research tools, each with identifiable areas of convergence to and divergence from the human disease. Additionally, the approach used in this paper provides an objective and quantitative method for evaluation of proposed mouse models of psoriasis, which can be strategically applied in future studies to score strengths of mouse phenotypes relative to specific aspects of human psoriasis.
Corporate prediction models, ratios or regression analysis?
Bijnen, E.J.; Wijn, M.F.C.M.
1994-01-01
The models developed in the literature with respect to the prediction of a company s failure are based on ratios. It has been shown before that these models should be rejected on theoretical grounds. Our study of industrial companies in the Netherlands shows that the ratios which are used in
Modelling Chemical Reasoning to Predict Reactions
Segler, Marwin H S
2016-01-01
The ability to reason beyond established knowledge allows Organic Chemists to solve synthetic problems and to invent novel transformations. Here, we propose a model which mimics chemical reasoning and formalises reaction prediction as finding missing links in a knowledge graph. We have constructed a knowledge graph containing 14.4 million molecules and 8.2 million binary reactions, which represents the bulk of all chemical reactions ever published in the scientific literature. Our model outperforms a rule-based expert system in the reaction prediction task for 180,000 randomly selected binary reactions. We show that our data-driven model generalises even beyond known reaction types, and is thus capable of effectively (re-) discovering novel transformations (even including transition-metal catalysed reactions). Our model enables computers to infer hypotheses about reactivity and reactions by only considering the intrinsic local structure of the graph, and because each single reaction prediction is typically ac...
A Model of Generating Visual Place Cells Based on Environment Perception and Similar Measure
Directory of Open Access Journals (Sweden)
Yang Zhou
2016-01-01
Full Text Available It is an important content to generate visual place cells (VPCs in the field of bioinspired navigation. By analyzing the firing characteristic of biological place cells and the existing methods for generating VPCs, a model of generating visual place cells based on environment perception and similar measure is abstracted in this paper. VPCs’ generation process is divided into three phases, including environment perception, similar measure, and recruiting of a new place cell. According to this process, a specific method for generating VPCs is presented. External reference landmarks are obtained based on local invariant characteristics of image and a similar measure function is designed based on Euclidean distance and Gaussian function. Simulation validates the proposed method is available. The firing characteristic of the generated VPCs is similar to that of biological place cells, and VPCs’ firing fields can be adjusted flexibly by changing the adjustment factor of firing field (AFFF and firing rate’s threshold (FRT.
Similar extrusion and mapping optimization of die cavity modeling for special-shaped products
Institute of Scientific and Technical Information of China (English)
QI Hong-yuan; WANG Shuang-xin; ZHU Heng-jun
2006-01-01
Aimed at the modeling issues in design and quick processing of extruding die for special-shaped products, with the help of Conformal Mapping theory, Conformal Mapping function is determined by the given method of numerical trigonometric interpolation. Three-dimensional forming problems are transformed into two-dimensional problems, and mathematical model of die cavity surface is established based on different kinds of vertical curve, as well as the mathematical model of plastic flow in extruding deformation of special-shaped products gets completed. By upper bound method, both vertical curves of die cavity and its parameters are optimized. Combining the optimized model with the latest NC technology, NC Program of die cavity and its CAM can be realized. Taking the similar extrusion of square-shaped products with arc radius as instance, both metal plastic similar extrusion and die cavity optimization are carried out.
Experimental Study of Dowel Bar Alternatives Based on Similarity Model Test
Directory of Open Access Journals (Sweden)
Chichun Hu
2017-01-01
Full Text Available In this study, a small-scaled accelerated loading test based on similarity theory and Accelerated Pavement Analyzer was developed to evaluate dowel bars with different materials and cross-sections. Jointed concrete specimen consisting of one dowel was designed as scaled model for the test, and each specimen was subjected to 864 thousand loading cycles. Deflections between jointed slabs were measured with dial indicators, and strains of the dowel bars were monitored with strain gauges. The load transfer efficiency, differential deflection, and dowel-concrete bearing stress for each case were calculated from these measurements. The test results indicated that the effect of the dowel modulus on load transfer efficiency can be characterized based on the similarity model test developed in the study. Moreover, round steel dowel was found to have similar performance to larger FRP dowel, and elliptical dowel can be preferentially considered in practice.
Evaluation of Spatial Agreement of Distinct Landslide Prediction Models
Sterlacchini, Simone; Bordogna, Gloria; Frigerio, Ivan
2013-04-01
The aim of the study was to assess the degree of spatial agreement of different predicted patterns in a majority of coherent landslide prediction maps with almost similar success and prediction rate curves. If two or more models have a similar performance, the choice of the best one is not a trivial operation and cannot be based on success and prediction rate curves only. In fact, it may happen that two or more prediction maps with similar accuracy and predictive power do not have the same degree of agreement in terms of spatial predicted patterns. The selected study area is the high Valtellina valley, in North of Italy, covering a surface of about 450 km2 where mapping of historical landslides is available. In order to assess landslide susceptibility, we applied the Weights of Evidence (WofE) modeling technique implemented by USGS by means of ARC-SDM tool. WofE efficiently investigate the spatial relationships among past events and multiple predisposing factors, providing useful information to identify the most probable location of future landslide occurrences. We have carried out 13 distinct experiments by changing the number of morphometric and geo-environmental explanatory variables in each experiment with the same training set and thus generating distinct models of landslide prediction, computing probability degrees of occurrence of landslides in each pixel. Expert knowledge and previous results from indirect statistically-based methods suggested slope, land use, and geology the best "driving controlling factors". The Success Rate Curve (SRC) was used to estimate how much the results of each model fit the occurrence of landslides used for the training of the models. The Prediction Rate Curve (PRC) was used to estimate how much the model predict the occurrence of landslides in the validation set. We found that the performances were very similar for different models. Also the dendrogram of the Cohen's kappa statistic and Principal Component Analysis (PCA) were
Bianchi VI{sub 0} and III models: self-similar approach
Energy Technology Data Exchange (ETDEWEB)
Belinchon, Jose Antonio, E-mail: abelcal@ciccp.e [Departamento de Fisica, ETS Arquitectura, UPM, Av. Juan de Herrera 4, Madrid 28040 (Spain)
2009-09-07
We study several cosmological models with Bianchi VI{sub 0} and III symmetries under the self-similar approach. We find new solutions for the 'classical' perfect fluid model as well as for the vacuum model although they are really restrictive for the equation of state. We also study a perfect fluid model with time-varying constants, G and LAMBDA. As in other studied models we find that the behaviour of G and LAMBDA are related. If G behaves as a growing time function then LAMBDA is a positive decreasing time function but if G is decreasing then LAMBDA{sub 0} is negative. We end by studying a massive cosmic string model, putting special emphasis in calculating the numerical values of the equations of state. We show that there is no SS solution for a string model with time-varying constants.
Numerical model of a non-steady atmospheric planetary boundary layer, based on similarity theory
DEFF Research Database (Denmark)
Zilitinkevich, S.S.; Fedorovich, E.E.; Shabalova, M.V.
1992-01-01
A numerical model of a non-stationary atmospheric planetary boundary layer (PBL) over a horizontally homogeneous flat surface is derived on the basis of similarity theory. The two most typical turbulence regimes are reproduced: one corresponding to a convectively growing PBL and another correspon...
Similarity Reduction and Integrability for the Nonlinear Wave Equations from EPM Model
Institute of Scientific and Technical Information of China (English)
YAN ZhenYa
2001-01-01
Four types of similarity reductions are obtained for the nonlinear wave equation arising in the elasto-plasticmicrostructure model by using both the direct method due to Clarkson and Kruskal and the improved direct method due to Lou. As a result, the nonlinear wave equation is not integrable.``
Genetic models of homosexuality: generating testable predictions
Gavrilets, Sergey; Rice, William R.
2006-01-01
Homosexuality is a common occurrence in humans and other species, yet its genetic and evolutionary basis is poorly understood. Here, we formulate and study a series of simple mathematical models for the purpose of predicting empirical patterns that can be used to determine the form of selection that leads to polymorphism of genes influencing homosexuality. Specifically, we develop theory to make contrasting predictions about the genetic characteristics of genes influencing homosexuality inclu...
Institute of Scientific and Technical Information of China (English)
Zhigang Fan; Gang Lv; Lingmin Zhang; Xiufeng Gan; Qiang Wu; Saifeng Zhong; Guogang Yan; Guifen Lin
2011-01-01
Objective: To search and analyze nitric oxide synthase (NOS) and similar proteins fromPlasmodium berghei(Pb). Methods: The structure and function of nitric oxide synthase and similar proteins from Plasmodium berghei were analyzed and predicted by bioinformatics. Results: PbNOS were not available, but nicotinamide adenine dinucleotide 2’-phosphate reduced tetrasodium (NADPH)-cytochrome p450 reductase(CPR) were gained. PbCPR was in the nucleus of Plasmodium berghei, while 134aa-229aa domain was localize in nucleolar organizer. The amino acids sequence of PbCPR had the closest genetic relationship with Plasmodium vivax showing a 73% homology. The tertiary structure of PbCPR displayed the forcep-shape with wings, but no wings existed in the tertiary structure of its’ host, Mus musculus(Mm). 137aa-200aa, 201aa-218aa, 220aa-230aa, 232aa-248, 269aa-323aa, 478aa-501aa and 592aa-606aa domains of PbCPR showed no homology with MmCPRs’, and all domains were exposed on the surface of the protein. Conclusions: NOS can’t be found in Plasmodium berghei and other Plasmodium species. PbCPR may be a possible resistance site of antimalarial drug, and the targets of antimalarial drug and vaccine. It may be also one of the mechanisms of immune evasion. This study on Plasmodium berghei may be more suitable to Plasmodium vivax. And137aa-200aa, 201aa-218aa, 220aa-230aa, 232aa-248, 269aa-323aa, 478aa-501aa and 592aa-606aa domains ofPb CPR are more ideal targets of antimalarial drug and vaccine.
Wind farm production prediction - The Zephyr model
Energy Technology Data Exchange (ETDEWEB)
Landberg, L. [Risoe National Lab., Wind Energy Dept., Roskilde (Denmark); Giebel, G. [Risoe National Lab., Wind Energy Dept., Roskilde (Denmark); Madsen, H. [IMM (DTU), Kgs. Lyngby (Denmark); Nielsen, T.S. [IMM (DTU), Kgs. Lyngby (Denmark); Joergensen, J.U. [Danish Meteorologisk Inst., Copenhagen (Denmark); Lauersen, L. [Danish Meteorologisk Inst., Copenhagen (Denmark); Toefting, J. [Elsam, Fredericia (DK); Christensen, H.S. [Eltra, Fredericia (Denmark); Bjerge, C. [SEAS, Haslev (Denmark)
2002-06-01
This report describes a project - funded by the Danish Ministry of Energy and the Environment - which developed a next generation prediction system called Zephyr. The Zephyr system is a merging between two state-of-the-art prediction systems: Prediktor of Risoe National Laboratory and WPPT of IMM at the Danish Technical University. The numerical weather predictions were generated by DMI's HIRLAM model. Due to technical difficulties programming the system, only the computational core and a very simple version of the originally very complex system were developed. The project partners were: Risoe, DMU, DMI, Elsam, Eltra, Elkraft System, SEAS and E2. (au)
Directory of Open Access Journals (Sweden)
Mitja Morgut
2012-01-01
Full Text Available The numerical predictions of the cavitating flow around two model scale propellers in uniform inflow are presented and discussed. The simulations are carried out using a commercial CFD solver. The homogeneous model is used and the influence of three widespread mass transfer models, on the accuracy of the numerical predictions, is evaluated. The mass transfer models in question share the common feature of employing empirical coefficients to adjust mass transfer rate from water to vapour and back, which can affect the stability and accuracy of the predictions. Thus, for a fair and congruent comparison, the empirical coefficients of the different mass transfer models are first properly calibrated using an optimization strategy. The numerical results obtained, with the three different calibrated mass transfer models, are very similar to each other for two selected model scale propellers. Nevertheless, a tendency to overestimate the cavity extension is observed, and consequently the thrust, in the most severe operational conditions, is not properly predicted.
Riccati-coupled similarity shock wave solutions for multispeed discrete Boltzmann models
Energy Technology Data Exchange (ETDEWEB)
Cornille, H. (Service de Physique Theorique, Gif-sur-Yvette (France)); Platkowski, T. (Warsaw Univ. (Poland))
1993-05-01
The authors study nonstandard shock wave similarity solutions for three multispeed discrete boltzmann models: (1) the square 8[upsilon][sub i] model with speeds 1 and [radical]2 with the x axis along one median, (2) the Cabannes cubic 14[upsilon][sub i] model with speeds 1 and [radical]3 and the x axis perpendicular to one face, and (3) another 14[upsilon][sub i] model with speeds 1 and [radical]2. These models have five independent densities and two nonlinear Riccati-coupled equations. The standard similarity shock waves, solutions of scalar Riccati equations, are monotonic and the same behavior holds for the conservative macroscopic quantities. First, the exact similarity shock-wave solutions of coupled Riccati equations are determined and the nonmonotonic behavior for one density and a smaller effect for one conservative macroscopic quantity are observed when a violation of the microreversibility is allowed. Second, new results are obtained on the Whitham weak shock wave propagation. Third, the corresponding dynamical system is numerically solved, with microreversibility satisfied or not, and the analogous nonmonotonic behavior is observed. 9 refs., 2 figs., 1 tab.
Content-based similarity for 3D model retrieval and classification
Institute of Scientific and Technical Information of China (English)
Ke Lü; Ning He; Jian Xue
2009-01-01
With the rapid development of 3D digital shape information,content-based 3D model retrieval and classification has become an important research area.This paper presents a novel 3D model retrieval and classification algorithm.For feature representation,a method combining a distance histogram and moment invariants is proposed to improve the retrieval performance.The major advantage of using a distance histogram is its invariance to the transforms of scaling,translation and rotation.Based on the premise that two similar objects should have high mutual information,the querying of 3D data should convey a great deal of information on the shape of the two objects,and so we propose a mutual information distance measurement to perform the similarity comparison of 3D objects.The proposed algorithm is tested with a 3D model retrieval and classification prototype,and the experimental evaluation demonstrates satisfactory retrieval results and classification accuracy.
Predictive model for segmented poly(urea
Directory of Open Access Journals (Sweden)
Frankl P.
2012-08-01
Full Text Available Segmented poly(urea has been shown to be of significant benefit in protecting vehicles from blast and impact and there have been several experimental studies to determine the mechanisms by which this protective function might occur. One suggested route is by mechanical activation of the glass transition. In order to enable design of protective structures using this material a constitutive model and equation of state are needed for numerical simulation hydrocodes. Determination of such a predictive model may also help elucidate the beneficial mechanisms that occur in polyurea during high rate loading. The tool deployed to do this has been Group Interaction Modelling (GIM – a mean field technique that has been shown to predict the mechanical and physical properties of polymers from their structure alone. The structure of polyurea has been used to characterise the parameters in the GIM scheme without recourse to experimental data and the equation of state and constitutive model predicts response over a wide range of temperatures and strain rates. The shock Hugoniot has been predicted and validated against existing data. Mechanical response in tensile tests has also been predicted and validated.
Embryo quality predictive models based on cumulus cells gene expression
Directory of Open Access Journals (Sweden)
Devjak R
2016-06-01
Full Text Available Since the introduction of in vitro fertilization (IVF in clinical practice of infertility treatment, the indicators for high quality embryos were investigated. Cumulus cells (CC have a specific gene expression profile according to the developmental potential of the oocyte they are surrounding, and therefore, specific gene expression could be used as a biomarker. The aim of our study was to combine more than one biomarker to observe improvement in prediction value of embryo development. In this study, 58 CC samples from 17 IVF patients were analyzed. This study was approved by the Republic of Slovenia National Medical Ethics Committee. Gene expression analysis [quantitative real time polymerase chain reaction (qPCR] for five genes, analyzed according to embryo quality level, was performed. Two prediction models were tested for embryo quality prediction: a binary logistic and a decision tree model. As the main outcome, gene expression levels for five genes were taken and the area under the curve (AUC for two prediction models were calculated. Among tested genes, AMHR2 and LIF showed significant expression difference between high quality and low quality embryos. These two genes were used for the construction of two prediction models: the binary logistic model yielded an AUC of 0.72 ± 0.08 and the decision tree model yielded an AUC of 0.73 ± 0.03. Two different prediction models yielded similar predictive power to differentiate high and low quality embryos. In terms of eventual clinical decision making, the decision tree model resulted in easy-to-interpret rules that are highly applicable in clinical practice.
Directory of Open Access Journals (Sweden)
Zaslavskiy Mikhail
2010-02-01
Full Text Available Abstract Background Predicting which molecules can bind to a given binding site of a protein with known 3D structure is important to decipher the protein function, and useful in drug design. A classical assumption in structural biology is that proteins with similar 3D structures have related molecular functions, and therefore may bind similar ligands. However, proteins that do not display any overall sequence or structure similarity may also bind similar ligands if they contain similar binding sites. Quantitatively assessing the similarity between binding sites may therefore be useful to propose new ligands for a given pocket, based on those known for similar pockets. Results We propose a new method to quantify the similarity between binding pockets, and explore its relevance for ligand prediction. We represent each pocket by a cloud of atoms, and assess the similarity between two pockets by aligning their atoms in the 3D space and comparing the resulting configurations with a convolution kernel. Pocket alignment and comparison is possible even when the corresponding proteins share no sequence or overall structure similarities. In order to predict ligands for a given target pocket, we compare it to an ensemble of pockets with known ligands to identify the most similar pockets. We discuss two criteria to evaluate the performance of a binding pocket similarity measure in the context of ligand prediction, namely, area under ROC curve (AUC scores and classification based scores. We show that the latter is better suited to evaluate the methods with respect to ligand prediction, and demonstrate the relevance of our new binding site similarity compared to existing similarity measures. Conclusions This study demonstrates the relevance of the proposed method to identify ligands binding to known binding pockets. We also provide a new benchmark for future work in this field. The new method and the benchmark are available at http://cbio.ensmp.fr/paris/.
PREDICTIVE CAPACITY OF ARCH FAMILY MODELS
Directory of Open Access Journals (Sweden)
Raphael Silveira Amaro
2016-03-01
Full Text Available In the last decades, a remarkable number of models, variants from the Autoregressive Conditional Heteroscedastic family, have been developed and empirically tested, making extremely complex the process of choosing a particular model. This research aim to compare the predictive capacity, using the Model Confidence Set procedure, than five conditional heteroskedasticity models, considering eight different statistical probability distributions. The financial series which were used refers to the log-return series of the Bovespa index and the Dow Jones Industrial Index in the period between 27 October 2008 and 30 December 2014. The empirical evidences showed that, in general, competing models have a great homogeneity to make predictions, either for a stock market of a developed country or for a stock market of a developing country. An equivalent result can be inferred for the statistical probability distributions that were used.
Predictive QSAR modeling of phosphodiesterase 4 inhibitors.
Kovalishyn, Vasyl; Tanchuk, Vsevolod; Charochkina, Larisa; Semenuta, Ivan; Prokopenko, Volodymyr
2012-02-01
A series of diverse organic compounds, phosphodiesterase type 4 (PDE-4) inhibitors, have been modeled using a QSAR-based approach. 48 QSAR models were compared by following the same procedure with different combinations of descriptors and machine learning methods. QSAR methodologies used random forests and associative neural networks. The predictive ability of the models was tested through leave-one-out cross-validation, giving a Q² = 0.66-0.78 for regression models and total accuracies Ac=0.85-0.91 for classification models. Predictions for the external evaluation sets obtained accuracies in the range of 0.82-0.88 (for active/inactive classifications) and Q² = 0.62-0.76 for regressions. The method showed itself to be a potential tool for estimation of IC₅₀ of new drug-like candidates at early stages of drug development. Copyright © 2011 Elsevier Inc. All rights reserved.
Prediction of speech intelligibility based on an auditory preprocessing model
DEFF Research Database (Denmark)
Christiansen, Claus Forup Corlin; Pedersen, Michael Syskind; Dau, Torsten
2010-01-01
Classical speech intelligibility models, such as the speech transmission index (STI) and the speech intelligibility index (SII) are based on calculations on the physical acoustic signals. The present study predicts speech intelligibility by combining a psychoacoustically validated model of auditory...... preprocessing [Dau et al., 1997. J. Acoust. Soc. Am. 102, 2892-2905] with a simple central stage that describes the similarity of the test signal with the corresponding reference signal at a level of the internal representation of the signals. The model was compared with previous approaches, whereby a speech...... in noise experiment was used for training and an ideal binary mask experiment was used for evaluation. All three models were able to capture the trends in the speech in noise training data well, but the proposed model provides a better prediction of the binary mask test data, particularly when the binary...
Accretion disk dynamics. α-viscosity in self-similar self-gravitating models
Kubsch, Marcus; Illenseer, Tobias F.; Duschl, Wolfgang J.
2016-04-01
Aims: We investigate the suitability of α-viscosity in self-similar models for self-gravitating disks with a focus on active galactic nuclei (AGN) disks. Methods: We use a self-similar approach to simplify the partial differential equations arising from the evolution equation, which are then solved using numerical standard procedures. Results: We find a self-similar solution for the dynamical evolution of self-gravitating α-disks and derive the significant quantities. In the Keplerian part of the disk our model is consistent with standard stationary α-disk theory, and self-consistent throughout the self-gravitating regime. Positive accretion rates throughout the disk demand a high degree of self-gravitation. Combined with the temporal decline of the accretion rate and its low amount, the model prohibits the growth of large central masses. Conclusions: α-viscosity cannot account for the evolution of the whole mass spectrum of super-massive black holes (SMBH) in AGN. However, considering the involved scales it seems suitable for modelling protoplanetary disks.
Scaling and interaction of self-similar modes in models of high Reynolds number wall turbulence
Sharma, A. S.; Moarref, R.; McKeon, B. J.
2017-03-01
Previous work has established the usefulness of the resolvent operator that maps the terms nonlinear in the turbulent fluctuations to the fluctuations themselves. Further work has described the self-similarity of the resolvent arising from that of the mean velocity profile. The orthogonal modes provided by the resolvent analysis describe the wall-normal coherence of the motions and inherit that self-similarity. In this contribution, we present the implications of this similarity for the nonlinear interaction between modes with different scales and wall-normal locations. By considering the nonlinear interactions between modes, it is shown that much of the turbulence scaling behaviour in the logarithmic region can be determined from a single arbitrarily chosen reference plane. Thus, the geometric scaling of the modes is impressed upon the nonlinear interaction between modes. Implications of these observations on the self-sustaining mechanisms of wall turbulence, modelling and simulation are outlined.
Predictive modeling of coral disease distribution within a reef system.
Directory of Open Access Journals (Sweden)
Gareth J Williams
Full Text Available Diseases often display complex and distinct associations with their environment due to differences in etiology, modes of transmission between hosts, and the shifting balance between pathogen virulence and host resistance. Statistical modeling has been underutilized in coral disease research to explore the spatial patterns that result from this triad of interactions. We tested the hypotheses that: 1 coral diseases show distinct associations with multiple environmental factors, 2 incorporating interactions (synergistic collinearities among environmental variables is important when predicting coral disease spatial patterns, and 3 modeling overall coral disease prevalence (the prevalence of multiple diseases as a single proportion value will increase predictive error relative to modeling the same diseases independently. Four coral diseases: Porites growth anomalies (PorGA, Porites tissue loss (PorTL, Porites trematodiasis (PorTrem, and Montipora white syndrome (MWS, and their interactions with 17 predictor variables were modeled using boosted regression trees (BRT within a reef system in Hawaii. Each disease showed distinct associations with the predictors. Environmental predictors showing the strongest overall associations with the coral diseases were both biotic and abiotic. PorGA was optimally predicted by a negative association with turbidity, PorTL and MWS by declines in butterflyfish and juvenile parrotfish abundance respectively, and PorTrem by a modal relationship with Porites host cover. Incorporating interactions among predictor variables contributed to the predictive power of our models, particularly for PorTrem. Combining diseases (using overall disease prevalence as the model response, led to an average six-fold increase in cross-validation predictive deviance over modeling the diseases individually. We therefore recommend coral diseases to be modeled separately, unless known to have etiologies that respond in a similar manner to
Modelling the predictive performance of credit scoring
Directory of Open Access Journals (Sweden)
Shi-Wei Shen
2013-02-01
Full Text Available Orientation: The article discussed the importance of rigour in credit risk assessment.Research purpose: The purpose of this empirical paper was to examine the predictive performance of credit scoring systems in Taiwan.Motivation for the study: Corporate lending remains a major business line for financial institutions. However, in light of the recent global financial crises, it has become extremely important for financial institutions to implement rigorous means of assessing clients seeking access to credit facilities.Research design, approach and method: Using a data sample of 10 349 observations drawn between 1992 and 2010, logistic regression models were utilised to examine the predictive performance of credit scoring systems.Main findings: A test of Goodness of fit demonstrated that credit scoring models that incorporated the Taiwan Corporate Credit Risk Index (TCRI, micro- and also macroeconomic variables possessed greater predictive power. This suggests that macroeconomic variables do have explanatory power for default credit risk.Practical/managerial implications: The originality in the study was that three models were developed to predict corporate firms’ defaults based on different microeconomic and macroeconomic factors such as the TCRI, asset growth rates, stock index and gross domestic product.Contribution/value-add: The study utilises different goodness of fits and receiver operator characteristics during the examination of the robustness of the predictive power of these factors.
Calibrated predictions for multivariate competing risks models.
Gorfine, Malka; Hsu, Li; Zucker, David M; Parmigiani, Giovanni
2014-04-01
Prediction models for time-to-event data play a prominent role in assessing the individual risk of a disease, such as cancer. Accurate disease prediction models provide an efficient tool for identifying individuals at high risk, and provide the groundwork for estimating the population burden and cost of disease and for developing patient care guidelines. We focus on risk prediction of a disease in which family history is an important risk factor that reflects inherited genetic susceptibility, shared environment, and common behavior patterns. In this work family history is accommodated using frailty models, with the main novel feature being allowing for competing risks, such as other diseases or mortality. We show through a simulation study that naively treating competing risks as independent right censoring events results in non-calibrated predictions, with the expected number of events overestimated. Discrimination performance is not affected by ignoring competing risks. Our proposed prediction methodologies correctly account for competing events, are very well calibrated, and easy to implement.
Modelling language evolution: Examples and predictions.
Gong, Tao; Shuai, Lan; Zhang, Menghan
2014-06-01
We survey recent computer modelling research of language evolution, focusing on a rule-based model simulating the lexicon-syntax coevolution and an equation-based model quantifying the language competition dynamics. We discuss four predictions of these models: (a) correlation between domain-general abilities (e.g. sequential learning) and language-specific mechanisms (e.g. word order processing); (b) coevolution of language and relevant competences (e.g. joint attention); (c) effects of cultural transmission and social structure on linguistic understandability; and (d) commonalities between linguistic, biological, and physical phenomena. All these contribute significantly to our understanding of the evolutions of language structures, individual learning mechanisms, and relevant biological and socio-cultural factors. We conclude the survey by highlighting three future directions of modelling studies of language evolution: (a) adopting experimental approaches for model evaluation; (b) consolidating empirical foundations of models; and (c) multi-disciplinary collaboration among modelling, linguistics, and other relevant disciplines.
Modelling language evolution: Examples and predictions
Gong, Tao; Shuai, Lan; Zhang, Menghan
2014-06-01
We survey recent computer modelling research of language evolution, focusing on a rule-based model simulating the lexicon-syntax coevolution and an equation-based model quantifying the language competition dynamics. We discuss four predictions of these models: (a) correlation between domain-general abilities (e.g. sequential learning) and language-specific mechanisms (e.g. word order processing); (b) coevolution of language and relevant competences (e.g. joint attention); (c) effects of cultural transmission and social structure on linguistic understandability; and (d) commonalities between linguistic, biological, and physical phenomena. All these contribute significantly to our understanding of the evolutions of language structures, individual learning mechanisms, and relevant biological and socio-cultural factors. We conclude the survey by highlighting three future directions of modelling studies of language evolution: (a) adopting experimental approaches for model evaluation; (b) consolidating empirical foundations of models; and (c) multi-disciplinary collaboration among modelling, linguistics, and other relevant disciplines.
An evaporation duct prediction model coupled with the MM5
Institute of Scientific and Technical Information of China (English)
JIAO Lin; ZHANG Yonggang
2015-01-01
Evaporation duct is an abnormal refractive phenomenon in the marine atmosphere boundary layer. It has been generally accepted that the evaporation duct prominently affects the performance of the electronic equipment over the sea because of its wide distribution and frequent occurrence. It has become a research focus of the navies all over the world. At present, the diagnostic models of the evaporation duct are all based on the Monin-Obukhov similarity theory, with only differences in the flux and character scale calculations in the surface layer. These models are applicable to the stationary and uniform open sea areas without considering the alongshore effect. This paper introduces the nonlinear factorav and the gust wind itemwg into the Babin model, and thus extends the evaporation duct diagnostic model to the offshore area under extremely low wind speed. In addition, an evaporation duct prediction model is designed and coupled with the fifth generation mesoscale model (MM5). The tower observational data and radar data at the Pingtan island of Fujian Province on May 25–26, 2002 were used to validate the forecast results. The outputs of the prediction model agree with the observations from 0 to 48 h. The relative error of the predicted evaporation duct height is 19.3% and the prediction results are consistent with the radar detection.
Image Denoising via Bandwise Adaptive Modeling and Regularization Exploiting Nonlocal Similarity.
Xiong, Ruiqin; Liu, Hangfan; Zhang, Xinfeng; Zhang, Jian; Ma, Siwei; Wu, Feng; Gao, Wen
2016-09-27
This paper proposes a new image denoising algorithm based on adaptive signal modeling and regularization. It improves the quality of images by regularizing each image patch using bandwise distribution modeling in transform domain. Instead of using a global model for all the patches in an image, it employs content-dependent adaptive models to address the non-stationarity of image signals and also the diversity among different transform bands. The distribution model is adaptively estimated for each patch individually. It varies from one patch location to another and also varies for different bands. In particular, we consider the estimated distribution to have non-zero expectation. To estimate the expectation and variance parameters for every band of a particular patch, we exploit the nonlocal correlation in image to collect a set of highly similar patches as the data samples to form the distribution. Irrelevant patches are excluded so that such adaptively-learned model is more accurate than a global one. The image is ultimately restored via bandwise adaptive soft-thresholding, based on a Laplacian approximation of the distribution of similar-patch group transform coefficients. Experimental results demonstrate that the proposed scheme outperforms several state-of-the-art denoising methods in both the objective and the perceptual qualities.
STUDY ON SIMILARITY LAWS OF A DISTORTED RIVER MODEL WITH A MOVABLE BED
Institute of Scientific and Technical Information of China (English)
无
2001-01-01
In this study, by considering the scale ratio related to thespecific gravity of the submerged bed material,and introducing a degree of distortion, n the similarity laws for a distorted river model with a movable bed were derived under the conditions that the values of dual dimensionless parameters in a regime-criterion diagram for the bars are the same in a model as they are in a prototype, and that a resistance law such as the Manning-Strickler-type formula is to be valid for a model and a prototype. The usefulness of the similarity laws derived in this study was verified by comparing the bed forms from the distroted model experiments with the bed forms from the 1/50-scale undistorted model experiments, which were performed by the Hokkaido Development Bureau (H. D.B. ), Japan, to examine the tentative plan for the improvement of a low-flow channel in the Chubetsu River, which is a tributary of the Ishikari River. It is considered that the distorted model experiments to be valid with either sand or lightweight bed material.
Approach for Text Classification Based on the Similarity Measurement between Normal Cloud Models
Directory of Open Access Journals (Sweden)
Jin Dai
2014-01-01
Full Text Available The similarity between objects is the core research area of data mining. In order to reduce the interference of the uncertainty of nature language, a similarity measurement between normal cloud models is adopted to text classification research. On this basis, a novel text classifier based on cloud concept jumping up (CCJU-TC is proposed. It can efficiently accomplish conversion between qualitative concept and quantitative data. Through the conversion from text set to text information table based on VSM model, the text qualitative concept, which is extraction from the same category, is jumping up as a whole category concept. According to the cloud similarity between the test text and each category concept, the test text is assigned to the most similar category. By the comparison among different text classifiers in different feature selection set, it fully proves that not only does CCJU-TC have a strong ability to adapt to the different text features, but also the classification performance is also better than the traditional classifiers.
Global Solar Dynamo Models: Simulations and Predictions
Indian Academy of Sciences (India)
Mausumi Dikpati; Peter A. Gilman
2008-03-01
Flux-transport type solar dynamos have achieved considerable success in correctly simulating many solar cycle features, and are now being used for prediction of solar cycle timing and amplitude.We first define flux-transport dynamos and demonstrate how they work. The essential added ingredient in this class of models is meridional circulation, which governs the dynamo period and also plays a crucial role in determining the Sun’s memory about its past magnetic fields.We show that flux-transport dynamo models can explain many key features of solar cycles. Then we show that a predictive tool can be built from this class of dynamo that can be used to predict mean solar cycle features by assimilating magnetic field data from previous cycles.
Model Predictive Control of Sewer Networks
Pedersen, Einar B.; Herbertsson, Hannes R.; Niemann, Henrik; Poulsen, Niels K.; Falk, Anne K. V.
2017-01-01
The developments in solutions for management of urban drainage are of vital importance, as the amount of sewer water from urban areas continues to increase due to the increase of the world’s population and the change in the climate conditions. How a sewer network is structured, monitored and controlled have thus become essential factors for effcient performance of waste water treatment plants. This paper examines methods for simplified modelling and controlling a sewer network. A practical approach to the problem is used by analysing simplified design model, which is based on the Barcelona benchmark model. Due to the inherent constraints the applied approach is based on Model Predictive Control.
Modelling Chemical Reasoning to Predict Reactions
Segler, Marwin H. S.; Waller, Mark P.
2016-01-01
The ability to reason beyond established knowledge allows Organic Chemists to solve synthetic problems and to invent novel transformations. Here, we propose a model which mimics chemical reasoning and formalises reaction prediction as finding missing links in a knowledge graph. We have constructed a knowledge graph containing 14.4 million molecules and 8.2 million binary reactions, which represents the bulk of all chemical reactions ever published in the scientific literature. Our model outpe...
Predictive Modeling of the CDRA 4BMS
Coker, Robert; Knox, James
2016-01-01
Fully predictive models of the Four Bed Molecular Sieve of the Carbon Dioxide Removal Assembly on the International Space Station are being developed. This virtual laboratory will be used to help reduce mass, power, and volume requirements for future missions. In this paper we describe current and planned modeling developments in the area of carbon dioxide removal to support future crewed Mars missions as well as the resolution of anomalies observed in the ISS CDRA.
Raman Model Predicting Hardness of Covalent Crystals
Zhou, Xiang-Feng; Qian, Quang-Rui; Sun, Jian; Tian, Yongjun; Wang, Hui-Tian
2009-01-01
Based on the fact that both hardness and vibrational Raman spectrum depend on the intrinsic property of chemical bonds, we propose a new theoretical model for predicting hardness of a covalent crystal. The quantitative relationship between hardness and vibrational Raman frequencies deduced from the typical zincblende covalent crystals is validated to be also applicable for the complex multicomponent crystals. This model enables us to nondestructively and indirectly characterize the hardness o...
Predictive Modelling of Mycotoxins in Cereals
Fels, van der H.J.; Liu, C.
2015-01-01
In dit artikel worden de samenvattingen van de presentaties tijdens de 30e bijeenkomst van de Werkgroep Fusarium weergegeven. De onderwerpen zijn: Predictive Modelling of Mycotoxins in Cereals.; Microbial degradation of DON.; Exposure to green leaf volatiles primes wheat against FHB but boosts
Unreachable Setpoints in Model Predictive Control
DEFF Research Database (Denmark)
Rawlings, James B.; Bonné, Dennis; Jørgensen, John Bagterp
2008-01-01
steady state is established for terminal constraint model predictive control (MPC). The region of attraction is the steerable set. Existing analysis methods for closed-loop properties of MPC are not applicable to this new formulation, and a new analysis method is developed. It is shown how to extend...
Predictive Modelling of Mycotoxins in Cereals
Fels, van der H.J.; Liu, C.
2015-01-01
In dit artikel worden de samenvattingen van de presentaties tijdens de 30e bijeenkomst van de Werkgroep Fusarium weergegeven. De onderwerpen zijn: Predictive Modelling of Mycotoxins in Cereals.; Microbial degradation of DON.; Exposure to green leaf volatiles primes wheat against FHB but boosts produ
Prediction modelling for population conviction data
Tollenaar, N.
2017-01-01
In this thesis, the possibilities of using prediction models for judicial penal case data are investigated. The development and refinement of a risk taxation scale based on these data is discussed. When false positives are weighted equally severe as false negatives, 70% can be classified correctly.
A Predictive Model for MSSW Student Success
Napier, Angela Michele
2011-01-01
This study tested a hypothetical model for predicting both graduate GPA and graduation of University of Louisville Kent School of Social Work Master of Science in Social Work (MSSW) students entering the program during the 2001-2005 school years. The preexisting characteristics of demographics, academic preparedness and culture shock along with…
Predictability of extreme values in geophysical models
Sterk, A.E.; Holland, M.P.; Rabassa, P.; Broer, H.W.; Vitolo, R.
2012-01-01
Extreme value theory in deterministic systems is concerned with unlikely large (or small) values of an observable evaluated along evolutions of the system. In this paper we study the finite-time predictability of extreme values, such as convection, energy, and wind speeds, in three geophysical model
A revised prediction model for natural conception
Bensdorp, A.J.; Steeg, J.W. van der; Steures, P.; Habbema, J.D.; Hompes, P.G.; Bossuyt, P.M.; Veen, F. van der; Mol, B.W.; Eijkemans, M.J.; Kremer, J.A.M.; et al.,
2017-01-01
One of the aims in reproductive medicine is to differentiate between couples that have favourable chances of conceiving naturally and those that do not. Since the development of the prediction model of Hunault, characteristics of the subfertile population have changed. The objective of this analysis
Distributed Model Predictive Control via Dual Decomposition
DEFF Research Database (Denmark)
Biegel, Benjamin; Stoustrup, Jakob; Andersen, Palle
2014-01-01
This chapter presents dual decomposition as a means to coordinate a number of subsystems coupled by state and input constraints. Each subsystem is equipped with a local model predictive controller while a centralized entity manages the subsystems via prices associated with the coupling constraints...
Predictive Modelling of Mycotoxins in Cereals
Fels, van der H.J.; Liu, C.
2015-01-01
In dit artikel worden de samenvattingen van de presentaties tijdens de 30e bijeenkomst van de Werkgroep Fusarium weergegeven. De onderwerpen zijn: Predictive Modelling of Mycotoxins in Cereals.; Microbial degradation of DON.; Exposure to green leaf volatiles primes wheat against FHB but boosts produ
Leptogenesis in minimal predictive seesaw models
Björkeroth, Fredrik; Varzielas, Ivo de Medeiros; King, Stephen F
2015-01-01
We estimate the Baryon Asymmetry of the Universe (BAU) arising from leptogenesis within a class of minimal predictive seesaw models involving two right-handed neutrinos and simple Yukawa structures with one texture zero. The two right-handed neutrinos are dominantly responsible for the "atmospheric" and "solar" neutrino masses with Yukawa couplings to $(\
a Version-Similarity Based Trust Degree Computation Model for Crowdsourcing Geographic Data
Zhou, Xiaoguang; Zhao, Yijiang
2016-06-01
Quality evaluation and control has become the main concern of VGI. In this paper, trust is used as a proxy of VGI quality, a version-similarity based trust degree computation model for crowdsourcing geographic data is presented. This model is based on the assumption that the quality of VGI objects mainly determined by the professional skill and integrity (called reputation in this paper), and the reputation of the contributor is movable. The contributor's reputation is calculated using the similarity degree among the multi-versions for the same entity state. The trust degree of VGI object is determined by the trust degree of its previous version, the reputation of the last contributor and the modification proportion. In order to verify this presented model, a prototype system for computing the trust degree of VGI objects is developed by programming with Visual C# 2010. The historical data of Berlin of OpenStreetMap (OSM) are employed for experiments. The experimental results demonstrate that the quality of crowdsourcing geographic data is highly positive correlation with its trustworthiness. As the evaluation is based on version-similarity, not based on the direct subjective evaluation among users, the evaluation result is objective. Furthermore, as the movability property of the contributors' reputation is used in this presented method, our method has a higher assessment coverage than the existing methods.
Accretion disk dynamics: {\\alpha}-viscosity in self-similar self-gravitating models
Kubsch, Marcus; Duschl, W J
2016-01-01
Aims: We investigate the suitability of {\\alpha}-viscosity in self-similar models for self-gravitating disks with a focus on active galactic nuclei (AGN) disks. Methods: We use a self-similar approach to simplify the partial differential equations arising from the evolution equation, which are then solved using numerical standard procedures. Results: We find a self-similar solution for the dynamical evolution of self-gravitating {\\alpha}-disks and derive the significant quantities. In the Keplerian part of the disk our model is consistent with standard stationary {\\alpha}-disk theory, and self-consistent throughout the self-gravitating regime. Positive accretion rates throughout the disk demand a high degree of self-gravitation. Combined with the temporal decline of the accretion rate and its low amount, the model prohibits the growth of large central masses. Conclusions: {\\alpha}-viscosity cannot account for the evolution of the whole mass spectrum of super-massive black holes (SMBH) in AGN. However, conside...
Specialized Language Models using Dialogue Predictions
Popovici, C; Popovici, Cosmin; Baggia, Paolo
1996-01-01
This paper analyses language modeling in spoken dialogue systems for accessing a database. The use of several language models obtained by exploiting dialogue predictions gives better results than the use of a single model for the whole dialogue interaction. For this reason several models have been created, each one for a specific system question, such as the request or the confirmation of a parameter. The use of dialogue-dependent language models increases the performance both at the recognition and at the understanding level, especially on answers to system requests. Moreover other methods to increase performance, like automatic clustering of vocabulary words or the use of better acoustic models during recognition, does not affect the improvements given by dialogue-dependent language models. The system used in our experiments is Dialogos, the Italian spoken dialogue system used for accessing railway timetable information over the telephone. The experiments were carried out on a large corpus of dialogues coll...
Nie, Lin-Fei; Teng, Zhi-Dong; Nieto, Juan J.; Jung, Il Hyo
2015-07-01
For reasons of preserving endangered languages, we propose, in this paper, a novel two-languages competitive model with bilingualism and interlinguistic similarity, where state-dependent impulsive control strategies are introduced. The novel control model includes two control threshold values, which are different from the previous state-dependent impulsive differential equations. By using qualitative analysis method, we obtain that the control model exhibits two stable positive order-1 periodic solutions under some general conditions. Moreover, numerical simulations clearly illustrate the main theoretical results and feasibility of state-dependent impulsive control strategies. Meanwhile numerical simulations also show that state-dependent impulsive control strategy can be applied to other general two-languages competitive model and obtain the desired result. The results indicate that the fractions of two competitive languages can be kept within a reasonable level under almost any circumstances. Theoretical basis for finding a new control measure to protect the endangered language is offered.
Caries risk assessment models in caries prediction
Directory of Open Access Journals (Sweden)
Amila Zukanović
2013-11-01
Full Text Available Objective. The aim of this research was to assess the efficiency of different multifactor models in caries prediction. Material and methods. Data from the questionnaire and objective examination of 109 examinees was entered into the Cariogram, Previser and Caries-Risk Assessment Tool (CAT multifactor risk assessment models. Caries risk was assessed with the help of all three models for each patient, classifying them as low, medium or high-risk patients. The development of new caries lesions over a period of three years [Decay Missing Filled Tooth (DMFT increment = difference between Decay Missing Filled Tooth Surface (DMFTS index at baseline and follow up], provided for examination of the predictive capacity concerning different multifactor models. Results. The data gathered showed that different multifactor risk assessment models give significantly different results (Friedman test: Chi square = 100.073, p=0.000. Cariogram is the model which identified the majority of examinees as medium risk patients (70%. The other two models were more radical in risk assessment, giving more unfavorable risk –profiles for patients. In only 12% of the patients did the three multifactor models assess the risk in the same way. Previser and CAT gave the same results in 63% of cases – the Wilcoxon test showed that there is no statistically significant difference in caries risk assessment between these two models (Z = -1.805, p=0.071. Conclusions. Evaluation of three different multifactor caries risk assessment models (Cariogram, PreViser and CAT showed that only the Cariogram can successfully predict new caries development in 12-year-old Bosnian children.
Disease prediction models and operational readiness.
Directory of Open Access Journals (Sweden)
Courtney D Corley
Full Text Available The objective of this manuscript is to present a systematic review of biosurveillance models that operate on select agents and can forecast the occurrence of a disease event. We define a disease event to be a biological event with focus on the One Health paradigm. These events are characterized by evidence of infection and or disease condition. We reviewed models that attempted to predict a disease event, not merely its transmission dynamics and we considered models involving pathogens of concern as determined by the US National Select Agent Registry (as of June 2011. We searched commercial and government databases and harvested Google search results for eligible models, using terms and phrases provided by public health analysts relating to biosurveillance, remote sensing, risk assessments, spatial epidemiology, and ecological niche modeling. After removal of duplications and extraneous material, a core collection of 6,524 items was established, and these publications along with their abstracts are presented in a semantic wiki at http://BioCat.pnnl.gov. As a result, we systematically reviewed 44 papers, and the results are presented in this analysis. We identified 44 models, classified as one or more of the following: event prediction (4, spatial (26, ecological niche (28, diagnostic or clinical (6, spread or response (9, and reviews (3. The model parameters (e.g., etiology, climatic, spatial, cultural and data sources (e.g., remote sensing, non-governmental organizations, expert opinion, epidemiological were recorded and reviewed. A component of this review is the identification of verification and validation (V&V methods applied to each model, if any V&V method was reported. All models were classified as either having undergone Some Verification or Validation method, or No Verification or Validation. We close by outlining an initial set of operational readiness level guidelines for disease prediction models based upon established Technology
Model Predictive Control based on Finite Impulse Response Models
DEFF Research Database (Denmark)
Prasath, Guru; Jørgensen, John Bagterp
2008-01-01
We develop a regularized l2 finite impulse response (FIR) predictive controller with input and input-rate constraints. Feedback is based on a simple constant output disturbance filter. The performance of the predictive controller in the face of plant-model mismatch is investigated by simulations...
Directory of Open Access Journals (Sweden)
L. Boeckli
2012-01-01
Full Text Available Estimates of permafrost distribution in mountain regions are important for the assessment of climate change effects on natural and human systems. In order to make permafrost analyses and the establishment of guidelines for e.g. construction or hazard assessment comparable and compatible between regions, one consistent and traceable model for the entire Alpine domain is required. For the calibration of statistical models, the scarcity of suitable and reliable information about the presence or absence of permafrost makes the use of large areas attractive due to the larger data base available.
We present a strategy and method for modelling permafrost distribution of entire mountain regions and provide the results of statistical analyses and model calibration for the European Alps. Starting from an integrated model framework, two statistical sub-models are developed, one for debris-covered areas (debris model and one for steep bedrock (rock model. They are calibrated using rock glacier inventories and rock surface temperatures. To support the later generalization to surface characteristics other than those available for calibration, so-called offset terms have been introduced into the model that allow doing this in a transparent and traceable manner.
For the debris model a generalized linear mixed-effect model (GLMM is used to predict the probability of a rock glacier being intact as opposed to relict. It is based on the explanatory variables mean annual air temperature (MAAT, potential incoming solar radiation (PISR and the mean annual sum of precipitation (PRECIP, and achieves an excellent discrimination (area under the receiver-operating characteristic, AUROC = 0.91. Surprisingly, the probability of a rock glacier being intact is positively associated with increasing PRECIP for given MAAT and PISR conditions. The rock model is based on a linear regression and was calibrated with mean annual rock surface temperatures (MARST. The
ENSO Prediction using Vector Autoregressive Models
Chapman, D. R.; Cane, M. A.; Henderson, N.; Lee, D.; Chen, C.
2013-12-01
A recent comparison (Barnston et al, 2012 BAMS) shows the ENSO forecasting skill of dynamical models now exceeds that of statistical models, but the best statistical models are comparable to all but the very best dynamical models. In this comparison the leading statistical model is the one based on the Empirical Model Reduction (EMR) method. Here we report on experiments with multilevel Vector Autoregressive models using only sea surface temperatures (SSTs) as predictors. VAR(L) models generalizes Linear Inverse Models (LIM), which are a VAR(1) method, as well as multilevel univariate autoregressive models. Optimal forecast skill is achieved using 12 to 14 months of prior state information (i.e 12-14 levels), which allows SSTs alone to capture the effects of other variables such as heat content as well as seasonality. The use of multiple levels allows the model advancing one month at a time to perform at least as well for a 6 month forecast as a model constructed to explicitly forecast 6 months ahead. We infer that the multilevel model has fully captured the linear dynamics (cf. Penland and Magorian, 1993 J. Climate). Finally, while VAR(L) is equivalent to L-level EMR, we show in a 150 year cross validated assessment that we can increase forecast skill by improving on the EMR initialization procedure. The greatest benefit of this change is in allowing the prediction to make effective use of information over many more months.
Electrostatic ion thrusters - towards predictive modeling
Energy Technology Data Exchange (ETDEWEB)
Kalentev, O.; Matyash, K.; Duras, J.; Lueskow, K.F.; Schneider, R. [Ernst-Moritz-Arndt Universitaet Greifswald, D-17489 (Germany); Koch, N. [Technische Hochschule Nuernberg Georg Simon Ohm, Kesslerplatz 12, D-90489 Nuernberg (Germany); Schirra, M. [Thales Electronic Systems GmbH, Soeflinger Strasse 100, D-89077 Ulm (Germany)
2014-02-15
The development of electrostatic ion thrusters so far has mainly been based on empirical and qualitative know-how, and on evolutionary iteration steps. This resulted in considerable effort regarding prototype design, construction and testing and therefore in significant development and qualification costs and high time demands. For future developments it is anticipated to implement simulation tools which allow for quantitative prediction of ion thruster performance, long-term behavior and space craft interaction prior to hardware design and construction. Based on integrated numerical models combining self-consistent kinetic plasma models with plasma-wall interaction modules a new quality in the description of electrostatic thrusters can be reached. These open the perspective for predictive modeling in this field. This paper reviews the application of a set of predictive numerical modeling tools on an ion thruster model of the HEMP-T (High Efficiency Multi-stage Plasma Thruster) type patented by Thales Electron Devices GmbH. (copyright 2014 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)
Gas explosion prediction using CFD models
Energy Technology Data Exchange (ETDEWEB)
Niemann-Delius, C.; Okafor, E. [RWTH Aachen Univ. (Germany); Buhrow, C. [TU Bergakademie Freiberg Univ. (Germany)
2006-07-15
A number of CFD models are currently available to model gaseous explosions in complex geometries. Some of these tools allow the representation of complex environments within hydrocarbon production plants. In certain explosion scenarios, a correction is usually made for the presence of buildings and other complexities by using crude approximations to obtain realistic estimates of explosion behaviour as can be found when predicting the strength of blast waves resulting from initial explosions. With the advance of computational technology, and greater availability of computing power, computational fluid dynamics (CFD) tools are becoming increasingly available for solving such a wide range of explosion problems. A CFD-based explosion code - FLACS can, for instance, be confidently used to understand the impact of blast overpressures in a plant environment consisting of obstacles such as buildings, structures, and pipes. With its porosity concept representing geometry details smaller than the grid, FLACS can represent geometry well, even when using coarse grid resolutions. The performance of FLACS has been evaluated using a wide range of field data. In the present paper, the concept of computational fluid dynamics (CFD) and its application to gas explosion prediction is presented. Furthermore, the predictive capabilities of CFD-based gaseous explosion simulators are demonstrated using FLACS. Details about the FLACS-code, some extensions made to FLACS, model validation exercises, application, and some results from blast load prediction within an industrial facility are presented. (orig.)
Genetic models of homosexuality: generating testable predictions.
Gavrilets, Sergey; Rice, William R
2006-12-22
Homosexuality is a common occurrence in humans and other species, yet its genetic and evolutionary basis is poorly understood. Here, we formulate and study a series of simple mathematical models for the purpose of predicting empirical patterns that can be used to determine the form of selection that leads to polymorphism of genes influencing homosexuality. Specifically, we develop theory to make contrasting predictions about the genetic characteristics of genes influencing homosexuality including: (i) chromosomal location, (ii) dominance among segregating alleles and (iii) effect sizes that distinguish between the two major models for their polymorphism: the overdominance and sexual antagonism models. We conclude that the measurement of the genetic characteristics of quantitative trait loci (QTLs) found in genomic screens for genes influencing homosexuality can be highly informative in resolving the form of natural selection maintaining their polymorphism.
Characterizing Attention with Predictive Network Models.
Rosenberg, M D; Finn, E S; Scheinost, D; Constable, R T; Chun, M M
2017-04-01
Recent work shows that models based on functional connectivity in large-scale brain networks can predict individuals' attentional abilities. While being some of the first generalizable neuromarkers of cognitive function, these models also inform our basic understanding of attention, providing empirical evidence that: (i) attention is a network property of brain computation; (ii) the functional architecture that underlies attention can be measured while people are not engaged in any explicit task; and (iii) this architecture supports a general attentional ability that is common to several laboratory-based tasks and is impaired in attention deficit hyperactivity disorder (ADHD). Looking ahead, connectivity-based predictive models of attention and other cognitive abilities and behaviors may potentially improve the assessment, diagnosis, and treatment of clinical dysfunction. Copyright © 2017 Elsevier Ltd. All rights reserved.
A Study On Distributed Model Predictive Consensus
Keviczky, Tamas
2008-01-01
We investigate convergence properties of a proposed distributed model predictive control (DMPC) scheme, where agents negotiate to compute an optimal consensus point using an incremental subgradient method based on primal decomposition as described in Johansson et al. [2006, 2007]. The objective of the distributed control strategy is to agree upon and achieve an optimal common output value for a group of agents in the presence of constraints on the agent dynamics using local predictive controllers. Stability analysis using a receding horizon implementation of the distributed optimal consensus scheme is performed. Conditions are given under which convergence can be obtained even if the negotiations do not reach full consensus.
Directory of Open Access Journals (Sweden)
Makoto Tani
2013-06-01
Full Text Available Soil layers on hillslopes acts as systems in quasi-steady states generating rainfall-stormflow responses that are controlled by pressure propagation in a hydraulic continuum established when the rainfall volume is sufficiently large. A similarity analysis for quantifying the sensitivity of the stormflow response and recession limb to topographic and soil properties in a sloping permeable domain showed that the deviation of stormflow responses in the hydraulic continuum decreases due to the macropore effect. The rapid responses seem to be naturally derived from the evolution of the soil layer with the assistance of the vegetation-root system and effective drainage systems in zero-order catchments in active tectonic regions with heavy storms. To predict stormflow responses using distributed runoff models, a paradigm shift to consider this evolution process is needed because the simple stormflow responses and complex and heterogeneous catchment properties are poorly related, but may be mainly determined by soil evolution processes.
DEFF Research Database (Denmark)
Follin, Elna; Karlsson, Maria; Lundegaard, Claus
2013-01-01
compared to most mammals. To elucidate the reason for this large number of genes, we compared 14 MHC class I alleles (α1–α3 domains), from great reed warbler, house sparrow and tree sparrow, via phylogenetic analysis, homology modelling and in silico peptide-binding predictions to investigate......, there were also overlapping peptide-binding specificities in the allomorphs from house sparrow and great reed warbler, although these species diverged 30 MYA. This overlap was not found in a tree based on amino acid sequences. Our interpretation is that convergent evolution on the level of the protein...... function, possibly driven by selection from shared pathogens, has resulted in allomorphs with similar peptide-binding repertoires, although trans-species evolution in combination with gene conversion cannot be ruled out....
NONLINEAR MODEL PREDICTIVE CONTROL OF CHEMICAL PROCESSES
Directory of Open Access Journals (Sweden)
R. G. SILVA
1999-03-01
Full Text Available A new algorithm for model predictive control is presented. The algorithm utilizes a simultaneous solution and optimization strategy to solve the model's differential equations. The equations are discretized by equidistant collocation, and along with the algebraic model equations are included as constraints in a nonlinear programming (NLP problem. This algorithm is compared with the algorithm that uses orthogonal collocation on finite elements. The equidistant collocation algorithm results in simpler equations, providing a decrease in computation time for the control moves. Simulation results are presented and show a satisfactory performance of this algorithm.
Mahdizadeh, Mousa; Heydari, Abbas; Moonaghi, Hossien Karimi
2015-01-01
Introduction: So far, various models of interdisciplinary collaboration in clinical nursing have been presented, however, yet a comprehensive model is not available. The purpose of this study is to review the evidences that had presented model or framework with qualitative approach about interdisciplinary collaboration in clinical nursing. Methods: All the articles and theses published from 1990 to 10 June 2014 which in both English and Persian models or frameworks of clinicians had presented model or framework of clinical collaboration were searched using databases of Proquest, Scopus, pub Med, Science Direct, and Iranian databases of Sid, Magiran, and Iranmedex. In this review, for published articles and theses, keywords according with MESH such as nurse-physician relations, care team, collaboration, interdisciplinary relations and their Persian equivalents were used. Results: In this study contexts, processes and outcomes of interdisciplinary collaboration as findings were extracted. One of the major components affecting on collaboration that most of the models had emphasized was background of collaboration. Most of studies suggested that the outcome of collaboration were improved care, doctors and nurses’ satisfaction, controlling costs, reducing clinical errors and patient’s safety. Conclusion: Models and frameworks had different structures, backgrounds, and conditions, but the outcomes were similar. Organizational structure, culture and social factors are important aspects of clinical collaboration. So it is necessary to improve the quality and effectiveness of clinical collaboration these factors to be considered. PMID:26153158
Possible Implications of a Vortex Gas Model and Self-Similarity for Tornadogenesis and Maintenance
Dokken, Doug; Shvartsman, Misha; Běl\\'\\ik, Pavel; Potvin, Corey; Dahl, Brittany; McGover, Amy
2014-01-01
We describe tornado genesis and maintenance using the 3-dimensional vortex gas model presented in Chorin (1994). High-energy vortices with negative temperature in the sense of Onsager (1949) play an important role in the model. We speculate that the formation of high-temperature vortices is related to the helicity inherited as they form or tilt into the vertical. We also exploit the notion of self-similarity to justify power laws derived from observations of weak and strong tornadoes presented in Cai (2005), Wurman and Gill (2000), and Wurman and Alexander (2005). Analysis of a Bryan Cloud Model (CM1) simulation of a tornadic supercell reveals scaling consistent with the observational studies.
Performance model to predict overall defect density
Directory of Open Access Journals (Sweden)
J Venkatesh
2012-08-01
Full Text Available Management by metrics is the expectation from the IT service providers to stay as a differentiator. Given a project, the associated parameters and dynamics, the behaviour and outcome need to be predicted. There is lot of focus on the end state and in minimizing defect leakage as much as possible. In most of the cases, the actions taken are re-active. It is too late in the life cycle. Root cause analysis and corrective actions can be implemented only to the benefit of the next project. The focus has to shift left, towards the execution phase than waiting for lessons to be learnt post the implementation. How do we pro-actively predict defect metrics and have a preventive action plan in place. This paper illustrates the process performance model to predict overall defect density based on data from projects in an organization.
Neuro-fuzzy modeling in bankruptcy prediction
Directory of Open Access Journals (Sweden)
Vlachos D.
2003-01-01
Full Text Available For the past 30 years the problem of bankruptcy prediction had been thoroughly studied. From the paper of Altman in 1968 to the recent papers in the '90s, the progress of prediction accuracy was not satisfactory. This paper investigates an alternative modeling of the system (firm, combining neural networks and fuzzy controllers, i.e. using neuro-fuzzy models. Classical modeling is based on mathematical models that describe the behavior of the firm under consideration. The main idea of fuzzy control, on the other hand, is to build a model of a human control expert who is capable of controlling the process without thinking in a mathematical model. This control expert specifies his control action in the form of linguistic rules. These control rules are translated into the framework of fuzzy set theory providing a calculus, which can stimulate the behavior of the control expert and enhance its performance. The accuracy of the model is studied using datasets from previous research papers.
Predictive RANS simulations via Bayesian Model-Scenario Averaging
Edeling, W. N.; Cinnella, P.; Dwight, R. P.
2014-10-01
The turbulence closure model is the dominant source of error in most Reynolds-Averaged Navier-Stokes simulations, yet no reliable estimators for this error component currently exist. Here we develop a stochastic, a posteriori error estimate, calibrated to specific classes of flow. It is based on variability in model closure coefficients across multiple flow scenarios, for multiple closure models. The variability is estimated using Bayesian calibration against experimental data for each scenario, and Bayesian Model-Scenario Averaging (BMSA) is used to collate the resulting posteriors, to obtain a stochastic estimate of a Quantity of Interest (QoI) in an unmeasured (prediction) scenario. The scenario probabilities in BMSA are chosen using a sensor which automatically weights those scenarios in the calibration set which are similar to the prediction scenario. The methodology is applied to the class of turbulent boundary-layers subject to various pressure gradients. For all considered prediction scenarios the standard-deviation of the stochastic estimate is consistent with the measurement ground truth. Furthermore, the mean of the estimate is more consistently accurate than the individual model predictions.
Predictive RANS simulations via Bayesian Model-Scenario Averaging
Energy Technology Data Exchange (ETDEWEB)
Edeling, W.N., E-mail: W.N.Edeling@tudelft.nl [Arts et Métiers ParisTech, DynFluid laboratory, 151 Boulevard de l' Hospital, 75013 Paris (France); Delft University of Technology, Faculty of Aerospace Engineering, Kluyverweg 2, Delft (Netherlands); Cinnella, P., E-mail: P.Cinnella@ensam.eu [Arts et Métiers ParisTech, DynFluid laboratory, 151 Boulevard de l' Hospital, 75013 Paris (France); Dwight, R.P., E-mail: R.P.Dwight@tudelft.nl [Delft University of Technology, Faculty of Aerospace Engineering, Kluyverweg 2, Delft (Netherlands)
2014-10-15
The turbulence closure model is the dominant source of error in most Reynolds-Averaged Navier–Stokes simulations, yet no reliable estimators for this error component currently exist. Here we develop a stochastic, a posteriori error estimate, calibrated to specific classes of flow. It is based on variability in model closure coefficients across multiple flow scenarios, for multiple closure models. The variability is estimated using Bayesian calibration against experimental data for each scenario, and Bayesian Model-Scenario Averaging (BMSA) is used to collate the resulting posteriors, to obtain a stochastic estimate of a Quantity of Interest (QoI) in an unmeasured (prediction) scenario. The scenario probabilities in BMSA are chosen using a sensor which automatically weights those scenarios in the calibration set which are similar to the prediction scenario. The methodology is applied to the class of turbulent boundary-layers subject to various pressure gradients. For all considered prediction scenarios the standard-deviation of the stochastic estimate is consistent with the measurement ground truth. Furthermore, the mean of the estimate is more consistently accurate than the individual model predictions.
Pressure prediction model for compression garment design.
Leung, W Y; Yuen, D W; Ng, Sun Pui; Shi, S Q
2010-01-01
Based on the application of Laplace's law to compression garments, an equation for predicting garment pressure, incorporating the body circumference, the cross-sectional area of fabric, applied strain (as a function of reduction factor), and its corresponding Young's modulus, is developed. Design procedures are presented to predict garment pressure using the aforementioned parameters for clinical applications. Compression garments have been widely used in treating burning scars. Fabricating a compression garment with a required pressure is important in the healing process. A systematic and scientific design method can enable the occupational therapist and compression garments' manufacturer to custom-make a compression garment with a specific pressure. The objectives of this study are 1) to develop a pressure prediction model incorporating different design factors to estimate the pressure exerted by the compression garments before fabrication; and 2) to propose more design procedures in clinical applications. Three kinds of fabrics cut at different bias angles were tested under uniaxial tension, as were samples made in a double-layered structure. Sets of nonlinear force-extension data were obtained for calculating the predicted pressure. Using the value at 0° bias angle as reference, the Young's modulus can vary by as much as 29% for fabric type P11117, 43% for fabric type PN2170, and even 360% for fabric type AP85120 at a reduction factor of 20%. When comparing the predicted pressure calculated from the single-layered and double-layered fabrics, the double-layered construction provides a larger range of target pressure at a particular strain. The anisotropic and nonlinear behaviors of the fabrics have thus been determined. Compression garments can be methodically designed by the proposed analytical pressure prediction model.
Statistical assessment of predictive modeling uncertainty
Barzaghi, Riccardo; Marotta, Anna Maria
2017-04-01
When the results of geophysical models are compared with data, the uncertainties of the model are typically disregarded. We propose a method for defining the uncertainty of a geophysical model based on a numerical procedure that estimates the empirical auto and cross-covariances of model-estimated quantities. These empirical values are then fitted by proper covariance functions and used to compute the covariance matrix associated with the model predictions. The method is tested using a geophysical finite element model in the Mediterranean region. Using a novel χ2 analysis in which both data and model uncertainties are taken into account, the model's estimated tectonic strain pattern due to the Africa-Eurasia convergence in the area that extends from the Calabrian Arc to the Alpine domain is compared with that estimated from GPS velocities while taking into account the model uncertainty through its covariance structure and the covariance of the GPS estimates. The results indicate that including the estimated model covariance in the testing procedure leads to lower observed χ2 values that have better statistical significance and might help a sharper identification of the best-fitting geophysical models.
Seasonal Predictability in a Model Atmosphere.
Lin, Hai
2001-07-01
The predictability of atmospheric mean-seasonal conditions in the absence of externally varying forcing is examined. A perfect-model approach is adopted, in which a global T21 three-level quasigeostrophic atmospheric model is integrated over 21 000 days to obtain a reference atmospheric orbit. The model is driven by a time-independent forcing, so that the only source of time variability is the internal dynamics. The forcing is set to perpetual winter conditions in the Northern Hemisphere (NH) and perpetual summer in the Southern Hemisphere.A significant temporal variability in the NH 90-day mean states is observed. The component of that variability associated with the higher-frequency motions, or climate noise, is estimated using a method developed by Madden. In the polar region, and to a lesser extent in the midlatitudes, the temporal variance of the winter means is significantly greater than the climate noise, suggesting some potential predictability in those regions.Forecast experiments are performed to see whether the presence of variance in the 90-day mean states that is in excess of the climate noise leads to some skill in the prediction of these states. Ensemble forecast experiments with nine members starting from slightly different initial conditions are performed for 200 different 90-day means along the reference atmospheric orbit. The serial correlation between the ensemble means and the reference orbit shows that there is skill in the 90-day mean predictions. The skill is concentrated in those regions of the NH that have the largest variance in excess of the climate noise. An EOF analysis shows that nearly all the predictive skill in the seasonal means is associated with one mode of variability with a strong axisymmetric component.
Directory of Open Access Journals (Sweden)
Linliang Guo
2017-04-01
Full Text Available To satisfy the validation requirements of flight control law for advanced aircraft, a wind tunnel based virtual flight testing has been implemented in a low speed wind tunnel. A 3-degree-of-freedom gimbal, ventrally installed in the model, was used in conjunction with an actively controlled dynamically similar model of aircraft, which was equipped with the inertial measurement unit, attitude and heading reference system, embedded computer and servo-actuators. The model, which could be rotated around its center of gravity freely by the aerodynamic moments, together with the flow field, operator and real time control system made up the closed-loop testing circuit. The model is statically unstable in longitudinal direction, and it can fly stably in wind tunnel with the function of control augmentation of the flight control laws. The experimental results indicate that the model responds well to the operator’s instructions. The response of the model in the tests shows reasonable agreement with the simulation results. The difference of response of angle of attack is less than 0.5°. The effect of stability augmentation and attitude control law was validated in the test, meanwhile the feasibility of virtual flight test technique treated as preliminary evaluation tool for advanced flight vehicle configuration research was also verified.
Muniandy, S V; Lim, S C
2001-04-01
Fractional Brownian motion (FBM) is widely used in the modeling of phenomena with power spectral density of power-law type. However, FBM has its limitation since it can only describe phenomena with monofractal structure or a uniform degree of irregularity characterized by the constant Holder exponent. For more realistic modeling, it is necessary to take into consideration the local variation of irregularity, with the Holder exponent allowed to vary with time (or space). One way to achieve such a generalization is to extend the standard FBM to multifractional Brownian motion (MBM) indexed by a Holder exponent that is a function of time. This paper proposes an alternative generalization to MBM based on the FBM defined by the Riemann-Liouville type of fractional integral. The local properties of the Riemann-Liouville MBM (RLMBM) are studied and they are found to be similar to that of the standard MBM. A numerical scheme to simulate the locally self-similar sample paths of the RLMBM for various types of time-varying Holder exponents is given. The local scaling exponents are estimated based on the local growth of the variance and the wavelet scalogram methods. Finally, an example of the possible applications of RLMBM in the modeling of multifractal time series is illustrated.
A kinetic model for predicting biodegradation.
Dimitrov, S; Pavlov, T; Nedelcheva, D; Reuschenbach, P; Silvani, M; Bias, R; Comber, M; Low, L; Lee, C; Parkerton, T; Mekenyan, O
2007-01-01
Biodegradation plays a key role in the environmental risk assessment of organic chemicals. The need to assess biodegradability of a chemical for regulatory purposes supports the development of a model for predicting the extent of biodegradation at different time frames, in particular the extent of ultimate biodegradation within a '10 day window' criterion as well as estimating biodegradation half-lives. Conceptually this implies expressing the rate of catabolic transformations as a function of time. An attempt to correlate the kinetics of biodegradation with molecular structure of chemicals is presented. A simplified biodegradation kinetic model was formulated by combining the probabilistic approach of the original formulation of the CATABOL model with the assumption of first order kinetics of catabolic transformations. Nonlinear regression analysis was used to fit the model parameters to OECD 301F biodegradation kinetic data for a set of 208 chemicals. The new model allows the prediction of biodegradation multi-pathways, primary and ultimate half-lives and simulation of related kinetic biodegradation parameters such as biological oxygen demand (BOD), carbon dioxide production, and the nature and amount of metabolites as a function of time. The model may also be used for evaluating the OECD ready biodegradability potential of a chemical within the '10-day window' criterion.
Disease Prediction Models and Operational Readiness
Energy Technology Data Exchange (ETDEWEB)
Corley, Courtney D.; Pullum, Laura L.; Hartley, David M.; Benedum, Corey M.; Noonan, Christine F.; Rabinowitz, Peter M.; Lancaster, Mary J.
2014-03-19
INTRODUCTION: The objective of this manuscript is to present a systematic review of biosurveillance models that operate on select agents and can forecast the occurrence of a disease event. One of the primary goals of this research was to characterize the viability of biosurveillance models to provide operationally relevant information for decision makers to identify areas for future research. Two critical characteristics differentiate this work from other infectious disease modeling reviews. First, we reviewed models that attempted to predict the disease event, not merely its transmission dynamics. Second, we considered models involving pathogens of concern as determined by the US National Select Agent Registry (as of June 2011). Methods: We searched dozens of commercial and government databases and harvested Google search results for eligible models utilizing terms and phrases provided by public health analysts relating to biosurveillance, remote sensing, risk assessments, spatial epidemiology, and ecological niche-modeling, The publication date of search results returned are bound by the dates of coverage of each database and the date in which the search was performed, however all searching was completed by December 31, 2010. This returned 13,767 webpages and 12,152 citations. After de-duplication and removal of extraneous material, a core collection of 6,503 items was established and these publications along with their abstracts are presented in a semantic wiki at http://BioCat.pnnl.gov. Next, PNNL’s IN-SPIRE visual analytics software was used to cross-correlate these publications with the definition for a biosurveillance model resulting in the selection of 54 documents that matched the criteria resulting Ten of these documents, However, dealt purely with disease spread models, inactivation of bacteria, or the modeling of human immune system responses to pathogens rather than predicting disease events. As a result, we systematically reviewed 44 papers and the
Nonlinear model predictive control theory and algorithms
Grüne, Lars
2017-01-01
This book offers readers a thorough and rigorous introduction to nonlinear model predictive control (NMPC) for discrete-time and sampled-data systems. NMPC schemes with and without stabilizing terminal constraints are detailed, and intuitive examples illustrate the performance of different NMPC variants. NMPC is interpreted as an approximation of infinite-horizon optimal control so that important properties like closed-loop stability, inverse optimality and suboptimality can be derived in a uniform manner. These results are complemented by discussions of feasibility and robustness. An introduction to nonlinear optimal control algorithms yields essential insights into how the nonlinear optimization routine—the core of any nonlinear model predictive controller—works. Accompanying software in MATLAB® and C++ (downloadable from extras.springer.com/), together with an explanatory appendix in the book itself, enables readers to perform computer experiments exploring the possibilities and limitations of NMPC. T...
Locally self-similar phase diagram of the disordered Potts model on the hierarchical lattice.
Anglès d'Auriac, J-Ch; Iglói, Ferenc
2013-02-01
We study the critical behavior of the random q-state Potts model in the large-q limit on the diamond hierarchical lattice with an effective dimensionality d(eff)>2. By varying the temperature and the strength of the frustration the system has a phase transition line between the paramagnetic and the ferromagnetic phases which is controlled by four different fixed points. According to our renormalization group study the phase boundary in the vicinity of the multicritical point is self-similar; it is well represented by a logarithmic spiral. We expect an infinite number of reentrances in the thermodynamic limit; consequently one cannot define standard thermodynamic phases in this region.
Maurer-Stroh, Sebastian; Lee, Charlie W H; Patel, Champa; Lucero, Marilla; Nohynek, Hanna; Sung, Wing-Kin; Murad, Chrysanti; Ma, Jianmin; Hibberd, Martin L; Wong, Christopher W; Simões, Eric A F
2016-03-01
We evaluate sequence data from the PathChip high-density hybridization array for epidemiological interpretation of detected pathogens. For influenza A, we derive similar relative outbreak clustering in phylogenetic trees from PathChip-derived compared to classical Sanger-derived sequences. For a positive polio detection, recent infection could be excluded based on vaccine strain similarity.
Predictive Modeling in Actinide Chemistry and Catalysis
Energy Technology Data Exchange (ETDEWEB)
Yang, Ping [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)
2016-05-16
These are slides from a presentation on predictive modeling in actinide chemistry and catalysis. The following topics are covered in these slides: Structures, bonding, and reactivity (bonding can be quantified by optical probes and theory, and electronic structures and reaction mechanisms of actinide complexes); Magnetic resonance properties (transition metal catalysts with multi-nuclear centers, and NMR/EPR parameters); Moving to more complex systems (surface chemistry of nanomaterials, and interactions of ligands with nanoparticles); Path forward and conclusions.
Self-similarities of periodic structures for a discrete model of a two-gene system
Energy Technology Data Exchange (ETDEWEB)
Souza, S.L.T. de, E-mail: thomaz@ufsj.edu.br [Departamento de Física e Matemática, Universidade Federal de São João del-Rei, Ouro Branco, MG (Brazil); Lima, A.A. [Escola de Farmácia, Universidade Federal de Ouro Preto, Ouro Preto, MG (Brazil); Caldas, I.L. [Instituto de Física, Universidade de São Paulo, São Paulo, SP (Brazil); Medrano-T, R.O. [Departamento de Ciências Exatas e da Terra, Universidade Federal de São Paulo, Diadema, SP (Brazil); Guimarães-Filho, Z.O. [Aix-Marseille Univ., CNRS PIIM UMR6633, International Institute for Fusion Science, Marseille (France)
2012-03-12
We report self-similar properties of periodic structures remarkably organized in the two-parameter space for a two-gene system, described by two-dimensional symmetric map. The map consists of difference equations derived from the chemical reactions for gene expression and regulation. We characterize the system by using Lyapunov exponents and isoperiodic diagrams identifying periodic windows, denominated Arnold tongues and shrimp-shaped structures. Period-adding sequences are observed for both periodic windows. We also identify Fibonacci-type series and Golden ratio for Arnold tongues, and period multiple-of-three windows for shrimps. -- Highlights: ► The existence of noticeable periodic windows has been reported recently for several nonlinear systems. ► The periodic window distributions appear highly organized in two-parameter space. ► We characterize self-similar properties of Arnold tongues and shrimps for a two-gene model. ► We determine the period of the Arnold tongues recognizing a Fibonacci-type sequence. ► We explore self-similar features of the shrimps identifying multiple period-three structures.
Arbesman, Samuel
2010-01-01
The search for a habitable extrasolar planet has long interested scientists, but only recently have the tools become available to search for such planets. In the past decades, the number of known extrasolar planets has ballooned into the hundreds, and with it the expectation that the discovery of the first Earth-like extrasolar planet is not far off. Here we develop a novel metric of habitability for discovered planets, and use this to arrive at a prediction for when the first habitable planet will be discovered. Using a bootstrap analysis of currently discovered exoplanets, we predict the discovery of the first Earth-like planet to be announced in the first half of 2011, with the likeliest date being early May 2011. Our predictions, using only the properties of previously discovered exoplanets, accord well with external estimates for the discovery of the first potentially habitable extrasolar planet, and highlights the the usefulness of predictive scientometric techniques to understand the pace of scientific...
Predicting Footbridge Response using Stochastic Load Models
DEFF Research Database (Denmark)
Pedersen, Lars; Frier, Christian
2013-01-01
Walking parameters such as step frequency, pedestrian mass, dynamic load factor, etc. are basically stochastic, although it is quite common to adapt deterministic models for these parameters. The present paper considers a stochastic approach to modeling the action of pedestrians, but when doing s...... as it pinpoints which decisions to be concerned about when the goal is to predict footbridge response. The studies involve estimating footbridge responses using Monte-Carlo simulations and focus is on estimating vertical structural response to single person loading....
Nonconvex Model Predictive Control for Commercial Refrigeration
DEFF Research Database (Denmark)
Hovgaard, Tobias Gybel; Larsen, Lars F.S.; Jørgensen, John Bagterp
2013-01-01
is to minimize the total energy cost, using real-time electricity prices, while obeying temperature constraints on the zones. We propose a variation on model predictive control to achieve this goal. When the right variables are used, the dynamics of the system are linear, and the constraints are convex. The cost...... the iterations, which is more than fast enough to run in real-time. We demonstrate our method on a realistic model, with a full year simulation and 15 minute time periods, using historical electricity prices and weather data, as well as random variations in thermal load. These simulations show substantial cost...
A Multi-Model Stereo Similarity Function Based on Monogenic Signal Analysis in Poisson Scale Space
Directory of Open Access Journals (Sweden)
Jinjun Li
2011-01-01
Full Text Available A stereo similarity function based on local multi-model monogenic image feature descriptors (LMFD is proposed to match interest points and estimate disparity map for stereo images. Local multi-model monogenic image features include local orientation and instantaneous phase of the gray monogenic signal, local color phase of the color monogenic signal, and local mean colors in the multiscale color monogenic signal framework. The gray monogenic signal, which is the extension of analytic signal to gray level image using Dirac operator and Laplace equation, consists of local amplitude, local orientation, and instantaneous phase of 2D image signal. The color monogenic signal is the extension of monogenic signal to color image based on Clifford algebras. The local color phase can be estimated by computing geometric product between the color monogenic signal and a unit reference vector in RGB color space. Experiment results on the synthetic and natural stereo images show the performance of the proposed approach.
Institute of Scientific and Technical Information of China (English)
无
2001-01-01
The problem of state space explosion is still an outstanding challenge in Markovian performance analysis for multiserver multiqueue (MSMQ) systems. The system behavior of a MSMQ system is described using stochastic high-level Petri net (SHLPN) models, and an approximate performance analysis technique is proposed based on decomposition and refinement methods as well as iteration technique. A real MSMQ system, Web-server cluster, is investigated. The performance of an integrated scheme of request dispatching and scheduling is analyzed with both Poisson and self-similar request arrivals. The study shows that the approximate analysis technique significantly reduces the complexity of the model solution and is also efficient for accuracy of numerical results.
Document Representation and Clustering with WordNet Based Similarity Rough Set Model
Directory of Open Access Journals (Sweden)
Koichi Yamada
2011-09-01
Full Text Available Most studies on document clustering till date use Vector Space Model (VSM to represent documents in the document space, where documents are denoted by a vector in a word vector space. The standard VSM does not take into account the semantic relatedness between terms. Thus, terms with some semantic similarity are dealt with in the same way as terms with no semantic relatedness. Since this unconcern about semantics reduces the quality of clustering results, many studies have proposed various approaches to introduce knowledge of semantic relatedness into VSM model. Those approaches give better results than the standard VSM. However they still have their own issues. We propose a new approach as a combination of two approaches, one of which uses Rough Sets theory and co-occurrence of terms, and the other uses WordNet knowledge to solve these issues. Experiments for its evaluation show advantage of the proposed approach over the others.
Modeling the self-organization of vocabularies under phonological similarity effects
Vera, Javier
2016-01-01
This work develops a computational model (by Automata Networks) of short-term memory constraints involved in the formation of linguistic conventions on artificial populations of speakers. The individuals confound phonologically similar words according to a predefined parameter. The main hypothesis of this paper is that there is a critical range of working memory capacities, in particular, a critical phonological degree of confusion, which implies drastic changes in the final consensus of the entire population. A theoretical result proves the convergence of a particular case of the model. Computer simulations describe the evolution of an energy function that measures the amount of local agreement between individuals. The main finding is the appearance of sudden changes in the energy function at critical parameters. Finally, the results are related to previous work on the absence of stages in the formation of languages.
Predictive In Vivo Models for Oncology.
Behrens, Diana; Rolff, Jana; Hoffmann, Jens
2016-01-01
Experimental oncology research and preclinical drug development both substantially require specific, clinically relevant in vitro and in vivo tumor models. The increasing knowledge about the heterogeneity of cancer requested a substantial restructuring of the test systems for the different stages of development. To be able to cope with the complexity of the disease, larger panels of patient-derived tumor models have to be implemented and extensively characterized. Together with individual genetically engineered tumor models and supported by core functions for expression profiling and data analysis, an integrated discovery process has been generated for predictive and personalized drug development.Improved “humanized” mouse models should help to overcome current limitations given by xenogeneic barrier between humans and mice. Establishment of a functional human immune system and a corresponding human microenvironment in laboratory animals will strongly support further research.Drug discovery, systems biology, and translational research are moving closer together to address all the new hallmarks of cancer, increase the success rate of drug development, and increase the predictive value of preclinical models.
Constructing predictive models of human running.
Maus, Horst-Moritz; Revzen, Shai; Guckenheimer, John; Ludwig, Christian; Reger, Johann; Seyfarth, Andre
2015-02-06
Running is an essential mode of human locomotion, during which ballistic aerial phases alternate with phases when a single foot contacts the ground. The spring-loaded inverted pendulum (SLIP) provides a starting point for modelling running, and generates ground reaction forces that resemble those of the centre of mass (CoM) of a human runner. Here, we show that while SLIP reproduces within-step kinematics of the CoM in three dimensions, it fails to reproduce stability and predict future motions. We construct SLIP control models using data-driven Floquet analysis, and show how these models may be used to obtain predictive models of human running with six additional states comprising the position and velocity of the swing-leg ankle. Our methods are general, and may be applied to any rhythmic physical system. We provide an approach for identifying an event-driven linear controller that approximates an observed stabilization strategy, and for producing a reduced-state model which closely recovers the observed dynamics. © 2014 The Author(s) Published by the Royal Society. All rights reserved.
Statistical Seasonal Sea Surface based Prediction Model
Suarez, Roberto; Rodriguez-Fonseca, Belen; Diouf, Ibrahima
2014-05-01
The interannual variability of the sea surface temperature (SST) plays a key role in the strongly seasonal rainfall regime on the West African region. The predictability of the seasonal cycle of rainfall is a field widely discussed by the scientific community, with results that fail to be satisfactory due to the difficulty of dynamical models to reproduce the behavior of the Inter Tropical Convergence Zone (ITCZ). To tackle this problem, a statistical model based on oceanic predictors has been developed at the Universidad Complutense of Madrid (UCM) with the aim to complement and enhance the predictability of the West African Monsoon (WAM) as an alternative to the coupled models. The model, called S4CAST (SST-based Statistical Seasonal Forecast) is based on discriminant analysis techniques, specifically the Maximum Covariance Analysis (MCA) and Canonical Correlation Analysis (CCA). Beyond the application of the model to the prediciton of rainfall in West Africa, its use extends to a range of different oceanic, atmospheric and helth related parameters influenced by the temperature of the sea surface as a defining factor of variability.
Wilderjans, T F; Ceulemans, E; Kuppens, P
2012-06-01
In many areas of the behavioral sciences, different groups of objects are measured on the same set of binary variables, resulting in coupled binary object × variable data blocks. Take, as an example, success/failure scores for different samples of testees, with each sample belonging to a different country, regarding a set of test items. When dealing with such data, a key challenge consists of uncovering the differences and similarities between the structural mechanisms that underlie the different blocks. To tackle this challenge for the case of a single data block, one may rely on HICLAS, in which the variables are reduced to a limited set of binary bundles that represent the underlying structural mechanisms, and the objects are given scores for these bundles. In the case of multiple binary data blocks, one may perform HICLAS on each data block separately. However, such an analysis strategy obscures the similarities and, in the case of many data blocks, also the differences between the blocks. To resolve this problem, we proposed the new Clusterwise HICLAS generic modeling strategy. In this strategy, the different data blocks are assumed to form a set of mutually exclusive clusters. For each cluster, different bundles are derived. As such, blocks belonging to the same cluster have the same bundles, whereas blocks of different clusters are modeled with different bundles. Furthermore, we evaluated the performance of Clusterwise HICLAS by means of an extensive simulation study and by applying the strategy to coupled binary data regarding emotion differentiation and regulation.
Achieving Full Dynamic Similarity with Small-Scale Wind Turbine Models
Miller, Mark; Kiefer, Janik; Westergaard, Carsten; Hultmark, Marcus
2016-11-01
Power and thrust data as a function of Reynolds number and Tip Speed Ratio are presented at conditions matching those of a full scale turbine. Such data has traditionally been very difficult to acquire due to the large length-scales of wind turbines, and the limited size of conventional wind tunnels. Ongoing work at Princeton University employs a novel, high-pressure wind tunnel (up to 220 atmospheres of static pressure) which uses air as the working fluid. This facility allows adjustment of the Reynolds number (via the fluid density) independent of the Tip Speed Ratio, up to a Reynolds number (based on chord and velocity at the tip) of over 3 million. Achieving dynamic similarity using this approach implies very high power and thrust loading, which results in mechanical loads greater than 200 times those experienced by a similarly sized model in a conventional wind tunnel. In order to accurately report the power coefficients, a series of tests were carried out on a specially designed model turbine drive-train using an external testing bench to replicate tunnel loading. An accurate map of the drive-train performance at various operating conditions was determined. Finally, subsequent corrections to the power coefficient are discussed in detail. Supported by: National Science Foundation Grant CBET-1435254 (program director Gregory Rorrer).
Addressing Conceptual Model Uncertainty in the Evaluation of Model Prediction Errors
Carrera, J.; Pool, M.
2014-12-01
Model predictions are uncertain because of errors in model parameters, future forcing terms, and model concepts. The latter remain the largest and most difficult to assess source of uncertainty in long term model predictions. We first review existing methods to evaluate conceptual model uncertainty. We argue that they are highly sensitive to the ingenuity of the modeler, in the sense that they rely on the modeler's ability to propose alternative model concepts. Worse, we find that the standard practice of stochastic methods leads to poor, potentially biased and often too optimistic, estimation of actual model errors. This is bad news because stochastic methods are purported to properly represent uncertainty. We contend that the problem does not lie on the stochastic approach itself, but on the way it is applied. Specifically, stochastic inversion methodologies, which demand quantitative information, tend to ignore geological understanding, which is conceptually rich. We illustrate some of these problems with the application to Mar del Plata aquifer, where extensive data are available for nearly a century. Geologically based models, where spatial variability is handled through zonation, yield calibration fits similar to geostatiscally based models, but much better predictions. In fact, the appearance of the stochastic T fields is similar to the geologically based models only in areas with high density of data. We take this finding to illustrate the ability of stochastic models to accommodate many data, but also, ironically, their inability to address conceptual model uncertainty. In fact, stochastic model realizations tend to be too close to the "most likely" one (i.e., they do not really realize the full conceptualuncertainty). The second part of the presentation is devoted to argue that acknowledging model uncertainty may lead to qualitatively different decisions than just working with "most likely" model predictions. Therefore, efforts should concentrate on
Amancio, Diego R; Costa, Luciano da F; 10.1016/j.physa.2012.04.011
2013-01-01
There are different ways to define similarity for grouping similar texts into clusters, as the concept of similarity may depend on the purpose of the task. For instance, in topic extraction similar texts mean those within the same semantic field, whereas in author recognition stylistic features should be considered. In this study, we introduce ways to classify texts employing concepts of complex networks, which may be able to capture syntactic, semantic and even pragmatic features. The interplay between the various metrics of the complex networks is analyzed with three applications, namely identification of machine translation (MT) systems, evaluation of quality of machine translated texts and authorship recognition. We shall show that topological features of the networks representing texts can enhance the ability to identify MT systems in particular cases. For evaluating the quality of MT texts, on the other hand, high correlation was obtained with methods capable of capturing the semantics. This was expecte...
A Stabilized Scale-Similarity Model for Explicitly-Filtered LES
Edoh, Ayaboe; Karagozian, Ann; Sankaran, Venkateswaran
2016-11-01
Accurate simulation of the filtered-scales in LES is affected by the competing presence of modeling and discretization errors. In order to properly assess modeling techniques, it is imperative to minimize the influence of the numerical scheme. The current investigation considers the inclusion of resolved and un-resolved sub-filter stress ([U]RSFS) components in the governing equations, which is suggestive of a mixed-model approach. Taylor-series expansions of discrete filter stencils are used to inform proper scaling of a Scale-Similarity model representation of the RSFS term, and accompanying stabilization is provided by tunable and scale-discriminant filter-based artificial dissipation techniques that represent the URSFS term implicitly. Effective removal of numerical error from the LES solution is studied with respect to the 1D Burgers equation with synthetic turbulence, and extension to 3D Navier-Stokes system computations is motivated. Distribution A: Approved for public release, distribution unlimited. Supported by AFOSR (PMs: Drs. Chiping Li and Michael Kendra).
Self-Similar Models for the Mass Profiles of Early-type Lens Galaxies
Rusin, D; Keeton, C R
2003-01-01
We introduce a self-similar mass model for early-type galaxies, and constrain it using the aperture mass-radius relations determined from the geometries of 22 gravitational lenses. The model consists of two components: a concentrated component which traces the light distribution, and a more extended power-law component (rho propto r^-n) which represents the dark matter. We find that lens galaxies have total mass profiles which are nearly isothermal, or slightly steeper, on the several-kiloparsec radial scale spanned by the lensed images. In the limit of a single-component, power-law radial profile, the model implies n=2.07+/-0.13, consistent with isothermal (n=2). Models in which mass traces light are excluded at >99 percent confidence. An n=1 cusp (such as the Navarro-Frenk-White profile) requires a projected dark matter mass fraction of f_cdm = 0.22+/-0.10 inside 2 effective radii. These are the best statistical constraints yet obtained on the mass profiles of lenses, and provide clear evidence for a small ...
Wind Speed Combined Prediction Based on Similar Samples%基于相似样本的风速组合预测
Institute of Scientific and Technical Information of China (English)
谭沛然; 马春燕; 陈燕; 李凌昊; 南晓强
2016-01-01
Wind prediction is an effective means to reduce the adverse effects of large-scale wind power generation on the grid,but the behavior of wind speeds is nonlinear and non-stationa-ry,which yields great challenge for its prediction.This work uses a prediction method for short-term wind speeds,which combines the hierarchical clustering based on grey relation degree algo-rithm (HCGRDA)and simulated annealing fruit fly optimization algorithm based on Gaussian disturbance (GDSAFOA)to optimize the SVM.In this method,the similar sample space is ob-tained by the HCGRDA,and a time series of wind speeds is decomposed by the ensemble empiri-cal mode decomposition (EEMD).The wind speed predication is the linear combination of the SVM based on the chaotic phase space reconstruction model and the dynamic neural network model based on the nonlinear autoregressive models with exogenous inputs (NARX).This meth-od is applied for the model with wind speed data measured from a wind farm in Shanxi.Results show that the proposed method is feasible and competitive.%风速预测是减小大规模风力发电对电网造成不利影响的有效手段，但是风速的非线性与非平稳性特点将给预测带来极大挑战。笔者采用一种基于灰色关联度的层次聚类算法 HCGR-DA 和带高斯扰动的模拟退火果蝇算法 GDSAFOA 优化 SVM 的短期风速组合预测方法。该方法利用 HCGRDA 获得相似的样本空间，采用集合经验模态分解 EEMD 算法分解风速时间序列，利用经混沌相空间重构的 SVM 与 NARX 网络进行线性组合预测。以山西某风电场实测数据为例进行建模，结果表明本文所采用方法合理、有效。
Gamma-Ray Pulsars Models and Predictions
Harding, A K
2001-01-01
Pulsed emission from gamma-ray pulsars originates inside the magnetosphere, from radiation by charged particles accelerated near the magnetic poles or in the outer gaps. In polar cap models, the high energy spectrum is cut off by magnetic pair production above an energy that is dependent on the local magnetic field strength. While most young pulsars with surface fields in the range B = 10^{12} - 10^{13} G are expected to have high energy cutoffs around several GeV, the gamma-ray spectra of old pulsars having lower surface fields may extend to 50 GeV. Although the gamma-ray emission of older pulsars is weaker, detecting pulsed emission at high energies from nearby sources would be an important confirmation of polar cap models. Outer gap models predict more gradual high-energy turnovers at around 10 GeV, but also predict an inverse Compton component extending to TeV energies. Detection of pulsed TeV emission, which would not survive attenuation at the polar caps, is thus an important test of outer gap models. N...
Artificial Neural Network Model for Predicting Compressive
Directory of Open Access Journals (Sweden)
Salim T. Yousif
2013-05-01
Full Text Available Compressive strength of concrete is a commonly used criterion in evaluating concrete. Although testing of the compressive strength of concrete specimens is done routinely, it is performed on the 28th day after concrete placement. Therefore, strength estimation of concrete at early time is highly desirable. This study presents the effort in applying neural network-based system identification techniques to predict the compressive strength of concrete based on concrete mix proportions, maximum aggregate size (MAS, and slump of fresh concrete. Back-propagation neural networks model is successively developed, trained, and tested using actual data sets of concrete mix proportions gathered from literature. The test of the model by un-used data within the range of input parameters shows that the maximum absolute error for model is about 20% and 88% of the output results has absolute errors less than 10%. The parametric study shows that water/cement ratio (w/c is the most significant factor affecting the output of the model. The results showed that neural networks has strong potential as a feasible tool for predicting compressive strength of concrete.
Ground Motion Prediction Models for Caucasus Region
Jorjiashvili, Nato; Godoladze, Tea; Tvaradze, Nino; Tumanova, Nino
2016-04-01
Ground motion prediction models (GMPMs) relate ground motion intensity measures to variables describing earthquake source, path, and site effects. Estimation of expected ground motion is a fundamental earthquake hazard assessment. The most commonly used parameter for attenuation relation is peak ground acceleration or spectral acceleration because this parameter gives useful information for Seismic Hazard Assessment. Since 2003 development of Georgian Digital Seismic Network has started. In this study new GMP models are obtained based on new data from Georgian seismic network and also from neighboring countries. Estimation of models is obtained by classical, statistical way, regression analysis. In this study site ground conditions are additionally considered because the same earthquake recorded at the same distance may cause different damage according to ground conditions. Empirical ground-motion prediction models (GMPMs) require adjustment to make them appropriate for site-specific scenarios. However, the process of making such adjustments remains a challenge. This work presents a holistic framework for the development of a peak ground acceleration (PGA) or spectral acceleration (SA) GMPE that is easily adjustable to different seismological conditions and does not suffer from the practical problems associated with adjustments in the response spectral domain.
Modeling and Prediction of Krueger Device Noise
Guo, Yueping; Burley, Casey L.; Thomas, Russell H.
2016-01-01
This paper presents the development of a noise prediction model for aircraft Krueger flap devices that are considered as alternatives to leading edge slotted slats. The prediction model decomposes the total Krueger noise into four components, generated by the unsteady flows, respectively, in the cove under the pressure side surface of the Krueger, in the gap between the Krueger trailing edge and the main wing, around the brackets supporting the Krueger device, and around the cavity on the lower side of the main wing. For each noise component, the modeling follows a physics-based approach that aims at capturing the dominant noise-generating features in the flow and developing correlations between the noise and the flow parameters that control the noise generation processes. The far field noise is modeled using each of the four noise component's respective spectral functions, far field directivities, Mach number dependencies, component amplitudes, and other parametric trends. Preliminary validations are carried out by using small scale experimental data, and two applications are discussed; one for conventional aircraft and the other for advanced configurations. The former focuses on the parametric trends of Krueger noise on design parameters, while the latter reveals its importance in relation to other airframe noise components.
A generative model for predicting terrorist incidents
Verma, Dinesh C.; Verma, Archit; Felmlee, Diane; Pearson, Gavin; Whitaker, Roger
2017-05-01
A major concern in coalition peace-support operations is the incidence of terrorist activity. In this paper, we propose a generative model for the occurrence of the terrorist incidents, and illustrate that an increase in diversity, as measured by the number of different social groups to which that an individual belongs, is inversely correlated with the likelihood of a terrorist incident in the society. A generative model is one that can predict the likelihood of events in new contexts, as opposed to statistical models which are used to predict the future incidents based on the history of the incidents in an existing context. Generative models can be useful in planning for persistent Information Surveillance and Reconnaissance (ISR) since they allow an estimation of regions in the theater of operation where terrorist incidents may arise, and thus can be used to better allocate the assignment and deployment of ISR assets. In this paper, we present a taxonomy of terrorist incidents, identify factors related to occurrence of terrorist incidents, and provide a mathematical analysis calculating the likelihood of occurrence of terrorist incidents in three common real-life scenarios arising in peace-keeping operations
Uncovering highly obfuscated plagiarism cases using fuzzy semantic-based similarity model
Directory of Open Access Journals (Sweden)
Salha M. Alzahrani
2015-07-01
Full Text Available Highly obfuscated plagiarism cases contain unseen and obfuscated texts, which pose difficulties when using existing plagiarism detection methods. A fuzzy semantic-based similarity model for uncovering obfuscated plagiarism is presented and compared with five state-of-the-art baselines. Semantic relatedness between words is studied based on the part-of-speech (POS tags and WordNet-based similarity measures. Fuzzy-based rules are introduced to assess the semantic distance between source and suspicious texts of short lengths, which implement the semantic relatedness between words as a membership function to a fuzzy set. In order to minimize the number of false positives and false negatives, a learning method that combines a permission threshold and a variation threshold is used to decide true plagiarism cases. The proposed model and the baselines are evaluated on 99,033 ground-truth annotated cases extracted from different datasets, including 11,621 (11.7% handmade paraphrases, 54,815 (55.4% artificial plagiarism cases, and 32,578 (32.9% plagiarism-free cases. We conduct extensive experimental verifications, including the study of the effects of different segmentations schemes and parameter settings. Results are assessed using precision, recall, F-measure and granularity on stratified 10-fold cross-validation data. The statistical analysis using paired t-tests shows that the proposed approach is statistically significant in comparison with the baselines, which demonstrates the competence of fuzzy semantic-based model to detect plagiarism cases beyond the literal plagiarism. Additionally, the analysis of variance (ANOVA statistical test shows the effectiveness of different segmentation schemes used with the proposed approach.
Zhang, Lichao; Zhao, Xiqiang; Kong, Liang
2014-08-21
Knowledge of protein structural class plays an important role in characterizing the overall folding type of a given protein. At present, it is still a challenge to extract sequence information solely using protein sequence for protein structural class prediction with low similarity sequence in the current computational biology. In this study, a novel sequence representation method is proposed based on position specific scoring matrix for protein structural class prediction. By defined evolutionary difference formula, varying length proteins are expressed as uniform dimensional vectors, which can represent evolutionary difference information between the adjacent residues of a given protein. To perform and evaluate the proposed method, support vector machine and jackknife tests are employed on three widely used datasets, 25PDB, 1189 and 640 datasets with sequence similarity lower than 25%, 40% and 25%, respectively. Comparison of our results with the previous methods shows that our method may provide a promising method to predict protein structural class especially for low-similarity sequences.
The predictive performance and stability of six species distribution models.
Duan, Ren-Yan; Kong, Xiao-Quan; Huang, Min-Yi; Fan, Wei-Yi; Wang, Zhi-Gao
2014-01-01
Predicting species' potential geographical range by species distribution models (SDMs) is central to understand their ecological requirements. However, the effects of using different modeling techniques need further investigation. In order to improve the prediction effect, we need to assess the predictive performance and stability of different SDMs. We collected the distribution data of five common tree species (Pinus massoniana, Betula platyphylla, Quercus wutaishanica, Quercus mongolica and Quercus variabilis) and simulated their potential distribution area using 13 environmental variables and six widely used SDMs: BIOCLIM, DOMAIN, MAHAL, RF, MAXENT, and SVM. Each model run was repeated 100 times (trials). We compared the predictive performance by testing the consistency between observations and simulated distributions and assessed the stability by the standard deviation, coefficient of variation, and the 99% confidence interval of Kappa and AUC values. The mean values of AUC and Kappa from MAHAL, RF, MAXENT, and SVM trials were similar and significantly higher than those from BIOCLIM and DOMAIN trials (pMAXENT, and SVM. Compared to BIOCLIM and DOMAIN, other SDMs (MAHAL, RF, MAXENT, and SVM) had higher prediction accuracy, smaller confidence intervals, and were more stable and less affected by the random variable (randomly selected pseudo-absence points). According to the prediction performance and stability of SDMs, we can divide these six SDMs into two categories: a high performance and stability group including MAHAL, RF, MAXENT, and SVM, and a low performance and stability group consisting of BIOCLIM, and DOMAIN. We highlight that choosing appropriate SDMs to address a specific problem is an important part of the modeling process.
The predictive performance and stability of six species distribution models.
Directory of Open Access Journals (Sweden)
Ren-Yan Duan
Full Text Available Predicting species' potential geographical range by species distribution models (SDMs is central to understand their ecological requirements. However, the effects of using different modeling techniques need further investigation. In order to improve the prediction effect, we need to assess the predictive performance and stability of different SDMs.We collected the distribution data of five common tree species (Pinus massoniana, Betula platyphylla, Quercus wutaishanica, Quercus mongolica and Quercus variabilis and simulated their potential distribution area using 13 environmental variables and six widely used SDMs: BIOCLIM, DOMAIN, MAHAL, RF, MAXENT, and SVM. Each model run was repeated 100 times (trials. We compared the predictive performance by testing the consistency between observations and simulated distributions and assessed the stability by the standard deviation, coefficient of variation, and the 99% confidence interval of Kappa and AUC values.The mean values of AUC and Kappa from MAHAL, RF, MAXENT, and SVM trials were similar and significantly higher than those from BIOCLIM and DOMAIN trials (p<0.05, while the associated standard deviations and coefficients of variation were larger for BIOCLIM and DOMAIN trials (p<0.05, and the 99% confidence intervals for AUC and Kappa values were narrower for MAHAL, RF, MAXENT, and SVM. Compared to BIOCLIM and DOMAIN, other SDMs (MAHAL, RF, MAXENT, and SVM had higher prediction accuracy, smaller confidence intervals, and were more stable and less affected by the random variable (randomly selected pseudo-absence points.According to the prediction performance and stability of SDMs, we can divide these six SDMs into two categories: a high performance and stability group including MAHAL, RF, MAXENT, and SVM, and a low performance and stability group consisting of BIOCLIM, and DOMAIN. We highlight that choosing appropriate SDMs to address a specific problem is an important part of the modeling process.
Optimal feedback scheduling of model predictive controllers
Institute of Scientific and Technical Information of China (English)
Pingfang ZHOU; Jianying XIE; Xiaolong DENG
2006-01-01
Model predictive control (MPC) could not be reliably applied to real-time control systems because its computation time is not well defined. Implemented as anytime algorithm, MPC task allows computation time to be traded for control performance, thus obtaining the predictability in time. Optimal feedback scheduling (FS-CBS) of a set of MPC tasks is presented to maximize the global control performance subject to limited processor time. Each MPC task is assigned with a constant bandwidth server (CBS), whose reserved processor time is adjusted dynamically. The constraints in the FSCBS guarantee scheduler of the total task set and stability of each component. The FS-CBS is shown robust against the variation of execution time of MPC tasks at runtime. Simulation results illustrate its effectiveness.
Objective calibration of numerical weather prediction models
Voudouri, A.; Khain, P.; Carmona, I.; Bellprat, O.; Grazzini, F.; Avgoustoglou, E.; Bettems, J. M.; Kaufmann, P.
2017-07-01
Numerical weather prediction (NWP) and climate models use parameterization schemes for physical processes, which often include free or poorly confined parameters. Model developers normally calibrate the values of these parameters subjectively to improve the agreement of forecasts with available observations, a procedure referred as expert tuning. A practicable objective multi-variate calibration method build on a quadratic meta-model (MM), that has been applied for a regional climate model (RCM) has shown to be at least as good as expert tuning. Based on these results, an approach to implement the methodology to an NWP model is presented in this study. Challenges in transferring the methodology from RCM to NWP are not only restricted to the use of higher resolution and different time scales. The sensitivity of the NWP model quality with respect to the model parameter space has to be clarified, as well as optimize the overall procedure, in terms of required amount of computing resources for the calibration of an NWP model. Three free model parameters affecting mainly turbulence parameterization schemes were originally selected with respect to their influence on the variables associated to daily forecasts such as daily minimum and maximum 2 m temperature as well as 24 h accumulated precipitation. Preliminary results indicate that it is both affordable in terms of computer resources and meaningful in terms of improved forecast quality. In addition, the proposed methodology has the advantage of being a replicable procedure that can be applied when an updated model version is launched and/or customize the same model implementation over different climatological areas.
Prediction models from CAD models of 3D objects
Camps, Octavia I.
1992-11-01
In this paper we present a probabilistic prediction based approach for CAD-based object recognition. Given a CAD model of an object, the PREMIO system combines techniques of analytic graphics and physical models of lights and sensors to predict how features of the object will appear in images. In nearly 4,000 experiments on analytically-generated and real images, we show that in a semi-controlled environment, predicting the detectability of features of the image can successfully guide a search procedure to make informed choices of model and image features in its search for correspondences that can be used to hypothesize the pose of the object. Furthermore, we provide a rigorous experimental protocol that can be used to determine the optimal number of correspondences to seek so that the probability of failing to find a pose and of finding an inaccurate pose are minimized.
Model predictive control of MSMPR crystallizers
Moldoványi, Nóra; Lakatos, Béla G.; Szeifert, Ferenc
2005-02-01
A multi-input-multi-output (MIMO) control problem of isothermal continuous crystallizers is addressed in order to create an adequate model-based control system. The moment equation model of mixed suspension, mixed product removal (MSMPR) crystallizers that forms a dynamical system is used, the state of which is represented by the vector of six variables: the first four leading moments of the crystal size, solute concentration and solvent concentration. Hence, the time evolution of the system occurs in a bounded region of the six-dimensional phase space. The controlled variables are the mean size of the grain; the crystal size-distribution and the manipulated variables are the input concentration of the solute and the flow rate. The controllability and observability as well as the coupling between the inputs and the outputs was analyzed by simulation using the linearized model. It is shown that the crystallizer is a nonlinear MIMO system with strong coupling between the state variables. Considering the possibilities of the model reduction, a third-order model was found quite adequate for the model estimation in model predictive control (MPC). The mean crystal size and the variance of the size distribution can be nearly separately controlled by the residence time and the inlet solute concentration, respectively. By seeding, the controllability of the crystallizer increases significantly, and the overshoots and the oscillations become smaller. The results of the controlling study have shown that the linear MPC is an adaptable and feasible controller of continuous crystallizers.
An Anisotropic Hardening Model for Springback Prediction
Zeng, Danielle; Xia, Z. Cedric
2005-08-01
As more Advanced High-Strength Steels (AHSS) are heavily used for automotive body structures and closures panels, accurate springback prediction for these components becomes more challenging because of their rapid hardening characteristics and ability to sustain even higher stresses. In this paper, a modified Mroz hardening model is proposed to capture realistic Bauschinger effect at reverse loading, such as when material passes through die radii or drawbead during sheet metal forming process. This model accounts for material anisotropic yield surface and nonlinear isotropic/kinematic hardening behavior. Material tension/compression test data are used to accurately represent Bauschinger effect. The effectiveness of the model is demonstrated by comparison of numerical and experimental springback results for a DP600 straight U-channel test.
Prediction of benzodiazepines solubility using different cosolvency models.
Nokhodchi, A; Shokri, J; Barzegar-Jalali, M; Ghafourian, T
2002-07-01
The solubility of four benzodiazepines (BZPs) including diazepam (DIZ), lorazepam (LRZ) clonazepam (CLZ), and chlordiazepoxide (CHZ) in water-cosolvent (ethanol propylene glycol and polyethylene glycol 200) binary systems were studied. In general, increasing the volume fraction of cosolvents resulted in an increase in the solubility of benzodiazepines. The mole fraction solubilities were fitted to the various cosolvency models, namely extended Hildebrand approach (EHA), excess free energy (EFE), combined nearly ideal binary solvent/Redlich-Kister (CNIBS/R-K), general single model (GSM), mixture response surface (MR-S). double log-log (DL-L), and linear double log-log (LDL-L). The results showed that DL-L model was the best model in predicting the solubility of all drugs in all the water-cosolvent mixtures (OAE% = 4.71). The minimum and maximum errors were observed for benzodiazepine's solubility in water-propylene glycol and water-ethanol mixtures which were 2.67 and 11.78%, respectively. Three models (EFE, CNIBS/R-K and LDL-L) were chosen as general models for solubility descriptions of these structurally similar drugs in each of the solvent systems. Among these models, the EFE model was the best in predicting the solubility of benzodiazepines in binary solvent mixtures (OAE% = 11.19).
A transport model for prediction of wildfire behavior
Energy Technology Data Exchange (ETDEWEB)
Linn, R.R.
1997-07-01
Wildfires are a threat to human life and property, yet they are an unavoidable part of nature. In the past people have tried to predict wildfire behavior through the use of point functional models but have been unsuccessful at adequately predicting the gross behavior of the broad spectrum of fires that occur in nature. The majority of previous models do not have self-determining propagation rates. The author uses a transport approach to represent this complicated problem and produce a model that utilizes a self-determining propagation rate. The transport approach allows one to represent a large number of environments including transition regions such as those with nonhomogeneous vegetation and terrain. Some of the most difficult features to treat are the imperfectly known boundary conditions and the fine scale structure that is unresolvable, such as the specific location of the fuel or the precise incoming winds. The author accounts for the microscopic details of a fire with macroscopic resolution by dividing quantities into mean and fluctuating parts similar to what is done in traditional turbulence modelling. The author develops a complicated model that includes the transport of multiple gas species, such as oxygen and volatile hydrocarbons, and tracks the depletion of various fuels and other stationary solids and liquids. From this model the author also forms a simplified local burning model with which he performs a number of simulations for the purpose of demonstrating the properties of a self-determining transport-based wildfire model.
Directory of Open Access Journals (Sweden)
Samuel Arbesman
Full Text Available BACKGROUND: The search for a habitable extrasolar planet has long interested scientists, but only recently have the tools become available to search for such planets. In the past decades, the number of known extrasolar planets has ballooned into the hundreds, and with it, the expectation that the discovery of the first Earth-like extrasolar planet is not far off. METHODOLOGY/PRINCIPAL FINDINGS: Here, we develop a novel metric of habitability for discovered planets and use this to arrive at a prediction for when the first habitable planet will be discovered. Using a bootstrap analysis of currently discovered exoplanets, we predict the discovery of the first Earth-like planet to be announced in the first half of 2011, with the likeliest date being early May 2011. CONCLUSIONS/SIGNIFICANCE: Our predictions, using only the properties of previously discovered exoplanets, accord well with external estimates for the discovery of the first potentially habitable extrasolar planet and highlight the the usefulness of predictive scientometric techniques to understand the pace of scientific discovery in many fields.
DEFF Research Database (Denmark)
Greve, Sara V; Blicher, Marie K; Kruger, Ruan;
2016-01-01
BACKGROUND: Carotid-femoral pulse wave velocity (cfPWV) adds significantly to traditional cardiovascular risk prediction, but is not widely available. Therefore, it would be helpful if cfPWV could be replaced by an estimated carotid-femoral pulse wave velocity (ePWV) using age and mean blood pres...
DEFF Research Database (Denmark)
Zhang, H.; Lund, Ole; Nielsen, M.
2009-01-01
of the specificities of MHC molecules in this library weighted by the similarity of their pocket-residues to the query. This PickPocket method is demonstrated to accurately predict MHC-peptide binding for a broad range of MHC alleles, including human and non-human species. In contrast to neural network-based pan......-specific methods, PickPocket was shown to be robust both when data is scarce and when the similarity to MHC molecules with characterized binding specificity is low. A consensus method combining the PickPocket and NetMHCpan methods was shown to achieve superior predictive performance. This study demonstrates how...
Fraune, Johanna; Wiesner, Miriam; Benavente, Ricardo
2014-03-20
The synaptonemal complex (SC) is an evolutionarily well-conserved structure that mediates chromosome synapsis during prophase of the first meiotic division. Although its structure is conserved, the characterized protein components in the current metazoan meiosis model systems (Drosophila melanogaster, Caenorhabditis elegans, and Mus musculus) show no sequence homology, challenging the question of a single evolutionary origin of the SC. However, our recent studies revealed the monophyletic origin of the mammalian SC protein components. Many of them being ancient in Metazoa and already present in the cnidarian Hydra. Remarkably, a comparison between different model systems disclosed a great similarity between the SC components of Hydra and mammals while the proteins of the ecdysozoan systems (D. melanogaster and C. elegans) differ significantly. In this review, we introduce the basal-branching metazoan species Hydra as a potential novel invertebrate model system for meiosis research and particularly for the investigation of SC evolution, function and assembly. Also, available methods for SC research in Hydra are summarized.
3D simulations of disc-winds extending radially self-similar MHD models
Stute, Matthias; Vlahakis, Nektarios; Tsinganos, Kanaris; Mignone, Andrea; Massaglia, Silvano
2014-01-01
Disc-winds originating from the inner parts of accretion discs are considered as the basic component of magnetically collimated outflows. The only available analytical MHD solutions to describe disc-driven jets are those characterized by the symmetry of radial self-similarity. However, radially self-similar MHD jet models, in general, have three geometrical shortcomings, (i) a singularity at the jet axis, (ii) the necessary assumption of axisymmetry, and (iii) the non-existence of an intrinsic radial scale, i.e. the jets formally extend to radial infinity. Hence, numerical simulations are necessary to extend the analytical solutions towards the axis, by solving the full three-dimensional equations of MHD and impose a termination radius at finite radial distance. We focus here on studying the effects of relaxing the (ii) assumption of axisymmetry, i.e. of performing full 3D numerical simulations of a disc-wind crossing all magnetohydrodynamic critical surfaces. We compare the results of these runs with previou...
Murray, Robin M; Sham, Pak; Van Os, Jim; Zanelli, Jolanta; Cannon, Mary; McDonald, Colm
2004-12-01
Schizophrenia and mania have a number of symptoms and epidemiological characteristics in common, and both respond to dopamine blockade. Family, twin and molecular genetic studies suggest that the reason for these similarities may be that the two conditions share certain susceptibility genes. On the other hand, individuals with schizophrenia have more obvious brain structural and neuropsychological abnormalities than those with bipolar disorder; and pre-schizophrenic children are characterised by cognitive and neuromotor impairments, which are not shared by children who later develop bipolar disorder. Furthermore, the risk-increasing effect of obstetric complications has been demonstrated for schizophrenia but not for bipolar disorder. Perinatal complications such as hypoxia are known to result in smaller volume of the amygdala and hippocampus, which have been frequently reported to be reduced in schizophrenia; familial predisposition to schizophrenia is also associated with decreased volume of these structures. We suggest a model to explain the similarities and differences between the disorders and propose that, on a background of shared genetic predisposition to psychosis, schizophrenia, but not bipolar disorder, is subject to additional genes or early insults, which impair neurodevelopment, especially of the medial temporal lobe.
Similar pattern of peripheral neuropathy in mouse models of type 1 diabetes and Alzheimer's disease.
Jolivalt, C G; Calcutt, N A; Masliah, E
2012-01-27
There is an increasing awareness that diabetes has an impact on the CNS and that diabetes is a risk factor for Alzheimer's disease (AD). Links between AD and diabetes point to impaired insulin signaling as a common mechanism leading to defects in the brain. However, diabetes is predominantly characterized by peripheral, rather than central, neuropathy, and despite the common central mechanisms linking AD and diabetes, little is known about the effect of AD on the peripheral nervous system (PNS). In this study, we compared indexes of peripheral neuropathy and investigated insulin signaling in the sciatic nerve of insulin-deficient mice and amyloid precursor protein (APP) overexpressing transgenic mice. Insulin-deficient and APP transgenic mice displayed similar patterns of peripheral neuropathy with decreased motor nerve conduction velocity, thermal hypoalgesia, and loss of tactile sensitivity. Phosphorylation of the insulin receptor and glycogen synthase kinase 3β (GSK3β) was similarly affected in insulin-deficient and APP transgenic mice despite significantly different blood glucose and plasma insulin levels, and nerve of both models showed accumulation of Aβ-immunoreactive protein. Although diabetes and AD have different primary etiologies, both diseases share many abnormalities in both the brain and the PNS. Our data point to common deficits in the insulin-signaling pathway in both neurodegenerative diseases and support the idea that AD may cause disorders outside the higher CNS.
Similarity dark energy models in Bianchi type -I space-time
Ali, Ahmad T; Alzahrani, Abdulah K
2015-01-01
We investigate some new similarity solutions of anisotropic dark energy and perfect fluid in Bianchi type-I space-time. Three different time dependent skewness parameters along the spatial directions are introduced to quantify the deviation of pressure from isotropy. We consider the case when the dark energy is minimally coupled to the perfect fluid as well as direct interaction with it. The Lie symmetry generators that leave the equation invariant are identified and we generate an optimal system of one-dimensional subalgebras. Each element of the optimal system is used to reduce the partial differential equation to an ordinary differential equation which is further analyzed. We solve the Einstein field equations, described by a system of non-linear partial differential equations (NLPDEs), by using the Lie point symmetry analysis method. The geometrical and kinematical features of the models and the behavior of the anisotropy of dark energy, are examined in detail.
Directory of Open Access Journals (Sweden)
Gianni Pagnini
2012-01-01
inhomogeneity and nonstationarity properties of the medium. For instance, when this superposition is applied to the time-fractional diffusion process, the resulting Master Equation emerges to be the governing equation of the Erdélyi-Kober fractional diffusion, that describes the evolution of the marginal distribution of the so-called generalized grey Brownian motion. This motion is a parametric class of stochastic processes that provides models for both fast and slow anomalous diffusion: it is made up of self-similar processes with stationary increments and depends on two real parameters. The class includes the fractional Brownian motion, the time-fractional diffusion stochastic processes, and the standard Brownian motion. In this framework, the M-Wright function (known also as Mainardi function emerges as a natural generalization of the Gaussian distribution, recovering the same key role of the Gaussian density for the standard and the fractional Brownian motion.
Predictive modelling of ferroelectric tunnel junctions
Velev, Julian P.; Burton, John D.; Zhuravlev, Mikhail Ye; Tsymbal, Evgeny Y.
2016-05-01
Ferroelectric tunnel junctions combine the phenomena of quantum-mechanical tunnelling and switchable spontaneous polarisation of a nanometre-thick ferroelectric film into novel device functionality. Switching the ferroelectric barrier polarisation direction produces a sizable change in resistance of the junction—a phenomenon known as the tunnelling electroresistance effect. From a fundamental perspective, ferroelectric tunnel junctions and their version with ferromagnetic electrodes, i.e., multiferroic tunnel junctions, are testbeds for studying the underlying mechanisms of tunnelling electroresistance as well as the interplay between electric and magnetic degrees of freedom and their effect on transport. From a practical perspective, ferroelectric tunnel junctions hold promise for disruptive device applications. In a very short time, they have traversed the path from basic model predictions to prototypes for novel non-volatile ferroelectric random access memories with non-destructive readout. This remarkable progress is to a large extent driven by a productive cycle of predictive modelling and innovative experimental effort. In this review article, we outline the development of the ferroelectric tunnel junction concept and the role of theoretical modelling in guiding experimental work. We discuss a wide range of physical phenomena that control the functional properties of ferroelectric tunnel junctions and summarise the state-of-the-art achievements in the field.
Simple predictions from multifield inflationary models.
Easther, Richard; Frazer, Jonathan; Peiris, Hiranya V; Price, Layne C
2014-04-25
We explore whether multifield inflationary models make unambiguous predictions for fundamental cosmological observables. Focusing on N-quadratic inflation, we numerically evaluate the full perturbation equations for models with 2, 3, and O(100) fields, using several distinct methods for specifying the initial values of the background fields. All scenarios are highly predictive, with the probability distribution functions of the cosmological observables becoming more sharply peaked as N increases. For N=100 fields, 95% of our Monte Carlo samples fall in the ranges ns∈(0.9455,0.9534), α∈(-9.741,-7.047)×10-4, r∈(0.1445,0.1449), and riso∈(0.02137,3.510)×10-3 for the spectral index, running, tensor-to-scalar ratio, and isocurvature-to-adiabatic ratio, respectively. The expected amplitude of isocurvature perturbations grows with N, raising the possibility that many-field models may be sensitive to postinflationary physics and suggesting new avenues for testing these scenarios.
Bocchinfuso, Donald G; Taylor, Paul; Ross, Eric; Ignatchenko, Alex; Ignatchenko, Vladimir; Kislinger, Thomas; Pearson, Bret J; Moran, Michael F
2012-09-01
The freshwater planarian Schmidtea mediterranea has been used in research for over 100 years, and is an emerging stem cell model because of its capability of regenerating large portions of missing body parts. Exteriorly, planarians are covered in mucous secretions of unknown composition, implicated in locomotion, predation, innate immunity, and substrate adhesion. Although the planarian genome has been sequenced, it remains mostly unannotated, challenging both genomic and proteomic analyses. The goal of the current study was to annotate the proteome of the whole planarian and its mucous fraction. The S. mediterranea proteome was analyzed via mass spectrometry by using multidimensional protein identification technology with whole-worm tryptic digests. By using a proteogenomics approach, MS data were searched against an in silico translated planarian transcript database, and by using the Swiss-Prot BLAST algorithm to identify proteins similar to planarian queries. A total of 1604 proteins were identified. The mucous subproteome was defined through analysis of a mucous trail fraction and an extract obtained by treating whole worms with the mucolytic agent N-acetylcysteine. Gene Ontology analysis confirmed that the mucous fractions were enriched with secreted proteins. The S. mediterranea proteome is highly similar to that predicted for the trematode Schistosoma mansoni associated with intestinal schistosomiasis, with the mucous subproteome particularly highly conserved. Remarkably, orthologs of 119 planarian mucous proteins are present in human mucosal secretions and tear fluid. We suggest planarians have potential to be a model system for the characterization of mucous protein function and relevant to parasitic flatworm infections and diseases underlined by mucous aberrancies, such as cystic fibrosis, asthma, and other lung diseases.
Strains at the myotendinous junction predicted by a micromechanical model.
Sharafi, Bahar; Ames, Elizabeth G; Holmes, Jeffrey W; Blemker, Silvia S
2011-11-10
The goal of this work was to create a finite element micromechanical model of the myotendinous junction (MTJ) to examine how the structure and mechanics of the MTJ affect the local micro-scale strains experienced by muscle fibers. We validated the model through comparisons with histological longitudinal sections of muscles fixed in slack and stretched positions. The model predicted deformations of the A-bands within the fiber near the MTJ that were similar to those measured from the histological sections. We then used the model to predict the dependence of local fiber strains on activation and the mechanical properties of the endomysium. The model predicted that peak micro-scale strains increase with activation and as the compliance of the endomysium decreases. Analysis of the models revealed that, in passive stretch, local fiber strains are governed by the difference of the mechanical properties between the fibers and the endomysium. In active stretch, strain distributions are governed by the difference in cross-sectional area along the length of the tapered region of the fiber near the MTJ. The endomysium provides passive resistance that balances the active forces and prevents the tapered region of the fiber from undergoing excessive strain. These model predictions lead to the following hypotheses: (i) the increased likelihood of injury during active lengthening of muscle fibers may be due to the increase in peak strain with activation and (ii) endomysium may play a role in protecting fibers from injury by reducing the strains within the fiber at the MTJ. Copyright Â© 2011 Elsevier Ltd. All rights reserved.
Mutual information model for link prediction in heterogeneous complex networks
Shakibian, Hadi; Moghadam Charkari, Nasrollah
2017-01-01
Recently, a number of meta-path based similarity indices like PathSim, HeteSim, and random walk have been proposed for link prediction in heterogeneous complex networks. However, these indices suffer from two major drawbacks. Firstly, they are primarily dependent on the connectivity degrees of node pairs without considering the further information provided by the given meta-path. Secondly, most of them are required to use a single and usually symmetric meta-path in advance. Hence, employing a set of different meta-paths is not straightforward. To tackle with these problems, we propose a mutual information model for link prediction in heterogeneous complex networks. The proposed model, called as Meta-path based Mutual Information Index (MMI), introduces meta-path based link entropy to estimate the link likelihood and could be carried on a set of available meta-paths. This estimation measures the amount of information through the paths instead of measuring the amount of connectivity between the node pairs. The experimental results on a Bibliography network show that the MMI obtains high prediction accuracy compared with other popular similarity indices. PMID:28344326
Predictions of models for environmental radiological assessment
Energy Technology Data Exchange (ETDEWEB)
Peres, Sueli da Silva; Lauria, Dejanira da Costa, E-mail: suelip@ird.gov.br, E-mail: dejanira@irg.gov.br [Instituto de Radioprotecao e Dosimetria (IRD/CNEN-RJ), Servico de Avaliacao de Impacto Ambiental, Rio de Janeiro, RJ (Brazil); Mahler, Claudio Fernando [Coppe. Instituto Alberto Luiz Coimbra de Pos-Graduacao e Pesquisa de Engenharia, Universidade Federal do Rio de Janeiro (UFRJ) - Programa de Engenharia Civil, RJ (Brazil)
2011-07-01
In the field of environmental impact assessment, models are used for estimating source term, environmental dispersion and transfer of radionuclides, exposure pathway, radiation dose and the risk for human beings Although it is recognized that the specific information of local data are important to improve the quality of the dose assessment results, in fact obtaining it can be very difficult and expensive. Sources of uncertainties are numerous, among which we can cite: the subjectivity of modelers, exposure scenarios and pathways, used codes and general parameters. The various models available utilize different mathematical approaches with different complexities that can result in different predictions. Thus, for the same inputs different models can produce very different outputs. This paper presents briefly the main advances in the field of environmental radiological assessment that aim to improve the reliability of the models used in the assessment of environmental radiological impact. The intercomparison exercise of model supplied incompatible results for {sup 137}Cs and {sup 60}Co, enhancing the need for developing reference methodologies for environmental radiological assessment that allow to confront dose estimations in a common comparison base. The results of the intercomparison exercise are present briefly. (author)
Predicting Protein Secondary Structure with Markov Models
DEFF Research Database (Denmark)
Fischer, Paul; Larsen, Simon; Thomsen, Claus
2004-01-01
we are considering here, is to predict the secondary structure from the primary one. To this end we train a Markov model on training data and then use it to classify parts of unknown protein sequences as sheets, helices or coils. We show how to exploit the directional information contained......The primary structure of a protein is the sequence of its amino acids. The secondary structure describes structural properties of the molecule such as which parts of it form sheets, helices or coils. Spacial and other properties are described by the higher order structures. The classification task...
A Modified Model Predictive Control Scheme
Institute of Scientific and Technical Information of China (English)
Xiao-Bing Hu; Wen-Hua Chen
2005-01-01
In implementations of MPC (Model Predictive Control) schemes, two issues need to be addressed. One is how to enlarge the stability region as much as possible. The other is how to guarantee stability when a computational time limitation exists. In this paper, a modified MPC scheme for constrained linear systems is described. An offline LMI-based iteration process is introduced to expand the stability region. At the same time, a database of feasible control sequences is generated offline so that stability can still be guaranteed in the case of computational time limitations. Simulation results illustrate the effectiveness of this new approach.
Hierarchical Model Predictive Control for Resource Distribution
DEFF Research Database (Denmark)
Bendtsen, Jan Dimon; Trangbæk, K; Stoustrup, Jakob
2010-01-01
This paper deals with hierarchichal model predictive control (MPC) of distributed systems. A three level hierachical approach is proposed, consisting of a high level MPC controller, a second level of so-called aggregators, controlled by an online MPC-like algorithm, and a lower level of autonomous...... facilitates plug-and-play addition of subsystems without redesign of any controllers. The method is supported by a number of simulations featuring a three-level smart-grid power control system for a small isolated power grid....
Explicit model predictive control accuracy analysis
Knyazev, Andrew; Zhu, Peizhen; Di Cairano, Stefano
2015-01-01
Model Predictive Control (MPC) can efficiently control constrained systems in real-time applications. MPC feedback law for a linear system with linear inequality constraints can be explicitly computed off-line, which results in an off-line partition of the state space into non-overlapped convex regions, with affine control laws associated to each region of the partition. An actual implementation of this explicit MPC in low cost micro-controllers requires the data to be "quantized", i.e. repre...
Amancio, Diego R.; Oliveira, Osvaldo N., Jr.; Costa, Luciano da F.
2012-09-01
The classification of texts has become a major endeavor with so much electronic material available, for it is an essential task in several applications, including search engines and information retrieval. There are different ways to define similarity for grouping similar texts into clusters, as the concept of similarity may depend on the purpose of the task. For instance, in topic extraction similar texts mean those within the same semantic field, whereas in author recognition stylistic features should be considered. In this study, we introduce ways to classify texts employing concepts of complex networks, which may be able to capture syntactic, semantic and even pragmatic features. The interplay between various metrics of the complex networks is analyzed with three applications, namely identification of machine translation (MT) systems, evaluation of quality of machine translated texts and authorship recognition. We shall show that topological features of the networks representing texts can enhance the ability to identify MT systems in particular cases. For evaluating the quality of MT texts, on the other hand, high correlation was obtained with methods capable of capturing the semantics. This was expected because the golden standards used are themselves based on word co-occurrence. Notwithstanding, the Katz similarity, which involves semantic and structure in the comparison of texts, achieved the highest correlation with the NIST measurement, indicating that in some cases the combination of both approaches can improve the ability to quantify quality in MT. In authorship recognition, again the topological features were relevant in some contexts, though for the books and authors analyzed good results were obtained with semantic features as well. Because hybrid approaches encompassing semantic and topological features have not been extensively used, we believe that the methodology proposed here may be useful to enhance text classification considerably, as it
Critical conceptualism in environmental modeling and prediction.
Christakos, G
2003-10-15
Many important problems in environmental science and engineering are of a conceptual nature. Research and development, however, often becomes so preoccupied with technical issues, which are themselves fascinating, that it neglects essential methodological elements of conceptual reasoning and theoretical inquiry. This work suggests that valuable insight into environmental modeling can be gained by means of critical conceptualism which focuses on the software of human reason and, in practical terms, leads to a powerful methodological framework of space-time modeling and prediction. A knowledge synthesis system develops the rational means for the epistemic integration of various physical knowledge bases relevant to the natural system of interest in order to obtain a realistic representation of the system, provide a rigorous assessment of the uncertainty sources, generate meaningful predictions of environmental processes in space-time, and produce science-based decisions. No restriction is imposed on the shape of the distribution model or the form of the predictor (non-Gaussian distributions, multiple-point statistics, and nonlinear models are automatically incorporated). The scientific reasoning structure underlying knowledge synthesis involves teleologic criteria and stochastic logic principles which have important advantages over the reasoning method of conventional space-time techniques. Insight is gained in terms of real world applications, including the following: the study of global ozone patterns in the atmosphere using data sets generated by instruments on board the Nimbus 7 satellite and secondary information in terms of total ozone-tropopause pressure models; the mapping of arsenic concentrations in the Bangladesh drinking water by assimilating hard and soft data from an extensive network of monitoring wells; and the dynamic imaging of probability distributions of pollutants across the Kalamazoo river.
Directory of Open Access Journals (Sweden)
Dinorah (Dina Martinez Tyson
2011-01-01
Full Text Available The Surgeon General's report, “Culture, Race, and Ethnicity: A Supplement to Mental Health,” points to the need for subgroup specific mental health research that explores the cultural variation and heterogeneity of the Latino population. Guided by cognitive anthropological theories of culture, we utilized ethnographic interviewing techniques to explore cultural models of depression among foreign-born Mexican (n=30, Cuban (n=30, Columbian (n=30, and island-born Puerto Ricans (n=30, who represent the largest Latino groups in Florida. Results indicate that Colombian, Cuban, Mexican, and Puerto Rican immigrants showed strong intragroup consensus in their models of depression causality, symptoms, and treatment. We found more agreement than disagreement among all four groups regarding core descriptions of depression, which was largely unexpected but can potentially be explained by their common immigrant experiences. Findings expand our understanding about Latino subgroup similarities and differences in their conceptualization of depression and can be used to inform the adaptation of culturally relevant interventions in order to better serve Latino immigrant communities.
Lévy Flights and Self-Similar Exploratory Behaviour of Termite Workers: Beyond Model Fitting
Miramontes, Octavio; DeSouza, Og; Paiva, Leticia Ribeiro; Marins, Alessandra; Orozco, Sirio
2014-01-01
Animal movements have been related to optimal foraging strategies where self-similar trajectories are central. Most of the experimental studies done so far have focused mainly on fitting statistical models to data in order to test for movement patterns described by power-laws. Here we show by analyzing over half a million movement displacements that isolated termite workers actually exhibit a range of very interesting dynamical properties –including Lévy flights– in their exploratory behaviour. Going beyond the current trend of statistical model fitting alone, our study analyses anomalous diffusion and structure functions to estimate values of the scaling exponents describing displacement statistics. We evince the fractal nature of the movement patterns and show how the scaling exponents describing termite space exploration intriguingly comply with mathematical relations found in the physics of transport phenomena. By doing this, we rescue a rich variety of physical and biological phenomenology that can be potentially important and meaningful for the study of complex animal behavior and, in particular, for the study of how patterns of exploratory behaviour of individual social insects may impact not only their feeding demands but also nestmate encounter patterns and, hence, their dynamics at the social scale. PMID:25353958
Levy flights and self-similar exploratory behaviour of termite workers: beyond model fitting.
Directory of Open Access Journals (Sweden)
Octavio Miramontes
Full Text Available Animal movements have been related to optimal foraging strategies where self-similar trajectories are central. Most of the experimental studies done so far have focused mainly on fitting statistical models to data in order to test for movement patterns described by power-laws. Here we show by analyzing over half a million movement displacements that isolated termite workers actually exhibit a range of very interesting dynamical properties--including Lévy flights--in their exploratory behaviour. Going beyond the current trend of statistical model fitting alone, our study analyses anomalous diffusion and structure functions to estimate values of the scaling exponents describing displacement statistics. We evince the fractal nature of the movement patterns and show how the scaling exponents describing termite space exploration intriguingly comply with mathematical relations found in the physics of transport phenomena. By doing this, we rescue a rich variety of physical and biological phenomenology that can be potentially important and meaningful for the study of complex animal behavior and, in particular, for the study of how patterns of exploratory behaviour of individual social insects may impact not only their feeding demands but also nestmate encounter patterns and, hence, their dynamics at the social scale.
Similarity on neural stem cells and brain tumor stem cells in transgenic brain tumor mouse models
Institute of Scientific and Technical Information of China (English)
Guanqun Qiao; Qingquan Li; Gang Peng; Jun Ma; Hongwei Fan; Yingbin Li
2013-01-01
Although it is believed that glioma is derived from brain tumor stem cells, the source and molecular signal pathways of these cells are stil unclear. In this study, we used stable doxycycline-inducible transgenic mouse brain tumor models (c-myc+/SV40Tag+/Tet-on+) to explore the malignant trans-formation potential of neural stem cells by observing the differences of neural stem cel s and brain tumor stem cells in the tumor models. Results showed that chromosome instability occurred in brain tumor stem cells. The numbers of cytolysosomes and autophagosomes in brain tumor stem cells and induced neural stem cel s were lower and the proliferative activity was obviously stronger than that in normal neural stem cells. Normal neural stem cells could differentiate into glial fibril ary acidic protein-positive and microtubule associated protein-2-positive cells, which were also negative for nestin. However, glial fibril ary acidic protein/nestin, microtubule associated protein-2/nestin, and glial fibril ary acidic protein/microtubule associated protein-2 double-positive cells were found in induced neural stem cells and brain tumor stem cel s. Results indicate that induced neural stem cells are similar to brain tumor stem cells, and are possibly the source of brain tumor stem cells.
A Predictive Maintenance Model for Railway Tracks
DEFF Research Database (Denmark)
Li, Rui; Wen, Min; Salling, Kim Bang
2015-01-01
For the modern railways, maintenance is critical for ensuring safety, train punctuality and overall capacity utilization. The cost of railway maintenance in Europe is high, on average between 30,000 – 100,000 Euro per km per year [1]. Aiming to reduce such maintenance expenditure, this paper...... presents a mathematical model based on Mixed Integer Programming (MIP) which is designed to optimize the predictive railway tamping activities for ballasted track for the time horizon up to four years. The objective function is setup to minimize the actual costs for the tamping machine (measured by time...... recovery on the track quality after tamping operation and (5) Tamping machine operation factors. A Danish railway track between Odense and Fredericia with 57.2 km of length is applied for a time period of two to four years in the proposed maintenance model. The total cost can be reduced with up to 50...
A predictive fitness model for influenza
Łuksza, Marta; Lässig, Michael
2014-03-01
The seasonal human influenza A/H3N2 virus undergoes rapid evolution, which produces significant year-to-year sequence turnover in the population of circulating strains. Adaptive mutations respond to human immune challenge and occur primarily in antigenic epitopes, the antibody-binding domains of the viral surface protein haemagglutinin. Here we develop a fitness model for haemagglutinin that predicts the evolution of the viral population from one year to the next. Two factors are shown to determine the fitness of a strain: adaptive epitope changes and deleterious mutations outside the epitopes. We infer both fitness components for the strains circulating in a given year, using population-genetic data of all previous strains. From fitness and frequency of each strain, we predict the frequency of its descendent strains in the following year. This fitness model maps the adaptive history of influenza A and suggests a principled method for vaccine selection. Our results call for a more comprehensive epidemiology of influenza and other fast-evolving pathogens that integrates antigenic phenotypes with other viral functions coupled by genetic linkage.
Predictive Model of Radiative Neutrino Masses
Babu, K S
2013-01-01
We present a simple and predictive model of radiative neutrino masses. It is a special case of the Zee model which introduces two Higgs doublets and a charged singlet. We impose a family-dependent Z_4 symmetry acting on the leptons, which reduces the number of parameters describing neutrino oscillations to four. A variety of predictions follow: The hierarchy of neutrino masses must be inverted; the lightest neutrino mass is extremely small and calculable; one of the neutrino mixing angles is determined in terms of the other two; the phase parameters take CP-conserving values with \\delta_{CP} = \\pi; and the effective mass in neutrinoless double beta decay lies in a narrow range, m_{\\beta \\beta} = (17.6 - 18.5) meV. The ratio of vacuum expectation values of the two Higgs doublets, tan\\beta, is determined to be either 1.9 or 0.19 from neutrino oscillation data. Flavor-conserving and flavor-changing couplings of the Higgs doublets are also determined from neutrino data. The non-standard neutral Higgs bosons, if t...
A predictive model for dimensional errors in fused deposition modeling
DEFF Research Database (Denmark)
Stolfi, A.
2015-01-01
This work concerns the effect of deposition angle (a) and layer thickness (L) on the dimensional performance of FDM parts using a predictive model based on the geometrical description of the FDM filament profile. An experimental validation over the whole a range from 0° to 177° at 3° steps and two...
DEFF Research Database (Denmark)
Jørgensen, John Bagterp; Jørgensen, Sten Bay
2007-01-01
model is realized from a continuous-discrete-time linear stochastic system specified using transfer functions with time-delays. It is argued that the prediction-error criterion should be selected such that it is compatible with the objective function of the predictive controller in which the model......A Prediction-error-method tailored for model based predictive control is presented. The prediction-error method studied are based on predictions using the Kalman filter and Kalman predictors for a linear discrete-time stochastic state space model. The linear discrete-time stochastic state space...
Predicting lower mantle heterogeneity from 4-D Earth models
Flament, Nicolas; Williams, Simon; Müller, Dietmar; Gurnis, Michael; Bower, Dan J.
2016-04-01
The Earth's lower mantle is characterized by two large-low-shear velocity provinces (LLSVPs), approximately ˜15000 km in diameter and 500-1000 km high, located under Africa and the Pacific Ocean. The spatial stability and chemical nature of these LLSVPs are debated. Here, we compare the lower mantle structure predicted by forward global mantle flow models constrained by tectonic reconstructions (Bower et al., 2015) to an analysis of five global tomography models. In the dynamic models, spanning 230 million years, slabs subducting deep into the mantle deform an initially uniform basal layer containing 2% of the volume of the mantle. Basal density, convective vigour (Rayleigh number Ra), mantle viscosity, absolute plate motions, and relative plate motions are varied in a series of model cases. We use cluster analysis to classify a set of equally-spaced points (average separation ˜0.45°) on the Earth's surface into two groups of points with similar variations in present-day temperature between 1000-2800 km depth, for each model case. Below ˜2400 km depth, this procedure reveals a high-temperature cluster in which mantle temperature is significantly larger than ambient and a low-temperature cluster in which mantle temperature is lower than ambient. The spatial extent of the high-temperature cluster is in first-order agreement with the outlines of the African and Pacific LLSVPs revealed by a similar cluster analysis of five tomography models (Lekic et al., 2012). Model success is quantified by computing the accuracy and sensitivity of the predicted temperature clusters in predicting the low-velocity cluster obtained from tomography (Lekic et al., 2012). In these cases, the accuracy varies between 0.61-0.80, where a value of 0.5 represents the random case, and the sensitivity ranges between 0.18-0.83. The largest accuracies and sensitivities are obtained for models with Ra ≈ 5 x 107, no asthenosphere (or an asthenosphere restricted to the oceanic domain), and a
Li, Ying Hong; Xu, Jing Yu; Tao, Lin; Li, Xiao Feng; Li, Shuang; Zeng, Xian; Chen, Shang Ying; Zhang, Peng; Qin, Chu; Zhang, Cheng; Chen, Zhe; Zhu, Feng; Chen, Yu Zong
2016-01-01
Knowledge of protein function is important for biological, medical and therapeutic studies, but many proteins are still unknown in function. There is a need for more improved functional prediction methods. Our SVM-Prot web-server employed a machine learning method for predicting protein functional families from protein sequences irrespective of similarity, which complemented those similarity-based and other methods in predicting diverse classes of proteins including the distantly-related proteins and homologous proteins of different functions. Since its publication in 2003, we made major improvements to SVM-Prot with (1) expanded coverage from 54 to 192 functional families, (2) more diverse protein descriptors protein representation, (3) improved predictive performances due to the use of more enriched training datasets and more variety of protein descriptors, (4) newly integrated BLAST analysis option for assessing proteins in the SVM-Prot predicted functional families that were similar in sequence to a query protein, and (5) newly added batch submission option for supporting the classification of multiple proteins. Moreover, 2 more machine learning approaches, K nearest neighbor and probabilistic neural networks, were added for facilitating collective assessment of protein functions by multiple methods. SVM-Prot can be accessed at http://bidd2.nus.edu.sg/cgi-bin/svmprot/svmprot.cgi.
Hartnell, Chad A; Kinicki, Angelo J; Lambert, Lisa Schurer; Fugate, Mel; Doyle Corner, Patricia
2016-06-01
This study examines the nature of the interaction between CEO leadership and organizational culture using 2 common metathemes (task and relationship) in leadership and culture research. Two perspectives, similarity and dissimilarity, offer competing predictions about the fit, or interaction, between leadership and culture and its predicted effect on firm performance. Predictions for the similarity perspective draw upon attribution theory and social identity theory of leadership, whereas predictions for the dissimilarity perspective are developed based upon insights from leadership contingency theories and the notion of substitutability. Hierarchical regression results from 114 CEOs and 324 top management team (TMT) members failed to support the similarity hypotheses but revealed broad support for the dissimilarity predictions. Findings suggest that culture can serve as a substitute for leadership when leadership behaviors are redundant with cultural values (i.e., they both share a task- or relationship-oriented focus). Findings also support leadership contingency theories indicating that CEO leadership is effective when it provides psychological and motivational resources lacking in the organization's culture. We discuss theoretical and practical implications and delineate directions for future research. (PsycINFO Database Record
A monkey model of acetaminophen-induced hepatotoxicity; phenotypic similarity to human.
Tamai, Satoshi; Iguchi, Takuma; Niino, Noriyo; Mikamoto, Kei; Sakurai, Ken; Sayama, Ayako; Shimoda, Hitomi; Takasaki, Wataru; Mori, Kazuhiko
2017-01-01
Species-specific differences in the hepatotoxicity of acetaminophen (APAP) have been shown. To establish a monkey model of APAP-induced hepatotoxicity, which has not been previously reported, APAP at doses up to 2,000 mg/kg was administered orally to fasting male and female cynomolgus monkeys (n = 3-5/group) pretreated intravenously with or without 300 mg/kg of the glutathione biosynthesis inhibitor, L-buthionine-(S,R)-sulfoximine (BSO). In all the animals, APAP at 2,000 mg/kg with BSO but not without BSO induced hepatotoxicity, which was characterized histopathologically by centrilobular necrosis and vacuolation of hepatocytes. Plasma levels of APAP and its reactive metabolite N-acethyl-p-benzoquinone imine (NAPQI) increased 4 to 7 hr after the APAP treatment. The mean Cmax level of APAP at 2,000 mg/kg with BSO was approximately 200 µg/mL, which was comparable to high-risk cutoff value of the Rumack-Matthew nomogram. Interestingly, plasma alanine aminotransferase (ALT) did not change until 7 hr and increased 24 hr or later after the APAP treatment, indicating that this phenotypic outcome was similar to that in humans. In addition, circulating liver-specific miR-122 and miR-192 levels also increased 24 hr or later compared with ALT, suggesting that circulating miR-122 and miR-192 may serve as potential biomarkers to detect hepatotoxicity in cynomolgus monkeys. These results suggest that the hepatotoxicity induced by APAP in the monkey model shown here was translatable to humans in terms of toxicokinetics and its toxic nature, and this model would be useful to investigate mechanisms of drug-induced liver injury and also potential translational biomarkers in humans.
Kinoshita, Kengo; Murakami, Yoichi; Nakamura, Haruki
2007-01-01
We have developed a method to predict ligand-binding sites in a new protein structure by searching for similar binding sites in the Protein Data Bank (PDB). The similarities are measured according to the shapes of the molecular surfaces and their electrostatic potentials. A new web server, eF-seek, provides an interface to our search method. It simply requires a coordinate file in the PDB format, and generates a prediction result as a virtual complex structure, with the putative ligands in a PDB format file as the output. In addition, the predicted interacting interface is displayed to facilitate the examination of the virtual complex structure on our own applet viewer with the web browser (URL: http://eF-site.hgc.jp/eF-seek). PMID:17567616
Dedík, Ladislav; Durisová, Mária
2002-07-01
System-approach based modeling methods are used to model dynamic systems describing in vitro dissolutions of drug dosage formulations. Employing the models of these systems, model-dependent criteria are proposed for testing similarity between in vitro dissolutions of different drug dosage formulations. The criteria proposed are exemplified and compared with the criterion called the similarity factor f(2), commonly used in the field of biomedicine. Advantages of the criteria proposed over this factor are presented.
Two criteria for evaluating risk prediction models.
Pfeiffer, R M; Gail, M H
2011-09-01
We propose and study two criteria to assess the usefulness of models that predict risk of disease incidence for screening and prevention, or the usefulness of prognostic models for management following disease diagnosis. The first criterion, the proportion of cases followed PCF (q), is the proportion of individuals who will develop disease who are included in the proportion q of individuals in the population at highest risk. The second criterion is the proportion needed to follow-up, PNF (p), namely the proportion of the general population at highest risk that one needs to follow in order that a proportion p of those destined to become cases will be followed. PCF (q) assesses the effectiveness of a program that follows 100q% of the population at highest risk. PNF (p) assess the feasibility of covering 100p% of cases by indicating how much of the population at highest risk must be followed. We show the relationship of those two criteria to the Lorenz curve and its inverse, and present distribution theory for estimates of PCF and PNF. We develop new methods, based on influence functions, for inference for a single risk model, and also for comparing the PCFs and PNFs of two risk models, both of which were evaluated in the same validation data.
Study on similar model of high pressure water jet impacting coal rock
Liu, Jialiang; Wang, Mengjin; Zhang, Di
2017-08-01
Based on the similarity theory and dimensional analysis, the similarity criterion of the coal rock mechanical parameters were deduced. The similar materials were mainly built by the cement, sand, nitrile rubber powder and polystyrene, by controlling the water-cement ratio, cement-sand ratio, curing time and additives volume ratio. The intervals of the factors were obtained by carrying out series of material compression tests. By comparing the basic mechanical parameters such as the bulk density, compressive strength, Poisson ratio and elastic modulus between the coal rock prototype and similar materials, the optimal producing proposal of the coal rock similar materials was generated based on the orthogonal design tests finally.
Methods for Handling Missing Variables in Risk Prediction Models
Held, Ulrike; Kessels, Alfons; Aymerich, Judith Garcia; Basagana, Xavier; ter Riet, Gerben; Moons, Karel G. M.; Puhan, Milo A.
2016-01-01
Prediction models should be externally validated before being used in clinical practice. Many published prediction models have never been validated. Uncollected predictor variables in otherwise suitable validation cohorts are the main factor precluding external validation.We used individual patient
A Model to Predict the Risk of Keratinocyte Carcinomas.
Whiteman, David C; Thompson, Bridie S; Thrift, Aaron P; Hughes, Maria-Celia; Muranushi, Chiho; Neale, Rachel E; Green, Adele C; Olsen, Catherine M
2016-06-01
Basal cell and squamous cell carcinomas of the skin are the commonest cancers in humans, yet no validated tools exist to estimate future risks of developing keratinocyte carcinomas. To develop a prediction tool, we used baseline data from a prospective cohort study (n = 38,726) in Queensland, Australia, and used data linkage to capture all surgically excised keratinocyte carcinomas arising within the cohort. Predictive factors were identified through stepwise logistic regression models. In secondary analyses, we derived separate models within strata of prior skin cancer history, age, and sex. The primary model included terms for 10 items. Factors with the strongest effects were >20 prior skin cancers excised (odds ratio 8.57, 95% confidence interval [95% CI] 6.73-10.91), >50 skin lesions destroyed (odds ratio 3.37, 95% CI 2.85-3.99), age ≥ 70 years (odds ratio 3.47, 95% CI 2.53-4.77), and fair skin color (odds ratio 1.75, 95% CI 1.42-2.15). Discrimination in the validation dataset was high (area under the receiver operator characteristic curve 0.80, 95% CI 0.79-0.81) and the model appeared well calibrated. Among those reporting no prior history of skin cancer, a similar model with 10 factors predicted keratinocyte carcinoma events with reasonable discrimination (area under the receiver operator characteristic curve 0.72, 95% CI 0.70-0.75). Algorithms using self-reported patient data have high accuracy for predicting risks of keratinocyte carcinomas.
Predicting diabetic nephropathy using a multifactorial genetic model.
Directory of Open Access Journals (Sweden)
Ilana Blech
Full Text Available AIMS: The tendency to develop diabetic nephropathy is, in part, genetically determined, however this genetic risk is largely undefined. In this proof-of-concept study, we tested the hypothesis that combined analysis of multiple genetic variants can improve prediction. METHODS: Based on previous reports, we selected 27 SNPs in 15 genes from metabolic pathways involved in the pathogenesis of diabetic nephropathy and genotyped them in 1274 Ashkenazi or Sephardic Jewish patients with Type 1 or Type 2 diabetes of >10 years duration. A logistic regression model was built using a backward selection algorithm and SNPs nominally associated with nephropathy in our population. The model was validated by using random "training" (75% and "test" (25% subgroups of the original population and by applying the model to an independent dataset of 848 Ashkenazi patients. RESULTS: The logistic model based on 5 SNPs in 5 genes (HSPG2, NOS3, ADIPOR2, AGER, and CCL5 and 5 conventional variables (age, sex, ethnicity, diabetes type and duration, and allowing for all possible two-way interactions, predicted nephropathy in our initial population (C-statistic = 0.672 better than a model based on conventional variables only (C = 0.569. In the independent replication dataset, although the C-statistic of the genetic model decreased (0.576, it remained highly associated with diabetic nephropathy (χ(2 = 17.79, p<0.0001. In the replication dataset, the model based on conventional variables only was not associated with nephropathy (χ(2 = 3.2673, p = 0.07. CONCLUSION: In this proof-of-concept study, we developed and validated a genetic model in the Ashkenazi/Sephardic population predicting nephropathy more effectively than a similarly constructed non-genetic model. Further testing is required to determine if this modeling approach, using an optimally selected panel of genetic markers, can provide clinically useful prediction and if generic models can be
Bayesian prediction of placebo analgesia in an instrumental learning model
Jung, Won-Mo; Lee, Ye-Seul; Wallraven, Christian; Chae, Younbyoung
2017-01-01
Placebo analgesia can be primarily explained by the Pavlovian conditioning paradigm in which a passively applied cue becomes associated with less pain. In contrast, instrumental conditioning employs an active paradigm that might be more similar to clinical settings. In the present study, an instrumental conditioning paradigm involving a modified trust game in a simulated clinical situation was used to induce placebo analgesia. Additionally, Bayesian modeling was applied to predict the placebo responses of individuals based on their choices. Twenty-four participants engaged in a medical trust game in which decisions to receive treatment from either a doctor (more effective with high cost) or a pharmacy (less effective with low cost) were made after receiving a reference pain stimulus. In the conditioning session, the participants received lower levels of pain following both choices, while high pain stimuli were administered in the test session even after making the decision. The choice-dependent pain in the conditioning session was modulated in terms of both intensity and uncertainty. Participants reported significantly less pain when they chose the doctor or the pharmacy for treatment compared to the control trials. The predicted pain ratings based on Bayesian modeling showed significant correlations with the actual reports from participants for both of the choice categories. The instrumental conditioning paradigm allowed for the active choice of optional cues and was able to induce the placebo analgesia effect. Additionally, Bayesian modeling successfully predicted pain ratings in a simulated clinical situation that fits well with placebo analgesia induced by instrumental conditioning. PMID:28225816
COGNITIVE MODELS OF PREDICTION THE DEVELOPMENT OF A DIVERSIFIED CORPORATION
Directory of Open Access Journals (Sweden)
Baranovskaya T. P.
2016-10-01
Full Text Available The application of classical forecasting methods applied to a diversified corporation faces some certain difficulties, due to its economic nature. Unlike other businesses, diversified corporations are characterized by multidimensional arrays of data with a high degree of distortion and fragmentation of information due to the cumulative effect of the incompleteness and distortion of accounting information from the enterprises in it. Under these conditions, the applied methods and tools must have high resolution and work effectively with large databases with incomplete information, ensure the correct common comparable quantitative processing of the heterogeneous nature of the factors measured in different units. It is therefore necessary to select or develop some methods that can work with complex poorly formalized tasks. This fact substantiates the relevance of the problem of developing models, methods and tools for solving the problem of forecasting the development of diversified corporations. This is the subject of this work, which makes it relevant. The work aims to: 1 analyze the forecasting methods to justify the choice of system-cognitive analysis as one of the effective methods for the prediction of semi-structured tasks; 2 to adapt and develop the method of systemic-cognitive analysis for forecasting of dynamics of development of the corporation subject to the scenario approach; 3 to develop predictive model scenarios of changes in basic economic indicators of development of the corporation and to assess their credibility; 4 determine the analytical form of the dependence between past and future scenarios of various economic indicators; 5 develop analytical models weighing predictable scenarios, taking into account all prediction results with positive levels of similarity, to increase the level of reliability of forecasts; 6 to develop a calculation procedure to assess the strength of influence on the corporation (sensitivity of its
Rosas, Marcela; Osorio, Fabiola; Robinson, Matthew J; Davies, Luke C; Dierkes, Nicola; Jones, Simon A; Reis e Sousa, Caetano; Taylor, Philip R
2011-02-01
We have examined the potential to generate bona fide macrophages (MØ) from conditionally immortalised murine bone marrow precursors. MØ can be derived from Hoxb8 conditionally immortalised macrophage precursor cell lines (MØP) using either M-CSF or GM-CSF. When differentiated in GM-CSF (GM-MØP) the resultant cells resemble GM-CSF bone marrow-derived dendritic cells (BMDC) in morphological phenotype, antigen phenotype and functional responses to microbial stimuli. In spite of this high similarity between the two cell types and the ability of GM-MØP to effectively present antigen to a T-cell hybridoma, these cells are comparatively poor at priming the expansion of IFN-γ responses from naïve CD4(+) T cells. The generation of MØP from transgenic or genetically aberrant mice provides an excellent opportunity to study the inflammatory role of GM-MØP, and reduces the need for mouse colonies in many studies. Hence differentiation of conditionally immortalised MØPs in GM-CSF represents a unique in vitro model of inflammatory monocyte-like cells, with important differences from bone marrow-derived dendritic cells, which will facilitate functional studies relating to the many 'sub-phenotypes' of inflammatory monocytes.
Institute of Scientific and Technical Information of China (English)
Pan Jiayi; Chin-Pang Jack Cheng; Gloria T. Lau; Kincho H. Law
2008-01-01
The objective of this paper is to introduce three semi-automated approaches for ontology mapping using relatedness analysis techniques. In the architecture, engineering, and construction (AEC) industry, there exist a number of ontological standards to describe the semantics of building models. Although the standards share similar scopes of interest, the task of comparing and mapping concepts among standards is challenging due to their differences in terminologies and perspectives. Ontology mapping is therefore necessary to achieve information interoperability, which allows two or more information sources to exchange data and to re-use the data for further purposes. The attribute-based approach, corpus-based approach, and name-based approach presented in this paper adopt the statistical relatedness analysis techniques to discover related concepts from heterogeneous ontologies. A pilot study is conducted on IFC and CIS/2 ontologies to evaluate the approaches. Preliminary results show that the attribute-based approach outperforms the other two approaches in terms of precision and F-measure.
Estimating the magnitude of prediction uncertainties for the APLE model
Models are often used to predict phosphorus (P) loss from agricultural fields. While it is commonly recognized that model predictions are inherently uncertain, few studies have addressed prediction uncertainties using P loss models. In this study, we conduct an uncertainty analysis for the Annual P ...
Predictive modeling of low solubility semiconductor alloys
Rodriguez, Garrett V.; Millunchick, Joanna M.
2016-09-01
GaAsBi is of great interest for applications in high efficiency optoelectronic devices due to its highly tunable bandgap. However, the experimental growth of high Bi content films has proven difficult. Here, we model GaAsBi film growth using a kinetic Monte Carlo simulation that explicitly takes cation and anion reactions into account. The unique behavior of Bi droplets is explored, and a sharp decrease in Bi content upon Bi droplet formation is demonstrated. The high mobility of simulated Bi droplets on GaAsBi surfaces is shown to produce phase separated Ga-Bi droplets as well as depressions on the film surface. A phase diagram for a range of growth rates that predicts both Bi content and droplet formation is presented to guide the experimental growth of high Bi content GaAsBi films.
Distributed model predictive control made easy
Negenborn, Rudy
2014-01-01
The rapid evolution of computer science, communication, and information technology has enabled the application of control techniques to systems beyond the possibilities of control theory just a decade ago. Critical infrastructures such as electricity, water, traffic and intermodal transport networks are now in the scope of control engineers. The sheer size of such large-scale systems requires the adoption of advanced distributed control approaches. Distributed model predictive control (MPC) is one of the promising control methodologies for control of such systems. This book provides a state-of-the-art overview of distributed MPC approaches, while at the same time making clear directions of research that deserve more attention. The core and rationale of 35 approaches are carefully explained. Moreover, detailed step-by-step algorithmic descriptions of each approach are provided. These features make the book a comprehensive guide both for those seeking an introduction to distributed MPC as well as for those ...
Leptogenesis in minimal predictive seesaw models
Björkeroth, Fredrik; de Anda, Francisco J.; de Medeiros Varzielas, Ivo; King, Stephen F.
2015-10-01
We estimate the Baryon Asymmetry of the Universe (BAU) arising from leptogenesis within a class of minimal predictive seesaw models involving two right-handed neutrinos and simple Yukawa structures with one texture zero. The two right-handed neutrinos are dominantly responsible for the "atmospheric" and "solar" neutrino masses with Yukawa couplings to ( ν e , ν μ , ν τ ) proportional to (0, 1, 1) and (1, n, n - 2), respectively, where n is a positive integer. The neutrino Yukawa matrix is therefore characterised by two proportionality constants with their relative phase providing a leptogenesis-PMNS link, enabling the lightest right-handed neutrino mass to be determined from neutrino data and the observed BAU. We discuss an SU(5) SUSY GUT example, where A 4 vacuum alignment provides the required Yukawa structures with n = 3, while a {{Z}}_9 symmetry fixes the relatives phase to be a ninth root of unity.
Regional differences in prediction models of lung function in Germany
Directory of Open Access Journals (Sweden)
Schäper Christoph
2010-04-01
Full Text Available Abstract Background Little is known about the influencing potential of specific characteristics on lung function in different populations. The aim of this analysis was to determine whether lung function determinants differ between subpopulations within Germany and whether prediction equations developed for one subpopulation are also adequate for another subpopulation. Methods Within three studies (KORA C, SHIP-I, ECRHS-I in different areas of Germany 4059 adults performed lung function tests. The available data consisted of forced expiratory volume in one second, forced vital capacity and peak expiratory flow rate. For each study multivariate regression models were developed to predict lung function and Bland-Altman plots were established to evaluate the agreement between predicted and measured values. Results The final regression equations for FEV1 and FVC showed adjusted r-square values between 0.65 and 0.75, and for PEF they were between 0.46 and 0.61. In all studies gender, age, height and pack-years were significant determinants, each with a similar effect size. Regarding other predictors there were some, although not statistically significant, differences between the studies. Bland-Altman plots indicated that the regression models for each individual study adequately predict medium (i.e. normal but not extremely high or low lung function values in the whole study population. Conclusions Simple models with gender, age and height explain a substantial part of lung function variance whereas further determinants add less than 5% to the total explained r-squared, at least for FEV1 and FVC. Thus, for different adult subpopulations of Germany one simple model for each lung function measures is still sufficient.
Epstein, Leonard H; Dearing, Kelly K; Erbe, Richard W
2010-10-01
Family-based treatments show positive relationships between parent and child weight losses. One mechanism for similar parent-child changes may be a common genetic predisposition to respond similarly to a structured weight loss program. We examined whether concordance of the Taq1 A1 allele of the dopamine D2 receptor (DRD2) predicts similarities in zBMI change in 26 families with obese parents and overweight/obese 8-12-year-old children. Results showed a relationship between parent and child zBMI change over 6 and 12 months (rs=.69, .77, psloss at 6 (p=0.003) and 12 (p=0.025) months. These results show concordance of the Taq1 A1 allele of the DRD2 between parents and children may be one mechanism for the similar response to family-based treatments within families.
Predicting future glacial lakes in Austria using different modelling approaches
Otto, Jan-Christoph; Helfricht, Kay; Prasicek, Günther; Buckel, Johannes; Keuschnig, Markus
2017-04-01
Glacier retreat is one of the most apparent consequences of temperature rise in the 20th and 21th centuries in the European Alps. In Austria, more than 240 new lakes have formed in glacier forefields since the Little Ice Age. A similar signal is reported from many mountain areas worldwide. Glacial lakes can constitute important environmental and socio-economic impacts on high mountain systems including water resource management, sediment delivery, natural hazards, energy production and tourism. Their development significantly modifies the landscape configuration and visual appearance of high mountain areas. Knowledge on the location, number and extent of these future lakes can be used to assess potential impacts on high mountain geo-ecosystems and upland-lowland interactions. Information on new lakes is critical to appraise emerging threads and potentials for society. The recent development of regional ice thickness models and their combination with high resolution glacier surface data allows predicting the topography below current glaciers by subtracting ice thickness from glacier surface. Analyzing these modelled glacier bed surfaces reveals overdeepenings that represent potential locations for future lakes. In order to predict the location of future glacial lakes below recent glaciers in the Austrian Alps we apply different ice thickness models using high resolution terrain data and glacier outlines. The results are compared and validated with ice thickness data from geophysical surveys. Additionally, we run the models on three different glacier extents provided by the Austrian Glacier Inventories from 1969, 1998 and 2006. Results of this historical glacier extent modelling are compared to existing glacier lakes and discussed focusing on geomorphological impacts on lake evolution. We discuss model performance and observed differences in the results in order to assess the approach for a realistic prediction of future lake locations. The presentation delivers
Comparing model predictions for ecosystem-based management
DEFF Research Database (Denmark)
Jacobsen, Nis Sand; Essington, Timothy E.; Andersen, Ken Haste
2016-01-01
Ecosystem modeling is becoming an integral part of fisheries management, but there is a need to identify differences between predictions derived from models employed for scientific and management purposes. Here, we compared two models: a biomass-based food-web model (Ecopath with Ecosim (Ew......E)) and a size-structured fish community model. The models were compared with respect to predicted ecological consequences of fishing to identify commonalities and differences in model predictions for the California Current fish community. We compared the models regarding direct and indirect responses to fishing...... on one or more species. The size-based model predicted a higher fishing mortality needed to reach maximum sustainable yield than EwE for most species. The size-based model also predicted stronger top-down effects of predator removals than EwE. In contrast, EwE predicted stronger bottom-up effects...
Directory of Open Access Journals (Sweden)
Smt K. Prabavathy
2014-12-01
Full Text Available Protein-protein interactions functions as a significant key role in several biological systems. These involves in complex formation and many pathways which are used to perform biological processes. By accurate identification of the set of interacting proteins can get rid of new light on the functional role of various proteins in the complex surroundings of the cell. The ability to construct biologically consequential gene networks and identification of the exact relationship in the gene network is critical for present-day systems biology. In earlier research, the power of presented gene modules to shed light on the functioning of complex biological systems is studied. Most of modules in these networks have shown small link with meaningful biological function, because these methods doesn’t exactly calculate the semantic relationship between the entities. In order to overcome these problems and improve the PPI results in the biotext corpus a new method is proposed in this research. The proposed method which directly incorporates Gene Ontology (GO annotation in construction of gene modules and Dictionary-based text is proposed to extract biotext information. Dictionary-Based Text and Gene Ontology (DBTGO approach that integrates with various gene-gene pairwise similarity values, protein-protein interaction relationship obtained from gene expression, in order to gain better biotext information retrieval result. A result analysis has been carried out on Biotext Project at UC Berkley. Testing the DBTGO algorithm indicates that it is able to improve PPI relationship identification result with all previously suggested methods in terms of the precision, recall, F measure and Normalized Discounted Cumulative Gain (NDCG. The proposed DBTGO algorithm can facilitate comprehensive and in-depth analysis of high throughput experimental data at the gene network level.
Comparative modeling of the human monoamine transporters: similarities in substrate binding.
Koldsø, Heidi; Christiansen, Anja B; Sinning, Steffen; Schiøtt, Birgit
2013-02-20
The amino acid compositions of the substrate binding pockets of the three human monoamine transporters are compared as is the orientation of the endogenous substrates, serotonin, dopamine, and norepinephrine, bound in these. Through a combination of homology modeling, induced fit dockings, molecular dynamics simulations, and uptake experiments in mutant transporters, we propose a common binding mode for the three substrates. The longitudinal axis of the substrates is similarly oriented with these, forming an ionic interaction between the ammonium group and a highly conserved aspartate, Asp98 (serotonin transporter, hSERT), Asp79 (dopamine transporter, hDAT), and Asp75 (norepinephrine transporter, hNET). The 6-position of serotonin and the para-hydroxyl groups of dopamine and norepinephrine were found to face Ala173 in hSERT, Gly153 in hDAT, and Gly149 in hNET. Three rotations of the substrates around the longitudinal axis were identified. In each mode, an aromatic hydroxyl group of the substrates occupied equivalent volumes of the three binding pockets, where small changes in amino acid composition explains the differences in selectivity. Uptake experiments support that the 5-hydroxyl group of serotonin and the meta-hydroxyl group norepinephrine and dopamine are placed in the hydrophilic pocket around Ala173, Ser438, and Thr439 in hSERT corresponding to Gly149, Ser419, Ser420 in hNET and Gly153 Ser422 and Ala423 in hDAT. Furthermore, hDAT was found to possess an additional hydrophilic pocket around Ser149 to accommodate the para-hydroxyl group. Understanding these subtle differences between the binding site compositions of the three transporters is imperative for understanding the substrate selectivity, which could eventually aid in developing future selective medicines.
Models for predicting objective function weights in prostate cancer IMRT
Energy Technology Data Exchange (ETDEWEB)
Boutilier, Justin J., E-mail: j.boutilier@mail.utoronto.ca; Lee, Taewoo [Department of Mechanical and Industrial Engineering, University of Toronto, 5 King’s College Road, Toronto, Ontario M5S 3G8 (Canada); Craig, Tim [Radiation Medicine Program, UHN Princess Margaret Cancer Centre, 610 University of Avenue, Toronto, Ontario M5T 2M9, Canada and Department of Radiation Oncology, University of Toronto, 148 - 150 College Street, Toronto, Ontario M5S 3S2 (Canada); Sharpe, Michael B. [Radiation Medicine Program, UHN Princess Margaret Cancer Centre, 610 University of Avenue, Toronto, Ontario M5T 2M9 (Canada); Department of Radiation Oncology, University of Toronto, 148 - 150 College Street, Toronto, Ontario M5S 3S2 (Canada); Techna Institute for the Advancement of Technology for Health, 124 - 100 College Street, Toronto, Ontario M5G 1P5 (Canada); Chan, Timothy C. Y. [Department of Mechanical and Industrial Engineering, University of Toronto, 5 King’s College Road, Toronto, Ontario M5S 3G8, Canada and Techna Institute for the Advancement of Technology for Health, 124 - 100 College Street, Toronto, Ontario M5G 1P5 (Canada)
2015-04-15
Purpose: To develop and evaluate the clinical applicability of advanced machine learning models that simultaneously predict multiple optimization objective function weights from patient geometry for intensity-modulated radiation therapy of prostate cancer. Methods: A previously developed inverse optimization method was applied retrospectively to determine optimal objective function weights for 315 treated patients. The authors used an overlap volume ratio (OV) of bladder and rectum for different PTV expansions and overlap volume histogram slopes (OVSR and OVSB for the rectum and bladder, respectively) as explanatory variables that quantify patient geometry. Using the optimal weights as ground truth, the authors trained and applied three prediction models: logistic regression (LR), multinomial logistic regression (MLR), and weighted K-nearest neighbor (KNN). The population average of the optimal objective function weights was also calculated. Results: The OV at 0.4 cm and OVSR at 0.1 cm features were found to be the most predictive of the weights. The authors observed comparable performance (i.e., no statistically significant difference) between LR, MLR, and KNN methodologies, with LR appearing to perform the best. All three machine learning models outperformed the population average by a statistically significant amount over a range of clinical metrics including bladder/rectum V53Gy, bladder/rectum V70Gy, and dose to the bladder, rectum, CTV, and PTV. When comparing the weights directly, the LR model predicted bladder and rectum weights that had, on average, a 73% and 74% relative improvement over the population average weights, respectively. The treatment plans resulting from the LR weights had, on average, a rectum V70Gy that was 35% closer to the clinical plan and a bladder V70Gy that was 29% closer, compared to the population average weights. Similar results were observed for all other clinical metrics. Conclusions: The authors demonstrated that the KNN and MLR
Institute of Scientific and Technical Information of China (English)
LU Xiao-li
2012-01-01
I select 32 samples concerning per capita living consumption of rural residents in Sichuan Province during the period 1978-2009. First, using Markov prediction method, the growth rate of living consumption level in the future is predicted to largely range from 10% to 20%. Then, in order to improve the prediction accuracy, time variable t is added into the traditional ARMA model for modeling and prediction. The prediction results show that the average relative error rate is 1.56%, and the absolute value of relative error during the period 2006-2009 is less than 0.5%. Finally, I compare the prediction results during the period 2010-2012 by Markov prediction method and ARMA model, respectively, indicating that the two are consistent in terms of growth rate of living consumption, and the prediction results are reliable. The results show that under the similar policies, rural residents’ consumer demand in Sichuan Province will continue to grow in the short term, so it is necessary to further expand the consumer market.
Remaining Useful Lifetime (RUL - Probabilistic Predictive Model
Directory of Open Access Journals (Sweden)
Ephraim Suhir
2011-01-01
Full Text Available Reliability evaluations and assurances cannot be delayed until the device (system is fabricated and put into operation. Reliability of an electronic product should be conceived at the early stages of its design; implemented during manufacturing; evaluated (considering customer requirements and the existing specifications, by electrical, optical and mechanical measurements and testing; checked (screened during manufacturing (fabrication; and, if necessary and appropriate, maintained in the field during the product’s operation Simple and physically meaningful probabilistic predictive model is suggested for the evaluation of the remaining useful lifetime (RUL of an electronic device (system after an appreciable deviation from its normal operation conditions has been detected, and the increase in the failure rate and the change in the configuration of the wear-out portion of the bathtub has been assessed. The general concepts are illustrated by numerical examples. The model can be employed, along with other PHM forecasting and interfering tools and means, to evaluate and to maintain the high level of the reliability (probability of non-failure of a device (system at the operation stage of its lifetime.
A Predictive Model of Geosynchronous Magnetopause Crossings
Dmitriev, A; Chao, J -K
2013-01-01
We have developed a model predicting whether or not the magnetopause crosses geosynchronous orbit at given location for given solar wind pressure Psw, Bz component of interplanetary magnetic field (IMF) and geomagnetic conditions characterized by 1-min SYM-H index. The model is based on more than 300 geosynchronous magnetopause crossings (GMCs) and about 6000 minutes when geosynchronous satellites of GOES and LANL series are located in the magnetosheath (so-called MSh intervals) in 1994 to 2001. Minimizing of the Psw required for GMCs and MSh intervals at various locations, Bz and SYM-H allows describing both an effect of magnetopause dawn-dusk asymmetry and saturation of Bz influence for very large southward IMF. The asymmetry is strong for large negative Bz and almost disappears when Bz is positive. We found that the larger amplitude of negative SYM-H the lower solar wind pressure is required for GMCs. We attribute this effect to a depletion of the dayside magnetic field by a storm-time intensification of t...
Predictive modeling for EBPC in EBDW
Zimmermann, Rainer; Schulz, Martin; Hoppe, Wolfgang; Stock, Hans-Jürgen; Demmerle, Wolfgang; Zepka, Alex; Isoyan, Artak; Bomholt, Lars; Manakli, Serdar; Pain, Laurent
2009-10-01
We demonstrate a flow for e-beam proximity correction (EBPC) to e-beam direct write (EBDW) wafer manufacturing processes, demonstrating a solution that covers all steps from the generation of a test pattern for (experimental or virtual) measurement data creation, over e-beam model fitting, proximity effect correction (PEC), and verification of the results. We base our approach on a predictive, physical e-beam simulation tool, with the possibility to complement this with experimental data, and the goal of preparing the EBPC methods for the advent of high-volume EBDW tools. As an example, we apply and compare dose correction and geometric correction for low and high electron energies on 1D and 2D test patterns. In particular, we show some results of model-based geometric correction as it is typical for the optical case, but enhanced for the particularities of e-beam technology. The results are used to discuss PEC strategies, with respect to short and long range effects.
Building predictive models of soil particle-size distribution
Directory of Open Access Journals (Sweden)
Alessandro Samuel-Rosa
2013-04-01
Full Text Available Is it possible to build predictive models (PMs of soil particle-size distribution (psd in a region with complex geology and a young and unstable land-surface? The main objective of this study was to answer this question. A set of 339 soil samples from a small slope catchment in Southern Brazil was used to build PMs of psd in the surface soil layer. Multiple linear regression models were constructed using terrain attributes (elevation, slope, catchment area, convergence index, and topographic wetness index. The PMs explained more than half of the data variance. This performance is similar to (or even better than that of the conventional soil mapping approach. For some size fractions, the PM performance can reach 70 %. Largest uncertainties were observed in geologically more complex areas. Therefore, significant improvements in the predictions can only be achieved if accurate geological data is made available. Meanwhile, PMs built on terrain attributes are efficient in predicting the particle-size distribution (psd of soils in regions of complex geology.
Institute of Scientific and Technical Information of China (English)
LEE Hyeon-deok; SON Myeong-jo; OH Min-jae; LEE Hyung-woo; KIM Tae-wan
2012-01-01
In early 2000,large domestic shipyards introduced shipbuilding 3D computer-aided design (CAD)to the hull production design process to define manufacturing and assembly information.The production design process accounts for most of the man-hours (M/H) of the entire design process and is closely connected to yard production because designs must take into account the production schedule of the shipyard,the current state of the dock needed to mount the ship's block,and supply information.Therefore,many shipyards are investigating the complete automation of the production design process to reduce the M/H for designers.However,these problems are still currently unresolved,and a clear direction is needed for research on the automatic design base of manufacturing rules,batches reflecting changed building specifications,batch updates of boundary information for hull members,and management of the hull model change history to automate the production design process.In this study,a process was developed to aid production design engineers in designing a new ship's hull block model from that of a similar ship previously built,based on AVEVA Marine.An automation system that uses the similar ship's hull block model is proposed to reduce M/H and human errors by the production design engineer.First,scheme files holding important information were constructed in a database to automatically update hull block model modifications.Second,for batch updates,the database's table,including building specifications and the referential integrity of a relational database were compared.In particular,this study focused on reflecting the frequent modification of building specifications and regeneration of boundary information of the adjacent panel due to changes in a specific panel.Third,the rollback function is proposed in which the database (DB) is used to return to the previously designed panels.
An approach to model validation and model-based prediction -- polyurethane foam case study.
Energy Technology Data Exchange (ETDEWEB)
Dowding, Kevin J.; Rutherford, Brian Milne
2003-07-01
Enhanced software methodology and improved computing hardware have advanced the state of simulation technology to a point where large physics-based codes can be a major contributor in many systems analyses. This shift toward the use of computational methods has brought with it new research challenges in a number of areas including characterization of uncertainty, model validation, and the analysis of computer output. It is these challenges that have motivated the work described in this report. Approaches to and methods for model validation and (model-based) prediction have been developed recently in the engineering, mathematics and statistical literatures. In this report we have provided a fairly detailed account of one approach to model validation and prediction applied to an analysis investigating thermal decomposition of polyurethane foam. A model simulates the evolution of the foam in a high temperature environment as it transforms from a solid to a gas phase. The available modeling and experimental results serve as data for a case study focusing our model validation and prediction developmental efforts on this specific thermal application. We discuss several elements of the ''philosophy'' behind the validation and prediction approach: (1) We view the validation process as an activity applying to the use of a specific computational model for a specific application. We do acknowledge, however, that an important part of the overall development of a computational simulation initiative is the feedback provided to model developers and analysts associated with the application. (2) We utilize information obtained for the calibration of model parameters to estimate the parameters and quantify uncertainty in the estimates. We rely, however, on validation data (or data from similar analyses) to measure the variability that contributes to the uncertainty in predictions for specific systems or units (unit-to-unit variability). (3) We perform statistical
Bruns, Gina L; Carter, Michele M
2015-04-01
Media exposure has been positively correlated with body dissatisfaction. While body image concerns are common, being African American has been found to be a protective factor in the development of body dissatisfaction. Participants either viewed ten advertisements showing 1) ethnically-similar thin models; 2) ethnically-different thin models; 3) ethnically-similar plus-sized models; and 4) ethnically-diverse plus-sized models. Following exposure, body image was measured. African American women had less body dissatisfaction than Caucasian women. Ethnically-similar thin-model conditions did not elicit greater body dissatisfaction scores than ethnically-different thin or plus-sized models nor did the ethnicity of the model impact ratings of body dissatisfaction for women of either race. There were no differences among the African American women exposed to plus-sized versus thin models. Among Caucasian women exposure to plus-sized models resulted in greater body dissatisfaction than exposure to thin models. Results support existing literature that African American women experience less body dissatisfaction than Caucasian women even following exposure to an ethnically-similar thin model. Additionally, women exposed to plus-sized model conditions experienced greater body dissatisfaction than those shown thin models. Copyright © 2014 Elsevier Ltd. All rights reserved.
Model for predicting mountain wave field uncertainties
Damiens, Florentin; Lott, François; Millet, Christophe; Plougonven, Riwal
2017-04-01
Studying the propagation of acoustic waves throughout troposphere requires knowledge of wind speed and temperature gradients from the ground up to about 10-20 km. Typical planetary boundary layers flows are known to present vertical low level shears that can interact with mountain waves, thereby triggering small-scale disturbances. Resolving these fluctuations for long-range propagation problems is, however, not feasible because of computer memory/time restrictions and thus, they need to be parameterized. When the disturbances are small enough, these fluctuations can be described by linear equations. Previous works by co-authors have shown that the critical layer dynamics that occur near the ground produces large horizontal flows and buoyancy disturbances that result in intense downslope winds and gravity wave breaking. While these phenomena manifest almost systematically for high Richardson numbers and when the boundary layer depth is relatively small compare to the mountain height, the process by which static stability affects downslope winds remains unclear. In the present work, new linear mountain gravity wave solutions are tested against numerical predictions obtained with the Weather Research and Forecasting (WRF) model. For Richardson numbers typically larger than unity, the mesoscale model is used to quantify the effect of neglected nonlinear terms on downslope winds and mountain wave patterns. At these regimes, the large downslope winds transport warm air, a so called "Foehn" effect than can impact sound propagation properties. The sensitivity of small-scale disturbances to Richardson number is quantified using two-dimensional spectral analysis. It is shown through a pilot study of subgrid scale fluctuations of boundary layer flows over realistic mountains that the cross-spectrum of mountain wave field is made up of the same components found in WRF simulations. The impact of each individual component on acoustic wave propagation is discussed in terms of
A Model for Comparative Analysis of the Similarity between Android and iOS Operating Systems
Directory of Open Access Journals (Sweden)
Lixandroiu R.
2014-12-01
Full Text Available Due to recent expansion of mobile devices, in this article we try to do an analysis of two of the most used mobile OSS. This analysis is made on the method of calculating Jaccard's similarity coefficient. To complete the analysis, we developed a hierarchy of factors in evaluating OSS. Analysis has shown that the two OSS are similar in terms of functionality, but there are a number of factors that weighted make a difference.
Directory of Open Access Journals (Sweden)
Jing Lu
2014-11-01
Full Text Available We propose a weather prediction model in this article based on neural network and fuzzy inference system (NFIS-WPM, and then apply it to predict daily fuzzy precipitation given meteorological premises for testing. The model consists of two parts: the first part is the “fuzzy rule-based neural network”, which simulates sequential relations among fuzzy sets using artificial neural network; and the second part is the “neural fuzzy inference system”, which is based on the first part, but could learn new fuzzy rules from the previous ones according to the algorithm we proposed. NFIS-WPM (High Pro and NFIS-WPM (Ave are improved versions of this model. It is well known that the need for accurate weather prediction is apparent when considering the benefits. However, the excessive pursuit of accuracy in weather prediction makes some of the “accurate” prediction results meaningless and the numerical prediction model is often complex and time-consuming. By adapting this novel model to a precipitation prediction problem, we make the predicted outcomes of precipitation more accurate and the prediction methods simpler than by using the complex numerical forecasting model that would occupy large computation resources, be time-consuming and which has a low predictive accuracy rate. Accordingly, we achieve more accurate predictive precipitation results than by using traditional artificial neural networks that have low predictive accuracy.
Model Predictive Control of Buoy Type Wave Energy Converter
DEFF Research Database (Denmark)
Soltani, Mohsen N.; Sichani, Mahdi T.; Mirzaei, Mahmood
2014-01-01
The paper introduces the Wavestar wave energy converter and presents the implementation of model predictive controller that maximizes the power generation. The ocean wave power is extracted using a hydraulic electric generator which is connected to an oscillating buoy. The power generator...... is an additive device attached to the buoy which may include damping, stiffness or similar terms hence will affect the dynamic motion of the buoy. Therefore such a device can be seen as a closed-loop controller. The objective of the wave energy converter is to harvest as much energy from sea as possible....... This approach is then taken into account and an MPC controller is designed for a model wave energy converter and implemented on a numerical example. Further, the power outtake of this controller is compared to the optimal controller as an indicator of the performance of the designed controller....
Prediction and setup of phytoplankton statistical model of Qiandaohu Lake
Institute of Scientific and Technical Information of China (English)
严力蛟; 全为民; 赵晓慧
2004-01-01
This research considers the mathematical relationship between concentration of Chla and seven environmental factors, i.e. Lake water temperature (T), Secci-depth (SD), pH, DO, CODMn, Total Nitrogen (TN), Total Phosphorus (TP).Stepwise linear regression of 1997 to 1999 monitoring data at each sampling point of Qiandaohu Lake yielded the multivariate regression models presented in this paper. The concentration of Chla as simulation for the year 2000 by the regression model was similar to the observed value. The suggested mathematical relationship could be used to predict changes in the lakewater environment at any point in time. The results showed that SD, TP and pH were the most significant factors affecting Chla concentration.
RFI modeling and prediction approach for SATOP applications: RFI prediction models
Nguyen, Tien M.; Tran, Hien T.; Wang, Zhonghai; Coons, Amanda; Nguyen, Charles C.; Lane, Steven A.; Pham, Khanh D.; Chen, Genshe; Wang, Gang
2016-05-01
This paper describes a technical approach for the development of RFI prediction models using carrier synchronization loop when calculating Bit or Carrier SNR degradation due to interferences for (i) detecting narrow-band and wideband RFI signals, and (ii) estimating and predicting the behavior of the RFI signals. The paper presents analytical and simulation models and provides both analytical and simulation results on the performance of USB (Unified S-Band) waveforms in the presence of narrow-band and wideband RFI signals. The models presented in this paper will allow the future USB command systems to detect the RFI presence, estimate the RFI characteristics and predict the RFI behavior in real-time for accurate assessment of the impacts of RFI on the command Bit Error Rate (BER) performance. The command BER degradation model presented in this paper also allows the ground system operator to estimate the optimum transmitted SNR to maintain a required command BER level in the presence of both friendly and un-friendly RFI sources.
Simple predictive electron transport models applied to sawtoothing plasmas
Kim, D.; Merle, A.; Sauter, O.; Goodman, T. P.
2016-05-01
In this work, we introduce two simple transport models to evaluate the time evolution of electron temperature and density profiles during sawtooth cycles (i.e. over a sawtooth period time-scale). Since the aim of these simulations is to estimate reliable profiles within a short calculation time, two simplified ad-hoc models have been developed. The goal for these models is to rely on a few easy-to-check free parameters, such as the confinement time scaling factor and the profiles’ averaged scale-lengths. Due to the simplicity and short calculation time of the models, it is expected that these models can also be applied to real-time transport simulations. We show that it works well for Ohmic and EC heated L- and H-mode plasmas. The differences between these models are discussed and we show that their predictive capabilities are similar. Thus only one model is used to reproduce with simulations the results of sawtooth control experiments on the TCV tokamak. For the sawtooth pacing, the calculated time delays between the EC power off and sawtooth crash time agree well with the experimental results. The map of possible locking range is also well reproduced by the simulation.
Prediction models : the right tool for the right problem
Kappen, Teus H.; Peelen, Linda M.
2016-01-01
PURPOSE OF REVIEW: Perioperative prediction models can help to improve personalized patient care by providing individual risk predictions to both patients and providers. However, the scientific literature on prediction model development and validation can be quite technical and challenging to unders
Walter, F.; Bruch, H.
2008-01-01
This conceptual paper seeks to clarify the process of the emergence of positive collective affect. Specifically, it develops a dynamic model of the emergence of positive affective similarity in work groups. It is suggested that positive group affective similarity and within-group relationship qualit
Walter, F.; Bruch, H.
This conceptual paper seeks to clarify the process of the emergence of positive collective affect. Specifically, it develops a dynamic model of the emergence of positive affective similarity in work groups. It is suggested that positive group affective similarity and within-group relationship
Foundation Settlement Prediction Based on a Novel NGM Model
Directory of Open Access Journals (Sweden)
Peng-Yu Chen
2014-01-01
Full Text Available Prediction of foundation or subgrade settlement is very important during engineering construction. According to the fact that there are lots of settlement-time sequences with a nonhomogeneous index trend, a novel grey forecasting model called NGM (1,1,k,c model is proposed in this paper. With an optimized whitenization differential equation, the proposed NGM (1,1,k,c model has the property of white exponential law coincidence and can predict a pure nonhomogeneous index sequence precisely. We used two case studies to verify the predictive effect of NGM (1,1,k,c model for settlement prediction. The results show that this model can achieve excellent prediction accuracy; thus, the model is quite suitable for simulation and prediction of approximate nonhomogeneous index sequence and has excellent application value in settlement prediction.
Predictability of the Indian Ocean Dipole in the coupled models
Liu, Huafeng; Tang, Youmin; Chen, Dake; Lian, Tao
2017-03-01
In this study, the Indian Ocean Dipole (IOD) predictability, measured by the Indian Dipole Mode Index (DMI), is comprehensively examined at the seasonal time scale, including its actual prediction skill and potential predictability, using the ENSEMBLES multiple model ensembles and the recently developed information-based theoretical framework of predictability. It was found that all model predictions have useful skill, which is normally defined by the anomaly correlation coefficient larger than 0.5, only at around 2-3 month leads. This is mainly because there are more false alarms in predictions as leading time increases. The DMI predictability has significant seasonal variation, and the predictions whose target seasons are boreal summer (JJA) and autumn (SON) are more reliable than that for other seasons. All of models fail to predict the IOD onset before May and suffer from the winter (DJF) predictability barrier. The potential predictability study indicates that, with the model development and initialization improvement, the prediction of IOD onset is likely to be improved but the winter barrier cannot be overcome. The IOD predictability also has decadal variation, with a high skill during the 1960s and the early 1990s, and a low skill during the early 1970s and early 1980s, which is very consistent with the potential predictability. The main factors controlling the IOD predictability, including its seasonal and decadal variations, are also analyzed in this study.
Dr. S. Jayakumar; Geetha, S.
2017-01-01
Mathematical Model is an idealization of the real world Phenomenon and never a completely accurate representation. Any Model has its limitations a good one can provide valuable results and conclusions. Mathematical Model as a mathematical construct designed to study a particular real world systems or behavior of Interest. The Model allows us to reach mathematical conclusions about the behavior; These conclusions can be interpreted to help a decision maker plan for the future. Most models simp...
Nonconvex model predictive control for commercial refrigeration
Gybel Hovgaard, Tobias; Boyd, Stephen; Larsen, Lars F. S.; Bagterp Jørgensen, John
2013-08-01
We consider the control of a commercial multi-zone refrigeration system, consisting of several cooling units that share a common compressor, and is used to cool multiple areas or rooms. In each time period we choose cooling capacity to each unit and a common evaporation temperature. The goal is to minimise the total energy cost, using real-time electricity prices, while obeying temperature constraints on the zones. We propose a variation on model predictive control to achieve this goal. When the right variables are used, the dynamics of the system are linear, and the constraints are convex. The cost function, however, is nonconvex due to the temperature dependence of thermodynamic efficiency. To handle this nonconvexity we propose a sequential convex optimisation method, which typically converges in fewer than 5 or so iterations. We employ a fast convex quadratic programming solver to carry out the iterations, which is more than fast enough to run in real time. We demonstrate our method on a realistic model, with a full year simulation and 15-minute time periods, using historical electricity prices and weather data, as well as random variations in thermal load. These simulations show substantial cost savings, on the order of 30%, compared to a standard thermostat-based control system. Perhaps more important, we see that the method exhibits sophisticated response to real-time variations in electricity prices. This demand response is critical to help balance real-time uncertainties in generation capacity associated with large penetration of intermittent renewable energy sources in a future smart grid.
Leptogenesis in minimal predictive seesaw models
Energy Technology Data Exchange (ETDEWEB)
Björkeroth, Fredrik [School of Physics and Astronomy, University of Southampton,Southampton, SO17 1BJ (United Kingdom); Anda, Francisco J. de [Departamento de Física, CUCEI, Universidad de Guadalajara,Guadalajara (Mexico); Varzielas, Ivo de Medeiros; King, Stephen F. [School of Physics and Astronomy, University of Southampton,Southampton, SO17 1BJ (United Kingdom)
2015-10-15
We estimate the Baryon Asymmetry of the Universe (BAU) arising from leptogenesis within a class of minimal predictive seesaw models involving two right-handed neutrinos and simple Yukawa structures with one texture zero. The two right-handed neutrinos are dominantly responsible for the “atmospheric” and “solar” neutrino masses with Yukawa couplings to (ν{sub e},ν{sub μ},ν{sub τ}) proportional to (0,1,1) and (1,n,n−2), respectively, where n is a positive integer. The neutrino Yukawa matrix is therefore characterised by two proportionality constants with their relative phase providing a leptogenesis-PMNS link, enabling the lightest right-handed neutrino mass to be determined from neutrino data and the observed BAU. We discuss an SU(5) SUSY GUT example, where A{sub 4} vacuum alignment provides the required Yukawa structures with n=3, while a ℤ{sub 9} symmetry fixes the relatives phase to be a ninth root of unity.
QSPR Models for Octane Number Prediction
Directory of Open Access Journals (Sweden)
Jabir H. Al-Fahemi
2014-01-01
Full Text Available Quantitative structure-property relationship (QSPR is performed as a means to predict octane number of hydrocarbons via correlating properties to parameters calculated from molecular structure; such parameters are molecular mass M, hydration energy EH, boiling point BP, octanol/water distribution coefficient logP, molar refractivity MR, critical pressure CP, critical volume CV, and critical temperature CT. Principal component analysis (PCA and multiple linear regression technique (MLR were performed to examine the relationship between multiple variables of the above parameters and the octane number of hydrocarbons. The results of PCA explain the interrelationships between octane number and different variables. Correlation coefficients were calculated using M.S. Excel to examine the relationship between multiple variables of the above parameters and the octane number of hydrocarbons. The data set was split into training of 40 hydrocarbons and validation set of 25 hydrocarbons. The linear relationship between the selected descriptors and the octane number has coefficient of determination (R2=0.932, statistical significance (F=53.21, and standard errors (s =7.7. The obtained QSPR model was applied on the validation set of octane number for hydrocarbons giving RCV2=0.942 and s=6.328.
Model Predictive Control of Buoy Type Wave Energy Converter
DEFF Research Database (Denmark)
Soltani, Mohsen; Sichani, Mahdi Teimouri; Mirzaei, Mahmood
2014-01-01
The paper introduces the Wavestar wave energy converter and presents the implementation of model predictive controller that maximizes the power generation. The ocean wave power is extracted using a hydraulic electric generator which is connected to an oscillating buoy. The power generator is an a....... This approach is then taken into account and an MPC controller is designed for a model WEC and implemented on a numerical example. Further, the power outtake of this controller is compared to the optimal controller as an indicator of the performance of the designed controller.......The paper introduces the Wavestar wave energy converter and presents the implementation of model predictive controller that maximizes the power generation. The ocean wave power is extracted using a hydraulic electric generator which is connected to an oscillating buoy. The power generator...... is an additive device attached to the buoy which may include damping, stiffness or similar terms hence will affect the dynamic motion of the buoy. Therefore such a device can be seen as a closed-loop controller. The objective of the wave energy converter is to harvest as much energy from sea as possible...
Analysing earthquake slip models with the spatial prediction comparison test
Zhang, L.
2014-11-10
Earthquake rupture models inferred from inversions of geophysical and/or geodetic data exhibit remarkable variability due to uncertainties in modelling assumptions, the use of different inversion algorithms, or variations in data selection and data processing. A robust statistical comparison of different rupture models obtained for a single earthquake is needed to quantify the intra-event variability, both for benchmark exercises and for real earthquakes. The same approach may be useful to characterize (dis-)similarities in events that are typically grouped into a common class of events (e.g. moderate-size crustal strike-slip earthquakes or tsunamigenic large subduction earthquakes). For this purpose, we examine the performance of the spatial prediction comparison test (SPCT), a statistical test developed to compare spatial (random) fields by means of a chosen loss function that describes an error relation between a 2-D field (‘model’) and a reference model. We implement and calibrate the SPCT approach for a suite of synthetic 2-D slip distributions, generated as spatial random fields with various characteristics, and then apply the method to results of a benchmark inversion exercise with known solution. We find the SPCT to be sensitive to different spatial correlations lengths, and different heterogeneity levels of the slip distributions. The SPCT approach proves to be a simple and effective tool for ranking the slip models with respect to a reference model.
Differences in Effects of Zuojin Pills(左金丸)and Its Similar Formulas on Wei Cold Model in Rats
Institute of Scientific and Technical Information of China (English)
赵艳玲; 史文丽; 山丽梅; 王伽伯; 赵海平; 肖小河
2009-01-01
Objective:To explore the effects of Zuojin Pills(左金丸)and its similar formulas on the stomach cold syndrome in a Wei cold model in rats.Methods:The rat Wei cold model was established by intragastric administration of glacial NaOH,and the gastric mucosa injury indices,together with the levels of motilin and gastrin in the stomach,were determined.The preventive and curative effects of Zuojin Pills and its similar formulas on gastric mucosa injury were investigated.Results:Zuojin Pills and its similar formul...
DEFF Research Database (Denmark)
Andersen, Allan T.; Nielsen, Bo Friis
1997-01-01
We present a modelling framework and a fitting method for modelling second order self-similar behaviour with the Markovian arrival process (MAP). The fitting method is based on fitting to the autocorrelation function of counts a second order self-similar process. It is shown that with this fitting...... algorithm it is possible closely to match the autocorrelation function of counts for a second order self-similar process over 3-5 time-scales with 8-16 state MAPs with a very simple structure, i.e. a superposition of 3 and 4 interrupted Poisson processes (IPP) respectively and a Poisson process. The fitting...
Swindell, William R.; Johnston, Andrew; Carbajal, Steve; Han, Gangwen; Wohn, Christian; Lu, Jun; Xing, Xianying; Nair, Rajan P.; Voorhees, John J.; Elder, James T.; Wang, Xiao-Jing; Sano, Shigetoshi; Prens, Errol P.; DiGiovanni, John; Pittelkow, Mark R.; Ward, Nicole L.; Gudjonsson, Johann E.
2011-01-01
Development of a suitable mouse model would facilitate the investigation of pathomechanisms underlying human psoriasis and would also assist in development of therapeutic treatments. However, while many psoriasis mouse models have been proposed, no single model recapitulates all features of the huma
W.R. Swindell (William R.); A. Johnston (Andrew); S. Carbajal (Steve); G. Han (Gangwen); C.T. Wohn (Christopher); J. Lu (Jun); X. Xing (Xianying); R.P. Nair (Rajan P.); J.J. Voorhees (John); J.T. Elder (James); X.J. Wang (Xian Jiang); S. Sano (Shigetoshi); E.P. Prens (Errol); J. DiGiovanni (John); M.R. Pittelkow (Mark R.); N.L. Ward (Nicole); J.E. Gudjonsson (Johann Eli)
2011-01-01
textabstractDevelopment of a suitable mouse model would facilitate the investigation of pathomechanisms underlying human psoriasis and would also assist in development of therapeutic treatments. However, while many psoriasis mouse models have been proposed, no single model recapitulates all features
W.R. Swindell (William R.); A. Johnston (Andrew); S. Carbajal (Steve); G. Han (Gangwen); C.T. Wohn (Christopher); J. Lu (Jun); X. Xing (Xianying); R.P. Nair (Rajan P.); J.J. Voorhees (John); J.T. Elder (James); X.J. Wang (Xian Jiang); S. Sano (Shigetoshi); E.P. Prens (Errol); J. DiGiovanni (John); M.R. Pittelkow (Mark R.); N.L. Ward (Nicole); J.E. Gudjonsson (Johann Eli)
2011-01-01
textabstractDevelopment of a suitable mouse model would facilitate the investigation of pathomechanisms underlying human psoriasis and would also assist in development of therapeutic treatments. However, while many psoriasis mouse models have been proposed, no single model recapitulates all features
Predictability in models of the atmospheric circulation.
Houtekamer, P.L.
1992-01-01
It will be clear from the above discussions that skill forecasts are still in their infancy. Operational skill predictions do not exist. One is still struggling to prove that skill predictions, at any range, have any quality at all. It is not clear what the statistics of the analysis error are. The
Allostasis: a model of predictive regulation.
Sterling, Peter
2012-04-12
The premise of the standard regulatory model, "homeostasis", is flawed: the goal of regulation is not to preserve constancy of the internal milieu. Rather, it is to continually adjust the milieu to promote survival and reproduction. Regulatory mechanisms need to be efficient, but homeostasis (error-correction by feedback) is inherently inefficient. Thus, although feedbacks are certainly ubiquitous, they could not possibly serve as the primary regulatory mechanism. A newer model, "allostasis", proposes that efficient regulation requires anticipating needs and preparing to satisfy them before they arise. The advantages: (i) errors are reduced in magnitude and frequency; (ii) response capacities of different components are matched -- to prevent bottlenecks and reduce safety factors; (iii) resources are shared between systems to minimize reserve capacities; (iv) errors are remembered and used to reduce future errors. This regulatory strategy requires a dedicated organ, the brain. The brain tracks multitudinous variables and integrates their values with prior knowledge to predict needs and set priorities. The brain coordinates effectors to mobilize resources from modest bodily stores and enforces a system of flexible trade-offs: from each organ according to its ability, to each organ according to its need. The brain also helps regulate the internal milieu by governing anticipatory behavior. Thus, an animal conserves energy by moving to a warmer place - before it cools, and it conserves salt and water by moving to a cooler one before it sweats. The behavioral strategy requires continuously updating a set of specific "shopping lists" that document the growing need for each key component (warmth, food, salt, water). These appetites funnel into a common pathway that employs a "stick" to drive the organism toward filling the need, plus a "carrot" to relax the organism when the need is satisfied. The stick corresponds broadly to the sense of anxiety, and the carrot broadly to
Institute of Scientific and Technical Information of China (English)
L(U) Wei-cai; XU Shao-quan
2004-01-01
Using similar single-difference methodology(SSDM) to solve the deformation values of the monitoring points, there is unstability of the deformation information series, at sometimes.In order to overcome this shortcoming, Kalman filtering algorithm for this series is established,and its correctness and validity are verified with the test data obtained on the movable platform in plane. The results show that Kalman filtering can improve the correctness, reliability and stability of the deformation information series.
Required Collaborative Work in Online Courses: A Predictive Modeling Approach
Smith, Marlene A.; Kellogg, Deborah L.
2015-01-01
This article describes a predictive model that assesses whether a student will have greater perceived learning in group assignments or in individual work. The model produces correct classifications 87.5% of the time. The research is notable in that it is the first in the education literature to adopt a predictive modeling methodology using data…
A prediction model for assessing residential radon concentration in Switzerland
Hauri, D.D.; Huss, A.; Zimmermann, F.; Kuehni, C.E.; Roosli, M.
2012-01-01
Indoor radon is regularly measured in Switzerland. However, a nationwide model to predict residential radon levels has not been developed. The aim of this study was to develop a prediction model to assess indoor radon concentrations in Switzerland. The model was based on 44,631 measurements from the
Distributional Analysis for Model Predictive Deferrable Load Control
Chen, Niangjun; Gan, Lingwen; Low, Steven H.; Wierman, Adam
2014-01-01
Deferrable load control is essential for handling the uncertainties associated with the increasing penetration of renewable generation. Model predictive control has emerged as an effective approach for deferrable load control, and has received considerable attention. In particular, previous work has analyzed the average-case performance of model predictive deferrable load control. However, to this point, distributional analysis of model predictive deferrable load control has been elusive. In ...
On use of the alpha stable self-similar stochastic process to model aggregated VBR video traffic
Institute of Scientific and Technical Information of China (English)
Huang Tianyun
2006-01-01
The alpha stable self-similar stochastic process has been proved an effective model for high variable data traffic. A deep insight into some special issues and considerations on use of the process to model aggregated VBR video traffic is made. Different methods to estimate stability parameter α and self-similar parameter H are compared. Processes to generate the linear fractional stable noise (LFSN) and the alpha stable random variables are provided. Model construction and the quantitative comparisons with fractional Brown motion (FBM) and real traffic are also examined. Open problems and future directions are also given with thoughtful discussions.
Directory of Open Access Journals (Sweden)
Soldić-Aleksić Jasna
2009-01-01
Full Text Available Market segmentation presents one of the key concepts of the modern marketing. The main goal of market segmentation is focused on creating groups (segments of customers that have similar characteristics, needs, wishes and/or similar behavior regarding the purchase of concrete product/service. Companies can create specific marketing plan for each of these segments and therefore gain short or long term competitive advantage on the market. Depending on the concrete marketing goal, different segmentation schemes and techniques may be applied. This paper presents a predictive market segmentation model based on the application of logistic regression model and CHAID analysis. The logistic regression model was used for the purpose of variables selection (from the initial pool of eleven variables which are statistically significant for explaining the dependent variable. Selected variables were afterwards included in the CHAID procedure that generated the predictive market segmentation model. The model results are presented on the concrete empirical example in the following form: summary model results, CHAID tree, Gain chart, Index chart, risk and classification tables.
Prediction for Major Adverse Outcomes in Cardiac Surgery: Comparison of Three Prediction Models
Directory of Open Access Journals (Sweden)
Cheng-Hung Hsieh
2007-09-01
Conclusion: The Parsonnet score performed as well as the logistic regression models in predicting major adverse outcomes. The Parsonnet score appears to be a very suitable model for clinicians to use in risk stratification of cardiac surgery.
Prediction of antigenic determinants of trichosanthin by molecular modeling
Institute of Scientific and Technical Information of China (English)
HEYONGNING; ZONGXIANGXIA; 等
1996-01-01
The antigenic determinants of trichosanthin were predicted by molecular modeling.First,the threedimensional structure model of the antigen-binding fragment of anti-trichosanthin immunoglobulin E was built on the basis of its amino-acid sequence and the known three-dimensional structure of an antibody with similar sequence.Secondly,the preferable antigen-antibody interactions were obtained based on the known three-dimensional structure of trichosanthin and of the hypervariable regions of anti-trichosanthin immunoglobulin E.Two regions in the molecular surface of trichosanthin were found to form extensive interactions with the hypervariable regions of the antibody and have been predicted to be the possible antigenic determinants:one is composed of two polypeptide segments,Ile201-Glu210 and Ile225-Asp229,which are close to each other in the three-dimensional structure;and the other is the segment Lys173-Thr178.The former region seems to be the more reasonable antigenic determinant than the latter one.
On hydrological model complexity, its geometrical interpretations and prediction uncertainty
Arkesteijn, E.C.M.M.; Pande, S.
2013-01-01
Knowledge of hydrological model complexity can aid selection of an optimal prediction model out of a set of available models. Optimal model selection is formalized as selection of the least complex model out of a subset of models that have lower empirical risk. This may be considered equivalent to
Probabilistic Modeling and Visualization for Bankruptcy Prediction
DEFF Research Database (Denmark)
Antunes, Francisco; Ribeiro, Bernardete; Pereira, Francisco Camara
2017-01-01
In accounting and finance domains, bankruptcy prediction is of great utility for all of the economic stakeholders. The challenge of accurate assessment of business failure prediction, specially under scenarios of financial crisis, is known to be complicated. Although there have been many successful...... studies on bankruptcy detection, seldom probabilistic approaches were carried out. In this paper we assume a probabilistic point-of-view by applying Gaussian Processes (GP) in the context of bankruptcy prediction, comparing it against the Support Vector Machines (SVM) and the Logistic Regression (LR......). Using real-world bankruptcy data, an in-depth analysis is conducted showing that, in addition to a probabilistic interpretation, the GP can effectively improve the bankruptcy prediction performance with high accuracy when compared to the other approaches. We additionally generate a complete graphical...
Predictive modeling of dental pain using neural network.
Kim, Eun Yeob; Lim, Kun Ok; Rhee, Hyun Sill
2009-01-01
The mouth is a part of the body for ingesting food that is the most basic foundation and important part. The dental pain predicted by the neural network model. As a result of making a predictive modeling, the fitness of the predictive modeling of dental pain factors was 80.0%. As for the people who are likely to experience dental pain predicted by the neural network model, preventive measures including proper eating habits, education on oral hygiene, and stress release must precede any dental treatment.
Zhang, Yongqiang; Vaze, Jai; Chiew, Francis H. S.; Teng, Jin; Li, Ming
2014-09-01
Understanding a catchment's behaviours in terms of its underlying hydrological signatures is a fundamental task in surface water hydrology. It can help in water resource management, catchment classification, and prediction of runoff time series. This study investigated three approaches for predicting six hydrological signatures in southeastern Australia. These approaches were (1) spatial interpolation with three weighting schemes, (2) index model that estimates hydrological signatures using catchment characteristics, and (3) classical rainfall-runoff modelling. The six hydrological signatures fell into two categories: (1) long-term aggregated signatures - annual runoff coefficient, mean of log-transformed daily runoff, and zero flow ratio, and (2) signatures obtained from daily flow metrics - concavity index, seasonality ratio of runoff, and standard deviation of log-transformed daily flow. A total of 228 unregulated catchments were selected, with half the catchments randomly selected as gauged (or donors) for model building and the rest considered as ungauged (or receivers) to evaluate performance of the three approaches. The results showed that for two long-term aggregated signatures - the log-transformed daily runoff and runoff coefficient, the index model and rainfall-runoff modelling performed similarly, and were better than the spatial interpolation methods. For the zero flow ratio, the index model was best and the rainfall-runoff modelling performed worst. The other three signatures, derived from daily flow metrics and considered to be salient flow characteristics, were best predicted by the spatial interpolation methods of inverse distance weighting (IDW) and kriging. Comparison of flow duration curves predicted by the three approaches showed that the IDW method was best. The results found here provide guidelines for choosing the most appropriate approach for predicting hydrological behaviours at large scales.
Directory of Open Access Journals (Sweden)
Elizabeth A. Becker
2016-02-01
Full Text Available Species distribution models are now widely used in conservation and management to predict suitable habitat for protected marine species. The primary sources of dynamic habitat data have been in situ and remotely sensed oceanic variables (both are considered “measured data”, but now ocean models can provide historical estimates and forecast predictions of relevant habitat variables such as temperature, salinity, and mixed layer depth. To assess the performance of modeled ocean data in species distribution models, we present a case study for cetaceans that compares models based on output from a data assimilative implementation of the Regional Ocean Modeling System (ROMS to those based on measured data. Specifically, we used seven years of cetacean line-transect survey data collected between 1991 and 2009 to develop predictive habitat-based models of cetacean density for 11 species in the California Current Ecosystem. Two different generalized additive models were compared: one built with a full suite of ROMS output and another built with a full suite of measured data. Model performance was assessed using the percentage of explained deviance, root mean squared error (RMSE, observed to predicted density ratios, and visual inspection of predicted and observed distributions. Predicted distribution patterns were similar for models using ROMS output and measured data, and showed good concordance between observed sightings and model predictions. Quantitative measures of predictive ability were also similar between model types, and RMSE values were almost identical. The overall demonstrated success of the ROMS-based models opens new opportunities for dynamic species management and biodiversity monitoring because ROMS output is available in near real time and can be forecast.
Theoretical model for forming limit diagram predictions without initial inhomogeneity
Gologanu, Mihai; Comsa, Dan Sorin; Banabic, Dorel
2013-05-01
the plane-strain case the limit-analysis model predicts almost instantaneous necking but in the next step the virtual band hardens enough to deactivate the localization condition. In this case we apply a supplementary condition for incipient necking similar to the one used in Hill's model for the second quadrant. We show that this condition is precisely the one for incipient bifurcation inside the virtual (and weaker) band. Finally we discuss some limitations, extensions and possible applications of the new necking model based on limit analysis.
A model for cross-referencing and calculating similarity of metal alloys
Directory of Open Access Journals (Sweden)
Svetlana Pocajt
2013-12-01
Full Text Available This paper presents an innovative model for the comparison and crossreferencing of metal alloys, in order to determine their interchangeability in engineering, manufacturing and material sourcing. The model uses a large alloy database and statistical approach to estimate missing composition and mechanical properties parameters and to calculate property intervals. A classification of metals and fuzzy logic are then applied to compare metal alloys. The model and its algorithm have been implemented and tested in real-life applications. In this paper, an application of the model in finding unknown equivalent metals by comparing their compositions and mechanical properties in a very large metals database is described, and possibilities for further research and new applications are presented.
Otero-Espinar, Victoria; Nieto, Juan J; Mira, Jorge
2013-01-01
An in-depth analytic study of a model of language dynamics is presented: a model which tackles the problem of the coexistence of two languages within a closed community of speakers taking into account bilingualism and incorporating a parameter to measure the distance between languages. After previous numerical simulations, the model yielded that coexistence might lead to survival of both languages within monolingual speakers along with a bilingual community or to extinction of the weakest tongue depending on different parameters. In this paper, such study is closed with thorough analytical calculations to settle the results in a robust way and previous results are refined with some modifications. From the present analysis it is possible to almost completely assay the number and nature of the equilibrium points of the model, which depend on its parameters, as well as to build a phase space based on them. Also, we obtain conclusions on the way the languages evolve with time. Our rigorous considerations also sug...
Prediction of peptide bonding affinity: kernel methods for nonlinear modeling
Bergeron, Charles; Sundling, C Matthew; Krein, Michael; Katt, Bill; Sukumar, Nagamani; Breneman, Curt M; Bennett, Kristin P
2011-01-01
This paper presents regression models obtained from a process of blind prediction of peptide binding affinity from provided descriptors for several distinct datasets as part of the 2006 Comparative Evaluation of Prediction Algorithms (COEPRA) contest. This paper finds that kernel partial least squares, a nonlinear partial least squares (PLS) algorithm, outperforms PLS, and that the incorporation of transferable atom equivalent features improves predictive capability.
Reducing Uncertainty in Chemistry Climate Model Predictions of Stratospheric Ozone
Douglass, A. R.; Strahan, S. E.; Oman, L. D.; Stolarski, R. S.
2014-01-01
Chemistry climate models (CCMs) are used to predict the future evolution of stratospheric ozone as ozone-depleting substances decrease and greenhouse gases increase, cooling the stratosphere. CCM predictions exhibit many common features, but also a broad range of values for quantities such as year of ozone-return-to-1980 and global ozone level at the end of the 21st century. Multiple linear regression is applied to each of 14 CCMs to separate ozone response to chlorine change from that due to climate change. We show that the sensitivity of lower atmosphere ozone to chlorine change deltaO3/deltaCly is a near linear function of partitioning of total inorganic chlorine (Cly) into its reservoirs; both Cly and its partitioning are controlled by lower atmospheric transport. CCMs with realistic transport agree with observations for chlorine reservoirs and produce similar ozone responses to chlorine change. After 2035 differences in response to chlorine contribute little to the spread in CCM results as the anthropogenic contribution to Cly becomes unimportant. Differences among upper stratospheric ozone increases due to temperature decreases are explained by differences in ozone sensitivity to temperature change deltaO3/deltaT due to different contributions from various ozone loss processes, each with their own temperature dependence. In the lower atmosphere, tropical ozone decreases caused by a predicted speed-up in the Brewer-Dobson circulation may or may not be balanced by middle and high latitude increases, contributing most to the spread in late 21st century predictions.
Comparisons of Faulting-Based Pavement Performance Prediction Models
Directory of Open Access Journals (Sweden)
Weina Wang
2017-01-01
Full Text Available Faulting prediction is the core of concrete pavement maintenance and design. Highway agencies are always faced with the problem of lower accuracy for the prediction which causes costly maintenance. Although many researchers have developed some performance prediction models, the accuracy of prediction has remained a challenge. This paper reviews performance prediction models and JPCP faulting models that have been used in past research. Then three models including multivariate nonlinear regression (MNLR model, artificial neural network (ANN model, and Markov Chain (MC model are tested and compared using a set of actual pavement survey data taken on interstate highway with varying design features, traffic, and climate data. It is found that MNLR model needs further recalibration, while the ANN model needs more data for training the network. MC model seems a good tool for pavement performance prediction when the data is limited, but it is based on visual inspections and not explicitly related to quantitative physical parameters. This paper then suggests that the further direction for developing the performance prediction model is incorporating the advantages and disadvantages of different models to obtain better accuracy.
Institute of Scientific and Technical Information of China (English)
ZHANG Di; ZHANG Min; YE Pei-da
2006-01-01
This article explores the short-range dependence (SRD) and the long-range dependence (LRD) of self-similar traffic generated by the fractal-binomial-noise-driven Poisson process (FBNDP) model and lays emphasis on the former. By simulation, the SRD decaying trends with the increase of Hurst value and peak rate are obtained, respectively. After a comprehensive analysis of accuracy of self-similarity intensity,the optimal range of peak rate is determined by taking into account the time cost, the accuracy of self-similarity intensity,and the effect of SRD.
Otero-Espinar, M. V.; Seoane, L. F.; Nieto, J. J.; Mira, J.
2013-12-01
An in-depth analytic study of a model of language dynamics is presented: a model which tackles the problem of the coexistence of two languages within a closed community of speakers taking into account bilingualism and incorporating a parameter to measure the distance between languages. After previous numerical simulations, the model yielded that coexistence might lead to survival of both languages within monolingual speakers along with a bilingual community or to extinction of the weakest tongue depending on different parameters. In this paper, such study is closed with thorough analytical calculations to settle the results in a robust way and previous results are refined with some modifications. From the present analysis it is possible to almost completely assay the number and nature of the equilibrium points of the model, which depend on its parameters, as well as to build a phase space based on them. Also, we obtain conclusions on the way the languages evolve with time. Our rigorous considerations also suggest ways to further improve the model and facilitate the comparison of its consequences with those from other approaches or with real data.
CREATING PRODUCT MODELS FROM POINT CLOUD OF CIVIL STRUCTURES BASED ON GEOMETRIC SIMILARITY
Directory of Open Access Journals (Sweden)
N. Hidaka
2015-05-01
Full Text Available The existing civil structures must be maintained in order to ensure their expected lifelong serviceability. Careful rehabilitation and maintenance planning plays a significant role in that effort. Recently, construction information modelling (CIM techniques, such as product models, are increasingly being used to facilitate structure maintenance. Using this methodology, laser scanning systems can provide point cloud data that are used to produce highly accurate and dense representations of civil structures. However, while numerous methods for creating a single surface exist, part decomposition is required in order to create product models consisting of more than one part. This research aims at the development of a surface reconstruction system that utilizes point cloud data efficiently in order to create complete product models. The research proposes using the application of local shape matching to the input point clouds in order to define a set of representative parts. These representative parts are then polygonized and copied to locations where the same types of parts exist. The results of our experiments show that the proposed method can efficiently create product models using input point cloud data.
Annealed Ising model with site dilution on self-similar structures
Silva, V. S. T.; Andrade, R. F. S.; Salinas, S. R.
2014-11-01
We consider an Ising model on the triangular Apollonian network (AN), with a thermalized distribution of vacant sites. The statistical problem is formulated in a grand canonical ensemble, in terms of the temperature T and a chemical potential μ associated with the concentration of active magnetic sites. We use a well-known transfer-matrix method, with a number of adaptations, to write recursion relations between successive generations of this hierarchical structure. We also investigate the analogous model on the diamond hierarchical lattice (DHL). From the numerical analysis of the recursion relations, we obtain various thermodynamic quantities. In the μ →∞ limit, we reproduce the results for the uniform models: in the AN, the system is magnetically ordered at all temperatures, while in the DHL there is a ferromagnetic-paramagnetic transition at a finite value of T . Magnetic ordering, however, is shown to disappear for sufficiently large negative values of the chemical potential.
Exact Solutions for Stokes' Flow of a Non-Newtonian Nanofluid Model: A Lie Similarity Approach
Aziz, Taha; Aziz, A.; Khalique, C. M.
2016-07-01
The fully developed time-dependent flow of an incompressible, thermodynamically compatible non-Newtonian third-grade nanofluid is investigated. The classical Stokes model is considered in which the flow is generated due to the motion of the plate in its own plane with an impulsive velocity. The Lie symmetry approach is utilised to convert the governing nonlinear partial differential equation into different linear and nonlinear ordinary differential equations. The reduced ordinary differential equations are then solved by using the compatibility and generalised group method. Exact solutions for the model equation are deduced in the form of closed-form exponential functions which are not available in the literature before. In addition, we also derived the conservation laws associated with the governing model. Finally, the physical features of the pertinent parameters are discussed in detail through several graphs.
Theoretical Model for the Formation of Caveolae and Similar Membrane Invaginations
Sens, Pierre; Turner, Matthew S.
2004-01-01
We study a physical model for the formation of bud-like invaginations on fluid lipid membranes under tension, and apply this model to caveolae formation. We demonstrate that budding can be driven by membrane-bound proteins, provided that they exert asymmetric forces on the membrane that give rise to bending moments. In particular, caveolae formation does not necessarily require forces to be applied by the cytoskeleton. Our theoretical model is able to explain several features observed experimentally in caveolae, where proteins in the caveolin family are known to play a crucial role in the formation of caveolae buds. These include 1), the formation of caveolae buds with sizes in the 100-nm range and 2), that certain N- and C-termini deletion mutants result in vesicles that are an order-of-magnitude larger. Finally, we discuss the possible origin of the morphological striations that are observed on the surfaces of the caveolae. PMID:15041647
Self-similar transformations of lattice-Ising models at critical temperatures
Feng, You-gang
2012-01-01
We classify geometric blocks that serve as spin carriers into simple blocks and compound blocks by their topologic connectivity, define their fractal dimensions and describe the relevant transformations. By the hierarchical property of transformations and a block-spin scaling law we obtain a relation between the block spin and its carrier's fractal dimension. By mapping we set up a block-spin Gaussian model and get a formula connecting the critical point and the minimal fractal dimension of the carrier, which guarantees the uniqueness of a fixed point corresponding to the critical point, changing the complicated calculation of critical point into the simple one of the minimal fractal dimension. The numerical results of critical points with high accuracy for five conventional lattice-Ising models prove our method very effective and may be suitable to all lattice-Ising models. The origin of fluctuations in structure at critical temperature is discussed. Our method not only explains the problems met in the renor...
Bentley, T William; Harris, H Carl; Ryu, Zoon Ha; Lim, Gui Taek; Sung, Dae Dong; Szajda, Stanley R
2005-10-28
[reaction: see text] Rate constants and product selectivities (S = ([ester product]/[acid product]) x ([water]/[alcohol solvent]) are reported for solvolyses of chloroacetyl chloride (3) at -10 degrees C and phenylacetyl chloride (4) at 0 degrees C in ethanol/ and methanol/water mixtures. Additional kinetic data are reported for solvolyses in acetone/water, 2,2,2-trifluoroethanol(TFE)/water, and TFE/ethanol mixtures. Selectivities and solvent effects for 3, including the kinetic solvent isotope effect (KSIE) of 2.18 for methanol, are similar to those for solvolyses of p-nitrobenzoyl chloride (1, Z = NO(2)); rate constants in acetone/water are consistent with a third-order mechanism, and rates and products in ethanol/ and methanol/water mixtures can be explained quantitatively by competing third-order mechanisms in which one molecule of solvent (alcohol or water) acts as a nucleophile and another acts as a general base (an addition/elimination reaction channel). Selectivities increase for 3 as water is added to alcohol. Solvent effects on rate constants for solvolyses of 3 are very similar to those of methyl chloroformate, but acetyl chloride shows a lower KSIE, and a higher sensitivity to solvent-ionizing power, explained by a change to an S(N)2/S(N)1 (ionization) reaction channel. Solvolyses of 4 undergo a change from the addition/elimination channel in ethanol to the ionization channel in aqueous ethanol (<80% v/v alcohol). The reasons for change in reaction channels are discussed in terms of the gas-phase stabilities of acylium ions, calculated using Gaussian 03 (HF/6-31G(d), B3LYP/6-31G(d), and B3LYP/6-311G(d,p) MO theory).
Singleton, Kyle W; Hsu, William; Bui, Alex A T
2012-01-01
The growing amount of electronic data collected from patient care and clinical trials is motivating the creation of national repositories where multiple institutions share data about their patient cohorts. Such efforts aim to provide sufficient sample sizes for data mining and predictive modeling, ultimately improving treatment recommendations and patient outcome prediction. While these repositories offer the potential to improve our understanding of a disease, potential issues need to be addressed to ensure that multi-site data and resultant predictive models are useful to non-contributing institutions. In this paper we examine the challenges of utilizing National Cancer Institute datasets for modeling glioblastoma multiforme. We created several types of prognostic models and compared their results against models generated using data solely from our institution. While overall model performance between the data sources was similar, different variables were selected during model generation, suggesting that mapping data resources between models is not a straightforward issue.
Fuzzy predictive filtering in nonlinear economic model predictive control for demand response
DEFF Research Database (Denmark)
Santos, Rui Mirra; Zong, Yi; Sousa, Joao M. C.;
2016-01-01
The performance of a model predictive controller (MPC) is highly correlated with the model's accuracy. This paper introduces an economic model predictive control (EMPC) scheme based on a nonlinear model, which uses a branch-and-bound tree search for solving the inherent non-convex optimization...... problem. Moreover, to reduce the computation time and improve the controller's performance, a fuzzy predictive filter is introduced. With the purpose of testing the developed EMPC, a simulation controlling the temperature levels of an intelligent office building (PowerFlexHouse), with and without fuzzy...
Predictive modeling and reducing cyclic variability in autoignition engines
Energy Technology Data Exchange (ETDEWEB)
Hellstrom, Erik; Stefanopoulou, Anna; Jiang, Li; Larimore, Jacob
2016-08-30
Methods and systems are provided for controlling a vehicle engine to reduce cycle-to-cycle combustion variation. A predictive model is applied to predict cycle-to-cycle combustion behavior of an engine based on observed engine performance variables. Conditions are identified, based on the predicted cycle-to-cycle combustion behavior, that indicate high cycle-to-cycle combustion variation. Corrective measures are then applied to prevent the predicted high cycle-to-cycle combustion variation.
Directory of Open Access Journals (Sweden)
Meimei Chen
2016-11-01
Full Text Available In this study, in silico approaches, including multiple QSAR modeling, structural similarity analysis, and molecular docking, were applied to develop QSAR classification models as a fast screening tool for identifying highly-potent ABCA1 up-regulators targeting LXRβ based on a series of new flavonoids. Initially, four modeling approaches, including linear discriminant analysis, support vector machine, radial basis function neural network, and classification and regression trees, were applied to construct different QSAR classification models. The statistics results indicated that these four kinds of QSAR models were powerful tools for screening highly potent ABCA1 up-regulators. Then, a consensus QSAR model was developed by combining the predictions from these four models. To discover new ABCA1 up-regulators at maximum accuracy, the compounds in the ZINC database that fulfilled the requirement of structural similarity of 0.7 compared to known potent ABCA1 up-regulator were subjected to the consensus QSAR model, which led to the discovery of 50 compounds. Finally, they were docked into the LXRβ binding site to understand their role in up-regulating ABCA1 expression. The excellent binding modes and docking scores of 10 hit compounds suggested they were highly-potent ABCA1 up-regulators targeting LXRβ. Overall, this study provided an effective strategy to discover highly potent ABCA1 up-regulators.
Cohen, A.R.; Vitányi, P.M.B.
2015-01-01
Normalized web distance (NWD) is a similarity or normalized semantic distance based on the World Wide Web or any other large electronic database, for instance Wikipedia, and a search engine that returns reliable aggregate page counts. For sets of search terms the NWD gives a similarity on a scale fr
2017-01-01
Background With a large-scale electronic health record repository, it is feasible to build a customized patient outcome prediction model specifically for a given patient. This approach involves identifying past patients who are similar to the present patient and using their data to train a personalized predictive model. Our previous work investigated a cosine-similarity patient similarity metric (PSM) for such patient-specific predictive modeling. Objective The objective of the study is to investigate the random forest (RF) proximity measure as a PSM in the context of personalized mortality prediction for intensive care unit (ICU) patients. Methods A total of 17,152 ICU admissions were extracted from the Multiparameter Intelligent Monitoring in Intensive Care II database. A number of predictor variables were extracted from the first 24 hours in the ICU. Outcome to be predicted was 30-day mortality. A patient-specific predictive model was trained for each ICU admission using an RF PSM inspired by the RF proximity measure. Death counting, logistic regression, decision tree, and RF models were studied with a hard threshold applied to RF PSM values to only include the M most similar patients in model training, where M was varied. In addition, case-specific random forests (CSRFs), which uses RF proximity for weighted bootstrapping, were trained. Results Compared to our previous study that investigated a cosine similarity PSM, the RF PSM resulted in superior or comparable predictive performance. RF and CSRF exhibited the best performances (in terms of mean area under the receiver operating characteristic curve [95% confidence interval], RF: 0.839 [0.835-0.844]; CSRF: 0.832 [0.821-0.843]). RF and CSRF did not benefit from personalization via the use of the RF PSM, while the other models did. Conclusions The RF PSM led to good mortality prediction performance for several predictive models, although it failed to induce improved performance in RF and CSRF. The distinction
Merging tree algorithm of growing voids in self-similar and CDM models
Russell, Esra
2013-01-01
Observational studies show that voids are prominent features of the large-scale structure of the present-day Universe. Even though their emerging from the primordial density perturbations and evolutionary patterns differ from dark matter haloes, N-body simulations and theoretical models have shown t
Robert, Katleen; Jones, Daniel O. B.; Roberts, J. Murray; Huvenne, Veerle A. I.
2016-07-01
In the deep sea, biological data are often sparse; hence models capturing relationships between observed fauna and environmental variables (acquired via acoustic mapping techniques) are often used to produce full coverage species assemblage maps. Many statistical modelling techniques are being developed, but there remains a need to determine the most appropriate mapping techniques. Predictive habitat modelling approaches (redundancy analysis, maximum entropy and random forest) were applied to a heterogeneous section of seabed on Rockall Bank, NE Atlantic, for which landscape indices describing the spatial arrangement of habitat patches were calculated. The predictive maps were based on remotely operated vehicle (ROV) imagery transects high-resolution autonomous underwater vehicle (AUV) sidescan backscatter maps. Area under the curve (AUC) and accuracy indicated similar performances for the three models tested, but performance varied by species assemblage, with the transitional species assemblage showing the weakest predictive performances. Spatial predictions of habitat suitability differed between statistical approaches, but niche similarity metrics showed redundancy analysis and random forest predictions to be most similar. As one statistical technique could not be found to outperform the others when all assemblages were considered, ensemble mapping techniques, where the outputs of many models are combined, were applied. They showed higher accuracy than any single model. Different statistical approaches for predictive habitat modelling possess varied strengths and weaknesses and by examining the outputs of a range of modelling techniques and their differences, more robust predictions, with better described variation and areas of uncertainties, can be achieved. As improvements to prediction outputs can be achieved without additional costly data collection, ensemble mapping approaches have clear value for spatial management.
Intelligent predictive model of ventilating capacity of imperial smelt furnace
Institute of Scientific and Technical Information of China (English)
唐朝晖; 胡燕瑜; 桂卫华; 吴敏
2003-01-01
In order to know the ventilating capacity of imperial smelt furnace (ISF), and increase the output of plumbum, an intelligent modeling method based on gray theory and artificial neural networks(ANN) is proposed, in which the weight values in the integrated model can be adjusted automatically. An intelligent predictive model of the ventilating capacity of the ISF is established and analyzed by the method. The simulation results and industrial applications demonstrate that the predictive model is close to the real plant, the relative predictive error is 0.72%, which is 50% less than the single model, leading to a notable increase of the output of plumbum.
A Prediction Model of the Capillary Pressure J-Function
Xu, W. S.; Luo, P. Y.; Sun, L.; Lin, N.
2016-01-01
The capillary pressure J-function is a dimensionless measure of the capillary pressure of a fluid in a porous medium. The function was derived based on a capillary bundle model. However, the dependence of the J-function on the saturation Sw is not well understood. A prediction model for it is presented based on capillary pressure model, and the J-function prediction model is a power function instead of an exponential or polynomial function. Relative permeability is calculated with the J-function prediction model, resulting in an easier calculation and results that are more representative. PMID:27603701
Adaptation of Predictive Models to PDA Hand-Held Devices
Directory of Open Access Journals (Sweden)
Lin, Edward J
2008-01-01
Full Text Available Prediction models using multiple logistic regression are appearing with increasing frequency in the medical literature. Problems associated with these models include the complexity of computations when applied in their pure form, and lack of availability at the bedside. Personal digital assistant (PDA hand-held devices equipped with spreadsheet software offer the clinician a readily available and easily applied means of applying predictive models at the bedside. The purposes of this article are to briefly review regression as a means of creating predictive models and to describe a method of choosing and adapting logistic regression models to emergency department (ED clinical practice.
Modelling microbial interactions and food structure in predictive microbiology
Malakar, P.K.
2002-01-01
Keywords: modelling, dynamic models, microbial interactions, diffusion, microgradients, colony growth, predictive microbiology.
Growth response of microorganisms in foods is a complex process. Innovations in food production and preservation techniques have resulted in adoption of
Modelling microbial interactions and food structure in predictive microbiology
Malakar, P.K.
2002-01-01
Keywords: modelling, dynamic models, microbial interactions, diffusion, microgradients, colony growth, predictive microbiology. Growth response of microorganisms in foods is a complex process. Innovations in food production and preservation techniques have resulted in adoption of new technologies
Estimating Model Prediction Error: Should You Treat Predictions as Fixed or Random?
Wallach, Daniel; Thorburn, Peter; Asseng, Senthold; Challinor, Andrew J.; Ewert, Frank; Jones, James W.; Rotter, Reimund; Ruane, Alexander
2016-01-01
Crop models are important tools for impact assessment of climate change, as well as for exploring management options under current climate. It is essential to evaluate the uncertainty associated with predictions of these models. We compare two criteria of prediction error; MSEP fixed, which evaluates mean squared error of prediction for a model with fixed structure, parameters and inputs, and MSEP uncertain( X), which evaluates mean squared error averaged over the distributions of model structure, inputs and parameters. Comparison of model outputs with data can be used to estimate the former. The latter has a squared bias term, which can be estimated using hindcasts, and a model variance term, which can be estimated from a simulation experiment. The separate contributions to MSEP uncertain (X) can be estimated using a random effects ANOVA. It is argued that MSEP uncertain (X) is the more informative uncertainty criterion, because it is specific to each prediction situation.
Comparing predictive validity of four ballistic swing phase models of human walking.
Selles, R W; Bussmann, J B; Wagenaar, R C; Stam, H J
2001-09-01
It is unclear to what extent ballistic walking models can be used to qualitatively predict the swing phase at comfortable walking speed. Different study findings regarding the accuracy of the predictions of the swing phase kinematics may have been caused by differences in (1) kinematic input, (2) model characteristics (e.g. the number of segments), and (3) evaluation criteria. In the present study, the predictive validity of four ballistic swing phase models was evaluated and compared, that is, (1) the ballistic walking model as originally introduced by Mochon and McMahon, (2) an extended version of this model in which heel-off of the stance leg is added, (3) a double pendulum model, consisting of a two-segment swing leg with a prescribed hip trajectory, and (4) a shank pendulum model consisting of a shank and rigidly attached foot with a prescribed knee trajectory. The predictive validity was evaluated by comparing the outcome of the model simulations with experimentally derived swing phase kinematics of six healthy subjects. In all models, statistically significant differences were found between model output and experimental data. All models underestimated swing time and step length. In addition, statistically significant differences were found between the output of the different models. The present study shows that although qualitative similarities exist between the ballistic models and normal gait at comfortable walking speed, these models cannot adequately predict swing phase kinematics.
Predicting Career Advancement with Structural Equation Modelling
Heimler, Ronald; Rosenberg, Stuart; Morote, Elsa-Sofia
2012-01-01
Purpose: The purpose of this paper is to use the authors' prior findings concerning basic employability skills in order to determine which skills best predict career advancement potential. Design/methodology/approach: Utilizing survey responses of human resource managers, the employability skills showing the largest relationships to career…
Predicting Career Advancement with Structural Equation Modelling
Heimler, Ronald; Rosenberg, Stuart; Morote, Elsa-Sofia
2012-01-01
Purpose: The purpose of this paper is to use the authors' prior findings concerning basic employability skills in order to determine which skills best predict career advancement potential. Design/methodology/approach: Utilizing survey responses of human resource managers, the employability skills showing the largest relationships to career…
Modeling and prediction of surgical procedure times
P.S. Stepaniak (Pieter); C. Heij (Christiaan); G. de Vries (Guus)
2009-01-01
textabstractAccurate prediction of medical operation times is of crucial importance for cost efficient operation room planning in hospitals. This paper investigates the possible dependence of procedure times on surgeon factors like age, experience, gender, and team composition. The effect of these f
A New Approach to Satisfy Dynamic Similarity for Model Submarine Maneuvers
2007-11-28
scale jam recovery, a steady approach speed is required for RCM correlation maneuvers. The scaled model approach speed must be set at 21 U.n0 . UsO (33...NAVSEA 05H Y M. King 1 ONR 331 Y R. Joslin 1 NSWCCD 3452 Y TIC (C) 1 NSWCCD 5060 Y D. Walden 1 NSWCCD 5080 Y J. Brown 1 NSWCCD 5080 Y B. Cox 1 NSWCCD 5400 Y
Prediction Model of Sewing Technical Condition by Grey Neural Network
Institute of Scientific and Technical Information of China (English)
DONG Ying; FANG Fang; ZHANG Wei-yuan
2007-01-01
The grey system theory and the artificial neural network technology were applied to predict the sewing technical condition. The representative parameters, such as needle, stitch, were selected. Prediction model was established based on the different fabrics' mechanical properties that measured by KES instrument. Grey relevant degree analysis was applied to choose the input parameters of the neural network. The result showed that prediction model has good precision. The average relative error was 4.08% for needle and 4.25% for stitch.
Active diagnosis of hybrid systems - A model predictive approach
2009-01-01
A method for active diagnosis of hybrid systems is proposed. The main idea is to predict the future output of both normal and faulty model of the system; then at each time step an optimization problem is solved with the objective of maximizing the difference between the predicted normal and faulty outputs constrained by tolerable performance requirements. As in standard model predictive control, the first element of the optimal input is applied to the system and the whole procedure is repeate...
Evaluation of Fast-Time Wake Vortex Prediction Models
Proctor, Fred H.; Hamilton, David W.
2009-01-01
Current fast-time wake models are reviewed and three basic types are defined. Predictions from several of the fast-time models are compared. Previous statistical evaluations of the APA-Sarpkaya and D2P fast-time models are discussed. Root Mean Square errors between fast-time model predictions and Lidar wake measurements are examined for a 24 hr period at Denver International Airport. Shortcomings in current methodology for evaluating wake errors are also discussed.
Comparison of Simple Versus Performance-Based Fall Prediction Models
Directory of Open Access Journals (Sweden)
Shekhar K. Gadkaree BS
2015-05-01
Full Text Available Objective: To compare the predictive ability of standard falls prediction models based on physical performance assessments with more parsimonious prediction models based on self-reported data. Design: We developed a series of fall prediction models progressing in complexity and compared area under the receiver operating characteristic curve (AUC across models. Setting: National Health and Aging Trends Study (NHATS, which surveyed a nationally representative sample of Medicare enrollees (age ≥65 at baseline (Round 1: 2011-2012 and 1-year follow-up (Round 2: 2012-2013. Participants: In all, 6,056 community-dwelling individuals participated in Rounds 1 and 2 of NHATS. Measurements: Primary outcomes were 1-year incidence of “any fall” and “recurrent falls.” Prediction models were compared and validated in development and validation sets, respectively. Results: A prediction model that included demographic information, self-reported problems with balance and coordination, and previous fall history was the most parsimonious model that optimized AUC for both any fall (AUC = 0.69, 95% confidence interval [CI] = [0.67, 0.71] and recurrent falls (AUC = 0.77, 95% CI = [0.74, 0.79] in the development set. Physical performance testing provided a marginal additional predictive value. Conclusion: A simple clinical prediction model that does not include physical performance testing could facilitate routine, widespread falls risk screening in the ambulatory care setting.
Testing and analysis of internal hardwood log defect prediction models
R. Edward. Thomas
2011-01-01
The severity and location of internal defects determine the quality and value of lumber sawn from hardwood logs. Models have been developed to predict the size and position of internal defects based on external defect indicator measurements. These models were shown to predict approximately 80% of all internal knots based on external knot indicators. However, the size...
Comparison of Simple Versus Performance-Based Fall Prediction Models
Directory of Open Access Journals (Sweden)
Shekhar K. Gadkaree BS
2015-05-01
Full Text Available Objective: To compare the predictive ability of standard falls prediction models based on physical performance assessments with more parsimonious prediction models based on self-reported data. Design: We developed a series of fall prediction models progressing in complexity and compared area under the receiver operating characteristic curve (AUC across models. Setting: National Health and Aging Trends Study (NHATS, which surveyed a nationally representative sample of Medicare enrollees (age ≥65 at baseline (Round 1: 2011-2012 and 1-year follow-up (Round 2: 2012-2013. Participants: In all, 6,056 community-dwelling individuals participated in Rounds 1 and 2 of NHATS. Measurements: Primary outcomes were 1-year incidence of “ any fall ” and “ recurrent falls .” Prediction models were compared and validated in development and validation sets, respectively. Results: A prediction model that included demographic information, self-reported problems with balance and coordination, and previous fall history was the most parsimonious model that optimized AUC for both any fall (AUC = 0.69, 95% confidence interval [CI] = [0.67, 0.71] and recurrent falls (AUC = 0.77, 95% CI = [0.74, 0.79] in the development set. Physical performance testing provided a marginal additional predictive value. Conclusion: A simple clinical prediction model that does not include physical performance testing could facilitate routine, widespread falls risk screening in the ambulatory care setting.
Refining the Committee Approach and Uncertainty Prediction in Hydrological Modelling
Kayastha, N.
2014-01-01
Due to the complexity of hydrological systems a single model may be unable to capture the full range of a catchment response and accurately predict the streamflows. The multi modelling approach opens up possibilities for handling such difficulties and allows improve the predictive capability of mode
Refining the committee approach and uncertainty prediction in hydrological modelling
Kayastha, N.
2014-01-01
Due to the complexity of hydrological systems a single model may be unable to capture the full range of a catchment response and accurately predict the streamflows. The multi modelling approach opens up possibilities for handling such difficulties and allows improve the predictive capability of mode
Refining the Committee Approach and Uncertainty Prediction in Hydrological Modelling
Kayastha, N.
2014-01-01
Due to the complexity of hydrological systems a single model may be unable to capture the full range of a catchment response and accurately predict the streamflows. The multi modelling approach opens up possibilities for handling such difficulties and allows improve the predictive capability of mode
Refining the committee approach and uncertainty prediction in hydrological modelling
Kayastha, N.
2014-01-01
Due to the complexity of hydrological systems a single model may be unable to capture the full range of a catchment response and accurately predict the streamflows. The multi modelling approach opens up possibilities for handling such difficulties and allows improve the predictive capability of mode
Adding propensity scores to pure prediction models fails to improve predictive performance
Directory of Open Access Journals (Sweden)
Amy S. Nowacki
2013-08-01
Full Text Available Background. Propensity score usage seems to be growing in popularity leading researchers to question the possible role of propensity scores in prediction modeling, despite the lack of a theoretical rationale. It is suspected that such requests are due to the lack of differentiation regarding the goals of predictive modeling versus causal inference modeling. Therefore, the purpose of this study is to formally examine the effect of propensity scores on predictive performance. Our hypothesis is that a multivariable regression model that adjusts for all covariates will perform as well as or better than those models utilizing propensity scores with respect to model discrimination and calibration.Methods. The most commonly encountered statistical scenarios for medical prediction (logistic and proportional hazards regression were used to investigate this research question. Random cross-validation was performed 500 times to correct for optimism. The multivariable regression models adjusting for all covariates were compared with models that included adjustment for or weighting with the propensity scores. The methods were compared based on three predictive performance measures: (1 concordance indices; (2 Brier scores; and (3 calibration curves.Results. Multivariable models adjusting for all covariates had the highest average concordance index, the lowest average Brier score, and the best calibration. Propensity score adjustment and inverse probability weighting models without adjustment for all covariates performed worse than full models and failed to improve predictive performance with full covariate adjustment.Conclusion. Propensity score techniques did not improve prediction performance measures beyond multivariable adjustment. Propensity scores are not recommended if the analytical goal is pure prediction modeling.
A predictive model of community assembly that incorporates intraspecific trait variation.
Laughlin, Daniel C; Joshi, Chaitanya; van Bodegom, Peter M; Bastow, Zachary A; Fulé, Peter Z
2012-11-01
Community assembly involves two antagonistic processes that select functional traits in opposite directions. Environmental filtering tends to increase the functional similarity of species within communities leading to trait convergence, whereas competition tends to limit the functional similarity of species within communities leading to trait divergence. Here, we introduce a new hierarchical Bayesian model that incorporates intraspecific trait variation into a predictive framework to unify classic coexistence theory and evolutionary biology with recent trait-based approaches. Model predictions exhibited a significant positive correlation (r = 0.66) with observed relative abundances along a 10 °C gradient in mean annual temperature. The model predicted the correct dominant species in half of the plots, and accurately reproduced species' temperature optimums. The framework is generalizable to any ecosystem as it can accommodate any species pool, any set of functional traits and multiple environmental gradients, and it eliminates some of the criticisms associated with recent trait-based community assembly models.
Impact of modellers' decisions on hydrological a priori predictions
Holländer, H. M.; Bormann, H.; Blume, T.; Buytaert, W.; Chirico, G. B.; Exbrayat, J.-F.; Gustafsson, D.; Hölzel, H.; Krauße, T.; Kraft, P.; Stoll, S.; Blöschl, G.; Flühler, H.
2014-06-01
In practice, the catchment hydrologist is often confronted with the task of predicting discharge without having the needed records for calibration. Here, we report the discharge predictions of 10 modellers - using the model of their choice - for the man-made Chicken Creek catchment (6 ha, northeast Germany, Gerwin et al., 2009b) and we analyse how well they improved their prediction in three steps based on adding information prior to each following step. The modellers predicted the catchment's hydrological response in its initial phase without having access to the observed records. They used conceptually different physically based models and their modelling experience differed largely. Hence, they encountered two problems: (i) to simulate discharge for an ungauged catchment and (ii) using models that were developed for catchments, which are not in a state of landscape transformation. The prediction exercise was organized in three steps: (1) for the first prediction the modellers received a basic data set describing the catchment to a degree somewhat more complete than usually available for a priori predictions of ungauged catchments; they did not obtain information on stream flow, soil moisture, nor groundwater response and had therefore to guess the initial conditions; (2) before the second prediction they inspected the catchment on-site and discussed their first prediction attempt; (3) for their third prediction they were offered additional data by charging them pro forma with the costs for obtaining this additional information. Holländer et al. (2009) discussed the range of predictions obtained in step (1). Here, we detail the modeller's assumptions and decisions in accounting for the various processes. We document the prediction progress as well as the learning process resulting from the availability of added information. For the second and third steps, the progress in prediction quality is evaluated in relation to individual modelling experience and costs of
Econometric models for predicting confusion crop ratios
Umberger, D. E.; Proctor, M. H.; Clark, J. E.; Eisgruber, L. M.; Braschler, C. B. (Principal Investigator)
1979-01-01
Results for both the United States and Canada show that econometric models can provide estimates of confusion crop ratios that are more accurate than historical ratios. Whether these models can support the LACIE 90/90 accuracy criterion is uncertain. In the United States, experimenting with additional model formulations could provide improved methods models in some CRD's, particularly in winter wheat. Improved models may also be possible for the Canadian CD's. The more aggressive province/state models outperformed individual CD/CRD models. This result was expected partly because acreage statistics are based on sampling procedures, and the sampling precision declines from the province/state to the CD/CRD level. Declining sampling precision and the need to substitute province/state data for the CD/CRD data introduced measurement error into the CD/CRD models.
Modeling Land Use Change In A Tropical Environment Using Similar Hydrologic Response Units
Guardiola-Claramonte, M.; Troch, P.
2006-12-01
Montane mainland South East Asia comprises areas of great biological and cultural diversity. Over the last decades the region has overcome an important conversion from traditional agriculture to cash crop agriculture driven by regional and global markets. Our study aims at understanding the hydrological implications of these land use changes at the catchment scale. In 2004, networks of hydro-meteorological stations observing water and energy fluxes were installed in two 70 km2 catchments in Northern Thailand (Chiang Mai Province) and Southern China (Yunnan Province). In addition, a detailed soil surveying campaign was done at the moment of instrument installation. Land use is monitored periodically using satellite data. The Thai catchment is switching from small agricultural fields to large extensions of cash crops. The Chinese catchment is replacing the traditional forest for rubber plantations. A first comparative study based on catchments' geomorphologic characteristics, field observations and rainfall-runoff response revealed the dominant hydrologic processes in the catchments. Land use information is then translated into three different Hydrologic Response Units (HRU): rice paddies, pervious and impervious surfaces. The pervious HRU include different land uses such as different stages of forest development, rubber plantations, and agricultural fields; the impervious ones are urban areas, roads and outcrops. For each HRU a water and energy balance model is developed incorporating field observed hydrologic processes, measured field parameters, and literature-based vegetation and soil parameters to better describe the root zone, surface and subsurface flow characteristics without the need of further calibration. The HRU water and energy balance models are applied to single hillslopes and their integrated hydrologic response are compared for different land covers. Finally, the response of individual hillslopes is routed through the channel network to represent
Markoff, Sera; Ceccobello, Chiara; Heemskerk, Martin; Cavecchi, Yuri; Polko, Peter; Meier, David
2017-08-01
Jets are ubiquitous and reveal themselves at different scales and redshifts, showing an extreme diversity in energetics, shapes and emission. Indeed jets are found to be characteristic features of black hole systems, such as X-ray binaries (XRBs) and active galactic nuclei (AGN), as well as of young stellar objects (YSOs) and gamma-ray bursts (GRBs). Observations suggest that jets are an energetically important component of the system that hosts them, because the jet power appears to be comparable to the accretion power. Significant evidence has been found of the impact of jets not only in the immediate proximity of the central object, but as well on their surrounding environment, where they deposit the energy extracted from the accretion flow. Moreover, the inflow/outflow system produces radiation over the entire electromagnetic spectrum, from radio to X-rays. Therefore it is a compelling problem to be solved and deeply understood. I present a new integration scheme to solve radial self-similar, stationary, axisymmetric relativistic magneto-hydro-dynamics (MHD) equations describing collimated, relativistic outflows crossing smoothly all the singular points (the Alfvén point and the modified slow/fast points). For the first time, the integration can be performed all the way from the disk mid-plane to downstream of the modified fast point. I will discuss an ensemble of jet solutions showing diverse jet dynamics (jet Lorentz factor ~ 1-10) and geometric properties (i.e. shock height ~ 103 - 107 gravitational radii), which makes our model suitable for application to many different systems where a relativistic jet is launched.
PEEX Modelling Platform for Seamless Environmental Prediction
Baklanov, Alexander; Mahura, Alexander; Arnold, Stephen; Makkonen, Risto; Petäjä, Tuukka; Kerminen, Veli-Matti; Lappalainen, Hanna K.; Ezau, Igor; Nuterman, Roman; Zhang, Wen; Penenko, Alexey; Gordov, Evgeny; Zilitinkevich, Sergej; Kulmala, Markku
2017-04-01
The Pan-Eurasian EXperiment (PEEX) is a multidisciplinary, multi-scale research programme stared in 2012 and aimed at resolving the major uncertainties in Earth System Science and global sustainability issues concerning the Arctic and boreal Northern Eurasian regions and in China. Such challenges include climate change, air quality, biodiversity loss, chemicalization, food supply, and the use of natural resources by mining, industry, energy production and transport. The research infrastructure introduces the current state of the art modeling platform and observation systems in the Pan-Eurasian region and presents the future baselines for the coherent and coordinated research infrastructures in the PEEX domain. The PEEX modeling Platform is characterized by a complex seamless integrated Earth System Modeling (ESM) approach, in combination with specific models of different processes and elements of the system, acting on different temporal and spatial scales. The ensemble approach is taken to the integration of modeling results from different models, participants and countries. PEEX utilizes the full potential of a hierarchy of models: scenario analysis, inverse modeling, and modeling based on measurement needs and processes. The models are validated and constrained by available in-situ and remote sensing data of various spatial and temporal scales using data assimilation and top-down modeling. The analyses of the anticipated large volumes of data produced by available models and sensors will be supported by a dedicated virtual research environment developed for these purposes.
Directory of Open Access Journals (Sweden)
CHEN Zhanlong
2016-02-01
Full Text Available A method about shape similarity measurement of complex holed objects is proposed in this paper. The method extracts features including centroid distance, multilevel chord length, bending degree and concavity-convexity of a geometric object, to construct complex functions based on multilevel bending degree and radius. The complex functions are capable of describing geometry shape from entirety to part. The similarity between geometric objects can be measured by the shape descriptor which is based on the fast Fourier transform of the complex functions. Meanwhile, the matching degree of each scene of complex holed polygons can be got by scene completeness and shape similarity model. And using the feature of multi-level can accomplish the shape similarity measurement among complex geometric objects. Experimenting on geometric objects of different space complexity, the results match human's perceive and show that this method is simple with precision.
Models Predicting Success of Infertility Treatment: A Systematic Review
Zarinara, Alireza; Zeraati, Hojjat; Kamali, Koorosh; Mohammad, Kazem; Shahnazari, Parisa; Akhondi, Mohammad Mehdi
2016-01-01
Background: Infertile couples are faced with problems that affect their marital life. Infertility treatment is expensive and time consuming and occasionally isn’t simply possible. Prediction models for infertility treatment have been proposed and prediction of treatment success is a new field in infertility treatment. Because prediction of treatment success is a new need for infertile couples, this paper reviewed previous studies for catching a general concept in applicability of the models. Methods: This study was conducted as a systematic review at Avicenna Research Institute in 2015. Six data bases were searched based on WHO definitions and MESH key words. Papers about prediction models in infertility were evaluated. Results: Eighty one papers were eligible for the study. Papers covered years after 1986 and studies were designed retrospectively and prospectively. IVF prediction models have more shares in papers. Most common predictors were age, duration of infertility, ovarian and tubal problems. Conclusion: Prediction model can be clinically applied if the model can be statistically evaluated and has a good validation for treatment success. To achieve better results, the physician and the couples’ needs estimation for treatment success rate were based on history, the examination and clinical tests. Models must be checked for theoretical approach and appropriate validation. The privileges for applying the prediction models are the decrease in the cost and time, avoiding painful treatment of patients, assessment of treatment approach for physicians and decision making for health managers. The selection of the approach for designing and using these models is inevitable. PMID:27141461
MULTI MODEL DATA MINING APPROACH FOR HEART FAILURE PREDICTION
Directory of Open Access Journals (Sweden)
Priyanka H U
2016-09-01
Full Text Available Developing predictive modelling solutions for risk estimation is extremely challenging in health-care informatics. Risk estimation involves integration of heterogeneous clinical sources having different representation from different health-care provider making the task increasingly complex. Such sources are typically voluminous, diverse, and significantly change over the time. Therefore, distributed and parallel computing tools collectively termed big data tools are in need which can synthesize and assist the physician to make right clinical decisions. In this work we propose multi-model predictive architecture, a novel approach for combining the predictive ability of multiple models for better prediction accuracy. We demonstrate the effectiveness and efficiency of the proposed work on data from Framingham Heart study. Results show that the proposed multi-model predictive architecture is able to provide better accuracy than best model approach. By modelling the error of predictive models we are able to choose sub set of models which yields accurate results. More information was modelled into system by multi-level mining which has resulted in enhanced predictive accuracy.
The regional prediction model of PM10 concentrations for Turkey
Güler, Nevin; Güneri İşçi, Öznur
2016-11-01
This study is aimed to predict a regional model for weekly PM10 concentrations measured air pollution monitoring stations in Turkey. There are seven geographical regions in Turkey and numerous monitoring stations at each region. Predicting a model conventionally for each monitoring station requires a lot of labor and time and it may lead to degradation in quality of prediction when the number of measurements obtained from any õmonitoring station is small. Besides, prediction models obtained by this way only reflect the air pollutant behavior of a small area. This study uses Fuzzy C-Auto Regressive Model (FCARM) in order to find a prediction model to be reflected the regional behavior of weekly PM10 concentrations. The superiority of FCARM is to have the ability of considering simultaneously PM10 concentrations measured monitoring stations in the specified region. Besides, it also works even if the number of measurements obtained from the monitoring stations is different or small. In order to evaluate the performance of FCARM, FCARM is executed for all regions in Turkey and prediction results are compared to statistical Autoregressive (AR) Models predicted for each station separately. According to Mean Absolute Percentage Error (MAPE) criteria, it is observed that FCARM provides the better predictions with a less number of models.
Fagerberg, Marie C; Maršál, Karel; Källén, Karin
2015-05-01
We aimed to validate a widely used US prediction model for vaginal birth after cesarean (Grobman et al. [8]) and modify it to suit Swedish conditions. Women having experienced one cesarean section and at least one subsequent delivery (n=49,472) in the Swedish Medical Birth Registry 1992-2011 were randomly divided into two data sets. In the development data set, variables associated with successful trial of labor were identified using multiple logistic regression. The predictive ability of the estimates previously published by Grobman et al., and of our modified and new estimates, respectively, was then evaluated using the validation data set. The accuracy of the models for prediction of vaginal birth after cesarean was measured by area under the receiver operating characteristics curve. For maternal age, body mass index, prior vaginal delivery, and prior labor arrest, the odds ratio estimates for vaginal birth after cesarean were similar to those previously published. The prediction accuracy increased when information on indication for the previous cesarean section was added (from area under the receiver operating characteristics curve=0.69-0.71), and increased further when maternal height and delivery unit cesarean section rates were included (area under the receiver operating characteristics curve=0.74). The correlation between the individual predicted vaginal birth after cesarean probability and the observed trial of labor success rate was high in all the respective predicted probability decentiles. Customization of prediction models for vaginal birth after cesarean is of considerable value. Choosing relevant indicators for a Swedish setting made it possible to achieve excellent prediction accuracy for success in trial of labor after cesarean. During the delicate process of counseling about preferred delivery mode after one cesarean section, considering the results of our study may facilitate the choice between a trial of labor or an elective repeat cesarean
Self-similar voiding solutions of a single layered model of folding rocks
Dodwell, Timothy; Budd, Christopher; Hunt, Giles
2011-01-01
In this paper we derive an obstacle problem with a free boundary to describe the formation of voids at areas of intense geological folding. An elastic layer is forced by overburden pressure against a V-shaped rigid obstacle. Energy minimization leads to representation as a nonlinear fourth-order ordinary differential equation, for which we prove their exists a unique solution. Drawing parallels with the Kuhn-Tucker theory, virtual work, and ideas of duality, we highlight the physical significance of this differential equation. Finally we show this equation scales to a single parametric group, revealing a scaling law connecting the size of the void with the pressure/stiffness ratio. This paper is seen as the first step towards a full multilayered model with the possibility of voiding.
Gaussian mixture models as flux prediction method for central receivers
Grobler, Annemarie; Gauché, Paul; Smit, Willie
2016-05-01
Flux prediction methods are crucial to the design and operation of central receiver systems. Current methods such as the circular and elliptical (bivariate) Gaussian prediction methods are often used in field layout design and aiming strategies. For experimental or small central receiver systems, the flux profile of a single heliostat often deviates significantly from the circular and elliptical Gaussian models. Therefore a novel method of flux prediction was developed by incorporating the fitting of Gaussian mixture models onto flux profiles produced by flux measurement or ray tracing. A method was also developed to predict the Gaussian mixture model parameters of a single heliostat for a given time using image processing. Recording the predicted parameters in a database ensures that more accurate predictions are made in a shorter time frame.
Risk Prediction Modeling of Sequencing Data Using a Forward Random Field Method.
Wen, Yalu; He, Zihuai; Li, Ming; Lu, Qing
2016-02-19
With the advance in high-throughput sequencing technology, it is feasible to investigate the role of common and rare variants in disease risk prediction. While the new technology holds great promise to improve disease prediction, the massive amount of data and low frequency of rare variants pose great analytical challenges on risk prediction modeling. In this paper, we develop a forward random field method (FRF) for risk prediction modeling using sequencing data. In FRF, subjects' phenotypes are treated as stochastic realizations of a random field on a genetic space formed by subjects' genotypes, and an individual's phenotype can be predicted by adjacent subjects with similar genotypes. The FRF method allows for multiple similarity measures and candidate genes in the model, and adaptively chooses the optimal similarity measure and disease-associated genes to reflect the underlying disease model. It also avoids the specification of the threshold of rare variants and allows for different directions and magnitudes of genetic effects. Through simulations, we demonstrate the FRF method attains higher or comparable accuracy over commonly used support vector machine based methods under various disease models. We further illustrate the FRF method with an application to the sequencing data obtained from the Dallas Heart Study.
Nonlinear model predictive control of a packed distillation column
Energy Technology Data Exchange (ETDEWEB)
Patwardhan, A.A.; Edgar, T.F. (Univ. of Texas, Austin, TX (United States). Dept. of Chemical Engineering)
1993-10-01
A rigorous dynamic model based on fundamental chemical engineering principles was formulated for a packed distillation column separating a mixture of cyclohexane and n-heptane. This model was simplified to a form suitable for use in on-line model predictive control calculations. A packed distillation column was operated at several operating conditions to estimate two unknown model parameters in the rigorous and simplified models. The actual column response to step changes in the feed rate, distillate rate, and reboiler duty agreed well with dynamic model predictions. One unusual characteristic observed was that the packed column exhibited gain-sign changes, which are very difficult to treat using conventional linear feedback control. Nonlinear model predictive control was used to control the distillation column at an operating condition where the process gain changed sign. An on-line, nonlinear model-based scheme was used to estimate unknown/time-varying model parameters.
Application of Nonlinear Predictive Control Based on RBF Network Predictive Model in MCFC Plant
Institute of Scientific and Technical Information of China (English)
CHEN Yue-hua; CAO Guang-yi; ZHU Xin-jian
2007-01-01
This paper described a nonlinear model predictive controller for regulating a molten carbonate fuel cell (MCFC). A detailed mechanism model of output voltage of a MCFC was presented at first. However, this model was too complicated to be used in a control system. Consequently, an off line radial basis function (RBF) network was introduced to build a nonlinear predictive model. And then, the optimal control sequences were obtained by applying golden mean method. The models and controller have been realized in the MATLAB environment. Simulation results indicate the proposed algorithm exhibits satisfying control effect even when the current densities vary largely.
Directory of Open Access Journals (Sweden)
PAULO COSTA
2016-12-01
Full Text Available ABSTRACT Contemporaneously, and with the successive paradigmatic revolutions inherent to management since the XVII century, we are witnessing a new era marked by the structural rupture in the way organizations are perceived. Market globalization, cemented by quick technological evolutions, associated with economic, cultural, political and social transformations characterize a reality where uncertainty is the only certainty for organizations and managers. Knowledge management has been interpreted by managers and academics as a viable alternative in a logic of creation and conversation of sustainable competitive advantages. However, there are several barriers to the implementation and development of knowledge management programs in organizations, with organizational culture being one of the most preponderant. In this sense, and in this article, we will analyze and compare The Knowledge Creation and Conversion Model proposed by Nonaka and Takeuchi (1995 and Quinn and Rohrbaugh's Competing Values Framework (1983, since both have convergent conceptual lines that can assist managers in different sectors to guide their organization in a perspective of productivity, quality and market competitiveness.
Lavender, Thomas Michael; Schamp, Brandon S; Lamb, Eric G
2016-01-01
Null models exploring species co-occurrence and trait-based limiting similarity are increasingly used to explore the influence of competition on community assembly; however, assessments of common models have not thoroughly explored the influence of variation in matrix size on error rates, in spite of the fact that studies have explored community matrices that vary considerably in size. To determine how smaller matrices, which are of greatest concern, perform statistically, we generated biologically realistic presence-absence matrices ranging in size from 3-50 species and sites, as well as associated trait matrices. We examined co-occurrence tests using the C-Score statistic and independent swap algorithm. For trait-based limiting similarity null models, we used the mean nearest neighbour trait distance (NN) and the standard deviation of nearest neighbour distances (SDNN) as test statistics, and considered two common randomization algorithms: abundance independent trait shuffling (AITS), and abundance weighted trait shuffling (AWTS). Matrices as small as three × three resulted in acceptable type I error rates (p ) was associated with increased type I error rates, particularly for matrices with fewer than eight species. Type I error rates increased for limiting similarity tests using the AWTS randomization scheme when community matrices contained more than 35 sites; a similar randomization used in null models of phylogenetic dispersion has previously been viewed as robust. Notwithstanding other potential deficiencies related to the use of small matrices to represent communities, the application of both classes of null model should be restricted to matrices with 10 or more species to avoid the possibility of type II errors. Additionally, researchers should restrict the use of the AWTS randomization to matrices with fewer than 35 sites to avoid type I errors when testing for trait-based limiting similarity. The AITS randomization scheme performed better in terms of
Directory of Open Access Journals (Sweden)
Thomas Michael Lavender
Full Text Available Null models exploring species co-occurrence and trait-based limiting similarity are increasingly used to explore the influence of competition on community assembly; however, assessments of common models have not thoroughly explored the influence of variation in matrix size on error rates, in spite of the fact that studies have explored community matrices that vary considerably in size. To determine how smaller matrices, which are of greatest concern, perform statistically, we generated biologically realistic presence-absence matrices ranging in size from 3-50 species and sites, as well as associated trait matrices. We examined co-occurrence tests using the C-Score statistic and independent swap algorithm. For trait-based limiting similarity null models, we used the mean nearest neighbour trait distance (NN and the standard deviation of nearest neighbour distances (SDNN as test statistics, and considered two common randomization algorithms: abundance independent trait shuffling (AITS, and abundance weighted trait shuffling (AWTS. Matrices as small as three × three resulted in acceptable type I error rates (p was associated with increased type I error rates, particularly for matrices with fewer than eight species. Type I error rates increased for limiting similarity tests using the AWTS randomization scheme when community matrices contained more than 35 sites; a similar randomization used in null models of phylogenetic dispersion has previously been viewed as robust. Notwithstanding other potential deficiencies related to the use of small matrices to represent communities, the application of both classes of null model should be restricted to matrices with 10 or more species to avoid the possibility of type II errors. Additionally, researchers should restrict the use of the AWTS randomization to matrices with fewer than 35 sites to avoid type I errors when testing for trait-based limiting similarity. The AITS randomization scheme performed better
A burnout prediction model based around char morphology
Energy Technology Data Exchange (ETDEWEB)
T. Wu; E. Lester; M. Cloke [University of Nottingham, Nottingham (United Kingdom). Nottingham Energy and Fuel Centre
2005-07-01
Poor burnout in a coal-fired power plant has marked penalties in the form of reduced energy efficiency and elevated waste material that can not be utilized. The prediction of coal combustion behaviour in a furnace is of great significance in providing valuable information not only for process optimization but also for coal buyers in the international market. Coal combustion models have been developed that can make predictions about burnout behaviour and burnout potential. Most of these kinetic models require standard parameters such as volatile content, particle size and assumed char porosity in order to make a burnout prediction. This paper presents a new model called the Char Burnout Model (ChB) that also uses detailed information about char morphology in its prediction. The model can use data input from one of two sources. Both sources are derived from image analysis techniques. The first from individual analysis and characterization of real char types using an automated program. The second from predicted char types based on data collected during the automated image analysis of coal particles. Modelling results were compared with a different carbon burnout kinetic model and burnout data from re-firing the chars in a drop tube furnace operating at 1300{sup o}C, 5% oxygen across several residence times. An improved agreement between ChB model and DTF experimental data proved that the inclusion of char morphology in combustion models can improve model predictions. 27 refs., 4 figs., 4 tabs.
Model-based uncertainty in species range prediction
DEFF Research Database (Denmark)
Pearson, R. G.; Thuiller, Wilfried; Bastos Araujo, Miguel;
2006-01-01
Aim Many attempts to predict the potential range of species rely on environmental niche (or 'bioclimate envelope') modelling, yet the effects of using different niche-based methodologies require further investigation. Here we investigate the impact that the choice of model can have on predictions...... day (using the area under the receiver operating characteristic curve (AUC) and kappa statistics) and by assessing consistency in predictions of range size changes under future climate (using cluster analysis). Results Our analyses show significant differences between predictions from different models......, with predicted changes in range size by 2030 differing in both magnitude and direction (e.g. from 92% loss to 322% gain). We explain differences with reference to two characteristics of the modelling techniques: data input requirements (presence/absence vs. presence-only approaches) and assumptions made by each...
A new ensemble model for short term wind power prediction
DEFF Research Database (Denmark)
Madsen, Henrik; Albu, Razvan-Daniel; Felea, Ioan;
2012-01-01
As the objective of this study, a non-linear ensemble system is used to develop a new model for predicting wind speed in short-term time scale. Short-term wind power prediction becomes an extremely important field of research for the energy sector. Regardless of the recent advancements in the re......-search of prediction models, it was observed that different models have different capabilities and also no single model is suitable under all situations. The idea behind EPS (ensemble prediction systems) is to take advantage of the unique features of each subsystem to detain diverse patterns that exist in the dataset....... The conferred results show that the prediction errors can be decreased, while the computation time is reduced....
Improving Environmental Model Calibration and Prediction
2011-01-18
groundwater model calibration. Adv. Water Resour., 29(4):605–623, 2006. [9] B.E. Skahill, J.S. Baggett, S. Frankenstein , and C.W. Downer. More efficient...of Hydrology, Environmental Modelling & Software, or Water Resources Research). Skahill, B., Baggett, J., Frankenstein , S., and Downer, C.W. (2009
Model Predictive Control for Smart Energy Systems
DEFF Research Database (Denmark)
Halvgaard, Rasmus
load shifting capabilities of the units that adapts to the given price predictions. We furthermore evaluated control performance in terms of economic savings for different control strategies and forecasts. Chapter 5 describes and compares the proposed large-scale Aggregator control strategies....... Aggregators are assumed to play an important role in the future Smart Grid and coordinate a large portfolio of units. The developed economic MPC controllers interfaces each unit directly to an Aggregator. We developed several MPC-based aggregation strategies that coordinates the global behavior of a portfolio...
CADASTER QSPR Models for Predictions of Melting and Boiling Points of Perfluorinated Chemicals.
Bhhatarai, Barun; Teetz, Wolfram; Liu, Tao; Öberg, Tomas; Jeliazkova, Nina; Kochev, Nikolay; Pukalov, Ognyan; Tetko, Igor V; Kovarich, Simona; Papa, Ester; Gramatica, Paola
2011-03-14
Quantitative structure property relationship (QSPR) studies on per- and polyfluorinated chemicals (PFCs) on melting point (MP) and boiling point (BP) are presented. The training and prediction chemicals used for developing and validating the models were selected from Syracuse PhysProp database and literatures. The available experimental data sets were split in two different ways: a) random selection on response value, and b) structural similarity verified by self-organizing-map (SOM), in order to propose reliable predictive models, developed only on the training sets and externally verified on the prediction sets. Individual linear and non-linear approaches based models developed by different CADASTER partners on 0D-2D Dragon descriptors, E-state descriptors and fragment based descriptors as well as consensus model and their predictions are presented. In addition, the predictive performance of the developed models was verified on a blind external validation set (EV-set) prepared using PERFORCE database on 15 MP and 25 BP data respectively. This database contains only long chain perfluoro-alkylated chemicals, particularly monitored by regulatory agencies like US-EPA and EU-REACH. QSPR models with internal and external validation on two different external prediction/validation sets and study of applicability-domain highlighting the robustness and high accuracy of the models are discussed. Finally, MPs for additional 303 PFCs and BPs for 271 PFCs were predicted for which experimental measurements are unknown. Copyright © 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Cichosz, Simon Lebech; Johansen, Mette Dencker; Hejlesen, Ole
2015-10-14
Diabetes is one of the top priorities in medical science and health care management, and an abundance of data and information is available on these patients. Whether data stem from statistical models or complex pattern recognition models, they may be fused into predictive models that combine patient information and prognostic outcome results. Such knowledge could be used in clinical decision support, disease surveillance, and public health management to improve patient care. Our aim was to review the literature and give an introduction to predictive models in screening for and the management of prevalent short- and long-term complications in diabetes. Predictive models have been developed for management of diabetes and its complications, and the number of publications on such models has been growing over the past decade. Often multiple logistic or a similar linear regression is used for prediction model development, possibly owing to its transparent functionality. Ultimately, for prediction models to prove useful, they must demonstrate impact, namely, their use must generate better patient outcomes. Although extensive effort has been put in to building these predictive models, there is a remarkable scarcity of impact studies.
Assessment of performance of survival prediction models for cancer prognosis
Directory of Open Access Journals (Sweden)
Chen Hung-Chia
2012-07-01
Full Text Available Abstract Background Cancer survival studies are commonly analyzed using survival-time prediction models for cancer prognosis. A number of different performance metrics are used to ascertain the concordance between the predicted risk score of each patient and the actual survival time, but these metrics can sometimes conflict. Alternatively, patients are sometimes divided into two classes according to a survival-time threshold, and binary classifiers are applied to predict each patient’s class. Although this approach has several drawbacks, it does provide natural performance metrics such as positive and negative predictive values to enable unambiguous assessments. Methods We compare the survival-time prediction and survival-time threshold approaches to analyzing cancer survival studies. We review and compare common performance metrics for the two approaches. We present new randomization tests and cross-validation methods to enable unambiguous statistical inferences for several performance metrics used with the survival-time prediction approach. We consider five survival prediction models consisting of one clinical model, two gene expression models, and two models from combinations of clinical and gene expression models. Results A public breast cancer dataset was used to compare several performance metrics using five prediction models. 1 For some prediction models, the hazard ratio from fitting a Cox proportional hazards model was significant, but the two-group comparison was insignificant, and vice versa. 2 The randomization test and cross-validation were generally consistent with the p-values obtained from the standard performance metrics. 3 Binary classifiers highly depended on how the risk groups were defined; a slight change of the survival threshold for assignment of classes led to very different prediction results. Conclusions 1 Different performance metrics for evaluation of a survival prediction model may give different conclusions in
Two Echelon Supply Chain Integrated Inventory Model for Similar Products: A Case Study
Parjane, Manoj Baburao; Dabade, Balaji Marutirao; Gulve, Milind Bhaskar
2017-06-01
The purpose of this paper is to develop a mathematical model towards minimization of total cost across echelons in a multi-product supply chain environment. The scenario under consideration is a two-echelon supply chain system with one manufacturer, one retailer and M products. The retailer faces independent Poisson demand for each product. The retailer and the manufacturer are closely coupled in the sense that the information about any depletion in the inventory of a product at a retailer's end is immediately available to the manufacturer. Further, stock-out is backordered at the retailer's end. Thus the costs incurred at the retailer's end are the holding costs and the backorder costs. The manufacturer has only one processor which is time shared among the M products. Production changeover from one product to another entails a fixed setup cost and a fixed set up time. Each unit of a product has a production time. Considering the cost components, and assuming transportation time and cost to be negligible, the objective of the study is to minimize the expected total cost considering both the manufacturer and retailer. In the process two aspects are to be defined. Firstly, every time a product is taken up for production, how much of it (production batch size, q) should be produced. Considering a large value of q favors the manufacturer while a small value of q suits the retailers. Secondly, for a given batch size q, at what level of retailer's inventory (production queuing point), the batch size S of a product be taken up for production by the manufacturer. A higher value of S incurs more holding cost whereas a lower value of S increases the chance of backorder. A tradeoff between the holding and backorder cost must be taken into consideration while choosing an optimal value of S. It may be noted that due to multiple products and single processor, a product `taken' up for production may not get the processor immediately, and may have to wait in a queue. The `S
Two Echelon Supply Chain Integrated Inventory Model for Similar Products: A Case Study
Parjane, Manoj Baburao; Dabade, Balaji Marutirao; Gulve, Milind Bhaskar
2016-03-01
The purpose of this paper is to develop a mathematical model towards minimization of total cost across echelons in a multi-product supply chain environment. The scenario under consideration is a two-echelon supply chain system with one manufacturer, one retailer and M products. The retailer faces independent Poisson demand for each product. The retailer and the manufacturer are closely coupled in the sense that the information about any depletion in the inventory of a product at a retailer's end is immediately available to the manufacturer. Further, stock-out is backordered at the retailer's end. Thus the costs incurred at the retailer's end are the holding costs and the backorder costs. The manufacturer has only one processor which is time shared among the M products. Production changeover from one product to another entails a fixed setup cost and a fixed set up time. Each unit of a product has a production time. Considering the cost components, and assuming transportation time and cost to be negligible, the objective of the study is to minimize the expected total cost considering both the manufacturer and retailer. In the process two aspects are to be defined. Firstly, every time a product is taken up for production, how much of it (production batch size, q) should be produced. Considering a large value of q favors the manufacturer while a small value of q suits the retailers. Secondly, for a given batch size q, at what level of retailer's inventory (production queuing point), the batch size S of a product be taken up for production by the manufacturer. A higher value of S incurs more holding cost whereas a lower value of S increases the chance of backorder. A tradeoff between the holding and backorder cost must be taken into consideration while choosing an optimal value of S. It may be noted that due to multiple products and single processor, a product `taken' up for production may not get the processor immediately, and may have to wait in a queue. The `S
Aquatic pathways model to predict the fate of phenolic compounds
Energy Technology Data Exchange (ETDEWEB)
Aaberg, R.L.; Peloquin, R.A.; Strenge, D.L.; Mellinger, P.J.
1983-04-01
Organic materials released from energy-related activities could affect human health and the environment. To better assess possible impacts, we developed a model to predict the fate of spills or discharges of pollutants into flowing or static bodies of fresh water. A computer code, Aquatic Pathways Model (APM), was written to implement the model. The computer programs use compartmental analysis to simulate aquatic ecosystems. The APM estimates the concentrations of chemicals in fish tissue, water and sediment, and is therefore useful for assessing exposure to humans through aquatic pathways. The APM will consider any aquatic pathway for which the user has transport data. Additionally, APM will estimate transport rates from physical and chemical properties of chemicals between several key compartments. The major pathways considered are biodegradation, fish and sediment uptake, photolysis, and evaporation. The model has been implemented with parameters for distribution of phenols, an important class of compounds found in the water-soluble fractions of coal liquids. Current modeling efforts show that, in comparison with many pesticides and polyaromatic hydrocarbons (PAH), the lighter phenolics (the cresols) are not persistent in the environment. The properties of heavier molecular weight phenolics (indanols, naphthols) are not well enough understood at this time to make similar judgements. For the twelve phenolics studied, biodegradation appears to be the major pathway for elimination from aquatic environments. A pond system simulation (using APM) of a spill of solvent refined coal (SRC-II) materials indicates that phenol, cresols, and other single cyclic phenolics are degraded to 16 to 25 percent of their original concentrations within 30 hours. Adsorption of these compounds into sediments and accumulation by fish was minor.
Institute of Scientific and Technical Information of China (English)
YU Xuexiang; XU Shaoquan; GAO Wei; LU Weicai
2003-01-01
A new similar single-difference mathematical model (SS-DM) and its corresponding algorithmare advanced to solve the deformationof monitoring point directly in singleepoch. The method for building theSSDM is introduced in detail, and themain error sources affecting the accu-racy of deformation measurement areanalyzed briefly, and the basic algo-rithm and steps of solving the deform-ation are discussed.In order to validate the correctnessand the accuracy of the similar single-difference model, the test with fivedual frequency receivers is carried outon a slideway which moved in plane inFeb. 2001. In the test,five sessions areobserved. The numerical results oftest data show that the advanced mod-el is correct.
A thermodynamic model to predict wax formation in petroleum fluids
Energy Technology Data Exchange (ETDEWEB)
Coutinho, J.A.P. [Universidade de Aveiro (Portugal). Dept. de Quimica. Centro de Investigacao em Quimica]. E-mail: jcoutinho@dq.ua.pt; Pauly, J.; Daridon, J.L. [Universite de Pau et des Pays de l' Adour, Pau (France). Lab. des Fluides Complexes
2001-12-01
Some years ago the authors proposed a model for the non-ideality of the solid phase, based on the Predictive Local Composition concept. This was first applied to the Wilson equation and latter extended to NRTL and UNIQUAC models. Predictive UNIQUAC proved to be extraordinarily successful in predicting the behaviour of both model and real hydrocarbon fluids at low temperatures. This work illustrates the ability of Predictive UNIQUAC in the description of the low temperature behaviour of petroleum fluids. It will be shown that using Predictive UNIQUAC in the description of the solid phase non-ideality a complete prediction of the low temperature behaviour of synthetic paraffin solutions, fuels and crude oils is achieved. The composition of both liquid and solid phases, the amount of crystals formed and the cloud points are predicted within the accuracy of the experimental data. The extension of Predictive UNIQUAC to high pressures, by coupling it with an EOS/G{sup E} model based on the SRK EOS used with the LCVM mixing rule, is proposed and predictions of phase envelopes for live oils are compared with experimental data. (author)